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Abstract  

The application of survival analysis to estimate the rate at which disease or clinical events occur within 

cost-effectiveness models has become increasingly sophisticated. Relatively little attention has been 

paid to how survival analysis methods can be used to reflect underlying disease and clinical processes. 

This thesis uses three case studies to develop and demonstrate approaches that more explicitly link 

decision-analytic model structures and accompanying survival analyses to the underlying disease and 

treatment processes of interest. This allows for more comprehensive use of evidence, and explicit 

assessment of the effects of heterogeneity and uncertainty. The developed approaches allow disease 

and treatment mechanisms driving heterogeneity in event risk and relative treatment effects to be 

reflected within cost-effectiveness analyses. This allows cost-effectiveness results to robustly reflect 

differences between patients and inform transparent optimised recommendations. The 

implementation of different decision modelling approaches across the case studies reveals the 

importance of more explicitly linking the model structure and survival analyses. Partitioned survival 

models, by directly modelling overall survival, disconnect overall survival from other modelled disease 

and treatment processes. This can limit the potential to use evidence on intermediate outcomes to 

inform overall survival extrapolations, and limit exploration of how uncertainty in the extrapolation 

period impacts on decision uncertainty. State transition models underpinned by multi-state survival 

analysis can allow a fuller use of evidence and exploration of uncertainty, but can introduce practical 

challenges and technical uncertainties. The choice of when to implement each approach requires a 

model conceptualisation process that considers the anticipated importance of heterogeneity in 

survival outcomes, the nature of direct and external survival evidence, and the key areas of 

uncertainty. The importance of this work has been recognised by a broad range of decision makers 

and has directly informed NICE Technology Appraisal recommendations; clinical guidelines and 

methods guidance. 
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1. Introduction  

Central features of cost-effectiveness analysis to support resource 

allocation decisions  

Cost-effectiveness analysis has become an important consideration when assessing whether new 

and existing health care interventions should be used in different contexts. The core assessment 

being made when assessing whether an intervention is cost-effective is whether the health benefits 

attributable to the use of the intervention outweigh the health opportunity costs incurred as 

resources used to fund the intervention are not available to serve other health care priorities 

(Drummond et al., 2015). This assessment of the overall health implications of an intervention, 

including health opportunity costs, can be summarised quantitively as net health effects, where 

positive net health effects indicate that an intervention is expected to improve population health 

accounting for opportunity costs. In order to make this assessment it is necessary to estimate the 

comparative health benefits of the intervention and alternatives, their resource use and cost 

implications, and how much health those resources could deliver elsewhere in the health system (a 

measure of health opportunity cost) (Drummond et al., 2015). 

Decision analysis provides a quantitative framework for integrating evidence to assess the 

implications of different courses of action. This in turn provides an explicit basis for reflecting the 

trade-offs associated with different choices. In the context of health care decision making, these 

trade-offs relate to the different health benefits, health risks and opportunity costs associated with 

different interventions. Decision models are often used to support assessments of cost-effectiveness 

as they allow comparison of all relevant policy options, extrapolation across an appropriate time 

horizon, reflection of heterogeneity, inclusion of a wide range of relevant evidence and exploration 

of a range of uncertainties (Briggs, Sculpher and Claxton, 2006; Drummond et al., 2015). A number 

of features can be considered central to ensure decision models are developed in a way that 

appropriately supports health care resource allocation decisions.  

Reflecting relevant disease and clinical processes 

Decision models are typically structured to describe key disease or clinical processes and the effect 

of interventions on these processes. This is particularly important when the model is used to 

extrapolate beyond the observed data from which treatment efficacy has been estimated (which 

may take the form of a trial, observational study, or, routinely collected healthcare data) in order to 

estimate long-term outcomes and costs (Latimer and Adler, 2022). In some instances, the structural 

links (i.e. mathematical relationships) between disease or clinical events, and the evidence 
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quantifying these links, will provide the only mechanism for generating key model outputs. For 

example, in hepatitis C, decision models have been used to predict long-term outcomes by 

combining clinical trial estimates of short-term sustained virologic response (SVR) and broader 

evidence relating SVR to liver damage and mortality (Faria et al., 2016). In other cases, the evidence 

from which treatment efficacy has been estimated may include all relevant outcomes, but there may 

remain a need to extrapolate these data if they are incomplete. An example of this would be a 

clinical trial collecting evidence on treatment response, progression-free and overall survival in 

advanced cancer where a proportion of patients remain alive at the end of follow-up. Here, the 

model structure provides the mechanism for extrapolating patients’ experience of health events 

beyond the period of follow-up (Williams et al., 2016).  

In addition, structuring decision models to describe key disease or clinical processes ensures that 

models can draw upon evidence collected in relation to these processes; that the consequences of 

these processes for health and resource use are captured; and provides a framework through which 

different judgements can be explored quantitively within a deliberative process. These judgements 

may relate to the relevance and quality of different sources of evidence, or the structural links 

between processes (National Institute for Health and Care Excellence, 2022). 

Development of a decision model requires a series of decisions about which disease or clinical 

processes to reflect and how those should be quantitively represented. This process of model 

conceptualisation ideally comprises two stages (Kaltenthaler et al., 2011). The first stage involves 

developing a description of the disease or clinical processes relevant to the impacts of the 

intervention. The second stage involves specifying a quantitative model design, including anticipated 

evidence requirements.  

Reflecting all relevant evidence 

Decision models comprise of a set of parameters, and the structural relationships between those 

parameters and the final outcomes of interest, such as costs and QALYs. Parameters are quantitative 

descriptions of disease or clinical processes or their implications for costs and QALYs. They can 

include the rates at which patients experience health events, the resource consumption associated 

with specific interventions or health events and the impact of intervention and health events on 

health-related quality of life (HRQoL). A key principle of decision modelling is that parameters should 

be estimated in a way that reflects all relevant evidence. Depending on the expected importance of 

the parameter and the resource and time available for model development, systematic reviews or 

other systematic approaches are recommended to retrieve relevant evidence (Kaltenthaler et al., 

2011). 



9 
 

Where multiple sources of evidence are relevant to a particular parameter or group of parameters, 

these should be synthesised using appropriate statistical methods (Welton et al., 2012). Significant 

methodological advances have been made in the development and application of evidence synthesis 

methods for use within decision models (Welton et al., 2012; Dias et al., 2018). The process of 

structuring models and assessing the credibility of their parameter inputs and projections should 

also account for all relevant evidence. Where evidence is non-existent or sparse, the evidence 

considered relevant may be broadened to include expert opinion or empirical evidence that is 

indirectly relevant (Nikolaidis et al., 2021) e.g. historical observational evidence, evidence on 

outcomes not of direct relevance to patients, evidence relating to treatments with a similar 

mechanism of action (Jackson et al., 2017; Palmer et al., 2023). 

Quantifying heterogeneity 

Heterogeneity refers to the differences across patients in costs or outcomes that can be associated 

with observed characteristics. These differences may arise due to differences in underlying 

prognosis, the relative effects of treatments, costs or HRQoL. Decision models can be used to 

generate predictions of health benefits and costs in subgroups of patients defined by clinical and/or 

demographic characteristics. This in turn offers the potential to make different decisions across 

subgroups where the evidence indicates that an intervention may be cost-effective in some 

subgroups but not others. Compared to making decisions based on average cost-effectiveness in 

broader populations, reflecting heterogeneity analytically and in decisions has the potential to 

generate gains in overall population health (Coyle, Buxton and O'Brien, 2003; Drummond et al., 

2015). 

