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A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

Department of Civil and Structural Engineering

Faculty of Engineering

The University of Sheffield

2 September 2024



Declaration

I, Alovya Ahmed Chowdhury, confirm that this thesis is my own work. I am aware of the University’s

Guidance on the Use of Unfair Means (www.sheffield.ac.uk/ssid/unfair-means). This

work has not previously been presented for an award at this, or any other, university.

Alovya Ahmed Chowdhury

2 September 2024

i



Abstract

The second-order discontinuous Galerkin (DG2) solver in LISFLOOD-FP 8.0 incurs an enormous

computational effort in simulating multiscale rapid flow phenomena like tsunamis due to using

a uniform mesh, even with parallelisation on a graphics processing unit (GPU). To reduce the

computational effort – while still achieving similiar levels of DG2 accuracy as on a uniform mesh or

grid – integrating multiwavelet (MW) grid adaptation into the GPU-parallelised DG2 solver (GPU-

DG2) is a compelling research aim for this thesis. Nonetheless, implementing a grid adaptation

algorithm on a GPU is challenging due to major obstacles in achieving coalesced memory access

(aligned memory access by threads) and avoiding warp divergence (different execution paths within

a warp). To overcome these obstacles, initially for a Haar wavelet (HW) grid adaptation algorithm,

three computational ingredients are proposed – a Z-order space-filling curve, a parallel tree traversal

algorithm and an array data structure – to redesign its algorithmic structure and thereby enable

its implementation on the GPU. After assessing the extent to which the proposed computational

ingredients indeed allow for an efficient GPU implementation of the HW grid adaptation algorithm,

their use is extended to now implement a MW grid adaptation algorithm on the GPU and thereby

develop a GPU-parallelised MW adaptive DG2 model (GPU-MWDG2), which is then integrated

into LISFLOOD-FP. To finally analyse the impact of GPU-MWDG2’s grid adaptation capability on

the computational effort and accuracy of DG2 modelling, GPU-MWDG2 is compared against GPU-

DG2 by simulating four realistic test cases of tsunami-induced flooding. The analyses suggest that

GPU-MWDG2 is a better choice than GPU-DG2 for simulating tsunami-induced flooding when

considering test cases that require setting a parameter called the maximum refinement level L to

ten or higher, and where the tsunami complexity is low. For such test cases, GPU-MWDG2 is up

to four times faster than GPU-DG2 while achieving similar levels of DG2 accuracy.
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Chapter 1

Introduction

1.1 Research background

Flooding caused by rapid flow phenomena, i.e. impact events such as dam breaks and tsunamis,

has severely negative effects on human communities. To help mitigate these negative effects, the

extent and severity of flooding caused by such rapid flows are often predicted by running simulations

of real-world flooding scenarios using hydrodynamic modelling frameworks. Yet, these modelling

frameworks must find an appropriate compromise between the accuracy of the flood simulations –

which must be good enough to sufficiently predict real-world flood risk – and the computational

effort required to run the simulations – which must be fast enough for practical use: generally, the

higher the level of accuracy that is desired, the higher the computational effort that must be dealt

with (Teng et al., 2017; Nkwunonwo et al., 2020; Guo et al., 2021; Tom et al., 2022; Kumar et al.,

2023).

When simulating flooding caused by rapid flows, notably in tsunami-induced flooding, hydrody-

namic modelling frameworks based on numerically solving the two-dimensional (2D) shallow water

equations (SWE) impose a relatively low level of computational effort (compared to more compli-

cated equations such as the three-dimensional (3D) Navier-Stokes equations) while still maintaining

an acceptable level of accuracy (Brocchini and Dodd, 2008; Synolakis et al., 2008; Apotsos et al.,

2011; Gayathri et al., 2017). Still, to maintain an acceptable level of accuracy when simulating

multiscale rapid flows, i.e. rapid flows that occur over multiple spatial and temporal scales, the

SWE should be solved using numerical schemes of second-order accuracy or higher to alleviate the

1
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numerical diffusion that would otherwise be introduced by using first-order finite volume (FV1)

schemes (George, 2006; LeVeque et al., 2011; Maćıas et al., 2020a; Ayog et al., 2021).

To achieve second-order accuracy, second-order finite volume (FV2) schemes have been proposed

by several authors (Yoon and Kang, 2004; Begnudelli et al., 2008; Aureli et al., 2008; Castro Dı́az

et al., 2009; Hou et al., 2015; Reis et al., 2018; Zhao et al., 2019; Guerrero Fernández et al.,

2020). An interesting alternative to FV2 schemes however for achieving second-order accuracy

are discontinuous Galerkin (DG) schemes (Aizinger et al., 2017; Kesserwani et al., 2018; Ghostine

et al., 2019; Li and Zhang, 2021). Open-source DG-based hydrodynamic modelling frameworks

are relatively uncommon compared to FV-based ones – see Thetis (Kärnä et al., 2018), SLIM

(Delandmeter et al., 2018), DGSWEM (Dawson et al., 2011), or LISFLOOD-FP 8.0 (Shaw et al.,

2021) as examples. LISFLOOD-FP in particular has a rich set of features for running real-world

flood simulations (Bates and De Roo, 2000) and includes a variety of numerical schemes for solving

the SWE, including a second-order DG (DG2) scheme – which achieves the highest level of accuracy

out of all the numerical schemes in LISFLOOD-FP 8.0, but also imposes the highest computational

effort (Shaw et al., 2021). To handle the high computational effort imposed by the DG2 model

in LISFLOOD-FP 8.0, it has been parallelised on the graphics processing unit (GPU) to enable

higher speedups – referred to hereafter in this thesis as “GPU-DG2”. Nevertheless, even with the

speedups afforded by GPU-parallelisation, using GPU-DG2 to simulate multiscale rapid flows on a

uniform mesh or grid leads to an excessively high computational effort due to the enormous number

of cells from using a uniform grid to cover a real-world test case area (Popinet, 2012; Lee, 2017;

Kesserwani and Sharifian, 2023).

To reduce the computational effort imposed by the cell count of a uniform grid, FV-based

tsunami models typically employ grid resolution adaptation to generate a non-uniform grid that

uses fewer cells than a uniform grid (Popinet and Rickard, 2007; LeVeque et al., 2011; Berger

et al., 2011; Popinet, 2011, 2012; Liang et al., 2015a; Lee, 2017; de la Asunción and Castro, 2017;

Ferreira and Bader, 2017; Park et al., 2019; Qin et al., 2019). Comparatively though, the use of grid

adaptation in DG-based tsunami models seems to be less common: most works focus on simulating

global-scale tsunami propagation (Blaise and St-Cyr, 2012; Blaise et al., 2013; Bonev et al., 2018;

Hajihassanpour et al., 2019; Arpaia et al., 2022), while a limited number of works have focussed

on simulating tsunami-induced flooding (Gandham et al., 2015; Castro et al., 2016; Rannabauer
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et al., 2018). Overall, it seems that there are no DG-based hydrodynamic modelling frameworks

that have combined both GPU-parallelisation and grid adaptation to thereby substantially reduce

the computational effort of DG2 modelling when simulating multiscale rapid flows.

The tsunami models cited above have implemented grid adaptation using approaches that are

similar to a classic grid adaptation algorithm called adaptive mesh refinement (AMR) (Berger

and Colella, 1989). However, AMR cannot guarantee a similar level of accuracy as delivered by

a SWE model running on a uniform grid without AMR due to issues in preserving robustness

(Zhou et al., 2013; Donat et al., 2014; Mandli and Dawson, 2014; Liang et al., 2015b; Pons et al.,

2017; Hou et al., 2018; Ghazizadeh et al., 2020; Zhang et al., 2021). To avoid these issues, a

promising substitute for AMR is wavelet-based grid adaptation, which is purposefully designed to

readily deliver a similar level of accuracy as a SWE model running on a uniform grid (Gerhard

et al., 2015a; Caviedes-Voullième and Kesserwani, 2015; Kesserwani et al., 2015a; Haleem et al.,

2015; Caviedes-Voullième et al., 2020). Wavelet-based adaptive SWE models have been shown to

achieve a similar level of accuracy as their reference uniform-grid counterparts while seeing up to

20-fold speedups when implemented on the central processing unit (CPU) (Kesserwani et al., 2019;

Kesserwani and Sharifian, 2020).

The speedups and accuracy achieved by wavelet-based grid adaptation suggest that it is a good

choice to parallelise on the GPU and thereby integrate a grid adaptation capability into GPU-

DG2. Nonetheless, wavelet-based grid adaptation algorithms have til now mainly been parallelised

on CPU-based platforms rather than on GPUs (Domingues et al., 2019; Soni et al., 2019; Deiterding

et al., 2020; Semakin and Rastigejev, 2020; Engels et al., 2021; Zeidan et al., 2022). The prevalence

of parallelising wavelet-based grid adaptation algorithms on CPUs rather than on GPUs is largely

because grid adaptation algorithms have an algorithmic structure that is incompatible with GPU

computing (Wang et al., 2010; Burstedde et al., 2010; Ji et al., 2015; Schive et al., 2018b; Qin et al.,

2019).

As such, redesigning the algorithmic structure of a wavelet-based grid adaptation algorithm in

order to make it suitable for efficient implementation on the GPU and thereby integrate a wavelet-

based grid adaptation capability into GPU-DG2 that reduces the computational effort of DG2

modelling when simulating multiscale rapid flows – while still achieving a similar level of accuracy

as GPU-DG2 when run on a uniform grid – is a compelling research aim for this thesis.
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1.2 Research aim and objectives

The research aim of this thesis is to integrate a wavelet-based grid adaptation capability into

the GPU-DG2 model in LISFLOOD-FP 8.0 in order to reduce the computational effort of DG2

modelling when simulating multiscale rapid flow phenomena – while still achieving a similar level

of accuracy as GPU-DG2 when run on a uniform grid. To achieve the thesis aim, the following

three Objectives are defined:

1. Propose computational ingredients for redesigning the algorithmic structure of a wavelet-

based grid adaptation algorithm based on “Haar” wavelets (HW) in order to make it suitable

for efficient implementation on the GPU;

2. Extend the use of the computational ingredients proposed in Objective 1 in order to efficiently

implement a wavelet-based grid adaptation algorithm based on “multiwavelets” (MW) on the

GPU and integrate it into the GPU-DG2 model in LISFLOOD-FP;

3. Analyse the impact of the GPU-parallelised MW-based grid adaptation algorithm on the

accuracy and computational effort of DG2 modelling when simulating multiscale rapid flow

phenomena.

These Objectives are addressed in the remaining chapters of the thesis, which is structured as

follows.

1.3 Thesis structure

This thesis is structured as follows. Chapter 2 conducts a literature review, providing more back-

ground in Section 2.1 on why combining DG2 modelling, GPU computing and grid adaptation in

order to efficiently simulate multiscale rapid flow phenomena is a compelling yet uninvestigated

research area, arguing that the lack of investigation is because grid adaptation algorithms are in-

compatible with GPU computing. To expand on this argument, an overview of GPU computing is

given in Section 2.2, and thereafter, informed by this overview, the specific challenges in efficiently

implementing grid adaptation algorithms on the GPU are discussed in Section 2.3.
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Bearing in mind the challenges in efficiently implementing grid adaptation algorithms on the

GPU, Chapter 3 addresses Objective 1 by proposing three computational ingredients to redesign

the algorithmic structure of a HW-based grid adaptation algorithm and make it suitable for efficient

implementation on the GPU, thereby allowing to develop a GPU-parallelised HW adaptive FV1

shallow water model – referred to hereafter in this thesis as “GPU-HWFV1”: the HW cannot be

used to integrate a wavelet-based grid adaptation capability into GPU-DG2 – for which the MW

are applicable instead – but the HW are less complicated than the MW and therefore its GPU

implementation is explored first, as an easier intermediate step. To confirm that the proposed

computational ingredients indeed allow for an efficient implementation of the HW-based grid adap-

tation algorithm on the GPU, the developed GPU-HWFV1 model should be at least as fast and

accurate as a GPU-parallelised FV1 shallow water model running on a uniform grid: Chapter 3

therefore analyses the efficiency of GPU-HWFV1’s HW-based grid adaptation capability, namely

by assessing GPU-HWFV1’s speedup over its GPU-parallelised uniform-grid FV1 counterpart.

Having analysed the efficiency of GPU-HWFV1’s HW-based grid adaptation capability, Chapter

4 addresses Objective 2 by extending the use of the computational ingredients proposed in Chapter

3 to efficiently implement a MW-based grid adaptation algorithm on the GPU and thereby develop

a GPU-parallelised MW adaptive DG2 shallow water model, referred to hereafter in this thesis as

“GPU-MWDG2”. Chapter 4 then describes how GPU-MWDG2 is integrated into a new version of

LISFLOOD-FP (version 8.2) in order to take advantage of LISFLOOD-FP’s existing framework for

running real-world flood simulations and thereby properly compare GPU-MWDG2 against GPU-

DG2 – as the latter is already integrated into LISFLOOD-FP.

After GPU-MWDG2 is developed and integrated into LISFLOOD-FP, Chapter 5 addresses

Objective 3 by comparing GPU-MWDG2 against GPU-DG2 over a series of test cases involving

tsunami-induced flooding in order to analyse the impact of GPU-MWDG2’s MW-based grid adap-

tation capability on the accuracy and computational effort of DG2 modelling when simulating

multiscale rapid flow phenomena.

Chapter 6 provides conclusions obtained from exploring the research aim and addressing the

Objectives, ending with a summary of significant research findings, limitations and potential future

work for addressing the limitations.



Chapter 2

Literature review

2.1 Modelling floods caused by rapid flow phenomena

Numerous hydrodynamic modelling frameworks are available for simulating floods caused by rapid

flow phenomena such as dam breaks and tsunamis – especially for simulating tsunami-induced

flooding, owing to the damage that tsunamis can often cause. Many of these modelling frameworks

are based on numerically solving a set of partial differential equations that govern hydrodynamic

flow over a computational mesh or grid, such as 1) the 3D Navier-Stokes equations, e.g. Tsunami3D

(Horrillo et al., 2013), 2) 3D hydrostatic equations, e.g. Thetis (Kärnä et al., 2018), 3) 2D depth-

averaged non-hydrostatic or Boussinesq-type equations, e.g. FUNWAVE (Bruno et al., 2009) or

NEOWAVE (Lay et al., 2011), or 4) the 2D SWE, e.g. MOST (Titov et al., 2016), Tsunami-HySEA

(Maćıas et al., 2020b), GeoClaw (Berger et al., 2011), COMCOT (Liu et al., 1998), TsunAWI

(Rakowsky et al., 2013), NAMIDANCE (Zaytsev et al., 2019) and TUNAMI (Imamura et al.,

2006), among others.

When simulating tsunami-induced flooding, hydrodynamic models based on solving the SWE

impose the least computational effort out of all the aforementioned equations while still maintaining

an acceptable level of accuracy (Brocchini and Dodd, 2008; Synolakis et al., 2008; Apotsos et al.,

2011; Gayathri et al., 2017). Nonetheless, many SWE models are rather developed for simulating

floods caused by relatively slow flows such as in fluvial and pluvial flooding, in which regions of

interest are flooded rather slowly compared to in rapid flows, e.g. in flood events driven by slow

flows branching out from rivers in a floodplain in a fractal pattern. When simulating such slow

6
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flows, SWE models based on FV1 schemes parallelised on GPUs are the de facto standard class

of models for running real-world flood simulations (Xia et al., 2019; Echeverribar et al., 2019;

Dazzi et al., 2020; Gordillo et al., 2020; Carlotto et al., 2021; Morales-Hernández et al., 2021;

Buttinger-Kreuzhuber et al., 2022; Delmas and Souläımani, 2022; Caviedes-Voullième et al., 2023;

Sanz-Ramos et al., 2023). In contrast, when simulating rapid flows, where regions of interest are

quickly and completely flooded by impact events travelling rapidly through the bathymetric area,

e.g. tsunamis or dam-break waves, and in particular when modelling multiscale rapid flows that

occur over multiple spatial scales (e.g. when metre-scale flow features propagate over kilometre-

scale domains) and temporal scales (e.g. when flow features propagate in second-scale timesteps

over long-duration simulations of many days), numerical schemes of at least second-order accuracy

are required to alleviate the excessive numerical diffusion – i.e. the smearing of the numerical

solution in a way that resembles the physical process of diffusion – that is imposed by FV1 schemes

which would otherwise smear the wavefronts of impact events that drive rapid flows in order to

maintain an acceptable level of accuracy (George, 2006; LeVeque et al., 2011; Maćıas et al., 2020b;

Ayog et al., 2021).

To achieve second-order accuracy, FV2 schemes have been proposed which reconstruct a linear

polynomial solution over each cell in the mesh using data belonging to a cell’s neighbours: due

to the reconstruction process, each cell ultimately needs access to its neighbours’ neighbours, i.e.

to its non-local neighbours (Yoon and Kang, 2004; Begnudelli et al., 2008; Aureli et al., 2008;

Castro Dı́az et al., 2009; Hou et al., 2015; Reis et al., 2018; Zhao et al., 2019; Guerrero Fernández

et al., 2020). Despite achieving the desired second-order accuracy, the non-locality of FV2 schemes

makes it difficult to add robustness features (e.g. wetting-and-drying or friction effects) and/or

efficiency features (e.g. parallelisation or grid resolution adaptation) to SWE models compared to

FV1 schemes (Yoon and Kang, 2004; Begnudelli and Sanders, 2007; Hou et al., 2013; Kesserwani

et al., 2015a).

To avoid non-locality while retaining second-order accuracy, a DG scheme can be adopted that

locally constructs a linear (or higher-order) polynomial solution over each cell in the computational

grid by using data belonging to a cell itself rather than by using data belonging to a cell’s neighbours

(Aizinger et al., 2017; Kesserwani et al., 2018; Ghostine et al., 2019; Li and Zhang, 2021). The

locality of DG schemes simplifies the implementation of robustness features that are essential for
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SWE models to achieve an acceptable level of accuracy in real-world flood simulations, such as well-

balancing (Xing and Shu, 2006a,b; Kesserwani et al., 2010), wetting-and-drying (Bokhove, 2005;

Ern et al., 2008; Bunya et al., 2009; Xing et al., 2010; Kärnä et al., 2011; Kesserwani and Liang,

2012a; Zhang et al., 2021), slope limiting (Krivodonova et al., 2004; Krivodonova, 2007; Kesserwani

and Liang, 2012b; Vater et al., 2015; Aizinger et al., 2017; Vater et al., 2019) and friction effects

(Kesserwani and Liang, 2010; Kesserwani et al., 2010; Yang et al., 2021). The locality of DG schemes

also makes them readily open to being enhanced with efficiency features that are essential for dealing

with the enormous computational effort of running real-world flood simulations on fine-resolution

and/or large computational grids, in particular parallelisation (Castro et al., 2016; Gandham et al.,

2015; Brus et al., 2017; Rannabauer et al., 2018; Wintermeyer et al., 2018; Shaw et al., 2021)

and grid resolution adaptation (Aizinger and Dawson, 2002; Remacle et al., 2006; Bernard et al.,

2007; Kubatko et al., 2006; Eskilsson, 2011; Bader et al., 2010; Kesserwani and Liang, 2012c, 2015;

Beisiegel et al., 2020). Finally, compared to FV2 schemes, DG schemes have been shown to deliver

equally-accurate results on coarse-resolution grids (Kesserwani, 2013; Kesserwani and Wang, 2014;

Vater et al., 2017; Shaw et al., 2021) and to achieve higher quality velocity predictions (Ayog et al.,

2021; Sun et al., 2023; Kesserwani et al., 2023). All of the aforementioned features suggest that a

DG-based SWE model is well-suited for accurately and efficiently simulating multiscale rapid flow

phenomena.

Compared to open-source FV-based hydrodynamic modelling frameworks, DG-based hydrody-

namic modelling frameworks are less common; see for example Thetis for ocean circulation mod-

elling (Kärnä et al., 2018), SLIM for ocean-ice interaction modelling (Delandmeter et al., 2018),

DGSWEM for storm surge modelling (Dawson et al., 2011), and LISFLOOD-FP 8.0 for floodplain

inundation modelling (Shaw et al., 2021). LISFLOOD-FP in particular has a rich set of features

for running real-world flood simulations on 2D raster grids (Bates and De Roo, 2000), such as (1)

the ability to use raster grid digital elevation models (DEM) of real-world topographies obtained

from LiDAR satellite data, (2) easy configuration of model and simulation parameters via a simple

text file, and (3) input/output of flood maps and velocity fields in a standard Esri geographic infor-

mation system (GIS) file format for convenient processing in GIS software. LISFLOOD-FP 8.0 has

a variety of numerical schemes for solving the SWE including a second-order DG (DG2) scheme,

which achieves the highest level of accuracy out of all the numerical schemes in LISFLOOD-FP 8.0
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– but also imposes the highest computational effort (Shaw et al., 2021).

To handle the computational effort imposed by the DG2 model in LISFLOOD-FP 8.0, it has

been parallelised on the GPU to enable higher speedups, referred to as GPU-DG2. However, even

with the speedups afforded by GPU-parallelisation, DG2 modelling of multiscale rapid flows using

GPU-DG2 on a uniform grid may lead to an unnecessarily high computational effort (Kesserwani

and Sharifian, 2023): this high computational effort may arise when simulating a multiscale rapid

flow phenomenon like a tsunami because a fine metre-scale grid resolution is only needed around

complex bathymetric details and flow features like tsunami wavefronts, whereas elsewhere in the

test case area, a coarse kilometre-scale grid resolution may be sufficient (Popinet, 2012; Lee, 2017).

Thus, using a uniform grid with a metre-scale grid resolution to cover the entire test case area leads

to an unnecessarily high number of cells in the grid and a correspondingly high computational effort.

To reduce the computational effort imposed by the high cell count of a uniform grid, dynamic-

in-time grid resolution adaptation is widely used in FV-based tsunami modelling (Popinet and

Rickard, 2007; LeVeque et al., 2011; Berger et al., 2011; Popinet, 2011, 2012; Liang et al., 2015a;

Lee, 2017; de la Asunción and Castro, 2017; Ferreira and Bader, 2017; Park et al., 2019; Qin et al.,

2019): grid adaptation is a process for generating a non-uniform grid that uses finer-resolution (i.e.

smaller) cells in the grid only when and where the flow and bathymetric details are significant and

uses coarser-resolution (i.e. larger) cells otherwise, thereby reducing the cell count of the grid and

thus the computational effort without compromising the accuracy of the grid.

Compared to FV-based tsunami modelling, the use of grid adaptation in DG-based tsunami

modelling – and more broadly, the use of DG methods in tsunami modelling in general – seems to

be less common (Blaise and St-Cyr, 2012; Blaise et al., 2013; Bonev et al., 2018; Hajihassanpour

et al., 2019; Arpaia et al., 2022; Gandham et al., 2015; Castro et al., 2016; Rannabauer et al.,

2018). Many of these works are aimed at simulating global-scale tsunami propagation by solving

the SWE over a spherical mesh: Blaise and St-Cyr (2012) developed a DG model called MUSE

that combined parallel computing CPUs with both mesh adaptation and polynomial solution order

adaptation, for which wetting-and-drying was not considered. Blaise et al. (2013) added an adjoint

method to MUSE to achieve efficient tsunami source reconstruction and optimisation. Arpaia et al.

(2022) presented a mixed 2D/3D DG scheme with modifications for conveniently achieving well-

balancing, although they used reflective land boundaries to avoid the issue of wetting-and-drying.
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Bonev et al. (2018) developed a DG model using a well-balanced DG scheme with wetting-and-

drying, and Hajihassanpour et al. (2019) extended this model by adding and testing static and

dynamic earthquake tsunami source generation mechanisms.

A relatively smaller number of works have also investigated DG-based modelling of tsunami-

induced flooding: Rannabauer et al. (2018) used a well-balanced ADER-DG scheme with wetting-

and-drying to simulate tsunami-induced flooding and combined grid adaptation with parallel com-

puting on CPUs. Castro et al. (2016) presented a GPU-parallelised ADER-DG scheme for sim-

ulating tsunami-induced flooding and noted the effectiveness of parallelising DG schemes on the

GPU. Gandham et al. (2015) presented a SWE model with a well-balanced DG scheme including

wetting-and-drying, and combined local time stepping with GPU-parallelisation. Overall however,

it appears that there are no DG-based hydrodynamic modelling frameworks that have adopted

both GPU-parallelisation and grid adaptation to substantially reduce the computational effort of

DG2 modelling when simulating multiscale rapid flows.

The works cited above on DG-based tsunami modelling have implemented grid adaptation

using approaches that are similar to a classic grid adaptation algorithm called AMR (Berger and

Colella, 1989). However, using classic AMR to enhance a SWE model with grid adaptation cannot

guarantee a similar level of accuracy as delivered by the same SWE model running on a uniform

grid, because AMR uses heuristic formulae based on averaging and interpolation to scale flow and

topographic information across different refinement levels that were not derived with shallow water

modelling in mind, therefore leading issues in robustness properties such as well-balancing (Donat

et al., 2014; Mandli and Dawson, 2014; Ghazizadeh et al., 2020; Zhang et al., 2021), wetting-

and-drying over complex topography (Zhou et al., 2013; Hou et al., 2018) and mass conservation

(Liang et al., 2015b; Pons et al., 2017). To avoid these issues, a promising alternative to AMR is

wavelet-based grid adaptation: unlike AMR, wavelet-based grid adaptation uses rigorously derived

formulae based on wavelets that explicitly keep in mind and incorporate robustness treatments

originally devised for SWE models running on uniform grids, thereby delivering a similar level of

accuracy as a uniform-grid SWE model and readily preserving the robustness properties of the

reference numerical scheme that the uniform-grid SWE model is built on (Gerhard et al., 2015a;

Caviedes-Voullième and Kesserwani, 2015; Kesserwani et al., 2015a; Haleem et al., 2015; Caviedes-

Voullième et al., 2020). Namely, wavelet-based grid adaptation is based on enriching an existing
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numerical scheme designed to run on a uniform grid – i.e. the so-called the reference scheme –

with the “multiresolution analysis” (MRA) of wavelets, such as HW for enriching a reference FV1

scheme (Haleem et al., 2015; Chowdhury et al., 2023) or MW for enriching a reference DG2 scheme

(Kesserwani and Sharifian, 2020; Caviedes-Voullième et al., 2020). Enriching the reference scheme

with wavelet-based grid adaptation allows to develop a wavelet-based adaptive SWEmodel, in which

the deviation or error allowed to occur from the reference uniform-grid counterpart can be rigorously

controlled by a single user-specified error threshold ε (Gerhard et al., 2015b; Hovhannisyan et al.,

2014; Gerhard et al., 2015a). Subject to appropriate choices for ε, wavelet-based adaptive SWE

models have been shown to readily deliver a similar level of accuracy as the reference uniform-grid

counterpart while seeing up to 20-fold speedups when implemented on the CPU (Kesserwani et al.,

2019; Kesserwani and Sharifian, 2020).

The speedups and high level of accuracy achieved by wavelet-based grid adaptation suggest that

the MRA process of the MW is a good choice to parallelise on the GPU and thereby integrate a grid

adaptation capability to GPU-DG2 in order to reduce the computational effort of DG2 modelling

while still achieving a similar level of accuracy as GPU-DG2 when run on a uniform grid. However,

the parallelisation of wavelet-based grid adaptation algorithms on the GPU remains unreported:

rather, all reports about parallelising wavelet-based grid adaptation algorithms have been focussed

on CPU platforms (Domingues et al., 2019; Soni et al., 2019; Deiterding et al., 2020; Semakin and

Rastigejev, 2020; Engels et al., 2021; Zeidan et al., 2022). Parallelisation on CPU platforms involves

using (1) OpenMP (OpenMP, 1998) for achieving parallelisation on a single CPU and/or (2) MPI

(MPIForum, 2011) for achieving parallelisation across multiple CPUs: Domingues et al. (2019)

developed a wavelet-based magnetohydrodynamics model parallelised using MPI via the AMROC

framework. Deiterding et al. (2020) used the same AMROC framework to compare wavelet-based

grid adaptation against gradient-based coarsening and refinement methods when applied to the

Euler equations using MPI and found that 20-40% fewer cells were required on the grid. Soni

et al. (2019) parallelised a wavelet-based solver of the Euler equations using OpenMP, MPI, and a

combination of OpenMP and MPI by introducing a data structure called a “multiresolution forest

structure”. Semakin and Rastigejev (2020) parallelised a wavelet-based chemical transport model

using MPI by devising a special graph data structure. Engels et al. (2021) developed a parallelised

wavelet-based model using MPI to simulate flow caused by flapping insects called WABBIT, in
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which the grid hierarchy was stored using a tree-like data structure. Gillis and van Rees (2022)

presented a wavelet grid adaptation framework with MPI parallelisation called MURPHY, which

was applied to simulate the advection of a scalar quantity. Zeidan et al. (2022) parallelised a

wavelet-based model on a single CPU using OpenMP to analyze two-phase flow.

Most of the works cited above focussed on developing techniques to efficiently parallelise wavelet-

based grid adaptation across multiple CPUs on distributed memory architectures using MPI, which

are not readily applicable to GPU-parallelisation. Some of the works explored techniques for

CPU-based shared memory architectures, which require a level of programming flexibility that

is not available on GPUs. Other works did not sufficiently explore techniques such as memory

coalescing that are merely beneficial to include on CPUs, but which are essential to include on

GPUs. Lastly, there are programming considerations for GPUs that are simply not applicable for

CPUs, such as warp divergence, occupancy, scheduling, etc. As such, none of the works cited above

were aimed at implementing wavelet-based grid adaptation on the GPU. This is likely because

implementing a wavelet-based grid adaptation algorithm on the GPU is difficult (and may even

be counterproductive) because grid adaptation algorithms have an algorithmic structure that is

incompatible with GPU computing, severely degrading the potential efficiency of a GPU-parallelised

grid adaptation algorithm (Wang et al., 2010; Burstedde et al., 2010; Ji et al., 2015; Raghavan and

Vadhiyar, 2015; Schive et al., 2018b; Qin et al., 2019). To understand the incompatibility of

grid adaptation algorithms with GPU computing, it is instructive to review GPU computing first

(Section 2.2), and thereafter, informed by this review, the challenges associated with implementing

grid adaptation algorithms on the GPU can be discussed (Section 2.3).

2.2 GPU computing using CUDA

Referring to the CUDA programming guide (NVIDIA, 2023), this section reviews the essential

concepts in GPU computing that are necessary for understanding the challenges associated with

efficiently implementing a grid adaptation algorithm on the GPU using CUDA (Section 2.3). More

in-depth guidance about GPU computing has been included in the Appendix.

The CUDA programming model – developed by NVIDIA exclusively for use with NVIDIA GPUs

– remains one of the most popular GPU programming models to date. The CUDA programming
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model adopts a “host-device” framework in which the CPU, i.e. the “host”, is responsible for

everything in a CUDA program except for heavy-duty parallel computation, which is offloaded by

the host to the “device”, i.e. the GPU. The GPU performs the parallel computation by executing

a program called a “kernel”, which is made up of many parallel “threads”.

An appropriate number of threads should be launched for handling the computation described

by a kernel. For example, a kernel that describes adding two vectors of length 1024 should launch

1024 threads. In CUDA, threads are grouped into “blocks”, and blocks are grouped into a “grid”

(note that the term “grid” in the context of CUDA programming should not be confused with the

computational grid over which the SWE are solved). The block size and grid size should be chosen

to launch a kernel with an appropriate number of threads: for example, to launch a kernel with

1024 threads, a block size of 256 and a grid size of 4 could be chosen, since 256 threads per block Ö

4 blocks in the grid = 1024 threads in the grid. The block size and/or grid size are usually chosen

empirically to maximise the speed of a kernel.

The speed of a kernel should be maximised in order to complete the parallel computation

described by the kernel as quickly as possible. To improve the speed of a kernel, the kernel should

be designed – i.e. programmed – to use GPU hardware efficiently. However, efficiently using the

GPU hardware is difficult due to the complexity of GPU hardware architecture, as shown next.

2.2.1 GPU hardware architecture

GPU hardware architecture is complex as it involves many different hardware components whose

behaviour must be considered when designing a kernel to efficiently use the hardware. Figure 2.1

shows the hardware architecture of a GPU. As shown in Figure Figure 2.1a, a GPU is made up of

several “streaming multiprocessors” (SM) that handle computation, while the data on which the

computations are performed reside in dynamic random access memory (DRAM), which the SMs

access via an “L2 cache” – a hardware component for storing small amounts of data for faster access

(compared to e.g. GPU DRAM). The number of SMs and the amount of DRAM depend on the

specific GPU being used. Each SM has several threads for directly performing computations, as

well as other hardware for supporting computation. As mentioned, the more efficiently the GPU

hardware is used by a kernel, the higher the speed of the kernel. To design a kernel that uses the

GPU hardware efficiently, it is necessary to understand how the execution of the kernel is coupled
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with the GPU hardware.
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Figure 2.1: GPU hardware architecture; (a) the GPU is made up of several “streaming multipro-
cessors” (SM) which are responsible for computation, while the data on which the computations are
performed reside in dynamic random access memory (DRAM), which SMs access via an L2 cache;
(b) each SM is made up of hardware for supporting computation: registers, shared/L1/texture cache,
constant cache and “warp schedulers”, as well as several “threads” for computation; (c) each thread
is made up of functional units for executing various types of instructions.

