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Abstract

Today, intelligent models are used in applications across all of society, from recidivism prediction,
identity verification, a vast collection of healthcare tasks from polyp segmentation to cancer
grading, and information retrieval, among many more. The vast majority of these intelligent
models are variants of deep neural networks trained on large real-world datasets. These datasets
reflect our historical and societal biases; in turn, AI learns these correlations during training
resulting in predictors and decision-makers exhibiting racism, ableism, sexism and other forms
of prejudice.

Visual data contains many potential biases given its richness of features, and the research related
to developing fair vision models is a challenging, open problem. In particular, the sub-problem
of implicit mitigation – or mitigation when the knowledge of bias sources in the training or
testing data is unknown – is relevant to many use cases where metadata for datasets is difficult
to collect. This work contributes to this domain of research by leveraging the observation that
bias-conflicting samples, or input samples which are not aligned with the majority correlations,
tend to have higher uncertainties in the Bayesian paradigm. By using Bayesian deep neural
networks, we can both maintain the performance capabilities of a deterministic network, while
gaining access to principled uncertainty estimates. Model uncertainties or epistemic uncertainties
in particular provide direct insight into the training data distribution and bias landscape, as
bias-conflicting samples are under-represented.

We explore two novel strategies driven by the uncertainties of a Bayesian neural network. The
first dynamically re-weights samples as a function of their predictive uncertainty estimates during
training, encouraging the model to focus on the more difficult bias-conflicting samples. The
second approach fine-tunes the posterior estimate of a converged Bayesian neural network, using
the uncertainties to adjust the estimates in favour of fairer predictions. The potential of these
methods for implicit visual bias mitigation is demonstrated on benchmark classification tasks
and then extended to a medical image segmentation problem with known generalisability issues.
Our research, while far from a solution to the bias problem, shows potential for improving model
fairness and generalisability and contributes to the literature in this challenging domain.
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Notation

The following list describes the notation used throughout this thesis. The terms are also present
near the sections where they appear in the thesis for reference. As per standard notation, scalars
are represented in italics as a, whereas vectors or matrices of larger dimensions are represented
in bold a.

Parameter Definition
θ The set of all learnable parameters of a neural network
Φθ The function learned by a neural network with parameters θ
x The input to the network
b A scalar bias parameter included in θ
h() An activation function
W The weights of a single layer included in θ
D A dataset of input and target output pairs, (X,Y ) = (xi,yi), i ∈ 1..N
p(θ | D) The posterior distribution
p(θ) The prior distribution
M The Monte Carlo sampling size from the posterior for the posterior estimate

of a Bayesian neural network
Θ The set of posterior samples comprising the posterior estimate {θ1,θ2, ...θM}
µi The predictive mean associated with the ith input
ŷi The class prediction associated with the ith input
σi The predictive uncertainty associated with the ith input
Âk(x) The pixel-wise mean activation map across all posterior estimates for the kth

convolutional kernel
f An identified feature in the dataset
IoUk,f The intersection-over-union for the kth convolutional kernel and feature f
t The threshold for determining whether kernel k is a high-activator for feature

f
σk(x) The kernel uncertainty, the maximum variance across activation maps
θr The parameters of the representation component of the network
θc The parameters of the classification component of the network
Φθm The mth posterior estimate

xiii



Chapter 1

Introduction

Data-driven intelligent models - models which learn from data - have been at the forefront of
artificial intelligence advances for the past several decades. In the past decade, largely thanks
to the success of neural networks, increasingly impressive accomplishments have captured the
attention of the general public: from the classical vision problems including image classifica-
tion, segmentation, and general understanding, to style transfers [56, 80], image and video
generation from text – at qualities beyond what the human eye can detect as fake [129, 135] –
AI-enhanced devices [125, 149], self-driving vehicles [168], and most recently the large language
models (LLMs) [128, 21] such as ChatGPT, Bard, and others. Intelligent models have become
part of our everyday lives, whether we realize it or not.

Yet, barely keeping up with the constant advances of data-driven AI models are the skeptics,
the policy makers, the AI practitioners, the educators, and the general public. In March 2023
the controversial letter titled, “Pause Giant AI Experiments: An Open Letter" [124] called for
a temporary pause in research developing LLMs, and stirred up a controversy with its famous
signatories and opponents passionately defending the future of AI (notable proponents including
AI pioneers Yoshua Bengio and Andrew Yang, and objectors Andrew Ng and Yann LeCun
among others). Regardless of the merits of each stance, the traction gained by such a letter is
indicative of the fact that such models may pose serious risks to society if their shortcomings
and the implications of failure are not fully understood.

All neural network-based models learn from data. Neural networks are essentially multi-variate,
powerful function approximators which optimize given a cost function and data. The learning
is guided by data - data - not contextual understanding of the task, not risk awareness, not
empathy, and certainly not any internal moral or ethical compass. The data can be trillions
of word-text pairs, millions of images, hundreds of thousands of annotations and labels, and
petabytes of video clips. At best, this data is a true reflection of human society; at worst, it is
a skewed subset which represents the reality for only a very few. Even assuming the dataset is
an accurate reflection of society, our society unfortunately is extremely biased with innumerable
social, economic, ethnic, age, and gender stereotypes. As Mehrabi et al. [112] comprehensively
present, datasets are user-generated, and inherent biases in users are often reflected in their
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data, whether the biases are introduced via sampling processes, populations, social influences,
or user behaviour.

Furthermore, models do not know when they are wrong. There is no absolute truth; only the
data they have seen, and what patterns are statistically confirmed by that data. There exists
an underlying distribution from which that data was sampled, but no guarantee of the sampling
procedure. A 2-D linear regression model cannot be faulted for wrongly classifying a test data
point far from the range of data it has seen, nor for wrongly classifying a test data point when
a portion of its similar training data was misleading. Data-driven neural networks can and do
learn misrepresentations of their target tasks - largely thanks to spurious correlations present in
the data they were shown. Furthermore, they can be wrong not only in the ground-truth sense;
they can also be wrong due to more complex ethical and moral reasons which cannot always be
quantified.

Computer vision is particularly susceptible to biases due to the wealth of information present
in visual data. This work focuses on bias mitigation in computer vision, whereby deep neural
networks are trained in a way that discourages them from learning spurious correlations present
in the data they learn from. While we focus specifically on the fundamental tasks of image
classification and segmentation, the approaches explored could also be applied to other visual
tasks and even to some non-visual tasks.

1.1 Contributions

There is a critical need for a better understanding of the biases that pervade large datasets,
especially vision datasets, and for developing algorithmic bias mitigation methods. In our re-
search, we argue that the uncertainties of probabilistic models, in particular, Bayesian neural
networks which can provide uncertainty estimates in addition to state-of-the-art performance,
can be leveraged for the difficult bias mitigation problem. Using the under-explored correlation
between Bayesian predictive uncertainties and minority, or bias-conflicting, training samples, we
propose two novel mitigation methods leveraging Bayesian uncertainties in deep neural networks.
We then modify the methods and demonstrate applicability to a medical imaging segmentation
problem.

Some of the thesis contributions can be found in the following peer-reviewed publications:

• Chapter 3: Stone, R.S., Ravikumar, N., Bulpitt, A.J. and Hogg, D.C., 2022. Epistemic
uncertainty-weighted loss for visual bias mitigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 2898-2905). Workshop on
Fair, Data-Efficient, and Trusted Computer Vision 2022.

• Chapter 5: Stone, R.S., Chavarrias-Solano, P.E., Bulpitt, A.J., Hogg, D.C. and Ali,
S., 2023. Bayesian uncertainty-weighted loss for improved generalisability on polyp seg-
mentation task. arXiv preprint arXiv:2309.06807. Volume 14242 of the Lecture Notes in
Computer Science, Clinical Image-Based Procedures, Ethical and Philosophical Issues in
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Medical Imaging, and Fairness of AI in Medical Imaging, MICCAI Workshop 2023.

And presented at the following meeting:

• Chapter 3: Stone, R.S., Ravikumar, N., Bulpitt, A.J. and Hogg, D.C., 2022. Epistemic
uncertainty-weighted loss for uninformed visual bias mitigation. The British Machine
Vision Association (BMVA) Symposium, 2022.

The second publication includes contributions from two collaborators: Pedro E. Chavarrias-
Solano, who helped process part of the dataset used and generated some figures for the published
paper, and Sharib Ali, first author of the papers presenting the PolypGen dataset and presenting
benchmarks from the challenge hosted around it [4, 6], who contributed by proposing the use
of the dataset, providing information and guidance related to the data, and providing the code
repository for the baselines.

1.2 Thesis outline

Bias mitigation approaches fall in one of two broad categories: explicit and implicit. Explicit
mitigation methods explicitly use and leverage the knowledge of bias sources in the training data
in order to de-bias the model. Conversely, implicit methods make no assumptions, and require
no bias-related annotations. In this research we do not address issues related to bias benchmark
datasets or how to identify and detect biases. While our contributions may be applicable to
non-vision domains, we do not address this in the scope of our work. Rather, we present and
contribute towards the challenging problem of implicit visual bias mitigation in supervised vision
tasks, proposing two novel ways to leverage Bayesian uncertainties in deep neural networks for
this purpose.

First, in Chapter 2 we present a background of the significance and implications of the visual bias
problem, a survey of the literature of mitigation methods generally across artificial intelligence
but with a focus on vision models.

In Chapter 3 we then present Bayesian deep learning as an uncertainty-aware alternative for
deep neural networks, and consider the different types of uncertainties and their uses. Finally,
we present the correlation between bias-conflicting samples and predictive uncertainties as seen
in the literature. Based on this correlation, we propose a simple, novel uncertainty-weighted loss
function leveraging the predictive uncertainty and bias correlation, applied to image classifica-
tion.

Chapter 4 builds on this with a different bias mitigation method which is applied post-training
as a fine-tuning procedure to modify the posterior estimate of a Bayesian neural network. The
sharpening loss objective motivates the network to focus less on high uncertainty-inducing fea-
tures, and rather on core features which do not contribute to uncertainty fluctuations. We
demonstrate the strengths and weaknesses of this strategy through experiments on several
datasets.
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In Chapter 5, we demonstrate how the previous two mitigation methods can be modified from
classification to an image segmentation task, and then apply them to the challenging, open-
ended medical imaging problem of polyp segmentation, where state-of-the-art models are known
to struggle with generalisability.

Chapter 6 concludes with a final discussion of the key contributions, limitations of the methods
explored, and the potential for further work opened up by our research.
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Chapter 2

Background

2.1 Overview

In 2015, Google rolled out an AI-powered “Assistant", an automatic photo tagging feature in
its well-used Photos app, giving users the capability to search photos for objects or people and
create categories. The feature quickly became widely popular; but only a few months later, users
reported concerning results – dark-skinned people were being tagged as “gorillas" [62]. Apologies,
promises to do better, and a year later in 2016, as part of Google Cloud Machine Learning API’s,
Google released Vision Cloud 1 with powerful vision tools including image annotating, object
tracking, product search, and more. AlgorithmWatch 2 performed an experiment using simple
in-painting over skin colors in images and found biases; simply through the training data, the
model believed a dark-skinned subject more likely to be holding a weapon than a light-skinned
person [63] (Figure 2.2).

Google, while perhaps with exceptionally large datasets at its disposal, is in no way an ex-
ception to the visual bias problem. An AI-powered automatic passport photo checking service
used in New Zealand repeatedly rejected Richard Lee’s photos due to his eyes being detected as
“closed" [158](Figure 2.1). In 2020, researchers found that deep models trained on three of the
most widely-used public chest X-ray datasets for research were biased against gender, socioeco-
nomic groups and racial minorities [139], giving lower predictive accuracies for those subgroups,
and show corresponding imbalances in the training data. A gender and emotion predictor –
a real-time convolutional neural network (CNN) – learned the correlation between the female
gender and smiling, notably labelling the men in the 1911 Solvay Conference mostly as having
“neutral" emotions, whereas the only female, Marie Curie, is an “angry woman" [11] (Figure 2.3).

1https://cloud.google.com/vision/
2https://algorithmwatch.org/
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Figure 2.1: Taiwanese New Zealander gets his proposed passport photo repeatedly rejected by
the AI-powered photo-checking system for eyes being “closed" [158].

Biases in visual datasets are prevalent and pervasive. This chapter presents an overview of biases:
(1) their sources, (2) how deep learning models learn them and even systematize and amplify
them; and (3) a survey of work in the research community on visual bias mitigation. The first
two topics are mostly modality-independent, so we will consider various real-world examples, all
relevant to the vision domain. In contrast, the literature survey will focus primarily on visual
bias mitigation methods. To conclude, we discuss the present open challenges.

6



Chapter 2. Background 2.2. Bias: sources and implications

Figure 2.2: Google Vision Cloud’s labelling API annotates the image of a hand holding a ther-
mometer as containing a “hand" and “gun"(left), and the same image but with the hand painted
to be light-skinned is a “hand" and “monocular"(right).

Figure 2.3: A CNN learned a correlation between females and smiling, finding Marie Curie in
the famous 1911 Solvay Conference appears “angry" compared to the “neutral" expressions of
most of the men [11].

2.2 Bias: sources and implications

“In the context of decision-making, fairness is the absence of any prejudice or fa-
voritism toward an individual or group based on their inherent or acquired character-
istics [112]; or, for all possible combinations of protected attributes, the probabilities
of the outcomes will be similar” – An intersectional definition of fairness, Foulds et
al. [52].

Correlations exist in every data set, whether intentional or unintentional. In the simple classi-
fication setting, for dataset D with inputs X = {x0, x1....xN} and corresponding target classes
Y = {y0, y1...yC}, any feature f such that a majority of xn ∈ yc have the same value of f induces
a majority bias. Depending on the difficulty of learning f , the correlation threshold may vary;
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when learning f comes at the expense of learning some other core feature [126], the threshold
is lower, whereas in other cases f is not easy to learn so may induce less bias. It may also be
noted that not all biases are harmful. For example, a bias in a dataset may never have negative
implications in usage and can be defined as a “benign" bias. If, for example, in a dataset of
satellite imagery the sky is mostly clear, the bias induced by having very few “cloudy" samples
present is a benign bias if we expect to use the resulting model only on sunny days.

In contrast, harmful biases affect the model performance under certain conditions and may result
in discriminatory outcomes for certain populations of people. An unfair model, or biased model,
is one whose decisions are skewed against a certain sub-group of valid inputs. Individual bias is
the subset of this scenario, where the skew is against certain individuals.

Though this definition of bias is general, what a fair outcome looks like in any specific application
may vary depending on the context and desired outcomes. The outcomes of a biased model,
too, vary greatly in application, necessitating a thorough consideration of the intended use-cases
and implications.

In this section, we consider the sources from which biases arise. Bias sources fall into three
broad categories: biases induced directly by the users generating the data, biases in the data
itself, and algorithm-induced or amplified biases [112, 153].

2.2.1 Bias from humans and their data

Historical bias

Historical bias refers to bias which is historically present in society, and while it may not be a
present bias at least in the region of application, may still be reflected in historical data. Many
societal biases are present in the world today. In a Google image search for “CEO" in 2018, 95%
of the resuling images of CEO’s were men [153], reflecting the fact that there are more male
CEO’s than women.

Similarly, in specific neighborhoods in the US, crime has a much higher likelihood than the
national average, and there exists a strong correlation between those zip codes and certain
demographics. Thus, intelligent models meant to provide risk assessment in criminal sentencing
can learn to correlate higher likelihoods of crime to those demographics, putting people of that
background at a disadvantage irrespective of the severity of their crime. The Correctional
Offender Management Profiling for Alternative Sanction (COMPAS) software [9] used data-
dependent machine learning, and found blacks “almost twice as likely as whites to be labeled a
higher risk but not actually re-offend" (Figure 2.4). 3 These correlations, from data collected
through ideal sampling procedures, are historically and statistically accurate but contain biases
that can be very harmful.

3https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Figure 2.4: The AI-powered COMPAS system rated Borden (right) as high risk for future crime,
though her initial conviction was for taking a “kid’s bike and scooter that were sitting outside."
She never re-offended. Prater (left) was rated as low risk, despite being older, having been
convicted twice of armed robbery, and having served five years in prison. After release he stole
thousands of dollars of electronics from a warehouse. 3

Figure 2.5: An example of historical biases embedded into public datasets: Google search en-
gine’s autosuggest results when searching the phrase “why are black people so," on January 25,
2013 [122].

“What we find in search engines about people and culture is important. They over-
simplify complex phenomena. They obscure any struggle over understanding, and
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they can mask history. Search results can reframe our thinking and deny us the abil-
ity to engage deeply with essential information and knowledge we need, knowledge
that has traditionally been learned through teachers, books, history, and experi-
ence. Search results, in the context of commercial advertising companies, lay the
groundwork, as I have discussed throughout this book, for implicit bias: bias that is
buttressed by advertising profits." – Algorithms of Oppression, Safiya Noble [122].

Search engines, the natural source for collecting large-scale data in many domains, are rife
with historical biases [122, 111, 85]. Safiya Noble’s case studies of bias “Algorithms of Oppres-
sion" [122] highlight the algorithmic conceptualizations of categories of people and ideas embed-
ded into the Google search engine, particularly strong around race and sex. Textual searches
using Google’s auto-completion function such as the search in Figure 2.5 show racist correlations
and assumptions. Image searches for “Professor style" returned an overwhelming majority of
males in suits, “ugly" returned mostly men, “beautiful" returned mostly white women, and “black
girls" returned women of color in heavily sexualized outfits and poses. Makhortykh et al. [111]
study in more detail the racial and gender biases in the image search results of the six most pop-
ular search engines, including two non-Western engines. They find that while racial diversity is
improved for those engines, gendered representations are even stronger. Kay et al. [85] find that
for gender and occupation biases - the imbalance of gender ratios for many occupations - image
search results actually exaggerate or amplify the existing imbalance ratios; furthermore, their
user studies show that users’ perceptions of occupational gender proportions after seeing the
skewed image search results shifted slightly towards the bias. Despite everything, eye-tracking
studies with search engines still confirm that users trust the automated ranking of search results,
being biased towards those ranked at the top of the page regardless of relevance [138, 23].

Both search engines and LLMs such as ChatGPT and Bard serve as information intermediaries,
filtering and guiding our information seeking process. Biased representations from these intelli-
gent models underscore and perpetuate existing historical bias into the present and future, with
dangerous effect.

Self-selection and sampling bias

Self-selection and sampling bias refer to the bias induced from the populations from which data is
collected. Data collection is inherently dependent on user-provided information. The platforms
from which data are collected act as a filter for the respondents; collecting data from SnapChat
and Instagram means appealing to a generally younger, majority female demographic; soliciting
information from Reddit or Twitter includes more men. Any data which comes from a survey is
limited to a demographic which is willing to participate - users who have enough time and feel
strongly enough about the topic.

Andrej Karpathy conducted a project for personal interest using a CNN to determine the “best"
selfie 4. He scraped publicly available data from social media and concluded that the most

4http://karpathy.github.io/2015/10/25/selfie/
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“popular" selfies, or the ones with the most “likes", were of women with longer hair, and tended
to be cropped at around the forehead; an interesting conclusion which says more about the
population from which the data was collected than anything else.

Further than just a person’s willingness to provide information, self-selection biases can be
proxies for socio-economic factors which contribute to whether users self-select to participate in
surveys, polls, or data sharing.

Even when users do not self-select, the data sampling procedure can also be flawed and result in
biases. The literature is rife with examples of biased sampling; of 94 widely-used ophthalmology
datasets used to train models, only 7 came from regions other than Europe, North America,
and China [88]. ImageNet lacks geographical diversity, representing primarily Western cultures.
Chest X-ray imaging from three large, prominent datasets under-represents certain insurance
types, a proxy for lower economic statuses [139]. Ultimately, both self-selection and sampling
biases result in data representative of a sub-group of the true population.

Labelling bias

Once a dataset has been collected, various forms of annotation may be required for semi-
supervised and supervised learning, which can also inadvertently result in biases. ImageNet,
the widely-used large-scale dataset of millions of labelled images used as a benchmark in com-
puter vision, uses as labels a vocabulary of categories from WordNet [117], an English language
lexical database where each category “synset" is represented by a set of synonyms. In 2009, the
ImageNet team queried various search engines and crowdsourced images for each synset. As
search engines at the time had no image understanding, the results were based on the textual
captions or meta-data associated with each image. Over 50K Amazon Mechanical Turk (MTurk)
workers were then hired to remove irrelevant images and to verify labels for retained images.

A decade later, a Princeton research group considered ImageNet from a fairness perspective and
took steps to remedy the problems they identified [174]. Firstly, they located and removed over
600K images belonging to WordNet synsets containing offensive words, such as derogatory terms
related to sexual orientation and religion. Secondly, they removed synsets which were not neces-
sarily offensive, but were descriptive, rather than definitive. They targeted in particular ethnic
or racial categories, such as “Bahamian (a native or inhabitant of the Bahamas)". While most
images in the category included people wearing traditional Bahamian costumes, the category by
definition is non-imageable, since anyone from the Bahamas belongs, irrespective of their outfit.
They used MTurk workers to rate imageability, or how easily each word in a synset brings to
mind certain imagery. It is crucial to note here that again, they did not ask MTurk workers
to rate how well the image brought to mind represented the whole of the synset, meaning that
their biases were still reflected in the revised labelling. Lastly, the researchers added images to
rebalance certain categories including occupations such as “programmer" (Figure 2.6), “banker",
etc., with respect to skin color, gender, and age.
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Figure 2.6: Some examples from [174] showing a sampling of images from the original “program-
mer" class (above) and after re-balancing with respect to gender (bottom), taken from the 2019
modification to ImageNet towards a fairer dataset.

In a 2021 study, Kate Crawford and Trevor Paglen further analyzed the categorization and
labelling by MTurk workers in the “Person" category of ImageNet, finding that there still existed
categories for racial groups, sexual preferences, and adjectives describing behaviour including
“crazy", “failure", “unskilled person" and “hypocrite", among other examples [39] 5.

Figure 2.7: 68 key-points, used to localize 19 facial landmarks (large labelled dots) for computing
craniofacial measurements for the 10 coding schemes used in the Diversity in Faces dataset [114].
Are facial physiological traits a less biased alternative for determining race than skin color?

Attempts to remove correlations between skin colour and ethnicity have also backfired, showing
the difficulty of the task. IBM’s Diversity in Faces dataset [114], aimed at improving facial recog-

5https://excavating.ai/
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nition performance on identities of minority skin colour, comprises 1 million face images with
a vast array of metadata including craniofacial distances, areas, and ratios, facial symmetries,
contrasts, skin color, and other features for a total of 10 facial coding schemes (Figure 2.7).

The motivation for the dataset was that skin color is a poor predictor of ethnicity, and relying
on skin color can result in biased models. Yet inadvertently, by replacing skin color with physi-
ological traits, Diversity in Faces posits that correlations of ethnicity to physiological traits are
somehow a better, less biased option. What Yang et al. [174] identified, but failed to remove in
their 2019 audit of ImageNet, is that certain labels are non-imageable, and asking other humans
to think of what features they rely on to categorize people reflects their biases. Ethnicity, for
example, is essentially more a question of geographical and cultural origins than of physical
appearance [22, 39].

These two high-profile examples illustrate how easily historical biases reflected in the data
through the collection process can be further emphasized and even worsened through labelling.
Avoiding any kind of labelling bias requires very serious and thorough consideration of the data,
context, and use cases.