Quantifying uncertainty 

Any assessment of the health benefits and costs of alternative interventions is uncertain. This 

uncertainty arises from a number of sources. In the context of decision models, parameter inputs 

will be associated with uncertainty, as will the structural assumptions within the decision model and 

any underlying statistical models (Drummond et al., 2015). One considerable source of uncertainty in 

economic evaluations results from incomplete follow up of study subjects for the final outcomes of 

interest. For example, in a review of National Institute for Health and Care Excellence (NICE) 

technology appraisals of cancer drugs 41% were considered by independent academic reviewers or a 

NICE Committee to have immature overall survival evidence (Tai et al., 2021). 
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Characterising this uncertainty is required to correctly estimate expected health benefits and costs1, 

to determine the robustness of the results to alternative assumptions (parameter and structural) 

and can also be used to assess the value of conducting further research. The value of research can 

be assessed quantitatively by using decision models to generate estimates of the value of 

information (Claxton, 1999). Quantifying the net health implications of investing in research 

alongside the net health implications of adoption allows a broader set of policy options to be 

evaluated (Claxton et al., 2012). These include (i) adopt without further research; (ii) approve 

alongside further research and (iii) delay widespread use until research reports (only in research). 

The consequences of these policies will depend on the net health benefits of adoption and research 

but also any opportunity costs associated with early adoption (which may include the reduced 

likelihood of research going ahead once a technology is adopted, the possibility that decisions 

cannot be reversed even if new research suggests an intervention is not cost-effective, or sunk costs 

incurred due to adoption). An explicit framework has been developed to allow these considerations 

to be assessed quantitatively (Claxton et al., 2012). 

 

The role of survival analysis in decision models  

Decision models often characterise conditions using a series of clinical states or events (e.g. 

mortality, cardiovascular events, cancer progression, relapses from symptom control, treatment 

discontinuation) (Briggs, Sculpher and Claxton, 2006; Siebert et al., 2012). For many interventions 

the rate at which patients progress through these health states, and how this varies across 

interventions, will be one of the key determinants of cost-effectiveness, as this determines life 

expectancy, health care costs and HRQoL.  

Evidence on the occurrence of clinical events is often available as survival data which describe the 

time until a health-related event occurs. Survival data have particular features and a set of statistical 

methods called survival analysis are available to analyse these data. The distinct feature of survival 

data is that patients may not reach the endpoint of interest due to study completion or loss to follow 

up. In these instances, the time to event is unknown, though the patient still contributes important 

information, as we know that their survival time is at least as long as the time for which they were 

observed.  This is known as right censoring (Collett, 2003). In the context of clinical studies, survival 

data are typically described using non- or semi-parametric statistical approaches such as Kaplan 

 
1 Use of average parameter values (rather than propagating the uncertainty in parameter inputs through the 
model and then averaging across the resulting model outputs) can result in inaccurate model outputs where 
there are non-linear relationships between parameter inputs and model outputs. 
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Meier estimates and Cox proportional hazards models. These methods are often selected as they 

can be used to assess the statistical significance of differences between interventions without 

making assumptions about how event rates change over time (more formally, the hazard function) 

and in the case of the Cox model assume only that hazards are proportional between interventions. 

However, they have limited utility in the context of decision models where there is a need to 

estimate absolute differences between interventions, and to extrapolate event rates beyond the 

period observed in the study.  

Extrapolation is necessary where differences in clinical events between interventions are expected 

to persist beyond the period of study follow up (Latimer and Adler, 2022). This may be due to 

ongoing effects of treatments on event rates, or ongoing prognostic differences due to differences 

across treatment in health state occupancy at the end of study follow up.  

Parametric survival models assume that survival times follow a specific distribution which allows the 

hazard and survival function to be expressed as a mathematical function of time. This allows survival 

and other related quantities to be predicted at any time point including beyond the period of study 

follow up. Parametric survival models have been used extensively within decision models to describe 

the evolution of the hazard over time and facilitate extrapolation (Bell Gorrod et al., 2019). 

Where a range of comparators are considered relevant, network meta-analysis (NMA) is often used 

within decision models to inform comparative effectiveness (Drummond et al., 2015). Network 

meta-analyses of survival outcomes frequently synthesise hazard ratio estimates that were 

generated by fitting Cox models within individual studies. Hazard ratio estimates from a NMA can be 

applied to a baseline parametric estimate of the hazard function (Woods et al., 2017). 

Over the last 15 years there have been significant advancements in the use of parametric survival 

models to inform decision models, in recognition that choice of parametric model can be an 

important driver of cost-effectiveness analysis and reimbursement decision making. This has 

emphasised the importance of systematically assessing and selecting between alternative 

parametric models; assessing the credibility of long-term extrapolations using external data; and has 

examined the role of more complex parametric models (Jackson et al., 2017; Latimer, 2011; 

Rutherford et al., 2020). Network meta-analysis methods have been developed that allow hazard 

ratios to vary over time (Freeman et al., 2022).  These methods may be relevant where an 

assumption of proportional hazards across treatment options is not considered appropriate.  
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Expanding survival analytic approaches to support decision making  

The application of survival analysis to estimate the rate at which disease or clinical events occur 

within decision models has become increasingly sophisticated in recent years with a focus on the 

development and selection of statistical models (Latimer, 2011; Rutherford et al., 2020). This body of 

work has focused on modelling single clinical events (or composite events) in the context of a single 

population with a view to providing plausible long-term extrapolations. The uncertainty surrounding 

extrapolations has been highlighted as a major source of decision uncertainty in many health 

technology appraisals (HTAs) (Bell Gorrod et al., 2019). Best practice guidance recommends that 

uncertainty in the parameters of survival models should be reflected in probabilistic sensitivity 

analysis, and that structural uncertainties relating to the choice of parametric form and duration of 

treatment effect be examined via scenario analyses (Latimer, 2011).  

The central features of cost-effectiveness analysis to support resource allocation decisions outlined 

above have received relatively little attention. Despite the statistical models being developed to 

inform decision models, little consideration has been given to how these statistical models should 

reflect the interconnected disease and clinical processes that the decision models aim to describe. 

Heterogeneity in clinical event rates or the effects of treatment is rarely the focus of methodological 

developments or applied work (Ward et al., 2021). Though best practice guidance has emphasised 

the importance of exploring the sensitivity of model results to alternative plausible extrapolations, 

this has focused on the statistical specification of models that estimate time to an individual 

endpoint. This has led to a focus on time trends in those endpoints rather than a more 

comprehensive consideration of available evidence. For example, analyses of overall survival may 

ignore relevant evidence relating to intermediate endpoints or external datasets. Limited attention 

has been paid to how choices of decision model structures and accompanying survival analyses can 

reflect uncertainties in the disease and treatment processes. For example, models that directly 

extrapolate observed overall survival data rather than predicting overall survival as a function of 

disease and treatment processes, may be ill equipped to address uncertainties relating to the receipt 

of subsequent health care interventions as these are not explicitly modelled.  

Hence there is a need to develop and apply survival analytic approaches within decision models that 

reflect all relevant evidence, allow heterogeneities in event risks to be reflected in cost-effectiveness 

results, and quantify the broad range of uncertainties inherent in model extrapolations. This is 

important to ensure decision making: is informed by the full range of evidence; can focus 

intervention access on those patient populations in whom usage is expected to deliver population 
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health benefits; and, can ensure resource allocation and research decisions reflect extrapolation 

uncertainties.  

