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Abstract 
Digital pathology workflows provide high-resolution whole slide images (WSIs) for assessing 

diseases such as cancer at a cellular level. A worldwide shortage of pathologists limits the 

adoption of labour-intensive analysis techniques. This is potentially a role for Artificial 

Intelligence (AI). However, current AI models need images in the order of 200x200 pixels, while 

WSIs are of gigapixel size. AI-based systems must address this scale discrepancy without 

overlooking diagnostically important features in the WSI.  

Work in this thesis was motivated by human visual attention, where relevant features of an 

input scene are selected in response to goals in executive brain regions, avoiding processing 

the whole scene at full resolution.  

Two novel WSI processing pipelines incorporated attention-like algorithms. The first used a 

thumbnail image to map tumour density, controlling the sampling density of full-magnification 

patches for classification with a convolutional neural network (CNN). A later pipeline 

introduced weighted regular sampling (WRS) to mitigate sampling biases. The estimated class 

distributions yielded the tumour outline and tumour stroma ratio (TSR), a predictor of disease 

severity. 

A novel Feedback Attention Ladder CNN (FAL-CNN) used feedback attention, significantly 

increasing classification accuracy from 79.33% to 82.82% (p<0.001) with 9-class colorectal 

cancer patches. Top-to-bottom and local-group feedback were combined to generate 

attention masks for the forward path. Increased accuracy with ImageNet-100 showed the 

approach to be transferrable. In the WRS pipeline, TSR error was substantially reduced at 

pathologist-selected locations, suggesting application in a TSR measurement tool. 

Visualisations of attention masks in the FAL-CNN highlighted informative tissue regions. A 

novel saccade model resampled the input patch to align the centre-focused FAL-CNN on these 

regions. The model discovered salient features even when outside the initial patch. Pathologist 

relabelling of resampled patches confirmed the saccade model’s ability to locate nearby 

regions of tumour, a potentially valuable behaviour in cancer WSI analysis.  
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1 Introduction 

1.1 Motivation 
This research explores the use of Artificial Intelligence (AI) in extracting clinically valuable 

information from medical images, particularly histopathology whole-slide images (WSIs) for 

colorectal cancer (CRC).  

Histopathology is the study of diseases of tissue at cellular level. Traditionally, tissue samples 

were stained and mounted on glass slides for viewing with an optical microscope. High-

magnification scanners are replacing the microscope, and the resulting whole slide images 

(WSIs) are stored digitally. Digital pathology (DP) supports rapid retrieval and sharing of 

images, reducing case transfer times to assigned pathologists and accelerating diagnostic 

workflows. Users can rapidly zoom between a whole-slide thumbnail view of the sample and 

high magnification views of structures at a cellular scale. Second opinions can be rapidly 

provided by off-site experts, viewing WSIs remotely (NPIC, 2023).  

Despite the many benefits of DP, diagnostic bottlenecks exist at Leeds Teaching Hospitals NHS 

Trust (LTHT) due to a worldwide shortage of qualified pathologists (Acs et al., 2020). Any 

measure that reduces their workload will improve image throughput, diagnosis time and 

subsequently patient care. 

The central problem of using AI to analyse histopathology images is the size of a WSI. Images 

can be up to 100,000×100,000 pixels, whereas many convolutional neural networks (CNNs) 

used in image recognition have input dimensions in the order of 200×200 pixels. This means 

that WSIs are often processed as many separate image patches, raising questions of where and 

how frequently to sample the patches from the WSI for efficient processing without losing 

important structural context.  

This thesis examines solutions to this problem inspired by attention in human vision. Attention 

is the animal kingdom’s solution to the problem of rapidly detecting features of interest in a 

busy, high-resolution input. Rapid eye movements called saccades fixate on objects initially 

perceived in low-resolution peripheral vision. This is often guided by motion, to which the 

peripheral vision is more sensitive. Further information is then gathered at higher resolution 

by the central region of the eye, the fovea. The fovea is of a limited size, so information from 

multiple saccades must be combined into a larger internal representation. This process uses a 

lower processing bandwidth than would be possible if analysing the whole scene at full 

resolution simultaneously (Mnih et al., 2014).  

In human attention, feedback plays an important role (van der Velde and de Kamps, 2001) in 

detecting objects of interest in a cluttered scene. For example, if a subject is asked to search 

for a square object, a representation of this object in higher neural layers is fed back to lower 

visual layers to increase sensitivity to image features such as sharply defined corners or 

straight edges. Neurons responding to objects in the visual field will then fire more strongly 

when these features are detected. This information is passed back up through feedforward 

connections, causing higher layers to direct a visual saccade towards these areas of the scene. 

Thus the individual’s attention is directed to instances of the square object. 

Both feedback attention and saccade behaviours were reproduced in this work. 
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1.2 Aims and Objectives 
The overarching goal of this project was to contribute to knowledge in computational 

histopathology, by developing novel and diagnostically useful attention-based AI techniques 

for processing medical images at WSI scale.  

1.2.1 Visualising Cancer in the WSI 
The research question addressed here was: Can attentional processes allow an efficient WSI 

patch sampling regime be developed, so that key diagnostic results such as tumour Region of 

Interest (ROI) and Tumour Stroma Ratio (TSR) can be derived with similar accuracy to a more 

computationally expensive tile-by-tile approach?  

A prototype system existed for visualising distributions of tumour and other cells, by applying a 

CNN classifier to a WSI divided into many small tiles. It was planned to extend this mechanism 

into a more efficient processing pipeline, using spatial attention to select a smaller number of 

salient image patches for analysis. It was expected that this would reduce processing time 

whilst maintaining the accuracy of diagnostic information derived from the patch distribution. 

This work (Section 1.3.3 and Chapter 4) would also assess the performance of existing CNN 

models in the processing pipeline.  

Novel CNN models described in Sections 1.2.2, 1.3.4 and Chapter 5, would also be assessed in 

this pipeline. This work is described in Chapter 8.  

1.2.2 Feedback Attention 
An original objective of this research was to simulate feedback processes in human cognition 

using machine learning (ML), investigating potential applications in whole slide imaging for 

colorectal cancer. It was proposed to add feedback mechanisms to CNNs to evaluate the effect 

on their performance, in terms of classification accuracy and any consequent improvement in 

the accuracy of ROI and TSR prediction in the WSI pipeline. 

This would address the research question of whether the classification accuracy of a 

feedforward CNN can be enhanced by adding neural feedback pathways, emulating those in 

the primate ventral stream.  

Additional research questions were raised during this work: Do visual representations of the 

underlying spatial attention masks reveal informative objects and structures in the input 

image? Can this information be used to guide a saccade-like movement to align the target with 

the model’s centre of attention (CoA), and would this result in improved diagnostic 

performance? Would the performance of the WSI pipeline introduced in Section 1.2.1 be 

enhanced by incorporating the new feedback CNN? 

A research methodology was planned, involving a series of iterative enhancements to a 

feedforward CNN, progressively adding top-down attention elements and evaluating model 

performance before moving to the next enhancement. To address further emerging research 

questions, spatial plots were scheduled for development, and it was planned to evaluate these 

results with a consultant pathologist to gain a biological understanding of any highlighted 

tissue structures. Object-oriented programming techniques were indicated, to allow software 

to modularised and interconnected into the required model and pipeline architectures. 

1.3 Summary of Work 

1.3.1 Background 
A literature review (Chapter 2) was carried out, encompassing attention processes in cognitive 

neuroscience and their application in computational models used in medical imaging.  
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Neural networks and analytic processes using feedforward (bottom-up) and feedback (top-

down) attention were reviewed. The neural blackboard was examined as a mechanism for 

binding features extracted by multiple processes.  

Existing applications of attention were explored, in problem domains including general image 

processing, low-resolution medical imaging, and whole slide imaging and patch analysis in 

digital pathology.  

Tumour Stroma Ratio (TSR) was assessed as a predictor of survival in CRC cases. Several studies 

were reviewed that showed that higher levels of stroma, or lower proportions of tumour 

(PoT), were associated with more aggressive disease progression. 

1.3.2 Data 
Data sources are discussed in Chapter 3. Work for this thesis used data from the QUASAR trial 

(Gray et al., 2007), where tissue surgically removed from CRC patients was stained and 

scanned as WSIs to assess the effects of chemotherapy after surgery. Later annotations by 

Hutchins et al (2018) provided ground truth (GT) data for each WSI, defining ROI outline and 

point classifications of tissue in a virtual biopsy region, manually selected at the area of highest 

perceived tumour cell density.  

Patches of 224×224px size were extracted from WSIs that met quality control (QC) criteria. 

Each patch was centred on an annotated GT location from the point classification, resulting in 

a labelled 9-class image set for use in training CNN classifiers. Further sets of patch images 

were derived from this data as required in later experiments.  

To test transferability of new model architectures to other problem domains, the ImageNet-

100 dataset (Shekar, 2021) was also used in CNN training and feedback visualisation work.  

1.3.3 WSI Processing Pipelines 
Chapter 4 presents two novel WSI processing pipelines, each using attention mechanisms 

based on processes in human visual cognition. In the Attention Heatmap Pipeline (AHP), low-

resolution thumbnail tiles were analysed by a convolutional neural network (CNN) to generate 

a heatmap of likely tumour regions. These determined the sampling density at which full-

magnification image patches were to be classified using a further CNN trained on cellular-scale 

images.  

The Weighted Regular Sampling Pipeline (WRSP) used a modified algorithm to reduce sampling 

biases observed in the AHP, while still directing the action of the CNN classifier towards 

regions of suspected tumour cells. Multiple well-known CNN classifiers were compared in a 

benchmarking test, leading to the adoption of VGG19 in this role. Tumour regions of interest 

(ROI) were predicted with an F1 Score of 83.6% (95% CI 80.5 to 86.7%), representing strong 

agreement with the ground truth over multiple ROIs of widely varying shapes and sizes.  

TSR was estimated from distributions of tumour and stroma patches predicted by the image 

pipelines. The mean TSR error magnitude, relative to that calculated from pathologist 

annotations, was less than 20%.  

The WRSP and benchmarking results were later published as Attention-guided sampling for 

colorectal cancer analysis with digital pathology (Broad et al., 2022). 

Analysis of results concluded  that the choice of sampling location and the classification 

accuracy of the CNN both contributed to the accuracy of TSR prediction. Enhancements to the 

CNN using feedback attention were therefore explored as a means of boosting model 

accuracy. 
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1.3.4 Feedback Attention Models 
For Chapter 5, feedback pathways were added to the VGG19 classifier. Inspiration was drawn 

from literature modelling local feedback within regions in the ventral stream, and from top-to-

bottom feedback architectures based on U-Net. A hybrid Feedback Attention Ladder (FAL-

CNN) model combined these structures and was trained for optimum feedback activations 

between multiple combinations of convolutional groups. A feature embedding store (FES), 

acting as working memory, allowed the model to derive its final classification from the results 

of the feedforward convolutions over multiple feedback cycles.  

The FAL-CNN gave a classification accuracy with 9-class colorectal cancer patch data of 82.99%, 

a significant increase of 3.50 percentage points (pp) (p<0.001) relative to the 79.37% measured 

with the VGG19.  

With ImageNet-100, the FAL-CNN classification accuracy was 83.28%, an of 2.39pp (p<0.001) 

relative to the VGG19 baseline accuracy of 80.89%. While this result does not reach the 

current state of the art for ImageNet (now approximately 90%), it demonstrates a significant 

improvement in performance due to our feedback techniques, which we recommend for 

incorporation in newer architectures such as EfficientNet.  

1.3.5 Visualising Feedback Attention 
For Chapter 6, spatial distributions of feedback attention activations were plotted at each 

feedback level in the FAL-CNN and superimposed on the input image. With colorectal cancer 

patches, averaged over multiple images, the distributions revealed a central focus around the 

central pixel where the ground truth label was applied, suggesting the model has learned to 

examine this area preferentially.  

Qualitative examination by a consultant pathologist revealed that the regions of high attention 

in individual patches corresponded to cellular structures that were relevant to the patch class 

prediction. Plots of patch images with the attention regions superimposed as contours (Figure 

1) are therefore useful from an explainable AI (XAI) perspective, highlighting tissue structures 

relevant to the FAL-CNN model’s class prediction. 

 

Figure 1: Tumour regions in patch image from CRC resection sample, highlighted by attention 
distribution in FAL-CNN model 

With ImageNet-100, the distributions of feedback activations in higher layers showed strong 

visual correlation with salient features of the input image, such as a shark’s dorsal fin, or the 

eyes and beak of a bird. Lower-level feedback activations were more fine-grained, highlighting 

informative textures such as feathers or scales. 
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1.3.6 Saccade Model 
Chapter 7 describes a model implementing a saccade-like behaviour by iteratively moving its 

sampling region to locate salient features in the surrounding area of the WSI. An embedded 

FAL-CNN was used to obtain an attention distribution based on the input patch. The input was 

then resampled from a larger background image, such that the previous centre of attention 

(CoA) was aligned with the patch centre where the QUASAR-trained FAL-CNN was known to be 

most sensitive. The new patch was then input to the FAL-CNN to obtain the CoA for the next 

saccade, and the process repeated for 5 or 10 iterations, generally sufficient for convergence. 

The final patch class was compared with the GT label for each original input patch. 

With ImageNet, agreement rates were significantly higher using the attention-guided saccades 

(80.71%, 95% CI 80.55 to 80.86%) than with random movements (58.82%, 95% CI 58.55 to 

59.09%). This represents quantitative evidence that attention regions enclose content relevant 

to the classification result. The saccade movements tracked towards informative features such 

as a bird’s head or a shark’s fin. Notably, this happened even when these features were 

initially outside the input patch boundary.  

With QUASAR-derived patches, the model tracked towards informative tissue, such as regions 

of tumour adjacent to central lumen or non-informative background. Because of the 

heterogeneous nature of the images, the resulting classification often differed from the GT 

class at the original patch centre, resulting in agreement rates of 51.23% (95% CI 49.66 to 

52.80%), significantly lower than with ImageNet.  

To rectify this, a consultant pathologist was engaged to relabel each patch according to tissue 

at the centre pixel of the post-saccade location. The rate of agreement with the saccade model 

over 9 classes was 78.25% (95% CI 74.21 to 82.29%). However, 93.23% (95% CI 90.21 to 

96.25%) of expert-relabelled tumour patches were correctly identified by the model. This is a 

strong rate of agreement, given that inter-pathologist agreement rates are typically 85%. Thus, 

unless the patch was already centred on tumour cells, the saccade model displayed a strong 

tendency to seek out tumour tissue in regions adjacent to the original patch. 

1.3.7 Feedback Attention Model Performance in WSI Pipeline 
Chapter 8 revisits the weighted regular sampling pipeline. The original VGG19 classifiers were 

replaced with FAL-CNN and saccade models, to measure the impact on ROI and TSR 

predictions of using attention-enhanced CNNs.  

This resulted in improved accuracy when calculating TSR at the pipeline’s estimated maximum 

tumour density location. With the FAL-CNN as the 9-class classifier and a further 2-class FAL-

CNN dedicated to TSR calculation, a mean error of 18.86% (±1𝑆𝐸 17.68 to 20.04% with 5-fold 

CV) was calculated. The original VGG19 configuration gave 21.64% (±1𝑆𝐸 20.06 to 23.22%).  

At pathologist-selected GT locations, TSR error with a 2-iteration FAL-CNN was 6.84%, 

compared to 7.57% with the VGG19. This result facilitates application of the model in a 

pathologist-guided TSR-sampling tool, which would rapidly sample and classify multiple 

patches around a chosen WSI location, returning an estimated TSR value for use in survival 

prediction.  
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2 Background 

2.1 AI with Attention 
Attention is a process of selecting information from a larger volume of input data (van der 

Velde and de Kamps, 2001). This can be object-based or feature-based attention. In object-

based attention, a whole object is extracted from its background by integrating salient features 

into a single perceived unit. Feature attention, by contrast, emphasises colours or shapes of 

objects being sought, such that these features are boosted across the input scene, before 

being resolved into objects.  

Motter (1994) discovered that primates’ higher ventral regions (V4) responded most strongly 

to stimuli when features such as colour or luminance matched those of a prior cue, following a 

delay of about 200ms, suggesting active feature selection involving a feedback cycle. 

Colby and Goldberg (1999) determined that visible space around an observer is represented 

multiple times in their parietal cortex, which encodes objects and their locations. The authors 

argue that processing stimuli from sensory inputs to motor outputs does not require a single 

central representation of the space surrounding the individual. Instead, multiple 

representations of space are held in the parietal cortex, contributing to an internal assessment 

of salience which guides spatial attention and spatial memory, and may determine visual 

saccades or other motor outputs.   

De Kamps and van der Velde (2001) built on these studies, showing that object-based 

attention in primates involves feedback processes in the ventral visual stream. Feedback 

activations cause disinhibition in lower areas of the visual stream processing features 

characteristic of a target object. This selectively modulates the level of feedforward activations 

from representations of the object near the input, thus guiding spatial attention and allowing 

actions such as saccades to be directed towards the target. 

This approach was recreated in the neural networks developed for this thesis, which attends 

preferentially to objects of the target class via feedback activations, resulting in significant 

accuracy gains. 

2.2 Feedforward Attention 
The object-based attention described above contrasts with the attentional processes widely 

used in existing models. These predominantly use feedforward attention, where regions of an 

input image are preferentially selected for analysis using a mask, or other biasing signal, 

derived from the original input. In human vision, this allows objects of prior interest to stand 

out from their surroundings (Connor et al., 2004), before higher brain regions determine an 

interest in the object.  

This process is purely bottom-up, with no feedback yet from executive brain regions, and can 

be emulated in a feedforward-only convolutional neural network (CNN). CNNs such as ResNet 

(Wang et al., 2017) contain feed-forward pathways only. Pixels of the input image are 

combined by a series of weighted additions and thresholding operations, into low-level 

features describing colours and textures, then into more abstract, high-level features 

representing the identity of objects in the original scene. Such models support the addition of 

convolutional modules to implement feedforward attention. 

Woo et al (2018) developed a Convolutional Block Attention Module (CBAM) which can be 

inserted into a CNN to provide feedforward attention. This was implemented with an initial 

channel attention stage, where a per-channel attention map is derived from the input and 

used to control the relative levels of the parallel convolutional channels in the model. The next 
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stage in the CBAM generated a spatial attention map to boost certain regions of the image, 

across all channels. The CNN, with the embedded CBAM, was trained to optimise the goal (e.g. 

classification) of the outer model. Thus the CBAM learned to emphasise regions and channels 

of the input feature map that were relevant to the output class prediction. Testing a CBAM 

within a standard ResNet50 CNN (Wang et al., 2017) in the ImageNet classification challenge 

(Russakovsky et al., 2015) reduced the ResNet’s top-1 error from 24.56 to 22.66%. This is a 

noteworthy improvement, but confidence intervals are not supplied to confirm significance. 

Transformer 

The Transformer architecture (Vaswani et al., 2017) was initially used in Natural Language 

Processing (NLP) for text translation from English to German and French. Previously, recurrent 

encoder-decoder networks mapped sequences of input symbols into a predicted output 

sequence. The Transformer implemented encoder and decoder using stacked attention 

mechanisms to identify relationships between words. Each attention module used scaled dot-

product attention, combining key, query and value (QKV) terms to generate an output 

attention vector. The Transformer uses multiple Self-Attention (SA) modules, in which Q, K and 

V are all derived from the input vector, to generate an output vector representing important 

relationships within the input sequence. The Transformer achieved a BiLingual Evaluation 

Understudy (BLEU) score 7% higher than the previous state of the art (SoA). However, the 

attention modules have a complexity of 𝑂(𝑛2) for a sequence length 𝑛, limiting the length of 

input and output texts to approximately 25,000 words. 

The Vision Transformer (ViT) uses the Transformer principle in image classification (Dosovitskiy 

et al., 2020) and significantly outperformed SoA models in the ImageNet challenge. To mitigate 

the quadratic increase in model size with number of pixels, the input image was divided into 

16x16 patches, which were processed similarly to words or sentences in a larger text corpus. 

Multiple attention modules are trained to recognise relationships between regions in the 

image, such as facial features, that contribute most strongly to the output prediction.  

Current leaders in the ImageNet challenge combine models such as ViT or EfficientNetV2 (Tan 

and Le, 2021) with ensemble training approaches, such as Model Soups (Wortsman et al., 

2022) or Meta Pseudo Labels (Pham et al., 2021).  

2.3 Feedback and Top-Down Attention 

Feedback using blackboard model 

The blackboard design pattern was originally proposed for the Hearsay speech recognition 

system (Erman et al., 1980). Multiple agents independently interact with a central knowledge 

base, analogous to individuals taking turns to write on a blackboard to solve a shared problem. 

An overseeing monitor agent schedules the contributing agents and collates the most useful 

results. In de Kamps and van der Velde’s blackboard models (2015; van der Velde, 2018), such 

agents combine distributed cognitive features into a bound perception, for each object of 

interest in a visual scene. This model is cited in recent work (Wiggins, 2020) on information 

dynamics in consciousness and creativity, and was used in Harrison’s feedback-based neural 

models (2012) which have inspired the work in this thesis. 

Harrison presented a dynamic architecture for neural networks (NNs), for modelling human 

attention using feedback pathways. A conventional feedforward NN was trained according to 

requirements, using traditional backpropagation and gradient descent methods. Each node 

could then be replaced with a dynamic circuit, whose disinhibition was controlled by feedback 

from higher layers in the NN. Effectively, the dynamic nodes acted as a common blackboard, 

where data from forward and reverse streams were combined.  
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A similar approach is adopted in this current work, where activations from multiple iterations 

of a feedback model are combined in working memory to generate an optimum class 

prediction. 

Goal-Directed Attention 

Luo et al (2021) proposed a classifier exhibiting Goal-Directed Attention (GDA). Their model 

was based on a conventional VGG16 backbone (Simonyan and Zisserman, 2014), with an 

additional attention layer which was trained to respond preferentially to predetermined target 

classes. In training, the loss term was weighted more strongly for output classes in the target 

vector. Per-channel weights in the attention module were optimised while those in the 

backbone model were frozen.  

Luo hypothesised that the model paid attention to channels in the CNN that were most 

informative about the target classes, and was able to identify images of the target class 

amongst other object types or confusing backgrounds.  

This increased sensitivity came at the expense of reduced selectivity; the trained model 

exhibited a static bias toward pre-determined object types, and was prone to false-positive 

predictions of these types.  

Although GDA is driven by executive decisions about which classes are of interest, it does not 

have a feedback pathway and cannot dynamically modify the network’s behaviour in response 

to features of the input image. Also, there was no spatial component to the learned 

attentional behaviour. 

Nonetheless, Luo’s architecture demonstrated a reproducible way in which attentional 

components can be incorporated into an existing feedforward CNN (Figure 2), facilitating the 

development of feedback models for this thesis.  

 

Figure 2: Goal-Directed Attention module in feedforward CNN, showing effect of attention 
weights on channel activations (Luo et al., 2021) 

Network Pruning by Feedback 

Cao et al (2019) used feedback in a CNN to implement weakly-supervised visual localisation 

and segmentation, using only category-level labels. The model was based on a pre-trained 

VGG16 (Simonyan and Zisserman, 2014), which was used to predict the class label for the input 

image. A neural pathway pruning algorithm was then used to select neurons associated with 

the class prediction. This was achieved by optimising neurons to maximise the confidence of 

the prediction, turning off neurons that contribute the least. Then, backpropagation from the 
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target neuron to the image space, via the pruned network, was used to generate a spatial 

energy map to highlight regions of the input that contributed most to the classification.  

After several iterations of top-down pruning and optimisation, the energy map consolidated 

into an effective object localisation output, allowing Cao’s model to outperform the state-of-

the-art in PASCAL Visual Object Class object localisation challenges (Everingham et al., 2010). 

Crowd Counting 

Sam and Babu (2018) used top-down feedback in a CNN for counting people in photographs of 

crowd scenes, via the generation of a crowd density map. In a typical feedforward CNN, crowd-

like patterns in the scene caused many false detections. The authors used a feedback (top-

down) pathway to generate an attention mask as a correcting signal. This was applied to lower 

layers of the feedforward (bottom-up) network using multiplicative gating, to favour regions of 

genuine crowds.  

This approach gave lower Mean Absolute Error (MAE) and Mean Square Error (MSE), than 

previous state-of-the-art models, despite the feedback model having a smaller parameter 

count. 

If parallels are drawn between identifying heads in a crowd scene, and precognising cells or 

nuclei in a tissue sample, it appears that a CNN architecture with top-down convolutions and 

multiplicative attention gating has potential value in digital pathology applications. 

CORnet and Brain Score 

Kubilius, Schrimpf et al (2019) at Massachusetts Institute of Technology (MIT) developed 

CORnet, a family of recurrent CNNs that closely model the primate ventral visual stream, 

according to the team’s own Brain Score criteria for neural and behavioural similarity (Schrimpf 

et al., 2020).  

For the Brain Score, neural similarity between brain and CNN was assessed by comparing 

activations in response to a given input image. Functional magnetic resonance imaging (fMRI) 

was used to measure transient increases in blood flow in ventral regions. This data was 

correlated with activations observed in the corresponding layers of the CNN when processing 

the same image.  

Behavioural similarity was judged by comparing image classification accuracy between human 

subjects and the CNN model, particularly when presented with complex visual scenes. A high 

combined Brain Score was found to correlate with high top-1 performance in the ImageNet 

classification challenge.  

CORnet used a shallow CNN (Figure 3) with modules corresponding to each main region in the 

ventral stream (V1, V2, V4 and inferior temporal, or IT). Each module contained a feedback 

pathway, such that module input activations were gated by a signal derived from the module 

output. This recurrent behaviour was invoked several times in each execution of the model. 

Between two and four feedback iterations gave the best trade-off between classification 

accuracy and inference time.  
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Figure 3: CORnet-S shallow CNN with feedback pathways within convolutional modules 
(Kubilius, Schrimpf, Kar, Hong, et al., 2019)  

The use of feedback led to a higher Brain Score in terms of temporal dynamics, where 

behavioural accuracy was seen to increase with time from image onset as feedback loops were 

executed. This correlated with similar behaviour observed in primate brains, particularly when 

viewing complex images blended from objects at unusual orientations with incongruous 

backgrounds. 

Segmentation Models with Feedback Attention 

Tsuda et al (2020) added feedback attention to U-Net models, which are traditionally used for 

image segmentation (Ronneberger et al., 2015). The enhanced model was used for cell image 

segmentation in electron microscopy images of larval nerve tissue.  

Tsuda used a feedback connection from the final convolution layer in the U-Net’s decoder, to 

the first convolution block at the encoder input (Figure 4). The symmetrical U-Net architecture 

meant that these layers had the same dimensions (256 × 256px × 64 channels), allowing the 

connection to be made without further transformations.  

 

Figure 4: U-Net model with single top-to-bottom feedback attention path (Tsuda et al., 2020) 

Two main attentional methods were compared in this model. One used Source-Target 

Attention (STA), where the input was used as the query term, while the key and value were 

derived from the output. The second model used self-attention (SA), where query, key and 

value were all obtained from the output feature maps and the attention map was then 

combined with the input feature maps by vector addition. 
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Tsuda’s group then compared STA and SA with simpler methods of incorporating the feedback 

signal, such as vector addition, or a Light Attention Mechanism (Hiramatsu and Hotta, 2020) 

where spatial attention was controlled by a small feature-extracting module with two 

convolutional layers. 

Self-attention was found to be the most effective feedback type, with a mean IoU of 73.64% 

relative to the ground-truth segmentations, against 72.72% for STA, 72.56% for Light 

Attention, 71.81% for additive feedback, and 70.09% for the basic feedforward U-Net. The 

simpler feedback methods were nonetheless effective, and although marginally less accurate 

than SA and STA, they do not suffer from the higher memory demands of these types.  

These findings informed the design of novel feedback attention models in Chapter 5 of this 

thesis. It was possible to train more complex feedback models, with multiplicative attention at 

multiple levels in the encoder, than would have been possible using the computationally 

expensive STA or SA to process the feedback attention activations. 

The FANet (Tomar et al., 2022) represents a similar segmentation model to Tsuda’s. An 

attention mask at the input is iteratively updated, starting from cellular regions determined by 

Otsu thresholding. Examples were trained with images of colorectal polyps, skin lesions and 

retinal blood vessels. The performance, measured by F1 (Dice) score and Intersection over 

Union (IoU), was marginally improved over comparable U-Net derived segmentation models. 

Work in this thesis (Section 5.1) combines techniques from feedback-enhanced U-Nets and 

MIT’s CORnet into a novel recurrent Feedback Attention Ladder CNN architecture, FAL-CNN. 

2.4 AI and Attention in Medical Imaging 

False Positive Detection 

False positive detection (Hong et al., 2020) emulates the attentional behaviour of scanning a 

scene for objects of interest, in which a sequence of high-resolution glimpses is guided by 

potential matches identified in peripheral vision. Further scrutiny at locations of interest allows 

incorrect initial matches to be rejected.  

Hong used this approach in a two-stage neural network, to identify white matter 

hyperintensities (WMH) in magnetic resonance imaging (MRI) brain scans of migraine patients. 

In the first stage, a CNN was used to identify likely WMH locations. The model was trained for 

high sensitivity, to ensure that as many WMHs as possible were detected, even at the expense 

of more false positive results.   

The output of this CNN was then used as an attention mask for MRI data fed into the second 

network, which was trained to distinguish true WMH regions from false positives. The use of 

masks directed the second-stage CNN towards locations of interest, avoiding the need for this 

CNN to process and eliminate tissue structures from other areas of the brain section. This 

process improved diagnostic accuracy and computational efficiency.  

A similar approach was adopted in WSI processing pipelines in the current work (Sections 4.2 

and 4.6), to reject false-positive tumour patches in histopathology image analysis. 

Attention-Weighted Segmentation 

Oktay et al (2018) proposed an Attention Gate (AG) model, incorporated into a U-Net 

segmentation model trained to identify the pancreas in abdominal CT scans. The AG model 

automatically learns to focus on salient target structures. It was trained to suppress irrelevant 

regions and to highlight salient volumes in a 3D input tensor, eliminating the need for explicit 

localisation modules around the CNN. The Dice Similarity Coefficient (DSC) for pancreas 
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segmentation was reported as 0.840±0.087, a significant improvement over state-of-the-art 

methods for this task.  

Schlemper et al (2019) demonstrated the use of AGs in foetal ultrasound screening. Soft 

attention, using a blurred mask instead of hard cropping of image regions, was chosen for 

being end-to-end differentiable, allowing the CNN to be trained using standard back-

propagation methods. Attention-gated U-Nets informed the development of feedback 

attention methods in this thesis, which highlight salient areas of the input image for further 

analysis. 

2.5 AI and Attention in Histopathology 
Google AI Healthcare (Liu et al., 2019) reported successes in detecting metastatic breast cancer 

in lymph node biopsies. A 99% Area Under Curve (AUC) at WSI level was published, with 91% 

at tumour level. This was similar to scores achieved by expert pathologists. The algorithm used 

randomly selected 128x128 pixel patches, in parallel with larger 299x299 patches for context. 

The trained Inception 3 networks took “under a minute” to process a WSI on a cloud computer 

platform, although it was not clear what parallel GPU resources were deployed to achieve this. 

The multi-resolution approach was seen again in a study of AI in bladder cancer prediction 

(Harmon et al., 2020), where “spatially resolved prediction maps” were combined with 

lymphocyte infiltration features to give each patient a probability score for lymph node 

metastasis. The model outperformed a clinicopathologic model based on lymphovascular 

invasion, age and T-stage. The latter gave an AUC of 0.755 (95% CI 0.68 to 0.831), against 0.866 

(95% CI 0.812 to 0.92) for the AI-derived prediction score. Data was sourced from the National 

Cancer Institute and the Cancer Genome Atlas (TCGA).  

It should be noted that the above results are on a per-slide level. At a patch scale, accuracy in 

the GT classification can be limited by pathologist-pathologist agreement rates of 

approximately 85%, limiting the accuracy possible using models trained on annotated patch 

data. 

