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Abstract

Three-dimensional face modelling, whether employing linear or non-linear approaches,
involves mapping 3D face scans into a latent space for reconstructing 3D face shapes using
this model. To enhance the interpretability of this mapped latent space for humans, a
critical task emerges in computer vision with a focus on developing specific latent spaces
for individual facial components rather than a single global latent space for the entire face.
This thesis presents pipelines based on deep learning algorithms for the explainable and
controllable non-linear modelling of 3D faces within latent spaces. Firstly, our method
introduces a 3D face model that learns to map face identity and expression into two
independent latent spaces, achieving face identity and expression disentanglement. This is
particularly aimed at addressing limitations in scenarios lacking facial identity ground truths,
which differs from other approaches. Secondly, beyond learning identity and expression
latent spaces, our work further subdivides entire faces into multiple semantic regions,
including the nose, eyes, mouth and others, and learns the separate latent variables for these
regions through our novel framework. Additionally, we apply a Laplacian blending technique
to the key facial feature swapping strategy, enhancing data augmentation and seamlessly
reconstructing face shapes. Both methods are evaluated on public datasets and achieve
state-of-the-art performance, demonstrating their effectiveness in reconstructing face shapes
and disentangling latent variables for different facial features. The learnt latent variables
are proven to be applicable to many applications, e.g. face recognition, face expression
transfer and face editing. Moreover, to investigate the impact of different representations on
the reconstructed face shapes, our two models employ different representations for 3D face
shapes, one using explicit representations and the other employing implicit representations.
Comprehensive comparative analyses are conducted to evaluate the effectiveness of our
methods in 3D face modelling based on different representations and architectures.
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1

Introduction

Three-dimensional shape reconstruction has become an increasingly active topic in
the field of computer vision over the last two decades. In this thesis, we particularly
focus on how to model 3D facial shapes using various types of representation. This has
wide-ranging applications such as animation and gaming design, where parameters
can be manipulated to create unique avatars, and medical imaging, such as plastic
surgery, where there is a need for precise control over generated facial features.
Through 3D face models, which are often referred to as 3D Morphable Models
(3DMMs), raw face scans can be accurately reconstructed and understood.

Traditional 3D face statistical modelling employs linear space methods, which
primarily involve the use of Principal Components Analysis (PCA) and linear
combinations of shape deformations to construct 3D faces. Here, a large dataset of
3D human face scans is collected from individuals of diverse ages, ethnicities and
genders. These face shapes are typically represented by 3D coordinates that share
the same topology. Subsequently, techniques are utilised to analyse common facial
features and variations, including geometric, global and local variations, expression
variations and appearance and illumination variations [30]. As mentioned, PCA
has been traditionally employed to analyse face shapes, identifying the principal
components that capture the most significant shape variance across the dataset. This
facilitates dimensionality reduction resulting in shapes that that are projected to a
low-dimensional space. New face shapes can be generated by combining the mean
shape with the a weighted sum of the retained principal components. However, these
linear methods lack the flexibility to accurately capture variations of finer levels of
facial information. Therefore, with the advancement of deep learning techniques, new
algorithms that explore non-linear deep latent representations have been proposed.

1
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These algorithms often employ an encoder-decoder architecture to achieve non-linear
3D face modelling. Among them, the AutoEncoder (AE), Variational AutoEncoder
(VAE), Generative Adversarial Network (GAN) and diffusion models are the most
commonly used deep architectures.

In the meantime, deep geometry learning in 3D computer vision has attracted
more attention in recent years [109]. The ability of a model to represent 3D
shapes accurately is crucial for the quality of reconstructed shapes. In this context,
deep learning-based generative models have been explored for their potential in
processing different types of representations, i.e., explicit representations and implicit
representations. Among explicit representations, voxels, point clouds, and meshes
are the most commonly utilised in deep geometry learning. For example, due to
the nature of voxels, graph convolutional networks (GCNs) are usually employed
to process them effectively. PointNet [86] and PointNet++ [87] were proposed to
process point clouds for 3D shapes, with these methods being widely applied in
various pipelines.

Another important avenue in 3D shape reconstruction and modelling involves
implicit representations, such as signed distance functions (SDFs) and occupancy
probability functions. Deep generative models, leveraging either explicit or implicit
representations, provide different advantages. For the former, the data are easier
to obtain, and the models are more training time and memory efficient; the latter
has the ability to synthesise shapes at flexible resolutions, which preserves the finer
details of complex 3D objects.

Within this context, this thesis aims to employ deep learning-based architectures
to learn latent spaces for non-linear 3D face shape models. Initially, we use explicit
representations, specifically point clouds, to model 3D faces and decompose them into
independent global identity and expression latent spaces, capturing their respective
variations. Notably, this method addresses a common challenge in this field, the
frequent absence of neutral expression ground truths, which is different from other
approaches. However, while global explicit representations can model 3D faces, they
may not always effectively capture finer details of facial regions. To overcome this
limitation, we introduce a novel method that employs implicit representations, i.e.,
SDFs, to learn segmented latent representations of specific facial areas. To our
knowledge, the approach we present, which is based on implicit representations, has
not been previously applied. To further evaluate the efficacy of these approaches,
we conduct a comparative analysis of models utilising different representations and
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architectures, focussing on their capability to reconstruct unseen inputs, generate
novel face shapes and explore applications.

In the following sections, we outline our research objectives, which include 3D
face disentanglement of identity and expression using explicit points-based shape
representation, and parts-based implicit 3D face modelling. Additionally, we conduct
a comprehensive comparative analysis to evaluate the effectiveness of these two
methods in 3D face modelling. Each of our following research objectives is divided
into two main subsections: the background and motivation behind our work, and
the specific contributions of our study.

1.1 EXPLICIT 3D FACE DISENTANGLEMENT

Our first objective focuses on disentangling the 3D shapes associated with identity
and facial expression from an input shape that is represented as an unstructured
point cloud. All 3D shape representation is in an explicit form.

1.1.1 Background and Motivation

Point clouds, as a form of explicit representations of 3D shapes, have seen widespread
use in recent years due to their ease of acquisition and relative simplicity compared
to other explicit representations. Moreover, architectures including PointNet [86],
PointNet++ [87] and Point Cloud Transformer [44] were proposed for processing
3D shapes using point clouds representation, providing the groundwork for the
architectural design of our network.

Since the introduction of linear 3DMMs in 1999 [5], which presented a PCA-based
3D face model to represent variations in identity and expressions, the task of 3D facial
shape modelling for identity and expression components has been a popular research
topic. Independent identity and expression representations are utilised in many
applications, including facial identity and expression interpolation, facial expression
transfer and facial neutralisation for recognition purpose. These applications heavily
rely on the effective disentanglement of identity and expression.

Concurrently, in the light of developments in deep learning and the transition
towards non-linear modelling of 3D faces, recent studies have proposed innovative
methods that use a single encoder and two decoders. This common architecture
encodes the entire face and outputs latent embeddings separately for identity and
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expression from the encoder. Following this, two decoders are employed to reproduce
the facial identity and expression based on their respective embeddings. However,
a notable challenge of this architecture is its dependency on the availability of a
corresponding facial identity for the input face shape, which is used as a reference
for the identity decoder. The distance between the predicted face identity from
the identity decoder and the facial identity ground truth can be employed within
a loss function in the supervised learning process for face identity reconstruction.
This loss function is critical not only for ensuring the accuracy of identity shape
reconstruction but also for keeping the learnt identity representations as separate
from the expressive ones as possible.

For example, a framework using two VAE models that share the same encoder but
employ two different decoders: one for facial identity shapes and the other for the full
face was proposed in [94]. As previously mentioned, an identity reconstruction loss
function, comparing the generated output to the original input, is implemented. The
strategy of utilising the identity loss function and ground truths was also adopted in
other research work, such as [46, 116, 48].

Although existing studies demonstrate strong performance in 3D face recon-
struction and disentanglement through the use of identity and expression latent
representations, a significant challenge arises in real-world applications such as
facial expression neutralisation: expressive faces are often available without their
corresponding neutral expression ground truths, i.e., facial identity.

This leads us to propose research question 1 (RQ1):

• RQ1: In the absence of neutral expression ground truths, how can we effectively
achieve the disentanglement of facial identity and expression, and accurately
reconstruct the neutral facial identity and the full expressive face using the
learnt decoupled latent representations?

1.1.2 Contributions of Our Work

To address RQ1, we propose a novel approach that integrates VAE and GAN
frameworks, specifically for processing 3D face shapes represented as point clouds.
This architecture consists of an encoder and two decoders, adhering to a structure
similar to those previously discussed. Distinctively, we incorporate an identity
discriminator, drawing inspiration from the innovative work presented in [40, 41].
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Their studies identified the ‘point of apathy’ within the expression space as the state
in which facial muscles are most relaxed.

Building upon this finding, we hypothesise that the origin of the expression
manifold, representing the connection between faces sharing the same identity, is the
apathy expression. To leverage this concept, we introduce an identity discriminator
into the adversarial learning process of our architecture. This discriminator is
designed to encourage the preservation of shared information within face shape
pairs that share the same identity, thereby ensuring the model effectively retains
identity-specific features. Consequently, in scenarios where neutral expression ground
truths are unknown, our strategy utilises the invariance of identities from the same
individuals, adopting the ‘apathy expression’ as the pivotal point in the expression
space for model training. Meanwhile, we also consider scenarios where facial identity
ground truths are present in the dataset, ensuring our settings align with other
architectures for easier comparison under both scenarios.

Our hypothesis and innovative design have enabled our network to demonstrate
superior performance not only in disentanglement and reconstruction tasks but
also in facilitating practical exploration into diverse scenarios of face identity and
expression modelling. Empirical validation across multiple datasets has confirmed the
robustness of our method and its ability to outperform existing models. Furthermore,
effective disentanglement of facial identity and expression has inspired our further
research, especially in the representation of finer segmented facial regions based on
facial neutral expression, i.e., facial identity shapes.

In summary, at the time of its initial proposal, to the best of our knowledge, our
proposed method is the first to consider the challenge of unknown facial identity
ground truth, introducing an end-to-end architecture designed to address RQ1.

1.2 PARTS-BASED IMPLICIT 3D FACE MODELLING

Our second objective also aims to disentangle identity and expression, with the
additional aim of disentangling latent codes for facial parts (e.g. eyes, nose, mouth,
etc), whilst exploring the benefits of employing implicit shape representation.
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1.2.1 Background and Motivation

In 2019, the introduction of deep implicit representations marked a milestone in the
modelling of 3D shapes, including SDFs [79] and occupancy functions [72, 18, 66] that
model 3D shapes as continuous functions over the 3D space. Such representations
have become highly appealing for many methods, as they can better represent
complex topologies of 3D shapes and demonstrate robustness against noisy and
incomplete data. Moreover, the inherent continuity of these representations ensures
their compatibility with deep generative models and 3D shape reconstruction is
achieved by gradient-based optimisation.

Following the discussion and achievement of 3D face modelling to disentangle
identity and expression, our research interests expanded to include modelling of the
3D face into smaller facial regions. This aims to improve both the interpretability
and controllability of the 3D face model. Notably, methods like those proposed in
[34, 2] employ a VAE to learn decoupled latent variables for different facial parts.

The study conducted in [2] employs seven different encoders, each with a varying
number of dimensions, to separately learn the latent codes for corresponding prede-
fined facial parts. These latent codes are then concatenated into a unified vector as
the input for a single decoder to reconstruct full faces. Furthermore, the work intro-
duces a specialised loss function designed to reinforce latent space disentanglement
and ensure that each part of the latent vector affects only the assigned part of the
face.

In another approach presented in [34], a network utilising a single encoder and
decoder is employed to learn concatenated latent representations for the entire face.
Additionally, this method divides the latent code into fixed dimensions allocated for
specific facial parts and introduces a loss function to enforce part-wise similarities
within the latent codes and differences across the remaining parts.

Compared to existing work, our research uniquely concentrates on learning in-
dependent latent vectors for individual facial parts, as opposed to concatenating
them into a single latent vector for the entire face, including its decoupled compo-
nents within the vector. Furthermore, we place particular emphasis on the use of
implicit representations for 3D face shapes, leveraging their advantages over explicit
representations, as introduced previously.

Aligned with our second research objective, we propose the second research
question:
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• RQ2: How can we effectively learn a 3D face model with independent facial
part latent representation and control, while still dealing with facial expression,
and additionally gaining the benefit of implicit representations for arbitrary
resolution 3D face shape reconstruction?

1.2.2 Contributions of Our Work

In our second study, we introduce a sequential network designed for facial parts
deformation, inspired by the work presented in [117]. This method is aimed at
answering RQ2 and filling the research gap in 3D parts-based facial modelling using
implicit representations, which learns independent latent representations for multiple
facial regions in an end-to-end manner.

In order to learn separate latent spaces for specific facial components, we prede-
fined three key semantic facial regions: the nose, eyes and mouth. For the rest of
the face, we consider it as a single part, referred to as the ‘remainder’. While it is
possible to further subdivide the remaining parts, such as the forehead and cheeks,
we opted to group them together since these regions are less semantically meaningful
and their deformations are less obvious in qualitative observation compared to the
other predefined areas.

Unlike existing VAE-based architectures that learn a unified, disentangled latent
representation for the face shape, our method employs a deformation network com-
prising a set of neural networks. This end-to-end network is designed to transform
an input face shape to align with a predefined template face by sequentially exe-
cuting deformations tailored to designated facial regions. In detail, we develop five
specialised neural nets for each facial region: NoseNet for the nose, EyesNet for the
eyes, MouthNet for the mouth, RemNet for the remaining parts of the face; and
TemplateNet (also known as SDFNet), which serves as a reference framework to
output the SDFs for the overall facial template. Each network is designed to learn
latent embeddings specific to its corresponding facial part, enabling targeted and
precise deformation processes.

In the architecture, we introduce an additional component, i.e., ExpNet, specif-
ically designed for learning separate expression latent variables. This innovation
significantly contributes to the disentanglement of facial expression from identity,
further improving the robustness of our method. Although the disentanglement of
identity and expression in 3D facial modelling has been a focus of our previous re-
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search objective, the key difference is that ExpNet is based on implicit representations,
i.e., SDFs of 3D faces, rather than point clouds.

To enhance the effectiveness of our representations and improve their generative
capabilities, our method adopts an innovative data augmentation strategy: swapping
facial features, i.e., the nose, eyes, and mouth, among different instances in the
dataset. Inspired by [34], this technique involves exchanging these features with
those from other randomly selected face parts within our training dataset. Since we
use affine transformation that optimally (least squares) matches the facial feature
peripheral vertices into the graft site vertices of the face, the preprocessed face is
different from the original face.

However, a challenge arising from our data augmentation strategy is the incoher-
ence between the swapped features and the original face, resulting in a visible seam on
the face. To overcome this issue, we explore the use of a Laplacian blending technique
during the feature swapping process. Finally, the swapped faces demonstrate that
employing Laplacian blending effectively eliminates the seams at the junctions of
swapped features, significantly improving the quality of the face reconstruction.

This end-to-end deformation network, using implicit representations, not only
disentangles expression and identity latent representations but also learns independent
latent embeddings for specific facial regions. There are many applications based
on these learnt latent embeddings, including face part editing and facial region
interpolation.

In summary, the contributions of this work are as follows:

• A novel strategy that integrates facial feature swapping with Laplacian blending
to enhance data augmentation, ensuring seamless generation of face or head
shapes.

• The development of an end-to-end deformation network that effectively disen-
tangles latent representations of expression and facial parts-based identity on
both 3D face and head shapes, using implicit representations.

• Comprehensive evaluation on publicly available datasets that demonstrates
strong performance in face reconstruction and disentanglement of 3D face or
head shapes.
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1.3 COMPARISON OF EXPLICIT AND IMPLICT APPROACHES

As outlined in the research objectives 1 and 2 above, we aim to model 3D face shapes
using two different representation forms, i.e., point clouds (explicit shape representa-
tion) and SDFs (implicit shape representation), each with its own advantages. The
networks developed for these objectives are designed to facilitate a thorough learning
process, achieving decoupled latent representations for facial expressions, identity
and individual facial parts.

Given that both of our proposed methods successfully disentangle expression
and identity latent vectors, our third research objective is to conduct a comparative
analysis between these two methods. This comparison evaluates their performance
from five perspectives: the quality of 3D face reconstruction, the effectiveness in
disentanglement of facial features (specifically identity and expression), the ability to
generalise to new faces, the practical applications based on their learnt latent codes
and computational resource requirements.

For the first three perspectives, our comparisons focus only on the learnt latent
representations for facial identity and expressions using the same dataset, which is
easier for comparison. Moreover, in the visualisation of various applications of our
disentangled latent codes, we also consider the additional capability of our implicit
deep learning to disentangle facial parts. This further explores the effectiveness of
our overall 3D face modelling architectures.

In this thesis, we not only present comprehensive comparisons between our
methods and other state-of-the-art face modelling methods proposed in recent years
but also conduct an intra-comparison of our own methods, with a particular focus
on 3D face modelling.

1.4 STRUCTURE OF THE THESIS

The following chapter presents a comprehensive review of existing studies relevant
to the topics explored in our study. This includes a thorough review focussing on
3DMMs, with their fundamental components, i.e., representations of 3D shapes, and
the deep generative models that support the construction of 3DMMs, and studies
most directly connected to our research.
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Chapter 3 focuses the research on 3D face disentanglement of facial identity
and expressions, across a variety of scenarios. Through comprehensive validations
on multiple datasets, we demonstrate the robustness and superior performance of
our proposed architecture. Moreover, we explore various applications based on this
method.

Chapter 4 provides a detailed explanation of our research topic on implicit 3D
face modelling on identity, expression and facial regions. In this chapter, we present
an in-depth description of our architecture, the data augmentation strategy and the
improvements implemented for 3D face reconstruction. Additionally, we provide
comprehensive evaluations on various datasets, comparing our results against state-
of-the-art approaches. This chapter further discuss the practical applications of our
research.

Chapter 5 describes a thorough comparative analysis of our proposed methods
for 3D face modelling. We not only present new evaluation results that highlight the
strengths and limitations of each method in this chapter, but also introduce different
applications based on our studies.

A final chapter concludes the thesis by summarising the key contributions in 3D
face modelling, critically discussing the potential limitations of our methods and
exploring future work.



