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Abstract

India’s ambitious net-zero climate goals include plans for significant increases in wind and solar

photovoltaic (PV) energy generation by 2030. Despite the importance of these two sources in

India’s future energy mix, few studies have estimated the magnitude of interannual generation

variability that results from such expansion. Furthermore, there is little understanding of the

meteorological drivers of wind and solar PV generation on seasonal timescales, nor any docu-

mented attempts to use dynamical seasonal forecasts to predict seasonal generation anomalies.

This thesis explores interannual variability in India’s wind and solar PV generation, focusing on

the summer monsoon season (June, July, August, and September). An atmospheric reanalysis

is used to create synthetic wind and solar PV generation time series for India to study variabil-

ity. And data outputs from a seasonal forecasting system are used to test seasonal generation

predictions for wind and solar PV.

The generation timeseries wind and solar PV were found to be an accurate means of representing

observed generation variability on a range of timescales. Relationships between anomalies in the

multi-decadal generation syntheses and meteorological drivers were investigated. The western

North Pacific Monsoon and Indian summer monsoon circulations were found to be responsible

for the majority of observed interannual variability in wind and solar PV generation in summer,

respectively. Skilful forecasts of summer season wind and solar PV generation at a one-month

lead time are possible using seasonal climate forecasts initialised in May.

The generation syntheses were found to be sensitive to the technology parameterisations of

wind turbines and solar arrays. Additional generation syntheses that used state-of-the-art

turbine and solar array parameterisations appreciably increased the capacity factors of both

technologies when rolled out nationwide. This suggests that less installed capacity is required

to achieve specific generation outcomes than previously estimated.
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Chapter 1

Introduction

1.1 Motivation

Climate change mitigation efforts rely on significant and timely reductions of greenhouse gas

emissions (GHG) from the energy sector (Riahi, Schaeffer, et al., 2022). The growth of renewable

energy sources within the energy supply mix is a crucial source of mitigation potential (Clarke

et al., 2022). Recent assessments of viable technology pathways toward ambitious climate goals

have highlighted the importance of wind and solar photovoltaic (PV) technologies in achieving

rapid and deep decarbonisation of energy supply (Clarke et al., 2022).

Of the hundreds of technology pathways that keep end-of-century global average temperature

increases to below 2°C above preindustrial levels, considered as part of the 6th Assessment

Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC), the median value

of global electrical energy supplied by wind and solar PV technologies is 59% in the year 2050

(10th-90th percentile range is 28 to 87%, Clarke et al. (2022). This amount of generation from

wind and solar PV would require an approximate fourteen-fold increase in current generation

levels globally from the two sources (IRENA, 2023a).

Although this level of scale-up is unprecedented, recent trends within the energy sector un-

derscore the favourability of wind and solar PV technologies and their anticipated dominance

within new power installations for the coming decades (Pan et al., 2021). Most notable are the

sustained cost reductions of these two technologies, some 88% and 68% in the past ten years for

utility-scale solar PV and onshore wind (IRENA, 2022), respectively, meaning both technolo-

gies offer cheaper generation than conventional power sources in many regions. Furthermore,

ancillary technologies that support wind and solar PV, namely battery storage technologies and

electrified end-use technologies (e.g. electric vehicles), have also seen significant cost reductions.

Although the rate of recent wind and solar PV installations tracks below the trajectories re-

1



1.1. Motivation Chapter 1. Introduction

quired in ambitions decarbonisation pathways, these two technologies dominate recent growth

in the power sector, registering record deployment in 2023, and are anticipated to account for

95% of renewable capacity additions globally in the coming five years (IEA, 2023).

Large-scale expansion of weather-dependent wind and solar energy generation presents inte-

gration challenges for existing electricity networks and power markets, as these systems are

primarily designed to accommodate controllable sources of energy, such as natural gas and coal

(Hill et al., 2012). To successfully integrate wind and solar energy sources, their variable and

weather-dependent output must be managed to reliably meet the demand for electrical power

while avoiding curtailment of excess generation and minimising system costs (Sims et al., 2011).

Without successful integration, the cost of transitioning to a low-carbon energy system will

increase, and the rate and extent of change will slow (Clarke et al., 2022).

Numerous technological solutions exist or have been proposed for integrating very high shares

of wind and solar capacity into energy systems (Bistline, 2021), and multiple studies have

demonstrated the technical feasibility of high-share renewable energy systems that use such

technologies (e.g., Hansen et al., 2019). However, much of this work has focussed on managing

variability in generation over short timescales, particularly rapid demand ramps and diurnal

mismatches between energy supply and demand, with substantially fewer studies addressing

prolonged periods of generation surplus and/or deficit (Denholm and Mai, 2019). Furthermore,

existing variability studies are limited in geographical scope (primarily focussed on countries

or regions with historically large shares of wind and/or solar PV capacity) and rarely validate

model-based estimates of generation or correct for known biases in meteorological input data

(e.g., Staffell and Pfenninger, 2016). Furthermore, existing works typically consider ad-hoc,

hypothetical modifications to power systems or future deployment based on an arbitrary scaling

of current capacity and technologies rather than spatially explicit scenarios founded on the

planned development of existing systems, subject to physical constraints and technology trends

(e.g., Jerez et al., 2015; Ryberg et al., 2019).

As the likelihood of prolonged periods of generation surplus and deficit increase at greater levels

of wind and solar deployment, so too does the need to characterise and anticipate variability

in generation on longer timescales. Quantifying long-duration variability in generation, in the

order of weeks to seasons, will inform the strategic design of the power system, such as the

required scale of controllable generation, demand-side response and energy storage (Bistline

2



Chapter 1. Introduction 1.1. Motivation

et al., 2021). Additionally, the ability to anticipate variability in generation over these longer

timescales will enable operational measures necessary for ensuring security of supply in the

power system, such as the availability and scheduling of controllable generation and storage

(Troccoli, 2018).

In this thesis, India is chosen as a highly relevant country case study. India became the world’s

most populous country in spring of 2023 (UN-DESA, 2023) and is anticipated to become the

third-largest economy by 2030 (IMF, 2020). Such growth could double per capita energy use

in India and drive the largest increase in energy needs of any country globally over the next

decade (IEA, 2022a). Already the third-largest GHG emitter globally (Gütschow et al., 2021),

the rate and scale at which India shifts to low-carbon energy supply will significantly affect the

success of global climate change mitigation goals.

India’s ambitious climate goals, namely reaching net-zero emissions by 2070 and meeting half of

its electricity requirements from renewable energy sources by 2030, indicate the political support

for meeting much of the increased energy demand with low-carbon technologies, notably wind

and solar PV technologies. The scale of this ambition for wind and solar, as stated within the

National Electricity Plan of India (NEP), is 121GW of wind and 365GW of solar PV by 2032

(PIB, 2023a). These figures would see wind and solar PV constitute 54% of nationwide power

capacity in 2032, providing 30% of all electrical energy needs. Anticipating how these energy

sources perform within India’s monsoonal climate will be of great importance for the national

and global energy transition.

Within this Indian context, existing studies of wind and solar PV generation variability are

lacking in several regards:

1. A lack of long-term observed generation data from wind and solar PV sources and detailed

farm-specific technical and location data.

2. Limited understanding of meteorological drivers of wind and solar PV generation variabil-

ity in India.

3. No known applications of seasonal climate predictions within a wind or solar PV generation

context in India.

The investigation presented in this thesis offers original contributions to the academic literature

that address each of the three limitations identified above. Firstly, this thesis presents the first

3
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known example of a validated synthetic generation timeseries for wind and solar PV generation

in India using an atmospheric reanalysis and a detailed description of existing wind and solar

farms. Previous studies in this field lack adequate characterisation of existing wind and solar

PV technologies and avoid validation against observed generation to correct for known biases

in meteorological input data (e.g., Deshmukh et al., 2019; Gulagi et al., 2022).

Existing studies offer a degree of insight into wind and solar PV generation variability over a

range of timescales, e.g., high frequency (Palchak et al., 2017), diurnal (Gangopadhyay et al.,

2023), intraseasonal (Dunning et al., 2015), and seasonal cycle (Hunt and Bloomfield, 2023).

However, treatment of interannual variability remains limited. This thesis offers the first detailed

characterisation of interannual variability and associated meteorological drivers of wind and

solar PV generation focusing on the Indian summer monsoon season.

Thirdly, despite the long pedigree of seasonal climate forecasting (SCF) in South Asia, with

much attention devoted to Indian summer monsoon rainfall, little work considers SCF appli-

cations to energy generation in India. At the time of writing, just a single article exists in

the academic peer-reviewed literature, which provides a cursory indication of forecast skill in

area-averaged values of energy-relevant variables (Das and Baidya Roy, 2021). This thesis offers

a considerable extension to existing work by demonstrating the use of generation syntheses for

wind and solar PV in India to calibrate SCFs of relevant predictor variables and yield skilful

generation forecasts.

1.2 Aims and Objectives

The principal aim of this thesis is:

Identify the driver(s) of interannual variability in wind and solar PV generation in

India during the summer monsoon season and test the ability to skilfully forecast

anomalous generation in this season based on the outputs of a dynamical SCF

system.

Several separate objectives underpin the fulfilment of this overarching aim, as set out below

(with corresponding Results Chapter numbers in brackets).

1. Develop a model synthesis of wind and solar PV generation in India that includes geolo-

cated farms and technology characteristics that can be calibrated with observed generation
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data (4).

2. Characterise and quantify the impact of meteorological drivers on wind and solar PV

generation variability in boreal summer (5).

3. Test the predictability of wind and solar PV generation at a one-month lead time based

on an operational SCF system (6).

4. Test the sensitivity of the wind and solar generation synthesis for India to technological

parameterisations and future deployment scenarios (7).

Findings from each of the results Chapters are interlinked, with these links highlighted within

each Results Chapter’s summary section. The fulfilment of these four objectives contributes to

the relatively limited literature on the influence of weather and climate variability on energy

systems in India. Furthermore, the analysis in this thesis provides methodologies, guidance,

and insights relevant to the operational, planning, and strategic requirements of existing and

future electricity systems.

1.3 Thesis structure

The investigation documented in this thesis is laid out as follows:

• Chapter 2 presents a Background Literature review covering the role of wind and solar PV

in global and Indian mitigation efforts, integration challenges of high renewable shares,

and existing energy meteorology work relevant to the Indian case.

• Chapter 3 details the Data and Methods used in each of the four results chapters. These

include a description of input datasets and the method used to create a wind and solar

PV generation timeseries for India used in Chapter 4. Next, is a description of the climate

datasets and techniques used to describe meteorological drivers of interannual variability

in the boreal summer season (Chapter 5). The description of relevant data methods for

Chapter 6 covers the SCF system, hindcast dataset, statistical downscaling methods and

verification metrics. And finally, a description of future scenario data used in Chapter 7.

• Chapter 4 provides an exposition of the generation syntheses performance, key sensitivi-

ties, and the annual and interannual variability profiles.

• Chapter 5 explores meteorological drivers of wind and solar PV generation variability, with
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a particular focus on the boreal summer season (months of July to September inclusive).

• Chapter 6 tests the performance of various candidate climate predictor variables for gen-

eration anomalies and tests their representation within a SCF system using a range of

verification metrics.

• Chapter 7 further investigates sensitivities of the generation synthesis in terms of techno-

logical parametrisations and near-term capacity deployment.

• Finally, Chapter 8 review the main findings of the investigation, offers a critical reflection

on the wider implications for the Indian energy system, and provides suggestions for future

work.
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Chapter 2

Background Literature

This review of the current literature begins with a top-down view of climate action and the

implications for energy sector transition, beginning at a global level and then down to the level

of India.

2.1 Global climate action

In December 2015, the Paris Climate Change Agreement was adopted by parties to the United

Nations Framework Convention on Climate Change (UNFCCC) at the 21st Conference of Par-

ties (COP). The main aim of the Paris Agreement is to limit ”the increase in the global average

temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the tem-

perature increase to 1.5°C above pre-industrial levels” (UNFCCC, 2015). Ultimately, this aim

upholds the overarching objective of the UNFCCC, to ”prevent dangerous anthropogenic inter-

ference with the climate system” (UNFCCC, 1992). The climate targets specified in the Paris

Agreement result from over two decades of political dialogue, informed by multiple coordinated

syntheses of the scientific literature. The 2°C warming target gained widespread acceptance at

previous COP sessions in Copenhagen (COP-15) and Cancun (COP-16), becoming recognised

as a ‘guard-rail’ to prevent dangerous interference with the climate system (UNFCCC, 2010).

Recent evidence shows that adherence to specific global warming targets implies a correspond-

ing finite carbon budget (Gillett et al., 2013; Canadell et al., 2021). Although estimates of

how the climate responds to cumulative carbon emissions are subject to uncertainty, the co-

ordinated syntheses of the scientific literature in the Sixth Assessment Report (AR6) of the

Intergovernmental Panel on Climate Change (IPCC) is unequivocal about the need for a net

zero emissions rate in order to meet a specified global warming limit (N.B. net-zero emissions

refers to the situation where anthropogenic carbon dioxide (CO2) emissions are equal to or less

than anthropogenic CO2 removals).
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For a given carbon budget, there exist numerous possible annual emission rate trajectories

towards net zero emissions. The necessary socioeconomic and technological changes consistent

with these emission trajectories have been extensively explored by model-based studies, most

notably, the Integrated Assessment Model (IAM) simulations, which contributed to AR5 and

AR6 (Clarke et al., 2014), as well as the IPCC Special Report on 1.5°C (Rogelj et al., 2015;

Van Vuuren et al., 2018). Although other model and non-model-based approaches to defining

decarbonisation strategies exist, only IAMs provide the global scope and detailed treatment

of emission categories to provide the necessary information for an assessment of the net global

warming effect of future transitions (Riahi, Schaeffer, et al., 2022). As tools for informing climate

policy, IAMs and the ‘decarbonisation pathways’ they produce have gained prominence in recent

years (CarbonBrief, 2015; Van Beek et al., 2020; IPCC, 2022) and have been fundamental in

shaping global climate policy by providing ”politically powerful visions of actionable futures”

(Beck and Mahony (2018), p.1). The following section reviews the role of two key technologies

within decarbonisation pathways: wind and solar photovoltaics (PV).

2.2 The role of wind and solar PV technologies

Common features of decarbonisation pathways consistent with an end-of-century global warm-

ing outcome of less than 2°C above pre-industrial levels include improved energy efficiency,

electrification of the energy system, decarbonisation of energy supply and, in numerous cases,

the use of carbon dioxide removal (CDR) technologies (e.g. carbon capture and storage, Lud-

erer et al., 2022). Figure 2.1 shows some of these key features at the global level across 12021

decarbonisation pathways in the Working Group III database (Byers et al., 2022) collated as

part of the AR6 (Riahi, Schaeffer, et al., 2022), and are categorised into eight categories of

end-of-21st century climate response.

Though much diversity exists regarding the exact combination of supply and demand-side tech-

nologies, Figure 2.1a shows how renewable technologies, including wind, solar PV, concentrated

solar, hydropower and biomass with CCS, generally feature significantly across low-warming

pathways. The median share of renewables in primary energy reaches 53% by 2050. Specific to

wind and solar PV technologies, pathways consistent with a global average temperature change

of likely below 2°C generally involve greater amounts of each technology, with the median value

1The 1202 pathways that have sufficient emissions species and projection timeframe to be considered for
climate assessment with climate response emulators.
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Figure 2.1: IPCC AR6 decarbonisation pathway (n=1202) data, where each point represents
a single pathway, coloured by end-of-21st century warming outcome (see inset in panel (a) for
colouring key). Panels a and b show selected results as a function of cumulative CO2 emissions
for the period 2020 to 2100: (a) total primary energy supply from renewable sources (wind,
solar, biomass, hydro, geothermal) as a percentage of total primary energy supply in 2050; and
(b) final energy from wind and solar PV and a percentage of total final energy demand in 2050.

of the wind and solar PV share in final energy at 59% in 2050 (Figure 2.1b).

All levels of generation sourced from wind and solar PV in pathways consistent with global

average temperature change of likely below 2°C mark a significant increase over present-day

levels. The magnitude of these increases for selected countries is shown in Table 2.1, where

recent historical generation from wind and solar PV are compared to equivalent IPCC AR6

pathway data. A factor five scale-up for wind and factor-ten scale up for solar PV is common

across most countries with already sizable renewables deployment (e.g., United States, China,

and the European Union).

The investigation takes a specific focus on wind and solar PV technologies and the country

case of India. The following section provides a brief overview of India’s national climate policy

development, the domestic wind and solar PV deployment status, and the possible outlooks for

these two technologies.

2.3 The Indian case

India currently has the third-largest annual greenhouse gas (GHG) emissions, after China and

the United States, and is in third place globally for cumulative historical emissions with a
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Wind generation (TWh) Solar PV generation (TWh)

Country 2021 2050 Scale up factor 2021 2050 Scale up factor
China 657 3613 5 328 3028 9
European Union 469 1960 4 170 1301 8
United States 383 2185 6 148 1584 11
India 63 1907 30 66 1855 28
Japan 9.4 228 24 86 160 2
Brazil 72 320 4 17 135 8
Canada 35 254 7 6 131 22
Mexico 21 188 9 20 174 9
South Korea 3 169 56 23 154 7
South Africa 0.3 157 523 7 97 14
Russia 3 241 80 1 216 216
Indonesia 0.01 112 11200 0.2 307 1535

Table 2.1: Generation from wind and solar PV in 2021 (IRENA, 2023a) for selected countries
and median values for equivalent IPCC AR6 pathway data in end-of-21st century warming
outcomes of 2°C and below, by the year 2050.

share estimated at 7-8% (Gütschow et al., 2021). At COP26, held in Glasgow October 2021,

Prime Minister Narendra Modi announced a package of climate pledges, most notably a net-zero

emissions target by 2070, sourcing 50% of energy from renewable sources by 2030, and a non-

fossil fuel energy capacity of 500 GW by 2030, the majority of which would come from wind and

solar PV (ASPI, 2022). The pledges were reiterated within an updated Nationally Determined

Contribution (NDC) submission at COP27 (MoEFCC, 2022). And in 2023, updated National

Electricity Plan of India (NEP) proposes 121GW (258TWh) of wind and 365GW (658TWh) of

solar PV by 2032 (together ∼90% of the 500GW target) (PIB, 2023a). The NEP figures mark

a three-fold increase in wind capacity (40.8GW) and six-fold increase in solar PV capacity

(57.7GW) compared to total installed capacity in 2022 (CEA, 2023).

Figure 2.2 compares historical wind and solar PV generation in India and AR6 data for pathways

that achieve end-of-21st-century warming outcomes of 2°C and below. The NEP targets for 2032

fall in the middle of the range of AR6 pathways for solar PV generation and at approximately

the 25th percentile for wind. Recent rates of increase in generation sourced from wind and solar

require a boost to meet the NEP targets. However, a new Renewables Purchasing Obligation

(RPO) that obliges Indian states to meet a certain percentage of electricity requirements through

specific renewable sources, and a large tendering schedule for renewable energy projects indicates

that the NEP targets for 2032 will likely be fulfilled (PIB, 2023a).

So far, this Chapter has made the case for rapid and deep reductions in GHG emissions, pri-
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Figure 2.2: Historical wind (a) and solar PV (b) generation (dashed lines) for India (IRENA,
2023a)). Future projected generation (grey shaded region) from AR6 decarbonisation pathways
for India that achieve an end of 21st-cenurty warming outcome of less than 2◦C with greater
than 67% likelihood (i.e., C1-3 pathways, n=338 wind; n=368 solar PV). Shading reflects
percentiles and full range of generation envisaged in AR6 pathways. Indian National Electricity
Plan targets shown as red bars. Indicative figures for corresponding wind and solar PV capacity
shown on secondary y-axis, estimated from median wind/solar PV capacity per unit generation
in 2040 across AR6 India-only pathways.

marily achieved by transitioning from carbon-intensive energy sources to lower-carbon alterna-

tives. Weather-tied variable renewable energy (VRE) sources are vital amongst these alternative

sources, most notably wind and solar PV technologies. The integration challenges that arise in

high VRE electricity systems are address in the following section.

2.4 Integration challenges of high VRE shares

The following addresses essential aspects of the VRE integration challenge and available tech-

nological solutions. The role of quantifying meteorological generation variability is highlighted

as a key step towards successfully implementing technological solutions. Finally, past studies of

weather variability impacts on the VRE generation are reviewed, focusing on existing research

gaps for the case study of India.
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2.4.1 Electricity system basics

Greater electrification of the energy system (such as transport and space heating) implies a

central role for electricity networks (Hansen et al., 2019). These networks comprise multiple

generator sources (e.g., a gas-fired power plant) connected with numerous demand sinks (e.g.,

households) using a grid infrastructure. This grid includes high-voltage transmission lines,

transporting large power volumes over long distances. Voltages are then stepped-down from

the transmission to regional and local distribution networks to disseminate power to consumers

and connect smaller-scale, distributed generators (generally, renewable sources of low capacity)

(Bergen, 2009). Electricity networks vary considerably in size, ranging from neighbourhood

micro-grids to continental-scale transmission systems. Most counties operate a national power

network comprising 102-104 generators and up to several million demand sinks, often with some

degree of interconnection with the national electricity networks of neighbouring countries. All

power networks have a common function of providing dependable and cost-effective access to

electrical power. As electrical energy services are vital to the economy and livelihoods, the

continual functioning of electricity grids is imperative (Modi et al., 2005).

2.4.2 Impacts of VRE integration

Integrating greater shares of weather-dependent energy generation into existing electricity net-

works and power markets presents multiple challenges, as these systems have primarily been

designed to accommodate controllable sources of energy, such as natural gas and coal (Hill et al.,

2012). The key integration challenges stem from 1) the relative unpredictability of VRE, partic-

ularly wind and solar resources; (2) the limited flexibility of most electricity systems to respond

to unanticipated changes in generation; (3) the relatively high cost or limited use of technical

solutions (e.g. expensive energy storage options and limited uptake of smart appliances); and

(4) the requirement for continual balance between electrical energy supply and demand on all

timescales (Dubus et al., 2018).

Modern electricity networks already manage a degree of variability in the demand for electrical

energy and some variation in supply. For example, the demand profile follows a characteristic

diurnal pattern when aggregated across a region or country: lowest at night, reaching peak levels

during daytime working hours, with reductions on weekends and holidays (Taylor and Buizza,

2003). Demand also tends to track the annual cycle in temperature within temperate regions.
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Most electricity networks manage variability primarily through redundancy, whereby conven-

tional controllable generators are held at various readiness levels, with a generation capacity

greater than the magnitude of variability (responding on timescales of hours to months) (Milli-

gan et al., 2015). Additional options capable of rapidly reducing demand or increasing supply

are also available to balance short-term mismatches between supply and demand (responding

on timescales of milliseconds to hours).

Examples of variation in supply from wind and solar PV are already available within several

national and regional electricity systems which include significant shares of one or both tech-

nologies (e.g., Denmark: 60% annual electricity generation, and the United Kingdom: 29%

IEA, 2024). However, few existing energy systems currently make use of wind and solar PV at

the levels required by ambitious mitigation scenarios. Even in regions with high relative shares

of wind and/or solar PV today, the absolute level of capacity is set to increase considerably

should long-term climate strategies be realised. Such levels of VRE will stretch existing re-

sponses to managing electricity supply balance and challenge reliable, cost-effective operation

of the electricity grid (IEA, 2020).

Greater flexibility of the electricity network is, therefore, seen as imperative to manage increased

demand and supply variability in a decarbonised energy system (Strbac et al., 2020). Such flexi-

bility will rely on particular technologies, namely energy storage technologies (mainly providing

electrical energy storage), responsive demand (e.g. smart appliances and two-way electric ve-

hicle (dis)charging), and greater levels of interconnection between electricity networks (Bistline

et al., 2021). Despite these various means of managing variable supply of and demand for elec-

trical energy, networks will become ever more weather-tied, with the impacts of meteorological

variability on wind and solar PV generation increasing (Pfenninger et al., 2014). The exact form

and scale of technological solutions and management responses will be guided by understanding

supply-side variability, which could conceivably originate primarily from wind and solar PV

sources in aggressive mitigation pathways. The following section considers existing work that

has characterised wind and solar PV generation variability.
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2.5 Quantifying weather and climate-related variability

2.5.1 Existing energy meteorology work on weather timescales

Numerous studies have considered integration challenges posed by VRE by examining the mag-

nitude and pattern of variability in renewable generation. Many studies consider only the

observed variability in underlying meteorological variables relevant to VRE. The review from

Widén et al. (2015) and a meta-analysis from Engeland et al. (2017) have both shown how

short-term (hours - 1-day), regional (1-100km) scales make up the majority of work studying

space-time energy variability due to meteorological variables. The literature which uses either

observed or simulated wind and solar PV generation provides a regional focus on short-term,

hour-to-hour fluctuations (Sinden (2007), Kiss et al. (2009), Hawkins et al. (2011), Olauson

and Bergkvist (2015), Staffell and Pfenninger (2016), Elliston et al. (2012), Juruš et al. (2013),

Ueckerdt et al. (2015), Pfenninger and Staffell (2016), and Fattori et al. (2017); and reviewed

in Ringkjøb et al. (2018)), or aggregate wind and solar generation net of electricity demand

(Holttinen, 2005; Holttinen et al., 2011; Joskow, 2011; Huber et al., 2014; Cannon et al., 2015;

Olauson et al., 2016; Santos-Alamillos et al., 2017; Staffell and Pfenninger, 2018; Shaner et al.,

2018). The emphasis on quantifying variability on short time horizons is, in large part, due to

the imperative for maintaining a real-time balance between electrical energy supply and demand

over the network (Holttinen et al., 2011; Holttinen et al., 2021), and because the majority of op-

erational (e.g., unit commitment) and power market trading decisions occur on these timescales

(Foley et al., 2012; Inman et al., 2013; Okumus and Dinler, 2016).

However, as the likelihood of prolonged periods of generation surplus and/or deficit is expected

to increase at greater levels of wind and solar deployment, so too does the need to quantify vari-

ability in generation on longer timescales. Quantifying variability on longer timescales provides

several insights which can help inform operational and strategic measures necessary for ensuring

security of supply in the power system. First, quantifying the magnitude of variability can help

inform the amount of controllable generation required to maintain adequate power generation

resource or the dimensioning of energy storage systems (IEA, 2022b). Second, estimating the

frequency, duration, and timing of prolonged variations in wind and solar generation, such as

the coincidence of extreme low generation events with periods of heightened demand, indicates

the likelihood of system pressure points. Thirdly, studying the variability of prolonged wind
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and solar PV generation anomalies is relevant to assessing possible complementarity or anti-

phasing between sources (Holttinen et al., 2021). As wind and solar PV installations are often

geographically dispersed, it is also relevant to consider the spatial dependence of variability in

generation to identify the likely coincidence of surplus/deficit generation across a wider region

and the possible effects of greater interconnection (Mills, 2010).

Variation between years in periods of generation surplus and/or deficit lasting weeks to months

would be particularly challenging for electricity system operation, especially if extending over

wider regions and affecting more than one VRE source. Energy system modelling attempting

to optimise future energy systems often lacks adequate representation of interannual climate

variability (Hilbers et al, 2019). However, the importance of multi-year wind and solar PV

generation profiles is an increasingly recognised within studies of electricity system resilience

(Bloomfield et al., 2016; Collins et al., 2017; Pfenninger, 2017; Coker et al, 2020). Variability

on this interannual timescale is also relevant to individual wind and solar PV plant owners/-

operators, who contend with uncertainty in this variability in measurement campaigns used to

estimate profitability and the allowable project debt burden (Carta et al., 2013; Rose and Apt,

2015a).

The following section focuses on work that has quantified generation wind and solar PV vari-

ability on interannual timescales.

2.5.2 Existing energy meteorology work on interannual timescales

Existing work concerned with wind and solar PV variability on interannual timescales has con-

sidered observed space-time variability of meteorological variables, such as met mast wind speed

observations (Sinden, 2007; Earl et al., 2013), while others consider space-time variability in

modelled synthetic generation output, often derived from meteorological reanalyses (Staffell and

Pfenninger, 2016) and mesoscale dynamical models (Hawkins et al., 2011). The development

of long timeseries of synthetic wind and solar PV generation data often yields accurate repro-

duction of high frequency (e.g., hourly and daily) observed generation at the scale of national

power networks and provides sufficiently long datasets to quantify characteristic generation

profiles and rare generation events (Kies et al., 2021). For example, Cannon et al. (2015) used

reanalysis data to estimate the frequency of extreme wind power events in a static UK wind

power fleet. They find that the average occurrence of low or high-generation events decreases
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approximately exponentially with increasing event duration and that the extremity of lulls in

summer is more pronounced than in winter. Interannual variability in these extreme events

is pronounced, with differences between the most and least extreme years exceeding the mean

occurrence of extreme events.

A growing body of literature considers the implications of greater shares of weather-dependent

energy generation at the level of a continental-scale electricity network (Grams et al., 2017;

Santos-Alamillos et al., 2017). Most of these studies seek to quantify how much weather-driven

variation a renewable-powered energy system would experience to assess wind resources’ de-

pendability and ability to displace other power sources. These studies complement traditional

energy system modelling studies, which have predominantly considered centralised electricity

production from large conventional generators, often without temporally explicit treatment of

VRE generation variability. Often, these studies also consider residual demand for electricity

energy, so-called demand net of VRE, which exhibits climate-related variability using historic

demand levels (Olauson et al., 2016) and estimated levels of future demand (Staffell and Pfen-

ninger, 2018). As the smoothing effect of interconnected wind and solar generation is well

evidenced in the literature (Engeland et al., 2017), several studies have hypothesised wide-

scale interconnection to mitigate variability at various timescales (Archer and Jacobson, 2007;

Kempton et al., 2010; Wohland et al., 2020; Jerez et al., 2023).

In addition to developing and studying generation syntheses, a related grouping of studies seeks

to understand the relationships between underlying climatic drivers of interannual variability

and wind and solar PV generation. Internal modes of slow-paced climate variability, such as

the El Niño Southern Oscillation (Trenberth, 1997), can affect remote changes in surface-level

meteorological variables relevant to wind and solar PV via teleconnections. How such modes

of internal climate variability impact renewable generation has historically focused on regions

of high installations, such as the well-established influence of the North Atlantic Oscillation

(NAO) in the Euro-Atlantic sector, particularly the wintertime effect over Western Europe

(François, 2016). For example, Brayshaw et al. (2011) evidenced the impact of NAO phase

on wind speeds during an extended winter season at point locations in the United Kingdom.

They demonstrated the potential for a +/-10% change in mean wind power output with a

+/- unit change in NAO index. Ely et al. (2013) studied the impact of the NAO phase on

an interconnected UK-Norway power system, highlighting the considerable impact of the NAO
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state on demand net of wind power output and the concomitant impact on hydropower reserves

in early spring. Using a synthetic time series of wintertime NAO phase and an economic dispatch

model of the Irish power system, Curtis et al. (2016) demonstrated how a difference of 12% in

wind power generators’ revenue could arise as a consequence of contrasting NAO phases. Several

other studies have further investigated the role of NAO in modulating wind power in Europe –

e.g. François (2016), Commin et al. (2017), and Cradden et al. (2017).

Recognising the impact of NAO phase on storm track location and cloud cover, several studies

have evidenced the covariance of winter surface irradiance and indices of NAO strength, with a

positive correlation found in Southern Europe and vice versa in Northern Europe (Pozo-Vázquez

et al., 2004; Chiacchio and Wild, 2010; Colantuono et al., 2014). Corresponding effects on

observed and simulated (Jerez and Trigo, 2013) solar power output itself have subsequently been

quantified over the Iberian peninsula, showing a particularly pronounced effect during a negative

NAO phase, where incoming shortwave solar at the surface is reduced by ∼10–20%. Similar

behaviour of an opposite sign has been evidenced in a study of wind and solar climatologies in

the UK, with the lower tercile of surface irradiance values corresponding with sea-level pressure

anomalies reminiscent of a positive NAO phase (Bett and Thornton, 2016).

Over North America, Klink (2007) showed that after removing the effect of the north-south

pressure gradient on hub-height wind speeds, between 6%-15% of the remaining wind speed

variation is attributable to the combined effect of Arctic Oscillation (AO) and El Niño, impli-

cating these modes as sources of long lead time predictability. Focussing on the Great Lakes

region of North America, Li et al. (2010) identify lower mean wind speeds and more frequent

occurrences of still periods during strong El Niño years in 30 years of meteorological reanalysis

data. ENSO teleconnections to renewable energy generation have been further evidenced over

the North American continent (Hamlington et al., 2015; Yu et al., 2015). Keellings et al. (2015)

find that cloudier conditions and reduced solar power potential persist over the entire state of

Florida during El Niño, whereas clearer conditions are more likely in the North of the state

during a positive phase of the Atlantic Multidecadal Oscillation (AMO).

Outside of Europe and North America, studies considered the impact of other major atmo-

spheric phenomena on generation from wind and solar technologies are less numerous, although

examples exist for China (Sherman et al., 2017; Yu et al., 2020), Latin America (Henao et al.,

2020; Bianchi et al., 2022), Africa (Fant et al., 2016; Bloomfield et al., 2022), and Oceania (Davy
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and Troccoli, 2012; Poletti and Staffell, 2021). For example, Changes of up to 10% in mean

austral winter global horizontal solar irradiance (GHI) between opposite phases of ENSO have

been found in Eastern Australia (Davy and Troccoli, 2012). However, enhanced variability in

GHI was found in several Eastern Australia coastal regions during El Niño, potentially limiting

predictability on a seasonal timescale. The effect on GHI was non-significant outside of austral

winter or in other regions of mainland Australia, indicating a level of predictability derived from

the seasonal cycle alone.

This review of energy meteorology work on weather to interannual timescales shows existing

studies focussed mainly on countries or regions with larger shares of wind and/or solar PV

capacity (notably, Europe and North America). Despite the commonalities amongst existing

works in terms of methods for constructing synthetic wind/solar generation time series and

analytical approaches to linking observed generation anomalies to larger-scale climate drivers,

most works employ a bespoke analytical approach (e.g., composites, clustering, weather-typing,

etc.) and calibration depending on the region and energy source (e.g., bias correction, validation,

etc.). The following section reviews energy meteorology works specifically focussing on India.

2.6 Existing energy meteorology work in India

As in other regions, existing work focussed on India considering wind and solar generation

variability has emphasised short time horizons. Numerous studies use detailed energy system

models of the Indian electricity system to assess the operational reliability of electricity provi-

sion, consistent with the expanded use of wind and solar PV (Palchak et al., 2017; Rose et al.,

2020; CEA, 2023; Lu et al., 2020; Gulagi et al., 2022; Bhattacharya et al., 2024). These works

evidence key features of a least-cost electricity system, such as optimal generation mix and

energy storage requirements, however the focus is short-term balancing aspects of variability,

employing generation syntheses for representative years.

Resource potential is another energy-meteorology crossover topic frequently found in the liter-

ature focussing on India. Multiple studies have assessed nationwide wind and solar resources

from the point of view of meteorological variables only (e.g., Satyanarayana Gubbala et al.,

2021; Ramachandra et al., 2011). Several studies consider long-term trends in underlying vari-

ables (e.g., Jaswal and Koppar, 2013; Padma Kumari et al., 2007). Work concerned with the

resource potential of wind and solar PV in India has typically estimated the upper limit for
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capacity average or generation. For example, official government agency estimates put India’s

total wind and solar PV potential at 302GW and 748GW, respectively (MOSPI, 2021). Other

studies have given significantly higher estimates which have generally increased over time (for

onshore wind only: 45GW (Hossain and Raghavan, 2021); 1549 GW (Phadke et al., 2012); 4250

GW (Hossain et al., 2011); 2959MW (CSTEP, 2016); 850-3400GW (Deshmukh et al., 2019); for

combined on and offshore wind: 5781GW (Chu and Hawkes, 2020); and for solar PV: 6000GW

(Mahtta et al., 2014); 1300-8900GW (Deshmukh et al., 2019).

Few studies in this resource assessment category quantify spatio-temporal aspects of wind and

solar PV generation variability in India on longer-term time scales. Jain et al. (2021) provide

one of the few examples quantifying the year-round performance of very high share (1000GW+)

wind and solar PV deployments. The study notes significant month-long mismatches between

supply and demand for electrical energy could arise, particularly under wind-heavy deployment

scenarios, with a requirement for seasonal-scale storage to cover early winter months with mon-

soon period surplus. Gulagi et al. (2020) claim the first study with a specific focus on the

effect of the monsoon system on a fully 100% renewably powered electricity system and show

how reduced solar PV generation during the summer monsoon period can be compensated by

increased wind generation when suitably redistributed via the transmission grid. The advanta-

geous phasing of the annual cycle of wind and solar PV generation in the South of India was

also highlighted by Hunt and Bloomfield (2023), while spatial heterogeneity in the wind diurnal

cycle was shown to offer a source of geographical smoothing over the day by Gangopadhyay

et al. (2023).

Despite the vast literature on the Asian and Indian summer monsoons, few examples linking

generation anomalies with meteorological drivers in India exist in the academic or grey literature.

Within the southwestern summer monsoon season in India, studies of intra-seasonal variability in

wind generation point to the anti-phasing of generation with demand for electricity during active

and break phases (Dunning et al., 2015; Kulkarni et al., 2018). The reduced temperatures and

increased wind speed, which prevail during the active phases of the monsoon, lead to a supply

surplus. In contrast, lower wind speeds during break phases create the conditions for a supply

deficit when cooling demand and agricultural activity increase electricity demand. Focussing on

long-term trends in wind power potential in India, the study from Gao et al. (2018) identified

the summer monsoon months as the period of greatest interannual variability in wind generation
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potential. They also identified a simple statistical relationship between an index of potential

wind electricity generation for India and differences in low-pressure regions over peninsular

India and high-pressure regions over the Indian Ocean. However, their work was focused on

reproducing historical declining trends in wind speeds rather than investigating the causes of

anomalous seasons or years. Concerns within the energy sector over anomalous generation years

were heightened in response to the extreme wind drought conditions experienced in the summer

of 2020, where generation through June and July was 24% below climatology (Shekhar et al.,

2021).

This review of energy meteorology work in India highlights the need for further work to quantify

the magnitude and frequency of prolonged periods of anomalous generation resulting from the

existing and future wind and solar fleet. The insights provided by such an investigation support

the appraisal of electricity systems compatible with international climate goals. Furthermore, a

statistical description of the impacts of specific meteorological phenomena on weather-dependent

generation can provide a basis for the statistical downscaling of meteorological forecasts and

potentially aid the targeted improvement of generation forecasts over a range of timescales

(Doblas-Reyes et al., 2013; Torralba et al., 2017b; Clark et al., 2017; Baker et al., 2018; De

Felice et al., 2019).

The following section of this Background chapter builds the case for predictions of energy

generation on seasonal timescales and reviews existing energy meteorology work.

2.7 Basis for seasonal predictions

Seasonal climate forecasts (SCF) span the time period between the deterministic limit of nu-

merical weather prediction (∼10 days) and decadal to multi-decadal climate projections (1-100

years). As such, SCF is described as both an initial condition and boundary condition problem,

where the current state of the climate system and future levels of external forcing contribute

to predictive skill (Doblas-Reyes et al., 2013). Sources of predictability on seasonal timescales

arise from the response of the atmosphere to slow-paced, predictable changes in boundary con-

ditions, including sea surface temperatures (SSTs), sea ice, snow cover, and soil moisture (Wang

et al., 2006), with ENSO providing a major source of predictability for SCF (Cane et al., 1986).

Within the tropical Pacific, ENSO results in a significant displacement to rainfall patterns and

associated remote effects through atmospheric teleconnections (Alexander et al., 2002). Be-
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yond the tropical Pacific, SSTs in the Indian and Atlantic Oceans have a major role in regional

climate variability, particularly on tropical monsoonal rain (Goddard et al., 2001). Modes of

climate variability in these basins, such as the Indian Oceanic Dipole, can potentially contribute

to long lead-time predictability with regional impacts on monsoonal flows and remote impacts

on extratropical climate variability (Saji et al., 1999; Zhao and Hendon, 2009). Stratospheric

anomalies are an important source of seasonal predictability in winter and spring outside of

the tropics (Ineson and Scaife, 2009). Changes in radiative forcing originating from GHG and

aerosol concentrations can also impart predictability on seasonal timescales (Doblas-Reyes et

al., 2006).

SCFs can be based on statistical methods, dynamical models or a combination of both ap-

proaches. A range of statistical-empirical approaches have been used to exploit observed de-

pendencies between climate indices and predictands, demonstrating skill in both tropical (Has-

tenrath and Druyan, 1993) and extratropical regions (Wang et al., 2017). Statistical-empirical

approaches are limited by the availability of relevant predictor variables and out-of-sample cli-

mate responses. Nevertheless, these approaches have proved useful in identifying potentially

predictable phenomena and serve as a benchmark for comparison with alternative prediction

methods. Numerical SCF models use atmosphere-ocean or global climate models with pre-

scribed boundary conditions in a dynamically coupled set-up, incorporating observations from

a range of ocean and atmosphere analyses (Doblas-Reyes et al., 2013). Similar to numerical

modelling of weather and climate at other timescales, model error (structural and parameter)

and imperfect knowledge of the initial climate state are the two primary sources of uncertainty in

SCF (Palmer, 2000). Multi-model and perturbed parameter ensemble approaches aim to quan-

tify the first source of error, whereas initial condition ensemble techniques can help establish

the impact of uncertain initial conditions (Slingo and Palmer, 2011).

Typically, raw model output from a SCF system is post-processed to correct systematic bias

and statistical features that depart from those found in an observational reference period. To

determine the optimum bias correction and to evaluate the performance of SCFs, retrospective

forecasts are typically performed and systematically compared with observations. Numerous

measures are employed to assess various aspects of forecast quality, including the accuracy of the

forecast (error relative to observations), the relative improvement of the forecast over another

prediction (forecast skill, usually relative to climatology) and the mean agreement between the
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frequency of observed events and the probability of those events indicated by the forecast (i.e.

the reliability) (Wilks, 2011). Forecast quality metrics provide a reproducible and objective

means of quantifying aspects of forecast performance across different SCF systems (WMO,

2020). The World Meteorological Organisation (WMO) has designated 14 global centres that

produce SCFs, known as the Global Producing Centres for Long-Range Forecasts (GPCs-LRF),

and several centres contribute to operational multi-model seasonal forecasting systems (Bojovic

et al., 2022)

2.8 Seasonal climate forecasting of energy variables

To date, forecasts of near-surface wind speeds and wind power output have predominantly

focussed on immediate and near-term horizons of minutes to days (Marquis et al., 2011; Foley

et al., 2012). This attention on the near-term arises because most operational and power-trading

decisions occur on these timescales. For example, electricity system operators primarily use

forecasts of wind speeds and wind power output 1-72 hours ahead in planning and implementing

the least-cost power generation mix (unit commitment and dispatch) and by power traders

to inform power supply contract trading and hedging activities. Forecasting initiatives on

comparable time scales for similar purposes have been developed for solar irradiance and solar

PV power output, with additional focus on short (sub-hourly to hourly) timescales, primarily

using a wide range of statistical modelling tools (Inman et al., 2013).

Although the utility of long-range meteorological forecasts for the energy sector has long been

recognised (WMO, 1979; Brown Weiss, 1982; Knox et al., 1985), examples of their application

and use have historically been relatively limited (Soares and Dessai, 2015; White et al., 2017).

Use cases appear more numerous as forecast skill was demonstrated beyond the tropics and

into regions with significant, weather-dependent energy demand and supply (Livezey, 1990;

Changnon et al., 1995; Garćıa-Morales and Dubus, 2007; Changnon and Changnon, 2010;

Troccoli, 2010). In recent years, demonstration of forecast skill on subseasonal-to-seasonal

timescales for climate modes active in the Euro-Atlantic sector (Doblas-Reyes et al., 2013;

Scaife et al., 2014; Smith et al., 2016; Dunstone et al., 2016) has further stimulated applications

within the energy sector (Orlov et al., 2020; White et al., 2022).

Lynch et al. (2014) assessed forecast skill in surface wind speeds on sub-seasonal timescales

using the ECMWF 32-day forecast system. The authors demonstrate significant predictive skill
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in the ensemble mean of operational forecasts and hindcasts of weekly mean wind speed at lead

times of two weeks ahead, as well as positive skill in probabilistic measures. By exploiting an

observed correlation between air temperature and electricity demand in Italy, De Felice et al.

(2015) demonstrate the use of ECMWF System 4 seasonal forecasts of surface air temperature in

deterministic and probabilistic estimates of regional and national electricity load. Their analysis

shows how forecasts initialised in May provide positive and significant skill scores for predictions

of upper/lower tercile exceedance in average electricity demand for June and July. The seasonal

forecast system of the UK Met Office (GloSea5) was shown by Clark et al. (2017) to provide

accurate deterministic reproduction of the observed relationship between NAO on near-surface

wind speed and temperature over the Euro-Atlantic sector in wintertime. Generally, the use

of monthly mean outputs from SCF systems, either directly correlated with energy variables

(e.g., Thornton et al., 2019; Bett et al., 2022) or in statistical-empirical hybrid predictions (e.g.,

Ramon et al., 2021; Lledó et al., 2022), is more common than the use of native model outputs

(Lledó et al., 2019). Studies of solar PV predictability and forecast skill are less numerous than

for wind (e.g., De Felice et al., 2019).

Despite the focus of SCF applications to the energy sector in Europe (Troccoli, 2018), examples

can also be found in China (e.g., Lockwood et al., 2019) and North America (e.g., Torralba et

al., 2017b). Bett et al. (2017) assess the performance of GloSea5 with a specific regional focus

on mainland China and the South China Sea. They identify limited predictive skill, with several

region-specific exceptions: winter wind speeds in the South China Sea, winter solar irradiance

in eastern/southern China, and summer temperatures across the majority of mainland China

(though the skill was due to almost entirely to the observed trend).

The studies mentioned above treat systematic forecast bias by either subtracting a leadtime-

dependent climatology, the seasonal mean climatology, or using direct model correlations with

impact variables. Recognising systematic forecast bias as a key barrier to using surface wind

fields in industry, Torralba et al. (2017b) demonstrate two more sophisticated approaches to

bias correction within seasonal wind speed forecasts. The first makes an anomaly bias correction

and variance adjustment. In contrast, the second corrects variance such that the probability

of category forecast matches the frequency of historical events – i.e. increasing the forecast

reliability. Further details of the relative merits of different approaches to forecast bias correction

are provided in Section 3.4.2.
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2.9 Seasonal climate forecasting in India

Seasonal climate forecasting has a long pedigree in South Asia (Blanford, 1884), with much

attention devoted to Indian Summer Monsoon rainfall (ISMR). Given the importance of ISMR

and its prediction for the region, the following briefly reviews of the wider Asian monsoon and

South Asian regional sub-system.

2.9.1 The South Asian monsoon

The Asian monsoon is the greatest monsoon system globally in terms of spatial extent and

population affected (Clift and Plumb (2008); pp. vii-ix). It is made up of three sub-systems: the

western North Pacific summer monsoon, the East Asian summer monsoon and the South Asian

Monsoon (Wang et al., 2005). The South Asian Monsoon operates over India and consists of

two parts: the southwest monsoon (or Indian Summer Monsoon), which brings heavy rains from

June to September, and the northeast monsoon, which occurs from late October to December

(Gadgil, 2003). These names refer to the direction of the prevailing winds. The southwest

summer monsoon is responsible for over 80% of the annual rainfall in northern and central

regions of India. In contrast, the northeast winter monsoon mainly contributes rainfall to the

southeastern part of the country (Wang, 2006).

Traditional theories of the Indian Summer Monsoon (ISM) have stressed the importance of the

faster rate of heating during boreal spring over land compared to surrounding tropical oceans,

which forms a large-scale land-sea temperature gradient and drives large-scale wind reversal

(Halley, 1753; Hadley, 1735). Later works describe the ISM as a seasonal migration of the

Inter-Tropical Convergence Zone (ITCZ) that shifts north during boreal summer, following the

region of maximum solar heating (Charney, 1969). The monsoon trough, which establishes over

peninsular India during the southwest monsoon, shares many features of the ITCZ, namely low-

level convergence, cyclonic vorticity above the boundary layer, and organized deep convection

Sikka and Gadgil (1980).