2.2.2 Algorithmic bias

Model-amplified bias

Algorithmic bias [164, 52, 181] is bias which is caused, amplified or exaggerated by the algo-
rithm itself, due to the choice of algorithm and training process. Algorithmic bias results in
worse performance for certain subgroups than the skews present in the training data. Various
factors have been shown to determine when and how bias amplification occurs; Hall et al. [64]
perform a systematic study on tightly controlled synthetic bias datasets based on MNIST and
CIFAR, considering how bias amplification varies as a result of the degree of minority/majority
imbalance, model capacity, training set size, model overconfidence, the training period, and the
relative difficulty of learning the target class versus the bias subgroup feature. Among other
things, they observe that an unbiased training set results in no bias amplification, and that
there are optimal ranges with respect to bias amplification for model capacity, model overcon-
fidence, and training set size. The clearest factor by far is the relative difficulty of learning the
bias feature - as the bias feature becomes easier to learn, and the target class more difficult,
bias amplification increases rapidly. Unfortunately, this factor is the most difficult to control as
it is a function of the data itself and not the algorithm. Thus, bias amplification is a complex
problem with no single solution fitting every scenario.

Various metrics have been proposed including Bias Amplification [181] measuring model fairness
between predictive scores on a test set and the same scores on the training set (under the
assumption that both sets have at least a similar if not less biased distribution), and Directional
Biased Amplification [164] which disentangles amplification directions. These methods, among
others, require knowing the distribution of biases across the training set, so can only be evaluated
in an explicit setting.
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2.3 Bias mitigation in deep learning

2.3.1 Dataset collection

Numerous studies suggest better data collection processes to combat the bias problem [144].
Good dataset collection approaches have one of two aims, towards the same end goal:

1. To avoid learning unwanted correlations via gathering a balanced dataset with a sufficient
representation of all possible attributes and their combinations; or,

2. To make protected attributes impossible to learn by excluding them completely from the
dataset.

A sufficiently diverse population representation is difficult to obtain, especially in the medical
imaging domain with vast disparities across geography. In practice, this problem is often tackled
by combining datasets from different collection centers, as in [139] who found lung disease predic-
tion fairer across gender, race, and socio-economic subgroups when models were trained on five
chest X-ray datasets combined versus when trained on each dataset independently. Furthermore,
in polyp segmentation from laparoscopy procedures, models showed decreases in performance
every time one medical centre’s data was reserved as a hold-out test set and not seen during
training [4].

Figure 2.8: Figure from [84] showing the distribution of eight datasets categorized according to
the “White", “Black”, “Latino”, “East Asian”, “South East Asian”, “Indian”, and “Middle Eastern”
subgroups with extreme imbalances to the advantage of the “Whites” majority for most of the
datasets. FairFaces proposes a facial dataset balanced across what they term as “racial groups”.
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Figure 2.9: Figure from [22] showing the distribution of three datasets when categorized ac-
cording to skin phenotype: (1) IJB-A for various skin types, (2) Adience for gender and age
classification, and (3) PPB showing the benefits of skin phenotypes for balanced dataset compi-
lation. Despite the former two datasets being intended for diverse representation across regions,
PPB has the most balanced composition across skin phenotypes.

When possible, datasets with intentional balanced sampling from pre-identified subgroups are
preferable. Yet the identification of subgroups is not trivial. For example, the authors of
FairFace [84] identify strong bias against non-White racial groups, and define subgroups based
on certain geographical regions and dark skin colour. They present a facial dataset with only a
slight imbalance towards Whites, and nearly equal presence of “Black”, “Latino”, “East Asian”,
“South East Asian”, “Indian”, and “Middle Eastern” subgroups. Figure 2.8 shows how compared
to predecessors, FairFace includes a better distribution of samples across racial groups.

Yet the compilers of another facial diversity benchmark, the Pilot Parliaments Benchmark
Dataset (PPB Dataset) [22], argue that racial lines cannot be used to subcategorize as one
particular racial group; for example “Middle Eastern", is composed of various skin phenotypes,
which contains its own majority and minorities. Models trained on balanced ethnic groups may
still discriminate towards minorities within those groups. PPB is offered as a fairer alternative
to other facial recognition datasets. PPB forms subgroups based on skin phenotypes (shades of
colour) instead of ethnic or racial labels. Compared to two other relevant datasets also offering
diversity (1) IJB-A, a US government benchmark with Fitzpatrick [155] skin type labels and
(2) Adience [47], a gender and age classification benchmark to specifically target gender imbal-
ance. Figure 2.9 illustrates how rating these two datasets according to phenotypes and gender
still reveals large disparities, a problem which PPB strives to correct. PPB is, however, still
highly biased towards certain age groups and other physiological factors (hair and facial features,
for example) and characteristics such as clothing style which are not explicitly balanced. This
highlights how collecting a fully unbiased dataset is non-trivial.

The second option of excluding all protected attributes from the dataset is perhaps ideal, but not
feasible in most situations. In tasks such as facial recognition, with bias attributes of skin color,
hair type and facial features, the core attributes are very difficult to separate from the biased at-
tributes. In other scenarios, even when the attributes are sufficiently isolated and separable, the
possible values a bias attribute can take on cannot be comprehensively identified. For example,
in medical imaging, the physical presentations in an image are caused by global region/patient
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origins and backgrounds, equipment, procedures, and many other factors. Knowing beforehand
all possible bias sources is thus very difficult. Nonetheless, in certain situations, an ideal dataset
for bias unawareness would omit all protected attributes and result in a model not dependent
on spurious correlations [144].

2.3.2 Augmented and synthetic data

A dataset can also be de-biased via artificial balancing, accomplished by augmenting the existing
data to introduce more variants of minority samples, sometimes through synthetically generating
data. This creates the illusion of a balanced distribution.

Data augmentation in deep learning has long been proposed to mitigate the overfitting and data
shortage problems [141]. These are all applied before training, and typically include transfor-
mations which are randomly applied to the training data. Augmentation methods range from
simpler geometric transformations such as flips, rotations, and warps, to feature space augmen-
tation and neural network-powered style transfers. Calmon et al. [26] learn an augmentation
transformation which specifically targets minimizing discrimination with respect to a protected
attribute. A useful regularization technique, augmentation can also be used in parallel with
other strategies; one dynamic oversampling bias mitigation method notes that their method is
ineffective without augmentation [8].

Data can be synthetically generated from existing data, and added to or used instead of the
training set. Geirhos et al. [57] show that ImageNet-trained convolutional neural networks
(CNNs) are strongly biased towards texture (but humans are not!), and decrease reliance on
this bias by training on a Stylized-ImageNet (SIN), a synthetically modified version of ImageNet
where object-related texture information is replaced with randomly selected artistic paintings
(Figure 2.10). An AdaIN [56] style transfer via CNN is used to replace the textures in the
modified images.

Figure 2.10: Figure from [57] showing one sample image from class “ring-tailed lemur" and ten
examples of the synthetic modified versions in Stylized-ImageNet removing the textural bias
from CNNs. The styles from paintings are transferred via CNN [56] to the image, replacing the
original object texture with a random style.

FairGAN [172] and Fairness GAN [137] use a Generative Adversarial Network (GAN) to either
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replace or augment the original training data with synthetic data. The generator G generates
fake data conditioned on bias attribute s for input x and ground truth label y (Equations 2.1
and 2.2).

PG(s) = Pdata(s) (2.1)

PG(x, y, s) = PG(x, y | s)PG(s) (2.2)

A pair of discriminators are simultaneously trained, one to differentiate between the real and
generated data, and the other to ensure no spurious correlation between the inputs, outputs,
and bias attribute s. Alternately, others propose first creating disentangled representations
which allow for synthesizing specific bias-conflicting samples [99], samples which go against the
majority correlations. Authors show experimentally that increasing diversity of bias-conflicting
samples during training outperforms oversampling minority features. They then distinguish
between “intrinsic" (following other literature, we refer to these as core) versus bias attributes,
train an encoder to embed both separately, then swap the feature vectors among training samples
to create bias-conflicting feature combinations.

Synthetic Minority Oversampling Technique (SMOTE) is another balancing method which mim-
ics oversampling by generating synthetic new minority class instances in the vicinity of the ex-
isting minority instances [29]. While mostly applicable in the class imbalance problem - whereby
one whole class is the minority group - when the bias attribute is known and labelled in the
training data, the method can also be extended for addressing imbalance problems in general.
SMOTE-based algorithms have also been used in vision tasks [50]. Similarly, methods such as
ADASYN [66] augment the training data by adding synthetic samples to it from the minority
class, relying on a weighted distribution to determine the degree of classification difficulty for
minority class samples (or minority subgroup when known). These weightings determine how
much synthetic data is generated to augment each instance.

Where bias variables are identified and known across the data, synthetic data can be generated
to target specific correlations. Smith et al. [147] balance the COCO Captions [34] dataset,
commonly used for evaluating bias between background context and gender of people in-situ,
with respect to gender by adding synthetic variants of the existing data where the gender of the
subject is edited. In the medical domain, Generative Adversarial Networks (GANs) have been
used to extend a skin lesion dataset with more diverse skin color [116], but the authors also use
counterfactual bias insertion to show that GAN-based data generation can amplify biases. In
counterfactual bias insertion, bias hypotheses are tested by adding the potential bias to every
sample in the dataset in order to evaluate the effect of that potential bias on the performance of
the model. Mikolajczyk et al. [116] demonstrate that GAN-based data augmentation must be
done carefully in order to avoid bias amplification.

2.3.3 Algorithmic mitigation: explicit

Algorithmic mitigation methods which de-bias while simultaneously learning the target task can
be categorized as explicit or implicit. Explicit approaches require knowing the bias variables
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and their distribution across the training data. In this section, we also include class imbalance
mitigation methods, since as long as the labels for the bias variables are known, such methods
can be applied in the same way to mitigate bias against underrepresented groups.

Re-sampling and cost-sensitive learning

As dataset collection can be expensive and time-consuming in many domains due to privacy
and sensitivity constraints, one category of works in the literature have experimented with re-
weighting or re-sampling during training, the intuitive approach by which the minority samples
are made to appear more often, thus encouraging the model not to leverage undesired correla-
tions. In the explicit setting where bias variables are known, this can be done via two broad
methods:

1. By dynamically or statically modifying the sampling probability by either under- or over-
sampling; and

2. By cost weighting during training, similar to increasing the learning rate when encountering
underrepresented samples [43].

The first modifies the class distribution of the training data, whereas the other imposes non-
uniform classification costs; the methods have been shown to be theoretically equivalent under
certain conditions [48].

Adjusting sampling probabilities for the majority/minority samples requires pre-identification
of “minority" and “majority" groups and corresponding labels for all training samples. Then,
the majority class(es) can be under-sampled to create a representative subset, removing the
imbalance. The method has the advantage of decreasing the training set size and shortening
training time and computational expenses, yet runs the risk of discarding useful information.
Strategies on subset selection range from random selection, proximity to class boundary in
the class imbalance scenario [78], to more sophisticated methods trying to identify redundant
samples to remove [95].

Conversely, the minority samples can be over-sampled either at random or by some selection
criteria [78, 169]. Kamiran et al. [83] suggest preferential sampling based on the classification
accuracy vs. discrimination trade-off. While effective to a degree, the over-sampling strategy
makes the model more prone to overfitting if the exact copies of existing samples are used.
Chawla et al. with SMOTE [29] reach the surprising conclusion that both over-sampling the
minority via synthetic additions and under-sampling the majority group performs better than
the over-sampling alone, suggesting potential for combinations of the approaches.

Alternatively, samples can be cost-weighted during training to encourage the model to prioritize
loss contributions by minority samples [51, 13]. In addition to the intuitive weighting of minority
samples in inverse proportion to the class frequency, various alternatives have been proposed.
Cui et al. [40] address the problem of long-tailed class imbalance by computing the effective
number of samples instead of true count in a subgroup based on group densities. They then cost-
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weight inversely proportionally to this. Through progressively training on subsamples, Wang
et al. [166] modify the loss to transfer knowledge from the majority classes to the minority,
and show improvement over the traditional class-inverse loss weighting. Lin et al. [105] tackle
the object detection and segmentation task with a focal loss which weights minority samples
higher and down-weights majority samples, preventing the model from being overwhelmed by
uninformative easier samples. Finally, Huang et al. [75] propose learning a feature embedding
to preserve margins between classes, coupled with a weighted loss.

Drummond et al. [44] argue that at least for a decision tree learner, under-sampling has advan-
tages over over-sampling; Weiss et al. [169] note that for larger datasets cost-sensitive learning
is preferable to oversampling. While many have compared these methods, the best method
depends on the specific use case and numerous factors [184, 29, 78, 169, 83].

Adversarial de-biasing

Another category of explicit methods focus on discouraging the representation portion of the
network from encoding the biases. This can be accomplished through adversarial learning,
whereby protected bias feature b is explicitly given to the network along with the input and target
output, (x, y, b). A predictor network P is given (x, y) and minimizes loss L(ŷ, y). The output
of P is passed to an adversary network, whose task it is to predict b given P (x). The update to
all the weights is a combination of gradients on both networks, motivating the predictor to keep
the adversary from learning the protected feature b while obtaining optimal accuracy [178]. This
technique is shown to decrease racial discrimination for predicting recidivism scores compared
to the COMPAS [9] score known to be heavily biased towards black inmates [163].

However, as adversarial training requires learning the additional task of biased feature pre-
diction, it can create undesirable confusion for the actual target task, decreasing overall per-
formance [167]. Furthermore, it is at high risk of redundant encoding, whereby another non-
identified variable is learned as a proxy instead of the bias variable [46, 65]. Numerous proxies
can exist; for example, profession can be a proxy for gender, or insurance type a proxy for
socio-economic class.

Learning through awareness or blindness

Other methods explicitly learn the bias variable, in order to then unlearn it or adjust the model
decisions based on this knowledge [167]. Alvi et al. [7] propose “fairness through blindness",
simultaneously learning the target task while learning to ignore the bias variables. This requires
dividing the training data into general primary data and N secondary datasets, each of which
contain instances with a particular bias feature. The primary loss rewards correctly classifying
the primary dataset images, while the secondary losses reward not learning to classify the sec-
ondary dataset images; i.e., by imposing a uniform confusion loss (Figure 2.11). As the losses
are opposing, they are optimized in alternating iterations rather than simultaneously.
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Figure 2.11: Figure from [7] representing the CNN architecture used to jointly learn the feature
representation for the primary task (fcP ) while minimizing a confusion loss which changes
feature representations (fcSi) such that they become invariant to the identified bias features.

Other works mitigate bias by manipulating the feature representations. By aggregating class and
bias prototypes in feature latent space post-training, [157] remove the bias direction, creating
“protected embeddings". Similarly, [154] add a regularizer to entangle the feature vectors of
data in the same target class, and disentangle the feature vectors of data of the same class but
different bias variable. They do this by learning orthogonal representations for samples of the
same bias variable while simultaneously learning similar representations for samples of the same
target class. Du et al. [45] show that the features learned from a trained network can be de-
biased using the classification head fully-connected layers at the end of the network only, using
a specific selection of bias-conflicting samples. This allows for a richer learned representation
from all the data, yet a fairer model.

“Fairness through awareness" also suggests explicitly learning the bias variable [46]. The most
direct approach is to train a classifier with number of classes * number of bias variables possible
outputs. With this setup, during inference the correlation between each bias variable and target
class can be removed by considering each softmax output as a probability [133, 132].

Grouping

The strategy of grouping the training or test data into subgroups is known as Group Distri-
butionally Robust Optimization (Group DRO). Group DRO suggests optimizing such that the
model generalizes best over all subgroups during training [134]. They find that adding a L2
penalty to regularize the network results in equivalent worst-group train and test accuracies.
In other words, worst-group training error is indicative of test error, so focusing on the former
during training results in a fairer model.

Similarly, Arjovsky et al. [10] define this as Invariant Risk Minimization (IRM) whereby a feature
representation is learned from the training data such that the corresponding classifier is optimal
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across all possible environments - environments being subgroups of different combinations of
attributes. IRM assumes that training samples do not come from the same distribution, but
rather from multiple distributions. In bias mitigation terms, the invariance across those distri-
butions are the core features. Subsequent studies find that in a single-bias variable scenario,
IRM frameworks are capable of being invariant predictors [36]. Work remains to scale IRM to
larger datasets, models, and more complex bias settings.

Predictive group invariance (PGI) [2] also groups data during training and encourages predictive
invariance, or similar performance, across pre-selected sub-groups of the training set, assuming
access to the majority and minority groups. The network is encouraged to learn group invariant
features by learning the class-conditioned feature distributions to have the same softmax dis-
tributions on average as training progresses. Minimizing the Kullbeck-Leibler (KL) divergence
between the two mean predictive distributions penalizes learning spurious features that do not
appear across all groups. While both Group DRO and PGI assume bias variables are specified
in the training set, they also propose ways to infer groupings implicitly from the data, which we
discuss further below.

Wang et al. [165] propose a bias mitigation method via reinforcement learning whereby deep
Q-learning is used to find appropriate margins between subgroups for the network. Majority
groups are trained with a fixed margin, while minority groups are trained with adaptive margins,
guided by the Q-learning agent. The method is shown to produce more balanced features across
identified bias variables.

Ensembles

Most explicit ensembling methods employ two networks. The first branch fb learns to predict
the target class y using only the bias variable spuriously correlated with that y. The second
branch then focuses on the samples which fb cannot classify correctly (assumed to not have
that bias and thus be bias-conflicting, or minority, instances). The two branches can be trained
separately [67] or in joint manner [25], and ensembled via learned weights or entropy constraints.
Clark et al. [37] train the second model alongside the first in a second stage of training as an
ensemble.

Wang et al.[167] modify [46] to train an ensemble of classifiers with shared feature representation.
This strategy has reduced complexity compared to having an ensemble of independent networks,
yet still allows learning the class-bias boundaries. At test time, the output probabilities of all
classifiers are adjusted to essentially average the class decision boundaries across all identified
biases.

2.3.4 Algorithmic mitigation: implicit

Explicit mitigation methods have the advantage of being able to directly leverage information
about the bias variables, whether their density or gradients in latent space, or to formulate
various groupings of training or test data to optimize for invariance. While intuitive and often
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effective, these strategies are at risk of learning other, non-identified bias variables via proxy. In
contrast, the more challenging implicit approach does not assume any prior knowledge of bias
variables in the data. Therefore, they also have the potential to mitigate more comprehensively.

Re-sampling and cost-sensitive learning

Implicit re-weighting approaches function the same as explicit re-weighting, but rely on some
weighting function which is called either before or during training. One such method by Amini
et al. [8] uses a De-Biasing Variational Autoencoder (DB-VAE) to discover the sparse areas
of the latent feature space. The densities in that space then adaptively guide the choice of
training batches, giving more diverse inputs a higher likelihood of being sampled in a batch
(Figure 2.12). A tunable parameter controls the sampling probabilities and how much they rely
on the weighting function.

Figure 2.12: Figure from Amini et al. [8] showing higher sampling probability for more di-
verse instances, learned implicitly through locating the sparser areas of the input feature space.
Without having been provided any bias variables, the DB-VAE has learned the underrepresented
subgroups with darker skin colors, alternate poses, occlusions, and unclear lighting. In contrast,
majority traits such as light skin, blond hair, and female gender have lowest re-sampling prob-
ability.

Our novel approach proposed in Chapter 3 and applied to a medical segmentation problem in
Chapter 5 also falls under this category of implicit dynamic cost-sensitive methods.
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De-biasing via objective loss

Another category of implicit methods change the loss function to reward learning a fairer model;
Xu et al. [173] implement this via a novel loss which penalizes inconsistent false positive rates
(FPR). They argue that across different demographic groups in the problem of facial recognition,
FPR varies greatly. A fairer model has consistent FPR across all data. The implicit method
simply assumes various groups exist but does not require knowing them during training.

Similarly, Pezeshki et al. [126] explore the notion of gradient starvation, whereby one gradient
is so strong that others’ impact is diminished or “starved". Gradient starvation leads to poor
generalizability on out-of-distribution and minority data, as well as excessive invariance (over-
confidence). They introduce Spectral Decoupling (SD), where the L2 weight decay term in
the loss is replaced with an L2 penalty exclusively on the output layer weights. This SD loss
promotes balanced learning dynamics across all features, encouraging feature decoupling and
penalizing learning features which are learnt at the expense of learning another. SD allows the
learning of simple correlations but not unilaterally, resulting in the preservation of minority core
features.

Ensembles

Another category of implicit de-biasing methods leverages the observation that spurious or
biased correlations are most easily learnt in the training process as they most quickly lead to a
smaller objective loss. Figure 2.13 shows how for two benchmark datasets the model converges
more quickly on the bias-aligned data samples, and much slower on the bias-conflicting samples.
Those more difficult samples are learned later in the training process. This phenomena can be
leveraged for implicit mitigation via ensembles. Learning from Failure (LfF) [119] trains two
networks simultaneously; a first which amplifies the early-stage predictions. The samples are
dynamically weighted by difficulty, and the most difficult are passed to the second network.

Figure 2.13: Figure from Nam et al. [119] on two different datasets: (left pair of figures) Colored
MNIST where digits are spuriously correlated with color, and (right pair of figures) Corrupted
CIFAR-10 where alterations are spuriously correlated with target classes. For both datasets,
the left plot shows convergence for the network amplifying the early-stage predictions, while the
right shows the learning of the second de-biased network.

Learning with Biased Committee (LWBC) [90] similarly relies on an ensemble or “committee"
of networks to learn the bias variables naturally, and a final network which is trained on the
instances most difficult for the committee. The networks are all trained simultaneously and the
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single network passes information back to the committee so that over the course of training,
they also are de-biased. Other methods further encourage a first model to learn biases by using
a weak model [160] or limited capacity model [136], then train a more robust, higher capacity
model on the bias-conflicting samples identified by the weaker model.

Bahng et al. [14] first train an ensemble of models, then train a final model to learn representa-
tions orthogonal to the set of representations learned by the ensemble, thus learning a de-biased
representation.

Architectural inductive biases

In the last year, Shrestha et al. [143](Figure 2.14) opened a promising new direction of work,
leveraging architectural inductive biases with an adaptable architecture (OccamNets) which
allows the network to favor simpler solutions when needed, inline with Occam’s razor. They
note that neural networks use the same complexity of function for learning all inputs, whereas
a less biased model would use the minimum amount of information required for each input, i.e.,
only the core features.

Figure 2.14: Figure from OccamNets paper [143] showing the adaptive architecture with early
exiting via exit decision gates. During training, there are two inductive biases applied: (1) to
prefer exiting as early as possible, and (2) to constrain the size of the influential visual regions.

The proposed OccamNet model adds “early exiting" at each layer, whereby the network is more
shallow for an input that can be classified correctly at an early layer of the network. The
full depth of the network is reserved for samples that are too difficult to be learned by previous
layers. OccamNet prefers focusing on smaller visual regions for predictions yet does not constrain
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all samples to rely on the same complexity of hypotheses, as optimal “exit" locations in the
architecture are learned per sample.

We observe with our experiments comparing this approach to our novel method in Chapter 4
that OccamNets are particularly effective on datasets where core features can be learned quickly,
because for the majority of inputs, the model can exit early and thus not rely on the biases. The
model can struggle on more visually complex datasets, which we hypothesize is because spatially
larger features must be observed in order to make a decision, thus removing the advantage of
early exiting. Regardless, the architectural inductive bias line of research opens up a promising,
largely unexplored new direction for bias mitigation.

2.4 Visual bias challenges

Many challenges still remain, which motivate the need for further contributions in the field.
Even with many mitigation methods shown to be successful in experimental scenarios, sam-
ple imbalances between minority and majority groups can be too steep to overcome without
overfitting [169, 8, 152], learning spurious correlations is often much easier than learning the
desired core features [64], and some bias-conflicting samples are simply more difficult to learn
than others [165].

