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1 Abstract 

 

This thesis explores the application of machine learning algorithms to nuclear physics data, 

aiming to uncover patterns within the data and reveal relationships between various nuclear 

characteristics. While the research demonstrated some success, particularly in identifying 

correlations between separation energies, shell models, and magic numbers, it also 

encountered significant challenges. The most significant among these was the limitation posed 

by the quality and quantity of available data, which affected the accuracy and reliability of 

predictions, such as those for proton and neutron drip lines. 

The research adopted a broad, exploratory approach, intentionally avoiding the use of 

established physics models to allow machine learning to independently identify patterns. 

However, this wide-ranging focus, combined with data limitations, resulted in findings that are 

insightful but often inconclusive. The experiments conducted, including attempts to relate 

nuclear deformity to stability and to apply machine learning to a model influenced by the 

polyspheron model, further underscored the need for better and more targeted data. 

This thesis highlights the potential of machine learning in nuclear physics but also emphasises 

the importance of depth and data quality in future research. The results provide a foundation 

for more focused studies, where improved datasets and a narrower research scope could yield 

more definitive insights. 
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3 Research Objective 

 

This thesis embarks on an exploratory investigation into the application of machine learning 

techniques to nuclear physics data. The primary objective is to discover patterns and 

relationships within the data without relying on existing theoretical models, allowing the 

machine learning algorithms to identify correlations independently. By focusing on a data-

driven approach, this research aims to provide fresh insights into nuclear phenomena, 

exploring areas such as the prediction of proton and neutron drip lines, the relationships 

between separation energies, shell models, and magic numbers, as well as the connections 

between nuclear deformity and stability. 

Throughout this investigation, the role of data quality and scope in influencing predictive 

accuracy is critically examined. The thesis also includes the application of machine learning 

to a novel nuclear core model, inspired by the polyspheron model, to assess the algorithm's 

ability to make predictions in areas where traditional physics models are not available. This 

theoretical framework sets the stage for a detailed analysis of machine learning’s potential to 

contribute to nuclear physics, highlighting both the challenges and opportunities presented by 

this interdisciplinary approach. 
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4 Chapter 1: Background 

4.1 Nuclear Physics 

4.1.1 Introduction to Nuclear Physics 

Nuclear physics investigates the fundamental properties and behaviours of atomic nuclei, 

focusing on critical aspects such as stability, decay processes, and interactions. The insights 

gained from this field are pivotal not only for understanding the origins and evolution of the 

universe but also for practical applications across various industries, including medicine, 

defence, and energy production. Traditionally, nuclear physics research has been grounded 

in theoretical models like the liquid drop model and the shell model, which have been refined 

through decades of experimental validation. However, the inherent complexity of nuclear 

systems and the vast number of potential interactions present significant challenges for 

conventional analytical methods. 

4.1.2 Magic Numbers 

Magic numbers refer to certain values of protons or neutrons (or both) that result in enhanced 

stability within atomic nuclei. These magic numbers correspond to filled nuclear shells, similar 

to electron shells in atoms. They play a crucial role in determining the stability and properties 

of atomic nuclei. They are 2, 8, 20, 28, 50, 82 and 126. 

4.1.3 Major Shell Closures 

A major shell closure refers to a configuration in which a nucleus has a complete shell of either 

protons or neutrons, corresponding to specific numbers known as "magic numbers." These 

numbers are 2, 8, 20, 28, 50, 82, and 126. When a nucleus reaches a major shell closure, it 

exhibits exceptional stability due to the complete filling of energy levels within the nuclear shell 

model. At major shell closures, nuclei tend to be spherical. This spherical symmetry arises 

because the filled shells minimise the energy of the system, reducing any deformation. 

4.1.4 Minor Shell Closures 

Minor shell closures, sometimes referred to as semi-magic numbers, represent points within 

the nuclear shell model where nucleons (protons or neutrons) form partial or subshells that 

confer a degree of enhanced stability, albeit less pronounced than that found at major shell 

closures (the magic numbers). Typical minor shell (up to N = 40) closure numbers for neutrons 

include 6, 14, 16, 32, 38, and 40. 



13 

4.1.5 Bosons 

Bosons are particles with integer values of spin (0, 1, 2, etc.). They obey Bose-Einstein 

statistics and can occupy the same quantum state simultaneously. Examples of bosons 

include photons (the particles of light), W and Z bosons (mediators of the weak nuclear force), 

and the Higgs boson. 

4.1.6 Fermions 

Fermions, on the other hand, have half-integer values of spin (1/2, 3/2, etc.). They obey Fermi-

Dirac statistics and follow the Pauli Exclusion Principle, meaning that no two fermions can 

occupy the same quantum state simultaneously. Fermions include particles like electrons 

(constituents of atoms), quarks (which make up protons and neutrons), and neutrinos. 

4.1.7 Separation Energy (Sn or Sp)  

Separation energy refers to the energy required to remove a particle or a group of particles 

from a nucleus. The separation energy can apply to neutrons, protons, alpha particles, and 

even larger fragments, depending on the context. The primary types of separation energies 

are neutron separation energy (Sn) and proton separation energy (Sp). The greater the 

separation energy, the more energy is required to remove a particle, indicating a more stable 

nucleus. Conversely, a low separation energy suggests a less stable nucleus, more prone to 

radioactive decay. 

4.1.8 Shell Model 

The shell model is a fundamental concept in nuclear physics that describes the structure and 

behaviour of nucleons (protons and neutrons) within an atomic nucleus. In the shell model, 

nucleons are said to occupy a series of discrete energy levels or "shells" within the nucleus, 

similar to electrons in atomic orbitals. These shells are filled according to the Pauli exclusion 

principle, which states that no two nucleons can occupy the same quantum state 

simultaneously. 
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Figure 1: Shell Model 

 

4.1.9 Spin 

Spin is a fundamental property of elementary particles in quantum mechanics, representing 

their intrinsic angular momentum.  

4.1.10 Deformity 

Atomic nuclei are not perfectly spherical. They can exhibit various shapes, including spherical, 

prolate (elongated), oblate (flattened), or even triaxial (irregular). These different shapes arise 

from the interplay of nuclear forces and the quantum-mechanical behaviour of nucleons 

(protons and neutrons) within the nucleus. 



15 

4.1.11 Energy Levels 

Energy levels represent the possible values of energy that a nuclei can have. They are related 

to the arrangement of protons and neutrons within them. These energy levels contribute to 

phenomena such as nuclear stability, radioactive decay, and nuclear reactions. 

 

Figure 2: Energy Levels 

4.1.12 Energy Levels and Magic Numbers 

The energy levels are determined by the nuclear potential, which is typically modelled as a 

combination of a strong, attractive nuclear force and a centrifugal term due to the nucleon's 

angular momentum. As protons or neutrons fill these shells, certain numbers of nucleons 

(known as "magic numbers") correspond to especially stable configurations. These magic 

numbers are 2, 8, 20, 28, 50, 82, and 126 and are observed experimentally as points at which 

nuclei exhibit extra stability. 

4.1.13 Neutron Drip Line 

The "neutron drip line" is a concept in nuclear physics that identifies the boundary at which a 

nucleus can no longer hold additional neutrons. Nuclei beyond this line are unstable against 

neutron emission, meaning that if you try to add more neutrons, they will not be bound within 

the nucleus and will simply "drip" out. This line essentially defines the limit of how neutron-rich 

a stable isotope can be. 

Nuclei near or beyond the neutron drip line are extremely neutron-heavy compared to their 

number of protons. These isotopes are inherently unstable and tend to undergo decay quickly, 

often through processes such as beta decay where a neutron is transformed into a proton, an 

electron, and an anti-neutrino. 

The neutron drip line is not a fixed line and varies significantly across different elements. It is 

much less well-defined than the proton drip line because the neutrons do not repel each other 

through electromagnetic force (as protons do), allowing a greater accumulation of neutrons 
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before reaching instability. This makes the location of the neutron drip line more difficult to 

determine and less predictable than the proton drip line. 

Understanding where the neutron drip line lies for various elements helps in exploring the 

limits of the nuclear landscape and has implications in astrophysics, particularly in the study 

of neutron-rich environments like those found in neutron stars or during certain types of stellar 

explosions and nucleosynthesis processes. 

The neutron drip line can be seen in figure 3. 

 

 

Figure 3: Proton & Neutron Drip Line 

4.1.14 Proton Drip Line 

The "proton drip line" is a concept in nuclear physics referring to the boundary beyond which 

nuclei are no longer stable against the emission of protons. Nuclei situated on this boundary 

or beyond it are so proton-rich that they can spontaneously emit protons. 

In simpler terms, if you add more protons to a nucleus that is at the proton drip line, the 

resulting nucleus will not hold together; the additional protons will "drip" out, as the nuclear 

force that binds the nucleus is insufficient to counterbalance the electromagnetic repulsion 

between the excessive number of protons. 

This concept is analogous to the "neutron drip line," which defines the boundary for neutron-

rich nuclei beyond which additional neutrons are not bound and will also "drip" out. 

These drip lines help scientists understand the limits of nuclear stability and the range of 

possible isotopes. The study of nuclei near the drip lines is significant in both theoretical 
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nuclear physics and astrophysics, as it contributes to our understanding of nucleosynthesis in 

stars and cosmic phenomena. The proton drip line can be seen in figure 3.  

4.2 Artificial Intelligence and Machine Learning 

4.2.1 Introduction to Artificial Intelligence. 

Artificial intelligence (AI) represents a broad field of computer science focused on creating 

systems capable of performing tasks that typically require human intelligence. These tasks 

include problem-solving, pattern recognition, and decision-making. Within AI, various subfields 

focus on specific capabilities, such as natural language processing, computer vision, and 

robotics. AI has increasingly been integrated into scientific research, offering powerful tools 

for analysing large datasets and uncovering insights that might be missed by traditional 

methods. 

4.2.2 Introduction to Machine Learning 

Machine learning (ML) is a subset of Artificial Intelligence (AI) that specifically deals with the 

development of algorithms capable of learning from and making predictions based on data. 

Unlike traditional programming, where explicit instructions are given, ML algorithms improve 

their performance as they process more data, identifying complex patterns and relationships. 

ML can be applied in either a supervised manner, where the algorithm is trained on labelled 

data, or in an unsupervised manner, where the algorithm independently identifies patterns in 

unlabelled data.  