The large-scale circulation of the ISM is characterised by south-westerly surface flow that is

joined upstream with a cross-equatorial low-level flow (and upper-tropospheric cross-equatorial

return flow) (Krishnamurti and Bhalme, 1976). The combined effect of the East African High-

lands (Slingo et al., 2005) and Coriolis force serve to channel this surface flow across the Arabian
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Sea, forming the Somali or Findlater Jet (Findlater, 1969). These winds transport moisture

evaporated from the warm Indian Ocean to converge on the mountainous Western Ghats region

that spans the west coast of India, where orographic lifting generates substantial rainfall, with

a rain shadow to the east (Gadgil, 2003). Continuing eastwards to the Bay of Bengal, the winds

turn north around the low-pressure monsoon trough (large-scale cyclonic vorticity extending

from BOB to northwest India), in which most monsoon rainfall occurs (Rajeevan et al., 2010).

Rainfall during the ISM is not continuous but instead shows considerable spatial and temporal

variability (Gadgil, 2003). On a synoptic scale, cyclonic low-pressure systems (LPS) dominate

and typically form over the northern Bay of Bengal before travelling inland northwest over In-

dia, lasting 3-7 days (Sikka and Gadgil, 1978). Beyond the synoptic scale variability associated

with individual LPS, longer-lived modes of intra seasonal variability are present within the ISM

(Krishnamurti and Bhalme, 1976; Murakami, 1976; Yasunari, 1979; Sikka and Gadgil, 1980;

Lau and Chan, 1986). These variations exhibit two non-periodic yet distinct time scales in the

range of 10-20 and 30-60 days (Annamalai and Slingo, 2001). The shorter quasi biweekly period

is associated with westward-propagating clusters of synoptic-scale convective systems that orig-

inate over the northwest tropical Pacific and propagate inland over Northern India via the Bay

of Bengal (Hoyos and Webster, 2007). The longer period oscillations have a north–south dipole

structure, are tied to the phase and magnitude of the Madden Julian Oscillation (MJO) (Singh

et al., 2019) and are typically considered as a manifestation of the Tropical Convergence Zone

alternating position between the tropical Indian Ocean and the Indo-Gangetic plain (Gadgil,

2003).

Together, intra seasonal oscillations on the two timescales are considered to represent so-called

active and break phases of the monsoon (although intraseaonal oscillations on other time pe-

riods have been identified, active and break phases are typically considered as the superposi-

tion of these modes, with the amplitude of 30–60-day mode dominating (Krishnamurthy and

Shukla, 2007). Active phases typically herald time-clustered monsoon depression activity, re-

duced surface pressure across central India and monsoon trough zone, anomalous cyclonic vor-

ticity, enhanced low-level westerlies and periods of heavy rainfall in eastern and central India

(Krishnamurthy and Shukla, 2000; Rajeevan et al., 2010). Break phases see a southward shift

of the main zone of convective activity, positive surface pressure anomalies over peninsular In-

dia, weakened low-level westerlies, and a dry interval persists over much of peninsular India
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(Blandford, 1886; Ramamurthy, 1969; Lau et al., 2012).

The ISM also exhibits considerable variability on interannual timescales. Although total sum-

mer rainfall for India varies by only+/-10% between years, differences at the finer scale are

more pronounced, with a coefficient of variation of 35% in the core central region of monsoon

rainfall (Moron et al., 2012). This interannual variability results from internal variability (i.e.

intraseasonal scale oscillations) and external forcings with a time period greater than the ISM.

Of the external forcings that contribute to interannual variability in the ISM, tropical Pacific

Ocean SST anomalies associated with the El Niño Southern Oscillation (ENSO) dominate,

accounting for around one-third of interannual variability in ISM rainfall totals (Kulkarni et al.,

2021). ENSO describes an internal mode of variability in the tropical Pacific that couples ocean

and atmosphere and produces remote impacts on weather across the globe (Shukla, 1987).

ENSO includes the El Niño warming phase, with positive SST anomalies in the central and

eastern tropical Pacific, and the opposite sign La Niña cooling phase. ENSO phases exhibit a

semi-regular time period between 2 to 7 years, and each ENSO event usually persists for 9 to 12

months, with peak SST anomalies typically arising in boreal winter (McPhaden et al., 2006).

ENSO phases and associated SST anomalies bring about the so-called Southern Oscillation, a

large-scale alternation in surface pressure between the Pacific and Indian Ocean basins (Bjerk-

nes, 1969; Rasmusson and Carpenter, 1982). ENSO SST anomalies can affect the zonal overturn-

ing circulation in the Indo-Pacific region, i.e. the Walker circulation, with the usual ascending

(descending) branch over the western (eastern) Pacific Ocean shifting eastward (westward) dur-

ing El Niño (La Niña) (Walker and Bliss, 1932; Sikka, 1980). The anomalous subsidence over

the South Asian region that results from this displacement during El Niño conditions tends to

suppress convention, while enhanced convection is favoured during La Niña (Webster et al,1998).

These changes in the monsoon circulation often materialise as a decrease (increase) in ISMR El

Niño (La Niña) (Pant and Parthasarathy, 1981; Rasmusson and Carpenter, 1983; Mooley and

Parthasarathy, 1983). Aside from influencing the ISMR via changes to large-scale circulation

over the Indo-western Pacific, ENSO modulates the ISMR via various indirect physical pro-

cesses, including impacts on the meridional temperature gradient over South Asia (Yang and

Lau, 1998; Goswami and Xavier, 2005), the India ocean sea surface temperatures and moisture

content of the atmosphere over the region (Ashok et al., 2004; Wu and Kirtman, 2004).

Aside from ENSO, a second major driver of interannual variability in ISMR is the Indian Ocean
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Dipole (IOD), which describes the east-west gradient in SST within the equatorial Indian Ocean

(Saji et al., 1999). The positive phase of IOD coincides with positive (negative) SST anomalies

in the west (southeast) Indian Ocean and is associated with increased (decreased) IMSR over

central (central and eastern) India (Ashok et al., 2001). Additional remote drivers of ISMR

include springtime snow depth in the Himalayan mountains (Hahn and Shukla, 1976), aerosols

(Ramanathan et al., 2005) and North Atlantic Ocean seas surface temperature anomalies (Pai

and Rajeevan, 2006). Although ENSO and IOD remain the most influential sources of pre-

dictability on seasonal timescales (Johnson et al., 2017).

2.9.2 Seasonal forecast skill in India

Early ISMR predictions relied entirely on statistical models (e.g., Walker and Bliss, 1932; Ra-

jeevan and Francis, 2007), but progressive improvements to general circulation models (GCMs),

notably coupled atmosphere–ocean schemes, led to improvements in dynamical seasonal fore-

casting systems (Charney and Shukla, 1981; Webster et al., 1998; Preethi et al., 2010; Saha

et al., 2014; Jain et al., 2019). Current operational seasonal forecasting systems demonstrate

varying levels of deterministic skill in IMSR predictions, generally with an r value for seasonal

mean rainfall of 0.35-0.60, though assessments are sensitive to the hindcast period considered

and observational reference dataset (Rajeevan et al., 2012a; Jain et al., 2023; Chevuturi et al.,

2021). Common amongst forecast systems is limited grid-scale forecast skill, which improves

when considering areal averages spanning the Indian subcontinent, albeit with wet bias a com-

mon issue (Jain et al., 2019). Few models attain skill levels approaching potential predictability,

which is typically estimated with an upper limit of 0.7-0.8 (Krishna Kumar et al., 2005; Saha

et al., 2019).

The Indian Meteorological Department (IMD) currently issues seasonal rainfall forecasts oper-

ationally using a version of the Climate Forecast System version 2 (CFSv2) (Saha et al., 2014)

with several ISM-specific parameterisations. A recently upgraded version of the IMD system

that includes a higher resolution atmospheric module achieves the highest reported determinis-

tic forecast skill of ISMR from a dynamical model (0.63-0.72, depending on the rainfall dataset

used for verification, Jain et al. (2023)). Despite the improvements in ISM prediction, almost

no examples of SCF applications to energy generation in India exist within the peer-reviewed

or grey literature. Only a single study from Das and Baidya Roy (2021) provides any insight

into the seasonal forecast skill of energy-relevant variables. They assess area-averages of four
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energy-relevant variables across six operational forecasting models and find generally modest

skill, with ECMWF System 5 performing best for all variables. India’s current National Cli-

mate Research Agenda identifies improved forecasting capabilities and climate services for the

renewables sector as key development priorities (PIB, 2023b). Although more than a dozen

Renewable Energy Management Centres currently operate within national and regional load

dispatch centres, forecasting capabilities only include near-term horizons out to one week (Joshi

and Inskeep, 2023)

2.10 Chapter summary

This Chapter has reviewed the role of wind and solar PV technologies in global and Indian

energy transition plans, noted the integration challenges that arise with high shares of weather-

tied generation, and has covered the role of quantifying and anticipating generation variability

in the operational and strategic management of electricity systems. A focus on interannual

generation variability and prediction on seasonal timescales within India has highlighted several

research gaps:

1. Limited analysis of observed wind and solar PV generation variability (i.e., analysis of

historical data) in India, likely due to limited data records on generation and existing

renewables fleet.

2. Existing examples of synthetic wind and solar PV generation in India (e.g., Palchak et al.,

2017; Gao et al., 2018; Deshmukh et al., 2019) lack one or more of the following: (1)

a detailed description of existing farms in terms of location, turbine/array model, and

commissioning date; (2) verification against observed historical generation records; (3)

calibration/bias correction against observed historical generation records; and (4) multi-

decadal meteorological input data.

3. No known examples of studies linking meteorological drivers to seasonal wind or solar PV

generation anomalies in India.

4. No known studies demonstrating seasonal forecast skill of generation in India.

5. Most work considering future renewables deployment in India considers ad-hoc, hypothet-

ical modifications to power systems, future deployment based on an arbitrary scaling of

current capacity, or generic region-wide synthesis datasets, rarely founded on either the
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planned development of existing systems or physical constraints (e.g., Ryberg et al., 2019;

Jerez et al., 2015).

The objectives of this thesis, as set out in the previous chapter, seek to address these existing

research gaps. The methods and data sources used to undertake the investigation are laid out

in the following chapter.

29



Chapter 3

Data and Methods

3.1 Overview

The set of methods and supporting data that accompany each of the four results chapters are

detailed in the following sections.

Section 3.2 summarises the methodological approach for the first results chapter (Chapter 4),

which includes creating a database of all wind and solar PV farms in India, estimating generation

from these installations for the years 2017 to 2021 using meteorological reanalysis data and

subsequently calibrating against daily generation records for state and regional groupings.

Section 3.3 summarises the methodological approach for the second results chapter (Chapter

5) and details the various observational datasets and associated climate indices used to assess

candidate drivers of interannual variability in wind and solar PV generation syntheses for the

JJAS season.

Section 3.4 summarises the methodological approach for the third results chapter (Chapter

6) and includes details of the seasonal forecasting system used to derive wind and solar PV

generation forecasts for JJAS and specifics on the hindcast set, calibration and verification

techniques used.

Section 3.5 summarises the methodological approach for the fourth results chapter (Chapter

7), specifically two scenarios for near-term capacity and technology development for wind in

India.

3.2 Data and Methods: First Results Chapter

The following details the methodology to produce synthetic wind and solar PV generation

timeseries for present-day installations in India, and comprises the following processing steps:
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1. Populate a geospatial database of wind farm and solar PV installations in India with avail-

able technical data (turbine model and hub height in the case of wind) and commissioning

dates.

2. Transform surface winds speeds into estimates of wind generation for existing wind farms

using a modified wind farm power curve.

3. Transform irradiance and temperature fields into estimates of solar PV generation for

existing solar farms.

4. Construct a time series of wind and solar PV generation for the years 2017 to 2020,

aggregated for selected states and regions in India.

5. Validate generation synthesis based on observed historical generation and determine suit-

able bias correction method.

6. Construct a time series of wind and solar PV generation for selected states and regional

aggregates in India using the entire span of the reanalysis dataset (1979 to 2021).

The following sections describe each of these processing stages in detail.

3.2.1 Installation locations and technical characteristics

Spatially explicit synthesis of wind and solar PV generation is limited by the availability of

suitable geo-referenced datasets with sufficient farm-level technical data (e.g. turbine model for

wind or array tilt for solar PV). This lack of suitable data represents a recognised impediment to

studies of renewable energy generation (Pfenninger et al., 2017). Few renewable energy datasets

maintained by national governments contain complete information on installation location and

technical characteristics. Several industry organisations and market intelligence firms maintain

similar databases. However, these are typically cost-prohibitive for researchers (e.g., the ‘Glob-

alData’1 product from market intelligence firm Energy Monitor) or lack sufficient detail (e.g.

the wind farm database from market intelligence firm ‘thewindpower.net’2 is often used in re-

search initiatives of wind generation but lacks information on location, commissioning date and

turbine specifications for over 90% of total wind capacity in India). Several academic exercises

have sought to compile complete global inventories of wind and/or solar PV generator locations

using automated compilation techniques (e.g., Dunnett et al., 2020) or satellite imagery (e.g.,

1GlobalData: www.energymonitor.ai/companies/globaldata-energy
2thewindpower.net: www.thewindpower.net
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Zhang et al., 2021). However, such datasets are again insufficient in technical detail or coverage

for India (location and estimated capacity data only).

3.2.2 Compiling data for existing wind farms

A comprehensive dataset of existing installed capacity for wind in India was compiled by com-

bining previously disconnected national government and industry datasets. Specifically, the

Central Electricity Agency (CEA) of India maintains a list of all wind installations nationally,

broken down by the project investor name and installation location, with additional information

on the commissioning date (CEA, 2022). The Geospatial Energy Map of India, produced by

the National Institution for Transforming India (NITI Aayog), provides location data for wind

installations nationally, down to the level of the nearest village settlement to the installation

(NITI Aayog, 2022). The NITI Aayog dataset also provides the investor name per installation,

thus providing a common attribute to join with the CEA dataset. Finally, the specific turbine

model used at each installation was obtained from the Indian market intelligence firm Consol-

idated Energy Consultants Limited (CECL) via their annual Directory of Indian Windpower

publication (CECL, 2020; CECL, 2022).

The compiled wind database was cross-referenced against independent (yet incomplete) datasets

of wind installations in India to gain confidence in the data compilation process. Many early

renewable energy projects in India were commissioned under the Clean Development Mech-

anism (CDM) scheme. So, full project details can be found within the Institute for Global

Environmental Strategies (IGES) CDM database (IGES, 2022). Where the project name in the

IGES CDM database included the investor name, a match could be made with the compiled

wind database, and the project details (location, commissioning date, turbine model in the

case of wind) cross-checked. Additionally, the independent research and advocacy organisation

Global Energy Monitor3 maintains global inventories of wind installation locations. Although

only a small number of geolocated entries exist for India (∼6% of capacity in 2021 accurately

geolocated), further cross-referencing of the compiled wind database was possible. Finally, the

wind farm database from market intelligence firm ‘thewindpower.net’ provides project details

(location, commissioning date, turbine model in the case of wind) for approximately 10% of

wind capacity in India, providing a further source cross-referencing. In all cases, the com-

piled wind database provides an advancement on existing sources in terms of detailed project

3Global Energy Monitor wind tracker: https://globalenergymonitor.org/projects/global-wind-power-tracker/
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data (proximate geographical location, commissioning date, and turbine model in the case of

wind). Commissioning dates were not available pre-2016 for the Indian states of Gujarat and

Tamil Nadu, and so dates were gap-filled with available information from the above sources and

estimates based on CECL (2020) and CECL (2022).

3.2.3 Compiling data for existing solar PV installations

The same method used to compile the wind data is also applicable for solar PV, namely the

reconciliation of CEA and NITI Aayog sources. However, the coverage of installed capacity is

less than 50% of the cumulative total in 2021 for solar PV in the CEA source. No additional

data sources on solar PV in India were found to complement information on either installed

capacity, commissioning date, or location. As such, the pre-existing dataset of utility-scale solar

installations maintained by Global Energy Monitor4 was used. This dataset covers virtually all

utility-scale capacity and includes proximate geographical locations. The main drawback of

this dataset is the commissioning date information, which is at annual resolution only. Some

inaccuracies in the solar PV generation synthesis will arise due to the misalignment of observed

and synthesised generation, which are caused by the uncertainty over the exact date solar

farms were installed. However, most solar PV farms have historically been installed in the

first three months of the year, possibly reflecting easier working conditions outside the summer

monsoon season or a rush to finalise projects before the financial year-end. (March 31st).

Setting commissioning dates in the GEM database for solar PV to January 1st for the available

information on the commissioning year is considered a reasonable approximation given the

available data.

A second drawback of the chosen solar PV dataset is a lack of rooftop solar PV coverage.

However, rooftop solar PV (installations less than 1MW capacity) represented 10.9% of total

solar PV capacity in India in 2021 (BridgetoIndia, 2022), and respective generation is not

monitored centrally, preventing any validation of generation estimates made for rooftop solar

PV. Therefore, the exclusion of rooftop solar in this analysis is a reasonable omission.

Modelling generation from the utility-scale solar PV segment considered in the investigation

requires several assumptions over technical characteristics. Firstly, the parameterisation of

module conversion efficiency (explained in the following section) is set equal to present-day

4Global Energy Monitor solar tracker: https://globalenergymonitor.org/projects/global-solar-power-tracker/
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values of multi-crystalline silicon wafer-based cells. Although various photovoltaic cell tech-

nologies exist, crystalline silicon wafer-based cells have dominated in recent years and made up

95% of the global market share in 2021 (VDMA, 2022). The recent deployment of solar PV

has favoured the relatively higher efficiency of mono-crystalline silicon wafer-based cell designs

(84% of the global market in 2021) over the previously prevalent multi-crystalline silicon designs

(VDMA, 2022). However, due to domestic manufacturing constraints, the Indian solar market

has favoured multi-crystalline silicon designs (TERI, 2019; IEEFA, 2021).

Second, ubiquitous fixed tilt designs are assumed across India in the analysis presented in this

thesis, with fixed equatorward orientation. Globally, the utility-scale segment of the solar PV

market has been dominated by single-axis tracking designs in recent years (VDMA, 2022).

However, due to a combination of the domestic market and local siting factors, utility-scale

solar PV installations in India have made almost exclusive use of fixed-angle designs (TATA,

2017). Industry reports suggest that only fixed-angle designs were used before the year 2017 and

have since struggled to gain a foothold in the domestic market, representing a minor share of

installations since (Bridge to India, 2018). India’s leading solar tracker supplier reported that the

share of tracking designs in cumulative utility-scale solar PV in 2022 was 13% (Arctech, 2022).

In the absence of project-specific details on the use/non-use of tracking designs, the simplifying

assumption of ubiquitous fixed tilt designs with array tilt and orientation is considered adequate

(a later section provides further details on the solar module parameterisation).

The resulting database of wind and solar farms is named the Indian Wind and Solar Database

(IWSD) in the following sections. Table 3.1 shows the column headers for the IWSD that are

common to both wind and solar PV. For wind, the turbine hub height was taken from the average

value per turbine model, referring to the turbine model dataset from ‘thewindpower.net’. The

installed capacity in Mega Watts (MW) refers to the direct current (DC) rating of the wind and

solar PV generators before any modification by an electrical inverter (i.e., following conventional

capacity reporting standards (IEA, 2021)). Figure 3.1 shows the locations of wind and solar

PV installatons contained in the IWSD.
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Headers Wind Solar PV

village X
district X
state X X
installed capacity mw X X
latitude X X
longitude X X
commissioning date X X
number of turbines X
turbine power mw X
turbine model X
turbine manufacturer X

Table 3.1: Column headers for the IWSD common for wind and solar PV technologies

Figure 3.1: (a) Wind farm locations (blue points) in the compiled Indian wind farm dataset,
with shading representing 100m mean wind speeds (using data from the Global Wind Atlas
developed by the Danish Technical University (DTU-GWA) described in Section 3.2.11). (b)
solar PV farm locations (blue points) from GEM, with shading representing mean daily GHI
(using data from the Global Solar Atlas (GSA) product described in Section 3.2.11).

Having described the underlying data and assumptions for the Indian Wind and Solar Database

(IWSD), the following sections detail the meteorological data fused to produce the generation

syntheses.

3.2.4 Reanalysis Data

The temporal and spatial consistency, global coverage, multi-decadal length, and public avail-

ability of atmospheric reanalysis datasets make them well-suited to regional-scale analysis of

weather-dependent energy resources (Rose and Apt, 2015b; Frank et al., 2018). Despite known
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biases and uncertainties within reanalysis datasets (Decker et al., 2012; Zhang et al., 2016),

the data have been employed in studies of global, national and site-specific wind and solar PV

generation (Lu et al., 2009; Hoogwijk, 2004; Juruš et al., 2013; Drew et al., 2015), as well as

applications within industry, most frequently for calibration of local wind resources (Olauson

et al., 2017; Davidson and Millstein, 2022).

Reanalysis describes the process of assimilating various observational measurements of the cli-

mate state into a model scheme to provide a dynamically consistent approximation of meteoro-

logical variables (Trenberth et al., 2008). Modern reanalysis data products use high-resolution

global climate model systems, thus providing meteorological information at all locations glob-

ally, at regular time intervals, with a standardised gridded data format. Here, the primary

data source for atmospheric variables used in the synthesis of wind and solar PV generation

is the fifth-generation reanalysis product produced by the European Centre for Medium-Range

Weather Forecasts (ECMWF). ERA5 data is publicly available via the C3S Climate Data Store

(CDS) (Buontempo et al., 2022). The model core of the ERA5 reanalysis is a variant of the

ECMWF operational medium-range forecasting system (Integrated Forecasting System (IFS)

Cycle 41r2), which incorporates several enhancements in model parameterisations (e.g. con-

vection and microphysics), as well as the data assimilation method. Furthermore, this latest

reanalysis has a significant increase in the horizontal resolution over the ERA-Interim reanalysis

that ERA5 supersedes (0.25◦×0.25◦ ∼ 31km at the equator compared to 80km for ERA-Interim)

and over twice the number of model levels in the vertical (137 versus 60) (Hersbach et al., 2020)).

ERA5 also provides more output fields (including the 100m wind variable) at hourly frequency,

extending back to the year 1940 rather than the 6-hourly frequency in ERA-Interim, back to

1979.

ERA5 assimilates synoptic observations at an average rate of approximately 0.75 million per

day in 1979, increasing to an average of 24 million per day by the end of 2018, with satellite

radiance measurements as the main data sources throughout the reanalysis period (ECMWF,

2019). Observational data inputs to the pre-satellite era of the ERA5 data product (i.e., the

period 1950-1979, recently extended back to 1940 in 2023) are far less numerous, averaging

approximately 53,000 observational inputs per day, sourced from conventional surface and upper

air instruments only (Bell et al., 2021). This lack of observational data inputs in the early

period of the ERA5 reanalysis leads to greater uncertainty and lower accuracy in the model
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representation of the climate. For this reason, this investigation mainly focuses on the post-1979

period.

The analysis presented in this thesis makes use of a selection of meteorological variables from

the ERA5 reanalysis product, which are further described in the following sections.

3.2.5 Wind speed data

ERA5 was selected as the source of hourly wind speed data in this study as the product has

proved better able to represent observed surface wind speeds compared to other operational

reanalyses (Cionni et al., 2017; Gualtieri, 2022) and has also outperformed the MERRA2 re-

analysis in a simulation of national wind power generation (Olauson, 2018). Generally, the

ERA5 representation of surface wind speeds has performed well in various geographies (e.g,

Molina et al. (2021); Belmonte Rivas and Stoffelen (2019); Hoffmann et al. (2019)). In the

case of wind, higher-resolution reanalysis products may offer a more accurate representation of

surface wind speeds. Two candidate products are ERA5-Land or the IMDAA reanalysis (Rani

et al., 2021), although both products lack the 100m wind speed variable and would depend

more on accurate vertical extrapolation of surface wind.

Specific to India, daily mean ERA-Interim surface wind speeds have been evaluated against

automated weather stations maintained by the Indian Space Research Organisation (ISRO)

and wind farm met mast data maintained by the National Institute of Wind Energy (NIWE),

generally showing high agreement (r values >0.8) and modest positive bias (ERA-Interim ∼

+10% (Satyanarayana et al., 2019; Satyanarayana Gubbala et al., 2021). The ISRO and NIWE

wind speed data are not publicly available, preventing a similar comparison with ERA5 values

in this thesis. However, replicating the assessment with ERA5 daily mean 10m winds against

observed equivalents from the publicly accessible Global Surface Summary of the Day (GSOD)5

data provided by the US National Centres for Environmental Information (NCEI) shows similar

levels of agreement to the studies using ERA-Interim. Figure 3.2 summarises the generally high

agreement between ERA5 and the observed 10m wind speed data from 106 met stations with

more than five years of data records (r values generally >0.8). However, compared to the bias

values reported in the studies of ERA-Interim, both positive and negative biases of greater

magnitude are found in this ERA5 comparison (median bias ratio on 1.06, 25th/75th quantiles

5GSOD access: https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00516/html
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0.72 and 1.49, respectively).

Without quality-controlled wind speed observations (like the ISRO and NIWE sources), it is

difficult to ascertain whether the variable and often large bias seen in Figure 3.2 is a genuine

feature of ERA5 or an outcome of the GSOD observed wind speeds. The expectation is that the

generally poor quality of the GSOD data over India is the source of the discrepancy. Indeed,

most GSOD data over India was discarded in the comparison, with 354 station records discarded

due to sporadic or incomplete data records. Poor data completeness has been identified in

other studies of the GSOD dataset, with additional data artefacts causing spurious wind speed

trends over the past decade (Dunn et al., 2022). Furthermore, a recent study of surface wind

speeds recorded by met stations maintained by the Indian Meteorological Department over India

noted that the standard measurement height of 10m was not consistent across all stations,

possibly resulting in mean biases due to vertical wind shear (Satyanarayana Gubbala et al.,

2021). Ultimately, this comparison between reanalysis and available observed wind speed data

underlines the caveat that must accompany the use of modelled data: that locally variable

parameters (i.e., wind speed) are only approximated at a coarse scale, subject to assimilated

observed values.

Figure 3.2: Correlation between daily mean 10m wind speed data from 106 met stations (ISD-
NOAA) and equivalent ERA5 windspeeds for nearest grid cell (a). Bias ratio between daily
wind speed from station data and ERA5 wind speeds (i.e., ratio of station data and ERA5
value) for nearest grid cell (b).

As the wind speed data available in ERA5 is only available at certain fixed heights that do
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not necessarily correspond with a particular turbine hub height, vertical interpolation or ex-

trapolation of wind speeds is necessary. The simplified Power-law model of vertical wind shear

(v2 = v1(h/100α)) is used as a means of vertical interpolation/extrapolation of ERA5 100m

wind speeds, v1, to wind speeds, v2, at a certain hub height, h (Schallenberg-Rodriguez, 2013).

The parameter α was defined empirically per grid cell using hourly 10m and 100m wind speed

data and then averaged over the hour-of-the-day (n=24) and month-of-the-year (n=12) to cre-

ate 288 (n=12x24) unique α values per grid cell. This scale parameter value can then be used

to determine the wind speed at the hub height of a turbine at the nearest neighbouring ERA5

grid cell of the farm for the corresponding hour of day and month of the year.

Figure 3.3 shows the profile of this variable α value by averaging across all wind farms. A strong

diurnal cycle is apparent, with peak values in the afternoon and evening hours. As vertical wind

shear is strongly related to the thermal stratification of the boundary layer, warmer ambient

air temperatures and a warmer surface promote unstable conditions and reduce vertical wind

shear (and alpha exponent value) through enhanced turbulent mixing (Mahrt, 1999). The

greater diurnal temperature range outside of summer months leads to a greater range in alpha

exponent values. While in the period May-September, increased cloud cover acts to cool the

land surface and likely contributes to higher alpha values in the midday minima.

Figure 3.3: Empirically defined values for the scale parameter α by hour of and month of year,
averaged over all Indian wind farms.

Alternative simple parameterizations of vertical wind shear within the boundary layer are found

within the scientific literature, notably, the ‘log-law’ relationship derived from Monin–Obukhov
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similarity theory, with either simplified assumptions of neutral atmospheric stratification or

elaborated versions with a variable wind shear parameter to account for nonneutral conditions

(Emeis, 2018). Such a parameterization may be more suitable for reanalyses or observations

where only a surface 10m variable is available. However, the availability of the 100m wind

speed parameter in ERA5 obviates the need for the log-law approach, with its requirement for

further assumptions over surface roughness and atmospheric stability. Although the power law

only offers a simplified description of boundary layer structure and an approximation of vertical

wind shear, it is judged adequate given the available data and application (i.e., state-aggregated

wind).

3.2.6 Irradiance and temperature data

The parameterisation of solar PV module performance (described in the following section) re-

quires data inputs of direct and diffuse irradiance components. The accumulated parameter

‘surface solar radiation downwards’ (SSRD) [J/m2/s] in the ERA5 reanalysis was used to rep-

resent surface irradiance (i.e., the radiant flux) on a horizontal plane (ECMWF, 2015). In other

works, SSRD is also termed global horizontal irradiance (GHI) and is the sum of direct and dif-

fuse irradiance components. The accumulated parameter ‘direct solar radiation at the surface’

(FDIR – acronym in ERA5 signifying ‘forward’, i.e., downward direction of flux) [J/m2/s] in

the ERA5 reanalysis was used to represent the direct irradiance component. The diffuse com-

ponent is taken as SSRD minus FDIR. Dividing ERA5 irradiance values by 3600 (i.e., seconds

per hour) provides hourly mean surface irradiance values in Watts per square metre (W/m2).

ERA5 was selected as the source of GHI values in this study as the product has been shown to

outperform other operational reanalyses when validated against ground observations (Urraca

et al., 2018; He et al., 2021) and has also been shown to outperform the MERRA2 reanalysis

in a simulation of national solar power generation (Camargo and Schmidt, 2020).

3.2.7 Energy conversion process

The use of reanalysis data in the estimation of wind and solar generation has a heritage in

the scientific literature (see Background Literature Section 2.5), and the analysis presented

here brings together key methodological developments from the literature for synthesising wind

(Staffell and Pfenninger, 2016; Gonzalez-Aparicio et al., 2017) and solar PV generation (Šúri

et al., 2007; Pfenninger and Staffell, 2016). The exact methods for transforming reanalysis data
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into generation estimates for wind and solar PV are described in the following sections.

3.2.8 Wind turbine power curve

Manufacturer-specified power curves are typically used to relate wind speeds to power output.

The power curve defines instantaneous power output as a function of tangential wind speed at

hub height for a given turbine model. The characteristic power curve profile is broadly similar

across different turbine designs (Figure 3.4). However, significant differences in power output

are seen in the ramping segment of the power curves, with capacity factors ranging from 40%

to 100% of rated power output for a wind speed of 10m/s. Turbines installed as part of a wind

farm project are typically all the same model and so can be described by a single power curve.

However, the diversity of wind speeds across a given wind farm causes the aggregate power

output of all turbines within a wind farm to deviate from the idealised power curve of a single

turbine (Barthelmie and Jensen, 2010).

A power curve adjustment is employed to account for this deviation effect, which is similar to the

method of deriving aggregate turbine response first described by Norgaard and Holttinen (2004)

and subsequently implemented by Staffell and Pfenninger (2016) in their syntheses of national-

scale wind power generation. Each wind farm’s adjusted power curve (PCadj.) is derived by

applying a Gaussian kernel filter operator, O, to the respective manufacture-specified power

curve (PCmanu.) for a single turbine. Given that modern wind farms vary in size (1-100+

turbines per farm in India), an additional parameter is included such that standard deviation

also scales with farm capacity. The operator, (O), is normally distributed around zero with a

standard deviation given by (σ=(log10(C).v)/17.5), where C is the farm capacity in KW, v is

the wind speed at hub height, and constants are defined by tuning such that correlation in daily

synthetic capacity factors is maximised across the regions considered in the analysis (prior to

bias correction, see Section 3.2.11). The aggregate power curve at v is, therefore, the sum of

the manufacture-specified power multiplied by O, evaluated across the range v∗, which spans

+/- four standard deviations, as shown by Equation (3.1).

PCagg(C, v, σ) =

4σ∑
v∗=−4σ

Pmanu.(v − v∗)O(v∗σ) (3.1)

Further demonstration of this power curve deviation and adjustment method is demonstrated
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in Figure (3.4a), which plots the observed aggregate generation6 of 140 turbines at the Greater

Gabbard 504MW offshore wind farm, off the East coast of England, against contemporaneous

wind speed observations7 from a met mast positioned at the approximate centre of the wind

farm (Argyle et al., 2018). This particular location is used as an example due to the availability

of farm-level generation data and co-located met-mast data. The aggregate power response

(scatter points in Figure (3.4b)) deviates from the manufacturer curve for a single turbine

(red line in Figure (3.4b)); a consequence of the combined effect of the distribution of wind

speed across the farm area, turbine wake effects, as well as additional deviations attributed

to directional and turbulence effects (Lydia et al., 2014; Barthelmie et al., 2012). Further

losses resulting from inefficiencies in voltage transformation and turbine availability (i.e., the

percentage of time a turbine is available to operate outside of maintenance periods) range from

2-3% and 2-7%, respectively (Arwade et al., 2011; Faulstich et al., 2011; Lumbreras and Ramos,

2013; Carroll et al., 2017). Turbine ageing also undermines performance through mechanical

deterioration and has been shown to reduce capacity factors in the United Kingdom by an

average of 0.44% per year (Staffell and Green, 2014). Here, the effect of the distribution of wind

speeds across the farm area is accounted for by the power curve adjustment method (blue line

in Figure (3.4b)), and additional losses are accounted for by a single fixed multiplicative term

of 13% (green curve in Figure (3.4b).

Synthesis of wind generation was conducted per wind farm in the IWSD, using the corresponding

adjusted wind farm power curve and wind speed from the nearest grid cell centroid. This

nearest-neighbour approach to estimating point location wind speeds from a gridded product

has proved comparable to other interpolation methods when estimating point location wind

speeds (Cionni et al., 2017) and has shown minimal impact compared to bilinear interpolation

when synthesising national aggregate wind generation (Gruber et al., 2019).

3.2.9 Solar PV array parameterisation

The lack of array-specific technical characteristics, such as array orientation or panel model, in

the solar PV arrays considered in this analysis (see Section 2.1.1) necessitates a parsimonious

method and simplifying assumptions to transform irradiance values to solar PV generation.

6Generation data obtained from The Balancing Mechanism Reporting Service (BMRS) provided by
Elexon, the company responsible for administrating power contract settlement in the UK electricity market
(https://www.elexon.co.uk/data/balancing-mechanism-reporting-agent/).

7Wind speed data from the IGMMZ met mast for the period June 2012 to June 2014 and is provided by the
Crown Estate Marine Data Exchange (http://www.marinedataexchange.co.uk/wind-data.aspx).
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Figure 3.4: (a) Manufacturer power curves from thewindpower.net (n==805), (b) manufacturer
power curve for Siemens SWT3.6–107 turbine (red line), smoothed power curve (blue line);
smoothed power curve +13% loss term (green line); and hourly hub height wind speeds versus
hourly power output from the 140 SWT3.6–107 turbines at the Greater Gabbard wind farm,
located off the east coast of England (as scatter points with contours representing the 0.1, 0.2
and 0.4 levels of a Gaussian kernel density estimate)

The physically founded empirical relationship developed by Huld et al. (2008) for the energy

rating (actual performance of a PV module relative to standard test conditions (STC)) of an

archetypal multi-crystalline silicon photovoltaic module, as a function of ambient temperature

and irradiance, is well-suited to this case and has proven adequate in representing solar PV

generation over country scales (Huld and Gracia Amillo, 2015; Frank et al., 2021). This rela-

tionship defines solar array capacity factor (CFG) (actual power output from a PV array relative

to STC (PG/PSTC) as:

CFG =
PG

PSTC
=

G

GSTC
ηrel(G,T ) (3.2)

where G is the total irradiance incident upon the array in the same plane in which the array is

tilted (in-plane irradiance), GSTC the STC value of G, nominally 1000W/m2, and ηrel(G,T ),

the relative energy conversion efficiency term, or the ratio of the array efficiency with values of

G and T to the efficiency at STC. The relative energy conversion efficiency term describes the

real-world performance of the array and takes the form:
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ηrel(G,T ) = 1 + k1ln(
G

GSTC
) + k2

(
ln(

G

GSTC
)

)2

+ k3∆T

+ k4∆T ln(
G

GSTC
) + k5∆T

(
ln(

G

GSTC
)

)2

+ k6∆T

(3.3)

where the empirically defined coefficients (k1...k6) have previously been determined through

a least-square fit to operational solar PV8 and ∆T represents the difference between the PV

module temperature, Tmod, and a STCmodule temperature of 25◦C. Module temperature (Tmod)

scales as a function of G following the empirical relationship:

Tmod = Tamb + (Tnom − T0)
G

GSTC
(3.4)

where Tamb represents ambient air temperature, taken as 2m air temperature from ERA5, Tnom,

and T0 represent nominal operating module temperature and nominal ambient air temperature

respectively and take the values of 48◦C and 20◦C. Total in-plane irradiance (G) is approximated

using the isotropic sky model. This simple irradiance model assumes that diffuse irradiance is

uniform within the celestial hemisphere and that reflection from a ground surface of known

albedo is diffuse (Loutzenhiser et al., 2007). Total in-plane irradiance (G) is, therefore, the sum

of direct and diffuse components, given by:

G = DNI.cos(aoi) +DHI

(
1 + cos(θ)

2

)
+GHI.α

(
1 + cos(θ)

2

)
(3.5)

where the first term represents in-plane direct irradiance, given by direct normal irradiance

(DNI, or FDIR in ERA5) weighted by the cosine of the beam-array angle of incidence (con-

sidering the geometric position of the Sun and the array tilt9). The second term represents

in-plane diffuse irradiance and is a weighted fraction of diffuse horizontal irradiance (DHI, or

SSRD minus FDIR in ERA5), with θ representing array tilt relative to horizontal. The third

term represents in-plane ground-reflected diffuse irradiance, and is a weighted fraction of GHI,

with an albedo value (α) taken from the ERA5 variable ‘forecast albedo’. This value is in the

range of 0.15-0.25 throughout the Indian subcontinent, with slightly higher values (0.3) in the

8Coefficient values from Huld et al. (2011).
9All solar geometry calculations made use of the open source Python package PyEphem (Rhodes, 2011).
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Thar desert region, located in the Northern state of Rajasthan.

Without array-specific technical information on orientation, it is assumed that all existing so-

lar PV sites are installed perpendicular to and facing the equator. As previously described,

fixed-tilt designs are assumed for all installations when making the generation synthesis. Re-

garding the tilt angle of the arrays, various methods exist for defining the exact inclination,

ranging from simple latitude-based approximations to more complex solutions that account for

local climate and terrain shading effects (Yadav and Chandel, 2013). The PVGIS initiative10

is an example of the latter approach to defining optimal tilt angles. It uses satellite irradi-

ance data and a high-resolution digital elevation map with near-global coverage to determine

yield-maximising array inclination (Huld et al., 2012). Figure 3.5 shows the zonal average (i.e.

averaged East-West globally) of optimal tilt angles using data from PVGIS as a function of

latitude (green curve in Figure 3.5). However, real-world installations often deviate from the-

oretical optimum angles, usually due to on-site practicalities (e.g., rooftop slope, the shading

effect of neighbouring modules due to high tilt angles, height restrictions or system layout con-

straints). Saint-Drenan et al. (2018) found that tilt angles for an extensive database (n=35,000)

of fixed-angle solar PV installations in Germany were between 60-70% of the local optimal tilt

angle as defined by PVGIS (Saint-Drenan et al., 2018). However, their dataset did include many

rooftop installations, which are not considered in the analysis of India presented in this thesis.

Yet, an analysis of the United States Energy Information Administration (EIA) Annual Elec-

tric Generator Report shows a similar non-optimal inclination in utility-scale installations. Fig-

ure 3.5 also depicts the tilt angle of ∼2600 fixed-angle solar PV installations in the United States

of America (U.S.A.) (grey scatter points in Figure 3.5, with data from EIA (2021)). The sample

of installations from the U.S.A. show considerable spread in tilt angles amongst installations of

similar latitude. However, the average tilt angle per latitude bin (orange points in Figure 3.5)

is approximately in line with the 70% scaling of the local optimal tilt angle, as shown by the

blue line in Figure 3.5, which represents a 0.7 scaling of a quadratic fit through PVGIS zonally

averaged optimal tilt angle. This 0.7 scaling of the quadratic fit is used to define tilt angles for

non-tracking array designs in this analysis based on the latitudinal position of each solar PV

installation.

Although a fixed tilt angle is the base assumption in the production of the synthetic solar

10https://ec.europa.eu/jrc/en/pvgis
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Figure 3.5: Zonally averaged optimum array tilt angles as a function of latitude using data from
PVGIS (green curve) and quadratic line of best fit to PVGIS values (red curve). Actual tilt
angles for fixed-tilt utility-scale solar PV installations in the United States (grey scatter points,
with data from EIA) and average tilt angle per latitude bin for U.S.A installations (orange
points). Blue curve represents 70% of the value of the quadratic line of best fit to PVGIS
values.

PV generation, a sensitivity test is conducted with all installations representative of current

state-of-the-art single-axis designs that use mono-crystalline silicon wafer-based cell designs.

The single-axis tracking module of the PV-LIB Python package, itself an implementation of

Holmgren et al. (2018), is used to determine the array tilt-angle that minimises the angle of

incidence of incident shortwave irradiance for a given solar zenith (i.e., the array tilt for each

hour of the day, for all hours of the year). This implementation mimics real-world single-axis

trackers that follow the daily east-west passage of the sun.

As with the synthesis of wind generation, solar PV generation synthesis was conducted per

solar farm in the IWSD, using meteorological data from the nearest grid cell centroid. Energy

conversion losses, primarily attributed to electrical resistance and DC/AC inverter efficiency,

are assumed to result in a fixed 10% reduction in solar PV generation (Pfenninger and Staffell,

2016).

Having described the data and processing steps involved in the construction of synthetic wind

and solar PV generation data, the following sections describe the historical records of actual

wind and solar generation in India used to validate and bias correct the resulting timeseries.
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3.2.10 Verification data

To validate the synthetic wind and solar PV generation method, the resulting generation time-

series aggregated to state, regional and national values are compared to historical records of

actual wind and solar generation in the corresponding regions of India. The national electricity

grid of India is overseen by Grid-India (formerly the Power System Operation Corporation Lim-

ited (POSOCO)). Five regional subdivisions of the national grid (Northern, Eastern, Western,

Northeastern and Southern regional grids) are overseen by Regional Load Despatch Centres

(RLDCs)11, which coordinate operations within the regional grid zones, as well as intra/inter-

regional and trans-national interconnector flows. Figure 3.6 shows the regional subdivisions

RLDCs represent, with green borders signifying state groupings for the five-mainland intercon-

nected regional electricity grids. Colour shading in Figure 3.6 indicates installed wind and solar

PV capacity per state at the end of 2021. Wind installations are concentrated in the country’s

west, with the seven numbered states comprising 99.5% of the total installed wind capacity.

The states of Gujarat in the west and Tamil Nadu in the south are states of considerable wind

installations (∼10GW). For solar PV, a similar concentration of installed capacity to that of

wind is seen, with limited capacity in northern and eastern states. However, the northern-region

state of Rajasthan houses considerable solar PV capacity ∼14GW).

These RLDCs have maintained an archive of daily generation and installed capacity since the

year 2016. However, data before 2017 is sporadically achieved, and so ignored from the analysis.

The generation values are available for the individual states of each RLDC and the regional

aggregate. Daily capacity factor values (ratio of actual daily generation to maximum attainable

generation for installed capacity over 24 hours) for the period 2017 to 2021 were calculated from

these records and are hereafter referred to as ‘observed’ generation values.

RLDCs also archive demand for electrical energy within the regional electricity grid. Here, a

portion of this historical archive of daily electricity demand is used to define an annual demand

cycle for comparison with the annual cycle of wind and solar PV generation. Specifically,

an annual cycle for electricity demand per region is defined using data from the years 2014-

2019 inclusive, with the linear trend first removed before taking the median value per day of

the year and normalising by the maximum value. Consistent growth in electricity demand is

11Data originally taken from 5 RLDC websites. The websites have since been discontinued. Alternative data
source from Grid-India: https://report.grid-india.in/index.php?p=Daily+Report%2FPSP+Report
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seen throughout this 2014-2019 period, whereafter, the dual effects of a nationwide economic

slowdown and the COVID-19 pandemic abated this increase (Bhattacharya et al., 2022). Using

the earlier 2014-2019 time period allows for the definition of a simple characteristic annual cycle

of electricity demand during normal economic conditions.

Figure 3.6: Study regions for wind (a) and solar PV (b) in India. Coloured shading signifies
installed capacity for wind (a) and solar PV (b) by Indian state as of year end 2021 (MNRE,
2022b). Green borders represent India’s 5 mainland regional electricity grid regions, with region
labels shown in (b). Numbering denotes individual states with significant wind capacity

3.2.11 Bias correction

Synthesis of wind and solar PV generation by transforming reanalysis data can result in bias

relative to equivalent observed values (McKenna et al., 2022). The origin of this bias could stem

from the atmospheric variables (e.g., uncaptured orographic effects on winds at the scale of

individual wind farms), the energy transformation model (e.g. incorrect specification of turbine

power curve), the validation data (e.g. uncertainty over the coverage of centrally collected data

from a grid operator – i.e. net of system losses, inclusive of embedded generation, etc.), or any

combination of these factors. Here, it is assumed that available records of actual generation

are accurate and representative of generation net of losses from transmission-connected wind

and solar PV generation. With limited information on farm-level or array-specific technical

characteristics, options for further refining the process from transforming reanalysis data remain

limited. Therefore, the bias correction procedure used here only considers alterations to wind

speed and irradiance.
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Two forms of simple bias correction are trialled in the analysis presented in this thesis. The

first form of bias correction relies on additional meteorological data to adjust wind speed and

irradiance from the reanalysis. In the case of wind speeds, bias correction was performed us-

ing 100m wind speeds from Version 3.0 of the Global Wind Atlas developed by the Danish

Technical University (DTU-GWA). The DTU-GWA Version 3.0 provides a simulated global

micro-scale wind climate on a ∼ 0.3 × 0.3km (0.0025◦ × 0.0025◦) scale for all land areas, plus

a 200km offshore buffer (Badger et al., 2015). The DTU-GWA simulation involves multiple

stages of dynamical and statistical downscaling, beginning with large-scale winds from 10-years

of ERA-5 atmospheric re-analysis data used to force a WRF mesoscale model with a horizon-

tal grid spacing of 3-km. This mesoscale wind climate is used as an input to the microscale

Wind Atlas Analysis and Application Program (WASP) to calculate local wind climates on a

250m horizontal grid, at several heights above the surface. The DTU-GWA has primarily been

validated against synthetic aperture radar ocean derived winds and multiple field measurement

campaigns. The DTU-GWA wind speed climatology is a product of a simulation spanning the

period 2008-2017, and the average over this period is added to ERA5 wind speeds prior to

conducting the generation synthesis (i.e., a mean bias correction). The mean bias correction

was applied to both 10m and 100m windspeeds using DTU-GWA data at corresponding heights

so that the generation synthesis methodology could be applied.

In the case of solar PV, bias correction of ERA5 irradiance data was performed using equivalent

values from Version 2.0 of the Global Solar Atlas (GSA) 2.0. The GSA is a publicly available

solar irradiance web-application that provides output from a satellite-based irradiance model,

developed by the company Solargis on behalf of the World Bank Group12. It is assumed that

the long-term average irradiance values provided by the GSA have been calculated for the same

period for which input satellite data is available, i.e. mid-to-late 1980s to present (satellite

radiation products such as the Satellite Application Facility on Climate Monitoring (CMSAF)

and Surface Solar Radiation Data Set-Heliosat (SARAH) datasets cover this period). So, the

difference in ERA5 average irradiance values (both diffuse and direct components are available

from the GSA) for the period 1985-2019 is added to ERA5 irradiance values prior to conducting

the generation synthesis.