2

Literature Review

In this chapter, a comprehensive review of the literature relevant to the proposed
research topic is presented. It provides not only the broader context within which
our research is situated, but also the research gaps this work is intended to fill. The
literature review is structured as illustrated in Figure 2.1 and the various sections
will examine the following essential components of our work:

i. Representations of 3D shapes, establishing the fundamental knowledge
necessary for understanding models of 3D shapes. This includes both explicit
and implicit representational forms, which will be described in Section 2.1.

ii. 3D Morphable Models (3DMMs), as the core of our literature review and
introduced in Section 2.2, 3DMMs are generative models originally designed
by Blanz and Vetter [5] for linear representations of facial shape (identity and
expression) and texture.

iii. Deep generative models, focussing on Variational Autoencoders (VAEs) and
Generative Adversarial Networks (GANs) in Section 2.3, represent the deep
network technical foundation commonly adopted for constructing 3DMMs.

iv. Literature that is most closely related to the thesis contributions,
including learning of 3D face latent representations of identity and expression,
and separate facial regions, which aim to achieve disentanglement, will be
discussed in Section 2.4.

Finally, we close the literature review in Section 2.5, by analysing key findings and
highlighting their relevance to our studies.

11
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3D Morphable Models

Shape

Texture

parts representations

ID/EXP representations

Representations
for 3D shapes

Explicit or Implicit 

Deep generative models
GAN VAE

parts disentanglement

id-expression disentanglement

Contributions

Figure 2.1: Conceptual framework for the relationship between the various literature
review sections.

2.1 3D SHAPE REPRESENTATIONS

This work focuses on the analysis of 3D face shapes, aiming to develop sophisticated
deep 3DMMs, the details of which are extensively discussed in Section 2.2. In this
section, we introduce representations of 3D shapes, a fundamental component for
understanding 3D face modelling.

2.1.1 Explicit Representations of 3D Shapes

3D shapes can be described using various explicit representations including voxels,
point clouds and meshes. Figure 2.2 shows the Stanford bunny 3D shape using these
representations. Typical explicit representations are:

• Depth Maps: 2D images that encode depth information, enabling 3D shapes
to be represented by RGB-D (color and depth) images captured from different
viewpoints and projected into a 2D plane [108].

• Voxels: analogous to pixels in 2D images, represent 3D shapes through a
regular grid structure in 3D space and are commonly used in 3D reconstruction
but may necessitate significant resource consumption as resolutions increase.
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Figure 2.2: Three types of explicit representations for the Stanford Bunny object:
meshes, point clouds and voxels.

• Meshes: composed of vertices, edges and faces, offer lower memory and
computational costs compared to voxels. Mesh vertices fully contain all local
surface information, including vertex connectivity, and the surface normal
at any point on the shape surface can often be approximated by a nearest
neighbor or a local linear combination of vertex normals. Their inherent
connectivity facilitates the application of graph-based Convolutional Neural
Networks (CNNs), leading to high-quality reconstructions of 3D objects.

• Point Clouds consist of a set of sampled 3D coordinates that represent the
surfaces of 3D shapes. They are effective in capturing fine details, relatively
easy to obtain and also convenient to process.
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Figure 2.3: PointNet architecture (figure cited from [86]).

The introduction of PointNet [86] and its extension, PointNet++ [87], marked
a significant milestone in the processing and popularisation of point clouds. We
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Figure 2.4: PointNet applications (figure cited from [86]).

will provide detailed introductions to these models since we employed PointNet as
the base network for training our explicit face model. PointNet [86], a unified deep
network architecture, directly uses point clouds due to their permutation invariance,
for many applications, including part segmentation, object classification and scene
semantic segmentation, as detailed in Figures 2.3 and 2.4. Given the traditional
CNN’s requirement for a more regular grid structure and the irregular format of point
clouds that are less complex than meshes, a straightforward and widely adopted
deep network was proposed that processes unordered point clouds directly as both
input and output. As depicted in Figure 2.3, for the task of object classification, the
classification network takes n sampled points represented as 3D coordinates (x, y, z)
through input and feature transformations, and employs max pooling to aggregate
the features of all sampled points into global features, yielding k predicted scores
for the corresponding classes. For a more complex segmentation task, an additional
network resolves it by leveraging not only the global features but also the local
features of each point. These concatenated global and local features are then used
to predict scores for each point.

To address the limitations of PointNet and improve its ability to recognise fine
details, capture local structures and improve generalisability for complex scene
segmentation tasks, Qi et al. proposed an enhanced version named PointNet++
[87], a hierarchical feature learning network to combine features at multiple scales.
This approach significantly improves upon the original model’s performance in
scene segmentation, as illustrated in Figure 2.5, by addressing several drawbacks of
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PointNet:
1. PointNet employs only a single max pooling layer for all sampled points,

leading to information loss. In contrast, PointNet++ introduces a hierarchy
of abstraction layers that progressively process points to abstract larger local
regions across different scales.

2. Unlike PointNet, which applies point-wise Multilayer Perceptrons (MLPs) to
extract features for each point, PointNet++ introduces two key layers, i.e.,
sampling and grouping, which enables the selection of certain points from the
input as centroids for local regions and the construction of these local regions
by identifying neighbours of these selected points.

3. In the segmentation network of PointNet, global features are directly con-
catenated with local features. PointNet++, however, subsamples points and
interpolates features on these points before concatenating them with skip-
linked local features from the corresponding scale to achieve more distinctive
segmentations.

Wall Floor Chair Desk Bed Door Table

PointNet Ours Ground Truth

Figure 2.5: The comparative performance between PointNet and PointNet++ in
room scene segmentation, ‘Ours’ refers to PointNet++ method (figure cited from
[87]).

In addition to PointNet and PointNet++, which are based on point cloud rep-
resentations, several other methods utilise different explicit representations of 3D
shapes. For example, Yan et al. employed voxel representation in an innovative way
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to train a single view AE model for 3D volumetric reconstruction in an unsupervised
manner, combining an image encoder, volume decoder and perspective transformer
[111]. Chen et al. proposed a novel deep GAN for 3D shape detailisation, which
refines low-resolution coarse voxel shapes through voxel upsampling to achieve higher-
resolution shapes with geometric details [17]. Zhou et al. introduced a Point-Voxel
diffusion network, employing denoising diffusion models with hybrid point-voxel
representations of 3D shapes, pioneering a diffusion process that effectively captures
the underlying structure and patterns by mutually transforming point clouds and
voxel grids [119]. For meshes, MeshGAN [19] built non-linear 3DMMs using mesh
representations. Liu et al. chose meshes for their 3D surface representations, enabling
easy optimisation based on many graphics techniques and arbitrary shape manipu-
lation for applications like relighting and simulation [69]. They leverage the graph
structure of 3D meshes and represent these meshes with deformable tetrahedral grids,
marking the first application of a diffusion model for the unconditional generation of
high-quality 3D meshes. Tarasiou et al. described the Locally Adaptive Morphable
Model (LAMM) [101], which encodes a source mesh into a latent code and applies
additional displacements at specific controlled points within each facial region to
generate semantically partially changed new faces.

2.1.2 Implicit Representations of 3D Shapes

As one of the many 3D shape representations, deep implicit functions are gaining
increasing attention. Unlike traditional explicit representations (e.g. point clouds,
meshes and voxels), deep implicit functions describe shapes within a continuous
volumetric field, defining the spatial relationship between points and surfaces. Such
representations are capable of representing shapes with flexible topologies and
continuously increasing resolution under reasonable memory consumption.

In 2019, Park et al. introduced a learnt continuous Signed Distance Function
(SDF) [79] that facilitates high-quality representation, interpolation and completion
from partial or noisy 3D data. SDF represents shape surfaces within a continuous
field, where the sign determines whether points are inside (negative) or outside
(positive) the shape, and the magnitude indicates the distance to the surface bound-
ary with the boundary itself as the zero level-set of the SDF. Concurrently, the
introduction of occupancy probability has become another option that can be used
to achieve flexible resolutions and is more robust to complicated topologies [72,
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Figure 2.6: Two types of implicit representations: left: occupancy functions (the
chair from [72]); right: SDFs (the Stanford bunny from [79]).

18, 66]. Mescheder et al. implicitly represented the 3D surface as a continuous
decision boundary, approximating a 3D function that assigns every possible point
an occupancy probability between 0 and 1 [72]. Both SDF and occupancy function
representations are depicted in Figure 2.6.

Since the early developments in deep implicit representations, exemplified by
DeepSDF [79] that leveraged the auto-decoder model, there have been improvements
in coarse reconstruction of shapes such as chairs and airplanes, yet challenges remain
at finer levels of detail. Subsequent advancements have been presented to enhance
the 3D shape reconstruction performance in these implicit representations, especially
in detailisation, as highlighted by [29, 98, 63]. Duan et al., inspired by the human
learning process that begins with simpler tasks and moves to more complicated ones,
proposed a shape curriculum learning approach, organising tasks in an ascending
order of difficulty based on surface accuracy [29]. It outperformed DeepSDF on re-
construction under the same architecture as well as the same set of training data and
number of epochs. Unlike DeepSDF that persistently focuses on the same objective,
such an approach started from the learning of smooth shapes with a high tolerance
parameter. Such a method allows errors smaller than parameters during SDFs
estimation, enabling control over surface accuracy through the adjustment of the
tolerance parameter. Lipman designed a new loss function for training implicit neural
representation directly from input raw geometry, where the learnt density function
converges to an accurate occupancy function, and its logarithmic transformation
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converges to a distance function [63]. Takikawa et al. combined a small surface
extraction neural network with a sparse-octree data structure, achieving state-of-
the-art geometry reconstruction quality and enabling real-time rendering in 2021 [98].

ReLU (baseline) SIREN (ours)ReLU (baseline)SIREN (ours)

Figure 2.7: Comparison of shape representation between SIRENs and ReLU implicit
representations (figure cited from [91]).

Sitzmann et al. [91] proposed a general pipeline, Sinusoidal Representation
Networks (SIRENs), that is capable of being applied on multiple scenarios like
representing images, wavefields, video and sound. SIRENs leverage periodic activation
functions with MLPs for implicit neural representations, enabling the robust fitting
of complicated 3D shapes and their derivatives, as well as addressing challenging
boundary value problems, outperforming traditional MLP networks with ReLU
activation in SDFs-based reconstruction, as illustrated in Figure 2.7. Such an
approach significantly improves the capacity of neural networks that employ implicit
functions to reconstruct fine details of objects and the complexity of scenes. Moreover,
one of the most challenging issues for a network with sine activation functions is
its initialisation, which impacts the network’s final performance and convergence
speed during training. To mitigate this issue, Sitzmann et al. presented a novel
initialisation scheme for training SIRENs that preserves a normal distribution with
a stardard deviation of 1 for each input to the sine activation function through the
network, ensuring the output derived from the initialisation remains independent of
the layers of networks.

In our work on 3D face modelling, we utilised SIRENs and their initialisation
scheme to learn priors for implicit representations, i.e., SDFs, effectively fitting
differentiable SDFs to parameterise 3D human faces, especially focusing on details
of facial regions. To generate unseen new faces in our research, the learnt latent
codes are essential. Adopting the idea from Sitzmann et al. , where each SIREN is
defined by its parameters, we modelled latent codes onto these parameters in order
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to learn a latent space for implicit representations, different from previous methods
that typically learn latent codes for general 3D objects or scenes.

On the other hand, deformation networks have been specifically designed for
use with implicit representations. The exploration of deformed implicit networks
for objects with complex geometric variations was investigated in [118, 27, 95,
47]. Deng et al. focussed on leveraging a template implicit field across object
categories, representing 3D shapes through their combination with the template,
3D deformations and corrections [27]. Zheng et al. learnt a plausible template
and employed Long Short-Term Memory (LSTM) as a spatial warping module to
achieve point-wise transformations in an unsupervised manner [118]. Furthermore,
Sundararaman et al. [95] and Jung et al. [47] developed auto-decoder-based networks
to reconstruct a 3D deformation field between a fixed template and a target shape.

Concurrently, the application of implicit representations in 3D face, body and
hand modelling has emerged, such as [96, 113, 89, 21]. For instance, Yenamandra
et al. introduced i3DMM [113], the pioneering deep implicit 3D morpable model of
full heads, and created a new dataset consisting of 64 subjects, each with different
expressions and hairstyles. This method established a 3D model through the use
of a reference network that encodes a single reference shape, allowing all individual
shapes to be deformed towards this reference without learning a latent code for the
reference shape itself. Additionally, a shape deformation network was developed to
learn the latent codes of the displacement aligning the corresponding shape with the
reference. Furthermore, a colour network was proposed to accurately capture the
colour for the given shape and hairstyles. Giebenhain et al. proposed a novel 3DMM
for complete human heads [38], innovatively embedding the human identity within a
canonical signed distance field and the expressions within a neural deformation field.
Additionally, they released a newly captured dataset comprising over 5200 head
scans, including 29% female, from 255 different identities. A Pixel-aligned Implicit
Function (PIFu) [89], introduced by Saito et al., enables textured surface inference
of clothed 3D humans from a single or multiple input images. PIFu aligns individual
local features at the pixel level to the global context of the entire object. Chibane
et al. utilised occupancy functions in their approach [20]. Instead of using a single
latent code to encode a 3D shape, they constructed a rich encoder for the input data
by subsequently convolving it with learnt 3D convolutions to create multi-scale deep
features. For the decoder, they extracted deep features from the grid at continuous
point locations to determine their occupancy probability. This approach successfully
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reconstructs articulated structures, i.e., human body, while preserving input details.

2.1.3 Analysis

The use of both explicit and implicit representations is widespread in 3D modelling,
each bringing its unique strengths, as introduced in Sections 2.1.1 and 2.1.2. While
significant advancements have been made and many innovative ideas have been
proposed, challenges remain in learning latent spaces for specific facial regions and
generalising to unseen facial parts, especially when using implicit representations.
Although explicit representations, such as point clouds and meshes, have shown
progress in this area, they come with limitations, particularly in achieving flexible
resolutions, an inherent advantage of its implicit counterpart.

On the other hand, the use of unsupervised networks for modelling 3D facial
identity and expression has attracted considerable research interest for both explicit
and implicit representations. The lack of corresponding identity and expression
ground truths in real-world scenarios, however, adds complexity to this issue.

2.2 3D MORPHABLE MODELS (3DMMS)

In this section, we focus on the technical core of our research, i.e., 3DMMs. We
begin with an introduction to the foundational 3DMM [5], which was first proposed
in the late 1990s, and outline its subsequent development.

Much work focuses on analysing 2D and 3D images of the human face in terms
of their physically-meaningful components, i.e., subject identity, facial expression,
surface reflectance, illumination and camera parameters. The introduction of 3DMM
is an early notable milestone, which was proposed by Blanz and Vetter in 1999 and
specifically designed to model textured 3D faces. This innovative model, represented
by a multi-dimensional 3D morphing function, accurately maps shapes and textures
with dense correspondence into a vector space, rather than relying on facial feature
points alignment, and generates new faces through linear combinations of a base
‘prototype’ face, as mathematically represented in Equation (2.1) for shape, and
Equation (2.2) for texture.

S = S +
m∑

i=1
αisi, (2.1)
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T = T +
m∑

i=1
βiti, (2.2)

where S ∈ R3n (x1, y1, z1, ..., xn, yn, zn) represents the facial shape vector and
T ∈ R3n (r1, g1, b1, ..., rn, gn, bn) represents the facial texture vector, consisting of n

points. S and T denote the mean shape and texture, respectively. α and β are the
parameters for the descending order eigenvectors s and t, respectively. Additionally,
m typically represents the number of principal components in the model. This model
enables the automatic alignment of the 3D face morphable model with 2D images
and facilitates the registration of new 3D face shapes. The model was built from the
first 100 shape principal components and the first 100 texture principal components,
both derived from 200 exemplar faces, where new characters can be generated from
modifying the facial attributes by varying the model coefficients.

2.2.1 Developments of 3DMMs

Further improvements by Blanz et al. [4] refined the model by applying PCA not
only to the shape space for geometric representation but also to the incorporation of
expressive principal components, which is a common practice. From then on, work
of others concentrated on identity and expressions analysis. Bouaziz et al. proposed
a dynamic 3D expression model that combined an identity PCA model, a dynamic
expression template, and a parameterised deformation model in a low-dimension
space [9]. This model was able to transform the neutral shape to generate user-specific
blendshapes without requiring manual assistance. A statistical and multilinear model
[10] was employed to analyse facial identity and expression, exploring their variations.
This model decomposed a high-dimensional global shape space into many localised
and decorrelated low-dimensional shape spaces, enabling it to avoid overfitting during
training, learn local fine details, and fit 3D faces from noisy and occluded shapes
from various sources.

In subsequent years, 3D face models were developed that use more sophisticated
shape morphing techniques (exemplified by the widely used Basel Face Model
(BFM) [81]) or leverage a larger body of 3D training samples [8, 6, 7]. The BFM
was constructed based on 200 face scans from the training set, consisting of 100
male and 100 female faces. These face scans were captured using a high-quality
scanning device that was intended to improve the precision of shape and texture, and
correspondence between scans was established through the Optimal Step Non-rigid
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Iterative Closest Points (NICP). To facilitate the synthesis of new faces, the shape
and albedo PCA models are learnt, enabling detailed and accurate facial modelling.
Booth et al. developed a statistical feature-based texture model from “in-the-wild”
facial images, which fully corresponded to a statistical shape in both identity and
expression variations [6]. Furthermore, Booth et al. [8, 7] were the first to propose
a large-scale 3DMM in a neutral expression, constructed automatically from 9,663
different face identities, and tailored for specific gender, age and ethnicity groups.
Prior to their work, 3DMMs were constructed using small datasets with manual
preprocessing work for face meshes. Constructing a 3DMM typically involves two
critical stages: establishing dense correspondence between face meshes to ensure
a shared topology, and performing similarity alignment and statistical modelling.
In their methodology, Booth et al. automatically localised the landmarks and then
employed NICP based on these automatic landmarks to align all meshes to a template.
Finally, they constructed a global PCA from the face meshes. The automatic dense
correspondence proposed in [7] not only uses NICP but also compares with other
two ‘UV’ based interpolation techniques, UVTPS and UV-Optical Flow (UV-OF). A
2D ‘UV’ space was defined for each face mesh and associated with its corresponding
3D surface through a bijective mapping. Thus, the correspondence between two
‘UV’ images represented the corresponding between two mapped 3D meshes. The
comparison proved that, compared with UVTPS and UV-OF, NICP is a much better
candidate for building an anatomically accurate and relevant statistical model.

Recent developments in 3D face modelling have expanded the scope of models
to cover the full cranium as well as the face [25, 24]. The model proposed by
Dai et al. was the first public shape-and-texture craniofacial 3DMM of the full
head, which could be used in the clinical applications for several types of surgical
intervention. This innovative work not only built a global craniofacial 3DMM but
also developed demographic-specific sub-population 3DMMs (male, female, aged less
than 15, aged between 15 to 30, aged between 31 to 50, aged over 50, using data
from 1,212 subjects, 606 female and 606 male) within the Headspace dataset. It also
introduced a high-quality texture map for statistical texture modelling. Ploumpis et
al. extended this innovation by presenting a comprehensive fused 3DMM of head
shapes, including the face, cranium, ears, eyes, teeth and tongue [84]. To achieve this
nearly complete model, they blended the facial detail from an existing face model,
i.e., the Large-Scale Face Model (LSFM) [8], with the existing full head model, i.e.,
the Liverpool-York Head Model (LYHM) [25] and they called this the Universal
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Head Model (UHM). They proposed an interesting idea to find a universal covariance
matrix that combines the covariance matrix of the highly detailed facial attributes
from LSFM and the covariance matrix of the head distribution from LYHM, using a
Gaussian processing framework.