The emergence of machine learning provides new avenues for exploring complex scientific 

data, offering the potential to reveal hidden patterns, identify novel correlations, and enhance 

our understanding of intricate phenomena such as those found in nuclear physics. 

Historically, nuclear research relied on theoretical models refined through experimentation, a 

laborious process hindered by manual data analysis. Although advancements in experimental 

technology allowed for the generation of large datasets, computing limitations hindered 

meaningful analysis. Machine learning facilitates quicker analysis, explores theories more 

efficiently, and uncovers data trends and patterns without preconceived notions. 

 

For more information on the machine learning process please see chapter 5: Methodology. 
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5 Chapter 2: Methodology 

The machine learning process involves a series of systematic steps that transform raw data 

into predictive models. These steps guide the development and training of models to 

accurately forecast outcomes based on input data. Understanding this process is important 

for implementing effective machine learning solutions. 

5.1 Define the Computing Environment 

5.1.1 Python 

Python is a versatile programming language known for its simplicity and readability. It offers a 

wide range of libraries and frameworks, making it suitable for various tasks, including data 

analysis, machine learning, and scientific computing. 

5.1.2 Anaconda Environment  

Anaconda is a distribution of Python that comes bundled with many pre-installed libraries and 

tools commonly used in data science and scientific computing. It provides a convenient way 

to manage Python environments and packages, ensuring compatibility and reproducibility 

across different projects. 

5.1.3 Python Packages 

Below is an overview of the most common packages used. Due to the trial-and-error nature of 

the machine learning process the exact packages could not be defined at the start of an 

experiment. The exact set of packages for each experiment were decided as the experiment 

evolved.  

• Pandas: Pandas is a powerful library for data manipulation and analysis in 

Python. It provides data structures like DataFrame and Series, which are ideal 

for handling structured data, such as tables and time series. 

• NumPy: NumPy is a fundamental package for numerical computing in Python. 

It provides support for multi-dimensional arrays, mathematical functions, linear 

algebra operations, and random number generation, making it essential for 

scientific computing tasks. 

• Matplotlib: Matplotlib is a plotting library for creating static, interactive, and 

animated visualizations in Python. It offers a wide range of plotting functions 
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and customization options, making it suitable for creating publication-quality 

figures for data analysis and presentation. 

• Scikit-learn: Scikit-learn is a popular machine learning library in Python, 

providing simple and efficient tools for data mining and analysis. It includes 

various algorithms for classification, regression, clustering, dimensionality 

reduction, and model selection, along with utilities for preprocessing and model 

evaluation. 

• Pickle: Pickle is a module in Python used for serializing and deserializing 

Python objects. It allows you to save the state of your Python objects to disk 

and reload them later, making it useful for saving machine learning models and 

other complex data structures. 

• Matplotlib.pyplot: Pyplot is a sub-module of Matplotlib that provides a MATLAB-

like interface for creating plots and visualizations in Python. It is commonly used 

for quick and easy plotting tasks, such as creating scatter plots, histograms, 

and line plots. 

• Seaborn: Seaborn is a statistical data visualization library built on top of 

Matplotlib. It provides a high-level interface for creating attractive and 

informative statistical graphics, making it easy to visualise complex 

relationships in your data. 

• Ipywidgets: IPywidgets is a library for creating interactive widgets and controls 

in Jupyter notebooks. It allows you to add interactive elements like sliders, 

buttons, and dropdown menus to your notebooks, enabling users to 

interactively explore and analyze data. 

• Keras: Keras is a high-level neural networks API written in Python, capable of 

running on top of TensorFlow, CNTK, or Theano. It enables fast 

experimentation with deep neural networks and provides easy-to-use 

interfaces for building and training neural networks. 

• RandomForest: RandomForest is an ensemble learning method for 

classification, regression, and other tasks that operates by constructing a 

multitude of decision trees during training and outputting the class that is the 

mode of the classes or mean prediction of the individual trees. 
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5.2 Define the Experiment Objective 

Each machine learning (ML) experiment begins with a clearly defined objective that originates 

from a specific research question. For example, if the question is, “What nuclear properties 

influence spin?”, the objective would be to identify the relationships between these nuclear 

properties and spin. A well-defined objective is crucial as it guides the selection of the 

appropriate ML model. The nature of the objective determines the type of task to be performed, 

which in turn influences the choice of the model and approach needed to achieve the desired 

outcome. 

To effectively select a machine learning model, the experiment's objective must align with the 

type of task required. The task may involve classifying data into categories, predicting 

numerical values, detecting anomalies, or grouping similar data points. The nature of the task 

helps in identifying the most suitable algorithms. 

Consider the following types of tasks: 

• Classification Tasks: These tasks involve assigning data points to predefined 

categories. Models commonly used for classification include decision trees, support 

vector machines, and neural networks. 

• Regression Tasks: Regression tasks focus on predicting continuous numerical 

values. Suitable models for regression include linear regression, random forests, and 

gradient boosting machines. 

• Clustering Tasks: Clustering involves grouping similar data points without predefined 

labels. Models such as k-means and hierarchical clustering are often employed for this 

purpose. 

Aligning the experiment’s objective with the appropriate task type ensures a more effective 

selection of the machine learning model, thereby enhancing its capability to address the 

research question effectively. 
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5.3 Identify Data Sources and Clean Data 

The same data was reused for the majority of the experiments.  

The sources were as follows: 

 

1. Chart of Nuclides (ChartofNuclides) 

The following datasets were downloaded from the Nuclear Data Section (NDS) 

of the International Atomic Energy Agency (IAEA). Extensive data cleaning 

operations were performed to address inaccuracies and inconsistencies. 

• Separation energies  

• Excitation energies 

2. NuDat (NuDat) 

• Deformation data 

 

Before any machine learning models can be developed, the data must be cleaned. Data 

cleaning involves preparing and refining the dataset to ensure accuracy, consistency, and 

relevancy before it is used for processing and analysis. This involves actions to handle data 

issues such as, 

• Unreadable characters. 

• Blank spaces. 

• Missing values. 

• Converting data types. 

• Replacing labels. 

• Normalizing data.  

• Uneven distributions. 

 

Each time new data is introduced it needs to be analysed and cleaned. Effective data analysis 

ensures that the dataset is clean and well-prepared, setting a strong foundation for building a 

reliable machine learning model. 

 

The datasets initially contained a significant amount of unusable data, requiring extensive 

cleaning operations before it could be used in a machine learning algorithm. This cleaning 

process significantly reduced the size of the datasets, which in turn impacted the performance 

of the machine learning algorithm and, consequently, the reliability of the results. 

 



22 

5.3.1 Addressing skewed data 

The shell closure values calculated in experiment 3 in this thesis appeared skewed because 

the likelihood of a value appearing is not uniform across all possible values. Some values, 

such as 82, are more likely to appear as a shell closure than others, like 2, because more 

datasets contain instances of 82. 

To address this imbalance, a normalization function was developed. This function adjusts the 

frequency of each shell closure value by dividing the number of times a specific value appears 

as a shell closure by the total number of occurrences of that value in the dataset. 

For example, if N = 2, there is limited data containing this value. According to the Chart of 

Nuclides, only 6 nuclei have N = 2, meaning there are 6 possible opportunities for it to be 

identified as a shell closure. If N = 2 appears 6 times in the results, the normalization (or 

confidence level) would be 100%. 

On the other hand, for N = 82, there are 29 possible occurrences in the Chart of Nuclides. If it 

appears 6 times in the results, the confidence level would be 0.2 (or 20%). 

By using these confidence levels rather than just raw frequencies, we can achieve a more 

balanced and accurate analysis of the data, focusing on values with a sufficient degree of 

confidence. 

 

5.3.2 Addressing Class Imbalance 

Class imbalance happens when the data groups are unevenly populated for example a data 

set may contain two classes such as stable and unstable nuclei. This was seen in experiment 

4. Naturally, there are more unstable than stable nuclei, so the data set is very imbalanced, in 

favour of the unstable nuclei. This causes several issues. 

 

• Majority Class Bias: Machine learning algorithms tend to be biased towards the 

majority class, meaning they prioritise accuracy on the majority class at the expense 

of the minority class. As a result, the model may have a tendency to classify instances 

into the majority class, leading to poor performance on the minority class. 

• Misleading Evaluation Metrics: Traditional evaluation metrics like accuracy may not be 

reliable in the presence of class imbalance. For instance, a model that predicts all 

instances as the majority class can achieve high accuracy if the majority class 

dominates the dataset. Therefore, accuracy alone is not a good indicator of model 

performance. 

• Impact on Model Learning: Class imbalance can affect the learning process of machine 

learning algorithms. Models may struggle to learn the minority class patterns effectively 
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due to their limited representation in the dataset. Consequently, the model may fail to 

generalise well to unseen data, especially for the minority class. 

 

To address class imbalance, various techniques can be employed, including: 

• Resampling: Oversampling the minority class or under sampling the majority class to 

balance the dataset. 

• Algorithmic Techniques: Using algorithms specifically designed to handle class 

imbalance, such as cost-sensitive learning or ensemble methods like SMOTE 

(Synthetic Minority Over-sampling Technique). 

• Evaluation Metrics: Focusing on evaluation metrics that are more informative in the 

presence of class imbalance, such as precision, recall and F1-score. 

• Stratification is used in machine learning to ensure that the distribution of classes in 

the training and testing datasets remains similar. This is particularly important when 

dealing with imbalanced datasets, where one class may be significantly more prevalent 

than others. This was used in experiment 5. 

 

Understanding the domain context is important when dealing with class imbalance. In some 

cases, the imbalance may reflect the natural distribution of classes in the real-world scenario 

as for the case of nuclear stability. Therefore, it's essential to consider domain knowledge 

when deciding on the appropriate approach to handle class imbalance. 

5.4 Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is an activity carried out on the cleaned data which includes 

exploring the dataset to understand its characteristics, identify patterns, detect anomalies, test 

hypotheses, and check assumptions with the help of summary statistics and graphical 

representations. It is always a good idea to do some EDA before launching into machine 

learning because a lot can be revealed about data once it can be visualised.  