The second approach to bias correction takes the form of a multiplicative adjustment factor

12https://globalsolaratlas.info
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(AF), which is applied to wind speed and irradiance data at all wind/solar farms within respec-

tive states. The particular AF that minimises mean bias in synthetic capacity factors (AFmin)

over the verification period is found iteratively applying a range of AF values to meteorologi-

cal data. AFmin is identified by the point at which the ratio of observed to synthetic average

capacity factor equals one.

3.2.12 Perfomance metrics

The performance of the generation syntheses is assessed relative to observations from the RLDCs

using three metrics:

1. Normalised mean bias refers to the mean observed capacity factor value for a given region

and technology divided by the corresponding synthetic value. A normalised mean bias

value greater than 1 suggests that the synthesis underestimates generation on average

through the five years considered.

2. Mean absolute error (MAE) refers to the absolute value of the observed capacity factor

minus the synthetic capacity factor.

3. Correlation expressed as an r value (i.e., the Pearson correlation coefficient).

This concludes the Data and Methods section on the construction of the synthetic wind and

solar PV generation timeseries. Chapter 4 presents the results associated with this methods

section, the first of four results-focused chapters.

3.3 Data and Methods for Chapter 5

The analysis presented in Chapter 5 uses the wind and solar energy generation synthesis dataset

described in Section 3.2 as well as various other meteorological fields and climate indices. The

following sections described these meteorological variables and the approach for performing

composite, correlation and empirical orthogonal function analyses.

3.3.1 ERA5 meteorological fields and derived indices

Additional ERA5 fields used in Chapter 5 include monthly mean 850hPa winds, total cloud cover

(i.e., the proportion of a model grid cell covered by cloud, summed across all vertical levels),

sea surface temperature (SST) and mean sea-level pressure (MSLP). Indices based on ERA5
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monthly SST fields include the Dipole Mode Index (DMI) and the Equatorial Indian Ocean

Oscillation index (EQWIN), which are both standardised anomalies of spatially averaged SSTs

(exact region definition described in the Chapter 5 text).

Indices based on ERA5 monthly 850hPa wind fields include two Wang-Fan indices. These

indices describe regional monsoon circulations over India and the Northwest Pacific. The indices

follow the physically motivated definitions first described by Wang and Fan (1999) and capture

observed relationships between the two major convective heat sources that energise regional

manifestations of the wider Asian summer monsoon system. The dynamically-based index of

the Indian summer monsoon, termed ISMi in this thesis, is defined as the difference between

the 850hPa zonal wind in a southern region (0°-15°N, 35°-65°E) located over the climatological

position of the Somali Jet (westerlies) and a northern (20°-30°N, 60°-80°E) region co-located

with the monsoon trough (easterlies - see Figure 3.7a). The ISMi captures the strength of

monsoon westerlies and is indicative of anomalous lower-tropospheric vorticity that causes the

monsoon trough (Wang et al., 2001). Lower tropospheric vorticity and monsoon westerlies are

strongly tied to boundary layer moisture convergence, so the ISMi is highly correlated with

summer monsoon rainfall anomalies.

i)

Figure 3.7: (a) ERA5 850hPa wind fields in JJAS with boxes showing regions over which area
averages describe Wang-Fan indices for (i) Indian summer monsoon and (ii) Western North
Pacific monsoon. (b) MSWEP daily mean rainfall in JJAS with boxes show regions over which
area average rainfall describe two monsoon indices for (i) Indian summer monsoon rainfall
(ISMR - 18.5–26.5°N, 71.5–86.5°E) and (ii) Western North Pacific monsoon rainfall (WNPR -
10–20°N, 110–160°E).

In the case of the regional monsoon system over theWestern North Pacific (WNP), a dynamically-

based index is defined as the difference between the 850hPa area averaged zonal wind in the

southern (7.5°-17.5°N, 100°-140°E; westerlies) and northern (20°-30°N, 105°-150°E; easterlies -

see Figure 3.7a) extents of the anomalous elongated cyclone that governs monsoon rainfall in
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the region (Wang et al., 2003). This index is termed WNPi in this thesis. The two indices

describe the most prominent modes of variability in the respective regions of South Asia, and

better capture observed monsoon circulation variability of respective monsoon sub-system than

other monsoon indices (e.g., the Webster-Yang index; Webster and Yang (1992)).

Indices of monsoon rainfall for the Indian summer monsoon and Western North Pacific mon-

soon are described by area averages of rainfall over respective ‘core monsoon regions’ shown in

Figure 3.7b. Rainfall data products used in the analysis are described further in Section 3.3.3

3.3.2 Additional meteorological datasets

Variations in tropical sea surface temperature consequent of ENSO are studied using the Oceanic

Niño Index (ONI), which is calculated and archived by the National Oceanic and Atmospheric

Administration (NOAA) Climate Prediction Centre (CPC)13 (Barnston, 1997; Huang et al.,

2017). The ONI refers to SST anomalies in the Niño3.4 region (5°S–5°N, 120°–170°W) and is a

commonly used ENSO index (Trenberth, 1997; Hanley et al., 2003; Giese and Ray, 2011). The

ONI is calculated from three-month running mean temporally filtered SSTs from the Extended

Reconstructed Sea Surface Temperature Version 5 (ERSSTv5; Huang et al. (2017)), defined

relative to a moving 30-year climatology that is sequentially updated every five years to suppress

the underlying global warming trend (Huang et al., 2017). The ONI is similar to the Niño3.4

index (the latter more frequently uses a 5-month running mean), and the two terms are used

interchangeably in this thesis. However, the strict definition follows that of CPC ONI.

Two additional datasets are used to study the effects of atmospheric aerosol loading on solar

PV yield. The first is the CERES (Clouds and the Earth’s Radiant Energy System) SYN1deg

data product, which provides direct and diffuse irradiance components for no-aerosol, no cloud,

and all-sky atmospheric conditions (ERA5 lacks the no-aerosol conditions). The second is an

additional reanalysis product that provides speciated atmospheric aerosol loading, specifically,

the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2)

developed by NASA’s Global Modelling and Assimilation Office (Gelaro et al., 2017). MERRA-

2 has a horizontal resolution of 0.5° × 0.625°, with 72 vertical levels from the surface to 0.01 hPa

and an hourly time resolution. One of the main advances of the MERRA-2 reanalysis over its

predecessor (Rienecker et al., 2011) is the assimilation of multi-source observations of aerosols,

13https://www.cpc.ncep.noaa.gov/data/indices/
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incorporating black and organic carbon, dust, sea salt and sulphates. The aerosol components

of the analysis are simulated by the GOCART (Goddard Chemistry, Aerosol, Radiation and

Transport) model, which represents multiple interactive processes affecting aerosol production

and dispersal (Marticorena and Bergametti, 1995; Gong, 2003; Randles et al., 2017). Verifica-

tion of MERRA-2 aerosol optical depth values shown a high level of agreement globally with the

AERONET (Aerosol Robotic Network) (Che et al., 2019). The direct assimilation and subse-

quent native dynamical modelling of aerosol species marks one of the main differences between

MERRA-2 and ERA5. The latter does not directly assimilate observed aerosol information

and instead incorporates climatological aerosol optical depth from the Global Ozone Chemistry

Aerosol Radiation and Transport (GOCART) model into its Rapid Radiative Transfer Model

(RRTM) shortwave scheme.

3.3.3 Rainfall data

The physical processes responsible for precipitation over the Indian subcontinent during the ISM

occur over a range of spatiotemporal scales, causing considerable variability in the duration,

intensity, and spatial extent of rainfall (Goswami and Mohan, 2001). Together with a spatially

and temporally incomplete observational record of past rainfall events, analysis of precipitation

patterns should consider the possible effects of sampling uncertainty. Two different rainfall

datasets have been considered in this thesis to gain confidence in the validity of ISM rainfall

analysis.

The first is gridded dataset of daily rainfall totals derived from a national network of approxi-

mately 7000 rain gauge stations maintained by a combination of the IMD, hydro- and meteoro-

logical observatories and state governments (Pai et al., 2014). The dataset is maintained by the

IMD with ongoing updates via a public data portal14 and is considered the most comprehensive

in terms of its coverage of the available historical record of rainfall gauge data.

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) data set (Beck et al., 2017; Beck

et al., 2019) was used as a secondary source. MSWEP is a gauge-adjusted satellite-derived

rainfall product, whereby satellite infrared and microwave sensor readings are calibrated with

in-situ rainfall measurements to overcome sampling issues and inaccuracy in the algorithmic

derivation of rainfall estimates (Sun et al., 2018). Unlike other gauge-adjusted datasets (e.g.

14https://www.imdpune.gov.in/cmpg/Griddata/Rainfall 25 NetCDF.html
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the Climate Hazards Group Infrared Precipitation with Stations CHIRPS, Funk et al., 2015),

MSWEP provides both land and ocean rainfall data, which aids the interpretation of broader

rainfall patterns within the analysis presented in this thesis. The MSWEP dataset provides

3-hourly total precipitation at 0.25° spatial resolution (Beck et al., 2017). The dataset is the

only precipitation dataset to merge across a variety of observational and model inputs and

has outperformed other multi-satellite or gauge-adjusted rainfall datasets in a global validation

(Beck et al., 2017; Beck et al., 2019).

Figure 3.8a and b shows the long-term daily mean rainfall during the ISM season (JJAS) for

the Pai et al., (2014) and MSWEP datasets (1979-2021). Figure 3.8c shows the difference

between the two datasets, with the greatest discrepancy seen over the mountainous regions of

the Western Ghats and portions of the Himalayan foothills. A common rainfall metric used in

studies concerned with Indian climatology and variability is a weighted average of rainfall in the

‘core monsoon region’ (18.5–26.5°N, 71.5–86.5°E) (Rajeevan et al., 2010). This region sees the

passage of low-pressure systems through the summer monsoon season and significant rainfall

events. The region is of practical significance given the concentration of a large proportion of

the Indian population and domestic agricultural production while also serving as an indicator of

wider rainfall variability across the country. The r value of the correlation in JJAS standardised

monthly mean rainfall values between the two rainfall products in the core monsoon region

is 0.992. And the correlation between JJAS standardised monthly mean rainfall values and

equivalent values for all-India are 0.978 and 0.984 for the Pai et al. (2014) and MSWEP dataset,

respectively. So, there is considerable similarity at the monthly timescale between the two data

products and much resemblance between the core region and the country as a whole.

Figure 3.8: Mean daily rainfall over India with data from IMD, using Pai et al., (2014) method-
ology (a), and data from MSWEP (b). Difference between two rainfall data products shown in
(c). Box overlaid in (c) shows core monsoon region.
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3.3.4 Low pressure systems

A composite analysis of wind, irradiance, and rainfall anomalies during the occurrence of low-

pressure system (LPS) events within the north Indian Ocean basin made use of a pre-existing

temporal and spatial dataset15 of historic LPS systems for the period 1979-2019, considering

LPS genesis within the box 70◦E-96◦E, 5◦N-28◦N (Vishnu et al., 2020). This LPS dataset uses a

feature tracking algorithm with objective thresholds of the 850hPa stream function of horizontal

wind defining the LPS centroid ERA5 hourly time step.

The LPS dataset derived from the implementation of the tracking algorithm performs well when

compared to subjectively analysed data sets of LPS tracks and intensities in the region, which

make use of categorical definitions of LPS as defined by the IMD (Sikka, 2006; Mooley and

Shukla, 1987), specifically: (i) lows with wind speed less than 8.5 ms-1 and a MLSP anomaly

of at least -2hPa within radius of 3° from the low centre; (ii) Monsoon Depressions wind speeds

8.5-13.5ms-1 and MSLP anomalies -4 to 8hPa); and (iii) Cyclonic storms having wind speed

more than 13.5 ms-1 and MSLP anomalies greater than -8hPa.

Other studies that make use of feature tracking algorithms (Hurley and Boos, 2015; Praveen

et al., 2015; Hunt et al., 2016) either make use of older generation reanalysis data inputs, do

not make resulting tracking datasets publicly available or show inferior performance to Vishnu

et al. (2020). Thus, using the Vishnu et al. (2020) LPS dataset is optimal and provides internal

consistency with the ERA5 reanalysis inputs.

3.3.5 Empirical Orthogonal Function (EOF) analysis

Empirical Orthogonal Function (EOF) analysis is a common statistical technique that reduces

the dimensionality of large space-time datasets (See Hannachi et al. (2007) for a review and

Wilks (2011); pp. 519-562 for practical implementation guide). Both simple and rotated EOF

analyses are trialled to test the robustness of the resulting decomposition to possible implemen-

tation artefacts. Specifically, rotated EOF analysis relaxes the orthogonality constraint placed

of modes and limits the number of variables that contribute to each EOF a priori. The widely

used Python module ‘xoefs’ (Rieger and Levang, 2023) is used to implement both EOF analyses.

This concludes the data and methods relating to Chapter 5 that investigates candidate drivers

15https://zenodo.org/record/3890646
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of interannual variability in wind and solar energy generation within the JJAS season.

3.4 Data and Methods for Chapter 6

Chapter 6 describes the assessment of seasonal climate forecasts of wind and solar generation.

The data sources for the dynamical seasonal climate forecasts, calibration methods and verifi-

cation procedures used in this assessment are described in the following sections.

3.4.1 Seasonal Forecast System data

The analysis of seasonal forecasts (SCFs) of energy generation makes use of hindcasts produced

by the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasting

system 5 (SEAS5). The SEAS5 system is a global coupled ocean-atmosphere model and began

operational use in 2017, superseding ECMWF’s fourth-generation seasonal forecasting system

(Johnson et al., 2019; ECMWF, 2021). The atmospheric model is the previous IFS cycle (43r1)

as that used in ERA5, with a horizontal resolution of O320 (∼31km at the equator) and 91

vertical levels (ECMWF, 2021). The land, ocean, and sea ice components of SEAS5 make use

of the HTESSEL land-surface model (Balsamo et al., 2009), Nucleus for European Modelling of

the Ocean (NEMO) (Madec et al., 2017) and Louvain-la-Neuve Sea Ice Model (LIM2) (Fichefet

and Maqueda, 1997), respectively.

ECMWF runs re-forecasts of past cases (known as hindcasts) to enable calibration and assess-

ment of the forecast system performance. Hindcasts are initialised on the 1st of each month

of the year and run for seven months, with model output variables available at a 6-hourly

timestep. Hindcasts comprise 51 ensemble members, combining perturbed ocean/atmosphere

initial conditions and stochastic physics perturbations. The analysis in Chapter 6 uses hindcasts

initialised on the 1st of May for JJAS at a 1-month lead time (i.e., June-September inclusive),

spanning the 41-years 1981-2021. SEAS5 data were obtained from the ECMWF Meteorological

Archival and Retrieval System (MARS) for the following variables: 10m wind speed, surface

solar radiation downwards, mean sea level pressure, sea surface temperature, total precipitation,

and total cloud cover. When conducting grid scale analysis, SEAS5 data in its native resolution

from MARS is interpolated to a regular lat-lon grid of 0.25 degrees to match ERA5. In several

cases, statistically significant trends16 are apparent in specific variables over the entire ERA5

16Assessed with a Mann-Kendal test, significant at the 95% level.
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record. The ability of the SCF system to reproduce such trends will contribute to forecast skill.

However, SCF skill is conventionally assessed with any clear long-term trends removed to gauge

the portion of forecast skill related to seasonally persistent forcing signals. As such, observed

and forecast values for 10m winds, SSRD, and SST were first detrended by removing the linear

least-square regression fit. Other variables show no clear linear trends across South Asia or the

tropics, so detrending was not conducted.

3.4.2 Producing seasonal energy generation forecasts

Relating seasonal predictions of meteorological variables to energy generation can follow several

different data processing and forecasting methodologies (Troccoli et al., 2008). One approach

is to undertake no further data processing beyond calibration of the raw forecast variables,

as done by numerous operational meteorological authorities when publishing seasonal climate

outlooks. In practice, the subjective interpretation of expert users then relates the forecast

product to energy generation. Another approach is to apply the same transformation methods

used to construct the generation synthesis directly to SCF data outputs (e.g., Lledó et al.,

2019), see Section 3.2.8. However, differences between the reanalysis data product and the

SCF outputs necessitate changes to the generation synthesis methodology that degrade the

synthesis performance. In the case of wind, there is a lack of the 100m wind field, a lower

temporal resolution (6-hourly vs. hourly), and lower horizontal and vertical resolution. For

solar PV, SEAS5 data outputs have the same deficiencies in temporal and spatial resolution

compared to the ERA5 reanalysis and the lack of the direct ‘solar radiation at the surface’

variable.

Given these deficiencies, statistical downscaling is chosen as the method for producing seasonal

generation forecasts. Statistical downscaling describes post-processing procedures exploiting

observed relationships between the typically coarser scale model-derived fields and an observed

finer-scale variable (Von Storch et al., 1993). In the analysis presented here, several area-

weighted average meteorological fields and related climate indices serve as dynamically based

predictors of regional wind and solar PV generation.

The main statistical downscaling method used in Chapter 6 follows the so-called perfect-

prognosis (PP) rationale (Gutiérrez et al., 2013). The PP approach first requires an adequate

statistical model that describes the observed relationship between a given climate predictor and
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impact variable – in this case, candidate predictor variables/indices from ERA5 and regional

wind and solar generation anomalies for the JJAS season. Seasonal generation predictions are

then made with the same statistical model but with predictor variables replaced with dynami-

cal predictions from the SCF. Suitable bias and variance adjustments can be conducted before

applying the statistical model to SCF predictor variables or forecast estimates following the

application of the regression model (e.g., Manzanas et al., 2019). Applying the PP approach to

individual ensemble members is used to yield probabilistic forecasts, with suitable calibration

typically applied to the forecast ensemble (e.g., Doblas-Reyes et al., 2005). Ultimately, the

performance of the PP method is dependent on both a robust predictor-predictand relationship

in observations and a skilfully represented predictor in the SCF model. The PP approach has

a longer history of application in the field of climate projections (Gutiérrez et al., 2013) but is

increasingly used in seasonal forecasting (e.g., Manzanas et al., 2018; Baker et al., 2018; Ramon

et al., 2021).

Here, the period 1979-2021 is used to establish the observed relationship between the given

climate predictor and the seasonal mean capacity factors. Taking an example predictor as the

ENSO3.4 index and predictand of solar PV JJAS mean generation as an example; the linear

relationship is simply modelled as:

CF = ax+ c (3.6)

where CF is the observed generation anomalies (i.e., the validated solar PV generation syn-

thesis), x is the observed climate predictor (i.e., the Niño3.4 index), a and c are coefficients

determined through least square linear regression. Applying the regression coefficients a and c

to the Niño3.4 index from the hindcast ensemble members yields the forecast capacity factor

per season. The method is also applicable to multiple predictors using a multi-linear regression.

The linear regression is first calculated and applied to forecasts using all available observations

and hindcast years. A forecast calibration is then undertaken by inflating ensemble variance

via a method known as Climate Conserving Recalibration (CCR) (Weigel et al., 2009), and the

mean bias removed. Following convention, the calibration and bias correction are undertaken

in a leave-one-out set-up, whereby the year being adjusted is excluded from the calculation

(i.e. each year is adjusted using information from all other years). This approach mimics an
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operational setting whereby only past observations inform the empirical relationship utilised in

the forecast. Following Doblas-Reyes et al. (2005), Torralba et al. (2017a) and Manzanas et al.

(2019), the CCR and mean bias correction is implemented as:

F
′
n,t = ρ

σo
std(F̄t)

F̄t +
√
1− ρ2

σo√
⟨σ2

f ⟩
(Fn,t − F̄t) (3.7)

Fn,t and F
′
n,t denote the original and adjusted forecast for ensemble member n at year t; F̄t the

ensemble mean, σo the observed interannual standard deviation, 〈σ2
f 〉 the mean intra-ensemble

variance (i.e., the time mean of ensemble variance per year), and ρ the correlation between the

interannual timeseries of observations and the ensemble mean. Essentially, CCR modifies the

ensemble spread to achieve the same interannual variance as observations while maintaining the

same interannual correlation and forecast ensemble mean (hence ‘climate conserving’). Mean

bias in the calibrated forecast is removed by calculating anomalies and adding the observed

climatology (again in cross-validation mode). Note that the use of anomalies for climate predic-

tors also diminishes the possible effects of time-dependant forecast errors or model drift, which

may develop following forecast initialisation (Weisheimer and Palmer, 2014).

An alternative to using the observed relationship between a given climate predictor and impact

variable (i.e., the PP approach) is to rely on the direct correlation between the seasonal fore-

cast ensemble mean and observed impact variable. This approach is known as Model Output

Statistics (MOS) in a numerical weather prediction context (Glahn and Lowry, 1972), though

it has also been used in seasonal climate forecasting (e.g., Palin et al., 2016; Clark et al., 2017;

Thornton et al., 2019). Under the assumption that the relationship between the ensemble mean

predictor and predictand is linear, a probabilistic interpretation of the prediction interval of

the linear regression is possible (Bett et al., 2017). Although a valid method (that is found

to yield similar levels of skill and reliability as PP in Chapter 6), the focus in this thesis will

be on PP. This focus on PP is because the investigation is exploratory and seeks to establish

potential forecast skill and prototype applications within an energy context. As such, establish-

ing observed relationships between climate predictors and generation predictands is essential to

better understand underlying physical drivers. Ideally, SCF systems would represent observed

observations accurately (as they largely do at seasonal timescales for phenomena like ENSO).

However, this is not guaranteed, with bias and inaccuracy common in assessments of SCF sys-
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tems in South Asia (e.g. mean or temporal bias for rainfall or a shift in the climatological

Somali Jet). Consequently, relationships between SCF model outputs and generation may arise

from chance or be model-specific, limiting the roll-out of SCF-derived predictors to other SCF

systems. Furthermore, hindcast sets are frequently shorter than the observed period, limiting

the information available to establish the statistical model between predictor(s) and predictand.

Having introduced the SEAS5 forecast system used in the investigation and method of ap-

plication to produce generation forecasts, the following considers how to verify the forecast

performance.

3.4.3 Verification of seasonal energy generation forecasts

Verification describes the systematic assessment of hindcast performance relative to the observed

climate. Numerous measures exist for quantifying the quality or performance of hindcasts/fore-

casts, and each forms part of an overall assessment of forecast ‘goodness’ (Murphy, 1993).

These metrics cover accuracy (error relative to observations), the relative improvement of the

forecast over another prediction (forecast skill, usually relative to climatology, though persis-

tence or random chance are also used), the mean agreement between the frequency of observed

events and the probability of those events indicated by the forecast (i.e. the reliability), and the

forecast bias (average discrepancies between the forecasts and the observations). Both Jolliffe

and Stephenson (2012) (chapters 7, 8 and 11) and Wilks (2011) (chapter 8) provide compre-

hensive coverage of forecast verification metrics and serve as the two resources informing the

verification approach in this thesis.

The assessment of hindcast deterministic skill in Chapter 6 uses the Pearson correlation coeffi-

cient to measure the strength of the association between ensemble mean values and equivalent

observations. The Pearson correlation assumes normally distributed data, and using seasonal

mean anomalies helps fulfil this prerequisite. The thresholds required for statistical significance

at a specified level (95% throughout this analysis) are calculated assuming a two-tailed Student’s

t-test.

Seasonal forecasts are typically interpreted probabilistically, whereby the likelihood of a given

climate state is indicated by the number of forecast members in that state. Several aspects

of the forecast can be considered when assessing performance or quality in probabilistic terms.

Typically, aspects of forecast Accuracy (the magnitude of the difference between forecast and
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observed probability distributions) and forecast Reliability (the mean agreement between the

frequency of observed events and the probability of those events indicated by the forecast) are

considered (Murphy, 1973; Murphy, 1993).

In Chapter 6, three measures of forecast accuracy are considered: the Brier score, the Ranked

Probability Score (RPS), and the Continuous Ranked Probability Score (CRPS). The Brier score

is the mean squared error between forecast and observed probabilities of a given event and the

RPS is the multi-category version of the Brier score. Thus, the RPS measures the normalised

sum of mean squared errors in cumulative probability space for a multi-category probabilistic

forecast. Following convention, accuracy measures are defined using tercile forecast categories

of below and above normal, which are defined relative to observed and forecast climatological

frequencies (Wilks, 2011, p. 247). Therefore, Brier score and RPS are insensitive to forecast

bias, as tercile categories are defined relative to the model climate. The CRPS measures a

continuous variable based on the integrated squared difference between the observed and the

predicted cumulative distribution functions. CPRS is sensitive to forecast bias. Skill scores for

the three accuracy measures (Brier skill score (BSS), Ranked Probability Skill Score (RPSS), and

Continuous Ranked Probability Skill Score (CRPSS)) are defined as the relative improvement

compared to a climatological reference forecast, with values ranging between -1 and 1, where 1

indicates perfect skill.

A bootstrap resampling method is used to test whether values for the various skill scores (e.g.,

CRPSS) and diagnostics (e.g., the ratio of predictable components (RPC)) used in the analysis

differ significantly from chance values that arise from using a finite ensemble size (n=51) and

a finite number of validation cases (i.e., V = 41 hindcast years). The bootstrap approach

is common within seasonal-to-decadal forest verification (Wilks, 2011; Goddard et al., 2013;

Smith et al., 2013). The procedure involves generating a set of additional hindcast cases by:

1) randomly sampling V hindcast years with replacement; 2) randomly sampling N ensemble

members for each sample with replacement; 3) computing the required skill score / diagnostic;

and (4) repeating steps 1-3 1000 times to generate a distribution of the required skill score /

diagnostic. A given null hypothesis can then be tested by calculating the confidence interval at

a particular significance level based on a two-tailed t-test. For example, the null hypothesis that

a given skill score is not different to zero is rejected at the 90% level when skill scores lie outside

of the 5-95% confidence interval of the distribution of skill scores generated from the bootstrap
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procedure. In the case of the diagnostic RPC, the null hypothesis that RPC is not different

from one is rejected at the 90% level when the 5-95% confidence interval of the distribution of

RPC values does not include the value 1.

Reliability is a measure of the mean squared error between the relative frequency of observed

events and the probability of those events as indicated by the forecast at varying levels of likeli-

hood (Hartmann et al., 2002). For a given event (e.g. the upper tercile category), this measure

is typically depicted as a plot of increasing levels of forecast probability versus the observed

relative frequency at that forecast probability level, whereby the diagonal indicates perfect re-

liability (i.e. the relative frequency at which a given tercile outcome occurs in the hindcast

period corresponds, on average, with the probability indicated by the forecast system). Devia-

tion above/below this diagonal represents under/overconfident forecasts. Additional attributes

are usually included in this reliability diagram, including a horizontal line at the climatological

frequency (e.g. 1/3 for tercile categories). A forecast that is unable to resolve events as occur-

ring at different probabilities would lie on the horizontal line (‘no-Resolution’line) at one-third,

as all forecast events occur one third of the time. An additional diagonal lying halfway between

the perfect forecast and horizontal is often added, with only points above this line contributing

positively to the BSS (Hsu and Murphy, 1986). Forecast calibration that accounts for bias

conditional on forecast probability can improve reliability.

The reliability diagram is often shown alongside a histogram of forecast categories. The property

of the forecast exhibited in this histogram is termed forecast Sharpness, whereby a sharp forecast

system indicates the occurrence of events distance to the mean value category (i.e. a flatter

shape, with bins at the edges of the histogram well sampled) and where zero sharpness indicates

a forecast system which on average reflects climatology (i.e. a clustered around the vertical line

representing climatology on the Reliability diagram, also referred to as the no-Sharpness line).

Resolution (sometimes termed Discrimination) is a final aspect of forecast performance, which

quantifies the extent of differentiation between observed/non-observed outcomes in the forecast

and, for a given region, is depicted as the Relative Operating Characteristic (ROC) – a plot of

the hit-rate against the false-alarm rate at differing probability thresholds (Mason, 1982). A

forecast system with positive skill will more frequently achieve hits (correctly predicted events)

over false alarms (incorrectly predicted events) and show a positive area above the diagonal.

For perfect forecasts, all ensemble members will correctly predict the occurrence of an event in
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all years of the verification period, and all points of hit-rate against false-alarm will fall at x=0,

y=1. Thus, perfect forecast skill is indicated by an area under the ROC curve (AOC or ROC

score) of 1. As no skill would be indicated by an area under the ROC curve of 0.5, a normalised

skill score for ROC (ROCSS) is then defined as: ROCSS=2xAOC-1.

3.5 Data and Methods for Chapter 7

The final results chapter considers the performance of the generation synthesis under two al-

ternative parameterisations that represent future technology scenarios. Due to data constraints

on future solar PV capacity deployment, the analysis in Chapter 7 only considers wind genera-

tion. The data sources for these scenarios and the methods used are described in the following

sections.

3.5.1 Repowering scenario

Two scenarios are considered to assess near-term changes in the Indian wind fleet. Firstly, a wind

repowering scenario is considered whereby all turbines at wind farms in India are substituted

with a single turbine model that achieves the highest annual average capacity factor. Differences

in the resulting capacity factor between the existing fleet of turbines versus full replacement with

state-of-the-art designs are then quantified by comparing alternative versions of the generation

synthesis. A ‘reference’ version of the generation synthesis considers the period 2017-2021 with

the existing fleet of turbines as of year-end 2021. The ‘full repowering’ scenario considers the

same time period, with all turbines at wind farms in India substituted for the best-performing

model (Suzlon S144 3.15MW). The ‘full repowering’ scenario considers vertical scaling of wind

speeds to the greater hub height of the repowering turbine model.

The same empirically derived adjustment factors (AF) (described in earlier in Section 3.2.11)

are used in both the ‘reference’ and ‘full repowering’ scenarios, such that any resulting changes

in capacity factor are the result of turbine characteristics only (hub height and power curve).

Progressive repowering is also considered, whereby repowering occurs step-by-step in order of

wind farm age and turbine rated capacity. This analysis of progressive repowering uses the

detailed wind farm data from the complied database of India wind farms (described earlier in

Section Section 3.2.2).
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3.5.2 Expanded scenario

The second scenario considers a near-term wind expansion in the 2025/26 timeframe. Additional

wind capacity is added to the existing database of Indian wind farms that runs to 2021 using

the following three sources:

1. Operational wind farms commissioned in the years 2022 and 2023 using location data

from the independent research and advocacy organisation Global Energy Monitor17, which

maintains global inventories of wind installation locations (4.3GW).

2. Planned and under construction onshore wind capacity detailed in the inventory of the

Central Energy Agency of India (20.1GW) (CEA, 2024).

3. Planned offshore wind capacity to the year 2026 following the Ministry of New and Re-

newable Energy Strategy for Offshore wind (MNRE, 2023). The strategy details plans

for 37 GW in tenders by 2030 in the states of Gujarat and Tamil Nadu. The Global

Wind Energy Council projects 17.3GW to be completed by 2026 (GWEC, 2023). These

capacity values are split 50/50 between offshore zones in Gujarat (Gulf of Khambhat) and

Tamil Nadu (Cape Comorin and Palk Strait), as designated in the MNRE strategy.

Table 3.2 provides of the capacity additions by Indian state. In total, the ‘planned expansion’

scenario considers an Indian wind fleet of 81.2GW, approximately double the capacity in 2021.

It is assumed that all additional onshore capacity makes use of the same turbine model as in

the repowering scenario. Offshore capacity makes use of a Siemens Gamesa SG11.0-200 DD

11MW 120m, which is a typical offshore model at the time of writing. The offshore segment

of the ‘planned expansion’ scenario uses ERA5 winds with no adjustments (as no relevant

observational generation data exists for such a calibration).

3.5.3 Capacity density

To assess resulting changes in energy yield consequent of the two repowering scenarios, an

assumption must also be made over the capacity density of repowered or new wind installations.

Capacity density describes the installed capacity of a wind or solar PV farm per unit area,

typically expressed in units of MW/km2. Specified multiples of the turbine rotor diameter

is a common method for defining separation distances within a wind farm, which entails a

17Global Energy Monitor wind tracker: https://globalenergymonitor.org/projects/global-wind-power-tracker/
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State/region Additional wind Capacity (MW)

Karnataka 10,878
Gujarat 5,789
Maharashtra 2,456
Tamil Nadu 2,098
Madhya Pradesh 1,821
Rajasthan 1,065
Andhra Pradesh 300
Gujarat offshore 8,650
Tamil Nadu offshore 8,650
Total 81,200

Table 3.2: Wind capacity additions by Indian state/region in the ‘expanded scenario’.

maximum capacity density value, assuming all turbines within a farm conform to a regular

layout. Figure 3.9a shows the highest density layout when spacing is defined by an ellipse of

major and minor axes 8 and 4 times rotor diameter, respectively, with the major axis aligned

with the direction of the prevailing wind. The rotor dimensions of the modern turbine A yields

a capacity density value of 5.3MW per km in this optimal configuration.

Figure 3.9: (a) Highest density theoretical turbine layout, with spacing defined by 8x4 rotor
diameters (D) and major axis aligned with the direction of the prevailing wind; (b) capacity
density of existing wind farms based on bounding polygons of wind turbines geolocated within
OpenStreetMap data (smoothed with Gaussian kernel filter for visual clarity, as shaded bound-
ing polygons for individual farms are illegible in whole country visualisation); and (c) summary
of capacity density values of existing wind farms per state.

However, obstacles and constraints at the farm level often prevent a regular turbine siting,

resulting in lower capacity density values than theoretical values under optimal layout. Fig-
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ure 3.9b shows the capacity density values across existing wind farms in India, determined by

calculating the area of bounding polygons around all wind farm clusters and dividing by the

wind farm’s total capacity. Wind farm clusters in the year 2021 are identified using exact wind

turbine locations in India taken from OpenStreetMap and minimally bounding polygon areas

calculated with a convex hull algorithm, a common method for defining the land footprint of

wind farms (Enevoldsen and Jacobson, 2021; Harrison-Atlas et al., 2022). The OpenStreetMap

data contain turbine locations only, and so a spatial join is made with the Indian Wind and

Solar Database (IWSD) to yield total capacity per wind farm cluster. This method for esti-

mating capacity density yields a median value for all-India of 2.5MW per km. This value is

lower than theoretical or characteristic values used in other works (e.g., Eurek et al., 2017;

Bosch et al., 2018) but in line with empirically derived values that are typically 50% or less

than values derived from optimal layouts (Denholm et al., 2009; Miller and Keith, 2018). Both

the ‘repowering’ and ‘expanded’ scenarios consider a continuation of the current median value

of capacity density (2.5MW per km) for both onshore and offshore wind. This capacity density

value for offshore wind is low by current international standards (Enevoldsen and Jacobson,

2021) but is reasonable given the geographic concentration of wind turbines in planned offshore

zones for India, which necessitate greater turbine spacing to offset wake losses (Miller et al.,

2015).

3.5.4 Comparison with wind generation in decarbonisation pathways

Further analysis in Chapter 7 compares wind capacity factors and energy yield in India with

equivalent values in existing decarbonisation scenarios, specifically, the Working Group III

database (Byers et al., 2022) of decarbonisation pathways presented in the 6th IPCC Assessment

Report (Riahi, Schaeffer, et al., 2022). The majority of the 3131 pathways contained within

the WGIII database are global in scope (n=2266), although a number of the pathways are

from models specifically designed for country or regional analyses. Only the pathways based

on a globally integrated model were evaluated for their climate response in the AR6 WGIII

assessment (Riahi, Schaeffer, et al., 2022), and only 1686 scenarios passed a vetting process

that disregarded pathways that deviated from historical trends or displayed unrealistic future

changes. Of the 1686 pathways which passed vetting, 1202 had sufficient emissions species and

projection timeframe to be considered for climate assessment with climate response emulators.

Of these 1202 pathways, the 823 that included national-scale detail for India we considered in
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the analysis.

The variables in AR6 pathways named ‘Secondary Energy—Electricity—Wind’ are used in this

analysis. The ‘direct equivalent’ method is used for energy accounting in AR6, which counts a

unit of secondary energy sourced from non-combustible sources (e.g. wind and solar PV) as a

unit of primary energy. However, secondary energy is a more widely reported variable in the

AR6 pathways and so is considered as the best representation of gross generation from wind

and solar PV (i.e. without accounting for transmission losses). The capacity variables in AR6

pathways named ‘Capacity—Electricity—Wind’ are used.

This concludes the Data and Methods section of the thesis, and the four respective Results

chapters now follow.
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Chapter 4

Model synthesis of wind and solar PV gener-

ation in India

4.1 Rationale for investigation and research questions

The short record of observed generation from wind and solar PV technologies at the scale of

Indian states (just 4-5 years) limits opportunities to appraise generation variability, particularly

on interannual timescales. The objective of this chapter is to develop a model synthesis of wind

and solar PV generation in India that includes geolocated farms and technology characteristics.

Comparing the generation synthesis against observed values provides a basis for calibration and

verification. The use of multi-decadal atmospheric reanalysis as input to the generation syn-

thesis elucidates the climatological patterns of generation. This chapter considers the following

research questions:

1. Does the transformation of raw reanalysis data fields accurately represent wind and solar

generation for installations in India?

2. How effective are different calibration procedures at reducing bias in the synthetic gener-

ation time series derived from the reanalysis?

3. How similar are wind and solar PV generation profiles between regions and seasons?

4. Is the synthetic generation sensitive to the specific parametrisation of wind and solar PV

technologies?
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4.2 Generation synthesis

4.2.1 Wind

The synthetic wind generation time series that results from the method described in Section

3.2 is shown in Figure 4.1. This synthetic wind generation time series is for raw ERA5 wind

speed data, i.e., without any bias correction. The resulting synthetic wind generation time

series spans 2017-2021 and is shown in Figure 4.1 at both weekly and monthly timescales

(N.B. underlying synthesis is at hourly timescale, with temporal aggregation used in Figure 4.1

for visual clarity). The actual generation time series, as reported by Regional Load Dispatch

Centres (RLDCs), are displayed as black lines in Figure 4.1.

A similar seasonal generation profile is apparent for all regions, with peak generation during

the Indian summer monsoon (ISM) season and a minimum in boreal winter. The smaller sec-

ondary generation peak during boreal winter is likely caused by the northeast monsoon. Higher

frequency variability is smoothed in the all-India case because more uncorrelated variability

in generation is cancelled out over the country-wide aggregation. The poor generation year in

2020 has been documented elsewhere within industry and governmental sources (Shekhar et al.,

2021) and is evident across all regions shown in Figure 4.1.

Visual inspection of the resulting timeseries suggests a high correlation with observations, albeit

with mean bias that varies between the regions. Modest, consistent underestimation of observed

capacity factors is seen for the all-India case (averaging -6%). Consistent over/underestimation

of a similar magnitude is apparent for the Northern and Southern regions, respectively (aver-

aging +7%/-17%). No clear mean bias is seen in the Western region (-1.5%).

Figure 4.3 shows the same resulting synthetic generation timeseries for wind but for seven

individual Indian states (those states with >200MW capacity, c.f. Figure 3.6). Of the three

states that make up the Western region, only Gujarat shows modest overestimation, while

both Maharashtra and Madhya Pradesh show underestimation. Underestimation of observed

generation is apparent in all three states of the Southern region (Andhra Pradesh, Karnataka

and Tamil Nadu). However, the underestimation is greater for the case of Tamil Nadu and less

consistent through the season, with generation underestimated through summer months and

overestimated in winter months.
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Figure 4.1: Observed (black) and synthetic (red) timeseries of wind capacity factors at a weekly
(left-hand column) and monthly (right-hand column) timescales. Observed and synthesised ca-
pacity factors shown at various spatial scales: all-India (a and b), three regional grids (Northern
c and d, Western e and f, Southern i and j)

The negative summer bias in Tamil Nadu likely results from misrepresentation of windspeeds in

ERA5 within the four main mountain passes of the Western Ghats in Tamil Nadu (Aralvaimozhi,

Shencottah, Palghat, and Cumbum). Major wind farm clusters lie immediately to the east of

each pass and constitute most of the total installed wind capacity in Tamil Nadu (∼75%). The

tunnelling effect of local orography within the mountain passes, and the resulting enhancement

of surface wind speeds are likely only partly captured within ERA5. This effect is likely to

be most active in summer when the prevailing westerly monsoon flow dominates. Outside this

season, modest northeasterly winds are relatively unimpeded by topography.

For the other states showing a negative bias (Maharashtra and Madhya Pradesh in the Western

Region; Karnataka and Andhra Pradesh in the Southern region), it is postulated that some of the

discrepancies originate from unresolved local orographic effects in ERA5. As many installations

in these states either occupy elevated or hilltop sites, it is conceivable that hill effects enhance

prevailing winds (Clifton et al., 2014) at a scale below that captured by ERA5. Subranges of

the Western Ghats, such as the Kalsubai Range in Maharashtra; the Vindhya range in Madhya

Pradesh; ranges and outcropping across the Deccan Plateau throughout much of Karnataka and

Andhra Pradesh (e.g., wind farm groupings at Chitradurga and Kadapa districts, respectively)
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i
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Figure 4.2: (a) 100m DTU-GWA wind speeds over southern states of Kerla and Tamil Nadu,
with labelling of the four mountain passes of the Western Ghats (i) Palghat, (ii) Cumbum, (iii)
Shencottah, and (iv) Aralvaimozhi. (b) elevation over southern states of Kerla and Tamil Nadu,
with data from (Amatulli et al., 2018).

all host significant installations of wind capacity.

A persistent positive bias is seen in the case of Gujarat, an outcome possibly due to the coastal

siting of major wind farms (e.g., within coastal regions of the Kutch and Saurashtra). The

greatest positive bias is found in the Northern State of Rajasthan. Notably, the surface rough-

ness values in ERA5 are very low within the Thar desert region of Rajasthan (<0.01, compared

with values of 0.15 to 0.3 elsewhere in India), where most of the state’s wind capacity is in-

stalled (>85% of the total). As the effects of surface roughness reduce the momentum of the

surface wind flow (Kelly and Jørgensen, 2017), the low surface roughness values within the

region potentially cause high windspeed values and explain the existence of the positive bias.

Table 4.1 summarises the performance of the generation synthesis with the three metrics de-

scribed in Section 3.2.12, namely, normalised mean bias, mean absolute error (MAE) and corre-

lation (r value). The range of normalised mean bias spans 0.94 (Northern region) to 1.22 (Tamil

Nadu). MAE values decrease, and correlation increases at greater temporal aggregation levels

across all regions.

4.2.2 Solar generation

The synthetic solar PV generation time series is shown in Figure 4.4 for weekly and monthly

means and is produced using the raw ERA5 irradiance and temperature data, i.e., without

any bias correction. The actual generation time series, as reported by Regional Load Despatch
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Figure 4.3: Observed (black) and synthetic (red) timeseries of wind capacity factors at a weekly
(left-hand column) and monthly (right-hand column) timescales. Observed and synthesised
capacity factors for seven India states

Centres (RLDCs), are displayed as black lines in Figure 4.4. The Northern RLDC lacks gener-

ation data before 2019, and monthly data is only available from 2019 onwards for the Eastern

RLDC. Table 4.2 summarises the performance of the generation synthesis with the three met-

rics described in Section 3.2.12, namely normalised mean bias, mean absolute error (MAE) and

correlation (r value).

A seasonal generation profile is common to all regions, with generation peaking during boreal

spring, falling to a minimum through the summer monsoon season, and recovering through au-

tumn and winter months. Higher frequency variability visible at the weekly averaging timescale

appears slightly smoothed in the all-India case, similar to the wind case, where random uncor-

related errors cancel at the broader spatial scale. Visual inspection of the resulting timeseries
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Wind

MAE r value
Normalised mean bias Daily Monthly Daily Monthly

India 1.06 0.02 0.01 0.97 0.99
Northern 0.94 0.04 0.02 0.94 0.98
Western 1.03 0.02 0.01 0.97 0.99
Southern 1.17 0.04 0.04 0.95 0.98
Gujarat 0.97 0.04 0.03 0.93 0.95
Madhya Pradesh 1.09 0.04 0.02 0.92 0.96
Maharashtra 1.12 0.03 0.02 0.96 0.98
Andhra Pradesh 1.04 0.05 0.03 0.93 0.97
Tamil Nadu 1.22 0.05 0.05 0.90 0.95
Karnataka 1.11 0.04 0.03 0.95 0.98

Table 4.1: Key performance indicators for synthetic wind generation. Normalised mean bias
refers to the ratio of observed mean capacity factor to synthetic capacity factor. Mean absolute
error (MAE) in capacity factor and Pearson’s correlation coefficient (r value) shown for daily,
weekly, and monthly timescales.

suggests a high correlation with observations, with no clear mean positive or negative bias of

significance in any of the five regions. Periods of significant positive or negative generation

anomalies (such as the deficient summer season of 2020 for wind) are not apparent in the solar

PV generation timeseries. When comparing surface wind speeds, the greater spatial homogene-

ity of solar irradiance on daily timescales results in less diversity in mean bias between the

individual states of each RLDC region (not shown).

Table 4.2 summarises the performance of the solar PV generation synthesis with the three

evaluation metrics. Modest underestimation of observed generation is seen in all regions, with

normalised mean bias values in the range 1.02-1.07. As with the case of wind generation, MAE

values decrease, and correlation increases at greater levels of temporal aggregation across all

regions. Although the MAE values are lower for solar PV when compared to wind (even when

normalising the MAE values by mean capacity factor), correlation values are lower than for wind

across time scales, particularly for Northern and Eastern regions. This difference could, in part,

be attributed to the lack of farm-specific technical details for solar PV that forces a simplified

approach to the solar PV generation synthesis (fixed assumptions for orientation, array tilt,

sun-tracking design, module type) and so lower fidelity in the representation of observed solar

PV values. Also, inaccuracies are expected to arise from the annual resolution of commissioning

dates for solar farms (see Section 3.2.3).

In the case of the Northern region, a significant proportion of total regional solar PV capacity
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Figure 4.4: Observed (black) and synthetic (red) timeseries of solar PV capacity factors at a
weekly (left-hand column) and monthly (right-hand column) timescales. Observed and synthe-
sised capacity factors shown at various spatial scales: all-India (a and b) and four regional grids
(Northern c and d, Western e and f, Southern i and j). Note, daily data was not available for
the Eastern region.

is concentrated within the northwestern region of Rajasthan (including the Bhadla Solar Park,

the largest solar farm in the world). This concentration implies that a relatively small number

of ERA5 grid cells represent a large proportion of total capacity within the region, and so

there is less possibility for the cancellation of random uncorrelated errors, which could cause an

overall larger error for this region compared to regions with more spatially distributed solar PV

installations. A similar effect may explain the lower correlation values found within the Eastern

region, where a large fraction of the total solar PV capacity within the region is concentrated

within a relatively small area.

Generally, the raw generation synthesis performs well for both wind and solar PV, particularly

for regional aggregations at monthly timescales (r values >0.97 for wind and >0.9 for solar PV).

The following section considers the effect of bias correction techniques on the performance of

the generation synthesis.
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Solar PV

MAE r value
Normalised mean bias Daily Monthly Daily Monthly

India 1.06 0.012 0.010 0.91 0.96
Northern 1.02 0.014 0.009 0.82 0.91
Western 1.05 0.012 0.010 0.93 0.96
Southern 1.07 0.014 0.011 0.89 0.93
Eastern 1.03 - 0.010 - 0.90

Table 4.2: Key performance indicators for synthetic solar PV. Normalised mean bias refers to
the ratio of observed mean capacity factor to synthetic capacity factor. Mean absolute error
(MAE) in capacity factor and Pearson’s correlation coefficient (r value) shown for daily, weekly,
and monthly timescales.

4.2.3 Bias correction

The results presented thus far have not included any bias correction. This section considers

the effects of two forms of bias correction on the generation performance. The first is a fixed

mean bias correction (i.e., a constant value that applies at all timescales) using additional

meteorological data sources: the DTU-GWA for wind and the GSA for solar PV. The second

method applies a multiplicative factor to raw ERA5 variables such that mean bias in the period

2017-2021 is zero (see Section 3.2.11 for additional details of the bias correction techniques).