Studies of bias in datasets have offered advice on dataset creation, such as selecting datasets
automatically rather than curated manually; as much as possible, collecting multi-national, if
not global, data; using crowd-sourcing for labelling instead of a small select group of experts
(though as discussed in the de-biasing ImageNet case, Amazon Turk workers have also reflected
historical biases [174]); and collecting a sufficiently unbiased validation or test set for model
de-biasing or evaluation.

Other works, however, show that even if it were always feasible to obtain a completely balanced
dataset with respect to identified subgroups, this in itself does not ensure a fair model, as relative
quantities are not the sole contributor towards bias [112, 64]. For example, in the context of
facial recognition, Wang et. al [165] observe that certain racial subgroups contain more diversity
of features than others, so simply balancing the quantities of each racial subgroup in the training
set is not enough to produce a fair model.

Furthermore, the concept of fairness, while formally defined in terms of feature subgroups and
performance metrics, in practice differs depending on the context and intended outcomes. For
example, relying on classification accuracy to choose an optimal model can be misleading for
unbalanced classes, and even more for majority/minority subgroups within those classes. Even
when relying on a more nuanced fairness metric, model performance under one such metric may
do poorly under another, though both are designed to test for fairness. In fact, this can be
considered as another type of bias, evaluation bias. The choice of an evaluation metric and
benchmark in themselves can result in discrimination [22, 153, 112]. The lack of a unified,
comprehensive fairness definition and metric also contribute to the challenge of the bias miti-
gation problem. The appropriate metric still remains dependent on the task, data, and desired
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outcome.

Mehrabi et al. [112] also identify a further problem, assuming that via some mitigation method
we could guarantee fairness of equality across all possible subgroups: equity [61]. Equality refers
to giving each subgroup equal outcome, but equity factors in that not all subgroups need the
same outcome in order to succeed. This opens up a slew of additional considerations and to
date has been under-explored.

Finally, literature comparing results for multiple methods on more than one visual bias bench-
mark dataset demonstrate that novel methods tend to work well on certain but not all datasets [142,
167, 64], highlighting the lack of a comprehensive solution to all forms of bias. Though the re-
search and AI community has made progress towards understanding the problem, identifying
causes, and proposing a diverse collection of mitigation methods, the bias mitigation problem is
far from solved.
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Chapter 3

An uncertainty-weighted loss for bias
mitigation

3.1 Overview

Various methods have been proposed to mitigate visual bias, the majority requiring explicit
knowledge of the biases present in the training data. In this chapter, we explore a novel im-
plicit bias mitigation method (we will refer to it as EpiUpWt - for Epistemic Uncertainty Up-
Weighting) which dynamically leverages the relationship between predictive uncertainties and
bias-conflicting training samples. Firstly, we establish the connection between predictive un-
certainties of Bayesian neural networks and bias-conflicting samples in the literature. We then
define a simple approach which employs a Bayesian neural network in order to dynamically
approximate predictive epistemic uncertainties for samples during training, identifies potential
bias in individual training samples, and weights the loss function accordingly. Intuitively, this
motivates the model to pay more attention to minority samples. We select two bias bench-
mark datasets, one a benchmark in the literature and a second generated to complement it,
and demonstrate the method’s potential to successfully identify bias-conflicting samples, and to
mitigate bias.

Finally, we evaluate the approach with a challenging real-world face detection dataset where
the test data is significantly more diverse than the training data. Some of the contents of this
chapter are in our published work in [152].

3.2 Bayesian deep learning

Deep neural networks have in the past decade quickly risen to the forefront of artificial intelli-
gence. The universal approximation theorem states that a feed-forward network with a single
hidden layer can approximate any continuous function for inputs within a particular range. In
application, this ability to model is evidenced in the state-of-the-art results given by neural
networks in most artificial intelligence problems including classification, detection, segmentation
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and most recently, language, image, and video generation.

However, neural networks are also the subject of criticism. They exhibit “black box" behaviour,
lacking human-understandable interpretability, are prone to learning spurious correlations, and
perhaps most critically, cannot convey when they are not certain, fostering a public distrust in
many critical domains.

The final output of a neural network in the standard classification problem is a normalised
prediction vector, often erroneously interpreted as a probability. In reality, this output is not a
true probability but rather a softmax normalisation of the final layer output. While the values
may correspond to how strongly the model feels about a prediction if the input is within the
range of inputs it has seen during training, they become irrelevant and meaningless for an input
which is outside that range. Unfortunately, the model itself has no knowledge of which values
are within the range of inputs it has seen during training.

Figure 3.1: As depicted by Gal et al. [53], an arbitrary function f(x) as a function of input data
x (left) and the softmax, σ(f(x)) as a function of input x (right).

In Figure 3.1, training data is given between the dashed gray lines, and function uncertainty is
shown in the shaded area. Input point x*, far outside the range of training inputs, is classified as
class 1 with high probability, completely disregarding the function uncertainty. Hein et al. [68]
further show that for such inputs, a neural network is always confident.

3.2.1 The Bayesian paradigm

Bayesian neural networks are an alternative to the deterministic approach which offer uncertainty
estimates through the Bayesian paradigm without sacrificing the learning capabilities of deep
neural networks.

The Bayesian paradigm is one of three ways of thinking about probabilities. The classical ap-
proach views all outcomes as equally likely irrespective of any other information. The frequentist
approach requires an infinite number of simulations of inputs and outputs, and then makes a
decision based on the observed outcomes. Of course, an infinite number of simulations is in-
tractable, so in practice, some finite number is chosen. A larger number clearly is more likely
to result in a better decision, but is more costly. Often the difficulty of this approach lies in
choosing a suitable sampling number which balances accuracy versus the sampling cost.

The Bayesian approach provides a middle ground between classical and frequentist approaches:
the probability of an event expresses the degree of belief held in the event’s likelihood based on
prior knowledge. Consider the simple example of a given woman woman. What is p(engineer |
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woman), the likelihood that she is a engineer? The classicist will predict that both outcomes,
that the woman is or is not an engineer, are equally likely. The frequentist will find N other
women, with N as large as feasible, count how many of them are engineers, and then predict
using this percentage. A Bayesian approach, in contrast, relies on prior knowledge. Using Bayes’
Theorem (Equation 3.1), p(engineer | woman) is the probability of e given w and vice versa,
and p(engineer), p(woman) are the independent likelihoods of those events.

Parameter Definition
θ The set of all learnable parameters of a neural network
Φθ The function learned by a neural network with parameters θ
x The input to the network
y The target label for the input x
b A scalar bias parameter included in θ
wjk The jth weight parameter in the kth layer, where J is the total number of

outputs from the previous layer
h() An activation function
W The weights of a single layer included in θ
D The dataset (X,Y ) = (xi,yi), i ∈ 1..N

Table 3.1: Notation for an artificial neural network.

p(engineer | woman) =
p(woman | engineer) p(engineer)

p(woman)
(3.1)

p(engineer | woman) represents the posterior, the belief in the woman being an engineer
given the observations. The prior p(engineer) reflects our prior knowledge about the likeli-
hood of any person being an engineer. Suppose it is known that 18% of all adults are engineers
(p(engineer) = 0.18) and that 49% of all adults are women, (p(woman) = 0.49). Furthermore,
26% of engineers are women (p(woman | engineer) = 0.26. This prior knowledge directly affects
the likelihood p(engineer | woman) = 0.10.

3.2.2 The Bayesian neural network

The foundation: a deterministic neural network

A standard, deterministic artificial neural network (ANN) consists of a set of learnable parame-
ters θ and is represented by the function Φθ (Table 3.1 for notation). The fundamental building
block of the ANN is a layer, consisting of input x, a bias parameter b, a non-linear activation
function h() and input weights W. For the kth layer with input x, and summing over each of
the J weighted inputs into the layer:

fk(x) = h(bk +

J∑
j=1

wjkx) (3.2)
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Thus, each output value is a weighted sum plus a bias, passed through an activation function.
These layers, stacked together end-to-end, form a neural network. Variations on the computation
of fk(x) and the ways by which the layers are stacked together form different variants of networks,
still categorized broadly as ANNs.

Given training data setD = (X,Y ) composed of pairs (xi,yi), i ∈ 1..N , a cost function computes
a loss by comparing Φθ(xi) with yi. This loss is used to compute gradients, back-propagated
layer by layer through the ANN. θ is updated via gradient descent, such that the loss is mini-
mized. Training involves iterating through D until some stopping point. D is usually processed
in mini-batches for efficiency, better convergence, and regularization. The final θ∗ is the max-
imum likelihood estimation (MLE) or when regularised, the maximum a posteriori estimation
(MAP). θ∗ is a fixed point estimate of the optimal θ given D.

A Bayesian neural network

A Bayesian neural network (BNN) is a stochastic ANN trained using Bayesian inference, whereby
probability distributions are placed over parameters in the network and given prior distributions
which are then updated with data during inference (Table 3.2 for notation). The stochasticity
allows for approximating the posterior distribution p(θ | D). Stochasticity can be introduced into
the network by (1) placing probability distributions over θ directly, or by (2) placing distributions
over the neuron activations (Figure 3.2). By expressing the parameters as distributions, θ is
sampled from a high dimensional distribution p(θ), which can be used to compute predictive
distributions with a mean and variance.

Figure 3.2: Figure from [81] showing (a) a deterministic point estimate neural network, (b)
stochastic ANN with probability distributions over activations, and (c) stochastic NN with
distributions over all weights.

Regardless of the choice of stochastic model, a prior distribution p(θ) must be chosen over each
parameter - typically a simple distribution such as a Bernoulli or Gaussian. According to the
Bayesian paradigm, the probability of the posterior p(θ | D) depends on a prior belief about
the current hypothesis θ, and the seen data D which is used to update the belief in θ. Bayes’
theorem formalizes this relationship as follows in Equation 3.3:
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p(θ | D) =
p(D | θ) p(θ)∫

θ p(D | θ)p(θ)dθ
∝ p(D | θ)p(θ) (3.3)

As computing the evidence
∫
θ p(D | θ)p(θ)dθ is intractable for a neural network, the posterior

cannot be directly computed. Instead, approximation methods are used, which can be summa-
rized by two families of methods: Markov Chain Monte Carlo (MCMC) and variational inference
(VI).

Parameter Definition
p(θ | D) The posterior distribution
p(θ) The prior distribution
M The Monte Carlo sampling size from the posterior for the posterior estimate

of a Bayesian neural network
Θ The set of posterior samples comprising the posterior estimate {θ1,θ2, ...θM}
µi The predictive mean associated with the ith input
ŷi The class prediction associated with the ith input
σi The predictive uncertainty associated with the ith input

Table 3.2: Notation for a Bayesian neural network.

After inference, the final posterior estimate of the neural network is obtained by Monte Carlo
sampling from Θ ≈ {θ1,θ2, ...θM}, where each θi ∼ p(θ | D). A sampling size M can be
determined using a validation set or some other means. From this, the final BNN prediction for
input xi, ŷi, is derived from the predictive mean µi, or averaged prediction (Equation 3.4). ŷi
is the maximum a posteriori (MAP) estimation. For a classification task, the final prediction is
the class index from among all classes C with maximum likelihood.

µi ≈
1

M

M∑
m=1

Φθm(xi) (3.4)

ŷi = argmax
C

(µi) (3.5)

This can be interpreted as an equally-weighted average from an ensemble, or the mean of the
predictive distribution over outputs for a given input. In addition to the benefits of having this
regularized model, the Bayesian paradigm also provides uncertainty estimates (further discussion
of uncertainties and approximation methods in Section 3.3). We can approximate the model
uncertainty associated with the prediction ŷi for input xi, σi (Equation 3.6) as the predictive
standard deviation. Many choose to use Bessel’s correction to the standard deviation and
compute the variance using 1

M−1 to correct the bias in the estimation of the population variance.
In application, we also approximate the predictive uncertainty as the standard deviation of the
predictive distribution (Equation 3.6) throughout this research. Here, as in throughout this
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research, a R→ R vector operation is to be interpreted as the function applied element-wise.

σi ≈

√√√√ 1

M

M∑
m=1

(Φθm(xi)− µi)
2 (3.6)

3.2.3 Inference methods

Markov Chain Monte Carlo (MCMC)

MCMC is a method for approximating a multi-variate probability distribution. Monte Carlo by
itself involves taking independent random samples from the probability distribution and then
using these samples to approximate the true distribution by computing the mean or variance
of the samples. However, in a multi-variate sampling space, Monte Carlo is not effective nor
computationally feasible due to the high dimensionality of the sample space. Furthermore, the
assumption that each sample is independent and can be independently drawn is not true for
neural networks.

A Markov chain is a way of generating dependent samples; each sample i+ 1 is probabilistically
dependent on the previous sample i. While the first sample may be drawn from the prior,
the consecutive samples eventually get closer to the desired posterior. The chain of samples
eventually arrives at a stationary distribution, at which point the chain has converged.

MCMC algorithms attempt to construct chains efficiently through Monte Carlo sampling. While
other sampling methods use rejection sampling - proposing possible next samples and then
rejecting or accepting based on some criteria - MCMC algorithms require a “burn-in" stage
during which the chain has not yet converged. Once at a stationary distribution, M samples
are taken as the final posterior estimate. Two MCMC algorithms in particular are suitable for
Bayesian deep learning 1: the Metropolis-Hastings algorithm [35] and the Hamiltonian Monte
Carlo (HMC) algorithm [120].

The Metropolis-Hastings algorithm begins with an initial sample θ0, and the choice of a proposal
distributionQ(θ′ | θ) which defines the probability of proposing new sample θ′ given the previous
sample θ. The new sample is accepted with a certain acceptance probability k (fixed or drawn
from a distribution - typically Bernoulli or Normal) if it matches the desired target distribution
better than the previous sample (i.e., if Equation 3.7 holds true).

log
(
k
Q(θ′ | θ)p0(θ)

Q(θ | θ′)p0(θ′)

)
<

N∑
i=1

log
p(xi | θ′)
p(xi | θ)

(3.7)

Choosing Q can be difficult, as too wide a distribution will result in high rejection rates, and
1Gibbs sampling, while highly effective in other settings, does not scale well to high-dimensions and suffers

from a long convergence time.
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too narrow in highly correlated θ and θ′ samples. The Hamiltonian Monte Carlo algorithm,
another variant of Metropolis-Hastings, addresses these issues by using principles of Hamiltonian
dynamics to propose good samples. The Hamiltonian function provides a sampling mechanism
defined by potential and kinetic energy, and parameterized by momentum variables which are
updated with each sample. HMC methods can explore the distribution space more quickly and
with lower rejection rates.

Variational inference

An alternative inference method from MCMC is variational inference (VI). The VI premise
considers that while it is not tractable to compute the data likelihood, one can create a second
distribution, known as the variational distribution qθ, and then minimize the Kullback-Leibler
(KL) distance between qθ and the true posterior p(θ | D). This turns the inference problem into
an optimisation problem.

Kullback-Leibler divergence, or relative entropy, has its origins in information theory and mea-
sures the difference in entropy between two probability distributions. In information theory,
entropy represents the amount of information present in given data. KL divergence between two
distributions p and q over a set of parameters θ is defined in Equation 3.8:

KL(q || p) =
N∑
i

q(θi) ·
log q(θ)

log p(θ)
(3.8)

Optimal parameters θopt minimize the divergence between the true posterior and our approxi-
mation q(θ) (Equation 3.9):

θopt = arg min
θ

KL[q(θ) || p(θ | D)] =

∫
q(θ) · log q(θ)

log p(θ | D)
dθ (3.9)

Unfortunately, this contains the true posterior p(θ | D) which cannot be computed. However,
by restricting the variational distribution q(θ) to some form of a normal distribution, minimising
KL divergence is equivalent to maximising the Estimate Lower Bound (ELBO), the estimated
lower bound on log p(D). In literature this is denoted as the function ELBO. The transformed
optimisation problem is shown in Equation 3.10:

θopt = arg min
θ

KL[q(θ) || p(θ | D)] ∼ arg max
θ

ELBO(θ) = arg max
θ

∫
q(θ) log

p(D,θ)

q(θ)
dθ

(3.10)

The variational distribution q(θ) can be modeled via mean field or parametric approximation.
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Mean field approximation expresses q(θ) as a factorized family of variational distributions, and
is more costly. Parametric approximation restricts each parameter in θ to a parametric family of
distributions. One concern is that a simple parametric family may be unable to adequately model
q, whereas a complex family may easily overfit the data. The Gaussian family of distributions
is most commonly used.

To get a differentiable estimate of ELBO which allows for gradient descent, the reparameter-
isation trick for variational autoencoders [91] is applied. The trick moves the stochasticity of
a node out into a random variable ε, making it possible to take the derivative of the function
θi with respect to the mean and variance of each distribution. This allows for the standard
backpropagation for training the Bayesian neural network.

Stochastic gradients

While Bayesian approximation via dropout [53] has made Bayesian deep neural networks appli-
cable to many domains due to ease of use and scalability, Markov chain Monte Carlo (MCMC)
algorithms [19] are widely considered the gold standard for Bayesian inference. However, both
MCMC and VI methods are computationally intractable for large vision datasets or high-
dimensional data frequently encountered in real-world computer vision applications, requiring
computing gradients over the entire dataset per iteration. Noisy estimates for gradients based
on mini-batches, however, is a more scalable option. Such stochastic gradient methods exist for
both sampling (MCMC) and optimization (VI) inference methods.

Stochastic gradients for sampling-based methods include stochastic gradient Langevin dynamics
(SGLD) [170] and stochastic gradient Hamiltonian Monte Carlo [33]. SGLD is based on diffusion
processes such as the Langevin diffusion, a discrete-time approximation of a continuous-time
process, formulated as stochastic differential equations (SDEs) to describe the time evolution of
a moving object subject to both random and non-random forces. These approaches compute
the likelihood over a mini-batch of data, then add an additional noise term which acts as an
upper bound on the error of the approximation.

Given model parameters θ, dataset D, prior p(θ), and potential energy U(θ), the posterior
distribution is p(θ | D) ∝ exp(−U(θ)) = −log p(D | θ) − log p(θ). As computing U(θ) is not
feasible for all D, SG-MCMC methods approximate U(θ) via mini-batch learning. The gradient
of the log-posterior density is substituted by the stochastic gradient over the minibatch and an
additive Gaussian noise term that acts as an upper bound on the error.

θi = θi−1 − αi∆Ũ(θi) +
√

2αiεi (3.11)

The update to parameters is shown in Equation 3.11, at iteration i of the algorithm, for normal
distribution εi, stepsize αi and minibatch approximation of the potential energy Ũ .

While convergence is in practice slower than for other MCMC algorithms, the parameter update
process closely resembles stochastic gradient descent and is generalisable to any neural network.
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Figure 3.3: Figure from [179] showing the cyclical stepsize schedule (red) compared against the
traditional decreasing stepsize schedule (blue) for SG-MCMC algorithms.

To speed up convergence and better explore complex multimodal distributions common for deep
neural networks, Zhang et al. [179] propose cyclical SG-MCMC (cSG-MCMC), where a cyclical
stepsize schedule allows for quicker discovery of new modes. For each cycle of the learning rate
schedule, an initial larger step size allows for exploration, and the subsequent smaller step sizes
allow for sampling.

Optimization-based approaches include stochastic variational inference [72] and stochastic ap-
proximation for optimization [121]. Such methods adopt an inference procedure very similar to
that of standard stochastic optimization (Algorithm 1):

Algorithm 1 Stochastic variational inference for learning on very large datasets.
Require: Training data D, Bayesian neural network Φ, posterior p(θ | D), current variational

parameters θi
1: for each iteration i do
2: Select batch of one or more samples xb ∈ D
3: Analyze p(xb | θi)
4: Update θi ← θi+1

5: end for

3.2.4 Challenges

BNNs, while attractive due to their uncertainty estimates and built-in regularization, pose chal-
lenges which still deter general usage as replacements for their deterministic counterparts. They
can be sensitive to the choice of prior [145], do not perform optimally using the true Bayesian
posterior [171, 77], do not necessarily provide as good uncertainty estimates as desired [70], and
irrespective of choice of inference method, have greater computational complexity and longer
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training times as compared to deterministic networks.

Various works look at combating these issues. In application, most use cold or tempered poste-
riors [171] for better performance. To deal with the computational complexity, simpler Bayesian
formulations, such as BNNs through dropout turned on at test time [53] make training and in-
ference more accessible to practitioners. Others further reduce the training complexity by using
Bayesian Last Layer Networks [93] or a trained feature representation network and a small BNN
of one or more linear layers only [123, 20, 58] and show evidence that a cheaper Bayesian neural
network with only a few probabilistic last layers still results in comparable uncertainty estimates
and regularization.

Others propose methods of exploring the multi-modal posterior landscape for better and faster
convergence, via adaptive and cyclical sampling step sizes [55, 179]. These allow for inference
on large datasets such as ImageNet where training was previously too expensive.

3.3 Uncertainties

Uncertainties related to model risk assessment are broadly defined as aleatoric and epistemic.
Aleatoric uncertainty, or data uncertainty, measures the level of inherent noise in the data and
is dependent on the input data. Epistemic uncertainty is the model uncertainty, and depends on
the distribution over model parameters. The two are combined in predictive uncertainty, which
depends on the input to the model, the model itself, and the data the model has seen.

3.3.1 Aleatoric

Aleatoric uncertainty refers to the data-dependent uncertainty. Aleatoric uncertainty captures
the noise in the data, which can be subcategorized into homoscedastic and heteroscedastic
uncertainties [76]. The homoscedastic uncertainty is constant irrespective of inputs, whereas
the heteroscedastic uncertainty may vary with inputs. Kendall et al. [86] demonstrate the
usefulness of heteroscedastic aleatoric uncertainty combined with epistemic uncertainty in depth
regression, where object boundaries and objects far from the camera have higher uncertainties.
They demonstrate how input-dependent uncertainties can be used to automatically identify more
challenging samples.

3.3.2 Epistemic

In contrast, epistemic uncertainty refers to model uncertainty, the uncertainty about the model
hypothesis and how well it fits the data. This uncertainty corresponds to how likely it is that the
given model generated the training data, and reflects the model’s uncertainty about how good
the model itself is. While aleatoric uncertainty cannot be reduced by increasing the amount
of training data, the epistemic uncertainty is directly associated with inputs. The epistemic
uncertainties for specific samples can be reduced given more data, as additional data can explain
away the model uncertainty in the hypothesis.
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For a specific input sample, the uncertainty in the model parameters induces an uncertainty in
prediction which corresponds to that sample. This is the sample epistemic uncertainty, which is
highly useful in application.

In the depth regression setting, epistemic uncertainty is high for pixels which are semantically
and visually challenging in a scene [86]; for example, a pavement made of concrete tiles of different
colours. Unless such pavements appear frequently in the training data, the model cannot easily
interpret their semantic meaning. In the case of the first self-driving car fatality, the extremely
rare circumstances of a white truck, the sun straight ahead creating extreme overexposure for
the visual sensors, and the position of the nearby cars, led the automated system to believe
there was no truck ahead of it [108, 162]. As this area of input space was very sparse, an
uncertainty-aware model would have provided high predictive epistemic uncertainty for such a
scenario, which could trigger an alert.

3.3.3 Uncertainty disentanglement

For certain applications, disentangling the two uncertainty components is useful. Kendall and
Gal [86] propose a disentangling model relying on the MC-Dropout Bayesian neural network
formulation. The epistemic uncertainty for a particular sample is estimated using Monte Carlo
samplings of the posterior and the variance of the predictive distribution, approximated by the
sum of the noise of the predictive variance plus a term measuring parameter uncertainty. The
heteroscedastic uncertainty is computed by corrupting the model outputs (logits) with a noise
parameter which is learned during training. This noise value is dependent on inputs and not
the model parameters.