FLAME (Faces Learned with an Articulated Model and Expressions) [61], as
proposed by Li et al., is a highly influential 3D morphable model in the domain, which
is a statistical expressive head model that explicitly separates the representations
of identity, expression and pose. Incorporating neck, jaw and eyeballs into the
identity latent space, FLAME is based on the analysis of 3,800 head shapes for
identity, pose parameters from 8,000 registered heads, and expressions from 21,000
registered frames of 3D motion sequences. DECA (Detailed Expression Capture and
Animation) [31] regresses a parameterised face model with geometric details and
generic expression parameters. This process enables reconstruction of a detailed 3D
head model with detailed face geometry from a single face image.

While many of these models operate within a linear subspace following a Gaussian
distribution, recent innovations have seen the introduction of models that incorpo-
rate articulated components with non-linear transformation [106, 19], significantly
augmenting the representation power of 3DMMs. Tran and Liu proposed a non-linear
3DMM that utilised a CNN encoder to estimate the parameters for shape, texture
and projection, as well as two decoders for mapping these parameters back to their
corresponding 3D shapes and textures [106]. Remarkably, this model learnt the
non-linear 3DMM directly from unconstrained 2D faces images without collecting
3D scans. Cheng et al. employed ChebNet [26] as the core network architecture to
build a generator and discriminator to learn the non-linear identity and expression
representations [19]. Moreover, it is a significant common practice among many
non-linear 3DMMs to decouple the identity and expression features from a 3D face
shape during the model’s construction, a technique exemplified by the work of Cheng
et al. [19]. Further contributions include the work of Tewari et al., who demon-
strated multi-frame video-based, self-supervised training methodology for a deep
network that disentangles facial shape, appearance, expression, and illumination
[102]. Additionally, Liu et al. proposed a framework for learning a non-linear face
model by treating 3D scans as unorganized point clouds, thereby transforming them
into shape and expression latent representations before reconstructing the 3D shapes
[64]. Similarly, Liu et al. explored the use of an encoder-decoder network to regress
3D face shapes from 2D face images, effectively disentangling the identity from
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non-identity components of 3D face shapes [65].
Recent studies have introduced novel 3DMMs [70, 59, 103, 32, 113, 117, 38, 101]

provide unique contributions to 3D face or head modelling. These developments
highlight the continuous innovation in the field, offering diverse applications and
improved modelling techniques. Our research, while aligning with these innova-
tive algorithms, specifically focuses on constructing shape-based non-linear 3DMMs
without incorporating texture. By exploring more semantically segmented represen-
tations for 3D expressive faces – disentangling identity and expression, and further
segmenting the facial shape into several semantic regions for modelling, our approach
distinctively enhances the understanding in the structural aspects of 3D modelling.

2.3 DEEP GENERATIVE NETWORKS

Following recent progress in deep generative networks, the study of 3D shape
reconstruction has seen a gradual rise in attention. A desirable generative model is
able to synthesise highly realistic and varied 3D shapes. Given that we plan to use
the VAE architecture and GAN in the proposed work, we primarily introduce these
two generative models and elaborate on their application in 3D shape modelling,
with a particular focus on 3D face modelling, as explained in Section 2.3.1 and
Section 2.3.2, respectively.

In addition to these two models, diffusion models have emerged as a significant
contender. Known for their excellent ability to generate high-resolution 2D images
of diverse quality with high fidelity [45], diffusion models have recently attracted
considerable attention. Among others, DreamFusion [85] represents a pioneering
application of diffusion models to text-to-3D shape synthesis.

2.3.1 Variational Auto-Encoders (VAEs)

VAE has emerged as one of the most popular and foundational networks across
various architectures in the domain of generative models. The general VAE framework
is shown in Figure 2.8.

To explore the mathematical details of VAE, we begin with an explanation of
the simpler auto-encoder (AE) architecture. The core principle of AE architecture
involves employing neural networks as the encoder and decoder component. The
encoder reduces the dimensionality of the input data, while the decoder reconstructs
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Figure 2.8: General framework of VAE.

the original data from the learnt, comparatively low-dimensional space. A significant
challenge in reconstructing data from an AE is to ensure the regularity of the new
reconstructed data, which heavily depends on the distribution of the original dataset.
In response to this issue, Kingma and Welling proposed VAE [54], which adopted a
probabilistic approach to addressing the limitations of traditional AEs by modelling
the distribution of input data. Although VAE shares a similar architecture (encoder-
decoder) with AE, its encoder represents a distribution over the latent space, rather
than encoding a single latent code for each input.

To provide a comprehensive understanding of VAE, we present an overview from
a mathematical perspective [53]. We assume the input observed data is denoted by X,
and its corresponding latent variable, which is learnt by the encoder, is denoted by z.
VAE aims to estimate the parameters θ to model the probability distribution p (X)
of the observed data. To facilitate the learning of the latent variable z in the encoder,
a distribution p (z|X) is approximated, which represents the posterior distribution
of the latent variables given the observed data X, as denoted by Equation (2.3).
Subsequently, the decoder models the conditional likelihood distribution p (X|z)
to maximise the likelihood of the observed data p (X), which is represented in
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Equation (2.4).
p (X) =

∫
p (z) p (X|z) dz, (2.3)

θ∗ = arg max
θ

∫
p (z) pθ (X|z) dz, (2.4)

where the prior distribution p(z) over the latent variables is defined, from which z is
sampled.

Due to the intractable posterior distribution of p (z|X), the distribution qϕ (z|X)
is employed to approximate it. We use the Kullback-Leibler (KL) divergence term
DKL (qϕ (z|X) ||p (z|X)) to minimise their difference, as expressed in Equation (2.5).

DKL (qϕ (z|X) ||p (z|X)) = Ez

[
log qϕ (z|X)

p (z|X)

]
. (2.5)

While the KL term DKL (qϕ (z|X) ||p (z|X)) is not computable due to the intractable
nature of p (z|X), another KL term DKL (qϕ (z|X) ||p (z)) is applied to measure the
similarity between the approximated posterior distribution qϕ (z|X) and the prior
distribution p (z), as formulated in Equation (2.6),

DKL (qϕ (z|X) ||p (z)) = Ez

[
log qϕ (z|X)

p (z)

]
, (2.6)

where the prior p (z) is assumed to be a unit Gaussian distribution N (0, I).
Under the assumption we explain above, the latent variables z are approximately

distributed with qϕ (z|X). Therefore, the corresponding log-likelihood of the observed
data is rephrased as follows,

log p (X) = Ez∼qϕ(z|X) [log p(X)]

= Ez∼qϕ(z|X)

[
log p (z) p (X|z)

pθ (z|X)

]

= Ez [log p (X|z)] − Ez

[
log qϕ (z|X)

p (z)

]
+ Ez

[
log qϕ (z|X)

pθ (z|X)

]
.

(2.7)

Combining Equations (2.5), (2.6) and Equation (2.7) one can further derive Equa-
tion (2.8):

log p (X) = Ez [log p (X|z)] − DKL (qϕ (z|X) ||p (z))

+DKL (qϕ (z|X) ||pθ (z|X))

≥ Ez [log p (X|z)] − DKL (qϕ (z|X) ||p (z)) , (2.8)
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where Ez [log p (X|z)] is for recovering the input data from its latent representation
by the decoder. We minimize DKL (qϕ (z|X) ||p (z)) to make the posterior distribution
DKL (qϕ (z|X)) close to the prior distribution p (z).

Thus, VAE aims to maximise the Evidence Lower Bound term (ELBO) on the
log-likelihood of the observed data X, which is represented in a concise manner, as
shown in Equation (2.9):

log p (X) = Ez∼qϕ(z|X) [log p(X)] ≥ ELBO, (2.9)

where the ELBO is defined as the following expectation:

ELBO = Ez [log p (X|z)] − DKL (qϕ (z|X) ||p (z)) . (2.10)

In other words, VAE optimises parameters θ for the decoder and ϕ for the encoder
to maximise the log-likelihood of the observed data X, as expressed as follows,

θ∗, ϕ∗ = arg max
θ,ϕ

log p (X) . (2.11)

Simply put, the negative ELBO is considered as the loss function of VAEs.
As the essential mechanism of VAE has been discussed, it is imperative to explore

their deployment across diverse architectures to address a variety of problems,
particularly within the context of 3D generative models.

Tan et al. designed a mesh VAE network to navigate the probabilistic latent
space of 3D surfaces, effectively capturing the most important mesh-based rotation-
invariant features [99]. It enabled the learning of reasonable representations for sets
of deformation shapes, such as human bodies in different poses, expressive faces and
hands with diverse gestures, and facilitated the generation of new shapes not present
in the original dataset.

While VAEs excel in reconstructing the complex shapes, they often produce
blurry outcomes. To address this, Liu et al. proposed an innovative approach that
initially learns global latent variables and then integrates them with local latent
codes representing a single level of feature abstraction, aiming to reconstruct objects
that are realistic rather than blurry [67]. Bagautdinov et al. used a VAE for 3D
face modelling with multiple levels of latent variables, where lower levels capture
global information and high levels focus on local deformations [3]. They performed
interpolations of only the higher-level latent variables with fixed lower ones to
transition high-frequency details from beardless to bearded faces. If interpolations
were done on lower-level variables, the entire face geometry would be changed.
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Both Kim et al. [51] and Li et al. [60] achieved more sophistication of 3D
shape reconstruction, conducting VAE-based models using the ShapeNet dataset [14],
which includes models of various categories, such as bags, airplanes and lamps. Kim
et al. integrated an attention-based transformer with VAE architecture, proposing
a novel hierarchical VAE that learns latent representations at multiple scales [51].
It enables the capture of coarse-to-fine dependencies among categorical elements,
generating high-quality, diverse objects across various categories. Li et al. employed
the shape primitive-based point-cloud representations and designed a part-aware
VAE framework to semantically disentangle the object parts, e.g. chairs, into latent
spaces [60]. This framework includes 3D point clouds, 3D shape primitives and pose
transformations to a canonical coordinate system.

VAE-based models are extensively used in the complex reconstruction of 3D
shapes using different representations, i.e., point clouds, voxels, meshes and implicit
representations, requiring learning a suitable distribution in the latent space and
facilitating applications in shape completion and shape arithmetic. In our architec-
ture, we employ VAEs to learn separate probabilistic latent variables for identity
and expressions, as well as facial parts, rather than a global representation for the
entire face, in order to capture finer details within each part.

2.3.2 Generative Adversarial Networks (GANs)

In addition to VAEs in the domain of generative models, our work also leverages the
GAN [39], a significant model introduced by Goodfellow et al. in 2014. The general
GAN framework is shown in Figure 2.9.

Comprising a generator and a discriminator, GAN was the first to refer to
adversarial examples within the context of generative models, a concept primarily
used as the input to classification networks. The core idea of GAN is that the
generator learns to capture the distribution of input data and generates new data
samples, while the discriminator estimates a probability, indicating to which extent
the given sample is built up from the actual data distribution or produced by the
generator. Therefore, to produce convincingly realistic samples, the generator aims
to maximise the confidence that the discriminator will classify its generated samples
as real data, thereby enforcing the generated distribution to closely approximate the
data distribution.

Similar to the work in Section 2.3.1, a mathematical explanation to ensure a
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Figure 2.9: General framework of GAN.

thorough and sound introduction will be provided. A prior distribution for the
random latent variables in the generator is defined as pG (z), and the generated
samples are denoted by Equation (2.12) as follows,

Xg = G (z, θ) , (2.12)

where θ denotes the parameters to be learnt in the generator. The discriminator takes
the samples as input, which could either be real or generated, and the probability
estimated by the discriminator is expressed as follows,

pD = D (X, θ′) , (2.13)

where θ′ denotes the parameters to be learnt in the discriminator. The goal of GAN
is for the generator to fool the discriminator into failing to distinguish between true
samples (from the real input data) and false ones (generated by the generator). Thus,
when expressed mathematically, an effective discriminator for the generator implies:

max
G

min
D

[
Ez∼pG(z) [log (D (G (z, θ) , θ′))] + EX∼pdata [log (1 − D (X, θ′))]

]
, (2.14)

where X ∼ pdata denotes true samples following the distribution of input data.
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During the initial stages of training, the discriminator can easily classify the
two distributions with high confidence, as they may distinctly separated. However,
as the iterative ‘two-player’ competition progresses between the generator and
discriminator, it becomes increasingly challenging for the discriminator to accurately
identify the generated distribution, enhancing the capabilities of both the generator
and discriminator.

GAN-based models have emerged in recent year as pivotal techniques in 3D
shape reconstructions, including 3D face reconstruction. Employing the GAN
architecture in 3D shape modelling offers several advantages. First, novel 3D
objects can be sampled from a latent space distribution, similar to VAEs, with both
approaches learning a probability space. Second, the capability of the discriminator
to classify makes it well-suited for 3D shape recognition. Below, we introduce some
of these methods [107, 121]. Wu et al. combined volumetric convolutional networks
with generative adversarial nets, encoding 2D images into a probabilistic latent
space and reconstructing corresponding 3D objects [107]. A 3D GAN model was
trained for each object category, successfully generating high-resolution 3D objects
with detailed geometries. In 2018, their research group proposed an adversarial
framework for modelling 3D shapes rendered to 2D images, as detailed by Zhu et al.
[121]. They developed a category-specific model that disentangles latent spaces for
shapes, viewpoints and textures separately, employing a GAN for mapping latent
representations to 3D voxels, using latent codes for viewpoints to jointly create 2.5
sketches, and leveraging a texture network with texture embeddings to synthesise
2D images.

With the rapid development of GAN and its numerous applications, the challenge
of limited supervision during training process has garnered attention. Tang et al.
proposed a GAN that, instead of mapping latent representations directly to 3D
objects, learns local warping functions [100]. For their discriminator, Tang et al.
utilised point-wise loss functions to ensure tight fitting among local regions for
complete object reconstruction, classifying global latent features predicted from both
the reconstructed point clouds by the generator and the real sample point clouds.
In their generator, they predefined 3D prior distributions for local areas on 3D
grids, concatenating these with a globally learnt latent code that was split into local
latent codes to predict local warping functions for corresponding point clouds. This
innovative lightweight network efficiently produces uniformly distributed 3D point
clouds with various resolutions.
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For 3D face reconstruction, Moschoglou et al. introduced 3DFaceGAN [75],
the first GAN specifically designed to model the distribution of 3D facial shapes,
capturing high-frequency details. This approach involves using 3D face shapes and
corresponding 2D facial UV maps as input to the generator (an AE), with the output
from the decoder, as well as the ground truth 3D faces and 2D face UV maps,
being fed into a pretrained discriminator. This joint architecture of AE and GAN
facilitates the capture and reconstruction of non-linear facial details, such as lips
and eyelids, addressing challenges inherent in some linear PCA models. Additionally,
Otroshi Shahreza and Marcel proposed a GAN-based framework that focuses on face
recognition and learns the mapping from facial templates to the latent space of a
pretrained face generation network, thus generating high-resolution face images [78].

All these studies used GAN architecture, with a focus primarily on the reconstruc-
tion of 3D objects, including faces. Models were trained to achieve a balance between
the generator and the discriminator, enhancing the reconstruction’s capability to
achieve a level resistant to discriminator classification. Featuring GANs, our work
differs from others in the design of the discriminator that identifies pairs of shapes
rather than individual ones, enforcing similarity within each pair and being used to
disentangle 3D face identity and expressions.

2.4 CLOSELY RELATED LITERATURE

In this section we examine the literature that we believe is most closely related to
the contributions of this thesis. These works relate to applications such as 3D facial
shape editing and controllable shape deformation, which have played a significant
role in driving the development of 3D face modelling. For example, in non-linear
3DMMs, a global latent representation may limit human understanding and control
over local or fine-level attributes. Therefore, numerous studies focus on human
facial expression analysis that requires an identity-agnostic expression representation.
Moreover, there is a growing interest in employing smaller partition schemes and
focusing on learning from the entire global latent embeddings for 3D face and full
head shapes. In the following, we discuss two types of disentanglement, i.e., identity
and expression, and parts-based identity, which are beneficial for improving the
modelling of 3D face images.
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2.4.1 Facial Identity and Expression Disentanglement

Many of the recent 3D face generative models leverage either VAEs, GANs or a
combination of both to deliver the disentanglement of identity and expressions.

Jiang et al. developed a non-linear framework to separate 3D face meshes
into identity and expression attributes by setting neutral expressions, i.e., identity
attributes, as the origin points [46]. They discovered that different individuals sharing
the same expressions tend to lie in a similar high-dimensional manifold. Consequently,
an expression on the mean face implies the same corresponding expression across
different faces. Their expressive latent representations could be learnt from the
mean face and then applied to various identities to replicate the expressions on
different identities, however, this method does not take into account the uniqueness
of expressions as exhibited by different individuals.

Both Sun et al. [94] and Taherkhani et al. [97] designed conditional pipeline
using expressive class labels, employing two decoders to separately learn identity
and expression representations. These two models differ in the way to achieve the
disentanglement. Sun et al. implemented the information bottleneck on identity
reconstruction by introducing a mutual information regulariser that eliminates
expressive information contained in the identity latent codes [94]. In the meantime,
Taherkhani et al. employed a combination of supervised VAE and conditional GAN,
which not only decouples identity and expressions but also provides subtle control
over expressions [97]. Conditional GAN distinguishes input data from real or fake
classes and also outputs corresponding identity and expression classes, enabling
disentanglement of both 3D geometry shape and appearance.