Figure 4.5 summarises the effect of these bias correction techniques on the performance of the

generation time series at the daily time scale by presenting the same three performance metrics

as in Table 4.1. The red markers in Figure 4.5a-g show the daily performance metrics for the

wind and solar PV generation synthesis using raw ERA5 data (i.e., the same values presented

in Table 4.1). The blue markers in Figure 4.5a-f show the metrics for the mean bias correction,

and the green markers show the multiplicative adjustment.

By definition, the normalised mean bias is 1 for the multiplicative adjustment. The mean bias

correction using DTU-GWA results in an overestimation of wind generation for all but the

Northern region. Aside from the large overestimation in the southern state of Tamil Nadu, the

normalised mean bias values are of similar magnitude but the opposite sign for the raw and

mean bias versions of the wind generation synthesis. The mean bias correction using GSA data

for the solar PV generation synthesis results in a modest overestimation in all regions. In most

instances, changes in MAE and correlation between the raw ERA5 and mean bias-correction

syntheses are minor for both wind and solar PV. As the difference in wind speeds between
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the raw and mean bias-corrected versions are generally within the linear ramping range of the

wind turbine power curve, changes in the scale-invariant r values are negligible. Also, the use

of a smoothing operator on the aggregated power curve (Equation 3.1), which is calibrated

to observed generation, contributes to the minimal changes to correlation following the bias

correction procedure1. A similar effect likely explains the similar r values found for the raw and

mean bias-corrected versions of the solar PV synthesis, as modest irradiance differences impact

a linear ramping stage of the module response, which only becomes increasingly non-linear at

very high irradiance values.

1Re-calibrating the aggregate power curve after the bias correction contributes no further improvement in
correlation.

Figure 4.5: Performance metrics for wind (left-hand column) and solar PV (right-hand column)
resulting from bias correction procedures. Normalised mean bias (a and d) refers to the ratio
of observed mean capacity factor to synthetic capacity factor. Mean absolute error (MAE,
panels b and e) and coefficient of determination (R2, panels c and f) are calculated for daily
capacity factors. Regional acronymns: N, Northern; W, Western; S, Southern; Gu, Gujarat;
MP, Madhya Pradesh; Ma, Maharashtra; AP, Andhra Pradesh; Ka, Karnataka; TN, Tamil
Nadu.
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The generally higher 100m wind speeds in DTU-GWA compared to ERA5 have been noted

within assessments of the DTU-GWA modelling chain, with the parameterisation of sub-grid

orographic drag and generally higher roughness lengths in ERA5 identified as the sources of the

differences (Dörenkämper et al., 2020). Furthermore, the overestimation of DTU-GWA surface

wind speeds in complex terrain consequent of orographic speed-up effects has been found in

Europe (Murcia et al., 2022) and was also evidenced in a verification against 16 met stations

located in hilly and complex terrain in India (Ramdas et al., 2022). Peaks in the DTU-GWA

>10m/s over complex mountain terrain are particularly apparent in Tamil Nadu and are the

likely source of the mean positive bias in the state. Using DTU-GWA product to perform

mean bias correction of reanalysis wind speeds is common in other studies (e.g., Gonzalez-

Aparicio et al., 2017; Bosch et al., 2018), with a general assumption that a higher horizontal

resolution enhances the fidelity of the generation synthesis (Gualtieri, 2022)). However, the

results presented here suggest minimal increases in accuracy (higher r-value) resulting from

the application of the bias correction with the DTU-GWA and that mean biases persist. Such

findings concur with a global validation of wind generation syntheses that trailed DTU-GWA

adjustments and found minor accuracy improvements and mean bias that was highly location-

dependent (Gruber et al., 2022).

The ∼5% underestimation for solar PV could result from excluding sun-tracking designs within

generation synthesis. However, sun-tracking designs account for only a minor share of the Indian

solar fleet (13% of the total in 2022). So, the higher yield achieved by sun-tracking designs that

are uncaptured in the synthesis is a likely reason for the slight underestimation.

This section on bias correction confirms the generally high performance of the generation syn-

thesis for both wind and solar PV with raw ERA5 data (normalised mean bias is rarely more

than 20%, and r values for daily generation are generally >0.9). Furthermore, using a higher

resolution data product to perform a mean bias correction results in a negligible improvement

to the performance of the generation synthesis (i.e., no change in r values and normalised mean

bias of similar magnitude, albeit of opposite sign for wind). Finally, the second form of bias

correction (applying an empirically determined multiplicative adjustment) provides the best

results according to the three performance metrics considered. The values of the multiplicative

adjustment per technology and state are listed in Table 4.3.
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Multiplicative adjustment

Wind Solar PV
Rajasthan 0.975 Rajasthan 1.025
Gujarat 0.985 Gujarat 1.07
Madhya Pradesh 1.035 Madhya Pradesh 1.065
Maharashtra 1.045 Maharashtra 1.05
Andhra Pradesh 1.015 Andhra Pradesh 1.05
Karnataka 1.45 Karnataka 1.065
Tamil Nadu 1.085 Tamil Nadu 1.065

Eastern region 1.025

Table 4.3: Values of the multiplicative adjustment per technology and state. Adjustment applied
regionally in the case of solar PV in the Eastern region.

4.2.4 Synthetic generation climatology

The multiplicative adjustments per region determined from the 2017-2021 period (Table 4.3)

are applied to the ERA5 reanalysis spanning 1979-2021 to create a synthetic generation dataset

spanning over four decades. The following sub-sections consider percentiles of daily generation

across the full span of the reanalysis.

4.2.5 Present day wind

The daily climatology of wind generation shows a strong seasonal cycle in all regions (Figure

4.6), with generation in summer (June, July, August, September - JJAS) averaging 260% of that

in winter (November, December, January, February – NDJF) for all-India. Considering the 50th

percentile of generation values, 54% of total annual generation occurs in JJAS, coinciding with

the Indian summer monsoon (ISM). However, it is notable that wind generation increases ahead

of ISM onset, likely reflecting the formation of the summer monsoon circulation and enhanced

westerly flow, consequent of tropospheric warming over Eurasia that peaks during boreal spring

(Li and Yanai, 1996). The greater range of daily generation values observed in the Northern

region is likely due to the concentration of most of the state’s installed wind capacity (>85%)

across a relatively small area centred on the northwestern city of Jaisalmer. Therefore, wind

generation within the region, derived from a relatively small number of neighbouring ERA5 grid

cells, results in less spatial smoothing. Across all regions, the greatest range of capacity factors

coincides with the ISM season.

It is instructive to consider the seasonal pattern of both generation and demand of electrical

energy as their co-variability defines requirements for grid reinforcement, storage, and comple-
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Figure 4.6: Daily climatology of synthetic wind capacity factor for all-India (a), Western (b),
Northern (c) and Southern (d) regions. Synthetic wind capacity factor data is produced using
the full span of the ERA5 reanalysis (1979-2021), assuming a capacity distribution as of the
end of the year 2021. Black lines show the 50th percentile of daily mean capacity factor. Blue
shades depict increasing percentiles of daily mean capacity factor range. Dashed black lines
depict average electricity demand per region, normalised by the maximum value per region,
using demand data for the period 2014-2019

mentary forms of generation (Roques et al., 2010; Bakke et al., 2016; Denholm and Mai, 2019).

The normalised seasonal cycle of electricity demand overlaid in Figure 4.6 differs per region.

The greatest range of electricity demand is found in the northern region, where peak values

during summer fall by approximately 40% to the lowest values during winter months. Electric-

ity demand shows a minor dip through the summer months in the western region and remains

largely stable through the year in the southern region. The all-India seasonal cycle of electricity

demand is also relatively muted. The seasonal pattern of electricity demand is a function of

the regional economic structure (e.g., agricultural vs. service-based economy), energy end-use

technologies (e.g., prevalence of electrical heating/cooling), and climate (e.g., large annual cycle

in air temperature). All these factors are likely to change in future years and drive shifts in

demand that could result in seasonal patterns different from the present day. However, the

strong seasonal cycle in wind generation across all regions presents the possibility of seasonal

mismatches between generation and demand in the future, with potential generation surplus
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through the summer months and deficit during winter.

4.2.6 Present day solar PV

The daily climatology of solar PV generation also shows a seasonal cycle in all regions (Figure

4.7), albeit of lesser magnitude than wind. A clear generation slump is observed in all regions

during summer (JJAS), likely corresponding with increased cloud cover and lower surface irradi-

ance during the ISM. The western and eastern regions show the largest absolute decline during

the summer months, likely due to the location of these states at the centre of the monsoon

trough, with greater incidence of low-pressure systems and cloud cover. The winter months also

see a period of low solar PV generation, likely a combined outcome of the annual solar cycle

and the winter northeastern monsoon. Solar PV generation generally peaks in spring (March,

April, and May; MAM), and declines ahead of the ISM onset, potentially linked to aeolian

desert dust transport from the deserts and drylands of West Asia, the Middle East and North

Africa across the Arabian Sea into peninsular India (Pease et al., 1998). Across all regions,

the summer season experiences the greatest absolute and relative range of solar PV capacity

factor values; however, this range is less than for wind. The greater range of capacity factors in

the Southern region during winter months is likely related to the winter northeastern monsoon,

which brings the majority of the total annual rainfall to southern states.

Figure 4.8 shows the seasonal cycle of the combined wind and solar PV capacity factors. The

exact outcome of the combined generation of wind and solar PV depends on the installed

capacity and the resulting balance between both sources. In the configuration representative

of the year 2021 shown in Figure 4.8, a degree of compensation between wind and solar PV

generation is found during the summer months. However, the joint minima during winter

months for both wind and solar indicates a potential generation constraint should levels of

installed wind and solar PV capacity increase in line with the current wind-solar PV capacity

balance.

4.3 Long-term trends

4.3.1 Trends in synthetic wind generation

The annual mean synthetic wind capacity factor for all India and sub-regions shows a modest

declining trend (Figure 4.9). The trends are significant at the 99% level in all regions except the
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Figure 4.7: As in Figure 4.6 but for solar PV capacity factors.

Southern region, using a Mann-Kendal test. One must exercise caution in estimating long-term

trends in reanalyses due to the potential for spurious effects from the time variation in the

observational data used in the data assimilation process (Wohland et al., 2019). Nevertheless,

a long-term negative trend in surface and lower troposphere wind speeds over India has been

noted in several other studies, with the greatest absolute reductions occurring during the ISM

period (Joseph and Simon, 2005; Fan et al., 2010; Jaswal and Koppar, 2013; Saha et al., 2017;

Torralba et al., 2017a; Abdulla et al., 2022). Joseph and Simon (2005) found lower tropospheric

zonal winds in summer have decreased by 20% in the period 1950-2002 through peninsular

India, with a concomitant 30% increase in the duration of break monsoon conditions. Jaswal

and Koppar (2013) found a declining trend in annual average surface winds of -0.24m/s per
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Figure 4.8: As in previous Figure but for combined wind and solar PV capacity factor.

decade in the period 1960-2008 (-11.9% of long-term average mean wind speed). Gao et al.

(2018) used a reanalysis dataset to estimate wind generation in India from 1980 to 2016, finding

a -3.4% per decade decline. The reductions in capacity factors observed in Figure 4.9 range

between -5.2% to -2.3% per decade – i.e., in line with previous studies.

This ‘stilling’ phenomenon, whereby surface wind speeds over land have generally decreased

since the 1970s, is widely documented elsewhere across the globe (Roderick et al., 2007; Vau-

tard et al., 2010; McVicar et al., 2012). Several underlying causes of the declines have been

proposed (Wu et al., 2018), including increased surface roughness consequent of increased in

vegetation cover (Vautard et al., 2010; Zhu et al., 2016), increased surface drag consequent of

urbanisation (Zhang et al., 2022), internal decadal-scale climate variability (Zeng et al., 2018;

Zeng et al., 2019), or measurement errors related to instrument sensitivity, archiving errors

and/or instrument position (Azorin-Molina et al., 2018). More recent studies note a slowing

or reversal in the global long-term wind speed declines since the early 2010s. However, Dunn

et al. (2022) suggest that these reports are attributable to data archiving errors and that under-

estimated wind speeds in earlier decades are possible with less sensitive, older-generation cup

anemometers. The evidence of weakening surface winds since the 1970s over land is robust at
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Figure 4.9: Annual mean synthetic wind capacity factor for all India (a) and three regions (b-d)
for the period 1970-2021 (black line). Linear trend shown as dashed black line, and detrended
timeseries shown in blue.

a global level, but with low confidence in a recovery since around 2010 and little agreement be-

tween observational datasets over India (Gulev et al., 2021). Recent evidence of a weakening of

the South Asian Monsoon circulation (a candidate for possible declining trends in surface wind

speeds) has mainly been attributed to increased anthropogenic aerosols (Arias et al., 2021).

An important note on these trends identified in the 43-year generation synthesis is that the

decline reflects ceteris paribus conditions for the year 2021 – i.e., assuming the same types and

distribution of present-day wind farms in India. In reality, changes to the Indian wind power

fleet have occurred over time, with older designs of inferior performance becoming increasingly

less common and improved siting and operational practice further enhancing capacity factors.

This aspect of a changing wind turbine fleet is returned to in a later section that calculates the
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sensitivity of the wind generation synthesis to the specified turbine model.

4.3.2 Trends in synthetic solar PV generation

The annual mean synthetic solar PV capacity factors for all-India and the sub-regions show

declining trends (Figure 4.10). These trends are significant at the 99% level in all regions

except the Western region, using a Mann-Kendal test. The most likely causes of these trends

are changes to regional aerosol loading, cloud cover and cloud composition (Soni et al., 2012).

Globally, evidence of ‘global dimming’ at a rate of 2-4% per decade was strongest from the 1960s

to 1990s (Stanhill and Cohen, 2001; Liepert, 2002). Several regions have seen an increase in

global horizontal irradiance since the 1990s, though the long-term negative trend persists across

the Indian subcontinent (Wild et al., 2005; Padma Kumari et al., 2007; Ramanathan et al.,

2005; Singh and Kumar, 2016) with some evidence of a slowdown in the rate of decline since the

2000s (Wild et al., 2009; Soni et al., 2016). The linear trend in Figure 4.10 is -0.9% per decade

for the all-India case and between -0.5 to 1.8% per decade for the sub-regions, approximately

in line with the trend in irradiance at the surface found in the studies mentioned above.

Enhanced scattering and absorption of solar irradiance have been identified as the cause of re-

ductions in global horizontal irradiance across India, a result of increased anthropogenic aerosol

loading (particularly sulphate aerosols arising from coal-power sulphur dioxide emissions (Wild

et al., 2009; Yang et al., 2022)). Ahead of monsoon onset, prevailing westerly surface winds

transport dust from the deserts and drylands of West Asia, the Middle East and North Africa

across the Arabian Sea into peninsular India (Pease et al., 1998). This aeolian desert dust con-

stitutes another significant aerosol source, particularly in the northern regions of India; however,

trends in desert dust loading have remained stable or show a decreasing trend in recent decades

(Gautam et al., 2009; Dey and Di Girolamo, 2011). Variations in the Earth’s orbit and the

solar output can also influence the top-of-atmosphere incident solar radiation. However, trends

between minima of the 11-year solar cycle suggest minimal or insignificant trends in recent

decades (Willson, 1997; Kopp, 2016) of an order of magnitude lower than changes to global

horizontal irradiance at the Earth’s surface, and so can be neglected. Rising air temperatures

over the Indian land area could also influence solar PV generation, as solar PV module effi-

ciency reduces with increasing ambient temperature. However, the region’s annual average air

temperature increase is ∼1C, implying a negligible impact on solar PV module performance

and the observed capacity factors.
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Figure 4.10: Annual mean synthetic solar PV capacity factor for all India (a) and three regions
(b-d) for the period 1970-2021 (black line). Linear trend shown as dashed black line, and
detrended timeseries shown in red.

As was noted for wind generation in the previous section, observed trends in actual solar PV

generation will be affected by factors not considered here such as changing installed capacity

over time and changes in solar PV module efficiency, which have averaged increases of ∼1%

per annum globally over the past decade, with continued improvements of the same magnitude

projected for the next decade (VDMA, 2022).
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4.4 Generation anomalies

Figures 4.9 and 4.10 in the previous sub-section display annual capacity factor values for wind

and solar PV, respectively, with linear trends overlaid. Annual and seasonal anomalies in the

following sub-sections remove these long-term linear trends from the generation timeseries.

4.4.1 Annual and seasonal wind generation anomalies

The interannual variations in all-India wind capacity factors for different seasons are shown in

Figure 4.11 as absolute anomalies. Interannual variability is largest in JJAS in absolute terms.

Table 4.4 shows the range (max/min) and standard deviation in JJAS wind capacity factors

per region in relative terms (i.e. the absolute capacity factor anomaly divided by the all-time

mean value). The magnitude of interannual variability is greater for the regional subdivisions

than the all-India case, in the region of +/- 20-30% of the JJAS mean. The largest negative

anomaly in JJAS for all-India between 1979-2021 was the year 2020 (-29%, equivalent to a -2.9σ

absolute anomaly) and the largest positive anomaly was in 1990 (+14%, equivalent to +1.8σ

absolute anomaly). For comparison, an existing generation synthesis for Europe (Bloomfield

and Brayshaw, 2021) shows the greatest magnitude of interannual variability for onshore wind

in the DJF season, with a standard deviation in wind capacity factors ∼35% greater than the

JJAS season for India. These differences are likely due to different prevailing meteorological

environments within the tropics and extratropics and the different scales of spatial averaging.

Min Max Std.

India -23% 14% 8%
Northern -30% 27% 14%
Western -29% 18% 10%
Southern -18% 17% 7%
Gujarat -32% 17% 12%
Maharashtra -26% 27% 11%
Madhya Pradesh -26% 20% 11%
Andhra Pradesh -22% 22% 9%
Karnataka -18% 24% 8%
Tamil Nadu -18% 12% 7%

Table 4.4: Range and standard deviation in relative wind generation anomaly for JJAS season
per region (units are percentage of the JJAS seasonal mean capacity factor).
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Figure 4.11: Absolute wind capacity factor anomaly for all-India for annual and seasonal aver-
aging periods.

4.4.2 Annual and seasonal solar PV generation anomalies

The interannual variability in all-India solar PV capacity factors for different seasons is shown

in Figure 4.12 as absolute anomalies. As for wind, interannual variability is largest in JJAS The

greatest range in JJAS capacity factors is seen for the states Madhya Pradesh and Chhattisgarh

(Table 4.5), which are both located within the monsoon trough region. The largest negative

anomaly in JJAs for all-India between 1979-2021 was the year 2013 (-8%, equivalent to a -2.3σ

absolute anomaly) and the largest positive anomaly was in 1987 (+9%, equivalent to a +2.5σ

absolute anomaly). Using data from Bloomfield and Brayshaw (2021) for synthetic solar PV

generation, the interannual standard deviation is larger in Europe for annual mean capacity fac-
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tors, but comparable in magnitude for the summer season (13% of mean for European countries

vs 11% across Indian states).

Figure 4.12: Absolute solar PV capacity factor anomaly for all-India for annual and seasonal
averaging periods. Relative capacity factor anomaly refers to absolute capacity factor anomaly
divided by the all-time mean capacity factor for the season.

4.4.3 Spatial patterns in seasonal generation anomalies

The following section considers the spatial covariance of generation anomalies in JJAS across

India. First, the correlation in generation anomalies between regions is appraised for wind and

solar PV technologies separately before considering whether anomalous years for wind and solar

coincide.
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Min Max Std.

India -8% 9% 3%
Northern -10% 10% 4%
Western -12% 14% 5%
Southern -8% 8% 4%
Eastern -11% 13% 5%
Rajasthan -11% 16% 5%
Gujarat -11% 15% 5%
Madhya Pradesh -17% 15% 6%
Maharashtra -14% 10% 5%
Karnataka -8% 8% 4%
Andhra Pradesh -7% 8% 4%
Tamil Nadu -6% 5% 3%
Chhattisgarh -16% 15% 6%

Table 4.5: Range and standard deviation in relative solar PV generation anomaly for JJAS
season per region (units are percentage of the JJAS seasonal mean capacity factor).

4.4.4 Correlation between regions per technology

Table 4.6 shows the cross-correlation coefficients between regions for JJAS wind generation

anomalies. All regions are positively correlated with all-India, with the Northern region less

correlated, partly due to a lesser contribution to the all-India capacity total (∼11% in 2021

compared to ∼42% for the Western region). Neighbouring regions are positively correlated; the

distant Northern and Southern regions show no significant co-variability.

JJAS wind generation anomalies

India NR WR SR
India 1.0 0.64 0.94 0.84
NR 1.0 0.67 0.18
WR 1.0 0.63
SR 1.0

Table 4.6: Cross-correlation between regions for JJAS mean wind generation anomalies, with
values representing Pearson correlation coefficient. All values in bold are significant at the 95%
level.

Table 4.7 shows the cross-correlation between regions for JJAS solar PV generation anomalies.

All regions are positively correlated with all-India, with the Eastern region less correlated,

likely due to a lesser contribution to the all-India capacity total (less than 2% in 2021) and

geographically concentrated installations. The most distant Northern, Eastern and Southern

regions show the weakest correlation. Potentially, the lowest cross-correlation for solar PV

(Southern and Eastern regions 0.4) is related to the opposite sign rainfall anomalies typically
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seen in the southern region compared to the rest of India during monsoon season with positive

rainfall anomaly (Goswami and Mohan, 2001; Rajeevan et al., 2010).

JJAS solar PV generation anomalies

India NR WR SR ER
India 1.0 0.81 0.91 0.92 0.65
NR 1.0 0.81 0.56 0.56
WR 1.0 0.71 0.69
SR 1.0 0.40
ER 1.0

Table 4.7: Cross correlation between regions for JJAS mean solar PV generation anomalies,
with values representing Pearson correlation coefficient. All values are significant at the 95%
level.

4.4.5 Correlation between technologies per region

The correlation between wind and solar PV generation anomalies in JJAS is not statistically

significant (r=0.27, p=0.09; see Table 4.8). The strongest and most widespread co-variability is

between wind in the Northern region and solar PV in all other regions (r=0.44-0.61; see Table

4.8). The only significant negative correlation is found between Southern region wind generation

anomalies and Northern solar PV generation anomalies. The correlation between regions and

sources is greater than for the all-India case, yet is still generally low and insignificant in half

of the cases. This generally low co-variability between wind and solar PV suggests distinct

physical drivers of generation anomalies in JJAS for the two sources, which will be investigated

in Chapter 5.

Solar

India NR WR SR
Wind India 0.27 0.01 0.18 0.39

NR 0.55 0.44 0.61 0.46
WR 0.38 0.11 0.21 0.51
SR -0.10 -0.31 -0.13 0.04

Table 4.8: Cross correlation between technologies and regions for JJAS mean generation anoma-
lies, with values representing Pearson correlation coefficient. All values in bold are significant
at the 95% level.
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4.5 Sensitivity testing

To test the sensitivity of the results presented thus far, several aspects of the methodology are

varied to determine the effects on wind and solar PV generation synthesis.

4.5.1 Wind turbine systematic assignment

As turbine models differ in hub height, rotor diameter and associated power curve, the exact

turbine model used in the implementation of the generation synthesis methodology will affect

the resulting capacity factors. The generation synthesis described in the above sections uses

turbine-specific information (hub height and power curve) that reflects the actual turbine model

per wind farm in India. Here, the generation synthesis process is repeated for the period 2017-

2021 with alternative turbine models assigned to all wind farms. In total, 805 repetitions

of the synthesis are considered (reflecting the number of available turbine model data). The

multiplicative adjustment, defined by the actual turbine model per wind farm in India, is used

in all repetitions. Therefore, differences in capacity factor between the generation syntheses

reflect changes in the hub height, rotor diameter, and associated power curve only.

Figure 4.13 summarises the range of capacity factors resulting from the different turbine as-

signments. Taller turbines with fewer KW of rated power per unit swept area (ratio referred to

as specific power) achieve the greatest capacity factors. This is because taller turbines access

higher wind speeds at greater heights within the boundary layer, and as larger rotor diameters

increase energy capture and generate over a wider range of wind speeds (particularly at lower

wind speeds with a lower cut-in speed) (Madsen et al., 2020). Figure 4.13 highlights the highest

capacity factor turbine (Suzlon S144 3.15MW, 0.35) and plots an additional point the represents

the current fleet average (0.19).

The systematic assignment of different turbine models also impacts the accuracy of the gen-

eration synthesis (measured as % change in correlation for daily capacity factor values). This

change in accuracy is tested by repeating the above 805 turbine assignments, but this time,

implementing the same adjustment factor method to reduce mean bias relative to the observed

period. As all power curves show similarities in the profile of the power response (cut-in, ramp-

ing, rated and cut-out phases), much of the observed day-to-day variability is captured by the

modified versions of the generation synthesis. However, differences in the profile of the power
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Figure 4.13: All-India capacity factor as a function of hub height and specific power, for al-
ternative turbine model assignments (n=805, with each scatter point representing a different
turbine model assigned to all wind farms in India). Arrow labels show existing Indian wind
farm fleet average capacity factor and the turbine assignment with the highest capacity factor
(Suzlon S144 3.15MW).

response between the assigned and accurate power curves cause a degradation in the accuracy

of the generation synthesis. The 95th percentile of these changes range between -18.6 to -9.6%

amongst the regions and between -8.6 to -4.9% for the 50th percentile of the changes. A common

approach in comparable studies that produce wind generation syntheses is to assume a fixed

turbine type nationwide. However, this sensitivity analysis suggests an appreciable degradation

in synthesis accuracy under such a fixed assumption.

4.5.2 Wind spatial distribution

The wind generation synthesis presented in the main results used the best estimates of the

actual farm locations. Here, the effect of a generic assignment (GA) of wind farm location is

tested, whereby the synthesis is undertaken for all onshore locations (i.e., all grid cells within

the boundary of mainland India), assuming a single fixed turbine model. Such an approach is

common within comparable studies of wind energy generation potential and performance (e.g.,

Eurek et al., 2017; Bosch et al., 2018). As this sensitivity test requires all wind turbine models

to be the same, comparisons are made to a reference case (RC), where the correct wind farm

locations are used but with the same single fixed turbine assignment. Differences between the

two results will, therefore, be associated only with the differing geographical locations of the

farm locations.
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Region Mean annual capacity factor R value
Standard deviation in
daily capacity factor

India -24.4% -3.8% -25.7%
Northern -30.5% -7.5% -36.6%
Western -28.8% -6.2% -26.5%
Southern -17.1% -6.9% -24.2%
Gujarat -38.5% -13.6% -38.7%
Madhya Pradesh -37.0% -8.4% -36.7%
Maharashtra -16.9% -5.2% -22.3%
Andhra Pradesh -14.8% -7.4% -24.5%
Karnataka -34.9% -6.3% -32.6%
Tamil Nadu -10.3% -12.7% -18.3%

Table 4.9: Difference in annual mean wind capacity factor, correlation (r value) and stand
deviation in daily mean capacity factor by region between reference case (RC) and generic
assignment (GA) distribution of wind farms.

Table 4.9 summarises the main effects of the sensitivity test on the generation synthesis, showing

changes in annual mean capacity factors, r value and the standard deviation in daily capacity

factor per region. Average annual capacity factors are reduced in all regions, reflecting that

much of India’s land area is of lower wind resources than zones where wind farms are currently

stationed. The correspondence of the GA daily capacity factor values to observed values is lower

for all regions (reduction in r values), reflecting the heterogeneity of wind speeds between actual

wind farm locations and the whole country. The standard deviation is lower in the GA case,

reflecting the smoothing effect on the aggregate generation of uncorrelated generation across a

greater number of generator locations.

4.5.3 Solar PV parametrisation

The parameterisation of solar PV array performance (see Equation 3.4 in Data and Methods

Section 3.2.9) uses a term to approximate the effect of ambient air temperature on module

temperature and consequent reductions in module efficiency. Setting this term to zero to exclude

this temperature-efficiency dependence increases solar PV capacity factors by 22% for all-India

(with other regions between 20-24% increases). The reduction in the correlation between the

original solar PV generation timeseries and equivalent with the temperature term excluded is

negligible (1-4% reductions amongst the regions). These results suggest that any inaccuracy

in the specification of the temperature-efficiency term affects the mean bias of the generation

synthesis but not the distribution of values.
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Single-axis tracking designs are currently the global industry standard for utility-scale solar PV

installations. However, as described in Data and Methods Section 3.2.3, fixed-tilt designs are

common in India, making up ∼90% of total cumulative solar PV capacity. Repeating the solar

PV generation synthesis with all solar installations using single-axis tracking designs increases

annual average capacity factors by 33.9%. The correlation between the daily all-India solar PV

generation timeseries with single-axis tracking designs and equivalent observations is ∼9.5%

lower than for the fixed-tilt designs specified previously (0.87 vs 0.91). The slight reduction

reflects the different diurnal generating profiles of the single-axis tracing design.

4.5.4 Solar PV spatial distribution

In the solar PV generation synthesis presented in the main results section, solar farm locations

represent the actual farm location. Here, the effect of generic assignment (GA) of solar farm

location is tested, whereby the synthesis is undertaken for all grid cells over the Indian land area.

Such an approach is common within comparable studies of solar energy generation potential

and performance. Comparisons are made to a reference case (RC), where all other technical

parameters (array orientation and tilt, temperature-efficiency dependence) are the same as in

the main generation synthesis. As such, differences in the solar energy generation and variability

characteristics result solely from the homogeneous spatial distribution.

The effects of the GA are of the same sign as for the case of wind (lower annual mean capacity

factor, r values and standard deviation in daily capacity factors), albeit of lower magnitude

(Table 4.10. This outcome reflects the much greater level of homogeneity in irradiance values

across the country than is the case for wind.

Region Mean annual capacity factor R value
Standard deviation in
daily capacity factor

India -1.5% -4.5% -2.7%
Northern -1.4% -3.7% -5.9%
Western -2.1% -6.7% -3.1%
Southern -1.7% -5.7% -4.0%

Table 4.10: Annual mean solar PV capacity factor, r value and stand deviation in daily mean
capacity factor by region for reference case (RC) and generic assignment (GA) distribution of
solar PV farms.
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4.6 Discussion

4.6.1 Summary of main findings

The implementation of the generation synthesis methodology progresses past work on the per-

formance of wind and solar PV in India in three main areas:

1. The compilation of a database of existing installed capacity for wind and utility-scale solar

PV in India.

2. The construction of a generation synthesis for wind and solar PV technologies, verified

against observed daily records from Indian electricity authorities.

3. The quantification of changes to the fleet of wind and solar PV generators, particularly

the effects of modernising installations to state-of-the-art tall-tower wind turbines and

single-axis tracking solar PV arrays.

The key findings that accompany the analysis of these methodological advancements are as

follows:

1. When using raw ERA5 variables, the generation synthesis for both wind and solar PV

provides high accuracy for national and sub-national regions. The correlation between

the synthesis and observed equivalents at the daily timescale for India is 0.97 for wind

and 0.92 for solar PV, comparable to the levels of correspondence achieved for national

aggregate generation syntheses in existing studies of other countries.

2. A mean bias is apparent in the wind generation synthesis based on raw ERA5 wind fields

that varies in sign and magnitude between regions of India. A modest overestimation

(∼5%) of generation is apparent in the two northern most states (Rajasthan and Gu-

jarat), whereas underestimation is apparent elsewhere (up to 20% in Tamil Nadu). Mean

bias correction with the alternative wind speed product (DTU-GWA) offers no improve-

ment in correlation, and increases the mean bias of the generation synthesis, with the

generally higher wind speeds causing an overestimation of generation in all regions. A

modest positive mean bias is apparent in the solar PV generation synthesis (∼5%). Mean

bias correction with the alternative irradiance product (GSA) reduces this mean bias, but

modest overestimation persists. For both the wind and solar PV synthesis, the multiplica-

tive bias correction method eliminated mean bias but produced a negligible effect on the
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accuracy of the syntheses (correlation with observations).

3. Generation syntheses that incorporate the multiplicative bias correction method and the

entire span of the reanalysis (1979-2021) enumerate the annual cycle of generation for

both technologies and variability throughout the year. A strong monsoon signature is

apparent for both technologies, with the summer monsoon circulation likely driving peak

wind generation and summer monsoon rainfall reducing solar PV generation through the

season.

4. The summer monsoon period (JJAS) shows greatest scale of interannual variability for

both technologies: the interannual standard deviation represents 8% of the mean (14%

for sub-regions) for wind and 3% of mean (6% for sub-regions) for solar PV.

5. Regional wind and solar PV generation anomalies in JJAS are generally significantly

correlated with all-India generation anomalies, suggesting that anomalous seasons are

widespread events affecting all regions simultaneously. Wind and solar PV generation

anomalies in JJAS for the whole country and the sub-regions are weakly correlated, sug-

gesting that different phenomena drive the majority of variation in JJAS between years

for wind and solar PV.

6. The generation synthesis is sensitive to technical parameters, with turbine technology

and single-axis tracking the most influential factors for wind and solar PV, respectively.

Increases in capacity factor of up to 82% for wind and 34% for solar PV can result from

changed assumptions in these technology characteristics.

The development of wind and solar PV generation syntheses for India of considerable accuracy

is encouraging. The extensive generation dataset has numerous possible uses. Power system

modelling studies could use generation synthesis as a plausible, verified data input rather than

characteristic or idealised generation timeseries that are commonly used (e.g., Lu et al., 2020).

Modifications to the generation synthesis (as was shown in the sensitivity test above) could

aid economic assessments of technology upgrades (such as repowering with larger turbines or

single-axis tracking arrays) or expanded roll-out of wind and solar PV technologies (e.g., into

offshore regions). Generation synthesis can improve the characterisation of generation variability

across timescales and help appraise design elements of power system flexibility and resilience

(such as the magnitude of the joint minima in winter capacity factors shown in Figure 4.8).
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This characterisation of variability could provide important insights into potential co-variability

between wind and solar, which show compensatory generation on diurnal (Gangopadhyay et al.,

2023) and seasonal timescales (Gulagi et al., 2022), with the phasing of the annual cycle of wind

and solar PV generation particularly advantageous in the South of India (Hunt and Bloomfield,

2023).

The effects of spatial aggregation with the generation syntheses can help better understand the

possible benefits of interconnection and the impact on the frequency and spatial distribution of

extreme generation events. The co-variability of generation with demand for electrical energy

was given cursory treatment in this chapter, highlighting potential generation surplus through

the summer months and deficit during winter. Other work has noted how the anti-phasing

between wind generation and air temperatures in India contributes to enhanced variability in

electricity demand net of wind generation on intra-seasonal timescales (Dunning et al., 2015).

Further study is required to investigate aspects of demand and variable supply co-variability,

with uncertainty in future demand profiles best treated via a scenario approach (e.g., Bloomfield

et al., 2021).

Finally, generation syntheses can provide a means of statistical downscaling of meteorological

forecasts to provide generation predictions. Furthermore, generation syntheses can be used to

elucidate the impacts of meteorological phenomena on weather-dependent supply, which can

help improve generation forecasts (e.g., Brayshaw et al., 2011; Beerli et al., 2017). These final

two aspects form the focus of the next two chapters.

4.6.2 Shortcomings and caveats to the analysis

Several limitations of the methodology must be taken into consideration when interpreting the

results presented in this chapter. Regarding the parameterisations of wind and solar PV tech-

nologies, several simplifying assumptions and fixed parameter values are used throughout the

generation synthesis. These parameter values likely vary between generators and change over

time (e.g., differing wake losses between wind farms, improving solar PV module efficiency, etc.).

However, the coarseness of the input data (e.g. the available data on generator location and

technology characteristics) and the inherent uncertainty of the observational data (e.g., uncer-

tainty over the inclusion of generation curtailment) limits the additional insights that further

refinement of the parametrisation may yield. The availability of higher quality in-situ obser-
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vation of raw meteorological variables and farm-level generation could permit a more detailed

investigation of the sources of bias and enable more elaborate wind and soar PV parametri-

sations. Candidate reanalysis products with higher spatial resolution include ERA5-Land and

the IMDAA reanalysis (Rani et al., 2021). However, both products lack the 100m wind speed

variable, so they would depend more on accurate vertical extrapolation of surface winds.

The constant multiplicative adjustment factor is likely imperfect as wind generation scales non-

linearly with wind speed, and biases are seasonally dependent. However, the multiplicative

adjustment method improves results compared to raw ERA5 and mean bias adjusted versions

and avoids over-fitting to a relatively short observational period (2017-2021). Furthermore, the

accuracy of the state-level generation syntheses is comparable to national-scale wind generation

syntheses in other regions (Bloomfield and Brayshaw, 2021; Gruber et al., 2022), which suggests

that the findings in this study are robust when regionally aggregated. Future analyses should

consider the extent to which the performance of the generation synthesis is a result of capturing

diurnal and annual cycles (e.g., greater/lesser irradiance during day/night or the summer/winter

season). Removing annual/diurnal cycles would reveal the extent to which the synthesis captures

weather variability. Additionally, further verification of the generation synthesis performance

should consider the extent to which differences between locations are captured to better quantify

spatial co-variability representation (e.g. Cannon et al., 2015).

4.6.3 Link to following results chapter

The generation syntheses presented in this chapter faithfully reproduce reported generation

from wind and solar PV generators across India. Expanding the generation syntheses to the 43-

year reanalysis dataset allows a statistical interpretation of technically and physically plausible

generation climatologies. The following chapter uses these multi-decadal generation datasets to

investigate the meteorological drivers of interannual generation variability within the summer

monsoon (JJAS) season. The sensitivities of the generation synthesis to technical parameters

identified here may have consequences for the rapidly expanding renewable energy fleet in India.

These potential impacts are addressed later in chapter 7.
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Drivers of interannual variability in wind and

solar PV generation in India

Wind and solar PV generation in India both exhibit interannual variability (IAV), with the

greatest magnitude of IAV apparent in the summer (JJAS) season for both technologies (see

Section 4.4.2). IAV in wind and solar PV generation within this season is possibly tied to the

Indian summer monsoon system, specifically changes in the prevailing monsoon westerlies in

the case of wind and Indian summer monsoon rainfall (ISMR) in the case of solar PV. While

there is extensive literature addressing drivers of subseasonal and interannual variability in the

Indian summer monsoon, there is relatively little research linking this variability to wind and

solar generation. Understanding the mechanisms and strength of associations between physical

drivers and wind and solar generation variability can aid in the development, calibration, and

verification of seasonal generation forecasts. In this chapter, the synthetic wind and solar PV

generation timeseries developed in Chapter 4 are used to identify and quantify drivers of IAV

in generation within the JJAS season. This assessment considers the impacts of intraseasonal

variability, Pacific and Indian ocean sea surface temperature (SST) anomalies and, aerosols in

the case of solar PV. Specifically, the chapter addresses the following research questions:

1. What are the main meteorological drivers of interannual variability in JJAS mean wind

and solar PV generation in India?

2. What are the contributions of intraseasonal modes of variability to seasonal generation

anomalies?

3. Are the strength of observed relationships between meteorological drivers of interannual

variability in JJAS mean wind and solar PV generation in India consistent across regional

subdivisions (i.e., Northern, Western, Southern and Eastern regions as defined in the

previous chapter)?
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5.1 Key drivers of variability within summer monsoon season

5.1.1 Monsoon circulation and lower-level winds

Figure 5.1a shows the JJAS 850hPa wind speed climatology and Figure 5.1b the interannual

standard deviation from ERA5 during 1979-2021. The 850hPa level is chosen to represent the

large-scale flow in the lower troposphere, with limited impact from surface orography over the

Indian subcontinent. The Indian summer monsoon circulation pattern is prominent, with the

greatest wind speeds corresponding with the position of the Somali Jet (Figure 5.1a). There is

pronounced interannual variability in 850hPa winds in the region, with the standard deviation

reaching ∼35% of the JJAS climatology over central India (Figure 5.1b). Figures 5.1c-f show

the correlation coefficient between JJAS wind capacity factor anomalies for a specific region

and 850hPa wind speeds for: c) all India, d) Western India, e) Southern India and f) Northern

India. The correlation maps are broadly similar for all India, Western and Southern regions,

with a positive correlation coefficient across the north Arabian sea, peninsular India and the

entire downstream segment spanning the Bay of Bengal through to the South China sea. For

the Northern region (Figure 5.1f), the area of positive correlation with 850hPa wind speed is

less widespread.

Interestingly, a negative correlation is seen between regional Indian wind generation anomalies

and wind speed in the core and southern flank of the Somali Jet, as well as across south-eastern

mainland China. The dipole pattern of the correlation between the Somali Jet region and

Northern/central India suggests a negative association between wind generation and ISMR, as

surplus ISMR seasons are associated with an enhanced Somali Jet, increased cross equatorial

flow, enhanced easterlies over Northern India, and enhanced Indian precipitation (Webster et

al., 1998). Table 5.1 summarises correlation coefficients of anomalous wind generation in JJAS

by region with ISMR and the dynamic index of ISM strength (following Wang and Fan (1999),

India NR WR SR

ISMR -0.36 -0.57 -0.41 -0.11
W-F ISMi -0.45 -0.65 -0.48 -0.16

Table 5.1: Interannual Pearson correlation coefficient between regional wind generation anoma-
lies in JJAS and measures of summer monsoon strength, namely ISMR and ISMi. Bold values
are significant at the 95% level.
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Figure 5.1: JJAS 850hPa wind speed climatology (1979-2021) (a); standard deviation in JJAS
850hPa mean wind speed (b); correlation between JJAS mean wind capacity factor anomalies
and 850hPa winds for (c) all-India, (d) Western region, (e) Southern region and (f) Northern
region. Stippling denotes regions significant at 95% confidence level.

termed here ISMi, see Section 3.3.1 for description). Modest negative correlations prevail,

suggesting that the ISM circulation strength is not responsible for the majority of interannual

wind generation variability in JJAS (N.B. Northern region represents minor share of total

wind capacity in India). The following sections further investigate other drivers of sources of

interannual wind generation variability in JJAS.

5.1.2 Summer monsoon rainfall and solar PV

Figure 5.2a shows climatological JJAS rainfall (technically ‘total precipitation’ but generally

referred to here as rainfall, as is the norm in ISM literature) and Figure 5.2b interannual stan-

dard deviation for the period 1979-2021. Figures 5.2c-g show correlation coefficients between

JJAS mean solar PV capacity factor anomalies per Indian sub-region and mean JJAS rainfall.
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Widespread anti-correlation between rainfall and solar PV capacity factor anomalies is seen for

all regions across the entire Indian subcontinent. Such a finding suggests that rain bearing con-

vective low-pressure systems during summer months reduce incident surface solar irradiance due

to the presence of optically thick deep convective clouds. Greater propensity and/or intensity

of low pressure systems over India therefore cause positive rainfall anomalies and negative solar

PV generation anomalies. Other work has shown a reduction in outgoing longwave radiation

(a proxy for cloud height) over India during periods of positive rainfall anomalies (Annamalai

and Slingo, 2001; Krishnamurthy and Shukla, 2008).

Another notable feature common to solar PV generation in all sub-regions is a region of positive

correlation spanning the equatorial Indian Ocean. This positive/negative dipole between the

equatorial Indian Ocean and Indian subcontinent likely reflects the movement of the Tropical

Convergence Zone (TCZ) between two favoured positions in JJAS that correspond with the

locations of rainfall maxima: either the equatorial Indian Ocean or the monsoon trough region,

traversing the Bay of Bengal westward through the Gangetic Valley (Mohan and Goswami,

2000; Gadgil, 2003).

Table 5.2 shows the correlation coefficient between JJAS solar PV generation in the sub-regions

and regionally averaged land rainfall and surface irradiance (or ‘surface solar radiation down-

wards’, SSRD, in ERA5) for the same region. It is notable that the correlation of solar PV

generation anomalies with rainfall are strong, positive, and almost as high as the direct corre-

lation with SSRD for all-India. This implies that variability in convection that drives rainfall

across the regions is responsible for most of the variation in SSRD and solar PV generation. The

lower correlation seen in the Eastern region likely results from the spatial mismatch between

anomalous rainfall (which is greatest in the east and northeast of the Eastern region) and solar

PV installations (which are concentrated in the western side of the Eastern region). Regionally

averaged JJAS solar PV generation anomalies are also highly correlated with the ISMi index

for monsoon intensity.

The correlations with meteorological drivers at a seasonal timescale are widespread and strong

for both wind and solar PV generation anomalies. The following section considers the extent to

which intraseasonal variability in these drivers causes seasonally persistent generation anoma-

lies. This issue is relevant to the potential for skilful prediction of wind and solar generation

anomalies.
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Figure 5.2: JJAS climatological rainfall (1979-2021) (a); interannual standard deviation in JJAS
rainfall (b); correlation between JJAS mean solar PV capacity factor anomalies and rainfall for
(c) all India, (d) Western region, (e) Southern region (f), Northern region and Eastern region
(g). Stippling denotes regions significant at 95% confidence level.

5.2 Intraseasonal variability in wind and solar PV generation

Intraseasonal variability is a key feature of the Indian summer monsoon. This variability has

been linked with the propensity and location of monsoonal low pressure systems, depressions,

and tropical cyclones over India (Ramamurthy, 1969; Murakami, 1976; Sikka, 1980), with

oscillations in the spatial and temporal coherence of low pressure systems found over two main

periods: the westward propagating 10–25-day mode and northward propagating 30–60-day mode
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(Moron et al., 2012). The associated changes in rainfall over India are described as alternating

active and break spells (Rajeevan et al., 2010).

The extent to which intraseasonal fluctuations determine summer rainfall totals is a subject

of ongoing discussion. The difficulty in conclusively determining the relative roles of intrasea-

sonal versus interannual variability stems in large part to the similar spatial pattern of rainfall

anomalies on the two timescales (Ferranti et al., 1997; Goswami and Mohan, 2001). Here, the

analysis seeks to quantify the impact of intraseasonal variability on wind and solar PV genera-

tion anomalies in JJAS by conducting a composite analysis of active and break events. Active

and break spells are defined as periods when the standardised index of daily rainfall anomalies

for the core monsoon region is above or below one standard deviation, respectively. The core

monsoon region (71.5◦–86.5◦E, 18.5◦–26.5◦N, Figure 5.3b) and standardised rainfall index is

defined following Rajeevan et al. (2010). A mean value of 12.0 active and 12.1 break days per

JJAS season result from the classification, considering a total 43 seasons in the period 1979-

2021. The standard deviation in the number of days is 7.0 and 8.3 for active and break days,

respectively. Thus, active and break days are relatively rare and vary considerably in frequency

between seasons.

The zones of rainfall deficit/surplus between break and active periods are roughly symmetrical

(Figures 5.3a and 5.3c), with opposite sign anomalies over central India and the Western Ghats

consistent with the core monsoon region used for the analysis (Rajeevan et al., 2010). Differences

in mean sea level pressure between active and break phases (Figures 5.3d and 5.3f) also show a

degree of spatial symmetry. The region of anomalous low pressure during active phases coincides

with the passage of low pressure systems (marked as green lines, from genesis to lysis, in

Figures 5.3d and 5.3f) while the lower frequency and lack of spatial organisation of low pressure

systems during break phases contributes to the positive MSLP anomaly (Krishnamurthy and

Ajayamohan, 2010). The concurrent changes in 100m wind speeds show spatial conformity and

India NR WR SR ER

Rainfall -0.86 -0.83 -0.82 -0.74 -0.70
SSRD 0.90 0.88 0.96 0.91 0.89
W-F ISMi -0.73 -0.64 -0.57 -0.71 -0.20

Table 5.2: Correlation between regional JJAS rainfall / SSRD anomalies / ISM-I and solar PV
generation anomalies in JJAS per region. Bold values are significant at the 95% level.
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Figure 5.3: Composites of meteorological fields during active and break monsoon periods (right-
hand and left-hand columns, respectively). JJAS climatology (1979-2021) shown for reference
(central column). Rainfall (panels a-c); mean sea level pressure (panels d-f) with green overlaid
lines in d and f signifying low pressure system tracks; 100m wind speeds (panels g-i); and SSRD
(panels j-l).

comparable magnitudes of opposite sign between active and break phases (Figures 5.3g and

5.3i). Active phases coincide with enhanced westerly flow over southern and central India, as

well as over the Bay of Bengal, and enhanced easterlies in the monsoon trough region, which

reduces the prevailing westerlies in the northwest (Annamalai and Sperber, 2005; Goswami and

Xavier, 2005; Dunning et al., 2015). Conversely, break periods correspond with a weakening of

the monsoonal westerly flow over all but the north and northwest extents of the country. SSRD

anomalies of similar magnitude and opposite sign between active and break events follow the

core monsoon zone and align with the region of greatest storm track density (Figures 5.3j and

5.3l). Accordingly, the changes in near-surface wind speed and SSRD between active and break

phases cause fluctuations in wind and solar PV generation.
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Frequency of events per season

Active Break
Wind India -0.21 0.11

Northern -0.38 0.34
Western -0.24 0.17
Southern -0.01 -0.11

Solar India -0.44 0.61
PV Northern -0.39 0.58

Western -0.39 0.62
Southern -0.39 0.48
Eastern -0.19 0.51

Table 5.3: Correlation (r values) between seasonal mean JJAS wind/solar PV capacity factor
anomalies and the (a) frequency of active/break events, (b) the event duration, and (c) the
mean rainfall across events per season. Values significant at the 95% level in bold.