Working at the scale of a single 128 × 128 pixel patch, Jiang et al (2022) proposed a modified 

Vision Transformer (Dosovitskiy et al., 2020). Jiang’s implementation was optimised for tumour 

cell segmentation in pathology patch images, using an iterative process to reposition 16 mini-

patches over cell boundaries, thus focusing on information most relevant to the segmentation 

result. The team reported only marginal increases in F1 score and IoU relative to SoA models, 

but nonetheless demonstrated a mechanism for iterative resampling that was transferrable to 

multiple data sources.  

This thesis further explores iterative resampling in a saccade-like sequence, as a tool for 

locating salient tissue and thereby for validating models that appear to highlight such regions. 

Other literature used attention to determine where to inspect for diseased tissue in a WSI: 

A Novel Approach to Mitotic Figure Detection in Breast Cancer Histopathology Images using 

Region Based Convolutional Neural Networks (Rao, 2018) 

Rao et al proposed a novel Region-based CNN (RCNN) to grade the rate of cell division (mitosis) 

in histopathological images, currently a time-consuming job for pathologists.  

Performance was expressed using the F1 score, or DSC, chosen for its sensitivity to false 

positives. Here, true positives were defined as predictions of mitosis that agree with 

pathologist scores. Rao reported an overall F1 score of 0.955 across several challenge-based 

data sources, a 6% improvement over previously published models.  
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Rao’s solution used a variant of the Faster-RCNN model, tuned to detect small objects in a 

299x299 pixel frame. A region proposal network selects small regions of interest (ROIs), which 

are classified by a separate detection network based on a pre-trained VGG16 model (Simonyan 

and Zisserman, 2014). Some convolution layers were omitted, where these represented 

coarse, abstract-level features that had been shown to limit the minimum detectable object 

size to 44px at 0.25𝜇𝑚/pixel. This was previously problematic as mitoses were typically only 7-

8 microns in size, or 30px at this magnification.  

High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via 

convolutional neural networks: Application to invasive breast cancer detection (Cruz-Roa et al., 

2018) 

Cruz-Roa et al developed an attention-inspired model using adaptive sampling to select 

patches of interest from breast cancer WSIs, to avoid the need to process all image tiles 

systematically. This reduced the number of patches required for a reliable classification from 6 

million to approximately 2,000, reducing processing time from 24 hours to one minute. The 

mean DSC was reported as 76%, for the binary classification of cells into invasive/non-invasive 

types.  

The CNN classifier was trained on tiles from whole slide images. Tiles were grouped as inside 

or outside an expert-annotated region of invasive breast cancer on each slide. The trained 

classifier was used in an attention-like process, where patches were sampled more densely 

from the WSI in regions where the model reported high uncertainty of whether the tissue is 

invasive. This was observed at the boundary between tumour and healthy tissue, where 

computational resources were therefore focussed in order to estimate the boundary position 

more precisely. 

The optimum sampling distribution was achieved iteratively, starting with patches sampled in 

a quasi-random pattern. The patches were fed into the CNN classifier to obtain a probability of 

invasive breast cancer in each location. These were interpolated to provide a pixel-wise 

probability heatmap. The gradients within this output represented areas of the WSI with a 

rapid transition between types of tissue. In these areas, a denser sampling distribution would 

be applied. This whole process was repeated for a fixed number of cycles, or until the 

calculated Dice coefficient converged.  

The CNN used fewer layers than state-of-the-art classifiers optimised on ImageNet. A 

convolution layer supplied activations to a subsampling pooling layer, before the image 

features were passed into a fully connected layer feeding two output neurons signalling 

invasive and non-invasive cells. This suggests that simple image features are sufficient to drive 

this distinction, and that a more elaborate model risks overfitting. 

Cancer Metastasis Detection via Spatially Structured Deep Network (Kong et al., 2017) 

Kong et al applied an attention-like approach to breast cancer metastasis detection in 

lymphatic tissue. Their Spatio-Net architecture used a 2D Long Short Term Memory (LSTM) to 

process spatial sequences of image patches. LSTMs (Hochreiter and Schmidhuber, 1997) are 

sequential neural networks, often used for sequence prediction in NLP. In Kong’s spatial LSTM, 

the classification of each patch was informed by the class distribution of surrounding patches, 

expressed as a two-dimensional sequence.  

Kong’s proposed architecture was based around a 101-layer ResNet CNN (He et al., 2016). This 

was used to extract a fixed-length vector of image features from each 256×256px tile of the 

WSI in turn. Kong’s novel addition was to use the 2D LSTM to combine the image feature 
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vectors from a 3x3 grid of neighbouring tiles, allowing larger-scale spatial dependencies to be 

incorporated into the final calculation of the probability of tumour in each tile.  

The average Free-Response Operating Characteristic (FROC) was given as 0.7539 (standard 

deviation 0.008), compared to a value of 0.7012 for a ResNet-101 without the spatially 

structured processing. Data for training and testing came from the CAMELYON16 Grand 

Challenge (Ehteshami Bejnordi et al., 2017).  

Multi-Instance Learning 

Multi-Instance Learning (MIL) in digital pathology removes the need for multiple expert 

annotations within each WSI, in pipelines where only a single output per WSI is sought.  

The WSI is divided into patches, which are processed individually to generate patch-level 

representations. These are aggregated and collectively processed into a single representation 

for the WSI (Gadermayr and Tschuchnig, 2022). Patch processing can be performed by a CNN 

such as ResNet (He et al., 2016), pre-trained on public data such as ImageNet. This yields 

embedding vectors that encode salient characteristics of each patch and can be used to train 

and evaluate the per-WSI patch aggregation elements.   

Godson et al (2022) use a variant of this approach for classifying melanoma WSIs into genomic 

immune subgroups. The aggregation mechanism includes an attention backbone, which 

calculates patch attention weights that can be plotted in a WSI-scale heatmap showing tissue 

regions that most strongly indicate the subgroup class. 

Many MIL algorithms sample and process all tiled patches in a WSI, which is a computationally 

expensive process. Breen et al (2023) introduce Discriminative Region Active Sampling for 

Multiple Instance Learning, which uses attention scores to guide patch sampling towards the 

most discriminative regions of the WSI. Breen reports a similar AUC to that of standard MIL 

architectures, but with a 3-fold reduction in processing time. 

While this current work explores alternative approaches to sampling patches from WSIs and 

generating heatmaps of salient tissue, MIL is of interest for future substitution into WSI 

pipelines. Feedback enhanced CNNs (Chapter 5) are suggested for us in the MIL because they 

have the potential for generating more accurate patch embeddings than the ResNet.  

2.5.1 Tumour Stroma Ratio 
The tumour stroma ratio (TSR) is a significant prognostic factor in the treatment of cancer. 

Stroma refers to structural or connective tissue within an organ. In the tumour 

microenvironment, stroma cells support tumour epithelium and can influence disease 

progression. Van Pelt et al (2018) report that cancer-associated fibroblasts (CAFs) release 

growth factors that promote tumour growth. The team have developed guidelines for 

choosing tissue samples most representative of this infiltration. Slides should generally be 

taken from the most invasive part of the adenocarcinoma, rejecting samples including 

necrosis, muscle and large blood vessels. Pathologist performance can vary with ocular quality 

and magnification, and the quality of H&E staining, factors which are also of concern in AI-

augmented image processing.  

West et al (2010) examined the role in cancer progression of the relative numbers of epithelial 

and stromal cells in colorectal cancer. They measured the proportion of tumour (PoT), finding 

this to have better prognostic performance than TSR. Tissue was sampled from within a 9mm2 

region near the luminal aspect of the tumour, its boundary with the main lumen or interior of 

the bowel. Within the square, 300 (+/- 15%) sampling locations were selected using 



15 
 
RandomSpot systematic random sampling (Wright et al., 2015), where sampling points were 

arranged in a hexagonal grid with a random starting point to minimise sampling bias.  

West et al found that tumours with 𝑃𝑜𝑇 ≤ 47% were associated with significantly lower 

cancer-specific survival, with a Hazard Ratio (HR) of 2.087, 95% CI = 1.088-4.003. 

The “QUick And Simple And Reliable” (QUASAR) trial was a randomised study of adjuvant 

chemotherapy in colorectal cancer (QUASAR Collaborative Group, 2007). The trial evaluated 

the additional survival benefit from chemotherapy, in patients who were deemed to have a 

lower risk of disease recurrence following surgical resection.  

QUASAR data was further used in a study of stroma density in the tumour ROI (Hutchins et al., 

2018). High tumour stroma (>50%) was associated with increased rates of disease recurrence, 

at 31.3% vs 21.9% for stroma levels below 50%. With stroma levels above 65%, 40% of patients 

had recurrent disease within 10 years.  

Deep Learning for TSR 

A retrospective study in Heidelberg, Germany, (Kather et al., 2019) used deep learning to 

predict colorectal cancer survival from histology slides. Their CNN model was trained on 

100,000 224×224px patches from 86 slides, from the NCT-CRC-HE-100K set gathered from 

biobanks at Heidelberg and Mannheim. Nine tissue classes, adipose, background, debris, 

lymphocytes, mucus, smooth muscle, normal colon mucosa, cancer-associated stroma, and 

COAD epithelium were used, as defined in TCGA. These classes differ from those of the 

QUASAR dataset. Various popular CNN models were tested, of which VGG19 (Simonyan and 

Zisserman, 2014) was found to be the most accurate at 98.7%.  

Kather’s team evaluated hazard ratios (HR) for each tissue class, in relation to survival data. 

Tissue classes adipose, debris, lymphocytes, mucus and stroma resulted in 𝐻𝑅 > 1. Notably, 

tumour is missing from this list, even though the analysis was carried out in a region that was 

previously annotated as tumour. As with TSR, it appears that the concentration of non-tumour 

cell types within the tumour region is prognostic of survival rates. 

Zhao et al (2020) extended Kather’s work, using a CNN-based pipeline to estimate TSRs from 

colorectal cancer slides. They employed transfer learning, taking a CNN pre-trained on 

ImageNet then on Kather’s NCT-HE-100K dataset. The model was then applied tile-by-tile to 

generate a rough segmentation of the WSI, from which tissue class ratios were calculated.  

WSIs were sorted into stroma-high and stroma-low categories, with a threshold of 𝑇𝑆𝑅 =

48.8% chosen using the maximally selected rank statistics method (Hothorn and Lausen, 

2003).  Overall survival was found to be significantly reduced in stroma-high patients, with a 

HR of 1.72 (95% CI 1.24-2.37), again showing tissue class ratios to be useful prognostic factors 

in colorectal cancer care.  

2.6 Summary 
The work in this thesis aims to fill the following gaps that have been identified in the current 

literature: 

2.6.1 WSI patch sampling algorithm supporting ROI and TSR calculation 
The literature reveals the need for an efficient sampling regime for extracting patches from a 

WSI, in a pattern that supports accurate calculation of ROI and TSR. Tile-by-tile methods are 

slow; Quasi Monte Carlo methods for iterative resampling (Cruz-Roa et al., 2018) are suitable 

for estimating ROI but do not supply enough sampling points inside the ROI for other 



16 
 
calculations such as TSR. Novel, alternative attention-based sampling methods are therefore 

proposed in Chapter 4 and further explored in Chapter 8. 

2.6.2 Feedback attention CNN architecture 
Several studies reviewed in this chapter conclude that top-down attention enhances the 

performance of CNNs in classification and segmentation tasks, particularly where the 

background is cluttered or heterogeneous. Kubilius and Schrimpf  (Kubilius et al., 2018) 

propose brain-like local feedback, within convolutional scale-groups corresponding to V1, V2, 

V4 and IT regions in the ventral stream. Other researchers (Tsuda et al., 2020; Tomar et al., 

2022) confirm the benefit of a top-to-bottom feedback path in U-Net segmentation models, 

although these only use a single feedback connection to the input layer of the encoder. 

The work in this thesis builds on these concepts, proposing a novel Feedback Attention Ladder 

CNN (FAL-CNN) with multiple local and top-to-bottom feedback circuits that all contribute to 

the model’s accuracy and stability (Chapter 5). Spatial visualisations of the model’s attention 

layers contribute to an understanding of its object-detecting abilities (Chapter 6), which are 

then exploited in a saccade-like resampling mechanism (Chapter 7) with additional object-

tracking and tissue-locating behaviours. This novel model can track to salient objects that are 

initially out of frame, and locates tumour regions in pathology patch images.  
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3 Data 

3.1 Introduction 
This chapter describes the derivation of data sources used in experiments in this thesis. 

Annotated colorectal cancer whole-slide images from the QUASAR trial (Gray et al., 2007) were 

used to train and evaluate WSI-processing pipelines (Chapters 4, 8), and patch-scale classifier 

models incorporating feedback attention architectures (Chapter 5) and saccade-like 

behaviours (Chapter 7).  

The ImageNet-100 dataset of general image classes (Russakovsky et al., 2015; Shekar, 2021) 

was used to test model generalisability (Section 5.4; Chapter 7), and to examine model 

behaviour in relation to readily identifiable image features (Chapter 6). 

3.2 QUASAR Pathology Images 

3.2.1 Introduction 
In the QUASAR trial, samples of surgically removed colorectal cancer tissue were mounted, 

stained with Haematoxylin and Eosin (H&E), then scanned with a Leica Biosystems Aperio XT 

scanner system. Slides were scanned at 0.49𝜇𝑚 per pixel with JPEG 2000 compression at 49.09 

compression ratio and a quality factor of 30 (Hutchins et al., 2018). Whole slide images (WSIs) 

were saved in Aperio SVS file format, a pyramidal TIFF (Tagged Image File Format) that 

contains a hierarchy of images from full magnification down to a 16x down-sampled 

thumbnail. 

The QUASAR slide images were later labelled by pathologists at the University of Leeds, 

evaluating stromal morphometry as a tool for predicting disease recurrence (Hutchins et al., 

2018). The following annotations were of interest in this current work: 

1) Region of Interest (ROI) outlines, showing the main area of cancer in the WSI.  

2) Pixel coordinates of locations where cells have been classified by type.  

3.2.2 Region of Interest Annotations 
An example of the expert-annotated ROI is shown in Figure 5. A pathologist has used Leica 

ImageScope software to draw an outline around the main area of cancer tissue. This region is 

mainly made up of tumour cells, which show up as a darker blue-purple due to the higher 

concentration of haematoxylin-stained cell nuclei.  
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Figure 5: Colorectal cancer section with expert-annotated region of interest (blue outline) 

Other diagnostically important tissue types, that contribute to the structure of the cancer, 

include stroma (connective tissue), lumen (the space enclosed by the epithelial lining of the 

colon), blood vessels, mucin and necrosis (dead tissue).  

The proportions and structure of these tissues are important in assessing the stage and 

severity of the cancer. For example, the proportion of tumour to stroma has been associated 

with outcome in some cancers (Hutchins et al., 2018). 

The tumour ROI outline was stored as a polygon, with vertices in 𝑋, 𝑌 pixel coordinates at the 

maximum WSI resolution, in an eXtensible Mark-up Language (XML) file for each WSI. 

3.2.3 Cell Classification Annotations 
Pathologists recorded the predominant cell type at sampling points within the ROI, within a 

3mm × 3mm box placed by the pathologist where the density of tumour epithelial cells was 

perceived to be highest. Within this box, a grid of sampling locations was determined using 

RandomSpot software by Wright (2015) to place points in an evenly distributed hexagonal grid.  
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Figure 6: WSI with overlaid ground-truth annotations.  

RandomSpot-based sampling points are in red box, over tissue with highest tumour density. 

Thus 50 (±15%) sampling points were defined for each WSI. At each location, the surrounding 

cellular structure was examined to classify the location as tumour, stroma or fibrosis, necrosis, 

vessels, inflammation, lumen, mucin, muscle or non-informative (Figure 7). Class identifiers and 

sampling coordinates were stored in an additional XML file per WSI.  

The classification of tumour was assigned to tumour epithelial cells within the cancer region, 

representing tumour cells which have mutated from normal epithelial cells in the bowel. The 

QUASAR dataset does not contain annotated examples of normal epithelium, as the ROI was 

deliberately defined to exclude this tissue. AI-based processing steps were implemented in 

Section 4.4.2 to distinguish these tissue types. 

3.2.4 Patch Extraction 
A whole slide image can contain several billion pixels. In contrast, effective neural network 

models in image classification operate at far lower input image sizes, such as 224 x 224 pixels 

for VGG19 (Simonyan and Zisserman, 2014) It was therefore necessary to extract multiple 

small image patches from each QUASAR WSI, to train CNN models at this scale. 

Patches were extracted from the WSI using coordinates in the ‘box-scores’ XML files containing 

the ground truth cell classifications. Each patch image was cropped from the WSI using the 

OpenSlide Python library, then saved into a subdirectory according to its GT class.  
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Algorithm for patch extraction process 

For each SVS file (WSI) in input directory: 
 Locate and open the corresponding box-scores XML file. 
 
 For each sampling location in XML collection: 
  Parse vertices for centre of sampling point 
  Parse ground truth (GT) classification code 
  Add Box object to list, storing position and class 
 
 For each Box on list: 
  Extract patch from WSI, centred on Box coordinates 
  If patch does not overlap others of different class: 
   Save patch to subdirectory according to GT class  
   Create and save copies, rotated by 90°, 180° and 270°. 

 

The above algorithm was implemented in Python and executed on a subset of 690 Quality 

Control (QC)-passed WSIs. 

Each patch region was compared with regions already extracted, to exclude any that 

overlapped with patches with a different tissue class.  

This was required when extracting from low-magnification thumbnail images, where each 

patch covers a larger area of the WSI. Here, overlapping training patches had a substantial 

impact on CNN classification accuracy. However, at full magnification in the WSI, the 

RandomSpot sampling locations were sufficiently well-spaced to avoid overlap at most patch 

sizes. 

Patch extraction was carried out on ARC4, the University of Leeds’s high-powered computing 

(HPC) resource, to satisfy data governance requirements. The resulting directories of patch 

images were retained here for subsequent use as CNN training data. 

3.2.5 Quality Control (QC) 
The 690 whole slide images used for patch extraction were a subset of the 2211 cases in the 

original QUASAR dataset.  

Wright et al (2021) examined image defects that caused inaccuracies in automated 

calculations of tumour stroma ratio (TSR). The images associated with the largest errors 

revealed faults issues in staining, mounting and scanning, defining criteria for selecting ‘good’ 

WSIs. Most rejections were due to weak or faded staining, for both haematoxylin and eosin 

dyes. Other QC issues included poorly differentiated tumour, necrotic tissue, and folds, tears, 

bubbles and debris in the tissue section. The remaining 690 QUASAR WSIs were labelled as 

acceptable quality. 

The QC-passed subset was used in this current work, anticipating that this would yield more 

consistent results when developing an experimental image classifier. Models for use in clinical 

settings would require further evaluation with patches from all available WSIs, to assess the 

robustness of the model with typical image data. 

3.2.6 Magnification and the Importance of Context 
When examining a tissue sample, pathologists often review the slide image at multiple levels 

of magnification. For QUASAR, cells were examined at full magnification RandomSpot-derived 
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locations. However, the human analysis would usually begin with a thumbnail, or fully-

zoomed-out, view of the WSI.  

Larger regions of suspected tumour can often be identified at this level, by their colour, shape 

and texture. These features then prompt a systematic examination at higher magnifications, 

viewing smaller-scale structures and ultimately arrangements of individual cells.  

Figure 7 shows typical patches extracted from ground-truth sampling locations, for each of the 

cellular classes in the QUASAR annotation. At larger patch sizes, more structural features are 

revealed. These may be associated with a classification that is not evident at smaller patch 

sizes.  

 

Figure 7: Patches extracted from WSI at ground-truth sampling locations.  

Tissue types from L-R, top to bottom: Non-informative, tumour, stroma/fibrosis, necrosis, 
vessels, inflammation, lumen, mucin and muscle.  

Sizes: 100 x 100px, 224 x 224px, 448 x 448px. 

For example, a small patch may contain a blank area with the same brightness and colour as 

the slide background. Such gaps in cellular tissue may be caused by hollow structures, such as 

lumen or blood vessels, or the boundary of the tissue section. It is only at greater patch sizes 

that larger-scale structures are revealed and the correct classification can be assigned. 

However, with increasing patch size, it becomes increasingly likely that the image will include a 

mixture of cell types, such as tumour and stroma, confusing attempts to classify the patch as a 

single type. Patch images were therefore extracted at multiple sizes from full-magnification 

WSIs and lower-resolution thumbnail images, as detailed in Table 1.  

The quoted magnifications follow a common convention in pathology publications, originating 

in optical microscopy, where for example a 20× objective lens is combined with a 10× 

eyepiece to give a total magnification of 200×. With the Aperio scanners used in the QUASAR 

study, this corresponds to a resolution of 0.49𝜇𝑚 per pixel. 

Patch sizes were chosen as integer fractions or multiples of the input sizes of the CNNs to be 

evaluated, particularly 224px, 256px and 299px. 
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Magnification Patch height & 
width (pixels, μm) 

Total 
size, GB 

Notes 

20 ×  56px  27μm 0.47  

20 ×   64px 31μm 0.61  

20 ×  100px 49μm 1.3 Used in early experiments (Broad et al., 2020) 

20 ×  112px 55μm 1.5  

20 ×  128px 63μm 2.0  

20 ×  224px 110μm 5.5 Input size of VGG, DenseNet etc 

20 ×  256px 125μm 7.3 Input size of 4-layer ConvNet 

20 ×  299px 147μm 9.6 Input size of Inception 3 

20 ×  448px 220μm 22  

20 ×  512px 251μm 29  

20 ×  894px 110μm 7.6 Scaled to 224px to control image size  

1.25 × 
(Thumbnail) 

16px 125μm 0.24 Equivalent to 256px at WSI scale. 

1.25 ×  29px 227μm 0.21  

1.25 ×  32px 251μm 0.21  

1.25 ×  58px 455μm 0.37  

1.25 ×  64px 502μm 0.36 Equivalent to 1024px at WSI scale. 

1.25 ×  112px 878μm 0.88  

1.25 ×  128px 1,004μm 1.1  

1.25 ×  224px 1,756μm 2.8  

1.25 ×  256px 2,007μm 3.5  

1.25 ×  299px 2,344μm 4.7 For Inception 3. Equivalent to 4784px in WSI. 

Table 1: Patch image sizes extracted from QUASAR WSIs.  

Patch magnification for WSI sampling = 20x (by convention; effectively 200x), 0.49𝜇m/pixel.  
Thumbnail magnification = 1.25x, 7.84𝜇m/pixel. 

At the 894px × 894px patch scale, the images were scaled down to 224px × 224px at the point 

of extraction. This was necessary to reduce disk usage, which otherwise increases with the 

square of the patch dimension. 

3.2.7 Data Governance 
Patients in the original QUASAR trial gave written consent for their participation in the 

randomised controlled trial (RCT). At this time, patients had already undergone resection of 

colorectal cancer and were then randomly allocated to groups receiving chemotherapy, or 

observation only.  

This current work is covered under NHS ethical approval REC 05/Q1205/220 for analysis of 

digital pathology images.  

Copies of the QUASAR images and XML annotations for this current work were temporarily 

stored on the ARC4 HPC at Leeds University, with the approval of Dr Treanor’s team. The data 

directories are permission-controlled with access restricted to this researcher and project 

supervisors. 

3.3 Further QUASAR-derived Patch Datasets 

3.3.1 uncertain-class-patches Dataset 

Motivation 

To assess new CNN models against more challenging data, further datasets were derived from 

the QUASAR-based patches. An uncertain-class-patches image set was created, containing only 

patches where a classifier, trained on the ‘parent’ QUASAR 9-class dataset, reported similarly 
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high probabilities for more than one tissue class. This dataset was used to evaluate the 

Feedback Attention Ladder CNN (FAL-CNN) model introduced in Section 5.1. 

Methodology 

Code used in this section is documented in Appendix Section 1.1.1. 

A QUASAR patch trained VGG19 model was used to output a vector of predicted class 

probabilities for each patch image in its input batch.  

Patch image files were copied to a new uncertain-class-patches directory, in cases where the 

largest two predicted class probabilities fell within a given percentage threshold of each other. 

This threshold was provisionally set to 25%, such that the patch would be copied if: 

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐𝑙𝑎𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
< 0.25 (1) 

Algorithm for generating uncertain-class-patches patch image set 

Load pre-trained VGG19 model from file 
Initialise data loader with VGG19’s original training split 
 
Load Test set via data loader 
For each mini batch in Test set: 
 Perform model inference on mini batch 
 For each patch image in mini batch: 
  Select model output (class probability vector) 
  Sort class probability vector by magnitude 
  If top two class probabilities are within 25%: 
   Copy patch image to target directory 

 

This code was executed on 224 × 224 pixel patches extracted from the QUASAR 9-class patch 

set described in Section 3.2.4. 

Precautions against overfitting 

Patches were used from the Test set of the data split whose Training set was used to train the 

VGG19 model used in the extraction process. Thus, when models were later assessed against 

the uncertain-class-patches set, the model avoided exposure during training to any patches 

that might also be copied to uncertain-class-patches for model evaluation. 

Results 

2,412 out of the 8,374 patches (28.8%) in the chosen test set were copied to the uncertain-

class-patches output directory. Table 2 shows the file counts in each class sub-directory.  

Table 2: File totals and class directory sizes for uncertain-class-patches output directory 

Class Number of files Total directory size 

0-non-informative 442 38MB 

1-tumour 373 38MB 

2-stroma-or-fibrosis 529 53MB 

3-necrosis 277 28MB 

4-vessels 103 11MB 

5-inflammation 8 846kB 

6-lumen 378 34MB 

7-mucin 123 12MB 
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8-muscle 180 18MB 

 

Examples of patches identified as uncertain are shown in Figure 8, captioned with the top two 

predicted class probabilities from the VGG19 model output. 

 

Figure 8: Examples of uncertain-class patch images, labelled as Tumour by pathologist.  

A: VGG19 estimated high probability of 1-tumour then 0-non-informative.  
B: VGG19 estimated high probability of 3-necrosis then 6-lumen.  

C: VGG19 estimated high probability of 0-non-informative then 3-necrosis 

Discussion 

Figure 8 shows patches that were identified as uncertain despite being labelled as tumour by 

human experts. Patch A was correctly predicted as tumour, but with a strong secondary 

probability of non-informative. This is thought to be due to the heterogeneous cell types near 

the centre of the patch.  

Patches A through C show increasing fragmentation, with more background becoming visible, 

perhaps due to tearing of samples prior to mounting. In C, the class has been incorrectly 

predicted as non-informative, consistent with the background being visible at the centre of the 

patch. It appears that broken and blurred fragments of tissue have led to the secondary 

predictions of lumen and necrosis in B and C. 

These images are typical of those in the generated uncertain-class dataset. These would be 

used in later experiments as a source of heterogeneous, fragmented or superimposed tissue 

images, to test whether novel feedback models can discriminate these better than the VGG19 

baseline model. 

3.3.2 tumour-stroma-groups Dataset 

Motivation 

Wright (2017) established that classification of tumour and stroma tissue, and subsequent TSR 

calculations, was most accurate when grouping the eight informative QUASAR tissue classes 

into parent tumour and stroma groups. Patches of tumour, necrosis, lumen and mucin were 

grouped as tumour, while stroma, muscle, vessels and inflammation were interpreted as 

stroma. 

A two-class dataset representing tumour and stroma groups was therefore created, to explore 

whether new models could achieve a higher classification accuracy using the simplified image 

classes. 

Methodology 

Code used in this section is documented in Appendix Section 1.1.2. 
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The grouped patch directories were created by copying from the QUASAR 9-class directory 

built in Section 3.2.4, using patches of size 224 × 224px. Files were copied from subdirectories 

listed in a shell script, into output subdirectories according to Wright’s parent class groupings.  

Where the number of patches in each output group subdirectory was below the number 

required, images were copied with rotations of 90°, 180° and 270° to make up the image total. 

Where the total exceeded the required number, patch images corresponding to the excess 

were randomly selected for deletion. 

The shell script was executed twice on ARC4. One job was configured for 20,000 patches per 

output subdirectory, and one for 12,000. The source directory was copied from the QUASAR 9-

class patch directory before rotated patches were deleted.  

The 12,000 size was used to generate output directories of exclusively non-rotated images, to 

train models for comparison with those trained on offset patches (Section 3.3.4). There were 

sufficient patches of the source classes to yield a total of 12,000 images per grouped class 

without needing to make rotated copies. 

Results 

Table 3 and Table 4 show the totals of files copied from the source directories into the new 

grouped class directories, for 20,000 and 12,000 files per class respectively.  

Table 3: Total files copied or deleted to create tumour-stroma-groups patch set 

Source directories Destination 
directory 

Files 
copied 

per class 

Total 
files 

copied 

Files 
deleted 

Rotated 
copies 

created 

Files 
remaining 

1-tumour 
3-necrosis 
6-lumen 
7-mucin 

tumour-group 16,101 
1,816 
2,900 

436 

21,253 1,253 0 20,000 

2-stroma-or-fibrosis 
4-vessels 
5-inflammation 
8-muscle 

stroma-group 11,113 
539 

29 
523 

12,204 0 7,796 20,000 

 

Table 4: Total files copied or deleted to create tumour-stroma-groups-12000 patch set 

Source directories Destination 
directory 

Files 
copied 

per class 

Total 
files 

copied 

Files 
deleted 

Rotated 
copies 

created 

Files 
remaining 

1-tumour 
3-necrosis 
6-lumen 
7-mucin 

tumour-group 16,101 
1,816 
2,900 

436 

21,253 9,253 0 12,000 

2-stroma-or-fibrosis 
4-vessels 
5-inflammation 
8-muscle 

stroma-group 11,113 
539 

29 
523 

12,204 204 0 12,000 

 

Discussion 

Two balanced datasets have been created. The 20k-per-class set required 7,796 rotated copies 

to be generated in the stroma-group class, while the 12k-per-class set was generated without 
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rotated copies. It was anticipated that the 20k set would result in a higher model accuracy 

because of the larger data size, for reduced overfitting, and because of the regularisation 

effect of training with randomly selected rotated copies.  

Meanwhile, the 12k set provided a baseline for comparison with similarly distributed offset 

patches (Section 3.3.4). Rotated copies were also omitted from the latter set, to avoid moving 

the ground truth pixel into an unexpected quadrant.  

Although balanced in terms of patch totals in tumour-group and stroma-group outputs, these 

datasets implicitly contain an unbalanced distribution of tissue classes. This is due to the large 

variation in occurrence between the widely occurring tumour and stroma, and smaller classes 

such as inflammation and mucin.  

3.3.3 Offset Patches 

Motivation 

Previous QUASAR-derived patches were extracted from the WSI to place the ground truth pixel 

at the centre of the patch. Later chapters examine whether distributions of feedback and 

feedforward activations track the ground truth location when it is moved relative to the patch 

boundary. To support this, further sets of training patches were extracted from QUASAR WSI 

with a constant positional offset, such that the GT class would apply at a non-central point. 

This data is used to evaluate the novel FAL-CNN in Section 5.2. 

Methodology 

As in Section 3.2.4, patch images were extracted from QUASAR WSIs at locations specified in 

the ground truth annotation XML, then written to subdirectories according to the annotated 

class. For the new dataset, the patch extraction code was modified to allow the required X,Y 

offset to be specified by an additional argument in the associated HPC shell script. The offset 

was added to the coordinates associated with the ground truth box-scores XML data, and the 

patch was sampled from the WSI using the offset location as the patch centre. 

Algorithm for patch extraction process 

For each SVS file (WSI) in input directory: 
 Locate and open the corresponding box-scores XML file. 
 
 For each sampling location in XML collection: 
  Parse vertices for sampling point 
  Add X,Y offset to sampling point 
  Parse ground truth classification code 
  Add Box object to list, storing offset position and class 
 
 For each Box on list: 
  Extract image patch, centred on offset sampling point 
  If patch does not overlap others of different class: 
   Save patch to subdirectory according to GT class  

 

The generation of rotated copies was disabled, to preserve the position of the ground truth 

pixel relative to the patch centre. 