5.4.1 Data Set Types 

Data sets can be labelled or unlabelled. An unlabelled data set has no labels i.e. no data 

descriptions. It is used in unsupervised learning algorithms.  Table 1 is an example of 

unlabelled data.  
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Table 1: Unlabelled Data 

 

Unsupervised learning is a type of machine learning that deals with unlabelled data. The 

primary aim of unsupervised learning is to model the underlying structure or distribution in the 

data in order to learn more about the data itself, without any guidance from a known output. 

 

A labelled dataset is a dataset where each piece of data is paired with a specific label or 

annotation that describes or categorises it. These labels serve as the "answers" or "outputs" 

for each data entry, which a machine learning model uses to learn from during training. The 

purpose of having labels is to guide the learning algorithm in understanding the relationships 

between the input features and the desired output, enabling it to predict or categorise new, 

unseen instances based on the learned patterns. The data below is labelled, it has a column 

called ‘species’ which is how you would categorise data with similar sepal_length, sepal_width, 

petal_length and petal_width values.   

 

 

Table 2: Labelled Data 

Supervised learning is a type of machine learning that deals with labelled dataset and is used 

to predict output values based on a set of input values.  

 

Understanding whether the ML model will be supervised or unsupervised is necessary before 

deciding which type of model to use.  
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5.4.2 Feature Selection and Feature Engineering 

A dataset will contain one or more features. A feature is a measurable quantity in the data. 

For example, in table 2, sepal_width is a feature. Before building an ML model the features 

must be chosen. Which features and how many features can influence the outcome, so this 

step is often revisited during the evaluation step to improve results. After an initial data analysis 

or after trying out an initial ML model, it may be necessary to add further features. This is 

called feature engineering. Feature engineering is the process of adding new columns of data 

(features) to an existing data set. The new data is usually derived from the existing data from 

adding, subtracting or applying a function to existing data. It usually happens in the data pre-

processing stage.  

5.5 Problem Definition and Objective Setting 

Before selecting a machine learning model, it's important to first identify the type of problem 

that needs to be solved. In machine learning, problems are generally categorised based on 

the nature of the task. The key types of machine learning problems addressed in this thesis 

are: 

• Regression Problems: These involve predicting a continuous numeric value. The goal 

is to estimate a variable that can take any real number, such as predicting house 

prices, temperature changes, or stock market values. 

• Classification Problems: Classification involves predicting discrete categories or 

classes. The model learns to assign data points to predefined labels. Examples include 

determining whether an email is spam or not or classifying images into categories like 

cats and dogs. 

• Clustering Problems: Clustering is a form of unsupervised learning where the objective 

is to group similar data points into clusters without predefined labels. The algorithm 

discovers inherent structures in the data, such as segmenting customers based on 

purchasing behaviour or grouping similar documents together. 

 

Each type of problem requires different techniques and models to provide effective solutions. 

5.6 Initial Model Selection 

Once the data has been cleaned, prepared and examined, and the problem and objective 

have been clearly defined, the next step is selecting the appropriate ML model. The choice of 

model depends on the nature of the experiment and the specific goals to be achieved. (e.g., 

classification, regression) and the data characteristics. Factors such as the accuracy, 



26 

interpretability, complexity, and the computational efficiency of the model are considered. 

Sometimes, multiple models are tested in parallel during this step to identify the most effective 

approach. The initial model is only a starting point and after much experimenting and tuning, 

a different model may be selected. 

5.6.1 Classification Model Selection 

Classification models in machine learning are models that learn to predict the class labels of 

input data points. They are used when the output variable is a category, such as "spam" or 

"not spam" for email classification, or "cat," "dog," or "bird" for image classification. These 

models analyse the features of the data and learn patterns to classify new instances into 

predefined categories. 

 

Below is a simplified overview of some common classification models. 

 

• Logistic Regression: Despite its name, logistic regression is a classification model used 

for binary classification. It models the probability that a given input belongs to a certain 

class. 

• Decision Trees: Decision trees split the data into subsets based on features and create 

a tree-like structure of decisions. Each node represents a feature, each branch a 

decision based on that feature, and each leaf node a class label. 

• Random Forests: Random forests are an ensemble learning method that builds 

multiple decision trees and combines their predictions to improve accuracy and reduce 

overfitting. 

• Support Vector Machines (SVM): SVMs find the hyperplane that best separates 

classes in feature space. They work well in high-dimensional spaces and are effective 

for both linear and non-linear classification tasks. 

• Naive Bayes: Naive Bayes classifiers are based on Bayes' theorem with an assumption 

of independence between features. Despite their simplicity, they are effective for many 

classification tasks, especially in text classification. 

• K-Nearest Neighbours (KNN): KNN classifies new data points based on the majority 

class among their k nearest neighbours in the feature space. 

Neural Networks: Neural networks, particularly deep learning models, consist of layers of 

interconnected nodes that learn complex patterns from the data. They have achieved 

state-of-the-art performance in various classification tasks. 
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5.6.2 Clustering Model Selection 

Clustering is a type of unsupervised machine learning technique used to group data in such a 

way that data in the same group (called a cluster) are more like each other than to those in 

other groups. It needs no prior knowledge of the group labels. The choice of clustering 

algorithm is influenced by the specific characteristics of the data, the objective of the 

experiment, and the desired outcome of the clustering process.  

 

Common clustering algorithms include, 

 

• K-Means: This algorithm partitions the data into K distinct, non-overlapping clusters. It 

assigns each data point to the closest cluster by minimizing the sum of the squared 

distances between the data points and their respective cluster’s centroid. It's ideal 

when you have a good estimate of the number of clusters and expect them to be 

roughly equal in terms of the number of data points. K-Means is widely used due to its 

simplicity and computational efficiency. 

• Hierarchical Clustering: This method builds a hierarchy of clusters either through a 

bottom-up approach (agglomerative) or a top-down approach (divisive). It is beneficial 

for data where the relationships between clusters are hierarchical or nested. 

• Mean Shift: This algorithm locates the centres of clusters without assuming the number 

of clusters beforehand. Starting from each data point, Mean Shift iteratively moves 

towards the region with the highest density of points (the mode of the point density 

function) until convergence. It finds clusters of varying shapes and sizes, making it 

versatile for complex data. 

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise): This algorithm 

identifies clusters as areas of high density separated by areas of low density. Points in 

low-density regions are classified as noise. DBSCAN does not require specifying the 

number of clusters; it infers them from the data based on the density. The key 

parameters are eps, which determines the search radius for nearby neighbours, and 

min_samples, which defines how dense a region should be to form a cluster. 

• Agglomerative Clustering: This is a hierarchical clustering method that builds clusters 

by merging pairs of data points or existing clusters based on their proximity. The 

process begins by treating each data point as a single cluster and then successively 

merges pairs of clusters until all points belong to a single cluster or a stopping criterion 

is met. Agglomerative clustering can reveal complex structures and is particularly 

useful for understanding the hierarchical relationships in data. 
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The selection of a clustering model also involves trial and error. This includes tuning model 

parameters, such as the number of clusters for K-Means or the density parameters for 

DBSCAN, and evaluating the results using metrics such as silhouette score or within-cluster 

sum of squares. By comparing the performance of different algorithms and assessing how well 

they meet the objectives of the experiment, the model that best captures the underlying 

structure of the data can be identified. 

Through this iterative process, the optimal clustering model can be selected to effectively 

reveal patterns and relationships within the data. 

5.6.3 Neural Networks 

For highly complex problems that require pattern recognition from large datasets, neural 

networks or deep learning models are often more suitable than simpler models. These 

techniques are chosen when traditional methods are insufficient for capturing complex 

relationships in the data. 

A neural network is a series of algorithms designed to recognise underlying patterns in a 

dataset by mimicking the way the human brain operates. It is composed of several layers: 

• Input Layer: This is where the data enters the system. It functions like the senses of 

the neural network, receiving and processing the raw input data. 

• Hidden Layers: These layers are where most of the computation occurs. Neurons in 

the hidden layers process the data by learning patterns and relationships, like the 

thought process in the human brain. 

• Output Layer: This layer provides the final output, acting as the decision-making or 

predictive element of the neural network. 

 

A Deep Neural Network (DNN) is a specialised type of neural network that includes multiple 

hidden layers between the input and output layers. These additional layers enable the network 

to learn and capture more complex patterns and relationships within the data, making DNNs 

particularly useful for tasks such as image recognition, speech processing, and natural 

language understanding. 

5.6.4 Regression Model Selection  

During the process of selecting the appropriate regression model for experiment 1, the initial 

selection was a simple linear regression model, e.g. scikit-learn LinearRegression, this was 

used to establish a baseline. This approach provided a clear starting point and enabled the 

evaluation of the fundamental relationship between input features and the target variable. 
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When it became apparent that the data exhibited non-linear relationships or complex 

interactions that a linear model could not adequately capture, the focus shifted to more 

sophisticated models. Decision trees and random forests were explored for their ability to 

model intricate patterns and interactions without extensive feature engineering. For datasets 

characterised by high-dimensional features or complex non-linear relationships, neural 

networks were also considered. These models demonstrated the capacity to learn complex 

functions and interactions, though they required substantial data and meticulous tuning to 

mitigate overfitting. 

By initially employing simpler models and progressively advancing to more complex ones as 

necessary, a systematic approach was taken to identify the model that best suited the data 

and fulfilled the experiment’s objectives. 

5.6.5 Model Summary 

Table 3 shows a summary of the experiments and model selected.  

 

Experiment Problem type Data type Selected model 

1: Predicting masses Regression Unlabelled Unsupervised SVM 

2: Predicting 

separation energy 

Regression Unlabelled Unsupervised neural 

network 

3: Predicting drip line Clustering Unlabelled Unsupervised K-

Means 

4: Predicting stability 

using energy density  

Binary classification Labelled Supervised Random 

Forest 

5: Predicting stability 

using energy 

densities 

Binary classification Labelled Supervised Random 

Forest 

6: Predicting spin Data analysis NA NA 

8 predicting 

deformity  

Regression Unlabelled Unsupervised 

random forest 

regressor 

Table 3: Summary of experiments and selected models 
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5.7 Model Training 

The data is split into two sets called training and test. The percentage of data each set is 

another variable and can affect the quality of the output results. The learning occurs on subset 

called the training data. During this stage, the model attempts to find patterns or relationships 

within the data that correlate inputs to their respective outputs. The model adjusts its internal 

parameters or weights through an optimisation process. The process is unique to the model 

selected. This adjustment is essential as it allows the model to learn from the data—hence, 

this is referred to as the "learning" phase. 