Recall that during kernel execution, the kernel launches many threads that are grouped into

blocks, and the blocks are organised into a grid. The blocks are distributed among the SMs for

execution: for example, if a grid is made up of 128 blocks and there are 16 SMs, there can be

up to 128 blocks per 16 SMs = 8 blocks per SM. Blocks are partitioned into “warps”, which are

groups of 32 consecutive threads: for example, a block made up of 512 threads is made up of 512

threads / 32 threads per warp = 16 warps. Warps execute instructions following a single-instruction

multiple-thread (SIMT) computing paradigm (NVIDIA, 2023), in which all threads in the warp

execute the same instruction in lockstep, i.e. in parallel. Familiarity with the notion of a warp and

how the execution of a kernel is coupled with the GPU hardware allows to explain two important

factors that should be considered when designing a fast kernel: coalesced memory access and warp

divergence.
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2.2.2 Warp divergence

Warp divergence occurs when threads in a warp perform differing instructions and should be min-

imised when designing a kernel (NVIDIA, 2023). This is because when warp divergence occurs,

the differing instructions cannot be performed by the warp in parallel and must be performed in

serial instead, reducing the speed of the warp. To clarify, an example of warp divergence is shown

in Figure 2.2, in which the arrows represent 32 threads in a warp; in CUDA code, threadIdx.x

gives the index of a thread within a block: in the CUDA code shwon in Figure 2.2, the threads

with an odd thread index execute the instructions in the function func A(), whereas the threads

with an even thread index execute the instructions in the function func B(). The execution of

these functions get serialised: the odd-indexed threads execute func A() while the even-indexed

threads wait; then, the even-indexed threads execute func B() while the odd-indexed threads

wait. Due to the serialised execution of the functions, the speed of the warp is reduced because it

cannot finish executing until both the odd- and even-indexed threads have executed their respec-

tive instructions. The warp divergence shown in Figure 2.2 is an example of “two-way” divergence

because there are two branches in execution: in general, N number of branches in execution lead to

“N -way” divergence. The larger the number of branches in execution, the more divergence there is

and the slower the speed of the warp becomes. As mentioned, warp divergence should be minimised

when designing a kernel.

__global__ void my_kernel()
{
    if (threadIdx.x % 2)
    {
        do_func_A();
    }
    else
    {
        do_func_B();
    }
}

}
}

do_func_A()

Branch (divergence)

End of divergence

do_func_B()

Figure 2.2: Warp divergence; a warp is a group of 32 threads with consecutive thread IDs that operate
in lockstep.

2.2.3 Coalesced memory access

Coalesced memory access occurs when threads in a warp make full use of the data fetched from the

L2 cache lines and should be maximised when designing a kernel (NVIDIA, 2023). To clarify what
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coalesced memory access is, some familiarity with the complicated memory hierarchy involved in

the CUDA programming model is needed. Figure 2.3 shows the memory hierarchy. As shown by

the labelled boxes in Figure 2.3, the memory hierarchy is made up of several memory spaces in

which data can be stored and accessed by a kernel: CPU DRAM, GPU DRAM, L2 cache, local

caches per SM, and registers per thread. Data in CPU DRAM cannot be directly accessed by a

kernel and must be transferred to GPU DRAM first, which is the main memory space for storing

large amounts of data on the GPU. Whenever data in GPU DRAM is accessed by a kernel, the

data must pass through some or all of the memory spaces in order, as shown using the small arrows

in Figure 2.3.

CPU DRAM

CPU

GPU

GPU DRAM
L2 cacheGlobal memory

Constant memory
Texture memory

(off-chip)

local caches

registers
Per-thread

Per-block

SM

Per-grid

Slower access Faster access

Constant cache
Shared/L1/texture cache

(on-chip)

~1 clock cycle

1 clock cycle200 to 800 
clock cycles

Figure 2.3: Memory hierarchy involved in the CUDA programming model.

GPU DRAM is made up of global memory, constant memory and texture memory. Global mem-

ory is the most commonly used when storing data in GPU DRAM (see Figure 2.1a or Figure 2.2):

for example, in a SWE model, the computational grid is very often stored in global memory. Global

memory should be accessed by a kernel in a way that maximises coalesced memory access, explained

as follows.

Data in global memory is accessed via the L2 cache as chunks of 32 bytes of data, i.e. as 32-byte

cache lines. This must be considered when devising an optimal access pattern for global memory.

Figures 2.4a and 2.4b show optimal and non-optimal access patterns for threads in a warp to access

global memory, respectively. In Figure 2.4a, the upper label around the grey boxes marks off a

32-byte cache line in the L2 cache, and the smaller four green segments represent four L2 cache

lines. The arrows indicate 32 threads in a warp. The warp accesses global memory via the L2 cache
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using an optimal access pattern. In this optimal access pattern, the threads access global memory

locations that are aligned with the 32-byte boundaries of each cache line (indicated by the numbers

0, 32, . . . , 128 in Figure 2.4a) fetched from the L2 cache. This alignment leads to coalesced memory

access because the threads make use of all the data in the L2 cache lines. Namely, in Figure 2.4a,

the threads require access to 128 bytes of data, meaning that 128 bytes required / 32 bytes per

cache line = 4 cache lines need to be fetched at minimum. Since the warp indeed fetches only four

cache lines – as shown by the smaller four green segments in Figure 2.4a – this results in 4 cache

lines minimum / 4 cache lines fetched = 100% cache line usage.

0 32 64 96 128

32-byte L2 cache line made up 
of eight four-byte segments

128-byte L1 cache line made up 
of 32 four-byte segmentsCoalesced memory access:

(a)

(b)

Uncoalesced memory access:

Figure 2.4: Optimal and non-optimal access patterns by threads in a warp when accessing global
memory via the L2 and “L1 caches” (a) an optimal access leading to coalesced memory access; (b) a
non-optimal access pattern leading to uncoalesced memory access.

Less than 100% cache line usage means that the threads in a warp do not make use of all the

data moved by the cache lines and implies that the warp is fetching an excess number of cache

lines (i.e. uncoalesced memory access occurs), which reduces the speed of a warp. An example

of uncoalesced memory access is shown in Figure 2.4b, in which the access pattern of the warp

is shifted compared to the access pattern of the warp in Figure 2.4a. Due to the shifted access

pattern, the warp accesses global memory locations that are no longer aligned with the cache line

boundaries and five cache lines are fetched, as shown using the small red and green segments in

Figure 2.4b. However, as the warp still requires only 128 bytes, i.e. 128 bytes required / 32 bytes

per cache line = 4 cache lines need to be fetched at minimum, this results in 4 cache lines minimum
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/ 5 cache lines fetched = 80% cache line usage.

In summary, when designing a kernel, coalesced memory access should be maximised and warp

divergence should be minimised. Next, in Section 2.2.4, it is shown that maximising coalesced

memory access and minimising warp divergence is relatively straightforward when parallelising a

SWE model that runs on a uniform computational grid.

2.2.4 Using CUDA to parallelise SWE models on the GPU

SWE models running on uniform computational grids are ideal candidates for GPU-parallelisation

because maximising coalesced memory access and minimising warp divergence is readily achievable

when parallelising a uniform-grid SWE model, particularly for the calculations associated with

applying the numerical scheme used by the model to numerically solve the SWE – e.g. an FV1 or

DG2 scheme (Vacondio et al., 2014; Morales-Hernández et al., 2020).

The calculations associated with applying a numerical scheme over a computational grid –

e.g. flux calculations, time integration, etc – are referred to hereafter in this thesis as “solver

computations”. To demonstrate why maximising coalesced memory access and minimising warp

divergence is readily achievable when parallelising the solver computations over a uniform grid, an

example of a GPU-parallelised SWE model running on a uniform grid is considered.

2.2.4.1 Solver computations on the GPU over a uniform grid

SWE models can run simulations over 2D uniform raster grids made up of N ×M cells. Figure 2.5

shows a 9 Ö 9 uniform grid over which a hypothetical GPU-parallelised SWE model performs

solver computations. To perform the solver computations on the GPU, the model launches a kernel

with one thread per cell in the grid, i.e. it launches a kernel with 9 Ö 9 = 81 threads, where

each thread corresponds to a cell in the grid and all 81 threads perform the same set of solver

computations. When executing the kernel, the GPU-parallelised SWE model can readily maximise

coalesced memory access and minimise warp divergence by numbering the threads in the same

order as the cells in the grid. To minimise warp divergence, recall that all threads in a warp should

perform the same instructions. Here, no warp divergence is incurred by the SWE model because

all 81 threads perform the same set of solver computations.

To ensure coalesced memory access, recall that threads in a warp should make full use of the
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9 cells

0 1 2 3 4 5 6 7 8

9 10 ...

9
 cells

Figure 2.5: Uniform-resolution computational grid made up of 9 Ö 9 = 81 cells. The numbers 0, 1,
. . . , 9, 10, . . . indicate row-major numbering or indexing of the cells.

data fetched from the L2 cache lines, in particular by aligning the access pattern of a warp with

the cache line boundaries. This alignment can be readily ensured by the SWE model as follows:

in Figure 2.5, as shown by the numbers 0, 1, . . . , 9, 10 . . . , the cells in the grid are numbered or

indexed from left to right, i.e. the cells are indexed in row-major order. Since the cells are indexed

in row-major order, data belonging to adjacent cells are stored in adjacent memory locations. When

these adjacent memory locations are accessed by threads in a warp, it is relatively straightforward

to align the access pattern of the warp with the L2 cache line boundaries by appropriately shifting

the access pattern, with the neighbours being accessed contiguously from row to row.

Thus, a GPU-parallelised SWE model can readily achieve coalesced memory access and avoid

warp divergence if running on a uniform grid. However, if the SWE model instead runs on a non-

uniform grid – e.g. due to using a grid adaptation algorithm – then achieving coalesced memory

access and/or avoiding warp divergence becomes much more challenging (Zabelok et al., 2015; Ji

et al., 2015; Schive et al., 2018b; Giuliani and Krivodonova, 2019; Menshov and Pavlukhin, 2020).

These challenges are reviewed in the next section (Section 2.3).
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2.3 Challenges in efficiently implementing grid adaptation on GPUs

Grid adaptation algorithms really involve two distinct categories of operations that hinder coalesced

memory access and/or incur warp divergence when implemented on the GPU: (1) the operations for

generating a non-uniform grid, and (2) the operations for performing the solver computations (as

defined in Section 2.2.4) over the generated non-uniform grid. For the first category of operations

– i.e. the operations for generating a non-uniform grid – efficiently implementing these operations

on the GPU is not feasible without fundamentally redesigning the algorithmic structure of the

grid adaptation algorithm (Luo et al., 2016; Giuliani and Krivodonova, 2019; Dubey et al., 2021;

Jude et al., 2022), which will be discussed in more detail later (Section 2.3.2). Conversely, when

implementing the second category of operations on the GPU – i.e. the operations for performing the

solver computations over a non-uniform grid – achieving coalesced memory access and/or avoiding

warp divergence may yet be attainable depending on the type of grid adaptation algorithm being

used (Dubey et al., 2014; Sætra et al., 2015; Schive et al., 2018b; Qin et al., 2019; Dunning et al.,

2020), as discussed next (Section 2.3.1).

2.3.1 Solver computations on the GPU over different types of non-uniform grids

Grid adaptation algorithms can be broadly categorised into three types: block-based, patch-based

and cell-based (de la Asunción and Castro, 2017), which are shown in Figure 2.6. In a block-based

grid adaptation algorithm (Berger and Colella, 1989; Wang et al., 2010; Beckingsale et al., 2015;

Raghavan and Vadhiyar, 2015; Qin et al., 2019), the non-uniform grid consists of a hierarchy of

uniform, non-overlapping groups of cells called blocks that can cover arbitrary rectangular zones

of the grid albeit being hierarchically nested, as shown in Figure 2.6a: nested means that blocks

of finer (smaller) cells must be overlaid on blocks of coarser (larger) cells. Since the blocks are

uniform, the cells in each block can be indexed in row-major order, thereby allowing to achieve

coalesced memory access and avoid warp divergence when performing the solver computations –

just like for the uniform grid discussed in Section 2.2.4.1.

In a patch-based grid adaptation algorithm (MacNeice et al., 2000; Fryxell et al., 2000; Schive

et al., 2018a; Ji et al., 2015), the non-uniform grid is made up of a hierarchy of uniform, non-

overlapping groups of cells called patches that can cover predefined tessellations of the grid, e.g.
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(a) Block-based (b) Patch-based

(c) Cell-based (d) Tree data structure
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Figure 2.6: The three different types of non-uniform grids and the tree data structure used to index
the coloured part of the cell-based non-uniform grid.

2n × 2n tessellations as shown by the red and green borders in Figure 2.6b; the cells in each patch

can then be refined (split into smaller, finer cells) or coarsened (grouped into larger, coarser cells)

collectively according to these predefined tessellations. For example, in Figure 2.6b, there are seven

patches, three highlighted in red and four highlighted in green: two of the red patches are 2 Ö 2

cells large (top left and right) and one is 1 Ö 1 cell large (bottom right); for the green patches, one

is 4 Ö 4 (top left), two are 2 Ö 2 (top right and bottom left), and one is 1 Ö 1 (bottom right). If all

the green patches were 2 Ö 2 cells large, then they would be grouped into a single 4 Ö 4 red patch.

Similar to the blocks in a block-based non-uniform grid, the patches in a patch-based non-uniform

grid are uniform and therefore the cells in each patch can be indexed in row-major order, thereby

allowing to achieve coalesced memory access and avoid warp divergence when performing the solver

computations.

In a cell-based grid adaptation algorithm, individual cells are refined or coarsened rather than

refining/coarsening entire blocks or patches like in a block- or patch-based grid adaptation algo-

rithm. The advantage of a cell-based grid adaptation algorithm is that since individual cells are
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refined or coarsened, the refinement and coarsening process tracks the local variation in the numer-

ical solution more closely and sensibly, thereby preventing unnecessary refinement and minimizing

the number of fine cells in the non-uniform grid – and thus the computational effort (Khokhlov,

1998; Teyssier, 2002; Trujillo et al., 2011; Luo et al., 2016; Giuliani and Krivodonova, 2019). Con-

versely, in block- or patch-based grid adaptation algorithms, since entire blocks or patches are

refined/coarsened, there is often an excessive number of refined cells and therefore a higher com-

putational effort (Berger and Colella, 1989; George, 2011; Raghavan and Vadhiyar, 2015; Ferreira

and Bader, 2017). Nevertheless, the disadvantage of a cell-based grid adaptation algorithm is that

performing the solver computations over a cell-based non-uniform grid typically hinders coalesced

memory access because the grid cannot be indexed in row-major order, and is instead more easily

indexed using a tree data structure (Khokhlov, 1998; MacNeice et al., 2000; Agbaglah et al., 2011;

Ji et al., 2015; Pavlukhin and Menshov, 2021), which does not readily facilitate coalesced memory

access, as clarified next.

Figure 2.6c shows the tree data structure used to index the (cell-based) non-uniform grid in

Figure 2.6b. For simplicity, the tree is only shown for the coloured portion of the grid. A tree

data structure is made up of “nodes” (indicated by the black dots in Figure 2.6c), starting with

a “root” node at the top, whereby each node may have “children” below. The nodes where the

tree terminates are termed “leaf” nodes. These leaf nodes represent the individual cells making up

the non-uniform grid. For example, the tree in Figure 2.6c starts at the “root” node, shown using

the black dot in the top-most dashed outline in Figure 2.6c. The root node’s children are the cells

numbered 0, 1 and 2 in Figure 2.6b – which are leaf nodes – and another ghost cell, which is a

node. This node’s children are the cells numbered 3, 4, 5, and 6, which are all leaf nodes.

Using the tree data structure in Figure 2.6c, which indexes the cell-based non-uniform grid in

Figure 2.6b, suppose the solver computations were performed over the grid by launching one thread

per cell in the grid, i.e. by launching a kernel with one thread per leaf node (similar to launching

a kernel with one thread per cell in the uniform grid described in Section 2.2.4.1). When the

threads access the leaf nodes, coalesced memory access is unlikely to occur: for example, consider

the thread corresponding to cell 3: to perform the solver computations, this thread needs to access

the neighbouring cells, i.e. the cells numbered 1, 4, 5, 2. This numbering corresponds to locations

in global memory that are non-adjacent, so coalesced memory access is hard to achieve.
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Tree data structures are also used to index block- or patch-based non-uniform grids (Wang

et al., 2010; Qin et al., 2019; Shimokawabe and Onodera, 2019; Korneev et al., 2021; Jude et al.,

2022): when a block- or patch-based non-uniform grid is indexed using a tree data structure, the

tree’s nodes represent entire blocks or patches rather than individual cells. Thus, when a node

is accessed, an entire block or patch is returned; thereafter, to access a specific cell in a block or

patch, row-major indexing is used. In other words, when a block- or patch-based non-uniform grid

is indexed using a tree data structure, the non-uniform grid hierarchy consisting of all the blocks

or patches in the grid is indexed using the tree’s nodes, but the cells in each individual block or

patch are indexed in row-major order.

It therefore seems that instead of using a cell-based grid adaptation algorithm, using a block-

or patch-based grid adaptation algorithm may be better for achieving coalesced memory access and

avoiding warp divergence – at least when performing the solver computations. Nonetheless, recall

that a grid adaptation algorithm also involves performing operations for generating the actual non-

uniform grid over which the solver computations are performed. Efficiently implementing these

operations on the GPU is difficult regardless of the type of grid adaptation algorithm being used,

as discussed next (Section 2.3.2).

2.3.2 Difficulties in efficiently generating a non-uniform grid on the GPU

The operations for generating a non-uniform grid are difficult to implement on the GPU efficiently

because they are highly irregular and unpredictable, which ultimately hinders coalesced memory

access and incurs warp divergence (Zabelok et al., 2015; Ji et al., 2015; Schive et al., 2018b; Giuliani

and Krivodonova, 2019). To help illustrate the irregular and unpredictable operations involved

in grid adaptation algorithm, Figure 2.7 shows an example thereof. The functionality of a grid

adaptation algorithm is to generate a non-uniform grid by flagging certain cells for refinement or

coarsening. For example, Figure 2.7a shows a non-uniform grid generated by a grid adaptation

algorithm: the orange lines indicate cells flagged for refinement, whereas the green lines indicate

cells flagged for coarsening. Cells can be flagged for refinement or coarsening by measuring the

local variation in the numerical solution. For example, in a SWE model, cells can be flagged

for refinement or coarsening by measuring gradients in the water depth, velocity, and topography

(Remacle et al., 2006; Kesserwani and Liang, 2012c; Garcia and Popiolek, 2014): cells that show



CHAPTER 2. LITERATURE REVIEW 24

significant variation are flagged for refinement, whereas cells that show less variation are flagged for

coarsening. Figure 2.7b shows the new non-uniform grid generated by the grid adaptation algorithm

after the flagged cells have been refined or coarsened: evidently, the number of finer or coarser cells

– and therefore the number of operations for refinement and coarsening – are completely arbitrary

and random because they depend on the local variation in the numerical solution, which is unknown

in advance, so the refinement and coarsening operations are irregular and unpredictable. This can

be clarified further by considering that non-uniform grids are indexed using tree data structures.

(a) Before refinement/coarsening (b) After refinement/coarsening

Figure 2.7: Grid resolution adaptation algorithm: (a) a non-uniform grid generated by a grid adap-
tation algorithm; the orange lines indicate cells flagged for refinement, whereas the green lines indicate
cells flagged for coarsening; (b) the newly generated non-uniform grid after the flagged cells have been
refined/coarsened.

Generally speaking, generating a non-uniform grid involves three main steps (MacNeice et al.,

2000; Beckingsale et al., 2015; Luo et al., 2016; de la Asunción and Castro, 2017): (1) flagging poten-

tial cells for refinement or coarsening by traversing the non-uniform grid hierarchy, (2) performing

the necessary refinement and coarsening operations on any flagged cells, and (3) accounting for any

changes in the layout of the non-uniform grid due to cell refinement/coarsening by modifying the

non-uniform grid hierarchy. All of these steps involve traversing the non-uniform grid hierarchy,

which in turn entails traversing the tree data structure used to index the hierarchy. Unfortunately,

traversing a tree data structure efficiently on the GPU is not trivial: tree traversal is typically

solved with recursive algorithms like depth-first traversal (Sedgewick and Wayne, 2011), which are

inherently sequential and cannot be implemented on the GPU (Khokhlov, 1998; Bédorf et al., 2012;

Karras, 2012; Goldfarb et al., 2013; Chitalu et al., 2018). For example, one approach for traversing
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a tree data structure that indexes a non-uniform grid on the GPU would be to launch one thread

per cell to be flagged for refinement or coarsening. However, the number of cells to be flagged is

unknown in advance, making it challenging to launch one thread per cell. Even if the number of

cells to be flagged were known in advance and one thread per cell were launched, some threads

would perform refinement operations while others would perform coarsening operations, leading

to warp divergence. Furthermore, for threads to perform the refinement or coarsening operations,

each thread would need to access a leaf node in the tree, but the indices of the leaf nodes are likely

to place them in non-adjacent memory locations, hindering coalesced memory access (similar to

the issue of uncoalesced memory access that occurs when performing solver computations over a

cell-based non-uniform grid, as discussed in Section 2.3.1).

Since it is difficult to efficiently generate a non-uniform grid on the GPU, many models simply

avoid this difficulty altogether by generating the grid on the CPU instead and then transferring the

grid to the GPU for the solver computations (Wang et al., 2010; Burstedde et al., 2010; Ji et al.,

2015; Raghavan and Vadhiyar, 2015; Schive et al., 2018b; Qin et al., 2019). Wang et al. (2010)

implemented a hydrodynamic model in which the solver computations were mapped onto the GPU

while the grid generation operations were performed on the CPU. Ji et al. (2015) applied a strategy

to an immersed boundary model in which the GPU handled the solver computations whereas the

CPU handled the grid generation operations. Burstedde et al. (2010) presented a wave propagation

model called dGea in which the numerical scheme ran on the GPU while the grid generation

operations were performed on the CPU using the p4est AMR framework (Burstedde et al., 2011).

Qin et al. (2019) implemented a shallow water model in which the Riemann solvers, wave limiter,

and timestep calculation ran on the GPU while the CPU performed the operations related to grid

generation. Raghavan and Vadhiyar (2015) used a patch-based grid adaptation algorithm in which

they mapped individual patches to CUDA blocks to perform solver computations while overlapping

the computations with CPU-GPU data transfers to hide data transfer costs. Schive et al. (2018b)

overlapped CPU and GPU computations in a patched-based grid adaptation framework with a

rich set of features for astrophysics-related simulations. All of the aforementioned models adopted

a hybrid CPU-GPU approach in which the solver computations are performed on the GPU and

the grid generation is performed on the CPU. However, this hybrid CPU-GPU approach imposes

a data transfer overhead because data is repeatedly transferred between the CPU and the GPU,
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which may slow down the model (Sætra et al., 2015; Beckingsale et al., 2015; Luo et al., 2016; Qin

et al., 2019; Menshov and Pavlukhin, 2020). Thus, CPU-GPU data transfers remain a bottleneck in

implementing a hybrid CPU-GPU grid generation approach even as GPU hardware vendors strive

to increase CPU-GPU data transfer bandwidth and to integrate CPU and GPU memory spaces

more tightly.

To avoid the CPU-GPU data transfer bottleneck, many models have implemented the grid

generation operations on the GPU (Sætra et al., 2015; Beckingsale et al., 2015; Wahib et al.,

2016; Luo et al., 2016; Lung et al., 2016; Giuliani and Krivodonova, 2019; Dunning et al., 2020).

Luo et al. (2016) implemented a cell-based grid adaptation algorithm entirely on the GPU for

unstructured quadrilateral grids to reduce the CPU-GPU data transfer overhead for an inviscid

flow model. Giuliani and Krivodonova (2019) developed novel algorithms to efficiently implement

cell-based grid adaptation on the GPU for unstructured triangular meshes in a gas dynamics model.

Lung et al. (2016) briefly presented a grid adaptation algorithm running entirely on the GPU

based on a wavelet collocation method for a combustion model. Sætra et al. (2015) presented the

GPU implementation of a block-based grid adaptation algorithm and paired it with a second-order

Kurganov-Petrova scheme for solving the SWE (Kurganov and Petrova, 2007). Beckingsale et al.

(2015) developed a block-based grid adaptation library called CLAMR that runs entirely on the

GPU and applied it to SWE simulations. Dunning et al. (2020) presented a framework based on the

same CLAMR library in which the grid generation operations are performed on the GPU in a way

that decouples the grid generation operations from the solver computations. Wahib et al. (2016)

developed a compiler-based framework that automatically transforms uniform-grid code provided

by the user into parallel adaptive-grid code optimized for GPU-accelerated computing clusters;

they explored a problem about solving the SWE using the Kurganov-Petrova scheme.

All of the models cited above – except for one (Lung et al. (2016)) – have implemented grid

adaptation algorithms on the GPU that are similar to classical AMR (Berger and Colella, 1989).

Rather than implementing AMR on the GPU though, recall that the thesis’ research aim is in-

stead to implement a wavelet-based grid adaptation algorithm based on the MRA process of the

MW (Kesserwani and Sharifian, 2020) on the GPU. Nonetheless, the MRA process is difficult to

implement on the GPU efficiently due to a number of obstacles in achieving coalesced memory

access and avoiding warp divergence – similar to those discussed in Sections 2.3.1 and 2.3.2. To



CHAPTER 2. LITERATURE REVIEW 27

overcome these obstacles, the algorithmic structure of the MRA process should be redesigned: this

is explored in the next chapter (Chapter 3), in which computational ingredients are proposed to

redesign the algorithmic structure of a wavelet-based grid adaptation algorithm based on the MRA

process of the HW and thereby make it suitable for efficient implementation on the GPU.



Chapter 3

GPU-parallelisation of HW grid

adaptation

Contents used to prepare for this chapter have been published in the following publications:

Alovya Ahmed Chowdhury, Georges Kesserwani, Charles Rougé, Paul Richmond 2023. GPU-

parallelisation of Haar wavelet-based grid resolution adaptation for fast finite volume modelling:

application to shallow water flows, Journal of Hydroinformatics, 25 (4): 1210–1234. doi:

https://doi.org/10.2166/hydro.2023.154.

In this chapter, Objective 1 is addressed by proposing three computational ingredients to re-

design the algorithmic structure of a wavelet-based grid adaptation algorithm to make it suitable for

efficient implementation on the GPU. In particular, the wavelet-based grid adaptation algorithm

based on the MRA process of the HW is considered, which allows to enhance a reference FV1

model that ordinarily runs on a uniform grid with grid adaptation. Note that the MRA process

of the HW cannot be used to integrate a wavelet-based grid adaptation capability to GPU-DG2–

for which the MRA process of the MW is applicable instead (Kesserwani et al., 2015b; Keinert,

2003) – but the HW are less complicated than the MW and their implementation on the GPU is

therefore considered first as an easier, intermediate step.

The MRA process of the HW is difficult to implement on the GPU efficiently due to three

obstacles. The first obstacle is that the MRA process generates a cell-based non-uniform grid by

28
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“encoding” (coarsening), “decoding” (refining), analysing and traversing modelled data across a

deep hierarchy of nested, uniform grids of increasingly coarser resolution: the modelled data in the

hierarchy of grids may be close together in physical space, but they are not guaranteed to be close

together in GPU global memory space unless the hierarchy is indexed in a deliberate way, hindering

coalesced memory access when accessing the modelled data in the hierarchy of grids. The second

obstacle is that traversing the hierarchy of grids boils down to a tree traversal problem, which –

as discussed in Section 2.3.2 – is an inherently sequential task usually completed with recursive

algorithms such as depth-first traversal that cannot be parallelised on the GPU. The third obstacle

is that the MRA process generates a cell-based non-uniform grid, which – as discussed in Section

2.3.1 – is usually indexed using a tree data structure that hinders coalesced memory access.

To overcome these three obstacles and implement the MRA process on the GPU efficiently, this

chapter proposes three computational ingredients. The first ingredient is using Z-order space-filling

curves (SFC) (Sagan, 1994; Bader, 2013) to index the hierarchy of grids. The second ingredient

is adopting a parallel tree traversal algorithm (Karras, 2012) to replace the sequential depth-first

traversal algorithm. The third ingredient is using an array data structure instead of a tree data

structure to index the cell-based non-uniform grid.

The rest of this chapter is organised as follows. Section 3.1 presents how the three proposed

computational ingredients are used to implement a new GPU-parallelised HW adaptive FV1 shallow

water model, referred to as GPU-HWFV1. To assess the extent to which using the three proposed

ingredients indeed allow for efficient GPU implementation of the HW-based grid adaptation algo-

rithm, the new GPU-HWFV1 model should be at least as fast and accurate as a GPU-parallelised

FV1 shallow water model running on a uniform grid – i.e. the de facto standard class of SWE

models for running real-world flood simulations (see Section 2.1) (Xia et al., 2019; Echeverribar

et al., 2019; Dazzi et al., 2020; Gordillo et al., 2020; Carlotto et al., 2021; Morales-Hernández et al.,

2021; Buttinger-Kreuzhuber et al., 2022; Delmas and Souläımani, 2022; Caviedes-Voullième et al.,

2023; Sanz-Ramos et al., 2023). Section 3.2 therefore analyses the efficiency of GPU-HWFV1’s

grid adaptation capability by comparing GPU-HWFV1 against the GPU-parallelised FV1 model

running on a uniform grid in LISFLOOD-FP 8.0 (Shaw et al., 2021) – referred to hereafter in this

thesis as GPU-FV1 . For completeness, GPU-HWFV1 is also compared against its sequential (i.e.

non-parallelised) version running on the CPU, referred to hereafter in this thesis as CPU-HWFV1
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(Kesserwani et al., 2019; Kesserwani and Sharifian, 2020). Section 3.3 presents conclusions on the

efficiency of GPU-HWFV1’s grid adaptation capability.

3.1 New GPU-HWFV1 model

GPU-HWFV1 is implemented by parallelising the sequential CPU version of the HWFV1 model

presented in Kesserwani and Sharifian (2020) – i.e. CPU-HWFV1. CPU-HWFV1 adopts a wavelet-

based grid adaptation algorithm based on the MRA process of the HW which, as mentioned, is

difficult to efficiently parallelise on the GPU due to three obstacles. To understand why these

three obstacles arise, Section 3.1.1 gives an overview of CPU-HWFV1. Section 3.1.2 then discusses

how the obstacles are overcome using the three proposed computational ingredients: a Z-order

space-filling curve, a parallel tree traversal algorithm and an array data structure.

3.1.1 Sequential CPU-HWFV1 model

3.1.1.1 Overview

CPU-HWFV1 is a wavelet-based adaptive SWE model that runs hydrodynamic simulations by

solving the 2D SWE over a non-uniform grid. CPU-HWFV1 is made up of two mechanisms: a

wavelet-based grid adaptation algorithm for generating a non-uniform grid, and an FV1 scheme for

updating the modelled data on this non-uniform grid – i.e. for performing the solver computations

(as defined in Section 2.2.4) over the non-uniform grid. CPU-HWFV1 is dynamically adaptive,

meaning it generates the non-uniform grid every timestep before applying the FV1 scheme to

perform the solver computations.

Wavelet-based grid adaptation algorithm. CPU-HWFV1’s wavelet-based grid adaptation

algorithm is based on the MRA of the HW (Haleem et al., 2015; Kesserwani and Sharifian, 2020).

The MRA process starts on a reference uniform grid made up of 2L × 2L cells where L is a user-

specified integer denoting the maximum refinement level that controls the number of cells in the

reference uniform grid. The SWE in conservative form are initially discretised over the reference

2L × 2L grid, which can be written as:

∂tU+ ∂xF(U) + ∂yG(U) = Sb(U) + Sf (U) (3.1)
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where ∂t, ∂x, and ∂y represent partial derivatives with respect to t, x, and y, respectively.

The vector U = [h, hu, hv]T contains the flow variables, F = [hu, (hu2/h + 1/2gh2), huv]T, G =

[hv, huv, (hv2/h+1/2gh2)]T are the components of the flux vector, and Sb = [0,−gh∂xz,−gh∂yz]
T

and Sf = [0,−Cfu
√
u2 + v2,−Cfv

√
u2 + v2]T are source term vectors. The variable h(x, y, t) is

the water depth (m), u(x, y, t) and v(x, y, t) are the x- and y-components of the velocity (m/s),

respectively, and g is the gravitational acceleration constant (m/s2). In Sb, z(x, y) is the topographic

elevation (m), and in Sf , Cf =
gn2

M

h1/3 where nM is Manning’s coefficient.