Aims, objectives and structure of the thesis   

The aim of this thesis is to provide a coherent and original contribution to advancing the methods, 

application and interpretation of cost-effectiveness analysis informed by survival data. More 

specifically, the objectives of the thesis are to demonstrates how more explicitly linking model 

structures and accompanying survival analyses to the underlying disease and treatment processes of 

interest can be achieved and how this can allow for more comprehensive use of evidence, and 

assessment of the effects of heterogeneity and uncertainty. This in turn should support better 

decisions by facilitating the development of models that more appropriately characterise costs and 

outcomes, and their uncertainty. The remainder of the thesis is structured in three sections followed 

by a discussion:   

● Section 2 develops and applies decision modelling and survival analytic methods to address 

each of the central features outlined above. This section draws on the case study presented 

in Paper 1 which examines the cost-effectiveness of bendamustine compared to 

chlorambucil as a first line treatment for chronic lymphocytic leukaemia (CLL) and quantifies 

the value of further research to support decision making in this setting. Paper 1 uses semi-

Markov modelling informed by interrelated parametric survival analyses. These approaches 

allow the cost-effectiveness analysis to reflect the effects of patients’ depth of response and 

re-treatment/subsequent treatments on HRQoL and costs; to reflect heterogeneity and to 

reflect uncertainties in the disease and treatment process. As well as highlighting the 

contributions of paper 1 this section identifies a series of areas requiring further 

development which are the focus of sections 3 and 4.  

● Section 3 develops and applies a cohesive set of statistical and decision analytic modelling 

methods to allow a more comprehensive exploration of heterogeneity arising from patient 

risk factors and the intervention mechanisms of action, using evidence from multiple 

randomised controlled trials (RCTs). This section draws on the case study presented across 

Papers 2 and 3 of the use of implantable cardioverter defibrillators (ICD) and cardiac 

resynchronisation therapy (CRT) for people with ventricular arrhythmias or heart failure. 

Papers 2 and 3 demonstrate how parametric survival modelling and individual patient data 

(IPD) NMA can be combined to provide a more comprehensive assessment of heterogeneity.  

This section also develops approaches for presenting large numbers of subgroup results to 

decision makers.  
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● Section 4 appraises alternative methods for using survival analysis within decision models to 

reflect interconnected disease and treatment processes. This section draws on 

methodological and empirical work presented in papers 4 and 5. Paper 4 critically appraises 

Partitioned Survival Modelling (PSM), a frequently used modelling approach in oncology, and 

assesses the relative merits of an alternative approach - state transition models (STMs) 

underpinned by multi-state survival analysis.  Paper 5 demonstrates the application of an 

STM and multi-state survival analysis within a cost-effectiveness analysis of docetaxel in 

prostate cancer patients initiating hormone therapy. 

The discussion section summarises the contribution of the thesis and provides guidance on how 

those tasked with developing cost-effectiveness analyses to support decision making can assess 

when the more complex approaches presented within this thesis may be appropriate.  

 

2. Developing decision and survival models to address 

the central features of cost-effectiveness analysis: a 

case study in chronic lymphocytic leukaemia  
Paper 1 examines the cost-effectiveness of bendamustine when compared to chlorambucil as a first 

line treatment for CLL and quantifies the value of further research to support decision making in this 

setting. Decision modelling was necessary as the pivotal clinical trial (02CLLIII) provided immature 

outcome data (i.e. a large proportion of patients had not experienced all clinical events of interest) 

and very limited evidence on HRQoL or resource use. 

This paper departs from typical approaches to decision modelling in oncology which often focus on 

disease progression and death as the events of interest (Hoyle et al., 2010). A semi-Markov model 

was developed that tracked depth of response to treatment, progression, and the occurrence and 

outcomes of further lines of treatment (see Figure 1, Paper 1). This more detailed structure allowed 

the model to reflect the increased HRQoL and durability associated with deeper remissions, and the 

cost and HRQoL implications of receipt of re-treatment and subsequent lines of treatment. This was 

important in the assessment of incremental value as the choice of re-treatment was dependent on 

first line treatment choice and outcomes.  

For the base case analysis, parametric survival models were developed using IPD from the 02CLLIII 

trial to estimate time to progression in each response group, time from progression to re-treatment 
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and overall survival. Systematically identified evidence from the literature was used to provide 

information on outcomes following re-treatment and subsequent lines of treatment. Parametric 

survival analyses of the overall survival endpoint were used to directly estimate the probability of 

death, independently of patients experience of other clinical events. This ensured a close 

correspondence between model predictions of overall survival and the Kaplan Meier estimates of 

survival for the trial follow-up period (Figure 3, Paper 1). The competing risk nature of progression 

(or re-treatment) and death events was accounted for by considering death as a censoring event in 

the time to progression and time from progression to re-treatment parametric survival analyses. The 

probability of experiencing a non-fatal event in a given model cycle was then calculated as the 

predicted probability of remaining alive multiplied by the probability of experiencing the event of 

interest (with each probability calculated from the corresponding parametric model).  

Given the population in focus for this evaluation – patients unfit for more aggressive treatment – the 

analysis examined whether bendamustine was cost-effective across patients with different 

characteristics considered to be predictive of their frailty. Cost-effectiveness results were generated 

for three subgroups: people aged 65 years or older; people with a World Health Organisation (WHO) 

performance status of 1 or higher; and people aged 65 years or older who also had a WHO 

performance status of 1 or higher. These analyses used subgroup-specific estimates of treatment 

response and included a variable indicating membership of the relevant subgroup within the 

parametric survival modelling.  

As well as providing a more accurate representation of patients’ cost and HRQoL trajectories, the 

more detailed modelling of the underlying disease and treatment process allowed for a more 

thorough examination of key parameter and structural uncertainties. This included examination of 

the nature of the effects of first line treatment choice on patient outcomes (e.g. did bendamustine 

influence only response probability or also time to progression conditional upon response?), the 

duration of response that would support re-treatment, and outcomes following subsequent lines of 

treatment. Estimates of the expected value of perfect information (EVPI) were also presented for 

different measures of health opportunity cost to inform assessments of whether further research 

could represent a worthwhile use of health care resources.  

The analyses developed provided the basis for decision making in the NICE technology appraisal 

TA216. An independent review of the model within this process found the model to be high quality, 

more sophisticated than previous models, and that the modelling of the disease and treatment 

process better reflected the realities of CLL disease management than previous models (National 

Institute for Health and Care Excellence, 2011). The NICE committee concurred with this view 
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though noted that data available to inform subsequent line therapy outcomes were sparse. The 

analysis supported the positive appraisal decision for bendamustine which was recommended for 

routine use in the NHS across the eligible population (National Institute for Health and Care 

Excellence, 2011). An adapted version of the analyses supported the recommendation of 

bendamustine for routine use in Scotland (Scottish Medicines Consortium, 2011). 

Although this paper addresses all the central features outlined in Section 1 of the thesis, the 

methods used highlighted a number of areas where the use of survival analysis within decision 

models could be further developed to meet the needs of decision makers.  

In all analyses overall survival was independent of the modelled disease and treatment processes. 

Overall survival data from the pivotal trial was immature with ~ 60% remaining alive at 5 years. The 

decision model developed therefore had to extrapolate mortality for the majority of patients over 

many years. Only the information on the mortality outcome informs these extrapolations, despite 

the availability of near complete response data and relatively mature data on time to progression. 