Valdenegro et al. [161] generalize a disentangling method applicable to other Bayesian neural
network formulations not only MC-Dropout, by computing the sample entropies of the softmax
outputs from posterior samples - the variance of the means for epistemic uncertainty, and a func-
tion of the input variances for aleatoric. They find that aleatoric and epistemic uncertainties are
entangled irrespective of uncertainty quantification method, and despite aleatoric uncertainties
in theory being model-independent. Depeweg et al. [42] compute the total uncertainty for each
sample and then subtract the aleatoric component to obtain the epistemic component.

Predictive uncertainty refers to the sample uncertainty comprising both the epistemic and
aleatoric components.

3.4 Uncertainties and bias-conflicting samples

The predictive uncertainty of a Bayesian neural network is naturally higher in sparser training
data regions, which has been noted in early experiments for active learning [109]. Active learning
is the learning procedure by which an algorithm chooses which samples from the available dataset
to label. This is motivated by the idea that models can achieve better performance with a
smaller – but more intelligently selected – labelled subset of data, and by the fact that in many
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applications, labelled data is expensive and difficult to obtain. Some querying function must be
chosen which determines how to choose which data to label, and when.

Uncertainty sampling is a commonly used query framework [101] in active learning, supported by
the simple reasoning that choosing samples which maximize information gain results in a better-
informed model. While the framework can work in a non-probabilistic setting, for example
in support vector machines by choosing samples closest to the decision boundary [38], or by
choosing samples with highest entropy [73], it is naturally suited for probabilistic uncertainty-
aware models. In a classification setting, the querying function returns the least informative
sample for all possible labels. Alternatively, it can return the sample with the highest predictive
uncertainty (See Equation 3.12 for the most likely class label y∗).

x∗ = argminx p(y
∗ | x,θ) (3.12)

Bayesian Active Learning by Disagreement (BALD) [74] seeks to choose the sample for which
the various posterior estimates disagree the most; in other words, the sample for which the
variance of the estimated posterior predictive distribution is the largest. Gal et al. [54] com-
pare the performances of BALD, entropy maximization acquisition functions, and others, on
the MNIST logit classification image dataset. They note that entropy-based methods which
capture and leverage aleatoric uncertainty are not as effective as a Bayesian neural network with
an uncertainty-based acquisition function which actively minimizes the epistemic uncertainty
(greedily chooses to label samples with maximum epistemic uncertainty) throughout training.

Samples whose combination of attributes are not aligned with the majority biases are called
bias-conflicting samples. Irrespective of source, a bias-conflicting sample belongs to one of the
following scenarios:

1. Minority attribute bias. When a subgroup of the data has a particular attribute or
combination of attributes which are relatively uncommon compared to the rest of the
dataset, they form a minority group. A model is less likely to correctly predict for samples
from a minority group than for those of the majority. These minorities, when exclusively
correlated with a target label, are equivalent to class imbalances - having fewer of certain
class examples than others. However, in most cases they are not directly correlated with
target classes.

2. Sensitive attribute bias. A sensitive attribute (also referred to as “protected") is one
which should not be used by the model to perform the target task, but which provides
an unwanted “shortcut" which is easily learned, and results in an unfair model. These
attributes are not exclusive to one target label but are usually correlated to one or more
labels.

By definition, bias-conflicting samples are in sparser areas of the input space, and thus have
higher epistemic uncertainties [109]. Branchaud et al. [18] explore experimentally whether BALD
can mitigate fairness issues for active learning. In particular, they test whether uncertainty-
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aware models with a BALD acquisition function can improve model fairness with minority group
and sensitive attribute biases. BALD increases the accuracy and predictive parity of the bias-
conflicting groups while reducing the group epistemic uncertainty compared to the bias-aligned
groups.

3.5 Uncertainty-weighted loss

3.5.1 Loss-weighting in literature

Cross-entropy (CE) loss is the most common choice for multi-class classification loss for deep
neural networks. In standard form, cross entropy loss computes the sum of squared errors,
treating each sample as equally important in the loss calculation. It is widely known that
this leads to skewed performance in the presence of class imbalance, so a simple tactic is to
weight each class inversely proportional to the class frequency [96]. Alternately, more difficult
instances can be down-weighted [105] or up-weighted [51] via a weighting parameter correlated
to the estimated class probability. Aurelio et al. [13] incorporate prior class probabilities into a
cost-sensitive CE loss; and Ren et al. [130] assign sample-level weights based on their gradient
direction compared to a “clean" unbiased validation set.

Homoscedastic uncertainties, not dependent on the input but rather on task, from MC-Dropout
formulated BNNs are used in a multi-task learning setting to weight losses for scene geometry
and semantics [87]. In multi-task learning, the losses associated with multiple target tasks are
combined with some weighting. Kendall et al. propose a principled method of determining
the optimal loss weightings using homoscedastic uncertainty, and show that it can improve
performance.

3.5.2 Method

Given the relationship between sample predictive uncertainty and bias (Section 3.4), we propose
a simple dynamic sample-level cost function which we call Epistemic Uncertainty Up-Weighted
cross-entropy loss (EpiUpWt). We use the variance of the predictive distribution to estimate
sample uncertainty, and while we do not isolate the epistemic uncertainty from aleatoric in
our model, though various disentangling methods have been proposed [86, 161] all contributors
to the uncertainty which vary depending on input (epistemic and heteroscedastic aleatoric)
are of interest to us, particularly the epistemic component. The novel approach uses dynamic
uncertainty estimates during training to weight the objective loss for bias mitigation against
minority samples.

Equation 3.13 shows the weighted loss used in Equation 3.14 to compute the loss for training
sample (xi,yi), weighted cross entropy loss LCE and the sample-wise weighting function with
tunable parameter κ controlling the degree of weighting, especially for high-uncertainty samples.
σi,yi indicates that the uncertainty value corresponding to the ground truth prediction yi is used.
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wi = (1.0 + σi,yi)
κ (3.13)

LCE = L(yi,Φ(xi), wi) = −wi
∑
C

yi · log(Φ(xi)) (3.14)

So that normally weighted samples have weight 1.0, we shift the distribution such that lowest
uncertainty samples are never irrelevant to the loss term. We compute L̂ sample-wise and then
reduce over the mini-batch. κ = 1 is equivalent to a normal weighting, whereas κ→∞ increases
the importance of high-uncertainty samples. In our fully bias-unaware setup, κ is selected using
validation loss tuned via grid search. The weighting value wi used to scale the loss is shown in
Figure 3.4 as a function of κ.
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Figure 3.4: The weighting scalar of L(xi,yi) is a function of sample uncertainty σi,yi and scalar
κ. Horizontal line y = 1 along the x-axis represents κ = 0, or no de-biasing. A larger κ means
that smaller discrepancies in uncertainty have a larger impact on sample weighting.

The sample predictive uncertainties in Algorithm 2 are estimated using the posterior samples
from each cycle of the MCMC sampling. IfM = 15 for example, and there are 3 sampling cycles,
the earliest moment at which we can compute σ over the training data is after the sampling
phase of the first cycle, after the first five samples have been taken (the posterior estimate is
{θ0,θ1,θ2,θ3,θ4}, and M = 5). Uncertainty values are updated at each consecutive cycle to
reflect the developing posterior, requiring a total of M(C − 1) samples from the posterior for
total number of cycles C.

In implementation, this can be sped up during training by storing each training sample’s pre-
dictive distribution for each θm (Algorithm 2 line 6). Once the sample-wise model uncertainties
have been computed from the mean predictions (line 11), all predictions can be discarded. We
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Algorithm 2 Training loop using uncertainty-weighted loss
Require: Training data X, Y, neural network Φ, weighting parameter κ, and stepsize ε
1: Initialize parameters θ
2: for each cycle, c do
3: for each epoch e in c, ∀xi ∈ X do
4: if e in sampling phase then . sampling phase
5: θm ∼ P (θ | D) . take a posterior sample
6: Φθm(xi) . save all predictions using that posterior sample
7: end if
8: LCE = L(yi,Φθ(xi)) . normal loss
9: if c > 1 then . all cycles after the first cycle

10: µi = 1
M

∑M
m=1 Φθm(xi)

11: σi =
√

1
M

∑M
m=1 (Φθm(xi)− µi)

2 . compute sample uncertainties
12: wi = (1.0 + σi,yi)

κ

13: LCE = L(yi,Φ(xi), wi) . weighted loss
14: end if
15: θ ← θ − ε∇LCE . update to parameters
16: end for
17: end for

set the length of the sampling phase to be 5 epochs, the shortest length for which uncertainty
estimates are consistently stable for a fixed seed.

3.6 Experiments

3.6.1 Datasets

Most, if not all visual datasets contain biases, but suitable visual bias benchmarking datasets
must (1) have known, realistic, controllable bias(es), (2) not contain other challenges that could
distract from the challenge of overcoming the biases, and preferably (3) be of manageable size.
MNIST [98], the popular image dataset for digit classification, broadly meets these criteria
and thus has been modified by researchers for benchmarking purposes. These variants include
Biased MNIST [14] with a background color bias highly correlated with digits, MNIST with
Colored Squares on the Corners [12] correlating the added square feature with digits, Colored
MNIST [103, 89] with high correlation between each digit’s color and its label, C-MNIST [10]
and Extended C-MNIST [92]. Shrestha et al. add complexity to the dataset by placing each
MNIST digit in a 3 x 3 grid with seven bias variables and 10 possible values each variable can
take [142]. An updated version of this Biased MNIST enlarges the grid to 5 x 5 [143]. In most
cases, the degree of bias pbias can be controlled. Furthermore, some frame the problem as binary
classification [12] while others as multi-class 10-digit classification [14, 142, 103, 89].

Others turn to synthetic datasets such as Synbols [97] with injected biases [18] or the object
classification CIFAR-10 or CIFAR-100 datasets [94] for benchmarking. CIFAR-10 consists of 60k
32x32 color images equally labelled as one of ten classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck. Wang et al. [167] propose CIFAR-10S or CIFAR-10 Skewed
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which is carefully constructed to be contain sensitive attribute bias across 10 output classes. We
choose this dataset for our initial EpiUpWt benchmark for its non-trivial complexity, existing
benchmarks, and strictly controllable synthetic bias variable. We contribute our own complement
to it, CIFAR-10M or CIFAR-10 Minority.
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Figure 3.5: A sampling of 100 images, 10 from each class from our minority class bias benchmark
CIFAR-10M with p = 0.9 as an example of minority group bias equally skewed across all classes.
Note that our experiments use p = 0.95.

Our new dataset CIFAR-10M corresponds to minority group bias, whereas CIFAR-10S [167]
includes a sensitive attribute bias. For both, we use the official CIFAR-10 test set, duplicated
for one COLOR copy and one GRAYSCALE copy, and a 5:1 training-validation split for the
total of 50k training images and 10k test images.

Visual bias benchmark: CIFAR-10 Minority

CIFAR-10M (Figure 3.5) is formulated to capture minority group bias, with a single bias variable
with two values: color and gray-scale. For each of the ten target classes, 5% of samples are
converted to gray-scale. The remaining 95% of each class remain in colour. All images retain
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the same dimensions. Following the formulation of CIFAR-10S, in CIFAR-10M the gray-scale
images are represented as one single color channel duplicated across all three channels.
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Figure 3.6: A sampling of 100 images, 10 from each class from CIFAR-10S [167] with p = 0.9 as
an example of sensitive attribute bias equally distributed across the dataset but skewed across
classes. Note that our experiments use p = 0.95.

Visual bias benchmarks: CIFAR-10 Skewed

CIFAR-10S (Figure 3.6) proposed by Wang et al. [167] represents an example of sensitive at-
tribute bias. Both values for the bias variable – presence or absence of color – are equally
present in the dataset (50/50%). But for five out of ten target classes, 95% of the images are
in gray-scale, resulting in an overall balanced dataset with respect to colour but a strong skew
within each class. As a model can learn the presence or absence of colour as a class indicator,
this is an instance of a sensitive attribute bias.

43



3.6. Experiments Chapter 3. Uncertainty-weighted loss

Age Gender Skin Color/Type
≤ 45 > 45 Female Male Lighter Darker
77.8% 22.1% 58.1% 42.0% 85.8% 14.2%

Table 3.3: The distribution of age, gender, and skin color/type for the widely used face image
dataset CelebA [107] as found by [114], showing bias against older subjects, males, and darker
skin tones. For the purpose of showing general trends, binary disjoint categories are shown for
each attribute.

Face detection dataset

Facial detection, or the binary classification task of deciding whether an image contains a face or
not, is a real-world problem with significant implications. Alongside the goal of maximising task
accuracy, it is also desirable that the model will perform equally across all subgroups. Subgroups
are naturally present in facial detection images due to ethnic traits such as skin and hair color
and facial features, in addition to other potentially correlated features including occlusions,
accessories, and variations in pose and lighting.

Following a similar setup as Amini et al. [8], we create a face vs. no-face detection dataset using
20k instances of faces from CelebA [107] and 20k non-face samples from a variety of different
object classes from ImageNet [41], for a training set of 40k images. CelebA includes a labeled
selection of images of 10k celebrities collected from the internet. The labels for CelebA comprise
40 different identified physical attributes including “arched eyebrows", “attractive", “5-o-clock-
shadow", “bangs", “goatee", “wavy hair", “smiling" and more, with boolean values for each. Yet
despite the diversity in attributes, studies show a steep skew away from older subjects (an age
bias), darker skinned subjects, and even a slight bias towards females (Table 3.3).

The bias mitigation problem is designed as following: the model is trained on the CelebA +
ImageNet non-face subset, and tested on a much more diverse test set to check the model’s
discrimination against minority groups present in the test set. Amini et al. use the Pilot
Parliaments Benchmark [22] for the test set; due to the inaccessibility of that dataset because of
data privacy issues, and its lack of age diversity as all the subjects are government members and
thus adults, we have chosen to evaluate instead on FairFace [84]. FairFace consists of 108,501
images collected primarily from the YFCC-100M FlickrDataset [156], a public curated dataset
of over 100 million images and videos. The FairFace images also include gender, race, and age
annotations, balanced across 7 race groups (Figure 3.7): White, Black, Indian, East Asian,
Southeast Asian, Middle Eastern, and Latino, and 9 age subgroups from “0-2" to “over 70". The
high level of diversity is visible in Figure 3.7. It is also one of the first diverse facial recognition
datasets to distinguish between various regions of Asia.

FairFace images, in addition to their inherent diversity, also differ from the training set in other
ways: the photos are cropped closely around the subjects’ face, often excluding the neck and
parts of the protruding facial extremities. Very little of the background behind the face is
visible. In contrast, CelebA images show the upper chest and neck, and leave a considerable
margin between the face and the edge of the image, revealing the background behind the subject.
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Figure 3.7: FairFace [84] is balanced across 7 racial groups: White, Black, Indian, East Asian,
Southeast Asian, Middle Eastern, and Latino.
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Figure 3.8: FairFace [84] is also balanced across seven age groups, from “0-2", “3-9", “10-19",
“20-29", “30-39", “40-49", “50-59", “60-69", to “more than 70".

Figure 3.9: t-SNE visualizations figure from [84] illustrating the distribution of faces in two
major facial recognition datasets (b) UTKFace [180] and (c) LFWA+, contrasted with the more
balanced distribution and richer labels in (a) FairFace.
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T(x)

Figure 3.10: A random selection of 16 CelebA images before transformation (left) and the same
images (right) after applying transformation T which minimizes the average FID score between
the CelebA and FairFace datasets.

Given this considerable distribution shift between the training and test data, which may also
inadvertently introduce biases which we cannot be aware of, we attempt to minimize the factors
not directly associated with any of our bias variables.

Firstly, to deal with the positioning issue, we perform a grid search for the optimal transfor-
mation function T with respect to a similarity measurement. The Fréchet Inception Distance
(FID) introduced in [71] was designed for evaluating generative adversarial networks (GANs),
measuring the visual similarity between generated images and real ones. The FID compares the
similarity between features extracted by an Inception v3 network trained on a large collection
of real images (ImageNet) and those from the synthetic images. The mean and covariance of
each of the features are compared using the Frechet or Wasserstein-2 distance, and is shown to
strongly correspond to visual similarity.

No transforms other than resizing and cropping are applied to the FairFace data, ensuring that
all the other diversity is still intact; the transforms bring the CelebA data in-distribution to the
FairFace data without alleviating the sources of bias used to evaluate the fairness of the model.
With the absolute difference between average FID scores of the CelebA and FairFace datasets
guiding the search, we find the best T to be a center crop to 124 x 124 plus a downsampling of
all face and non-face training data to 64 x 64 such that the general resolution and positioning
of the face in the images minimizes the difference between average FID scores. A sampling of
the CelebA data before and after the transformation is shown in Figure 3.10.

3.6.2 Evaluation metrics

We evaluate using the following fairness metrics:

• Test set metrics: given test datasets for which the presence or absence of bias variables
is known, regular target task metrics can be used to compare the difference in performance
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between bias-aligned and bias-conflicting samples; an unbiased model will perform equally
well on both.

• Bias amplification score [181]: this metric was proposed first in a natural language
processing setting and is generalizable to other problems. For the set of all classes C,
where Grc is the number of grayscale test set examples predicted to be of class c, and Colc
the same for color, the mean bias amplification score is:

bias ampl. =
1

| C |
∑
c∈C

max(Grc, Colc)

Grc + Colc
− 0.5 (3.15)

• Equality of opportunity [65] is satisfied when for a prediction ŷ, some class y, and
sensitive attribute a, P (ŷ = y | a = 0) = P (ŷ = y | a = 1). A difference in equality of
opportunity score is derived as per [17], where Y is the set of possible classes, TNa

y , FNa
y ,

TP ay and TP ay are the number of true and false negatives and positives of class y with
protected attribute a, and Na is the total number of test set samples with attribute a:

1

| Y |
∑
y∈|Y |

∣∣∣∣∣ TP 1
y

TP 1
y + FN1

y

−
TP 0

y

TP 0
y + FN0

y

∣∣∣∣∣ (3.16)

• Equalized odds [65] is a relaxed form of equality of opportunity where subgroups have
equal true positive and false positive rates; equalized odds requires non-discrimination on
only one desired outcome. A difference of equalized odds score as per [16] is as follows:

0.5 ∗
(∣∣FPR1

y − FPR0
y

∣∣+
∣∣TPR1

y − TPR0
y

∣∣) (3.17)

3.6.3 Inference

To provide a fair comparison, we follow the same training and architecture choices as proposed,
with the exception of the learning rate, which is set to maximise performance for the cyclical
step size schedule of our Bayesian formulation. Using validation loss to choose hyperparameters,
we find the optimal validation loss with 280 epochs and four cycles. With the exception of
our reproduction of the DB-VAE method in [8], all experiments use a ResNet-18 convolutional
neural network as the base architecture. For the DB-VAE, we follow the same architecture as
used in the original paper, adapted for multi-target classification on CIFAR-10S, up-sizing the
images to 64 x 64 to match the expected input dimensions, and grid search to find the optimal
value for de-biasing parameter, α = 0.001.

For the face detection dataset, we train a regular ResNet18 to convergence at 30 epochs using
an 8:2 split of the CelebA/ImageNet dataset for training and validation and a standard SGD
optimizer with learning rate of 0.01. The cSG-MCMC Bayesian model with uncertainty-weighted
loss is similarly trained with 4 cycles of 30 epochs each for a total of 120 epochs.
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3.7 Results

Model Bias (↓) Mean acc (%,↑) Opp. (%,↓) Odds. (%,↓)
Explicit method results

S-Sampling 0.066 89.1 ± 0.4 12.58 ± 0.2 6.91 ± 0.1
Adversarial (1) 0.101 83.8 ± 1.1 16.71 ± 1.4 9.28 ± 0.7
Adversarial (2) 0.094 84.1 ± 1.0 14.13 ± 1.4 7.89 ± 0.8
DomainDiscrim 0.040 90.3 ± 0.5 7.27 ± 0.3 4.02 ± 0.2
DomainIndepend [167] 0.004 92.9 ± 0.1 1.07 ± 0.2 0.59 ± 0.1
FeatureLabel [157] 0.004 91.5 ± 0.2 0.83 ± 0.1 0.46 ± 0.1

Implicit method results
Baseline 0.074 88.5 ± 0.3 13.07 ± 0.4 7.19 ± 0.2
DB-VAE [8] 0.167 90.2 ± 0.4 6.87 ± 0.5 0.78 ± 0.2
cSG-MCMC+EpiUpWt 0.037 89.1 ± 0.2 12.12 ± 0.2 6.26 ± 0.2

Table 3.4: Multi-class classification, bias amplification score, mean bias accuracy, equality of
opportunity and equalized odds for bias benchmark dataset CIFAR-10S, a dataset with sensitive
attribute bias. Note that all methods except for the baseline (a regular deterministic network
with no bias mitigation), the DB-VAE, and our method, are explicit bias mitigation methods.
First, second, and third best results formatted.

The results of our de-biasing method on this dataset are presented in Table 3.4. We benchmark
against various other explicit and implicit bias mitigation methods, including benchmarks estab-
lished by [167, 157, 8]. The explicit methods using the annotated bias variables in the training
dataset to de-bias are as follows:

• Sub-sampling / re-sampling / re-balancing: minority training subgroups are over-
sampled such that the data appears balanced for each class.

• Adversarial training: the model is trained to minimize classification loss while simulta-
neously minimizing model’s ability to predict the bias variable. Two variants are used (1)
a uniform confusion loss −( 1

|D|)
∑

d log qd [159, 7] and (2) loss reversal
∑

d I
[
d̂ = d

]
log qd

with gradient projection from [178]. [167] perform further experiments to validate the
relatively poor results for both adversarial learning methods, and show that enforcing bias
confusion also inadvertently increases undesired class confusion.

• Domain discriminative training [46]: where there are C target classes and G sub-
groups with unique bias variable combinations, a G*C -way discriminative classifier is
trained, then a prior shift towards a uniform test distribution (assumed, as true test la-
bel distribution cannot be used) applied to remove the correlations between C and G at
inference time.

• Domain independent training [167]: a single shared feature representation network
with an ensemble of classifiers, one per subgroup; at inference, the class decision boundaries
are averaged over all the classification head outputs for subgroup domains g and class
ŷ = arg maxy

∑
g s(y, g, x).

• Feature labeling [157]: the bias direction for each known bias variable in the feature
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Baseline EpiUpWt
TPR Color (%),↑) 92.1 ± 0.1 93.8 ± 0.1
TPR Gray (%),↑) 91.6 ± 0.1 93.3 ± 0.1
TPR Gap (%),↓) 1.8 0.5

Table 3.5: The uncertainty-weighted loss reduces the TPR disparity between minority and
majority groups on minority bias dataset CIFAR-10M.

space is identified, and the effects of biases are removed in both feature and target class
spaces.

And the implicit methods:

• Baseline: a deterministic CNN optimized using regular cross entropy classification loss.

• De-biasing variational auto-encoder (DB-VAE) [8]: an implicit over-sampling method
where a model learns latent features and uses the relative sparsity of that latent space to ad-
just sampling probabilities of training samples while training such that under-represented
regions of training data are over-sampled.

While not competitive with all bias-informed methods, our approach demonstrates an ability to
de-bias blindly on both the benchmark dataset with sensitive attribute bias (CIFAR-10S), and
our constructed dataset with minority group bias (CIFAR-10M).