Olivier et al. introduced FaceTuneGAN [77], an innovative adversarial AE
architecture equipped with two encoders: one for identity, learning the identity
representation for a specific face, and another for expressions, learning the expression
representation for a potentially different face. Additionally, there is a decoder that
generates faces based on the learnt identity and expression latent vectors. Thus,
the ideal outcome for the AE is to reconstruct a face that maintains the identity
from the input face to the identity encoder and the expression from the input to the
expression encoder. A discriminator is employed to enforce that the generated shapes
are realistic and belong to the correct expression class. Abrevaya et al. explored
the use of an auxiliary classifier GAN (AC-GAN) to factorise the representations,
aiming to separate variations within shapes, such as identity and expressions of
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faces [1]. Meanwhile, Zhang et al. implemented a VAE conbined with graph
convolutional networks to model the distribution between identity and expression for
3D face variations, and used adversarial learning to eliminate correlations between
these two representations and to ensure their independence [116]. Specifically, the
learnt identity and expression latent variables from the same facial mesh were
concatenated, representing a coupled distribution, while the independent distribution
was represented by the learnt latent variables from different facial meshes. The
discriminator was trained on pairs of coupled and independent latent variables
to enforce sufficient independence of learnt distributions, effectively disentangling
identity and expression in 3D facial models. Kacem et al. integrated a graph
convolutional autoencoder with a GAN to extract identity representations from
expressive 3D faces and reconstructed solely the identity shapes, achieving 3D
expressive face neutralisation through joint training of an AE for both expressive
and non-expressive shapes [48]. Zhang et al. modelled expressions as deviations from
identity by a subtraction operation, and extracted an identity-invariant expression
latent vector via a deviation learning network with a pseudo-siamese structure
[115]. By pretraining an identity model and fixing it during the training of the face
model with expressive faces, they diverged from common approaches that typically
involve summing the embeddings from identity and expressions, opting instead to
use subtraction to obtain the expression representations and finally classify the
expression.

Figure 2.10: The overall pipeline of ImFace [117].

Recent work by Zheng et al., which greatly inspired our architecture design,
employs SDF as representations [117]. It is closely related to our research questions
RQ1 and RQ2, as outlined in Section 1.1 and Section 1.2 since it utilises implicit
representations with the goal of disentangling face identity and expression. This
approach builds separate deformation fields, as illustrated in Figure 2.10, enabling
the disentanglement of face identities and expressions. They also introduced a data
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preprocessing technique for creating pseudo-watertight shapes, effectively addressing
the requirement for watertight meshes in preparing SDFs for 3D face shapes. Since
achieving watertightness directly from raw data can be trivial, constructing pseudo-
watertight shapes offers a practical solution to data processing.

It is noteworthy that most existing methods for 3D face identity and expression
disentanglement employ an AE framework in a supervised manner, relying on identity
ground truths. However, this may pose a practical limitation in real-world scenarios,
as access to identity ground truths may not always be available.

2.4.2 Parts-based Facial Identity Disentanglement

In Section 2.4.1, we introduced multiple methods for 3D facial identity and expression
disentanglement. Furthermore, many models classify the corresponding labels for
expression embeddings, e.g. smiling, crying, shouting, etc., making the generated
expressive faces more specific and enabling deformation between different expressions.
Therefore, an increasing number of studies have begun to shift focus towards a finer
representation of identity, such as learning detailed local representations for facial
parts instead of for the entire face.

Recent studies, as highlighted by [34, 33], defined a mesh-convolutional VAE
incorporating dense-corresponded points by leveraging known differences and similari-
ties in the latent space to encourage a disentangled representation of identity features.
It is primarily related to our research question, RQ2, as discussed in Section 1.2,
which focusses on achieving disentanglement of parts-based latent representation,
employing explicit representations similar to RQ1 (Section 1.1). Foti et al. introduced
a novel idea crucial in inspiring our work: mini-batch feature swapping [34]. This
strategy swaps features from one mesh to another by replacing the vertices in the
selected feature regions, as depicted in Figure 2.11. They defined a mini-batch as
size B as a matrix of size

√
B ×

√
B, wherein each row contains the same mesh with

different features, and each column contains different meshes with the same feature.
This arrangement allows for the enforcement of similarities row-wise and differences
column-wise through specific loss functions.

In the following year, Foti et al. continued to improve their work by leveraging
spectral geometry, without the need for the curated mini-batch procedure and thereby
reducing training time [33]. They designed a novel loss function that encourages
latent embeddings to follow the local eigenprojections of identity attributes and
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Figure 2.11: Examples of feature swapping in the work of Foti et al. [34].

enforces orthogonality between latent embeddings, facilitating disentanglement.

Ghafourzadeh et al. presented a face editing system using a part-based 3DMM
that segments the face shape into five manually selected non-overlapping parts for
localised control [37, 36]. The segmentation is achieved through PCA on 135 3D face
meshes. Furthermore, a linear mapping between the anthropometric measurement
spaces and the PCA coefficient spaces was established to facilitate intuitive editing.
Aliari et al. further advanced this topic by proposing an interactive 3D face editing
model employing multiple graph-based variational encoders to learn representations of
different facial parts [2]. That is, there will be one encoder for each facial part, with a
singer decoder to reconstruct whole faces from the concatenated latent representations
of each part. This model intrinsically blends all parts without requiring an additional
merging process and facilitates predefined vertex-based editing by allowing users
to modify predefined vertices, optimising only the corresponding latent variables
for those edits. Yan et al. also employed sub-models, consisting of six VAEs, to
manage different semantic segments of faces based on the Basel Face Model [110],
introducing an As-Rigid-As-Possible (ARAP) method [92] to naturally blend facial
segments. Their approach maps learnt latent representations to the predefined facial
feature measurement spaces, such as nose height, enabling edits based on directional
deviations and standard deviations from the mean face shape, rather than directly
changing the exact measurement values.

Although the studies by [34, 33, 2, 36, 37, 110, 13] achieved disentanglement
of facial parts, their approach to representing 3D shapes in an explicit manner
constrained the resolution of the generated faces and required a shared topology
across them.
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2.5 CRITICAL ANALYSIS

In this chapter, we explored the cornerstone of our research: 3DMMs, which use
either explicit or implicit representations to model 3D face shapes. In recent years,
numerous studies have shown keen interest in developing deep generative networks
based on models such as VAE, GAN or diffusion models to learn latent representations
of 3D shapes, enabling the modelling of 3D face or head shapes and generating
new unseen shapes. These models show promising performance in both 3D shape
reconstruction and generalisation. However, there are still research gaps that inspired
our work.

For 3D face modelling, learning either a global latent representation for each
face shape or several decoupled latent variables for different facial components, is
both effective and popular. For instance, our work, among others, aimed to learn
disentangled latent representations for 3D face identity and expressions. Although
many focussed on this topic and did achieve the delivery of desirable performance,
to the best of our knowledge, none has investigated scenarios in which the ground
truth data for face identities (i.e., neutrals) are unavailable.

A commonly used approach involves employing a single encoder to map observed
data into two different latent spaces, with two separate decoders to reconstruct
the identity and expression from these latent representations. Adversarial learning
techniques and specific loss functions are designed to ensure effective disentanglement.
However, this approach would rely on the availability of ground truth data for both
the observed facial input (to supervise the reconstruction process) and the facial
identity (to ensure the effectiveness of the facial identity branch). To bridge this
gap, we set out to design a novel network architecture to achieve face identity and
expression disentanglement using explicit representations. This architecture will be
introduced in detail in Chapter 3.

After successfully disentangling 3D face identity and expressions, we shift our focus
towards a division of the global head structure into local semantic parts. To the best
of our knowledge, existing research on facial parts-based disentanglement primarily
utilises explicit representations. However, these explicit representations typically
require a shared mesh topology and restrict the resolution flexibility of the final
reconstructed 3D shapes. Given the growing interest in deep networks for implicit
representations, which is able to overcome these constraints and offer adaptability in
3D shape modelling, the exploration of models for parts-based disentanglement using
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implicit representations remains an open research topic. We, therefore, anticipate
developing approaches that leverage these implicit representations, a promising
alternative to the explicit representations used in such tasks. We will examine this
issue in Chapter 4.



3

3D Face Disentanglement of Identity and
Expression

This chapter is dedicated to the 3D face disentanglement of identity and expressions.
We employ adversarial learning and VAE [54] algorithms, as introduced by Kingma
et al., to design an effective pipeline for tackling this problem. This approach plays
a vital role in understanding a 3D facial image from the shape channel only (i.e.,
without color-texture), in order to obviate any ambient lighting requirements. Unlike
existing 3D face disentanglement that assumes the presence of a corresponding
neutral (i.e., identity) face for each subject, our method introduces an identity
discriminator to preclude such requirements.

The most immediate problem we face is how to disentangle the 3D shape at-
tributions that derive from a subject’s identity from those that result from facial
expressions. Such a decomposition has many applications; for example, facial identity
and expression interpolations (as illustrated in Figure 3.17 and Figure 3.18), facial
expression transfer ([11, 105, 104]), as shown in Figure 3.19, face recognition ([28,
56, 58, 65, 68, 73]), and facial animation [9, 12].

In this chapter, we aim to learn how to disentangle identity and expression features
in order to reconstruct 3D human faces, regardless of the availability of neutral faces,
corresponding to the identity of the expressive faces. To this end, we propose an
adversarial approach that integrates a VAE with an identity discriminator. The
VAE incorporates a PointNet-based [86] encoder and two distinct decoders: one for
identity and another for expression. These decoders share the same MLP architecture.
The same network architecture is used as the base for the identity discriminator, a
classifier designed to determine whether a pair of 3D faces shares the same identity.

38
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Our proposed approach is intended to address the limitations of existing 3D face
disentanglement methods that feature the presence of a corresponding neutral face
for each subject.

We capitalise on the findings of Grasshof et al. [40, 41], which indicate that the
centre of the expression space is the point of apathy (a state in which all face muscles
are relaxed). Our identity discriminator is designed to capture inherent features, i.e.,
identity features, from various expression faces. The extracted identity parts from
the same individual are assumed to be the apathy expression (i.e., emotionless with
relaxed facial muscles). In contrast, the identity discriminator is equipped with a
task to ensure that different identity representations remain distant from each other.
This adversarial process encourages our network to synthesise invariant identity faces
for the same subject.

Compared with other methods that require a corresponding neutral face for each
subject, we regard the invariant, apathetic identity representations learnt by the
discriminator as the ‘neutral’ face in scenarios where obtaining ground truth neutrals
is not feasible. Extensive qualitative and quantitative evaluations validate that
our adversarial approach is able to successfully disentangle identity and expression
features, and synthesise high-quality 3D face shapes (see Section 3.2.5).

The structure of this chapter is organised as follows. We detail our end-to-
end method for 3D facial identity and expression disentanglement in Section 3.1.
Section 3.2 evaluates the reconstructed face shapes generated by our method, using
both qualitative and quantitative metrics and comparing them to other generative
models. Finally, in Section 3.3, we summarise our main contributions in 3D face
disentanglement of identity and expression.

3.1 METHODOLOGY

To begin with, we provide a comprehensive explanation of our proposed method
for 3D facial identity and expression disentanglement. Figure 3.1 illustrates the
overall joint learning pipeline of our method. We present the overall architecture in
Section 3.1.1, followed by detailed explanations of the VAE model in Section 3.1.2,
the identity discriminator in Section 3.1.3, and the loss functions utilised in our
end-to-end training process, which are elaborated on in Section 3.1.4.
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Figure 3.1: A framework for 3D face identity and expression disentanglement. This
joint learning network consists of a VAE module for 3D face reconstruction with a
discriminator that enforces identity consistency in an adversarial manner to ensure
accurate disentanglement of facial identity and expressions [43].

3.1.1 Overall Architecture

We view each aligned and densely corresponded 3D face scan Xk
(i,j) ∈ Rn×3 (k ∈

[1, · · · , m]) as point clouds, where n is the number of vertices, m is the number of
input 3D face scans, i denotes the ith identity and j denotes the jth expression.
(Note that these scans share the same mesh topology, which is used for visualisation
purposes only, e.g. in the framework shown in Figure 3.1.)

We simplify Xk
(i,j) to X in the following. Each instance of X is divided into

two components: the identity part X(i,a) ∈ Rn×3 (where a represents the apathy
expression) and the expression deformation part ∆Xj ∈ Rn×3. We assume that
identity and expressions are independent, so that the full face is the sum of the
identity shape and the expression deformation, formulated as:

X = X(i,a) + ∆Xj. (3.1)

In our architecture, depicted in Figure 3.1, the entire network is designed as
GAN in which the autoencoder-decoder network functions as a ‘generator’ of the
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network. We employ a VAE, based on PointNet, to learn the distributions of identity
and expression, and sample their latent representations zid and zexp respectively.
Subsequently, two decoders are used to reconstruct the identity shape X̂(i,a) and
expression deformation ∆̂Xj from their respective latent vectors zid and zexp. Us-
ing Equation (3.1), full faces are synthesised. Detailed descriptive architecture is
illustrated in Figure B.1.

Another essential component of the GAN framework is the discriminator and
we propose an identity discriminator in our pipeline. The input to this identity
discriminator is a face shape pair containing a 3D face X(i1,j1) and another 3D
face shape with the same identity X(i1,j2), or another 3D face shape with different
identities X(i2,j). (Note that the j1 may be equal to the j2 or j, but the i1 is not equal
to the i2.) For example, the smiling face X(i1,j1) and crying face X(i1,j2) form a pair,
given that they share the same identity X(i1,a). Similarly, the smiling/crying face
X(i1,j) and the angry or smiling face X(i2,j) also constitute a pair. This discriminator
is pretrained to distinguish a ‘real’ face shape pair (i.e., same identity) from a ‘fake’
pair (i.e., different identity). When jointly training the end-to-end GAN model, the
original face shape pairs with the same identities (X(i,j1), X(i,j2)) are considered real
samples, while those pairs that include predicted identity shapes from the identity
decoder (X(i,j1), X̂(i,a)) are considered fake. Thus, the generator is encouraged to
learn the intrinsic feature of these two pairs, i.e., a common identity, during the
process of adversarial learning, enabling the generated identity shape to be least
expressive.

The identity discriminator, implemented as a constraint in the entire pipeline,
ensures that predicted identity shapes remain neutral. By combining the independent
learning of latent representations in separate branches and imposing constraints
specifically on the identity part, our method is able to disentangle identity and
expression.

3.1.2 Variational Encoder-Decoder Network

Although we aim to disentangle 3D face identity shapes and expressions, 3D face
reconstruction is also taken into account. We employ a VAE network in which the
encoder is used to predict distributions of latent representations from input point
clouds and the decoders are used to synthesise these 3D face shapes. To enable
decoupling of identity and expression, the encoder outputs separate distributions
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for identities and expressions, and two decoder branches, i.e., the identity decoder
(marked as ID Decoder in Figure 3.1) and the expression decoder (marked as EXP
Decoder in Figure 3.1), receive their corresponding sampled representations and
individually reconstruct 3D identity face shapes and expression deformations.

The VAE models the probability P (X) of the input 3D face shapes and we assume
that 3D face shapes are determined by latent features zid and zexp representing
identity and expression, respectively. This generative model estimates parameters
that maximise the likelihood of 3D face identities pθ(X(i,a)) and expressions pθ′(∆Xj),
as follows:

pθ(X(i,a)) =
∫

pθ (zid) pθ

(
X(i,a)|zid

)
dz, (3.2)

pθ′(∆Xj) =
∫

pθ′ (zexp) pθ′ (∆Xj|zexp) dz, (3.3)

where pθ

(
X(i,a)|zid

)
and pθ′ (∆Xj|zexp) are defined for the identity decoder and

expression decoder, respectively. We assume a unit Gaussian distribution for the
prior distributions pθ (zid) and pθ′ (zexp).

Due to the intractable posterior p
(
zid|X(i,a)

)
, the distribution qϕ

(
zid|X(i,a)

)
is

defined in the identity encoder to approximate p
(
zid|X(i,a)

)
. We use the Kullback-

Leibler (KL) divergence term DKL

(
qϕ

(
zid|X(i,a)

)
||p

(
zid|X(i,a)

))
to minimize their

difference. Similar decision is also made for p (zexp|∆Xj).
In our model, the VAE is assumed to estimate parameters θ and ϕ in order to

maximise the log-likelihood of 3D facial identities and expressions. This is intended
to maximise the Evidence Lower Bound (ELBO).

3.1.3 Adversarial Training

Face identity shapes and expression deformations are sampled from distributions
p

(
X(i,a)|zid

)
and p (∆Xj|zexp), respectively. To better decouple identity shapes from

expressions, an adversarial training process is employed.
Our proposed identity discriminator, abbreviated as DID hereafter, is trained

to differentiate between real and fake samples. Additionally, we input a pair of
3D face shapes into the identity discriminator that determines whether the input
pair shares the same identity shape. For instance, during the pretraining of our
identity discriminator, if we input a face scan pair, denoted as X(i,j1) and X(i,j2),
sharing the same identity X(i,a), the identity discriminator is expected to classify
this pair into the real class (note that the subscripts j1 and j2 may refer to the same
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Figure 3.2: The pretrained input pairs and the joint end-to-end training input pairs
of the identity (ID) discriminator.

expression). Conversely, a face pair X(i1,j) and X(i2,j) should be classified into the
fake class due to the fact that one comes with the identity X(i1,a) and another with
the identity X(i2,a), as illustrated in Figure 3.2 (note that the subscripts i1 and i2 are
different identities). During the end-to-end network training process, the identity
discriminator tries to enhance the correct separation of identity and expression. To
achieve this, we construct a fake pair by combining the predicted identity shape with
the original expressive face shape.

In facial expression analysis [15, 16, 90], the latent variables that represent
identity and facial expression, lie on a manifold in high dimensional space, as
illustrated in Figure 3.3. Stella et al. proposed the point of apathy to be the centre
of expressions and the expressions trajectories obtained by varying the strength of
human emotion originate from this point [40, 41], as shown in Figure 3.4. Based
on such observations, we found that it is the apathetic expression that provides
implicit connections between various expressions of faces with the same identity.
Our adversarial process encourages common information from a face shape pair with
the same identity to be retained. If we only compare the smile expression with
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Figure 3.3: 3D face manifold space. Two expressive manifold spaces are shown to
represent two individual faces. The central point refers to the apathy expression,
with various expressions situated around including ‘right jaw’ expression.

the surprised expression from the same individual, not only their same identity but
their similar expression deformations, e.g. mouth opening, will be recorded by the
discriminator. However, there are several shape pairs from the same identity and
their expressions are distributed in divergent directions that intersect at the point of
apathy - so the discriminator will ultimately retain all pairs’ common information
- apathy. Thus, the identity discriminator has the ability to capture similar latent
features, i.e., identity features, between pairs belonging to the same subject, and to
enforce these features to be close to the apathy faces.