This reflected a lack of available methods to build a robust structural link between intermediate 

outcomes and survival at the time of this work. This suggests that alternative approaches could be 

developed that better utilise all available evidence to support overall survival extrapolations. The 

disconnect between the disease and treatment processes and overall survival also reduces the utility 

of the analyses undertaken to quantify uncertainty.  Analyses examining the sensitivity of model 

results to treatment outcomes and pathways assumed that overall survival was invariant to these 

parameters, an assumption which lacks face validity. The assumption of independence between 

overall survival and intermediate endpoints was also made within the probabilistic sensitivity 

analysis. It is therefore possible that the estimates of EVPI generated from the model may not have 

accurately characterised the value of further research.  

The analysis of heterogeneity bifurcated the population within 02CLLIII using a series of definitions 

of frailty and assumed that these markers of frailty did not modify the effect of treatment on time to 

progression (conditional upon response).  An analysis that considered all patient profiles of interest 

(e.g. patients aged <65 with performance status of zero) may have indicated subgroups in which 

bendamustine was not cost-effective thus allowing for more refined reimbursement 

recommendations. In addition, a more extensive exploration of the effects of patient characteristics 

on model parameters may have come to different conclusions about the cost-effectiveness of 

bendamustine in specific subgroups.  

Conclusions  
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The survival analyses and decision modelling methods employed in Paper 1 provided significant 

utility to decision makers by more accurately characterising patients trajectory of treatments and 

outcomes than previous models, exposing this to sensitivity analysis and exploring key areas of 

heterogeneity. However, the methods used extrapolated overall survival without considering 

evidence relating to intermediate endpoints, were unable to capture the effects of clinical 

uncertainties on overall survival (and therefore long-term costs and QALYs), and provided a limited 

quantification of heterogeneity. This suggests that further development and application of methods 

is required to ensure resource allocation and research decisions appropriately reflect all available 

evidence and characterise heterogeneity and uncertainty appropriately. These methods are further 

developed in the remainder of the thesis.  

3. Developing statistical and decision modelling 

methods to address heterogeneity and synthesise 

survival evidence  
This section of the thesis develops and applies a cohesive set of statistical and decision analytic 

modelling methods to allow an extensive exploration of heterogeneity. This section draws on the 

cardiovascular device case study presented in Papers 2 and 3. The analyses were developed to 

assess the cost-effectiveness of three implantable cardiac devices: ICDs, CRT pacemakers (CRT-Ps) 

and combination therapy (CRT-D) in patients with heart failure with reduced ejection fraction. The 

analyses were undertaken to inform NICE technology appraisal TA314 (National Institute for Health 

and Care Excellence, 2014). Decision modelling was required to simultaneously compare all devices, 

synthesise multiple sources of evidence, and, quantify the effects of patient characteristics on costs 

and outcomes. A thorough exploration of heterogeneity within the cost-effectiveness analysis was 

considered appropriate as patients eligible for the implantable devices were highly heterogeneous in 

terms of their baseline mortality risk, and, expected survival benefits of device implantation. It was 

therefore expected that the most effective and cost-effective intervention choice would vary across 

subgroups. 

The decision model developed has two health states (alive and dead), directly models overall 

survival, and is parameterised using a series of survival analyses and other regression equations to 

predict: mortality, hospitalisation rates, and, HRQoL. The statistical models were developed using 

IPD from a network of 13 RCTs including 12,638 patients (see Figure 1, Paper 2). Ideally given the 

nature of the mortality effects of the devices, with ICDs preventing sudden cardiac death and CRT 

preventing death due to pump failure, the model would have reflected individual causes of death. 
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However, this was not feasible due to missing, inconsistent and unreliable data on cause of death. 

The potential implications of the mechanisms of action of the devices were instead considered when 

estimating all-cause mortality parameters and in sensitivity analyses.  

Mortality outcomes were the single most influential determinant of cost-effectiveness in this setting 

(National Institute for Health and Care Excellence, 2014). The decision model is used to predict 

mortality probabilities for medical therapy and each implantable device for subgroups of patients 

with different profiles of characteristics. The decision model is parameterised using two survival 

models: a relative treatment effect model and a baseline risk model. Relative treatment effects are 

estimated using an adjusted IPD NMA which provides relative treatment effects for each device 

compared to medical therapy conditional upon a series of patient characteristics. The relative 

treatment effects are applied to an estimate of baseline mortality risk for patients receiving medical 

therapy. Baseline risk estimates for medical therapy were derived from a parametric survival model 

which allowed baseline risk to be extrapolated over time and to vary according to patient 

characteristics. Baseline clinical and demographic characteristics were selected based on data 

availability and information on their expected importance as baseline risk or relative treatment 

effect modifiers obtained from clinical risk scores, trial subgroup analyses and clinical advice. 

The NMA of overall survival uses a Cox proportional hazards model stratified by trial. The model 

synthesises time-to-event IPD and generates estimates of parameters that can be combined to 

estimate relative treatment effects (hazard ratios) for patients with different baseline 

characteristics. QRS duration, left bundle branch block morphology (LBBB), age and gender were 

included as treatment effect modifiers in the final model.  

NMA was necessary as no trial had compared all the devices of interest, and allowed inclusion of all 

relevant trials. IPD NMA is considered the ‘gold standard’ NMA approach in general, and particularly 

where patient characteristics that differ across trials are expected to modify relative treatment 

effects (Debray et al., 2018). This is likely to lead to heterogeneity2 and inconsistency3 in the network 

of evidence, which, in turn, will mean any relative treatment effect estimates derived via NMA are 

likely to be biased and the population to which they pertain unclear. IPD NMA was therefore 

necessary to produce meaningful estimates of relative treatment effects in any population and 

allowed treatment effects to be estimated for relevant subgroups. Alternative simpler approaches 

suffer from a number of drawbacks. Synthesis of subgroup data is challenging due to inconsistencies 

in trial reporting, reduces precision, and allows only a univariate exploration of heterogeneity (Riley 

 
2 Variation in the same treatment effect across studies. 
3 Variation between direct and indirect estimates of the same treatment effect. 
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et al., 2023). Meta-regression using aggregate data is subject to specific sources of bias and lacks 

statistical power, particularly when multiple patient characteristics are modelled and/or interaction 

effects are expected to differ across interventions (Debray et al., 2018; Dias et al., 2013). 

The specification of the IPD NMA model allowed the impact of patient characteristics on the efficacy 

of devices to vary by device (i.e. ‘unrelated’ interaction terms were modelled (Dias et al., 2013)). This 

reflected the aforementioned different causes of death targeted by the devices. Interaction terms 

were, somewhat unusually, expected to differ across devices in direction of effect as well as 

magnitude. For example, men are more likely to experience sudden cardiac death than women. Due 

to the competing nature of different causes of death, male participants were therefore expected to 

experience higher ICD effects and lower CRT effects on all-cause mortality.  

Baseline risk of mortality for patients receiving medical therapy was estimated using a parametric 

model fitted to all patients receiving medical therapy across trials. The final model developed 

included age, gender, baseline New York Heart Association (NYHA) class, ischaemic aetiology, QRS 

duration, and left ventricular ejection fraction (LVEF) as covariables. Reflecting heterogeneity in 

baseline risk is important as this influences the absolute mortality risk reduction associated with 

intervention and therefore cost-effectiveness (Drummond et al., 2015). 