Via a manual examination of the training set and predictive uncertainties post-training, for
CIFAR-10S, we find that samples with a sensitive attribute have higher uncertainties. They
constitute 20% of samples in the samples with the highest 10% uncertainties, while only 5% of
samples in the dataset have a sensitive attribute. In contrast, less than 2% of samples in the
lowest 10% uncertainties have a sensitive attribute.

Table 3.5 shows that the method also decreases performance gaps for CIFAR-10M by 66% and
bias amplification score, equalized odds, and equalized opportunity scores of 0.002, 0.65, and
0.70 respectively.

For every subgroup, the uncertainty-weighted loss decreases the TPR gap, with the discrepancies
for the 7 subgroups with lowest TPR rates shown in Figure 3.11.

Given that sample-level weighting by a factor of N during training is equivalent to that sample
appearing N times, our approach could be categorized as a type of sub-sampling algorithm.
Thus, it suffers from the same weakness as all sub-sampling algorithms, a tendency to overfit
over-sampled data. This can only be partially mitigated by aggressive data augmentation. We
hypothesize that this explains why increasing tunable de-biasing parameter κ beyond the optimal
value results in worse performance as shown in Figure 3.12.

Table 3.6 compares the performance of the deterministic baseline model against the Bayesian
variant of the same model and the proposed weighted loss for the CIFAR-10S benchmark dataset.
The ablation study shows that the Bayesian model, while with a slightly lower bias amplification
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Figure 3.11: Performance discrepancies between baseline (deterministic model with no de-
biasing) and Bayesian model with uncertainty-weighted loss for minority subgroups with lowest
TPRs.
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Figure 3.12: True positive rate (TPR) over the entire FairFace dataset as a function of tunable
de-biasing parameter kappa κ, showing how the degree of de-biasing can be controlled by κ.

Bias (%,↓) Mean acc (%,↑)
Baseline 0.074 88.5 ± 0.3
cSG-MCMC 0.060 88.1 ± 0.2
cSG-MCMC+EpiUpWt 0.037 89.1 ± 0.2

Table 3.6: Ablation study on CIFAR-10S showing results of a Bayesian cSG-MCMC network
with regular unweighted cross-entropy loss.
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score, has a lower mean accuracy as compared to the baseline. Simply using a Bayesian model
does not mitigate biases. In contrast, the weighted loss improves upon both models.

Figure 3.13 shows samples with high uncertainties, which clearly have features which make them
more likely to be subject to bias. A bias-informed method could strongly mitigate bias due to
known societal biases such as gender and race, or skin phenotype. But since it would be unlikely
to also have access to meta-data which identifies variances in lighting, pose, image resolution,
etc., all of which also result in unfairness, such methods would not target such biases. Faces
with high uncertainties are more likely to be subject to discrimination due to such variances.

Figure 3.13: Face training samples from CelebA with lowest predictive uncertainties (left) and
faces with highest predictive uncertainties (right). The faces with low uncertainties tend to be
well-lit, facing forward with hair cleanly framing the face, and primarily lighter-skinned with
few obscuring accessories.

Such an approach is valuable in medical imaging applications with large population image anal-
ysis due to the inherent difficulty in collecting meta data. Sensitivity and privacy requirements
result in imaging datasets with very few annotations and little, if any, associated patient meta
data. This presents a challenge for bias-informed methods, and serves as motivation for further
exploration of methods which can mitigate without requiring comprehensive knowledge of all
biases.

3.8 Discussion and conclusion

We have presented the motivation for leveraging predictive uncertainties from the Bayesian
paradigm for implicit bias mitigation, and shown that a simple predictive uncertainty-weighted
loss function has potential for bias mitigation for datasets with unknown sources of bias. Ad-
ditional results and evaluation for EpiUpWt on three additional classification datasets can be
found in Chapter 4, and on a segmentation dataset in Chapter 5.
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Some training datasets may contain an over-sampling from unprivileged groups, in which case
the correlation with predictive uncertainties may no longer exist. Thus, this exploration focuses
only on cases of minority group and sensitive attribute bias. While not competitive with all
bias-informed models, this method is a step towards exploring how predictive uncertainties in
Bayesian neural networks can be leveraged for identifying, understanding, and mitigating the
types and sources of visual bias in data.
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Chapter 4

Posterior estimate fine-tuning for bias
mitigation

4.1 Overview

Having dynamically identified and leveraged the predictive uncertainty and bias correlation
through cost-sensitive loss weighting during the training of a Bayesian neural network, in this
chapter we explore a variation of this approach for bias mitigation which operates as a fine-
tuning or post-training modification of the posterior estimates. We firstly explore where and how
the uncertainty discrepancies arise in the network architecture, specifically for bias-conflicting
samples. We consider the two components of a CNN, the representation component and the
classification component, using network dissection introduced by Bau et al. [15] to identify
convolutional kernels which focus on the bias variables. Based on this exploration, we propose
a fine-tuning procedure which modifies the posterior estimate of the Bayesian neural network
via a loss operating on each posterior sample individually. The method is driven by the sample
epistemic uncertainties, weighting the learning step size based on the variance of the sample
predictive distribution. We perform experiments which compare the effects of a regular cross-
entropy loss versus a regularized version, and propose an explanation of why our composite
regularized loss works better than the cross-entropy loss alone.

We select three challenging datasets with a variety of other existing benchmarks to demonstrate
that Bayesian neural networks with modified posterior estimates perform comparably to, if not
better than, prior existing methods and show potential worthy of further exploration.

4.2 Posterior estimate fine-tuning

4.2.1 Exploring uncertainty discrepancies

Deep neural network models trained on biased data encode biased attributes in their feature
representation component, otherwise known as the encoder. De-biasing the encoder requires
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firstly comprehensive knowledge of the bias variables, instance-level annotations or labels for
all training inputs with respect to these biases, and then a method which discourages those
correlations from being learned.

Figure 4.1: Four samples based on a single generated Synbols image from class “s" of our toy
dataset, each with a different controllable bias variable (left to right): the letter itself, spurious
square placed in random corner, resolution of whole image, and gray-scale.

Parameter Definition
Am,k(x) The activation map for the mth posterior estimate and the kth convolu-

tional kernel, derived from input image x
Âk(x) The pixel-wise mean activation map across all posterior estimates for the

kth convolutional kernel
f An identified feature in the dataset
IoUk,f The intersection-over-union for the kth convolutional kernel and feature

f
t The threshold for determining whether kernel k is a high-activator for

feature f
σk(x) The kernel uncertainty, the maximum pixel-wise variance across activa-

tion maps from posterior samples

Table 4.1: Notation for a Bayesian neural network dissection.

Du et al. [45] argue that even with a learned “biased representation”, a model can be made more
fair by focusing on the classification component alone. The goal of their proposed approach,
Representation Neutralization for Fairness (RNF) is to neutralize the representations of input
samples of different sensitive attributes in feature space, and then use those new representations
to re-train or fine-tune the classification head of the DNN. RNF discourages the classification
layer parameters from learning the undesired bias correlations, and instead focuses on learning
core features.

We are motivated by a similar end-goal – a classification layer which has not learned bias
correlations - but without explicitly de-biasing the feature representations. As bias-conflicting
samples tend to have higher epistemic uncertainties than their bias-aligned counterparts [59, 3,
152], we first explore which component of the DNN - the representation or the classification
component – gives rise to the discrepancies in sample epistemic uncertainties.

Synbols (Synthetic Symbols) [97] is a tool for generating feature-rich synthetic datasets of cus-
tomized resolution and size, using Unicode standard symbols, a font library of over 1,000 fonts,
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and various background and foreground textures. Synbols-generated data can be used for clas-
sification, segmentation, anomaly detection, and other tasks.

Using Synbols, we generate a dataset which we call Biased Synbols, to create a non-trivial
binary classification task with controllable biases. The foreground of each 224 x 224 image
is a character displayed in a font chosen randomly from a large selection of fonts, and the
texture of the character is a random natural scene, cropped to fit the character mask. The
background behind the character is a 2-color gradient. We introduce four types of bias as shown
in Figure 4.1. In order to control the bias and isolate its effect, we only consider one at a time
for a given dataset, but study four datasets each with a slightly different bias variable to confirm
consistency of results across bias types. Specifically, we choose a spatially distinct bias (the
square in the corner) so that we can use an interpretability method to understand what the
network has learned.

Figure 4.2: The representation component of a typical CNN architecture (left), resulting in
flattened features which feed into the classification component (right) composed of several linear
layers.

Figure 4.3: The top six training images for which kernel 10, convolution layer 2 (bottom) from
AlexNet most strongly activates. The kernel has identified the spurious feature, the red square
in the bottom right corner, and has the highest IoUk,f for the mask of bias feature f , not the
character mask.

This setup allows us to dissect the network. Network dissection, proposed by Bau et al. [15],
measures the alignment between convolutional kernel activations and any concept, which can
be defined by segmentation masks on the dataset. The method allows for interpretable under-
standing of the role of individual kernels without any model re-training or fine-tuning. Bau et al.
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show that individual kernels can learn specific unlabelled but semantically meaningful features
of the input space, and that kernel alignment to specific features can be measured.

For every input image x, the activation map Ak(x) of every convolutional kernel k is computed
via a forward pass. This results in a set of activation maps ak = Ak(x) ∀ x ∈ D, for each
kernel. Then, the top quantile level Qk is determined such that P (ak > Qk) = 0.005. For an
input image and kernel pair, the activation map is upscaled via bilinear interpolation, anchored
at the center of the kernel’s receptive field, to match the input image size. The threshold Qk is
used to create a binary segmentation mask from the activation map.

We distinguish between the core feature (the segmentation of the character only), and the bias
feature (the red square in the corner). A kernel k is considered a detector or high-activator for a
feature f if the intersection-over-union IoUk,f > t for some threshold t. We extend this method
to dissection of a Bayesian neural network by taking the pixel-wise mean activation across all
posterior estimates (Table 4.1, Âk(x) = 1

M

∑
mAm,k(x) instead of Ak(x)). This dissection iden-

tifies convolutional kernels in the representation component which are most strongly activated
by specific features, such as core features (Figure 4.4) or bias features (Figure 4.3). We generate

Figure 4.4: The top six training images for which four kernels in the second convolutional layer
of AlexNet most strongly activate, with the corresponding dissection maps. All four kernels
show strongest activation for regions overlapping with the core feature, the character mask. The
bottom two rows show image samples for the latter two kernels which also are from the majority
group, with the spurious bias feature in the corner, yet the kernels in question do not strongly
activate to the bias. In these cases, the kernels pay more attention to the characters.
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Figure 4.5: Intersection-over-union (IoU) of each kernel k in each of the five convolutional layers
of the Bayesian AlexNet, plotted against the kernel uncertainty estimations. Pearson correlation
scores show no clear correlation exists; the uncertainties of kernels which activate more strongly
for the bias feature are not consistently higher than those which activate for non-bias features,
indicating that the observed predictive uncertainty discrepancies between minority and majority
input samples arise from the classification component of the network.

a two letter (“s" and “t") binary classification task with train/val/test splits of 20k/5k/5k and
train a Bayesian AlexNet on four versions of Biased Synbols, each with a different bias variable
and pbias = 0.95 for the “s" class and pbias = 0.05 for the “t". We use the validation set to choose
the optimal stopping point, and setM = 10 forM posterior samples during the sampling phases
of each cycle for a posterior estimate. We then compute the sample epistemic uncertainty for
each test sample. In each case, the bias-conflicting samples have higher mean group uncertain-
ties than the bias-aligned (a mean increase by 0.15, 0.16, 0.09, and 0.20 for the four variables
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shown in Figure 4.1 respectively, for uncertainties normalized via softmax between 0.0-1.0).

Next, we identify where the discrepancies in uncertainties arise from in the network. We find
indiscernible difference in uncertainties between samples by averaging or taking the maximum
of the uncertainties across the features extracted directly after the final convolutional layer (the
output of the representation component in Figure 4.2). To further confirm this hypothesis that
learning a biased representation does not affect uncertainties at the feature level, we focus on
Biased Synbols with the spurious square in a random corner. We choose this variant of Biased
Synbols since the bias attribute is spatially distinct from the core feature, the character.

We then estimate the kernel uncertainties; for each input x, we compute the pixel-wise variance
over the activation map distribution and define the kernel uncertainty σk(x) as the maximum
variance across the map, with mean kernel activation map Âk(x):

σk(x) ≈ max


√√√√ 1

M

M∑
m=1

(
Am,k(x)− Âk(x)

)2  (4.1)

For every convolutional layer in AlexNet, we compute the intersection-over-union of the binary
mask of the square with the thresholded kernel activation heatmaps, and measure correlation
between these IoUs and the kernel uncertainties from Equation 4.1. This plot, for all kernels in
each of the 5 convolutional layers of AlexNet, is shown in Figure 4.5.

The Pearson correlations per convolutional layer are -0.10, -0.03, 0.13, -0.07, and 0.17, none of
which indicates a clear correlation between kernel uncertainties and stronger activations for the
bias variable. Thus, simply learning features associated with bias variables does not seem to
create discrepancies in uncertainties. These observations motivate our focus on the classification
head and the predictive uncertainties induced by learning a biased feature weighting in the
classification layers of the network.

4.2.2 Method

We propose a posterior fine-tuning procedure (Algorithm 3) which further fine-tunes the clas-
sification layers of each Monte-Carlo sample from the Bayesian posterior using a guiding loss
function.

The representation portion of the network is frozen during the fine-tuning because (1) we aim to
learn re-weighting of learned features in the classification head assuming the uncertainty discrep-
ancies arise from this portion of the network, and (2) this significantly reduces the computational
requirements. Thus, we refer to θc, where each posterior sample θm = {θrm,θcm} is composed of
the parameters from the representation and classification portions of the network respectively.
Deterministic networks are often fine-tuned on the classification head only; similarly, support
for operating on θc alone can found in literature on “Bayesian last layer" networks [93].

We propose, firstly, a regular cross-entropy loss function with sample-wise weighting applied
as in Chapter 3, and secondly, a regularizing component (see Table 4.2 for notation). Both
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losses are applied to individual posterior estimates. The weighting function causes the higher
uncertainty samples to have larger loss contributions. A bias-aligned sample with low uncertainty
in comparison has a small loss contribution. Each sample is weighted by wi as a function of
its predictive uncertainty (Equation 3.6) as shown in Equation 4.2. The distribution is shifted
by 1.0 and scaling constant κ controls the steepness of the function such that low uncertainty
samples are never completely discounted, but only minimally shift the distribution. Note that
batch reduction is also applied as usual, after the weighting.

Parameter Definition
θr The parameters of the representation component of the network
θc The parameters of the classification component of the network
Θ The set of M Monte-Carlo posterior samples {θ1,θ2, ...θM}
Φθm The network with parameters from the mth posterior estimate
LRCE PCGrad(LR, LCE)

Table 4.2: Notation for the fine-tuning procedure.

wi = (1.0 + σi,yi)
κ (4.2)

Cross-entropy loss (LCE). A regular negative log likelihood loss prepended by a softmax
function moves individual posterior estimates towards the correct prediction. This can also be
compared to artificially sharpening or tempering the posterior (see further discussion in Sec-
tion 4.6). For the mth posterior sample θm and input sample xi, the negative log likelihood
measures the divergence between the true class and the predicted likelihood of each class. Equa-
tion 4.3 shows the negative log likelihood loss summing the predicted likelihood of the ground
truth class for each sample, with one-hot encoded true target yi, all possible classes C, and the
single posterior estimate output Φθm(xi). The weighting factor scales the final sample loss:

LCE = L(yi,Φθm(xi), wi) = −wi
∑
C

yi · log(Φθm(xi)) (4.3)

LCE with regularizing loss (LR). While the cross-entropy loss LCE increases the likelihood
of the correct target class, it is not as clear why LR should be considered. The regularizing loss
LR is also computed separately for each posterior sample θm. LR is a negative log-likelihood with
the true target yi replaced by one-hot encoded ŷi (Equation 3.5), the argmax over the predictive
mean distribution, capturing the divergence between the prediction of a single posterior estimate
and the mean prediction of the whole posterior (Equation 4.4). This value is greater for posterior
samples with predictions Φθm(xi) further away from the mean prediction, regardless of whether
the mean prediction is correct or not. For a given sample, the regularizing loss alone narrows or
sharpens the distribution around the mean prediction. The equation for the LR, summing the
predicted likelihood of the ground truth class for each sample, is as follows in Equation 4.4:
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LR

LCE LCE

LR LR

projn LR

LCE LCE

LR

projn LCE

(a) (b) (c) (d)

Figure 4.6: The interaction between the two loss gradients ∆LCE and ∆LR under PCGrad [177]:
(a) non-conflicting gradients, simply added together unaltered; (b) conflicting gradients; (c)
projection of ∆LR onto the normal of ∆LCE ; and (d) the projection of ∆LCE onto the normal
of ∆LR. Note that the additive results are not shown here.

LR = L(ŷi,Φθm(xi), wi) = −wi
∑
C

ŷi · log(Φθm(xi)) (4.4)

As the two loss gradients may conflict, the question of how to combine the two gradients arises.
This problem also exists in multi-task learning where different tasks are learned in models with
shared structure simultaneously. One gradient modification method or gradient surgery which is
effective in multi-task learning is called projecting conflicting gradients (PCGrad) [177], whereby
the authors posit that a significant issue in multi-task learning optimization is due to what they
define as conflicting gradients. Specifically, two gradients are conflicting if they are pointing
in opposite directions, i.e., have negative cosine similarity, and thus combining them has the
potential to nullify the effect of both. The combining of such conflicting gradients is detrimental
in particular if there is:

• an objective landscape with high curvature, and

• a large difference in their magnitudes.

In such settings, the optimizer struggles to take a productive step for both objectives. PCGrad
projects the gradient of one loss onto the normal plane of the other when the gradients have neg-
ative cosine similarity. For each input sample in each mini-batch, gradients for losses (LCE , LR)

are computed. If there is destructive interference, one gradient is selected at random and pro-
jected onto the normal plane of the other (Figure 4.6). In the case of constructive interference,
both gradients are combined as usual. The cumulative update to the weights is then averaged
over the batch. From this point, we refer to the combined losses as a regularized cross-entropy
loss, or LRCE = PCGrad(LR, LCE).

In all our experiments, we find that this regularized loss LRCE outperforms LCE alone in both
overall accuracy and accuracy for minority subgroups. An ablation study showing experimental
support for the choice of gradient surgery over LCE alone or a simple weighted sum of the two
losses is shown in Table 4.9. In Section 4.5, we propose two hypotheses for why LRCE performs

61



4.3. Experiments Chapter 4. Posterior estimate fine-tuning

better and conduct experiments testing each hypothesis.

Algorithm 3 Fine-tuning procedure on Monte-Carlo estimate of posterior Θ = {θ1, ...θM}
Require: Training data X,Y , neural network Φ, update step size ε, posterior estimates Θ
1: for each fine-tuning iteration, ∀xi ∈ X do
2: µi = 1

M

∑M
m=1 Φθm(xi) . compute mean predictions

3:

4: σi =
√

1
M

∑M
m=1 (Φθm(xi)− µi)

2 . compute sample uncertainties
5: for each θm = {θrm,θcm} ∈ Θ do . examine each posterior sample separately
6: wi = (1.0 + σi,yi)

κ

7: ŷi = argmax (µi) . compute predictions
8: LCE = L(yi,Φθm(xi),wi) . cross-entropy loss
9: LR = L(ŷi,Φθm(xi),wi) . regularizing loss

10: θcm ← θcm − εPCGrad(LR, LCE) . final update to individual posterior sample
11: end for
12: end for

4.3 Experiments

4.3.1 Datasets

We experiment using three datasets with benchmarks established by Shreshtha et al. [143] for
visual bias mitigation.

Biased MNIST

Biased MNIST [142, 143](see discussion of the differences between the two versions in Sec-
tion 3.6.1) is a challenging benchmark bias dataset for assessing analysis of multiple bias sources.
The dataset encodes contextual biases into a 5 x 5 grid of cells, one of which contains one of
the target MNIST 10 digits. Each image is 160 x 160 pixels. Bias variables include a) digit
size/scale (number of grid cells the digit occupies), b) digit color, c) type of background texture,
chosen from simple patterns such as horizontal, vertical, or diagonal dashes of varying width and
spacing, d) background texture color, e) co-occurring letters from a standard alphabet, and f)
colors of the co-occurring letters. Figure 4.7 shows majority examples from the training set and
uncorrelated examples from the test set; majority examples have digit classes correlated with
specific co-occurring letters, while minority examples have random co-occurring letters.

With pbias = 0.95, each digit co-occurs 95% with each bias source. The test and validation sets
are unbiased with a 50K/10K/10K train/val/test split. For evaluation of implicit bias mitigation
methods, using an unbiased validation set could prematurely stop the overfitting to the training
set (and over-learning of bias variables). Experiments shown in Tables 4.6, 4.7, 4.8, and 4.10, use
the official published validation set for fair comparison against the existing benchmarks; however,
results using a validation set matching the biased distribution in the training set are also shown
in Section 4.4. The validation set is not used to stop the fine-tuning for BayResNet+LRCE , only
for hyperparameter selection for the baseline Bayesian model, BayResNet, and we discuss the
effect of using a biased validation set in Section 4.4.2.
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Figure 4.7: Bias-aligned samples from Biased MNIST training set with pbias = 0.95 (left), and
uncorrelated, bias-conflicting samples from the test set (right).
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Figure 4.8: Samples from the training set of COCO-on-Places where foreground objects are all
correlated with a background category; the “dog" object is paired with the “staircase" back-
ground.

Figure 4.9: COCO-on-Places in-distribution test set samples from the “dog" class, with the same
“staircase" background pairing as in 80% of occurrences in the training set.

COCO-on-Places

Ahmed et al. [2] compose a dataset which correlates background images from the Places [183]
dataset with COCO [106] object foregrounds (Figure 4.8). They also consider several scenarios
to evaluate whether a model has learned invariant features, i.e., core features which are inde-
pendent of biases. Towards these aims, they provide four test sets: in-distribution - background
and foreground correlations matching those that appear in the training set (Figure 4.9), non-
systematic shift - target foregrounds on previously unseen backgrounds (Figure 4.10), systematic
shift - the training distribution backgrounds are used, but never with the training set foreground
(Figure 4.11), and anomaly detection. For our purposes of bias mitigation, we consider the first
three.

Figure 4.10: COCO-on-Places out-of-distribution test set samples from the “dog" class, where
foreground objects are paired with backgrounds from categories which do not appear at all in
the training set.

Each of the 9 foreground objects includes 800 images, and the test set has 100 images per
category. The pairings are shown in Table 4.3. We use the official validation splits from Ahmed
et al. [2].
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Figure 4.11: COCO-on-Places systematic shift test set samples from the “dog" class, where
foreground objects are paired with previously seen but not correlated backgrounds; i.e., not
paired with “staircase" backgrounds.

train validation and test
majority minority validation bgs unseen test bgs

boat...................beach kasbah oast house water tower
plane..................canyon lighthouse orchard waterfall
truck..................building pagoda viaduct zen garden
dog.....................staircase rock arch
zebra..................desert
horse..................crevasse
bird......................bamboo
train...................broadleaf
bus......................ball pit

Table 4.3: The 9 COCO-on-Places foreground object categories (far left) alongside their majority
and minority backgrounds; for the training set, the majority objects on far left in bold are paired
with the background classes in the second column. Note no particular pairing for minority,
validation, and unseen test backgrounds. Non-majority objects are randomly paired with one
of the specified backgrounds.