To assess the impact of intraseasonal oscillations on interannual generation anomalies, the corre-

lation between seasonal wind and solar PV generation anomalies and event frequency is shown in

Table 5.3. Correlation between wind generation anomalies and event frequency are statistically

insignificant in all but the Northern region. These very weak relationships suggest interannual

variability in JJAS mean wind generation is not linked to intraseasonal modes of variability over

most of India (N.B. Southern and Western regions account for ∼88% of total installed wind

capacity in 2021).

For solar PV, the frequency of active conditions shows a modest negative relationship with

solar PV generation anomalies (r values in the range -0.31 to -0.44). For break conditions,

the strength of the positive associations is marginally stronger (r values in the range 0.48 to

0.70). These associations suggest intraseasonal variability are partly responsible for interannual

variability in solar PV generation in JJAS. The apparent relationship is akin to the known

connection between intraseasonal and interannual ISMR variability, whereby the probability of

occurrence of strong or weak monsoon years have been linked to the propensity of active and

break events, respectively (Goswami and Mohan, 2001; Krishnamurthy and Ajayamohan, 2010;

Webster et al., 1998; Saha et al., 2021).

Given the influence of intraseasonal variability on the ISMR, as well as the role of synoptic

variability, the predictability of ISMR (and, in turn, solar PV generation) is diminished, as

these fast-varying components are essentially chaotic on seasonal timescales (Palmer, 1994;

Goswami and Xavier, 2005; Goswami et al., 2006; Saha et al., 2016). The magnitude of the
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external component of interannual variability in ISMR (and solar PV generation) compared

to internal noise will govern predictability on seasonal timescales (Charney and Shukla, 1981).

Having considered the role of intraseasonal variability for seasonal anomalies, the chapter now

turns to interannual climate drivers and considers the extent to which these impinge upon the

ISM and wind and solar generation at seasonal timescales.

5.3 Interannual variability in JJAS mean wind generation

5.3.1 Covariance with Indian Ocean SSTs

The strength of the correlation between the Niño3.4 index and all-India wind generation anoma-

lies in JJAS is modest, with a correlation coefficient of 0.32. However, the covariance is much

stronger when considering SSTs in the India Ocean and Maritime Continent. The correlation

between the standardised anomaly of SSTs in the region 7◦-23◦N; 60◦-115◦E and all-India wind

generation anomalies in JJAS is -0.70.

SST anomalies in the Indian Ocean typically peak in late boreal winter or early spring, after

the peak of ENSO, and can persist into the following summer, by which point the Pacific

SST anomaly has dissipated (Tourre and White, 1995; Alexander et al., 2002). Figure 5.4a

demonstrates such behaviour by regressing SSTs in JJAS on the November, December, January

(NDJ) mean Niño3.4 index. The strong positive correlation in the Indian Ocean indicates a

lagged SST response and describes the typical progression of the Indian Ocean basin mode,

which is the main pattern of interannual SST variability in the region (Lau and Nath, 1996;

Klein et al., 1999). The co-variability of Indian wind generation anomalies with Indian Ocean

SST, which in turn is a lagged response to ENSO, motivates the investigation of concomitant

climate anomalies in surface fields.

Figure 5.4b shows the correlation coefficients between JJAS MLSP and rainfall with the Niño3.4

index in the preceding winter (NDJ). The strongest correlation of MSLP is found in a region

spanning the northwest Pacific, through southeast Asia into the Bay of Bengal. This MLSP

correlation pattern is associated with large-scale anomalous anticyclonic circulation within the

lower troposphere over the subtropical western North Pacific (WNP) following peak El Niño

conditions in boreal winter (Wang et al., 2003; Yang et al., 2007). There are simultaneous

increases in rainfall over the northern Indian Ocean and decreases over the WNP that are tied
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Figure 5.4: JJAS SST regressed on NDJ Niño3.4 index (a) and JJAS rainfall/MSLP regressed
on NDJ Niño3.4 index (b), with green contours showing strength of correlation with MSLP.

to the anomalous large-scale circulation (Figure 5.4b). The magnitude and westward extent

of the circulation in the WNP is recognised as the primary mode of interannual atmospheric

variability over the South and East Asian regions in JJAS (Wang et al., 2000; Huang et al.,

2012; Xie et al., 2016).

An index of the intensity of the WNP monsoon circulation, termed here WNPi (Wang and

Fan, 1999), shows a strong relationship with Indian wind generation variability, particularly in

Southern and Western India (Table 5.4). Furthermore, the standardised anomaly of JJAS WNP

rainfall (WNPR; averaged over 110◦-160◦E;10◦-20◦N - c.f. Figure 3.7b) is highly correlated

with wind generation anomalies (Table 5.4). During a weak WNP monsoon, the anomalous

easterlies on the southern flank of the WNP anticyclonic anomaly oppose the climatological

westerlies that originate in the region of the Somali Jet, and cross peninsula India and South

East Asia, before converging with the WNP monsoon system (see Figure 5.5a) for a schematic

diagram). During a strong WNP monsoon, anomalous westerlies on the southern flank of the

WNP cyclonic anomaly do not impede the climatological westerly flow of the ISM (Figure 5.5b).

These observed relationships between wind generation anomalies and the strength of the WNP

anomaly motivate further investigation into drivers of interannual variability in summer-time

circulation in the WNP region.
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(a) Negative WNPi (anomolous anticyclone) (b) Positive WNPi (anomolous cyclone)

Figure 5.5: Schematic representation of westerly flow over peninsular India negative (a) and
positive (b) WNPi

5.3.2 Modes of variability in the Western North Pacific (WNP)

The first and second EOFs of an EOF analysis of JJAS mean 850hPa wind anomalies over the

WNP (90◦E-180◦E; 0◦-40◦N) explain 37% and 12% of the total variance, respectively. Figures

5.6a and 5.6b show EOF1 and EOF2, respectively. A dominant feature in both modes is

anomalous anticyclonic circulation over the WNP, although the anomalous easterlies are more

prominent in EOF1 and the centre is shifted slightly to the north in EOF2.

These two leading modes of variability capture the majority of total interannual variability

in the WNP in JJAS. Both resulting principal components (PC1 and PC2) are significantly

correlated with the intensity of the WNP monsoon circulation, captured by the index WNPi

described previously (r = 0.60 and r = 0.73). A multiple linear regression model based on

PC1 and PC2 (-0.431×PC1 -0.820×PC2) can reconstruct the observed WNPi very well, with

a correlation coefficient between the observed and reconstructed WNPi of 0.93. Thus, the two

EOF modes are key source of predictability. The processes underpinning the first and second

modes are well documented within the literature (e.g., Yang et al., 2018) and relate to the

Gill-type response mechanism to anomalous tropical heating or cooling and the Indian Ocean

Wind generation anomalies

India NR WR SR
WNPR 0.68 0.33 0.56 0.71
WNPi 0.75 0.34 0.63 0.79

Table 5.4: Correlation between two indices of WNP monsoon (WNPR and WNPi - c.f. Fig-
ure 3.7b) and wind generation anomalies per region in JJAS. All values significant at 95% level
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capacitor mechanism, respectively.

The spatial pattern of detrended JJAS SST regressed onto PC1 is shown in Figure 5.6a and

shows cold anomalies over the central Pacific and warm anomalies around the Maritime Con-

tinent, reminiscent of the equatorial dipole pattern of developing (or persisting) La Nina con-

ditions. Rainfall and MSLP regressed on PC1 show similar patterns to canonical ENSO (not

shown) and PC1 itself is highly anticorrelated with the Nino3.4 index (r value -0.81). Thus, the

first mode is primarily a forced mode of ENSO. As described by Wang et al. (2013), anticyclonic

anomalies over the WNP may develop as a Gill-type Rossby response to cold anomalies in the

equatorial Central Pacific. Meanwhile, the warm anomalies strengthen the local meridional

circulation that ascends from the Maritime Continent and descends over the WNP to enhance

the anticyclonic anomaly (Sui et al., 2007; Chung et al., 2011).

The spatial pattern of detrended JJAS SST regressed onto PC2 is shown in Figure 5.6b and

shows positive correlations over northern Indian Ocean and the South China, negative correla-

tions across the eastern extent of the WNP, and positive correlations in the central and eastern

tropical Pacific. Warm anomalies in the Indian Ocean are known to be induced by El Niño

conditions that peak on boreal winter, and which can persist until the following summer (e.g.,

Klein et al., 1999; Schott et al., 2009).

The anomalously warm northern Indian Ocean generates an eastward propagating warm Kelvin

wave response in the atmosphere that energises the western North Pacific anomalous anticyclone

by imparting anticyclonic shear vorticity (Yang et al., 2007; Xie et al., 2009; Wu et al., 2009;

Chowdary et al., 2010; Kosaka et al., 2013; Xie et al., 2016). Additionally, the anomalous

easterlies to the south of the western North Pacific anomalous anticyclone counter mean south

westerly monsoon flow, which reduces surface evaporation and latent heat release in the northern

Indian Ocean (Du et al., 2009). Thus, EOF2 describes a coupled ocean–atmosphere mode

where the western North Pacific anomalous anticyclone and northern Indian Ocean operate in

a reinforcing feedback loop.

Further to the analysis of the spatial features of EOFs 1 and 2, the interannual variability in

both all-India JJAS wind generation and WNP rainfall anomalies can be well described by a

multiple linear regression model1 based on PC1 and PC2, with correlation coefficients of 0.73

and 0.94, respectively (see Figures 5.6a and 5.6b). Different loadings of the first and second

1IMSR (-0.429×PC1 -0.823×PC2); all-India wind (-0.0155×PC1 -0.00925×PC2)
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Figure 5.6: Standardised anomalies of all-India wind generation anomalies (a) and WNP rainfall
(b) in JJAS (as black lines). Reconstruction of anomalies in (a) and (b) based on multi-linear
regression (MLR) using PC1 and PC2 as predictor variables. First (c) and second (d) modes
of EOF analysis of 850 hPa winds over the WNP (vectors) and regression pattern of resulting
PC timeseries on detrended SSTs in JJAS (colour shading).

EOF modes clearly describe particular seasonal anomalies. For example, the most negative

wind generation anomaly in the entire 43-year record (2020) is a combination of the third and

second most negative values for PC1 and PC2, respectively. And the most negative PC2 value

in the entire 43-year record is offset by the fourth most positive PC1 value, resulting in a modest

negative generation anomaly in 2015. These various combinations result in the high correlation

seen in the multi linear regression shown in Figure 5.6c.
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5.3.3 Relevance of anomolous WNP circulation over South Asia

The previous discussion has evidenced interannual variability in the WNP as closely related

to JJAS wind generation anomalies and has offered physical reasoning for such behaviour in

response to anomalous SSTs in the Pacific and Indian oceans. To further evidence the impact

of the WNP of wind generation over the impact of the ISM circulation, a similar EOF analysis

of 850hPa winds in JJAS is conducted but with the domain constrained to South Asia. Figure

5.7a shows the correlation pattern of the first EOF mode, which explains 33% of total variance.

Positive loading of this first EOF mode corresponds to a strengthening of the western North

Pacific circulation and enhancement of downstream westerlies over the Indian peninsular that

converge with the southern flank of the anomalous cyclonic circulation. The correlation pattern

is akin to the regression of wind generation anomalies directly onto 850hPa winds (shown in

Figure 5.1c-f). Accordingly, the correlation between the first principal component (PC) time

series and wind generation anomalies is high (r value 0.78, see Figure 5.7c and Table 5.5).

Figure 5.7: Correlation patterns for (a) first and (b) second EOF modes for JJAS 850hPa wind
anomalies. Timeseries of first PC (black line in c) with JJAS wind capacity factor anomalies
(blue line in c) and second PC timeseries (black line in d) with JJAS ISMR anomalies (red line
in d).

The first PC timeseries is also highly correlated with regional wind generation anomalies, though

to a lesser extent for the Northern region (Table 5.5). The second PC timeseries shows no

significant association with regional wind generation anomalies, except for a negative association

in the Northern region. This corresponds to the finding in Section 5.2 that showed an association
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EOF India NR WR SR WR+SR

Wind 1st 0.78 0.36 0.65 0.80 0.79
2nd -0.19 -0.50 -0.24 0.20 -0.08

Solar PV 1st 0.16 0.10 0.09 0.29 0.27
2nd -0.79 -0.71 -0.80 0.64 -0.54

Table 5.5: Correlation between PC timeseries of first and second EOF modes and regional wind
and solar PV generation anomalies in JJAS. Bold values are significant at the 95% level.

between JJAS daily wind generation anomalies in the northern region and active/break phase of

the monsoon, which carry a similar north-south dipole structure to EOF2. Namely, the negative

loading of EOF2 enhances prevailing westerlies through the northern region (akin to the 100m

wind speed pattern during break phases, c.f. Figure 5.3). Given the strong negative association

between rainfall over peninsular India and solar PV generation anomalies (c.f. Figure 5.2), the

correlation found between the second PC time series and ISMR also translates to solar PV

generation (Table 5.5). Correlation between the PC time series of higher EOF modes and solar

PV generation anomalies is lower than 0.3 in all cases – i.e., insignificant at the 95% confidence

level. The third mode of an EOF decomposition shows a pattern akin to the IOD, However, the

PC time series of this mode shows no significant association with wind generation anomalies in

JJAS and was not consider further. A later section discusses the relevance of IOD for solar PV

generation anomalies in JJAS

In summary, the first and second PC timeseries of an EOF decomposition of 850hPa winds over

South Asia describe large variance fractions of the WNP and ISM summer monsoon circulations,

respectively. The first PC timeseries accounts for a large proportion of total variance in all-India

and regional wind generation anomalies in JJAS. This proportion exceeds 60% for the combined

generation anomaly for WR and SR, which together account for ∼88% of total installed wind

capacity in India (WR+SR).

The second PC timeseries accounts for a large proportion of the total variance in all-India

and regional solar PV generation anomalies in JJAS (and, additionally, wind generation in the

Northern region). The following sections consider drivers of seasonally persistent anomalies of

this regional monsoon system.
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5.4 Interannual variability in JJAS seasonal mean solar PV gen-

eration

5.4.1 Covariance with tropical Pacific SST

ENSO is a known driver of ISM rainfall on interannual timescales and ISM rainfall is strongly

related to surface solar radiation downwards (SSRD) and solar PV. Table 5.6 shows the corre-

lation coefficients between the regional solar PV generation/ISMR anomalies and the Niño3.4

index. The well-documented anti-correlation between ENSO phase and ISM rainfall is of simi-

lar magnitude but opposite sign to the correlation between solar PV generation anomalies and

Niño3.4 (r=-0.50 for ISMR-ENSO and r=0.49 for all-India solar PV-ENSO). This reflects the

anti-correlation between regional solar PV generation anomalies and rainfall shown in Figure

5.2.

The nature of the ISMR/solar PV generation relationship with tropical Pacific SST anomalies

is further assessed with a composite analysis based on ENSO state. Figure 5.8 elucidates this

ENSO impact with anomaly composites during 14 El Niño and 14 La Niña years (14 years

out of a total 43 years in the reanalysis correspond to terciles of the full sample). Rainfall

and total cloud cover (TCC) anomaly composites show clear spatial conformity in anomalies of

alike sign during El Niño (Figure 5.8b and 5.8e) and La Niña years (Figure 5.8c and 5.8f). This

pattern is consistent with the canonical atmospheric response to ENSO phasing (see Background

Literature Section 2.9.1), whereby anomalous SSTs in the eastern and central Pacific Ocean

modulate the position of the Walker circulation, which, during El Niño conditions, enhances

subsidence over South Asia and the maritime continent and suppresses convective activity across

the region (Webster et al., 1998).

Anomaly composites of SSRD during 14 El Niño (Figure 5.8h) and 14 La Niña years (Figure

5.8i) closely follow the spatial extent of rainfall and TCC anomalies, albeit of opposite sign.

Increased cloud cover during ISMR surplus seasons results in greater attenuation of incoming

solar radiation through a combination of absorption and scattering. SSRD is the sum of direct

and diffuse radiation components. The direct component refers to the solar radiation flux at the

earth’s surface without interactions with various constituents of the atmosphere. The diffuse

component refers to the solar radiation flux at the earth’s surface following a combination of
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Figure 5.8: Climatological JJAS rainfall (a), SSRD (d), total cloud cover (g) and diffuse ra-
diation fraction (j) (years 1979-2021). Anomaly composites for 14 ENSO warm/cold years
(upper/lower third of Niño3.4 index in period 1979-2021) for JJAS rainfall (b,c), SSRD (e,f),
total cloud cover (h,i) and diffuse radiation fraction (k,l).

scattering, reflection, and refraction. In a cloudless sky, the diffuse component represents a

minor fraction of SSRD, with a small amount of Raleigh scattering resulting from interactions

with molecules in the air (Kafka and Miller, 2019). In the presence of clouds and/or aerosols,

the diffuse component of total incident solar irradiance increases, becoming the majority share

in an entirely overcast sky. The scattering effect of cloud droplets and ice crystals is greater

than the absorption of incident solar radiation in optically thick clouds of significant depth,

such as those formed in convective systems (Matuszko, 2012). The scattering process directs

diffuse radiation in all directions, with the increase in diffuse downward flux being less than the

reduction in direct downward flux (Ban-Weiss and Collins, 2015). This effect is seen in Figure

5.8l, where both the magnitude of SSRD decreases and the diffuse fraction increases during La

Niña (or SSRD increase, diffuse fraction decreases during El Niño, as in Figure 5.8k).

Solar PV module efficiency reduces at higher temperatures and warm/cool ENSO years have

been shown to affect surface air temperature by up to +1/-1C in central India (Chowdary et

al., 2014). However, this modest temperature change would imply a negligible effect on module

efficiency between seasons of different ENSO state. Indeed, the interannual variability in surface

air temperature averaged over the Indian peninsular is sufficiently modest (standard deviation

of 0.6C) such that the temperature-efficiency relationship accounts for a negligible proportion
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of JJAS solar PV generation variability.

5.4.2 Covariance with Indian Ocean SST (Indian Ocean Dipole)

The Indian Ocean Dipole (IOD) is one of the dominant modes of SST variability in the basin on

interannual timescales and has been linked to ISMR variability (Saji et al., 1999; Ashok et al.,

2004). The IOD describes a zonal dipole in the tropical Indian Ocean SSTs, with a positive

phase associated with cooler SSTs in the Eastern India Ocean, off Sumatra, and warmer SSTs

in the western equatorial Indian Ocean. Although not all IOD events fall within the ISM season,

the tendency is for formation during the boreal summer and maturation in the following season

(Schott et al., 2009), thus simultaneous interaction with ISMR and solar PV is possible.

Whether IOD is an inherent mode of variability within the Indian Ocean or a forced response

to ENSO remains an active area of research, as does the relative influence of each mode of

tropical SST variability on ISMR (Cherchi et al., 2021). However, evidence from the literature

shows the IOD is a driver of ISMR variability on interannual timescales, via interaction with

the regional Hadley circulation (Behera and Ratnam, 2018). The IOD can also modulate the

effect of ENSO on ISMR when opposite phases coincide (as was the case in 1997 when a strong

El Niño and positive IOD resulted in modest surplus ISMR) (Slingo and Annamalai, 2000).

Table 5.6 shows correlation coefficients between the JJAS Dipole Mode Index (DMI; the differ-

ence in SST anomalies between (90°-110°E, 10°S-0°S) and (50°-70°E, 10°S-10°N); Saji, 1999) and

regional rainfall and solar PV generation anomalies. Weak positive correlations with DMI are

observed across all Indian sub-regions but they are not statistically significant. The atmospheric

corollary of the IOD mode, termed the Equatorial Indian Ocean Oscillation (EQUINOO), rep-

resents anomalous zonal surface flow arising from anomalous pressure gradient caused by dif-

ferences in the strength of convection between eastern and western regions of the Indian Ocean

(Gadgil, 2003, 2004).

EQUINOO is conventionally measured with a zonal wind index, termed EQWIN, defined as

the standardised anomaly of 10m zonal winds in the equatorial box 65°E–85°E, 4.5°N–1.5°S

(Gadgil et al., 2004). EQWIN shows stronger correlation with regional rainfall and solar PV

generation anomalies (Table 5.6). A linear combination of Niño3.4 and EQWIN indices, defined

with coefficients from a linear least-squares fit, describes a greater proportion of variability in

both rainfall and solar PV generation than the individual indices themselves (Surendran et al.,
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India NR WR SR ER

ISMR DMI 0.20 0.17 0.25 -0.04 0.22
EQWIN -0.36 -0.29 -0.38 -0.18 -0.30
Niño3.4 -0.50 -0.29 -0.38 -0.58 -0.07
EQWIN
+Niño3.4

0.76 0.44 0.68 0.66 0.34

Solar PV DMI 0.06 -0.16 -0.07 0.22 -0.10
generation EQWIN 0.26 0.33 0.30 0.10 0.15

Niño3.4 0.49 0.34 0.32 0.57 0.22
EQWIN
+Niño3.4

0.64 0.53 0.53 0.61 0.33

Table 5.6: Correlation between various tropical SST indices (DMI, EQWIN, Niño3.4, and linear
combination of EQWIN+Niño3.4) and ISMR/solar PV generation anomalies per region. un-
derlined values are significant at the 95% level.

2015).

Table 5.6 confirms ENSO as the largest contributor to total variance in JJAS solar PV generation

anomalies. Some notable patterns are observed amongst major outliers from the co-variability

observed between Niño3.4/EQWIN and solar PV generation anomalies (see Figure 5.9). Firstly,

two major positive outliers occur following multi-year La Niña conditions (1985 and 1999).

Second, the major negative generation anomalies in 1994 and 2013 coincide with seasons of

very high occurrence of ISM active events (the 3rd and 2nd most extreme active event years,

in terms of event frequency) possibly indicating a greater role of internal variability to surplus

seasonal mean rainfall in these years. Furthermore, the extreme IOD event that took place in

2016 (Lu et al., 2018) caused the most negative EQWIN index value in the period considered,

which would correspond with deficit ISMR and positive solar PV anomalies. However, the year

2016 also coincides with anomalously high cross-equatorial flow (the third highest in the period

considered2), which may have contributed to increased moisture transport towards the Indian

subcontinent and an offsetting of the negative IOD drying signal.

Interestingly, several occasions where rapid onset of strong La Niña follows El Niño sees the

coincidence of both large negative wind and solar PV generation anomalies (namely, 2020,

2010, 1983, 1988). These years mark the top 4 most negative generation anomalies for wind

and coincide with the 9th, 6th, 8th, 7th most negative solar PV generation anomalies. These

four low generation years mark the lowest decile for wind generation and lowest quintile for

2Measured as the standardised anomalies in 850hPa winds in the box S5◦-N5◦; E44◦-56◦.

117



5.5. Possible impacts of aerosols on IMSR and solar PV generation Chapter 5.

solar PV generation. In the previous chapters, weak positive association was identified between

all-India wind and solar PV generation anomalies in JJAS (r=0.27). This association reduces

further when excluding these five extreme low generation events from the 43 seasons considered

(r=0.10).

Figure 5.9: Timeseries of Niño3.4 index (in green, spanning 1979-2021) and all-India solar PV
generation anomalies for JJAS (red dots, grey shading denotes JJAS season).

5.5 Possible impacts of aerosols on IMSR and solar PV gener-

ation

This subsection considers to what extent various aerosol species could affect solar PV generation

and whether anomalous aerosol loading could impart a potentially predictable signal that could

be exploited in seasonal generation forecasts.

Heavy aerosol loading during the summer season over the Indian peninsular results from both

natural and anthropogenic emissions (Henriksson et al., 2011). The main anthropogenic sources

include black carbon and sulphate aerosols, originating mainly from biomass burning and coal-

fired power plants, respectively, while mineral dust from adjacent desert regions is the dominant

natural source (Prasad et al., 2006). Depending on the distribution of scattering and absorbing

aerosols, the combined direct negative radiative effects can both positively and negatively alter

the mean monsoon circulation. For example, scattering and absorbing aerosols can cool the

land surface and reduce the ocean–land thermal contrast, which serves to weaken the monsoon

circulation (e.g., Ramanathan et al., 2005). On the other hand, absorbing aerosols can also

enhance the wider monsoon circulation, with the ‘elevated heat pump’ hypothesis (e.g., Lau

et al., 2006) and Tibetan Plateau snow darkening amongst the most established theories (e.g.,
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Qian et al., 2011). Aerosols also impart indirect radiative effects through various interaction

with clouds, and inclusion of these indirect effects within global climate model simulations have

proven necessary to reproduce long-term negative rainfall trends in ISMR (e.g., Guo et al.,

2015). Given the strong associated between ISMR and solar PV capacity factors, it follows that

the various effects of aerosols upon ISMR could also impact upon solar PV yields.

However, even if a link between relevant aerosol parameters (e.g., aerosol optical depth) and

IMSR/solar PV generation can be established, the utility of this relationship for subsequent

use as a candidate predictor in a seasonal forecast of generation is limited. This is because

the SEAS5 forecast system includes no dynamical means of producing an aerosol-related signal

beyond prescribed climatological aerosol loading (Vitart et al., 2019). Specifically, the IFS

model cycle 43r1 used in SEAS5 employs stratospheric sulphate aerosol forcings derived from

CMIP5 and fixed climatological values of atmospheric composition, as well as cloud schemes

that are non-interactive with various aerosol species, and no prognostic treatment of aerosols

to permit dynamic, time-varying aerosol variables (Bozzo et al., 2017; Johnson et al., 2019).

More recent iterations of the SEAS5 system (post 45r1, including current operational version

of SEAS5) include an updated climatology of atmospheric composition (Flemming et al., 2017;

Haiden et al., 2018), which has improved the performance of retrospective long-range forecasts

(Bozzo et al., 2017; Flemming et al., 2022). And several studies have shown that both interactive

and prognostic treatment of aerosols can improve forecast performance metrics (for ECMWF

models (Morcrette et al., 2009; Benedetti and Vitart, 2018)) and for other forecasting systems

(Mulcahy et al., 2014; Freire et al., 2020), albeit with additional computational expense.

The stated direction of travel for ECMWF’s seamless prediction facility is to harmonise the

time-varying climatology of multiple aerosol species across ERA6, SEAS6 and other Numerical

weather prediction products, using the capabilities of the Copernicus Atmosphere Monitoring

Service (CAMS) (ECMWF, 2023). Together with a move amongst forecasting centres towards

Earth-system operational models with more detailed atmospheric chemistry modules (Buizza,

2019), it is conceivable that fully dynamic and interactive aerosols could become part of future

forecast products, including seasonal timescales. Could such updates to the SEAS5 system

impact upon forecast skill of ISMR and, relatedly, solar PV generation? This would depend

upon the magnitude of the impact of various aerosols and related processes on solar PV yield

compared to those of cloud cover, and whether SCF models can realistically reproduce relevant
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aerosol sources, sinks and atmospheric interactions.

Regarding the extent to which aerosol absorption and scattering attenuates total plane-of-array

irradiance, a small set of studies have quantified these direct effects of aerosols on solar PV

yield in India. Using radiation data from the Clouds and the Earth’s Radiant Energy System

(CERES) satellite product, both Ghosh et al. (2022) and Yang et al. (2022) suggest aerosols

account for a maximum of 20-30% of the total attenuation of incoming solar irradiance over

India. Analysis presented in Appendix A confirms this magnitude of reduction in total irradiance

at the surface over India (up to 25%, see Figure A.1a). Such reductions in total incoming solar

irradiance are captured in the climatological total aerosol optical depth values used in SEAS5

(and subsequent changes in irradiance, as parameterised in the model’s radiation scheme).

If an SCF were instead capable of capturing the time-varying evolution of aerosols and the

attenuating effects on irradiance (as postulated in the above discussion on next-generation

SCF systems), the anomalous aerosol load would determine the attenuating effect per season.

However, the analysis presented in Appendix A suggests that the standard deviation in aerosol

attenuating effects in JJAS is modest compared that that of clouds (standard deviation in

attenuating effect of ∼10% versus 25% averaged over peninsular India - Figure A.1b versus A1d),

so even the correct representation of aerosol anomalies in a SCF system would impart a relatively

small signal on solar PV generation. Furthermore, a sizeable fraction of anomalous aerosol

loading over India is anthropogenic in origin (namely, sulphate aerosols largely originating from

coal-fired power plants), and so arguably not predictable on seasonal timescales (with between

40-70% of total aerosol optical depth accounted for by sulphates over India - see Appendix

A Figure A.1e-f). If the in-situ attenuating effects of aerosol do not offer a major source of

predictability for SCF of solar PV, could the remote effects of natural aerosols across the region

instead be used? For example, mineral dust loading over the Arabian Sea and Indian peninsular

reaches a maximum in early boreal summer (May-July) due to higher wind speeds from the north

and east that transport large quantities of material from adjacent deserts (namely, Shamal winds

transporting from the Tigris-Euphrates River basin and Levar winds over Iran (Middleton, 1986;

Prospero et al., 2002)). ENSO drives anomalous rainfall during the main rainy season for these

deserts regions in boreal winter and is tied to soil moisture anomalies in the subsequent spring

months, which, in-turn, influences anomalous mineral dust production and aerosol loading over

the Arabian sea (Banerjee and Kumar, 2016; Huang et al., 2021). This source of predictability
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originating from remote mineral dust loading has been idealised modelling studies (Vinoj et al.,

2014; Jin et al., 2016) and assessments of short-range retrospective forecasts with the ECMWF

operational forecast model (Bozzo et al., 2017). However, the current generation of SCF systems

are not capable of exploiting such climate signals.

5.6 Discussion

5.6.1 Summary of main findings

In this second results chapter, the main drivers of interannual variability in wind and solar PV

generation in the JJAS season have been investigated. The analysis has progressed past work

concerned with the performance of wind and solar PV in India in three main areas, each of

which represent a contribution beyond that currently found in the academic or grey literature:

1. Quantified the linkages between large-scale meteorological conditions in JJAS and seasonal

anomalies of wind and solar PV generation, as derived from a multi-decadal synthetic

generation time series.

2. Quantified the role of intra seasonal variability in seasonal wind and solar PV generation

anomalies in JJAS.

3. Demonstrated the role of anomalous monsoon circulations in the western North Pacific

and Indian Ocean in modulating wind generation anomalies in JJAS.

4. Demonstrated the common associations between ISMR variability, solar PV generation

and teleconnections in the tropical Pacific and Indian Oceans.

The key findings that accompany the analysis of these contributions are as follows:

1. JJAS mean wind generation anomalies are strongly correlated with lower levels winds

across all regional subdivisions of India, with the associations extending upstream and

downstream across broad stretches of South Asia. A negative association between wind

speeds in the core Somali Jet region and wind generation anomalies is apparent across all

regions and is reflected in a negative association in measures of ISMR (c.f. Table 5.1).

2. JJAS mean solar PV generation anomalies per region are strongly correlated with rainfall

across corresponding regions (c.f. Figure 5.1 and Table 5.2). The strength of the associa-

tions are comparable to direct correlation with surface solar radiation downwards (SSRD),
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suggesting rainfall variability is responsible for the majority of observed variability in solar

PV generation.

3. Intra-seasonal variability accounts for a similar proportion of the total variation in JJAS

mean solar PV generation as for ISMR (c.f. Table 5.3). No association is found between

the frequency or magnitude of intra-seasonal variability and wind generation anomalies

in the JJAS season (apart from a in the Northern region - c.f. Table 5.3).

4. Mean wind generation anomalies in JJAS are weakly related to tropical Pacific SST

anomalies (r value of correlation with Niño3.4: 0.32), but an anomalous WNP monsoon

circulation (and associated WNP monsoon indices) are strongly tied to wind generation

anomalies in JJAS. Interannual variations in surface winds over peninsular India caused

by anomalous western North Pacific monsoon circulation describe a greater fraction of

total observed wind generation variability (¿60%) than the local ISM circulation (which

is only dominant in the Northern region) (c.f. Figure 5.7 and Table 5.5)

5. The regression patterns between solar PV generation anomalies in JJAS and SST/MLSP

show a clear ENSO signature, and the Niño3.4 index explains ∼25% of total variability

in solar PV generation anomalies (comparable to the observed strength of the ENSO-

ISMR relationship). Atmospheric variability associated with the IOD is less strongly

tied to rainfall anomalies in JJAS than ENSO (less than half explanatory power of the

ENSO-ISMR relationship). However, a degree of independence between ENSO and IOD

variability implies that a multi-linear regression using both variables achieves a larger

fraction of total variation explained in solar PV generation anomalies than each variable

separately (∼40% for all-India solar PV generation anomalies - c.f. Table 5.6).

6. Although imparting a measurable effect on anomalous solar PV generation, the effects

of aerosols are not considered a relevant source of predictability in SCF over India (c.f.

Section 5.5).

The previous results chapter speculated that dissimilar phenomena drive wind and solar PV

generation anomalies in JJAS due to weak corelation between the two sources across most

regions. The analysis presented here confirms this to be the case, with WNP and ISM circulation

anomalies implicated in wind and solar PV generation anomalies, respectively. This results

chapter has identified several candidate predictors that describe anomalous behaviour of regional
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monsoon circulations. The candidate predictors showing the strongest association are derived

from lower troposphere winds for the case of wind generation and, additionally, SSTs in the

case of solar PV (see Table 5.7). The prospects for developing seasonal generation forecasts

are good given the high prediction skill of regional monsoon circulations in both East (e.g., Li

et al., 2014; Zhang et al., 2020) and South Asia (e.g., Johnson et al., 2017; Chevuturi et al.,

2021). Before evaluating these prospects in the following chapter, the various shortcomings of

this chapter’s analysis are considered.

Wind Solar PV

WNPi (c.f. Table 5.4) ISMi (c.f. Table 5.2)

1st PC 850hPa winds over
South Asia (c.f. Table 5.5)

2nd PC 850hPa winds over
South Asia (c.f. Table 5.5)

EQWIN +Niño3.4 (c.f. Table 5.6)

Table 5.7: Candidate predictor variables of wind and solar PV generation anomalies in JJAS.

5.6.2 Shortcomings of the analysis and caveats

Of the various shortcomings of the analysis presented in this chapter, perhaps the greatest is the

development of empirical relationships between climate predictors and generation predictands

under the assumption of stationarity. Variable long-term trends in the meteorological fields

considered, the presence of low frequency modes of variability, and variations in the strength of

observed teleconnections all complicate the search for simple and robust statistical descriptions

of generation anomalies. For instance, long term trends in monsoon rainfall over South Asia are

evidenced in both observations (Bollasina et al., 2011) and future projections (Katzenberger et

al., 2021). And major modes of decadal-scale variability in ocean SSTs have been implicated in

the observed long-term variations of both ISM and East Asian monsoon systems. For instance,

through the 20th century, available evidence suggests that the Pacific Decadal Oscillation (PDO)

modulates the East Asian monsoon strength, including the monsoon circulation in the WNP

(Qian and Zhou, 2014), and that the ISM is negative correlated with PDO (Krishnan and

Sugi, 2003). Similar interactions between both monsoon systems and Atlantic multi-decadal

oscillation (AMO) on decadal timescales have been evidenced in coupled atmosphere-ocean

global general circulation model experiments (Lu et al., 2006; Luo et al., 2018). Low-frequency

modes within indices of both AMO and PDO have switched sign during the 1979-2021 period
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considered in the analysis, suggesting possible impacts are not accounted for in the above

analysis. Additionally, the well-documented variability in the ENSO-ISMR relationship, with a

weakening trend in the latter half of the 20th century (Kumar et al., 1999) and subsequent revival

(Yu et al., 2021), could impact upon the relevance of the identified climate predictors through

the period considered. Despite these various non stationarities, the empirical relationships

between climate predicators and generation anomalies shown in this chapter also show similar

strength when computed with the ERA5 back extension to 1940 (not shown), suggesting that

the variance explained is robust.

A second shortcoming of the analysis that the empirical relationships between climate predictors

and generation anomaly predictands explain only a fraction of the total interannual variability

in generation within the JJAS season (up to ∼60% for wind and ∼40% for solar PV). Intra

seasonal modes are known to limit predictability in both monsoon systems (e.g., Goswami et

al., 2006; Martin et al., 2019). However, others argue that additional sources of predictability

derived from slowly varying drivers increase the potential predictability of monsoon systems

(e.g., Asian summer monsoon, Wang et al. (2015b); ISM, Saha et al. (2019). For example,

additional candidates for ISMR predictability include aerosols (c.f. Section 5.5), Eurasian snow

cover (Fasullo, 2004), and the Atlantic Niño (Kucharski et al., 2007), although the explanatory

power of such variables is generally marginal compared to the effects of ENSO and IOD/IOB

(Johnson et al., 2017). Possible non-linear interactions in the climate system may also enhance

the explanatory power of known teleconnections (proposed relationships in this analysis all being

linear by construction). For example, the North Atlantic Oscillation (NAO) has been proposed

as a possible non-linear driver of Asian summer monsoon (Wu et al., 2009; Goswami et al.,

2022). However, the exact physical mechanisms at play in such monsoon teleconnections, their

robustness and explanatory power, as well as the fidelity of such representations in operational

SCFs all remain open topics of research.

The empirical relationships defined in this chapter to explain wind and solar PV generation

anomalies with observed climate predictors are based on the standing stock of wind and solar

PV capacity in 2021. The relevance of these predictors as the make-up of the installed fleet

changes in the coming years is not guaranteed, particularly as technology advancements and

new development zones (e.g., offshore wind) could impact upon generation profiles and modify

the fraction of variance explained.
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Despite these noted shortcomings, in the context of probabilistic seasonal forecasts, empirical

relationships that proved a partial description of total variance can still yield positive forecast

value. Using such relationships to establish baselines for forecast performance are important

for ongoing improvements to forecasting models and forecasting techniques. Furthermore, es-

tablishing limits to foresight and what cannot be known can also be valuable in an operational

power system management setting.

5.6.3 Link to next results chapter

The drivers of interannual variability in wind and solar PV generation in JJAS identified in

this chapter can serve as sources of predictability in season-ahead generation forecasts. These

drivers can also aid in the development of suitable empirical models to relate meteorological

anomalies to IAV in generation. Furthermore, the generation syntheses for wind and solar PV

generation provide a basis upon which to verify and calibrate seasonal generation forecasts.

Using the identified drivers as predictors of wind and solar PV generation, the next results

chapter evaluates the performance of season-ahead generation forecasts using meteorological

fields from an operational seasonal forecast system.
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Seasonal climate predictions of Indian wind

and solar energy generation

6.1 Rationale for investigation and research questions

Chapter 5 showed that interannual variations in the regional monsoon systems in the northwest

Pacific Ocean and Indian Ocean describe large fractions of the total interannual generation

variance in JJAS for wind (up to ∼60%) and solar PV (up to ∼40%), respectively. The analysis

further showed that the anomalous behaviour of the monsoon systems on seasonal time scales

is partly driven by modes of ocean variability that exhibit predictive skill in dynamical seasonal

forecast systems. In this chapter, the predictive skill of JJAS Indian wind and solar energy

generation is assessed using output variables of a seasonal forecast system. Specifically, hindcasts

from ECMWF System5 (SEAS5) for the JJAS summer season initialised on May 1st, spanning

1981-2021 (c.f. Section 3.4.1).

The generation forecasts rely on observed statistical relationships between climate predictor

variables/indices from ERA5 and regional wind and generation for the JJAS season. Seasonal

generation predictions are then derived using the same statistical model but with predictor

variables replaced with dynamical predictions from the SCF. Here, the investigation first quan-

tifies the strength of observed statistical relationships, addresses possible forecast under/over-

confidence in predictor variables, quantifies skill in generation forecasts, and finally considers

sensitivities of the generation forecasts to the methodological approach. This chapter addresses

the following research questions:

1. Can the identified predictor variables and bias/calibration techniques yield skilful and

reliable seasonal forecasts of wind and solar PV generation?

2. Are seasonal generation forecasts sensitive to the lead time and season length of the climate
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predictor variable?

6.2 Using large-scale meteorological drivers to estimate gener-

ation

This section details the statistical relationships between candidate large-scale predictors and

wind and solar PV energy generation that may be exploited when using the dynamical outputs

of the SCF. Section 3.4.2 describes the exact implementation of this so-call perfect-prognosis

approach to forecasting. The approach is favoured over any attempt to replicate the same

transformation methods used to construct the generation synthesis directly to SCF data outputs,

as differences between the reanalysis data product and the SCF outputs necessitate changes to

the generation synthesis methodology that degrade the synthesis performance.

Chapter 5 identified five candidate predictor variables (2 for wind and 3 for solar PV), based on

a physically-motivated observed relationships with large-scale climatic phenomena. To review,

these predictor variables are as follows:

1. Indices of WNP relevant to wind generation: the two indices of the WNP (Western North

Pacific) monsoon defined in the previous chapter are considered candidate predictors of

wind generation. Namely the first principal component timeseries of 850hPa zonal wind

in JJAS over the WNP region (0◦-36◦N; 30◦-130◦E) and the WNPi, which is defined as

the differences between zonal 850hPa winds in JJAS averaged over southern (7.5◦-17.5◦N;

100◦-140◦E) and northern (20◦-30◦N; 105◦-150◦E) regions of the WNP.

2. Indices of ISM relevant to solar PV generation: the three indices related to the ISM

(Indian summer monsoon) defined in the previous chapter are considered candidate pre-

dictors of solar PV generation. Firstly, the multi-linear regression model based on Niño3.4

and EQWIN indices; secondly, the PC2 timeseries of 850hPa horizontal winds in JJAS

over the WNP region (0-36N; 30-130E); and third the ISMi, defined as the difference be-

tween horizontal 850hPa winds in JJAS averaged over northern (20◦-30◦N; 60◦-80◦E) and

southern regions (0◦-15◦N; 35◦-65◦E) of the northern Indian Ocean.

Additional predictors of spatially averaged SSTs and MSLP were also considered for wind and

solar PV but are strongly cross correlated with the aforementioned predictor variables, and so,

for brevity, are not detailed here. Two additional meteorological fields were also investigated,
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with the area-average chosen to maximise the total variance in energy generation explained, as

well as considering the skill of SEAS5 for predicting the variable. These additional fields are as

follows:

1. 10m wind speeds: The variable is directly related to wind generation (as shown in Figure

5.1) and high correlation values (Table 6.1) are achieved for all-India, Western and South-

ern regions when considering large-scale area-weighted anomalies (12◦-32◦N, 68◦-89◦E).

Adjusting the exact region over which the area-averaged 10m wind speed is calculated can

modestly improve correlation values for regional subdivisions (up to 20% for Northern re-

gion, <5% for Western and Southern). However, the chosen area maximises the all-India

correlation.

2. Rainfall (total precipitation in SEAS5): The anticorrelation between rainfall solar PV

capacity factor anomalies was shown previously in Figure 5.2. For the all-India case,

the zone of strongest correlation is co-located with the region of greatest installed solar

PV capacity in Rajasthan, Gujarat, Madhya Pradesh, and Maharashtra (10◦-30◦N, 60◦-

80◦E), which together account for ∼50% of nation-wide solar PV capacity based on 2021

data. Modest increases in regional correlation values are achievable (<10%) tuning of the

area average. The correlation between all-India solar PV generation anomalies and area-

weighted rainfall in maximised using the box 10◦-30◦N, 60◦-80◦E and reaches 0.85. (N.B.

total cloud cover and surface solar radiation downwards (SSRD) are alternative candidates

for spatially averaged predictors. However, these achieves similar skill to rainfall and,

ultimately, a lower skill than large-scale predictors, as later shown).

Table 6.1 summarises the strength of all the observed relationships considering relevant area-

averaged meteorological anomaly fields and the predictor variables.

Wind Solar PV

All-India NR WR SR All-India NR WR SR ER
10m winds 0.90 0.47 0.83 0.80 ISMR -0.82 -0.74 -0.66 -0.75 -0.40
EOF1 850
hPa winds

0.78 0.36 0.65 0.80
Niño3.4 +
EQWIN

0.64 0.53 0.53 0.61 0.33

WNPi 0.74 0.33 0.62 0.78
2nd PC 850
hPa winds

-0.79 -0.71 -0.8 -0.64 -0.54

ISMi -0.73 -0.64 -0.57 -0.71 -0.20

Table 6.1: Correlation between wind/solar PV generation anomalies per region and candidate
climate predictors. Underlined values are significant at the 95% level.
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The correlations between the climatic predictors and JJAS wind generation anomalies in ERA5

show similar strengths and patterns of correlation, with the highest correlations in the South-

ern region and lowest in the Northern region (see Table 6.1). As all predictors describe similar

large-scale variability affecting the Indian subcontinent in JJAS, and in many cases are cross-

correlated, any combination of the predictors in a multi-linear regression shows little improve-

ment in correlation values. The lower correlation values in the Northern region, particularly

with the EOF1 and WNPi predictors, are because ISM circulation variability also has an influ-

ence in this region (c.f. Chapter 5, section 5.3.3), which is not entirely captured by the three

predictor variables (N.B. spatially average 10m winds cover much of peninsular India, and so

capture relatively larger share of WNP variability). Accordingly, measures of ISM circulation

variability also show significant correlation with wind generation anomalies in the Northern

region. For example, the second PC of 850hPa horizontal winds over South Asia has a higher

correlation with wind generation anomalies in the Northern region than the first PC timeseries

(r value of -0.50 versus 0.36). Therefore, combining predictors for wind and solar PV genera-

tion variability, which are themselves predictors of ISM circulation variability, can increase the

fraction of total variance in wind generation explained in the Northern region. A multilinear

regression model using the 1st and 2nd PC timeseries as predictors for the Northern region gives

an r value of 0.62, which is 25% higher than any individual predictor in that region.

For JJAS solar PV generation anomalies, rainfall shows the strongest relationship, with over

67% of the total variance explained for the all-India case. Other candidate predictor variables

that are less proximate than rainfall achieve moderately lower correlation values, although the

second PC timeseries of 850hPa horizontal winds in JJAS over South Asia still explains over

60% of total variance in all-India solar PV generation variability for all-India. Correlation

values for the Eastern region vary between predictors, likely reflecting the much lower levels

of installed solar capacity in this region (∼2.5% of total installed solar PV capacity in 2021

versus roughly 30% in other regions) that are geographically concentrated compared to the

other regions. Combinations of predictors offer little improvement over the best1 predictor per

region (e.g., combining ISMi and total cloud cover as predictors yields no appreciable increase

in correlation compared to total cloud cover alone).

1Combinations of predictors were systematically tested nCr = n!
r(n−1)!

. ‘Best’ predictor(s) refers to those which
demonstrate the highest fraction of variance explained. Alternative methods could be used for the selection of
the best subset of predictors, such as the Akaike Information Criterion, which retains the maximum information
in the statistical relationship without necessarily keeping all the predictors (James et al., 2013).
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The utility of candidate predictor variables in a seasonal forecasting context depends on both

the proportion of total generation variance accounted for and the forecast skill of the predictor

variables. Accordingly, a predictor variable with high explanatory power is of limited use if it is

poorly predicted. The following section evaluates the performance of each candidate predictor

variable in terms of the correlation between hindcast ensemble mean predictor variables and

generation variability.