The extraction was run per Section 3.2.4, using the 690 QC-passed WSIs as input data.  

An offset of (-56px,-56px) was used, corresponding to a translation upwards and leftwards of 

27μm, a quarter of the patch width, to place the GT pixel at the centre of the bottom-right 
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quadrant of the patch. This offset was chosen so that any resulting shift in the distribution of 

model activations would be clearly identifiable. 

Note that the patch coordinates follow the Python image indexing convention, where Y-

coordinates are measured from the top downwards. 

Results 

Table 5 shows the totals of offset patch files extracted into each class subdirectory, alongside 

the resultant directory size. 

Table 5: File totals and class directory sizes following offset patch extraction 

Class directory Files in class directory Total size, MB 

0-non-informative 4620 362 

1-tumour 19247 1945 

2-stroma-or-fibrosis 11172 1126 

3-necrosis 1815 180 

4-vessels 539 54 

5-inflammation 29 3.3 

6-lumen 2899 248 

7-mucin 436 40 

8-muscle 523 50 

 

Figure 9 shows a sample tumour patch, offset by (-56px,-56px), alongside its non-offset 

counterpart.  

 

Figure 9: (A) Non-offset tumour patch and (B) same patch offset by (-56px,-56px).  

“x” denotes patch centre, “+” represents GT label coordinates. 

Discussion 

In the offset (right-hand) patch in Figure 9, the central mass of tumour nuclei in the LH patch 

has been moved downwards and rightwards relative to the original version, so that this 

feature is now located in the bottom right quadrant as required.  

Thus, a patch set has been created with consistently offset positions relative to the GT 

locations. The absence of rotated copies in smaller classes has resulted in a less balanced 

dataset than in Section 3.2.4. Nonetheless, this dataset facilitates measurements of spatial 

distributions of model activations against a known, off-centre GT pixel. 
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3.3.4 offset-tumour-stroma-groups Dataset 

Motivation 

Classification accuracy was observed to increase when training models with the offset-patches 

dataset (Section 5.2.3) and with the 2-class tumour-stroma-groups dataset (Section 5.3.3). It 

was proposed to investigate the performance of models trained on data that embodied both 

concepts simultaneously. A two-class, offset-sampled offset-tumour-stroma-groups dataset 

was conceived.  

Methodology 

The grouping method previously used to build the tumour-stroma-groups directories (Section 

3.3.2) was applied to the 9-class directory generated during offset patch extraction (Section 

3.3.3). 12,000 files of each group were specified in script parameters. 

Results 

Table 6 shows the totals of offset patch files that were collated into tumour-group and stroma-

group subdirectories. 

Table 6: Total offset patch files copied into subdirectories to create offset-tumour-stroma-
groups dataset 

Class directory Files in class directory Total size, MB 

stroma-group 12,000 1157 

tumour-group 12,000 1126 

 

Discussion 

This extraction task resulted in a balanced binary offset-tumour-stroma-groups dataset with 

12,000 offset patches in each of the required tumour-group and stroma-group categories. 

3.4 ImageNet-100  

3.4.1 Motivation 
A general-purpose image set was sought, to test the generalisability of new model 

architectures that had previously performed well with QUASAR data.  

In datasets of commonplace objects, object boundaries are identifiable without specialist 

knowledge, allowing immediate comparison with model attention distributions that might 

reveal intelligent behaviours. 

ImageNet (Russakovsky et al., 2015) was of initial interest as a popular benchmark library 

containing 1000 general image classes. The ImageNet-100 subset shared on the Kaggle 

competition site (Shekar, 2021) has 100 classes of animal, fish and bird photographs selected 

from ImageNet, and was chosen for experiments in this work because of its more manageable 

size. The ImageNet-100 training set is 16GB, against ImageNet’s 160GB, facilitating file copying 

and model training on a single HPC node within a reasonable timescale.  

3.4.2 Methodology 
Code used in this section is documented in Appendix Section 1.1.3. 

ImageNet-100 Training and Test sets were downloaded from Shekar’s Kaggle page (Shekar, 

2021) then uploaded to the ARC4 HPC. 

For readability, and for consistency with the naming convention used in QUASAR class 

subdirectories, the class subdirectories in ImageNet-100 were renamed using the WordNet 

identifier (WNID), implicit in the directory name, to look up the English class description for 
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each category from metadata downloaded with ImageNet-100. The class description was 

combined with an index number, based on the category’s position in the CSV file, to create a 

human-readable directory name for each image class, with the format {index}_{category}.  

3.4.3 Results 
Table 7 shows the relative sizes of the Training and Test directories extracted to ARC4. 

Table 7: Directory sizes following extraction of ImageNet-100 dataset 

Purpose Class subdirectories Files per class Total files Total size, MB 

Training 100 1,300 130,000 16,384 

Test 100 50 5,000 712 

 

The 100 class subdirectories were named according to their order in the supplied CSV, from 

000-chambered_nautilus to 099-cock. Sample images representative of ImageNet-100 are 

shown in Figure 10 through Figure 13. 

 

Figure 10: ImageNet-100 example, 
class 056-oystercatcher 

 

Figure 11: ImageNet-100 example, 
class 053-vine_snake 

 

Figure 12: ImageNet-100 example, 
class 059-goldfinch (American Goldfinch) 

 

Figure 13: ImageNet-100 example, 
class 009-tiger_shark 

3.4.4 Discussion 
A 100-class set of diverse general-purpose images, containing clearly identifiable objects of 

each class, has been provided for model training and assessment. The results of training 

activities involving this dataset are detailed in Section 5.4.  
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4 Characterising the Whole Slide Image 

4.1 Summary 
Sections 4.3 through 4.6 of this chapter include content that was adapted for publication as 

Attention-guided sampling for colorectal cancer analysis with digital pathology (Broad et 

al., 2022), in the Journal of Pathology Informatics. 

This work was designed to satisfy a need, revealed during a review of literature (Section 2.5), 

for an efficient WSI-sampling algorithm that would support reliable estimation of tumour 

region of interest (ROI) and tumour stroma ratio (TSR). 

To this end, experiments were performed to visualise tissue class distributions in WSIs of 

colorectal cancer sections. CNNs were used to classify multiple image patches, allowing colour-

coded distribution plots to be created. Results obtained using simple tile-by-tile classification 

revealed the need for a more efficient algorithm for sampling image patches from the WSI.  

Novel algorithms were inspired by human attention processes, first using a heatmap-guided 

sampling approach, then a weighted regular sampling algorithm using a higher sampling 

density within the predicted tumour region. 

From the predicted cell distributions, further diagnostic outputs were derived: An estimate of 

the ROI outline, and the prognostically useful Tumour Stroma Ratio (TSR) within this area.  

4.2 Attention Heatmap WSI Processing Pipeline 

4.2.1 Motivation 
Prior work (Broad et al., 2020) used a 4-layer CNN to classify every 256 × 256 pixel tile in a 

WSI. The predicted tissue class distribution was plotted as a colour-coded image (Figure 14). 

This gave a detailed representation of cell type across the WSI, but at the expense of 

computation time, in some cases taking over an hour to process a single image. Furthermore, 

patches in background and non-tumour regions were sampled at high density, potentially 

exposing diagnostic calculations to noise from less diagnostically relevant areas of the WSI. A 

more efficient and selective sampling algorithm was therefore required. 

 

Figure 14: Tile-by-tile classification plot for colorectal cancer WSI (Broad et al., 2020) 

Where to look: Using a thumbnail heatmap to determine sampling distribution 

A novel Attention Heatmap Pipeline (AHP) was proposed. Patches were loaded from the WSI at 

sampling locations guided by a spatial ‘heatmap’ of tumour probability derived from low 

magnification ‘thumbnail’ patches. This is analogous to human vision, where areas of interest 

identified in low resolution peripheral vision trigger high-definition foveal glimpses to collect 

further information from these locations. Similarly, in digital pathology, tissue is examined at 

low magnification to select ROIs for more detailed inspection at high magnification. 
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The trouble with epithelium: Distinguishing tumour from healthy tissue 

As discussed in Chapter 3, the QUASAR dataset categorises epithelial tissue, when found inside 

the cancerous region, as tumour tissue. These cells are very similar in appearance to normal 

epithelium found elsewhere in the tissue section.  

Annotated examples of normal epithelium were not included in the QUASAR dataset, nor in 

public challenge data such as Camelyon (Ehteshami Bejnordi et al., 2017). A classifier trained 

on available data might therefore be expected to mis-identify normal epithelium as tumour, 

resulting in false positives outside the annotated ROI. These was found to reduce the accuracy 

and clarity of measurements and visualisations based on these results, particularly the 

prediction of the ROI in unseen WSIs 

Methods were therefore explored for distinguishing normal from tumour epithelium, using a 

CNN dedicated to this classification task and incorporated as an additional stage in the WSI 

processing pipeline. 

Clustering for ROI estimation 

Areas of tumour patches within the visualisation plots showed strong visual correlation with 

the expert-annotated ROI outlines. Clustering algorithms were therefore assessed for use in 

estimating the tumour ROI in previously unseen WSIs. 

4.2.2 Methodology 

Computing Resources 

Code used in this section is documented in Appendix Section 1.2.1. 

The experiments were carried out on ARC4, part of the HPC facilities at the University of Leeds, 

to take advantage of powerful NVIDIA GPU nodes and to keep data within the University 

network as required by the QUASAR data sharing agreements.  

Software was developed in Python, using PyTorch machine learning packages with SciKitLearn 

and MatPlotLib for data visualisation. Linux shell scripts were used to upload code to ARC4, 

and to instantiate a local Python environment in which to execute the code. Logging functions 

were developed to record model training data such as loss and accuracy values, and confusion 

matrices.  

Data Split Management 

In experiments prior to this work, twenty-four randomly chosen WSIs from the dataset were 

used to evaluate the Attention Heatmap Pipeline. CNNs used in the pipeline were initially 

trained on a random 70% split of the overall set of patches from all available WSIs. It was 

therefore likely that patches derived from WSIs in the pipeline evaluation set, were also 

encountered during training, causing overfitting and yielding misleadingly high accuracy 

scores. 

Also, when model training exceeded the 48 hours maximum session on ARC4, it was necessary 

to resume training in a new HPC job, to complete the desired number of training epochs. By 

default, this created new random split, and resulted in higher classification accuracies than in 

similar jobs that completed within a single 48 hour session. It was suspected that this was due 

to overfitting, where that patches from the eventual test set were also likely to have been 

present in the training set of the initial HPC job. 

Before embarking on systematic benchmarking of CNN models, a mechanism was required to 

manage the data split in a predictable manner, so that predetermined sets of test and training 
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images would persist across multiple ARC jobs. Further hold-out sets were also required, for 

evaluating pipelines with previously unseen WSIs. 

The new system allowed a new data split to be created for each experiment. The vector of WSI 

image numbers in each training, test and evaluation set was persisted in an SQLite database 

against an experiment ID. This way a consistent data split was available for training tasks that 

continued across multiple ARC jobs, provided the same experiment ID was used for each job. 

The split was created by allocating whole WSIs, rather than individual patches, to each set. This 

decision was based on findings by Nir et al (2019), who compared cross-validation approaches 

in grading prostate cancer images using AI. Here, a ‘leave-patients-out’ technique proved more 

accurate than ‘leave-patches-out’.  

In the QUASAR dataset, there is generally one WSI per colorectal cancer case, rather than one 

per patient. It was assumed that a ‘leave-WSIs-out’ approach would approximate to Nir’s 

recommended ‘leave-patients-out’ split, in the absence of a patient-WSI mapping giving an 

exact per-patient grouping. Image patches were therefore grouped by their originating WSI 

before the split was made. 

A ratio of 481 training WSIs, 100 test and 100 validation images was used for the data split, 

using image patches extracted from a total of 689 QC-passed WSIs. The 100 validation WSIs 

allowed statistics, such as percentage of tumour inside the annotated ROI, to be calculated 

with narrower confidence intervals than were possible using the earlier 24 WSIs. 

Thumbnail patch heatmap 

Patches at ‘thumbnail’ magnification were extracted from 690 QC-passed QUASAR WSI files. 

The patch extraction process in Section 3.2.4 was applied to images from the low-resolution 

1.25x magnification tier provided in each SVS file. Patches were sampled at locations scaled 

from the maximum-resolution box-scores coordinates in the ground-truth XML data.  

Patches with sizes 8 × 8px, 16× 16px, 32 × 32px, 64 × 64px, 128 × 128px and 256 × 256px 

were extracted for use in training. 224 × 244px patches were extracted later for subsequent 

use with VGG19 and related models.  

Because the ground-truth sample locations were clustered together in 3 × 3mm regions, it 

was anticipated that the larger thumbnail patches might overlap. This was expected to be 

problematic for overlapping patches of different class labels, because models would then be 

expected to produce different class outputs despite the shared input image region. The patch 

extraction process was therefore modified to reject overlapping patches with differing class 

labels. 

A ConvNet CNN with 4 convolution layers, as defined in Table 8, was trained to classify 

thumbnail patches into the 9 QUASAR tissue classes. Data loader transformations were used to 

scale the thumbnail patches to the 256 × 256px input size required by the CNN. The model 

was trained using Stochastic Gradient Descent (SGD) with learning rate (LR) = 0.001 and 

momentum = 0.9, over 40 epochs. These hyperparameters were found experimentally to 

provide stable convergence to a low loss level. 

Table 8: ConvNet CNN definition 

Layer Input Channels Output Channels Type Kernel Size 

1 3 16 Convolution 3x3 

2 16 24 Convolution 4x4 

3 24 32 Convolution 4x4 
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4 32 48 Convolution 3x3 

FC1 * 512 Fully Connected  

FC2 512 10 Fully Connected  

 

Heatmap plots were generated by applying this CNN to image tiles extracted sequentially 

across the WSI’s entire thumbnail image. A tumour probability value was obtained by taking 

the output for the 1-tumour class before the final SoftMax stage. This value determined the 

brightness of the tile in the output plot, with the brightest red showing the maximum value of 

𝑝(𝑡𝑢𝑚𝑜𝑢𝑟). 

Generating sampling patches from low-resolution tumour heatmap 

The vector of tumour probabilities associated with the low-resolution heatmap was used to 

control the attention of further processing at high magnification.  

A Sample Pattern Generator (SPG) was developed, to determine the sampling locations where 

image patches would be loaded from the WSI at full magnifications. Here, the WSI space was 

divided into a grid, with each box representing the area of a low-resolution tile projected onto 

the coordinate space of the full magnification image. This was typically 1024×1024px in the 

WSI, for a 64×64px thumbnail tile. The tumour density value used in the heatmap determined 

the number of sampling patches in the corresponding grid box, such that between one and 

nine sampling patches were allocated in each box.  

Each sampling patch was randomly positioned inside its parent box, to minimise sampling bias 

due to aliasing effects. If overlap was detected with an existing patch within the box, a new 

random placement was chosen. This was attempted up to 10 times before the patch was 

rejected, as a trade-off between computation time and accurate sampling density.  

A sample tumour heatmap, and the sampling pattern derived from it, are shown in Figure 15 

and Figure 16 respectively.  

 

Figure 15: Thumbnail-derived tumour 
probability heatmap 

 

Figure 16: Patch sampling locations based 
on probabilities from heatmap.  

‘Parent’ tiles are shown by grey gridlines. 

Distinguishing tumour from healthy tissue 

During the development of the Attention Heatmap Pipeline, it was discovered that epithelial 

tissue outside the tumour ROI was often mis-classified as tumour by the CNN trained on the 9 

QUASAR patch classes. This resulted in many false-positive tumour patches outside the 

ground-truth ROI, reducing the accuracy of ROI predictions which were based on clusters of 

predicted tumour patches. 

A CNN was therefore trained to distinguish between tumour and normal epithelium. For this 

purpose, “tumour” patches identified outside the expert-annotated ROI were categorised as 

normal epithelium.  
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Data for this task was collected by adding a temporary step to the data analysis pipeline, 

whereby patches classified as tumour were output to either true positive or false positive data 

subdirectories, depending on whether they fell within the ground truth ROI (Figure 17). Initially 

this was done for 24 randomly selected WSIs. After balancing the number of images in each 

directory, this provided approximately 15,800 training patches of each class. 

CNN classifiers were trained using this data, for the binary classification task of distinguishing 

between tumour and normal epithelium. At first, the four-layer ConvNet architecture was 

used, followed later by VGG16, VGG19 and selected feedback attention models (Chapter 8).  

For the later models, a new TP/FP patch directory was created by running the pipeline against 

multiple data splits, and new TP/FP models were trained against this. 

The classifier was then used in the pipeline to reject false-positive tumour patches (see CNN3 

in Figure 18). Only patches already classified as tumour were processed in this way. Patches 

that were reclassified as normal epithelium were subsequently rejected from the output plot, 

and excluded from calculations involving tumour patches.  

 

Figure 17: Tumour and normal epithelium patches predicted as tumour, inside and outside the 
annotated tumour ROI 

Clustering for ROI estimation 

DBSCAN, or Density-Based Spatial Clustering of Applications with Noise (Ester et al., 1996), was 

used to estimate the ROI from distributions of tumour patches in the WSI.  

DBSCAN examines each point in a set of 2-D coordinates and searches for neighbouring points 

within a radius 𝜖. If more than a chosen number 𝑁 of neighbours are found, a cluster is 

declared and the points are allocated to it. The neighbours of these points are then examined, 

further extending the cluster if 𝑁 or more points are within distance 𝜖. If a point does not have 

𝑁 neighbours within radius 𝜖, it is categorised as noise and is not allocated to a cluster. 

The SciKit Python implementation of DBSCAN (SciKit-Learn, 2020) was used in the pipeline. 

Once DBSCAN had allocated tumour points to clusters, a further function generated polygons 

enclosing the points in each cluster. Each point was inflated into a circle of radius 𝜖, using the 

Shapely Geometry package (Adair et al., 2020). Thus the cluster yielded a set of overlapping 

circles, the union of which was used create the output polygon(s). A further step eroded these 

polygons by 0.5𝜖, to fit the resulting boundary more closely to the outermost tumour points in 

the cluster.  
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The resulting polygons provided an estimate of the ROI boundaries, based on the predicted 

tumour distribution. 

Measuring clustering accuracy 

The accuracy of the predicted ROI was evaluated by comparing the polygons generated by the 

clustering algorithm, with the original annotated ROI boundary.   

The F1, also known as Dice Similarity Coefficient (DSC), and the Intersection over Union (IoU, 

or Jaccard Index) are the two most common overlap-based metrics for comparing 2D regions 

(Reinke et al., 2021). IoU measures the overlap (intersection) between two regions A and B as 

a proportion of the union area, while F1 compares the intersection to the total area of the two 

regions: 

𝐹1 =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (2) 𝐼𝑜𝑈 =

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (3)

 

F1 and IoU scores were calculated for each WSI in the hold-out evaluation set of 100 WSIs, and 

were used to derive mean values and confidence intervals for each scoring method.  

The two main clustering variables, the minimum neighbour count 𝑁 and the search radius 𝜖, 

were manually optimised for maximum F1 score, with values of 𝜖 = 2000 (approximately 

1.0mm at 0.49𝜇m/pixel) and 𝑁 = 3 being adopted in the pipeline. 

Pipeline 

Figure 18 shows the complete Attention Heatmap Pipeline for predicting the distribution of 

tumour cells in an unseen WSI, using the low-resolution tumour heatmap to control the patch 

selection in the WSI, and the false-positive detection algorithm as a noise-reducing output 

stage. 



36 
 

 

Figure 18: Attention Heatmap Pipeline (AHP), predicting tumour distribution using whole-slide 
and thumbnail images 
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The patch size used in sampling from the full magnification WSI was chosen to match the input 

size of the high-resolution classifier, CNN2. This was initially 256×256px for ConvNet classifiers. 

Later CNNs also used 224×224px and 299×299px patches. 

4.2.3 Results 

Thumbnail patch heatmap 

Table 9 shows classification accuracies for CNNs trained on each size of thumbnail patch. Each 

result was compared with that obtained with a training set where overlapping patches were 

retained.  

Table 9: Results for training 4-layer ConvNet on thumbnails, excluding overlapping patches with 
conflicting classifications 

 

The heatmap plot in Figure 20 represents the probability of tumour predicted by the 

thumbnail patch CNN for image tiles extracted sequentially across the thumbnail image in 

Figure 19. The patch sampling distribution derived from this heatmap is shown in Figure 21.

 

Figure 19: Thumbnail image of colorectal 
cancer WSI 

 

Figure 20: Heatmap of predicted tumour 
density, from execution of CNN for all 

thumbnail tiles

 

Figure 21: Patch sampling pattern derived from tumour distribution in thumbnail patches 

High-Resolution Classification of Selected Patches 

Full-resolution image patches were loaded from locations in the WSI determined by the 

heatmap-derived sampling pattern. These patches were classified using the 9-class CNN (CNN2 

in Figure 18). The classified patches were colour-coded and plotted in a 2-D coordinate space 

to match the WSI bounds, providing a visual map of the distribution of cell types.  

Thumbnail 
patch size 

(height and 
width) 

Number of 
patch images 

extracted 
and retained 

Training time 
(40 epochs, 

NVIDIA V100 
on ARC4) 

Training time 
per epoch 

Accuracy 
before 

overlaps 
rejected 

Accuracy 
after 

overlaps 
rejected  

16px 59,046 8:40h 16m 61% 51% 

32px 52,735 9:40h 14m 64% 59% 

64px 30,396 7:20h 10m 66% 68% 

128px 24,575 6:28h 9m 65% 70% 

256px 22,775 11:25h 17m 62% 72% 
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Figure 22: Patch classification plot generated by Attention Heatmap Pipeline 

Figure 22 shows a typical plot from this stage of processing. Regions of tissue types are clearly 

differentiated here, such as muscle, mucin and stroma. The majority of tumour patches (red) 

are within the ROI originally marked by the pathologist. 

Distinguishing Tumour from Healthy Tissue 

As shown in Table 10, both networks returned a higher accuracy in this binary classification 

than was seen in the 9-class classifier. 

Table 10: Training results for CNN distinguishing true/false positive tumour patches 

CNN Training epochs Training duration on 
ARC4 

Accuracy (% correct 
classifications) 

ConvNet 40 16h 88% 

VGG16 50 20:42h 91% 

 

Figure 23 shows the result of this process when applied to the clusters of patches classified as 

tumour by CNN2 in the pipeline. In this example, about 80% of the patches outside the tumour 

region were identified as false positives by CNN3, and excluded from ROI and TSR calculations. 

 

Figure 23: False positive detection: Predicted tumour patches reclassified as normal epithelium, 
with ground-truth ROI overlaid for reference 
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Table 11 shows the performance of the pipeline, with and without FPC and using different CNN 

architectures. This was initially expressed as the percentage of predicted tumour points falling 

inside the annotated ROI. Prior to the development of clustering algorithms, this measurement 

was used as a proxy for the ability to predict the region of tumour in an unseen WSI.  

This data was logged for 100 WSIs in a validation hold-out set. The mean was calculated from 

these outputs, and 95% confidence intervals based on the mean, variance and sample size 

were obtained using the t.interval function in the SciPy statistics package.  

Table 11: Effects of false positive correction in the Attention Heatmap Pipeline 

CNN type CNN 
Accuracy  
(9-class) 

% Tumour in 
ROI, Pre FP 
Correction 

95% 
Confidence 

Interval 

% Tumour in 
ROI, Post FP 

Correction 

95% 
Confidence 

Interval 

ConvNet 72% 81.9 79.0 – 84.6% 87.2 84.8 – 89.5% 

VGG16  74% 84.7 80.9 – 88.4% 94.4 91.9 – 96.8% 

VGG16  
Pre-Trained 

78% 91.6 89.1 – 94.2% 97.1 96.2 – 98.0% 

 

Clustering for ROI Estimation 

Figure 25 shows the predicted ROI outline generated by the clustering algorithms, enclosing 

tumour points derived from a typical QUASAR WSI (Figure 24). The original ROI is overlaid for 

comparison.  

For the example WSI shown, the F1 Score was 0.876. The mean value over the 100-WSI 

validation set was F1 = 0.773. 

 

Figure 24: QUASAR WSI 57623.svs with expert-annotated ROI (blue outline) 
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Figure 25: DBSCAN clustering of predicted tumour points (red outline) with expert-annotated 
ROI annotation (black outline)

Following the implementation of the clustering algorithm, the accuracy of the resulting ROI 

outline was calculated as IoU and F1 (Dice) score.  

Table 12: ROI estimation performance in the Attention Heatmap Pipeline 

CNN type IoU w.r.t GT ROI IoU 95% CI F1 score w.r.t GT ROI F1 score 95% CI 

ConvNet 61.4% 57.2 – 65.6% 73.6% 69.5 – 77.8% 

VGG16  62.3% 54.7 – 70.1% 73.1% 65.9 – 80.3% 

 

4.2.4 Discussion 

Thumbnail patch heatmap 

In the thumbnail CNN, the rejection of overlapping patches prior to training was found to 

improve classification accuracy when using larger patch sizes, which might be expected to 

overlap more with their neighbours. However, the number of patch images available for CNN 

training was reduced at larger thumbnail patch sizes, as more patches were rejected. 

Generally, the classifier was more accurate at larger thumbnail patch sizes, where more 

structural context is available from surrounding tissues. At thumbnail magnifications, 

individual cells were not visible. It appears that the classifier was instead responding to higher-

level image features such as colour, texture and structure. 

A thumbnail patch size of 64×64px, equivalent to 1024×1024px at maximum resolution, was 

chosen for use in the pipeline. This was chosen to balance thumbnail classification accuracy 

with heatmap resolution. On visual inspection across the validation set, the brightest regions in 

each heatmap appeared to correspond to the darker blue region of densely packed tumour 

nuclei in the WSI, which pathologists had annotated as the ground truth ROI.  

Distinguishing tumour from healthy epithelium 

The CNN3 classifier was trained to high accuracy in distinguishing normal and malignant 

epithelium, allowing WSI pipelines to disregard patches previously identified as tumour that 

the CNN now classified as normal epithelium. This approach to false-positive correction 

improved accuracy in 9-way classification tasks for all three CNN architectures evaluated. The 

non-overlapping 95% CIs in each row of Table 11 imply that these gains are statistically 
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significant. The FPC technique was therefore reused in further processing pipelines in Sections 

4.2 and 4.5.  

The percentage tumour in ROI score was consistently higher than the per-patch accuracy of 

the 9-class CNN2 (see Figure 18), suggesting that an ensemble effect may have averaged out 

classification errors in individual patches in the cluster. Using a separate CNN for false-positive 

correction has reduced the rate of epithelial cells being classified as tumour outside the ROI, 

increasing the percentage of predicted tumour inside this ground-truth region by up to 9.7 

percentage points and thus providing valuable noise reduction ahead of further processing of 

the pipeline output. 

Clustering for ROI estimation 

DBSCAN clustering, applied to the spatial distribution of tumour patches generated by the 

pipeline, yielded an ROI estimate that aligned with the ground truth ROI with an F1 score of 

approximately 73.6%. Figure 25 shows that the predicted ROI outlines deviate furthest from 

the ground truth ROI in WSI regions where fewer tumour points are available. However, the 

prediction of multiple cluster outlines is not necessarily an error. The ground truth data only 

contains one ROI annotation per WSI, sometimes arbitrarily joining multiple tumour regions 

into one polygon. It is understood that limitations in the software for the stylus pen required 

the outline to be drawn in a single stroke. Further deviation between the GT and predicted ROI 

may be due to the low resolution of the touchscreen used with the stylus, meaning that the 

ROI annotations were not drawn using the full resolution of the slide. 

The ability to predict tumour outlines does not in itself bring novel diagnostic value. 

Pathologists can quickly identify an ROI by viewing the slide – although they may be grateful of 

a tool to automate this relatively mundane task. Nonetheless, emulating this behaviour in 

software allows a region to be defined where an AI-based system can direct its processing 

resources, to extract further prognostic data from the tumour location whilst saving on 

processing time and therefore operating costs. 

4.3 Benchmarking of Popular CNN Architectures for Cell Classification 

4.3.1 Motivation 
Initial experiments with the Attention Heatmap Pipeline (AHP, Section 4.2) used a four-layer 

ConvNet CNN architecture from earlier work (Broad et al., 2020). This gave 72% accuracy in 9-

way classification, with 81.9% of predicted tumour points within the ROI. It was expected that 

a deeper, published architecture would improve on these results. 

The VGG16, a deep convolutional neural network, was also initially tested in the AHP. The 

closely related VGG19 (Simonyan and Zisserman, 2014) scored highest on NCT-CRC-HE-100K 

colorectal cancer patch data (Kather et al., 2019). VGG16, having 16 instead of 19 weight 

layers, was expected to be less prone to overfitting than VGG19. Both variants were reviewed. 

Other well-known deep CNN architectures, optimised for the ImageNet challenge (Deng et al., 

2009), were selected for comparison. AlexNet, DenseNet, GoogLeNet, Inception, MobileNet, 

ResNet, ResNext, ShuffleNet and SqueezeNet had been reviewed in histopathology 

applications (Wang et al., 2021) and were available as library classes in the Python TorchVision 

package (PyTorch, 2021). EfficientNet-B0, the 224px version of a recent ImageNet exemplar  

(Tan and Le, 2020) was also assessed. 

4.3.2 Methodology 
Existing Python code for configuring and training a CNN, was extended using a Class Factory 

design pattern (Gamma, 1995) to allow one of a selection of CNN models to be initialised 
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according to HPC job parameters. The relevant CNN implementations in TorchVision were 

loaded via subclasses of a classifier base class, the latter controlling common data loading and 

data transformation activities. Model training was executed on ARC4 for each model 

architecture in turn. 

Pre-Trained vs Random Initialisation 

CNNs in histopathology can often be trained to a higher accuracy when pre-trained on generic 

image sets such as ImageNet (Rao, 2018; Zhao et al., 2020). Downloadable pre-trained weights 

are available in TorchVision for many CNNs, and were evaluated in addition to the default 

version with randomly initialised weights.  

Testing in pipeline 

Selected trained models were substituted for the main classifier in the Attention Heatmap 

Pipeline (Section 4.2, Figure 18, CNN2) to investigate the relationship between CNN accuracy 

and the predicted spatial distribution of tumour patches in the pipeline output. 

4.3.3 Results 
Table 13 lists the CNN models tested, in descending order of classification accuracy. Notable or 

extreme results are in bold.  

The most accurate CNNs were evaluated in the Attention Heatmap Pipeline. The final column 

in Table 13 percentage of predicted tumour patches falling within the predicted ROI, before 

the application of false positive correction (FPC). Values are also shown here for the VGG16 

and 4-class ConvNet models used in early experiments. 
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Table 13: Comparative performance of CNN architectures trained on 9-class QUASAR patches. 

Notable or extreme results are shown in bold. 

CNN Type 
(PT=Pre-Trained on 
ImageNet) 

Image Width 
and Height 

(px) 

Classification 
Accuracy 

Attention Heatmap Pipeline % 
Tumour in GT ROI (pre FPC), where 

evaluated with given CNN 

VGG19 (PT) 224 79% 94.8% 

GoogLeNet 224 79% 92.0% 

EfficientNet-B0 (PT) 224 79% 91.6% 

DenseNet (PT) 224 78% 93.7% 

VGG16 (PT) 224 78% 91.6% 

MobileNet (PT) 224 77% 91.0% 

AlexNet (PT) 224 76% - 

AlexNet 224 75% - 

GoogLeNet (PT) 224 75% - 

DenseNet 224 74% - 

VGG16  224 74% 84.7% 

MobileNet 224 73% - 

ResNext 224 73% - 

VGG19 224 72% - 

Inception 3 299 72% - 

EfficientNet-B0 224 71% - 

ResNet 50 224 71% - 

ConvNet (4-layer) 256 71% 81.9% 

Inception 3 (PT) 299 70% - 

ShuffleNet 224 70% - 

SqueezeNet 224 70% - 

ResNet 18 224 68% - 

 

Confusion matrices (Figure 26 and Figure 27) were generated for the top two CNNs in Table 13, 

as sorted by descending accuracy and tumour percentage in ROI.