Biased Action Recognition (BAR)

BAR [119] includes manually selected real-world images of action-background pairs with realistic
bias scenarios. For each of the six action classes, the backgrounds are correlated to the action as
shown in Table 4.4. In addition, BAR is a small dataset as might be found in specific domains
such as medical imaging where larger datasets are difficult to collect. As no split is consistently
used in literature, we randomly define a training and validation set split of 1641/300 with the
official test set of 654 images.

Figure 4.12 shows training samples from the “climbing" action class with bias towards back-
grounds of buildings and other structures; Figure 4.13 similarly shows correlations between the
“racing" action class with bias towards race track backgrounds; and Figure 4.14 shows correla-
tions between the “throwing" action class with bias towards sporting field backgrounds. Each
figure also shows samples from the test set, where a bias-conflicting background is present.

4.3.2 Evaluation metrics

We evaluate model fairness for each test dataset and model in terms of test set classification
accuracy, averaged over the dataset. As each training and test set is constructed differently, we
note the significance of this metric for each set. Firstly, for Biased MNIST, test set samples are
“unbiased" with randomly chosen values for each of the bias variables. As the bias variables are
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train test
climbing 326 105

constructed structures or dry rock snowy mountains, outdoors
diving 520 159

natural bodies of water; sea or lake indoor gyms and pools
fishing 163 42

shore of natural bodies of water; sea
or lake

no water visible; shore background
only

racing 336 132
paved and delineated formal racing
tracks

rough terrain or indoor tracks

throwing 317 85
professional sporting fields urban backgrounds

vaulting 279 131
blue sky spectators or other sport event back-

grounds
Total 1941 654

Table 4.4: The BAR dataset: spurious correlations between background and the training set,
the test set without those correlations, and the image count of each action class.

Figure 4.12: BAR training samples from the “climbing” action class (left) correlated with struc-
tural backgrounds and the test set (right) with mostly outdoor snowy mountains.

Figure 4.13: BAR training samples from the “racing” action class (left) correlated with race
tracks and the test set (right) with more rugged terrain.
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Figure 4.14: BAR training samples from the “throwing” action class (left) correlated with orga-
nized sporting fields and the test set (right) with urban scenes.

co-occurring with pbias = 0.95 for each, a random selection in the test set means that very few
samples with the same pbias as the training distribution exist. Thus, the test set accuracy is also
a measurement of minority subgroup accuracy.

The COCO-on-Places test datasets evaluate performance under specific conditions. The first
set is not helpful for a fairness evaluation perspective, as we expect an in-distribution test set to
match training set performance. The second set with unseen backgrounds with non-systematic
shift – where foreground objects are placed on backgrounds not present in the training set –
tests out-of-distribution performance which can be a different problem than the bias problem
(we discuss the distinction further in Chapter 5). Only the third test set with systematic shift
- foreground objects placed on previously seen backgrounds - constitutes a measurement of
minority subgroup accuracy and truly tests for model fairness.

Finally, in BAR, none of the action-context pairings in the test set appear at all in the training
set. An equivalent setup as the second COCO-on-Places test set, the BAR test set also is
more of an out-of-distribution test than strictly a fairness test; however, in both of these cases,
performance on these datasets still evaluates how well the model correlates the core features
(belonging to the foreground object) with the target class, as a strong correlation can override
any extra features from unseen, out-of-distribution backgrounds.

4.3.3 Group predictive uncertainties

Unlike Biased-Synbols where the bias variable and its effect on model uncertainty can be ob-
served and controlled in isolation, our benchmark datasets are significantly more complex. Bias-
inducing features co-occur, but not always on the same samples (Biased MNIST). Classes can
be severely imbalanced (BAR contains only 163 fishing images compared to its largest class
of 520 images). Furthermore, both COCO and BAR exhibit intra-class diversity; the “racing"
category includes bikes, motorcycles, runners, and a wide variety of vehicles, and COCO objects
occur with different angles and coloring. This diversity also introduces bias into the dataset,
albeit unintentional and unaccounted for. The mean group sample uncertainties extracted from
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Figure 4.15: Mean uncertainties for subgroups of each test dataset, showing bias-induced dis-
crepancies, but also increased uncertainties arising from a variety of other sources, some of which
may be unintentional bias present in the data.

Bayesian ResNet18 models trained on each dataset reflect this as well, as shown in Figure 4.15.

While this entangled experimental setup makes evaluation of the impact of de-biasing methods
more difficult, the scenario is certainly realistic given the state of real-world visual datasets.
Instead of explicitly disentangling the bias sources, our approaches depend on the posterior
estimates adequately expressing their own shortages in information. Thus, class imbalance,
intra-class diversity, unintentional biases, and known biases are considered simultaneously.

4.3.4 Inference

Optimal parameters for cSG-MCMC are determined via grid search (Table 4.5). We fixed
each schedule to 2 cycles and 3 moments sampled per sampling phase. Batch sizes for the
baseline Bayesian models were fixed at 128 for training, and 64 for the fine-tuning procedure
due to memory constraints (32 for BAR due to larger image size). Lines 2-9 of Algorithm 3
are computed batch-wise and averaged, with one update to parameters per batch in Line 10.
Validation accuracy was used to determine stopping points and optimal hyper-parameters for
the baseline Bayesian models and training loss sharpening procedure. Training took place on
several IBM Power 9 dual-CPU nodes with 4 NVIDIA V100 GPUs (see Acknowledgements for
references to Bede and ARC3). We refer readers to the Appendix for the optimal parameters
for all experiments.

Following methodology reported in [143], we reduce the kernel size of the first convolutional layer
of ResNet18 from 7 to 3 for COCO due to the small image size (64 x 64). We also initialize the
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lower bound upper bound increment size
init step size 0.01 0.5 n*2
cycle length 150 650 100
Gaussian noise control parameter α 0.1 0.7 0.2

Table 4.5: Grid search parameters and value ranges with increment size for the hyper-parameter
fine-tuning of the baseline Bayesian models.

priors for the BAR Bayesian ResNet18 models using the weights from a deterministic ResNet18
trained on an ImageNet subset of 100 classes.

The fine-tuning procedure requires keeping a handle on each Monte Carlo posterior sample from
p(θ | D), and back-propagating on each of these posterior samples for every iteration. Thus,
the procedure has time complexity of O(M · N ·K) for M posterior samples, K operations as
required for the network architecture, and N iterations, versus O(N · K) for a deterministic
network.

4.4 Results

4.4.1 Bias mitigation evaluation

For a fair comparison against prior reported results on these datasets, we use a ResNet18
throughout the experiments. We compare against several explicit and implicit mitigation meth-
ods, separated in each table: cost-sensitive learning (UpWt), Group Distributionally Robust
Optimization (gDRO), and predictive group invariance (PGI) for explicit approaches (see Sec-
tion 2.3.3), and the baseline empirical risk minimization (ERM) of a standard deterministic
network, Spectral Decoupling (SD) and OccamNet (Section 2.3.4) for implicit approaches. We
also include our approach from Chapter 3 (EpiUpWt). Two of the methods do not perform any
de-biasing for comparison (1) ERM for a deterministic ResNet18, and (2) a Bayesian ResNet18,
both trained with normal cross entropy loss. As seen in Table 4.6), the fine-tuning procedure
gives competitive results on BAR and competitive performance on Biased MNIST compared
to all implicit mitigation methods except for one. In contrast, the approach struggles with the
COCO-on-Places dataset.

We observe poorer performance on the COCO dataset. Posterior estimate fine-tuning always
increases model fairness when compared to its baseline Bayesian starting point. Yet as displayed
in Table 4.7, the Bayesian ResNet struggles with both the out-of-distribution and unbiased back-
ground test sets, with differences of -3.5% and -2.6% respectively (49.7% versus 53.2%, and 33.0%
versus 35.6%) compared to the deterministic ERM baseline. Building on the BayResNet, the
sharpening thus starts with a more unfair model than methods based on a deterministic ERM
model, giving it a distinct disadvantage. Assuming the discrepancy in performance is somewhat
due to the stochastic nature of the network, BayResNet+EpiUpWt would also have a disad-
vantage but does better on the biased test set than BayResNet+LCE and BayResnet+LRCE ;
nonetheless, as is consistent across datasets, the fine-tuning methods still improve on BayRes-
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Architecture+Method Biased MNIST COCO BAR
Explicit method results

ResNet+UpWt 37.7 ± 1.6 35.2 ± 0.4 51.1 ± 1.9
ResNet+gDRO [134] 19.2 ± 0.9 35.3 ±0.1 38.7 ±2.2
ResNet+PGI [2] 48.6 ± 0.7 42.7 ± 0.6 53.6 ±0.9

Implicit method results
ResNet+ERM 36.8 ±0.7 35.6 ± 1.0 51.3 ±1.9
ResNet+SD [126] 37.1 ± 1.0 35.4 ± 0.5 51.3 ±2.3
OccamResNet [143] 65.0 ±1.0 43.4 ± 1.0 52.6 ±1.9
BayResNet+EpiUpWt [152] 34.6 ±1.1 34.3 ± 0.8 52.1 ±1.5
BayResNet+LCE 34.5 ±1.7 34.8 ± 0.7 53.9 ±0.6
BayResNet+LRCE 38.7 ±0.6 34.8 ±0.6 54.2 ±0.7

Table 4.6: Unbiased test set accuracies comparing BayResNet against current debiasing methods.
First, second and third best results are formatted.

Net+EpiUpWt on the two unbiased test sets.

Regardless, this highlights a weakness of our Bayesian-based approaches. We consider the vast
topic of comparing the predictive performances of deterministic and Bayesian neural networks
out of the scope of this research, but acknowledge that Bayesian neural networks can struggle
to match deterministic benchmarks, which directly affects all Bayesian-based methods including
the fine-tuning approach. We weigh these sacrifices in performance against the added benefit of
quantified prediction uncertainty estimates, which deterministic models cannot produce.

Architecture+Method Biased
Bgs

Unseen
Bgs

Seen, but
Unbiased

Bgs
Explicit method results

ResNet+PGI [2] 77.5 ±0.6 52.8 ±0.7 42.7 ±0.6
OccamResNet+PGI [2] 82.8 ±0.6 55.3 ±1.3 43.6 ±0.6

Implicit method results
ResNet+ERM 84.9 ± 0.5 53.2 ±0.7 35.6 ±1.0
OccamResNet [143] 84.0 ±1.0 55.8 ±1.2 43.4 ±1.0
BayResNet 84.3 ±0.4 49.7 ±1.3 33.0 ±0.2
BayResNet+EpiUpWt [152] 85.8 ±0.1 50.3 ±1.1 34.3 ±0.8
BayResNet+LCE 85.6 ±0.6 51.3 ±0.7 34.8 ±0.7
BayResNet+LRCE 85.7 ±0.4 51.2 ±0.2 34.8 ±0.6

Table 4.7: Accuracies on each three test splits of COCO-on-Places: biased backgrounds (Bgs),
unseen backgrounds, and seen but unbiased backgrounds.

BAR is a counterexample, where the Bayesian baseline outperforms or does at least as well
as the deterministic one across class groups. The most realistic and complex dataset of the
three, BAR is neither texturally simple like Biased MNIST nor synthetically created and low-
resolution like COCO-on-Places. The posterior estimate fine-tuning method performs well on
BAR (Table 4.10), especially considering the large discrepancy in performances across classes
and methods. This discrepancy is present regardless of method. But notably, while various
methods do well in two or three classes, BayResNet+LRCE has good performance across four

70



Chapter 4. Posterior estimate fine-tuning 4.4. Results

ResNet+ERM BayResNet+LCE BayResNet+LRCE
maj/min (∆) maj/min (∆) maj/min (∆)

Digit Scale 87.2/31.3 (55.9) 84.3/27.7 (56.6) 89.9/32.2 (57.7)
Digit Color 78.5/32.1 (46.4) 76.7/28.4 (48.3) 82.6/32.9 (49.7)
Digit Position 74.2/26.4(47.8) 74.5/27.3 (47.2) 88.3/35.4 (52.9)
Texture 76.1/32.4 (43.7) 69.9/29.2 (40.7) 61.3/35.3 (26.0)
Texture Color 41.9/36.3 (5.6) 37.5/32.8 (4.7) 40.0/37.8 (2.2)
Letter 46.7/35.7 (11.0) 42.0/32.3 (9.7) 44.2/37.3 (6.9)
Letter Color 45.7/35.9 (9.8) 45.5/32.1 (13.4) 45.2/37.2 (8.0)
Test Accuracy 36.8 34.5 38.7

Table 4.8: Accuracies on majority (maj)/minority (min) groups and bias-induced accuracy gaps
for each bias variable in BiasedMNIST (pbias = 0.95). Smallest accuracy gaps (∆) for each bias
variable are in bold; note that this does not necessarily mean better minority group accuracy.

Loss Biased MNIST COCO BAR
No sharpening 32.0 ± 1.2 33.0 ± 0.2 52.7 ± 2.6
LR 34.8 ± 2.1 33.3 ± 1.4 53.5 ±1.0
LCE 34.5 ± 1.7 34.8 ± 0.7 53.9 ± 0.6
LCE + k · LR 33.4 ± 0.2 32.3 ± 0.3 53.2 ± 0.4
PCGrad(LR, LCE) 38.7 ± 0.6 34.8 ± 0.6 54.2 ± 0.7

Table 4.9: Ablation study on fine-tuning procedure loss functions showing performance on the
most challenging test sets for each dataset. The performance of the weighted sum of the two losses
demonstrates the importance of PCGrad in minimizing destructive interference. Validation
accuracy was used for optimization in each case.

out of seven classes (and note that although LCE has a smaller majority/minority gap for the
“digit position" bias variable, both the minority and majority group accuracies are higher for
LRCE). For this dataset, perhaps because of its ability to regularize despite the small dataset
size and substantial intra-class diversity, the baseline BayResNet provides a strong starting
point for the fine-tuning. For every class, the two proposed mitigation methods improve on the
BayResNet baseline results.

Table 4.8 shows the majority/minority group accuracies and bias-induced accuracy gap for the
six bias variables in Biased MNIST. Compared to the baseline ERM, the fine-tuned model
decreases the accuracy gaps between majority and minority groups across the dataset for 4 out
of 6 of the biases (texture, texture color, letter, and letter color). While BayResNet+LRCE
results on Biased MNIST are not as competitive, results still demonstrate that the fine-tuning
objective aims at increasing model fairness rather than simply rewarding accuracy gains on
the majority groups. In addition, uncertainty distributions across training sets do not collapse
under LRCE fine-tuning (see subsequent discussion and experiments in Section 4.5), so sample
uncertainty estimates extracted at inference time may still be useful for triage or other purposes
in high-risk scenarios.
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4.4.2 Ablation studies

Objective loss

We consider the impact of LRCE on the multi-task loss in the ablation study shown in Table 4.9.
For weighted loss LCE + k · LR, scalar weight k is chosen using a grid search in range k = 2 to
k = 10 with optimal k being in range 3 to 5 for all datasets with negligible impact for k < 3

and declining accuracy (biased and unbiased sets) for values k > 5; this loss simply adds the
two losses together regardless of conflict, with a fixed weighting term across all samples.

Biased MNIST validation set

To evaluate the effect of using an unbiased validation set on the hyperparameter selection for the
baseline Bayesian model, we generate a second Biased MNIST validation set 1 which contains
the same biases as the training set with pbias = 0.95 for each of the bias variables, and perform
the same grid search on hyperparameters as shown in Table 4.5 using the loss from the new
biased validation set. As in previous experiments, we select the set of parameters for which the
mean validation loss across the posterior estimates is lowest after the final cycle.

The cSG-MCMC Bayesian formulation is not as dependent on validation loss for selecting hyper-
parameters because the cycle lengths are fixed for each experiment; the cycle length determines
the learning rate step size and rate of decrease. We find strong evidence of overfitting to the
training set irrespective of validation set. In fact, we arrive at the same optimal hyper-parameters
as when using the biased validation set, using the validation loss criteria. Comparing the biased
validation set experiments from Section 4.4 and experiments that we perform using the generated
unbiased validation set, we find that the training accuracy tops 99.9% in both cases. The
validation accuracy for the optimal models are 94.7% (biased validation set) and 35.0% (unbiased
validation set). This illustrates to what extent the model is learning the training set. As a
result, the use of a biased versus unbiased validation set has little impact on our method. We
hypothesize that the change in dataset could have a stronger detrimental impact on the other
de-biasing methods in published benchmarks.

4.5 Hypotheses related to the regularizing loss

Each posterior estimate sample θm which results in an incorrect prediction (Φθm(xi)) 6= yi)
has a larger cross-entropy loss than one with a correct prediction. Applying the corresponding
gradient to a posterior estimate sample moves it such that the true class likelihood is higher
for that sample. The experimental results for Bayesian models with LCE fine-tuning confirm
this; the fine-tuned models always perform better in terms of accuracy and fairness compared
to those without any fine-tuning. However, we also find that adding in the regularizing loss LR
using PCGrad further improves the performance.

As the effectiveness of LR is counter-intuitive, particularly when the sample predictive mean
1Dataset generation script adjusted from: https://github.com/erobic/occam-nets-v1/tree/master/datasets
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Figure 4.16: This figure shows the mean minority subgroup accuracies of each bias variable in
the training, validation, and test sets of Biased MNIST for the Bayesian model fine-tuned with
PCGrad(LCE , LR) loss (magenta markers), and the same model fine-tuned with LCE loss (green
markers). The length of the black lines joining the pair of markers for each bias variable represent
the disparity in mean minority subgroup accuracies between training and validation sets. An
overfitting model has longer black lines, and a test set accuracy (circle markers) further from
the train set accuracy. These results suggest that LCE overfits more than PCGrad(LCE , LR).

disagrees with the ground truth target, we explore two hypotheses as to why PCGrad(LCE , LR)

performs better than LCE alone. To test these hypotheses we use Biased MNIST, since the bias
variables are relatively more controlled and isolated than in BAR and COCO-on-Places due to its
synthetic nature and the restricted color scheme and feature placement. For these experiments,
we explicitly access the bias variables and their values on the training, validation, and test sets
to evaluate the effect of the two losses. The bias variable labels are used for evaluation only,
and do not affect the implicit nature of the bias mitigation.

4.5.1 Hypothesis 1: The model over-fits to minority samples

Given that the loss is weighted by input uncertainty, we hypothesize that the second loss LR
could be preventing the model from overfitting to the high-uncertainty samples, in particular due
to the PCGrad algorithm. For each mini-batch, one gradient is selected randomly for projection
onto the normal of the other. This introduces stochasticity into the process. Furthermore,
PCGrad only applies for cases of destructive interference, meaning that if LR and LCE do not
conflict, the gradients are left as is. This ensures that in these cases, LR does not interfere with
LCE . PCGrad can only direct the posterior estimate sample gradient away from the ground
truth when the prediction is incorrect, the loss gradients destructively interfere, and the LCE
gradient is randomly chosen to project onto the normal of the LR gradient.

We test this hypothesis by comparing the minority subgroup accuracies for fine-tuning the same
base model using LCE alone versus PCGrad(LCE , LR). A good model is expected to have similar
training, validation, and test set accuracies for the minority groups, whereas an overfitting model
will have high minority group training accuracy, but perform worse for the minority groups of the

74



Chapter 4. Posterior estimate fine-tuning 4.5. Hypotheses related to the regularizing loss

Figure 4.17: This figure shows the mean uncertainties (for minority and majority subgroups of
the training set) of each bias variable in Biased MNIST after fine-tuning. The green markers are
for the Bayesian model fine-tuned with PCGrad(LCE , LR) loss, and the magenta for the same
model fine-tuned with LCE loss. The length of the black lines joining the pair of markers for
each bias variable represent the disparity in mean uncertainties; and the number above each pair
is the percentage difference between the baseline Bayesian model (mean subgroup uncertainties
before any fine-tuning, always higher for minority subgroups) compared to after fine-tuning.

validation and test sets. We note that for each experiment run, as in all previous experiments,
validation loss over the whole validation set is used to indicate the fine-tuning stopping point.
Figure 4.16 shows evidence that the fine-tuned model with LCE alone displays some overfitting
to the training set minority samples. In contrast, the model with PCGrad(LCE , LR) is a better
fitting model.

4.5.2 Hypothesis 2: Bias-conflicting sample uncertainties are being driven
to zero

As fine-tuning with LCE takes place, the input sample-wise loss is weighted by the sample
epistemic uncertainty. High uncertainty input samples result in larger updates to the posterior
estimate samples θm, sharpening the distribution around the target output. A sharpened distri-
bution has lower variance, or lower sample epistemic uncertainty. We hypothesize that perhaps
as fine-tuning progresses, the uncertainties of the minority subgroup samples are being driven
to zero, so that over time the model no longer pays attention to them as their loss contributions
become minimal due to the weighting function in Equation 4.2. PCGrad(LCE , LR) may help to
maintain the relative gaps between the minority and majority groups.

To test this hypothesis, we compute the mean epistemic uncertainties for minority and majority
subgroups of the training set during the fine-tuning iterations using LCE alone. As expected,
the minority group uncertainties for all bias variables begin higher than those for the majority.
We then compute the gaps between the two subgroups, and compare it with the gaps when fine-
tuning the same base model with PCGrad(LCE , LR). Figure 4.17 2 shows that in general, LCE

2The comparison gaps table for LR alone are shown in the Appendix for reference.
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actually causes the gap between minority and majority subgroup uncertainties to increase more
than PCGrad(LCE , LR). This observation does not support the hypothesis that using LCE alone
causes bias-conflicting sample uncertainties and bias-aligned sample uncertainties to converge.
In addition, the gaps for the PCGrad fine-tuned model still increase compared to the baseline
Bayesian model for 6 out of 7 bias variables (see positive percentage values in Figure 4.17),
indicating that neither loss drives the minority group uncertainties to zero. For both fine-
tuning losses, the relative differences between minority and majority sample uncertainties are
still preserved.

4.6 Discussion and conclusion

The method presented in this chapter allows the Bayesian neural network to freely learn all
features, then implicitly adjusts the weighting of those features for posterior estimate samples
which give incorrect predictions during a fine-tuning process. The degree of loss update is
weighted per input sample by the sample-wise epistemic uncertainty, encouraging a stronger
focus on the minority group samples and resulting in a fairer model.

Artificially adjusting the posteriors of Bayesian deep neural networks is not a foreign concept.
As presented by Wenzel et al. [171], the true Bayesian posteriors of deep neural networks are
rarely used in practice. Rather, tempered or cold posteriors are widely found to perform better.
Tempered posteriors are equivalent to over-counting the data by a factor of 1/T for temperature
scalar T and re-scaling the prior to p(θ)1/T . In contrast, the true Bayes posterior corresponding
to T = 1 usually gives sub-optimal performance.

We note, however, that our proposed fine-tuning procedure is applied only to the estimated
posterior derived from MC sampling, not to the true Bayes posterior. The MC samples provide
a finite, numerical handle on model inference. Furthermore, running the fine-tuning procedure
with a sampling size M of up to 20 indicates that increasing the MC sample size for a more
accurate posterior estimate has negligible impact on the performance. Leibig et al. [100] similarly
report that a fixed M < 10 provides a meaningful approximation of the posterior at low cost.