FV1 scheme. CPU-HWFV1’s FV1 scheme locally approximates the variables h, hu, hv, and z

as piecewise-constant solutions over each cell Qc in the grid, whereby the solution for each quantity

is controlled by scalar coefficients hc, (hu)c, (hv)c, and zc per cell, respectively. The vector of flow

coefficients Uc = [hc, (hu)c, (hv)c]
T are updated in time – i.e., from timestep p to timestep p+ 1 –

by performing an “FV1 update”. The FV1 update consists of a forward-Euler scheme and a spatial

operator Lc, in which Uc is updated from timestep p (denoted by a superscript) to timestep p+ 1

as follows:

Up+1
c = Up

c +∆tLc(U
p
c) (3.2)

where ∆t is a timestep computed based on the Courant-Friedrichs-Lewy (CFL) condition using

a CFL number of 0.5 to ensure numerical stability (Kesserwani and Sharifian, 2020). The expression

for Lc is:

Lc = − 1

∆x

(
F̃e − F̃w

)
− 1

∆y

(
G̃n − G̃s

)
+


0

−2g
√
3

∆x h̄0xc z̄1xc

−2g
√
3

∆y h̄0xc z̄1yc

 (3.3)

where F̃e, F̃w, G̃n, and G̃s are numerical fluxes at the eastern, western, northern, and southern

interfaces between cells, respectively. These fluxes are computed using two-argument numerical

flux functions F̃(·, ·) and G̃(·, ·) based on the Harten-Lax-van Leer (HLL) approximate Riemann

solver (Toro 2001). The two arguments of the flux functions are the limits of the piecewise-constant

solutions at the left and right sides of a cell interface after temporary revision of the solution limits

according to a wetting-and-drying condition to ensure well-balancedness and non-negative water

depths (Kesserwani et al. 2018). As an example, consider the computation of F̃e at the eastern

interface: for the flow solution, the limit at the left side of the eastern interface is UL
e = Uc,
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while the limit at the right side is UR
e = Ueast, where the east subscript is the index of the

eastern neighbor. For the left and right limits of the topography solution, zLe = zc and zRe = zeast,

respectively. These limits are revised as follows and are denoted with a star superscript: first set

z∗e = max(zLe , z
R
e ), and then obtain hL,R,∗

e = max(0, (hL,Re − zL,Re ) − z∗e ), (hu)
L,R,∗
e = hL,R,∗

e uL,Re ,

(hv)L,R,∗
e = hL,R,∗

e vL,Re , and z∗e = z∗e−max(0,−(hLe −zLe )−z∗e ). The revised limits of the flow solution

UL,R,∗
e = [hL,R,∗

e , (hu)L,R,∗
e , (hv)L,R,∗

e ] are used to compute F̃e = F̃(UL∗
e ,UR∗

e ). To compute F̃w,

G̃n, and G̃s, the revised limits UL,R,∗
w , UL,R,∗

n , and UL,R,∗
s are obtained by following a similar set

of steps as for obtaining UL,R,∗
e .

In addition to computing F̃e, F̃w, G̃n, and G̃s using the revised limits, the bed source terms

are also computed using the revised limits, namely by computing h
0x
c = 1

2

(
hL,∗e + hR,∗

w

)
, z1xc =

1
2
√
3
(z∗e − z∗w), h

0y
c = 1

2

(
hL,∗n + hR,∗

s

)
, and z1yc = 1

2
√
3
(z∗n − z∗s ).

Before applying Lc, friction effects are integrated separately using a split implicit scheme (Liang

and Marche, 2009). Define the x-directional discharge qx = hu and a discharge decelerated by

friction qfx as:

qfx(U) = qx +∆t
Sfx

Dx
, (3.4)

where Dx is

Dx = 1 +
∆tCf

h

2u2 + v2√
u2 + v2

. (3.5)

The discharge coefficient qpx,c is then updated in time as follows:

qp+1
x,c = qfx(U

p
c). (3.6)

Similarly, in the y-direction:

qfy(U) = qy +∆t
Sfy

Dy
, (3.7)

where

Dy = 1 +
∆tCf

h

u2 + 2v2√
u2 + v2

, (3.8)

and

qp+1
y,c = qfy(U

p
c). (3.9)

Ordinarily, the FV1 update is performed over a uniform grid. However, as mentioned, CPU-



CHAPTER 3. GPU-PARALLELISATION OF HW GRID ADAPTATION 33

HWFV1 performs the FV1 update over a non-uniform grid – a grid whose spatial resolution is

locally coarsened according to the details of the flow and topography. CPU-HWFV1 generates the

non-uniform grid every timestep by performing the MRA process of the HW, described next.

3.1.1.2 MRA process of the HW

The MRA process of the HW involves a hierarchy of uniform nested grids of increasingly coarser

resolution relative to the reference 2L × 2L grid at the maximum refinement level L. Figure 3.1a

shows a hierarchy of grids with L = 2. The refinement level of each grid in the hierarchy is denoted

by n: the finest grid in the hierarchy is at refinement level n = L = 2, the second-finest grid is

at refinement level n = 1 and the coarsest grid is at n = 0. For ease of presentation of the MRA

process, let sc be a dummy variable standing for any of hc, (hu)c, (hv)c or zc , and let s
(n)
c denote

the coefficients sc at refinement level n.

Figure 3.1: Multiresolution analysis (MRA). The left panel shows a hierarchy of grids involved in
the MRA process with maximum refinement level L = 2. The right panel shows how four cells at
refinement level n+ 1, called the “children”, are positioned relative to a single cell at refinement level
n, called the “parent”. Also shown are the coefficients s and details d involved in the MRA process.
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s(n) = H0
(
H0s

(n+1)
[0] +H1s

(n+1)
[2]

)
+H1

(
H0s

(n+1)
[1] +H1s

(n+1)
[3]

)
(3.10a)

d(n)α = H0
(
G0s

(n+1)
[0] +G1s

(n+1)
[2]

)
+H1

(
G0s

(n+1)
[1] +G1s

(n+1)
[3]

)
(3.10b)

d
(n)
β = G0

(
H0s

(n+1)
[0] +H1s

(n+1)
[2]

)
+G1

(
H0s

(n+1)
[1] +H1s

(n+1)
[3]

)
(3.10c)

d(n)γ = G0
(
G0s

(n+1)
[0] +G1s

(n+1)
[2]

)
+G1

(
G0s

(n+1)
[1] +G1s

(n+1)
[3]

)
(3.10d)

Encoding. At the start of the MRA process, only s(L) are available, corresponding to the

coefficients obtained from initially discretising the SWE over the reference 2L× 2L grid. The MRA

process continues by producing s
(n)
c at the lower refinement levels, i.e. at n = L− 1, L− 2, . . . , 1, 0.

The coefficient s
(n)
c of a cell at refinement level n (called the “parent”) is produced using the

coefficients s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3] of four cells at refinement level n + 1 (called the

“children”), in particular by applying Equation 3.10a. Figure 3.1b shows the parent-children stencil

that dictates how the children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3] at level n + 1 are positioned in

the hierarchy relative to the parent s
(n)
c at level n. Equations 3.10b - 3.10d are also applied to

produce so-called “details,” denoted by d
(n)
α , d

(n)
β , and d

(n)
γ . These details represent the encoded

difference in flow and topographic complexity across two subsequent levels of the hierarchy - i.e.

the difference in complexity between the children and the parent, or how much complexity would

be lost if only a single parent were used to represent information instead of the four children -

and are used to decide which cells to include in the non-uniform grid based on a normalised detail

d
(n)
norm = max(d

(n)
α , d

(n)
β , d

(n)
γ )/smax, where smax is the largest coefficient for all s(L). Cells whose

d
(n)
norm is greater than 2n−Lε are deemed to have significant details, where ε is a user-specified error

threshold. In Equations 3.10a - 3.10d, H0 = 1/
√
2, H1 = 1/

√
2, G0 = 1/

√
2, and G1 = −1/

√
2,

which are filter coefficients derived from the HW (Keinert, 2003), resulting in very simple algebraic

relations that allow to scale (i.e. refine and coarsen) flow and topographic information across the

different refinement levels in the hierarchy. The process of computing s
(n)
c , d

(n)
α , d

(n)
β , and d

(n)
γ at

the lower refinement levels is called “encoding.”

Algorithm 1 shows pseudocode summarising the process of encoding. The pseudocode has an

outer loop (lines 2 to 10) and an inner loop (lines 3 to 9). The outer loop iterates over each grid in
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the hierarchy, starting from the grid at the second-highest refinement level, n = L− 1, and ending

at the grid at the lowest refinement level, n = 0. The inner loop iterates through each cell in the

grid while applying Equations 3.10a - 3.10d (lines 5 and 6) and flagging significant details (line 8).

Algorithm 1 Pseudocode for the process of computing s(n), d
(n)
α , d

(n)
β , and d

(n)
γ at the lower

refinement levels, called ’encoding’.

1: procedure ENCODING(L, ε)
2: for each grid in hierarchy from L− 1 to 0 do
3: for each cell in the grid do

4: load children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , s

(n+1)
[3] for Equations 3.10a - 3.10d

5: compute parent coefficient s
(n)
c using Equation 3.10a

6: compute details dα, dβ, dγ using Equations 3.10b - 3.10d
7: compute normalised detail dnorm
8: flag as significant if dnorm ≥ 2n−Lε
9: end for

10: end for
11: end procedure

s
(n+1)
[0] = H0

(
H0s(n) +G0d(n)α

)
+G0

(
H0d

(n)
β +G0d(n)γ

)
(3.11a)

s
(n+1)
[2] = H0

(
H1s(n) +G1d(n)α

)
+G0

(
H1d

(n)
β +G1d(n)γ

)
(3.11b)

s
(n+1)
[1] = H1

(
H0s(n) +G0d(n)α

)
+G1

(
H0d

(n)
β +G0d(n)γ

)
(3.11c)

s
(n+1)
[3] = H1

(
H1s(n) +G1d(n)α

)
+G1

(
H1d

(n)
β +G1d(n)γ

)
(3.11d)

Decoding. Flagging significant details during the encoding step results in a tree-like structure

of significant details embedded within the hierarchy of grids (see example in Figure 3.2a): this tree

is essential for generating a non-uniform grid. To generate the non-uniform grid, CPU-HWFV1

identifies and assembles the cells that make up the non-uniform grid by climbing the tree of sig-

nificant details while applying Equations 3.11a to 3.11d. These equations exploit the details that

were produced in the encoding process – which, recall, represent and store the difference in flow

and topograhic complexity between the children and the parent – by “adding back” the complexity

stored in the details to the parents in order to produce the children. The climbing starts from the

coarsest cell and restarts whenever it reaches either (1) a cell on the finest grid (e.g. the green cells

in Figure 3.2a), or (2) a cell with a detail that is not significant (e.g. the blue cells in Figure 3.2a):
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these cells are termed “leaf cells” and are assembled into a non-uniform grid. The non-uniform

grid is indexed using a tree data structure – hence the term leaf cells as the cells making up the

non-uniform grid are analogous to the leaf nodes of a tree data structure for indexing a cell-based

non-uniform grid (see Section 2.3.1). Figure 3.2b shows the non-uniform grid generated by CPU-

HWFV1 after assembling the leaf cells in Figure 3.2a. Climbing the tree in the way described

above corresponds to a depth-first traversal of a tree (Sedgewick and Wayne, 2011). The path of

the depth-first traversal of the tree in Figure 3.2a can be traced by following the cells labelled from

0 to 12 in ascending order, and the process of performing a depth-first traversal while applying

Equations 3.11a - 3.11d and identifying leaf cells is called “decoding”.

Figure 3.2: Generating a non-uniform grid via the MRA process. The left panel shows the tree-like
structure embedded within the hierarchy of grids after flagging significant details during the encoding
step: the cells where the tree terminates are called “leaf” cells (highlighted in green and blue). The
right panel shows the non-uniform grid generated from assembling the leaf cells.

Algorithm 2 shows pseudocode describing the decoding step. The algorithm starts at the

coarsest cell in the tree, i.e. at the coefficient s
(0)
[0] . The children of this cell, s

(1)
[0] , s

(1)
[1] , s

(1)
[2] , and s

(1)
[3] ,

are computed using Equations 3.11a - 3.11d (line 6) and then the algorithm is recursively launched

at the children at one refinement level higher (lines 7 to 10). The algorithm is recursively launched

until a cell with a detail that is not significant is reached or a cell on the finest grid is reached (line

2), at which point the cell is identified as a leaf cell (line 3). After identifying the leaf cells and

assembling them into a non-uniform grid, CPU-HWFV1 can perform the FV1 update (i.e. perform

the solver computations) over the assembled non-uniform grid. The FV1 update is described next.
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Algorithm 2 Pseudocode for performing a depth-first traversal of the tree of significant details
(obtained after encoding) while applying Equations 3.11a - 3.11d, called “decoding”.

1: procedure DECODING(s(n), n)
2: if detail is not significant or reached finest grid then
3: identify cell as leaf cell
4: stop decoding
5: else
6: compute children s

(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , s

(n+1)
[3] with Equations 3.11a - 3.11d

7: DECODING(s
(n+1)
[0] , n+ 1)

8: DECODING(s
(n+1)
[1] , n+ 1)

9: DECODING(s
(n+1)
[2] , n+ 1)

10: DECODING(s
(n+1)
[3] , n+ 1)

11: end if
12: end procedure

3.1.1.3 Neighbour finding to perform the FV1 update over the non-uniform grid

To perform the FV1 update over the non-uniform grid, CPU-HWFV1 needs to compute Lc for each

cell in the grid. To compute Lc for each cell, CPU-HWFV1 needs to retrieve swest, seast, snorth, and

ssouth – i.e. the coefficients of the neighbours of each cell. Finding the neighbours is trivial on a

uniform grid because a cell can look left, right, up, and down to find its neighbours, but finding the

neighbours is not trivial on a non-uniform grid because a cell can have multiple neighbours in a given

direction. For instance, Figure 3.3 shows an example of a cell and its neighbours in a non-uniform

grid. In this example, finding swest (blue cell), ssouth, and snorth (grey cells) is straightforward.

However, it is not clear what seast should be because the eastern neighbours (red cells) are at a

higher refinement level, and there are multiple neighbours. CPU-HWFV1 avoids this problem by

taking seast to be the set of coefficients of the eastern neighbor at the same refinement level (yellow

cell in Figure 3.3), whose coefficient is readily available since the encoding and decoding steps

have produced s
(n)
c at all refinement levels. Namely, when computing the flux between the cell

and the red eastern neighbours at a higher refinement level, the information of the yellow eastern

neighbour at the same refinement level, i.e. seast, is used instead of the red eastern neighbours,

which information is readily available because the MRA process has already produced flow and

topographic information in all refinement levels of the hierarchy. This strategy for finding the

neighbours makes it possible for CPU-HWFV1 to compute Lc and perform the FV1 update over
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the non-uniform grid efficiently – although less accurately – as choosing to compute only a single flux

per neighbour per cell and therefore always computing only four fluxes in total per cell completely

eliminates the possibility of warp divergence, whereas the alternative strategy of computing and

accumulating the four fluxes of the four red eastern neighbours at a higher refinement level would

generally lead to computing a different number of fluxes per cell in the grid, all but certainly leading

to warp divergence.

Figure 3.3: Finding the neighbours of a cell in a non-uniform grid to retrieve swest, seast, snorth,
and ssouth and compute Lc.

The overview of CPU-HWFV1 is here completed, and Algorithm 3 shows pseudocode summaris-

ing the steps involved in running CPU-HWFV1. To run CPU-HWFV1, the user needs to specify

the maximum refinement level (L), the error threshold (ε), and the simulation end time (tend) (line

1). CPU-HWFV1 runs in a loop until tend is reached (lines 3 to 10). Every iteration of the loop,

a non-uniform grid is generated, i.e. a non-uniform grid is generated every timestep (lines 4 to

6). Note that after the first timestep, the details are zeroed first before redoing the encoding step,

whereby encoding is performed only along the tree of significant details. CPU-HWFV1 performs

an FV1 update over the generated non-uniform grid (line 7), after which the simulation time is

incremented by the current timestep (line 8), and a new timestep is recomputed based on the CFL

condition (line 9).

3.1.2 GPU-parallelisation of CPU-HWFV1

Having given an overview of CPU-HWFV1, the three obstacles that make it difficult to parallelise

CPU-HWFV1 can be stated precisely. The first obstacle is that coalesced memory access is hin-

dered when accessing the children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3] in the encoding and decoding

steps unless the hierarchy of grids is indexed in a deliberate way. The second obstacle is that a
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Algorithm 3 Pseudocode summarising the steps involved in running CPU-HWFV1.

1: procedure HWFV1(L, ε, tend)
2: Get s(L) from initial discretisation of SWE on the finest grid
3: while current time < tend do
4: ENCODING(L, ε)
5: DECODING(s(0), 0) ▷ Start decoding from coarsest cell
6: Find neighbours to compute Lc

7: Use Lc to perform FV1 update
8: Increment current time by timestep
9: Compute new timestep based on CFL condition

10: end while
11: end procedure

recursive depth-first traversal algorithm is used in the decoding step, which fundamentally cannot

be parallelised on the GPU. The third obstacle is that the non-uniform grid generated by the MRA

process is indexed using a tree data structure that hinders coalesced memory access. These three

obstacles are overcome using a Z-order space-filling curve (Section 3.1.2.1), a parallel tree traversal

algorithm (Section 3.1.2.2) and an array data structure (Section 3.1.2.3), respectively.

3.1.2.1 Z-order curves to achieve coalesced memory access in encoding and decoding

Encoding. Consider parallelising the encoding step assuming the cells in the hierarchy of grids

are indexed in row-major order. Figure 3.4 shows the hierarchy of grids in Figure 3.1a indexed in

row-major order (left panel) and the corresponding locations of the children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] ,

and s
(n+1)
[3] in memory (right panel). Using row-major indexing leads to uncoalesced memory access

when loading the children (see line 4 of Algorithm 1) because the children reside in non-adjacent

memory locations, as shown in Figure 3.4 to the right. To ensure the children reside in adjacent

memory locations and thereby ensure coalesced memory access, an indexing scheme other than

row-major order is needed.

A different indexing scheme is needed that ensures that coefficients that are nearby in the

hierarchy are also nearby in memory. This kind of indexing is allowed by an SFC by definition

because an SFC maps spatial data to a one-dimensional line such that data close together in space

tend to be close together on the line (Sagan, 1994; Bader, 2013). There are a few different types

of SFCs such as the Sierpinski curve, the Peano curve, the Hilbert curve and the Z-order curve

(also known as Lebesgue or Morton curve): all of these SFCs have previously been used in the
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Figure 3.4: Indexing the hierarchy of grids in row-major order (left panel) and the corresponding

positions of the children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3] in non-adjacent memory locations (right

panel).

context of grid adaptation (Brix et al., 2009; Burstedde et al., 2011; Meister et al., 2016; Weinzierl

and Mehl, 2011). Brix et al. (2009) used the Hilbert curve in a wavelet-based grid adaptation

algorithm parallelised over multiple CPUs using MPI. Burstedde et al. (2011) presented the p4est

AMR framework in which the Z-order curve was used to achieve load balancing. Meister et al.

(2016) presented the sam(oa)2 AMR framework in which the Sierpinski curve was applied to 2D

triangular meshes. Weinzierl and Mehl (2011) applied a Peano curve to index 3D non-uniform

Cartesian grids. However, none of these works were aimed at addressing the GPU-parallelisation

of wavelet-based grid adaptation.

In this work, the Z-order curve is chosen because its pattern matches exactly with the parent-

children square stencil shown in Figure 3.1b. A Z-order curve can be created for a square 2n × 2n

grid by following the so-called Morton codes of each cell in the grid in order. The Morton code of a

cell is obtained by interleaving the bit representation of its i and j positional indices in the grid. For

example, Figure 3.5 shows the creation of a Z-order curve for a 22×22 grid: the left panel shows the

i (black) and j (red) indices of each cell in binary form and how the bits are interleaved (alternating

red and black) to yield Morton codes (in binary form). The right panel shows how these Morton

codes (in decimal form) are followed in ascending order to create the Z-order curve. The curve
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allows to enforce Z-order indexing of the grid because each cell in the grid can be identified on the

curve (and also in memory) via its (unique) Morton code.

Figure 3.5: Creation of a Z-order curve for a 22 × 22 grid. The left panel shows how the binary
forms of the i and j indices of each cell making up a 22 × 22 grid are bit interleaved (alternating red
and black digits) to yield so-called Morton codes (also shown in binary). The right panel shows how
these Morton codes (now shown in decimal form) are followed in ascending order to create a Z-order
curve and enforce Z-order indexing of the cells in the grid.

In GPU-HWFV1, Z-order curves are created for each grid in the hierarchy while enforcing

continuity in the indexing of the curves of subsequent grids, resulting in a unique Z-order index for

each cell in the hierarchy. Figure 3.6 shows the hierarchy of grids in Figure 3.1a once it has been

indexed using Z-order curves, alongside the corresponding locations of the children s
(n+1)
[0] , s

(n+1)
[1] ,

s
(n+1)
[2] , and s

(n+1)
[3] in memory. The indexing of the Z-order curves allows for coalesced memory

access during encoding because the children reside in adjacent memory locations, as seen in the

right panel of Figure 3.6.

Decoding. In contrast to the encoding step, the decoding step is more difficult to parallelise

because it involves applying Equations 3.11a - 3.11d while using an inherently sequential depth-first

traversal algorithm to traverse the tree of significant details and identify the leaf cells (Sedgewick

and Wayne, 2011), which cannot be parallelised on the GPU. To overcome this difficulty, decoding

is broken down into two parts that are parallelised separately: the first part is applying Equations

3.11a - 3.11d, and the second part is traversing the tree of significant details. Hereafter, decoding

refers only to applying Equations 3.11a - 3.11d but without traversing the tree.

Decoding – now taken to be the application of Equations 3.11a - 3.11d without traversing the

tree of significant details – can be parallelised relatively easily because it can be performed using
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Figure 3.6: Indexing the hierarchy of grids using Z-order curves (left panel) and the corresponding

positions of the children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3] in adjacent memory locations (right panel).

for-loops, much like in Algorithm 1. Algorithm 4 shows pseudocode describing how to perform

decoding in parallel. The pseudocode involves an outer loop and a parallelised inner loop. The

outer loop iterates over the grids in the hierarchy starting from the coarsest grid up to the second-

finest grid (lines 2 to 9), while the inner loop iterates through each cell in the grid in parallel (lines

3 to 8). The inner loop checks if the detail is significant (line 4), loads the parent s
(n)
c and the

details d
(n)
α , d

(n)
β , and d

(n)
γ (line 5), and computes the children s

(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3]

(line 6). This parallel inner loop achieves coalesced memory access because of the indexing of the

Z-order curves, particularly when loading the parents in line 5: this can be seen by interpreting the

arrows in Figure 3.6 in the reverse direction.

Algorithm 4 Pseudocode for performing the decoding step in parallel.

1: procedure PARALLEL DECODING(L)
2: for each grid in hierarchy from 0 to L− 1 do
3: for each cell in the grid in parallel do
4: if detail is significant then

5: Load parent s
(n)
c and details d

(n)
α , d

(n)
β , d

(n)
γ

6: Compute children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , s

(n+1)
[3] with Equations 3.11a - 3.11d

7: end if
8: end for
9: end for

10: end procedure
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3.1.2.2 Parallel tree traversal algorithm

Unlike decoding (defined in Section 3.1.2.1 to be the application of Equations 3.11a - 3.11d without

traversing the tree of significant details), traversing the tree of significant details fundamentally

boils down to a tree traversal problem (Sedgewick and Wayne 2011). The parallelisation of tree

traversal algorithms on the GPU has been investigated before (Lohr, 2009; Bédorf et al., 2012;

Goldfarb et al., 2013; Karras, 2012; Zola et al., 2014; Nam et al., 2016; Chitalu et al., 2018): Bédorf

et al. (2012) and Zola et al. (2014) presented parallel algorithms for construction and traversal of

trees for solving gravitational N -body problems. Lohr (2009), Karras (2012), and Chitalu et al.

(2018) implemented parallel algorithms for traversing tree-based bounding volume hierarchies in

computer graphics applications. Goldfarb et al. (2013) demonstrated tree traversal techniques on

the GPU for general-purpose rather than application-specific use. Nam et al. (2016) evaluated a

parallel tree traversal algorithm in the context of nearest neighbor querying. These works suggest

that a parallel tree traversal algorithm can be adopted to traverse the tree of significant details on

the GPU.

In this thesis, the parallel tree traversal algorithm developed by Karras (2012) is adopted because

it can be easily modified to work with the indexing of Z-order curves (see Section 3.1.2.1). The

parallel tree traversal algorithm’s functionality and efficiency is explained by example by considering

how it is used to traverse the tree of significant details in Figure 3.2a in parallel on the GPU (without

loss of generality).

Figure 3.7a shows the tree of significant details embedded within the hierarchy of grids in

Figure 3.2a after the hierarchy has been indexed using Z-order curves. To traverse this tree in

parallel on the GPU, the parallel tree traversal algorithm starts by launching a CUDA kernel with

one thread per cell in the finest grid in the hierarchy – for example, in Figure 3.7a, there are 22×22

= 16 cells in the finest grid, so the kernel is launched with 16 threads – whereby each thread

corresponds to a “target cell” in the finest grid. Namely, let tm denote a thread with thread index

m (here, m = 0, 1, . . . , 15): tm corresponds to a target cell in the finest grid with a Morton code

m, e.g. t6’s target cell is the cell in the finest grid with Morton code 6. Each thread traverses

the tree in parallel by starting at the coarsest cell in the tree (i.e. the cell with Z-order index

0; see Figure 3.7a) and climbing up progressively finer cells while aiming to reach its target cell.
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Note that the target cell may not necessarily be part of the tree. For example, t6 tries to climb

up to its target cell with Morton code 6 in the finest grid. A thread stops climbing the tree if it

encounters either (1) its target cell (which would be in the finest grid), or (2) a cell with a detail

that is not significant (which would not be in the finest grid). For example, t6 climbs up the cells

with Z-order indices (0, 2, 11), i.e. t6 has a traversal path of (0, 2, 11): it starts at the cell with

Z-order index 0, climbs up to the cell with Z-order index 2, climbs up again to the cell with Z-order

index 11, and then stops climbing the tree as it has reached its target cell. As another example, t3

has a traversal path of (0, 1): it starts at the cell with Z-order index 0, climbs up to the cell with

Z-order index 1, and then stops climbing the tree as it has reached a cell with a detail that is not

significant. Figure 3.7b shows the traversal paths of all 16 threads launched by the parallel tree

traversal algorithm. The parallel tree traversal algorithm incurs minimal warp divergence because

threads in a warp are likely to have similar traversal paths. For example, t0 to t3 follow the same

cyan path in Figure 3.7a. Similarly, t4 to t7 follow the magenta path, t8 to t11 follow the yellow

path and t12 to t15 follow the grey path.

When a thread reaches the end of its traversal path, i.e. when it stops climbing the tree of

significant details, it records the Z-order index of the cell at which it stops climbing the tree: this

amounts to identifying a leaf cell and recording its Z-order index. The Z-order indices of the leaf

cells are recorded in an array data structure, whereby t0 records the Z-order index of its leaf cell in

the 0th slot of the array, t1 records the Z-order index in the 1st slot, tm records the Z-order index in

the mth slot, etc. Figure 3.7c shows the Z-order indices of the leaf cells recorded by all 16 threads

after the parallel tree traversal algorithm is completed. Some of the recorded Z-order indices are

duplicates because some threads (e.g. t0 to t3 and t12 to t15) stop climbing the tree at the same leaf

cell and therefore record the same Z-order indices. Crucial to reducing warp divergence, duplicates

are more likely to emerge with increasing L as a higher value of L is more likely to introduce a

higher number of cells in the non-uniform grid that are not at the highest refinement level, which

reduces warp divergence because duplicate traversal paths, by definition, incur no warp divergence.

The duplicate Z-order indices are exploited to find the neighbours of each leaf cell (i.e. the

neighbour finding described before in Section 3.1.1.3) in order to perform the FV1 update. The

neighbours are found by making each thread look left, right, up and down from the perspective

of the thread’s target cell in the finest grid (see Figure 3.7c) and recording the Z-order indices of
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Figure 3.7: Parallel tree traversal. The left panel shows the tree of significant details, with different
parallel traversal paths indicated in yellow, cyan, magenta and grey. The middle panel shows the
traversal paths of each thread during the parallel tree traversal in terms of the Z-order indices of the
cells they traverse. The right panel shows the Z-order indices recorded by each thread after parallel
tree traversal is complete.

the neighbours. The Z-order indices of the neighbours are recorded in four array data structures

– one array for each of the western, eastern, northern and southern neighbours of all the leaf

cells. Figure 3.8a shows the five arrays used to store the Z-order indices of the leaf cells and their

neighbours in global memory – one for the leaf cells and four for the neighbours. Duplicate sets of

indices are removed – as indicated by the double black lines – via parallel stream compaction using

the CUB library (Merrill, 2022). Figure 3.8b shows the arrays used to store the Z-order indices of

the unique leaf cells and their neighbours without any duplicates. The unique leaf cells make up a

non-uniform grid, and the arrays effectively allow to generate and index a non-uniform grid using

an array data structure instead of a tree data structure. This array data structure is used to ensure

coalesced memory access when performing the FV1 update over the non-uniform grid, as explained

next.

3.1.2.3 Array data structure to ensure coalesced memory access in the FV1 update

Due to using an array to index the non-uniform grid, ensuring coalesced memory access when

performing the FV1 update over the non-uniform grid is relatively simple. Recall from Section

3.1.1.3 that to perform the FV1 update over the non-uniform grid, Lc needs to be computed for

each cell in the grid, and to compute Lc for each cell, sc, swest, seast, snorth, and ssouth need to be

retrieved. To retrieve sc, swest, seast, snorth, and ssouth, a kernel is launched with one thread per leaf
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Algorithm 5 Pseudocode for the parallel tree traversal algorithm. The algorithm features an
iterative procedure (lines 4 to 16) instead of the recursive procedure in the depth-first traversal in
Algorithm 2.

1: procedure PARALLEL TREE TRAVERSAL(finest grid)
2: for all cell in finest grid in parallel do
3: start at coarsest cell
4: while try to reach finer cell do
5: if detail is not significant then
6: record z-order index of cell
7: stop traversing
8: else
9: if reached finest cell then

10: record z-order index of cell
11: stop traversing
12: else
13: try to reach finer cell
14: end if
15: end if
16: end while
17: end for
18: end procedure

cell. For example, in Figure 3.8b, there are ten leaf cells, so ten threads t0 to t9 are launched. Each

thread uses the arrays of the Z-order indices of the leaf cells and neighbours (see Figure 3.8b) to

retrieve sc, swest, seast, snorth, and ssouth from the hierarchy and store them in five arrays, one for

each of sc, swest, seast, snorth, and ssouth. Note that when retrieving sc, swest, seast, snorth, and ssouth

from the hierarchy, some uncoalesced memory access may occur. For example, consider retrieving

sc using the Z-order indices of the leaf cells in Figure 3.8b: the indices are 1, 9, . . . , 16, and 4.

These Z-order indices correspond to memory locations that are mostly adjacent (e.g., the indices

9, . . . , 16) but not completely (e.g., the indices 1, 9, and 16, 4), thus introducing some uncoalesced

memory access.

After retrieving sc, swest, seast, snorth, and ssouth, ensuring coalesced memory access when per-

forming the FV1 update is trivial. The FV1 update is performed by launching a kernel with one

thread per leaf cell. For example, in Figure 3.8b, there are ten leaf cells, so ten threads t0 to t9

are launched. Now suppose the arrays in Figure 3.8b are storing sc, swest, seast, snorth, and ssouth

instead of the Z-order indices of the leaf cells and neighbours, i.e. they explicitly store flow and

topographic information instead of indices or pointers: to perform the FV1 update in parallel, each
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Figure 3.8: Parallel FV1 update. The upper panel shows the Z-order indices of the leaf cells and
their neighbours stored in memory after parallel tree traversal and neighbour finding, which includes
duplicate indices. The lower panel shows the Z-order indices of the leaf cells and their neighbours
without any duplicates, which are used to retrieve sc, swest, seast, snorth, and ssouth and compute Lc

for the FV1 update in parallel.

thread retrieves sc, swest, seast, snorth, and ssouth from the arrays to compute Lc. For example, t0

would use the first column of indices (red box in Figure 3.8b), t1 would use the second column,

and so on. Each thread t0 to t9 retrieves sc, swest, seast, snorth, and ssouth from adjacent memory

locations, so coalesced memory access is ensured. After performing the FV1 update, incrementing

the current simulation time by the timestep is trivial, and the new minimum timestep based on the

CFL condition is computed by performing a so-called parallel minimum reduction using the CUB

library (Merrill, 2022).

The three obstacles described at the start of Section 3.1.2 are thus overcome, and all the

steps involved in running CPU-HWFV1 (lines 4 to 9 of Algorithm 3) are parallelised, so im-

plementing GPU-HWFV1 is complete. Having implemented GPU-HWFV1, the efficiency of its

GPU-parallelised HW-based grid adaptation capability can be analysed.

3.2 Analysing GPU-HWFV1’s performance

The primary aim of this section is to analyse the efficiency of GPU-HWFV1’s GPU-parallelised HW-

based grid adaptation capability. The efficiency analysis is performed quantifying GPU-HWFV1’s

potential speedup over two existing and validated SWE models, namely the GPU-parallelised FV1
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Table 3.1: Test cases to compare GPU-HWFV1 against GPU-FV1 and CPU-HWFV1

Test name Test type Use Previously used in

Quiescent flow over irregular
topographies with different
steepness. Dam-break flow
over realistic topography
with friction effects (Section
3.2.1)

Synthetic Verifying
accuracy

Song et al. (2011);
Huang et al. (2013);
Kesserwani et al.
(2018); Kesserwani and
Sharifian (2020);
Shirvani et al. (2021)

Circular 2D dam-break flow
(Section 3.2.2)

Synthetic Assessing
speedup

Kesserwani and
Sharifian (2020); Wang
et al. (2010)

Pseudo-2D dam-break flow
(Section 3.2.2)

Synthetic Assessing
speedup

Kesserwani et al.
(2019); Kesserwani and
Sharifian (2020)

Dam-break wave interaction
with an urban district
(Section 3.2.3)

Realistic Assessing
speedup

Jeong et al. (2012);
Caviedes-Voullième
et al. (2020);
Kesserwani and
Sharifian (2020)

Tsunami wave propagation
over a complex beach
(Section 3.2.3)

Realistic Assessing
speedup

Hou et al. (2015);
Arpaia and Ricchiuto
(2018);
Caviedes-Voullième
et al. (2020);
Kesserwani and
Sharifian (2020)

model running on a uniform grid in LISFLOOD-FP 8.0 (Shaw et al., 2021), i.e. GPU-FV1, and

the serial CPU version of the HWFV1 model (Kesserwani and Sharifian, 2020), i.e. CPU-HWFV1.