In a GAN framework, a generator and discriminator are trained in an adversarial
manner. For our network, the desired outcome is that the synthesised face identity
shapes from the identity decoder can ‘fool’ the identity discriminator. This implies
that the predicted neutral face shapes should closely resemble the corresponding
facial identity ground truths, making the discriminator believe that they belong to
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Figure 3.4: A figure from [41] - the expression affine subspace for the BU3DFE
dataset. A special point, represented as the top-right red face and defined as the
‘point of apathy’, is different from the ‘neutral’ face, represented in black. Within
this subspace, each expression is linearly distributed based on its intensity, and
different expressions disperse from the origin point, i.e., the ‘point of apathy’.

the ‘real’ class.
During the adversarial process, the discriminator leverages a loss function that

enables the identity decoder distribution p
(
X(i,a)|zid

)
to approximate the face identity

distribution p
(
X(i,a)

)
. The loss function used to jointly train the generator and

discriminator is defined as follows:

Jadv = max
θd

[
E(X(i,j1),X(i,j2))∼psame

[
log

(
DID

(
X(i,j1), X(i,j2); θd

))]
+ EX∼pdata [log (1 − DID (G (X) , X; θd))]

]
, (3.4)

where psame is the distribution of all same-identity 3D face pairs, and pdata is the distri-
bution of all input expressive faces. The pair sampled from psame, i.e.,

(
X(i,j1), X(i,j2)

)



46 Chapter 3. 3D Face Disentanglement of Identity and Expression

in Equation (3.4), can be considered two 3D faces sampled from the original dataset.
This implies that the two sampled faces share the same identity but may have
different expressions. However, having different expressions is not mandatory for
these two face shapes; the only feature obtained through multiple samplings that
needs to be consistent, is the identity.

In Equation (3.4), G (X) represents the VAE, i.e., the generator, and its output
from the identity decoder is the synthesised identity shape denoted as X̂(i,a). The
terms DID

(
X(i,j1), X(i,j2); θd

)
and DID (G (X) , X; θd) are used to refer to the real

pairs and fake pairs, respectively, as depicted in the joint-training branch in Figure 3.2.
Thus, the first term of Equation (3.4) is the expectation on real expressive faces and
aims to maximise the probability that DID correctly classifies these pairs as real.
Conversely, the second term represents the generated pairs and aims to maximise
the probability that DID correctly classifies the pairs generated by G as fake.

During joint training, both DID and G are updated iteratively. The generator tries
to improve its ability to create realistic fake pairs, which in our context, facilitates
the neutralisation for the identity generator. Meanwhile, the discriminator works
hard to enhance its capacity to distinguish the real pairs from the fake ones. This
adversarial process finally results in high-quality and neutralised synthetic data.

3.1.4 End-to-End Loss Function Terms

We define five components in our loss function required to train our end-to-end net-
work that focusses on 3D face reconstruction and identity-expression disentanglement.
The overall loss function is represented as:

Ltotal = λ1Lrecon + λ2LKL + λ3LDID + λ4Lneu + λ5Llap, (3.5)

where λ1−5 are hyperparameters chosen to balance the five losses. To tune these
parameters, we employ a small subset of the training data to empirically determine
validated values, which are then applied to train the whole training set. Specifically,
Lrecon is the Mean Squared Error (MSE) for 3D face reconstruction. The LKL loss
represents the negative ELBO. This loss consists of two KL terms, one for the identity
and the other for the expression, constraining the posterior distribution to remain
close to the unit Gaussian distribution N (0, I ). The KL loss is defined as follows:

LKL = LKL_ID + LKL_EXP. (3.6)
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Furthermore, LDID is simplified from Equation (3.4) by using cross-entropy:

LDID = −
[
y log

(
DID

(
X(i,j1), X(i,j2)

))
+ (1 − y) log

(
DID

(
X̂(i,a), X(i,j)

))]
, (3.7)

where y is the label (1 for the 3D face pair
(
X(i,j1), X(i,j2)

)
sampled from ground

truth data, and 0 for the 3D face pair including the predicted identity shape X̂(i,a)).
Lneu is the L1 loss between zid and ẑid. The identity latent representation, zid, is
obtained from the encoder, which encodes an expressive face shape, as illustrated
in Figure 3.1. ẑid is also the output of the encoder, but with a different input; in
this case, the VAE processes the predicted facial identity shape, denoted as X̂i in
Figure 3.1. Specifically, after generating the predicted facial identity shapes X̂i,
the VAE uses these shapes as input to generate the corresponding identity latent
representations ẑid. To minimise the mean curvature and ensure smoothness of
generated 3D faces, we employ the Laplacian regularisation loss Llap = ∥LX∥2,
where L is the discrete Laplace-Beltrami operator [49].

To further disentangle identity shapes from expression components in our network,
we employ an identity discriminator in conjunction with an additional MSE loss for
expressions. The reconstruction loss Lrecon in Equation (3.5) is composed of the MSE
for full faces Lfull, and the MSE for expressions Lexp, as detailed in Equation (3.8).
When computing Lexp, our approach can be applied in two scenarios:

• With Corresponding Neutral Faces: When corresponding neutral faces
(the facial identity without expressions) are available for the full faces, we can
obtain specific expression ground truth for each subject by subtracting the
corresponding neutral ground truth from the full face. This ground truth is
then used to compute the expression MSE against the predicted expression
deformation, ensuring that the generated expressions closely match the ground
truths.

• Without Neutral Faces: In cases where neutral faces are not available,
based on the assumption that expressions of different individuals are similar in
the expressive manifold, an expression from a specific individual is considered
analogous to the same expression on a mean face. Therefore, we use the
expressions from the global mean face as ground truth data to compute the
expression MSE.

The approach is formulated as follows:

Lrecon = α1Lfull + α2Lexp, (3.8)
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where α1 and α2 hyperparameters that balance the aforementioned two types of
MSE loss functions. Lfull represents the loss between the expressive input full faces
and the corresponding full faces predicted by the VAE pipeline.

3.2 EVALUATION

In this section, we conduct a comprehensive experimental evaluation of our proposed
method for 3D face reconstruction and identity-expression disentanglement. To
start with, we provide an overview of the datasets, detail the implementations,
and introduce the evaluation metrics. We then compare our methods, in scenarios
either with or without neutral ground truths, against baselines across three public
datasets. Additionally, we conduct ablation studies to analyse the contributions
of each component in our architecture design. These studies help to understand
how individual component contributes to the overall performance of our method
in a collective manner. To further demonstrate the utility and effectiveness of
our approach, we showcase its various applications, including expression transfer,
expression interpolation and face recognition. This comprehensive evaluation not
only validates our method’s performance but also illustrates its versatility in practical
applications.

3.2.1 Datasets

We use three public datasets in our experiments: BU3DFE [114], CoMA [88] and
FaceScape [112]. For the BU3DFE and CoMA datasets, we adopt a training-to-test
ratio of 9:1. For the FaceScape dataset, we choose the ratio of 7:3. These division
ratios are intended to align with those used by baseline methods. Each face scan
from these three datasets is normalised to fit within a unit sphere with a diameter
of 1cm.

CoMA dataset [88] contains motion sequences of 20,466 meshes, captured
from 12 different individuals. Each subject in the dataset performs 12 extreme,
asymmetric facial expressions, with significant deformations of facial tissue. The
specific expressions include bareteeth, cheeks in, eyebrow, high smile, lips back,
lips up, mouth down, mouth extreme, mouth middle, mouth side and mouth up.
Following the same partitioning scheme in [88], we divide these meshes into a training
and test set. These sequences are organised in alphabetical order, and we select 10
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frames from every 100 frames as test samples to guarantee that the test set is typical
and unbiased. The training data consists of 18,422 meshes, and the test set includes
2,040 meshes. This division helps the training of our network on a range of diverse
expressions and facilitates a robust evaluation on the test set.

BU3DFE dataset [114] consists of 3D facial scans from 100 subjects, with
a gender distribution of 56% female and 44% male, ranging in age from 18 to 70
years and representing a variety of ethnic backgrounds. This dataset includes 2,500
facial meshes in total. Each subject is asked to perform seven different expressions:
happiness, disgust, fear, angry, surprise and sadness. With the exception of the
neutral expression, each of the other six expressions is captured at four levels of
intensity, resulting in 25 expressive meshes for each individual. Following one of
the baselines proposed in [116], we select the first 10 subjects for our test set while
keeping the rest for training purposes. There are 2,247 meshes in the training set
and 250 meshes in the test set. It is important to note that the identities in the test
set are unseen in the training set.

FaceScape dataset [112] includes 3D face scans from 847 subjects, aged
between 16 and 70 years old. Each subject is requested to perform 20 expressions,
including mouth-opening, smiling, eyes-closing, kissing, and others. For our study,
we randomly select 30% of these subjects for the test set, with the remaining subjects
used for training. Thus, there are 11,812 and 5,055 meshes in the training and test
set, respectively.

3.2.2 Implementation Details

In the FaceScape dataset, the face mesh of each subject comprises 26,317 vertices
and 52,261 faces, which gives rise to significant challenges in terms of GPU memory
usage and computational time during training. To mitigate it, we simplify these
meshes using a quadric-based edge collapse strategy [35], reducing the target number
of faces to 9,000. After this simplification, each face scan contains 4,547 vertices and
8,999 faces. This reduction greatly enhances the training efficiency, though it may
slightly compromise the overall smoothness of the meshes. The differences between
the original and simplified face scans are illustrated in Figure 3.5. A reduction in
surface smoothness is mainly observable in the nose and jaw regions. However, the
savings in time and memory consumption are considerable and this does not have a
major adverse impact on identity-expression disentanglement.
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O OS S

Figure 3.5: A comparison between the original face scans and the preprocessed
expressive face scans from FaceScape. Frontal views of randomly selected expressive
faces are displayed, as well as side and back views. ‘O’ denotes the original face
scans, and ‘S’ represents the simplified versions.
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We pretrain a PointNet-based network as the identity discriminator. As shown
in Figure 3.2, during each training iteration, we sample a 3D face scan from the
training dataset to construct a pair with a specific input face shape. If the subject
identities of the face shapes in a pair are the same, the pair is labelled as ‘True’, i.e.,
a real pair in Figure 3.2. Otherwise, ‘False’, i.e., a fake pair in Figure 3.2. To ensure
the existence of a ‘True’ labelled pair, we first sample from the subset faces with the
same identity as the input, and then sample from the remaining dataset, excluding
those with the same identity. Therefore, we can manage to maintain a ratio of 1:1
between the real and the fake pairs during the pretraining process of the identity
discriminator.

After the pretraining, our identity discriminator is able to identify the same subject
with different expressions. We then employ this pretrained identity discriminator
for the initialisation of our sequentially joint end-to-end training. To achieve the
facial expression neutralisation, we further explore alternative pairing strategies to
simultaneously train the encoder-decoder and the identity discriminator, aiming to
improve their performance in identity-expression disentanglement.

In the end-to-end training process, the ‘True’ pair, similar to the one used in
pretraining, consists of the input ground truth 3D face shape and another face shape
sampled from the training data, both with the same identity. The key change in
the end-to-end training is the construction of the ‘False’ pair. Unlike that in the
pretraining step, a ‘False’ pair is designed by combining the predicted identity shape,
which is the output from the identity decoder, with the original face shape.

As discussed in the Section 3.1.3, adversarial learning is beneficial for the generator
to reconstruct more realistic shapes. In our specific context, this, however, implies
capturing the inherent nature of two different expressive shapes of the same subject.
The identity branch aims to reconstruct a face without any expressions, which can
also be regarded as a face with a ‘special’ expression. Combining with separate
decoder components, adversarial learning helps to make the identities and expressions
independent.

For a fair comparison with other methods, we set the PointNet-based encoder
with four identity latent dimensions and four expression latent dimensions for the
CoMA dataset. For the BU3DFE dataset we use 40 dimensions for each latent vector,
whereas for the FaceScape dataset, 64 dimensions.

Different hyperparameters are explored for each dataset to optimally balance
each loss component. Specifically, λ1 is set to 250 for BU3DFE and 5000 for both
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CoMA and FaceScape. For λ3, we use 5 × 10−4 on CoMA and FaceScape, and
1 × 10−3 on BU3DFE. For the FaceScape and CoMA dataset, the Laplacian loss is
exclusively used to enforce the smoothness of predicted identity faces, when neutral
ground truths are unavailable.

We implement our network using PyTorch [80] and run it on an NVIDIA A40
system. The identity discriminator is pretrained with a batch size of 32, and 50, 100,
100 epochs for the CoMA, BU3DFE, and FaceScape datasets, respectively. For the
training of the joint end-to-end network, we adopt different number of epochs and
batch sizes for each dataset. Specifically, we train for 280 epochs with a batch size
of 8 on BU3DFE, 280 epochs with a batch size of 32 on FaceScape, and 300 epochs
with a batch size of 32 on CoMA. The Adam optimiser [52] is used, with an initial
learning rate of 1 × 10−4 and a learning rate decay factor of 0.7 every 50 epochs.
Additionally, we conduct each leave-one-out experiment three times and report the
average results to ensure reliability and robustness for our architecture.

3.2.3 Evaluation Metrics

For a fair comparison, we adopt the evaluation metrics used in [46, 48, 116], which
include both reconstruction and disentanglement metrics. Given that our method is
based on point clouds and all face shapes are densely corresponded, we measure the
reconstruction error, Erec, as the average vertex distance between the synthesised 3D
face shapes X̂ (X̂(i,j), the sum of X̂(i,a) and ∆̂Xj) and the original 3D face shapes X
(X(i,j)). The reconstruction error is calculated using the following equation:

Erec(X, X̂) = 1
n

n∑
1

∥∥∥X − X̂
∥∥∥

2
, (3.9)

where n represents the number of vertices in X. We report both the mean and the
median of this average vertex distance.

The standard deviation of reconstructed identity shapes from 3D faces with the
same identity is defined as the disentanglement error Edis. This metric is designed
to evaluate the stability of the disentanglement process. In a given test set, raw
3D faces with various identity shapes are represented as X(i1,j), X(i2,j), · · · , X(iN ,j),
where N denotes the number of different identities in the dataset. For example,
the raw 3D faces that share the same identity X(i1,a) but own different expressions
∆Xj . In this context, we assume that X(i1,j1) represents a ‘happy’ X(i1,a), and X(i1,j2)

represents a ‘sad’ X(i1,a). The Edis metric is applied to measure whether the predicted
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identity shapes X̂(i1,a) from these two different expressive shapes X(i1,j1) and X(i1,j2)

are consistent. The disentanglement error Edis is computed as follows:

Edis = σ
(∥∥∥X̂(i,a) − X̄(i,a)

∥∥∥
2

)
, (3.10)

where X̄(i,a) represents the mean of predicted identity shapes X̂(i,a) from X(i,j)

(j ∈ [1, · · · , K]), and K denotes the number of expression types. We opt not to
evaluate the predicted expression shapes quantitatively, as the same expressions vary
among subjects both due to anatomical differences and varying levels of expression
intensity.

The average vertex distance, denoted as AVDneu, is employed to evaluate both
the identity reconstruction and disentanglement processes. This metric, defined in
Equation (3.11), is used to evaluate how closely the predicted shapes approximate
the identity ground truths.

AVDneu = 1
n

n∑
1

∥∥∥X(i,a) − X̂(i,a)

∥∥∥
2
, (3.11)

where n represents the number of vertices in X(i,a).

3.2.4 Comparative Studies

We conduct a comparative experiment of our method with five state-of-the-art 3D
face disentanglement methods. Specifically, we compare against FLAME [61], the
method proposed by Jiang et al. [46] (referred to as Jiang’s work hereafter), and
DI-MeshEncoder [116] on the CoMA and BU3DFE datasets. We also compare our
method with the method proposed by Kacem et al. [48] (referred to as Kacem’s
work hereafter) and Convolutional Mesh Autoencoder (Conv-MeshAE) [88] on the
FaceScape dataset. We carefully report results published in [116] as we use the same
training and test sets.

The FLAME model represents 3D faces in identity, pose, and facial expres-
sions separately, using a learned shape space for identity variations and expression
deformations to capture the non-rigid deformations of faces. Jiang’s work and
DI-MeshEncoder adopt a Graph Convolutional Network (GCN) based auto-encoder
to reconstruct 3D face shapes and to decouple identity from expression attributes.
Kacem et al. deploy a GCN network and a discriminator for expression neutralisation
and face recognition. Conv-MeshAE, mainly a 3D reconstruction method rather
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than a disentanglement approach for identity and expression shapes, employs a GCN
architecture to map 3D face shapes into a non-linear latent space. Following [48],
we consider pairs of expressive and neutral faces as input and ground truths for
Conv-MeshAE.

Our method uses a widely-adopted auto-encoder architecture based on PointNet.
Moreover, unlike the methods we compare against, our approach does not have a
strict requirement on the availability of neutral ground truths. Our discriminator is
designed to work directly on raw 3D face data, which differs from [116] that is inspired
by Kim and Mnih’s work [50] and uses a discriminator to enforce independence
between two distributions. Furthermore, our work is different from [48] in which
a discriminator in the latent space is proposed to enable a valid translation from
expressive to neutral representations.

3.2.5 Results and Discussions

3.2.5.1 Quantitative Results

Table 3.1: 3D face shape reconstruction results (Erec) and disentanglement results
(Edis) on the CoMA dataset, compared with FLAME [61], Jiang’s work [46], DI-
MeshEnc [116] and Conv-MeshAE [88]. All errors are measured in millimeters.

Method Erec (mm) Edis (mm)
mean ± std median mean median

FLAME [61] 1.451 ± 1.649 0.871 0.599 0.591
Jiang’s work [46] 1.413 ± 1.639 1.017 0.064 0.062

DI-MeshEncoder [116] 0.665 ± 0.748 0.434 0.019 0.020
Conv-MeshAE [88] — — 0.313 0.317

Ours 0.783 ± 0.225 0.772 0.176 0.180
Ours+ne-gt 0.651 ± 0.208 0.625 0.014 0.013

Reconstruction Analysis The quantitative results Erec of 3D full face recon-
struction on the CoMA and BU3DFE dataset, in comparison with FLAME, Jiang’s
work and DI-MeshEncoder, are presented in Table 3.1 and Table 3.2, respectively.
The Erec results for Conv-MeshAE are not reported because this method generates
identity shapes, rather than reconstructing the original input faces.
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Table 3.2: 3D face reconstruction results (Erec) and disentanglement results (Edis) on
the BU3DFE dataset, compared with FLAME [61], Jiang’s work [46], DI-MeshEnc
[116] and Conv-MeshAE [88]. All errors are measured in millimeters.

Method Erec (mm) Edis (mm)
mean ± std median mean median

FLAME [61] 2.596 ± 2.055 2.055 0.600 0.632
Jiang’s work [46] 2.054 ± 1.199 1.814 0.611 0.590
DI-MeshEnc [116] 1.551 ± 0.924 1.375 0.361 0.327
Conv-MeshAE [88] — — 0.361 0.377

Ours 1.421 ± 0.412 1.306 0.443 0.439
Ours+ne-gt 1.500 ± 0.423 1.467 0.348 0.339

Table 3.3: 3D face reconstruction results (Erec) and disentanglement results (Edis) on
the FaceScape dataset, compared with Conv-MeshAE [88]. All errors are measured
in millimeters.