Our posterior estimate fine-tuning method adds to the body of work on implicit bias mitiga-
tion by exploiting the relationship between minority samples and epistemic uncertainties. We
have demonstrated competitive performance on the BAR dataset, and similar results as other
bias mitigation methods on COCO-on-Places and Biased MNIST. Furthermore, additional ex-
periments show that for the fine-tuning procedure, a regularized loss outperforms a standard
cross-entropy loss by itself. Some evidence indicates that the model with cross-entropy loss alone
is more prone to over-fitting to the high uncertainty inputs, but the exact reasons and effect of
the gradients of high-uncertainty samples on the posterior estimate for other samples is still not
certain. Further exploration is also required to better understand when and why Bayesian neural
networks struggle with respect to deterministic networks within the context of bias mitigation,
and why the performances of mitigation methods vary across datasets. While our selected bench-
mark datasets are realistically complex, perhaps other datasets with a clearer disentangling of
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features and correlations within training and test datasets would support additional fairness
evaluation, which we leave for future consideration.
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Chapter 5

Extension to polyp segmentation
generalisability

5.1 Overview

In previous chapters, we evaluated our bias mitigation methods on benchmark vision datasets
for classification tasks. In this chapter, we move to a real-world imaging dataset with complex
features. The biases are not well-identified, and while being potentially the most diverse labelled
dataset of its kind, it is still small compared to benchmark datasets. All the existing published
research indicates that the dataset is particularly challenging. We use this dataset to explore
the potential of our methods to improve generalisability across various minority subgroups.

Implicit bias mitigation methods have enormous potential in medical imaging applications, where
implications of discriminatory models can be life-threatening and many regions of the world
do not have adequate access to trained professionals. A colonoscopy is a common procedure
performed to check for polyps, growths which can become cancerous, in the colon. The problem
of automated polyp segmentation is extremely relevant for aiding clinicians during endoscopy
procedures. However, it is also challenging, due to the diverse nature of the images, and the
difficulty of collecting large datasets for training models. We explore the applicability of the
novel methods presented in Chapters 3 and 4 to this problem for improved generalisability on
underrepresented populations and subgroups. Towards this end, we also extend our methods
from classification to image segmentation.

While several previous studies have devised methods for segmentation of polyps, most of these
methods are not rigorously assessed on multi-center datasets. Variability due to appearance
of polyps from one center to another, difference in endoscopic instrument grades, and acqui-
sition quality, result in methods with good performance on in-distribution test data but poor
performance on out-of-distribution or underrepresented samples. Discriminatory models have
serious implications, including misdiagnoses and perpetuating social and racial inequalities for
underrepresented populations. As these populations tend to be already disadvantaged in terms
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of availability of medical care, these issues pose a critical challenge to the clinical adaptation of
intelligent models.

We demonstrate the potential of our two Bayesian uncertainty-aware mitigation approaches to
improve generalisability without sacrificing state-of-the-art performance on a challenging multi-
center polyp segmentation dataset (PolypGen) with different centers and image modalities. Part
of this chapter’s contents are published in [151].

5.2 Background

5.2.1 Clinical motivation and context

Colorectal cancer (CRC) is the third most common cancer worldwide and the first cause of death
in developed countries [49], with early screening and removal of precancerous lesions (colorectal
adenomas, growths known as “polyps”) resulting in longer survival rates. While not all polyps
lead to cancer, all colorectal cancers begin with the growth of polyps that eventually become
malignant. Once present, cancerous polyps can multiply and spread, making their early accurate
detection and analysis a key factor for combating CRC.

Colonoscopy is the common procedure by which a flexible fibre-optic tube is used to examine
the colon, to look for and/or remove polyps. While surgical removal of polyps (polypectomy)
is a standard procedure during colonoscopy, detecting the polyps and their precise delineation
from different angles is challenging, especially for sessile serrated polyps. Serrated polyps are
named due to their saw-toothed appearance under a microscope, and vary in size, structure, and
presentation (see Figure 5.1) with a reported miss rate by humans of 27% [182]. Over the past
decade, advanced computer-aided methods and most recently machine learning methods have
been explored by various researchers. However, the adaptation of these technologies into clinical
settings has still not been fully achieved. One of the main reasons is issues with generalisabil-
ity [6], as most existing techniques are built and adapted using carefully curated datasets - where
polyps are clearly visible in a clean, non-obstructed environment. This is not representative of
the majority of video footage taken during a colonoscopy.

Furthermore, polyp colonoscopy datasets are difficult to collect, and curated datasets are usually
small and subject to sampling and population biases. Some databases for endoscopy images [118,
150] lack pixel-level ground truth annotations. Others [115, 5] including EndoAtlas 1 have
adequate annotations, but include only a limited number of images from at most a few collection
centers. These issues contribute to the difficulty in studying and evaluating the generalisability
problem for intelligent models.

Recent literature demonstrates how intelligent models can be systematically unfair and biased
against certain subgroups of populations. In medical imaging, the problem is prevalent across
various image modalities and target tasks; for example, models trained for lung disease predic-
tion [139], retinal diagnosis [24], cardiac MR segmentation [127], and skin lesion detection [1,

1http://www.endoatlas.org/
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Figure 5.1: Sample polyps from [110] showing some of the challenging conditions under which
polyp segmentation during a colonoscopy must occur: (a) low quality or low resolution images
with varying lighting, (b) varying shapes and textures of polyps, (c) only subtle differences
between the polyps and background, and (d) presence of irrelevant artifacts.

102] are all subject to biased performance against one or a combination of underrepresented gen-
der, age, socio-economic, and ethnic subgroups. In colonoscopy specifically, variations in polyp
morphology have been observed for varying ages [175], geography, race, and ethnicity [104, 28,
79]. This, and the scarcity of literature exploring bias mitigation for polyp segmentation in
particular, strongly motivate the need for development and evaluation of mitigation methods
which work on diverse, realistic colonoscopy datasets such as PolypGen [4] (Section 5.4.1).

Convolutional neural networks have become crucial in data-driven approaches to polyp segmen-
tation using deep learning. In particular, many methods in recent literature are adaptations
of the encoder-decoder U-Net [131] architecture, introduced for cell segmentation. Mahmud et
al. [110] identify several limitations of the U-Net when applied to polyp segmentation such as se-
mantic information lost in the typical skip connections, and propose PolypSegNet with modified
skip layers and new modules designed for aggregating various scales of feature representations
from all the encoder levels. Yeung et al. [176] propose Focus U-Net, a U-Net variant with gated
attention to encourage selective learning of polyp features over the background and a composite
loss for dealing with the spatial imbalance.
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Others directly address the problem of differing polyp sizes by using off-the-shelf or modified
state-of-the-art multi-scale feature pruning methods from the vision literature, such as atrous-
spatial pyramid pooling in DeepLabV3 [30] or high-resolution feature fusion networks like HR-
Net [146]. Similarly, MSRFNet [148] uses feature fusion networks between different resolution
stages to preserve important features at each level.

5.2.2 Generalisability challenges

Studies [79, 6] have found that methods trained on data from specific medical centers do not
generalise well on unseen center data or changes in modality. Colonoscopy data is collected as
sequence data, or frames sampled from video. Datasets typically include individual frames of
polyps, whereas in a clinical setting, intelligent models should be able to process sequence data.
Ali et al. [6] show large performance gaps (drops in accuracy of nearly 20%) when models trained
on single frames are tested on sequence data.

Generally speaking, out-of-distribution (OOD) generalisation and bias mitigation are often con-
sidered as separate problems in the literature, although they result in similar undesired out-
comes. While in the bias problem formulation, models wrongly correlate one or more spurious
(non-core) features with the target task, the out-of-distribution problem states that test data is
drawn from a separate distribution than the training data. Some degree of overlap between the
two distributions in the latter formulation exists, which in both formulations should include the
core features, the features directly associated with the target task. While the bias problem is
associated with fairness and ethical issues, the OOD problem is associated with model applica-
bility and performance. Regardless of the perspective, the two problems have clear similarities,
and whether labeled as “discriminatory" or “poorly performing", both result in models which
struggle to generalise for certain populations.

In the OOD literature, many works focus on OOD detection, through normal or modified softmax
outputs [69], sample uncertainty thresholds from Bayesian, ensemble, or other models [113, 82,
27], and distance measures in feature latent space [60]. Other approaches tackle the more difficult
problem of algorithmic mitigation through disentangled representation learning, architectural
and learning methods, and methods which optimise for OOD generalisability directly [140].

We consider the generalisability problem for polyp segmentation and specifically, the challenges
posed by out-of-distribution samples. Samples from different geographical regions and samples of
the more challenging sequence modality are both found in PolypGen, a recent multi-centre polyp
dataset [4]. In this chapter, we: 1) adapt the implicit bias mitigation strategies in Chapter 3 and 4
from classification to a segmentation tasks, and 2) evaluate the suitability of these approaches on
PolypGen with three separate test sets which have been shown to be challenging generalisation
problems.

Our experiments demonstrate that our methods are comparable and in many cases improve the
performance compared to the baseline state-of-the-art segmentation method while simultane-
ously decreasing performance discrepancies between different test splits.
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Figure 5.2: DeepLabV3+ from [32, 31], the encoder-decoder architecture with atrous convolu-
tions at different rates (filter step-sizes) for capturing multi-scale contextual information and
more effective boundary delineation.

5.3 Method

5.3.1 Semantic segmentation framework

Semantic segmentation is the computer vision problem whereby each pixel of an image is classi-
fied into a class. For polyp segmentation, this results in a dense pixel-wise binary segmentation
map where each pixel is either classified as background (non-polyp) or foreground (polyp). In our
approach we use DeepLabV3+ [31] as a baseline model as it is reported to give state-of-the-art
performance on the PolypGen dataset [4].

DeepLabV3 [32] (Figure 5.2) employs dilated or atrous convolutions that widen the field-of-view
of each convolutional filter. An atrous filter operates on the input with stride or gaps, such that
the field of view is larger than the filter size. The feature maps from the atrous convolutions
with various dilation rates are then combined via a form of image pooling. This design allows for
better capture of multi-scale features. DeepLabV3+ improves on this architecture by combining
the atrous convolutions and spatial pooling from DeepLabV3 with an encoder-decoder architec-
ture. The encoder-decoder architecture for semantic segmentation has been widely explored and
shown to be effective in medical image analysis. DeepLabV3+ takes the original DeepLabV3
architecture to create an encoding from the input, then decodes this with shortcut connections
for more precise object delineation and spatial understanding at multiple scales.

Ali et al. [4] present the performance of multiple choices of encoder for DeepLabV3+ includ-
ing ResNet50 and ResNet101, and MobileNet combined with DeepLabV3 and DeepLabV3+
variants. DeepLabV3+ with a ResNet50 encoder architecture results in the best-performing
results for general accuracy on the published challenge test set. Thus, we build our Bayesian
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implementation from this network.

5.3.2 Bayesian DeepLabV3+

We apply a probabilistic model assuming a Gaussian prior on all trainable weights (both encoder
and decoder) that are updated to the posterior using the training dataset. For the Bayesian
network with parameters θ, training data with ground truth segmentation masks D = (X,Y ),
posterior p(θ | D), and input image xi, the predictive posterior distribution can be written as:

p(yi | D,xi) =

∫
p(yi | θ,xi)p(θ | D)dθ (5.1)

As in previous chapters, we choose to approximate the posterior using stochastic gradient Monte-
Carlo sampling MCMC (SG-MCMC [170]) with the cyclical learning rate schedule introduced
in [179]. Stochastic gradient over mini-batches includes a noise term approximating the gradient
over the whole training distribution.

The DeepLabV3+ encoder backbone computes the features for the model, and the decoder
classifier component returns a binary mask. The typical learning rates for these components with
Stochastic Gradient Descent (SGD) are between 0.1 and 0.001, with the backbone learning rate
a factor of 10 smaller than that of the classifier. For the Bayesian formulation, we fix the starting
(maximum) learning rate for the cyclical schedule with the same proportions; for example, an
experiment with initial backbone learning rate lrb = 0.001 has initial classifier learning rate
lrc = 0.01. Thus, for a single batch using cross entropy loss (LCE), the computation includes
the cumulative losses of both encoder and decoder and the loss noise term from the cSG-MCMC
approximation.

The final estimated posterior of the Bayesian network, Θ = {θ1, ...θM}, consists of M moments
sampled from the posterior taken during the sampling phases of each learning cycle. With
functional model Φ representing the neural network, the approximate predictive mean µi for
one sample xi is:

µi ≈
1

M

M∑
m=1

Φθm(xi) (5.2)

We can derive a segmentation prediction mask ŷi from µi by taking the maximum output be-
tween the foreground and background classes at each spatial location. The predictive uncertainty
mask corresponding to this prediction (Equation 5.3) represents the model uncertainty for the
predicted segmentation mask, the pixel-wise standard deviation of the predictive distribution
for that sample.

σi ≈

√√√√ 1

M

M∑
m=1

(Φθm(xi)− µi)2 (5.3)
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Figure 5.3: Pixel-wise weighting of cross entropy (CE) loss contribution based on predictive
uncertainty maps for each training sample; the model is encouraged to focus on regions for
which it is more uncertain.

5.3.3 EpiUpWt: uncertainty-weighted cross entropy loss for segmentation

We add the uncertainty-weighted sample loss from Chapter 3, modified for our segmentation
problem (Figure 5.3). Consider input xi with dimensions (512, 512, 3). Instead of a scalar
uncertainty value per input, and a scalar weighting value (recall σi and wi in Equation 3.13
and 3.14), we consider the uncertainty map σi whose spatial dimensions are equal to those of
the input image with a channel each for foreground and background (512, 512, 2). σi,yi refers
to the uncertainties for the ground truth class for each pixel, an element-wise indexing of σi by
yi. The dimensions of the weighting map are thus (512, 512).

wi = (1.0 + σi,yi)
κ (5.4)

LCE = L(yi,Φ(xi),wi) = − 1

512 ∗ 512

∑
X,Y

(
wi ·

∑
C

yi · log(Φ(xi))

)
(5.5)

In Equation 5.4, σi,yi contains the predictive uncertainties of the ground truth class for each pixel
in the input image. The sum and exponent operations are computed pixel-wise. In Equation 5.5,
yi is the one-hot encoded ground truth map with dimensions (512, 512, 2). The inner summation
sums the predicted likelihood of the ground truth classes (C) for each pixel, foreground and
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background, while the outer summation operates over the whole image domain (X,Y being the
set of all possible pixel values) to produce one single loss value per input.

Note that Stochastic Gradient Descent is also used in the original deterministic DeepLabV3+,
with reduction over the whole image. Validation metrics were used to determine the optimal κ
value.

5.3.4 LRCE: Fine-tuned posteriors for segmentation

We then experiment with the fine-tuned posterior estimates from Chapter 4. The loss for each
posterior estimate is computed as in Equation 5.5, with Φθm replacing Φ as in Equations 4.3
and 4.4. We consider LRCE instead of LCE for the fine-tuning due to its superior performance
in previous experiments, and fine-tune on top of the BayDeepLabV3+EpiUpWt model. Due
to the memory requirements of DeepLabV3+ with ResNet50 backbone (38.8M trainable pa-
rameters), we used several strategies to make the fine-tuning more efficient. Firstly, taking the
BayDeepLabV3+EpiUpWt posterior estimates, we iterated through each estimate and saved
the mean prediction maps and uncertainty maps for each of the training images. These could
be loaded from disk for the fine-tuning phase. Secondly, for each forward and backward pass
through the posterior estimates, the most up-to-date version of each moment’s weights is saved
to (and subsequently loaded from) disk.

We found that decreasing the number of moments used for the posterior estimate to M = 3 has
a negligible effect on performance when posterior samples are deliberately chosen at the largest
possible intervals of the sampling phase as shown in Figure 5.4.

5.4 Experiments

5.4.1 Datasets

PolypGen [4] is an expert-curated polyp segmentation dataset comprising of both single frames
and sequence frames (frames sampled at every 10 frames from video) from over 300 unique
patients across six different medical centers (Figure 5.5). Each of the 3762 annotated polyps are
delineated and confirmed by six senior gastroenterologists. The acquisition, ethical approval,
and patient consent for the data was handled by each medical center separately, and relevant
information can be found in Table 2 of [4].

The natural data collection format is video from which single frames and sequence data are
hand-selected. The single frames are clearer, better quality, and with polyps in each frame
including polyps of various sizes (10k to 40k pixels), and also potentially containing additional
artifacts such as light reflections, blue dye, partial view of instruments, and anatomies such
as colon linings and mucosa covered with stool, and air bubbles (Fig. 5.6). In contrast, the
sequence frames are more challenging and contain more negative samples (without any polyp
present) and more severe artifacts, which often occur in colonoscopy. Our training set includes
1449 single frames from five centers (C1 to C5) and we evaluate on the three tests sets used
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Figure 5.4: cSG-MCMC with a choice of smallerM for comparable performance and uncertainty
estimates and lower resource requirement: selecting moments with maximized intervals during
the sampling phase. Note that using this sampling size under the regular criteria would mean
sampling in the last three epochs of the sampling phase.

dataset image count modality center(s)
training C1-5-SIN 1449 single C1-5

testing
C6-SIN 88 single C6
C1-5-SEQ 124 sequence C1-5
C6-SEQ 432 sequence C6

Table 5.1: The PolypGen training and three test set image counts, modalities, and collection
centres.

for generalisability assessment in the literature [6, 4] (Figure 5.6). We create a validation set, a
randomly selected 10% split of the training data, but with non-overlapping patients.

The first of the three test datasets (Table 5.1) has 88 single frames from an unseen center C6 (C6-
SIN), and the second has 124 frames from seen centers C1-5; however, these are more challenging
as they contain both positive and negative samples with different levels of corruption that are not
as present in the curated single frame training set. Here, the first test dataset (C6-SIN) comprises
of hand selected images from the colonoscopy videos while the second test dataset (C6-SEQ)
contains a sequence of images obtained by sampling one from every 10th frame of video, which
represents most closely the actual colonoscopy data. The third test dataset includes 432 frames
from sequence data also from unseen center C6 (C6-SEQ). As no C6 samples nor sequence data
are present in the training data, these test sets present a challenging generalisability problem. 2.

2C1-5-SEQ and C6-SEQ data are referred to as DATA3 and DATA4, respectively, in [6]
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Figure 5.5: The 2D t-SNE embedding of the PolypGen training set as shown in [6] from deep
autoencoder extracted features: for each of the six centers (C1 to C6) from which data was
collected, 25 random images are displayed in a grid as exemplars, showing the diversity of features
across the centers with positive (polyp) and negative (no polyp present) samples, presence of
dyes, different endoscopy locations, and source modality (sequence vs. single frame).

5.4.2 Inference

Training was carried out on several IBM Power 9 dual-CPU nodes with 4 NVIDIA V100 GPUs.
Validation metrics were used to determine optimal models for all experiments with hyper-
parameters chosen via grid search.

Perhaps due to some frames containing very large polyps with high uncertainties, we found that
the gradients of Bayesian models with uncertainty-weighted loss (BayDeepLabV3+EpiUpWt)
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C1 C2 C3 C4 C5

Sequence

Figure 5.6: Samples from the PolypGen dataset; from (top) C1-5 single frames and (bottom) C1-
5-SEQ; (top) highlights the data distribution of each center (C1-C5), which consists of curated
frames with well-defined polyps; (bottom) demonstrates the variability of sequential data due to
the presence of artifacts, occlusions, and polyps with different morphology.

occasionally exploded during the second learning cycle. Clipping the absolute gradients at 1.0
for all weights prevented this issue. The fine-tuning method did not have this problem, perhaps
due to each posterior estimate receiving updates separately. All final Bayesian DeepLabV3+
(BayDeepLabV3+) models had 2 cycles, a cycle length of 550 epochs, noise control parameter
α = 0.9, and an initial learning rate of 0.1, parameters which were determined via grid search.
For BayDeepLabV3+EpiUpWt, we found optimal results with de-biasing tuning parameter κ
= 3. Posterior estimates for BayDeepLabV3+ and BayDeepLabV3+EpiUpWt included 6 and
4 samples per cycle, respectively. For BayDeepLabV3+EpiUpWt+LRCE , optimal results were
found with an initial learning rate of 0.01.

5.5 Results

5.5.1 Predictive uncertainties

The predictive uncertainty masks have the same dimensions as the prediction masks. Examples
of some masks from DeepLabV3+EpiUpWt, alongside the original frame, ground truth mask,
and predicted segmentations, are shown in Figure 5.7 and 5.10, with further examples in the
Appendix. They provide insight into the challenging parts of the laparoscopy scene, and can be
of use to users in clinical settings.

5.5.2 Generalisability evaluation

We evaluate the current state-of-the-art deterministic model, DeepLabV3+ with ResNet50 en-
coder using publically available checkpoints 3 on the three test sets, and compare against:

3https://github.com/sharib-vision/PolypGen-Benchmark, last accessed July 2024
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Figure 5.7: Five frames from Center 6 sequence data, showing the original frame (far left),
the ground truth segmentation mask (middle left), the prediction of the Bayesian DeepLabV3+
(middle right), and the corresponding predictive uncertainty mask after the first cycle (far
right). For the first two rows showing particularly large polyps, the Bayesian model shows high
uncertainty for the areas with unusual appearance such as the recessed portions and poorly lit
sections.
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the baseline Bayesian model BayDeepLabV3+, BayDeepLabV3+EpiUpWt with uncertainty-
weighted loss, and BayDeepLabV3+LRCE with a fine-tuned posterior estimate. We report

Figure 5.8: Performance gaps of the three models (state-of-the-art deterministic DeepLabV3+,
BayDeepLabV3+, BayDeepLabV3+EpiUpWt, and BayDeepLabV3+EpiUpWt+LRCE - re-
ferred to as BayDeepLabV3+LRCE on the figure) between the three different test sets; (top)
comparing performance on single vs. sequence frames from out-of-distribution test set C6 (C6-
SIN vs. C6-SEQ), and (bottom) sequence frames from C1 - C5 vs. unseen C6 (C1-5-SEQ vs.
C6-SEQ). The subtext above bars indicates the percent decrease in performance gap compared to
SOTA; a larger percent decrease and shorter vertical bar length indicate better generalisability.

results for the following metrics:

• Jaccard index (JAC or IoU) measures the intersection over union of the two segmen-
tation maps.

• Dice coefficient (F1 Score) is the harmonic mean of precision and recall, an equal
weighting of precision and recall. For two segmentation maps, this is equivalent to twice
the intersection divided by the union.

• Fβ-measure with β = 2 (F2) is the weighted harmonic mean of the precision and recall,
with a higher weighting on recall.