A secondary aim of this section is to verify GPU-HWFV1’s accuracy, namely by confirming that

GPU-HWFV1 preserves a similar level of accuracy as GPU-FV1. This verification is mainly carried

out by checking that GPU-HWFV1 obtains flow predictions that are close to those obtained by

GPU-FV1.

GPU-HWFV1’s accuracy and speedup is analysed by running simulations of five test cases that

feature a wide range of topographies and flow types (see Table 3.1). The first test case (Section

3.2.1) involves simulating both quiescent and dam-break flows over irregular topographies with

frictional effects and is used solely to verify GPU-HWFV1’s accuracy.

The second and third test cases (Section 3.2.2) involve simulating synthetic dam-break flows

over flat topographies and are mainly used to systematically analyse the speedup achieved by GPU-
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Table 3.2: Aspects ε, L, and flow type against which GPU-HWFV1’s speedup over CPU-HWFV1
and GPU-FV1 is systematically analysed.

Aspect Description Effect on amount of grid
coarsening

L User-specified parameter for
controlling the grid resolution
of the grid at the maximum
refinement level

Finer maximum allowable
grid resolution with a higher
value of L

ε User-specified parameter for
controlling the amount of
grid coarsening

Higher amount of coarsening
introduced into
GPU-HWFV1’s non-uniform
grid with a larger value of ε

Flow type Test-case dependent: ranges
from rapid (e.g. shocks, wave
reflections, and diffractions)
to smooth (e.g. very shallow
or nearly flat waves)

Rapid flows allow for less
grid coarsening

HWFV1 with respect to three aspects, namely the error threshold ε, the maximum refinement

level L, and the flow type: these three aspects are considered because they affect the amount of

coarsening in GPU-HWFV1’s non-uniform grid (see Table 3.2), which is hypothesised to directly

affect GPU-HWFV1’s speedup over CPU-HWFV1 and GPU-FV1.

As an example, Figure 3.9 shows relatively higher and lower amounts of coarsening in GPU-

HWFV1’s non-uniform grid on the left and right, respectively. GPU-HWFV1’s speedup over CPU-

HWFV1 may increase with a lower amount of grid coarsening: with a lower amount of grid coars-

ening, the number of cells in the non-uniform grid is higher and therefore so is the computational

throughput or workload – and the speedup afforded by efficient GPU-parallelisation should scale

with the computational throughput in a phenomenon known as weak scaling (Gustafson, 1988;

Shaw et al., 2021). Conversely, GPU-HWFV1’s speedup over GPU-FV1 may increase with a

higher amount of grid coarsening, as this reduces the cell count of GPU-HWFV1’s non-uniform

grid compared to GPU-FV1’s uniform grid, thus reducing the computational effort (Kesserwani

et al., 2019; Kesserwani and Sharifian, 2020).

The systematic analysis of the speedup is therefore performed by simulating the second and

third test cases using GPU-HWFV1 and CPU-HWFV1 with different pairs of ε and L, with ε =

{10−4, 10−3, 10−2} to cover a range around the recommended value of 10−3 for maintaining a fair

compromise between accuracy and speedup (Kesserwani et al., 2019; Kesserwani and Sharifian,
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More grid coarsening Less grid coarsening

Figure 3.9: Relatively higher (left panel) and lower (right panel) amounts of grid coarsening in
GPU-HWFV1’s non-uniform grid from the “Tsunami wave propagation over a complex beach” test
case (Section 3.2.3).

2020), and with L = {8, 9, 10, 11} – as no speedups were identified for L ≤ 7 and using L ≥ 12

exceeded the memory capacity of the GPU card used (RTX 2070). Simulations are also run using

GPU-FV1 – always on a uniform grid at the finest grid resolution accessible to GPU-HWFV1 at a

given value of L.

Informed by the systematic analysis of the speedup achieved by GPU-HWFV1 when simulating

synthetic dam-break flows over flat topographies, GPU-HWFV1 is finally analysed in the fourth

and fifth test cases (Section 3.2.3), which involve simulating more realistic flows over complex

topographies represented by raster grid DEMs. Due to the involvement of the DEMs, GPU-

HWFV1 must be run with fixed values of L to accommodate the size of the DEM raster grid in

each test case (unlike in the synthetic test cases where no DEMs were present and L could be freely

chosen). Furthermore, the topography limits the amount of coarsening allowed in the non-uniform

grid because GPU-HWFV1’s grid adaptation capability cannot introduce any coarsening in its

non-uniform grid beyond that allowed by the topography.

3.2.1 Verifying accuracy

The first test case is used solely to verify GPU-HWFV1’s accuracy by considering two simulation

scenarios. The first scenario is to verify GPU-HWFV1’s ability to preserve a quiescent (i.e. un-
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moving) flow state in the presence of wet-dry fronts with different levels of steepness in topography

and different wetting conditions. This is done by checking its C-property, which is the ability to

balance the fluxes with the source terms under steady-state conditions (Greenberg and Leroux,

1996). If GPU-HWFV1 is C-property, then it should not disturb an initially quiescent flow state as

the fluxes should exactly balance with the source terms. The second simulation scenario is to verify

GPU-HWFV1’s ability to reproduce a realistic dam-break flow with friction effects and moving

wet-dry fronts. For both scenarios, the test case area is 70 m Ö 30 m with closed wall boundaries,

which includes humps to represent an irregular topography. Three hump shapes are considered

with increasingly steeper topographic slopes to verify the C-property for realistic topographies, as

shown in the upper panels of Figure 3.10 (smooth on the left, steeper in the middle and rectangu-

lar on the right). For each hump shape, appropriate initial conditions are applied (see Table 3.3)

with zero velocities to generate an unmoving free-surface elevation that leads to different wetting

conditions around and/or at the humps.

Simulations are run with GPU-FV1 and GPU-HWFV1 up to 100 s with ε = 10−3 and L = 8

(requiring around 3,000 timesteps to complete) while measuring the discharges. For GPU-HWFV1

to be deemed C-property, the free-surface elevation should stay undisturbed during the simulation,

meaning that the discharges should not grow too much from zero and the number of cells in the

adaptive grid should be constant over time. The middle and bottom row of panels of Figure 3.10

show the time histories of the maximum discharge errors (i.e. the maximum deviation from zero)

and the number of grid cells for the three hump profiles. The errors are seen to become increasingly

higher with increased irregularity in the hump profile, but nonetheless remain bounded as also

observed for the CPU model counterparts (Kesserwani and Sharifian, 2020); meanwhile, the number

of cells remains constant over time. This demonstrates that GPU-HWFV1 is C-property irrespective

of the steepness of the bed slope and the presence of wet-dry fronts in the domain area.

Next, GPU-HWFV1 is used to run a simulation of a frictional dam-break flow (nM = 0.018

m1/3/s) over a non-trivial topography, namely the smooth hump profile (Figure 3.10, top left panel).

The dam-break flow involves an initial condition where a water body of 1.875 m upstream of the

humps is blocked by a hypothetical dam located at x = 16 m. The dam-break flow is simulated up to

12 s using GPU-HWFV1 with the same choice of ε and L as above. Another simulation is run with

GPU-FV1 to allow for like-for-like comparisons of flood maps at outputs times reported in previous
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Figure 3.10: Verifying GPU-HWFV1’s C-property in the presence of wet-dry fronts with different
levels of steepness in the topography and different wetting conditions: smooth humps (left panels),
steeper humps (middle panels) and rectangular humps (right panels). The upper panels show the
shapes of the humps, the middle panels show the time histories of the maximum discharge errors
(solid lines - GPU-FV1, dashed lines - GPU-HWFV1), where qx = hu and qy = hv, and the bottom
panels show the time histories of the number of grid cells.

studies (Shirvani et al., 2021; Song et al., 2011). Figure 3.11 includes the flood maps predicted by

GPU-HWFV1 (left panel) compared to those predicted by GPU-FV1 (right panel) at 0, 6, and 12

s. At 0 s (upper panel), both models are seen to start from the same initial flow conditions. At

6 s (middle panel), both models predict that the small humps are completely submerged and that

the dam-break wave has reached the large hump, where the L1 error between flood maps predicted

by GPU-HWFV1 and GPU-FV1 is 4.6 × 10−4. There are similar wave patterns surrounding the

large hump at 12 s (lower panel), where the L1 error is 9.2 × 10−4. In all the predictions, GPU-

HWFV1 shows symmetrical flood maps that are similar to those reproduced by GPU-FV1 and

other hydrodynamic profiles reported in previous works (Shirvani et al., 2021; Song et al., 2011).
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Table 3.3: Zero-velocity initial conditions for generating an unmoving water surface flow for the
three hump shapes shown in Figure 3.10.

Hump
profile

h + z (m) Wetting conditions Reference

Smooth 0.875 Dry around the highest
hump, critical (h = 0 m) over
the two small humps

Song et al. (2011);
Huang et al. (2013);
Shirvani et al. (2021)

Steeper 1.78 Dry around the highest
hump, critical (h = 0 m) at
the peak of the medium
hump, wet above the shortest
hump (h > 0 m)

Kesserwani et al.
(2018)

Rectangular 1.95 Dry around the highest
hump, critical (h = 0 m) at
the peak of the medium
hump, wet above the shortest
hump (h > 0 m)

Kesserwani et al.
(2018)

These results suggest that GPU-HWFV1 preserves a similar level of accuracy as well-established

models in simulations of frictional dam-break flows over non-trivial topographies.

In the next test cases, in addition to verifying GPU-HWFV1’s accuracy, analyses of the speedups

are also performed.

3.2.2 Speedup analyses using simulations of synthetic dam-break flows

Circular 2D dam-break flow. This test case has often been used to verify the accuracy of

new SWE models by assessing their ability to simulate the symmetric propagation of shocks and

rarefaction waves in a closed [−20m, 20m]2 test case area (Toro, 2001). The test case involves an

initial water depth of 2.5m inside a hypothetical cylindrical dam that is separated from a water

depth of 0.5m outside the dam. The dam is removed at t = 0 s, causing a dam-break flow over a

flat and frictionless topography in which a shock wave moves radially outwards and a rarefaction

wave moves radially inwards, which eventually collapses to form a secondary shock. Due to the

presence of the shock and rarefaction wave in the test case area, the flow in this test case is always

rapid.

The test case is first used to verify GPU-HWFV1 by comparing the water depths predicted

by GPU-HWFV1 to those predicted by GPU-FV1. Simulations of this test case are run up to

t = 3.5 s using GPU-HWFV1 – with the same choice of ε and L as in Section 3.2.1 – and GPU-
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Figure 3.11: Verifying GPU-HWFV1’s accuracy by simulating a frictional dam-break flow with
moving wet-dry fronts over a non-trivial topography. Flood maps predicted by GPU-HWFV1 and
GPU-FV1 on the left and right panels, respectively. At 0 s, the dam break wave emerges (upper
panels). At 6 s, the wave has submerged the small humps (middle panels). At 12 s, the wave starts to
surround the large hump (lower panels).

FV1. Figure 3.12 shows the water depth centrelines predicted by the two models. GPU-HWFV1

predicts water depths that are visually identical to those predicted by GPU-FV1. The benchmark

solution was produced using the FV1 numerical solution of the 1D radial form of the 2D shallow

water equations using 256×256 cells, following Toro (2001). Next, more simulations of this test case

are run using GPU-HWFV1, GPU-FV1, and CPU-HWFV1 to analyse GPU-HWFV1’s speedup.

To analyse the speedup, simulations of this test case are now run using different pairs of ε and

L as described at the start of Section 3.2. Runtimes of the simulations are recorded to calculate

GPU-HWFV1’s speedup over CPU-HWFV1 and GPU-FV1. Figure 3.13 shows GPU-HWFV1’s

speedup over CPU-HWFV1 and GPU-HWFV1 against the maximum refinement level L in the left

and right panels, respectively. The black lines indicate the average speedup ratios over the three

values of ε, and the dash-dotted lines indicate the breakeven point above which GPU-HWFV1 is

faster than GPU-FV1 or CPU-HWFV1 (which is used in all subsequent speedup figures). As seen
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Figure 3.12: Circular 2D dam-break flow. Verifying GPU-HWFV1’s accuracy using the same choice
of ε and L as in Section 3.2.1 ((ε = 10−3 and L = 8): water depth centrelines at t = 3.5 s predicted
by GPU-HWFV1 and GPU-FV1 compared to the benchmark solution. The benchmark solution was
produced using the FV1 numerical solution of the 1D radial form of the 2D shallow water equations
using 256× 256 cells, following Toro (2001).

in the left panel of Figure 3.13, GPU-HWFV1 is 5 to 46Ö faster than CPU-HWFV1. Furthermore,

the speedup is proportional to the increase in L and the decrease in ε. This observation suggests

that GPU-HWFV1’s grid adaptation capability is much more efficient than CPU-HWFV1 due to

being implemented on the GPU and becomes more efficient as the choice of L is increased and/or

the choice of ε is decreased. This finding seems reasonable because as L increases or ε decreases,

the cell count of the non-uniform grid increases, leading to a higher computational throughput

for which GPU-parallelisation is expected to yield a higher speedup due to weak scaling. Next,

GPU-HWFV1’s potential speedup over GPU-FV1 is analysed.

Compared to GPU-FV1, GPU-HWFV1 does not become faster until L ≥ 9, as seen in the

right panel of Figure 3.13. Furthermore, GPU-HWFV1 achieves a maximum speedup of 3× for the

largest ε = 10−2, and around 2× for the smaller ε = 10−3 and 10−4. These observations suggest

that despite the rapid flow present in this test case – which reduces the amount of coarsening

allowed in GPU-HWFV1’s non-uniform grid and thus does not reduce the computational effort

much – GPU-HWFV1 is still faster than GPU-FV1. This finding suggests that GPU-HWFV1 is

likely to achieve higher speedups over GPU-FV1 the lower the value of ε – which increases the
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Figure 3.13: Circular 2D dam-break flow. GPU-HWFV1’s speedup over CPU-HWFV1 (left panel)
and over GPU-FV1 (right panel).

amount of coarsening in GPU-HWFV1’s non-uniform grid and thereby lowers the computational

effort more – and/or the higher the value of L – which may lead to a very fine uniform grid for

GPU-FV1 and thus a very high computational effort (for GPU-FV1).

In the next test case, the speedup achieved by GPU-HWFV1 is analysed over time, by running

simulations in which the flow gradually transitions from rapid to very smooth and therefore features

a much wider range of flow types, unlike in this test case where only rapid flows were present.

Pseudo-2D dam-break flow. This test case about 1D dam-break flow is conventionally

used to verify the accuracy of SWE models using a relatively short 2.5 s simulation that involves

modelling the propagation of a shock and rarefaction wave moving in opposite directions. However,

it was recently used in much longer 40 s simulation to analyse the speedup of CPU-based wavelet

adaptive SWE models when modelling a flow that gradually transitions from rapid to very smooth

(Kesserwani et al., 2019; Kesserwani and Sharifian, 2020). The test case area is 50 m Ö 25 m and

is assumed to be flat and frictionless with open boundary conditions. Within this test case area,

a hypothetical dam is located at x = 10 m, which initially separates an upstream water depth of

6 m from a downstream water depth of 2 m. The dam is removed at t = 0 s, introducing a shock

and a rarefaction wave that move in opposite directions. Both the shock and the rarefaction wave
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remain in the test case area up to 3 s. After 3 s, the shock wave exits the test case area from

the downstream boundary, and the flow is driven only by the rarefaction wave, up to 10 s. After

10 s, the rarefaction wave exits the test case area from the upstream boundary and thus, the flow

gradually becomes smoother and smoother up to 40 s.

The test case is first used to verify GPU-HWFV1 by running a short 2.5 s simulation and

comparing the water depths predicted by GPU-HWFV1 to those predicted by GPU-FV1. Simula-

tions are run using GPU-HWFV1 with the same choice of ε and L as in Section 3.2.1 (ε = 10−3

and L = 8), and also using GPU-FV1. Figure 3.14 shows water depth centrelines predicted by

GPU-HWFV1 and GPU-FV1, all showing good agreement with the exact solution (Delestre et al.,

2011), although exhibiting a smoothening of the shock wave due to the numerical diffusion from

using an FV1 scheme that is first-order accurate.

Figure 3.14: Pseudo-2D dam-break flow. Verifying GPU-HWFV1 using the same choice of ε and L
as in Section 3.2.1 (ε = 10−3 and L = 8) : water depths centerlines predicted by GPU-HWFV1 and
GPU-FV1 at t = 2.5 s compared with the exact solution.

Next, longer 40 s simulations of this test case are run using GPU-HWFV1, CPU-HWFV1, and

GPU-FV1 to assess GPU-HWFV1’s potential speedup. This is done while utilising the different

combinations of ε and L as discussed at the start of Section 3.2. However, unlike the previous

test case where the runtimes of the simulations were recorded, in this test case, time series of the

runtimes are recorded throughout the 40 s simulations. These time series of runtimes are used to

calculate the time series of GPU-HWFV1’s speedup over CPU-HWFV1 and GPU-FV1, which are

shown in Figure 3.15 for the different values of ε and L.
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Figure 3.15: Pseudo-2D dam-break flow. Time histories of the number of cells in the non-uniform
grid (first row of panels), the timestep ∆t (second row of panels), GPU-HWFV1’s speedup over CPU-
HWFV1 (third row of row panels) and GPU-FV1 (fourth row of panels) for different values of ε and
L.

GPU-HWFV1 is always faster than CPU-HWFV1 (Figure 3.15, upper panels) except at ε =

10−2 and L = 8 up to 2.5 s. This means that GPU-HWFV1 is always faster than CPU-HWFV1

except at the smallest value of L – which leads to a finest allowable grid with a relatively coarse

resolution – and the largest value of ε – which leads to a relatively high amount of coarsening in
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the non-uniform grid: with this combination of ε and L, the cell count of the grid is relatively low

as shown in the top left panel, and thus the computational throughput may be too low for GPU-

parallelisation to yield a speedup. Nonetheless, even at ε = 10−2 and L = 8, GPU-HWFV1 achieves

a peak 20× speedup at around 3 s, when the shock and rarefaction wave have produced rapid flow

features that refine the non-uniform grid and thus increase the computational throughput, thereby

increasing the speedup yielded by GPU-parallelisation. With all the other combinations of ε and L,

GPU-HWFV1 always achieves a significant speedup. Namely – in line with the findings from the

previous test case – GPU-HWFV1 becomes increasingly faster than CPU-HWFV1 as ε decreases

or L increases: at the smallest ε and highest L, GPU-HWFV1 achieves an average speedup of 100×

throughout the simulation, and a maximum speedup of 240× at 2.5 s when rapid flow features,

i.e. the shock and rarefaction wave, are still present in the test case area. These results suggest

that GPU-HWFV1’s grid adaptation capability benefits from GPU-parallelisation over the CPU

version when modelling all types of flow – whether rapid or smooth – but especially with a higher

cell count in the non-uniform grid.

Compared to GPU-FV1 (Figure 3.15, lower panels), at ε = 10−2, GPU-HWFV1 achieves

speedups that scale with the value of L, achieving a maximum speedup of 80× at L = 11. For

L ≥ 9, GPU-HWFV1 is always faster than GPU-FV1 during the entire simulation, but even at

L = 8, GPU-HWFV1 achieves an 10× speedup by the end of the simulation. Thus, it appears that

GPU-HWFV1 achieves a higher speedup as the simulation progresses because the flow becomes

smoother and a higher amount of coarsening is allowed in GPU-HWFV1’s non-uniform grid, thereby

reducing the computational effort more. At ε = 10−3, GPU-HWFV1 again achieves speedups that

scale with the value of L, although achieving a lower maximum speedup of 25× at L = 11. For

L ≥ 10, GPU-HWFV1 is always faster than GPU-FV1, while for L ≤ 9, GPU-HWFV1 achieves a

speedup after 10 s, when the rarefaction wave has exited the test case area and the flow has become

considerably smoother. At ε = 10−4, the same patterns are seen as for the other values of ε, where

GPU-HWFV1 achieves a lower maximum speedup of 12× (compared to 75× and 25× at ε = 10−2

and 10−3, respectively), which is achieved after the flow becomes very smooth. These results seem

to confirm the findings from the previous test case that GPU-HWFV1’s grid adaptation capability

yields a higher speedup over GPU-FV1 either as the choice of ε is increased, e.g. for ε > 10−4 – as

this allows for a higher amount of coarsening in GPU-HWFV1’s non-uniform grid – or as the choice
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of L is increased, e.g. for L ≥ 9 – as this leads to a very fine uniform grid for GPU-FV1. The

results also suggest that GPU-HWFV1’s grid adaptation capability may yield a higher speedup

over GPU-FV1 when the flow is smooth, as this also allows for a higher amount of coarsening in

GPU-HWFV1’s non-uniform grid.

Informed by the effect of ε, L, and the flow type on the speedup achieved by GPU-HWFV1

when simulating synthetic dam-break flows over flat topographies, the next two test cases are used

to investigate the speedup achieved by GPU-HWFV1 when simulating more realistic rapid flows

over complex topographies.

3.2.3 Further investigations into speedups: realistic flow simulations

Dam-break wave interaction with an urban district. This test case involves a dam-break flow

over a laboratory-scale topography that represents an urban district. The test case has widely been

used for verifying SWE model predictions due to the availability of a set of spatial experimental

data for the water depth and the velocities from the physical experiment (Soares-Frazão and Zech,

2008). The dam-break flow occurs in a 36m× 3.6m smooth channel (nM = 0.01), in which there is

a wall barrier with a gate (green bar in Figure 3.16) that initially separates an upstream water body

of 0.4m from a downstream water body of 0.011m. Downstream of the gate, there are twenty-five

0.3m× 0.3m square blocks with 0.1m gaps between them; the square blocks and the wall barrier

have a height of 2m. The gate is opened abruptly at t = 0 s, at which point a dam-break wave

forms and flows swiftly to collide with the blocks. The blocks almost entirely impede the shock,

creating a backwater zone upstream, while the unimpeded flow cascades through the gaps to form

a hydraulic jump downstream as the simulation progresses.

Figure 3.16: Dam-break wave interaction with an urban district. Top-down view of the test case
area, with the gate indicated in green and topographic blocks colored in yellow. Experimental depth
and velocity data are available along y = 0.2m, indicated in red.

Based on the height and the dimensions of the square blocks and the wall barrier in the to-
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pography (as reported in Soares-Frazão and Zech (2008)), a DEM representing the topography

can be constructed. The DEM consists of a raster grid with a size of 1790 × 180 = 322, 200 cells

at a resolution of 0.02m. Note that the raster grid explicitly includes the square blocks and the

wall barrier as topographic features, which are therefore included in the well-balanced topography

source terms in GPU-HWFV1’s FV1 scheme. With this DEM, a 10 s simulation of this test case

is run using GPU-HWFV1 – with L = 11 to accommodate the DEM size – using two values of

ε = {10−4, 10−3}, and also using GPU-FV1. Figure 3.17 shows the water depth (left panel) and

velocity (right panel) profiles along y = 0.2m (red line in Figure 3.16) at 6 s predicted by GPU-

HWFV1 and GPU-FV1, as well as the experimental data. Both GPU-HWFV1 and GPU-FV1

predicted profiles that are within the expected range of agreement with the experimental profiles,

with any deviations being similar to as seen in other shallow water models in the literature and

also due to the experimental sensors not capturing flow data at the same spatial resolution as the

computational grid (Caviedes-Voullième et al., 2020; Kesserwani & Sharifian, 2020). Compared to

the prediction made by GPU-FV1, those made by GPU-HWFV1 with ε = 10−4 are closer than

with ε = 10−3, though the difference is not significant. Next, the speedups are analysed.

Figure 3.17: Dam-break wave interaction with an urban district. Depth (left panel) and velocity
(right panel) profiles predicted by GPU-HWFV1 and GPU-FV1 along y = 0.2m in Figure 3.16 at 6 s.

Figure 3.18 shows the time series of GPU-HWFV1’s speedup over CPU-HWFV1 (left panel)

and over GPU-FV1 (right panel). On average, GPU-HWFV1 achieves a 19× and 25× speedup over
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CPU-HWFV1 during the 10 s simulation using ε = 10−3 and 10−4 respectively: a higher speedup

is achieved using a larger ε, in line with the findings in Section 3.2.2. GPU-HWFV1 is also faster

than GPU-FV1, being on average around 2.4× faster for both ε = 10−3 and 10−4, which is expected

given the large value of L = 11 needed to accommodate the DEM size in this test case. Up to 2 s,

GPU-HWFV1 achieves a higher speedup at ε = 10−3 than 10−4, whereas after 2 s, the speedup

decreases, likely due to the rapid flow features produced by the dam-break wave as it cascades

through the square blocks that reduce the amount of coarsening GPU-HWFV1’s non-uniform grid,

increasing the computational effort and decreasing the speedup. Overall, GPU-HWFV1 remains

faster than both CPU-HWFV1 and GPU-FV1 in this test case, which – supported by the findings

in Section 3.2.2 that the speedup achieved by GPU-HWFV1 increases as the value of L increases

– can be expected given the large value of L = 11 needed to accommodate the DEM size. In the

next and final test case investigated in this chapter, a smaller DEM size is considered

Figure 3.18: Dam-break wave interaction with an urban district. Time histories of GPU-HWFV1’s
non-uniform grid cell count (top left panel), ∆t (top right panel), speedup over CPU-HWFV1 (bottom
left panel) and over GPU-FV1 (bottom right panel).

Tsunami wave propagation over a complex beach. This test case considers a 1:400 scaled

replica of the 1993 tsunami at Okushiri island, Japan (Matsuyama & Tanaka, 2001). It has been
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used in other works for verifying SWE models, and also for assessing the speedup of wavelet-based

SWE models versus their uniform-grid versions when run on the CPU (Caviedes-Voullième et al.,

2020; Kesserwani and Sharifian, 2020). The test case involves a complex topography with a smooth

surface (nM = 0.01) in a 5.488m × 3.402m test case area with closed boundaries except for the

left boundary, through which a tsunami enters. The tsunami propagates from left to right until

eventually flooding the coastal area (Figure 3.19, left panel, yellow contours), where there is a

gauge point (Figure 3.19, left panel, red dot; x = 4.521m, y = 1.696m). At this gauge point,

experimental time histories of the water surface elevation are available.

The complex topography of this test case is represented by a DEM with a size of 392× 243 =

95, 256 cells at a resolution of 0.014m: as the DEM size is smaller compared to the previous test

case, a smaller value of L is needed to accommodate the DEM. Namely, this test case is simulated

using GPU-HWFV1 with a smaller value of L = 9 instead of 11 like in the previous test case.

The right panel of Figure 3.19 shows the time histories of the water surface elevations predicted

by GPU-HWFV1 and GPU-FV1 at the gauge point. Both GPU-HWFV1 and GPU-FV1 predict

the expected gradual retraction in the water surface elevation between 12 s and 15 s, followed by a

sharp increase that peaks at around 17 s. At ε = 10−4, GPU-HWFV1 obtains predictions that are

visually indistinguishable from those predicted by GPU-FV1, with the black, blue and orange lines

almost completely overlapping each other. With ε = 10−3, the predictions are similar, subject to

small, localised discrepancies when there is a sharp flow transition, such as at around 18 and 21 s.

Next, the speedups are analysed, for which simulations are also run using CPU-HWFV1.

Figure 3.20 shows the time series of GPU-HWFV1’s speedup over CPU-HWFV1 (left panel) and

over GPU-FV1 (right panel). GPU-HWFV1 is significantly faster than CPU-HWFV1, achieving

speedups of 200× and 400× with ε = 10−3 and 10−4, respectively. This is likely because the

topography is more complex compared to the previous test case, thus reducing the amount of

coarsening in the non-uniform grid that is further reduced by the rapid flow features produced

by the tsunami as it propagates through the test case area. Due to the flow features reducing

the amount of coarsening in the non-uniform grid, the cell count of the grid is high and so is the

computational throughput, and so GPU-parallelisation yields a higher speedup, and GPU-HWFV1

achieves a remarkable speedup over CPU-HWFV1 that increases as ε is decreased from 10−3 to

ε = 10−4 – in line with the observations in the previous test case and in Section 3.2.2 – but the
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Figure 3.19: Tsunami wave propagation over a complex beach. The left panel shows a top-down view
of the test case area including the gauge point (red dot). The right panel shows water surface elevation
predicted by GPU-HWFV1 and GPU-FV1 at the gauge point.

speedup doubles in this test case.

Compared to GPU-FV1 (Figure 3.20, right panel), GPU-HWFV1 only achieves a speedup in

this test case at ε = 10−3 (around 1.25×), whereas at ε = 10−4, the speedup falls slightly below

the breakeven line meaning that GPU-HWFV1 becomes slower than GPU-FV1. This is likely

because at ε = 10−4, the amount of coarsening in GPU-HWFV1’s non-uniform grid is low due to

the complex topography and flow features, meaning that the computational effort is not reduced

enough to achieve a speedup. Overall, in this test case, GPU-HWFV1 is much faster than CPU-

HWFV1, and is faster than GPU-FV1 at ε = 10−3 but not at ε = 10−4. Nonetheless, despite the

complexity of the topography and flow features and the small value of L = 9 used to accommodate

the DEM, GPU-HWFV1 remains faster and a viable choice over GPU-FV1 at ε = 10−3.

3.3 Summary

This chapter addressed Objective 1 by redesigning the algorithmic structure of a HW-based grid

adaptation algorithm based on the MRA process of the HW in order and make it suitable for efficient

implementation on the GPU, namely by proposing the use of three computational ingredients: a

Z-order space-filling curve, a parallel tree traversal algorithm, and an array data structure.
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Figure 3.20: Tsunami wave propagation over a complex beach. Time histories of GPU-HWFV1’s
non-uniform grid cell count (top left panel), ∆t (top right panel), speedup over CPU-HWFV1 (bottom
left panel) and over GPU-FV1 (bottom right panel)..

The MRA process generates a cell-based non-uniform grid by “encoding” (coarsening),“decoding”

(refining), analysing, and traversing modelled data across a deep hierarchy of nested, uniform grids

of increasingly coarser resolution, in which the coarsest grid in the hierarchy is made up of a single

cell, while the finest grid in the hierarchy is made up of 2L × 2L cells, where L is a user-specified

maximum refinement level. In the encoding step, a user-specified error threshold ε is needed to flag

significant “details” to decide which cells to include in the non-uniform grid. The encoding step

results in a tree-like structure of significant details that is traversed in the decoding step using a

sequential depth-first traversal algorithm to identify “leaf cells” which make up a non-uniform grid.

Once the identified leaf cells are assembled into a non-uniform grid, an FV1 scheme is applied to

perform the solver computations (as defined in Section 2.2.4) over the non-uniform grid.

The MRA process is difficult to implement on the GPU efficiently due to three obstacles. The

first obstacle is that coalesced memory access is hindered when accessing the children in the encoding

and decoding steps unless the hierarchy of grids is indexed in a deliberate way. The second obstacle

is that a recursive depth-first traversal algorithm is used in the decoding step, which fundamentally
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cannot be parallelised on the GPU. The third obstacle is that the non-uniform grid generated by the

MRA process is indexed using a tree data structure, which hinders coalesced memory access. This

chapter overcame these three obstacles using the three computational ingredients proposed above:

first, Z-order curves were used to index the hierarchy of grids and thereby ensure coalesced memory

access in the encoding and decoding steps. Second, the parallel tree traversal algorithm was used

to replace the depth-first traversal algorithm in order to traverse the tree of significant details on

the GPU – with minimal warp divergence. Finally, an array data structure was used instead of

a tree data structure to index the non-uniform grid and thereby achieve coalesced memory access

when performing the solver computations over the non-uniform grid via the FV1 scheme.

Using the three computational ingredients allowed to implement the HW-based grid adapta-

tion algorithm on the GPU and thereby develop a GPU-parallelised HW adaptive FV1 shallow

water model (GPU-HWFV1). To assess the extent to which using the three computational ingre-

dients allowed for an efficient GPU implementation of the HW-based grid adaptation algorithm,

GPU-HWFV1’s accuracy and speedup were analysed against its CPU version (CPU-HWFV1) and

against its reference uniform-grid counterpart, i.e. a GPU-parallelised FV1 shallow water model

running on a uniform grid in LISFLOOD-FP 8.0 (GPU-FV1) – the latter always run on a uniform

grid with the finest grid resolution accessible to GPU-HWFV1. The analysis was performed by run-

ning simulations of five test cases featuring a wide range of topographies and flow types. The first

test case was used solely to verify GPU-HWFV1’s accuracy, namely by checking GPU-HWFV1’s

well-balancedness over wet-dry fronts using increasingly irregular topographic features, and also by

checking GPU-HWFV1’s ability to simulate a frictional dam-break flow with moving wet-dry fronts

over a non-trivial topography. The second and third test cases were used to systematically anal-

yse GPU-HWFV1’s potential speedup over CPU-HWFV1 and GPU-FV1 when simulating synthetic

dam-break flows over flat topographies, particularly with respect to three aspects: the error thresh-

old ε, the maximum refinement level L, and the flow type – these aspects were considered because

they affect the amount of grid coarsening introduced by GPU-HWFV1’s grid adaptation capabil-

ity, which was hypothesised to directly affect GPU-HWFV1’s potential speedup. Therefore, the

systematic analysis was performed simulating by the second and third test cases – which together

included a range of flow types – using different combinations of ε and L, with ε = {10−2, 10−3, 10−4}

to cover a range around the recommended value of ε = 10−3 for obtaining a fair compromise be-
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tween accuracy and speedup, and with L = {8, 9, 10, 11}. Informed by the effects of these three

aspects on the speedup achieved by GPU-HWFV1 when simulating synthetic dam-break flows over

flat topographies, the fourth and fifth test cases were used to analyse GPU-HWFV1’s performance

(using ε = {10−3, 10−4}) when simulating rapid flows over complex topographies represented by

DEMs.