Although much attention has been paid to the selection of the functional form and specification of 

treatment effects within parametric survival models (Latimer, 2011), little guidance has been given 

regarding the assessment of models including patient characteristics. This was addressed within 

Paper 3 using two approaches: statistical tests for the proportional hazards assumption were applied 

for each patient characteristic, and comparisons of parametric model predictions to Kaplan Meier 

survival estimates were conducted for each quartile of predicted risk4 (Collett, 2003). This revealed 

that, for patients with lower mortality risk, extrapolated mortality fell below that expected amongst 

the general population, which was considered implausible. To address this, the parametric models 

were extended to include age as a time-dependent variable. This approach allowed observed 

information about mortality risk in patients who were older at the time of entry in to the trials to 

inform the long-term extrapolations of younger patients as they aged in the model. Though this 

approach produced similar predictions within the period of trial follow up, it produced more 

plausible predictions in the extrapolation period for individuals at lower mortality risk (Association of 

British Healthcare Industries, 2012). 

 
4 Predicted risk was calculated using the linear predictor component of the parametric model.  
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The IPD NMA predicted relative treatment effects on the hazard ratio scale that varied considerably 

according to the modelled patient characteristics (Paper 2, Table 2). The parametric modelling of 

mortality in patients receiving medical therapy predicted that baseline mortality risk also varied 

considerably according to patient characteristics (Paper 3, Appendix 5). Unlike conventional 

subgroup analyses which present results stratified by a single characteristic, these multivariate 

analyses allow the mortality parameters within the cost-effectiveness modelling to simultaneously 

reflect a patient’s profile of characteristics. Model predictions were generated for all combinations 

of those characteristics included within the statistical estimation models, including characteristics 

not expected to appear within NICE guidance. This reflected concerns that survival models (in 

particular) are unlikely to be linear in patients’ characteristics so using average covariate values for 

these characteristics may produce inaccurate estimates of costs and effects. This resulted in the 

model being run for 4,992 subgroups. Reducing the number of subgroups to a manageable number 

was important to ensure that results could be appropriately deliberated by a NICE committee. This 

was achieved by only stratifying results by those characteristics which influenced cost-effectiveness 

(LVEF and ischemic aetiology were not strong determinants of cost-effectiveness and therefore 

results were not presented stratified by these characteristics) and that the decision maker was 

expected to consider within their guidance (results were not presented by age and gender as these 

are protected characteristics) (National Institute for Health and Care Excellence, 2013). Final results 

were presented for 24 subgroups defined by NYHA class, QRS duration and presence or absence of 

LBBB.5 

Previous cost-effectiveness studies that have conducted a detailed analysis of heterogeneity have 

generally been designed to support recommendations stratified according to a single measure of 

event risk (Briggs et al., 2007; Davis et al., 2016). This is appropriate where the main source of 

heterogeneity is a patients’ baseline risk of a single/composite event and clinicians have ready 

access to an appropriate risk prediction algorithm. This approach was not appropriate in the current 

context where patient characteristics influenced multiple aspects of the model, and to different 

degrees. For example, NYHA class has a strong effect on baseline mortality risk but was not included 

in the treatment effect model whereas QRS had a much smaller effect on baseline mortality risk but 

was a determinant of treatment effect. We therefore developed the approach outlined above in 

order to condense the number of subgroups presented to decision makers whilst ensuring that the 

 
5 Within these subgroups, costs and QALYs were calculated as a weighted average across patients with 

different ages, genders, LVEFs, and ischemic statuses.  
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results related to patient subgroups that were clinically meaningful and differentiated with respect 

to cost-effectiveness.  

Uncertainty was addressed through scenarios and probabilistic analyses. An important set of 

scenario analyses related to the duration of the effects of the devices on all-cause mortality, which 

were expected to reduce over time as patients aged and were more likely to die of other causes. This 

effect was not explicitly modelled as the model did not consider separate causes of death. Instead, a 

gradual waning of the treatment effect was applied and sensitivity analyses were conducted on the 

point at which the treatment effect begins to wane. Probabilistic sensitivity analyses were used to 

quantify the effects of parameter uncertainty on predicted costs and outcomes. These analyses 

showed that although accounting for heterogeneity substantively increased parameter uncertainty, 

this did not necessarily translate to increased decision uncertainty. For example, for a patient who is 

female, 65 years old, NYHA class II, has ischemic aetiology, QRS ≥150ms, LVEF 20-25%, and LBBB, the 

magnitude of treatment effects of CRT-D and ICD on mortality estimated from the IPD NMA are 

highly uncertain. However, there is little uncertainty as to the preferred device from a cost-

effectiveness perspective (Appendix 16 in (Association of British Healthcare Industries, 2012)). In 

other subgroups decision uncertainty was high. The analysis presented could therefore be used to 

identify subgroups and parameters on which further research is likely to be of value, however 

quantifying the value of further research was beyond the scope of these papers. 

The analyses developed provided the basis for decision making in NICE TA314. The approach taken 

allowed the majority of RCT evidence to inform key model parameters (95% of patients identified by 

the systematic review were included in the analysis) and for a detailed exploration of heterogeneity. 

The evidence used was recognised as a “rich and important” data source by the NICE committee 

who also noted that the approach taken “allows consideration of population groups based on clinical 

characteristics that are considered important by clinicians in current clinical practice for making 

decisions about device implantation” (National Institute for Health and Care Excellence, 2014). The 

NICE guidance (Figure 1) clearly distinguished recommendations according to those patient 

characteristics identified as important determinants of cost-effectiveness within the analyses. 

Compared to previous decision modelling and guidance these recommendations focused device 

usage in those patients where it was expected to result in net health gains. For example, in an earlier 

technology appraisal (TA95), CRT-D was compared to CRT-P in a broad population of NYHA III/IV 

patients using a model informed by a meta-analysis of aggregate data. CRT-D was not found to be 

cost-effective at conventional cost-effectiveness thresholds (Fox et al., 2007). Conversely the 

analyses presented in Papers 2 and 3 found that amongst patients with NYHA class III CRT-D was 
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cost-effective at a cost-effectiveness threshold of £30,000/QALY, whereas it was not cost-effective 

amongst patients with NYHA class IV.  

 

Figure 1: NICE guidance for TA314  

© NICE 2014 Implantable cardioverter defibrillators and cardiac resynchronisation therapy for arrhythmias and 

heart failure. Available from https://www.nice.org.uk/guidance/ta314/chapter/1-Guidance. All rights reserved. 

Subject to Notice of rights. 

 

The IPD NMA has informed international clinical guidelines (Ezekowitz et al., 2017; McDonagh et al., 

2021; Ponikowski et al., 2016). These guidelines had previously relied on informal qualitative 

synthesis of subgroup data and trial inclusion criteria in order to assess heterogeneity. The IPD NMA 

has also been used to inform the treatment effect parameters in published cost-effectiveness 

analyses in Germany and the US (Hadwiger et al., 2021; Shah et al., 2020). 

Conclusions  

Papers 2 and 3 develop and apply methods for reflecting heterogeneity in survival endpoints within 

a decision model. The analyses provided an appropriate vehicle for synthesising all relevant 

evidence, quantifying heterogeneity in a way that reflects the influence of patient characteristics on 

both mortality risk and response to device therapy, extrapolating mortality risk over patients’ 

lifetimes and characterising uncertainty in costs and effects. Despite the large number of potential 

subgroups of interest, results were aggregated to the level considered most relevant to decision 

makers, allowing the analysis to inform clear NICE recommendations.   