The effectiveness of this process hinges on the use of algorithms that can iteratively improve 

the model's predictions by minimising errors, typically measured by a loss function. 

5.8 Model Test and Validation 

After the model has been trained, it is then tested on a separate subset of the data known as 

the test data. This data is unseen by the model during the training phase, which ensures that 

the testing process evaluates how well the model can generalise its learned patterns to new, 

unknown datasets. 

5.9 Model Evaluation 

Model evaluation involves comparing the model's predictions on the test data against the 

actual outcomes. This comparison helps to assess the accuracy of the model, indicating how 

well it has learned and predicted the underlying relationships within the data. Accurate models 

show minimal discrepancy between predicted and actual results, signifying successful 

learning and effective generalisation. The model valuation techniques vary according to the 

type of model used.  

5.9.1 Z-Score 

A Z-score is a statistical measurement that describes a value's relationship to the mean of a 

group of values. It is measured in terms of standard deviations from the mean. If a Z-score is 

0, it indicates that the data point's score is identical to the mean score. A Z-score of 1.0 would 

indicate a value that is one standard deviation from the mean. Z-scores may be positive or 

negative, with a positive value indicating the score is above the mean and a negative score 

indicating it is below the mean. 
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5.9.2 Regression Model Evaluation 

5.9.2.1 R2 value 

The R2 value provides an indication of goodness of fit and tells you how well the data fits the 

statistical model. It is only applicable in linear regression.  

5.9.2.2 Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) 

For regression problems, the Mean Squared Error (MSE) and Root Mean Squared Error 

(RMSE) are popular evaluation metrics. MSE calculates the average squared difference 

between predicted and actual values, penalizing larger errors more heavily. RMSE is the 

square root of MSE, offering an interpretable error value in the same unit as the target variable. 

These metrics provide a direct measure of how far off the predictions are from actual 

outcomes. 

5.9.2.3 Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) calculates the average of the absolute differences between 

predicted and actual values. Unlike MSE, which emphasises larger errors, MAE gives equal 

weight to all errors. It is a useful metric for understanding the overall magnitude of errors in a 

model's predictions. 

5.9.3 Clustering Model Evaluation 

The following metrics can be used to evaluate the performance of a clustering model. 

 

• Silhouette Score: Measures how similar an object is to its own cluster compared to 

other clusters. The silhouette values range from -1 to +1, where a high value indicates 

that the object is well matched to its own cluster and poorly matched to neighbouring 

clusters. 

 

• Davies-Bouldin Index: The ratio of within-cluster scatter to between-cluster separation. 

The lower the Davies-Bouldin index, the better the clustering is considered, as it 

implies a high inter-cluster distance and low intra-cluster distance. 

 

• Calinski-Harabasz Index: Also known as the Variance Ratio Criterion, this index is the 

ratio of the sum of between-clusters dispersion and of within-cluster dispersion for all 

clusters. The higher the score, the better defined the clusters are. 
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Visual assessments should also be made where possible as they can provide intuitive insights 

into how well the clustering process has performed. 

 

Below are the results taken from a comparison between several different clustering models. 

They were compared using the metrics above and by visually comparing the quality of the 

clustering. 

 

 

Figure 4: Comparison scores to aid model selection 

 

 

Figure 5: Visual cluster comparison to aid model selection 

Figure 5 shows the data taken from the clustering experiment 3 and shows how you can use 

visual comparisons of each model result to identify the best model to use.  

As can be seen in the figures 4 and 5, K-Means and Agglomerative achieved the highest 

scores. K-Means was selected due it’s speed and ease of implementation.  

5.9.4 Classification Model Evaluation 

The following metrics can be used to evaluate model performance, 

 

• Accuracy: Accuracy measures the ratio of correctly predicted instances to the total 

number of instances in the dataset. It's the most intuitive metric and indicates overall 

model performance. However, it may not be suitable for imbalanced datasets. 

• Precision: Precision measures the ratio of true positive predictions to the total number 

of positive predictions made by the model. It indicates the model's ability to correctly 

identify positive instances without falsely classifying negative instances as positive. 
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• Recall (Sensitivity): Recall measures the ratio of true positive predictions to the total 

number of actual positive instances in the dataset. It indicates the model's ability to 

identify all positive instances correctly. 

• F1-Score: F1-Score is the harmonic mean of precision and recall. It provides a balance 

between precision and recall, especially when dealing with imbalanced datasets. F1-

Score is useful when you want to seek a balance between precision and recall. 

• Confusion Matrix: A confusion matrix provides a detailed breakdown of a model's 

classification performance, showing true positives, true negatives, false positives, and 

false negatives. This can be seen in experiment 6. 

 

Model Accuracy Precision Recall F1-Score Correctly 

predicted 

stable 

Correctly 

predicted 

stable 

Random 

Forest 

0.93 0.95 0.97 0.96 22 

(34.92%) 

756 

(97.30%) 

KNN 0.89 0.93 0.96 0.94 8 (12.70%) 743 

(95.62%) 

Table 4: Table comparing performance between models. 

It was harder to visually assess these models because I wanted to focus on stable and the 

data was overwhelmingly unstable. I compared their metrics and how many stable were 

correctly predicted and decided the random forest was the best model in this situation. 

5.10 Model Improvement 

To improve the evaluation data and overall results, the model evolves through a series of 

improvements. This is the most timing consuming part of machine learning. Deciding on what 

improvements to make can be done as trial and error and in some situations, tests scripts can 

be created to modify values through a specific range revealing what values return the best 

results.  

5.10.1 Changing Python Packages 

In some cases, improving the precision of the arithmetic can help. High precision arithmetic  

In this thesis, mass differences were calculated using a separation energy calculation. The 

numbers were small and then multiplied by a large number, meaning that the separation 

energy was sensitive to small changes in mass differences. Higher precision arithmetic was 



34 

used for this calculation i.e. the Decimal package in Python, to enable more precise values to 

be used.  

5.10.2 Parameter Tuning 

Parameter tuning is the name given to the process of tweaking the machine learning input 

parameters to improve performance. Each model has a unique set of input parameters that 

will affect the algorithm so there can be a lot of time spent if a trial-and-error approach is used. 

In some circumstances I was able to apply a tuning program that carried out the trial-and-error 

process automatically until an optimised set of input values were found.  
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6 Chapter 3: Experiments 

6.1 Experiment 1: Predicting Mass Values 

6.1.1 Overview 

Many nuclei have had their masses successfully measured. Theoretical models tell us many 

more exist. Several theoretical models exist which all give slightly different answers for 

theoretical mass. Machine learning may enable us to predict masses without relying on a 

particular theoretical model, allowing for a more stable mass calculation, or a confirmation of 

a specific theoretical model. Experiment goal: Given Z and N is it possible to predict the mass 

of nuclei? 

6.1.2 Data 

Data Source: The data used was from (ChartofNuclides) 

Features: Z and N were used as the features 

Target variable: Mass 

6.1.3 Method 

Predicting mass is an unsupervised regression problem since the data is unlabelled. I selected 

several regression models, optimised their input parameters, and compared their results. 

The models chosen were, 

• Random forest. 

• Gradient booster. 

• SVM. 

• Neural network. 

6.1.4 Results 

The mean absolute error was found for each model. The SVM model performed the best.  

ML model MAE 

Random Forest Test MAE 0.6266648263151702 

Gradient Boosting Test MAE 0.48021033981287115 

SVM Test MAE 0.05012349441225703 

Neural Network Test MAE 0.09059823108321653 
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Table 5: MAE for Models Predicting Mass Values 

 

Figure 6: Actual mass overview 

On first inspection the predicted values of mass appear to match well with the expected values 

but on closer inspection the values are not an exact match.  

 

 

Figure 7: Actual mass zoomed in 

 

It is clear from the MAE value and a visual inspection that the SVM model performs better than 

the others and it can predict masses with a reasonable degree of certainty. You can also see 

for the Random Forest model, the deviation from the actual values increases as we move to 
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heavier elements due to the fact there are less data points for heavier elements.  Random 

forest appears to provide the least accurate results with the given data. 

6.1.5 Conclusion 

Masses of known nuclei have been experimentally measured to a high degree of accuracy. 

Machine learning models are of little use on this known data as they are only telling us what 

we already know. Where the model will be useful, will be for predicting masses of unknown 

nuclei. It is possible to use current physics model to predict masses, but this relies on previous 

physics knowledge and the selection of an appropriate model. The goal of this experiment is 

to predict masses without prior physics knowledge. This model can be used to predict the 

mass of a ‘theoretical’ isotope with some degree of confidence.  

6.1.6 Further work 

The calculated masses could be compared to existing model data as documented in 

(Theoretical description of nuclear masses, 2021) 

To increase confidence more features could be added. 

6.2 Experiment 2: Predicting Separation Energies 

6.2.1 Overview  

If we can predict the separation energy for a theoretical isotope, we should be able to predict 

at what particular N the separation energy is equal or less than 0 and therefore indicate when  

the drip line has been reached.  

6.2.2 Data 

Data Source: The data used was from (ChartofNuclides). 

Features: Z, N and theoretical mass were used as the features. 

Target variable: Separation energy. 

6.2.3 Method 

Predicting separation energy is an unsupervised regression problem since the data is 

unlabelled. I selected several regression models, optimised their input parameters, and 

compared their results. 

The models chosen were, 

• Random forest. 
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• Gradient booster. 

• SVM. 

• Neural network. 

6.2.4 Results 

The mean absolute error was found for each model. The neural network model performed the 

best, bust still quite poorly overly.  

 

ML model MAE 

Random Forest Test MAE 1183.6098577455862 

Gradient Boosting Test MAE 1203.0767211043876 

SVM Test MAE 1314.3716228199137 

Neural Network Test MAE 1165.7421416535942 

Table 6: MAE values for models Predicting Separation Energies 

 

 

Figure 8: Actual S(n) versus predicted S(n) 

 

Once a neural network model was identified as the best model, I developed a more detailed 

neural network model to improve the results. The model used was ‘Sequential’ from Tensorfow 

and Keras. Keras randomsearch tuner was used to optimise the hyper parameters. 

 



39 

The results can be found in the scatter plot in figure 9. This figure shows two distinct patterns 

in the scatter plot.  