GPU-HWFV1’s performance in all the test cases provided strong evidence that it delivers a

similar level of accuracy as GPU-FV1 in replicating realistic flows including in the presence of

irregular topographies, wet-dry fronts, and friction effects. In terms of the speedup over CPU-

HWFV1, GPU-HWFV1 yielded significant speedups in all the test cases (20Ö to 400Ö), which

increased either as ε was decreased or as L was increased: both of these increase the number of

cells in the non-uniform grid and thus the computational throughput, so this finding indicates

that GPU-HWFV1’s grid adaptation capability becomes increasingly faster than its CPU version

as the computational throughput is increased, therefore hinting at GPU-HWFV1’s weak scaling

behaviour.

In terms of the speedup over GPU-FV1, the findings from the synthetic test cases suggested

that GPU-HWFV1’s grid adaptation capability yields a higher speedup over GPU-FV1 (which was

between 1.1 to 75) either as the choice of ε is increased, e.g. for ε ≥ 10−4, as this introduces a higher

amount of coarsening in GPU-HWFV1’s non-uniform grid and thus reduces the computational

effort more compared to GPU-FV1’s uniform grid, or as the choice of L is increased, e.g. for

L ≥ 9, as this leads to a very fine uniform grid for GPU-FV1 and thus a very high computational

effort (for GPU-FV1). The results also suggested that GPU-HWFV1’s grid adaptation capability

may yield a higher speedup over GPU-FV1 when simulating smooth flows, as this also allows for

a higher amount of coarsening in GPU-HWFV1’s non-uniform grid. For the realistic test cases,

GPU-HWFV1 showed speedup over GPU-FV1 for the test with L = 11, and also for the test with

L = 9, although only for ε = 10−3 – in line with the findings from the synthetic test cases.

The conclusions suggest that the GPU implementation of the MRA process of the HW – which

was achieved using the three proposed computational ingredients, i.e. the Z-order curve, the parallel

tree traversal algorithm, and the array data structure – is suitably efficient. Thus, extending the

use of the three computational ingredients in order to implement the MRA process of the MW on

the GPU and thereby enhance GPU-DG2 with grid adaptation appears to be a research direction
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worth exploring. This direction is explored in the next chapter (Chapter 4).



Chapter 4

Integrating GPU-MWDG2 into

LISFLOOD-FP

This chapter addresses Objective 2, in which the three computational ingredients proposed in

Chapter 3 for efficiently parallelising the MRA process of the HW – i.e. the Z-order curve, the

parallel tree traversal algorithm and the array data structure – are extended to the MRA process

of the MW. Extending the use of the three ingredients to the MRA process of the MW allows to

implement the MRA process of the MW on the GPU and thereby develop a GPU-parallelised MW

adaptive DG2 model, i.e. GPU-MWDG2.

The aim of developing GPU-MWDG2 is to achieve faster DG2 modelling than GPU-DG2 when

simulating test cases that involve multiscale rapid flow phenomena – i.e. rapid flow phenomena that

occur over multiple spatial and temporal scales – where it is hypothesised that GPU-MWDG2’s grid

adaptation capability may reduce the computational effort of DG2 modelling while still allowing

to achieve a similar level of accuracy as GPU-DG2. To test this hypothesis, GPU-MWDG2 is

integrated into a new version of LISFLOOD-FP – version 8.2 – to take advantage of LISFLOOD-

FP’s existing framework for running real-world flood simulations and thereby properly compare

GPU-MWDG2 against GPU-DG2 – as the latter is already integrated into LISFLOOD-FP.

This chapter is organised as follows. Section 4.1 presents the implementation of GPU-MWDG2.

Section 4.2 describes the integration of GPU-MWDG2 into LISFLOOD-FP 8.2. Section 4.3 gives

a summary of the GPU-MWDG2 implementation and its integration into LISFLOOD-FP 8.2.

69
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4.1 Implementing GPU-MWDG2

4.1.1 Overview

Like the GPU-HWFV1 model (Section 3.1), GPU-MWDG2 is a GPU-parallelised wavelet-based

adaptive SWE model that runs hydrodynamic simulations by solving the 2D SWE over a non-

uniform grid. GPU-MWDG2 is made up of two mechanisms: a wavelet-based grid adaptation

algorithm for generating a non-uniform grid, followed by a numerical scheme performing solver com-

putations over the generated non-uniform grid. GPU-MWDG2 is dynamically adaptive, meaning it

applies the wavelet-based grid adaptation algorithm to generate a non-uniform grid every timestep

before performing the solver computations. Unlike GPU-HWFV1 however, the wavelet-based grid

adaptation algorithm in GPU-MWG2 is based on the MRA process of the MW (Kesserwani and

Sharifian, 2020; Keinert, 2003) instead of the HW, while the solver computations are performed

using a DG2 scheme (Kesserwani et al., 2018) instead of an FV1 scheme.

DG2 scheme. Unlike the FV1 scheme in GPU-HWFV1 – which locally approximates the

variables h, hu, hv, and z as piecewise-constant solutions over each cell Qc in the grid – the DG2

scheme locally approximates the variables as piecewise-planar solutions. For ease of presentation

of the DG2 scheme, let s be a dummy variable standing for any of these variables: the shape of the

piecewise-planar solution for s over a cell Qc is controlled by a “shape vector” made up of three

scalars sc = [s0c , s
1x
c , s1yc ]T – instead of only a single scalar for controlling the piecewise-constant

solution in the FV1 scheme – where s0c is an average coefficient, and s1xc and s1yc are x- and y-

directional slope coefficients. The shape vector sc stands for any of hc, (hu)c, (hv)c or zc, which

are shape vectors for the variables h, hu, hv, and z, respectively. In the DG2 scheme, the average

and slope components of the flow coefficients, i.e. UK
c = [hK

c , (hu)Kc , (hv)Kc ]T, K = 0, 1x, 1y, are

updated in time – from timestep p to timestep p+ 1 – by performing a “DG2 update”. The DG2

update consists of a two-stage Runge-Kutta (RK2) scheme and a spatial operator LK
c . In the RK2

scheme, UK
c is first updated from timestep p (denoted by a superscript) to an intermediate timestep
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int, and then from timestep int to the next full timestep p+ 1 as follows:

UK,int
c = UK,n

c +∆tLK
c (UK,p

c ), (4.1a)

UK,p+1
c =

1

2

[
UK,p

c +UK,int
c +∆tLK

c (UK,int
c )

]
, (4.1b)

where ∆t is a timestep computed based on the CFL condition using a CFL number of 0.33 to

ensure numerical stability (Kesserwani and Sharifian, 2020). The expressions for LK
c , K = 0, 1x, 1y

are:

L0
c = − 1

∆x

(
F̃e − F̃w

)
− 1

∆y

(
G̃n − G̃s

)
+


0

−2g
√
3

∆x h
0
cz

1x
c

−2g
√
3

∆y h
0
cz

1y
c

 (4.2a)

L1x
c = −

√
3

∆x

(
(F̃e + F̃w − F(U

0x
c −U

1x
c )− F(U

0x
c +U

1x
c )

)
+


0

2gh
1x
c z1xc

0

 , (4.2b)

L1y
c = −

√
3

∆y

(
(G̃n + G̃s −G(U

0y
c −U

1y
c )−G(U

0y
c +U

1y
c )

)
+


0

0

2gh
1y
c z1yc

 . (4.2c)

where – as in the FV1 scheme – F̃e, F̃w, G̃n, and G̃s are numerical fluxes at the eastern, west-

ern, northern, and southern cell interfaces, respectively, which are computed using two-argument

numerical flux functions F̃(·, ·) and G̃(·, ·) based on the HLL approximate Riemann solver (Toro,

2001). Unlike the FV1 scheme, however, the two arguments of the flux functions are now the limits

of the piecewise-planar solutions – instead of the limits of piecewise-constant solutions – at the left

and right sides of a cell interface after temporary revision of the solution limits according to the

same wetting-and-drying condition described in Section 3.1.1.1 to ensure well-balancedness and non-

negative water depths (Kesserwani et al., 2018). When applying the wetting-and-drying condition

using the limits of piecewise-planar solutions, the solution limits at the northern, eastern, south-

ern, and western interfaces are computed using the shape coefficients in sc as sc,lim,n = s0c +
√
3s1yc ,

sc,lim,e = s0c +
√
3s1xc , sc,lim,s = s0c −

√
3s1yc , and sc,lim,w = s0c −

√
3s1xc , respectively. For example,
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at the eastern interface of a cell Qc, the left limit is computed using the shape coefficients in sc as

sLe = sc,lim,e = s0c +
√
3s1xc , while the right limit is computed using the shape coefficients in seast as

sRe = seast,lim,w = s0east−
√
3s1xeast, where the east subscript is the index of the eastern neighbour cell.

The overbars in Equations 4.2a to 4.2c indicate temporary coefficients obtained from the revised

limits, namely U
0x
c = 1

2 [U
L,∗
w + UR,∗

e ], U
0y
c = 1

2 [U
L,∗
n + UR,∗

s ], U
1x
c = 1

2

[
1
3(U

L,∗
w −UR,∗

e )
]
, and

U
1y
c = 1

2 [U
L,∗
n −UR,∗

s ].

Before applying LK
c , friction effects are integrated separately using the same split implicit

scheme described in Section 3.1.1.1 (Liang and Marche, 2009). However, in the DG2 scheme, the

x- and y-directional slope coefficients of the discharge are also updated:

q1x,p+1
x,c =

1

2

[
qfx(U

0,p
c +U1x,p

c )− qfx(U
0,p
c −U1x,p

c )
]
, (4.3a)

q1y,p+1
x,c =

1

2

[
qfx(U

0,p
c +U1y,p

c )− qfx(U
0,p
c −U1y,p

c )
]
, (4.3b)

q1x,p+1
y,c =

1

2

[
qfy(U

0,p
c +U1x,p

c )− qfy(U
0,p
c −U1x,p

c )
]
, (4.3c)

q1y,p+1
y,c =

1

2

[
qfy(U

0,p
c +U1y,p

c )− qfy(U
0,p
c −U1y,p

c )
]
. (4.3d)

4.1.2 MRA process of the MW and DG2 update on the GPU

The MRA process of the MW is implemented on the GPU by extending the use of the computational

ingredients used to parallelise the MRA process of the HW in GPU-HWFV1 (see Section 3.1.2) –

i.e. the Z-order curve (Section 3.1.2.1), the parallel tree traversal algorithm (Section 3.1.2.2), and

the array data structure (Section 3.1.2.3). The MRA process of the MW is very similar to the MRA

process of the HW and also involves a hierarchy of 2n × 2n grids of increasingly coarser resolution

relative to a reference 2L × 2L grid at the highest refinement level. Figure 4.1a shows an example

of a hierarchy of grids with maximum refinement level L = 2: the finest grid in the hierarchy is at

refinement level n = L = 2, the second-finest grid is at refinement level n = 1, and the coarsest

grid is at n = 0. Let s
(n)
c denote sc at refinement level n: similar to GPU-HWFV1, GPU-MWDG2

stores all s
(n)
c for all refinement levels as an array in GPU memory (one for each of s0c , s

1x
c , and s1yc )

indexed according to Z-order curves (see Section 3.1.2.1), as shown in Figure 4.1a.

At the start of the MRA process, only s
(L)
c are available, corresponding to the coefficients

produced by GPU-MWDG2 from performing a projection over each cell on the reference 2L × 2L
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Figure 4.1: Performing the MRA process of the MW on the GPU. The left panel shows a hierarchy
of grids involved in the MRA process with a maximum refinement level L = 2 indexed according to
Z-order curves. The right panel shows how four cells in a grid at refinement level n + 1, i.e. the
“children,” are positioned relative to a single cell in a grid at refinement level n, i.e. the “parent” –
as well as the locations of the children in memory.

grid (Kesserwani and Sharifian, 2020). The MRA process continues by performing the encoding

procedure of the MW to produce s
(n)
c at the lower refinement levels, i.e. at n = L− 1, L− 2, . . . , 0.

In the encoding procedure of the MW, the vector s
(n)
c of a cell at refinement level n (i.e. the parent)

is produced using the vectors s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3] of four cells at refinement level n+1

(i.e. the children) by applying Equation 4.4a. Figure 4.1b shows the parent-children stencil that

dictates how the children s
(n+1)
[0] , s

(n+1)
[1] , s

(n+1)
[2] , and s

(n+1)
[3] at level n+ 1 are positioned relative to

the parent s
(n)
c at level n. When applying Equation 4.4a, coalesced memory access occurs due to

the indexing of the Z-order curves because the children reside in adjacent memory locations, like

for GPU-HWFV1 (see Section 3.1.2.1).

s(n)c = HH0s
(n+1)
[0] +HH1s

(n+1)
[2] +HH2s

(n+1)
[1] +HH3s

(n+1)
[3] (4.4a)

d(n)
c,α = GA0s

(n+1)
[0] +GA1s

(n+1)
[2] +GA2s

(n+1)
[1] +GA3s

(n+1)
[3] (4.4b)

d
(n)
c,β = GB0s

(n+1)
[0] +GB1s

(n+1)
[2] +GB2s

(n+1)
[1] +GB3s

(n+1)
[3] (4.4c)

d(n)
c,γ = GC0s

(n+1)
[0] +GC1s

(n+1)
[2] +GC2s

(n+1)
[1] +GC3s

(n+1)
[3] (4.4d)
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Equations 4.4b - 4.4d are also applied (again in a coalesced manner, using the same reasoning as

for the application of Equation 4.4a) to produce the details, denoted by d
(n)
c,Θ = [d

(0,n)
c,Θ , d

(1x,n)
c,Θ , d

(1y,n)
c,Θ ]T,

Θ = α, β, γ. The details are used to decide which cells to include in the non-uniform grid based on

a normalised detail d
(n)
c,norm = max(d

(n)
c,Θ)/smax, where smax is the largest s0c for all s

(L)
c . Cells whose

d
(n)
c,norm is greater than 2n−Lε are deemed to have significant details, where ε is the error threshold.

In Equations 4.4a - 4.4d, HHJ , GAJ , GBJ , and GCJ , J = 0, 1, 2, 3, are filter bank matrices

derived from the MW (Keinert, 2003), which have been included in the Appendix for brevity.

After the encoding procedure, the remaining steps of the MRA process are (1) decoding (see

Algorithm 4), (2) parallel tree traversal (see Section 3.1.2.2), and (3) neighbour finding (see Section

3.1.2.2). These steps are implemented on the GPU in GPU-MWDG2 almost identically to GPU-

HWFV1 except for three differences. The first difference is that unlike GPU-HWFV1, GPU-

MWDG2 performs the decoding procedure by loading the parents and applying Equations 4.5a

- 4.5d instead of Equations 3.11a - 3.11d, where coalesced memory access occurs due to Z-order

indexing because the parents reside in adjacent memory locations. The second difference is that

after completing the parallel tree traversal and generating a non-uniform grid, the cells in the non-

uniform grid hold modelled data as shape vectors, namely s
(n)
c belonging to the leaf cells, instead

of as scalars like the cells in GPU-HWFV1’s non-uniform grid. The third difference is that after

neighbour finding, GPU-MWDG2 performs the DG2 update differently to the FV1 update in GPU-

HWFV1 (see Section 3.1.2.3). This is because the FV1 update is based on a forward-Euler scheme

with a single time stage, whereas two time stages are involved in the RK2 scheme in the DG2

update. In particular, the first time stage of the RK2 scheme consists of GPU-MWDG2 advancing

the data in the non-uniform grid from timestep p to the intermediate timestep int, while the second

time stage consists of advancing the data from timestep int to the next full timestep p+ 1. Recall

however that the data of the non-uniform grid and the neighbours are stored as separate arrays in

memory (see Section 3.1.2.3). Therefore, after GPU-MWDG2 completes the first time stage, the

arrays holding the neighbour data become invalid because GPU-MWDG2 has only updated the

arrays holding the non-uniform grid data to timestep int, while the neighbour arrays still hold data

at timestep p. To update the neighbour arrays from timestep p to int, GPU-MWDG2 performs

the encoding procedure again to update the data in the hierarchy of grids from timestep p to int.

GPU-MWDG2 then re-retrieves the data from the hierarchy – which are now at timestep int – to
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update the neighbour arrays for completing the second time stage.

s
(n+1)
[0] = [HH0]Ts(n)c + [GA0]Td(n)

c,α + [GB0]Td
(n)
c,β + [GC0]Td(n)

c,γ (4.5a)

s
(n+1)
[2] = [HH1]Ts(n)c + [GA1]Td(n)

c,α + [GB1]Td
(n)
c,β + [GC1]Td(n)

c,γ (4.5b)

s
(n+1)
[1] = [HH2]Ts(n)c + [GA2]Td(n)

c,α + [GB2]Td
(n)
c,β + [GC2]Td(n)

c,γ (4.5c)

s
(n+1)
[3] = [HH3]Ts(n)c + [GA3]Td(n)

c,α + [GB3]Td
(n)
c,β + [GC3]Td(n)

c,γ (4.5d)

4.2 Integration of GPU-MWDG2 into LISFLOOD-FP 8.2

In this section, the integration of GPU-MWDG2 into a new version of LISFLOOD-FP – version

8.2 – is discussed. The previous version – LISFLOOD-FP 8.1 – only included static-in-time grid

adaptation whereby the non-uniform grid is generated only once, according to the topographic de-

tails (Sharifian et al., 2023), whereas LISFLOOD-FP 8.2 includes dynamic-in-time grid adaptation

whereby the non-uniform grid is generated every timestep according to both the topographic and

flow details. Section 4.2.1 describes how to use GPU-MWDG2 within LISFLOOD-FP’s existing

framework for running real-world flood simulations. Section 4.2.2 discusses the largest allowable

simulation area that can be considered using GPU-MWDG2. Section 4.2.3 describes new metrics

for analysing the impact of GPU-MWDG2’s grid adaptation capability on the computational effort

of DG2 modelling.

4.2.1 Using GPU-MWDG2 within LISFLOOD-FP 8.2

The procedure for running a flood simulation of a real-world test case using any model in LISFLOOD-

FP – e.g. the diffusive wave model (Hunter et al., 2005), the local inertial model (Bates et al., 2010),

or the FV1 and DG2 models (Shaw et al., 2021) – requires the user to provide a number of input files

to LISFLOOD-FP, such as a parameter file for specifying various model features (see Figure 4.2),

and other files that specify various physical characteristics of the test case. For example, the user

should provide “.dem” and “.start” files in ESRI raster grid format to specify the DEM and ini-

tial flow conditions of the test case, respectively, whereby the DEM file represents the bathymetry

of the test case. The same procedure applies to GPU-MWDG2, but a few extra parameters must
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be specified in the parameter file to correctly use GPU-MWDG2’s grid adaptation capability within

LISFLOOD-FP’s framework for running real-world flood simulations.

Figure 4.2: Example of a parameter file showing the parameters needed to run a simulation of the
Monai valley test case (Section 5.2) using GPU-MWDG2. The extra parameters needed to correctly
use GPU-MWDG2’s grid adaptation capability within LISFLOOD-FP’s framework for running real-
world flood simulations are highlighted in bold.

To correctly use GPU-MWDG2’s grid adaptation capability, seven extra parameters must be

specified in the parameter file, which are highlighted in bold in Figure 4.2, and which are summarised

in Table 4.1. Figure 4.2 is an example of a parameter file, namely the one used to run simulations

of the Monai valley test case (investigated in Section 5.2) using GPU-MWDG2. This test case is

consistently used throughout this chapter as an example. Table 4.1 describes the functionalities of

each of the extra parameters needed to correctly use GPU-MWDG2’s grid adaptation capability,

which are used as follows: the cuda keyword should be typed in the parameter file to access the

GPU-parallelised models in LISFLOOD-FP 8.2, e.g. the GPU-DG2 or GPU-MWDG2 models. The

mwdg2 keyword should be typed to choose GPU-MWDG2 out of all the other GPU-parallelised

solvers in LISFLOOD-FP 8.2. The epsilon keyword followed by a numerical value specifies the

error threshold ε which controls the amount of coarsening in GPU-MWDG2’s non-uniform grid: the

higher the value, the higher the amount of grid coarsening; recommended values for ε are discussed

later in Chapter 5. The max ref lvl keyword followed by an integer specifies the maximum

refinement level L, which should be specified to accommodate the dimensions of the test case
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DEM. For example, consider the Monai valley test case (Section 5.2): recall that the MRA process

in GPU-MWDG2 involves a hierarchy of grids with a square 2L×2L grid at the highest refinement

level, which is the finest-resolution grid accessible to GPU-MWDG2. However, LISFLOOD-FP

usually considers test cases that involve a DEM in a rectangular raster grid format, suppose made

up of N ×M cells, but a rectangular N ×M test case area does not fit exactly into the 2L × 2L

area of the square grid. To overcome this problem, the user should specify max ref lvl to be

the smallest value of L such that 2L ≥ max(N,M) so that GPU-MWDG2 constructs an artificial

2L × 2L grid that can accommodate the N ×M test case area. For example, in the Monai valley

test case, N = 392 and M = 243, so max ref lvl should be specified as 9 because this is the

smallest value of L that accommodates the 293× 342 test case area, i.e. 29 = 512 ≥ max(392, 243).

Figure 4.3 shows the initial non-uniform grid generated by GPU-MWDG2 for the same Monai

valley example. Since the non-uniform grid is generated via the MRA process involving the artificial

square grid – whose dimensions are larger than the DEM dimensions – two areas emerge in the non-

uniform grid: (1) the actual test case area (see red label text in Figure 4.1) which includes the DEM

data and the initial flow conditions, and (2) void areas (see red label text as well in Figure 4.1)

where no DEM data are available and where no flow should occur. In area (1), GPU-MWDG2

initialises the data in the cells by using the values specified in the .dem and .start raster files.

Meanwhile, in area (2), GPU-MWDG2 initialises the flow data to zero, while the bathymetry data

are assigned the numerical value that follows the wall height keyword specified by the user. The

numerical value specified for this keyword must be sufficiently high such that a wall is generated

between the test case area and the void areas (see the red lines in Figure 4.3) that prevents any

water from leaving the test case area (e.g. by choosing a numerical value that is higher than the

largest water surface elevation that may appear during the simulation). For the Monai valley test

case, the wall height keyword is specified as 0.5 to generate a wall that is high enough to prevent

any water from leaving the test case area. The refine wall keyword and the ref thickness

keyword – followed by an integer for the latter, typically between 16 and 64 – should also be typed

in the parameter file to prevent GPU-MWDG2 from excessively coarsening the non-uniform grid

around the walls so as to avoid unrealistic calculations (labeled with the curly braces in Figure 4.1).

For the Monai valley test case, the refine wall keyword is specified to trigger refinement around

the wall, and ref thickness is specified as 16 to trigger 16 cells at the highest refinement level
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Table 4.1: Functionalities of the extra parameters that must be specified in the parameter file to
correctly use GPU-MWDG2’s grid adaptation capability (highlighted in bold in Figure 4.2).

Parameter Functionality

cuda Boolean keyword instructing LISFLOOD-FP 8.2 to use the
GPU-parallelised models.

mwdg2 Boolean keyword instructing LISFLOOD-FP 8.2 to use
GPU-MWDG2.

epsilon Keyword followed by a decimal number. Specifies the error
threshold ε used by GPU-MWDG2 to control the amount of
coarsening in the non-uniform grid. A larger value allows for a
higher amount of coarsening.

max ref lvl Keyword followed by an integer. Specifies the maximum
refinement level L used by GPU-MWDG2 in the MRA process.
For a test case involving a DEM made up of N ×M cells, the
user should specify the value of L to be the smallest integer such
that 2L ≥ max(N,M).

wall height Keyword followed by a decimal number. Specifies the height of
the wall in metres used by GPU-MWDG2 to fill the void areas
beyond the test case area. The user must specify a sufficiently
high wall height to prevent any flow from exiting past the walls.

refine wall Boolean keyword to prevent GPU-MWDG2 from excessively
coarsening the non-uniform grid around the wall separating the
test case area from the void areas. The user can enable this
refinement to ensure that very coarse cells around the wall do
not lead to unrealistic solver computations.

ref thickness Keyword followed by an integer. Specifies the number of cells at
the highest refinement level that are to be refined between the
wall and the test case area by GPU-MWDG2 when the
refine wall keyword is also specified.

cumulative Boolean keyword instructing GPU-MWDG2 to produce a file
called .cumu at the end of the simulation that contains time
series data designed to help analyse the impact of
GPU-MWDG2’s grid adaptation capability on the computational
effort of DG2 modelling during a simulation.
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between the wall and the test case, which is enough refinement at the wall to prevent unrealistic

calculations.
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Figure 4.3: Initial non-uniform grid generated by GPU-MWDG2 based on the details of the
bathymetry and initial flow conditions of the Monai valley test case (Section 5.2).

4.2.2 Largest allowable test case area due to GPU memory consumption

When running a simulation of a test case using GPU-MWDG2, there is an upper limit on the test

case area depending on the memory capacity of the GPU being used due to the large amount of

GPU memory consumed by GPU-MWDG2. GPU-MWDG2 consumes a large amount of memory

because it stores all the objects involved in the GPU-MWDG2 code – particularly the non-uniform

grid, the neighbours, and the hierarchy of grids – in GPU memory. The percentage breakdown of

the memory consumed by each of these objects is shown in the left panel of Figure 4.4. In theory, the

percentage breakdown should depend on the amount of grid coarsening: the higher the amount of
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coarsening, the lower the cell count of the non-uniform grid, and the shorter the length of array data

structure needed to store the non-uniform grid and the neighbours (see Section 3.1.2.3) – and thus,

the lower the amount of memory consumed by GPU-MWDG2. However, the GPU-MWDG2 code

has been designed to allocate arrays of fixed length assuming the worst-case scenario where there is

no grid coarsening to guarantee that the arrays can store the non-uniform grid and the neighbours

in GPU memory – regardless of the amount of grid coarsening. For example, as seen in the left

panel of Figure 4.4, the non-uniform grid and the neighbours that hold the flow and topographic

information consume nearly 80% of the memory allocated by GPU-MWDG2 – regardless of the

amount of coarsening. Allocating arrays of fixed length this way also prevents GPU-MWDG2 from

having to repeatedly reallocate memory in response to the amount of coarsening, which is beneficial

because memory allocation is slow.

Figure 4.4: GPU memory consumed by GPU-MWDG2. The left panel shows the percentage break-
down of the memory consumed by the objects in GPU-MWDG2. The right panel shows the amount
of GPU memory allocated by GPU-MWDG2 against the maximum refinement level L. The numbers
on top of the bars show the largest test case area allowed for a given value of L. The horizontal lines
indicate the memory capacities of four GPUs.

Since the GPU-MWDG2 code allocates arrays of fixed length regardless of the amount of coars-

ening, the amount of memory consumed by GPU-MWDG2 depends only on the maximum re-

finement level L. The right panel of Figure 4.4 shows the amount of memory consumed by GPU-

MWDG2 with respect to L, where the numbers on top of the bars show the largest test area allowed

for a given value of L. The horizontal lines indicate the memory capacities of four GPUs. As seen

in the right panel of Figure 4.4, the higher the value of L, the more memory GPU-MWDG2 con-
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sumes: at L = 9, GPU-MWDG2 consumes only 0.2 GB of memory, but by L = 13, GPU-MWDG2

consumes around 100 GB of memory.

GPU-MWDG2 cannot allocate more memory than the memory capacity of a given GPU, which

restricts the highest allowable value for L using that GPU, and thus places an upper limit on the

test case area that can be considered using that GPU. For example, as seen in Figure 4.4, the

GTX 1050 GPU has a memory capacity of 2 GB (red line), and values of L greater than 10 exceed

the 2 GB memory capacity of this GPU. Thus, if using this GPU, GPU-MWDG2 cannot use a

value of L larger than 10, so the largest test case area that can be considered using this GPU is

210 × 210 = 1024 × 1024 cells. Therefore, as of writing, GPU-MWDG2 cannot use a value of L

larger than 12 – meaning the largest test case area that can be considered using GPU-MWDG2

is 212 × 212 = 4096 × 4096 cells – as doing so requires more than 80 GB of GPU memory, which

is higher than the memory capacity of most commercially available GPUs. This limitation on the

largest allowable test case area is problematic for many real-world test cases as they often require

a computational grid size bigger than 4096× 4096 cells.

4.2.3 New metrics for analysing GPU-MWDG2’s grid adaptation capability

Analysing the impact of GPU-MWDG2’s grid adaptation capability on reducing the computational

effort of DG2 modelling during a simulation is essential for a user. As noted in other works that have

explored wavelet adaptivity, the computational effort and speedup of a GPU-MWDG2 simulation

should ideally be exactly correlated with the number of cells in the GPU-MWDG2 non-uniform grid

(since the number of cells dictates the number of DG2 solver updates to be performed). However,

in practice, this rarely occurs as the ideal speedup is diminished by the additional computational

effort spent by GPU-MWDG2 to generate the non-uniform grid every timestep via the MRA

process (Kesserwani et al., 2019; Kesserwani and Sharifian, 2020; Kesserwani and Sharifian, 2023;

Chowdhury et al., 2023). Thus, to thoroughly assess the potential speedup of a GPU-MWDG2

simulation, the user must consider the interdependent effects of the number of cells in the non-

uniform grid, the computational effort of performing the DG2 solver updates, and the computational

effort of performing the MRA process.

To this end, starting from LISFLOOD-FP 8.2, the user can include the cumulative keyword in

the parameter file to produce a “.cumu” file that contains the time histories of several quantities for
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analysing the speedup achieved by GPU-MWDG2’s grid adaptation capability, which are described

in Table 4.2. These time histories can be postprocessed into several time-dependent metrics for

analysing the speedups of GPU-MWDG2 simulations compared to GPU-DG2 simulations, which

are described in Table 4.3, and their use in analysing the speedup of a GPU-MWDG2 simulation

compared to a GPU-DG2 simulation is explained next by way of an example.

Table 4.2: Description of the quantities in the .cumu output file. GPU-MWDG2 produces this file
at the end of a simulation if the cumulative keyword has been typed in the parameter file.

Heading in file Description of time series

simtime Simulation time in seconds.

num timesteps Number of timesteps taken by GPU-MWDG2 to
reach a given simulation time.

dt Timestep size at a given simulation time.

num cells Number of cells in GPU-MWDG2’s non-uniform grid
at a given simulation time.

inst time solver Computational effort (measured in seconds) spent by
GPU-MWDG2 to perform the DG2 solver update at
a given timestep.

cumu time solver Cumulative computational effort (measured in
seconds) spent by GPU-MWDG2 in performing the
DG2 solver updates up to a given simulation time.

inst time mra Computational effort (measured in seconds) spent by
GPU-MWDG2 to perform the MRA process to
generate the non-uniform grid at a given timestep.

cumu time mra Cumulative computational effort (measured in
seconds) spent by GPU-MWDG2 in performing the
MRA process to generate the non-uniform grid up to
a given simulation time.

runtime total Sum of the cumu time mra and the
cumu time solver time histories; total
computational effort (measured in seconds) spent by
GPU-MWDG2 to reach a given simulation time.

In a GPU-MWDG2 simulation of an impact event, the computational effort per timestep changes

depending on the change in the number of cells in the GPU-MWDG2 non-uniform grid. The number

of cells changes over time because finer cells are generated by GPU-MWDG2 to track the flow

features produced by the impact event as it enters and travels through the bathymetric area. Using

the same Monai Valley example (Section 5.2), the left panel of Figure 4.5 shows the initial non-

uniform grid generated by GPU-MWDG2 at the start of the simulation, while the right panel shows

an intermediate non-uniform grid generated by GPU-MWDG2 after the simulation has progressed
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Table 4.3: Time-dependent metrics for evaluating the potential speedup afforded by GPU-MWDG2’s
grid adaptation capability.

Metric Description

Ncells(t) Number of cells in GPU-MWDG2’s non-uniform grid com-
pared to GPU-DG2’s grid (as a percentage) against simula-
tion time.

RDG2(t) Computational effort spent by GPU-MWDG2 to perform
the DG2 solver updates at a given timestep (relative to
GPU-DG2 as a percentage) against simulation time.

RMRA(t) Computational effort spent by GPU-MWDG2 to perform
the MRA process and generate the non-uniform grid at
a given timestep (relative to GPU-DG2 as a percentage)
against simulation time.

Sinst(t) Instantaneous speedup achieved by GPU-MWDG2 over
GPU-DG2 at a given timestep against simulation time.

N∆t(t) Number of timesteps taken by GPU-MWDG2 to reach a
given simulation time.

CDG2(t) Cumulative computational effort spent by GPU-MWDG2 to
perform the DG2 solver updates (quantified in units of wall
clock time) up to a given simulation time.

CMRA(t) Cumulative computational effort spent by GPU-MWDG2 to
perform the MRA process (quantified in units of wall clock
time) up to a given simulation time.

Ctot(t) Total cumulative computational effort spent by GPU-
MWDG2 to complete a simulation (quantified in units of
wall clock time) up to a given simulation time.

Sacc(t) Accumulated speedup of GPU-MWDG2 over GPU-DG2 up
to a given simulation time.

by 17 s, i.e. after an impact event, here a tsunami, has entered and propagated through the

bathymetric area. At the start of the simulation, the initial non-uniform grid is coarsened as much

as allowed, based only on the static features of the bathymetric area and initial flow conditions,

leading to a minimal number of cells in the grid, which is quantified by Ncells. The number of cells

determines the number of DG2 solver updates to be performed at a given timestep, leading to a

corresponding computational effort per timestep, which is quantified by RDG2. There is also the

computational effort of performing the MRA process at a given timestep, which is quantified by

RMRA. Based on the combined computational effort of performing both the MRA process and the

DG2 solver updates at a given timestep, the instantaneous speedup in completing one timestep

of a GPU-MWDG2 simulation can be computed (relative to the GPU-DG2 simulation), which is

quantified by Sinst. In Figure 4.5, after the simulation has progressed by 17 s, the number of cells
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in the non-uniform grid has increased due to using finer cells to track the tsunami’s wavefronts

and wave diffractions, which leads to a higher value of Ncells and RDG2 (and possibly also to a

higher value of RMRA, as a higher number of cells in the non-uniform grid means more cells must

be processed during the MRA process); thus, Sinst is expected to drop. Generally, the higher the

complexity of the impact event, the higher the number of cells in the GPU-MWDG2 non-uniform

grid, and the lower the potential speedup.