 

https://www.nice.org.uk/guidance/ta314/chapter/1-Guidance
https://www.nice.org.uk/terms-and-conditions#notice-of-rights
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4. Structuring decision models and survival analyses 

with multiple survival endpoints 
This section of the thesis explores the implications of different decision model structures (and the 

underpinning survival approaches) for the appropriateness of model extrapolations, and the ability 

of decision models to quantify uncertainty and heterogeneity. The CLL case study presented in 

Section 2 used a detailed semi-Markov process to reflect disease and treatment processes but 

estimated overall survival directly and independently of these processes i.e. using a PSM approach. 

This meant that overall survival extrapolations were not informed by the evidence available on 

intermediate endpoints where the evidence was more mature (>80% of patients had experienced a 

progression-free survival event whereas only ~40% had died), and that the sensitivity analyses did 

not reflect the effects of clinical uncertainties on overall survival. PSM has been used extensively in 

HTAs and published cost-effectiveness analyses (Bullement, Cranmer and Shields, 2019), though no 

guidance was available to determine its appropriateness as a modelling approach to inform policy 

decisions. Paper 4 sought to address this gap by critically appraising PSM and providing 

recommendations on PSM implementation and reporting. A key recommendation of Paper 4 is that 

methods for conducting STM informed by multi-state survival modelling (MSM) should be further 

developed. Paper 5 presents a case study in prostate cancer demonstrating the feasibility of applying 

these methods, and this thesis chapter reflects on the advantages and disadvantages of using this 

approach to support resource allocation decisions.  

Appraising alternative modelling approaches 

Some findings presented in Paper 4 were originally developed as part of a NICE Technical Support 

Document (TSD 19) (Woods et al., 2017). TSDs review the state of the art on a topic, and make 

recommendations on the implementation of methods and reporting standards. Paper 4 summarises 

findings from TSD 19, reviews more recent literature comparing PSMs and STMs, and reviews more 

recent NICE appraisals to understand current practice. This section summarises the key learnings 

from TSD 19 and Paper 4.  

PSMs directly use survival analyses of commonly reported time-to-event endpoints (e.g. in oncology 

this is often the progression-free survival and overall survival endpoints) to derive state 

membership. The survival curves that inform estimates of state membership are typically modelled 

completely independently. Application of PSM therefore models overall survival as independent of 

other clinical events, including those explicitly included within the model structure such as disease 

progression. This contrasts with STMs where overall survival is predicted using information on the 
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rate at which patients progress through different health states (or experience events) and the 

mortality risks associated with these states or events. During the period of study follow up the 

approaches are expected to produce similar results as relationships between endpoints are reflected 

within the available data. However, in the extrapolation period, PSM and STM use different sets of 

information and assumptions, and are, therefore, expected to produce different extrapolations. 

Recent empirical comparisons of the two methods have confirmed that their extrapolations of 

overall survival can differ markedly (Paper 4, Table 2).  

PSM offers several practical advantages. As the survival curves used within PSM often map directly 

to clinical trial endpoints, PSMs can be developed without access to IPD and their predictions 

typically closely follow the study Kaplan Meier survival estimates for the within-study period. 

However, the lack of biological or clinical structure underpinning PSMs limits the extent to which 

sensitivity analyses can quantify clinical uncertainties in the extrapolation period, as demonstrated 

in Section 2.  

Paper 4 and TSD19 recommend that, regardless of modelling approach, cost-effectiveness analyses 

should include tabulations showing the health states in which life year (and QALY) differences 

between interventions occur, and the extent to which they accrue in the observed vs. extrapolation 

periods. Survival curves for individual clinical events for each treatment should be produced to 

support an assessment of whether the degree of benefit in the extrapolation period is clinically 

plausible and where sensitivity analyses should focus. STMs are recognised as an important vehicle 

for exploring clinical uncertainties in the extrapolation period. For example, the effects of 

interventions beyond the point of disease progression are often a significant source of uncertainty 

which could be explored by varying parameters describing post-progression survival within an STM. 

The recommendations in Paper 4 do not suggest that STM replace PSM. Appropriate development of 

STMs requires use of MSM which involves building survival models for each individual transition 

within the STM. At the time of developing Paper 4 there were considerable uncertainties about the 

practicalities and appropriate methodologies for applying MSM in the context of decision models, 

and the available empirical literature indicated that choices made when developing MSMs in this 

context could strongly influence cost-effectiveness and therefore reimbursement decisions. 

The recommendations made within TSD 19 and Paper 4 are now widely cited in submissions to NICE 

and have informed international HTA guidelines on extrapolation and model structure (Haute 

Autorité de Santé, 2020; Health Information and Quality Authority, 2020; Neyt et al., 2020). They 

have also encouraged further methodological work (Majer et al., 2022). Despite the growing interest 
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in STMs informed by MSM, applications of the approach have taken the form of proof-of-concept 

studies (Bongers et al., 2016; Castelli et al., 2007; Williams et al., 2016). These studies have focused 

on statistical estimation rather than the ability of the approach to support decision makers in 

understanding heterogeneity and uncertainty. The case study in the next section shows the 

feasibility of applying STM informed by MSM prospectively with the objective of informing resource 

allocation decisions.  

 

Using state transition models and multi-state survival analysis to 

inform assessments of cost-effectiveness  

Paper 5 shows the feasibility and practicality of applying STM informed by MSM prospectively as the 

primary modelling approach for a major RCT (the STAMPEDE trial (James et al., 2016)). A decision 

model was developed using evidence from STAMPEDE and the literature to assess the cost-

effectiveness of adding docetaxel to standard of care in men with high risk prostate cancer starting 

hormone therapy. Decision modelling was necessary to extrapolate beyond the observed data 

(approximately half of the patients were alive at the point of the primary analysis); and explore 

heterogeneity in the target population. STAMPEDE included patients with metastatic disease for 

whom overall survival data were relatively mature, and those with non-metastatic disease in whom 

there were relatively few deaths and overall survival benefits remained uncertain. The analyses 

provided the first formal economic evaluation of the use of docetaxel in this context. 

Development of the STM and underlying MSM required consideration of which clinical events or 

treatment processes to model, and how these should be linked. The process of model 

conceptualisation was informed by a review of observational data, clinical guidelines and clinical 

advice. This identified a series of health states which were distinct in terms of mortality risks, HRQoL 

and (costly) subsequent treatment. The model structure (Paper 5, Figure 1) captures initial 

treatment failure (development of ‘castrate resistant’ prostate cancer (CRPC)) at which point 

individuals enter one of four CRPC states describing the presence and severity of metastases, 

transitions between these increasingly severe levels of metastatic CRPC; and death due to prostate 

cancer and other causes.  Although a number of trials were relevant to the decision problem the 

base case analysis focused on evidence from STAMPEDE as this was the largest trial, was UK based, 

provided detailed data on resource use and HRQoL, and provided IPD. Sensitivity analyses were 

conducted to explore the impact of including additional evidence. 



26 
 

MSM was used to estimate the rate at which individuals moved through health states. The clinical 

analysis focused on Failure Free Survival (FFS)6 and overall survival endpoints. Development of the 

MSM required a detailed understanding and reshaping of the clinical outcome data from STAMPEDE 

so that there was a time-to-event for each transition within the model structure. Parametric models 

were then fitted to the individual transitions. A joint model was fitted across all events considered 

within the clinical analysis as treatment failure, and covariates were included to allow event rates to 

differ according to patient baseline characteristics and type of treatment failure. This joint modelling 

was considered preferred to statistical modelling of individual transitions as it provided sufficient 

event data to support modelling of a complex baseline hazard; a time-varying treatment effect; and 

inclusion of multiple baseline characteristics.  