 

Figure 26: Confusion Matrix for pretrained 
VGG19 

 

Figure 27: Confusion Matrix for GoogLeNet 

Despite similar overall accuracy to VGG19, 
more non-tumour tissues are falsely 

identified as tumour.  
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4.3.4 Discussion 
The pretrained VGG19 and non-pretrained GoogLeNet gave the joint-highest classification 

accuracies at 79%. However, in the Attention Heatmap Pipeline, the VGG19 yielded the highest 

percentage of tumour points within the ground-truth ROI, suggesting it was better able to 

distinguish tumour from other cell types. Comparison of confusion matrices (Figure 26, Figure 

27) revealed that GoogLeNet incorrectly interpreted many stroma, necrosis, lumen and mucin 

patches as tumour. Where this occurred outside the ROI, the misclassification of these stroma 

subclasses would contribute to the observed higher rate of false tumour ‘noise’ outside the 

ROI.  

With the exception of GoogLeNet, the ImageNet-pretrained CNN models achieved greater 

accuracy than their randomly initialised counterparts. This suggests that the pretrained models 

have learned to respond to generic image features, such as shape, colour and texture, that are 

useful in distinguishing cell types in a WSI.  

The pretrained VGG19 was therefore adopted for use in subsequent pipeline experiments. 

4.4 Tumour Stroma Ratio 

4.4.1 Motivation 
Literature (Section 2.5.1) shows that Tumour Stroma Ratio (TSR) is a predictor of disease 

progression and survival rates in colorectal cancer. The Attention Heatmap Pipeline generated 

spatial distributions of tumour and stroma cell patches for a WSI, relative to the tumour ROI. It 

was proposed to use these distributions to derive an estimate of TSR. 

4.4.2 Methodology 
In the QUASAR ground truth annotations (Section 3.2.3), cell types were sampled at 50 

RandomSpot points (Wright et al., 2015) inside a 3mm square box within the ROI of a 

colorectal cancer WSI. This sampling box represents a ‘virtual biopsy’, emulating the action of a 

surgeon taking a tissue core from a live bowel wall. In the WSI, the 3mm box was placed at the 

region of highest tumour cell density, as perceived by the annotating pathologist, along the 

luminal aspect (inner wall of the bowel). In a real biopsy, the surgeon would need to sample at 

this depth to avoid perforating the bowel.  

The ground truth TSR was calculated from totals of expert-annotated tumour (T) and stroma 

(S) patches within the 3mm box, for each WSI in turn. The proportion of tumour (PoT) was 

similarly calculated: 

𝑇𝑆𝑅 =
𝑇

𝑇 + 𝑆
(4) 𝑃𝑜𝑇 =

𝑇

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡𝑐ℎ𝑒𝑠
=

𝑇

𝑇 + 𝑆 + 𝑂𝑡ℎ𝑒𝑟𝑠
(5) 

The tumour patch count was included in both numerator and denominator for results in the 

range 0 ≤ 𝑇𝑆𝑅 ≤ 1. Python code was written to evaluate the TSR for collections of classified 

patches, so that TSR could be calculated from the ground truth class annotations for a WSI, or 

for classified patches identified by the pipeline. 

TSR Sampling Strategies 

Multiple algorithms were evaluated for choosing sampling points for TSR calculations, from 

within the predicted ROI and locations where the estimated tumour density was highest.  

For each sampling approach, image patches were loaded from the required locations, and 

classified using the CNN. TSR and PoT were then calculated from the total patches in each 

output class. These were compared with the values based on the ground truth annotations in 

the QUASAR XML files, giving an error score (𝜖𝑇𝑆𝑅) where:  
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𝜖𝑇𝑆𝑅 =
|𝑇𝑆𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑇𝑆𝑅𝐺𝑇|

𝑇𝑆𝑅𝐺𝑇

(6) 

Error values were logged for each sampling strategy, against each WSI. The mean error 

magnitudes and related confidence intervals were then calculated for the 100 WSIs in the  

evaluation dataset. 

A. Sampling at Ground Truth Locations 

Image patches were sampled from the WSI at locations defined in the QUASAR ground truth 

XML data, and the TSR calculated from the CNN’s classification of these patches. Figure 28 

shows the 3×3mm region of expert-labelled GT patches for a sample WSI.  

 

Figure 28: Original WSI with ground truth annotations  

Red box = pathologist-selected sampling area for TSR calculations 
Blue outline = ground truth ROI 

This sampling approach is not possible for previously unseen WSIs, where there is no 

pathologist-defined 3mm sample box. Nonetheless, TSR results at these locations allowed a 

baseline error rate to be calculated, for comparison with other sampling strategies.  

B. Sampling over Predicted ROI 

Initially, a pattern of approximately 100 patches was generated on a regular grid occupying the 

entire predicted ROI. Patches were extracted from the WSI at these locations, with sizes of 

224×224px or 256×256px depending on the CNN model used. The patches were classified 

using the CNN, after which the totals of patches having class tumour or stroma were used to 

calculate the TSR. 

C. Sampling above 80% Tumour Density in ROI 

A KernelDensityEstimator (KDE) class encapsulated the gaussian_kde function in the SciPy.stats 

package (SciPy community, 2021). The KDE took a cluster of points with arbitrary X,Y 

coordinates, interpolating these into a regularised X,Y grid of density values. A further step 

converted the density grid into a contour enclosing density points with a value over 80% of the 

maximum tumour density.  

The sampling region was defined as the intersection of 80% tumour density contour with the 

predicted ROI. From this region of the WSI, 100 evenly spaced patches were sampled on a 

square grid. 

D. Sampling in 3mm Box at Maximum Tumour Density within ROI 

This strategy was designed to emulate the behaviour of the pathologist in creating the ground 

truth annotations, by restricting the sample patches to a 3mm square ‘virtual biopsy’ region.  
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The tumour density matrix from the KDE was intersected with the predicted ROI. The centroid 

of the resulting region was taken as the approximate location of the peak tumour density. A 

3mm (≈ 6000 pixel) square box was centred on this point. Inside the box, 100 patches were 

sampled for the TSR and PoT calculations. 

This process was carried out twice, using collections of predicted patch classes from before 

and after the false positive correction (FPC) stage in the pipeline (Figure 18, CNN3). This was 

expected to reveal the effect on TSR accuracy of re-classifying some tumour patches as non-

tumour epithelium. 

E. Sampling in 3mm Box at Maximum Tumour Density within WSI 

This strategy ignored the predicted ROI boundary and used the centroid of the >80% tumour 

region wherever that fell in the WSI. This approach was intended to mitigate any positioning 

errors arising from an inaccurate estimate of the ROI due to clustering errors or a sparse 

tumour distribution. The TSR calculation here was based on post-FPC classification results only. 

F. RandomSpot Sampling in 3mm Box at Maximum Tumour Density within WSI 

A 3mm box, located as above, was sampled using an algorithm based on RandomSpot (Wright 

et al., 2015), where a hexagonal grid was adopted to reduce sampling bias due to edge effects. 

Here, the algorithm was configured to arrange 120 patches on a hexagonal grid within the 

3mm box. 

A RandomSpotSamplePatternGenerator Python class was developed to apply the algorithm. 

Sampling points were arranged in a grid of equilateral triangles, with a random starting 

position. The grid spacing and starting point were then adjusted iteratively until the required 

number of sampling points fell within the specified boundary (Figure 33).    

Analysis of Outliers 

Ground-truth and predicted TSR values were plotted for all WSIs in the evaluation set. Bland-

Altman (BA) plots (Altman and Bland, 1983) were used to identify WSIs with the largest errors. 

The difference between pairs of values, 𝜖𝑇𝑆𝑅 =  𝑇𝑆𝑅𝐺𝑇 − 𝑇𝑆𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, was plotted against 

the mean of the pair, such that 𝜖𝑇𝑆𝑅 > 0 represents underestimated tumour in the pipeline 

output.  

4.4.3 Results 

Sampling distributions  

Figure 29 shows the output of the Kernel Density Estimator for tumour patches in the AHP, 

using the WSI shown in Figure 28. In Figure 30, the 80% density region has been used to 

generate a distribution of 100 sampling patches. 

 

Figure 29: Predicted tumour density with 
maximum density point 

Grey outline = ground truth ROI 
White cross = maximum density using KDE 

 

Figure 30: Patches sampled and classified 
in ≥80% density region  
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Figure 31 shows the tissue distribution predicted by CNN2, over approximately 100 patches 

sampled within a 3mm box centred on the maximum tumour density point, emulating the 

activity of the annotating pathologist. In Figure 32, a RandomSpot-derived hexagonal grid 

containing approximately 120 patches replaces the previous square grid. Figure 33 shows this 

distribution in close-up.  

 

Figure 31: Patches sampled and classified in 3mm box at max predicted tumour density 

 

Figure 32: Patches sampled and classified 
in same 3mm box with RandomSpot layout 

 

Figure 33: Close-up of RandomSpot patches 
showing hexagonal grid 

Red=tumour, Yellow=stroma 

TSR Accuracy 

Table 14 shows the accuracy of the TSR calculation when sampling and classifying image 

patches according to the above regimes. These results were obtained using a pre-trained 

VGG19 as CNN2 in the Attention Heatmap Pipeline, over 100 WSIs in the hold-out evaluation 

set. 
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Table 14: Mean TSR error for various sampling strategies, using VGG19 in Attention Heatmap 
Pipeline 

Sampling Region (using post-FPC 
tumour points unless stated) 

TSR mean error as 
𝑇𝑆𝑅𝐺𝑇 − 𝑇𝑆𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

 with 95% CI 

TSR mean error 
magnitude with 95% CI 

A) Ground Truth Locations 0.00 -0.02-0.01 8.67% 6.91-10.43% 

B) Predicted ROI 0.02 -0.00-0.05 22.32% 14.45-30.18% 

C) Maximum Tumour Density 
(>80%) in ROI 

-0.08 -0.11--0.05 28.43% 19.58-37.29% 

D) 3mm Box at Max Tumour 
Density within ROI (pre FPC) 

0.00 -0.03-0.0 24.04%  
 

18.36-29.72% 

D) 3mm Box at Max Tumour 
Density within ROI 

0.01 -0.02-0.05 23.51% 17.90-29.13% 

E) 3mm Box at Max Tumour Density 
within whole WSI 

-0.03 -0.06--0.01 23.14% 15.86-30.42% 

F) 3mm Box at Max Tumour Density 
Point with RandomSpot layout 

-0.05 -0.07--0.02 23.32% 16.69-29.94% 

 

Analysis of Outliers 

Figure 34 shows the distribution of predicted and actual TSR for the 100 evaluation WSIs, as a 

Bland-Altman plot. WSIs outside the ±1 Standard Deviation (SD) band are shown in red. 

 

Figure 34: Bland-Altman plot of TSR errors, for 3mm sampling box at max tumour density, 
using attention-based pathway with VGG19 classifier.  

QUASAR image number is given for outliers (red), further than ±1SD from the mean TSR 
difference. 

 

Pipeline-generated plots for one such outlier, 119299.svs, are shown in Figure 35 to Figure 38. 
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Figure 35: Example outlier: WSI with 
heterogeneous tumour distribution 

(QUASAR WSI 119299.svs).  

Red outline = 3mm sampling region used 
for pathologist’s GT annotation. 

 

Figure 36: Thumbnail-derived tumour 
heatmap for 119299.svs 

 

 

Figure 37: Patch classification results at 
locations determined by heatmap  

Red = tumour  
Yellow = stroma 

 

Figure 38: KDE tumour density plot showing 
max tumour density (white +) 

This occurs at a different point to the 
pathologist’s GT sampling location shown 

in Figure 35.

4.4.4 Discussion 
TSR error magnitude was smallest when sampling at the original locations used to record the 

ground truth classifications. This is as expected, as the classifier was using patches centred on 

similar cell structures to those viewed by the annotating pathologist. The residual error at this 

sampling location is likely to be due to classification errors in the CNN, in combination with 

rounding errors in the TSR calculation due to the limited sample size of 50 patches per WSI. 

Sampling within a 3mm box at maximum tumour density is closest to the behaviour of the 

annotating pathologist, and gave better results than sampling throughout the 80% tumour 

density contour. Using a RandomSpot-based sampling distribution gave a lower error than a 

square grid. This is as expected due to the reduced sampling bias associated with the 

RandomSpot pattern. Some benefit may also be due to the higher number of sample patches 

fitted into the 3mm box by the RandomSpot algorithm.  

Sampling across the whole predicted ROI gave marginally lower error rates than sampling in a 

3mm box at maximum tumour density. However, the error percentage was still high and would 
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result in many patients being mis-classified as stroma-high or stroma-low. Further analysis was 

undertaken to understand the causes of this deviation. 

Analysis of Outliers 

Many WSIs gave predicted TSRs that were close to the ground truth values. However, the 

Bland-Altman plot (Figure 34) identified 4 WSIs below the lower SD line, implying a predicted 

TSR that is significantly higher than reality. Since high TSR is associated with better patient 

outcome (Hutchins et al., 2018), the overestimated TSR is potentially dangerous in a clinical 

setting it implies that disease severity is underestimated for these patients, who may then not 

receive the treatment they need.  

Examining one such outlying WSI, 119299.svs, revealed how an anomalous TSR result can arise 

using the Attention Heatmap Pipeline. Tumour tissue was unevenly distributed in the ROI, 

resulting in a fragmented thumbnail heatmap (Figure 36). This meant that fewer patches were 

sampled in some parts of the ROI, leading to lower densities of predicted tumour points. The 

estimated max tumour density point (Figure 38), where the TSR was calculated, did not 

coincide with the ground truth sampling location (Figure 35). With a heterogeneous specimen 

such as this, it was not surprising to observe a large difference between the proportions of 

cells sampled at the two locations.  

Nonetheless, the AHP generated accurate TSR results in many cases. It has also enabled the 

detection of tumour regions using far fewer patches than would be used in tile-by-tile 

sampling. However, the observed variations in predicted tumour density, unhelpfully 

modulated by the sampling density determined by the low-resolution heatmap, resulted in 

errors in estimated TSR that could not safely be ignored in a clinical setting. 

Pipelines that attempt to avoid this scenario, using more uniform sampling regimes, are 

explored in the following sections. 

4.5 Tile-by-Tile Processing Pipeline 

4.5.1 Motivation 
A tile-by-tile pipeline (TTP) was now required, to provide a baseline for comparison with the 

AHP and subsequent attention-based systems in this chapter. The TTP would perform patch 

classification on every tile in a WSI, to provide baseline ROI and TSR error rates measured 

against the ground truth annotations. These measurements, and the total processing time per 

WSI, would be used for assessing the relative performance of more selective sampling 

algorithms.  

4.5.2 Methodology 
Figure 39 shows the architecture of the TTP. The pipeline configuration, including false positive 

correction and estimation of TSR and ROI, was the same as used in the attention-based and 

weighted regular sampling algorithms, using VGG19 for CNN1 and CNN2. A tile size of 
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224 × 224px was used to match the CNNs’ default input size.

 

Figure 39: Tile-by-tile WSI processing pipeline 

The TTP was executed on ARC4 with 100 hold-out WSIs that were unseen during CNN training 

and measurement.  

The earlier Attention Heatmap Pipeline was also executed using VGG19 classifiers, to facilitate 

like-for-like comparison with the TTP. 

4.5.3 Results 
Table 15 shows the comparative performance of Attention Heatmap and Tile-by-Tile pipelines, 

in terms of patches sampled, and ROI and TSR agreement with the GT annotations. The grid 

size given for the tile-by-tile pipeline is equivalent to the patch size, while the value for the 

Attention Heatmap Pipeline represents the ‘parent’ grid box from which patches are sampled. 

The ‘grid px’ size refers to WSI pixels at 20× magnification, corresponding to 0.49𝜇𝑚/pixel. 

Table 15: Comparative performance of tile-by-tile and attention-based WSI pipelines 

Pipeline Grid 
size 

px 

Grid 
size 
𝜇m  

Time 
per WSI 

(mins) 

Patches 
per WSI 

Tumour 
patches 

Tumour ROI 
agreement  

(F1 score) 

Lowest 
TSR 

error 

Lowest 
TSR 

RMSE 

AHP 1024 502 10 3029 1357 76.1% 21.6% 12.2% 
TTP 224 110 145 33065 7078 89.3% 25.1% 13.5% 

 

4.5.4 Discussion 
The AHP was over 14x faster than the Tile-by-Tile pipeline, which took 145 mins per WSI and 

processed 11x more patches than the AHP.  

This was measured on a single GPU node on ARC4 prior to the introduction of automated CPU 

parallelisation, which would dramatically reduce processing time in later pipeline experiments 

(Chapter 8). Nonetheless, the introduction of the TTP benchmark confirms that attention-

guided sampling yields a substantial improvement in processing. 

The TTP predicted the ROI outline more accurately than the AHP, with nearly 90% agreement 

(by F1 score) with the ground truth. This appears to be due to the greater number of patch 

coordinates available to the DBSCAN clustering algorithm. However, the AHP yielded 

marginally more accurate prediction of TSR.  

Further experiments would now aim to improve the accuracy of ROI and TSR prediction using a 

more consistent attention-based sampling regime, using the TTP as a baseline for performance 

comparisons. 
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4.6 Weighted Regular Sampling with Attention 

4.6.1 Motivation 
This novel approach for selecting patches from the WSI builds upon a published Quasi Monte 

Carlo method (Cruz-Roa et al., 2018) and was published in the Journal of Pathology Informatics 

(Broad et al., 2022).  

The Cruz-Roa algorithm determined the tumour ROI starting from a sparse grid of sampling 

points, classifying patches at these locations, then iteratively increasing sampling density in 

areas of high gradient in tumour probability, corresponding to transitions between tissue 

regions, to define the boundary of the ROI.  

In the current work, the algorithm was further required to generate a uniform sampling 

distribution within areas of suspected tumour, for example for TSR estimation. A modified 

sampling regime was therefore proposed, with additional points being sampled in a regular 

distribution within the estimated ROI.  

It was also expected that uniform sampling within the ROI would mitigate localised spatial 

biases due to the variable sampling density inherent in the Attention Heatmap Pipeline, 

supporting a more reliable choice of TSR sampling point. 

4.6.2 Methodology 
Figure 40 shows the Weighted Regular Sampling Pipeline (WRSP) architecture used in this 

experiment. Code used in this section is documented in Appendix Section 1.2.2. 

Initially a sparse but uniform distribution of patches was extracted from the WSI, and classified 

by a CNN, resulting in data points such as in Figure 41. If a patch was identified as tumour, 

further sampling patches would be added around it.  

 

Figure 40: Weighted Regular Sampling Pipeline 

Predicts tumour region of interest, tissue class distribution and TSR value for a given WSI. 

These new patches were also input to the classifier. This often resulted in additional predicted 

tumour locations. The resampling process was repeated for one to two further iterations, to 

capture further detail around the new tumour patches. This resulted in a plot where the 

tumour region was largely filled by higher-density, regular grids of classified patches (Figure 

42).  

The clustering algorithm in Section 4.2.2 was then used to estimate the overall ROI around the 

predicted tumour. A convex hull was drawn around the clustered regions, then the whole area 

within was sampled and classified at the higher sampling density.   
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Figure 41: Initial sparse 
sampling distribution for 

QUASAR 45258.svs  

Red=tumour 
Yellow=stroma 

 

Figure 42: Patch 
distribution after 

resampling areas around 
tumour patches 

 

Figure 43: Patch 
distribution after 

resampling within convex 
hull of predicted ROI  

Uniform higher density 
here improves ROI and 

TSR prediction 

This resulted in a uniform region of sampling (Figure 43) that was expected to enclose all 

relevant tumour and stroma patches. Where the clustering yielded multiple distinct groupings 

of predicted tumour, rather than a single continuous ROI, these would be joined together at 

this stage. A further clustering operation would then be performed on these uniformly higher-

density tumour patches, to provide a yet more accurate estimate of the ROI.  

False-positive correction was applied during the above process, using CNN2 to exclude normal 

epithelium patches mis-classified as tumour. 

Tumour Stroma Ratio 

TSR was calculated from the collections of classified patches, using sampling methods 

described in Section 4.4.  

An additional method exploited the uniformly distributed set of patches now available across 

the predicted ROI. Python code was developed to apply a 3mm square sliding window to these 

patches, recording totals of tumour and stroma patches at 3mm intervals within the ROI. This 

enabled density plots to be generated for tumour and stroma, and therefore TSR, inside the 

predicted ROI. 

4.6.3 Results 
The following results were obtained from pipelines using ImageNet-pretrained VGG19 models, 

at a parent grid size of 1024px or 502𝜇m unless otherwise stated. 

ROI Prediction 

Table 16 shows the accuracy of predicting the ROI, relative to the GT annotations, using the 

WRSP with 1 and 2 resampling iterations. Previous results from the Attention Heatmap 

Pipeline (AHP) are included for comparison. ROI accuracy is expressed as Intersection over 

Union (IoU) and F1/Dice score. 

Table 16: ROI Prediction accuracy for WSI processing pipelines with 1024px grid size 

Pipeline Re-
sampling 

Iterations 

Tumour % 
in ROI 

(post FPC) 

IoU w.r.t 
GT ROI  

IoU 95% CI F1 w.r.t 
GT ROI 

F1 95% CI 

AHP n/a 96.9 66.28%,  62.04-70.52% 77.29% 73.39-81.18% 

WRSP 1 96.4 70.89% 66.60-75.18% 80.76% 76.97-84.54% 

WRSP 2 93.3 74.20% 70.56-77.83% 83.58%  80.45-86.72% 
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Tumour Stroma Ratio 

Table 17 summarises the accuracies of TSR predictions obtained using the TSR patch sampling 

methods employed in the pipeline. TSR mean error is expressed as 𝑇𝑆𝑅𝐺𝑇 − 𝑇𝑆𝑅𝑝𝑟𝑒𝑑. such 

that an excessively high TSR prediction results in a negative value. Results in bold are 

referenced in the Discussion section below.  

Table 17: TSR accuracy statistics for Weighted Regular Sampling Pipeline 

Sampling Region (using post-FPC tumour 
points unless stated) 

TSR mean error as 
𝑇𝑆𝑅𝐺𝑇 − 𝑇𝑆𝑅𝑝𝑟𝑒𝑑. 

with 95% CI 

TSR mean error 
magnitude with 95% CI 

Ground Truth Locations 0.00 -0.02-0.01 8.67% 6.91-10.43% 

Predicted ROI (100 points) 0.08 0.05-0.10 22.87% 18.09-27.65% 

Maximum Tumour Density (>80%) in ROI -0.05 -0.08--0.02 24.01% 18.00-30.01% 

3mm Box at Max Tumour Density within 
ROI (pre FPC) 

0.00 -0.03-0.03 26.77% 20.06-33.47% 

3mm Box at Max Tumour Density within 
ROI 

0.01 -0.02-0.05 26.96% 20.28-33.65% 

3mm Box at Max Tumour Density over 
whole WSI 

-0.01 -0.04-0.01 23.25% 17.17-29.33% 

3mm Box at Max Tumour Density Point   -0.05 -0.07--0.02 20.54% 15.80-25.28% 

3mm Box at Max Tumour Density Point 
with RandomSpot layout (120 points) 

-0.03 -0.05--0.00 19.86% 14.33-25.38% 

Mean sliding window output over 
predicted ROI 

0.03 0.01-0.06 21.69% 16.27-27.11% 

 

Effect of varying pipeline parameters 

Table 18 shows the effect of varying grid size and number of resampling iterations, on the 

accuracy of predicting TSR and the ROI outline.  

Table 18: WRSP performance metrics with varying grid size and resampling iterations 

Pipe-
line 
type 

Grid 
size 

px 

Grid 
size 
𝜇m  

Re-
sampling 

iterations 

WSI 
proc. 
time 

(mins) 

Patches 
per 

image 

Tumour 
ROI: F1 

Lowest 
TSR 

error 

Lowest 
TSR 

RMSE 

TSR 
sampling 
location 

AHP 1024 502 - 10 3029 76.1% 21.6% 12.2% ROI 

WRSP 1024 502 1 23:19 4041 79.3% 19.9% 12.7% ROI  

WRSP 1024 502 2 23:05 7007 83.0% 19.4% 12.9% dmax 

WRSP 768 376 1 25:12 6542 83.2% 21.2% 12.7% dmax 

WRSP 768 376 2 36:27 12016 86.5% 20.3% 11.8% dmax 

WRSP 640 313 1 29:05 7826 83.6% 18.5% 11.3% dmax 

WRSP 640 313 2 44:18 14257 86.6% 19.5% 12.4% sliding 

TTP - - - 145 33065 89.3% 25.11% 13.5% dmax 

TSR sampling locations:  
ROI = predicted ROI (100 patches) 

 dmax = 3mm box at max tumour density point with RandomSpot layout (120 patches) 

sliding = sliding 3mm window within predicted ROI 
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Further analysis of TSR performance 

Figure 44 through Figure 46 show distributions of tumour and stroma patch densities, and the 

resulting TSR distribution, for a sample WSI. 

 

Figure 44: Tumour 
distribution for 45258.svs 

using sliding 3mm 
window in predicted ROI 

 

Figure 45: Stroma 
distribution for 45258.svs 

using sliding 3mm 
window in predicted ROI 

 

Figure 46: TSR heatmap 
derived from tumour and 

stroma distributions 

The Bland-Altman plot in Figure 47 shows the distribution of TSR errors from the 100 

evaluation WSIs. Outliers in red show the associated SVS image number. 

 

Figure 47: Bland-Altman plot of best-case TSR errors in weighted regular sampling pipeline, 
using VGG19 classifier.  

Outliers in red (>1SD from mean) represent the greatest discrepancy in TSR from the ground 
truth value, often due to sampling location being different to that used for the GT. 

Figure 48 shows the WSI with the GT sampling region overlaid. The pipeline sampling locations 

are shown in Figure 49, against the GT ROI outline. 
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Figure 48: WSI 61806.svs with pathologist's 
chosen 3mm sampling region (red box) 

 

Figure 49: TSR sampling locations for WSI 
61806.svs, using 3mm box at predicted 

maximum tumour density.  

Location determined by pipeline differs 
from pathologist’s ground truth sampling 

region.

4.6.4 Discussion  
The Weighted Regular Sampling Pipeline (WRSP) replaced the thumbnail-derived heatmap 

from the earlier Attention Heatmap Pipeline (AHP) with a more uniform sampling pattern. The 

new technique remains attention-inspired, starting from ‘glimpses’ of cells taken a low 

sampling density, then directing further processing to where features of interest (tumour 

patches) are detected. 

ROI estimation 

The ROI predicted by the WRSP is significantly more accurate than that from the AHP, when 

comparing IoU with 95% confidence intervals. IoU is increased by approximately 4 percentage 

points (pp) when using one iteration of resampling around tumour patches. This increases by a 

further 4pp with an additional resampling iteration. F1 score similarly increases by 

approximately 3pp between pipeline variants.  

It appears that the WRSP, particularly when using an additional sampling iteration, supplies a 

dense distribution of patches in the tumour region, which enhances the spatial definition of 

the derived ROI outline. 

TSR estimation 

Error rates in TSR estimation have decreased relative to the AHP. Remaining errors are thought 

to be due to the accuracy of the CNN classifier, and to the pipeline’s choice of sampling 

location within the ROI.  

Averaging TSR over the whole predicted ROI gives an error size of 22.87% (Table 17), but 

introduces a positive bias. This represents underestimated TSR, or overestimated stroma 

levels, which would result in an unduly pessimistic prognosis for the patient. Using the sliding 

window method within the ROI gave a marginally more accurate result, with reduced bias. The 

larger TSR error here reflects the difference in sampling distributions, between the area of 

highest tumour cell density chosen by the annotating pathologist, and the larger ROI enclosing 

varying cell densities. 

Sampling in a 3mm box at maximum tumour density gave the most accurate TSR result of the 

sampling methods that are compatible with unseen WSIs. The approach gave an error rate of 

19.86%, but is known to be sensitive to variations in tumour density at the chosen sampling 

location.  
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Unsurprisingly, the TSR error was lowest, at 8.67%, when sampling at locations chosen by the 

pathologist for the ground truth tissue annotations. Having eliminated errors attributable to 

variations in TSR sampling location, this remaining error is likely to reflect accuracy limitations 

in the CNN classifier, and uncertainty in the original annotations due to tissue heterogeneity in 

the GT patches. 

The TSR density plots offer further insight into tissue distribution within the ROI. In Figure 44, 

the highest density of tumour is represented by the dark region at the bottom left of the ROI. 

The density distribution of stroma was approximately the inverse of this (Figure 45), but the 

combined TSR varies widely over the ROI (Figure 46).  

This highlights the importance of a suitable method for selecting and aggregating spatially 

varying TSR distributions, when a single score is required for the WSI. The pipeline’s sampling 

location for TSR measurements does not always align with that chosen by the pathologist. For 

example, the annotating pathologist favoured sampling locations near to the luminal aspect 

(interior bowel wall), a structure which the pipeline did not attempt to identify. Discrepancies 

in sampling location were seen to account for many of the larger errors in TSR. 

Effect of varying pipeline parameters 

The accuracy of ROI prediction, measured by F1 score, has improved in the WRSP (79.3% to 

86.6%, Table 18) with respect to AHP (76.1%). The most accurate predictions correspond to 

the largest number of patches sampled. 

TSR errors were marginally reduced relative to the AHP. It appears that the increased number 

of sampling points in the ROI facilitates more precise estimation of the location of peak 

tumour density, in cases where this is used to determine TSR sampling location. The greatest 

reduction in TSR error occurred with the smallest parent grid size of 640px using a single 

resampling iteration. For most pipeline configurations, the most accurate TSR predictions 

occurred when sampling over a RandomSpot-based triangular grid of 120 patches at the point 

of maximum estimated tumour density (dmax).  

WSI processing time is greater in the WRSP than in the AHP. WSI processing time increases in 

proportion with the number of patches being processed. This in turn increases with the 

number of resampling iterations and with decreasing grid size. Nonetheless the WRSP remains 

substantially faster than tile-by-tile processing. 

Analysis of TSR outliers 

The most extreme outlier in the BA plot in Figure 47, WSI 61806, represents a much lower 

predicted TSR than the ground truth, with a TSR difference of nearly 0.5 out of a possible 1.0. 

This implies that stroma levels were overestimated in the pipeline, which might lead to a 

pessimistic survival prediction for the patient, perhaps resulting in unnecessarily aggressive 

treatment regimes.  

The sampling box placed at peak predicted tumour in Figure 49 was found to be in a different 

part of the ROI from the pathologist’s selection, shown in Figure 48. The latter was placed near 

to the luminal aspect (interior bowel wall), a consideration not made by the pipeline when 

selecting its sampling region. The extreme difference in TSR prediction in this outlying case 

may be due the very heterogeneous nature of the tumour ROI, which would account for large 

variations in tumour density between these sampling locations. 

Later work sought to improve classification accuracy of the CNN used in this pipeline, 

supporting the selection of optimum sampling locations for more accurate TSR and ROI 

predictions.  
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5 Feedback Attention 

5.1 Feedback Attention Ladder CNN (FAL-CNN)  

5.1.1 Motivation 
Chapter 4 demonstrated a processing pipeline for extracting diagnostically useful information 

from colorectal cancer WSIs. The accuracy of predictions of tissue distribution, ROI outline, and 

TSR, appeared to depend on the accuracy of the CNN used for patch classification. At this 

stage, the best-performing CNN model was the VGG19. 

This chapter investigates the benefit of adding top-down attention pathways to this widely 

used feedforward classifier. Literature (Kubilius et al., 2018; Tsuda et al., 2020; Tomar et al., 

2022) demonstrated variations on this approach that improve model performance, particularly 

where input samples have mixed or superimposed elements involving different image classes. 

It was expected that this scenario would occur widely in pathology image patches, due to their 

heterogeneous nature and variations in mounting, staining and scanning quality. 