1. There is an obvious linear pattern following the expected values of 

Sn but some of the predicted values are scattered from the trend 

line, indicating the existence of prediction errors. There is a group 

of predicted values quite close to the black line indicting perfect 

predictions, this shows the model is performing better in the range 

of around 6000 to 12000 keV. 

2. After around 12000 keV the linear pattern stops but the presence of 

outliers remain showing the model doesn’t perform well predicting 

values for the heavier elements.  

 

 

Figure 9: Actual S(n) versus predicted S(n) improved 

6.2.5 Conclusion 

The fact that the neural network model performed better shows that the relationship between 

N, Z, mass, and separation energy is non-linear, since this type of model is better at learning 
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non-linear relationships than the other models. In experiment 1, the relationship between Z, N 

and mass is linear which is why the SVM model performed well.  

 

The optimised neural network model improved the performance slightly, but they were still not 

as accurate as hoped. By looking at which model performs best we can start to understand 

they types of relationship between parameters, i.e. linear / non-linear.  

 

The poor performance at higher values of Sn could be due to the following reasons.  

Data distribution. The training data may have more samples in the 6000 keV to 12000 keV 

range, leading to more accurate predictions within this range. The likely reason for poor 

prediction quality beyond 12000 keV is the scarcity of data at higher energy levels, which is 

due to the shorter life span of isotopes at those energies. There is often less recorded data at 

higher energy levels because these excited states decay rapidly, making them harder to detect 

and measure. This contributes to fewer data points in higher energy ranges, impacting the 

accuracy of predictions in machine learning models that rely on this data. 

 

Complex physics. At higher energy levels, there might be intricate and less understood 

physical phenomena at play that the machine learning model isn't capturing. This could be 

due to the limited or skewed nature of the training dataset, which might not fully represent 

these complex interactions. Since the model can only identify patterns based on the data it 

has been trained on, it struggles to accurately predict outcomes in regions where the 

underlying physics behaves differently or where it has insufficient data. Consequently, it fails 

to generalise well to these high-energy scenarios. 

6.2.6 Further work 

More features should be added to the dataset to understand what influences the relationship 

between Z, N, mass, and separation energy. Of course, we could speculate according to 

physics models but if we are trying not to influence the models with prior knowledge, features 

should be added systematically until an improved result is found.  

 

The experiment should be split into two further experiments. One at energies below 12000 

keV and one for energies above 12000 keV. This may result in more accurate results for the 

values above 12000 keV since those data points are more likely to be experiencing the same 

physics phenomena.  
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6.3 Experiment 3: Identifying Nuclear Shell Closures through 

Clustering of Separation Energies 

6.3.1 Overview 

In nuclear physics, understanding the structure and stability of atomic nuclei is paramount. 

One critical aspect of nuclear structure is identifying the closure points of nuclear shells, which 

significantly impact the chemical and physical properties of elements. Traditional methods of 

exploring these shell closures rely on experimental measurements and theoretical 

calculations, which can be resource-intensive and computationally demanding. 

 

This experiment introduces a novel approach using machine learning to uncover patterns in 

nuclear separation energies, specifically targeting the identification of last proton shell 

closures. By applying clustering algorithms to datasets of separation energies, the last proton 

in each cluster should represent the final proton in the shell. This method not only offers a 

potentially faster and less resource-heavy avenue for identifying shell closures but also 

provides a unique lens through which nuclear stability can be examined. 

The primary objective of this experiment is to identify the last proton and neutron in each 

nuclear shell by applying clustering algorithms to separation energy data. This study aims to 

evaluate two key aspects: first, whether distinct nuclear shells can be accurately delineated 

through this method; and second if the clustering can reliably pinpoint shell closures. 

6.3.2 Data 

Separation energies for all isotopes from www-nds.iaea.org (ChartofNuclides) 

 

Figure 10: Small section of raw, downloaded data 
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6.3.2.1 Exploratory data analysis; investigating the separation data. 

To familiarise myself with the data I performed an exploratory analysis of the data. It is good 

practice to do this with data so you can start to get an intuitive feel for any patterns or 

relationships that might guide any future designs regarding experiments.  

6.3.2.2 Investigating the separation data 

This data analysis is for the Sn1 data. 

The data has 2112 entries and 18 columns.  

The unique Z values are 1.  2.  3.  4.  5.  6.  7.  8.  9. 11. 12. 13. 14. 15. 16. 17. 18. 19. 

 21. 22. 23. 24. 25. 26. 27. 28. 29. 31. 32. 33. 34. 35. 36. 37. 38. 39. 

 41. 42. 43. 44. 45. 46. 47. 48. 49. 52. 51. 54. 53. 55. 56. 57. 58. 59. 

 61. 62. 63. 64. 65. 66. 67. 68. 69. 71. 72. 73. 74. 75. 76. 77. 78. 79. 

 81. 82. 83. 84. 85. 86. 87. 88. 89. 91. 92. 93. 94. 96. 95. 97. 98. 99. 

The unique N values are: 1.   2.   4.   3.   6.   5.   8.   7.  10.   9.  12.  11.  14.  13. 

  15.  16.  18.  17.  20.  19.  21.  22.  23.  24.  25.  26.  27.  28. 

  29.  30.  31.  32.  33.  34.  35.  36.  37.  38.  39.  40.  41.  42. 

  43.  44.  45.  46.  47.  48.  49.  50.  51.  52.  53.  54.  55.  56. 

  57.  58.  59.  60.  61.  62.  63.  64.  65.  66.  67.  68.  69.  70. 

  71.  72.  73.  74.  75.  76.  77.  78.  79.  80.  81.  82.  83.  84. 

  85.  86.  87.  88.  89.  90.  91.  92.  93.  94.  95.  96.  97.  98. 

  99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 

 113. 114. 115. 117. 116. 118. 119. 120. 121. 122. 123. 124. 125. 126. 

 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 

 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 

 155. 156. 
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Figure 11: Histogram for each numeric input variable* 

*Please note, the histogram is only intended to give an idea of the distribution due to the bin sizes. 

 

A (Mass Number): This histogram shows a roughly symmetric distribution of mass numbers 

with a peak somewhere around 100-120. This implies a higher frequency of stable isotopes in 

this mass range, but the reality is stable isotopes are not more abundant within a particular 

mass range, they are distributed widely across a range of mass values. This shows that the 

data is simply a reflection of the isotopes that have been studied.  

Z (Atomic Number): The distribution for atomic numbers seems to be multi-modal, with two 

distinct peaks. One around the high 80’s (88, 89) and one around 50. The high 80s represent 

highly radioactive elements which is an active area of research due to the application of 

radioactive isotopes in areas such as medicine and energy. Radium, discovered by the Curies, 

has a historical significance in the study of radioactivity and chemistry. This historical interest 

has led to extensive documentation and data collection. Z = 50 is Tin and has the highest 

number of stable isotopes. For this reason, it will be easier to collect an abundance of data on 

it.  
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S(n) (Neutron Separation Energy): This distribution appears right skewed, meaning there are 

a few isotopes with higher neutron separation energies that form a tail on the right side. This 

suggests that as the separation energy increases, fewer isotopes will be found. 

N (Neutron Number): The distribution appears to have peaks around N = 21, 28, 50 and 82 

which correspond with the magic numbers. This would mean that the isotopes where N equals 

a magic number would be studied more due to their stability and interest. 

To summarise, it is clear the data is skewed in favour of the elements and isotopes that are 

more abundant due to stability, easy to measure or have significant cause to study them. It 

isn’t a complete set of data. This must be considered when performing analysis later. 

Investigating Sn against N. 

In the next part of the data exploration neutron separation energy was plotted against the 

neutron number on for a particular element, in this example, calcium. 

 

Figure 12: Sn against N for Calcium 

 

The diagram above shows the value of N increasing as the value of Sn decreases. Three clear 

groups or clusters can be seen. They coincide with the theory of the shell model.  
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This is where the idea for the first experiment came from.  

Could machine learning show shell structure? 

 

The diagram above illustrates the relationship where the value of N (neutron number) 

increases as the value of Sn (neutron separation energy) decreases. Three distinct groups or 

clusters are evident, aligning with the theoretical predictions of the shell model. This 

observation sparked the initial concept for the experiment with the question; could machine 

learning effectively reveal the underlying shell structure by identifying these grouped patterns? 

6.3.3 Method 

To answer the question above the following activities need to take place. 

1. From visual analysis of the separation data (see figure above) it could be seen that the 

data can be separated into groups. In the diagram above three distinct groups can be 

seen. The first step is to find a ML model than can group the data.  

2. The second step is to use regression on the group of data closest to Sn = 0 (bottom of 

the diagram) to find the line of best fit. 

3. Predict where the separation energy = 0 by extrapolating the line of best fit to make a 

prediction outside of the given data set. 

 

The first step is a clustering problem. Since the data has no clustering information within it, an 

unsupervised clustering algorithm will be used.  

A comparison between the following models was made, 

• K-means. 

• DBSCAN. 

• Agglomerative. 

• Mean Shift. 

 

The clustering model ‘K-Means’ was selected.  

 

Model limitations: The model was set up with a cluster value of 3, this meant it would only work 

with 3 or more data points in a set so elements such as hydrogen and any other with very 

small data sets were excluded. This was later changed to 2 clusters which gave much better 

results. 
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6.3.4 Results 

The shell closure data was split into two categories, major shell closures and minor shell 

closures.  

Major shell closures are N = 2, 8, 20, 28, 50, 82, 126 

Minor shell closures are 6, 14, 16, 32, 38, 40, 58, 64, 68, 70, 92, 100, 106, 110, 112, 136, 142, 

154, 162, 164, 168. 

 

Below is a selection of clustering results.  

It can be seen that the K-Means method is sufficient at identifying clusters when two or three 

are present. When there are only two clusters present there is sometimes a small amount of 

overlap between the clusters. This will be a source of error in the final conclusion. Fortunately, 

the dataset is large enough to put up with the existence of some errors.  

 

 

Figure 13: Results from clustering algorithm showing clusters 

 

Below is a selection of plots showing the final nucleon being correctly identified. Below shows 

major shell closure at 8 and minor closure at 14. 20 wasn’t identified because it belonged to 

the third cluster which was omitted from the analysis. Interestingly, the first plot shows two 
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clusters, but the cluster algorithm identified 3 clusters and correctly identified 14 as a minor 

shell closure. The second plot correctly identified 20 and 28. 