6.3 Assessment of deterministic generation forecast skill

Table 6.2 shows the JJAS forecast skill (i.e., the association, measured with the correlation

coefficient and expressed as the r value) of the wind and solar PV predictor variables from Table

6.1 at predicting the synthetic wind and solar PV data from Chapter 4 using the one-month lead-

time SEAS5 forecasts. For wind, the correlation values are similar across all combinations of

predictor variables and regions. As was the case for the relationship between predictor variables

and regional wind generation anomalies in ERA5, the Northern region exhibits the lowest skill

and the Southern region the highest. The WNPi predictor achieves the highest skill for all-India

amongst predictors of wind generation (explaining ∼40% of observed wind generation variability

in JJAS)1. This high correlation reflects the large fraction of variance explained by the WNPi

(Table 6.1) and the forecast skill for the WNPi (r=0.78), which is comparable to prediction skill

found for other SCF systems (see Table 6.3).

Adjusting the spatial averaging for 10m winds to maximise the deterministic skill in each subre-

gion offers marginal improvements for the Northern region (+8% in skill (0.44)), and negligible

improvements to Western and Southern regions. Combining multiple predictors also offers little

improvement in deterministic skill scores for wind generation over the single best performing

Wind Solar PV

All-India NR WR SR All-India NR WR SR ER
10m wind 0.62 0.40 0.53 0.56 ISMR 0.33 0.20 0.18 0.39 0.11
EOF1 850
hPa winds

0.58 0.36 0.48 0.54
Niño3.4 +
EQWIN

0.40 0.33 0.31 0.43 0.36

WNPi 0.64 0.45 0.56 0.56
EOF2 850
hPa winds

-0.17 -0.17 -0.25 -0.08 0.22

ISMi -0.47 -0.33 -0.37 -0.52 -0.40

Table 6.2: Performance of wind and solar PV generation forecasts, based on five different
predictor variables each. Underlined values are significant at the 95% level.
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Seasonal forecast system / hindcast set Correlation coefficient Reference

1) ENSEMBLES multi model ensemble
(MME) JJA WNP index (1960–2005)

0.68 Li et al. (2012)

2) North American Multimodel (MME):
Climate Forecast System version 2 [CFSv2],
Canadian Coupled Climate Model version 3
[CanCM3] and Canadian Coupled Climate
Model version 4 [CanCM4]) (1982–2010)

MME: 0.84
CFS2: 0.71
CanCM3: 0.72
Can CM4: 0.77

Nie and Guo (2019)

3) GloSea5 / BCC CSM1.1m (1992-2011) 0.85/0.68 Wu et al. (2020)

4) GloSea5 (1993-2015) 0.84 Zhang et al. (2020)

Table 6.3: Deterministic hindcast skill for JJA and JJAS WNPi in 4 recent SCF assessments.

predictor per region. The only exception is found in the Northern region, where local 10m

winds (avergae over 18◦−35◦N, 64◦-80◦E) combined with the WNPi yields a ∼12% increase in

skill (r=0.50). As mentioned previously, both ISM and WNP monsoon circulation variability

are implicated in JJAS wind generation anomalies in this Northern region, so the addition of

the 10m winds as a predictor adds a predictable signal imparted from ISM variability, which is

otherwise only partially captured in the WNPi variable.

Forecast skill for solar PV is approximately half that for wind for the all-India case, with up

to ∼20% of total interannual variability in JJAS solar PV generation explained by the best

performing predictor (r = 0.47 for ISMi; Table 6.2). Forecast skill is generally highest in

Southern and Western regions, which coincides with the highest levels of installed capacity.

The EOF2 of 850hPa winds performs particularly poorly as a predictor of solar PV generation

anomalies across all regions. Because of the strong association between anomalous solar PV

generation and ISM rainfall on seasonal timescales, the forecast skill is comparable to that

documented for seasonal hindcast skill for ISMR. Table 6.4 summarises the deterministic forecast

skill obtained in other recent assessments of ISMR at a one-month lead time.

Only the Niño3.4 + EQWIN and IMSi predictors achieve correlation values significant at the

95% level across all regions, and the latter provides the highest skill in all regions. As the

Western and Southern regions constitute a greater share of the total nationwide solar PV

capacity (∼67%), the marginally higher skill of the ISMi predictor in these regions translates

into the highest skill for the all-India case. Combining the candidate predictor variables offers

little improvement in skill for the all-India case (<2% increase for all-India when using all 4

predictors). However, larger increases in skill are achievable by combining predictors at the
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Seasonal forecast system /
hindcast set

Correlation coefficient Reference

1) ENSEMBLES multi model
ensemble (MME) JJAS ISMR

0.45 Rajeevan et al. (2012b)

2) GloSea5-GC2 JJA ISMR 0.41 Johnson et al. (2017)

3) North American Multimodal
Ensemble (NMME) JJAS ISMR

0.47 Singh et al. (2019)

4) Climate Historical Forecast
Project (CHFP) MME JJA ISMR

0.60 Jain et al. (2019)

5) SEAS5 JJA ISMR 0.33 Chevuturi et al. (2021)

6) SEAS5 JJAS ISMR 0.47 Attada et al. (2022)

7) Monsoon Mission Coupled
Forecast System version 2

0.72 Jain et al. (2023))

Table 6.4: Deterministic hindcast skill for JJA and JJAS ISMR in seven recent SCF assessments.

regional level. Specifically, for the Northern and Eastern regions, increases of 20% and 8%,

respectively, are attainable using the two best performing predictors (Niño3.4 + EQWIN and

IMSi) in combination. Furthermore, the inclusion of either the Niño3.4 + EQWIN or ISMi

predictors with best performing wind generation predictor (WNPi) increases the fraction total

wind generation variance explained in the Northern region (r = 0.52; +14%).

The best performing predictors of JJAS wind and solar PV generation are summarised in Table

6.5. Across all regions for wind, the WNPi predictor provides the most skilful predictions.

Predictions for the Northern region can be moderately enhanced by 12-14% by adding either

10m winds, Niño3.4+EQWIN or ISMi. As the Northern region constitutes a minor share of

total installed wind capacity in India (∼15%), the all-India prediction skill is little changed using

multiple predictors. For solar PV, the ISMi predictor achieves the highest forecast skill across

all regions. Combining the second-best predictor for solar PV (Niño3.4+EQWIN) improves

forecast skill for the Northern and Eastern regions.

6.4 Sources of skill

To confirm that skill in the best performing predictors originates from their accurate repre-

sentation in the SCF model, the following demonstrates a comparison between observations

and the SCF ensemble mean. As shown in Section 5.3.3 anomalous surface winds over India
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and wind generation covary with anomalous circulation in the WNP sector. This covariance is

demonstrated in Figure 6.1a, which shows observed JJAS SST and MSLP regressed onto all-

India wind generation anomalies. The negative correlation with MSLP, which is greatest in the

WNP, describes the large-scale anomalous cyclonic circulation anomaly within the lower tro-

posphere is associated with an enhanced WNP monsoon. The SEAS5 ensemble mean captures

the main features of both the MSLP and SST anomalies (Figure 6.1b), albeit with a weaker

MSLP dipole between the Indian Ocean and WNP, as well as a weaker positive correlation with

SST in the equatorial east Pacific. Chapter 5 showed the first and second EOFs of 850 hPa

winds in the WNP region describe ENSO onset and a coupled ocean–atmosphere mode between

the WNP and northern Indian Ocean, respectively (c.f. Chapter 5 Section 5.3.2). This EOF

decomposition is shown for both ERA5 and the mean of SEAS5 ensemble members2 in Figure

6.1c-f. The patterns of SST regressed onto the PCs are remarkably similar between observations

and SEAS5, and the main features of the 850hPa circulation anomalies common, albeit with

northeastern shift in SEAS5.

In the case of solar PV, ENSO is the largest contributor to total variance in JJAS solar PV

generation anomalies (c.f. Chapter 5 Section 5.4.2). Indeed, the regression pattern between all-

India JJAS mean solar PV anomalies and SST/MSLP is reminiscent of ENSO (Figure 6.2a). The

pattern in SEAS5 is similar to ERA5 (Figure 6.2b), though with a slightly weaker correlation in

both fields. The mechanism through which ENSO affects ISMR, total cloud cover and surface

irradiance (SSRD) is discussed in the previous chapter (c.f. Section 5.4). Composites of both

total cloud cover and 850hPa wind anomalies during La Nina (Figures 6.2c and d) and El Niño

(Figures 6.2e and f) show comparable patterns and magnitudes in ERA5 and SEAS5, namely,

enhanced zonal wind shear between the core Somali Jet region and the monsoon trough during

2i.e., the EOF decomposition was conducted on each ensemble member before averaging over resulting modes.
Alternatively, ensemble members can be projected onto observed modes (i.e., the eigenvectors) and the resulting
PCs averaged to gauge similarity in spatiotemporal variability, which is high: 0.87 and 0.76 for PC1 and 2,
respectively.

Predictor(s) Region

WNPi Wind: India, WR, SR, ER
WNPi + ISMi Wind: NR
ISMi Solar PV: India, WR, SR
ISMi + Niño3.4/EQWIN Solar PV: NR, ER

Table 6.5: Climatic predictors achieving highest deterministic skill for wind/solar PV generation
in JJAS.
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Figure 6.1: SST/MSLP regressed on all-India wind generation anomalies for ERA5 (a) and
SEAS5 (b). First and second modes of EOF decomposition of 850hPa winds over Western
North Pacific for ERA5 (c and e) and SEAS5 (d and f). EOF decomposition conducted on each
ensemble member before averaging over all members.

La Nina, together with increased cloud cover.

6.5 Probabilistic verification of best performing model: wind

generation

Using the climatic predictors detailed in Table 6.5 and their relationships to synthetic India

wind capacity factors derived from ERA5 (Chapter 4), capacity factors for wind are estimated

for each ensemble member of the SEAS5 hindcasts. As described in Section 3.4.2, the process

of deriving and applying regression coefficients, as well as correcting ensemble spread with

the Climate Conserving Recalibration (CCR), were performed using cross-validation. As such,

ensemble mean correlation values are expected to be lower than the values listed in Table 6.2.

As hindcasts of predictor variables were generally found to be moderately overconfident over

South Asia (see Appendix B for analysis), the use of CCR is expected to inflate ensemble spread

and marginally improve probabilistic measure of forecast skill and forecast reliability.
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Figure 6.2: SST/MSLP regressed on all-India solar PV generation anomalies for ERA5 (a) and
SEAS5 (b). Composite anomalies of total cloud cover and 850hPa winds during La Nina (n=10)
and El Niño (n=9) (—JJAS Niño3.4 index—>0.5), for ERA5 (c and e) and SEAS5 (d and f).

The resulting spread in hindcasts of wind capacity factors are visualised per year in Figure

6.3 for the all-India case, with the absolute capacity factor values for each ensemble member

shown as yellow points (n=51 per year). A kernel density estimate is used to aid interpretation

of the spread in capacity factors given by ensemble members, with colouring of the resulting

probability distribution indicating terciles of the model climatology (i.e., terciles based on all

hindcast years). The percentage values show the fraction of total ensemble members in each

tercile. Black points denote the observed values.

The ensemble members capture the signal of strongly negative events very well. The lowest

tercile category is correctly predicted by >80% of ensemble members in four of the five lowest

generation years (1983, 1988, 1998, 2010, 2020, which are also the years with the five lowest

values of the predictor variable). As shown in the previous chapter, most of the large negative

anomalies coincide with rapid onset of La Nina following transition from El Niño conditions.

Significant forecast skill for wind generation is found in a range of skill metrics (Table 6.6) The

strength of the correlation between ensemble mean and observations remains high, despite the
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Figure 6.3: Kernel density estimate of JJAS wind capacity factors, coloured by tercile, based
on SEAS5 for JJAS hindcasts in the period 1981-2021, each initialised on May 1st. Forecast
probabilities per tercile category shown as overlaid text. Individual ensemble members as yellow
points and observed values as black points.

use of cross-validation when applying coefficients of the observed linear regression relationships.

Positive skill is generally found across forecast verification metrics considered when assessed

relative to a climatological benchmark. However, insignificant skill is more often found with

the discrete measures BSS and RPSS, both of which are more sensitive to ensemble size than

r values and continuous measures (CRPSS) (Weigel et al., 2007). The Relative Operating

Characteristic Skill Score (ROCSS) is also positive for each tercile category, indicating that

the number of hits (correct predictions) is greater than the number of false alarms (incorrectly

predicted non-occurrences) across a range of probability thresholds.

All skill metrics are to some extent sensitive to sample size, though this is particularly the

case for assessments of forecast reliability and sharpness. In the analysis presented here, the

aggregate impact variable (i.e. generation anomaly) provides just one case per hindcast year,

equivalent to a sample size at least two orders of magnitude smaller than a gridpoint assessment

where events could be pooled across all grid cells within a region. While acknowledging this

caveat, the attributes diagram shown in Figure 6.4 is suggestive of reliable forecasts that sample

a range of probabilities for at least the upper and lower tercile categories – i.e., the correct shape
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Wind (JJAS) 1 month lead

r value Brier (low./up./mid.) CRPSS RPSS ROCSS (low./up./mid.)
India 0.61 0.27 / 0.14/ 0.10 0.38 0.42 0.56 / 0.54 / 0.42
NR 0.47 0.08 / 0.25 / 0.01 0.35 0.45 0.62 / 0.38 / -0.07
WR 0.54 0.00 / 0.22 / 0.02 0.33 0.37 0.60 / 0.38 / 0.20
SR 0.53 0.21 / 0.00 / 0.03 0.32 0.35 0.45 / 0.56 / 0.20

Table 6.6: Forecast quality metrics for 1-month lead JJAS wind generation. Underlined (italic)
values are significant at the 95% (90%) level based on a bootstrap resampling method. All
values for association (r values) significant at the 95% level using two-sided Student’s t-test.

and generally with positive contributions to skill.

6.6 Probabilistic verification of best performing model: solar

PV generation

Using the climatic predictors detailed in Table 6.5 and their statistical relationship with solar

PV generation derived from ERA5, capacity factors for solar PV are obtained for each ensemble

member of the hindcast. These are shown in Figure 6.5 using the same visualisation scheme as

for the case of wind in Figure 6.4.

Positive forecast skill in the solar PV generation forecasts per region are found in many of

the skill metrics (Table 6.7), although the values are lower than for wind and only marginally

significant in several cases. This is particularly the case for Northern India, due to the weaker

relationship between solar PV generation anomalies in the region and the ISMi predictor vari-

able.

Solar PV (JJAS) 1-month lead

r value Brier (low./up./mid.) CRPSS RPSS ROCSS (low./up./mid.)
India 0.46 0.14 / 0.29 / 0.00 0.37 0.42 0.56 / 0.40 / 0.15
NR 0.26 0.03 / -0.02 / -0.05 0.28 0.28 0.22 / 0.22 / -0.12
WR 0.31 0.06 / 0.17 / -0.02 0.27 0.39 0.60 / 0.30 / 0.11
SR 0.58 0.19 / 0.13 / 0.00 0.43 0.39 0.42 / 0.53 / 0.08

Table 6.7: Forecast quality metrics for 1-month lead JJAS solar PV generation. Underlined
(italic) values are significant at the 95% (90%) level based on a bootstrap resampling method
or in the case of correlation coefficient a two-sided Student’s t-test.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.4: Attributes diagram for 1-month leadtime JJAS wind capacity factor forecasts based
on SEAS5 for JJAS hindcasts in the period 1981-2021. (a-c) shows the reliability diagram, (d-f)
shows the sharpness diagrams, and (g-i) shows the Relative Operative Characterises plots, all
for lower, upper and middle tercile categories, respectively (see section 3.4.3 for further details
of attributes diagram).

6.7 Sensitivity to forecast lead time and season length

6.7.1 Wind

In the literature, seasonal prediction of ISM is often assessed over a shorter JJA period, corre-

sponding to the months of peak monsoon rainfall over the core monsoon region. It is expected

that the shorter effective lead time of the forecasts (by excluding September) would marginally

increase skill, while the effect of averaging across a shorter season would increase the role of

noise relative to a seasonally persisting signal, thus reducing skill. Repeating the skill assess-

ment for JJA at a 1-month lead for wind generation shows very similar levels of skill to JJAS

(Table 6.8). When JJA wind generation forecasts are assessed again at a 0-month lead (i.e.,

forecasts initialised June 1st), skill is moderately increased across all metrics for all regions
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Figure 6.5: Kernel density estimate of JJAS solar PV capacity factors, coloured by tercile, based
on SEAS5 hindcasts of the period 1981-2021, each initialised on May 1st. Forecast probabilities
per tercile category shown as overlaid text. Individual ensemble members as yellow points and
observed values as black points.

(Table 6.9). The shorter lead time has the effect of increasing the relative role of predictive

signal that remains following initialisation of the SCFs over that of noise.

Wind (JJA) 1-month lead

r value Brier (low./up./mid.) CRPSS RPSS ROCSS (low./up./mid.)
India 0.57 0.22 / 0.16 / 0.07 0.36 0.44 0.61 / 0.51 / 0.35
NR 0.42 0.06 / 0.22 / 0.00 0.33 0.43 0.54 / 0.38 / -0.12
WR 0.50 0.00 / 0.20 / 0.02 0.30 0.35 0.58 / 0.25 / 0.19
SR 0.48 0.08 / 0.00 / 0.06 0.30 0.31 0.33 / 0.40 / 0.31

Table 6.8: Forecast skill metrics for 1-month lead-time JJA wind generation. Underlined (italic)
values are significant at the 95% (90%) level based on a bootstrap resampling method. All
correlation coefficients are significant at the 95% level using two-sided Student’s t-test.

6.7.2 Solar PV

Repeating the skill assessment with the shorter JJA season at a 1-month lead for solar PV

generation shows very similar levels of skill across all metrics for all regions, except in the

South, where the skill reduction is greater (Table 6.10). In the case of JJA solar PV generation

forecasts assessed at a 0-month lead, skill is increased across all regions except in the South,
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Wind (JJA) 0-month lead

r value Brier (low./up./mid.) CRPSS RPSS ROCSS (low./up./mid.)
India 0.67 0.16 / 0.27 / 0.02 0.40 0.42 0.69 / 0.47 / 0.37
NR 0.46 0.19 / 0.31 / 0.08 0.36 0.50 0.59 / 0.53 / 0.44
WR 0.62 0.09 / 0.25 / 0.02 0.35 0.39 0.63 / 0.43 / 0.31
SR 0.50 0.05 / 0.00 / 0.06 0.29 0.32 0.32 / 0.47 / 0.27

Table 6.9: Forecast skill metrics for 0-month lead JJA wind generation. Underlined (italic)
values are significant at the 95% (90%) level based on a bootstrap resampling method. All
correlation coefficients are significant at the 95% level using two-sided Student’s t-test.

relative to the 1-month lead JJAS forecasts (Table 6.11). The reduction in skill for the Southern

region for the shorter season is likely caused by the greater contribution of September rains to

seasonal mean values in this area (Mishra et al., 2012).

Solar PV (JJA) 1-month lead

r value Brier (low./up./mid.) CRPSS RPSS ROCSS (low./up./mid.)
India 0.33 0.09 /0.26 / 0.02 0.35 0.36 0.61 /0.37 / 0.15
NR 0.27 0.02 / -0.02 / -0.03 0.29 0.27 0.23 / 0.23 / -0.02
WR 0.34 0.10 / 0.19 / -0.05 0.27 0.38 0.58 / 0.30 / 0.10
SR 0.35 0.10 / 0.06 / 0.02 0.36 0.39 0.23 / 0.33 / 0.03

Table 6.10: Forecast skill metrics for 1-month lead JJA solar PV generation. Underlined (italic)
values are significant at the 95% (90%) level based on a bootstrap resampling method or in the
case of correlation coefficients a two-sided Student’s t-test.

Solar PV (JJA) 0-month lead

r value Brier (low./up./mid.) CRPSS RPSS ROCSS (low./up./mid.)
India 0.58 0.15 / 0.30 / 0.00 0.38 0.42 0.72 / 0.52 / 0.10
NR 0.36 0.01 /0.05 / 0.00 0.36 0.31 0.35 / 0.15 /-0.02
WR 0.55 0.18 / 0.33 / 0.01 0.36 0.43 0.70 / 0.50 / 0.20
SR 0.50 0.15 / 0.15 / 0.04 0.40 0.41 0.46 / 0.42 / 0.20

Table 6.11: Forecast skill metrics for 0-month lead JJA solar PV generation. Underlined (italic)
values are significant at the 95% (90%) level based on a bootstrap resampling method or in the
case of correlation coefficients a two-sided Student’s t-test.

6.8 Multi model forecasts

Generally, multi-model predictions improve forecast skill through a combination of error com-

pensation and a greater signal-to-noise ratio (i.e., more ensemble members, Hagedorn et al.

(2005) and DelSole et al. (2014). Table 6.12 details seven additional SCF systems considered

here as part of a cursory assessment of multi-model predictions. Hindcasts for additional models
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System name Centre/country
Hindcast
ensemble
size

References

GloSea-6 (MetO-S602) Met Office, UK 28 https://www.metoffice.gov.uk
Meteo-France System 8 Meteo-France, France 25 https://www.umr-cnrm.fr
CMCC SPSv3.5 Italy 40 Gualdi et al. (2020)
DWD-GCFS2.1 Offenbach, Germany 30 Fröhlich et al. (2021)
CFS2 NCEP NOAA, USA 24 Saha et al. (2014)
JMA-MRI-CPS3 MRI-JMA, Japan 10 Hirahara et al. (2023)
GEM5-NEMO
(ECCC-S3)

Canada 10 Lin et al. (2020)

Table 6.12: Seven SCF systems in C3S used for assessment of MME forecasts.

All-India wind All-India solar PV

# System name r value CRPSS r value CRPSS
1 ECMWF System5 0.54 0.32 0.46 0.30
2 GloSea-6 (MetO-S602) 0.43 0.23 0.36 0.22
3 Meteo-France System 8 0.39 0.25 0.32 0.23
4 CMCC SPSv3.5 0.54 0.26 0.45 0.21
5 DWD-GCFS2.1 0.37 0.27 0.33 0.25
6 CFS2 NCEP 0.42 0.21 0.34 0.20
7 JMA-MRI-CPS3 0.21 0.19 0.19 0.16
8 GEM5-NEMO (ECCC-S3) 0.49 0.28 0.35 0.21

MME: 1+2+3+4+5+6+7+8 0.51 0.30 0.42 0.28
MME: 1+4+6+8 0.57 0.33 0.47 0.31

Table 6.13: Deterministic (r value) and probabilistic (CRPSS) verification measures for all-India
wind and solar PV generation forecasts constructed using individual and combined C3S models.

come from the Copernicus Climate Data Store (C3S) and span the common period 1993-2016.

All models show positive skill in forecasting wind and solar PV generation, though none outper-

form SEAS5 (Table 6.13). The deterministic skill of the 51-member SEAS5 over this period is

0.54 and 0.46 for all-India wind and solar PV capacity factors, respectively. Adding in hindcasts

from the additional 7 SCF systems (167 ensemble members) yields deterministic skill of 0.51

and 0.42 for all-India wind and solar PV capacity factors, respectively. A combination of the

four best-performing models to make multi-model generation wind and solar PV forecasts offers

modest improvements in measures of deterministic and probabilistic skill (∼5% increase, Table

6.13).

Several factors likely contribute to this modest change in forecast performance. Firstly, deter-

ministic forecast skill asymptotes with relatively few ensemble members (shown in Appendix

B) and suggests modest increases in the signal-to-noise ratio for candidate predictors with an
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increased ensemble size through multi-model combination. Second, the SEA5 hindcasts are only

marginally overconfident (quantified in Appendix B) and so limited change to ensemble spread

would result from adding models (Weigel et al., 2009). Furthermore, the Climate Conserving

Recalibration (CCR) calibration technique used to produce the generation forecasts adjusts

ensemble spread and improves probabilistic measures of forecast skill. The probability space

is likely already well-sampled and is relatively free of systematic and conditional bias with the

CCR-adjusted 51-member System5 model.

6.9 Predictability of extreme generation daily frequency

Periods of extreme high or low generation can be problematic for the electricity network. Where

wind or solar PV generation (plus other energy sources) exceeds either demand or the local

network capacity, there is a risk of curtailment – i.e., unused generation that can entail costly

compensation of farm operators. When wind or solar PV generation falls short of anticipated

output, other sources/sinks of energy must be called into action to cover the short fall, typically

entailing extra costs. Therefore, any indication ahead of time as to the expected frequency of

extreme high or low generation events may hold value for the planning and management of the

electricity system.

Here, the upper and lower 10th percentiles of daily generation during JJAS over all sample

years are used to define extreme generation days. Figure 6.6 shows a correlation between the

number of high generation days in JJAS and the JJAS mean generation anomaly for both

technologies (r=0.60 for wind and r=0.75 for solar PV). Similarly, the number of low generation

days is anticorrelated with the JJAS seasonal mean anomaly (r=-0.76 for wind and r=-0.85 for

solar PV). The relationships hold over a range of percentile thresholds (Table 6.14) and suggest

that the skilful prediction of the seasonal mean generation anomalies shown in the previous

section could be translated into skill in the frequency of extreme generation anomalies within

the season.

Table 6.15 shows the correlation between the frequency of high and low generation days per

season and both the ERA5 and SEAS5 derived JJAS values calculated using the optimum

climatic predictor variables described in Section 6.3. The correlations are stronger for the

low generation events than for the high generation events, with approximately one third of

interannual variability in low generation days captured by SEAS5 for both wind and solar.
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Figure 6.6: Relationship between standardised anomalies of JJAS mean generation for wind
(upper panels) and solar (lower panels) and number of extreme generation days in JJAS (<10th
percentile or >90th percentile).

Wind Solar PV

Less than Greater than Less than Greater than
0.05 -0.68 0.95 0.49 0.05 -0.72 0.95 0.67
0.10 -0.85 0.90 0.60 0.10 -0.76 0.90 0.75
0.15 -0.85 0.85 0.76 0.15 -0.82 0.85 0.86
0.20 -0.89 0.80 0.80 0.20 -0.89 0.80 0.90
0.25 -0.91 0.75 0.86 0.25 -0.92 0.75 0.94

Table 6.14: Observed relationship between JJAS mean generation anomalies and number of
days equalling or exceeding percentiles of daily generation in JJAS for wind and solar PV.
Strength of association assessed with Spearman rank correlation coefficient.

The skill of seasonal predictions for extreme generation days is further evidenced with contin-

gency tables for predicting above the median number of extreme days per season, for both wind

(Table 6.16) and solar PV (Table 6.17). The rate of hits and correct rejections exceed misses

and false alarms by more than double for both wind and solar PV (hit rate: 74% and 70% wind

and solar PV, respectively; false alarm rate: 32% and 29% wind and solar PV, respectively).

The skill of the discrete day count forecast assessed with the Heidke skill score are positive at

significant at the 90% level (0.42 for wind and 0.41 for solar PV), considering a random sampling
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>=90th percentile <=10th percentile

Obs. JJAS
mean generation
anomaly

Ensemble mean
JJAS mean
generation anomaly

Obs. JJAS mean
generation anomaly

Ensemble mean
JJAS mean
generation anomaly

Wind 0.47 0.30 -0.60 -0.55
Solar PV 0.57 0.17 -0.72 -0.59

Table 6.15: Relationship between observed and forecast predictor variables (as described in
Section 6.3) for JJAS mean generation anomalies and number of days equalling or exceeding
percentiles of daily generation in JJAS for wind and solar PV. Values represent Spearman rank
correlation coefficient.

and replacement strategy repeated 1000 times.

Observed

Yes No
Forecast Yes 14 (hits) 7 (false alarm)

No 5 (misses) 15 (correct rejection)

Table 6.16: Contingency table for number of days equalling or below lower 10th percentile of
daily wind generation for all-India per JJAS season, using 1-month lead System5 forecasts.

Observed

Yes No
Forecast Yes 14 (hits) 6 (false alarm)

No 6 (misses) 15 (correct rejection)

Table 6.17: Contingency table for number of days equalling or below lower 10th percentile of
daily solar PV generation for all-India per JJAS season, using 1-month lead System5 forecasts.

6.10 Discussion

6.10.1 Summary of main findings

This chapter has investigated the performance of the ECMWF System5 seasonal climate fore-

casts for yielding wind and solar PV capacity factor predictions for the summer season in India.

The investigation presented in this chapter progresses past energy-meteorology work in India

in two main areas, each of which represents a contribution beyond that currently found in the

academic or grey literature:

1. Demonstrated the use of a generation syntheses for wind and solar PV in India and regional

subdivisions to calibrate seasonal climate forecasts of wind and solar PV generation based
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on large-scale climate predictor variables.

2. Demonstrated significant skill for seasonal climate forecasts of wind and solar PV capacity

factors in India and regional subdivisions.

The key findings that accompany these advances are:

1. The approximately linear relationships between candidate predictor variables and observed

generation offer opportunities for the statistical downscaling of forecasts. The ensemble

mean skill was similar across three predictor variables trialled for wind (40% of interannual

variability explained), with the WNPi showing the highest skill. Modest improvements

in the Northern India region were achieved when using either local 10m winds or ISM

predictor indices (e.g. Niño3.4+EQWIN) as additional predictors. Deterministic skill

was marginally better amongst the regional-scale predictor variables trialled for solar PV

(Niño3.4+EQWIN and ISMi) when compared to spatially averaged rainfall (also for total

cloud cover and SSRD – not shown), with up to 20% of interannual variability explained.

2. The source of predictive skill in SEAS5 stems from the representation of the main modes

of variability over South Asia. Namely, the intensity of the anticyclonic system in the

WNP and its relationship with both tropical Pacific and Indian Ocean SST anomalies,

which is relevant to wind generation. Additionally, the accurate representation of ENSO

and associated changes in rainfall and cloud cover over peninsular India, which is relevant

to solar PV. Measures of skill are positive and significant for both wind and solar PV,

though marginal and rarely significant for the regional Indian subdivisions for solar PV.

3. Forecast performance for 1-month lead time predictions of JJA capacity factors is similar

to JJAS for wind and marginally lower for solar PV (due to lower skill in the Southern

region). The skill of 0-month lead-time predictions of JJA capacity factors are notably

higher than JJAS wind predictions, though only marginally so for solar PV (again due

to lower skill in the Southern region, where September rains likely contribute to forecast

skill).

4. Seven additional SCF systems were considered in a cursory assessment of multi-model

generation predictions. All models show positive skill in forecasting wind and solar PV

generation, though none outperform SEAS5. A combination of the four best-performing

models to make multi-model generation wind and solar PV forecasts offers modest im-
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provements in measures of deterministic and probabilistic skill.

5. The association between seasonal mean capacity factor anomalies and the frequency of

extreme daily anomalies within the season can be used as a source of skilful prediction for

extreme day counts on seasonal timescales.

In summary, the verification of seasonal generation forecasts for wind and solar PV presented

in this chapter shows positive and significant skill. This skill is particularly apparent for wind,

where the forecasts for all-India wind capacity factors at one-month lead significantly outperform

climatological forecasts, with the ensemble mean explaining over 40% of interannual variability.

This level of deterministic skill is comparable to other 1-month lead predictions of energy sector

impact variables, including boreal winter winds/NAO in Europe (Clark et al., 2017); boreal

winter gas demand in the United Kingdom (Thornton et al., 2019), boreal summer electricity

demand in Italy (De Felice et al., 2015); and wind speeds over high wind resource zones of

China (Bett et al., 2017; Lockwood et al., 2019). By contrast, the forecast performance for

solar PV capacity factors is modest, although all-India deterministic skill at one-month lead is

comparable to ISMR prediction skill (c.f. Table 6.4).

6.10.2 Shortcomings of the analysis and possible extensions

Several limitations of the methodology are highlighted here, which should be considered when

interpreting the chapter results. Firstly, the verification is performed with the ERA5 based

generation synthesis, which only approximates actual observed generation. Despite the overall

good performance of the generation synthesis shown in Chapter 4, further refinement of the

dataset (e.g., additional calibration as more historical generation data becomes available) and

further robustness testing (e.g., use of different reanalysis datasets) would add to the overall

confidence in the verification and prediction quality.

Second, the verification is conditioned on the 41-year hindcast period considered. Non-stationarities

in the climate system may influence the strength of teleconnections relevant to the prediction

skill shown here. For example, the variable strength of the ENSO-ISMR relationship is well-

documented (discussed in Chapter 5), with a weakening since the 1980s and subsequent revival

in the past decade. Non-stationarity in seasonal forecast skill has been shown in other stud-

ies. For example, deterministic skill for JJAS ISMR in the ENSEMBLEs project was 0.09 for

1989–2005 and 0.63 for 1960 to 1988 (Wang et al., 2015b), 2015). Splitting the hindcast period
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into early (1981-2001) and late (2002-2021) periods suggests higher skill in the late period for

both wind (wind full: 0.61, early: 0.48, late: 0.67) and solar PV (solar full: 0.46, early: 0.33;

late: 0.56). For wind, interdecadal changes in the strength of the teleconnection with ENSO are

a recognised feature of the East Asian monsoon (and WNP anticyclone, (Wang et al., 2008)),

with the increased frequency of central Pacific ENSO since the early 1990s stimulating larger

and north-westward shifted anomalous cyclonic circulation over the WNP during central Pacific

El Niño, and vice versa for La Niña (WU and Wang, 2019). The increase in forecast skill for

wind in the later hindcast period appears to come from a stronger predictor-predictand rela-

tionship (i.e., relationship between WNPi and wind generation), as the strength of the SEAS5

and observed WNPi predictors (i.e., predicted and observed WNPi) remains similar. In the

case of solar PV, the greater forecast skill in the later period could be related to the observed

recovery in the relationship between ENSO–ISMR around the year 2000 (Yu et al., 2021; Yang

and Huang, 2021). Enhanced ISMR prediction skill for the post-2000 period has been evidenced

elsewhere (Pillai et al., 2022), with a suggestion of a greater signal from tropical Atlantic SST

anomalies that act independently of ENSO after 2000 (Kucharski et al., 2009).

Further sub-setting of the hindcast based on climate state may elucidate sensitivities and con-

tingencies affecting predictability. Numerous so-called ‘windows of opportunity’, within which

forecast skill is enhanced, have been demonstrated on S2S timescales (Mariotti et al., 2020). For

example, the deterministic forecast skill of the WNP circulation in boreal summer has shown

a phase-dependency with ENSO, with notably poor skill during La Niña decaying phases (Li

et al., 2014).

The analysis in this chapter identified extreme low generation seasons for wind following rapid

transitions between ENSO phases, specifically in the four seasons where JJAS wind capacity fac-

tors fall below one at least standard deviation (2020, 2010, 1983, 1988). The physical reasoning

for the large negative anomalies following peak boreal winter El Niño conditions transitioning

to La Nina by the following summer is described in Chapter 5. Namely, a large anticyclonic

anomaly that counters the WNP climatological monsoon circulation and downstream climato-

logical westerlies over India. These seasonal anomalies in the low-level winds are well-captured

in SEAS5. Analysis of the ERA5 back-extension for 1940-1978 showed that the relationship be-

tween anomalous WNP monsoon circulation and synthetic wind generation anomalies in JJAS

also exists over this period (r=0.50). Although formal assessment of skill over a small subset
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of ENSO transition events would not be statistically robust, these three lines of evidence (i.e.,

1. theoretical reasoning, 2. SCF system representation, and 3. observational record) build

confidence in the forecasted negative anomalies. Similar reasoning is used by Dunstone et al.

(2023) to argue that the pronounced summer La Niña in 2022 opened a window of opportunity

to forecast extreme rainfall over Pakistan with enhanced confidence.

The analysis presented in this chapter uses simple linear or multi-linear regression relationships

between predictands and predictors to downscale seasonal forecasts. Section 3.4.2 alluded to an-

other downscaling methodology, namely, the direct association between forecast ensemble mean

and impact variables (Bett et al., 2022). However, applying this method of direct relationship

between SCF model output and generation anomalies gives virtually identical verification results

(not shown). A range of other statistical downscaling techniques is also relevant to seasonal

forecasting, e.g., circulation analogues (Lorenz, 1969; Zorita and Von Storch, 1999) weather

generators (Wilby and Wigley, 1997), and various machine learning methods (e.g., Vandal et

al. (2017) and Sachindra et al. (2018). The non-linear and asymmetric behaviour of WNP to

ENSO states may favour non-linear empirical models. However, such an approach risks overfit-

ting across a short hindcast period. Furthermore, different bias correction/calibration methods

exist for seasonal forecasts (e.g., quantile mapping, ratio of predictable components). Although

verification measures across these various bias correction/calibration methods have shown only

marginal differences in other regions of South Asia (e.g., Manzanas et al. (2019).

Following convention, the validation in this chapter uses a climatological benchmark forecast.

Further assessment against persistence and statistical forecasts would provide further insights

into the value added from dynamical forecasts. Although the statistical-empirical forecasts of

ISMR issued by the Indian Meteorological Department have been shown to provide poor forecast

skill at one-month lead times (∼0.34, Madolli et al. (2022)), numerous other statistical models

of ISMR demonstrate enhanced forecast skill based on precursor climate conditions (e.g., Wang

et al. (2015a) and Di Capua et al. (2019). Robust statistical relationships may help identify

relevant candidate predictors in improved statistical-dynamical forecasts. Of relevance to the

case of wind, Wang et al. (2013) used physically motivated predictors across three ocean basins

to describe the anomalous WNP monsoon circulation and associated tropical cyclone activity.

Despite the promising indications of forecast skill demonstrated in this chapter, a substan-

tial fraction of interannual variability remains unexplained for both wind and solar PV. The
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potential utility of seasonal forecasts by practitioners therefore needs to consider the specific

forecast application and, of relevance to the energy industry, the economic costs/benefits of

forecast-contingent decisions and outcomes. Where such an enumeration is possible, forecast

value depends on the relative balance between the costs of taking pre-emptive action to mitigate

a weather event versus the potential un-mitigated loss should the event occur. The simplest

and most used version of this ‘application-specific’ verification is the ‘static cost-loss’ decision-

analytic model (Murphy, 1977; Richardson, 2000). However, such an idealised model is typically

difficult to apply to real-world decision contexts, where numerous contextual factors may be-

come equally relevant and shape the relative pros and cons of forecast-influence contingencies

(e.g. prior experience, the level of comprehension of the forecast information and the availability

of contingency measures, etc.). In such a practical situation, granular contextual knowledge of

the forecast user and decision setting may offer more instructive insights into forecast value,

such as the ability to ‘hedge’ or revisit forecast-influenced decisions.

6.10.3 Link to next results chapter

So far, the research in this thesis has been based on a generation climatology representing the

standing stock of wind and solar PV installed capacity in India in 2021. However, a significant

increase in the scale of wind and solar PV capacity is required to meet India’s interim na-

tional climate targets, including a four-fold increase in wind energy generation and a seven-fold

increase in solar PV energy generation over current levels by 2032 (PIB, 2023a). Numerous de-

carbonisation pathway studies identify even greater capacity levels necessary to meet lower-end

global temperature targets (e.g. the UNFCCC 1.5C Paris Agreement target).

These levels of capacity increase will entail a different geographical configuration of wind and

solar PV fleets from today. Furthermore, changes in wind turbine and PV array technologies are

also relevant on these timescales. The flowing chapter (7) considers the sensitivity of generation

climatology to plausible technology changes for the coming decades. Specifically, changes to the

location, capacity volume, and technology characteristics of a larger wind and solar PV fleet.
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Repowered and expanded scenario analysis

7.1 Rationale for investigation and research questions

So far, the investigation has considered meteorological drivers of JJAS anomalies in synthetic

generation timeseries for wind and solar PV generation and prospects for seasonal prediction.

However, these generation syntheses represent the existing wind and solar PV installations at

the end of 2021. Substantial increases in wind and solar PV installed capacity are expected in

the coming decades for India to achieve its national climate targets to reach net zero carbon

emissions by 2070. Achieving the ambitious renewable energy targets for India will require sig-

nificant expansion of greenfield wind and solar farms. However, there is also a role for upgrading

the technical characteristics of turbines at existing farms which has received less attention. This

final results chapter investigates the plausible changes to capacity factors and energy yield con-

sequent of alternative wind fleet parametrisations and demonstrates the associated changes in

the variability characteristic of generation.

Due to data availability1, the analysis in this chapter focuses on wind technologies. This focus

is particularly relevant to India’s ambitious net-zero climate goals, which include plans for a

four-fold increase in current levels of wind energy generation by the early 2030s. Meeting these

targets will be challenging as many of the best sites already host wind farms (MNRE, 2022c),

which generally comprise older, technically obsolete turbine designs that attain low capacity

factors2 by international standards (Das, Binit, 2023). Although India holds significant wind

potential in absolute terms (official government estimate of 695GW3), the resources are modest

compared with many other regions globally, with 98% of 100m wind speeds over land rated

1Database of solar farms lacks detailed plant-level technical characteristics and commissioning dates. And
location-specific data on planned solar PV expansion is limited (36% of 2030 target versus 73% for wind).

2Averaged over the last five years, wind capacity factors across India rank lowest out of countries with more
than 1GW installed capacity, considering onshore wind capacity and generation data (IRENA, 2023a) for 36
countries with >1GW capacity.

3Capacity potential estimate evaluated at 120m hub height (NWEI, 2019).
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below class III4 (<7.5m/s annual mean). Making optimal use of available wind resources is of

critical importance for India’s climate goals.

Motivated by this context, the chapter considers the following research questions:

1. How would a changing wind fleet in India affect capacity factors from the respective

technologies?

2. How would a changing wind fleet in India affect generation from the respective technolo-

gies?

3. How would a changing wind and solar PV fleet in India affect the variability characteristics

of generation for the respective technologies?

7.2 Scenarios for plausible changes in wind fleet

As described in Section 3.5, two scenarios are considered to assess changes in the Indian wind

fleet. The first is a wind repowering scenario that substitutes all turbines at wind farms in India

with a single turbine model that achieves the highest annual average capacity factor. Section

4.5.1 in chapter 4 identified this turbine model by systematically rerunning the generation

synthesis with a large database of turbine models (and associated power curves and hub heights).

The Suzlon S144 3.15MW 160m turbine was the highest-yielding model, with a capacity factor

of 0.35. This turbine saw commercial application in India in the autumn of 2023 when 16 S144

turbines were purchased for a project in Gujarat (Suzlon, 2023). As a point of comparison,

Figure 7.1 provides a breakdown of the current wind fleet in India based on the data compiled

in the database of Indian wind farms (Section 3.2.2). Peak installation rates in the mid-2010s

mainly comprised turbines less than 2MW rated capacity. By 2021, ∼80% of the wind fleet

comprised turbines with less than 2MW rated capacity, with a capacity-weighted hub height

across the whole fleet less than 80m. Therefore, the Suzlon S144 would represent a considerable

upgrade in fleet average hub height and rated capacity. This upgrade is denoted the ‘repowering’

scenario.

In real-world settings, the choice of turbine model is specific to the wind climate of a candidate

site, with energy yield and financial performance as the decisive optimisation variables, sub-

ject to additional planning and logistical constraints (González et al., 2014). Here, the aim is

4Based on area of Indian mainland (excluding Himalayan range), data from www.globalwindatlas.info
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Figure 7.1: (a) Historical wind installations per year within three brackets of turbine rating;
(b) proportion of total cumulative capacity within each bracket of turbine rating; (c) average
(capacity weighted) hub height within each bracket of turbine rating, per year.

to demonstrate the relative energy performance between existing turbines and a characteristic

state-of-the-art turbine rather than perform any such optimisation. However, the chosen re-

powering turbine is representative of a modern onshore wind turbine suitable for class III winds

(annual mean wind speeds of 7.5 to 8.5m/s, i.e., the wind climate of India) and is indicative of

wider industry trends towards lower specific power turbines with taller towers (specific power

refers to KW of rated power per unit swept area). Figure 7.2 charts specific power as a function

of hub height, with shading denoting the first year of market availability. As indicated in Figure

7.2, the Suzlon 3.15MW 160m turbine fits the wider trend.

The second scenario considered in the chapter is a near-term expansion scenario for wind. As

described in Section 3.5, the additional 41.4GW wind generation considers capacity installed in

the years 2022 and 2023, as well as planned and under construction listed in official government

data, due for completion by 2025/26. The expansion scenario comprises 24.4GW onshore and

17.3GW offshore capacity, which makes for a total all-India wind capacity of 80.9GW. Figure

7.3 signifies the geographical locations of the existing wind installations and new installations
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Figure 7.2: Specific power as a function of hub height, shaded by year of market availability of
the turbine model (considering 805 turbine models). Theoretical capacity density as secondary
y-axis, assuming regular 8Dx4D turbine spacing. Data source: wind turbine technical charac-
teristic database from ‘thewindpower.net’.

envisaged in the ‘planned expansion’ scenario.

Figure 7.3: Location of existing wind farms in 2021 (40GW, blue points) and additional wind
farms considered in the ‘expanded scenario’ (42GW, purple points). Points display spatial
information only, with size differentiation for visual clarity.

7.3 Plausible changes in wind capacity factors

Compared to the reference generation synthesis that represents the locations and turbine models

of Indian wind farms at the end of 2021, assigning the best-performing turbine (Suzlon S144

3.15MW, 160m hub height) to all wind farms (i.e., ‘full repowering’) achieves an 82% increase
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in capacity factors for all-India (Table 7.1). The greatest regional increase in capacity factors

is in Maharashtra (+94%) and Tamil Nadu (+96%). These states have the oldest average age

wind turbines, with ∼50% of total wind capacity installed before the year 2010.

The ‘planned expansion’ scenario achieves a 111% increase in capacity factors for all-India

(Table 7.1). Considering just the onshore segment of the ‘planned expansion’ scenario, the

increase in capacity factors for all-India is 82% - i.e., the same as under repowering. The higher

average windspeeds in the offshore development zones contribute to a higher capacity factor

of the combined fleet (onshore + offshore). At the same time, additional onshore wind farms

appear to occupy regions with comparable wind resources, at least when aggregated at the

state level. Prospects for the performance of a large Indian offshore wind fleet warrant further

detailed study5, though the capacity factors estimated here for the ∼17GW in planned offshore

wind expansion zones (0.47-0.60) is within the region found in other studies (Nagababu et al.,

2017; FOWIND, 2018; Patel et al., 2022).

Annual mean capacity factor

Region Reference
Full
repowering

Planned
expansion

Fractional change
full repowering

Fractional change planned
expansion

All-India (onshore) 0.19 0.35 0.35 0.82 0.82
Northern region 0.18 0.35 0.33 0.92 0.83
Western region 0.21 0.37 0.37 0.76 0.76
Southern region 0.17 0.31 0.33 0.83 0.94
Gujarat 0.26 0.43 0.39 0.67 0.5
Madhya Pradesh 0.18 0.33 0.33 0.86 0.83
Maharashtra 0.15 0.29 0.34 0.94 1.27
Andhra Pradesh 0.21 0.35 0.35 0.66 0.67
Tamil Nadu 0.14 0.27 0.28 0.96 1
Karnataka 0.2 0.37 0.37 0.84 0.85
Gujarat offshore n.a. n.a. 0.47 n.a. n.a.
Tamil Nadu offshore n.a. n.a. 0.6 n.a. n.a.
All-India (onshore +
offshore)

n.a. n.a. 0.4 n.a. 1.11

Table 7.1: Annual mean wind capacity factor by region for wind farm locations and turbine
models at the end of 2021 (reference) and highest capacity factor turbine assigned to all farms
(full repowering).

7.4 Plausible changes in wind generation

As described in Section 3.5.3, attaining greater levels of wind generation with repowered or

expanded wind farms depends not only on the use of state-of-the-art technologies (i.e., turbines

5With no offshore capacity currently in operation in India, no relevant historical generation data is available
for verification/calibration.
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that achieve the greatest capacity factor) but also on the density at which new wind turbines

can be installed. The empirical assessment of capacity density for existing farms in India

yielded 2.5MW/km2. The assumption that existing values of capacity density will persist under

repowering and expansion implies that increases in generation scale one-to-one with increases

in capacity factor.