This chapter introduces a novel hybrid model derived from two prototype architectures, 

initially inspired by the above literature: 

1) CNN with feedback loops local to each emulated brain region, V1, V2 and IT 

 

2) Feedback models based on U-Net networks adapted to generate feedback activations 

from the output, to control spatial and channel attention in the input layers. 

Models were first trained for the task of classifying 9-class QUASAR patches (Section 3.1). In 

preliminary experiments, where each prototype architecture above was developed separately 

using a VGG19 backbone model, classification accuracy was enhanced in each case by around 

2pp for QUASAR images (Section 3.2), rising to 8pp with the uncertain-class-patches subset 

containing patches with ambiguous or indeterminate content (Section 3.3.1). 

The proposed hybrid model combined the two distinct neural behaviours from the prototype 

architectures, in the expectation that combining local and long-distance feedback pathways 

would further boost accuracy. 

In initial prototypes, the use of multiple feedback iterations unexpectedly impaired 

classification performance. The predicted output class was determined by a decoder output 

generated in the last iteration alone – the model’s “final answer”. This implies a less accurate 

result in cases where the attention region drifts away from the target object during feedback 

iterations, or in scenarios where the initial prediction is the most accurate and subsequent 

feedback does not generate an improved output. 

A further enhancement was therefore proposed, in which feature embeddings from the 

backbone encoder were aggregated during the initial forward pass and after each subsequent 

feedback cycle. This was designed to emulate localised working memory in a living cognitive 

system, to derive an output class prediction from the most relevant feedforward activations. 

5.1.2 Methodology 
Code used in this section is documented in Appendix Section 1.3. 

The Feedback Attention Model CNN model, FAL-CNN is shown in Figure 50. The upper 

feedforward encoder path is based on a VGG19 ‘backbone’ with multiplying feedback 

attention modules (FAM) inserted before the first convolutional layer of each spatial scale 

level.  
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Figure 50: Feedback Attention Ladder CNN (FAL-CNN) model. 

Incorporates multiple feedback neural pathways, and feature embedding store to aggregate 
feature embeddings over multiple processing iterations. 

The FAM is shown in more detail in Figure 51. The module’s output 𝑂, for input 𝐼 and feedback 

tensor 𝐹 with weights 𝑊𝑓 and biases 𝐵𝑓, is given by: 

𝑂 = 𝐼(𝑊𝑓𝐹 + 𝐵𝑓) (7) 

This modulates feedforward activations at each pixel and each channel according to feedback 

activations in 𝐹. These are obtained from outputs of the decoder stages in the lower feedback 

path in Figure 50. This path corresponds to the decoder section of a U-Net model, and includes 

forward skip connections to preserve spatial resolution in the output. 

 

Figure 51: Multiplicative Feedback Attention Module 

A feature-embedding store (FES) was used to combine encoder outputs across all feedback 

iterations. The FES used a tensor with dimension 𝐵𝐶(𝑁 + 1), where 𝑁 is the number of 

feedback iterations, 𝐶 is the number of channels in the fully connected layers (=4096 for 

VGG19) and 𝐵 is the image batch size. Each forward-pass result of size 𝐵𝐶 was stored in the 

FES, with a memory offset determined by the current iteration number. This resulted in an 

aggregated tensor containing embeddings from each forward pass.   

An additional fully connected layer was then used to reduce the stacked embeddings in the 

FES back to size 𝐵𝐶. This combined feature embedding was then used to generate the output 

class prediction via further fully connected (FC) layers and a final softmax stage, as used in the 

original VGG19 architecture. 
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The FAL-CNN was invoked according to the following steps: 

Algorithm of FAL-CNN invocation 

Input: Batch of patch image tensors 
 
Initialise feature-embedding store tensor with size BC(N+1) 
 
Apply null feedback to feedback attention modules (FAM) in feedforward 
path 
 
Call feedforward encoder layers on input image batch 
Call 2x FC layers 
Store FC layer output embeddings at offset 0 
 
For each feedback iteration i: 
 Call feedback decoder layers with current encoder output 

Apply decoder group output activations to corresponding FAMs 
Call feedforward encoder layers on input image batch  
Call 2x FC layers 
Store FC layer output embeddings at offset BC(i+1) 

 
Call final FC layers with the N+1 stored embeddings 
 
Return:  
Batch of predicted output class probabilities from encoder output 

 

Training 

Model configurations with 0 to 4 feedback iterations to layers 0,5,10,19,28 were trained 

against the QUASAR 9-class patch set.  The zero-iteration configuration was included to test 

the effect of the additional FC layer in the feedforward model with no feedback applied.  

Training weights were initialised by copying from the PyTorch pre-trained VGG19 model into 

equivalent layers in the feedforward pathway. Models were trained for 200 epochs, with an 

initial LR of 0.0003 and momentum of 0.9, using the PyTorch StepLR learning rate scheduler to 

reduce the LR by a factor of 0.7 every 30 epochs. This was found to provide optimum 

convergence and a marginally higher classification accuracy than initial 100 epoch training with 

no LR reduction.  

Statistics 

Five-fold Cross Validation (CV) was used. Five data splits were defined, each with an 80%/20% 

split between training and test sets, allocated such that each test set contained a wholly 

different collection of images. Models were trained for each split, so that five accuracy scores 

were available for calculating a mean value. 

Bootstrapping was performed by splitting each hold-out Test set into 6 sub-groups and 

performing inference on each patch in the sub-group. Thirty mean accuracy points were thus 

generated. These were used to calculate an overall mean classification accuracy 𝑥̅ and 

standard deviation 𝜎, from which 95% confidence intervals 𝐶𝐼 were calculated using the 

formula: 
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𝐶𝐼 =  𝑥̅  ± 1.96 
𝜎

√𝑛
(8) 

The value of 1.96 above is the Z-score required to enclose 95% of a standard normal 

distribution within the confidence interval (BMJ, n.d.).  

P-values were calculated using the Wilcoxon Rank Sum test, with the SciPy function 

scipy.stats.ranksums(). 

The trained model was further evaluated against the uncertain-class-patches dataset with 30 

random samples, with mean and 95% CI being calculated as above. 

Confusion Matrix difference plot 

The Confusion Matrix (CM) difference plot was designed to show the effect of changes to a 

classifier model on the rates of correct and incorrect classification for each class. Existing code 

in the CNN training framework was used to generate and log a CM for the trained model, using 

the whole Validation set. CMs were subsequently extracted from training log files for models 

before and after the modification under test, these being the VGG19 backbone and the FAL-

CNN feedback model.  

A Jupyter notebook was used to parse each CM from text inputs, then subtract the reference 

CM from that of the FAL-CNN model under test (MUT): 

𝐶𝑀𝑑𝑖𝑓𝑓 = 𝐶𝑀𝑀𝑈𝑇 − 𝐶𝑀𝑟𝑒𝑓 (9) 

The difference CM was plotted with cells colour coded on a gradient from blue to red. On the 

leading diagonal, a positive difference was coded blue and a negative difference red. Off 

diagonal, the convention was reversed, with an increase in a given cell total resulting in a red 

coding. Thus, “good” changes contributing to improved classification accuracy were shown as 

blue, and “bad” changes highlighted in red. 

5.1.3 Results 
Results tables to complement the plots in this section, including mean accuracies, error bar 

ranges and p-values, are in Appendix section 2.1.1. 

Results with QUASAR 9-class patches 

Figure 52 and Table 21 (Appendix 2.1.1) show the mean classification accuracy and confidence 

intervals for the FAL-CNN feedback model, with 0 to 4 feedback iterations, after 200 training 

epochs. For these measurements, bootstrapping was employed in combination with 5-fold CV, 

allowing 95% CI bands to be calculated. 
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Figure 52: Classification accuracies relative to VGG19 with 95% confidence intervals, 
 for FAL-CNN models with QUASAR 9-class patches 

Results show significant benefit of using feedback attention architecture. 

Results with uncertain-class-patches 

Figure 53 and Table 22 show the classification accuracy for the FAL-CNN feedback model with 

0 to 4 feedback iterations, when applied to the uncertain-class-patches dataset. 

 

Figure 53: Classification accuracies relative to VGG19 with 95% confidence intervals, 
for FAL-CNN models with uncertain-class-patches dataset 

Results show significant benefit of using feedback attention architecture, particularly in 
heterogeneous or cluttered input images. 
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Confusion Matrix difference plot 

Figure 54 shows confusion matrices for the VGG19 baseline, and the FAL-CNN model, following 

training with the QUASAR 9-class dataset. The third panel represents the difference between 

the two matrices. Decreases in totals on the leading diagonal, and increases in off-diagonal 

totals, are shown in blue, while increased off-diagonal totals and decreased value on the 

leading diagonal are shown in red. 

 

Figure 54: Confusion Matrix difference plot, between feedforward VGG19 and FAL-CNN model 

RH panel shows increase in correct identifications (blue cells) due to the use of feedback 
attention, albeit with increase in incorrect identifications (red cells) for class muscle. 

5.1.4 Discussion 
In initial experiments, models with feedback enabled to layers 0,5,10,19,28 outperformed the 

model using only layers 5,10,19,28, confirming the benefit of feedback to the convolutional 

layers near the model input. These layers are associated with low-level image features such as 

colour and fine-grained edge detail, implying that the feedback model pays selective attention 

to such low-level image features.  

The FAL-CNN model significantly outperformed the baseline VGG19, giving accuracy gains of 

approximately 3.5pp with one or more feedback iterations, validated by non-overlapping 95% 

confidence intervals and a p-value of p<0.001.  

Interestingly, the zero-iteration feedforward-only configuration gave a 1.60pp increase over 

the VGG19, the only difference being the additional 4096-channel fully connected layer. It 

appears that this layer adds extra capability in discriminating the object classes implicit in the 

4096-value embeddings at this level in the model, even before feedback is applied. 

The use of one or more feedback iterations yielded further accuracy gains, which did not 

decline over multiple iterations. This suggests that the hybrid feedback system’s “ladder” of 

multiple cross-connections between the feedforward and feedback paths acts to stabilise the 

feedback activations over multiple iterations. 

In addition to the benefit attributed to the extra FC layer, it appears that the model’s 

performance was further boosted by the use of a simulated “working memory” element to 

accumulate the results of multiple feedback iterations. It appears that output embeddings 

resulting from multiple feedback iterations can contribute usefully to the final class prediction, 

but also sometimes diverge from the required result. In the FAL-CNN model, helpful 

embeddings from earlier iterations – and also from the feedforward pass – are being retained 

and combined with later iterations’ outputs. The model weights at this point have been trained 
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to provide an optimum mix of these, such that lower iterations’ contributions may contribute a 

“sense check”, helping to improve stability during multiple iterations. 

When the FAL-CNN model was used with uncertain-class-patches, the increased stability over 

multiple feedback cycles was evident in the highest-yet accuracy gain of 12.26pp being 

measured after 3 iterations. However, the 1-iteration model is only marginally less accurate 

than this, and avoids the need for the extra computation required by further feedback 

iterations. Despite the single feedback cycle, the model still benefits from the “working 

memory” behaviour. 

In the CM difference plot (Figure 54, RH panel), the strong blue leading diagonal shows an 

increase in correct identifications of all tissue classes, with the exception of muscle. Off-

diagonal blue cells show a reduction in misclassifications, especially between lumen and 

tumour or necrosis.  

The CM differences were mostly symmetrical around the leading diagonal, the exception being 

that less stroma was misclassified as muscle, but more muscle was incorrectly identified as 

stroma, than with the baseline VGG19. However, muscle is a relatively small class, and is in any 

case a ‘sibling’ of stroma when grouping into tumour-group and stroma-group parent classes. 

The majority of blue cells in the CM represent higher rates of correct classification with most 

tissue types. 

The ladder-like structure of the feedback model represents an efficient implementation of 

channel and spatial feedback attention. The model includes convolution-based 

interconnections between all scale-levels, with each connection apparently contributing to the 

improved classification accuracy of the model. This feedback connectivity offers less 

independent control than would be possible in a many-to-many model having separate 

convolutional structures for every pathway, but maintains a more compact and efficient model 

structure. 

Later chapters will examine the performance of the FAL-CNN model in the earlier WSI-

processing pipeline, and will present visualisations of attention that reveal the simulated 

cognitive processes that have led to the improvements observed. 

5.2 FAL-CNN Performance with Offset Patches 

5.2.1 Motivation 
It was anticipated that classifiers trained on QUASAR patch images would be most responsive 

to features near the input patch’s centre pixel, at which the ground truth label applies. To 

explore this behaviour, patches were resampled to place the ground truth point at a different 

location in the patch, to examine the effect on model accuracy (this section) and attention 

distributions (Chapter 6). 

5.2.2 Methodology 
Patch images were sampled from QC-passed QUASAR WSIs, as described in Section 3.3.3, with 

the ground-truth location centred in the bottom right quadrant of each patch (Figure 9). This 

offset-patches dataset provided training data for the following experiments: 

Model evaluated on offset patches  

A VGG19 model, and FAL-CNN models using 1, 2 and 3 feedback iterations, previously trained 

on 9-class centre-labelled patches (Section 5.1), were subsequently executed on offset-patches 

data.  
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To mitigate overfitting, the offset images used in this evaluation were derived from WSIs listed 

in the unseen Validation set associated with the data split previously used in model training. 

Model inference was performed on the ARC4 HPC, for 30 subsets randomly selected from the 

Validation set, to provide classification accuracy results for calculation of mean accuracy and 

95% confidence intervals.  

Model trained and evaluated on offset patches  

The VGG19 and FAL-CNN model configurations were subsequently trained with the offset-

patches dataset. Five-fold CV data splits and training hyperparameters were re-used from 

earlier model training with standard 9-class QUASAR data (Section 5.1.2). Mean classification 

accuracy and SE ranges, also obtained using offset-patches, were derived from post-training 

measurements across the five Validation sets. 

5.2.3 Results 
Results tables to complement the plots in this section, including mean accuracies and error bar 

ranges, are in Appendix section 2.2.1. 

Model evaluated on offset patches  

Figure 55 and Table 23 (Appendix 2.2.1) show classification accuracies measured against the 

offset-patches dataset, when processed with FAL-CNN model versions trained on the standard, 

centre-annotated QUASAR dataset.  

 

Figure 55: FAL-CNN classification accuracies relative to VGG19 with 95% confidence intervals,  
trained with standard patches then evaluated with offset-patches dataset 

Reduced accuracy across all models shows impact of resampling heterogeneous tissue at a new 
location, without reassessing GT tissue class label. 

Model trained and evaluated on offset patches  

Table 24 shows classification accuracies measured after training the FAL-CNN model with the 

offset-patches dataset, alongside the accuracy gain in pp over the equivalent centre-trained 

model (Section 5.1.3, Table 21). Figure 56 shows classification accuracies with the centre-

trained model results included for reference. 
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Figure 56: FAL-CNN classification accuracies relative to VGG19 with ±1 𝑆𝐸 ranges 
when trained and evaluated with offset-patches dataset 

Earlier non-offset results are shown in grey for comparison. The use of offset patches has 
boosted classification accuracy across all models. 

5.2.4 Discussion 
When a model, previously trained on patches centred around the GT pixel associated with the 

patch label, was then evaluated against offset-patches, a dramatic reduction in classification 

accuracy was observed.  

The model was trained to focus on features supporting tissue identification in the centre of the 

patch, whereas the GT label now applied to another location in the image. Due to the 

heterogeneous nature of a CRC tissue sample at patch scale, it is likely that the tissue at the GT 

location is of a different type to that at patch centre, leading to a discrepancy in the predicted 

class. 

Surprisingly, the models trained and evaluated with offset-patches showed consistently 

improved classification performance over models trained with centre-annotated patches. 

Placing the GT pixel near one corner means that the patch can encompass structural context 

(albeit only in one direction) from further away from this location than would be possible with 

centre-labelled patches. This may act as a proxy for using a larger patch size, without exposing 

the model to the confounding influence of a larger area of heterogeneous tissue types.  

Further work examining the spatial distribution of attention within an offset-trained feedback 

model, to understand how these might influence the model’s performance, is reported in 

Chapter 6, Visualising Feedback Attention. 

5.3 FAL-CNN Performance with tumour-stroma-groups Patches 

5.3.1 Motivation 
Occam’s Razor, also known as the Law of Economy, is a philosophical principle that favours the 

simpler of any two competing theories (Encyclopaedia Britannica, 2020). In this context, it 

appeared that the nine tissue classes represented undesirable complexity.  
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Wright (2017) has shown that TSR can be more accurately calculated when tissue classes are 

grouped into tumour and stroma ‘parent’ classes. It was anticipated that models trained with 

data grouped in this way would yield higher accuracy than observed with 9-class models.   

Initial experiments used a dataset with 20,000 images for each class. This dataset was 

expected to yield the highest classification accuracy, due to the large number of images and 

the regularisation implicit in the use of rotated copies to balance file totals between classes. 

An offset-sampled, grouped dataset was also created, to examine whether the accuracy gain 

observed with offset-sampled 9-class data (Section 5.2) would be repeatable with the 2-class 

dataset. A smaller image count of 12,000 per class was chosen to eliminate rotated copies, 

which would place the GT location in an unexpected quadrant.  

A further dataset of 12,000 non-rotated, centre-sampled images per class was created to train 

models for comparison with offset-trained models.   

5.3.2 Methodology 
Two 2-class image datasets were derived from previously extracted 9-class QUASAR patches as 

detailed in Section 3.3.2, with 20,000 and 12,000 images per class respectively. 

A VGG19 baseline model and 1, 2, and 3-iteration FAL-CNN models were trained using both 

datasets, over 50 training epochs for the VGG19 and 200 epochs for the FAL-CNN versions, 

with an initial LR of 0.0003 and momentum=0.9.  

QUASAR offset tumour-stroma-groups 

Further VGG19 and FAL-CNN models were trained with the offset tumour-stroma-groups 

dataset described in Section 3.3.4. Training hyperparameters were as used with the non-offset 

patch sets above. 

5.3.3 Results 
Results tables to complement the plots in this section, including mean accuracies and error bar 

ranges, are in Appendix section 2.3.1. 

Model trained with tumour-stroma-groups, 20,000 patches per class 

Figure 57 and Table 25 show classification accuracies measured after training FAL-CNN with 

the 20k-per-class tumour-stroma-groups dataset version.  
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Figure 57: Classification accuracies with ±1 𝑆𝐸 ranges for FAL-CNN relative to VGG19, 
 with tumour-stroma-groups dataset 

Accuracies are increased by reducing the number of output classes from 9 to 2. 

Model trained with tumour-stroma-groups, 12,000 patches per class, un-rotated 

Figure 58 and Table 26 show classification accuracies measured after training FAL-CNN with 

the un-rotated, 12,000 patch-per-class dataset.  

 

Figure 58: Classification accuracies with ±1 𝑆𝐸 ranges for FAL-CNN relative to VGG19,  
with tumour-stroma-groups-12000 dataset 
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Model trained and evaluated on offset tumour-stroma-groups patches 

Figure 59 and Table 27 show classification accuracies measured after training FAL-CNN with 

the offset-sampled 2-class tumour-stroma-groups patch dataset.  

 

Figure 59: Classification accuracies with ±1 𝑆𝐸 ranges for FAL-CNN relative to VGG19, 
with offset tumour-stroma-groups dataset 

The two-class classification task does not benefit from the use of offset patches. 

5.3.4 Discussion 
When training with two-class data, grouping the 9-class patch set into parent tumour-group 

and stroma-group classes, the resulting classification accuracy exceeded 90% for all baseline 

and feedback models assessed in this section (Figure 57). At 20k images per class, the VGG19 

yielded 94.34%, rising to 94.9% with the 2-iteration FAL-CNN. This was marginally higher than 

the 94.77% of the 1-iteration version, but arguably does not justify the processing overhead of 

the extra feedback cycle.  

The benefit of feedback is less pronounced than in the 9-class case, but is nonetheless 

substantial, as evidenced by the non-overlapping SE ranges. Also, for accuracies close to 95%, a 

0.5pp change in accuracy equates to a 10% reduction in error rate, which can be attributed to 

the feedback attention mechanism. 

With the 12k-per-class dataset, classification scores (Figure 58) were reduced by approximately 

1pp for each model, relative to the 20k results (Figure 57). In the latter case, the models 

benefit from the implicit regularisation in randomly selecting from the extra rotated image 

copies, and the reduction of overfitting expected with a larger dataset. 

The use of 2-class offset-sampled patches, grouped similarly into tumour and stroma parent 
classes, further reduced accuracy relative to the 12k, in contrast to the significant benefit seen 
in using the offset technique with 9-class data in  
Section 5.2.  

Nonetheless, the large improvements observed with two-class data suggest that Occam’s 

Razor has been successfully applied to the QUASAR patch set, resulting in 2-class models 
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capable of distinguishing tumour-group from stroma-group tissue with significantly higher 

accuracy than was observed with equivalent models performing 9-way classification.  

5.4 FAL-CNN Performance with ImageNet-100 

5.4.1 Motivation 
ImageNet-100 (Shekar, 2021) contains 100 categories of animal, fish and bird images. VGG19 

and FAL-CNN models were re-trained using this further data set because of its easily 

identifiable subject matter, in the expectation that image regions that were highlighted by the 

feedback attention mechanism could easily be compared with outlines and identifying features 

of the target object.  

Training with ImageNet-100 would also help to determine the generalisability to other image 

sets of feedback attention architectures previously optimised for QUASAR data. 

5.4.2 Methodology 
ImageNet-100 data was downloaded and prepared as described in Section 3.4.2.  

Five experiment data splits, with mutually exclusive Test sets, were defined for use in 5-fold 

cross validation. These were taken from the ImageNet-100 “Train”, within which 5-fold 

Train/Validation splits were derived for model training and evaluation. 

VGG19 feedforward models and FAL-CNN models, with 1, 2 and 3 feedback iterations to layers 

0,5,10,19,28, were trained with ImageNet-100 data. Stochastic Gradient Descent optimisation 

was used, with momentum = 0.9, initial LR = 0.0003 and LR reduction with 𝛾 = 0.7 per 30 

training epochs. Weights in the feedforward path of each model were initialised from the pre-

trained VGG19 downloaded from the PyTorch ‘Model Zoo’ (PyTorch, 2021). Training was 

performed over multiples of 50 epochs until convergence was observed. 

This training process did not involve the separate Test set provided with ImageNet-100. This 

was subsequently used as a source of unseen images for further validation of trained models. 

For this, model accuracy was measured 30 times with random splits, from which the mean 

classification accuracy and 95% confidence intervals were derived. 
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5.4.3 Results 
Results tables to complement the plots in this section, including mean accuracies, error bar 

ranges and p-values, are in Appendix section 2.4.1. 

Figure 60 and Table 28 show mean classification accuracy with Standard Error (SE) ranges for 

the VGG19 feedforward model and FAL-CNN with 1, 2 and 3 feedback iterations. The total 

training epochs required to achieve convergence are also listed in Table 28. 

 

Figure 60: FAL-CNN classification accuracies relative to VGG19 with ±1 𝑆𝐸 ranges,  
trained and evaluated with ImageNet-100 

Results show benefit of incorporating feedback architecture but also reflect overfitting, as 
discussed in Section 5.4.4 
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Table 29 and Figure 61 show mean classification accuracy with 95% CI for VGG19 and FAL-CNN 

with 1, 2 and 3 feedback iterations, when evaluated with 30 random splits against the 

previously unseen ImageNet-100 Test set. 

 

Figure 61: FAL-CNN classification accuracies relative to VGG19 with 95% confidence intervals, 
evaluated with ImageNet-100 Test dataset 

Use of the hold-out Test set mitigates the overfitting associated with Figure 60 and 
demonstrates a significant increase in accuracy resulting from the use of feedback attention. 

5.4.4 Discussion 
With ImageNet-100, the feedback attention model yielded a significant improvement in 

classification accuracy over the feedforward only VGG19. When measuring against the 

Validation split within each 5-fold CV group selected from the ImageNet-100 Training set, 

classification accuracy rose from approximately 84% to 88%, a 4pp improvement.  

The majority of the benefit occurred with a single feedback iteration (Figure 60). There was a 

marginal further increase in accuracy when using two iterations, albeit with the computational 

cost of an extra inference cycle invoking the feedforward and feedback pathways. 

When trained models were tested with the unseen hold-out Test dataset, the 1-iteration FAL-

CNN showed a significant accuracy gain of 2.39pp over the VGG19, supported by non-

overlapping 95% confidence intervals and a p-value of p<0.001. However, across all models, 

accuracies were 3-4pp lower than those seen with Validation sets during training (Figure 61).  

This discrepancy appears to be due to overfitting during training. Feedforward module weights 

were initialised from a downloaded VGG19, pre-trained with ImageNet-1k. As ImageNet-100 

contains a subset of these images, the final trained model is likely to have been contaminated 

by exposure to images subsequently used for post-training accuracy measurements. The 

higher scores in Table 28 and Figure 60 are therefore likely to involve overfitting, and the 

results in Table 50 and Figure 105 give a truer representation of the models’ performance. 
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Subsequent evaluation of FAL-CNN in feedback visualisation and saccade-based processing was 

therefore performed using images from the ImageNet-100 Test set exclusively. 

Despite the above issues, these results illustrate the benefit of using feedback attention 

mechanisms with ImageNet-100 data. The FAL-CNN model architecture has proved to be 

generalisable across image sources beyond the original digital pathology patches.  

Further experiments (Chapter 6) were developed, to visualise and understand the feedback 

processes involved.  
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6 Visualising Feedback Attention 

6.1 Motivation 
Feedback attention has been shown to improve model accuracy when classifying a range of 

pathology and general purpose image sets. This chapter examines the extent to which 

feedback activations involved in model evaluation are spatially aligned with objects or regions 

of interest in the input image. These were expected to be important in understanding the 

behaviour of the model, en route to a qualitative and, where possible, quantitative 

understanding of salient image regions. 

From an Explainable AI (XAI) perspective, there is a clear value in tools that that can highlight 

diagnostically relevant tissue in support of an AI model’s prediction.    

ImageNet and QUASAR-trained FAL-CNN models were analysed. It was expected that attention 

distributions for ImageNet could be easily compared with images of everyday objects, since 

object boundaries are apparent without specialist knowledge.  

For each data source, feedback activations were captured and plotted at each feedback layer, 

to explore the model’s attention to features at different depths in the model. The large 

number of channels at the feedback layers presented a further challenge in interpreting 

multiple feedback distributions. This section therefore explores several methods for 

combining, visualising and assessing these results.  

6.2 Methodology 
Code used in this section is documented in Appendix Section 1.4. 

6.2.1 Model Enhancements 
Visualisation experiments were carried out using the FAL-CNN classifier model, configured for 

feedback to layers 0,5,10,19,28. The model was modified to return a list of feedback 

activations for each iteration of feedback (Figure 62) during model execution. Each nested list 

comprised 𝐵 × 𝐶𝑙 × 𝐻𝑙 × 𝑊𝑙  tensors for each feedback layer, where 𝐵 is the batch dimension 

and 𝐶𝑙, 𝐻𝑙 and 𝑊𝑙 are the channel, height and width dimensions at layer 𝑙 in the model. The 

entire collection was returned as an extra output tuple value alongside the model’s inference 

output tensor. 

 

 

Figure 62: Feedback Attention Ladder CNN with additional outputs of feedback activations 
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6.2.2 Feedback Activation Visualisation Plots 
A Visualisation Image Generator (VIG) was developed to generate output images from the 

grouped feedback activations returned from the enhanced models, and to superimpose these 

onto the input image where required.  

Images were chosen from a validation set that was unseen during model training, to avoid 

generating overfitted attention maps. 

Strongest N activations 

In each feedback layer, the feedback activations for all channels were sorted by descending 

median value. The first 8 of these were processed and saved to disk. Each activation matrix 

was resized to the 224 × 224 input size, using the SciKit-Image resize transform (SciKit-Image, 

2023) with interpolation to create a smooth heatmap. Each heatmap was saved as an RGB 

image file with the blue-to-yellow viridis colour mapping (Matplotlib, 2012), which is 

perceptually uniform and offers good visual contrast.  

The resulting heatmaps were displayed using an interactive viewer to load and display the 

plots for a selected attention model and input patch. Images were arranged in a grid with 

feedback layers as the horizontal axis. Vertical columns represented each of the strongest 

channel activations, ordered by decreasing median value.  

The patch corresponding to QUASAR WSI 116206, box 29 in the GT annotations, was chosen as 

representative of tumour features, for which the FAL-CNN correctly predicted the tumour 

class. 

A further output panel displayed feedback activations for the strongest channel activation in 

each feedback layer. Two distinct methods were used to create these plots: 

- Alpha channel 

Each resized attention heatmap was used as the ‘A’ (Alpha, or opacity) channel in an 

RGBA image based on the input patch. This image was then combined with a white 

background, to show regions of high attention in full contrast, while regions of low 

attention were made paler to mirror the model’s disinterest in these areas. 

 

- Contour plot 

Each attention heatmap was also expressed as a contour plot over the input patch 

image. For each of a series of thresholds (0.2, 0.4, 0.6, 0.8), a binary mask was created 

with a level of 1 where activations exceeded the threshold and 0 elsewhere. The 

boundaries between these regions were extracted as contour polygons, which were 

superimposed onto the input image.  

 

For later statistical analysis, centroid coordinates and area values were derived from 

the 80% contour polygons and saved to CSV against each input patch filename. These 

values were scaled to align with the 224 × 224𝑝𝑥 input patch size. 

Channel mean contour plots 

The feedback activations for each layer were combined by taking the mean across all channels, 

resulting in a single 𝐻 × 𝑊 matrix per feedback layer and iteration, where 𝐻 and 𝑊 are the 

image height and width at that layer.  

The mean feedback layer activations were rendered as a 224 × 224𝑝𝑥 contour plot, which 

was written to disk for each input patch, feedback iteration and layer. One patch of each class, 

with structures and cellular textures characteristic of that class, was selected for plotting. 
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The following pseudocode summarises the processing steps to generate the mean activations 

and resulting plot images and statistics: 

Algorithm for plotting mean feedback activations from Feedback Attention model 

Load pre-trained Feedback Attention model from file 
Load pre-trained VGG19 model from file 
 
For each patch image in input directory: 
 Load image file 
 Apply to VGG19 model, for FF-only class prediction 
 Apply to Feedback Attention model, for class and FB activations 
 
 Derive output filename from FF and FB predictions 
  
 If bounding boxes available: 
  Load bounding box from XML 
  Combine with input image  
  Save to disk 
 
 For each feedback iteration performed by model: 
 
  For each feedback layer in 0,5,10,19,28: 
   Select H x W x C feedback tensor for layer 
   
   Sort tensor by total level per channel (descending) 
   For each channel in top N: 
    Select H x W tensor 
    Normalise and resize to match input patch 
    Save to disk 
 
   Take normalised mean over all channel activations 
   Resize mean tensor to match input patch dimensions 
 
   Convert mean activations to contours/heatmap 
   Combine with input image 
   Save to disk  
 
   If stats requested: 
    Get centroid and area of 80% contour 
    Write to CSV row against patch name and layer 
 
    If bounding boxes loaded: 
     Get bounding box centroid and area  
     Write to current CSV row  

 

Grouped spatial plots 

Feedback activations were combined by taking the mean of activation matrices acquired from 

900 images, representing 100 patches of each QUASAR class. These were grouped into grids of 

patch-sized images using the following combinations of parameters: 
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- Layer and class:  

A grid of images was created, with each column corresponding to a different feedback 

layer in the model (layers 0,5,10,19,28) and each row corresponding to a different 

QUASAR image class (0-non-informative through 8-muscle). This would allow feedback 

behaviour to be differentiated between tissue types at different levels in the model. 

This was performed for the 1-iteration FAL-CNN.  

 

- Layer and feedback iteration:  

In this visualisation, feedback activations from a 3-iteration FAL-CNN were combined 

from patches of all image classes, then presented in a grid with one column per 

feedback layer and one row per feedback iteration. 