Initial non-uniform grid based on DEM
and initial flow conditions

Non-uniform grid based also
on flow dynamics

Figure 4.5: Non-uniform grids generated by GPU-MWDG2 for the Monai valley test case (Section
5.2). The left panel shows the initial grid generated by GPU-MWDG2 at the start of the simulation.
The right panel shows the intermediate grid generated by GPU-MWDG2 after the simulation has
progressed by 17 s, which has a lower amount of coarsening than the initial grid due to flow features
produced by the tsunami as it enters and travels through the test case area.

The metrics Ncells, RDG2, RMRA, and Sinst quantify the computational effort and speedup of

a GPU-MWDG2 simulation per timestep compared to a GPU-DG2 simulation. However, the

overall or cumulative computational effort and speedup of a GPU-MWDG2 simulation depends on

accumulating the computational effort and speedup per timestep from all the timesteps taken by

GPU-MWDG2 to reach a given simulation time. The higher the number of timesteps taken by

GPU-MWDG2 to reach a given simulation time (quantified by N∆t), the higher the cumulative

computational effort spent by GPU-MWDG2 to reach that simulation time (quantified by Ctot).

The Ctot metric is computed by summing the cumulative computational effort spent by GPU-

MWDG2 to perform the DG2 solver updates and the MRA process, which are quantified by CDG2

and CMRA, respectively. Using the cumulative metrics, the overall speedup accumulated by a

GPU-MWDG2 simulation can be computed, which is quantified by Sacc. The metrics in Table 4.3
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are extensively used in the next chapter (Chapter 5) to assess GPU-MWDG2’s performance in

simulating several test cases of tsunami-inducing flooding.

4.3 Summary

This chapter addressed Objective 2, in which the use of the computational ingredients proposed in

Chapter 3 for efficiently parallelising the MRA process of the HW on the GPU – i.e. the Z-order

curve, the parallel tree traversal algorithm, and the array data structure – was extended to the

MRA process of the MW, thereby allowing to implement a GPU-parallelised MW adaptive DG2

model, i.e. GPU-MWDG2. GPU-MWDG2 was then integrated into a new version of LISFLOOD-

FP – version 8.2 – in order to take advantage of LISFLOOD-FP’s existing framework for running

real-world flood simulations and thereby allow for a proper comparison of GPU-MWDG2 against

GPU-DG2, as the latter is already integrated into LISFLOOD-FP.

The MRA process of the MW is very similar to the MRA process of the HW and was thus imple-

mented on the GPU in almost exactly the same way as for GPU-HWFV1, with some key differences.

First, in the MRA process of the MW, the encoding and decoding steps involve computing “shape

vectors” (instead of scalars like in MRA process of the HW in GPU-HWFV1), and at the end of

the MRA process, a non-uniform grid is generated whose cells hold modelled data as shape vectors

instead of scalars. These shape vectors – each made up of three scalar components – are needed for

compatibility with the DG2 scheme in GPU-MWDG2, in which the solution over each cell in the

grid is piecewise-planar (instead of piecewise-constant like in the FV1 scheme in GPU-HWFV1).

The shape of the planar solution over each cell is controlled by the three scalar components of each

shape vector per cell, which are an average coefficient and two x- and y-directional slope coeffi-

cients. The three components are updated in time via a “DG2 update,” which involves an RK2

scheme with two time stages (instead of only one time stage as in the forward-Euler scheme in the

FV1 update of GPU-HWFV1). Due to the involvement of two time stages, the DG2 update was

implemented on the GPU in a slightly different way compared to the FV1 update: namely, after

completing the first time stage, the encoding step is performed again to update the modelled data

of the neighbours to an intermediate timestep, after which the second time stage can be completed.

When using GPU-MWDG2 within LISFLOOD-FP’s framework for running real-world flood
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simulations, seven extra keywords must be specified in the parameter file to correctly use GPU-

MWDG2’s grid adaptation capability. Notably, to run a simulation of a real-world test case in-

volving a DEM with a raster grid made up of N × M cells using GPU-MWDG2, the maximum

refinement level L should be specified to be the smallest integer such that 2L ≥ max(N,M). This

should be done so that GPU-MWDG2 constructs an artificial 2L×2L grid – which is the size of the

reference uniform grid at the highest refinement level in the hierarchy of grids in the MRA process

– that can accommodate the N ×M raster grid of the DEM. Thus, the larger the DEM raster grid,

the higher the value of L that must be specified to accommodate the DEM.

The higher the value of L, the higher the amount of memory consumed by GPU-MWDG2;

however, GPU-MWDG2 cannot consume more memory than the memory capacity of a given GPU,

so the memory capacity of a GPU places an upper limit on the value of L and thus the maximum

test case area that can be considered using GPU-MWDG2 with that GPU. As of writing, GPU-

MWDG2 cannot be used with L larger than 12 – equivalent to a maximum test case area of

4096 × 4096 cells – because doing so requires more than 80 GB of GPU memory, which is higher

than the memory capacity of most commercially available GPUs.

GPU-MWDG2 can be instructed to produce a .cumu file at the end of a simulation that contains

several categories of diagnostic time series data. These time series data allow to compute a set of

time-dependent metrics for analysing the impact of GPU-MWDG2’s grid adaptation capability

on reducing the computational effort of DG2 modeling during a simulation. The metrics are used

extensively in the next chapter (Chapter 5) to assess GPU-MWDG2’s performance when simulating

test cases that feature multiscale rapid flow phenomena.



Chapter 5

Comparing GPU-MWDG2 against

GPU-DG2

This chapter addresses Objective 3 and compares the adaptive GPU-MWDG2 model against the

uniform-grid GPU-DG2 model to analyse the impact of GPU-MWDG2’s grid adaptation capability

on the accuracy and computational effort of DG2 modelling when simulating test cases that feature

multiscale rapid flow phenomena, particularly tsunami-induced flooding – where grid resolution

adaptation is hypothesised to reduce the computational effort of DG2 modelling while still allowing

to achieve a similar level of accuracy as GPU-DG2.

This chapter is organised as follows. Section 5.1 selects a series of test cases over which the

potential benefit of using GPU-MWDG2’s grid adaptation capability when simulating multiscale

rapid flow phenomena is quantitatively analysed. Supported by the metrics proposed in Table 4.3 of

Chapter 4, Sections 5.2 to 5.5 include results and discussions about the accuracy and computational

effort of DG2 modelling obtained from running simulations of the test cases selected in Section 5.1

using GPU-MWDG2 and GPU-DG2. Section 5.6 provides a summary of the key results and

concludes with recommendations on when GPU-MWDG2’s grid adaptation capability makes it a

potentially better choice than GPU-DG2 for simulating multiscale rapid flow phenomena.

87
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5.1 Selection of tsunami test cases

Fundamentally, the impact of GPU-MWDG2’s grid adaptation capability on reducing the compu-

tational effort of DG2 modelling – and thus GPU-MWDG2’s potential speedup over GPU-DG2

during a simulation – depends on the complexity of the DEM and the flow features involved in a

test case: the lower the complexity of the DEM and the flow features, the more grid resolution

coarsening achieved by GPU-MWDG2’s grid adaptation capability and the lower the number of

cells in GPU-MWDG2’s non-uniform grid. The lower the cell count of the non-uniform grid, the

fewer DG2 updates that must be performed and the lower the computational effort – and thus, the

higher the speedup of GPU-MWDG2 over GPU-DG2.

In addition to the complexity of the tsunami involved in a test case, the speedup achieved by

GPU-MWDG2’s adaptation capability may also depend on the DEM size. Namely, recall that

when running GPU-MWDG2, the maximum refinement level L must be specified such that GPU-

MWDG2’s 2L × 2L square grid can accommodate the size of the DEM raster grid (see Section

4.2.1): as the DEM size increases, so does the value of L required to accommodate the DEM raster

grid. At the same time, the speedup achieved by wavelet-based grid adaptation when simulating

test cases that involve mainly rapid flows was shown in Section 3.2.2 to scale with the value of L

(see Figure 3.13, right panel), and in Section 3.2.3 to require L ≥ 9 for realistic test cases involving

complex DEMs (see Figure 3.20, right panel): thus, as the DEM size increases, so does the value

of L needed to accommodate the DEM raster grid, and so does the potential for GPU-MWDG2

to achieve a speedup – hypothetically for L ≥ 9 in realistic test cases involving rapid flows over

complex DEMs.

Therefore, to systematically assess the effect of the DEM size and the tsunami complexity on

the speedup achieved by GPU-MWDG2’s grid adaptation capability, GPU-MWDG2 is compared

against GPU-DG2 by running simulations of four tsunami test cases that each have a unique com-

bination of DEM size (requiring either L = 10 or 12) and tsunami complexity (either simple or

complex), as shown in Table 5.1. Simulations run using GPU-DG2 are always performed on a

uniform grid at the finest resolution available to GPU-MWDG2 based on the DEM size. All simu-

lations are run on an A100 GPU with 80 GB memory on the Stanage high performance computing

cluster at the University of Sheffield in order to have enough GPU memory to accommodate the
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test case DEMs, which require specifying L up to 12 (see Section 4.2.1).

Table 5.1: Summary of four tsunami test cases each with a unique combination of DEM size and
tsunami complexity. Parameters needed to run the simulations per test case: maximum refinement
level L, simulation end time, denoted by tend, and Manning’s friction coefficient, denoted by nM.

Test case DEM size L Tsunami complexity tend nM

Monai valley
(Section 5.2)

784× 486 cells 10 A simple tsunami fea-
turing a single peak and
trough.

22.5 s 0.01

Seaside, Oregon
(Section 5.3)

2181× 1091 cells 12 A simple tsunami fea-
turing a single peak and
no trough.

40 s 0.025

Tauranga har-
bour (Section 5.4)

4096× 2196 cells 12 A complex tsunami in-
volving three peaks and
troughs.

40 hr 0.025

Hilo harbour
(Section 5.5)

701× 692 cells 10 A complex tsunami
with many peaks and
troughs.

6 hr 0.025

When running GPU-MWDG2, consideration must also be given to the error threshold ε, which

controls the amount of coarsening in GPU-MWDG2’s non-uniform grid: a larger ε leads to more

grid coarsening – and thus a higher potential speedup – but with the disadvantage of a lower level

of DG2 accuracy compared to GPU-DG2. A higher level of accuracy can be obtained by using a

smaller ε – but with the disadvantage of less grid coarsening and thus a lower potential speedup.

As long as an error threshold ε ≤ 10−3 is used, GPU-MWDG2 preserves a similar level of DG2

accuracy as GPU-DG2 – in the sense that for this range of ε, GPU-MWDG2 gives flow predictions

that are close to those of GPU-DG2 (Kesserwani et al., 2019; Kesserwani and Sharifian, 2020).

Therefore, two values of ε are explored: ε = 10−3, as this is the maximum value recommended for

flood modelling (Kesserwani et al., 2019; Kesserwani and Sharifian, 2020; Sharifian et al., 2023),

and ε = 10−4, as this smaller value is recommended for tsunami modelling where triggering a finer

grid resolution is better for capturing smaller-scale features of dispersive tsunami waves (Sharifian

et al., 2019).

The closeness of the GPU-MWDG2 and GPU-DG2 predictions obtained for each test case

are shown visually, and are also quantified by computing the root mean squared error (RMSE)

and correlation coefficient (r) of the GPU-MWDG2 predictions with respect to the GPU-DG2

predictions:
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RMSE =

√∑
i (Pi,MW − Pi,DG2)

2

T
(5.1a)

r =

∑
i

(
Pi,MW − PMW

) (
Pi,DG2 − PDG2

)√∑
i

(
Pi,MW − PMW

)2
/T

∑
i

(
Pi,DG2 − PDG2

)2
/T

(5.1b)

where T is the number of points in the prediction dataset, Pi,MW is the ith GPU-MWDG2 pre-

diction, Pi,DG2 is the i
th GPU-DG2 prediction, PMW is the mean of the GPU-MWDG2 predictions,

and PDG2 is the mean of the GPU-DG2 predictions. The RMSE quantifies the prediction error

between the GPU-MWDG2 and GPU-DG2 predictions, whereas r quantifies the similarity between

the two datasets, which, along with the visual plots, together allow to verify the GPU-MWDG2’s

accuracy more holistically. The lower the value of the RMSE and the closer the value of r to 1, the

closer the GPU-MWDG2 predictions are to the GPU-DG2 predictions.

5.2 Monai valley

This test case was used to validate many hydrodynamic solvers (Caviedes-Voullième et al., 2020;

Kesserwani & Liang, 2012; Kesserwani & Sharifian, 2020; Matsuyama & Tanaka, 2001). It involves

a 1:400 scaled replica of the 1993 tsunami that flooded Okushiri Island after a wave runup of 30

m at the tip of a very narrow gulley in a small cove at Monai Valley (Liu et al., 2008). The

scaled DEM has 784 × 486 cells for which its associated initial square uniform grid is generated

with L = 10. In Figure 5.1, a top-down view of the bathymetric area is shown (top left panel),

which has a small island in the middle and a coastal shoreline to the right, including Okushiri

Island and Monai Valley. The coastal shoreline gets flooded by a tsunami that initially enters the

bathymetric area from the left boundary and then travels to the right by 4.5 m (indicated by the red

arrows), interacting with the small island as it travels through the bathymetric area. This tsunami

is simulated for 22.5 s, during which it travels through the bathymetric area in three stages of flow

over time: the entry stage (0 to 7 s), the travelling stage (7 to 17 s) and the flooding stage (17

to 22 s). During the entry stage, the tsunami does not enter the bathymetric area, as seen in the

hydrograph of the tsunami’s water surface elevation (bottom left panel of Figure 5.1). During the

travelling stage, the tsunami enters from the left boundary and travels right towards the coastal
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shoreline. Lastly, during the flooding stage, the tsunami floods the coastal shoreline, due to which

many flow dynamics such as wave reflections and diffractions are produced that must be tracked

using finer cells, thus increasing the number of cells in the GPU-MWDG2 non-uniform grid. In

the right panels of Figure 6, the initial GPU-MWDG2 grids at ε = 10−3 and 10−4 are depicted for

the portion of the bathymetric area framed by the white box (top left panel of Figure 6). With

ε = 10−3 and 10−4, the initial GPU-MWDG2 grid has 6% and 12% of the number of cells as in the

GPU-DG2 uniform grid, respectively.

ε = 10-3, Rcell = 83% 

ε = 10-4, Rcell = 76% 

Figure 5.1: Monai valley test case. Top-down view of bathymetry (top left panel), where the red
arrows indicate the direction and distance travelled by the tsunami entering from the left boundary;
time history of the free surface elevation of the tsunami at the left boundary (bottom left panel); initial
non-uniform grids generated by GPU-MWDG2 for the region bounded by the dashed white box in the
top left panel (right panels).

In Figure 5.2, an analysis of the runtimes of the GPU-DG2 and GPU-MWDG2 simulations using

the time-dependent metrics of Table 4.3 is shown; a time history of ∆t is also included. The dashed

lines in the top left panel indicate the initial value of Ncells, i.e. Ncells of the initial GPU-MWDG2

non-uniform grids. Up to 15 s, i.e. before the flooding stage of flow begins, the time history of

Ncells remains flat, meaning that the number of cells in the GPU-MWDG2 non-uniform grid does

not change over time. Once the flooding stage begins, however, Ncells increases slightly, particularly

at ε = 10−4. With an increased number of cells in the non-uniform grid, the computational effort
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of performing the DG2 solver updates per timestep should increase, which is confirmed by the time

history of RDG2, which is flat before the flooding stage of flow, but thereafter increases, particularly

at ε = 10−4. Unlike RDG2 though, the time history of RMRA is similar for both values of ε, and

stays flat for most of the simulation except for an initial decrease at the start, meaning that the

computational effort of performing the MRA process per timestep is similar for both values of ε

and remains fixed throughout the simulation. Thus, the drop in the speedup of completing a single

timestep of the GPU-MWDG2 simulation compared to the GPU-DG2 simulation is mostly due to

the increase in RDG2 at ε = 10−4, with Sinst dropping from 2.0 to 1.8 (which otherwise stays flat

at 2.7 for ε = 10−3).

Besides analysing the computational effort and speedups of the GPU-MWDG2 simulations per

timestep, there is also the question of analysing the cumulative computational effort of running

the simulations, which depends on the timestep size (∆t) and the number of timesteps taken to

reach a given simulation time (N∆t). In this test case, the time histories of ∆t of the GPU-DG2

simulation and the GPU-MWDG2 simulation using ε = 10−4 are very similar, but with ε = 10−3,

∆t drops at 7 s, i.e. as soon as the travelling stage of flow begins. This slight drop in ∆t is

likely dictated by wetting and drying on the cells associated with more frequent and aggressive grid

resolution coarsening at ε = 10−3 than 10−4. Due to the smaller ∆t at ε = 10−3, the trend in N∆t

is steeper at ε = 10−3 than 10−4, i.e. more timesteps are taken and thus more computational effort

is spent by GPU-MWDG2 to reach a given simulation time at ε = 10−3 than 10−4. Still, despite

the steeper trend in N∆t, the cumulative computational effort of performing the MRA process is

similar using both ε = 10−3 and 10−4, which is expected given that RMRA is also very similar for

values of ε. In contrast, the cumulative computational effort of performing the DG2 solver updates

is considerably higher at ε = 10−4 than 10−3, likely due to the higher RDG2 at ε = 10−4, which

seems correct since a higher computational effort to perform the DG2 solver updates per timestep

should lead to a higher cumulative computational effort (assuming that the time histories of N∆t

are similar for the different values of ε, which is the case here). Overall, for both values of ε, the

total computational effort of running the GPU-MWDG2 simulations is always lower than that of

the GPU-DG2 simulation, with Ctot always being lower than that of GPU-DG2 at both ε = 10−3

and 10−4. The accumulated speedups of the GPU-MWDG2 simulations, Sacc, finish at around 2.5

and 2.0 using ε = 10−3 and 10−4, respectively.
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Figure 5.2: Metrics of Table 4.3 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also
shown is a time history of ∆t (centre panel) obtained for the Monai valley test case.

Figure 5.3 shows the water surface elevation time series predicted by GPU-DG2 and GPU-

MWDG2 at the coloured points in the top left panel of Figure 5.1. Table 5.2 shows the RMSE

and r values computed from the time series, and also from flood maps predicted at the end of the

simulation. For both values of ε, the GPU-MWDG2 predictions are very close to the GPU-DG2

predictions, as seen visually in Figure 5.3 and as quantified by the RMSE (order of magnitude of

10−3) and r coefficients (> 0.99).
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Figure 5.3: Time series of the water surface elevation (h + z) predicted by GPU-DG2 and GPU-
MWDG2 at the three points shown in Figure 5.1 for the Monai valley test case.

Table 5.2: RMSE and r values of the water surface elevation predicted by GPU-MWDG2 with respect
to the GPU-DG2 predictions for the Monai valley test case.

RMSE r

Prediction dataset ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

Time series at Point 1 4.19 Ö 10-4 1.36 Ö 10-4 0.9995 0.9999

Time series at Point 2 1.40 Ö 10-3 7.55 Ö 10-4 0.9935 0.9979

Time series at Point 3 4.53 Ö 10-4 1.91 Ö 10-4 0.9994 0.9999

Flood map at tend 1.81Ö 10-3 1.00 Ö 10-3 0.9978 0.9993

Overall, GPU-MWDG2 competitively reproduces the GPU-DG2 water surface elevation predic-

tions with both ε values while being more than 2 times faster than GPU-DG2 due to using L = 10,

i.e. the “borderline” value of L where GPU-MWDG2’s wavelet-based grid adaptation capability

reliably yields a speedup. In the next test case, the impact of a larger DEM size, requiring a larger

L value, on the speedup of the GPU-MWDG2 solver is evaluated, while further considering the
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prediction of more complex velocity-related quantities.

5.3 Seaside, Oregon

This is another popular benchmark test case used to validate hydrodynamic solvers for nearshore

tsunami inundation simulation (Park et al., 2013; Violeau et al., 2016; Qin et al., 2018; Gao, 2020;

Maćıas et al., 2020b). It involves a 1:50 scaled replica of an urban town in Seaside, Oregon, flooded

by a tsunami travelling along a scaled DEM made up of 2181× 1091 cells, here requiring a larger

L = 12 to generate the initial square uniform grid. In Figure 5.4, the bathymetric area is shown (top

left panel), which is very plain everywhere except to the right where very complex terrain features of

the urban town, such as buildings and streets, are located. The urban town is flooded by a tsunami

that enters from the left boundary and travels a distance of 33 m to the right before hitting and

flooding the town (as shown by the red arrows). This tsunami is simulated for 40 s, during which it

travels through the bathymetric area in four stages of flow over time, much like in the last test case

(Section 5.2): the entry stage (0 to 10 s), the travelling stage (10 to 25 s), the flooding stage (25

to 35 s), and the inundation stage (35 to 40 s). During the entry stage, the tsunami is not yet in

the bathymetric area. During the travelling stage, the tsunami starts to enter the bathymetric area

from the left boundary and travels right towards the town. During the flooding stage, the tsunami

hits the town, flooding the streets and overtopping some of the buildings, causing vigorous flow

dynamics. Finally, during the inundation stage, the tsunami inundates the town and eventually

interacts with the right boundary, causing wave reflections. The water surface elevation hydrograph

of the tsunami is plotted in the bottom left panel of Figure 5.4: it only has a single peak, indicating

low tsunami complexity. The right panels show the initial GPU-MWDG2 non-uniform grids at

ε = 10−3 and 10−4, respectively (again for the portion of the bathymetric area framed by the white

box in the top left panel): at ε = 10−3, greater grid coarsening is achieved, with the grid including

only 2% of the number of cells as in the GPU-DG2 uniform grid, whereas at ε = 10−4 it is 5% since

more cells are used due to retention of finer resolution around and within complex terrain features

of the urban town.

In Figure 5.5, an analysis of runtimes of the GPU-MWDG2 and GPU-DG2 simulations are

shown. As indicated by the time history of Ncells, the number of cells in the GPU-MWDG2 non-
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ε = 10-3, Rcell = 92%

ε = 10-4, Rcell = 65%

Figure 5.4: Seaside, Oregon test case. Top-down view of bathymetry (top left panel); tsunami time
history at the left boundary (bottom left panel); initial non-uniform grids generated by GPU-MWDG2
for the region bounded by the dashed white box in the top left panel (right panels).

uniform grid does not increase significantly for either value of ε until the flooding stage of flow at 25

s, where Ncells starts increasing more noticeably. Once the number of cells starts increasing, there

is a corresponding increase in RDG2. On the other hand, the time history of RMRA is quite flat

during the entire simulation, except for a small decrease during the first 10 s of the simulation, and

a small increasing trend in the final 5 s of the simulation, i.e. during the inundation stage of flow

when the number of cells increases relatively sharply compared to the rest of the simulation. Driven

primarily by the increase in RDG2 at the flooding stage at 25 s, the time history of Sinst is quite

stable until 25 s and thereafter shows a decreasing trend that is particularly steep at ε = 10−3.

Like the previous test case (5.2), the time histories of ∆t in the GPU-DG2 simulation and

GPU-MWDG2 simulation at ε = 10−4 are very similar, but at ε = 10−3, there is a sharp drop in

∆t after 32 s, i.e. when the flooding stage of flow starts transitioning to the inundation stage. This

sharp drop in ∆t is triggered by wet/dry fronts at coarse cells that are present in the non-uniform

grid with ε = 10−3, but not with 10−4. The first drop in ∆t, which occurs at 25 s when the flooding

stage starts, leads to a locally steeper trend in the time history of N∆t, as indicated by the kink
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Figure 5.5: Metrics of Table 4.3 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also
shown is a time history of ∆t (centre panel) obtained for the Seaside, Oregon test case.

at 25 s. The second drop in ∆t, which is seen only for ε = 10−3 after 32 s, leads to a sustained

steepness in the time history of N∆t after 32 s. This steepness means that GPU-MWDG2 takes

more timesteps and thus accumulates more computational effort to reach a given simulation time

at ε = 10−3 than 10−4, which is confirmed by the final value of CMRA, which is higher at the

end of the simulation at ε = 10−3 compared to 10−4, even though its time history at ε = 10−3

was consistently lower than at 10−4 before this. Since RMRA was always lower at ε = 10−3 than

10−4, this observation about CMRA suggests that even if the computational effort per timestep is

lower throughout the simulation, a high timestep count can sufficiently increase the cumulative
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computational effort such that it becomes higher at ε = 10−3 than 10−4. Nonetheless, the time

history of Ctot in the GPU-MWDG2 simulations always remains well below that of the GPU-DG2

simulation, with Sinst finishing at 3.5 and 3.0 with ε = 10−3 and 10−4, respectively.

Having analysed the computational effort, the GPU-MWDG2 and GPU-DG2 predictions ob-

tained from this test case are compared next, where more complicated velocity-related quantities

are considered that were not considered in the last test case (Section 5.2).

In the physical experiment of this test case, time histories of the water surface elevation, velocity,

and momentum were recorded at 31 locations, as indicated by the crosses in the top left panel of

Figure 5.4. Figure 5.6 shows the water surface elevation, velocity, and momentum time series

predicted by GPU-MWDG2 and GPU-DG2 at three of these locations, which are, in increasing

order of modelling difficulty: point A1 (one of the left-most crosses in Figure 5.4), point B6 (one

of the central crosses), and point D4 (one of the right-most crosses). Table 5.3 shows the RMSE

and r values computed from the time series at these points, and also from spatial maps predicted

at the end of the simulations.

At point A1, which is located in the impact zone where the tsunami initially hits the town, the

GPU-MWDG2 predictions are very close to the GPU-DG2 predictions for both values of ε (RMSE

order of magnitude between 10−2 and 10−3, r coefficients > 0.99). At point B6, which is located in

the middle of the town and is slightly downstream of the tsunami impact zone, the GPU-MWDG2

predictions are still very close to the GPU-DG2 predictions: similar values of RMSE and r as seen

for point A1 are obtained. At point D6, however, which is located near the end of the town and

is therefore very downstream of the tsunami impact zone and separated by many buildings that

could lead to flow discrepancies, there are significant differences between the GPU-MWDG2 and

GPU-DG2 velocity and momentum predictions using ε = 10−3, where using ε = 10−4 is necessary

for the GPU-MWDG2 predictions to track the GPU-DG2 predictions, as seen in Figure 5.6 and

as confirmed by the r values in Table 5.3 (velocity: r is 0.8889 and 0.9176 for ε = 10−3 and 10−4,

respectively; momentum: r is 0.7746 and 0.9214). For the spatial maps, a similar pattern in the

r coefficients with respect to ε is observed as was seen for point D4. This indicates that running

GPU-MWDG2 with ε = 10−4 is a better choice here for obtaining velocity-related predictions.

Overall, GPU-MWDG2 seems to be faster than GPU-DG2 in this test case compared to the

last test case due to the larger value of L required – L = 12 instead of 10. Running GPU-MWDG2
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Figure 5.6: Time series of the water surface elevation (h + z), x-directional velocity (u) and mo-
mentum (Mx) produced by GPU-DG2 and GPU-MWDG2 at points A1, B6 and D4 in Figure 5.4.

with ε = 10−3 leads to discrepancies in the velocity and momentum predictions compared to the

GPU-DG2 predictions, and to reduce these discrepancies, running GPU-MWDG2 with ε = 10−4

is needed. These results suggest that GPU-MWDG2 should be run here with ε = 10−3 if higher

speedups are desired and water surface elevation predictions are sufficient, whereas if velocity and/or

momentum predictions are needed, ε = 10−4 is necessary.

In the next test case (Section 5.4), GPU-MWDG2 is compared against GPU-DG2 over simula-

tions of a real-world tsunami event that requires L = 12 like in this test case but instead involves

a tsunami of considerably higher complexity.
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Table 5.3: RMSE and r values for the GPU-MWDG2 predictions with respect to the GPU-DG2
predictions for the Seaside, Oregon test case

RMSE r

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

Time series at A1
h + z 3.04 Ö 10-3 2.68 Ö 10-3 0.9979 0.9982
u 6.86 Ö 10-2 4.54 Ö 10-2 0.9905 0.9958
M x 2.90 Ö 10-3 1.01 Ö 10-3 0.9995 0.9999

Time series at B6
h + z 4.48 Ö 10-3 2.46 Ö 10-3 0.9931 0.9976
u 5.65 Ö 10-2 59 Ö 10-2 0.9944 0.9968
M x 7.40 Ö 10-3 3.87 Ö 10-3 0.9943 0.9982

Time series at D4
h + z 5.87 Ö 10-3 3.75 Ö 10-3 0.9841 0.9897
u 1.30 Ö 10-1 9.51 Ö 10-2 0.8889 0.9176
M x 6.52 Ö 10-3 2.20 Ö 10-3 0.7746 0.9214

Spatial map at tend

h + z 5.58 Ö 10-3 1.50 Ö 10-3 0.9999 0.9999
u 6.66 Ö 10-2 3.52 Ö 10-2 0.8303 0.9502
M x 2.03 Ö 10-3 5.89 Ö 10-4 0.9350 0.9945

5.4 Tauranga harbour

This test case reproduces the 2011 Japan tsunami event in Tauranga Harbour, New Zealand (Bor-

rero et al., 2015; Maćıas et al., 2015, 2020a). The bathymetric area has a DEM made of 4096×2196

cells, requiring L = 12 to generate the initial square uniform grid. As shown by the red arrows

in Figure 5.7, the tsunami enters from the top boundary and travels a short distance downwards

before quickly hitting the coast at y = 16 km. As shown by the time history of the water surface

elevation (bottom left panel of Figure 5.7), the tsunami is a wave train made up of three wave peaks

and troughs that enter the bathymetric area one after the other at 0, 12, and 24 hr during the 40-hr

tsunami event, with the latter two waves also exhibiting noise. Due to the wave train, the short

travel distance before flooding the harbour, and the highly irregular bathymetric zones that trigger

wave reflections and diffractions, vigorous flow dynamics occur within the bathymetric area from

the very beginning of the simulation. The right panels of Figure 5.7 include the GPU-MWDG2

grids generated at ε = 10−3 and 10−4 for the region bounded by the white box (top left panel).

With ε = 10−3, the number of cells in the grid is 5% of the GPU-DG2 uniform grid, whereas with

ε = 10−4, it is 15%, due to less coarsening in and around the irregular bathymetric zones.

In Figure 5.8, an analysis of the runtimes of the GPU-MWDG2 and GPU-DG2 simulations is

shown. Unlike the previous test cases (Sections 5.2 and 5.3), the first wave of the tsunami wave train

enters the bathymetric area immediately, causing Ncells to increase very sharply and immediately
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ε = 10-3, Rcell = 94% 

ε = 10-4, Rcell = 73% 

Figure 5.7: Tauranga harbour test case. Top-down view of bathymetry (top left panel); tsunami time
history at the top boundary (bottom left panel); initial non-uniform grids generated by GPU-MWDG2
for the region bounded by the dashed white box in the top left panel (right panels).

from its initial value for both values of ε, which thereafter fluctuates due to the periodic tsunami

signal. Following the sharp increase and fluctuations in Ncells, RDG2 also sharply increases and

fluctuates. However, RMRA does not and stays stable and flat throughout the simulation. Thus,

driven primarily by the sharp decrease in RDG2, Sinst decreases sharply from 4.0 to 1.6. The time

histories of ∆t in the GPU-DG2 simulation and the GPU-MWDG2 simulation using ε = 10−4

follow each other quite closely, but at ε = 10−3, the time history of ∆t shows two periodic drops

after 24 h, likely due to periodic wetting and drying processes around coarse cells that are present

in the non-uniform grid at ε = 10−3 but not at 10−4. Due to the smaller ∆t at ε = 10−3, the

time history of N∆t is locally steeper (see the kinks at 25 and 35 h), but this does not lead to

significant differences between the cumulative computational effort at ε = 10−3 versus 10−4. The

time history of Ctot in the GPU-MWDG2 simulations consistently remains below that of the GPU-

DG2 simulation for both values of ε, but they are relatively close to each other compared to the

previous test cases (Sections 5.2 and 5.3). Thus, even though Sacc starts at around 4, like in the

previous test case with L = 12 (Section 5.3), it drops sharply to 1.6 and 1.4 at ε = 10−3 and 10−4,
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respectively.

Figure 5.8: Metrics of Table 4.3 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also
shown is a time history of ∆t (centre panel) obtained for the Tauranga harbour test case.

The first four panels of Figure 5.9 show the water surface elevation time series predicted by

GPU-MWDG2 and GPU-DG2 at the points labelled “A Beacon”, “Tug Harbour”, “Sulphur Point”

and “Moturiki” in the top left panel of Figure 5.7, while the last panel shows the speed time series

predicted at the point labelled “ADCP”. Table 5.4 shows the RMSE and r values computed from

the time series at these points, as well as from spatial maps predicted at the end of the simulations.