Method Erec (mm) Edis (mm)
mean ± std median mean median

Conv-MeshAE [88] — — 0.64 0.62
Ours 1.157 ± 0.286 1.109 0.77 0.76

Ours+ne-gt 1.370 ± 0.369 1.307 0.57 0.55

Table 3.4: Average vertex distance of identity shapes (AVDneu) on the BU3DFE and
FaceScape datasets, compared with Kacem’s work [48] and Conv-MeshAE [88]. All
errors are measured in millimeters.

Method BU3DFE FaceScape
mean ± std median mean ± std median

Kacem’s work [48] — — 2.02 ± — —
Conv-MeshAE [88] 1.939 ± 0.318 1.924 2.00 ± 0.52 1.90

Ours 2.429 ± 0.667 2.283 3.11 ± 0.92 2.96
Ours+ne-gt 1.894 ± 0.430 1.764 1.93 ± 0.61 1.82

In these tables, the label “Ours” refers to our method that does not access the
neutral ground truths in end-to-end training. Such a feature is particularly relevant
for real-world scenarios in which corresponding identity shapes might not be available.
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On the other hand, the “Ours+ne-gt” label corresponds to our method that uses
neutral faces as ground truths for training, aligning with all other methods that we
compare with.

Based on the results presented in Table 3.1 and Table 3.2, we observe the robust-
ness of our method in 3D face reconstruction on both CoMA and BU3DFE datasets.
Notably, our method achieves better reconstruction results on the CoMA dataset
when neutral ground truths are used (“Ours+ne-gt”), showing the effectiveness of
our method in scenarios with available ground truths. Furthermore, the strong
performance when neutral ground truths are unavailable (“Ours”) on the BU3DFE
dataset verifies the flexibility of our method. It proves that our pipeline can effectively
predict 3D full face reconstruction in various contexts.

Due to the recent release of FaceScape and the relatively limited number method
proposed for both disentanglement and reconstruction on it, our comparative experi-
ment is confined to Kacem’s work and Conv-MeshAE. These two approaches focus
on predicting the corresponding neutral faces rather than the original expressive
faces. Thus, we report only the 3D expressive face reconstruction results of our
method in Table 3.3.
Disentanglement Analysis The quantitative results Edis for 3D face identity
expression disentanglement on the CoMA and BU3DFE datasets, in comparison
with FLAME, Jiang’s work and DI-MeshEncoder, are also presented in Table 3.1
and Table 3.2, respectively. The Edis results on the FaceScape datset, compared
with Conv-MeshAE, are reported in Table 3.3 as well.

Results in Tables 3.1, 3.2, 3.3 and 3.4 demonstrate that our method is able
to deliver strong performance in 3D face identity and expression disentanglement,
especially when neutral ground truths are used (“Ours+ne-gt”). Even in the scenarios
lacking neutral ground truths, our method still shows competitive results.

As we observed, the results for Edis are constantly better when neutral ground
truths are used than when they are not, across all three datasets. This improvement
can be ascribed to the fact that the process with neutral ground truth acts as the
strong supervision. Combined with L2 constraints, they ensure that the neutralised
expressive face shapes closely align with the ground truths, resulting in more stable
and accurate predicted identity shapes.

We observe a notably lower performance in Edis on the CoMA dataset. This
is mainly due to the specific split scheme employed in the CoMA dataset. In this
scheme, given that the training set consists of 18,422 meshes with merely 12 different
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expressions, pairs for the identity discriminator with the same identities may have
similar expression deformations. This overlap causes the inherent nature of these
pairs to include not only identity but also slight expressions, leading to higher level
of disentanglement error Edis and instability. Meanwhile, the reconstructed identity
loss enforces that the predicted identity shapes closely align to ground truth neutral
in each iteration. These reasons explain the significant difference in our results
between using and without using neutral ground truths in the CoMA dataset.

From Table 3.2 and Table 3.3, we discover improvements in reconstruction error
Erec in scenarios where neutral ground truths are unavailable. Conversely, we note
improvements in disentanglement error Edis when neutral ground truths exist in
the dataset. The reason is that our use of a GAN network introduces a trade-off
between reconstruction and disentanglement performance. Thus, it is unsurprising
that disentanglement performance is compromised when neutral ground truths are
not available in our method.

We compare with Conv-MeshAE on the BU3DFE dataset and with Kacem’s
work and Conv-MeshAE on the FaceScape dataset, employing another evaluation
metric, AVDneu, as listed in Table 3.4.

3.2.5.2 Qualitative Results

In Figure 3.6, we present some representative unseen identity results for 3D face
reconstructions and disentanglement, using neutral ground truths on FaceScape.
These results are divided into three groups to show the best, average and worst
performance of our work, as evaluated by the quantitative metrics. In each group,
the first row displays the ground truth of the full face, neutral, and expression. The
second row presents corresponding prediction results. Error heat maps are shown in
the third row.

Figure 3.7 depicts the results of 3D face disentanglement and reconstruction on
the FaceScape dataset without the use of ground truth neutrals. A comparison
between Figure 3.6 and Figure 3.7 shows that, when neutral ground truths can be
obtained, even in the worst case, the identity and expression on the mean face are
effectively decoupled. The reconstruction error mainly occurs in the neck region. In
scenarios where neutral ground truths do not exist, the performance of the overall
full face reconstruction is desirable due to the L2 constraint. In the best and average
case, the identity and expression are successfully disentangled, but with minor
unsmoothness observed on the face and particularly around the mouth region. In
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Figure 3.6: Results of unseen 3D face identity-expression disentanglement on the
FaceScape dataset when neutral ground truths are available - groups from left to
right: the best, the average, and the worst. (a) illustrates the face ground truths
(input); (b) represents the predicted face shapes; and (c) depicts the error map. For
each group, the first column displays full faces, the second column denotes identity
faces, and the third column shows expressions on the mean face.

the worst case, slight expressions can be observed in the mouth region (left-shift
mouth), with a comparatively higher reconstruction error.

Similarly, as shown in Figure 3.8 and Figure 3.9, the predicted neutral faces
on the CoMA dataset present extremely low error when neutral ground truths are
used, although the expression predictions perform slightly worse than identity parts.
This is mainly due to the fact that there are a large number of face scans sharing
the same identity in this dataset. L2 constrains occur numerous times during the
training process. The constraints imposed on the expression branch are relatively
fewer than those on the identity, which leads to a slightly higher reconstruction error
for expressions.

The unseen identity results of the BU3DFE dataset are illustrated in Figure 3.10
and Figure 3.11. In Figure 3.10, our method demonstrates a strong performance,
particularly in both the best and average groups. The process of identity expression
disentanglement works effectively, and the primary reason for the higher reconstruc-
tion error is the predicted full face with a more exaggerated expression that the
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Figure 3.7: Results of unseen 3D face identity-expression disentanglement on the
FaceScape dataset when neutral ground truths are unavailable - groups from left to
right: the best, the average, and the worst. (a) illustrates the face ground truths
(input); (b) represents the predicted face shapes; and (c) depicts the error map. For
each group, the first column displays full faces, the second column denotes identity
faces, and the third column shows expressions on the mean face.

ground truth, which also results in a similar condition for the predicted expression.
From the analysis of the best and average cases depicted in Figure 3.11, it is evident
that our method is able to decompose facial identity and expression, even in the
unavailability of neutral ground truths. While the predicted identity occasionally
shows a slight open mouth, this may be attributed to the center point of all expres-
sions in the space converging at this ‘neutral’ expression. It is especially notable in
the worst-case scenario without neutral ground truths that the predicted identity
shapes show slight expressions, an open mouth, especially when expression shapes
are exaggerated.
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Figure 3.8: Results of unseen 3D face identity-expression disentanglement on the
CoMA dataset when neutral ground truths are available - groups from left to right:
the best, the average, and the worst. (a) illustrates the face ground truths (input);
(b) represents the predicted face shapes; and (c) depicts the error map. For each
group, the first column displays full faces, the second column denotes identity faces,
and the third column shows expressions on the mean face.

3.2.6 Ablation Studies

3.2.6.1 The Identity Discriminator

In our architecture, we introduce an identity discriminator designed to separate
identity and expression, even if corresponding neutral ground truths are not available.
To evaluate the effectiveness of our discriminator, we present disentanglement results
Edis, average vertex distance results (AVDneu) and reconstruction results Erec on
the CoMA, BU3DFE and FaceScape datasets in Table 3.5, Table 3.6 and Table 3.7,
respectively. Qualitative results illustrating how our identity discriminator performs
in scenarios without neutral ground truths, are shown in Figure 3.12, Figure 3.13
and Figure 3.14.

From these tables, we can observe that our discriminator greatly improves
disentanglement performance, particularly in scenarios where neutral ground truths
are not available. For example, as shown in Table 3.5 and Table 3.6, our results
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Figure 3.9: Results of unseen 3D face identity-expression disentanglement on the
CoMA dataset when neutral ground truths are unavailable - groups from left to
right: the best, the average, and the worst. (a) illustrates the face ground truths
(input); (b) represents the predicted face shapes; and (c) depicts the error map. For
each group, the first column displays full faces, the second column denotes identity
faces, and the third column shows expressions on the mean face.

with ‘+id-dis’ significantly outperform those with ‘−id-dis’ on the FaceScape dataset,
especially when ground truth neutrals are not available, with around a reduction of
75% in AVDneu (decreasing from 12.020 to 3.112) and a reduction of 57% reduction
of Edis (decreasing from 1.791 to 0.765). Similar improvements are evident on the
CoMA dataset, where AVDneu decreases from 2.775 to 1.528, and Edis reduces from
1.439 to 0.176.

The improvements of disentanglement with neutral ground truths are not as
significant as those of the case with unavailable ground truths. Note that using
ground truth neutrals is a strong supervised training process, whereas, VAE and
discriminator learn identity representations adversarially in an weakly-supervised
process. In few cases presented in the tables above, when identity ground truths are
available, we observe, from a few cases in the tables above in which identity ground
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Figure 3.10: Results of unseen 3D face identity-expression disentanglement on the
BU3DFE dataset when neutral ground truths are available - groups from left to
right: the best, the average, and the worst. (a) illustrates the face ground truths
(input); (b) represents the predicted face shapes; and (c) depicts the error map. For
each group, the first column displays full faces, the second column denotes identity
faces, and the third column shows expressions on the mean face.

Table 3.5: Comparison results of Edis on the CoMA, BU3DFE and FaceScape
datasets. The term ‘−ne-gt’ represents our methods without neutral ground truths,
and ‘−id-dis’ indicates our method without the identity discriminator. Conversely,
the ‘+ne-gt’ and ‘+id-dis’ represent our method with neutral ground truths and
the identity discriminator, respectively. Results are highlighted for comparisons
between using (+id-dis) or not using (−id-dis) the identity discriminator. All errors
are measured in millimeters.

Method Dataset −id-dis +id-dis
mean median mean median

−ne-gt
CoMA 1.439 1.443 0.176 0.180

BU3DFE 1.211 1.144 0.443 0.439
FaceScape 1.791 1.795 0.765 0.758

+ne-gt
CoMA 0.016 0.015 0.014 0.013

BU3DFE 0.345 0.337 0.348 0.339
FaceScape 0.582 0.563 0.569 0.551
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Figure 3.11: Results of unseen 3D face identity-expression disentanglement on the
BU3DFE dataset when neutral ground truths are unavailable - groups from left to
right: the best, the average, and the worst. (a) illustrates the face ground truths
(input); (b) represents the predicted face shapes; and (c) depicts the error map. For
each group, the first column displays full faces, the second column denotes identity
faces, and the third column shows expressions on the mean face.

Table 3.6: Comparison results of AVDneu on the CoMA, BU3DFE and FaceScape
datasets. The term ‘−ne-gt’ represents our methods without neutral ground truths,
and ‘−id-dis’ indicates our method without the identity discriminator. Conversely,
the ‘+ne-gt’ and ‘+id-dis’ represent our method with neutral ground truths and
the identity discriminator, respectively. Results are highlighted for comparisons
between using (+id-dis) or not using (−id-dis) the identity discriminator. All errors
are measured in millimeters.

Method Dataset −id-dis +id-dis
mean ± std median mean ± std median

−ne-gt
CoMA 2.775 ± 0.948 2.509 1.528 ± 0.675 1.268

BU3DFE 4.108 ± 1.246 3.958 2.429 ± 0.667 2.283
FaceScape 12.020 ± 0.514 11.876 3.112 ± 0.916 2.957

+ne-gt
CoMA 0.071 ± 0.012 0.070 0.065 ± 0.012 0.063

BU3DFE 1.885 ± 0.459 1.733 1.894 ± 0.430 1.764
FaceScape 1.927 ± 0.617 1.821 1.927 ± 0.610 1.815
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Table 3.7: Comparison results of Erec on the CoMA, BU3DFE and FaceScape
datasets. The term ‘−ne-gt’ represents our methods without neutral ground truths,
and ‘−id-dis’ indicates our method without the identity discriminator. Conversely,
the ‘+ne-gt’ and ‘+id-dis’ represent our method with neutral ground truths and
the identity discriminator, respectively. Results are highlighted for comparisons
between using (+id-dis) or not using (−id-dis) the identity discriminator. All errors
are measured in millimeters.

Method Dataset −id-dis +id-dis
mean ± std median mean ± std median

−ne-gt
CoMA 0.686 ± 0.190 0.674 0.783 ± 0.225 0.651

BU3DFE 1.469 ± 0.405 1.359 1.421 ± 0.412 1.306
FaceScape 1.187 ± 0.300 1.138 1.157 ± 0.286 1.109

+ne-gt
CoMA 0.669 ± 0.213 0.647 0.651 ± 0.208 0.625

BU3DFE 1.509 ± 0.427 1.382 1.500 ± 0.423 1.404
FaceScape 1.393 ± 0.379 1.330 1.370 ± 0.369 1.307

truth are available, a slight decrease in reconstruction error when using ‘+id-dis’.
Thus, when ground truth neutrals (strong supervised process) works, the effectiveness
of weakly-supervised process is not obvious. In addition, some reconstruction results
are compromised to a small extent because of the use of adversarial learning.

The same effectiveness is qualitatively depicted in Figures 3.12, 3.13 and 3.14. A
great performance of not only in face identity-expression disentanglement but also
face reconstruction, has been achieved if the identity discriminator, as in (c) group
of each figure being compared, is used.

3.2.6.2 The Decimation Algorithm Applied to the FaceScape dataset

As outlined in Section 3.2.2, to optimise model training efficiency on the FaceScape
dataset, we apply a decimation algorithm to reduce the number of vertices in the
input meshes from 26,317 to 4,547 and the number of faces from 52,261 to 8,999.
The Python library [76] is used for mesh simplification, leveraging a quadric-based
edge-collapse strategy [35]. Different weighting schemes are applied to address issues
related to aspect ratios and degenerate quadrics. To evaluate the impact of this
decimation process, we also conduct experiments on the original FaceScape dataset,
where each face mesh contains 26,317 vertices and 52,261 faces. Figure 3.15 presents
a comparison of the reconstructed face shapes derived from both the original and
simplified face scans, without the corresponding identity ground truths and without
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Figure 3.12: Comparisons between using and not-using the identity discriminator
when neutral ground truths are unknown on the CoMA dataset. (a) illustrates the
full face ground truths (input); (b) represents the predicted face shapes without
using our identity discriminator; and (c) depicts the predicted face shapes using the
identity discriminator. In each row, the first face displays the full face, the second
one denotes the identity face, and the third one shows the expression on the mean
face.

using the identity discriminator. In contrast, Figure 3.16 shows a comparison of the
reconstructed face shapes derived from both the original and simplified face scans,
with the corresponding identity ground truths and using the identity discriminator.

As illustrated in Figure 3.15, the predicted identity and expression exhibit
significant noise when simplified face meshes are used as input, as also observed
in Figure 3.14. However, this noise is less evident when the original face meshes
are used. This is attributed to the subsampling process, where the decimated face
meshes lack dense correspondence between points, thereby reducing the fidelity of
the reconstruction. Moreover, in the absence of identity ground truths, i.e., when
the L2 constraint between the identity ground truths and predicted identities is not
enforced, the predicted shapes are insufficiently supervised, leading to topological



66 Chapter 3. 3D Face Disentanglement of Identity and Expression

Figure 3.13: Comparisons between using and not-using the identity discriminator
when neutral ground truths are unknown on the BU3DFE dataset. (a) illustrates
the full face ground truths (input); (b) represents the predicted face shapes without
using our identity discriminator; and (c) depicts the predicted face shapes using the
identity discriminator. In each row, the first face displays the full face, the second
one denotes the identity face, and the third one shows the expression on the mean
face.

inconsistencies.

While the predicted faces in Figure 3.16 perform well with both simplified and
original face shapes as the input, the original predicted face meshes exhibit more
noise. This increased noise can be explained by our decoder networks, which employs
an MLP to predict the final vertices from a low-dimensional latent space. The
simplified face meshes contain only 4,547 vertices, while the original faces have more
than five times as many (26,317 vertices). This significant increase in the number of
vertices presents a challenge for the decoder, which, with its comparatively limited
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Figure 3.14: Comparisons between using and not-using the identity discriminator
when neutral ground truths are unknown on the FaceScape dataset. (a) illustrates
the full face ground truths (input); (b) represents the predicted face shapes without
using our identity discriminator; and (c) depicts the predicted face shapes using the
identity discriminator. In each row, the first face displays the full face, the second
one denotes the identity face, and the third one shows the expression on the mean
face.

number of hidden neurons, struggles to predict each vertex with accuracy.
3.2.7 Applications

Table 3.8: The rank-1 accuracy results on the FaceScape and BU3DFE datasets

Method Dataset
FaceScape (%) BU3DFE (%)

Kacem’s work [48] 99.88 —
Conv-MeshAE [88] 98.81 100.00

Ours 98.66 100.00
Ours+ne-gt 99.39 100.00

We apply our network for several applications, including expression transfer,
identity and expression interpolation, and face recognition. Taking the CoMA and
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Figure 3.15: Comparisons between simplified and original input faces on the
FaceScape dataset, where identity ground truths are unknown and the identity
discriminator is not used. (a) illustrates the full face ground truths (input); (b)
represents the predicted face shapes using the simplified faces as the input; and (c)
depicts the predicted face shapes using the original faces as the input. In each row,
the first face displays the full face, the second one denotes the identity face, and the
third one shows the expression on the mean face.

FaceScape datasets as an example, we randomly select two subjects with different
expressions from the test set and transfer their expression latent representations, as
shown in Figure 3.19.

We also display the disentangled identity and expression interpolations in Fig-
ure 3.17 and Figure 3.18. For these interpolations, two sets of latent representations
corresponding to different identities and expressions are learnt by our encoder. We
then perform interpolation with a step length that increases by 25% of the preset
length on each iteration.