Offset patches 

Each grouped plot was generated for two further scenarios, mirroring the experimental 

configurations involving offset patches in Section 5.2: 

- Model trained on centre-annotated patches and evaluated with offset-patches dataset 

- Model trained and evaluated with offset-patches dataset 

6.2.3 Pathologist Review 
A directory of patch images with overlaid attention contours was generated using the VIG, 

configured to evaluate a QUASAR-trained 2-iteration FAL-CNN model. Separate images were 

generated for each feedback iteration, with contours representing the mean feedback 

activations in that iteration. 

The contour-enhanced images were reviewed by a consultant pathologist. Examples of each 
QUASAR tissue class were selected at random. The pathologist examined each image and 
recorded qualitative observations on the tissue structures and cell types, in regions highlighted 
by the attention contours.  
 
Contours generated for layer 28 were preferentially examined, as these were found to enclose 

larger regions of cells, allowing structural context as well as cell types to be assessed.  

6.2.4 Statistical Analysis 
Scatter plots and histograms were generated from the following contour measurements per 

patch, as previously written to CSV file (Section 6.2.2): 

- Effective area, the total activation value in the 𝐻 × 𝑊 attention matrix, equivalent to 

the mean pixel value multiplied the total number of pixels 

- Centre of mass of 𝐻 × 𝑊 attention matrix 

- Centroid coordinates of 80% attention contour 

- Area of 80% attention contour 

Plots were grouped in grids by layer and class, and layer and feedback iteration, similar to the 

grouped spatial plots in Section 6.2.2. The results of these measurements are listed in 

Appendix Section 2. 

6.2.5 Visualisation with ImageNet-100 
For evaluation with ImageNet-100, one image was randomly selected from each image class 

subdirectory. Images were taken from the previously unseen ImageNet-100 Test set, to 

eliminate the risk of overfitted output distributions being generated as a result of 

encountering images previously used in training.  
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1-iteration and 3-iteration FAL-CNN versions were executed with each of the 100 test images. 

Contours were generated using the mean attention activations over all channels, for each 

feedback layer in the model, then superimposed on the corresponding input image and saved 

to disk. 

Bounding boxes 

Bounding box (BB) annotations for objects in the ImageNet-100 dataset were downloaded as 

XML data from ImageNet (Stanford University, 2020). These were loaded and combined with 

the corresponding input images, with the results saved to disk for comparison with the 

contour images.  

BB coordinates were saved to a CSV file, per the algorithm in Section 6.2.2. BBs were 

subsequently compared with the 80% contours of mean feedback activations at each feedback 

layer in the model, using F1 (Dice) score (Section 4.2.2, equation 2). Distances between BB and 

contour centroids were also recorded for each sample image. 

VIA outlines 

F1 scores were similarly derived to compare the 80% attention contours with object 

boundaries.  

Object outlines were manually drawn for the 100 ImageNet sample images, using the online 

VGG Image Annotator (VIA) tool (University of Oxford, 2023). Annotations were downloaded 

as a CSV file. F1 (Dice) scores were generated for VIA-sourced annotation polygons, in 

comparison with the 80% attention contours derived from the FAL-CNN feedback activation 

outputs. Distances between centroids of the VIA outline and the 80% contour were recorded 

for each sample image. 

6.3 Results 

6.3.1 Feedback Attention Visualisation Plots 

Strongest N activations 

Figure 63 shows the heatmap grid generated for the patch representing WSI 116206, box 29, 

labelled tumour. Columns from left to right represent the 8 strongest channel activations at 

each layer of the 1-iteration FAL-CNN model, in descending order of median value with the 

highest activation values shown in yellow.  

 

Figure 63: Strongest 8 feedback activations per layer, in FAL-CNN model when processing 
sample tumour patch.  
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Figure 64 and Figure 65 show alpha and contour plots, where the activations from the 

strongest channel, corresponding to the LH column in Figure 63, are superimposed on the 

input patch image.  

 

Figure 64: Alpha-channel plot of feedback attention distribution, using strongest feedback 
activations in layers 0..28  

Least-attended tissue regions are ‘whited out’. 

 

Figure 65: Contour plot of feedback attention distribution, using strongest feedback activations 
in layers 0..28  

All parts of patch remain clearly visible beneath the contour representation of the spatial 
attention distribution. 

Channel mean contour plots 

In Figure 67, contours representing the mean activations in each feedback layer of the 1-

iteration FAL-CNN model have been superimposed on a sample patch image from each 

QUASAR tissue class. 

Figure 66 shows the effect of multiple feedback iterations on the attention distribution at each 

feedback layer, for the 3-iteration FAL-CNN model applied to an example tumour patch. 

 

Figure 66: Feedback attention contours by layer and iteration for tumour patch from WSI 
52918 box 23 
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Figure 67: Feedback attention contours by layer, for one patch of each tissue class  

Lower layers attend to more granular features, while contours for higher layers highlight larger 
cellular structures relevant to the predicted classification. 

Grouped spatial plots 

Figure 68 shows the mean spatial distributions of feedback attention activations grouped by 

feedback layer and combined across all 9 image classes, for each of 3 feedback iterations.  
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Figure 68: Mean spatial feedback activations over multiple patches, grouped by layer and 
feedback iteration  

Layer 28 attention highlights patch centre, mimicking behaviour of annotating pathologist 
initially examining cells close to GT location. 

Figure 69 shows the spatial distributions of feedback activations in FAL-CNN, averaged from 

inferences performed on multiple patches, and grouped by layer and image class.  
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Figure 69: Mean spatial feedback activations over multiple patches, grouped by layer and class 
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Offset patches 

In Figure 70, the previously used model has been executed with patches offset up and left by 

56px. Figure 71 shows corresponding results obtained when the offset input data was applied 

to a FAL-CNN model that was trained with the 56px-offset dataset.  

 

Figure 70: Mean spatial feedback activations over multiple offset patches, grouped by layer 
and feedback iteration 

 

Figure 71: Mean spatial feedback activations in offset-trained model, over multiple offset 
patches grouped by layer and feedback iteration  

Model has learned to attend to region around new GT location in bottom-right quadrant. 

For Figure 72, the non-offset model was executed with the 56px offset patch set, while Figure 

73 shows the distributions resulting when a model trained with offset patches was executed 

on similarly offset patches. 
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Figure 72: Mean spatial feedback activations over multiple offset patches, grouped by layer 
and class 
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Figure 73: Mean spatial feedback activations for offset-trained feedback model, with multiple 
offset patches, grouped by layer and class 
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6.3.2 Pathologist Review 
Figure 74 to Figure 88 show the attention contour images of patch images selected for review, 

with the pathologist’s observations quoted. These comments refer to tissue enclosed by the 

80% attention contours (thicker green line).  

Results are grouped by the original expert-annotated class of the input patch. Most are based 

on the two-iteration FAL-CNN, where the left-hand image includes attention contours for 

feedback iteration 1, while the right-hand image represents iteration 2. The exception is WSI 

116769 box 22 (Figure 77), which represents feedback iterations in a 3-iteration model. 

The WSI number listed below corresponds to the filename of the WSI from which the patch 

was extracted; the box number is the index of the ground truth annotation that defined the 

centre of the extracted patch. 

Tumour 

WSI 42123 box 21: “Correctly finding cancer gland nuclei; lumen also highlighted” 

 

Figure 74: WSI 42123 box 21, attention contours for feedback iteration 1 (left) and 2 (right) 

WSI 44888 box 29: “Displaced nuclei bottom right + necrosis” 

 

Figure 75: WSI 44888 box 29, attention contours for feedback iteration 1 (left) and 2 (right) 
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WSI 53434 box 49: “Good, relevant cancer cells” 

 

Figure 76: WSI 53434 box 49, attention contours for feedback iteration 1 (left) and 2 (right) 

WSI 116769 box 22: “ ‘Saccades’ over multiple feedback cycles in three-iteration model 

appear to be detecting further relevant parts of patch. Tissue around the central pixel, the 

location to which the classification should apply, is thought to be misleading in this case.” 

 

Figure 77: WSI 116769 box 22, attention contours for feedback iterations 1-3 (left to right) 

WSI 116840 box 45: “Centre pixel is borderline (tumour/stroma) … Picking up some cancer 

but also an area of stroma.” 

 

Figure 78: WSI 116840 box 45, attention contours for feedback iterations 1 (left) and 2 (right) 
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Stroma 

WSI 42189 box 6: “Example of inflamed stroma detected correctly.” 

 

Figure 79: WSI 42189 box 6, attention contours for feedback iterations 1 (left) and (right) 

WSI 45269 box 31: “Impressive results, ignoring cancer to decide patch is stroma.” 

 

Figure 80: WSI 45269 box 31, attention contours for feedback iterations 1 (left) and 2 (right) 

WSI 61084 box 49: “Good example, stroma highlighted, ignores cancer top left and focuses 

on stroma in rest of box.” 

 

Figure 81: WSI 61084 box 49, attention contours for feedback iterations 1 (left) and 2 (right) 
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WSI 57404 box 38: “Ignores cancer, finds stroma as required.” 

 

Figure 82: WSI 57404 box 38, attention contours for feedback iterations 1 (left) and 2 (right) 

WSI 116873 box 41: “Some cancer attention, some tumour, despite stroma class.” 

 

Figure 83: WSI 116873 box 41, attention contours for feedback iterations 1 (left) and 2 (right) 

Necrosis 

WSI 61413 box 6: “Targets necrosis in centre of gland.” 

 

Figure 84: WSI 61413 box 6, attention contours for feedback iterations 1 (left) and 2 (right) 
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Lumen 

WSI 52910 box 15, WSI 53446 box 29: “Both show lumen prediction based on finding cancer 

(but 2nd feedback iteration more centred on actual lumen gap).” 

 

Figure 85: WSI 52910 box 15 (top) and WS 53466 box 29 (bottom), attention contours for 
feedback iterations 1 (left) and 2 (right) 

Vessels 

WSI 46684 box 1 (layer 19 feedback): “Vessels – generally responding to red cells! Very 

impressive detection of tiny vessels.” 

 

Figure 86: WSI 46684 box 1, attention contours for feedback iterations 1 (left) and 2(right) 
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Non-informative 

WSI 63334 box 39: “Many types present, results split accordingly? VGG baseline predicts 

stroma then muscle; feedback corrects this to non-informative.” 

 

Figure 87: WSI 63334 box 39, attention contours for feedback iterations 1 (left) and 2 (right) 

“Some patches are rotated copies of others. Attention region broadly follows rotation.” 

 

Figure 88: WSI 63334 box 39, rotated 90 degrees clockwise. Attention contours for feedback 
iterations 1 (left) and 2 (right) 
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6.3.3 Visualisation with ImageNet-100 

 

Figure 89: Feedback attention contours and ground-truth annotations for ImageNet-100 
sample images, arranged by class and layer 

The two rightmost “GT” columns show human-generated bounding boxes and object outlines 
for comparison with attention regions. 

Figure 89 shows attention contours at each feedback layer, generated for selected images 

from ImageNet-100 with a single-iteration FAL-CNN model. In Figure 90 the agreement 

between 80% feedback contour for each layer, and the GT bounding boxes, is expressed as an 

F1 (Dice) score.  

 

Figure 90: Agreement as F1 score, between layer 28 80% attention contours and ground-truth 
bounding boxes for ImageNet-100 test images  

Higher F1 scores in layers 10, 19 and 28 show tendency for agreement between attention 
regions in higher layers, and human-annotated object boundaries. 
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Figure 91 shows the corresponding F1 scores for agreement between the 80% feedback 

contours and object boundaries manually annotated using VIA. 

 

Figure 91: Agreement as F1 score, between layer 28 80% attention contours and GT object 
outlines for ImageNet-100 test images 

For bounding boxes and VIA outlines, distances between the centroids of the GT annotations 

and the 80% attention contours were analysed. Spatial and frequency distributions of these 

values are shown in Appendix 3.2. Table 19 shows the resulting mean distance for each 

annotation method. 

Table 19: Mean distances between annotation and 80% attention contour centroids with 100 
ImageNet-100 sample images, for Bounding Box and VIA Outline 

Manual annotation 
method 

Mean distance between annotation centre and 
80% attention contour centroid, pixels 

95% Confidence 
Interval, pixels 

Bounding Box 18.13 14.83 to 21.43 

VIA Outline 19.43 15.93 to 22.93 

 

6.4 Discussion 

6.4.1 Feedback Attention Visualisation Plots 

Strongest N activations 

In the initial spatial ‘heatmap’ plot (Figure 63), regions of high feedback activation were larger 

and less granular in higher layers (19, 28), due to the lower spatial resolution (e.g. 14 × 14px 

at layer 28) compared to activations at lower layers. At lower layers, the feedback activations 

aligned with smaller textural divisions and cellular-level structures. 

Feedback activations at layer 0, at the model’s input, revealed no visible content in this plot, 

despite this pathway’s contribution to model accuracy. The RGBA plot in Figure 64 revealed 

sporadic pixel-sized activations. Due to their apparently beneficial role in layer 0 feedback, 

these are assumed to represent salient features at this low perceptual level.  

For a given feedback layer, plots of the strongest 8 feedback activations showed little variation 

between channels. Subsequent visualisation methods would therefore combine these 

activations into a single mean activation plot per feedback layer. 
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RGBA plots 

The RGBA plot, with opacity in the ‘A’ channel controlled by feedback activation strength,  

showed low contrast "whited out" regions where attention was weakest. Areas showing the 

greatest visual contrast represented the most strongly attended regions. This plot type was 

most effective for displaying the larger attention regions in higher feedback layers. However, 

the very translucent less-attended regions could be confused with non-informative 

background in some plots, so alternative visualisation methods were sought. 

Contour plots and spatial distributions 

When attention maps were shown as contour plots, tissue in the underlying patch remained 

fully visible. This approach provided the clearest representation of the patch image and the 

attention distribution simultaneously.  

Regions of highest attention, inside the 80% contours (shown as bold green outlines in Figure 

65 to Figure 66), were found to align with dense nuclei characteristic of the sample tumour 

patch. At lower feedback layers (leftmost columns in Figure 67), the contours highlighted finer 

details such as clusters of cell nuclei.  

The spatial distribution of feedback activations was found to vary with tissue class (Figure 67). 

For non-informative and lumen patches, often characterised by a blank central region, stronger 

attention was paid to surrounding tissue structures, such as clusters of tumour nuclei, than to 

the patch centre.  

Classes such as vessels, characterised by smaller, well-defined structures, showed strong visual 

correlation between the 80% contour and the boundary of the structure, suggesting that the 

feedback model performed accurate object localisation in these cases.  

More uniformly distributed tissue types, such as inflammation, necrosis or stroma, yielded 

broader attention regions in higher feedback layers, with the 80% contour aligning with the 

densest or most heterogeneous regions of cells.  

For the 3-iteration FAL-CNN model (Figure 66), the first feedback iteration showed attention in 

higher layers to informative tissue distal to the centre pixel. With further iterations, the 

attention region became more focused around the image centre. There was a visible ‘saccade’ 

in attention from the first to the second feedback iteration. However, this behaviour was not 

associated with a significant further increase in classification accuracy when using two or more 

iterations (Section 5.1.3 Table 21).  

The observed trends become more apparent when aggregating the spatial distributions of 

feedback attention across multiple input patches. In Figure 68, the model's attention at higher 

layers becomes much more focused around the central pixel, while lower-level features are 

attended more uniformly across the patch. In Figure 69, different distributions are apparent 

for different classes. Non-informative and lumen at layer 28 showed strongest attention in a 

ring around the centre. This is again consistent with the model seeking structural context 

around a blank central point. Contrastingly, the model showed much stronger central focus 

when classifying smaller, self-contained structures such as vessels. 

Distributions for centre-trained model with offset-patches dataset 

Spatial distributions were plotted for feedback activations generated when processing patches 

sampled at an offset from the ground truth label point (Section 3.3.3), to examine whether the 

attention “hotspots” followed the GT point or retained a central focus. The results (Figure 70) 

were superficially similar to those for the regular centre-annotated patches (Figure 68), in that 
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overall focus of attention in higher layers was concentrated around patch centre, especially 

after multiple feedback iterations.  

However, evidence of attention moving to the new GT position was embodied in the visible 

bulge towards the bottom right of the patch area, in the layer 28 activations for the first 

feedback iteration (Figure 70, top right image).  

Further evidence of this behaviour arose when plotting mean activations grouped by class 

(Figure 72). The attention focus in layer 28 moved away from the bottom right quadrant for 

blank centred classes tumour and lumen, but towards this region for localised objects such as 

vessels, and to a lesser degree, tumour. 

Thus, the attentional response learned by the FAL-CNN appears to be a combination of two 

behaviours: a static bias towards the patch centre, where the GT class was defined before the 

model was trained, and a dynamic process which tracks informative structures when these are 

moved within the patch boundary. 

Distributions for offset-trained model with offset-patches dataset 

When an offset-trained model was executed upon similarly offset patches, the static and 

dynamic attentional behaviours converged on the same location, at the bottom right of the 

patch. Figure 71 shows a dramatic shift of attention to this area, especially in the layer 28 

feedback activations.  

Figure 73 shows the change in attention for each input class. In the higher layers, the focus 

was consistently in the bottom right quadrant, in a tighter pattern than seen with non-offset 

usage of the standard FAL-CNN (Figure 69). Attention heatmaps at layer 28 show long vertical 

and horizontal “tails”, encompassing contextual features further from the GT pixel than would 

be possible with models trained and evaluated on 224x224px patches labelled at the centre 

pixel.  

Section 7.2.3 will show that offset training enhances model accuracy by a further 3.08-3.34pp 

relative to equivalent centre-trained models. This now appears to be associated with the offset 

model’s combination of tighter attentional focus with contextual information sampled further 

from the focus in given directions. 

6.4.2 Pathologist Review 
The expert qualitative analysis of colorectal cancer patch images, with overlaid feedback 

attention contours, gave further insights into the tissue structures being attended by the 

model. Encouragingly, the pathologist’s detailed assessment showed agreement with salient 

tissue regions picked out by the model. 

In several patches originally labelled as tumour, the 80% attention contours enclosed features 

such as cancer gland nuclei, densely packed nuclei, tumour lumen (Figure 74), displaced nuclei 

and necrosis (Figure 75). These are all characteristic of a region of tumour, with necrosed 

tissue a possible result of radiotherapy.  

The 80% contour is an arbitrary boundary in a smoothly varying attention profile, and should 

not be regarded as the only salient region in the image. Nonetheless, the contour is indicative 

of attended tissue and its centroid can be regarded as a proxy for the peak attention location. 

The presence of relevant cells here implies that the feedback model amplifies regions of the 

patch that contribute the most usefully to its final classification output. 
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Using a 3-iteration FAL-CNN model, the 80% contours for each iteration follow saccade-like 

movements, outlining additional salient tissue regions (Figure 77). This has potential value in 

an XAI application, highlighting cellular features that support the model’s class prediction.  

The model’s attention behaviour varied dramatically according to tissue type. In the spatial 

distribution plots (Section 6.3.1), compact structures such as vessels resulted in highly localised 

attention regions that tightly enclosed the input structure. This is evident in Figure 86 where 

the layer 19 attention contours accurately demarcate blood vessels and the red cells within.   

By contrast, patches labelled as stroma (Figure 79) were found to be relatively uniform, 

resulting in broader attention contours that highlighted apparently random areas of cells. This 

suggests that prediction of this tissue class does not rely on particular objects or structures, 

and is instead informed by cellular textures and colour distributions. 

The overall centre focus of the model is apparent in Figure 80 to Figure 82, where surrounding 

cancer regions are ignored and the patch is classified according to the central stroma tissue. In 

Figure 84, the central necrosis informs the class prediction, despite the tissue being 

surrounded by a cancer gland structure. 

Structural context further from the centre is attended when classifying lumen (Figure 85). 

Here, the diagnosis is informed by surrounding cancer tissue, which implies that the blank 

centre represents a tumour lumen. 

Non-informative predictions also arise from a blank centre with context from adjacent 

structures. In Figure 87, the patch’s multiple surrounding tissue types appeared to confuse the 

VGG19 feedforward model, which initially reported high probabilities of stroma and muscle. 

The feedback model adjusted this to non-informative after attending to various heterogeneous 

features around the central gap.  

The attention patterns approximately followed the rotation of patches through 90 or 270 

degrees (Figure 88), suggesting that the attention mechanism is not biased to horizontal or 

vertical directions. Inspection of the patches examined in this section suggests that the 

attention mechanism works over a range of staining conditions and image sharpness. 

6.4.3 Visualisation with ImageNet-100 
When the FAL-CNN model was evaluated with images of everyday objects, attention contours 

from the higher feedback layers showed strong spatial agreement with observed object 

boundaries (Figure 89). Layer 28 attention selected a region broadly surrounding the object, 

while layer 19 more closely followed the object outline.  

At lower feedback layers, smaller features characteristic of the image class were highlighted. 

Layer 10 contours often followed a more detailed outline around distinctive features such as 

the legs on a spider or a bird’s protruding feathers. The lowest feedback layers, 0 and 5, 

showed the model attending to smaller salient objects such as eyes, and textures such as 

feathers.  

These layers also responded strongly to some background textures, such as a spider’s web or 

the seed in a bird feeder. This information can provide useful context, as seen in pathology 

examples, but would be detrimental in classifying an object that was photographed against an 

unexpected background. This highlights a well-known limitation of CNN classifiers, observed by 

Tulio and Ribeiro (2016) in a classifier trained to distinguish wolves and husky dogs, where the 

model learned to respond only to the presence or absence of a snowy background. In the FAL-
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CNN model, it is likely that the higher layers’ attention to the foreground object helps to 

control this behaviour by reducing activations arising from unhelpful background regions. 

As noted by Geirhos (2019), CNNs generally respond more to surface textures than to larger 

structures which may also be important for accurate object identification. The increased 

object-level focus of the attention model appears to mitigate this, contributing to the 

enhanced accuracy over the feedforward backbone CNN. 

Attention contours at the 80% level were compared with bounding boxes and annotations 

drawn using VIA, to assess the model’s value as an object location tool. F1 scores were higher 

for bounding boxes despite these being of a different shape to the object outline. Attention 

contours alone cannot be relied upon for accurately identifying object boundaries.  

However, stronger correlation was observed between the centre points of the object 

annotations and the 80% attention contours. The mean distance was 18-19 pixels, meaning 

that the model can locate object centres to within 9% of the 224px image width.  
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7 Saccade-like Behaviour with Feedback Attention Models 

7.1 Motivation 
Visualisation results showed that feedback activations can direct a classifier model’s attention 

to salient off-centre image content, contributing to increased classification activity.  

I observed that a model trained on centre-annotated patches will exhibit an overall attentional 

focus towards the centre of the image. 

Together, these findings prompted a new research question: What would happen if the patch 

were re-sampled from its WSI, so that the region highlighted by feedback is moved into the 

centre of the patch, to coincide with the model’s inherent focus?  

Such an algorithm would emulate the saccade behaviour in animal vision, in which executive 

brain regions direct rapid eye movements to align the central fovea with features of interest in 

the input scene.  

7.2 Methodology 
Code used in this section is documented in Appendix Section 1.5. 

A saccade model was developed to perform iterative repositioning of the 224 × 224𝑝𝑥 patch 

sampling region, for input to the CNN, within a larger input patch of 448 × 448𝑝𝑥 size. The 

smaller patch was passed to a 1-iteration FAL-CNN classifier (Section 5.1), returning a spatial 

distribution of feedback activations which were then used to determine a new sampling region 

for the next saccade cycle. The model behaviour is summarised by the following algorithm: 

Algorithm for execution of Saccade model 

Input: 
448x448px image 
 
Sample central 224x224px patch from input image  
 
For each of N saccades: 

Apply sampled patch to FAL-CNN feedback attention model  
Derive centre point of mean feedback activation (layer 28) 
Calculate offset from centre of patch 
Sample new 224x224px patch from input image with this offset 

 
Return: 
Arrays of predicted class and feedback activations per saccade 

 

Figure 92 shows the behaviour of the new Saccade model, in which the embedded feedback 

attention model generates attention distributions to determine the next crop region, over N 

saccade cycles.  



99 
 

 

Figure 92: Saccade model system diagram, with sample image from ImageNet-100  

Input crop region is progressively repositioned to align with objects at centre of attention 
region generated by FAL-CNN model. 

7.2.1 Model Variants 
Several algorithms were tested for calculating the centre of attention (CoA) and hence the new 

sampling region offset: 

- Centre of Mass (CoM) of mean layer 28 feedback activations. 

- Centroid of largest 80% attention contour of mean layer 28 feedback activations, as a 

proxy for peak spatial attention. 

- Random sampling location, offset by random X and Y amounts between 0 and 224px 

upon each saccade cycle. This approach was used to obtain baseline measurements, to 

establish whether attention-controlled saccades outperformed random sampling. 
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The saccade model was initially evaluated with two datasets:  

- 9-class patches extracted from QUASAR colorectal cancer resection WSIs, as described 

in Section 3.2.4, here using a patch size of 448 × 448𝑝𝑥. 

- ImageNet-100 images (Section 3.4.2), cropped and scaled to 448 × 448𝑝𝑥 by the run-

time data-loader code.  

Later analysis was performed with a 2-class 448 × 448𝑝𝑥 tumour-stroma-groups dataset, 

compiled by grouping patches from the above 9-class dataset according to parent class group, 

as defined in Section 3.3.2. 

7.2.2 Evaluation of Saccade Models 
For each dataset, the saccade model was evaluated against images randomly sampled from 

the validation set, as previously undertaken when evaluating models against uncertain-class-

patches data in Chapter 5. Classification accuracy was measured over 30 random sample sets, 

to obtain mean and 95% CI values. 

Pre-saccade (𝑁 = 0) classification accuracies were recorded as a baseline against which to 

compare model performance over multiple saccades. Model accuracy was further measured 

over 1, 2, 5 and 10 saccade cycles. These values were chosen to explore model convergence 

and the trade-off between execution time and eventual accuracy. 

7.2.3 Visualisation of Saccade Sequences 
A 5-saccade model was processed by the VIG, which was extended to capture the 

224 × 224𝑝𝑥 patch region sampled in each saccade, superimposed with feedback attention 

contours and a cross marking the centroid of the 80% contour.  

The 448 × 448𝑝𝑥 input region was also plotted, with the sequence of patch locations 

superimposed as colour-coded 224 × 224𝑝𝑥 boxes. 

These plots were combined to create a saccade sequence plot showing the 5 sampling 

locations and associated attention regions. 

7.2.4 Pathologist Reclassification of Post-Saccade QUASAR Patches 
The class predicted by the saccade model is determined by the distribution of tissue in a newly 

sampled region, at an offset location from the original input patch. The new patch may then 

represent a different tissue class from the original GT label. In order to assess the post-saccade 

accuracy, updated class labels were therefore required. 

A consultant pathologist reviewed patch images from the final sampling locations of an 8-

saccade model, for multiple QUASAR-derived input patches. They were invited to classify the 

new patch at the centre pixel into one of the 9 QUASAR tissue classes.  

This review took place over two sessions:  

Experiment A: 4 input classes 

407 input patches were randomly selected from 4 classes, in a distribution matching the 

proportions of the classes in the 9-class QUASAR 448 × 448𝑝𝑥 patch set used in this chapter: 

144 of 1-tumour, 104 of 2-stroma-or-fibrosis, 114 of 3-necrosis and 45 of 6-lumen.  
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This reduced class set was chosen following discussion with a consultant pathologist, to focus 

their relabelling effort on tissues of greatest importance in tumour evaluation. Lumen was of 

interest as an example of hollow tissue structures, with near-white background visible at the 

centre, where the attention-guided saccade was expected to move towards neighbouring 

tissue types.  

The VIG was configured to apply the saccade model to this image set over 8 saccade cycles, 

using an embedded 1-iteration 9-class FAL-CNN to generate class predictions and attention 

distributions to guide each saccade. 407 post-saccade patches were saved with a red cross 

overlaid at the centre. Identifiers for the original and predicted classes were encoded in the 

filename for later comparison. 

The pathologist examined each resulting image and assigned a new class label, according to 

cells present at the red cross, and surrounding contextual tissue. Labels were manually logged 

in a CSV file against the original filename. For each image, the class prediction was compared 

with the new label to generate Boolean agreement values, which were counted and expressed 

as a percentage of the total file count.  

Similarly, per-class agreement scores were generated for the above results when grouped by 

the pathologist’s new label.  

A further agreement score was derived by grouping model predictions and new labels into 

tumour-group and stroma-group using the parent class definitions in Section 3.3.2. Agreement 

rates were calculated as the proportion of image files where the model output and expert 

label were assigned to the same parent group. 

Experiment B: 9 input classes 

Two further sets of saccade output patches were later compiled for expert re-labelling as 

follows: 

- 400 patches of all 9 tissue classes were randomly selected from the QUASAR 

448 × 448𝑝𝑥 patch set, then processed using an 8-saccade model with 1-iteration 9-

class FAL-CNN. 

- 400 patches randomly selected from a 2-class 448 × 448𝑝𝑥 tumour-stroma-groups 

dataset, derived from the 9-class input data according to Section 3.3.2. Patch images 

were processed using an 8-saccade model with an embedded 1-iteration, 2-class FAL-

CNN trained on tumour-stroma-groups data. 

In each case, the pathologist examined and labelled the final saccade output image and 

agreement rates were calculated between saccade model predictions and the new expert 

labels. For tumour-stroma-groups, the 2-class model output was directly compared with the 

pathologist’s group label for each image. 

Binomial Proportion Confidence Interval 

Binomial Proportion Confidence intervals (BCI) (Brown et al., 2001) were estimated for each 

agreement score as: 

𝐵𝐶𝐼 = 𝑝 ± 𝑧 √
𝑝(1 − 𝑝)

𝑛
(10) 

Where 𝑝 is the proportion of Boolean true values in a set of size 𝑛, and 𝑧 is the value in the 

normal distribution corresponding to the required confidence level. Here, 𝑧 = 1.96 was used 

for a 95% CI.  
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7.3 Results 

7.3.1 Evaluation of Saccade Models 
Results tables to complement the plots in this section, including mean accuracies and error bar 

ranges, are in Appendix section 4.1.1. 

QUASAR 9-class patches  

Figure 93 and Table 30 (Appendix 4.1.1) show classification accuracies, with 95% confidence 

intervals, measured for saccade models with varying numbers of saccade cycles, using CoM, 

80% contour centroid and random methods to offset the sampling regions.  

Baseline results are also included for zero saccades, equivalent to executing the embedded 

attention model against the central 224 × 224𝑝𝑥 region of the input patch. 

 

 

Figure 93: Classification accuracies with 95% confidence intervals for saccade models, relative 
to zero-saccade FAL-CNN model, with QUASAR 9-class patches 

Red points show decreased accuracy with saccade approach, relative to non-saccading model 

 

Figure 94: Confusion matrix difference plot, for FAL-CNN and 10-saccade CoM model  

Red panels on right-hand difference matrix show dramatic reduction in accuracy relative to 
original GT class labels. 



103 
 
The confusion matrix (CM) difference plot in Figure 94 shows the per-class differences in 

classification accuracy between a non-saccading 1-iteration FAL-CNN and the 10-saccade, 

CoM-based saccade model.  

Off-diagonal values highlighted in red in the right-hand grid represent the largest increases in 

misclassifications, while the darkest red squares on the leading diagonal represent the largest 

reductions in true classifications for each class.  

ImageNet-100 

Figure 95 and Table 31 (Appendix 4.1.1) show classification accuracies for each saccade model 

variant, relative to the zero-saccade FAL-CNN baseline, for ImageNet-100 input images at 

448 × 448𝑝𝑥. 

 

Figure 95: Classification accuracies with 95% confidence intervals for saccade models, relative 
to zero-saccade FAL-CNN model, with ImageNet-100 

Here, saccade action improves on model accuracy measured after initial iteration, sampled at 
centre of input image. Red points show decreased accuracy with random saccades, ignoring 

attention region, confirming that saccade behaviour attends to image regions relevant to the 
expected class prediction. 