Evidence on transitions beyond the point of treatment failure were sparser. Standard parametric 

functions were therefore used to model these transitions, and they included only two covariates: 

treatment allocation and time to treatment failure. Time to treatment failure was included as a 

covariate in subsequent transition models to ensure adequate correspondence over the trial follow-

up between the observed overall survival data and the predictions from the MSM.  This “history 

dependence” in the transition from progression/treatment failure to death has been found in 

previous studies (Majer et al., 2022; Pan et al., 2018; Smare et al., 2019; Williams et al., 2016) and 

suggests that simpler models which ignore patient history when predicting mortality may not 

adequately reflect the underlying disease process, and may not, therefore, represent a suitable basis 

for predicting within-trial and extrapolated overall survival. The decision model uses a patient level 

simulation approach as this approach can be simpler to implement than cohort simulation when 

event rates vary over time and according to patient history (Davis et al., 2014). 

Explicitly modelling the biological and treatment processes using STM and MSM provided a number 

of advantages. Long-term outcomes for patients with non-metastatic disease at baseline were 

simulated using evidence from patients who were metastatic at baseline. Specifically, for non-

metastatic patients who developed metastatic CRPC, mortality transition probabilities were 

generalised from patients who were metastatic at baseline and subsequently developed CRPC. This 

generalisation of evidence was supported by literature and clinical advice, and made the best use of 

the available evidence by utilising the rich data available on FFS for non-metastatic patients, and 

using data from metastatic patients who had received upfront docetaxel or standard of care from 

the point of treatment failure until death. Had a PSM approach been applied, overall survival 

 
6 This was defined as a composite endpoint of time to biochemical failure, local progression, local/lymph 
node/metastatic progression or death from prostate cancer. 
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extrapolations amongst non-metastatic patients would have relied on immature overall survival 

evidence introducing additional uncertainty into the decision-making process. 

The STM also allowed the long-term cost implications of docetaxel initiation to be appropriately 

characterised. An important cost driver is whether patients develop CRPC as this typically 

determines the use of expensive subsequent therapies (Paper 5, Table 1). By explicitly modelling 

whether a patient’s first event is treatment failure or death the model can account for the 

proportion of patients who are expected to experience CRPC and require further lines of treatment. 

This is not feasible within PSM which does not quantify which of those patients making an FFS 

transition experience non-fatal failure (as oppose to death). 

The approach taken allowed heterogeneity in FFS and overall survival to be reflected. Heterogeneity 

in the baseline risk of FFS was modelled by including patient characteristics within the FFS 

parametric model (Paper 5, Supplementary Tables 5-6). Heterogeneity in overall survival reflects 

heterogeneity in FFS (as overall survival is the sum of time spent in all health states), and the 

modelled relationships between FFS and subsequent transitions. An analysis of heterogeneity using 

PSM would have required direct estimation of the impact of patient characteristics on overall 

survival. Though this would have been feasible for metastatic patients it is likely to have lacked 

robustness for non-metastatic patients due to the low number of deaths (James et al., 2016). 

The STM structure ensured that sensitivity analyses exploring uncertainties in the disease and 

treatment process fully reflected effects on overall survival. For example, during the trial an 

important change in practice was observed with many patients with non-metastatic disease now 

expected to receive radiotherapy alongside hormone therapy initiation. This was simulated within 

the model by including planned radiotherapy as a covariate in the FFS analysis and re-running the 

model assuming all patients with non-metastatic disease had planned radiotherapy. The effects on 

overall survival were propagated through the model via the mechanisms described above. Again, 

this would have been challenging within a PSM due to the paucity of evidence with which to 

estimate direct effects of radiotherapy on overall survival.  

A systematic review and meta-analysis identified 15 other RCTs that were relevant to the decision 

problem (Vale et al., 2016). It was therefore important to assess the effects on cost-effectiveness of 

including relative treatment effect estimates based on this broader body of evidence. This was 

achieved within the model by adjusting the docetaxel FFS and overall survival curves predicted by 

the MSM and STM to reflect the treatment effect estimates from the meta-analysis. This provided 

revised estimates of time spent in the failure free state and across the CRPC states. The 
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proportionate change in time spent across the CRPC states was assumed to apply equally to each 

individual CRPC state.  

This case study confirmed some potential limitations identified within Paper 4 of using STM 

informed by MSM. Both the decision model and parametric survival modelling were significantly 

more complex than a PSM. This had important implications for the resources required to develop 

and validate analyses. The wider range of choices regarding model structure and the 

parameterisation of the survival models also potentially increase the risk for “gaming” where there 

are commercial or other vested interests in the results of the evaluation. In addition, although the 

explicit modelling of the disease process increased transparency around the mechanisms driving the 

model results, these mechanisms were complex and driven by many parameters. Though the results 

were reviewed by clinical experts, the extent to which they could fully engage with assessing their 

validity is debatable.  

The findings of this analysis informed NICE recommendations that clinicians offer docetaxel to 

metastatic patients and discuss docetaxel as an option for non-metastatic patients within the eligible 

population (National Institute for Health and Care Excellence, 2019).  

Conclusions  

Paper 4 identifies the assumptions underpinning PSM, highlights the importance of assessing the 

credibility of PSM state membership predictions in the context of all available endpoint data, and 

identifies STM as an important alternative method that requires further development. Paper 5 

implements STM informed by MSM as the primary vehicle for an evaluation. This highlighted its 

advantages in enabling generalisation of evidence to support extrapolation, more accurate 

assessment of costs, and allowing both uncertainty and heterogeneity to be reflected in overall 

survival despite the immaturity of the overall survival evidence. These advantages must be weighed 

against the significant additional complexity of the approach.  

  



29 
 

5. Discussion  
This thesis makes a number of novel and important contributions to advancing the methods, 

application and interpretation of cost-effectiveness analysis informed by survival data. The coherence 

and methodological importance of these developments for improving health care decision making are 

illustrated in the context of three case studies where decision models were developed to assess cost-

effectiveness informed by a range of survival analytic methods. As highlighted within the body of the 

thesis, the work presented has directly informed NICE Technology Appraisal recommendations; UK 

and international clinical guidelines and international methods guidance. This further demonstrates 

the value of these developments for analysts and decision makers, and for improving overall 

population health.    

The approaches developed allowed heterogeneity across patients in clinical event risk and expected 

benefits of treatment to be reflected within cost-effectiveness analyses in a range of contexts 

including when data is available from a single trial or multiple trials, and when the model and survival 

analysis are structured around a single, or multiple, interrelated events. This allowed cost-

effectiveness results to reflect important clinical differences between patients, and, optimised 

recommendations to be made using methodologically robust and transparent analyses.  