For the water surface elevation predictions, both the time series and spatial maps predicted by

GPU-MWDG2 are very similar to those predicted by GPU-DG2 regardless of the choice of ε, as
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seen visually in Figure 5.9 and confirmed by the r values in Table 5.4 (> 0.99). For the speed

predictions, however, the GPU-MWDG2 time series are closer to the GPU-DG2 time series using

ε = 10−4 than 10−3, where r is 0.9527 and 0.9023, respectively. From the spatial maps, the

advantage of using ε = 10−4 than 10−3 is even clearer, where r is 0.8950 and 0.7556 – a larger

difference of 0.14. Thus, using ε = 10−4 seems to be a more suitable choice here for obtaining speed

predictions.

Figure 5.9: Time series of the water surface elevation (h + z) produced by GPU-DG2 and GPU-
MWDG2 at the points labelled A Beacon, Tug Harbour, Sulphur Point and Moturiki and of the speed
at the point labelled “ADCP” in Figure 5.7.
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Table 5.4: RMSE and r values for the GPU-MWDG2 predictions with respect to the GPU-DG2
predictions for the Tauranga harbour test case

RMSE r

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

A Beacon h + z 7.46 Ö 10-2 1.28 Ö 10-2 0.9986 0.9999

Tug Harbour h + z 6.86 Ö 10-2 8.99 Ö 10-2 0.9984 0.9972

Sulphur Point h + z 1.62 Ö 10-1 1.43 Ö 10-1 0.9916 0.9933

Moturiki h + z 7.81 Ö 10-2 2.35 Ö 10-2 0.9935 0.9993

ACDP Speed 3.45 Ö 10-1 2.40 Ö 10-1 0.9023 0.9527

Spatial map at tend
h + z 7.33 Ö 10-2 3.10 Ö 10-2 0.9999 0.9999

Speed 8.01 Ö 10-2 4.80 Ö 10-2 0.7556 0.8950

Overall, this test case features a more complex tsunami compared to the previous test cases

(Sections 5.2 and 5.3), which sharply increases the number of cells in the GPU-MWDG2 non-

uniform grid and thus also increases the computational effort of performing the DG2 solver updates.

Hence, despite requiring the same L = 12 as the previous test case (Section 5.3), the final speedups

are lower in this test case due to the more complex tsunami, with Sacc finishing at 1.6- and 1.4-

fold with ε = 10−3 and 10−4, respectively. Using ε = 10−4 would improve the closeness to the

GPU-DG2 predicted velocities, while using ε = 10−3 leads to very close water surface elevation

predictions and fairly accurate velocity predictions, although without a major improvement in the

speedup. In the next test case, another complex tsunami with higher frequency impact event peaks

is considered, but now with a smaller DEM size requiring L = 10.

5.5 Hilo harbour

This test case reproduces the 2011 Japan tsunami event at Hilo Harbour in Hawaii, USA (Arcos

and LeVeque, 2015; Lynett et al., 2017; Velioglu Sogut and Yalciner, 2019; Maćıas et al., 2020a). It

involves a complex tsunami made up of a high-frequency wave train that propagates for 6 hr into a

bathymetric area that is smaller than the previous test case (Section 5.4). The latter bathymetric

area has a DEM size made of 702 × 692 cells, requiring a smaller L = 10 to generate the initial
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square uniform grid. As shown in Figure 5.10, the tsunami enters from the top boundary and travels

south to flood and interact with the coast at y = 4 km. The wave train occurs over the entire 6 hr

simulation time, from a reference timestamp of 7 hr to 13 hr post-earthquake. In Figure 5.10, the

time history of the wave train is shown during the 8.5 to 11 hr time period (bottom left panel): from

the very beginning and during the entire simulation, violent flow dynamics occur in the bathymetric

area. The right panels show the initial GPU-MWDG2 non-uniform grids generated at ε = 10−3

and 10−4 for the region bounded by the white box (top left panel): the number of cells in the

initial non-uniform grids are at 10.0% and 22.5% of the GPU-DG2 uniform grid at ε = 10−3 and

ε = 10−4, respectively.

ε = 10-3, Rcell = 80.7%

ε = 10-4, Rcell = 50.7%

Figure 5.10: Hilo harbour test case. Top-down view of bathymetry (top left panel); tsunami time
history at the top boundary (bottom left panel); initial non-uniform grids generated by GPU-MWDG2
for the region bounded by the dashed white box in the top left panel (right panels).

In Figure 5.11, an analysis of runtimes of the GPU-MWDG2 and GPU-DG2 simulations is

shown. Like the last test case (Section 5.4), since the wave train enters the bathymetric area

immediately, Ncells increases sharply and immediately to maximum values of 32% and 40% at

ε = 10−3 and 10−4, respectively. The time history of Ncells stays at this maximum for the simulation

except for (somewhat less sharp) localized drops at certain simulation times, e.g., at 8 hr. Following
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Ncells, RDG2 also increases sharply and immediately (to maximum values of 50% and 55% at

ε = 10−3 and 10−4, respectively), and shows localized drops at the same timestamps as the drops

in Ncells. In contrast, the time history of RMRA stays very flat throughout the simulation, except

for a small, temporary drop at 8 hr, which is when the largest drop in Ncells occurs. Due to the

generally flat time histories of RDG2 and RMRA, the time history of Sinst is also flat except for

localized peaks that occur at the same timestamps as the localized drops in RDG2 and RMRA.

Unlike all of the previous test cases (Sections 5.2 to 5.4), the time history of ∆t is very similar

between the GPU-DG2 simulation and the GPU-MWDG2 simulations, regardless of the ε value,

as they both yield a high number of cells compared to the uniform GPU-DG2 grid. Thus, the

time history of N∆t is virtually identical across all simulations. Given that the time histories of

N∆t, RDG2, and RMRA are similar for both ε values, the time histories of CDG2 and CMRA are

also very similar. The time history of Ctot is very close between the GPU-DG2 simulation and

the GPU-MWDG2 simulations in this test case (even more so than in the last case, Section 5.4),

so Sacc is the lowest out of all the test cases, finishing at 1.25 and 1.10 using ε = 10−3 and 10−4,

respectively.
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Figure 5.11: Metrics of Table 4.3 applied to the GPU-MWDG2 and GPU-DG2 simulations. Also
shown is a time history of ∆t (centre panel) obtained for the Hilo harbour test case.

The top panels of Figure 5.12 show the time series of the water surface elevation predicted by

GPU-MWDG2 and GPU-DG2 at the points labelled “Control point” and “Tide gauge” in the top

left panel of Figure 5.10, whereas the bottom panels of Figure 5.12 show the velocity time series at

the points labelled “ADCP 1125” and “ADCP 1126”. Table 5.5 shows the RMSE and r coefficients

computed from the time series, as well as from spatial maps predicted at the end of the simulations.

GPU-MWDG2’s water surface elevation predictions are very similar to those of GPU-DG2, as seen

visually in the top panels of Figure 5.12 and confirmed by the r values in Table 5.5 (> 0.97) for both

values of ε. However, for the velocity predictions, using ε = 10−4 gives closer predictions, as seen
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from the time series at ADCP 1126 (r is 0.8343 versus 0.9193 for ε = 10−3 and 10−3, respectively),

and especially seen from the spatial maps, where r is 0.7063 versus 0.8134 for ε = 10−3 and 10−3 for

the y-directional velocity predictions, respectively, while for the x-directional velocity predictions,

r is 0.7465 versus 0.8387. Thus, it appears that running GPU-MWDG2 with ε = 10−4 continues

to be the more suitable choice for obtaining velocity predictions close to those of GPU-DG2.

Figure 5.12: Time series simulated by GPU-DG2 and GPU-MDG2 at the labelled points in Fig-
ure 5.10.

Overall, despite simulating a test case with a complex tsunami impact event and also a DEM

size that requires selecting a small L = 10, GPU-MWDG2 still manages to attain speedups over

GPU-DG2 in this test case: around 1.25 at ε = 10−3 and 1.10 at ε = 10−4. This seems to suggest

that the GPU-MWDG2 solver can reliably be used to gain speedups over the GPU-DG2 solver

even if simulating complex tsunami impact events, using ε = 10−3 to boost the speedup, or using

ε = 10−4 to increase the quality of velocity predictions.
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Table 5.5: RMSE and r values for the GPU-MWDG2 predictions with respect to the GPU-DG2
predictions for the Hilo harbour test case

RMSE r

Prediction dataset Quantity ε = 10-3 ε = 10-4 ε = 10-3 ε = 10-4

Control point h + z 1.11 Ö 10-1 5.45 Ö 10-2 0.9767 0.9923

Tide gauge h + z 1.81 Ö 10-1 1.10 Ö 10-1 0.9827 0.9938

ADCP HA1125 v 3.63 Ö 10-1 2.91 Ö 10-1 0.7884 0.8252

ADCP HA1126 u 3.23 Ö 10-1 2.23 Ö 10-1 0.8343 0.9193

Spatial map at tend

h + z 5.31 Ö 10-2 6.20 Ö 10-3 0.9999 0.9999
v 9.17 Ö 10-2 6.09 Ö 10-2 0.7063 0.8134
u 9.01 Ö 10-2 5.93 Ö 10-2 0.7465 0.8387

5.6 Summary

This chapter addressed Objective 3 by comparing GPU-MWDG2 against GPU-DG2 to analyse the

impact of GPU-MWDG2’s grid adaptation capability on the accuracy and computational effort of

DG2 modelling when simulating multiscale rapid flow phenomena, particularly tsunami-induced

flooding. In a simulation involving tsunami-induced flooding, the amount of grid coarsening and

thus the computational effort and speedup may be particularly affected over time by the flow

features produced by the tsunami as it enters and travels through the test case area. Further

to the complexity of the tsunami, the speedup achieved by GPU-MWDG2’s wavelet-based grid

adaptation capability may also depend on the DEM size, as the speedup achieved by wavelet-based

grid adaptation when simulating rapid flows was shown in Chapter 3 to scale with the value of L

and to require L ≥ 9 for realistic test cases with complex DEMs: as the DEM size increases, so does

the value of L required to accommodate the DEM size, and so does the potential for GPU-MWDG2

to achieve a speedup – hypothetically for L ≥ 9 in realistic test cases involving rapid flows over

complex DEMs.

Therefore, to systematically assess the effect of the DEM size and the tsunami complexity on

the speedup achieved by GPU-MWDG2’s grid adaptation capability, GPU-MWDG2 was compared

against GPU-DG2 by running simulations of four tsunami-induced flooding test cases that each

have a unique combination of DEM size and tsunami complexity. GPU-DG2 was always run on a

uniform grid at the finest resolution available to GPU-MWDG2. Meanwhile, GPU-MWDG2 was

run with two choices for the error threshold ε: 10−3 and 10−4, as these values have been shown to

preserve a similar level of accuracy as GPU-DG2 for flood and tsunami modelling – in the sense
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Table 5.6: Summary of key set-up parameters and results per test case. The runtime is the time
taken to complete a simulation of a test case. The numbers 10−3 and 10−4 refer to the value of ε
chosen for GPU-MWDG2.

Test case tend Tsunami
complexity

L Runtime Average
speedup

MWDG2 DG2 MWDG2
10-3 10-4 - 10-3 10-4

Monai valley
(Section 5.2)

22.5 s Simple 10 16 s 20 s 40 s 2.5Ö 2.0Ö

Seaside, Oregon
(Section 5.3)

40 s Simple 12 3.5 min 5.2 min 13.0 min 4.5Ö 3.3Ö

Tauranga har-
bour (Section 5.4)

40 hr Complex 12 7.5 hr 8.1 hr 11.3 hr 1.8Ö 1.4Ö

Hilo harbour
(Section 5.5)

6 hr Complex 10 5.3 min 5.8 min 6.9 min 1.3Ö 1.2Ö

that for this range of ε, GPU-MWDG2 gives flow predictions close to those of GPU-DG2. The

closeness of the predictions was shown visually and was also quantified by computing the RMSE and

r coefficient of the GPU-MWDG2 predictions with respect to the GPU-DG2 predictions, whereby

the lower the value of the RMSE and the closer the value of r to 1, the better the closeness of the

predictions.

To identify the combination(s) of DEM size, tsunami complexity and error threshold ε for which

GPU-MWDG2 is potentially a better choice than GPU-DG2 for simulating multiscale rapid flow

phenomena, Table 5.6 shows a summary of the key results from simulating the tsunami test cases

in Sections 5.2 to 5.5. The speedup achieved by GPU-MWDG2 seems to be maximised depending

on: (i) the DEM size requiring L ≥ 9 and (ii) the tsunami complexity being simple. As shown

in Table 5.6, for the test cases involving simple tsunamis: when the DEM area required L = 10,

the average speedups would be around 2.0-fold (i.e. the Monai Valley test case); whereas, with the

DEM area requiring a larger L = 12, considerable average speedups of 3.3-fold were achieved at

ε = 10−4, which increased to 4.5-fold at ε = 10−3 (i.e. the Seaside, Oregon test case). Meanwhile,

for the complex tsunamis, the average speedups reduced to 1.8-fold for a DEM area requiring

L = 12 (i.e. the Tauranga Harbour test case) and to 1.2-fold for a smaller DEM requiring a smaller

L = 10 (i.e. the Hilo Harbour test case). Thus, GPU-MWDG2’s grid adaptation capability best

reduces the computational effort when simulating multiscale rapid flows for test cases featuring a

simple impact event and a DEM size requiring L ≥ 10.



Chapter 6

Conclusions

6.1 Thesis summary

This thesis’ research aim was to integrate a multiwavelet (MW) grid adaptation capability into the

second-order discontinuous Galerkin (DG2) model in LISFLOOD-FP parallelised on the graphics

processing unit (GPU) (Shaw et al. 2021), referred to as “GPU-DG2”, in order to reduce the

computational effort of DG2 modelling when simulating multiscale rapid flow phenomena such as

tsunamis – while still achieving a similar level of accuracy as GPU-DG2 run on a uniform mesh.

To achieve the research aim, three Objectives were defined:

1. Propose computational ingredients for redesigning the algorithmic structure of a wavelet-

based grid adaptation algorithm based on “Haar” wavelets (HW) in order to make it suitable

for efficient implementation on the GPU;

2. Extend the use of the computational ingredients proposed in Objective 1 in order to efficiently

implement a MW-based grid adaptation algorithm on the GPU and integrate it into the GPU-

DG2 model in LISFLOOD-FP;

3. Analyse the impact of the GPU-parallelised MW-based grid adaptation algorithm on the

accuracy and computational effort of DG2 modelling when simulating multiscale rapid flow

phenomena.

Before addressing the Objectives, a literature review was conducted in Chapter 2. In Section 2.1

of the literature review, it was pointed out that simultaneously adopting both GPU-parallelisation

111
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and wavelet-based grid adaptation may substantially reduce the computational effort of DG2 mod-

elling when simulating multiscale rapid flow phenomena without significantly compromising on the

level of accuracy, making it a compelling research area, but nevertheless, it was argued that this

research area remained uninvestigated due to grid adaptation algorithms being incompatible with

GPU computing. To expand on this argument, Section 2.2 gave an overview of GPU computing

and clarified that achieving coalesced memory access and avoiding warp divergence are essential for

implementing an algorithm on the GPU efficiently. Informed by the overview on GPU computing,

Section 2.3 established that achieving coalesced memory access and avoiding warp divergence is

difficult when implementing grid adaptation algorithms on the GPU due to irregular and unpre-

dictable operations on tree data structures.

Bearing these difficulties in mind, Objective 1 was addressed in Chapter 3, in which three com-

putational ingredients – a Z-order space-filling curve, a parallel tree traversal algorithm and an

array data structure – were proposed to achieve coalesced memory access and avoid warp diver-

gence when implementing a HW-based grid adaptation algorithm on the GPU. The HW-based grid

adaptation algorithm was based on the “multiresolution analysis” (MRA) of the HW, which is used

to generate a non-uniform grid by “encoding” (coarsening), “decoding” (refining), analysing and

traversing modelled data across a deep hierarchy of nested, uniform grids of increasingly coarser

resolution, in which the coarsest grid in the hierarchy is made up of a single cell, while the finest

grid in the hierarchy is made up of 2L × 2L cells, where L is a user-specified maximum refinement

level. In the encoding step of the MRA process, a user-specified error threshold ε is needed to

flag significant “details” to decide which cells to include in the non-uniform grid, whereby a larger

value of ε leads to a higher amount of grid coarsening and thus fewer cells in the non-uniform grid

– and thus a lower computational effort to perform “solver computations” – e.g. flux calculations,

time integration, etc. The encoding step results in a tree-like structure of significant details that

is traversed in the decoding step of the MRA process using a sequential depth-first traversal algo-

rithm to identify “leaf cells”, which make up a non-uniform grid. Once the identified leaf cells are

assembled into a non-uniform grid, a first-order finite volume (FV1) scheme is applied to perform

solver computations over the assembled non-uniform grid.

Attempting to implement the MRA process on the GPU hindered coalesced memory access

and incurred warp divergence due to three particular obstacles. The first obstacle was that the
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modelled data in the hierarchy of grids may be close together in physical space, but they are

not guaranteed to be close together in GPU global memory space unless the hierarchy is indexed

in a deliberate way, hindering coalesced memory access when the modelled data are accessed to

perform the encoding and decoding steps. The second obstacle was that a recursive depth-first

traversal algorithm is used in the decoding step to traverse the tree of significant details, which is

fundamentally a sequential algorithm that cannot be parallelised on the GPU. The third obstacle

was that the non-uniform grid generated by the MRA process is typically indexed and stored using

a tree data structure, which hinders coalesced memory access when it is accessed to perform the

FV1 solver computations over the non-uniform grid. These three obstacles were overcome using

the three computational ingredients proposed above: first, Z-order curves were used to index the

hierarchy of grids and thereby ensure coalesced memory access in the encoding and decoding steps.

Second, the parallel tree traversal algorithm was used to replace the depth-first traversal algorithm

and thereby traverse the tree of significant details on the GPU – with minimal warp divergence.

Finally, an array data structure was used instead of a tree data structure to index and store the

non-uniform grid and thereby achieve coalesced memory access when performing the FV1 solver

computations over the non-uniform grid.

Using the three computational ingredients allowed to implement the HW-based grid adaptation

algorithm on the GPU and thereby develop a GPU-parallelised HW adaptive FV1 shallow water

model (GPU-HWFV1). To assess the extent to which using the three computational ingredients

indeed allowed for an efficient GPU implementation of GPU-HWFV1’s grid adaptation capability,

GPU-HWFV1’s speedup over its sequential CPU version – referred to as CPU-HWFV1 – and

over its GPU-parallelised uniform-grid FV1 counterpart – referred to as GPU-FV1 – was analysed.

Compared to CPU-HWFV1, GPU-HWFV1’s grid adaptation capability was much more efficient

(between 20 to 400× faster) and hinted at weak scaling behaviour. Meanwhile, compared to

GPU-FV1, GPU-HWFV1 was generally faster (between 1.1 to 25× faster) – notably becoming

progressively faster as either the maximum refinement level L or the error threshold ε were increased

– although requiring ε = 10−3 to remain faster in a realistic test case that used L = 9, where using

ε = 10−4 led to no overall speedup.

The findings from Chapter 3 suggested that extending the use of the proposed computational

ingredients to implement a MW-based grid adaptation algorithm on the GPU was a research direc-
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tion worth exploring. This direction was explored in Chapter 4, where Objective 2 was addressed:

the computational ingredients were used to implement a MW-based grid adaptation algorithm on

the GPU in a manner very similar to the HW-based grid adaptation algorithm in Chapter 3, al-

though with a few differences due to being paired with a DG2 scheme instead of the FV1 scheme

in GPU-HWFV1 – the DG2 scheme features three scalar coefficients for shaping a piecewise-planar

solution per cell and a two-stage Runge-Kutta scheme for time integration (rather than only a single

scalar coefficient for shaping a piecewise-constant solution per cell and a forward-Euler scheme for

time integration – like in the FV1 scheme).

Implementing the MW-based grid adaptation algorithm on the GPU allowed to develop and

integrate a GPU-parallelised MW adaptive DG2 model – referred to as GPU-MWDG2 – into

LISFLOOD-FP. When using GPU-MWDG2 within LISFLOOD-FP’s framework for running real-

world flood simulations, seven extra keywords should be specified in the parameter file (a text file

provided by the user to LISFLOOD-FP to specify various model features) to use GPU-MWDG2’s

grid adaptation capability correctly. Importantly, to run a simulation of a real-world test case

involving a digital elevation model (DEM) with a raster grid ofN×M cells, the maximum refinement

level L should be specified to be the smallest value of L such that 2L ≥ max(N,M). This should

be done so that GPU-MWDG2 constructs an artificial 2L × 2L grid – the size of the finest grid in

the hierarchy of grids in the MRA process of the MW – that can accommodate the N ×M raster

grid of the DEM. Thus, the larger the DEM raster grid, the higher the value of L that must be

specified to accommodate the DEM.

The higher the value of L, the higher the amount of memory consumed by GPU-MWDG2;

however, GPU-MWDG2 cannot consume more memory than the memory capacity of a given GPU,

so the memory capacity of a GPU places an upper limit on the value of L and thus the maximum

test case area that can be considered using GPU-MWDG2 with that GPU. As of writing, GPU-

MWDG2 cannot be used with L larger than 12 – equivalent to a maximum test case area of 4096

Ö 4096 cells – because doing so requires more than 80 GB of GPU memory, which is higher than

the memory capacity of most commercially available GPUs.

Having integrated GPU-MWDG2 into LISFLOOD-FP, an analysis of GPU-MWDG2’s grid

adaptation capability was carried out in Chapter 5, which addressed Objective 3 by comparing

GPU-MWDG2’s DG2 accuracy and speedup compared to GPU-DG2 over a series of test cases
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involving tsunami-induced flooding. GPU-MWDG2’s speedup over GPU-DG2 was hypothesised to

depend on the amount of grid resolution coarsening introduced by GPU-MWDG2’s grid adaptation

capability: the higher the amount of coarsening in GPU-MWDG2’s non-uniform grid, the lower the

number of cells in the non-uniform grid and the lower the computational effort of the DG2 solver

computations – and thus, the higher the speedup of GPU-MWDG2 over GPU-DG2.

In a simulation involving tsunami-induced flooding, the amount of grid coarsening – and there-

fore the speedup – may be particularly affected over time by the flow features produced by the

tsunami as it enters and travels through the test case area. The speedup achieved by GPU-

MWDG2’s wavelet-based grid adaptation capability may also scale with the DEM size: the speedup

achieved by wavelet-based grid adaptation was shown in Chapter 3 to scale with the value of L and

to require L ≥ 9 for realistic test cases. Thus, as the DEM size increases, so does the value of L

required to accommodate the DEM, and hence so does the potential for GPU-MWDG2 to achieve a

speedup. To therefore systematically assess the effect of the DEM size and the tsunami complexity

on the speedup achieved by GPU-MWDG2’s grid adaptation capability, GPU-MWDG2 was com-

pared against GPU-DG2 by running simulations of four tsunami-induced flooding test cases that

each had a unique combination of DEM size and tsunami complexity.

The speedup achieved by GPU-MWDG2 seemed to be maximised depending on: (i) the DEM

size requiring L ≥ 9 and (ii) the tsunami complexity being simple. For the test cases involving

simple tsunamis: when the DEM area required L = 10, the average speedups would be around

2.0-fold (i.e. the Monai Valley test case); whereas, with the DEM area requiring a larger L = 12,

considerable average speedups of 3.3-fold were achieved at ε = 10−4, which increased to 4.5-fold at

ε = 10−3 (i.e. the Seaside, Oregon test case). Meanwhile, for the complex tsunamis, the average

speedups reduced to 1.8-fold for a DEM area requiring L = 12 (i.e. the Tauranga Harbour test case)

and to 1.2-fold for a smaller DEM requiring a smaller L = 10 (i.e. the Hilo Harbour test case). Thus,

GPU-MWDG2’s grid adaptation capability best reduces the computational effort when simulating

multiscale rapid flows for test cases featuring a simple impact event and a DEM size requiring

L ≥ 10. Whenever GPU-MWDG2 is chosen, ε = 10−3 should be preferred for higher speedups

while still giving very close water surface predictions, but for closer velocity-related predictions,

ε = 10−4 is recommended.

Data and scripts for reproducing the Figures in Section 3.2 of Chapter 3 are available at
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https://zenodo.org/records/8075133. The GPU-MWDG2 code as part of LISFLOOD-

FP 8.2 – including instructions on how to use GPU-MWDG2 to reproduce the simulations of the test

cases in Chapter 5 – will be available at https://www.seamlesswave.com/LISFLOOD8.0.html.

Having provided a summary of the thesis, the significant research findings, limitations and

potential future work for addressing the limitations can be noted.

6.2 Significant research findings, limitations and future work

The first key finding – identified in Chapter 3 – was that the three computational ingredients pro-

posed to efficiently implement wavelet-based grid adaptation on the GPU – i.e. the Z-order curve,

the parallel tree traversal algorithm and the array data structure – were indeed effective in allow-

ing for a suitably efficient GPU implementation of wavelet-based grid adaptation: GPU-HWFV1’s

HW-based grid adaptation capability was much faster than its CPU version (between 20 to 400Ö

faster), becoming faster either as the error threshold ε was decreased or as the maximum refinement

level L was increased. Both of these actions increase the number of cells in the non-uniform grid

and thus the computational throughput, indicating that GPU-HWFV1’s grid adaptation capability

becomes increasingly faster than its CPU version as the computational throughput is increased –

thus hinting at GPU-HWFV1’s weak scaling behaviour. This finding suggests that the ingredients

could be used to parallelise other CPU-based wavelet models on the GPU.

The second key finding – identified in Chapter 5 – was that GPU-MWDG2’s grid adaptation

capability indeed reduces the computational effort of DG2 modelling when simulating multiscale

rapid flow phenomena while still achieving a similar level of accuracy as GPU-DG2: GPU-MWDG2

is recommended over GPU-DG2 when simulating tsunami-induced flooding test cases featuring a

simple impact event and a DEM size requiring L ≥ 10 – for such test cases, GPU-MWDG2’s grid

adaptation capability makes it up to four times faster than GPU-DG2.

The main limitation of the research – identified in Chapter 4 – is that integrating GPU-MWDG2

into LISFLOOD-FP results in an enormous GPU memory cost that scales with the value of L

required to accommodate the DEM of a test case: at L = 9, GPU-MWDG2 consumes only 0.2

GB of memory, but by L = 13, GPU-MWDG2 consumes around 100 GB of memory, which is

higher than the memory capacity of most commercially available GPUs. Therefore, as of writing,
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GPU-MWDG2 can only be run with up to L = 12: this corresponds to a maximum test case area

of 4096× 4096 cells.

Handling larger test case areas using GPU-MWDG2 is therefore a clear direction for future re-

search. One way to proceed in this direction would be to reduce GPU-MWDG2’s memory consump-

tion, for example by not storing the non-uniform grid and the neighbours in array data structures

of fixed length: the non-uniform grid and neighbours consume the largest amount of memory out

of all the objects in the GPU-MWDG2 code. This comes with a tradeoff however, as the array data

structures are currently essential in facilitating coalesced memory access when performing solver

computations over the non-uniform grid. Another way to handle larger test case areas would be by

accessing more GPU memory by using multiple GPUs, i.e. by parallelising GPU-MWDG2 across

multiple GPUs. Multi-GPU parallelisation of GPU-MWDG2 could be achieved either on a single

node in a computing cluster, or across multiple nodes in a computing cluster – e.g. by combining

CUDA and MPI. This is a very interesting future work, but it may require completely rewriting

the GPU-MWDG2 codebase currently integrated into LISFLOOD-FP, thus entailing a significant

research software engineering effort.

Finally, hardware advances must also be considered when implementing wavelet-based grid

adaptation in future: having to implement grid adaptation on the GPU in order to avoid the

CPU-GPU data transfer bottleneck could become superfluous if GPU hardware vendors in future

tightly integrate CPU and GPU memory spaces or sufficiently increase CPU-GPU data transfer

bandwiths, as in this case it would be better to simply perform grid adaptation on the CPU.
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Sébastien Blaise and Amik St-Cyr. A Dynamic hp-Adaptive Discontinuous Galerkin Method for

Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation. Monthly

Weather Review, 140(3):978–996, 2012. doi: 10.1175/MWR-D-11-00038.1. URL https://

journals.ametsoc.org/view/journals/mwre/140/3/mwr-d-11-00038.1.xml.
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to the RKDG2 scheme for the shallow water equations. International Journal for Numerical

Methods in Fluids, 62(4):428–448, 2010. doi: https://doi.org/10.1002/fld.2027. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/fld.2027.

Georges Kesserwani, Daniel Caviedes-Voullième, Nils Gerhard, and Siegfried Müller. Multi-

wavelet discontinuous Galerkin h-adaptive shallow water model. Computer Methods in Ap-

plied Mechanics and Engineering, 294:56–71, 2015a. doi: 10.1016/j.cma.2015.05.016. URL

https://www.sciencedirect.com/science/article/pii/S0045782515001899.

Georges Kesserwani, Daniel Caviedes-Voullième, Nils Gerhard, and Siegfried Müller. Multiwavelet

https://www.sciencedirect.com/science/article/pii/S0309170811002181
https://www.sciencedirect.com/science/article/pii/S0309170811002181
https://www.sciencedirect.com/science/article/pii/S0307904X14004247
https://www.sciencedirect.com/science/article/pii/S0309170820303079
https://www.sciencedirect.com/science/article/pii/S0309170820303079
https://www.sciencedirect.com/science/article/pii/S0309170822002202
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014906
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014906
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2027
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2027
https://www.sciencedirect.com/science/article/pii/S0045782515001899


REFERENCES 134

discontinuous Galerkin h-adaptive shallow water model. Computer Methods in Applied Me-

chanics and Engineering, 294:56–71, 2015b. ISSN 0045-7825. doi: https://doi.org/10.1016/

j.cma.2015.05.016. URL https://www.sciencedirect.com/science/article/pii/

S0045782515001899.

Georges Kesserwani, Janice Lynn Ayog, and Domenico Bau. Discontinuous Galerkin formulation

for 2D hydrodynamic modelling: Trade-offs between theoretical complexity and practical conve-

nience. Computer Methods in Applied Mechanics and Engineering, 342:710–741, 2018. ISSN 0045-

7825. doi: 10.1016/j.cma.2018.08.003. URL https://www.sciencedirect.com/science/

article/pii/S004578251830389X.

Georges Kesserwani, James Shaw, Mohammad K Sharifian, Domenico Bau, Christopher J Keylock,

Paul D Bates, and Jennifer K Ryan. (Multi)wavelets increase both accuracy and efficiency of

standard Godunov-type hydrodynamic models. Advances in Water Resources, 129:31–55, 2019.

doi: 10.1016/j.advwatres.2019.04.019. URL https://www.sciencedirect.com/science/

article/pii/S0309170819301770.

Georges Kesserwani, Janice Lynn Ayog, Mohammad Kazem Sharifian, and Domenico Baú.
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Tuomas Kärnä, Benjamin de Brye, Olivier Gourgue, Jonathan Lambrechts, Richard Comblen,

Vincent Legat, and Eric Deleersnijder. A fully implicit wetting–drying method for DG-FEM

shallow water models, with an application to the Scheldt Estuary. Computer Methods in

https://dx.doi.org/10.1088/1742-6596/1787/1/012042
https://dx.doi.org/10.1088/1742-6596/1787/1/012042
https://www.sciencedirect.com/science/article/pii/S0168927403001831
https://www.sciencedirect.com/science/article/pii/S0168927403001831
https://www.sciencedirect.com/science/article/pii/S0021999107002136
https://www.sciencedirect.com/science/article/pii/S0021999107002136
https://www.sciencedirect.com/science/article/pii/S004578250600171X
https://www.sciencedirect.com/science/article/pii/S004578250600171X
https://www.mdpi.com/2306-5338/10/7/141
https://www.mdpi.com/2306-5338/10/7/141
https://dx.doi.org/10.4310/CMS.2007.v5.n1.a6


REFERENCES 136

Applied Mechanics and Engineering, 200(5):509–524, 2011. ISSN 0045-7825. doi: https:

//doi.org/10.1016/j.cma.2010.07.001. URL https://www.sciencedirect.com/science/

article/pii/S0045782510002136.

BOINC Baker Laboratory. BOINC - Baker Laboratory CPU List. URL https://boinc.

bakerlab.org/rosetta/cpu_list.php. Accessed: 5 Feb 2024.

Thorne Lay, Yoshiki Yamazaki, Charles J. Ammon, Kwok Fai Cheung, and Hiroo Kanamori. The

2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami

signals with finite-fault rupture model predictions. Earth, Planets and Space, 63(7):797–801,

2011. ISSN 1880-5981. doi: 10.5047/eps.2011.05.030. URL https://doi.org/10.5047/

eps.2011.05.030.

Han Soo Lee. Tsunami Run-Up Modeling with Adaptive Mesh Refinement: Monai Valley Bench-

mark Test. All Days:ISOPE–I–17–191, 06 2017.

Randall J. LeVeque, David L. George, and Marsha J. Berger. Tsunami modelling with adaptively re-

fined finite volume methods. Acta Numerica, 20:211–289, 2011. doi: 10.1017/S0962492911000043.

Longxiang Li and Qinghe Zhang. Development of an efficient wetting and drying treatment for

shallow-water modeling using the quadrature-free Runge-Kutta discontinuous Galerkin method.

International Journal for Numerical Methods in Fluids, 93(2):314–338, 2021. doi: 10.1002/fld.

4884. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4884.

Qiuhua Liang and Fabien Marche. Numerical resolution of well-balanced shallow water equations

with complex source terms. Advances in Water Resources, 32(6):873–884, 2009. ISSN 0309-1708.

doi: https://doi.org/10.1016/j.advwatres.2009.02.010. URL https://www.sciencedirect.

com/science/article/pii/S0309170809000396.