 

Below shows a histogram plot of the final shell closures. This data is biased because more 

data exists in the centre of the data set due to the nature of the data.  

 

 

Figure 15: Histogram of shell closures 

Given the inherent skewness present in the dataset, the use of confidence levels was 

incorporated to normalise the data, ensuring a more balanced and meaningful analysis. The 

normalisation process assessed each shell closure's frequency relative to its potential 

frequency of occurrence. The adjusted criteria meant that only shell closure values with a 

confidence level exceeding 0.6 are deemed significant. This threshold indicates that a given 

value is observed in at least 60% of the instances where it could theoretically appear, 

Figure 14: Shell closures 
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according to the model. Applying this stringent standard, we've identified a set of shell closure 

values was identified that consistently emerge with high reliability. 0.6 was chosen through 

trial and error. Any higher and most of the ‘magic numbers’ were eliminated. Any lower and 

too much ‘noise’ was included.  

 

 

 

  

                   Figure 16: Confidence level of 50%                                    Figure 17: Confidence level of 70% 
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Taking a closer look at the outliers I noticed a high confidence level for N = 1, 2, 152, 155 and 

156. These are not traditionally shell closures (apart from 2) so further investigation was 

carried out. I suspected that there were very few data points in the dataset for these. If this 

was the case it wouldn’t take many results to give these a high confidence vote.  

 My suspicions were correct.  

N Data 

points 

1 1 

2 3 

152 4 

155 3 

156 2 

Table 7: Table of outliers 

 

I made the decision to discard any datasets with 4 or less data points.  

 

Setting the confidence level to give the best results.  

To recap, the confidence level quantitatively measures the proportion of times a particular 

value appears relative to the number of times it could potentially appear. Essentially, it 

assesses how frequently an observed value occurs in relation to its expected frequency, 

providing a standardised indicator of its significance or reliability in the data. 

6.3.5 Conclusion 

 

The shell closures of 20, 28, 50 and 126 have been calculated with a high degree of 

confidence.  
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Figure 18: Shell closures with added higher confidence 

 

These numbers align with magic numbers as shown in figure 18.  

 

Reducing the confidence levels to 0.5 enabled the inclusion of minor shell closures of 6, 14 

and the major shell of 20 as shown in figure 19.  
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Figure 19: Shell closures with added lower confidence 

6.3.6 Further analysis: Regression  

Any plot of Sn V N, see figures 20 and 21, will show the value of N increasing as the value of 

Sn decreases. 

 

 

Figure 20:Multiple shell closures for Z = 18 
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Figure 21: Shell closure for Z = 18 

 

As Sn decreases the stability of the isotope decreases and as Sn reaches zero the isotope 

will decay by emitting a neutron. The value of N, beyond which no more isotopes can be found 

is called the drip line. Investigating the Sn V N diagram gave rise to this analysis that aims to 

answer the question; can we predict the value of N at which Sn is equal or less than 0 i.e. can 

we predict the drip line? 

6.3.6.1 Method  

In order to answer the question above the following activities need to take place. 

1. Using the data on the clusters, find the cluster closest to the y (Sn) = 0 line. 

2. Using regression on this data, find the line of best fit. 

3. Predict the final value of N, just before where the separation energy = 0 occurs by 

extrapolating the line of best fit to make a prediction outside of the given data set. 

 

 

6.3.6.2 Results 

I tried fitting a straight line to the final cluster, but this didn’t always show a best fit. The best 

fit line looked like it should be slightly curved. I tried with many orders of polynomial curve 

fitting but with no success. I decided the linear extrapolation method, while not perfect, was 
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the best solution for this experiment. Using linear regression analysis on K-Means clustering 

data gave the following results.  

 

 

Figure 22: Finding the drip line using two clusters 

 

 

Comparison data taken from (ChartofNuclides) 

Z Species N (observed) N (predicted 2 

clusters) 

N (predicted 

3 clusters) 

1 5H 4 3 7 

2 10He 8 8 34 

3 12Li 9 9 9 

4 14Be 10 11 11 

5 21B 16 13 13 

6 22C 16 17 21 

7 24N 17 18 32 

8 26O 18 20 20 

9 31F 22 20 20 

10 34Ne 24 No Data No Data 

Table 8: Predicted N Values Using Sn 

Figure 23:Finding the drip line using three clusters 
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6.3.6.3 Regression conclusion 

Using two clusters the drip line was predicted exactly in 2 out of the 9 cases above and to 

within +- 1 in 6 out 9 cases, or in 70% of cases.  

Using three clusters only 1 value was predicted exactly and 2 within -+ 1. This was due to the 

small amount of data points contained within the final cluster when the data was split into three 

clusters. This analysis proved that it is important to have as much data as possible for 

regression. Too little data gives poor results because there is not enough data to fit a line to.  

 

This shows that splitting the data into two clusters gave the best results when trying to predict 

the drip line position.  

6.3.7 Further analysis: P drip line 

6.3.7.1 Method 

The same process was applied to proton data. The proton drip line is more well observed than 

the neutron drip line.  

 

An initial look at the plot for S(p) versus N showed an interesting feature in the data. Where N 

= Z there was a significant step up in Sn. This indicated the protons in nuclei were more stable 

when Z = N. The other significant observation was the lack of clusters of data as could be 

easily seen in the Sn V N plots. The existence of clusters showed a resemblance to the shell 

structure, and it highlighted the nuclei that were more stable, giving rise to the ‘magic 

numbers’. If we are to believe the shell model, then the lack of clusters in the S(p) data shows 

that there are other forces at play resulting in less stable, proton heavy nuclei.  

 

 

Figure 24: Sn Clusters 
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Due to the smoother appearance of the Sn data, it wasn’t possible to predict magic numbers 

or shell closures. However, clusters could still be identified, and regression used as before to 

predict the proton drip line.  

 

6.3.7.2 Results 

Note: Regression was extended to two clusters if the cluster data set contained too few data 

points (< 3). 

  

 

Z Species N (observed) N (predicted 2 

clusters) 

N (predicted 3 

clusters) 

3 5Li 2 0 2 

4 6Be 2 0 1 

5 7B 2 2 3 

6 8C 2 3 3 

7 11N 4 5 5 

8 12O 4 5 4 

9 16F 7 8 7 

10 16Ne 5 No Data No Data 

Table 9: Predicted N Values using Sp 

 

6.3.7.3 P-drip line conclusion  

The results for the first few nuclei show that it’s much harder to perform regression since the 

clustering is more difficult with this smooth data. Moving to three clusters helped with the 

Figure 25: Predicting proton drip line 
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predictions enabling the value to be predicted within +- 1. It is clear there are not three clusters 

in this data, moving to three clusters is just a way to influence the regression calculation to 

lean towards the data points closer to the y = 0 line. I don’t think this is the right way to do it 

but I did it to highlight the fact that machine learning models can find it hard to predict patterns 

in data when the pattern is very subtle. In this case, the data points near y = 0 are very 

important for predicting the drip line but because there are few of them, they are contained 

within a cluster that they don’t really belong to. They should be in their own cluster. Even if 

they could be identified in their own cluster there are too few data points to make a meaningful 

regression analysis.  

6.3.8 Conclusion 

Clustering was effective in identifying the patterns in the S(n) data because it contained easy 

to identify patterns. Shell closures for major and minor shells could be identified. It was harder 

to find patterns in the S(p) data was more difficult because the data was smoother.  

6.3.9 Further work 

Using clustering on linear data was the best algorithm from the many I tested but if I were to 

continue this work, I would try other machine learning models.  I only tried a small set of 

clustering models but many more exist.  

Regression analysis is only as good as the cluster definitions. I decided on straight line 

analysis after many polynomial experiments. Further polynomial experiments may reveal a 

better fitted curve than the linear as the linear pattern was limited when used on smaller 

datasets.  

It was difficult to perform clustering on data sets as small as this. Clustering is better suited to 

larger datasets.  

 

6.4 Experiment 4: Predicting Stability using Half Life Parameter 

6.4.1 Overview 

Understanding the stability of isotopes is fundamental in nuclear physics. Stable isotopes are 

those that do not decay over time, while unstable (radioactive) isotopes undergo radioactive 

decay, emitting radiation. Predicting stability helps in studying nuclear structure, decay modes, 

and nuclear reactions. 
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I wanted to see if there was an underlying relationship between N, Z and stability since the 

line of stability is fairly linear. Could it be predicted by machine learning models? 

 

 

Figure 26: Chart of nuclides showing stable isotopes in black 

 

6.4.2 Data  

The ground state half life values were taken from the Chart of Nuclides (ChartofNuclides) and 

those which said ‘stable’ were marked with a 0 and those that were not stable were marked 

with a 1.  

 

 

Figure 27: Raw data showing 'stable' 

This was translated into a table of stability. There are many more unstable than stable 

isotopes. This gave a class imbalance.  
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Figure 28: Table of stability 

Z and N were used as the features. Stability was used as the target variable.  

6.4.3 Method 

We were only looking for a zero or one indicating stable or not, so this problem was a 

supervised binary classification model.  

Several models were tested and the random forest model performed the best.  

6.4.4 Results 

The results were,    

Correctly Predicted Stable Isotopes (predicted 0s): 22 (34.92%) 

Correctly Predicted Unstable Isotopes (predicted 1s): 756 (97.30%) 

The model found it much easier to predict unstable isotopes due to the fact they were more 

present in the data.  This caused class imbalance as already mentioned.  

To address the class imbalance, oversampling was applied. However, this approach did not 

significantly improve the results. I believe this outcome was due to the inherent imbalance in 

the data, which was a natural characteristic rather than an artifact of data processing. 
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Figure 29: Correctly predicted stable isotopes 

Feature addition. 

I also added in another feature ‘magnetic_dipole’.  

There wasn’t a magnetic dipole value for all values of Z and N so after removing all values 

with no magnetic dipole I was left with a much smaller data set.   

171 unstable and 24 stable isotopes.  

This meant it was still going to be difficult to predict stable isotopes. 

The random forest could only predict one isotope correctly. 
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Figure 30: Predicting stable isotope with the inclusion of magnetic dipole 

6.4.5 Conclusion 

In this experiment we can see the importance of using a balanced data set. Even with the 

addition of balancing techniques such as oversampling, and the addition of another feature 

the data didn’t improve. In fact, it deteriorated because the data set was reduced.  