The assessment and implementation of different decision modelling approaches within this thesis 

highlights the importance of more explicitly linking the model structure to the required underlying 

survival analyses. Decision model structures that directly model overall survival (the PSM approach) 

were used in two case studies. This showed that as PSM disconnects overall survival from other 

modelled disease and treatment processes, this can limit the ability of evidence on intermediate 

outcomes to inform overall survival extrapolations and limit exploration of key extrapolation 

uncertainties. In contrast, the third case study used a STM approach requiring the development of a 

more complex survival analysis approach (MSM). This allowed a more explicit model of the disease 

and treatment process to be developed allowing fuller use of the overall evidence base and 

exploration of heterogeneity and extrapolation uncertainties. This work highlights how these 

approaches differ in data requirements, assumptions, ability to incorporate external data, and types 

of uncertainty they can most readily characterise. Rather than the PSM being the default approach, 

this work suggests that model choice should be based on a careful process of model conceptualisation 

that considers the nature of the direct and external evidence available, and the nature of the key 

uncertainties within the decision problem at hand. Further research could usefully explore the utility 

of STM and MSM for decision making in the context of other case studies, and explore the implications 

of different modelling approaches for assessments of the value of further research.    
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Approaches to the analysis of survival data to inform cost-effectiveness models, and to evidence 

synthesis of survival data, have evolved significantly since the publication of papers 1-3.  Within papers 

1 and 3, the external validity of overall survival predictions was assessed by comparing predictions 

from the survival models with general population mortality. Recent methodological advances and 

guidance support more explicit incorporation of general population mortality within parametric 

survival models, for example using excess hazard methods (Rutherford et al., 2020; Sweeting et al., 

2023; van Oostrum et al., 2021).  Current best practice would also involve consideration of a broader 

range of external evidence such as additional clinical trial evidence, observational studies or expert 

clinical opinion, and where feasible the application of statistical methods that explicitly incorporate 

this evidence within parametric survival modelling (Bullement et al., 2023; Chaudhary et al., 2023; 

Rutherford et al., 2020; Cope et al., 2019). This additional external evidence is likely to differ from the 

primary clinical evidence in several ways including relevance to the target population, follow-up 

duration, and the nature of summary statistics reported. In this context, the flexibility of Bayesian 

multi-parameter evidence synthesis methods may be especially useful (Chaudhary et al., 2023; Guyot 

et al., 2017; Che, Green and Baio, 2023). Explicit integration of general population mortality, and 

identification and integration of other relevant external evidence within the overall survival models in 

papers 1 and 3, would have improved the validity of the long-term survival predictions.  

Since the publication of papers 2 and 3, approaches for conducting NMA of survival IPD have been 

developed in several ways.  Due to computational constraints the IPD NMA presented in these papers 

was restricted to a fixed effects analysis. Methods are now available that allow for modelling of 

random treatment effects in this context, in a way that is computationally feasible (Freeman and 

Carpenter, 2017). Application of these methods would have allowed for reflection and quantification 

of residual across-trial heterogeneity. This may have improved the fit and credibility of the models, 

and informed selection of effect modifiers. The inclusion of multiple effect modifiers within the NMA 

model runs the risk of overfitting and increased parameter uncertainty, though excluding effects runs 

the risk of missing important characteristics that modify treatment effects (Seo et al., 2021). 

Alternative methods that “shrink” coefficients towards zero have been shown to perform better in 

simulation studies (i.e. give better estimates of the true subgroup-specific treatment effects) (Seo et 

al., 2021). Application of these methods within Paper 2 would have reduced the risk of overfitting and 

would be expected to reduce uncertainty in the effects of the devices on all-cause mortality. How this 

would modify the mean treatment effects within each subgroup presented in Paper 2, or the cost-

effectiveness results within Paper 3, is difficult to predict.  

The novel approaches presented within this thesis often use statistical and decision modelling 

approaches that are complex, introducing additional burden to those tasked with developing and 
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validating cost-effectiveness models, and interpreting their results. It is therefore important to assess 

the conditions under which these more complex approaches may or may not be appropriate, in order 

to ensure the modelling undertaken is proportionate.  

Detailed modelling of heterogeneity in baseline risk is likely to be important where average cost-

effectiveness within a broader population is close to the cost-effectiveness threshold and/or there is 

substantial variation in risks of events that are important determinants of morbidity, mortality or 

resource use. Detailed modelling of heterogeneity in relative treatment effects is likely to be 

appropriate where effect modification is well supported (i.e. is biologically plausible, supported by a 

pre-specified rationale and consistent across studies). Under these circumstances IPD meta-analysis 

or NMA is the gold standard (Riley et al., 2023), though may not always be feasible due to resource 

constraints or data availability. Methods are available to support an assessment of whether IPD-meta-

analysis or NMA is likely to be worthwhile and alternative methods are available (Tudur Smith et al., 

2016). 

External data is likely to be particularly important where trial evidence is immature, and extrapolation 

of within-trial trends in event risk is likely to result in high levels of uncertainty. External evidence may 

take a wide variety of forms and recent studies have shown how external evidence obtained from 

disease registries; general population mortality; meta-analyses of the relationship between surrogate 

and final endpoints; indirectly related clinical trials and formal expert elicitation can be integrated with 

direct trial evidence (Ayers et al., 2022; Batteson et al., 2020; Chaudhary et al., 2023; Cope et al., 2019; 

Creemers et al., 2023; Creemers et al., 2021). The form of external evidence available may influence 

the choice of model structure and accompanying survival analysis. For example, in an evaluation of 

nivolumab for melanoma (Batteson et al., 2020) PSM was applied when using external evidence on 

the surrogate relationship between recurrence free and overall survival to inform overall survival 

predictions, whereas STM was used to incorporate external trial evidence on post-recurrence survival. 

Within the third prostate cancer case study in this thesis, a STM was used to generalise post-failure 

survival outcomes from patients with metastatic disease at baseline to those with non-metastatic 

disease at baseline.  

Research to date has focused on using external data to inform estimates of baseline survival risk. 

Economic evaluation results are also typically sensitive to (long-term) treatment effects on overall 

survival (estimated directly as in PSM or indirectly via multiple parameters as in STMs). Appropriate 

sources of external evidence relating to the effect of treatment may include data for the same product 

in a related clinical context; data for a related product in the same clinical context; or expert opinion 

(Jankovic et al., 2022; Palmer et al., 2023). Further methods research could usefully focus on how 

external evidence on the effects of treatment over time can be integrated within decision models. 
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Given the likely limitations of external evidence on the effects of treatment, novel approaches may be 

warranted. For example, recent mechanistic models describing the dynamics and interrelationship 

between tumour growth and the immune system, and the effects of immunotherapies on these 

processes, have shown promise as a vehicle for predicting survival outcomes (Creemers et al., 2023; 

Creemers et al., 2021). Further work is required to validate these approaches and ascertain their 

relevance in the context of economic evaluation and reimbursement decision making.  

Within Papers 1 and 5, decision analytic modelling approaches were used to reflect the costs and 

outcomes associated with post-progression therapies. These model elements were parameterised by 

both aggregate published evidence and bespoke analysis of IPD. A related question that has been 

addressed in the literature, is how to adjust overall survival evidence from clinical studies where the 

use of subsequent therapies does not reflect clinical practice (Latimer et al., 2014; Skaltsa et al., 2017). 

Further research could usefully explore when these alternative approaches are likely to be most 

appropriate.   

 

Conclusion 

This thesis highlights the importance of approaches that more explicitly link decision-analytic model 

structures and accompanying survival analyses to the underlying disease and treatment processes of 

interest. This allows for more comprehensive use of evidence, and explicit assessment of the effects 

of heterogeneity and uncertainty. The work presented highlights how this can be achieved in a wide 

range of contexts. The choice of when to implement the approaches developed within this thesis will 

rest on a model conceptualisation process that considers the anticipated importance of 

heterogeneity in survival outcomes, the nature of direct and external survival evidence, and which 

aspects of uncertainty it will be important for the modelling approach to reflect.  
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