Qiuhua Liang, Jingming Hou, and Reza Amouzgar. Simulation of Tsunami Propaga-

tion Using Adaptive Cartesian Grids. Coastal Engineering Journal, 57(4):1550016–1–

1550016–30, 2015a. doi: 10.1142/S0578563415500163. URL https://doi.org/10.1142/

S0578563415500163.

https://www.sciencedirect.com/science/article/pii/S0045782510002136
https://www.sciencedirect.com/science/article/pii/S0045782510002136
https://boinc.bakerlab.org/rosetta/cpu_list.php
https://boinc.bakerlab.org/rosetta/cpu_list.php
https://doi.org/10.5047/eps.2011.05.030
https://doi.org/10.5047/eps.2011.05.030
https://onlinelibrary.wiley.com/doi/abs/10 .1002/fld.4884
https://www.sciencedirect.com/science/article/pii/S0309170809000396
https://www.sciencedirect.com/science/article/pii/S0309170809000396
https://doi.org/10.1142/S0578563415500163
https://doi.org/10.1142/S0578563415500163


REFERENCES 137

Qiuhua Liang, Jingming Hou, and Xilin Xia. Contradiction between the C-property and mass

conservation in adaptive grid based shallow flow models: cause and solution. International

Journal for Numerical Methods in Fluids, 78(1):17–36, 2015b. doi: 10.1002/fld.4005. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4005.

Philip Liu, Seung Buhm Woo, and Yong Sik Cho. Computer Programs for Tsunami Propaga-

tion and Inundation. 1998. URL https://tsunamiportal.nacse.org/documentation/

COMCOT_tech.pdf.

Charles Lohr. GPU-Based Parallel Stackless BVH Traversal for Animated Di stributed Ray Tracing.

2009. URL https://api.semanticscholar.org/CorpusID:7430697.

Kevin Lung, Eric Brown-Dymkoski, Victor Guerrero, Eric Doran, Ken Museth, Jo Balme, Bob

Urberger, Andre Kessler, Stephen Jones, Billy Moses, and Anthony Crognale. Efficient Combus-

tion Simulation via the Adaptive Wavelet Collocation Method. In APS March Meeting 2016,

abstract id. M1.167, 2016.

Xisheng Luo, Luying Wang, Wei Ran, and Fenghua Qin. GPU accelerated cell-based adaptive

mesh refinement on unstructured quadrilateral grid. Computer Physics Communications, 207:

114–122, 2016. ISSN 0010-4655. doi: https://doi.org/10.1016/j.cpc.2016.05.018. URL https:

//www.sciencedirect.com/science/article/pii/S0010465516301424.

Patrick J. Lynett, Kara Gately, Rick Wilson, Luis Montoya, Diego Arcas, Betul Aytore, Yefei

Bai, Jeremy D. Bricker, Manuel J. Castro, Kwok Fai Cheung, C. Gabriel David, Gozde Guney
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Jorge Maćıas, Manuel J. Castro, and Cipriano Escalante. Performance assessment of the Tsunami-

HySEA model for NTHMP tsunami currents benchmarking. Laboratory data. Coastal Engi-

neering, 158:103667, 2020b. ISSN 0378-3839. doi: 10.1016/j.coastaleng.2020.103667. URL

https://www.sciencedirect.com/science/article/pii/S037838391830351X.

Kyle T. Mandli and Clint N. Dawson. Adaptive mesh refinement for storm surge. Ocean Modelling,

75:36–50, 2014. doi: 10.1016/j.ocemod.2014.01.002. URL https://www.sciencedirect.

com/science/article/pii/S1463500314000031.

Oliver Meister, Kaveh Rahnema, and Michael Bader. Parallel Memory-Efficient Adaptive Mesh

Refinement on Structured Triangular Meshes with Billions of Grid Cells. ACM Trans. Math.

Softw., 43(3), sep 2016. ISSN 0098-3500. doi: 10.1145/2947668. URL https://doi.org/10.

1145/2947668.

I Menshov and P Pavlukhin. GPU-native gas dynamic solver on octree-based AMR grids. Journal of

Physics: Conference Series, 1640(1):012017, oct 2020. doi: 10.1088/1742-6596/1640/1/012017.

URL https://dx.doi.org/10.1088/1742-6596/1640/1/012017.

Duane Merrill. CUB - CUDA Building Blocks, 2022. URL https://nvlabs.github.io/cub/.

Accessed: 3 February 2024.

https://www.sciencedirect.com/science/article/pii/S0010465599005019
https://www.sciencedirect.com/science/article/pii/S0010465599005019
https://www.sciencedirect.com/science/article/pii/S1463500320301475
https://www.sciencedirect.com/science/article/pii/S037838391830351X
https://www.sciencedirect.com/science/article/pii/S1463500314000031
https://www.sciencedirect.com/science/article/pii/S1463500314000031
https://doi.org/10.1145/2947668
https://doi.org/10.1145/2947668
https://dx.doi.org/10.1088/1742-6596/1640/1/012017
https://nvlabs.github.io/cub/


REFERENCES 139

M. Morales-Hernández, M. B. Sharif, S. Gangrade, T. T. Dullo, S.-C. Kao, A. Kalyanapu, S. K.

Ghafoor, K. J. Evans, E. Madadi-Kandjani, and B. R. Hodges. High-performance computing in

water resources hydrodynamics. Journal of Hydroinformatics, 22(5):1217–1235, 03 2020. ISSN

1464-7141. doi: 10.2166/hydro.2020.163. URL https://doi.org/10.2166/hydro.2020.

163.

M. Morales-Hernández, Md B. Sharif, A. Kalyanapu, S.K. Ghafoor, T.T. Dullo, S. Gangrade, S.-C.

Kao, M.R. Norman, and K.J. Evans. TRITON: A Multi-GPU open source 2D hydrodynamic

flood model. Environmental Modelling and Software, 141:105034, 2021. ISSN 1364-8152. doi:

https://doi.org/10.1016/j.envsoft.2021.105034. URL https://www.sciencedirect.com/

science/article/pii/S1364815221000773.

MPIForum. MPI: A Message-Passing Interface Standard. 2011. URL https://www.

mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. Parallel Tree Traversal for Nearest Neighbor

Query on the GPU. In 2016 45th International Conference on Parallel Processing (ICPP), pages

113–122, 2016. doi: 10.1109/ICPP.2016.20.

U.C. Nkwunonwo, M. Whitworth, and B. Baily. A review of the current status of flood modelling

for urban flood risk management in the developing countries. Scientific African, 7:e00269, 2020.

ISSN 2468-2276. doi: 10.1016/j.sciaf.2020.e00269. URL https://www.sciencedirect.

com/science/article/pii/S2468227620300077.

NVIDIA. NVIDIA A100 Data Sheet, 2021. URL https://www.

nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/

nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf. Accessed: 5 Feb

2024.

NVIDIA. CUDA C++ Programming Guide. 2023. URL https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html.

OpenMP. OpenMP Application Program Interface. 1998. URL https://www.openmp.org/

wp-content/uploads/spec30.pdf.

https://doi.org/10.2166/hydro.2020.163
https://doi.org/10.2166/hydro.2020.163
https://www.sciencedirect.com/science/article/pii/S1364815221000773
https://www.sciencedirect.com/science/article/pii/S1364815221000773
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.sciencedirect.com/science/article/pii/S2468227620300077
https://www.sciencedirect.com/science/article/pii/S2468227620300077
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/spec30.pdf


REFERENCES 140

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E. Lefohn, and
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Stéphane Popinet and Graham Rickard. A tree-based solver for adaptive ocean modelling. Ocean

Modelling, 16(3):224–249, 2007. ISSN 1463-5003. doi: 10.1016/j.ocemod.2006.10.002. URL

https://www.sciencedirect.com/science/article/pii/S1463500306000989.

X. Qin, M. Motley, R. LeVeque, F. Gonzalez, and K. Mueller. A comparison of a two-dimensional

depth-averaged flow model and a three-dimensional RANS model for predicting tsunami in-

undation and fluid forces. Natural Hazards and Earth System Sciences, 18(9):2489–2506, 2018.

doi: 10.5194/nhess-18-2489-2018. URL https://nhess.copernicus.org/articles/18/

2489/2018/.

Xinsheng Qin, Randall J. LeVeque, and Michael R. Motley. Accelerating an Adaptive Mesh

Refinement Code for Depth-Averaged Flows Using GPUs. Journal of Advances in Modeling

Earth Systems, 11(8):2606–2628, 2019. doi: 10.1029/2019MS001635. URL https://agupubs.

onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001635.

Hari K Raghavan and Sathish S Vadhiyar. Adaptive executions of hyperbolic block-structured

AMR applications on GPU systems. The International Journal of High Performance Computing

Applications, 29(2):135–153, 2015. doi: 10.1177/1094342014545546. URL https://doi.org/

10.1177/1094342014545546.

N. Rakowsky, A. Androsov, A. Fuchs, S. Harig, A. Immerz, S. Danilov, W. Hiller, and J. Schröter.

Operational tsunami modelling with TsunAWI – recent developments and applications. Natural

https://doi.org/10.14311/TPFM.2017.032
https://nhess.copernicus.org/articles/12/1213/2012/
https://nhess.copernicus.org/articles/12/1213/2012/
https://doi.org/10.1007/s10236-011-0438-z
https://doi.org/10.1007/s10236-011-0438-z
https://www.sciencedirect.com/science/article/pii/S1463500306000989
https://nhess.copernicus.org/articles/18/2489/2018/
https://nhess.copernicus.org/articles/18/2489/2018/
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001635
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001635
https://doi.org/10.1177/1094342014545546
https://doi.org/10.1177/1094342014545546


REFERENCES 142

Hazards and Earth System Sciences, 13(6):1629–1642, 2013. doi: 10.5194/nhess-13-1629-2013.

URL https://nhess.copernicus.org/articles/13/1629/2013/.

Leonhard Rannabauer, Michael Dumbser, and Michael Bader. ADER-DG with a-posteriori

finite-volume limiting to simulate tsunamis in a parallel adaptive mesh refinement frame-

work. Computers & Fluids, 173:299–306, 2018. doi: 10.1016/j.compfluid.2018.01.031. URL

https://www.sciencedirect.com/science/article/pii/S0045793018300392.

C Reis, J Figueiredo, S Clain, R Omira, M A Baptista, and J M Miranda. Comparison between

MUSCL and MOOD techniques in a finite volume well-balanced code to solve SWE. The Tohoku-

Oki, 2011 example. Geophysical Journal International, 216(2):958–983, 11 2018. ISSN 0956-540X.

doi: 10.1093/gji/ggy472. URL https://doi.org/10.1093/gji/ggy472.

Jean-François Remacle, Sandra Soares Frazão, Xiangrong Li, and Mark S. Shephard. An adaptive

discretization of shallow-water equations based on discontinuous Galerkin methods. International

Journal for Numerical Methods in Fluids, 52(8):903–923, 2006. doi: https://doi.org/10.1002/fld.

1204. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1204.

Hans Sagan. Space-Filling Curves. Universitext. Springer New York, NY, 1 edition, 1994. doi:

10.1007/978-1-4612-0871-6.
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Appendix A

GPU computing

GPU computing is only well-suited for accelerating the speed of programs that possess a very

specific algorithmic structure, in particular those with the following characteristics: (1) the program

requires an extremely large computational throughput and memory bandwidth (i.e. the program

needs to perform a lot of computation on a lot of data), (2) the program involves computations that

show substantial data-parallelism (i.e. the program needs to perform many independent yet similar

operations on the data), and (3) the program’s throughput is more important than its latency (i.e.

the program’s purpose is to perform a very large number of computations, rather than to perform

an single computation very quickly) (Owens et al., 2008). If a program indeed possesses these

characteristics, then GPU computing can greatly accelerate the speed of the program by leveraging

a significantly higher level of computational power compared to a traditional CPU. Namely, GPUs

can achieve a much higher number of floating-point number operations per second (FLOPS) than

CPUs: for example, the NVIDIA A100 GPU can achieve up to 9.7×1012 FLOPS (NVIDIA, 2021),

whereas the AMD 5900X CPU can achieve up to only 7.6×1010 FLOPS (Laboratory) – two orders

of magnitude lower.

GPUs can achieve a much higher number of FLOPS due to a specialised hardware architecture

that originally evolved over time to yield maximum parallel processing speed in computer graphics

programs. Computer graphics programs involve geometric computations that require performing

a very large number of similar, independent and floating-point-intensive operations – evidently

a parallel and compute-intensive problem. The geometric computations are organised in GPUs

as a “graphics pipeline” (Owens et al., 2008), and over time, the pipeline became more flexible
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and programmable and eventually started getting repurposed for accelerating scientific computing

programs, which became known as general-purpose GPU (GPGPU) computing (Owens et al., 2007).

GPGPU computing was performed in its early stages using application programming interfaces

(API) for graphics programs, such as OpenGL (Kessenich et al., 2004) or DirectX (Hargreaves,

2020). This was a difficult process as scientific computing programs had to be expressed as computer

graphics programs. To reduce the difficulty of GPGPU computing, newer GPU programming

models emerged that were purposefully developed for GPGPU computing, such as CUDA (NVIDIA,

2023), OpenCL (Khronos, 2024) and ROCm (AMD, 2024). Nonetheless, these GPU programming

models are still difficult to use because the programmer must be familiar with GPU hardware

architecture and how the hardware’s effectiveness depends on the operations in the program: the

more efficiently the hardware is used by the program, the better the acceleration of the program

from GPU computing.

A.1 GPGPU computing on NVIDIA GPUs using the CUDA pro-

gramming model

Out of all the GPU programming models that have emerged to date, the proprietary CUDA pro-

gramming model developed by NVIDIA exclusively for use with NVIDIA GPUs remains one of

the most popular (Pandey et al., 2022). The CUDA programming model adopts a “host-device”

framework as shown in Figure A.1: the CPU is the “host”, which is responsible for everything in a

CUDA program except for heavy-duty parallel computation, which is offloaded by the host to the

“device”, the GPU. The GPU handles the parallel computation by executing a program called a

“kernel”, which is made up of many parallel “threads”. The kernel is written as a program for a

single thread, but the GPU executes the kernel in parallel with many threads whereby the program

is independently evaluated by each thread.

An appropriate number of threads should be launched for handling the computation described

by a kernel. For example, a kernel for adding two vectors of length 1024 should launch 1024 threads.

In the CUDA programming model, threads are grouped into “blocks”, and blocks are grouped into

a “grid” (note that this CUDA grid does not refer to the computational grid over which the SWE

are solved). The block size and grid size should be chosen to launch a kernel with an appropriate
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Source code of program

CUDA program for a 
scientific application

Host (CPU)

Device (GPU)

Heavy-duty
parallel computations

Sequential operations
and computations

Sequential operations
and computations

Figure A.1: “Host-device” framework of a CUDA program representing a scientific computing pro-
gram. In a CUDA program, all operations are handled by the “host”, the CPU, except for heavy-duty
parallel computation, which is offloaded by the host to the “device”, the GPU.

number of threads. For example, to launch a kernel with 1024 threads, a block size of 256 and a

grid size of 4 could be chosen, since 256 threads per block Ö 4 blocks in the grid = 1024 threads in

the grid. The block size and/or grid size are usually chosen empirically to maximise the speed of

a kernel.

The speed of the kernel(s) in a CUDA program is one of the most important factors affecting

the speed of the overall program: maximally accelerating the speed of a program using CUDA is

strongly contingent on maximising the speed of the kernel(s) in the program. To maximise the

speed of a kernel, it should be programmed to use the GPU hardware efficiently, but this is not

trivial due to the complexity of GPU hardware architecture.

A.1.1 GPU hardware architecture

Figure A.2 shows the hardware architecture of a GPU. As shown in Figure A.2a, a GPU is made

up of several “streaming multiprocessors” (SM) which are responsible for computation, while the

data on which the computations are performed reside in dynamic random access memory (DRAM),

which the SMs access via an L2 cache. The number of SMs and the amount of DRAM depend on

the specific GPU being used. Each SM has several threads for directly performing computations, as
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well as other hardware for supporting computation: registers, shared/L1/texture cache, constant

cache and “warp schedulers”, as seen in Figure A.2b. As shown in Figure A.2c, each thread is

made up of functional units for executing various instructions, such as 32-bit integer operations

(INT32), 32- or 64-bit floating-point operations (FP32 and FP64), load/store operations (LD/ST)

and special-function calculations (SFU) for functions like sine, cosine, square root, etc.

Global memory

Dynamic random 
access memory (DRAM)

Constant memory

Texture memory

Streaming 
multiprocessor

(SM)

Streaming 
multiprocessor

(SM)

Streaming 
multiprocessor

(SM)

Shared/L1/texture cache

Warp schedulers

Registers

Streaming 
multiprocessor

(SM)

(a) GPU (b) Streaming multiprocessor (SM) (c) Thread

L2 cache

LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

INT32

FP32

FP32

FP32

FP32

FP32

FP32

FP32

FP32

FP32

FP32

FP64

FP64

FP64

FP64

FP64

SFU

SFU

SFU

SFU

SFU

Constant cache

Figure A.2: GPU hardware architecture; (a) the GPU is made up of several “streaming multipro-
cessors” (SM) which are responsible for computation, while the data on which the computations are
performed reside in dynamic random access memory (DRAM), which SMs access via an L2 cache;
(b) each SM is made up of hardware for supporting computation: registers, shared/L1/texture cache,
constant cache and “warp schedulers”, as well as several “threads” for computation; (c) each thread
is made up of functional units for executing various types of instructions.

The more efficiently the GPU hardware is used by a kernel, the higher the speed of the kernel.

Understanding how a kernel uses the hardware requires understanding how kernel execution is

coupled with GPU hardware. Recall that during kernel execution, the threads are organised into

blocks and the blocks are organised into a grid. The blocks in the grid are distributed among the

SMs for execution: for example, if the grid is made up of 128 blocks and there are 16 SMs, there

can be up to 128 blocks per 16 SMs = 8 blocks per SM. Blocks are partitioned into “warps”, which

are groups of 32 consecutive threads: for example, a block made up of 512 threads is made up of:

512 threads per 32 threads per warp = 16 warps. Warps execute instructions in lockstep following

a single-instruction multiple-thread (SIMT) computing paradigm (NVIDIA, 2023) in which all

threads in the warp execute the same instruction, i.e. in parallel. Warps are scheduled for SIMT
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execution by one or more “warp schedulers” to “warp slots” in the SM; the number of warp

schedulers per SM and the number of warp slots per scheduler depend on the specific GPU being

used. For example, if the GPU is made up of SMs that have 2 warp schedulers with 8 warp slots

each, then each SM has 2 warp schedulers Ö 8 warps slots per scheduler = 16 warps slots, meaning

that up to 16 warps can be scheduled for execution in the SM. Whenever one of these scheduled

warps finishes execution, it exits the warp slot leaving the slot free for another warp.

Familiarity with the notion of warps and how kernel execution is coupled with GPU hardware

allows to discuss the two metrics that quantify how efficiently a kernel uses the hardware: in-

struction throughput and memory throughput. Instruction throughput is the rate at which the

kernel executes instructions, whereas memory throughput is the rate at which the kernel accesses

data from memory. Both instruction and memory throughput of a kernel should be maximised to

maximise the kernel’s speed.

A.1.2 Maximising instruction throughput

Maximising instruction throughput requires understanding the behaviour of a warp under the SIMT

computing paradigm. Under SIMT, threads in a warp are allowed to execute differing instructions

if needed, but the warp’s instruction throughput is best maximised if all threads in the warp execute

the same instruction. In particular, if threads in a warp execute differing instructions, then “warp

divergence” occurs, which reduces the speed of the warp because the differing instructions cannot be

performed by the warp in parallel and must be performed in serial instead. To clarify, an example

of warp divergence is shown in Figure A.3, in which the arrows represent 32 threads in a warp;

in CUDA code, threadIdx.x gives the index of a thread within a block: in this CUDA code,

the threads with an odd thread index execute the instructions in the function func A(), whereas

the threads with an even thread index execute the instructions in the function func B(). The

execution of these functions get serialised: the odd-indexed threads execute func A() while the

even-indexed threads wait; then, the even-indexed threads execute func B() while the odd-indexed

threads wait. Due to the serialised execution of the functions, the speed of the warp is reduced

because it cannot finish executing until both the odd- and even-indexed threads have executed

their respective instructions. The warp divergence shown in Figure A.3 is an example of “two-

way” divergence because there are two branches in execution: in general, N number of branches in
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execution lead to “N -way” divergence. The larger the number of branches in execution, the more

divergence and therefore serialisation of instructions there is and the slower the speed of the warp

becomes. Overall, divergence should be minimised to increase instruction throughput.

__global__ void my_kernel()
{
    if (threadIdx.x % 2)
    {
        do_func_A();
    }
    else
    {
        do_func_B();
    }
}

}
}

do_func_A()

Branch (divergence)

End of divergence

do_func_B()

Figure A.3: Warp divergence; a warp is a group of 32 threads with consecutive thread IDs that
operate in lockstep.

Divergence is an instruction throughput issue to consider for a single warp, but the next issue

about instruction throughput requires considering the collective behaviour of multiple warps. Recall

that multiple warps can be scheduled to warp slots for execution by a warp scheduler: a scheduler

can issue an instruction for execution for one warp every clock cycle, and instruction throughput

is best maximised if the scheduler can issue instructions at its theoretical clock cycle frequency.

For example, if a scheduler has a clock cycle frequency of 1012 Hz, it can theoretically issue 1

instruction per clock cycle Ö 1012 clock cycles per second = 1012 instructions per second – which is

the maximum instruction throughput of the scheduler. However, reaching the maximum instruction

throughput depends on if the scheduler is actually able to issue an instruction every clock cycle,

which in turn depends on the state of the warps in the warp slots: a warp can either be active,

meaning it has been scheduled to a warp slot, or it can be inactive, meaning it has not been

scheduled to any warp slot. Active warps can either be eligible, issued or stalled : an eligible warp

is a warp that is ready to execute its next instruction; an issued warp is the warp the scheduler

issues an instruction for out of all the eligible warps (if any); a stalled warp is a warp that is not yet

ready to execute its next instruction (e.g. due to still executing the previous instruction or due to

waiting for data to be accessed from memory). These warp states affect the instruction throughput

of the scheduler, explained next using an example.

Figure A.4 shows an example on the instruction throughput of a warp scheduler with eight

warp slots over four clock cycles. In the first clock cycle, there are five active warps: three are
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stalled (shown in red) and two are eligible (shown in light green and green). The scheduler issues

an instruction for one of the eligible warps – namely the one in slot five – which is the issued warp

in the first clock cycle (shown in green). In the second clock cycle, there are still five active warps:

four are stalled and only one warp – in slot four – is eligible. This eligible warp is the issued warp

in the second clock cycle. In the third clock cycle, there are four active warps instead of five: the

warp in slot four has finished all of its instructions and has therefore exited the warp slot, while

all the other warps are stalled so there is no issued warp in the third clock cycle (indicated by the

cross). In the fourth clock cycle, there are six active warps: two new warps have been scheduled

to the warp slots – three warps are active and three warps are eligible, and the issued warp is the

warp in slot three.
W
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Warp state
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Eligible
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Stalled
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Figure A.4: Example of the behaviour of a warp scheduler with eight warp slots over four clock
cycles.

To increase the instruction throughput of a scheduler, there should be many active warps per

scheduler: having many active warps maximises the chance that there is at least one eligible warp

per clock cycle, thereby approaching the theoretical clock cycle frequency of the scheduler. The

number of active warps is quantified by a metric termed “occupancy”, which is defined as the ratio

between the achieved number of active warps per scheduler to the theoretical maximum number of

active warps per scheduler. A high occupancy can increase the scheduler’s instruction throughput,

and to achieve a high occupancy, a high theoretical occupancy is required.

The theoretical occupancy is affected by the following restrictions: (1) the maximum number of

warps per scheduler, (2) the maximum number of blocks per SM, (3) the register capacity per SM,

and (4) the shared memory per SM, explained as follows. Restriction (1): each SM has a physical

maximum number of warps that can be active depending on the GPU (e.g., 16 or 32), which the
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theoretical occupancy can never exceed. Restriction (2): each SM has a physical maximum number

of blocks that can be active depending on the GPU; for example, if a GPU supports 16 active

blocks and 64 active warps per SM, than blocks with 32 threads (one warp per block) results in

at most 16 active warps, because only 16 blocks can be active and each block has only one warp,

leading to theoretical occupancy of 16 active warps per SM per 64 maximum warps per SM =

25%. Restriction (3): each SM has a fixed number of registers for usage; if thread blocks use

too many registers, then there will be fewer active blocks per SM. For example, if an SM has a

register capacity of 64 kB, and each thread block consumes 8 kB in registers, then there can be at

most 64 kB per 8 kB = 8 active blocks. Therefore, register usage should be minimised to increase

theoretical occupancy. Restriction (4): each SM has a configurable amount of shared memory for

consumption; if individual thread blocks consume too much shared memory, then there will be

fewer active blocks per SM. For example, if an SM has a shared memory of 64 kB, and each thread

block consumes 16 kB of shared memory, then there can be at most 64 kB per 16 kB = 4 active

blocks. Thus, shared memory usage should be minimised to increase theoretical occupancy.

A.1.3 Maximising memory throughput

In addition to maximising instruction throughput, memory throughput should also be maximised.

To achieve this, familiarity with the complicated memory hierarchy involved in the CUDA pro-

gramming model is needed. Figure A.5 shows the memory hierarchy. As shown by the labelled

boxes, the memory hierarchy is made up of several memory spaces: CPU DRAM, GPU DRAM,

L2 cache, local caches per SM, and registers per thread. Data must pass through some or all of the

memory spaces when accessed by a thread, as shown using the small arrows in Figure A.5.

The memory spaces can be ranked from slowest to fastest based on how many clock cycles it

takes for a thread to access data from them, as shown using the large arrow in Figure A.5: CPU

DRAM, GPU DRAM (at least 100 clock cycles), L2 cache, local caches in an SM (approximately

1 clock cycle) and registers (1 clock cycle). Each of the memory spaces are slower or faster to

access depending on whether they are “off-chip” (i.e. far from a thread, like CPU DRAM and

GPU DRAM) or “on-chip” (i.e. close to a thread, like the L2 cache, local caches and registers).

The memory spaces should be accessed in a way that minimises the use of slow off-chip memory

and maximises the use of fast on-chip memory. Accessing the memory spaces in this way results
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Figure A.5: Memory hierarchy involved in the CUDA programming model.

in a strategy with the following steps: (1) copy data from CPU DRAM to GPU DRAM, (2)

load data from slow off-chip GPU DRAM to fast on-chip memory, (3) use the data in on-chip

memory to perform computations as needed, and (4) store the results from the computations back

to slow off-chip GPU DRAM and (5) copy the results from GPU DRAM back to CPU DRAM.

When implementing this strategy, each memory space must be accessed by threads in a warp using

special access patterns: these special access patterns are necessary to reach the peak access speed

of each memory space, particularly when accessing GPU DRAM, the L2 cache and the local caches

per SM, explained next.

GPU DRAM is made up of global memory, constant memory and texture memory (see Fig-

ure A.2). Texture memory and constant memory allow read-only access to data: texture memory’s

peak access speed is achieved when threads in a warp read data using access patterns with 2D or

3D spatial locality, whereas constant memory’s peak access speed is achieved when threads in warp

read data using an access pattern that reads from a constant (i.e. the same) location in memory

(NVIDIA, 2023). On the other hand, global memory allows both read and write access to data.

Data in global memory is accessed via the L2 cache as chunks of 32 bytes of data, i.e. as

32-byte cache lines. This must be considered when devising an optimal access pattern for global

memory. Figures A.6a and A.6b show optimal and non-optimal access patterns for threads in a

warp to access global memory, respectively. In Figure A.6a, the upper label around the grey boxes

marks off a 32-byte cache line in the L2 cache, and the smaller four green segments represent four

L2 cache lines. The arrows indicate 32 threads in a warp. The warp accesses global memory via
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the L2 cache using an optimal access pattern. In this optimal access pattern, the threads access

global memory locations that are aligned with the 32-byte boundaries of each cache line fetched

from the L2 cache (indicated by the numbers 0, 32, . . . , 128 in Figure A.6a). This alignment leads

to coalesced memory access because the threads make use of all the data in the L2 cache lines: in

Figure A.6a, the threads require access to 128 bytes of data, meaning that 128 bytes required / 32

bytes per cache line = 4 cache lines need to be fetched at minimum. Since the warp indeed fetches

only four cache lines – as shown by the smaller four green segments in Figure A.6a – this results in

4 cache lines minimum / 4 cache lines fetched = 100% cache line usage.

0 32 64 96 128

32-byte L2 cache line made up 
of eight four-byte segments

128-byte L1 cache line made up 
of 32 four-byte segmentsCoalesced memory access:

(a)

(b)

Uncoalesced memory access:

Figure A.6: Optimal and non-optimal access patterns by threads in a warp when accessing global
memory via the L2 and “L1 caches” (a) an optimal access leading to coalesced memory access; (b) a
non-optimal access pattern leading to uncoalesced memory access.

Less than 100% cache line usage means that the threads in a warp do not make use of all the

data moved by the cache lines and implies that the warp is fetching an excess number of cache

lines, which reduces the speed of a warp (i.e. uncoalesced memory access occurs). An example

of uncoalesced memory access is shown in Figure A.6b, in which the access pattern of the warp

is shifted compared to the access pattern of the warp in Figure A.6a. Due to the shifted access

pattern, the warp accesses global memory locations that are no longer aligned with the cache line

boundaries and five cache lines are fetched, as shown using the small red and green segments in

Figure A.6b. However, as the warp still requires only 128 bytes, i.e. 128 bytes required / 32 bytes

per cache line = 4 cache lines need to be fetched at minimum, this results in 4 cache lines minimum
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/ 5 cache lines fetched = 80% cache line usage.

Data from the L2 cache lines ultimately moves to per-thread registers (right-most box in Fig-

ure A.5) where it is used for computation by the threads. Registers are accessible only to individual

threads, and take only one clock cycle to access, making them the fastest memory space for a thread

to use. Registers receive data either directly from the L2 cache or via local caches per SM, as shown

using the small arrows to the right in Figure A.5. A local cache is made up of a constant cache,

through which data from constant memory pass, and a shared/L1/texture cache, through which

data from global and texture memory pass.

In the shared/L1/texture cache, there is an L1 cache. The L1 cache moves data in cache lines

– much like the L2 cache – but using larger 128-byte cache lines, as marked off by the bottom

label around the grey boxes in Figure A.6a. The L1 cache has a faster access speed than the L2

cache (NVIDIA, 2023), but using the L1 cache can lead to much bigger losses in cache line usage

compared to using the L2 cache if uncoalesced memory access occurs. For example, in Figure A.6b,

uncoalesced memory access leads to a cache line usage of 80% if using the L2 cache, but using the

L1 cache leads to an even worse cache line usage: two L1 cache lines are accessed, as shown using

the two large red segments, meaning that 2 cache lines Ö 128 bytes per cache line = 256 bytes are

accessed, but only 128 bytes are used, leading to 128 bytes used per 256 bytes read = 50% cache

line usage. Thus, uncoalesced memory access should be particularly avoided by the programmer if

they have configured a kernel to use the L1 cache.

The shared/L1/texture cache also includes “shared memory”, which is very fast to access –

nearly as fast as registers. Furthermore, unlike data in registers, which is accessible to individual

threads only, data in shared memory is accessible to all threads in a block and thus offers threads

a way to share data with each other. However, shared memory must be accessed by threads in a

warp using a specific access pattern to reach its peak access speed, explained as follows.

Data in shared memory is stored in 4-byte banks which are arranged in “strides” of 32 banks:

the first bank stores 4 bytes of data (4 bytes in total), the next bank stores another 4 bytes of data

(8 bytes in total), and so on until the 32nd bank is reached, at which point 32 banks Ö 4 bytes

per bank = 128 bytes of data are stored. When the next 4 bytes of data need to be stored, there

is no 33rd bank: instead, the data “wraps around” after passing the 32nd bank back to the 1st

bank and the storage of the data continues as described previously, as shown by the dashed arrow
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in Figure A.7b.

(a) No bank conflicts

(b) 2-way bank conflicts

Wrap around after 
passing 32nd bank

32 banks wide

Threads

Threads

1 2 3 30 31 32

1 2 3

1 12 3

30 31 32

30 31 32

1 2 16 17

17 18 32
Figure A.7: Shared memory bank conflicts for threads in a warp; (a) no bank conflicts; (b) two-way
bank conflicts.

If different bytes of data in the same bank are accessed by threads in a warp, a “bank conflict”

occurs. Figures A.7a and A.7b show examples of no bank conflicts and “two-way” bank conflicts,

respectively; an N -way bank conflict is said to occur if N threads access different bytes of data in

the same bank. For example, in Figure A.7a, no bank conflicts occur because none of the threads

access different bytes in the same bank: thread 1 accesses bank 1, thread 2 accesses bank 2, and so

on until thread 32 accesses bank 32. On the other hand, in Figure A.7b, threads 1 and 17 access

different bytes in bank 1, threads 2 and 18 access bank 2, and so on until threads 16 and 32 access

bank 16, resulting in 16 two-way bank conflicts. Bank conflicts reduce memory throughput because

they serialise data access to threads in a warp: the banks cannot broadcast data to the conflicting

threads simultaneously and must broadcast data sequentially. For example, if a two-way bank

conflict occurs, the bank must make two separate broadcasts to move the data to the conflicting

threads. Bank conflicts should be avoided to maximise memory throughput in shared memory,

namely by using an access pattern that ensures that threads in a warp do not access different bytes

in the same bank.
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Filter bank matrices

These are the filter bank matrices in Equations 4.4a - 4.4d.
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