For the face recognition application, we implement it on the FaceScape and
BU3DFE datasets, as the CoMA dataset contains only 12 individuals, which limits
its utility for this application. The face shapes in the test sets of both BU3DFE
and FaceScape are unseen in the training data. This application is executed after
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Figure 3.16: Comparisons between simplified and original input faces on the
FaceScape dataset, where identity ground truths are known and the identity dis-
criminator is used. (a) illustrates the full face ground truths (input); (b) represents
the predicted face shapes using the simplified faces as the input; and (c) depicts the
predicted face shapes using the original faces as the input. In each row, the first face
displays the full face, the second one denotes the identity face, and the third one
shows the expression on the mean face.

disentangling identity and expression from full face shapes, and then the generated
identity latent representations are used for face recognition.

We follow the practice of [48] to employ the cosine similarity measure to evaluate
face recognition performance. The neutral faces from the test set act as references
and expressive face shapes serve as probes. We use rank-1 accuracy for evaluation,
with results detailed in Table 3.8.

We report accuracy results from Kacem’s work [48]. In our work, we set the
dimensions of latent vectors to be those in Conv-MeshAE, specifically 80 (40 for
identities and 40 for expressions) for BU3DFE and 128 (again, split equally) for
FaceScape. The evaluation in [48] adopts identity features equal in size to the number
of training subjects. The identity features are much larger than our configuration,
potentially enabling more detail information storage in their latent space and leading
to their higher reported accuracy. The high accuracy in BU3DFE is caused by the
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Figure 3.17: Interpolations of identity and expression latent representations on
the FaceScape dataset. The interpolations are from the identities of subject A to
subject B (with same expressions) and from expression C to expression D (with same
identities) individually.

Figure 3.18: Interpolations of identity and expression latent representations on the
CoMA dataset. The interpolations are from the identities of subject A to subject B
(with same expressions) and from expression C to expression D (with same identities)
individually.
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Figure 3.19: Expression transfer using our disentanglement network on the FaceScape
(a) and CoMA (b) datasets. There are two subjects, A and B, for each dataset. The
first row displays the original input faces of A and B, and the second row shows
the faces with tranferred expressions, i.e., A’s subject with B’s expression and B’s
subject with A’s expression.

small number of identities (10) in its test set. Even if corresponding neutrals are not
given, our method still achieves desired face recognition results.

3.3 SUMMARY

We proposed a method employing a VAE and a discriminator for disentangling
3D face identities and expressions. To learn identity representations, we use pairs
of 3D faces to train an identity discriminator, which is forced to capture identity
features of the same subjects only. This particularly improves the performance in
the situations where neutral expressions are not available. Additionally, the joint
end-to-end learning of the encoder-decoder network and the identity discriminator
helps reconstruct 3D faces. We performed evaluations on CoMA, FaceScape and
BU3DFE, showing the high effectiveness of our network for 3D face reconstruction
and identity/expression disentanglement.

In summary, contributions are:
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• An adversarial approach to facial identity and expression disentanglement that
exploits a PointNet-based VAE and discriminator.

• To the best of our knowledge, we are the first to address the scenario of un-
known ground truth neutrals, leveraging the invariance of identities from same
individuals and employing the apathy ‘expression’ as the centre of expression
space in order to train an end-to-end model, i.e., the identity discriminator
and VAE are trained simultaneously in an unsupervised manner.

• We compare the results of using and without using neutral ground truths, and
observe the desirable performance of disentanglement on applications including
face recognition, expression transfer and expression interpolation.

• Evaluation on publicly-available datasets demonstrates state-of-the-art results
with the option of operating in a more versatile application setting of no known
neutral ground truths.



4

Parts-Based Implicit 3D Face Modelling

This chapter extends identity/expression disentanglement by additionally disentan-
gling facial parts in a new parts-based 3D face modelling approach, within which
we employ implicit shape representations. Thus we address the open challenges of
independently controlling different facial parts and providing the ability to learn
explainable parts-based latent shape embeddings for implicit surfaces. Additionally,
we present a new scheme for facial feature swapping that has allowed significant
data augmentation for network training. We are able to demonstrate state-of-the-art
reconstruction results on the FaceScape dataset, with particularly good performance
on the facial parts. Finally, we extend evaluations by utilising the Headspace dataset
of full head shapes.

Existing 3D facial generative models that employ a VAE are able to learn latent
embeddings for each face shape. Some recent works have aimed to disentangle the la-
tent embeddings on expressive facial datasets, which makes the latent representations
more explainable. Among others, learning that decouples identity and expression
latent representations has achieved remarkable results [43, 46, 94]. However, the
learning of both controllable and disentangled latent embeddings for distinct facial
parts is still a challenging task and remains crucial for many applications where
local controllability is important. Examples include 3D photofit, craniofacial surgery
(e.g. minor adjustments of the nose) or, in gaming, where small, localised facial
adjustments of game characters is required.

Historically, most 3D face models were based on explicit representations such as
point clouds, voxel grids and meshes. However, more recently, implicit representations
that use signed distance functions (SDFs), unsigned distance fields or occupancy
functions have become the preferred approach [79, 72, 18, 66, 20, 22, 118, 23]. The

73
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benefit is that such representations are compact and have the flexibility to represent
complex shapes that are rich in detail, without being tied to a particular mesh
resolution and topology. Here, we focus on implicit 3D face modelling, where a SDF
and shape deformation fields are employed to represent face shapes, with the goal of
disentangling the encoding of specific and distinct facial parts.

We propose a method for 3D face modelling that learns a continuous parts-
based deformation field. This field maps the various semantic parts of a subject’s
face to a template. By swapping affine-mapped facial features among different
individuals from predefined regions we achieve significant parts-based training data
augmentation. Moreover, by sequentially morphing the surface points of these parts,
we learn corresponding latent representations, shape deformation fields, and the
SDF of a template shape. This yields improved shape controllability and better
interpretability of the face latent space, while retaining all of the known advantages
of implicit surface modelling.

Evaluations verify the effectiveness of both facial expression and parts disentan-
glement, independent control of those facial parts, as well as state-of-the art facial
parts reconstruction, when evaluated on FaceScape and Headspace datasets.

The structure of this chapter is as follows: in Section 4.1, we discuss the prob-
lem that we tackle and detail the mechanism of the parts-based implicit network.
Section 4.2 evaluates the network performance in terms of expressions, parts and
whole shape, using both qualitative and quantitative metrics on our generated 3D
face shapes and compares them with other implicit representation methods. Finally,
we conclude and highlight our contributions in Section 4.3.

4.1 METHODOLOGY

In this section, we describe the problem and provide a comprehensive introduction to
our method for learning parts-based facial representations in an implicit manner. A
key component of our method involves swapping facial features across subject pairs,
which enables significant data augmentation via affine transform of facial parts in
conjunction with Laplacian-regulated mesh morphing.

Our architecture, shown in Figure 4.1, is designed as a generative model for 3D
face expression and part deformations. Within this framework, we adopt the ‘mini-
nets’ structure, proposed by Zheng et al. [117], for cascaded 3D shape deformations.
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In Section 4.1.1, we introduce our problem setting, followed by preliminary knowledge
of a base network used in our architecture in Section 4.1.2. We introduce a detailed
expression and parts-based deformation network that we propose in Section 4.1.3.
Section 4.1.4 details the data augmentation process, which includes swapping facial
parts among face shapes. Finally, the loss function components applied in our
network are introduced in Section 4.1.5.

4.1.1 Problem Setting

We utilise an implicit function, specifically a SDF, as a template shape representation,
due to its compactness and resolution-free expressivity, for modelling the fine details
of human faces. Given a 3D query point, p ∈ R3, and a set of latent variables that
represent (global) facial expression, along with (neutral) facial part shapes, we aim
to learn a conditional SDF:

s = Φ(p|zexp, znose, zeyes, zmouth, zrem), (4.1)

where s ∈ R is the signed distance. Facial features, i.e., exp, nose, eyes, mouth and
the remaining face/head part (denoted by ‘rem’), are represented by corresponding
latent vectors denoted as zexp ∈ Re, znose ∈ Rd, zeyes ∈ Rd, zmouth ∈ Rd and
zrem ∈ Rd′ , respectively. Then the surface, Ω0, of a facial shape is represented by
the zero-level set of the SDF:

Ω0 (Φ) = {p ∈ R3 | Φ (p|zexp, . . . , zrem) = 0}. (4.2)

To learn independent latent vectors for expressions and facial parts, as well
as a conditional SDF, we propose a sequential deformation neural network that
leverages augmented face shape data for training, by using affine transforms and
Laplace-regulated mesh deformations to swap facial parts between different subjects.

4.1.2 SIREN-based Architecture

The Sinusoidal Representation (SIREN) approach [91], introduced by Sitzmann et
al., employs MLPs with the sine as a periodic activation function for implicit neural
representations and their derivatives. It is able to fit highly-detailed shapes based on
SDFs by enforcing the Eikonal constraints for points and supervising the gradients
of sampled oriented points to remain consistent with surface normals.
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Figure 4.1: The overall architecture of our model. This end-to-end deformation
network is composed of six modules, namely ExpNet, NoseNet, EyesNet, MouthNet,
RemNet and SDFNet. The input to the overall network is an expressive face. After
ExpNet, a neutral face is obtained, and the parts-based deformations are processed
sequentially on the neutral face.

Inspired by [91], we employ similar loss functions for our SDF network as:

LSDF = λEik

∑
p∈Ω

|∥∇Φ(p)∥ − 1| + λnormal

∑
p∈Ω

(1 − ⟨∇Φ (p) , n (p)⟩) , (4.3)

where ∥ · ∥ (∥ · ∥2) represents the L2 (Euclidean) norm, and λEik and λnormal are
weights for these two terms. ∇Φ(p) denotes the gradients at points, and n (p)
represents the surface normal. Points p are sampled from the entire domain Ω, and
the first term in the loss function is designed to find a surface where the gradients of p
are constrained to have a unit Euclidean norm. The second term is used to align the
gradients ∇Φ(p) with the surface normal n (p) at all points p. A hyper-network is
also proposed to predict the parameters of SIREN, which can be modelled in a latent
space. We adopt this design in our model to effectively map the parts-based latent
representations of each facial region onto the weights of our deformation network.

4.1.3 Parts-based Deformation Networks

We propose to learn separate representations for different regions of 3D faces. In other
words, the 3D face surface that we aim to reconstruct is described by Equation (4.2).
Our objective is to learn the latent representations of both the (global) facial
expression and of pre-defined identity-based (neutral expression) facial parts, i.e.,
the nose, eyes, mouth and the remaining region, in order to generate 3D faces with
independent control over each part.

Considering the advantages such as resolution independence, the ability to handle
complex topologies, and the superior capacity to capture highly detailed shapes, we
choose to employ implicit representations, i.e., SDFs, in our method for 3D modelling.
Our network generally consists of two main functional parts: one for deformations
(i.e., expression to neutral and between various predefined facial regions up to the
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Figure 4.2: The detailed architecture of our model [42]. The end-to-end deformation
network is composed of six modules, i.e., ExpNet, NoseNet, EyesNet, MouthNet,
RemNet - indicated by ellipsis (...) for compactness - and SDFNet. The five
deformation modules share the same base network and deform the expressive/swapped
neutral shape components back to their corresponding shape components on the
template shape. The SDFNet employs a similar network and initialisations to SIREN
[91] to learn the SDF of the template.
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template shape), and the other dedicated to computing the SDF for the template
face shape.
Deformation Networks. To achieve separate representations of facial expression
and neutralised face regions, i.e., the nose, eyes, mouth and the remainder, we
propose a system of five deformation networks, arranged in a cascading manner. As
illustrated in Figure 4.1, our method processes an input expressive face through the
‘ExpNet’, i.e., the Expression Network, that is designed to remove expressions from
the expressive facial shape, thereby learning a global expressive representation for the
entire face. The neutralised face, obtained after the expression removal, is then fed
into a sequential network consisting of four components, i.e., ‘NoseNet’, ‘EyesNet’,
‘MouthNet’ and ‘RemNet’, each corresponding to a specific facial region. Within each
of these part networks, we extract the unique features of the respective facial parts
from different subjects, as well as their swapped parts, and ensure that the outputs
are consistent with the corresponding parts on the template face, facilitating the
learning of latent variables for each specific facial region. Overall, each component
of our model is tailored to learn the latent representations and deformations for
either global expression or the shape of a specific local face region relative to the
corresponding local shape of the learnt template.

The input to the entire sequential network consists of expressive facial shapes,
which are initially processed by the ‘ExpNet’ to learn global facial expression rep-
resentations. As depicted in Figure 4.2, five predefined landmarks, e.g. the outer
corners of the eyes, outer corners of the mouth, and the nose tip, are used to divide
the global face/head into smaller, local area. This segmentation helps better rep-
resent facial details. Rather than using fixed global point coordinates, the input is
represented by point positions relative to these five landmarks. Consider the point
p(x, y, z) on the expressive input face as shown in Figure 4.2. Its position relative
to these key landmarks is described, for example, by its location with respect to the
right eye corner, denoted as lmk1 in Figure 4.2. This relative position is expressed
as p(x − xlmk1 , y − ylmk1 , z − zlmk1).

Upon passing through the ‘ExpNet’, expressive components are removed from
the input face shape, the network predicts point position translations to achieve
neutralised deformation. Ideally, in the parts-based Deform-Net (the deformation
network), the on-surface points corresponding to each predefined facial part should
further morph within their respective regional scopes, relative to their corresponding
landmarks, as they are processed by each parts-based deformation module. This
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enables the learning of corresponding swapped features and the alignment with the
template shape. Taking the nose part as an example (the eyes and mouth regions
follow in a similar process), in box ‘N’ of Figure 4.2, the point p1(x1, y1, z1) from
subject A is initially defined within the nose region. After passing through ‘NoseNet’,
all points on the subject A’s nose move to align with the template. This indicates
that in box ‘E’, subject A retains the template nose but all other regions remain
unchanged. Therefore, the displacement in the position of p1 can be observed in box
‘E’ as it moves to p1(x′, y′, z′). Simultaneously, in box ‘E’, the vertices in the eye
regions are defined and undergo displacements as they pass through the subsequent
network.

For each block network shown in Figure 4.2, for example ‘ExpNet’, consists of two
primary components: a hyperparameters network, referred to as ‘Hyper-Net’, and a
deformation network, denoted as ‘Deform-Net’. Following the idea from the SIREN
approach [91], we do not learn the latent representations directly from the deformation
network. Instead, the initialisation for training and validating the distributions
of these latent representations is achieved through a hyperparameters network
that maps the latent codes to the specific weights and biases of our deformation
network. More specifically, the expressive and parts-based latent codes zexp ∈ Re

and zpart ∈ {Rd,Rd′}, following zero-mean multivariate Gaussian distributions, are
input into a auto-decoder network to be mapped to weights (e.g. Rd → Rk). The
stacked hyperparameter network and the deformation network for one facial region
are defined as follows:

p̂ = DW,B (p) + p = D (Hz, p) + p, (4.4)

where D represents the Deform-Net and H represents the Hyper-Net. D (Hz, p) =
v⃗ ∈ R3 is used for position translation based on the given on-surface point p. The
predicted translated point, denoted by p̂, is expected to be located in a position
according to its corresponding point on the template face.

In the final deformation module of our model, denoted as ‘RemNet’ that trans-
forms vertices of the remainder (excluding the nose, eyes and mouth) from specific
individuals to the template mean face, except position translations on vertices, a
displacement ϵ ∈ R is used to control facial shape variation of faces and improve the
facial shape reconstruction. Due to the variety in detail among human faces, point
positional transformations are not sufficient to fit complex deformations. Therefore,
displacements applied on signed distance fields are essential and the form of the final
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Deform-Net, abbreviated as ‘rem’, is as follows,

Drem : p ∈ R3 →
(
ϵ ∈ R, v⃗r ∈ R3

)
(4.5)

SDF Network. In previous discussion, we explored one functional component,
i.e., sequential deformation networks. These networks yield latent representations
for expressions and each predefined facial region. To reconstruct 3D shapes using
implicit representations, a network for computing the SDF of sampled points on the
template face should be introduced, as shown in Figure 4.1 as ‘SDFNet’.

As illustrated in Figure 4.2, a fully-connected network SDFNet is employed as
the final net in the end of our architecture to compute a signed distance for the
template face. The final signed distance for the input face is represented as follows:

Φ (p) = S

p +
r(j)∑

j

v⃗j

 + ϵ, (4.6)

where S represents SDFNet and r(j) (r(j) ∈ {exp, n, e, m, r}) corresponds to the
expressive full face and four predefined facial regions, i.e., nose, eyes, mouth and the
remaining part, respectively.
Landmarks Networks Inspired by [83] and [117], a landmarks generative model
Gz and a neural blend skinning algorithm [57] are incorporated into our network to
improve facial detail reconstruction, as shown in Figure 4.3.

A supervised MLP network is tailored to predict landmarks for each facial region,
which helps bolster the effectiveness of the learnt parts-based latent representations.
As demonstrated in Figure 4.3 (with the mouth region as an example), the latent
representations are used to not only predict parameters for our deformation nets
but also generate five landmarks per region. (We show the predefined semantic
parts-based landmarks marked by different colours in Figure 4.4 and Figure 4.5 for
different datasets.) The predicted landmarks further subdivide each predefined
region into finer details, as deformations for input points are computed relative to
these landmarks in a local semantic field, following a similar scheme to that employed
in ‘ExpNet’, as shown in Figure 4.2. Following [117], we use a lightweight module to
blend local fields into a global field, as depicted as ‘Mini Weights-Net’ in Figure 4.3,
which is applied to generate the blend coefficients of each subdivided field based on
the five landmarks for each region. Thus, our final SDF Φ (p) is an extension of
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Figure 4.3: The landmarks generative model and detailed deformation network for
the mouth region. The landmarks generative network, marked in blue and denoted
as ‘Landmarks-Net’, outputs the positional coordinates of five key landmarks within
the mouth region. This facilitates the subdivision of the mouth into smaller fields,
which are then blended together using the weights generated by the ‘Mini Weights
Net’.