With this particular data set, the more features I add the smaller the data set becomes because 

it is not complete and consists of blank spaces, special characters and other characters that 

need to be removed. A large data set is important to give the best results. 

6.4.6 Further work 

More work needs to be done on how to balance data when there is a natural variance in the 

data. I don’t think it’s right to just remove some data to force it to be balanced. Many of the 

balancing techniques revolve around creating synthetic (fake) data. I think this would be a 

good area for further research. With more time I could introduce more features without 

reducing the dataset, while trying to balance out the stable data. This would take a lot of trial 

and error, but I am confident a solution on how to best balance data (for this type of naturally 

unbalanced dataset) could be found. 
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6.5 Experiment 5: Predicting Stability using Energy Level 

Densities 

6.5.1 Overview  

Energy levels inside a nucleus refer to the quantised energy states occupied by nucleons 

(protons and neutrons) within the nucleus of an atom. Nuclei can undergo excitations where 

nucleons transition from lower to higher energy levels. These excitations can occur due to 

various processes such as nuclear reactions, radioactive decay, or interactions with external 

particles. There was a lot more available data on these energy levels. I wanted to see if I could 

predict stability based on the energy levels dataset. 

6.5.2 Data 

Energy levels data came from the Chart of Nuclides (ChartofNuclides) was used. 

 

The energy density data was calculated from the energy levels data. I counted how many 

energy levels were present within a given energy range. I created a table containing columns 

for each energy range, populated with number of levels present. This data was used to plot 

the number of levels for each N of a particular element, Z. I used this simple approach since 

it required no knowledge of any existing physics models. 

The sample of data below shows 5 energy ranges (I used 1000KeV ranges) and how many 

energy levels were found in that range. The category was given stable = 1, 0 and 2= not stable.  

 

 

Figure 31: Sample of energy level data 

6.5.2.1 Initial data analysis 

The energy densities were plotted for specific Z to understand how the data looked. It can be 

seen that the levels are densely packed in around specific N values.  
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The levels per N were counted and plotted. A pattern emerged where the density peaked 

around the magic numbers. 

 

Figure 32: Energy level density increase around magic numbers 

Figure 33: Density peaks around the magic numbers 
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Figure 34: Correlation between energy level peaks and magic numbers 

I was able to overlay my energy density diagram on my separation energy diagram to see a 

distinct correlation between stability and energy density, but could machine learning models 

identify this same pattern? 

 

For each value of Z, I conducted an analysis to identify the specific N where the density of 

energy levels peaked. By determining the frequency with which each N value appeared as the 

location of maximum energy levels, I constructed a histogram to visualise the distribution. This 

visualisation underscores a consistent pattern in the data, indicating a correlation between 

stability, magic numbers, and the density of energy levels within a nucleus. 

By plotting the frequency of N with highest energy levels, the magic numbers were easily 

found, indicating that densely spaced energy levels are a clear sign of stability.  
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Figure 35:Histogram to show most energy levels for magic numbers 

 

 

I decided the goal of this experiment was to see if stability could be predicted from energy 

densities and to investigate the relationship between stability and energy density / energy 

levels by asking, can we predict stability from energy densities? 

6.5.3 Method 

I wanted to classify a particular nucleus as either stable or not stable, so this was a binary 

classification problem. I tried several models and chose the random forest classifier model as 

being the best. I was using accuracy score to compare.  

Once I decided on a model, I next optimised the algorithm by trying out various numbers of 

‘features’ in my data. The data set had over 100 features. Many of the features contained the 

value ‘0’ so I experimented with leaving some out. I was able to tweak the model until the 

accuracy score 0.963. 

 

Figure 36: Finding the optimal number of features from a very large data set 
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Likewise with other tuneable parameters such as ‘estimators’ and ‘rand states’. 

 

6.5.4 Results 

The random forest algorithm gave the following results with an accuracy of 0.963.  

The results were better if I predicted unstable nuclei rather than stable. The accuracy for stable 

was 0.2857. This was because the data was heavily biased towards unstable data so it was 

easier to predict if something was unstable. The majority of the data we were using to train 

the model was unstable. To remove some of this bias a technique called stratification was 

used but after several experiements it was clear that this technique wasn’t improving the 

accuracy of predicting ‘stable’ nuclei. I think this was for the same reason as discovered in 

experiment 4.  

 

Figure 37: Finding optimal values for tuneable parameters 
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Figure 38: Prediction of unstable nuclei 

 

Feature addition: 

It became evident that to be able to predict stability, more features of different types were 

needed.  

I experimented with the addition of spin and magnetic dipole, whilst also experimenting with 

using just Z or just N.  

 

Z N Spin Magnetic Dipole Accuracy 

Y Y N N 28.57 

Y Y N Y 25.7 

Y Y Y N 20 

Y Y Y Y 25.71 

N Y N N 31.43 

N Y N Y 17.14 

N Y Y N 25.71 

N Y Y Y 28.57 

Table 10: Accuracy of Stability Predictions 

Red: Expected 

Black: Predicted 

Plot to show unstable nuclei 

N 

Z 
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The results were inconclusive. I was expecting higher accuracy for the case where I included 

Z, N, Spin and Magnetic dipole but as you can see no sensible conclusion can be reached 

with the results.  

6.5.5 Conclusion 

The data isn’t complete, we may only have density data for nuclei that have been measured 

so a lack of density might not mean the data doesn't exist, it could mean it just hasn't been 

measured so we need to remember this when carrying out analysis. 

 

Trying to predict the classification of something in the minority dataset needs more input. 

There just isn’t enough data for the model to predict a stable nucleus with any reasonable 

degree of accuracy.  

 

This highlights the need for datasets that are more balanced and contain a good spread of 

data for all the classifications you may want to predict. 

 

The interesting point to note here is that we can easily see the magic numbers with a bit of 

data analysis, machine learning was not required.   

 

6.5.6 Further work 

Another interesting point to note was during further analysis I saw some heavier elements 

being predicted as stable. This may have been due to their half life being really large, e.g. for 

Uranium it is 4.5 billion years. I would have liked to study this area further to see how often 

heavier elements were predicted to be stable and to understand what pattern that would show 

up as.  
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6.6 Experiment 6: Predicting Spin  

6.6.1 Overview 

This experiment was to see if machine learning could identify the pattern between spin and Z 

and N and potentially even-even and stability.  

6.6.2 Data 

Using the same set of data from Chart of Nuclides (ChartofNuclides) I used Z, N and spin.  

Python needed numbers as float or integers, so I turned the spin values to floats to give the 

following data. 

 

Spin as float - all data total 1545 data points. 

0.0    872 

1.5    120 

2.5    119 

0.5    104 

3.5     85 

1.0     60 

4.5     58 

2.0     45 

3.0     25 

5.0     18 

4.0     15 

6.0      9 

7.0      8 

5.5      5 

8.0      2 

 

These numbers were then turned into categories in preparation for the classification model (it 

works by assigning categories). There were 15 categories.  

 

One problem became clear immediately. The data is very heavily biased around spin = 0 data. 

To level out the categories I reduced the number of categories to 3. Spin as 0, odd or even.  
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Spin class Count 

0 872 

2 602 

1 1 

 

 

We can see class 0 and class 2 are a bit closer in size but class 1 is still really small in 

comparison.  

Using feature engineering I created the target column of ‘Type’ which was either a 1 for boson 

nucleus (integer spin), 2 for fermion nucleus (half integer spin) or 0 for zero spin, stable 

nucleus. 

6.6.3 Method 

This was a binary classification problem, so a random forest classification model was used as 

this has yielded very good results in the past. However, on reflection I should have continued 

my method of testing several models at the same since the performance of a models depends 

on how well it can detect underlying patterns and that really depends on the data it is being 

trained on. Just because a model may have performed well on one data set it doesn’t mean it 

can perform well on any data set. 
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6.6.4 Results  

 

Figure 39:Fermion / boson nuclei predictions 

 

The number of even-even nuclei that were predicted correctly was 55.858% 

Out of the 52% correct predictions 76% were correctly predicted as bosons. 

I investigated whether this was due to the fact the data might be skewed because it consisted 

of a higher proportion of bosons. 

 

Data B F Ratio 

All data 1002 466 2.15:1 

Test data 752 349 2.15:1 

Training data 250 117 2.15:1 

Results 645 456 1.41:1 

Table 11: Ratio of boson / fermion nucleus in the data set 

 

The ratio was different for the results data, but further investigation is needed to eliminate data 

skew or understand how it affects data with so few features. 

There is more than double the number of bosons to fermions. This means we have an 

‘imbalanced class dataset’. There is an uneven distribution of the data. 
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A high percentage of the predictions were correct, but we must look more closely at the type 

of errors that were made during the classification process.  

To do this we create a confusion matrix. 

First, we must calculate the number of correct predictions for each class. 

Correct fermions 309 (True positive) 

Correct bosons 651 

Then we calculate the incorrect number of predictions for each class, organised by 

predicted value. 

Incorrect bosons as fermions 101 (False positive). 

Incorrect fermions as bosons 40. 

 

The values are then arranged in a confusion matrix.  

 

 
B F 

B 651 (TP) 40 (FP) 

F 101 (FP) 309 (TP) 

Total 752 349 

Table 12: Confusion matrix 

More errors were made when predicting bosons as fermions than when predicting fermions 

as bosons. 

The model favours the majority class.  

 

 

Figure 40: Confusion matrix showing real data 

With the past experiences of unbalanced data, I tried again to improve the results. With the 

decision tree we can use balanced bagging classifier. 
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Figure 41: Decision tree bagging 88.6% accurate 

 

 

Figure 42: Random forest, no bagging, 87.1% accurate 

 

There was not much difference between the two models, but the errors are more balanced in 

the random forest bagging. 97 / 28 errors vs 96 / 45. 

 

I also used SMOTE as a way to oversample, but this didn’t improve the results.  

When the results don’t improve it’s a strong indicator that the model needs more data to help 

it identify the underlying patterns.  

I added in another feature of magnetic dipole.  
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Figure 43: Data with magnetic dipole. 

 

Figure 44: Slightly improved fermion / boson nuclei predictions 

The number of even-even nuclei that were predicted correctly was 61.875% 
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6.6.5 Conclusion 

Even-even nuclei are more stable and therefore more easier to observe so the data on them 

is more widespread. This also makes them well-studied, so the models are well developed for 

predicting deformity in these nuclei. The huge amount of data on them made them easier to 

predict compared to none even-even nuclei.  