• Positive predictive value (PPV) is the precision, the ratio of true positives over all

90



Chapter 5. Polyp segmentation 5.5. Results

D
at
as
et

M
et
h
od

JA
C

D
ic
e

F
2

P
P
V

R
ec
al
l

A
cc
u
ra
cy

C
6-
SI
N

SO
T
A

0.
73
8±

0.
3

0.
80
6±

0.
3

0.
79
5±

0.
3

0.
91

2±
0.
2

0.
79
3±

0.
3

0.
97

9±
0.
1

B
ay
D
ee
pL

ab
V
3+

0.
72
1±

0.
3

0.
79
0±

0.
3

0.
80

9±
0.
3

0.
83
6±

0.
2

0.
84

3±
0.
3

0.
97
7±

0.
1

B
ay
D
ee
pL

ab
V
3+

E
pi
U
pW

t
0.
74
0±

0.
3

0.
81

0±
0.
3

0.
80
4±

0.
3

0.
90
3±

0.
1

0.
80
6±

0.
3

0.
97
7±

0.
1

B
ay
D
ee
pL

ab
V
3+

E
pi
U
pW

t+
L
R
C
E

0.
75

9±
0.
4

0.
86

7±
0.
2

0.
81

7±
0.
3

0.
91

7±
0.
3

0.
82

0±
0.
3

0.
97
8±

0.
1

C
1-
5-
SE

Q

SO
T
A

0.
74
7±

0.
3

0.
81

9±
0.
3

0.
82

8±
0.
3

0.
87
7±

0.
2

0.
85
2±

0.
3

0.
96
0±

0.
0

B
ay
D
ee
pL

ab
V
3+

0.
70

8±
0.
3

0.
77
8±

0.
3

0.
80

5±
0.
3

0.
78
4±

0.
3

0.
88

5±
0.
2

0.
96
3±

0.
0

B
ay
D
ee
pL

ab
V
3+

E
pi
U
pW

t
0.
74
1±

0.
3

0.
81
0±

0.
3

0.
81
5±

0.
3

0.
88
8±

0.
2

0.
83
6±

0.
3

0.
96
1±

0.
0

B
ay
D
ee
pL

ab
V
3+

E
pi
U
pW

t+
L
R
C
E

0.
75

8±
0.
3

0.
81

7±
0.
2

0.
81
5±

0.
4

0.
92

7±
0.
2

0.
85
6±

0.
3

0.
96

5±
0.
1

C
6-
SE

Q

SO
T
A

0.
60
8±

0.
4

0.
67
6±

0.
4

0.
65
3±

0.
4

0.
84

5±
0.
3

0.
71
9±

0.
3

0.
96
4±

0.
1

B
ay
D
ee
pL

ab
V
3+

0.
62
2±

0.
4

0.
68
2±

0.
4

0.
66

9±
0.
4

0.
80
2±

0.
3

0.
76
4±

0.
3

0.
96
5±

0.
1

B
ay
D
ee
pL

ab
V
3+

E
pi
U
pW

t
0.
63
7±

0.
4

0.
69

7±
0.
4

0.
68

2±
0.
4

0.
85
8±

0.
3

0.
74
1±

0.
3

0.
96
7±

0.
1

B
ay
D
ee
pL

ab
V
3+

E
pi
U
pW

t+
L
R
C
E

0.
64

0±
0.
2

0.
72

5±
0.
2

0.
66
5±

0.
3

0.
90

6±
0.
2

0.
80

9±
0.
3

0.
97

0±
0.
1

T
ab

le
5.
2:

E
va
lu
at
io
n

of
th
e
st
at
e-
of
-t
he
-a
rt

de
te
rm

in
is
ti
c
D
ee
pL

ab
V
3+

,
B
ay
D
ee
pL

ab
V
3+

,
an

d
ou

r
pr
op

os
ed

B
ay

D
ee
pL

ab
V
3+

E
pi
U
pW

t,
an

d
B
ay
D
ee
pL

ab
V
3+

E
pi
U
pW

t+
L
R
C
E
,s
ho

w
in
g
m
ea
n
an

d
st
an

da
rd

de
vi
at
io
ns

ac
ro
ss

th
e
re
sp
ec
ti
ve

te
st

da
ta
se
t
sa
m
pl
es
.
F
ir
st

an
d
se
co
nd

be
st

re
su
lt
s

fo
r
ea
ch

m
et
ri
c
pe

r
da

ta
se
t
ar
e
fo
rm

at
te
d.

91



5.5. Results Chapter 5. Polyp segmentation

positive predictions. PPV in particular has high clinical value as it indicates a more
accurate delineation for the detected polyps.

In addition, we report recall (Rec) and mean pixel-wise accuracy (Acc). Mean accuracy is less
indicative of successful polyp segmentation since the majority of each frame is the non-polyp
background class. Recall is meaningful from a clinical perspective, as too many false positives
can cause inconvenience to endoscopists during a colonoscopy and hence can hinder clinical
adoption of methods.

Figure 5.8 illustrates that the BayDeepLabV3+EpiUpWt matches SOTA performance across
most metrics and various test settings, even outperforming in some cases; simultaneously, the
performance gaps between different test sets representing challenging features (1) image modal-
ities (single vs. sequence frames) and (2) source centers (C1 - C5 vs. C6) are decreased.
Simply using the Bayesian version of a deterministic model improves the model’s ability to gen-
eralise, yet comes with a sacrifice in performance across metrics and datasets. Our proposed
uncertainty-weighted loss achieves better generalisability without sacrificing performance (also
see Table 5.2).

We note performance superiority to SOTA especially on C6-SEQ, with an approximately 3% im-
provement on Dice. We can also observe slight improvement on PPV for test sets with sequence
(both held-out data and unseen centre data). Finally, we note that in clinical applications, the
uncertainty maps for samples during inference could be useful for drawing clinicians’ attention
towards potentially challenging cases, increasing the likelihood of a fairer outcome.

The fine-tuning method, BayDeepLabV3+EpiUpWt+LRCE metrics are competitive, particu-
larly for PPV across all test datasets, but do not decrease performance gaps between test
datasets as much as the EpiUpWt model alone. We hypothesize by observing the rapid de-
crease in training and validation loss patterns during the fine-tuning procedure that there may
be some overfitting to the training data.

5.5.3 Bias mitigation evaluation

The three available test sets allow for generalisability assessment, but strictly speaking, are not
bias scenarios since data from Center 6 and sequence modality images are completely absent
from the training set. While we can assume that the core features which describe both classes
(background and polyp foreground) must be present across all centers, both C6-SIN and C6-SEQ
could be better classed as out-of-distribution test sets.

As the two bias mitigation methods proposed rely on minority group samples of high uncertain-
ties being present in the training data, we design a second set of experiments to model this bias
scenario. In these experiments, we add samples from Center 6 into the training set, removing
them from the test set. C6-SEQ introduces two factors which are out-of-distribution: both (1)
the collection center and (2) the image modality (sequence) are previously unseen. C1-5-SEQ
only introduces one unseen factor, the image modality, since the center data is included in the
training set. Similarly, C6-SIN only introduces one unseen factor, as the modality (single frame)
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is previously seen but the collection center is not. For the bias mitigation experiments, we add
a small number of samples from each of the three test datasets, separately, into the training set.
For all experiments, the maximum number of frames (116) is removed from each test set, so that
the performances for models across all cuts is evaluated on the same test sets. While ideally we
would evaluate on the same test sets as the generalisability experiments, due to having decreased
the size of the test set, these results must be considered independently.

percentage of cut 1.25% 2.5% 5.0% 10%
minority / majority ratio 1:80 1:40 1:20 1:10
image count 15 29 59 116

Table 5.3: The approximate image count and minority/majority ratios for the minority sub-
groups added into the training set for the bias mitigation experiments.

Modeling the problem in this way makes the out-of-distribution test set a minority subgroup in
the training set. We create the subgroup sizes shown in Table 5.3. In some cases, the number
of images is rounded up or down by one to include a complete sequence. For each case, the
minority subgroup samples are selected such that no frames from the same patient are present
in both the test and training sets. For sequence data, entire sequences are selected such that
the test set includes no frames from any sequences seen during training.

Figure 5.9 shows firstly that adding minority group data to the training set for the SOTA
deterministic DeepLabV3+ model gives inconsistent results; we found that adding data did
not always improve generalisability. The BayDeepLabV3+EpiUpWt model exhibits the clearest
correlation between additional training data and minority group test performance. For each
test dataset, increasing the number of minority group samples in the training set improved
performance. BayDeepLabV3+EpiUpWt+LRCE , however, only shows this correlation for the
C6-SEQ dataset; performance changes very little for C6-SIN and is inconsistent for C1-5-SEQ.

Since it is generally understood that adding diversity to the training set improves performance on
similarly diverse test sets, we hypothesize that in these experiments with limited data, the choice
of samples added to the training set is non-trivial. We expect more stable correlations across
all methods, including the SOTA model without any bias mitigation, given a larger number of
samples in both training and test sets. All results in tabular form, evaluated across all three
datasets, are provided in the Appendix.

5.6 Discussion and conclusion

We have motivated the critical problem of model fairness in polyp segmentation on a multi-center
dataset, and modified two Bayesian bias mitigation methods to the task. The results on three
challenging test sets show potential for improving generalisability while maintaining competitive
performance across all metrics. Furthermore, the proposed mitigation method is implicit, not
requiring comprehensive knowledge of biases or out-of-distribution features in the training data.
This is of particular importance in the medical community given the sensitivity and privacy
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Figure 5.9: Baseline SOTA model DeepLabV3 (top), BayDeepLabV3+EpiUpWt (middle), and
BayDeepLabV3+EpiUpWt+LRCE (bottom) results for the bias mitigation experiments evalu-
ated on the three test datasets: C6-SIN (left), C1-5-SEQ (center), and C6-SEQ (right). For
each figure, the x-axis shows the number of minority group frames added to the training set.
The first row shows inconsistent results when adding minority group samples to the training set
for the deterministic SOTA model. Surprisingly, adding more data does not guarantee better
test performance. BayDeepLabV3+EpiUpWt shows a clearer correlation in the second row;
adding more minority group samples improves performance across all metrics and test datasets.
BayDeepLabv3+EpiUpWt+LRCE in the bottom row lacks a clear correlation for C6-SIN and
C1-5-SEQ, but does perform better with more minority data for C6-SEQ. (See Appendix for
tabular results, and figures for the baseline BayBayDeepLabV3+.)
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issues limiting collection of annotations and metadata. Our findings are highly relevant to the
understudied problem of generalisation across high variability colonoscopy images.

When framing the problem as a bias rather than an out-of-distribution problem by placing
minority group samples in the training set, we find that uncertainty up-weighting during training
(EpiUpWt) provides more reliable performance. Metrics improve with the quantity of minority
group samples. Results are less clear for the baseline model and the posterior estimate fine-tuned
(+LRCE) model.

Future work including comparisons with other generalisability, bias mitigation, and domain shift
methods, and further experimentation with usage of the background class uncertainty for our
mitigation methods. We anticipate that access to additional training and test data will greatly
facilitate further experiments and in-depth analysis of the results.
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Figure 5.10: Five frames from Center 1-5 sequence data, showing the original frame (far left),
the ground truth segmentation mask (middle left), the prediction of the Bayesian DeepLabV3+
(middle right), and the corresponding epistemic uncertainty mask after the first cycle (far right).
Note that in these samples, the region occluded by the resection tool in the foreground is seen as
uncertain by the Bayesian model, as well as the border regions of the segmentation. EpiUpWt
draws attention to these portions during training.
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Conclusion

With billions of internet users, zettabytes of data being generated every year, and powerful
data-driven intelligent models released open-source to the public, artificial intelligence is at the
forefront of society today. Thanks to various high-profile cases, the public along with the research
community has become aware of the biases and flaws in such systems. These biases reflect real
biases hidden in the data, and in turn, hidden in society.

The research community has focused on understanding why and when biases are learned by
models, and how to mitigate them when the sources of bias are known and unknown. Yet the
problem still remains open, with most mitigation approaches relying on a good understanding
of bias sources for both mitigation and fairness evaluation.

In this research, we propose two implicit bias mitigation methods for vision applications. While
deep neural networks in literature benchmarks are mostly deterministic, we present the Bayesian
neural network as a viable uncertainty-aware alternative. The predictive uncertainties are shown
to be correlated to bias-conflicting samples, as seen in various literature, and confirmed by our
experiments. As this correlation exists irrespective of bias source, we leverage these uncertain-
ties to encourage the model to pay more attention to underrepresented instances in the input
space dynamically during training (Chapter 3) and post-training as a fine-tuning procedure
(Chapter 4).

In summary, our contributions include:

• an implicit bias mitigation method which uses the dynamic predictive uncertainty estimates
of training samples from a Bayesian neural network to perform loss weighting during
training (Chapter 3);

• a post-training fine-tuning procedure which adjusts the posterior estimates of a trained
Bayesian neural network, also weighting update step-size by predictive uncertainty esti-
mates (Chapter 3); and

• an application of both these methods to a diverse polyp segmentation dataset with known
generalisability issues.
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While these approaches show potential on established bias benchmark datasets, and on the chal-
lenging polyp segmentation problem, the scope of this research is limited to exploring Bayesian
uncertainty-based implicit mitigation methods. Within this scope, we do not explore – the-
oretically or in practice – why Bayesian neural networks can, in practice, struggle to match
the performance of deterministic neural networks. Since our methods rely on Bayesian neu-
ral networks for baseline performance, this can put them at a disadvantage compared to other
mitigation methods.

Predictive uncertainties as we have approximated them can be further disentangled into aleatoric
and epistemic uncertainties. Assuming these uncertainties are sufficiently disentangled in ap-
plication, they could be leveraged separately for bias mitigation. It is possible that isolating
epistemic uncertainties, and leveraging them alone, could produce fairer outcomes for both our
methods. This is a line of future work which could extend upon the work in this thesis.

Furthermore, more fundamental questions remain. It is not well understood why some bias
mitigation methods work better for some datasets than for others, and under what conditions
specific methods are expected to do well. This is also true of our proposed approaches. For
Bayesian predictive uncertainties in particular, there are also open questions related to relative
uncertainties among minority samples. While we know that the minority samples are more likely
to have higher uncertainties than the majority samples, it is not known how leveraging these
uncertainties benefits one minority subgroup compared to another. The methods generally make
the model more fair for all minority subgroups, but this work does not consider how relative
fairness among the minority subgroups is affected. Another complex question, how multiple
bias variables affect the uncertainties compared to a single bias variable, is also under-explored.
Studying this relationship would require a careful choice of dataset, balancing both complexity
and interpretability.

A deeper understanding of how to analyse datasets and their implicit biases would provide a
stronger foundation upon which to predict which bias mitigation methods might work best in
different scenarios, and also to guide development of new bias mitigation methods.

Despite these vast future avenues of work, our research has shown that the uncertainty esti-
mates of Bayesian neural network can be useful for implicit bias mitigation. Our two methods
consistently improve results compared to Bayesian baselines without any mitigation, and often
perform competitively to other mitigation methods, both implicit and explicit. Furthermore,
they show potential even in a real-world segmentation task where data is diverse and low in
quantity. In conclusion, this research offers a contribution to the domain of bias mitigation, but
is far from a final solution to a challenging problem.
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Appendix

Supplementary materials for Chapter 3

Table 6.1 shows the numerical results for the face detection experiment, the top 7 rows (the
most challenging subgroups) of which are shown visually in Figure 3.11.

Supplementary materials for Chapter 4

Hyper-parameter selection

We fix de-biasing scalar term κ in EpiUpWt to 5.0 for all experiments as we find negligible
differences in performance for values 3 < κ < 7.

Table 6.2 shows the optimal parameters chosen for all Bayesian architectures. A ResNet18
architecture and SGD optimizer are fixed across all experiments. We refer to the Appendix
of [143] for hyperparameters and settings for the remaining methods.

For cSG-MCMC [179], we find that cyclical Stochastic Gradient Hamiltonian Monte-Carlo
(SGHMC) performs better than Stochastic Gradient Langevin Dynamics (SGLD). SGHMC in-
troduces an auxiliary momentum variable α which acts as a tempering to the noise variable. We
direct readers to [179] for more details related to SGHMC.

Finally, for the COCO-on-Places and BAR datasets, we find that selecting a smaller sampling
number M for Θ gives comparable results compared to sharpening all of the posterior samples.
Our subset includes the earlier samples from each sampling phase of the learning schedule, so
as to capture the most diversity. Having a smaller subset speeds up the sharpening phase.

Supplementary materials for Chapter 5

LR mean uncertainties

Figure 6.1 shows the mean uncertainties (for minority and majority subgroups of the training
set) of each bias variable in Biased MNIST after fine-tuning for the Bayesian model fine-tuned
with LR loss alone. While LR is not used alone, these results further confirm the findings in
Chapter 4 that fine-tuning the posterior estimates with either PCGrad(LCE , LR) or LR loss does
not drive the subgroup uncertainties to zero.
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Baseline TPR (%) EpiUpWt TPR (%) TPR gap (%)
Age: 0-2 40.28 43.59 3.31
Age: 3-9 54.32 57.08 2.76
Age >70 55.34 58.05 2.71
Middle Eastern + male 59.59 62.76 3.17
Middle Eastern + female 62.47 67.68 5.21
Black + female 67.30 70.44 3.14
Latino Hispanic + female 66.52 70.54 4.02
Age: 50-59 62.99 66.33 3.34
Age: 30-39 69.02 71.01 1.99
Age: 20-29 70.21 72.58 2.37
Age: 40-49 68.62 72.23 3.61
Age: 10-19 64.88 68.61 3.73
Age: 60-69 59.21 61.45 2.24
East Asian 67.68 70.94 3.26
Latino Hispanic 66.36 69.42 3.06
Southeast Asian 67.18 69.52 2.34
Black 66.49 69.02 2.53
Indian 68.48 70.51 2.03
Middle Eastern 60.53 64.37 3.84

Table 6.1: Numeric values for the true positives rates (TPRs) for the most challenging subgroups
with lowest TPRs in the FairFaces test set, showing that the uncertainty-weighted loss decreases
the TPR gap for each subgroup.

Figure 6.1: Mean uncertainties (for minority and majority subgroups of the training set) of each
bias variable in Biased MNIST after fine-tuning for the Bayesian model fine-tuned with LR loss
alone. The length of the black lines joining the pair of markers for each bias variable represent
the disparity in mean uncertainties; and the number above each pair is the percentage differ-
ence between the baseline Bayesian model (mean subgroup uncertainties before any fine-tuning,
always higher for minority subgroups) compared to after fine-tuning. Compared to LCE and
PCGrad(LCE , LR), LR causes the gap between minority and majority subgroup uncertainties
to increase much more - and also for both means to rise.

115



REFERENCES REFERENCES

Architecture+Method LR Epochs Cycle
Length

Cycle
Count

Posterior
Samples (M)

Noise Friction
Param (α)

Temperature
(T)

Biased MNIST
BayResNet 0.1 - 600 2 10 0.3 2e-5
BayResNet+EpiUpWt 0.1 - 600 2 20 0.3 2e-5
BayResNet+LCE/RCE 0.015 10 - - 10 - -

COCO-on-Places
BayResNet 0.5 - 1000 2 12 0.2 1.4e-4
BayResNet+EpiUpWt 0.5 - 1000 2 20 0.3 1.4e-4
BayResNet+LCE/RCE 0.01 14 - - 6 - -

Biased Action Recognition (BAR)
BayResNet 0.01 - 200 3 15 0.2 6e-4
BayResNet+EpiUpWt 0.01 - 200 3 18 0.2 6e-4
BayResNet+LCE/RCE 0.015 19 - - 9 - -

Table 6.2: Hyperparameters chosen for each reported experiment in Chapter 4 for the
baseline Bayesian ResNet18, EpiUpWt, and the posterior estimate fine-tuning method
BayResNet+LRCE and BayResNet+LCE : learning step size (LR), epochs, cycle length, number
of cycles, total posterior samples (M), noise loss parameter α, cooling temperature for posterior
(T).
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Figure 6.2: Baseline Bayesian BayDeepLabV3+ results for the bias mitigation experiments eval-
uated on the three test datasets, demonstrating that adding more data from the test distribution
does not always help the model generalize, and neither does adding larger quantities of it always
improve test performance.

Tabular results for bias mitigation experiments on PolypGen dataset

Figure 6.2 shows a graphical representation of the bias mitigation experiment results on the
BayDeepLabV3+ model.

Table 6.3, Table 6.4, Table 6.5 and Table 6.6 show the deterministic DeepLabV3+, Bay-
DeepLabV3+, BayDeepLabV3+EpiUpWt and BayDeepLabV3+EpiUpWt+LRCE results re-
spectively for the bias mitigation experiments.

116



REFERENCES REFERENCES

Dataset Number IDS JAC Dice F2 PPV Recall Accuracy

C6-SIN

15 0.736 0.803 0.793 0.900 0.802 0.980
29 0.770 0.838 0.822 0.945 0.815 0.979
59 0.730 0.797 0.782 0.913 0.787 0.977
116 0.735 0.804 0.794 0.912 0.795 0.978

C1-5-SEQ

15 0.732 0.792 0.808 0.875 0.835 0.964
29 0.725 0.804 0.808 0.872 0.829 0.955
59 0.728 0.806 0.802 0.884 0.819 0.955
116 0.772 0.840 0.853 0.880 0.879 0.965

C6-SEQ

15 0.736 0.803 0.793 0.900 0.802 0.980
29 0.770 0.838 0.822 0.945 0.815 0.979
59 0.730 0.797 0.782 0.913 0.787 0.977
116 0.735 0.804 0.794 0.912 0.795 0.978

Table 6.3: Bias mitigation experiment results for the state-of-the-art deterministic DeepLabV3+
for different number of in-distribution samples (IDS) which for the minority group added into
the training data.

Dataset Number IDS JAC Dice F2 PPV Recall Accuracy

C6-SIN

15 0.738 0.807 0.810 0.905 0.819 0.977
29 0.731 0.801 0.812 0.866 0.827 0.981
59 0.713 0.784 0.794 0.840 0.830 0.980
116 0.723 0.789 0.790 0.883 0.816 0.980

C1-5-SEQ

15 0.740 0.810 0.825 0.850 0.880 0.966
29 0.762 0.831 0.850 0.873 0.874 0.967
59 0.751 0.818 0.831 0.844 0.874 0.967
116 0.734 0.802 0.815 0.852 0.867 0.964

C6-SEQ

15 0.602 0.665 0.650 0.793 0.749 0.966
29 0.604 0.664 0.642 0.820 0.728 0.965
59 0.583 0.644 0.625 0.782 0.745 0.968
116 0.593 0.650 0.630 0.834 0.707 0.965

Table 6.4: Bias mitigation experiment results for the baseline Bayesian model, BayDeepLabV3+
for different number of in-distribution samples (IDS) which for the minority group added into
the training data.
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Dataset Number IDS JAC Dice F2 PPV Recall Accuracy

C6-SIN

15 0.710 0.778 0.776 0.873 0.783 0.977
29 0.716 0.788 0.774 0.875 0.790 0.977
59 0.736 0.807 0.801 0.890 0.816 0.978
116 0.740 0.810 0.810 0.907 0.834 0.981

C1-5-SEQ

15 0.727 0.797 0.811 0.830 0.870 0.964
29 0.744 0.813 0.826 0.858 0.869 0.965
59 0.760 0.827 0.840 0.877 0.876 0.968
116 0.770 0.837 0.848 0.870 0.872 0.967

C6-SEQ

15 0.602 0.665 0.650 0.793 0.749 0.966
29 0.604 0.664 0.642 0.820 0.728 0.965
59 0.610 0.667 0.643 0.820 0.745 0.968
116 0.625 0.692 0.660 0.834 0.790 0.972

Table 6.5: Bias mitigation experiment results for BayDeepLabV3+EpiUpWt for different num-
ber of in-distribution samples (IDS) which for the minority group added into the training data.

Dataset Number IDS JAC Dice F2 PPV Recall Accuracy

C6-SIN

15 0.758 0.865 0.812 0.914 0.817 0.976
29 0.760 0.864 0.813 0.910 0.815 0.975
59 0.762 0.866 0.811 0.890 0.816 0.978
116 0.759 0.868 0.811 0.861 0.847 0.979

C1-5-SEQ

15 0.758 0.817 0.815 0.927 0.856 0.965
29 0.701 0.769 0.794 0.841 0.836 0.963
59 0.767 0.827 0.840 0.877 0.866 0.968
116 0.769 0.836 0.847 0.867 0.870 0.967

C6-SEQ

15 0.641 0.643 0.676 0.906 0.810 0.969
29 0.643 0.731 0.685 0.877 0.806 0.944
59 0.700 0.790 0.698 0.890 0.834 0.967
116 0.760 0.827 0.840 0.907 0.876 0.968

Table 6.6: Bias mitigation experiment results for BayDeepLabV3+LRCE for different number
of in-distribution samples (IDS) which for the minority group added into the training data.
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