Using the information on commissioning year and turbine rated power contained within the

database of Indian wind farms, it is possible to calculate generation increases with a progressively

repowered wind fleet. Figures 7.4a and 7.4b show capacity factors and relative changes in wind

generation, respectively, when progressively repowering in order of wind turbine vintage year

(i.e. repowering the oldest turbines first). By comparison, Figures 7.4c and 7.4d show capacity

factors and relative changes in wind generation, respectively, when progressively repowering in

order of turbine rating (i.e., repowering the smallest turbines first). By the year 2032, 43% of

the entire fleet would be of retirement age (>20 years), entailing a 45% increase in generation

from repowering of this outmoded segment of total capacity (Figure 7.4b). Early retirement and

repowering of existing farms is an option to gain further generation increases and would result

in a ∼65% rise for all-India when replacing turbines under 2MW, the threshold considered in

India’s current repowering policy (Figure 7.4d).

The maximum increases in generation attainable under repowering (i.e., full replacement of the

existing fleet) are detailed in Table 7.2, rendering the 82% increase for the ∼40GW all-India

onshore capacity. Table 7.2 also details the levels of generation that result from the ‘planned

expansion’ scenario – i.e., a more than four-fold increase to 282TWh/year for the 80.9GW

all-India on and offshore capacity. This large increase in generation is a combination of the

doubling of capacity factors and the doubling of installed capacity compared to the wind fleet

in 2021.

7.4.1 Implications for decarbonisation

7.4.2 The National Electricity Plan of India

The previous sections have shown that both scenarios significantly increase capacity factors

and generation. Comparisons with national renewables targets and capacity levels from decar-

bonisation scenarios demonstrate the significance of these increases. The National Electricity

Plan of India (NEP) proposes 121GW of wind capacity and 258TWh/year generation by 2032
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Figure 7.4: Capacity factor (a, c) and relative change in generation (b, d) per region considering
repowering by wind farm vintage year (a,b) and turbine rated power (c,d) (i.e., repowering all
wind farms that comprise turbines of a given vintage year / turbine rated capacity). Relative
change in generation refers to the ratio of repowered generation and generation resulting from
existing wind farm distribution in the year 2021.

(Table 7.3). The implicit capacity factors for these NEP figures are 0.24 fleetwide and 0.27 for

additional capacity, assuming present-day installations remain operational. The ‘repowering’

Annual mean generation (TWh)

Region Reference Full repowering Planned expansion
All-India (onshore) 64 117 194
Northern region 7 14 16
Western region 31 53 87
Southern region 27 51 93
Gujarat 21 30 51
Madhya Pradesh 4 8 13
Maharashtra 7 15 23
Andhra Pradesh 8 13 14
Tamil Nadu 11 22 28
Karnataka 9 17 53
Gujarat offshore n.a. n.a. 35
Tamil Nadu offshore n.a. n.a. 46
All-India (onshore + offshore) n.a. n.a. 282

Table 7.2: Wind generation per year attained under two scenarios considered.
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scenario significantly exceeds these implicit capacity factors (∼0.35). A fully repowered fleet

achieves 45% of the 2032 NEP generation target (comparing generation values in Tables 7.2 and

7.3). The capacity factors in the ‘expanded’ scenario are higher still (∼0.40) and fulfil 109% of

the 2032 NEP wind generation requirement when coupled with the greater installed capacity

(80.9GW).

On the one hand, this magnitude of generation increase for wind is ambitious, as it requires

total renovation of the existing wind fleet. However, Figure 7.4 shows that most of the increase

in capacity factors from repowering is attained by replacing turbines under 2MW rated power,

which is the threshold considered in India’s current repowering policy. Thus, an Indian wind

fleet that tracks planned expansion and implements the current repowering policy by the year

2025/26 can feasibly exceed the 2032 generation targets.

Capacity (GW) Generation (TWh) Capacity factor

2021 40 63 0.18
2032 121 258 0.24
Additional 82 195 0.27

Table 7.3: National wind capacity, generation and fleetwide capacity factors in 2032 as envisaged
in Indian NEP (PIB, 2023), for all wind capacity and additional wind capacity installed since
2021 (assuming present day installations remain operational).

7.4.3 IPCC AR6 decarbonisation pathways

The wind capacity and generation volumes detailed in India’s NEP offer just one estimate of

the levels of expansion required from the wind sector that are consistent with wider net-zero

ambitions. Other works provide numerous estimates of wind capacity and generation volumes

in India for the coming decades. The national-scale decarbonisation pathways considered by

Working Group III (WGIII) of the Intergovernmental Panel on Climate Change (IPCC) Sixth

Assessment Report (AR6) offer a large number of technology pathways for wind in India (n=823,

see Figure 7.5a), which form part of a globally integrated evaluation of end-of-century global

warming outcomes.

All 388 of the IPCC decarbonisation pathways for India that are consistent with end-of-21st-

century warming outcomes of less than 2◦C envisage a massive scale-up of wind energy. The

median value of wind generation from this subset (n=388) of IPCC scenarios is 512TWh/year

(see dashed horizontal line ‘IPCC’ in Figure 7.5b), with 334 of these pathways exceeding the
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Figure 7.5: (a) Generation versus capacity for India decarbonisation pathways from IPCC AR6
(n=823) in the 2030 to 2100 timeframe, with shading denoting implied capacity factor (ratio
of secondary wind energy per year and wind capacity x365.25x24). Box-and-whisker plots
denote 10/25/50/75/90th percentiles of capacity and generation in 2030 and 2050 for India
decarbonisation pathways that achieve an end of 21st-century warming outcome of less than 2◦C
with ∼50% likelihood (n=149). (b) inset axes show lower range of capacity/generation values.
Guidelines in (b) depict generation/capacity requirements for NEP2032 targets (258GWh/year;
84.1GW ‘NEP-A’ and 126.3GW ‘NEP-B’) and median wind generation value for IPCC AR6
India decarbonisation pathways in 2030 that achieve less than a 2◦C end-of-century global
warming outcome (512GWh/year - 167GW ‘IPPC-A’ and 251GW ‘IPCC-B’). Guidelines A
and B denote capacity requirements resulting from capacity factor values for full repowering
and the median of capacity factors implicit within IPCC AR6 India decarbonisation pathways,
respectively.

generation levels considered within the Indian NEP by 2030 (258TWh/year, see horizontal

dashed line ‘NEP’ in Figure 7.5b). The capacity factors implicit within these IPCC pathways

span a wide range (0.14-0.38; see colour shading in Figures 7.5a and 7.5b), with a median

value of 0.23 in 2030. This range in implicit capacity factors reflects differing assumptions and

parameterisations of wind energy within the different Integrated Assessment Model frameworks.

The effect of different capacity factors on wind capacity requirements for a particular generation

outcome is highlighted in Figure 7.5b with additional dashed vertical guidelines. ‘NEP-A’ in

Figure 7.5b shows the capacity requirement (84.1GW) at the repowered capacity factor of 0.35.

‘NEP-B’ in Figure 7.5b shows the capacity requirement (126.3GW) at the median of capacity

factors in 2030 implicit within the subset of IPCC AR6 (n=338, 0.23). A similar assessment
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of necessary capacity can be made for the median value of wind generation from the subset

(n=338) of IPCC scenarios (512TWh/year). A capacity factor value of 0.4 (i.e., that attained

expanded scenario) requires 167GW (IPCC-A), while a capacity factor value of 0.23 requires

251GW (IPCC-B).

This analysis highlights the large impact of capacity factors on the magnitude of wind capacity

scale-up, with net-zero compliant levels of generation achievable with less installed capacity

when higher capacity factor values are upheld.

7.5 Implications for variability in generation

The results presented so far are for annual averages. However, patterns of generation on other

timescales and how these change under the two scenarios are important considerations for

electricity system operations and planning. Here, changes in the generation patterns across

timescales are quantified for the all-India case with generation syntheses for the two future

scenarios based on meteorological variability in the 43-year timespan of the ERA5 reanalysis

(1979-2021).

7.5.1 Changes in variability profile: repowering scenario

Full repowering increases the absolute magnitude of variability in generation across a range of

timescales. The changes to temporal variation reflect the steeper ramping segment of lower

specific power turbines (Swisher et al., 2022) and the increased magnitude of wind speeds

at greater hub height. The maximum magnitude and relative frequency of rapid positive or

negative changes in capacity factor (termed ramps) are greater for the repowered case (Figure

7.6a). For example, capacity factor ramp events of ∼ ±10% within a 6-hour period occur four

times more frequently in the repowered case (∼20% of hours each year precede such events in

the repowered case versus ∼5% for current installations).

Regarding the average generation profile across a single day, a strong diurnal cycle is appar-

ent for both the existing and repowered cases (Figure 7.6b), consistent with insolation-driven

sensible heating over land that creates gradients in surface pressure with adjacent oceans and

enhanced downward turbulent mixing of momentum (Dai and Deser, 1999). However, the ab-

solute magnitude of the diurnal cycle in generation increases by 270% in the repowered case

(absolute range of 0.07 and 0.19 for existing and repowered cases, respectively). The modest
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Figure 7.6: Temporal analysis of generation synthesis for existing and repower wind fleets for the
period 1979-2021, showing (a) average proportion of hours per year preceding ramps in all-India
capacity factor within 1-hour, 6-hour and 12-hour periods; (b) annual average diurnal cycle of
all-India capacity factor (hour of day in Indian Standard Time); (c) annual mean capacity factor
for all-India, with linear trends overlaid, significant at the 99% level using a Mann-Kendal test;
(d and e) daily climatology for existing and repowered wind farms, respectively, with shading
signifying percentiles of generation climatology; (f and g) frequency of low/high generation
events, respectively, by duration for three absolute thresholds of capacity factor (corresponding
to the 1st, 10th and 20th / 99th, 90th and 80th percentiles of capacity factors under the existing
wind fleet) for all-India in existing (‘Ex.’) and ‘repowered scenario’ (‘Re.’).

negative trends in the annual mean values of the generation syntheses (Figure 7.6c) possibly

reflect a ‘stilling’ phenomenon, which has been documented elsewhere across the globe (McVicar
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et al., 2012) and is noted in other studies of near-surface winds in India (Joseph and Simon,

2005; Jaswal and Koppar, 2013). Removing these long-term trends, the range in annual mean

generation increases by 25.3% and the standard deviation by 33.2% for all-India in the repow-

ered case. The relative magnitude of interannual variability remains virtually the same under

repowering, with max/min years amounting to ∼9% of the mean for all-India and ∼ ±15% for

individual states.

The daily climatology of generation (Figures 7.6d and 7.6e) remains qualitatively similar in

both cases, with 54% and 48% of total annual generation falling within the period June to

September for existing and repowered cases, respectively. However, the absolute range of daily

capacity factors increases in the repowered case, with the greatest increases observed outside of

the summer monsoon season. This is likely due to steep linear response of the power curve in the

∼0.25-0.75 interval, which conveys the effect of the diurnal cycle in wind speeds in the repowered

case but not for the existing deployment (for which average capacity factors are <0.25 outside of

the summer monsoon period). Despite increases in the absolute magnitude of variability across

timescales, the shift in the distribution of generation values upwards under repowering implies

less frequent low-generation and more frequent high-generation events (Figures 7.6f and 7.6g),

a consequence of the increased responsiveness of the power curve at lower wind speeds and the

greater magnitude of wind speeds at taller hub heights. For example, incidences of capacity

factors falling below the 10th percentile for at least 10 continuous hours average five cases per

year for the existing wind farm fleet but disappear almost entirely in the repowered case.

7.5.2 Changes in variability profile: expansion scenario

The characteristics of temporal variability for all-India generation in the ‘planned expansion’

scenario are comparable to those under the ‘repowering’ scenario. It might be expected that the

magnitude and relative frequency of ramp events are less in the ‘planned expansion’ scenario due

to greater geographical smoothing effects (greater diversity of onshore farm locations, plus two

large offshore locations) and generally less variable wind speeds at offshore locations (Pryor and

Barthelmie, 2011). However, Figure 7.7a is qualitatively indistinguishable from the equivalent

plot for the repowered case (Figure 7.6a) and likely results from the large concentration of

capacity over relatively small areas in the two offshore development zones and the relatively

modest contribution of offshore wind to overall capacity (∼20%).
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Figure 7.7: Temporal analysis of generation synthesis for ‘expanded’ scenario for the period
1979-2021, showing (a) average proportion of hours per year preceding ramps in ‘expanded
scenario’ all-India capacity factor within 1-hour, 6-hour and 12-hour periods; (b) annual average
diurnal cycle of ‘expanded scenario’ all-India capacity factor and offshore segments (hour of day
in Indian Standard Time); (c) annual mean capacity factor for all-India and offshore segments,
with linear trends overlaid (d and e) daily climatology for offshore segment for Gujarat and
Tamil Nadu, respectively, with shading signifying percentiles of generation climatology; (f and g)
frequency of low/high generation events, respectively, by duration for three absolute thresholds
of capacity factor (corresponding to the 1st, 10th and 20th / 99th, 90th and 80th percentiles of
capacity factors under the existing wind fleet), for all-India in existing (‘Ex.’) and ‘expanded
scenario’ (‘Sc.’).

Figure 7.6b shows that the average diurnal cycles for the two offshore zones follow similar

patterns to the ‘expanded’ and ‘repowered’ profiles, although the absolute range in capacity

factor is less in both instances. Generally, the greater thermal capacity of water compared

to land results in less surface heating and vertical thermal mixing of near-surface winds and
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a smaller diurnal range in windspeeds than over land (Barthelmie et al., 1996). Figure 7.6c

shows the timeseries of annual mean capacity factors for the two offshore zones, both of which

show non-significant linear trends. The absolute range in all-India annual mean capacity factors

is 4% higher in the ‘planned expansion’ scenario compared to ‘repowering’, and the standard

deviation 10% greater. However, the greater average capacity factors in the ‘planned expansion’

scenario imply that the relative magnitude of interannual variability is around 10-15% less than

in the ‘repowering’ scenario.

In the ‘planned expansion’ scenario, the daily climatology of all-India capacity factors over

the year is similar to the ‘repowered’ case (not shown), albeit with a higher average output

and a slight increase through boreal winter months. To elucidate the likely drivers of these

differences, Figures 7.7d and 7.7e show the daily climatology of capacity factors over the year

for the aggregated output of the two offshore zones in the ‘planned expansion’ scenario. Both

zones show higher capacity factors close to rated output (minus losses) for several summer

months.

The offshore zone in Tamil Nadu also shows strong winter season peaks that likely correspond

with the North-eastern winter monsoon. This winter monsoon season brings enhanced north

easterly winds that reach a maximum along the eastern and south-eastern shore of peninsular

India and are consistent with the low pressure located over the southwestern Bay of Bengal

and the accompanying cyclonic circulation (Rajeevan et al., 2010; Sengupta and Nigam, 2019).

Finally, the even greater shift in the distribution of capacity factors upwards under the ‘planned

expansion’ scenario implies even less frequent low-generation and more frequent high-generation

events (Figures 7.7f and 7.7g). For example, 10-hour long periods below the 90th percentile of

all-India capacity factors number seven events per year for the existing wind fleet but disappear

entirely in the ‘expanded scenario’.

7.5.3 Changes in associations with meteorological drivers

This section considers whether the statistical relationships between the climatic predictor vari-

ables for wind generation identified in Chapters 5 and 6 hold for the two scenarios considered

here. Table 7.4 shows the correlation coefficients for the existing fleet (i.e., the same as in Table

6.1, Chapter 6) and for the ‘repowered’ and ‘planned expansion’ scenarios. The correlation

values are very similar across all regions under both scenarios, with very modest increases in
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the Northern and Western regions. These increases could be due to slightly steeper ramping

and/or constant rated power sections of the turbine power curve considered in the repowered

and expanded scenarios. Also, a greater degree of spatial smoothing occurs in the ‘planned ex-

pansion’ scenario, likely causing very slight increases in correlation values. JJAS capacity factor

anomalies for individual offshore zones are slightly less than the regional aggregates, likely due

to the large concentration of capacity (∼8.5GW) over relatively small areas. However, the gen-

erally high correlation values show that generation anomalies averaged over the summer season

for near-term wind development in India remain well-described by the previously identified

predictor variables.

Predictor All-India NR WR SR
Gujarat
Offshore

Tamil Nadu
Offshore

10m winds 0.90/0.90/0.92 0.47/0.52/0.55 0.83/0.85/0.85 0.80/0.79/0.78 0.82 0.43
EOF1 850
hPa winds

0.78/0.79/0.79 0.36/0.38/0.39 0.65/0.66/0.66 0.80/0.79/0.77 0.61 0.37

W-F WNPi 0.74/0.76/0.77 0.33/0.36/0.37 0.62/0.64/0.66 0.78/0.76/0.75 0.61 0.35

Table 7.4: Correlation between JJAS mean wind capacity factor anomalies per region and
candidate predictors described in Chapter 6, Section 6.2. Values in regular font are for existing
wind capacity, bold font for the ‘Repowered’ scenario, and underlined values for the ‘Planned
expansion’ scenario.

7.6 A note on solar PV

Due to data availability, near-term capacity development scenarios were not considered for solar

PV. However, ambitious plans for the rapid expansion of solar PV capacity in India suggest that

analyses based on generation syntheses representative of existing should be regularly updated

and consider plausible future changes in the solar fleet. The National Electricity Plan of India

(NEP) proposes 365GW of solar PV capacity and 657.7TWh per year by 2032 (Table 7.5).

The implicit capacity factors for these NEP figures are 0.205 fleetwide and 0.215 for additional

capacity, assuming present-day installations remain operational.

For solar PV, the change in present-day fleetwide capacity factors of +43% is greater than in the

sensitivity test conducted in Chapter 4 that considered single-axis tracking designs (+33.9%).

However, ongoing improvement in conversion efficiency of 1% per annum is anticipated for the

next decade (VDMA, 2022). Therefore, the + ∼43% increases are attainable when account-

ing for combined improvements from the single-axis tracking designs and ongoing efficiency

improvements of ∼7% above state-of-the-art technologies (e.g., 1.339 x 1.07=1.43).
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Capacity (GW) Generation (TWh) Capacity factor

2021 48.0 63.0 0.150
2032 364.5 657.7 0.205
Additional 316.5 594.7 0.215

Table 7.5: National solar PV capacity, generation and fleetwide capacity factors in 2032 as
envisaged in Indian NEP (PIB, 2023), for all solar PV capacity and additional solar PV capacity
installed since 2021 (assuming present day installations remain operational).

Whether these levels of generation could be achieved for future periods depends on the avail-

ability of suitable sites of comparable resource quality and the density at which state-of-the-art

wind and solar PV technologies can be installed. Candidate sites for new solar PV installations

are likely widespread throughout India as solar irradiance resources are relatively homogenous

across the country. Although single-axis tracking installations require greater spacing to limit

between-row shading (implying a lower capacity density), the greater capacity factors achieved

would more than compensate such that the generation- or yield-density of installations is greater

than existing solar farms (i.e., state-of-the-art solar PV installations requiring no more land

footprint per unit generation than existing fleet).

As was the case for wind, all 368 of the IPCC decarbonisation pathways for India that are con-

sistent with end-of-21st-century climate warming outcomes of less than 2◦C envisage a massive

scale-up of solar PV energy. The median value of solar PV generation from this subset (n=368)

of IPCC scenarios is 696 TWh/year in 2030 (see vertical box-plot in Figure 7.8), which is compa-

rable to the generation levels considered within the Indian NEP by 2032 (658TWh/year). The

capacity factors implicit within these IPCC pathways span a wide range (0.07-0.38; see colour

shading in Figure 7.8), with a median value of 0.185 in 2030. The implicit capacity factors

within the Indian NEP and achievable capacity factors with single-tracking parameterisation

and ongoing efficiency improvements of ∼0.20-0.22 are above the 80th percentile of capacity

factor implicit within IPCC scenarios. Utility-scale solar PV installations in the southeastern

region of the United States (a region of comparable solar resource to India) that use single track-

ing technologies have averaged capacity factors of 0.23 over the last five years (Bolinger et al.,

2023). Thus, the ∼0.20-0.22 values for India are consistent with international experience and

suggest that net-zero compliant levels of generation are achievable with less installed capacity

when higher capacity factor values are upheld.
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Figure 7.8: Generation versus capacity for India decarbonisation pathways from IPCC AR6
(n=778) in the 2030 to 2100 timeframe, with shading denoting implied capacity factor (ratio
of secondary solar PV energy per year and wind capacity x365.25x24). Box-and-whisker plots
denote 10/25/50/75/90th percentiles of capacity and generation in 2030 and 2050 for India
decarbonisation pathways that achieve an end of 21st-cenurty warming outcome of less than
2◦C with ∼50% likelihood (n=149).

7.7 Discussion

7.7.1 Summary of main findings

This analysis presented in this Chapter progresses past work on the performance of wind energy

in India by using a generation synthesis approach to assess differences in energy yield between

the existing fleet of turbines versus two near-term future scenarios. The key findings are as

follows:

1. Fully repowering India’s wind turbine fleet using a characteristic modern turbine, with a

taller tower and lower specific power, could boost capacity factors from the existing wind

fleet by 82% nationwide (0.35), with the greatest regional increase in Tamil Nadu state

(+96%).

2. The planned expansion of India’s wind fleet in the 2025/26 timeframe (+40GW) results in

a nationwide wind capacity factor of 0.40 when using the same modern turbine design, or

+111% over the existing fleet. Planned expansion onshore shows similar capacity factors
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to the repowered case, while the higher capacity factors (0.47-0.60) of planned offshore

expansion drive the increase in the fleetwide average.

3. The capacity factors achieved under ‘repowering’ and ‘planned expansion’ scenarios exceed

equivalent estimates within the National Electricity Plan of India (0.27 fleetwide) and

national decarbonisation pathways compiled by the Intergovernmental Panel on Climate

Change (median value of 0.23), suggesting less total installed capacity is required to

achieve specific generation outcomes than previously estimated.

4. Both ‘repowering’ and ’planned expansion’ scenarios modify the variability characteristics

of generation in a similar way, namely, increasing the absolute magnitude of changes across

timescales, reflecting the steeper ramping segment of lower specific power turbines and

the increased magnitude of wind speeds at greater hub height.

5. The strength of the relationships between predictor variables for wind generation anoma-

lies in JJAS that were identified in Chapter 6 Section 6.2 hold for both the ‘repowering’

and ‘planned expansion’ scenarios. Thus, the prediction skill for summer season wind

generation anomalies demonstrated in Chapter 6 would apply under plausible near-term

developments of wind sector in India.

6. Capacity factors implicit within the Indian NEP (0.205) are consistent with values achiev-

able with single-axis tracking designs at current solar farm locations in India and a greater

than ∼80% of capacity factors assumed in national decarbonisation pathways complied in

AR4 of the IPCC.

Repowering will become increasingly common within the unfolding energy transition, as a

greater proportion of existing wind capacity reaches its design lifetime (Kitzing et al., 2020).

The importance of repowering for India’s energy transition has been recognised in government

energy policy (MoEFCC, 2022; MNRE, 2022a) and this chapter highlights significant role of

fleetwide turbine upgrades. Although renewal of all turbines in India may proceed progressively

rather than all at once, the analysis has shown that repowering wind turbines under 2MW

rated capacity (the threshold considered in India’s national repowering policy) could increase

fleetwide capacity factors to ∼0.36, some 25% greater than the capacity factors implicit within

the current National Electricity Plan of India. Whether these increased capacity factors could

6For comparison, turbines installed onshore in 2022 in Europe achieved capacity factors in the range 0.30-0.45,
while the European onshore fleet average capacity factor is 0.24.
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translate into higher energy generation depends on the relative capacity density at which new

turbines are installed. However, the conservative assumption used in this analysis that the

capacity densities of existing wind farms across India will persist under repowering suggests

generation gains from repowering are at least proportionate to capacity factor increases.

The assessment of ‘planned expansion’ has shown even greater capacity factors are achievable

due to the contribution of higher yielding offshore development and similar capacity factors

at new onshore farms, compared to existing sites. The achievable capacity factors at even

greater levels of wind expansion will require further study and would need to consider the

possible saturation of the best wind resources sites. However, the ‘planned expansion’ scenario

shows capacity factors at the top-end (>90th percentile) of values found across decarbonisation

pathways for India compiled by IPCC AR6 WGIII and indicates that the very ambitious levels

of wind generation consistent with low end of 21st-cenurty warming outcomes are achievable

with appreciably less installed capacity. Similar conclusions could also be made for solar PV.

Despite the promise of higher capacity factors demonstrated here, the greater level of abso-

lute generation variability underlines the increasing need for power system flexibility within

a decarbonised energy system, implying greater levels of energy storage, responsive demand,

grid reinforcement/interconnection, and complementary forms of generation (Denholm and Mai,

2019; Strbac et al., 2020; Bistline et al., 2021). Without such flexibility, electricity network con-

straints would heighten the risk of curtailment of the increased generation from repowering.

Improved characterisation of generation variability across timescales using generation synthe-

ses can help appraise design elements of power system flexibility, particularly the likelihood of

extreme low generation events (e.g., Cannon et al., 2015), which although less frequent under

full repowering, are not eliminated.

7.7.2 Shortcomings and caveats to the analysis

The assessment of energy yield improvements using modern wind turbine (and single-axis track-

ing in the case of solar PV) is necessarily high-level and detailed site-specific study of repowering

options could differ from the aggregated state and country-level findings. In the case of wind, the

full repowering scenario is hypothetical and subject to multiple practical challenges. However,

in pure performance terms, the capacity factors attained under full-repowering are comparable

in magnitude to those found in farm-level repowering studies in India (e.g., Boopathi et al.,
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2021) and international repowering experience (e.g., Villena-Ruiz et al., 2018), and so likely

reflect realistic performance values rather than artifacts of the synthesis methodology.

In practice, the economic case for repowering must balance forgone revenue from the decom-

missioned farm versus enhanced income after the upgrade, and such assessments require high-

resolution, site-specific investment-grade information (Shafiullah et al., 2013). However, the

appreciable accuracy of the generation synthesis for regional aggregates suggests using it a basis

for future investigations into the economic case for early-retirement and subsequent repowering

would be suitable at the aggregate level.

The assessment of changes in capacity factors and generation in this Chapter consider various

regional aggregates without any technical and practical constraints of a real-world electricity sys-

tem. However, the existing conditions on the Indian electricity grid include network constraints,

limited interstate or international interconnection, limited storage, and inflexible ”must-run”

capacity. Such conditions might constrain the increased generation of repowered and expanded

wind farms and increase the risk of curtailment. Nevertheless, numerous initiatives in India

seek to address power system flexibility/reinforcement constraints. Namely, the second phase of

the Green Energy Corridors project (+700km transmission lines), the National Energy Storage

Mission (40GW storage by 2025), and an updated Indian Electricity Grid Code for 2023 that

formalises storage and demand response within ancillary services (NREL, 2023).
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Chapter 8

Discussion and Conclusions

Despite the importance of wind and solar PV energy sources in the planned expansion of the

Indian electricity system, existing works offer few insights into the characteristic performance of

these two energy sources. This blind spot is partly due to the limited data available for historical

generation and plant-level technological information. Furthermore, past studies have relied

on simplified methodological approaches, like typical meteorological years, characteristic time

slices, or idealised technological parameterisations. Possibly due to the lack of long generation

time series that faithfully capture actual energy yields, few investigations offer descriptions of

the relationships between meteorological drivers and wind and solar PV generation variability

in India. This absence is particularly apparent for interannual timescales. And despite the

considerable legacy of seasonal climate forecasting (SCF) in South Asia, with much attention

devoted to Indian summer monsoon rainfall, little work considers SCF applications to energy

generation in India.

This thesis offers a step forward by developing a validated model synthesis of wind and solar PV

generation in India based on 43 years of input data from an atmospheric reanalysis and a detailed

description of existing plants. Using these generation syntheses, statistical relationships with

meteorological drivers were investigated, focussing on interannual variability in the summer

monsoon season. These same statistical relationships were also used as the basis for hybrid

dynamical-statistical predictions of wind and solar PV capacity factors, made at one-month lead

times using output fields from the operational ECMWF System5. Further testing quantified

changes to the generation syntheses and associations with meteorological drivers under scenarios

of future technological development.

The remainder of this chapter summarises the key findings from this thesis and comprises the

following sections:

1. A summary of the main results in each of the four results chapters.
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2. A critical reflection on the thesis findings and discussion on the wider relevance to the

energy situation in India.

3. Suggestions for future research.

4. A conclusion and outlook.

8.1 Summary of main findings

8.1.1 Summary of First Results Chapter

The first result chapter presented generation syntheses for wind and solar PV at the national

and sub-national scale. Using a simple multiplicative bias correction approach to eliminate

mean biases, the generation syntheses replicated observed generation with appreciable accuracy.

Compared to observed generation values for all-India at the daily timescale, an r value of 0.98

and MAPE value 8% was achieved for wind and an r value of 0.92 and MAPE value 9% for

solar PV. This accuracy is comparable to the levels of correspondence achieved for national

aggregate generation syntheses in existing studies of other countries (e.g., Gruber et al., 2019;

Bloomfield et al., 2020). Although numerous studies have produced generation syntheses using

reanalysis data inputs for other countries (e.g., Kubik et al., 2013; Staffell and Pfenninger, 2016;

Ren et al., 2019), this work presents the first validated version for all wind farms in India.

The summer monsoon period (JJAS) shows greatest scale of interannual variability for both

technologies, with a standard deviation of 8% of the mean (14% for sub-regions) for wind and 3%

of the mean (6% for sub-regions) for solar PV. For comparison, an existing generation synthe-

sis for Europe (Bloomfield and Brayshaw, 2021) shows the greatest magnitude of interannual

variability in DJF season, with a standard deviation in wind capacity factors approximately

35-40% greater than the JJAS season for India. These differences are likely due to different

prevailing meteorological environments within the tropics and extratropics and the different

scales of spatial averaging. For solar PV, the interannual standard deviation is larger in Europe

for annual mean capacity factors, but comparable in magnitude for the summer season.

The accuracy of the generation syntheses at the scale of regional aggregations results from the

cancelling out of a greater number of random uncorrelated variations at the larger spatial ag-

gregation (Holttinen, 2005). This regional-scale accuracy motivates many possible analyses,

not least the effects of technology modernisation. Furthermore, regional wind and solar PV
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generation anomalies in JJAS are generally highly correlated with all-India generation anoma-

lies, suggesting that anomalous seasons are widespread events affecting all regions simultane-

ously. While wind and solar PV generation anomalies in JJAS for the whole country and the

sub-regions are weakly correlated, suggesting that different phenomena drive the majority of

variation in JJAS between years for wind and solar PV.

8.1.2 Summary of Second Results Chapter

The second results chapter (5) sought to identify candidate drivers of generation variability in

JJAS and describe strength and mechanisms of observed associations. The chapter constitutes

the first use of a multi-decadal synthetic generation time series in such an investigation. The

investigation first considered intra seasonal variability, with alternating active and break spells

a key feature of the Indian summer monsoon, describing periods of enhanced or suppressed

rainfall, respectively (Rajeevan et al., 2010). The frequency or magnitude of active and break

spells accounts for a similar proportion of the total variation in JJAS mean solar PV generation

as for ISMR (∼20%). No such association is found in the case of wind generation anomalies

in the JJAS season (apart from a modest association in the Northern region, up to ∼15%).

Interannual variations in surface winds over peninsular India caused by anomalous western

north Pacific (WNP) monsoon circulation describe a greater fraction of total observed wind

generation variability (>60%) than the local Indian summer monsoon circulation (which is only

dominant in the Northern region). Two measures of anomalous WNP monsoon were identified

that each describes comparable levels of variance in wind generation anomalies in JJAS:

1. The WNPi (index based on original definition in Wang and Fang, 1999), defined as the

differences between zonal 850hPa winds in JJAS averaged over southern and northern

regions of the WNP.

2. The first principal component timeseries of 850hPa zonal winds in JJAS over the South

Asia region.

In the case of solar PV, three measures of an anomalous Indian summer monsoon circulation

were identified and co-vary with JJAS solar PV generation anomalies with a similar correlation

to that of ISMR:

1. The ISMi (index based on original definition in Wang and Fan (1999)), defined as the

difference between the 850-hPa zonal winds in a southern region located over the clima-
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tological position of the Somali Jet (westerlies) and a northern region co-located with the

monsoon trough (easterlies). The ISMi captures the strength of monsoon westerlies and

is indicative of anomalous lower-tropospheric vorticity that causes the monsoon trough

(Wang et al., 2001).

2. The second principal component timeseries of 850hPa zonal winds in JJAS over the South

Asia region.

3. Given the close association between ISMR and solar PV generation anomalies, the two

greatest sources of seasonal predictability in ISMR (ENSO and IOD) also served as pre-

dictors for solar PV generation anomalies in JJAS (specifically, the ENSO3.4 and EQWIN

indices).

Aerosols were not considered a relevant source of predictability as the SEAS5 forecast system

includes no dynamical means of producing an aerosol-related signal beyond prescribed clima-

tological aerosol loading (Vitart et al., 2019). However, an additional analysis of irradiance

fields derived from satellite measurements showed that aerosols impart a measurable effect on

anomalous solar PV generation in JJAS. Further experiments found in the literature suggest

that remote mineral dust loading from originating Middle Eastern deserts can drive anoma-

lous ISMR. The suggestion being that aerosols could be exploited as an additional source of

predictability on seasonal timescales where SCF systems include suitable assimilation and dy-

namical treatment of aerosols and associated attenuating effects.

The suitability of the identified candidate drivers of generation variability were tested using the

ERA5 back-extension to 1940 and using an alternative reanalysis data input (NCEP/NCAR

Reanalysis). The strength of the relationships was found as comparable in both test cases,

further evidencing the identified drivers of generation anomalies as robust.

8.1.3 Summary of Third Results Chapter

The third results chapter (6) used the observed relationships between meteorological drivers

of generation anomalies in JJAS as a basis for producing generation forecasts with the out-

put variables from a hindcast set produced by ECMWF System5. Modest overconfidence in

the hindcast ensemble was found across candidate forecast variables, as is typically found for

seasonal forecasts in the tropics (e.g. Weisheimer et al. (2011) and Jain et al. (2019)).

173



8.1. Summary of main findings Chapter 8. Discussion and Conclusions

Predictor variables trailed for wind all explained up to 40% of interannual variability in gener-

ation anomalies in JJAS, with the WF-WNPi showing the highest skill. For solar PV, deter-

ministic skill was best for regional-scale predictor variables (ENSO3.4+EQWIN and W-F ISMi)

when compared to area averages of proximate variables (rainfall, SSRD, and TCC), with up to

20% of interannual variability in JJAS explained. In the case of wind, modest improvements to

deterministic forecast skill in the Northern region were attained when using ISM indices (e.g.

ENSO3.4+EQWIN) as additional predictors, consequent of the joint role of WNP and ISM

circulations in producing regional generation anomalies. Measures of probabilistic forecast skill

and discrimination were positive and significant for all-India wind, as well as regional subdi-

visions. For solar PV, measures of probabilistic skill are positive and significant for all-India,

though are marginal and rarely significant at the regional subdivisions.

A strong association was found between seasonal mean capacity factor anomalies and the fre-

quency of extreme day counts (days where generation is above/below percentile thresholds of

the daily generation distribution, r value ∼0.5-0.7). This association also translated into reason-

able skill in forecasting the frequency of extreme generation days in JJAS, particularly for day

counts below the lower 10th percentile (r value >0.55 for wind and solar PV). The deterministic

forecast skill for the WNP circulation in JJAS is comparable to that reported in comparable

studies (e.g., Zhang et al., 2020) and the skill for all-India wind generation anomalies in JJAS

comparable to 1-month lead predictions of energy sector impact variables found in other regions

(e.g., Thornton et al., 2019). In the case of solar PV capacity factors, the forecast skill was

found to be modest, although all-India deterministic skill at one-month lead is comparable to

ISMR prediction skill (r value >0.40).

8.1.4 Summary of Fourth Results Chapter

The fourth results chapter tested the relevance of the generation syntheses to planned capacity

increases. Due to data availability, the analysis focussed on wind energy only. The analy-

sis quantified plausible changes to generation and associated variability characteristics under

two scenarios: a ‘repowering scenario’ in which all turbines in India are substituted with the

highest-yielding model and a near-term ‘expansion scenario’ that included an additional 41.4GW

(80.9GW fleet total) of recently built and pipeline wind capacity.

The analysis demonstrated that fully repowering India’s fleet using modern turbine designs
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with taller towers and lower specific power boosts capacity factors from the existing wind fleet

by 82% nationwide. The planned expansion of India’s wind fleet in the 2025/26 timeframe

(+40GW) results in a nationwide wind capacity factor of 0.40, or +111% over the existing

fleet. Repowering wind turbines under 2MW rated capacity (the threshold considered in India’s

national repowering policy) increases fleetwide capacity factors to ∼0.3, some 25% greater than

the capacity factors implicit within the current National Electricity Plan of India (PIB, 2023a).

Whether these increased capacity factors could translate into higher energy generation depends

on the relative capacity density at which new turbines are installed. Though, the capacity den-

sities of existing wind farms across India are approximately half the value resulting from modern

turbines spaced at regular multiples of rotor diameter (∼2.5MW/km2 versus ∼5MW/km2), sug-

gesting generation gains from repowering are at least proportionate to capacity factor increases.

Furthermore, the plausible capacity factors achievable under these alternative parameterisations

are at the upper end (>90th percentile for wind and >80th for solar PV) of values found across

decarbonisation pathways for India compiled by WGIII of the IPCC in AR6.

Chapter 7 also demonstrated how modern wind turbine designs modify the variability charac-

teristics of generation, namely, increasing the absolute scale of changes across timescales. This

result is a consequence of the steeper ramping segment of lower specific power turbines and

the increased magnitude of wind speeds at greater hub height. This result underlines the in-

creasing need for power system flexibility within a decarbonised energy system (Strbac et al.,

2020), implying greater levels of energy storage, responsive demand, grid reinforcement/inter-

connection, and complementary forms of generation (Denholm and Mai, 2019; Bistline et al.,

2021). Without such flexibility, electricity network constraints would heighten the risk of cur-

tailment of the increased generation from repowering. Improved characterisation of generation

variability across timescales can help appraise design elements of power system flexibility, par-

ticularly the likelihood of extreme low generation events (e.g., Cannon et al., 2015), which

although less frequent under full repowering, are not eliminated. Finally, Chapter 7 showed

that the same statistical relationships between predictor variables for wind generation anoma-

lies in JJAS previously identified in Chapter 6 also hold for both the ‘repowering’ and ‘planned

expansion’ scenarios. Thus, the prediction skill for summer season wind generation anomalies

demonstrated in Chapter 6 would remain stable for the plausible near-term development of

wind sector in India.
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8.2 Critical reflection and wider relevance

The investigation in this thesis has considered existing wind and solar PV installations in India

and near-term capacity expansion. However, India’s ambitious net-zero climate goals include

plans for a four-fold increase in current levels of wind energy generation and a six-fold increase

in solar PV by the year 2032 (PIB, 2023a). The National Electricity Plan of India estimates the

capacity required to achieve these generation targets, with wind and solar PV constituting 54%

of 900GW of total power capacity (64% with existing and planned hydroelectric power). Such

a vast scale of increase requires further study of large expansion scenarios. Furthermore, the

investigation was somewhat hypothetical and was conducted independently of any well-defined

practical applications.

Despite the limited treatment of these two aspects, the following sections review what con-

clusions can be drawn from the investigation. And with reference to additional sector and

country-specific context, the wider relevance of the investigation findings to large-scale wind

and solar deployment is discussed. The flowing sections are split into three distinct issues: (1)

strategic planning of capacity expansion, (2) short and long-duration energy storage, and (3)

operational decision-making.

8.2.1 Strategic planning of capacity expansion

The generation syntheses offered a means of selectively altering technology parameterisations

to gauge consequent effects on energy yield. Versions of the generation syntheses that used

parameterisations of current best-available-technologies (modern wind turbines and single-axis

tracking) achieved capacity factors at the top-end (>90th percentile for wind and >80th for

solar PV) of values found across decarbonisation pathways for India compiled by WGIII of the

IPCC in AR6 (c.f. Chapter 7), suggesting less installed capacity is required to achieve a certain

generation outcome.

Most nations1 have announced or are deliberating net-zero emissions targets and use such de-

carbonisation pathway studies to guide strategic decisions on technology choices and inform

energy policy. Although decarbonisation pathways are not necessarily calibrated to observed

performances, accurate characterisation of the energy yield from an expanded wind and so-

1131 countries, equivalent to 78% of total global emissions annually, with net-zero polices in-law, announced
or in deliberation (ECIU, 2022).
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lar PV fleet is necessary to inform the strategic design of renewably powered energy systems.

Ground-truthing the performance of specific technologies within decarbonisation pathways or

complementing such information with calibrated generation syntheses is, therefore, an impor-

tant exercise to gauge implications for policymaking. Analysing AR6 decarbonisation pathways

for other countries and regions to determine the range of implicit capacity factors is an impor-

tant task, with implications for the strategic planning of land-use, network infrastructure and

electricity markets that can accommodate terawatt-scale capacity increases.

Ongoing technological progress, leading to increased turbine dimensions and solar array effi-

ciency, will drive capacity factors beyond the levels estimated here, which could further add

to the generation benefits of repowering and technology upgrades. Specific to wind, low spe-

cific power turbines and increases in hub heights are becoming the industry standard (IEA,

2022a; Beiter et al., 2022) and ultra-low wind turbines could open previous unviable sites or

provide improved variability characteristics2. Taller, longer-bladed turbines imply higher capac-

ity factors but also potentially lower ‘generation-density’ and land-use footprint of wind power.

This is an important consideration for land-scarce countries like India, where land rights are

contested and the procurement of land for renewable projects is challenging (Mohan, 2017;

Kiesecker et al., 2019). Further detailed study of relevant technical, social, and commercial fac-

tors is required to appraise wind expansion and land requirements at a scale consistent with the

order-of-magnitude capacity scaleup envisaged in net-zero pathways (e.g., trade-offs between

capacity density and wake losses (Miller and Kleidon, 2016; Badger and Volker, 2017); visual

and physical disturbance to local residents (Kitzing et al., 2020; Shafiullah et al., 2013); and

the multi-owner structure of existing wind farms (Das, Binit, 2023).

Repowering will become increasingly common within the unfolding energy transition, as a

greater proportion of existing wind capacity reaches its design lifetime (Kitzing et al., 2020).

Despite the recognised importance of repowering for India’s energy transition (MNRE, 2022a),

existing studies lack country-wide assessment of changes in wind energy generation resulting

from turbine technology upgrades. Repowering offers several economic and logistical advan-

tages over developing greenfield sites for wind farms, including the potential reuse of existing

feasibility studies and planning appraisals, existing road access, and transmission connections.

These factors offer a possible route to expediting the delivery of ambitious renewables targets

2The theoretical ultra-low specific power turbine presented in Swisher et al. (2022) achieves 0.44 capacity
factor for all-India onshore wind when implemented with the repowering methodology.
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and boosting the currently underutilised domestic turbine manufacturing industry (IRENA,

2023b). A growing wind energy sector may also generate employment that can compensate

for job losses in a constrained fossil-power sector. However, the exact distributional effects

require further study. Additionally, the development of a generation synthesis provides a basis

for future investigations into the economic case for early retirement of ageing wind farms and

subsequent repowering.

8.2.2 Dimensioning and designing energy storage

Existing studies that use detailed energy system model representations of the Indian electricity

network to study the expanded use of wind and solar PV highlight the need for various forms

of energy storage to enable a stable and reliable electricity supply (e.g., Sepulveda et al., 2021;

Levin et al., 2023). Battery storage technologies are frequently highlighted as key to providing

short-term storage (1-4 hours) at high capacity (GW) and low energy volume (GWh) to cope

with diurnal mismatches between supply and demand. Namely, oversupply from solar PV during

daylight hours (charging), followed by pronounced ramping of net load into the evening hours

(sunset and evening peak demand), and sustained lower demand through the night (discharging).

This strategy will be of particular importance during boreal summer in India, when peak demand

and ramping of demand net of wind and solar PV generation is greatest, driven in large part

by cooling and lighting loads in northern and central regions and the greater absolute diurnal

range in solar PV generation (MoP, 2021).

However, the dependability of such a strategy relies on consistent wind+solar surpluses or other

forms of readily dispatchable generation. Chapter 6 showed a considerable range in the number

of extreme generation days for wind and solar PV in JJAS between years. For example, solar

PV generation falling below the 10th percentile of daily generation during JJAS (capacity factor

of 0.12, ∼20% below median) numbered 0-31 days, while for wind, the day counts numbered

1-38 days (capacity factor of 0.11, ∼60% below median). Dimensioning of battery storage

and additional rapidly dispatchable generation will require further consideration of the joint

distributions of sub-daily wind and solar PV generation. Such joint distributions may experience

a degree of favourable phasing during both active and break phases of the summer monsoon.

As defined in Chapter 5, active phases correspond with positive (negative) wind speed (surface

irradiance) anomalies through central and southern India. However, the extent of any aggregate

compensatory effect of moving between phases would dependent upon the exact location and
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volume of installed capacity of each technology.

Existing studies also identify long-duration energy storage (LDS) as economically beneficial

and/or necessary in future electricity systems with high variable renewable energy (VRE) shares

(>∼60-80% of annual electrical energy) or stringent emissions reductions (e.g., Blanco and Faaij,

2018). Exact definitions vary, though LDS typically involves high energy-to-power capacity

ratios with multi-hour to multi-day energy volumes (Dowling et al., 2020). At lower VRE shares,

conventional thermal or hydroelectric capacity is typically considered economically more viable

than LDS, even when operating at far lower load factors (i.e., running much less frequently than

at present- (e.g., De Sisternes et al., 2016; IEA, 2022b). Wind and solar PV constitute ∼35%

of annual electricity energy supply in 2032 under the National Electricity Plan (NEP) of India

projections (rising to ∼49% under the repowering assumptions discussed in Chapter 7). Thus

long-duration energy storage may not be required within this timeframe. Indeed, the Indian

NEP does not consider the technology’s use. However, other India-specific studies of high VRE-

share power systems, typically with more stringent emission reductions, do indicate a need for

long-duration storage in the 2030-2040 timeframe (e.g., Gulagi et al., 2022; Lu et al., 2020;

Barbar et al., 2023). Furthermore, this requirement increases under wind-heavy deployments

due to the greater seasonal disparity in capacity factors between boreal summer and winter

(Jain et al., 2021).

In certain regional contexts, hydropower and pumped storage could offer a long-duration stor-

age solution. Though despite the considerable hydropower capacity in India (∼42GW), and

planned expansion of pumped storage to 2032 (+22GW), the energy value of these technologies

would remain marginal under current plans - in the region of 48GWh by 2032 (NEP, 2023).

An alternative to long-duration storage is considerable overbuild of VRE (Tong et al., 2021),

though curtailment rates (i.e., unused surplus generation) would likely be prohibitively high

in the strongly seasonal Indian climate. Regional interconnection could offer another alterna-

tive to provide greater geographical smoothing of generation (Shaner et al., 2018). Although

widespread generation anomalies across India were identified in Chapter 4, reducing the possibil-

ities of in-country regional balancing, at least in the JJAS season. Few market-ready utility-scale

long-duration storage technologies exist, although numerous candidate technologies are at the

early stages of commercialisation at-scale, including compressed air energy storage, thermal en-

ergy storage, flow batteries, and power-to-gas-to-power solutions, involving production, storage,
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and oxidation or combustion of hydrogen or synthetic methane (Hunter et al., 2021).

Studies that consider the use of LDS in Europe (e.g., Jafari et al., 2020; Ruhnau and Qvist, 2022)

and the United States (e.g., Dowling et al., 2020) highlight the benefits of multi-day storage

using such technologies in filling prolonged deficits during boreal summer when wind output is

lower. As energy system optimisations are sensitive to interannual variability (Pfenninger, 2017,

Collins et al., 2018), multi-year studies that include LDS note how storage requirements vary

depending on the time frame considered. For example, Dowling et al. (2020) found that the

use of different weather years in their optimisation of a decarbonised electricity system in the

United States produced storage capacities that differed by 213%. The effects of different weather

years would likely affect similar assessments for India. For example, based on the generation

syntheses for all-India, energy yield for wind and solar PV at the capacity levels considered in

the 2032 NEP drops in JJAS by 15% of the median in 2020 (the largest negative anomaly) and

increase to 9% of the median in 1986 (the largest positive anomaly). Interannual variability in

generation would also impact aspects of electricity market design, such as the dimensioning and

valuation of capacity markets (i.e., how much to pay controllable capacity to wait in standby

to cover unexpected generation shortfalls), and price support mechanisms for renewables (e.g.,

incorrectly priced support when using unrepresentative capacity factors) (Coker et al., 2020).