Odd -odd or odd-even are more difficult to study so theoretical data is somewhat limited 

resulting in them being harder to predict..  
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6.7 Experiment 7: Identifying the Magic Numbers from Deformity  

6.7.1 Introduction 

The majority of nuclei undergo some degree of deformity. A non-deformed nucleus has a spin 

of zero. This experiment was to see if machine learning could identify the pattern between 

spin and stability. Can we identify the magic numbers in deformity data? 

This was a data analysis activity rather than a machine learning activity. I included it to show 

that we can still learn a lot from data without the need to apply complicated machine learning 

models.  

6.7.2 Data  

I used Z, N and the deformity parameter Beta from NuDat (NuDat).  

 

Figure 45: Raw data of Z, N and deformation parameter Beta 

 

For each Z, I took the N with the lowest deformation value. I then counted up all the Ns and 

plotted a histogram.  

 

Figure 46: Data showing N = 20 appearing three times with low values of deformation 
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6.7.3 Results 

The magic numbers 20, 28, 50 and 82 can be seen from the histogram proving the relationship 

between stability and low values of deformation. 

 

Figure 47: Histogram proving the relationship between deformation and stability 

6.7.4 Conclusion 

This exercise was a quick data analysis activity to show that some patterns in data can be 

easily found without machine learning. I would like to emphasise that the easiest solution will 

always be best, and we shouldn’t over complicate data analysis just because we can.  
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6.8 Experiment 8: Predicting Deformity from a Theoretical 

Geometric Model  

6.8.1 Overview 

After learning about the shell model and deformation I formulated an idea based on the 

nucleus being built gradually in clusters of 2 protons and 2 neutrons as a Helion or alpha 

particle. When 4 nucleons come together tightly packed, they are shaped as a tetrahedra.  

 

 

 

Figure 48: Possible formation of an alpha particle 

 

To try and explain deformity I imagined energy as waveforms forming nodes where they met 

with waveforms from another nucleon. My idea is that these nodes may cause the appearance 

of deformity since the energy waves will be concentrated around the nodes.  

The more alpha particles that were joined together the more nodes that were created and the 

more pronounced the deformity. This can also be seen as the heavier a nucleus is the more 

deformed it may be.  

 

In the geometric image below, I have added 3 alpha particles together and put red spots where 

I the nodes are. I have drawn an oval through these nodes to suggest the shape of the nucleus.  
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Figure 49: Three alpha particles and their nodes suggesting a deformed shape 

I know the physics isn’t exactly clear in this model, but the goal of machine learning is to see 

if we can identify a pattern, or relationship without knowing too much about the underlying 

physics.  

 

6.8.2 Data 

Step 1: Building a model for how many tetrahedrons exists in each shell or layer. 

I built up my alpha particles in shells similar to the shell model. This didn’t influence my data, 

but it did help me to visualise the data set I wanted to create. I created a table with only even 

neutrons and protons and indicated what shell it would be in, or ‘layer’ and indicated how many 
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full alpha particles were present in that layer and how many altogether were present in all the 

layers. 

 

Shell P N Total Full helions / 

tetrahedrons 

Accumulative helions / 

tetrahedrons 

1s 2 2 4 1 1 

1p1 4 4 8 2 
 

1p2 2 2 4 1 4 

1d1 6 6 12 3 
 

1d2 4 4 8 2 9 

1f1 8 8 16 4 
 

1f2 6 6 12 3 16 

1g1 10 10 20 5 
 

1g2 8 8 16 4 24 

Table 13: Layered helion model data 

Step 2: Building a theoretical dataset of the geometry of deformed circles based on the number 

of triangles and therefore nodes. Also, I used the fact that deformation was related to 

eccentricity. 

6.8.3 Method 

With my data set I performed clustering to give me possible distinct deformed shapes.  

I took the average distance to each cluster and calculate the eccentricity. 

I then tried to use this to predict deformation. I then compared that value to real nuclei 

deformation values.  

 

Deformity is a continuous value, so the problem is a regression problem. I used gradient boost 

and random forest regression models to try and identify patterns between my data set and 

deformity.  



80 

6.8.4 Results  

 

The random forest regression results were not very good.  

Root Mean Squared Error: 0.12351384540630445 

R-squared: 0.043946831880670056 

 

 

Figure 50: Random forest regression results 

The results from the gradient boost model were equally as poor. 

Root Mean Squared Error: 0.12537071764318913 

R-squared: 0.014984685620576643 
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Figure 51: Gradient boost results 

Neither model was able to identify a relationship between the node shapes and the 

deformation parameter.  

6.8.5 Conclusion 

This was my attempt to create a novel model of the nucleus, using geometry as key feature. 

There are several areas where my data could be improved. I have used a 2D representation 

for my nodes. Perhaps, this is too much of a simplification. If I could translate this to a 2D 

model, it would be more representative.  As always, accurate data is paramount, and I just 

don’t think my data was good enough.  

It is clear there are other forces in play in the nucleus that cause the deformed shape, so it is 

hard to be completely naïve about these. I think ignoring current models as I have been doing 

is the wrong approach.  

For machine learning to be fully embraced we need to see it as a tool to support our current 

thinking and to help us find new questions. The answering of those questions can only come 

with specialist knowledge, supported by machine learning, not replaced by it.  
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Machine learning should help us uncover questions and challenge our thinking. It can help us 

on the road to discovery. 

I think we do need a lot of knowledge to understand the data, so it is still something to be used 

by people who are specialists in the subject matter. 
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7 Chapter 4: Final Conclusion and Further Work 

Throughout the experiments in this thesis there was a common theme around the lack of 

quality data, and this affected the quality of the results. 

 

Experiment 2 demonstrated that predicting separation energies with only three features was 

not very accurate. This highlighted the complexity of the relationships between nuclear 

parameters, showing that more features are required to capture these interactions effectively. 

The need for additional data underscores the challenge of identifying and testing the 

necessary relationships. The quality of the results heavily depends on the availability of the 

right data. Without knowing which specific data points are crucial, achieving the desired 

outcomes becomes difficult, if not impossible. A broad and diverse dataset is essential for 

successful experimentation; without it, the experiments are likely to fail. This experiment also 

showed errors at higher values of Sn which was highly likely due to the lack of data at higher 

energies due to its instability, making it hard to gather data. 

 

Experiment 3 showed us how small differences in data can make or break an experiment. The 

S(n) data was slightly more stepped than the S(p) meaning the patterns in the S(n) could be 

identified much more easily that in the S(p) data.  

 

Experiment 4 showed how the clustering models accuracy suffered due to the small sizes of 

the clustering and also how it was hard to do regression on small clusters of data.  

 

Experiment 5 showed how data biases lead to the prominent class of unstable being predicted 

with a high degree of confidence compared to the less prominent class of unstable. A problem 

when there are not enough classes.  

 

Experiment 6 highlighted the fact that the dataset wasn’t complete due to even-even nuclei 

having longer half-lives, they are more abundant and so can be studied easier and more 

frequently. Incomplete datasets can give misleading results.   

 

Overall, the limitations I encountered were not related to the machine learning models 

themselves, but rather to the available data, which was too small, incomplete, biased, or 

imbalanced. More work is needed to improve the quality of the data by expanding the dataset, 

ensuring it is more representative, reducing bias, and addressing any imbalances. Enhancing 
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data collection, preprocessing methods, and curating a more comprehensive and balanced 

dataset will ultimately lead to better model performance and more reliable predictions. 

The experiments in this thesis are using a dataset that is too broad. The experiments should 

be split into high energy / low energy experiments and high mass / low mass experiments due 

to the difference in physics that is occurring and the difference in available data at various 

energy and mass values. If the experiments are focused on a specific zone of the chart of 

nuclides, instead of using all the available data, we find more meaningful relationships.  

 

 

 

 

8 Bibliography 

https://www.nndc.bnl.gov/nudat3. NuDat. [Online]  

Jenkins, David G. 2021. Gross Properties of Nuclei. 2021. 

Liquid Drop Model. Zelevinsky, Vladimir. 2017. 2017, Physics of Atomic Nuclei, pp. 91-111. 

Mayer-Jensen shell model and magic numbers. Velusamy, Ramiah. 2007. 12-24, s.l. : 

Resonance, 2007, Vol. 12. 

Prediction of the shapes of deformed nuclei by the polyspheron theory. Pauling, Linus. 1982. 

s.l. : Proc. Natid Acad. Sci. USA, 1982, Vol. 79. 

Theoretical description of nuclear masses. Litvinov1, Yuri A. 2021. s.l. : EDP Sciences, 2021. 

www-nds.iaea.org. Chart of Nuclides. [Online] 

 

9 Literature review 

Gross properties of nuclei 

In the study of nuclear physics, understanding the gross properties of atomic nuclei is 

paramount. These gross properties encompass a wide range of characteristics, from nuclear 

size and shape to nuclear stability and binding energies. Over the decades, researchers have 

developed various theoretical models and experimental techniques to investigate these 

fundamental aspects of nuclear structure. Gross Properties of Nuclei (Jenkins, 2021) 

 

 

 

The liquid drop model 
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The liquid drop model, proposed by George Gamow in 1930, treats the nucleus as a drop of 

incompressible fluid, with nucleons held together by strong nuclear forces. This model 

successfully explains many macroscopic properties of nuclei, such as nuclear binding energy, 

nuclear stability, and nuclear fission. For a more in-depth discussion of the liquid drop model 

and its applications, readers are encouraged to refer to The Liquid Drop Model (Liquid Drop 

Model, 2017) 

 

The nuclear shell model 

The shell model, introduced by Maria Goeppert Mayer and J. Hans D. Jensen in the 1940s, 

provides a more detailed description of nuclear structure by incorporating the concept of 

nuclear shells, analogous to electron shells in atoms. According to this model, nucleons 

occupy discrete energy levels within nuclear shells, leading to the emergence of magic 

numbers and shell closures. The shell model successfully explains the observed patterns of 

nuclear stability, nuclear magic numbers, and nuclear excitation spectra. It has become a 

cornerstone of nuclear structure theory and has been validated by numerous experimental 

observations. (Mayer-Jensen shell model and magic numbers, 2007) 

 

 