7.3.2 Visualisation of Saccade Models 

QUASAR 9-class patches 

Figure 96 shows sequences of crop regions used by the saccade model over 5 cycles, for 

examples where the final class prediction matches the original GT label. 

In each row, the “Saccade 0” plot represents the central 224 × 224𝑝𝑥 region sampled before 

the first execution of the embedded classifier. The bold green outlines represent the 80% 

attention contours at layer 28 after the classifier is executed, before the next saccade.  

The sequence of crop regions’ locations relative to the larger 448 × 448𝑝𝑥 input is shown in 

the larger left-hand panel. 
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Figure 96: Example saccade sequences for (A) tumour, (B) stroma, (C) necrosis and (D) vessels, 
where model’s final class prediction agrees with GT class 
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Figure 97 shows selected examples of patches where the saccade process resulted in a 

different class prediction to the ground truth label. 

 

Figure 97: Example saccade sequences for (A) tumour, (B) stroma, (C) necrosis, (D) lumen and 
(E) non-informative tissue, where model’s final class prediction disagrees with GT class  

Saccade model centres sampling area on nearby tissue of different type to GT – often finding 
tumour cells instead. 
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ImageNet-100 

Figure 98 shows saccade sequence plots for ImageNet-100 input images, obtained using an 

ImageNet-trained FAL-CNN within the saccade model. Examples were chosen to illustrate 

attentional and tracking behaviours for various image classes.  

 

Figure 98: Example saccade sequences for ImageNet-100 classes (A) tiger shark, (B) indigo 
bunting and (C) horned viper  

Sampling region tracks towards salient features of target. 

7.3.3 Pathologist Reclassification of Post-Saccade Patches 
Results tables to complement the plots in this section, including mean accuracies and error bar 

ranges, are in Appendix section 4.1.2. 

Figure 99 shows the mean agreement rate between the pathologist-relabelled saccade model 

output patches, and the saccade model’s own predictions at these locations, for Experiments A 

and B.  

Earlier classification accuracy results for the VGG19 and FAL-CNN, and the saccade model 

agreement with input patch labels, are included for reference. 
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Figure 99: Summary of 9-class classification accuracies of FAL-CNN relative to VGG19 with and 
without saccade process, with 95% confidence intervals, showing rates of agreement with 

expert-relabelled post-saccade patches 

Red points show decreased accuracy relative to non-saccading baseline model 

 

 

Figure 100: Summary of tumour-stroma-groups classification accuracies of FAL-CNN relative to 
VGG19 with and without saccade process, with 95% confidence intervals, showing rates of 

agreement with expert-relabelled post-saccade patches 

Red points show decreased accuracy relative to non-saccading baseline model 
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In Figure 100 (above), saccade model agreement rates with the expert-relabelled post-saccade 

patches from Experiment A and B (Section 7.2.4) are shown alongside previous classification 

accuracy results for VGG19, FAL-CNN and saccade model, for patches collated as tumour-

stroma-groups per section 3.3.2. 

Confusion matrices in Figure 101 and Figure 102 show the class-by-class agreement rates 

between pathologist labels and saccade model predictions, at the re-sampled locations after 8 

saccades.  

 

Figure 101: Confusion matrix for expert-
assigned label vs saccade model prediction, 

Experiment A 

 

Figure 102: Confusion matrix for expert-
assigned label vs saccade model prediction, 

Experiment B 

 

Figure 103 and Figure 104 show a breakdown of agreement rates per class, obtained by 

grouping the previous results by the pathologist’s label. BCI ranges and total samples per class 

are listed in Table 34 and Table 35 in Appendix 4.1. 

 

 

Figure 103: Per-class breakdown of agreement rates between saccade model output class and 
relabelled final sample location, with 95% binomial confidence intervals –  

Experiment A (4 input classes) 
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Figure 104: Per-class breakdown of agreement rates between saccade model output class and 
relabelled final sample location, with 95% binomial confidence intervals –  

Experiment B (9 input classes) 

7.4 Discussion 
High rates of agreement, between saccade model predictions and expert labels at post-

saccade patch locations, confirm that the FAL-CNN model attends to diagnostically useful 

regions of tissue within CRC pathology images. 

Initially, however, the saccade process was found to be detrimental to agreement rates when 

using QUASAR data and measuring class predictions against input patch labels. Larger numbers 

of saccades resulted in further apparently degraded performance, representing disagreement 

with ground truth classes labelled at the original sampling location(Figure 93).  

Nonetheless, the accuracy of the saccade model when resampling around the centre of 

attention was at least 3.65pp higher than when using random positional offsets, confirmed to 

be significant by non-overlapping 95% confidence intervals. This demonstrates that that the 

attention-guided model version attended preferentially to tissue regions that contributed to 

the correct class prediction. 

The CM difference plot (Figure 94) shows that saccade-like behaviour led to frequent incorrect 

identification of tissues such as lumen or non-informative. These were instead reported as 

tumour or necrosis.  

Visual inspection of patch sampling sequences in the saccade process (Figure 96) showed the 

crop region converging on informative tissue such as tumour, or towards small, tightly defined 

object such as vessels. However, lumen and non-informative tissue are often characterised by 

an unpopulated central area surrounded by other tissue types. In these scenarios, the saccade 

model was found to reinforce the behaviour of its embedded FAL-CNN model, whose feedback 

distributions focused on the more informative surrounding tissue. This led to a prediction 

based on the newly attended region, which was often of a different class to the previously 

centred tissue (Figure 97). This accounts for the observed high rate of classification errors 

relative to the original GT classes. 

After expert re-labelling of the resampled patches, higher rates of agreement were measured 

between the saccade model’s predictions and the new class labels at the new locations (Figure 

99). In Experiment A, the agreement rate of 86.73% exceeded the classification accuracy of the 
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non-saccading FAL-CNN by 3.87pp. The 4-class dataset of tumour, stroma, necrosis and lumen 

patches was chosen here to allow the pathologist to focus on diagnostically important or 

challenging tissue type. 

Experiment B used images randomly selected from the QUASAR 9-class dataset and yielded an 

agreement rate of 78.25%. Although now lower than the accuracy of non-saccading models, 

this nonetheless represents a significant increase of 32pp over models using random saccades. 

Results obtained using a 2-class tumour-stroma-groups trained FAL-CNN followed a similar 

pattern to the 9-class results. Subsequent analysis therefore focused on anomalies in the 9-

class model predictions. 

Confusion matrices for Experiments A and B (Figure 101, Figure 102), representing the class-

by-class relationship between saccade model predictions and new pathologist labels, show 

that the dominant output class was tumour, despite the more balanced distribution of tissue 

types at the input. High rates of pathologist agreement with this prediction suggest that this 

apparent bias towards tumour does not involve frequent false positive identifications of this 

class. Rather, the model appears to seek and converge upon regions of genuine tumour tissue 

within the larger input patch, selecting crop regions where tumour is the central, predominant 

class. We believe that the model’s strong response to this class arises from the tumour tissue’s 

combination of distinctive textures and structures, at a scale compatible with the patch size.  

In Experiment B, agreement rates were lowest between non-informative model outputs and 

subsequent expert labels (Figure 102). Post-saccade patches associated with this class 

prediction were instead labelled by the pathologist as tumour, stroma, vessels or lumen. The 

non-informative class appears to be particularly challenging for a ML model, as the original 

label can be applied in response to poor image quality, or to many permutations of 

heterogeneous tissue types, particularly around an unpopulated central region. Other tissue 

classes have more distinctive, consistent structures which the model is able to associate more 

strongly with given output predictions, suggesting the non-informative class could be excluded 

altogether from future model training. 

Limitations 

The per-class grouping of agreement rates (Figure 103 and Figure 104) show wide BCIs for 

classes other than tumour, due to the smaller total of samples of each type (Appendix 4.1, 

Table 34 and Table 35). Agreement rates of 0% and 100% occurred where the class totals were 

very small, and should be therefore disregarded as statistically weak.  

The saccade model’s observed tendency to converge on tumour regions shows potential value 

in tumour detection applications, but may provide a biased result when detection rates are 

compared with other classes such as stroma. Further experiments (Chapter 8) were therefore 

performed to assess the model’s efficacy in measuring TSR in the WSI pipeline. 

ImageNet 

With ImageNet-100, the saccade model outperformed a non-saccade FAL-CNN loading just the 

central 224 × 224𝑝𝑥 region of a 448 × 448𝑝𝑥 input image (Figure 95). Increasing the number 

of attention-guided saccades resulted in increasing classification accuracy. Contrastingly, 

‘random walk’ saccades resulted in significantly reduced performance, often focusing on 

background or uninformative parts of the target. This further supports the conclusion that 

image regions selected during attention-guided saccades contained features that contributed 

to a correct class prediction. 
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Plots of saccade sequences for multiple input images (Figure 98) show the resampled image 

regions becoming centred on identifying features, such as a shark's dorsal fin (A) or the horn of 

a horned viper (C).  

Additionally, the saccade process often discovered salient features outside the initial crop 

region. With the indigo bunting (B), the bird's head was not visible in the initial input to the  

FAL-CNN. Nonetheless, the saccade process brought the head into frame over several 

saccades, converging on an emerging attention ‘hotspot’ around the eye and beak. 

When comparing model output with input classes at pre-saccade locations, the saccade model 

performed better with ImageNet than QUASAR. This is attributed to the relatively sparse 

distribution of objects in ImageNet images, such that a saccade movement is less likely to 

encounter an object or region of a different class. By contrast, QUASAR patch images are 

highly heterogeneous. Saccade behaviour often converges on different tissue to that originally 

at the patch centre, which necessitated expert relabelling at the new location.  

The proportion of the WSI width encompassed by these saccade movements is very small 

compared to eye movements in nature. Nonetheless, the saccade process here is effective 

because of the rapid spatial variation of tissue types and structures across the patch area, 

allowing the new model to locate nearby tumour amongst less informative tissue. 
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8 Feedback Attention Model Performance in WSI Pipeline 

8.1 Motivation 
Section 4.5 describes a published Weighted Regular Sampling Pipeline (WSRP) for WSI 

analysis, performing segmentation of the tumour region of interest (ROI) and estimation of 

tumour stroma ratio (TSR) for assessment of disease prognosis. The accuracy of this pipeline 

appeared to be limited by the accuracy of the VGG19 model used for patch-level classification.  

This assumption was tested here by replacing the VGG19 with the most accurate feedback 

attention CNNs, both as the main 9-class classifier and for false positive correction (FPC). A 

further experiment used the Saccade model in the pipeline to examine the effect of this 

model’s tendency to seek out tumour tissue.  

In each case, the pipeline’s ability to predict cancer ROI and TSR was measured against ground-

truth data derived from QUASAR WSI annotations (Sections 3.2.2 and 3.2.3). 

This work represents further exploration of the aims and objectives introduced in Section 1.2.1 

and explored in Chapter 4, for visualising cancer in the WSI.  

8.2 Methodology 
The shell script used to execute the pipeline on ARC4 was parameterised to allow feedback-

enhanced CNN models to be substituted for the main 9-class classifier (CNN1 in Figure 105), 

and for the 2-class classifier (CNN2) used for FPC.  

The 9-class FAL-CNN models from experiments in Section 5.1 were reused in the pipeline as 

CNN1.  

Further feedback attention models were trained to perform FPC using the 2-class tumour 

epithelium/normal epithelium dataset used in the earlier training of VGG19 FPC models, in 

Section 4.2.2. FAL-CNN models using 1 and 2 feedback iterations were trained for 200 epochs, 

using SGD optimisation with LR of 0.0003 and momentum of 0.9. 

An optional third model path was provided, allowing a 2-class tumour-stroma-groups model 

(CNN3) to be specified for TSR calculation. Where this was not supplied, the TSR calculation 

defaulted to using CNN1 and FPC classification outputs per the original pipeline. The extended 

3-CNN architecture is shown in Figure 105. 

 

 

Figure 105: Enhanced Weighted Regular Sampling Pipeline (WRSP) with optional two-class CNN 
for TSR calculations 
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The pipeline code was further modified to allow Saccade models (Chapter 7) to be used as 

CNN1. In this scenario, the post-saccade patch location was used to reload patches from the 

WSI for use in CNN2. This ensured that the FPC classifier acted on the same tissue region as 

that loaded by the saccade model in its final saccade. It was anticipated that using the Saccade 

model would shift each patch in the pipeline’s sampling pattern to centre on nearby 

informative tissue, rather than simply reporting the class for each original patch, thus 

enhancing the pipeline’s prediction of tumour ROI outline and TSR. 

The pipeline used a parent tile size of 1024 × 1024 pixels, from which multiple 224 × 224 

patches were sampled over two iterations of ROI optimisation. This was consistent with  

earlier experiments in Chapter 4.5. 

8.2.1 CNN Model Combinations 
Table 20 shows the combinations of CNN models chosen as CNN1, 2 and 3 in the pipeline, with 

the abbreviated names used in subsequent plots and tables. 

Table 20: Combinations of CNN models used in WSI processing pipeline 

Abbreviated label CNN1  
(9-way classifier) 

CNN2  
(FP correction) 

CNN3  
(dedicated classification 
for TSR calculation) 

VGG + VGG VGG19 VGG19 None 

VGG + FAL1 VGG19 FAL-CNN  
1-iteration 

None 

VGG + FAL2 VGG19 FAL-CNN  
2-iteration 

None 

FAL1 + VGG FAL-CNN  
1-iteration 

VGG19 None 

FAL1 + FAL1 FAL-CNN  
1-iteration 

FAL-CNN  
1-iteration 

None 

FAL2 + VGG FAL-CNN  
2-iteration 

VGG19 None 

FAL2 + FAL2 FAL-CNN  
2-iteration 

FAL-CNN  
2-iteration 

None 

FAL3 + VGG FAL-CNN  
3-iteration 

VGG19 None 

FAL2 + VGG + FAL2 
t-s-g 

FAL-CNN  
2-iteration 

VGG19 FAL-CNN 2-iteration 
tumour-stroma-groups 

5-saccade FAL1 + 
VGG 

5-Saccade model using 
1-iteration FAL-CNN 

VGG19 None 

 

8.2.2 Cross Validation 
Pipeline measurements in this section were taken five times for each model combination, once 

for each split in a 5-fold cross validation (CV) set.  WSIs were chosen from the test set of each 

data split, and processed using CNNs that were trained against patches from WSIs in the 

corresponding training set. Thus, all patches analysed during pipeline execution were unseen 

during training, to mitigate the risk of overfitting. 

8.2.3 TSR Distribution: Bland-Altman and Scatter Plots 
Tumour and stroma patch counts were captured during pipeline execution, for each TSR 

sampling method, for each WSI in the test set of each 5-fold CV split. These statistics were 



114 
 
used to evaluate TSRs for each WSI and sampling method. These values were plotted alongside 

TSRs derived from the ground truth class annotations.  

TSR values, for model combinations of interest, were displayed using scatter plots and Bland-

Altman plots. The latter were used to show the bias and spread of values relative to the mean. 

Points were plotted for 686 WSIs, combined from results from all 5 CV splits, The values were 

grouped into colour-coded ranges corresponding to ‘high’ and ‘low’ TSR. This was intended to 

reveal cases where pipeline inaccuracies would risk placing a patient into an incorrect risk 

band in any clinical implementation of the pipeline. For this, a TSR threshold of 0.488 was used 

to separate high and low, as proposed by Zhao et al (2020) to categorise patients by survival 

prognosis. 

8.3 Results 

8.3.1 TSR Estimation 
Figure 106 shows the TSR error evaluated for each model combination. The error was 

calculated per Equation 6, Section 4.4.2, comparing the ground truth TSR at the pathologist-

selected area of highest tumour cell density with pipeline estimates of TSR, evaluated at this 

location (green) and at the pipeline’s own estimated location of maximum tumour density 

(blue).  

Mean error rates and error bar values are listed in Table 36, Appendix 5.1. 

TSR distributions for results labelled A, B, C and D below are shown in more detail in Scatter 

and Bland-Altman plots in Figure 107 to Figure 110. 

 

 

Figure 106: TSR error rates in Weighted Regular Sampling Pipeline, using various combinations 
of feedforward and feedback CNN classifiers  
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TSR calculation is most accurate when using additional “tumour-stroma-group” classifier (D).  
Accuracy is unsurprisingly higher at pathologist-selected GT locations (green plots).  

Saccade model shows greater error (A) due to its tendency to seek tumour tissue over stroma. 

TSR distribution: Bland-Altman and scatter plots 

Figure 107 to Figure 110 show scatter and Bland-Altman plots for selected model combinations 

and sampling locations, as labelled A, B, C and D in Figure 106. 

 

Figure 107: (A) Scatter and Bland-Altman plots of pipeline-predicted vs actual TSR, using 5-
Saccade model for TSR calculation in 3mm box at maximum tumour density location 

determined by pipeline 

 

Figure 108: (B) Scatter and Bland-Altman plots of pipeline-predicted vs actual TSR, for 
FAL2+VGG models at GT sample locations 
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Figure 109: (C) Scatter and Bland-Altman plots of pipeline-predicted vs actual TSR, for 
FAL2+VGG models at maximum tumour density location determined by pipeline 

 

Figure 110: (D) Scatter and Bland-Altman plots of pipeline-predicted vs actual TSR, using 
tumour-stroma-groups model for TSR calculation in 3mm box at maximum tumour density 

location determined by pipeline 

8.3.2 Tumour ROI Estimation 
Figure 111 shows rates of agreement between the GT ROI, derived from expert annotations, 

and the pipeline ROI estimate. Agreement is expressed as F1 (Dice) score and Intersection over 

Union (IoU). Error bars represent a ±1𝑆𝐸 range either side of the mean of the CV results. 

These values are listed in Table 37, Appendix 5.1. 
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Figure 111: Rates of agreement with ±1𝑆𝐸 range between WSI pipeline and GT ROI 
annotations, for combinations of feedforward and feedback CNN classifiers  

Only marginal benefit is gained using FAL-CNN. Errors in VGG19 are mitigated by FP correction. 

8.3.3 WSI Processing Time 
The mean time to process a WSI is plotted in Figure 112, for each model combination. The 

value was calculated by dividing the total duration of the HPC job, for each CV split, by the 

total number of WSIs in the split.  

Mean durations with error bar values are listed in Table 38, Appendix 5.1. 

 

Figure 112: Mean pipeline processing time per WSI with ±1𝑆𝐸 range, for combinations of 
feedforward and feedback CNN classifiers  

Saccade model is 4-5x slower due to multiple iterations of model execution. 
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8.4 Discussion 

8.4.1 TSR Estimation 
The use of feedback attention models in the WSI pipeline resulted in more accurate estimation 

of tumour stroma ratio than with the VGG19 (Figure 106). The benefit was most apparent 

when sampling at the pathologist-selected GT locations. Here, the 2-iteration FAL-CNN (FAL2) 

reduced the TSR error rate to 6.84% from the 7.57% observed with VGG19. This is an 

improvement of 0.73pp or approximately 10%.  

When using sampling locations chosen by the pipeline itself, the greatest reduction in TSR 

error was obtained with a tumour-stroma-groups-trained FAL2 model dedicated to the TSR 

calculation. TSR error was reduced to 18.86%, an improvement of 2.78pp or approximately 

13% over the VGG19-based pipeline.  

Using a saccade model for patch classification was found to be highly detrimental to TSR 

accuracy, with a worst-case error rate of 43.81%. Analysis of the Scatter and Bland-Altman 

plots (Figure 107) revealed a high level of bias, with many WSIs having excessively high 

predicted TSR. This is likely to be due to the known tendency of the saccade model to seek out 

tumour regions in preference to stroma and other tissue classes, resulting in higher reported 

proportions of tumour.  

This behaviour is potentially harmful, risking a falsely optimistic prognosis for the patient due 

to the lower predicted rates of tumour stroma. The red-coded points, in the top-left quadrant 

of the scatter plot in Figure 107, represent 17.4% of cases that would be incorrectly placed in a 

high TSR group, by exceeding Zhao's threshold of 48.8%. The ground-truth TSR values, derived 

from pathologist annotations, are lower, indicating higher stroma levels associated with more 

aggressive cancers. These could be incorrectly diagnosed as less severe in red-coded cases. 

By contrast, when using FAL2 to evaluate TSR at GT sampling locations, scatter plot points 

(Figure 108) were clustered close to the diagonal, reflecting the strong agreement measured 

between GT and predicted TSR in this scenario. Only 1.31% of points fell in the dangerous top-

left ‘red’ quadrant, and all of these were close to the 48.8% threshold. The offset mean level in 

the BA plot reveals an overall tendency towards predicting lower TSR than the ground truth.  

9.05% of cases were in the bottom-right ‘blue’ quadrant, representing a risk that this group of 

patients may be given a pessimistic prognosis leading to potentially unnecessary treatment.  

When TSR was calculated at a peak tumour location selected by the pipeline, a wider spread of 

points was produced (Figure 109). Approximately 20% of cases were placed in an incorrect 

high-stroma or low-stroma group. The distribution in the BA plot shows a mean value near to 

zero, indicating negligible overall bias towards tumour or stroma.  

When using an additional tumour-stroma-groups model as CNN3 in the pipeline, the improved 

mean TSR accuracy is evident in the reduction in the proportion of ‘red’ cases to 5.98% (Figure 

110). The three-model combination yields the lowest overall TSR error rate at sampling 

locations chosen automatically by the pipeline. The 10.6% rate of ‘blue’ cases, at risk of a 

misdiagnosis of aggressive tumour, would nonetheless necessitate further triage stages in a 

practical workflow.  

Nonetheless, grouping patches into the tissue categories of interest has enabled more 

accurate tumour and stroma counts to be generated. This represents a useful application of 

Occam’s Razor, reducing complexity by simplifying the classification problem. 
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8.4.2 Tumour ROI Estimation 
In Tumour ROI estimation (Figure 111), the pipeline’s performance with feedback attention 

models was similar to that observed with the basic VGG19. F1 scores, relative to ground truth 

annotations, were in the range 84.78% to 85.24%. Marginal increases were measured when 

using feedback models for CNN1 and CNN2.  

It appears that any benefit arising from the improved patch classification accuracy is diluted by 

the averaging behaviour of the pipeline, which uses the spatial distribution of multiple tumour 

patches to estimate the ROI. Errors in classifying individual patches are often corrected by this 

approach, so increased model accuracy does not translate into greatly improved ROI 

prediction.  

The use of feedback models for FPC had only a marginal effect on ROI estimation. This suggests 

that FPC, when combined with the elimination of many stray tumour patches by the clustering 

algorithm, was already compensating effectively for misclassified patches before feedback 

methods were introduced. 

8.4.3 Processing Time 
WSI processing time (Figure 112) increased with the introduction of feedback attention, by a 

factor of approximately 1.2 to 1.5 for the most accurate model combinations. This was 

expected, given the extra processing required in the feedback pathways of the FAL-CNN. 

Unsurprisingly, the longest processing times were seen with the saccade model, which invoked 

its embedded CNN five times for every patch sampled, and was approximately 5x slower than 

the VGG19 baseline as a result.  

The smallest performance impact from the use of FAL-CNN models was in the FPC role (CNN2). 

This model is only invoked when tumour is detected by the main classifier (CNN1), so does not 

affect the analysis time for every patch.  

The performance of ARC4 HPC infrastructure has greatly improved since earlier pipeline 

experiments. A batch script option was introduced, to enable parallel CPU processing and 

thereby reduce the processing time in between calls to the GPU. A 5.8x reduction in pipeline 

execution time was observed with VGG19 models, from 23 minutes per WSI in earlier work 

(Broad et al., 2022) to approximately 4 minutes here.  

The inference time of a CNN model remains an important consideration when designing a 

CNN-based processing pipeline. However, overall performance has been shown to benefit 

from parallelisation and optimisation, in model and pipeline code and in the supporting HPC 

architecture, and these factors must also be considered when implementing a WSI pipeline. 

8.4.4 Proposed TSR Sampling Tool 
It is acknowledged that the pipeline is most effective in calculating TSR when sampling at 

ground truth locations, which were selected by a pathologist when the QUASAR annotations 

were created. This is unsurprising, as the algorithm is then using data from the same sampling 

area as used by the human expert and the residual error is only due to differences in the patch 

classes evaluated at this location by machine and human.  

A fully automated pipeline does not have access to a human-chosen location when processing 

an unseen, un-annotated WSI. It must therefore select its own optimum sampling location 

within unseen, un-annotated WSIs. Without performing further survival analysis, it is not 

possible to determine whether results from the human-selected or machine-selected sampling 

location correlates best with overall survival. 
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Meanwhile, it may nonetheless be possible to exploit model combinations that performed well 

at pathologist-selected locations, to evaluate TSR at WSI locations chosen manually by an 

expert operator.  

 

Figure 113: Proposed TSR sampling tool  

Pathologist picks location in WSI, then pipeline classifies multiple patches and calculates TSR. 

Figure 113 shows such a system, based on components of the current WSI pipeline. The 

operating scenario is as follows: 

1. User views WSI at thumbnail and zoomed-in scales, to determine regions of high 

tumour density. This can be guided by tissue distribution maps generated by the fully 

automated pipeline. 

2. User selects region of interest, e.g. 3mm box at peak tumour near luminal aspect, as 

used in original studies with QUASAR data. 

3. Tool samples patches using RandomSpot algorithm to create sample patch 

distribution. 

4. Tool loads patch images from these locations, invoking the 9-way classifier (2-iteration 

FAL-CNN as CNN 1) and FPC stage (VGG19 as CNN 2) for each patch. 

5. TSR is calculated as  𝑇𝑆𝑅 =
𝑇

𝑇+𝑆
 from totals of tumour (T) and stroma (S) patches. 

The use of an automated tool allows a far greater number of patches to be sampled, than the 

50 per WSI that were labelled by the annotating pathologist. Stereology calculations by Wright 

(2017, p.16) suggest that using in the order of hundreds of patches would increase the 

accuracy of the TSR calculation. Given that the pipeline takes 4-5 minutes to process an entire 

WSI, with 1000s of patches, the TSR calculation might be expected to complete in a few tens of 

seconds on an HPC GPU node. 

Results would be grouped into TSR high, low, and borderline. The latter would apply to cases 

where the result is within a given percentage of the high/low decision threshold, where further 

expert analysis would be required to mitigate risks of misdiagnosis. In the high and low bands, 

where the TSR grouping is more certain, a tool such as this would enable diagnostically useful 

metrics to be generated far more rapidly than would be possible with manual cell counting. 
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9 Discussion 

9.1 Thesis Overview 
This work aimed to explore applications of AI in extracting diagnostically useful information 

from high-magnification whole slide images (WSIs) in digital pathology. Chapter 1 discusses the 

central problem: The gulf in scale between multi-gigapixel WSIs, and the far smaller image 

patches that many current AI models can handle.  

The work in this thesis addressed this problem using techniques inspired by human vision, in 

which attention processes guide the eye towards targets that relate to our executive goals, 

allowing us rapidly to extract relevant information from a complex, cluttered input scene. 

Simultaneously, neural feedback processes adjust sensitivity in our visual processing layers, so 

that salient features 'pop out' more vividly. 

The application of methods inspired by these biological processes led to a published method 

for characterising cancer tissue at WSI level, and to the development of feedback attention 

and saccade-based models that respond to tumour at a patch scale. 

9.2 Achievements 
Work performed for this thesis resulted in the following key outcomes: 

1. Novel WSI processing pipelines (Chapter 4) that select and classify patches from 

colorectal cancer WSIs, using attention-inspired sampling algorithms to support 

efficient estimation of tissue distribution, tumour stroma ratio (TSR) and tumour 

region of interest (ROI). 

 

2. The novel Feedback Attention Ladder CNN (FAL-CNN, Chapter 5) the culmination 

of an evolving series of CNN classifiers exploring feedback attention architectures, 

resulting in significantly improved classification accuracy over the equivalent 

feedforward only model, over diverse data sets. 

 

3. Visualisation plots for attention activations in the FAL-CNN (Chapter 6), revealing 

object location behaviours that support Explainable AI (XAI).  

 

4. A Saccade Model (Chapter 7) which emulates human eye movements, resampling 

its input image to align the model’s central sensitive region with its previous 

centre of attention. In this way the model tracks to informative image features, 

notably areas of tumour tissue. 

 

5. Enhanced WSI pipelines (Chapter 8) using FAL-CNN and Saccade models, providing 

further insight into attention-guided behaviours and boosting TSR accuracy at 

pathologist-selected locations, with potential application in a diagnostic tool for 

rapid TSR measurement (Section 8.4.4). 

9.2.1 WSI Pipelines 
Three approaches to WSI sampling were compared in Chapter 4, in an exploration of methods 

to reduce the computational effort in extracting diagnostically useful information.  

The Attention Heatmap Pipeline (AHP) used a CNN trained on thumbnail patches to obtain a 

heatmap of tumour probability, based on low-magnification image tiles. The heatmap was 

used to determine the local density at which high-magnification patches were sampled, thus 

guiding processing resources towards suspected tumour regions.  
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Tissue distribution plots of the WSI were obtained by using a CNN to classify the sampled 

patches. A further CNN distinguished tumour from normal epithelium, correcting false 

positives. The tumour ROI was estimated by applying clustering methods to the remaining 

tumour patches. TSR was calculated by counting tumour and stroma patches in a ‘virtual 

biopsy’ region of the ROI.  

The Weighted Regular Sampling Pipeline (WRSP) refined the AHP method by sampling at 

regular intervals, more densely where tumour was detected. This reduced sampling biases 

which had affected TSR accuracy in regions where the low-magnification classifier predicted 

low tumour density. Figure 114 shows a typical sequence of sampling iterations, where the 

patch density is highest within the predicted ROI.  

 

Figure 114: Typical patch sampling sequence in Weighted Regular Sampling Pipeline  
(Broad et al., 2022) 

Finally, a ‘brute force’ Tile-by-Tile Pipeline, where contiguous patches were classified across 

the entire WSI, was evaluated for comparison with more efficient sampling methods.  

The WRSP was published as Attention-guided sampling for colorectal cancer analysis with 

digital pathology (Broad et al., 2022), reporting processing speeds 3.3x to 6.3x faster than tile-

by-tile processing. ROI was predicted with a mean F1 score of 86.6%, and TSR was estimated 

with an RMS error of 11.3% relative to expert annotations. CNN benchmarking results 

recommended the use of VGG19, with a classification accuracy of 79%.  

The WRSP represents an efficient sampling algorithm for evaluating TSR and tumour outline in 

a cancer WSI, maintaining accuracy while reducing the total number of patch samples 

required, and hence the computational cost of extracting these outputs. Previous state-of-the 

art methods at the time of publication focused either on ROI estimation (Cruz-Roa et al., 2018) 

or overall TSR on a tile-by-tile basis (Zhao et al., 2020), while the WRSP algorithm is optimised 

to calculate both of these outputs simultaneously. 

Subsequent experiments would aim to improve on the accuracy of the embedded CNNs at 

patch scale, through the addition of feedback attention mechanisms. 

9.2.2 CNNs with Feedback Attention Mechanisms 
The FAL-CNN (Chapter 5) is a novel, biologically inspired neural network for patch-scale image 

classification. The model uses a folded U-Net structure, where decoder outputs provide 

feedback activations, controlling spatial attention at multiple convolutional levels in the 

encoder path. Top-to-bottom feedback is combined with local feedback loops around 

convolutional groups for each spatial scale level. A Feature Embedding Store (FES) was used to 

aggregate feature embeddings from each forward pass over multiple feedback iterations, so 

that each cycle contributes to the output class prediction. 
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The FAL-CNN configuration yielded significant increases in classification accuracy, relative to 

the unadorned VGG19 architecture of the model’s encoder backbone, for multiple datasets. 

With ImageNet-100 the accuracy increase was 2.39pp (p<0.001), and with 9-class CRC 

pathology patches, a 3.50pp (p<0.001) increase was measured. With the adversarial uncertain-

class-patches subset, the feedback architecture increased classification accuracy relative to 

VGG19 by up to 12.26pp (p<0.001).  