8.2.3 Forecast value in operational decision-making

Various weather and forecast information are used by decision-makers within the electricity

sector to help manage the impacts of weather and climate variability. In the Indian context,

wind and solar PV farm operators are required to share daily generation forecasts for their

assets for the subsequent 24 hours with the electricity system operator, while state and regional

load dispatch centres consider generation forecasts out to a week (Joshi et al., 2022). In other

world regions, SCFs are used in addition to weather forecasts to help grid operators assess

the sufficiency of available generation to meet anticipated demand at a specified level of confi-

dence (termed resource adequacy) and to guide efficient pricing of power contracts in wholesale

electricity markets (Troccoli et al., 2018). However, no such use of forecast information is

documented in India beyond the 1-day and 1-week time horizons (Mitra et al., 2022).

A key premise of the investigation in this thesis is that forecasts for the season ahead can

prove valuable to the electricity sector by enabling timely operational decision-making and in-
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terventions. This premise is inherent to many applied research initiatives and studies that

link forecast skill on seasonal timescales to potential forecast value within an applied setting

(e.g. Bett et al., 2017; Torralba et al., 2017). Analyses beyond quantification of forecast skill

and reliability also seek to explicitly quantify various measures of forecast value, often using

decision-analytic frameworks. Simplified models include ‘expected utility’ (Von Neumann, 1944;

Thompson and Brier, 1955) and ‘static cost/loss’ frameworks (Murphy, 1977), while more elabo-

rate, sector-specific decision-analytic models allow for refined decisions, such as hedging options

or concurrent, repeat interventions (e.g., Maza et al., 2008; Brayshaw et al., 2020). However,

such models invariably require significant abstraction of the decision-making context and pro-

cess—specifically, choices between well-defined actions and discrete resulting consequences.

Furthermore, numerous examples from a range of different sectors, spanning timescales of

weather to multidecadal climate, have shown how the production and availability of forecast

information does not necessarily ensure forecast value or beneficial use (Changnon et al., 1995;

Rayner et al., 2005; Dilling et al., 2011). Evidence suggests a wide range of additional fac-

tors affect the uptake of weather and climate forecasts amongst decision-makers, including the

availability of alternative courses of action (Lemos et al., 2002), more pressing organisational

priorities (Measham et al., 2011), the form and channels of forecast communication (Hansen,

2002), and other contextual elements of the decision-making space. This apparent gap between

the generation and application of scientific information is also found in other areas of environ-

mental decision-making (McNie, 2007) and feeds into broader discussions on the role of scientific

input to policymaking (Sarewitz et al., 2007). Conventionally, where the impact of scientific

information is found lacking, the policy response has sought to increase the information supply,

often funding additional research to meet the supposed demand for knowledge (Sarewitz et al.,

2007; Meyer, 2011). However, it is argued that a focus on increasing the volume of science-based

information, frequently developed in isolation for the intended user, risks misalignment with the

particular information needs of decision-makers (Cash et al., 2006; Feldman et al., 2009).

This thesis could be considered as an extension of such a reductive, ‘science-first’ approach, and

further demonstration of actual or potential forecast value within the Indian electricity system

context will require deeper consideration of operational procedures (Hanlon et al., 2018) and

direct collaboration with practitioners (Kirchhoff, 2013). An application-specific evaluation of

forecast value could aid prospective SCF users in gauging potential benefits before undertaking
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necessary investments in procurement, training, etc. (Bruno Soares et al., 2018; Perrels et

al., 2020), while forecast providers could better understand and tailor climate information and

services to specific user needs (Vaughan and Dessai, 2014; Goodess et al., 2022).

Numerous features of the Indian electricity system in its current form would likely shape the

opportunity space for SCF applications. Chief among these defining features is the limited

interconnection between Indian states and the high level of autonomy amongst state load dis-

patch centres (the authorities responsible for network operations and balancing) (MoP, 2021).

Even where interstate interconnection permits a degree of balancing, a lack of centralised data

collection and dissemination on generator availability precludes interregional coordination and

balancing (RMI, 2023). Furthermore, contract trading in nascent wholesale power, imbalance,

and ancillary service markets beyond the day-ahead is limited (Mitra et al., 2022). In addition to

these structural aspects of the existing electricity system, the partial evidence that does exist on

the use of forecast information in electricity system management in India suggests limited exper-

tise amongst state load dispatch centres in developing generation forecasts (NITI Aayog, 2015),

and limited trust of generation forecasts provided by Renewable Energy Management Centres

(REMCs) (Joshi and Inskeep, 2023). A total of 13 REMCs are currently operational nationwide

and provide week-ahead forecasting, monitoring, and situational awareness of renewable energy

assets. Additionally, the degree of centralisation versus autonomy in the production and pro-

vision of generation forecasts is an ongoing source of tension in the current setup of electricity

market (Joshi and Inskeep, 2023).

The present situation in India with the use of short-term forecasts parallels with learnings from

other regions that have implemented SCF into energy sector decision-making. In Europe, the

electricity sector was among the early adopters of SCF information (Dessai et al., 2013; White

et al., 2017, Cortekar et al., 2020), although numerous barriers to use had to be navigated and

uptake is yet to reach maturity (Bruno Soares et al., 2018). Common issues include a lack of fit

between available forecast products and user requirements, difficulty interpreting SCF products,

a perception amongst users of variable or unverified levels of forecast quality, and a lack of

proof-of-concept demonstration of the value of SCFs (Buontempo et al., 2014; Bruno Soares et

al., 2015, 2016; Goodess et al., 2019; Suhari et al., 2022). Where SCF information is poorly

suited to the organisational contexts and operational remit of specific decision-makers within

the energy sector (or worse yet, is misunderstood), there is a risk that potential cost-savings and
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profit increases will not be realised, consumers will suffer higher energy prices, electricity system

reliability will decrease and, ultimately, the deployment of the most promising of low-carbon

energy technologies will be delayed.

Leveraging SCF information in an Indian electricity system context would require a more de-

tailed understanding of industry decision-makers’ information needs, operational contexts, and

demonstration of SCF value in proof-of-concept or prototype applications. Fortunately, the

existing literature on climate service development provides an entry point for future research

and guidance over best practices in climate information applications (e.g., Lemos et al. (2012)).

Of paramount importance is ensuring the correct information fit amongst users – i.e., whether

the information is considered accurate, credible, salient and timely (Stern et al., 1999; Cash et

al., 2003). Also, the relationship between new and established knowledge – e.g., whether con-

ventional operational practices permit the use of novel information (e.g. Rayner et al., 2005).

Additionally, the degree and quality of collaboration between scientists and practitioners in

developing information are essential (Kirchoff et al., 2013). The importance of boundary or-

ganisations and their role in brokering between knowledge producers and practitioners has been

emphasised in the literature (Buizer et al., 2016), as has the need to communicate uncertainties

effectively (Meyer, 2011; Taylor et al., 2015). Beyond user-reported barriers and enablers of

climate information, examples of prototype SCF products and services for the energy sector

have brought additional learning, including the need for highly detailed specifications for users’

operational procedures (Hanlon et al., 2018, Hewit at al., 2021), the importance local social

and economic setting in shaping the decision context and scope of service design (Golding et

al., 2017) and the potential for design study methods in bridging usability gaps (Christel et al.,

2018).

8.3 Future research

The investigation marks a starting point for future research into weather and climate impacts

on energy systems, both in India and further afield. The following discusses a selection of the

most promising avenues for further study.
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8.3.1 Generation synthesis

1. Further improvements in the accuracy of the wind and solar PV generation synthesis for

India, including additional observational data to improve calibration, seasonally varying

adjustment factors to enhance accuracy, and extra plant-level detail, particularly for solar

PV (e.g., information on single-axis tracking or fixed tilt, inverter load ratio, rooftop or

ground mounted, etc.).

2. The input data and rationale behind the generation synthesis methodology are adaptable

to other weather-dependent energy sources, notably hydroelectric power. Hydropower is

particularly relevant to the northern region of India, where it forms ∼20% of total installed

capacity across all sources and >90% in four northern states (CEA, 2022). Numerous

methodologies based on physical and statistical models exist for relating meteorological

input data to hydropower (e.g., De Felice et al., 2018; Ho et al., 2020). Daily plant-

level hydro generation output data is available for verification purposes from the Indian

National Power Portal3. Generation syntheses from the main renewable sources (wind,

solar PV and hydropower) would then allow for further analysis of generation co-variability

and complementarity.

3. The co-variability of power demand with generation is an important consideration for

power system functioning and informs requirements for grid reinforcement, storage, and

complementary forms of generation. Multidecadal electricity demand syntheses for India

are absent from the literature. But relevant statistical methods exist for relating mete-

orological drivers and historical patterns to power demand (e.g., Thornton et al., 2016)

and could be extended to the Indian case. In the Indian context, air conditioning is an

important emerging weather-sensitive driver of electrical power demand (Barbar et al.,

2021). And other work has noted how the anti-phasing between wind generation and

air temperatures in India contributes to enhanced variability in electricity demand net of

wind generation on intra-seasonal timescales (Dunning et al., 2017). Weather-dependent

co-variability and impacts of net electricity load will be important questions for future

research.

4. The generation synthesis methodology is readably adaptable to other world regions. Al-

though numerous examples exist for various countries (e.g., Kubick, 2013; Ren et al., 2019;

3https://npp.gov.in/dgrReports
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Bloomfield et al., 2021; Gruber et al., 2022), many studies lack detailed characterisation of

existing or future technology characteristics (typically fixed assumptions of power curves

and non-geolocated plant data). Furthermore, validation of generation estimates against

observed generation to correct known biases in meteorological input data is not common

(Staffell and Pfenninger, 2016; Gruber et al., 2019). An increasing number of open data

initiatives enable technology and location specific syntheses4, which are verifiable against

observed power output5.

5. The generation synthesis methodology is adaptable to incorporate other model input

data, such as climate model data (e.g., Hdidouan et al., 2017; Bloomfield et al., 2021),

higher temporal frequency outputs from SCF systems (e.g., Lledo et al., 2019), climate

model control runs, or large hindcast sets to quantify the risk of extreme events for the

power system (e.g., extreme low generation events – Kay et al., 2023) and low-frequency

variability (Wohland et al., 2020). Furthermore, forcing scenarios could be used to further

investigate trends that affect renewable resources (e.g., the declining trends identified for

wind and solar PV in Chapter 4).

8.3.2 Meteorological drivers of generation anomalies

6. A cursory treatment of intraseasonal variability within the Indian summer monsoon season

was presented in Chapter 5. However, intra seasonal oscillations are also prevalent within

the western north Pacific monsoon system (e.g., Wang et al., 2020) and share a common

spatial mode to the seasonally persistent variability pattern (i.e., an anomalous low-level

anticyclone). As this internal variability explains up to half of total monthly internal

variance in low-level zonal winds over the region, an assessment of associated impacts on

wind generation anomalies is desirable.

7. Alternative methodological approaches for assessing weather impacts on generation should

be applied to the Indian case. For example, weather regimes that classify meteorological

variations (usually large-scale circulations) into consistent patterns have been used to

elucidate impacts on renewable power generation and electricity demand (Brayshaw et

al., 2011; Grams et al 2017, Thornton et al 2017, van der Wiel et al., 2019; Wohland et

4E.g., Openly available database of global plant-level power infrastructure: Global Energy Monitor:
https://globalenergymonitor.org/

5E.g., Crowdsourced global database of realtime power data: Electricity Maps:
https://github.com/electricitymaps/electricitymaps-contrib/blob/master/DATA SOURCES.md
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al., 2021). Weather regimes have been applied in the context of rainfall patterns in India,

with seven broadscale circulation categories found suitable to describe year-round rainfall

variability (Neal et al., 2020). Sector-specific impacts (including the energy sector) are

yet to be investigated.

8. The co-variability and co-occurrence of particular generation events warrants further de-

tailed study. The investigation identified generally weak correlation between wind and

solar PV generation anomalies in JJAS, though the very largest negative wind genera-

tion anomalies in JJAS (>1std., n=4) did co-occur with negative solar PV generation

anomalies that ranked in the lower 20th percentile of seasonal anomalies. A degree of

complementarity was also shown in the seasonal generation profile of wind and solar PV,

though the extent of possible balancing is dependent on the relative share between the

two technologies. Further investigation of event co-occurrence ought to consider extreme

events over various timescales, such as the simultaneous high/low generation days across

multi energy sources (e.g., Otero et al., 2022; Richardson et al., 2023). Suitable compound

event metrics will be required to assess both spatial and temporal aspects of compound-

ing (Bloomfield et al., 2024). And impacts beyond the power supply may prove relevant

in multi-sector impact framework, notably the water sector in an Indian context, where

droughts and flooding present multiple energy sector impacts (Joshi et al., 2022).

8.3.3 Generation forecasting

9. A natural extension of the verification of seasonal generation forecasts presented here is

to consider other seasons and energy sources. A comprehensive verification could consider

other observational datasets (including generation syntheses based on other reanalysis

data) and baseline forecasts other than climatology (e.g., statistical-empirical predictions).

10. Model diversity in multi model assessment has been identified as contributing to pooled

skill (e.g., Alessandri et al., 2018). And so, a worthwhile extension of the verification would

consider other SCF systems, such as operational models from other Global Producing

Centres, the Asian-Pacific Economic Cooperation Climate Centre, or the modified version

of CFS2 maintained by the Indian Institute of Tropical Meteorology. Furthermore, the

assessment of multi model skill in this thesis considered all ensemble members equally.

An extended analysis could consider the numerous options for preferential weighting or
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selection of ensemble members, e.g., based on past skill (Robertson et al., 2004; Tebaldi,

and Knutti, 2007), machine learning techniques (e.g., Cohen et al., 2019; Gonzalez et al.,

2021), or real-time observations (Brajard et al., 2023).

8.3.4 Scenario analysis

11. The ‘planned expansion’ scenario considered in Chapter 7 represents near-term develop-

ment of wind capacity in India (+40GW). However, significant expansion beyond these

levels of wind capacity is envisaged in national development plans and across multiple

assessments of decarbonisation pathways for India. Typically, an order of magnitude

scale-up over present-day levels of wind and solar PV capacity is required in the 2030

timeframe, up to two orders of magnitude by 2050. Such drastic pace and scale of change

should prompt investigation of additional ‘large expansion’ scenarios and the consequent

effects on generation. Exploring such scenarios with the generation syntheses methods

developed in this thesis will require spatially explicit deployment scenarios. Such sce-

narios would also aid an integrated, cross-sectoral assessment of renewables expansion,

such as the requirements for grid and road infrastructure, land-use planning, and wider

socio-economic and distributional effects.

12. The assessment of generation variability in this thesis was conducted at the scale of re-

gional and country-level aggregations and was unconstrained by the technical limitations

of a real-world power system. Numerous spatial and temporal constraints would modu-

late generation variability in a real power system, including network constraints, inflexible

’must-run’ capacity, the demand profile, etc. Coupling generation syntheses with power

system models that can capture a wider range of electricity system behaviour could elu-

cidate contemporaneous, interactive, and non-linear impacts of different wind and solar

PV configurations. Although power system models have generally improved the repre-

sentation of meteorological variability in recent years (e.g., Ringkjøb et al., 2018), few

power system models and modelling initiatives fully exploit all the possible benefits of

using generation syntheses, i.e., long timeseries at high temporal resolution, with flexible

spatial aggregation and technology parameterisations (e.g., Hilbers et al., 2020).
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8.3.5 Applications

13. Despite the practical relevance of this thesis to power system planning and operations in

India, the investigation was conducted independently of any well-defined practical appli-

cations. Much remains to be learned about the decision contexts and climate information

needs of various actors in the electricity system of India. Future work should determine

the nature of decision contexts facing organisations involved in the operation of wind,

solar PV and associated energy infrastructures, current approaches to decision processes,

existing information inputs, and contingencies made possible by new forecast information.

Determining necessary levels of skill to enable use and whether SCF can attain such levels

for a given region and variable are key factors affecting usability (Crochemore et al., 2021).

Studying weather-dependent decision processes would be of use beyond just SCF for wind

and solar PV and could help identify potential knowledge-value gaps between other climate

information products and energy sector components across other timescales (White et al.,

2022). Key agencies in India to be considered in future cooperation include national6 and

regional load dispatch centres (for the five electricity zones), Renewable Energy Manage-

ment Centres (REMCs) and the Indian Meteorological Department (IMD). The IMD is

the WMO-designated Regional Climate Centre and has considerable experience and input

to the South Asia Seasonal Climate Outlook Forum (SASCOF).

14. The importance of involving practitioners within research efforts extends beyond the de-

velopment of meteorological forecasts for operational decisions. The generation synthesis

methodologies presented in this thesis have relevance to strategic design, planning, and

policy development of an expanded renewables fleet in India and beyond. There exists

considerable appetite amongst national governments for policy-relevant information to

guide national climate strategies (Weber et al. 2018; Krabbe et al. 2015; Kriegler et al.,

2019) and an emerging literature around participatory modelling and ‘climate-scenario

services’ (Auer et al., 2022) provides a blueprint for operationalising the principles of

knowledge co-production (Norstrom et al., 2020). Collaboration with relevant power sec-

tor decision makers7 could provide an opportunity to demonstrate possible applications

of generation syntheses, co-produce new capacity expansion scenarios and accompanying

generation syntheses, and reverse-engineer optimised scenarios (e.g., using practitioner

6The ”National Grid Controller of India Ltd”, formerly Power System Operation Corporation Ltd (POSOCO)
7Particularly, the Ministry of Power and Central Electricity Agency (CEA) in India.
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knowledge to identify particularly unfavourable supply conditions and working backwards

to produce generation syntheses that avoid or are resilient to such conditions). Beyond

their utility in quantifying existing and emerging energy performances and weather-related

risks, generation syntheses could also serve as devices for communicating and translation

between scientists and stakeholders. The established literature on the use of scenarios

as ‘boundary objects’ to support collaboration, reflection, and mediation between diverse

groups of expertise provides an entry point for future research (e.g., Star and Griesemer,

1989; Taylor et al., 2014).

8.4 Conclusion and outlook

This thesis has shown several encouraging results that advance the state of knowledge of energy

meteorology in India. Firstly, accurate generation syntheses provide a means of studying the

statistical properties of key renewable technologies over a range of timescales. Maintaining and

updating generation syntheses, improving data inputs, and expanding their coverage to other

technologies and regions are all important future research tasks. Propagating the methods and

resulting data of generations syntheses can enable numerous applications, such as power system

modelling, economic appraisal and future climate impact assessment.

Second, the links between large-scale meteorological phenomena and generation anomalies in

summer provide a basis for seasonal prediction. Future generation forecasting initiatives should

go beyond the proof-of-concept exposition in this thesis and look to operational seasonal gener-

ation forecasts that can be shared and refined with relevant decision-makers. Regional seasonal

generation outlooks could provide situational awareness for electricity system operators and

facilitate coordination at a broader scale.

Thirdly, plausible modifications to wind and solar PV technologies in the coming years im-

part meaningful changes to India’s energy yield and generation variability. These sensitivity

tests have real-world implications, greatly affecting estimates of future capacity requirements in

technology pathway studies consistent with net-zero climate ambitions. It is hoped that ground

truthing and sensitivity testing of future technology pathway studies with generation synthe-

sis methodologies will become standard practice. Such approaches apply to all world regions

and would help decision-makers appraise the strategic and operational requirements of future

electricity systems.
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Appendix Chapter 5

A.1 Attenuating effect of aerosols on irradiance

To quantify the direct effects of aerosols on total in-plane irradiance (TI, i.e., the sum of direct

and diffuse irradiance components as received by the solar PV array), irradiance fields from

the CERES (Clouds and the Earth’s Radiant Energy System) SYN1deg data product for the

period 2000 to 2022 are run through the celestial geometry equations described in Data and

Methods section 3.2.9. The reason for using the CERES product rather than ERA5 is because

the CERES product includes direct and diffuse irradiance components for no-aerosol (TIna), no

cloud (TInc), and all-sky atmospheric conditions (ERA5 lacks the no-aerosol conditions). With

this additional field, the relative reduction in TI caused by aerosols was determined by (TIna-

TIas)/TIas and the relative reduction in TI caused by clouds by (TInc-TIas)/TIas. Although

the CERES and ERA5 products derive irradiance values with different methods, the differences

in alike irradiance fields in JJAS over India are negligible between the two data products, and

a version of the solar PV generation synthesis constructed with CERES data product shows

comparable accuracy to the ERA5 version (r value of 0.93 for all-India monthly generation from

CERES in the verification period 2017-2021, compared to 0.95 for ERA5).

Figure A.1 shows the mean relative reduction in TI caused by aerosols in JJAS, reaching a

maximum of 25% in the north west of India. Figure A.1c shows the relative mean reduction in

TI caused by clouds in JJAS, reaching a maximum of 92% in central India (and lowest values

of ∼16% in the north west of India – N.B. the different colour scale between Figure A.1a and

A.1c). The standard deviation across the 23 years times series of the relative reduction in TI

caused by aerosols and that caused by clouds are shown in Figure A.1b and A.1d, respectively.

The standard deviation value for the relative reduction in TI caused by clouds is approximately

double that caused by aerosol across peninsular India.

190



Chapter A. Appendix Chapter 5 A.1. Attenuating effect of aerosols on irradiance

Figure A.1: mean relative reduction in TI caused by aerosols (a) and clouds (c) in JJAS,
standard deviation in the relative reduction in TI caused by aerosols (b) and clouds (d), and
proportion of total AOD from sulphate aerosols (e) and mineral dust (f).

Figure A.1e shows the proportion of total AOD from sulphate aerosols and Figure A.1f the

proportion from mineral dust. These two figures make use of the speciated AOD fields available

in MERRA2, considering averages over the period 1980-2022. Sulphate aerosols dominate in

central and eastern peninsular India, whereas mineral dust is the dominant share of total AOD

over desert regions of the Middle east and a small region confined to the north west of India.
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Appendix Chapter 6

B.1 Over/underconfidence and the ratio of predictable compo-

nents

Systematic differences in the variability characteristics of a forecast ensemble compared to ob-

servations will degrade measures of forecast quality (Wilks, 2011). For a perfect model, the

relative strength of signal and noise in the model (i.e., the fraction of total variability that

is predictable) would equal that of observations (Eade et al., 2014). The signal apparent in

the observed climate (i.e., the predictable component) is routinely estimated as the fraction

of observed variance explained by model ensemble mean hindcasts (Wang et al., 2006; Eade

et al., 2014). The signal-to-noise ratio in the model, can be defined by the ratio of the variance

of the ensemble mean to the mean variance of each ensemble member (Kumar, 2009). The

Ratio of Predictable Components (RPC) was introduced by Eade et al. (2014) to estimate the

signal-to-noise ratio in climate forecasts. Because the numerator of this metric includes the

correlation coefficient of the ensemble mean with observations, the measure is only meaningful

when there is forecast skill. For a perfect forecast, the RPC should be 1. An RPC value greater

than unity indicates underconfidence and an over-dispersive forecast, where the ensemble mean

agrees well with observations, but less well with each ensemble member, thus underestimating

the predictability of the real world. Conversely, where the noise of the SCF system is less

than the equivalent observed estimate, the ensemble members will be too close to the ensemble

mean, suggesting that the true forecast uncertainty is underestimated (Weigel et al., 2009).

This situation is indicative of overconfident or under-dispersive forecasts, with a falsely inflated

sharpness, which are likely unreliable (Chevuturi et al., 2021).

Figure B.1 shows the RPC values for the variables relevant to the predictors discussed in Chapter

7. RPC values slightly below unity within the tropics suggest moderate overconfidence within
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this region, which is a feature commonly found in seasonal forecasts (Weisheimer et al., 2011)

and mirrors a similar finding with MSLP in boreal wintertime with the ECMWF System 4 model

(Baker et al., 2018). Conversely, regions with RPC>1 are less widespread with an exception

over South Asia, where RPC>1 for MSLP (Figure B.2d). This appears to coincide with the

ISM trough; a zone experiencing much variability due to the passage of low-pressure system

during the summer monsoon period.

An RPC value greater than unity indicates underconfidence and an over-dispersive forecast,

where the ensemble mean agrees well with observations but less well with each ensemble member,

thus underestimating the predictability of the real world.

c d

Figure B.1: Ratio of predictable components for JJAS 1-month lead hindcasts of 4 variables.
Stippling signifies where RPC is significantly different unity at the 90% level, based on a boot-
strap resampling method (N.B., the null hypothesis that RPC is not different from 1 is rejected
at the 90% level when the 5-95% confidence interval of the distribution of RPC values does not
include the value 1). Regions in grey are where ensemble mean correlation with observations is
negative.

c d

Figure B.2: As for Figure B.1 but zoomed to South Asian region. Green boxes indicate regions
over which area-averaged hindcast skill is evaluated.

Regions where RPC>1, imply a larger ensemble size is required to achieve forecast skill (Scaife
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and Smith, 2018). This is demonstrated in Figure B.3a by plotting the correlation between

the ensemble mean and observations as a function of ensemble size for MSLP averaged over

the green box in Figure B.3d. The correlation values begin to asymptote at approximately

12 ensemble members. This contrasts with a levelling-off in ensemble mean correlation with

ensemble size at approximately 4-5 members for the slightly overconfident forecasts of 10m

wind speeds and total cloud cover (Figure B.3b and B.3c, respectively, corresponding with area

averages of green boxes in Figure B.2a and B.2b, respectively). Underconfidence can be tested

by computing the skill of the ensemble mean when predicting individual ensemble members, the

so-called perfect model test (red lines in Figure B.3). The MSLP case consistently shows higher

skill for the model predicting observations than predicting itself, while both the 10m wind speed

and total cloud cover cases show better skill for predicting single ensemble members than the

real world, as expected. This so-called signal-to-noise paradox has been widely identified in

the extratropics (e.g. Eade et al. (2014), Kumar et al. (2014), Scaife et al. (2014), and Scaife

and Smith (2018)), though overestimates of the predictability of tropical rainfall have also been

documented in East Africa (Walker et al., 2019).

Figure B.3: Correlation between the ensemble mean MSLP (a)/10m wind speeds (b)/total
cloud cover (c) with equivalent observations as a function of ensemble size (red line). Average
correlation between the ensemble mean MSLP (a)/10m wind speeds (b)/total cloud cover (c)
with individual ensemble members.

As overconfidence (RPC<1) prevails in almost all regions of the tropics for these candidate

predictor variables (see Table B.1), the conventional methods of forecast calibration described

in Section 3.4.2, namely Climate Conserving Recalibration, is justified as a means of inflating

ensemble variance to improve the reliability of forecasts.
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Wind Solar PV

10m wind 0.92 TCC 0.82
EOF1 850hPa u-winds 0.97 Niño3.4 + EQWIN 0.91
WNPi 0.94 EOF2 850hPa winds 0.90

ISMi 0.80

Table B.1: Table A1: RPC values for candidate predictors of JJAS wind and solar PV generation
anomalies. Values in bold are significantly different from 1 at the 90% level, using a bootstrap
resampling method. The null hypothesis that RPC is not different from one is rejected at the
90% level when the 5-95% confidence interval of the distribution of RPC values does not include
the value 1.
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Joaqúın Muñoz-Sabater, Julien Nicolas, Raluca Radu, Dinand Schepers, et al. (2021). “The

ERA5 global reanalysis: Preliminary extension to 1950”. In: Quarterly Journal of the Royal

Meteorological Society 147.741, pp. 4186–4227.

Belmonte Rivas, Maria and Ad Stoffelen (2019). “Characterizing ERA-Interim and ERA5 sur-

face wind biases using ASCAT”. In: Ocean Science 15.3, pp. 831–852.

Benedetti, Angela and Frédéric Vitart (2018). “Can the direct effect of aerosols improve sub-

seasonal predictability?” In: Monthly Weather Review 146.10, pp. 3481–3498.

Bergen, Arthur R (2009). Power systems analysis. Pearson Education India.

Bett, Philip and Hazel Thornton (2016). “The climatological relationships between wind and

solar energy supply in Britain”. In: Renewable Energy 87, pp. 96–110.

Bett, Philip E, Hazel E Thornton, Julia F Lockwood, Adam A Scaife, Nicola Golding, Chris

Hewitt, Rong Zhu, Peiqun Zhang, and Chaofan Li (2017). “Skill and reliability of seasonal

forecasts for the Chinese energy sector”. In: Journal of Applied Meteorology and Climatology

56.11, pp. 3099–3114.

Bett, Philip E, Hazel E Thornton, Alberto Troccoli, Matteo De Felice, Emma Suckling, Lau-

rent Dubus, Yves-Marie Saint-Drenan, and David J Brayshaw (2022). “A simplified seasonal

forecasting strategy, applied to wind and solar power in Europe”. In: Climate services 27,

p. 100318.

Bhattacharya, Subhadip, Rangan Banerjee, Ariel Liebman, and Roger Dargaville (2022). “Analysing

the impact of lockdown due to the COVID-19 pandemic on the Indian electricity sector”. In:

International Journal of Electrical Power & Energy Systems 141, p. 108097.

Bhattacharya, Subhadip, Rangan Banerjee, Venkatasailanathan Ramadesigan, Ariel Liebman,

and Roger Dargaville (2024). “Bending the emission curve—The role of renewables and nu-

clear power in achieving a net-zero power system in India”. In: Renewable and Sustainable

Energy Reviews 189, p. 113954.

199



REFERENCES REFERENCES

Bianchi, Emilio, Tomás Guozden, and Roberto Kozulj (2022). “Assessing low frequency varia-

tions in solar and wind power and their climatic teleconnections”. In: Renewable Energy 190,

pp. 560–571.

Bistline, John (2021). “Variability in deeply decarbonized electricity systems”. In: Environmen-

tal Science & Technology 55.9, pp. 5629–5635.

Bistline, John, Geoffrey Blanford, Trieu Mai, and James Merrick (2021). “Modeling variable

renewable energy and storage in the power sector”. In: Energy Policy 156, p. 112424.

Bjerknes, Jakob (1969). “Atmospheric teleconnections from the equatorial Pacific”. In: Monthly

Weather Review 97.3, pp. 163–172.
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Gutiérrez, José M, Daniel San-Mart́ın, Swen Brands, R Manzanas, and S Herrera (2013). “Re-

assessing statistical downscaling techniques for their robust application under climate change

conditions”. In: Journal of Climate 26.1, pp. 171–188.
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Somoza, Marco Turco, Judit Carrillo, and Ricardo M Trigo (2023). “An Action-Oriented

Approach to Make the Most of the Wind and Solar Power Complementarity”. In: Earth’s

Future 11.6, e2022EF003332.

Jerez, Sonia, Françoise Thais, Isabelle Tobin, Martin Wild, Augustin Colette, Pascal Yiou, and

Robert Vautard (2015). “The CLIMIX model: a tool to create and evaluate spatially-resolved

scenarios of photovoltaic and wind power development”. In: Renewable and Sustainable En-

ergy Reviews 42, pp. 1–15.

Jerez, Sonia and Ricardo M Trigo (2013). “Time-scale and extent at which large-scale circulation

modes determine the wind and solar potential in the Iberian Peninsula”. In: Environmental

Research Letters 8.4, p. 044035.

Jin, Qinjian, Zong-Liang Yang, and Jiangfeng Wei (2016). “Seasonal responses of Indian summer

monsoon to dust aerosols in the Middle East, India, and China”. In: Journal of Climate 29.17,

pp. 6329–6349.

Johnson, Stephanie J, Timothy N Stockdale, Laura Ferranti, Magdalena A Balmaseda, Franco

Molteni, Linus Magnusson, Steffen Tietsche, Damien Decremer, Antje Weisheimer, Gianpaolo

Balsamo, et al. (2019). “SEAS5: the new ECMWF seasonal forecast system”. In: Geoscientific

Model Development 12.3, pp. 1087–1117.

Johnson, Stephanie J, Andrew Turner, Steven Woolnough, Gill Martin, and Craig MacLachlan

(2017). “An assessment of Indian monsoon seasonal forecasts and mechanisms underlying

monsoon interannual variability in the Met Office GloSea5-GC2 system”. In: Climate Dy-

namics 48, pp. 1447–1465.

Jolliffe, Ian T and David B Stephenson (2012). Forecast verification: a practitioner’s guide in

atmospheric science. John Wiley & Sons.

Joseph, PV and Anu Simon (2005). “Weakening trend of the southwest monsoon current through

peninsular India from 1950 to the present”. In: Current Science, pp. 687–694.

Joshi, Mohit and Sarah Inskeep (2023). Institutional Framework of Variable Renewable Energy

Forecasting in India.

219



REFERENCES REFERENCES

Joshi, Mohit, David Palchak, Thushara De Silva, and Gord Stephen (2022). Reliability and Re-

siliency in South Asia’s Power Sector-Pathways for Research, Modeling, and Implementation.

Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States).

Joskow, Paul L (2011). “Comparing the costs of intermittent and dispatchable electricity gen-

erating technologies”. In: American Economic Review 101.3, pp. 238–241.
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Molina, Maŕıa O, Claudia Gutiérrez, and Enrique Sánchez (2021). “Comparison of ERA5 sur-

face wind speed climatologies over Europe with observations from the HadISD dataset”. In:

International Journal of Climatology 41.10, pp. 4864–4878.

Mooley, DA and B Parthasarathy (1983). “Variability of the Indian summer monsoon and

tropical circulation features”. In: Monthly Weather Review 111.5, pp. 967–978.

Mooley, DA and J Shukla (1987). Characteristics of the westward-moving summer monsoon

low pressure systems over the Indian region and their relationship with the monsoon rainfall.

University of Maryland, Department of Meteorology, Center for Ocean-Land.

227

https://mnre.gov.in/img/documents/uploads/file_s-1681211407657.pdf
https://mnre.gov.in/img/documents/uploads/file_s-1681211407657.pdf
https://mnre.gov.in/document/strategy-paper-for-establishment-of-offshore-wind-energy-projects/
https://mnre.gov.in/document/strategy-paper-for-establishment-of-offshore-wind-energy-projects/


REFERENCES REFERENCES

MoP (2021). Development of Power Market in India, Phase 1: Implementation of Market-Based

Economic Dispatch (MBED).

Morcrette, J-J, O Boucher, L Jones, D Salmond, P Bechtold, A Beljaars, A Benedetti, A Bonet,

JW Kaiser, M Razinger, et al. (2009). “Aerosol analysis and forecast in the European Cen-

tre for medium-range weather forecasts integrated forecast system: Forward modeling”. In:

Journal of Geophysical Research: Atmospheres 114.D6.

Moron, Vincent, Andrew W Robertson, and Michael Ghil (2012). “Impact of the modulated

annual cycle and intraseasonal oscillation on daily-to-interannual rainfall variability across

monsoonal India”. In: Climate Dynamics 38, pp. 2409–2435.

MOSPI (2021). Energy Statistics India 2021. Ministry of Statistics and Programme Implemen-

tation Government of India.

Mulcahy, JP, DN Walters, Nicolas Bellouin, and SF Milton (2014). “Impacts of increasing

the aerosol complexity in the Met Office global numerical weather prediction model”. In:

Atmospheric Chemistry and Physics 14.9, pp. 4749–4778.

Murakami, Masato (1976). “Analysis of summer monsoon fluctuations over India”. In: Journal

of the Meteorological Society of Japan. Ser. II 54.1, pp. 15–31.

Murcia, Juan Pablo, Matti Juhani Koivisto, Graziela Luzia, Bjarke T Olsen, Andrea N Hah-

mann, Poul Ejnar Sørensen, and Magnus Als (2022). “Validation of European-scale simulated

wind speed and wind generation time series”. In: Applied Energy 305, p. 117794.

Murphy, Allan H (1973). “A new vector partition of the probability score”. In: Journal of

Applied Meteorology and Climatology 12.4, pp. 595–600.

– (1977). “The value of climatological, categorical and probabilistic forecasts in the cost-loss

ratio situation”. In: Monthly Weather Review 105.7, pp. 803–816.

– (1993). “What is a good forecast? An essay on the nature of goodness in weather forecasting”.

In: Weather and forecasting 8.2, pp. 281–293.

Nagababu, Garlapati, Surendra Singh Kachhwaha, Natansh K Naidu, and Vimal Savsani (2017).

“Application of reanalysis data to estimate offshore wind potential in EEZ of India based on

marine ecosystem considerations”. In: Energy 118, pp. 622–631.

Nie, Huiwen and Yan Guo (2019). “An evaluation of East Asian summer monsoon forecast

with the North American Multimodel Ensemble hindcast data”. In: International Journal of

Climatology 39.12, pp. 4838–4852.

228



REFERENCES REFERENCES

NITI Aayog (2022). Geospatial Energy Map of India. Online. Available at: https://www.niti.

gov.in/energy-swaraj-geospatial-energy-map-india-presents-immense-potential-

and-opportunities. Accessed: 22nd November 2022.

Norgaard, Per and Hannele Holttinen (2004). “A multi-turbine power curve approach”. In:

Nordic wind power conference. Vol. 1. Chalmers, pp. 1–2.

NREL (2023). India’s Action Plan for Power Sector Decarbonisation. Golden, Colorado.: Na-

tional Renewable Energy Laboratory (NREL).

Okumus, Inci and Ali Dinler (2016). “Current status of wind energy forecasting and a hybrid

method for hourly predictions”. In: Energy Conversion and Management 123, pp. 362–371.

Olauson, Jon (2018). “ERA5: The new champion of wind power modelling?” In: Renewable

Energy 126, pp. 322–331.

Olauson, Jon, Mohd Nasir Ayob, Mikael Bergkvist, Nicole Carpman, Valeria Castellucci, Anders

Goude, David Lingfors, Rafael Waters, and Joakim Widén (2016). “Net load variability in

Nordic countries with a highly or fully renewable power system”. In: Nature Energy 1.12,

pp. 1–8.

Olauson, Jon and Mikael Bergkvist (2015). “Modelling the Swedish wind power production

using MERRA reanalysis data”. In: Renewable Energy 76, pp. 717–725.

Olauson, Jon, Per Edström, and Jesper Rydén (2017). “Wind turbine performance decline in

Sweden”. In: Wind Energy 20.12, pp. 2049–2053.

Orlov, Anton, Jana Sillmann, and Ilaria Vigo (2020). “Better seasonal forecasts for the renewable

energy industry”. In: Nature Energy 5.2, pp. 108–110.

Padma Kumari, B, Anil L Londhe, Samuel Daniel, and Dattatray B Jadhav (2007). “Obser-

vational evidence of solar dimming: Offsetting surface warming over India”. In: Geophysical

Research Letters 34.21.

Pai, DS and M Rajeevan (2006). “Empirical prediction of Indian summer monsoon rainfall

with different lead periods based on global SST anomalies”. In: Meteorology and Atmospheric

Physics 92.1, pp. 33–43.

Pai, DS, M Rajeevan, OP Sreejith, B Mukhopadhyay, and NS Satbha (2014). “Development of

a new high spatial resolution (0.25× 0.25) long period (1901-2010) daily gridded rainfall data

set over India and its comparison with existing data sets over the region”. In: Mausam 65.1,

pp. 1–18.

229

https://www.niti.gov.in/energy-swaraj-geospatial-energy-map-india-presents-immense-potential-and-opportunities
https://www.niti.gov.in/energy-swaraj-geospatial-energy-map-india-presents-immense-potential-and-opportunities
https://www.niti.gov.in/energy-swaraj-geospatial-energy-map-india-presents-immense-potential-and-opportunities


REFERENCES REFERENCES

Palchak, David, Jaquelin Cochran, Ranjit Deshmukh, Ali Ehlen, R Soonee, S Narasimhan, Mohit

Joshi, Brendan McBennett, Michael Milligan, Priya Sreedharan, et al. (2017). GREENING

THE GRID: pathways to integrate 175 gigawatts of renewable energy into India’s electric

grid, vol. I—national study. National Renewable Energy Laboratory (NREL).

Palin, Erika J, Adam A Scaife, Emily Wallace, Edward CD Pope, Alberto Arribas, and Anca

Brookshaw (2016). “Skillful seasonal forecasts of winter disruption to the UK transport sys-

tem”. In: Journal of Applied Meteorology and Climatology 55.2, pp. 325–344.

Palmer, Tim N (2000). “Predicting uncertainty in forecasts of weather and climate”. In: Reports

on progress in Physics 63.2, p. 71.

Palmer, TN (1994). “Chaos and predictability in forecasting the monsoon”. In: Proc. Indian

Nat. Sci. Acad. Vol. 60, pp. 57–66.

Pan, J, F Zhang, and J Guo (2021). New energy technology research: Opportunities and chal-

lenges. Tech. rep. Springer Nature Limited.

Pant, GB and Shri B Parthasarathy (1981). “Some aspects of an association between the south-

ern oscillation and Indian summer monsoon”. In: Archives for Meteorology, Geophysics, and

Bioclimatology Series B 29.3, pp. 245–252.

Patel, Ravi P, Garlapati Nagababu, Surendra Singh Kachhwaha, and VV Arun Kumar Surisetty

(2022). “A revised offshore wind resource assessment and site selection along the Indian coast

using ERA5 near-hub-height wind products”. In: Ocean Engineering 254, p. 111341.

Pease, Patrick P, Vatche P Tchakerian, and Neil W Tindale (1998). “Aerosols over the Arabian

Sea: geochemistry and source areas for aeolian desert dust”. In: Journal of Arid Environments

39.3, pp. 477–496.

Pfenninger, Stefan, Joseph DeCarolis, Lion Hirth, Sylvain Quoilin, and Iain Staffell (2017). “The

importance of open data and software: Is energy research lagging behind?” In: Energy Policy

101, pp. 211–215.

Pfenninger, Stefan, Adam Hawkes, and James Keirstead (2014). “Energy systems modeling for

twenty-first century energy challenges”. In: Renewable and Sustainable Energy Reviews 33,

pp. 74–86.

Pfenninger, Stefan and Iain Staffell (2016). “Long-term patterns of European PV output using

30 years of validated hourly reanalysis and satellite data”. In: Energy 114, pp. 1251–1265.

230



REFERENCES REFERENCES

Phadke, Amol, Ranjit Bharvirkar, and Jagmeet Khangura (2012). Reassessing wind potential

estimates for India: economic and policy implications. Lawrence Berkeley National Labora-

tory.

PIB (2023a). Central Electricity Authority notifies the National Electricity Plan for the period

of 2022-32. Online. Available at: https://pib.gov.in/PressReleaseIframePage.aspx?

PRID=1928750 Accessed: 11th January 2023.

– (2023b). India’s National Climate Research agenda released at International Climate Research

Conclave. Online. Available at: https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1927516.

Accessed: 2nd December 2023.

Pillai, Prasanth A, Suryachandra A Rao, Kiran V. Gangadharan, Maheswar Pradhan, Ankur

Srivastava, and Deepesh K Jain (2022). “Impact of reduced ENSO variability and amplitude

on ISMR prediction in the long-lead forecasts of monsoon mission CFS”. In: International

Journal of Climatology 42.16, pp. 9166–9181.

Poletti, Stephen and Iain Staffell (2021). “Understanding New Zealand’s wind resources as a

route to 100% renewable electricity”. In: Renewable Energy 170, pp. 449–461.

Pozo-Vázquez, D, J Tovar-Pescador, SR Gámiz-Fortis, MJ Esteban-Parra, and Y Castro-Dı́ez

(2004). “NAO and solar radiation variability in the European North Atlantic region”. In:

Geophysical Research Letters 31.5.

Prasad, Anup K, Ramesh P Singh, and Menas Kafatos (2006). “Influence of coal based ther-

mal power plants on aerosol optical properties in the Indo-Gangetic basin”. In: Geophysical

Research Letters 33.5.

Praveen, V, S Sandeep, and RS Ajayamohan (2015). “On the relationship between mean mon-

soon precipitation and low pressure systems in climate model simulations”. In: Journal of

Climate 28.13, pp. 5305–5324.

Preethi, B, RH Kripalani, and K Krishna Kumar (2010). “Indian summer monsoon rainfall

variability in global coupled ocean-atmospheric models”. In: Climate Dynamics 35, pp. 1521–

1539.

Prospero, Joseph M, Paul Ginoux, Omar Torres, Sharon E Nicholson, and Thomas E Gill

(2002). “Environmental characterization of global sources of atmospheric soil dust identified

with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product”.

In: Reviews of geophysics 40.1, pp. 2–1.

231

https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1928750
https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1928750


REFERENCES REFERENCES

Pryor, SC and RJ Barthelmie (2011). “Assessing climate change impacts on the near-term

stability of the wind energy resource over the United States”. In: Proceedings of the National

Academy of Sciences 108.20, pp. 8167–8171.

Qian, Cheng and Tianjun Zhou (2014). “Multidecadal variability of North China aridity and

its relationship to PDO during 1900–2010”. In: Journal of Climate 27.3, pp. 1210–1222.

Qian, Yun, MG Flanner, LR Leung, and Weiguo Wang (2011). “Sensitivity studies on the

impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon

climate”. In: Atmospheric Chemistry and Physics 11.5, pp. 1929–1948.

Rajeevan, M and PA Francis (2007). “Monsoon variability: Links to major oscillations over the

equatorial Pacific and Indian oceans”. In: Current Science 93.2, pp. 182–194.

Rajeevan, M, Sulochana Gadgil, and Jyoti Bhate (2010). “Active and break spells of the Indian

summer monsoon”. In: Journal of earth system science 119, pp. 229–247.

Rajeevan, M, CK Unnikrishnan, Jyoti Bhate, K Niranjan Kumar, and PP Sreekala (2012a).

“Northeast monsoon over India: variability and prediction”. In: Meteorological Applications

19.2, pp. 226–236.

Rajeevan, M, CK Unnikrishnan, and B Preethi (2012b). “Evaluation of the ENSEMBLES multi-

model seasonal forecasts of Indian summer monsoon variability”. In: Climate Dynamics 38,

pp. 2257–2274.

Ramachandra, TV, Rishabh Jain, and Gautham Krishnadas (2011). “Hotspots of solar potential

in India”. In: Renewable and sustainable energy reviews 15.6, pp. 3178–3186.

Ramamurthy, K (1969). Monsoon of India: some aspects of the ‘break’ in the Indian southwest

monsoon during July and August. India Meteorological Department New Delhi, pp. 1–57.

Ramanathan, Veerabhadran, Christine Chung, Dongchul Kim, T Bettge, L Buja, Jeffrey T

Kiehl, Warren M Washington, Qiang Fu, Devraj R Sikka, and Martin Wild (2005). “Atmo-

spheric brown clouds: Impacts on South Asian climate and hydrological cycle”. In: Proceedings

of the National Academy of Sciences 102.15, pp. 5326–5333.

Ramdas, Bhukya, J Bastin, B Krishnan, T Suresh Kumar, JC David Solomon, and K Balaraman

(2022). “Validation of Global Wind Atlas for India”. In: 2022 IEEE International Power and

Renewable Energy Conference (IPRECON). IEEE, pp. 1–6.
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Šúri, Marcel, Thomas A Huld, Ewan D Dunlop, and Heinz A Ossenbrink (2007). “Potential of

solar electricity generation in the European Union member states and candidate countries”.

In: Solar energy 81.10, pp. 1295–1305.

238



REFERENCES REFERENCES

Suzlon (2023). Suzlon secures order for their 3 MW series turbines from Juniper Green Energy

Private Limited of 50.4 MW. Online. Available at: https://www.suzlon.com/press-release-

detail/450/suzlon-secures-order-for-their-3-mw-series-turbines-from-juniper-green-energy-private-

limited-of-504-mw. Accessed: 20th November 2023.

Swisher, Philip, Juan Pablo Murcia Leon, Juan Gea-Bermúdez, Matti Koivisto, Helge Aagaard
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