These results confirm that feedback attention improves discrimination in CNN classifiers, 

especially for images with mixed or ambiguous content. This was shown to be due to the 

model’s ability to emphasise objects and structures relevant to the output class predictions, 

whilst inhibiting regions associated with unhelpful background content. While other attention-

based CNNs exist, the FAL-CNN is particularly “brain-like”, emulating feedforward and 

feedback neural pathways in the ventral stream in a manner that benefits object identification. 

9.2.3 Feedback Attention Visualisations 
In Chapter 6, attention activations at each feedback level in the FAL-CNN showed spatial 

correlation with salient image features. With ImageNet-100, the higher feedback layers 

highlighted larger features of the target object, such as a bird’s head or a shark’s dorsal fin. In 

lower layers, attention distributions mimicked finer details such as feathers.  

Similarly, when using 9-class CRC pathology patches, feedback activations showed that the 

FAL-CNN attended to informative tissue features at multiple scale levels. In lower layers, the 

feedback contours were aligned with nuclei and other textural features. In higher layers,  

regions of tissue such as tumour and stroma were highlighted.  

Given the increased accuracy of models using feedback attention, it is inferred that the most-

attended regions in the feedback activations represent content that is most relevant to the 

class prediction. Visualisations of the feedback attention in our model are therefore potentially 

useful in bringing XAI to Digital Pathology, as a tool for object location and for highlighting 

salient tissue in patch-level images.  

9.2.4 Saccade Model 
When averaged over multiple patches, the attention distributions revealed a central focus, 

consistent with the annotating pathologist’s behaviour in applying a class label to a single 

nominal pixel whilst examining surrounding tissue for context.  

The saccade model (Chapter 7) exploited this tendency by resampling the input patch, to align 

the most strongly attended image features with the centre region where the model is most 

sensitive. This behaviour is analogous to foveal vision in humans and enabled the model to 

discover informative structures, even where these were outside the initial sampling region. 

Comparison of accuracies when tracking to peak attention, against accuracies seen using 

random offsets, provided statistical proof that the attention regions represent image features 

salient to the classification result.  

Expert relabelling of resampled input patches yielded class labels that agreed with the model’s 

final class prediction in 76.9% of cases. For tumour, the agreement rate was 93.23%. This 

suggests that the FAL-CNN responds strongly to tumour, such that the saccade model actively 

locates tumour in the neighbourhood of the initial patch (Figure 115). This behaviour notably 

unites several goals of this research, combining brain-like feedback attention and saccade-

based attention in a model capable of discerning and focusing on cancer tissue in a DP image. 
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Figure 115: Example saccade sequence with lumen-labelled patch, converging on tumour cells 

9.2.5 Attention-Inspired Models in WSI Pipeline 
In Chapter 8, the new FAL-CNN and Saccade model were substituted into the WRSP. Use of the 

FAL-CNN was beneficial in calculations of TSR at pathologist-selected locations, reducing the 

error rate by approximately 10% relative to the VGG19 baseline and thereby confirming that 

the feedback-enhanced classifier can improve the performance of diagnostic image processing 

at a WSI scale. 

The saccade model was known to fixate on tumour regions and therefore gave misleadingly 

low stroma rates and high TSR, potentially resulting in falsely optimistic predictions of disease 

progression. For this reason it is not indicated for use in the WRSP. 

ROI estimation was mostly unaffected by the use of the FAL-CNN and Saccade models, 

suggesting that errors in identifying individual tumour patches are already being mitigated by 

the false positive correction, averaging and noise-reducing clustering behaviours built into the 

pipeline. 

9.2.6 Generalisability 

WSI pipelines 

WSI processing pipelines in Chapter 4 were designed to predict ROI and TSR for images of 

tissue from colorectal resection surgery obtained in the QUASAR study. To generalise to other 

data sources – such as resection images from other parts of the body – would require new 

classifier CNNs trained to distinguish tumour features from normal cells of the new tissue type.  

The pipelines in their present form would be less useful for analysing slides of biopsy samples. 

Commonly used needle biopsies differ in form from resection samples, having been taken from 

long, narrow cylindrical tissue cores. As such they are unlikely to encompass the complete 

cancer volume. Calculations of ROI would be less meaningful as a result, except for use cases 

where the expected cancer regions are much smaller than the core diameter. 

FAL-CNN 

The FAL-CNN classifier was tested on QUASAR 9-class patch data (Section 5.1) and generic 

images from ImageNet-100 (Section 5.4). Similar accuracy gains were observed despite the 

differences in data type and the relatively unbalanced class distribution of the pathology 

patches. This suggests that the FAL-CNN would generalise well to other image types of similar 

pixel size. 

Experiments with the deliberately adversarial uncertain-class-patches set (Section 5.1.3) show 

that the FAL-CNN is particularly effective in distinguishing very heterogeneous or ambiguous 

patches, suggesting that the model would generalise well to images with a cluttered 

background, and to images of mixed object types. 
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Saccade model 

The saccade model (Chapter 7) was initially developed using 9-class patch images. Expert 

relabelling was necessary before model accuracy could be assessed, because of the 

heterogeneous nature of the patches. The GT class label was only applicable at the very centre 

of the patch, and new labels were therefore required at the new centres of the post-saccade 

resampled patches.  

Using ImageNet-100, this problem was not encountered as the GT class was generally 

applicable to the whole image, or the largest object therein. Then, the saccade action was 

found to improve accuracy relative to the ‘pre-saccade’ sample at the centre of the input 

image, showing that the model is tracking beneficially towards salient image features.  

The successful evaluation of this model with two such diverse data sets suggests it would 

generalise well to other image types, with the qualification that relabelling may be required for 

more heterogeneous images. 

9.3 Conclusions and Future Work 
The improved TSR results at pathologist-selected locations suggest a practical application of 

FAL-CNN in a tool for rapidly measuring TSR at pathologist-selected locations. Such an AI-

assisted application would classify large enough numbers of patches to provide an accurate 

TSR estimate, in workflows where the time required for fully manual sampling might otherwise 

make this measurement impractical. The TSR sampling tool could be integrated into WSI 

viewing workflows, where the user is first guided to peak tumour regions using tissue 

distribution plots generated by the WRSP. The resulting TSR values could be used to annotate 

the WSI, and from there be stored against the patient record. For clinical adoption, a trial 

involving multiple pathologists would be required to compare their TSR estimates with each 

other and with those generated by our model. These results would ideally then be correlated 

with survival data to confirm prognostic accuracy. 

The WRSP currently uses hard-coded parameters for sampling intervals and clustering radii, 

and uses fixed algorithms for establishing TSR sampling points. It is anticipated that using 

machine learning to determine pipeline parameters will allow performance to be further 

optimised, using a loss term chosen for the required balance between ROI or TSR accuracy and 

processing speed. 

The time-per-WSI of such a pipeline can potentially be reduced further through parallel 

processing. Patch classification tasks can be marshalled across multiple GPU nodes, while CPU 

multi-threading enables parallel patch extraction and pre-processing. 

The CNN benchmarking results (Broad et al., 2022), obtained during the development of the 

pipelines, led to the adoption of VGG19 as the backbone for subsequent feedback models. 

Recent leaders in the ImageNet challenge use later models such as EfficientNetV2 (Tan and Le, 

2021) with novel training regimes, such as Model Soups (Wortsman et al., 2022) or Meta 

Pseudo Labels (Pham et al., 2021). Proposed future projects would evaluate these model and 

training combinations in the WRSP, and develop an enhanced FAL-CNN with a feedforward 

backbone based on EfficientNetV2. Training and evaluation with the full 1,000-class ImageNet 

dataset would allow direct comparison with ImageNet challenge leaders. 

Further testing of the generalisability of the current Feedback Attention Ladder would involve 

evaluating FAL-CNN with further datasets, from colorectal cancer and other diseases, in 

additional to other imaging modalities such as CT or ultrasound. 
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It is also recommended that the FAL-CNN is assessed as a feature extractor in other WSI 

processing methods, particularly in MIL algorithms that currently use the less accurate 

ResNet18 model.  

The Saccade model currently interrogates a 448 × 448px input region. A further experiment is 

proposed, using larger sections of the WSI to evaluate the tumour-seeking behaviour when 

locating cancer cells further from the starting position. This suggests a further diagnostic 

application, where sections of WSI are automatically swept for candidate tumour locations for 

a pathologist to examine further. In a practical workflow, this would reduce the time taken to 

review a new WSI for disease, guiding the pathologist’s attention to suspicious tissue. 

In summary, the work in this thesis has demonstrated that biologically inspired attention 

mechanisms can contribute to image analysis in digital pathology. These methods were 

successfully applied in WSI processing pipelines and in patch-level analysis with the FAL-CNN 

and Saccade models. Answering the question posed in the title of this work, the author 

strongly believes that attention-inspired artificial intelligence can provide a diagnostic 

understanding of cancer imaging data, in a way that can benefit current clinical pathways. 
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Appendix 

1 Source Code 
Source code and further documentation for the experiments described in this thesis are 

available at: https://github.com/scajb/histopathology-ai-msc-experiments. This is a private 

repository but access can be granted on request.  

Code for the FAL-CNN and Saccade models, as presented in the author’s article Object-based 

Feedback Attention in Convolutional Neural Networks Improves Tumour Detection in Digital 

Pathology, is also publicly available at https://github.com/scajb/feedback-attention-cnn.  

PTH files containing model weights for 1, 2 and 3-iteration versions of the FAL-CNN, trained on 

ImageNet-100, are available at https://zenodo.org/doi/10.5281/zenodo.10361266.  

The following sections describe the code used in correspondingly titled thesis chapters: 

1.1 Data Extraction 

1.1.1 Creation of uncertain-class-patches Dataset 
The ClassProbabilityLogger class, developed during earlier work (Broad et al., 2020) to write 

the class probability vector to a CSV log file, was extended to copy patch images so a new 

uncertain-class-patches directory, for cases where the largest predicted class probabilities fell 

within a given percentage threshold of each other. 

1.1.2 Creation of tumour-stroma-groups Dataset 
Grouped parent patch tumour-groups and stroma-groups directories were created by copying 

patches of size 224 × 224px from the QUASAR 9-class directory. A Python function 

BuildBalancedDataDirectories.py was written to copy all image files from lists of 

subdirectories specified in a shell script, into output subdirectories according to Wright’s 

parent class groupings (Wright, 2017). 

The same grouping method was applied to the 9-class directory generated during offset patch 

extraction (Section 3.3.3). BuildBalancedDataDirectories.py was executed using patches-

offset\offset-x-56-y-56 as the source directory and tumour-stroma-groups-offset-x-56-y-56 as 

the output directory.  

1.1.3 Renaming ImageNet-100 Class Directories 
For readability and for consistency with the naming convention used in QUASAR class 

subdirectories, the class subdirectories in ImageNet-100 were renamed using the 

ImageNetRenameTrainingDirectories.py script. Image class directories were named for the 

WordNet identifier (WNID) of each image category. The WNID was used to look up the English 

class description in the wnids_and_categories.csv file supplied with ImageNet-100. The class 

description was combined with an index number, based on the category’s position in the CSV 

file, creating a human-readable directory name for each image class. 

1.2 Characterising the WSI 

1.2.1 Generation of Sampling Distributions 
The SamplePatternGenerator Python class generates collections of Box objects, each 

describing the location and size of a single patch location within the WSI. These are 

determined by a low-resolution input heatmap distribution, such that higher probabilities in 

the heatmap result in a greater number of patches within a given parent tile. 

https://github.com/scajb/histopathology-ai-msc-experiments
https://github.com/scajb/feedback-attention-cnn
https://zenodo.org/doi/10.5281/zenodo.10361266
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1.2.2 Weighted Regular Sampling Pipeline 
This pipeline is implemented in the __main__ function in WeightedRegularPatchPathway.py, 

which is called from the shell script weighted-regular-patches.sh. Pipeline parameters are 

passed to nested functions using the AttentionHeatmapRequest class.  

The function generate_regular_classification_plots()  iterates through all WSI files in the 

evaluation set associated with the specified experiment ID, calling 

generate_classification_plots_for_file() to output patch distributions and to estimate ROI 

polygons and TSR values for each WSI.  

Aggregated accuracy statistics are generated by the AggregatedPatchStatistics class, which 

calculates mean and 95% confidence values for ROI and TSR accuracy calculations and writes 

these to a CSV file. 

1.3 Feedback Attention 
The FAL-CNN model was implemented in the 

UNetRecurrentConcatenatingHybridFeedbackCNN class, a subclass of 

UNetHybridFeedbackCNN. The UNetBuilder was extended to supply encoder and decoder 

blocks as nn.Sequential-based collections of convolutional and ReLU modules. The forward() 

function calls the encoder first with null feedback activations. The decoder is then used to 

derive feedback activations for use in a second encoder call. 

1.4 Visualising Feedback Attention 
Feedback activations were superimposed on input images in the Python class 

UNetOutputImageGenerator. An interactive Jupyter notebook, FeedbackVisualisations.ipynb, 

was developed to load and display the heatmap plots for a selected attention model and input 

patch. 

Contour plots were generated using the OpenCV findContours() function (OpenCV, 2023). The 

contours were superimposed onto the input image using OpenCV drawContours(). These 

operations were encapsulated in the ContourGenerator class. 

For statistical analysis, the centre of mass of the 𝐻 × 𝑊 attention matrix was calculated using 

SciPy’s ndimage.measurements.center_of_mass() function (SciPy community, 2021). 

1.5 Saccade-like Behaviour with Feedback Attention Models 
The saccade model algorithm was implemented in in the forward() method of the  

SaccadingFeedbackCNNContainer class. 

In this class, the centre of attention (CoA)  determining the sampling region for the next 

saccade cycle was calculated as the centre of mass (CoM) of the mean layer 28 feedback 

activations.  

Subclass ContourSaccadingFeedbackCNNContainer overrides the get_image_centroid() 

method to calculate the CoA using the centroid of the largest 80% attention contour, again 

derived from mean layer 28 feedback activations, as a proxy for peak spatial attention. 

A further model subclass, RandomSaccadingFeedbackCNNContainer, implemented a random 

walk-like behaviour, where the sampling location was offset by random X and Y amounts 

between 0 and 224px between saccade cycles. 

To visualise the saccade sequences, a 5-saccade model was processed by the 

UNetOutputImageGenerator class. A new plot_saccades() method was developed to capture 



136 
 
the 224 × 224𝑝𝑥 patch region sampled in each saccade, superimposed with feedback 

attention contours and a cross marking the centroid of the 80% contour.  

Further code was added to plot the 448 × 448𝑝𝑥 input region, with the sequence of patch 

locations superimposed as colour-coded 224 × 224𝑝𝑥 boxes. 

These output plots were loaded in Jupyter notebook SaccadeViewer.ipynb to create a 

combined saccade sequence plot showing the 5 sampling locations and associated attention 

regions. 

2 Feedback Attention 

2.1 Feedback Attention Ladder CNN (FAL-CNN) 

2.1.1 Results 

Table 21: Classification accuracies for FAL-CNN model with QUASAR 9-class patches 

Feedback 
iterations 

Classification 
accuracy % 

95% Confidence 
Interval, % (N=30) 

Difference from 
VGG19, pp 

p-value 

None: Baseline 
VGG19 

79.37 78.52 to 80.21 - - 

0 80.74 80.16 to 81.32 1.60 < 0.001 

1 82.86 82.18 to 83.55 3.47 < 0.001 

2 82.99 82.42 to 83.55 3.38 < 0.001 

3 82.85 82.22 to 83.49 3.50 < 0.001 

4 82.87 82.37 to 83.37 3.43 < 0.001 

Table 22: Classification accuracies for FAL-CNN models with uncertain-class-patches dataset 

Feedback 
iterations 

Mean accuracy % 95% Confidence 
Interval, % (N=30) 

Difference from 
VGG19, pp 

p-value 

None: Baseline 
VGG19 

54.82 54.00 to 55.63 - - 

0 61.82 60.98 to 62.66 7.00 < 0.001 

1 66.78 66.23 to 67.32 11.96 < 0.001 

2 65.65 65.02 to 66.28 10.84 < 0.001 

3 67.08 66.51 to 67.65 12.26 < 0.001 

4 64.99 64.16 to 65.82 10.17 < 0.001 

 

2.2 FAL-CNN Performance with Offset Patches 

2.2.1 Results 

Table 23: Feedback model accuracies with offset input patches 

Feedback iterations Classification 
accuracy % 

95% Confidence 
Interval 

Difference from 
VGG19, pp 

None: Baseline VGG19 56.88 56.43 to 57.34 - 

1 57.32 56.94 to 57.70 0.44 

2 57.04 56.44 to 57.64 0.16 

3 57.23 56.88 to 57.59 0.35 
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Table 24: Feedback model performance when trained and evaluated with offset-patches 
dataset 

Feedback iterations Classification 
accuracy % 

±1 𝑆𝐸 range Difference from 
VGG19, pp 

Difference from 
centre-trained 

model, pp 

None: Baseline 
VGG19 

82.80 82.27 to 83.33 - 3.43 

1 86.20 85.94 to 86.46 3.40 3.34 

2 86.07 85.86 to 86.28 3.27 3.08 

3 86.07 85.94 to 86.20 3.26 3.22 

 

2.3 FAL-CNN Performance with tumour-stroma-groups Patches 

2.3.1 Results 

Table 25: Classification accuracies for FAL-CNN model with tumour-stroma-groups dataset 

Feedback 
layers 

Feedback 
iterations 

Training 
epochs 

Classification 
accuracy % 

±1 𝑆𝐸 range Difference from 
offset trained 

VGG19, pp 

None: Baseline VGG19 50 94.34 94.18 to 94.50 - 

0,5,10,19,28 1 200 94.77 94.55 to 94.98 0.42 

0,5,10,19,28 2 200 94.90 94.65 to 95.15 0.55 

0,5,10,19,28 3 200 94.81 94.55 to 95.08 0.47 

 

Table 26: Classification accuracies for FAL-CNN model with tumour-stroma-groups-12000 
dataset 

Feedback layers Feedback 
iterations 

Training 
epochs 

Classification 
accuracy % 

±1 𝑆𝐸 range Difference from 
VGG19, pp 

None: Baseline VGG19 50 93.48 93.22 to 93.75 93.48 

0,5,10,19,28 1 200 94.16 93.89 to 94.42 0.67 

0,5,10,19,28 2 200 93.85 93.57 to 94.13 0.37 

0,5,10,19,28 3 200 93.93 93.62 to 94.23 0.44 

 

Table 27: Classification accuracies for FAL-CNN model with offset tumour-stroma-groups 
dataset 

Feedback layers Feedback 
iterations 

Training 
epochs 

Classification 
accuracy % 

±1 𝑆𝐸 range Difference from 
VGG19, pp 

None: Baseline VGG19 50 93.18 92.87 to 93.49 - 

0,5,10,19,28 1 200 93.70 93.47 to 93.93 0.52 

0,5,10,19,28 2 200 93.67 93.50 to 93.83 0.48 

0,5,10,19,28 3 200 93.62 93.31 to 93.92 0.43 

 

2.4 FAL-CNN Performance with ImageNet-100 

2.4.1 Results 

Table 28: Classification accuracies for FAL-CNN model with ImageNet-100 
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Feedback layers Feedback 
iterations 

Training 
epochs 

Classification 
accuracy % 

±1 𝑆𝐸 range Difference from 
VGG19, pp 

None: Baseline VGG19 100 83.97 83.87 to 84.06 - 

0,5,10,19,28 1 250 88.04 87.94 to 88.13 4.07 

0,5,10,19,28 2 250 88.09 88.00 to 88.19 4.13 

0,5,10,19,28 3 250 88.01 87.93 to 88.09 4.04 

 

Table 29: Classification accuracies for FAL-CNN model with ImageNet-100 Test dataset 

Feedback 
iterations 

Classification 
accuracy % 

95% Confidence 
Interval, % (N=30) 

Difference from 
VGG19, pp 

p-value 

None: Baseline 
VGG19 

80.89 80.55 to 81.23 - - 

1 83.28 82.88 to 83.69 2.39 < 0.001 

2 83.08 82.65 to 83.51 2.19 < 0.001 

3 82.86 82.45 to 83.27 1.97 < 0.001 

 

3 Statistical Analysis of Attention regions 

3.1 Attention Distributions for FAL-CNN with QUASAR Patches 
Figure 116 shows the locations of the centre of mass of the mean attention activations in the 

FAL-CNN model for each of 100 patches x 9 classes, superimposed on the 224 × 224𝑝𝑥 input 

patch area. These results are grouped by feedback layer and feedback iteration.  

 

Figure 116: Spatial distributions of attention centre of mass, grouped by layer and feedback 
iteration 

Figure 117 shows the similarly grouped locations of the centroids of the 80% attention 

contours derived from the same feedback attention activations. 
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Figure 117: Spatial distributions of 80% attention contour centroids, grouped by layer and 
feedback iteration 

Figure 118 shows the frequency distribution of the effective area, or total value, of the mean 

feedback activations for each layer and feedback iteration. In each sub-plot, the distribution is 

shown relative to a maximum of 50176, the theoretical maximum possible sum of a 224 × 224 

array where each pixel has the maximum value of 1.  

 

Figure 118: Frequency distributions of effective areas of feedback activations, grouped by layer 
and feedback iteration 

A similar plot in Figure 119 represents the distributions of the area within the 80% attention 

contours, for each feedback layer and iteration.  
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Figure 119: Frequency distributions of areas of 80% attention contours, grouped by layer and 
feedback iteration 
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Figure 120 shows the spatial distributions, relative to the input patch area, of the attention 

centre of mass in the feedback activations of the 1-iteration model variant, grouped by layer 

and image class. 

 

Figure 120: Spatial distributions of attention centre of mass, grouped by layer and class 
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Figure 121 shows the similarly grouped spatial distribution of the centroids of the 80% 

attention contours, from the same model’s feedback activations. 

 

 

Figure 121: Spatial distributions of 80% attention contour centroids, grouped by layer and class 
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3.2 Attention Distributions for FAL-CNN vs ImageNet Annotated Regions 
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4 Saccade-like Behaviour with Feedback Attention Model 

4.1 Results 

4.1.1 Evaluation of Saccade Models 

Table 30: Classification accuracies for saccade models with QUASAR 9-class patches 

Number of 
saccades 

Centre of attention 
method 

Classification 
accuracy % 

 95% Confidence 
Interval 

Difference from 
non-saccading 

model, pp 

0 - 82.86 82.16 to 83.56 - 

1 CoM 72.55 71.79 to 73.31 -10.32 

2 CoM 64.65 63.48 to 65.83 -18.21 

5 CoM 54.00 52.69 to 55.32 -28.86 

10 CoM 51.23 49.66 to 52.80 -31.63 

1 80% contour 54.22 52.98 to 55.45 -28.65 

2 80% contour 51.07 49.62 to 52.52 -31.79 

5 80% contour 48.95 47.09 to 50.82 -33.91 

10 80% contour 48.41 46.58 to 50.25 -34.45 

1 Random 47.12 46.12 to 48.12 -35.74 

5 Random 45.34 44.40 to 46.28 -37.52 

10 Random 44.77 43.93 to 45.60 -38.10 

 
Table 31: Classification accuracies for saccade models with ImageNet-100 

Number of 
saccades 

Centre of attention 
method 

Classification 
accuracy % 

95% Confidence 
Interval 

Difference from 
non-saccading 

model, pp 

0 - 77.53 77.26 to 77.80 - 

1 CoM 79.20 79.07 to 79.33 1.67 

2 CoM 79.95 79.82 to 80.07 2.42 

5 CoM 80.56 80.40 to 80.73 3.03 

10 CoM 80.71 80.55 to 80.86 3.17 

1 80% contour 79.55 79.47 to 79.63 2.02 

2 80% contour 79.70 79.56 to 79.85 2.17 

5 80% contour 79.80 79.68 to 79.92 2.27 

10 80% contour 79.77 79.64 to 79.91 2.24 

1 Random 63.27 63.16 to 63.38 -14.26 

5 Random 60.15 59.82 to 60.47 -17.38 

10 Random 58.82 58.55 to 59.09 -18.72 
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4.1.2 Pathologist Reclassification of Post-Saccade QUASAR Patches 

Table 32: 9-class classification accuracies with/without saccade process, including agreement 
with expert-relabelled post-saccade patches 

Model Input data Reference label 
source 

Mean 
agreement 

rate % 

±1 SE range / 
binomial 

probability CI 

Difference 
from 

VGG19, pp  

VGG19 
baseline 

QUASAR 9-
class patches  

QUASAR 9-class 
patches 

79.37 78.94 to 79.79 
(SE) 

- 

FAL-
CNN 1 
iteration 

QUASAR 9-
class patches  

QUASAR 9-class 
patches  

82.86 82.51 to 83.21 
(SE) 

3.50 

Saccade 
model 

QUASAR 9-
class patches 

QUASAR 9-class 
patches 

48.63 47.70 to 49.57 
(BCI) 

-30.73 

Saccade 
model 
(Expt A) 

QUASAR  
classes 
1,2,3,6 

Expert-relabelled, 
resampled patches 

86.73 83.44 to 90.03 
(BCI) 

7.37 

Saccade 
model 
(Expt B) 

QUASAR 9-
class patches  

Expert-relabelled, 
resampled patches 

78.25 74.21 to 82.29 
(BCI) 

-1.12 

 
Table 33: Tumour-stroma-groups classification accuracies with/without saccade process, 

including agreement with expert-relabelled post-saccade patches 

Model Input data Reference label 
source 

Mean 
agreement 

rate % 

±1 SE range / 
binomial 

probability CI 

Difference 
from 

VGG19, pp  

VGG19 
baseline 

QUASAR 9-
class patches  

QUASAR 9-class 
patches 

94.34 94.18 to 94.50 
(SE) 

- 

FAL-
CNN 1 
iteration 

QUASAR 9-
class patches  

QUASAR 9-class 
patches  

94.77 94.55 to 94.98  
(SE) 

0.42 

Saccade 
model 

QUASAR 9-
class patches 

QUASAR 9-class 
patches 

32.57 28.54 to 36.61 
(BCI) 

-61.77 

Saccade 
model 

QUASAR  
classes 1,2,3,6 

Expert-relabelled, 
resampled patches 

95.09 92.99 to 97.19 
(BCI) 

0.74 

Saccade 
model 

QUASAR 9-
class patches  

Expert-relabelled, 
resampled patches 

86.25 82.88 to 89.62 
(BCI) 

-8.09 

 

Table 34: Per-class breakdown of agreement rates between saccade model output and 
relabelled final sample location – Experiment A (4 input classes) 
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Expert-assigned label 
for post-saccade 
patch image 

Number of 
patch 

images 

Total in 
agreement with 
saccade model 

output class  

Mean 
agreement rate  

Binomial 
probability 
confidence 

interval 

All 407 353 86.73 83.44 to 90.03 

0-non-informative 0 0 0.00 - 

1-tumour 263 252 95.82 93.40 to 98.24 

2-stroma-or-fibrosis 39 27 69.23 54.75 to 83.72 

3-necrosis 66 46 69.70 58.61 to 80.78 

4-vessels 8 8 100.00 100.00 to 100.00 

5-inflammation 3 0 0.00 0.00 to 0.00 

6-lumen 26 19 73.08 56.03 to 90.13 

7-mucin 1 1 100.00 100.00 to 100.00 

8-muscle 0 0 0.00 - 

Unable to score 1 0 0.00 - 

 

Table 35: Per-class breakdown of agreement rates between saccade model output and 
relabelled final sample location – Experiment B (9 input classes) 

Expert-assigned label 
for post-saccade patch 
image 

Number of 
patch 

images 

Total in agreement 
with saccade 

model output class 

Mean 
agreement 

rate  

Binomial 
probability 
confidence 

interval 

All 400 313 76.90 72.81 to 81.00 

0-non-informative 28 4 14.29 1.32 to 27.25 

1-tumour 266 248 93.23 90.21 to 96.25 

2-stroma-or-fibrosis 43 24 55.81 40.97 to 70.66 

3-necrosis 16 8 50.00 25.50 to 74.50 

4-vessels 14 11 78.57 57.08 to 100.00 

5-inflammation 8 3 37.50 3.95 to 71.05 

6-lumen 16 8 50.00 25.50 to 74.50 

7-mucin 9 7 77.78 50.62 to 100.00 

8-muscle 0 0 0.00 - 
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5 Feedback Attention Model Performance in WSI Pipeline 

5.1 Results 

5.1.1 TSR Estimation 

Table 36: TSR error rates in WSI pipeline, for combinations of feedforward and feedback CNN 
classifiers 

Main 
CNN 

TP / FP 
CNN 

TSR CNN  TSR % 
err at 
GT loc 

TSR at GT loc 
confidence 
interval 

TSR % err 
at max 
tumour 
density 

TSR % err at 
max tumour 
density CI 

VGG VGG None 7.57 7.23 to 7.92 21.64 20.06 to 23.22 

VGG FAL1 None 7.62 7.31 to 7.94 21.34 20.08 to 22.61 

VGG FAL2 None 7.60 7.32 to 7.87 21.42 20.40 to 22.44 

FAL1 VGG None 7.12 6.76 to 7.47 22.36 20.93 to 23.79 

FAL1 FAL1 None 7.12 6.76 to 7.47 20.87 19.93 to 21.81 

FAL2 VGG None 6.84 6.43 to 7.24 22.05 20.73 to 23.37 

FAL2 FAL2 None 6.87 6.46 to 7.27 21.72 20.56 to 22.89 

FAL3 VGG None 7.26 6.87 to 7.64 21.44 20.45 to 22.42 

FAL2 VGG FAL2 tumour-
stroma-groups 

13.24 12.91 to 
13.57 

18.86 17.68 to 20.04 

Saccade 
FAL1 

VGG None 38.26 37.00 to 
39.53 

43.81 41.86 to 45.75 

 

5.1.2 Tumour ROI Estimation 

Table 37: Rates of agreement between WSI pipeline and GT ROI annotations, for combinations 
of feedforward and feedback CNN classifiers 

Main 
CNN 

TP / FP 
CNN 

TSR CNN if not 
main 

IoU % IoU CI F1 % F1 CI 

VGG VGG None 75.57 75.24 to 75.90 85.04 84.76 to 85.32 

VGG FAL1 None 75.36 74.94 to 75.79 84.81 84.40 to 85.21 

VGG FAL2 None 75.44 75.11 to 75.77 84.87 84.58 to 85.16 

FAL1 VGG None 75.50 75.31 to 75.68 84.93 84.75 to 85.11 

FAL1 FAL1 None 75.83 75.65 to 76.01 85.24 85.07 to 85.41 

FAL2 VGG None 75.81 75.45 to 76.16 85.20 84.92 to 85.48 

FAL2 FAL2 None 75.78 75.46 to 76.10 85.11 84.81 to 85.40 

FAL3 VGG None 75.42 75.00 to 75.83 84.86 84.48 to 85.25 

FAL2 VGG FAL2 tumour-
stroma-groups 

75.30 75.03 to 75.58 84.78 84.50 to 85.06 

Saccade 
FAL1 

VGG None 75.64 75.03 to 76.24 85.05 84.56 to 85.54 
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5.1.3 WSI Processing Time 

Table 38: Mean pipeline processing time per WSI, for combinations of feedforward and 
feedback CNN classifiers 

Main CNN TP / FP 
CNN 

TSR CNN  Time per WSI, 
sec 

Time per WSI, 
confidence interval 

VGG VGG None 237.24 233.48 to 241.00 

VGG FAL1 None 239.46 232.99 to 245.94 

VGG FAL2 None 276.67 269.32 to 284.02 

FAL1 VGG None 284.37 280.02 to 288.72 

FAL1 FAL1 None 303.15 299.12 to 307.18 

FAL2 VGG None 329.55 325.02 to 334.09 

FAL2 FAL2 None 353.66 349.26 to 358.07 

FAL3 VGG None 368.56 366.02 to 371.11 

FAL2 VGG FAL2 tumour-stroma-groups 358.48 350.41 to 366.55 

Saccade 
FAL1 

VGG None 1206.60 1188.97 to 1224.22 

 

- 
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