Equation (4.6), as follows:

Φ (p) = S

p +
r(j)∑

j

L∑
l=1

ωl

(
p, pj

l

) (
v⃗j, pj

l

) +
L∑

l=1
ωlϵl, (4.7)

where L is the number of landmarks for each facial region, ω represents the blend
coefficients generated from the ‘Mini Weights-Net’ to weigh local facial regions based
on predefined facial landmarks as shown in Figure 4.3.
Summary To summarise and clarify the design of the sequential deformation
networks, we present separate pseudo-code algorithms in Algorithms 1, 2 and 3
to describe the workings of our three networks: ‘ExpNet’ (similar to ‘NoseNet’,
‘EyesNet’, and‘MouthNet’), ‘RemNet’ and ‘SDFNet’.
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Algorithm 1 ExpNet Deformation Process
Input: Expression Representations zexp ∈ Re, Input Points P ∈ RN×3 (p ∈ R3),
Output: Deformed Points P′ ∈ RN×3 (p′ ∈ R3)

1: Initialise zexp

2: Hyper-Net H(zexp) → Mini deform-net weights (Wexp, Bexp)
3: Landmarks-Net(zexp) → face landmarks plmk ∈ Rl×3 where l = 5
4: for l = 1 to 5 do
5: Compute point relative coordinates pl

relative = p − pl
lmk

6: Predict local deformations v⃗l for pl
relative using Mini deform-Net

7: Compute blend weights ωl for part l using Mini Weights-Net
8: end for
9: Compute final deformations v⃗ = ∑5

l=1 ωl × v⃗l

10: Apply transformation p′ = p + v⃗
11: return p′

Algorithm 2 RemNet Deformation Process
Input: Remainder Part Representations zrem ∈ Rd′ , Input Points P ∈ RN×3 (p ∈

R3),
Output: Deformed Points P′ ∈ RN×3 (p′ ∈ R3) and displacement ϵ

1: Initialise zrem

2: Hyper-Net H(zrem) → Mini deform-net weights (Wrem, Brem)
3: Landmarks-Net(zrem) → face landmarks plmk ∈ Rl×3 where l = 5
4: for l = 1 to 5 do
5: Compute point relative coordinates pl

relative = p − pl
lmk

6: Use the Mini deform-Net to predict local deformations v⃗l for pl
relative and to

compute the displacement ϵ to correct the final SDFs
7: Compute blend weights ωl for part l using Mini Weights-Net
8: end for
9: Compute final deformations v⃗ = ∑5

l=1 ωl × v⃗l

10: Apply transformation p′ = p + v⃗
11: return p′, ϵ
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Algorithm 3 SDFNet Computation Process
Input: Template Face Landmarks plmk ∈ Rl×3 where l = 5, Input Points P ∈ RN×3

(p ∈ R3),
Output: Template Face SDFs s

1: for l = 1 to 5 do
2: Compute point relative coordinates pl

relative = p − pl
lmk

3: Use the Mini deform-Net to compute local SDFs sl

4: Compute blend weights ωl for part l using Mini Weights-Net
5: end for
6: Compute final template face SDFs s = ∑5

l=1 ωl × sl

7: return s

4.1.4 Dataset Augmentation by Facial Part Swapping

Affine Transformation for Swapping In order to augment our training datasets,
we swap facial features (nose, eyes, and mouth) across pairs of subjects, using
an affine transformation that optimally (least squares) matches the facial feature
peripheral vertices into the graft site vertices of the face/head. We predefined surface
regions for the nose, eyes and mouth on the FaceScape dataset [112, 120], and used
the parts division scheme provided by the FLAME fitting of the Headspace dataset
[24, 122]. Figure 4.4 and Figure 4.5 show the region definitions for the FaceScape
and Headspace datasets in a colour coding, respectively.

To train our network, we create composite faces from a pairs of subjects (a, b) in
the training dataset partition, where a composite face is composed from the surface
parts set as: P = {nosea, eyesa, moutha, remb}. Figure 4.4 and Figure 4.5 show a 3×3
array of face shapes, where each column represents a different subject (a1...3), while
subject b, which supplies the remainder part, is kept constant. Then, as we progress
through the rows - the nose, then the eyes are deformed towards the learnt template
shape. The shape shown under the Figure 4.4/4.5 colour coding additionally has
the mouth deformed and so has the nose, eyes and mouth of the template and the
remainder part is that of subject b. This final surface part is deformed by RemNet
to generate the full template shape.

To independently learn latent representations for various facial regions and to
augment the facial regions dataset, we sequentially swap facial features with those
from several random subjects, where, from the augmentation perspective, different
affine transforms are required for different subject pairings. The order of facial
part deformation is arbitrary but must be consistent with the sequence adopted
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Colored Landmarks

Nose

Eyes

Mouth

Predefined Regions

Figure 4.4: Predefined facial regions and semantic part-based landmarks on the
FaceScape dataset. On the top left, the nose, eyes, and mouth parts are marked in
green, orange, and blue, respectively. On the top right, five feature-salient landmarks
are selected for each region, i.e., nose, eyes, mouth, and remainder, and are marked
in green, orange, blue, and purple colors. In the 3 × 3 block, the first row shows
composite faces with subject pairings: (a1, b), (a2, b), (a3, b). The second row shows
the nose feature being replaced by that of the template, and the third row additionally
shows the eyes being replaced by that of the template. The bottom shape has all
template features except the remainder part, which is that of subject b.
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Colored LandmarksPredefined Regions

Eyes

Mouth

Nose

Figure 4.5: Predefined facial regions and semantic part-based landmarks on the
Headspace dataset. On the top left, the nose, eyes, and mouth parts are marked in
green, orange, and blue, respectively. On the top right, five feature-salient landmarks
are selected for each region, i.e., nose, eyes, mouth, and remainder, and are marked
in green, orange, blue, and purple colors. In the 3 × 3 block, the first row shows
composite faces with subject pairings: (a1, b), (a2, b), (a3, b). The second row shows
the nose feature being replaced by that of the template, and the third row additionally
shows the eyes being replaced by that of the template. The bottom shape has all
template features except the remainder part, which is that of subject b.
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by the latent codes learning networks for each facial region. In the design of our
network, the sequence of learning nets is arranged as nose, eyes, mouth, and then
the remainder.

For example, when processing the original face b, one of the input features-
swapped faces retains the nose, eyes and mouth of the swapped subject a, but keeps
the remainder part same as b, as depicted in the first row of the 3 × 3 face array
in Figure 4.4 and Figure 4.5. Sequentially, after passing through the ‘NoseNet’ in
our pipeline, the nose feature of a is removed to align with the template nose, while
the eyes and mouth remain those of a. This step focusses on learning the nose
latent variables, as shown in the second row of the face array in Figure 4.4 and
Figure 4.5. The subsequent processes follow a similar pattern: the input goes through
the ‘EyesNet’ to replace the specific eyes feature with those of the template (as
illustrated in the third row, which shows the nose and eyes of template, the mouth
of a, and the remainder of b). Then, the ‘MouthNet’ removes the mouth of a so that
the input to ‘RemNet’ consists of a face with the template’s nose, eyes, mouth, and
the remainder of b. Finally, after processing through ‘RemNet’, all subjects become
identical to the template.

Therefore, our part networks are strategically designed to learn the corresponding
latent vectors using this approach. Each parts-based hyperparameter network outputs
its corresponding factors based on the parts-based latent embeddings, enabling the
model to learn the deformation weights separately as well as in an end-to-end manner.

While it is feasible to further subdivide the remainder surface into smaller parts
(e.g. chin, forehead, cheeks), differences among these parts are harder to observe.
Further subdivision increases network training time. Focusing on three key parts,
i.e., nose, eyes, mouth, is sufficient for us to demonstrate the efficacy of our model.
Laplacian Deformation In our approach, where an affine transformation is used to
swap facial features among various subjects, obvious discontinuities appear between
the swapped facial region and the remaining part of face. This is because the
least-squares optimal fitting of the facial part to the graft site has some residual error.
To address it, we employ Laplacian deformation [93, 82], based on the Laplacian
operator, to preserve the geometric details of face meshes, which ensures a smoother
transition between the swapped feature and the original face.

After aligning all face shapes, we firstly perform a least square alignment of facial
part edge vertices for the swapped face to the graft site. In the following step, we
deform the original part to the affine transformed facial feature using Laplacian
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regularised deformation.
In detail, we use Laplacian coordinates, denoted as ∆ = [δ1, . . . , δn]T , where

each δi = L(pi) = pi − 1
di

∑
j∈Ni

pj (di is the degree of vertex pi, and Ni is the
set of neighbouring points of pi). The Laplacian coordinate matrix ∆ is computed
as ∆ = (I − D−1A)P , with P being the matrix of vertex positions of the first
affine-transformed face parts. To ensure that the details at the junctions remain
unchanged, the vertices obtained from the least squares fitting should be consistent
with the vertices of swapped features, which is expressed as ∆ − L(P ′) = 0, where
P ′ represents the positions of vertices after Laplacian deformation, representing our
targeted vertex positions. This ensures that the junctions blend seamlessly with the
rest of the mesh.

4.1.5 Loss Functions

To learn signed distance fields, given that the ground truth signed distance values of
on-surface and near-surface points can be obtained, we define the loss function Lrec

as follows:
Lrec = LSDF + λgt

∑
p∈Ω

L (Φ (p) , s) , (4.8)

where LSDF is the loss function introduced in Equation (4.3), and λgt is the weight
for the second term. We employ the l1-norm as the loss metric for the predicted
signed distance of the sampled points p (as defined in Equation (4.7)) and their
corresponding ground truth signed distance s. This loss function is used to constrain
the final SDFs in 3D face reconstruction and to regulate displacements in facial
features.

For the learning of parts-based latent representations, we introduce a regularisa-
tion loss Lreg for all latent embeddings, defined as follows:

Lreg =
r(j)∑

j

∥zj∥2 , (4.9)

where r(j) ∈ {exp, n, e, m, r} represent the expressive full face, nose, eyes, mouth
and remainder parts, respectively.

The loss for landmarks Llmk is defined as:

Llmk = λdlL
(
D (plmk) , pT

lmk

)
+ λgl

r(j)∑
j

L
(
Gzj

, pj
lmk

)
, (4.10)
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where λdl and λgl are weights for the landmarks deformation loss and the landmarks
generation loss, respectively. The l1-norm is employed to enforce the alignment
between deformed original facial landmarks D (plmk) and the template landmarks
pT

lmk. Additionally, the second term in Equation (4.10) is the loss function for the
landmarks-generative model Gz, where pj

lmk represents the corresponding ground
truth landmarks of the j-th part.

Therefore, our network is trained in an end-to-end manner by minimising the
final loss function, denoted as:

L = Lrec + Llmk + λregLreg, (4.11)

where λreg is the weight for the regularisation loss of all latent embeddings.
During inference, the network’s weights are fixed, and the optimal latent repre-

sentations zj are determined as follows:

z∗
j = arg min

zj

 ∑
(zj ,p)

Lrec (zj, p) +
∑
zj

Lreg (zj)
 . (4.12)

4.2 EVALUATION

In this section, we present a comprehensive evaluation of our method for implicit
representation learning of 3D facial regions. We begin by introducing two datasets
used for our evaluation: one focuses on 3D faces and the other on 3D heads. We
then outline the four methods against which we compare our method. Further, we
provide detailed explanations for the implementation settings and the evaluation
metrics employed in our comparative analysis. This includes both qualitative and
quantitative results to verify the robust performance of our model. Finally, we
present our ablation studies, which explore the impact of the landmark selection
strategies and Laplacian deformation within our approach. We conclude this section
with discussions on both the limitations and contributions of our method, providing
potential improvements as a foundation for our subsequent work.

4.2.1 Datasets

In our experiments, we utilise two public datasets: FaceScape [112, 120] and
Headspace [24]. To ensure a fair comparison, we align the training-to-test ra-
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tio in our method with those in baseline methods. A detailed introduction to the
datasets, along with their respective division ratios, is provided in the following.

FaceScape dataset [112, 120] is a large-scale detailed face dataset consisting of 847
subjects, each performing 20 expressions. For a fair comparison, we follow the split
scheme for training and test sets as proposed in [117] Our employed dataset includes
365 publicly available individuals, using face scans of 355 subjects for training and
10 for the test set. For training expression-identity disentanglement, we use 17
expressions from each subject. Additionally, we randomly select 16 different subjects
and swap their three features (nose, eyes and mouth) to train the parts-based branch.
Consequently, the training set consists of 12,070 scans divided equally between
expressive-identity representation learning and facial parts representation learning.
The test set includes 170 unseen scans. Given the requirement of watertight shapes
for the SDF, we apply the same data preprocessing scheme to crop the defined
unit sphere and generate pseudo watertight shapes. In particular, each face scan
is normalised to a scale unit of 1cm. The coordinate origin is set at a point 4mm
behind the nose tip, as outlined in [117]. Subsequently, we crop any part of the head
that extend beyond a sphere with a radius of 1cm. We then apply the Ray-Triangle
Intersection Algorithm [74] to remove hidden surfaces, such as oral cavity. Finally, we
use Delaunay triangulation [55] to properly orient the scans, as shown in Figure 4.6,
and the final pseudo watertight shapes are obtained.

Headspace dataset [24] is a set of 3D images of the human head, consisting of
1,519 subjects. Due to the unregistration from the raw face data, we utilise the
FLAME [62] fitting of the Headspace dataset as provided by [122], for the Headspace
dataset. This enables the direct generation of watertight shapes from the densely
corresponded 3D faces. During data preprocessing, we remove the internal structures.
Our first step is to crop the neck region and remove the eyeballs for all subjects.
Dealing with the eyeballs that are separate watertight surfaces becomes challenging
when distinguishing between the outer and inner surface of the full head. Moreover,
considering the complex geometry in the oral cavities, we decide to remove the back
structure of the mouths as well. To ensure that these cropped shapes are suitable for
learning with implicit representations, we manually close any open areas to guarantee
their watertightness, as shown in Figure 4.7. For efficiency in time and memory, we
randomly select 300 subjects from the whole dataset. Following a ratio of 9:1, we
use 270 subjects for training and allocate the remaining 30 for the test set.
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4.2.2 Comparative Studies

We conduct a comprehensive experiment to compare our method with four publicly
available state-of-the-art methods, which mainly focus on implicit representations for
3D shape reconstruction. Specifically, we compare our approach with DeepSDF [79],
i3DMM [113] and ImFace [117] on the Headspace dataset. These three solutions use
implicit techniques for 3D shape reconstruction. We also compare our method with
FLAME [62] on the FaceScape dataset. However, we do not include a comparison
with FLAME on the Headspace dataset since we use FLAME-fitting data as ground
truths for this dataset. All evaluations of these methods are conducted using the
same training and test datasets. We report results we achieved on both sets of
preprocessed data.

DeepSDF [79], proposed by Park et al., introduces an auto-decoder model that
directly maps a latent code to the output, in order to learn continuous SDFs for
various classes of shapes, such as planes, cars and lamps. It facilitates numerous tasks,
including shape completion, representation of complex topologies and high-quality
shape reconstructions.

i3DMM, as presented in [113], proposes an implicit 3DMM for full heads, under
the situation where dense correspondences between head scans are not necessary. This

Figure 4.6: 3D face scans in FaceScape dataset [112, 120]. The sub-figure (a): the
original faces in the dataset; (b): the corresponding preprocessed faces, using the
same preprocessing method as described in [117].
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Figure 4.7: 3D face scans in Headspace dataset [24]. The sub-figure (a): the original
faces in the dataset; sub-figure (b): the FLAME-fitting faces, as provided by [122];
sub-figure (c): the corresponding preprocessed watertight faces.

model disentangles the identity, expressions and hairstyle for geometry components,
and separate the identity and hairstyle for color components.

ImFace [117] employs two explicitly disentangled deformation fields, i.e., identity
and expressions, to handle complex face variations. This method proposes a novel
nonlinear 3DMM for face scans, using an effective pipeline to learn representations
in a fine-grained and semantically meaningful manner.

Our approach was primarily inspired by ImFace that revolves around disentangle-
ment of expressions and identities. Unlike ImFace, our architecture not only separates
identities and expressions but also independently represents each facial region on a
neutral expression in an implicit way. We adopt an auto-decoder architecture for
our hyperparameter networks, with the deformation networks for each facial regions
being based on the SIREN framework. We learn representations separately for each
regions as well as expressions, which is different from those methods we introduced
in Section 2.4.2. Similar to DeepSDF, i3DMM and ImFace, our method employs
SDFs for representations, in contrast to the explicit approach, FLAME, which also
serves as a baseline in our evaluation. Implicit learning becomes popular in recent
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years as it learns a continuous field for the shape surface and imposes no limitations
on reconstruction resolutions.

4.2.3 Implementation Details

We explain the architecture of our model using one part-based deformation module
as the latter shares the same architecture with all the other modules. The Hyper-
Net is a ReLU MLP with one hidden layer. Both the Deform-Nets and SDFNet
consist of five fully connected layers, each followed by a sine activation function.
The landmarks-generative network is a Leaky ReLU MLP with one hidden layer,
similar in design to the ‘Weights-Net’, which also uses Leaky ReLU MLPs and a
last layer with Softmax activations. We set the dimensions of the latent vectors to
48 for the nose, eyes and mouth modules, 112 for the remainder, and 128 for the
expression latent codes across both the FaceScape and Headspace datasets. The
detailed architectures for implementation are presented in Appendix B. To optimise
the balance of each loss, various hyperparameters are explored, including λEik being
set to 50, λnormal to 100, λgt to 3e3, λreg to 1e6, λdl to 100, and λgl to 1e3.

The inputs to our network are point positions, normals and SDFs for faces with
swapped features, only using affine transform, as shown in Figure 4.8 and Figure 4.9
for the FaceScape and Headspace dataset, respectively. For each mesh in both
datasets, we sample 250,000 points, of which 235,000 points are located on the
surface and each of these points comes with a corresponding signed distance value
of 0. The remaining 15,000 points are uniformly distributed within the unit sphere.
Their SDFs are pre-computed using the Python library [71], and we depict the
visualised representations in Figure 4.10 for the FaceScape dataset and in Figure 4.11
for the Headspace dataset, respectively.

We implement the network using PyTorch and execute the training on two
NVIDIA A40 GPUs. For the Headspace dataset, we train our model with a batch
size of 120 over 800 epochs, while for the FaceScape dataset, we use a batch size of
36 and train for 850 epochs. Additionally, we optimise for 1,000 epochs to fit latent
representations on both datasets. The Adam Optimiser [52] is employed with an
initial learning rate of 1 × 10−4. A learning rate decay factor of 0.95 is applied every
10 epochs, starting from the 200th epoch. The training process takes approximately
47 hours for the Headspace dataset and 124 hours for the FaceScape dataset.
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Figure 4.8: Swapped facial parts features in the FaceScape dataset. Each column
displays four different swapped faces. In column (a), subject A is shown with
four different sets of noses, eyes and mouths, considering as the ground truths for
the ‘NoseNet’ input. Column (b) illustrates the corresponding ground truths for
‘EyesNet’, featuring subjects with the template nose and four different subjects’ eyes
and mouths. Column (c) shows the ground truths for the ‘MouthNet’, where different
subjects’ mouths are swapped, but the nose and eyes remain consistent with the
template. (d) represents subject A’s remainder combined with the template’s nose,
eyes and mouth, as the ground truths for ‘RemNet’. (e) shows the template as the
ground truths of ‘SDFNet’.
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Figure 4.9: Swapped facial parts features in the Headspace dataset. Each column
displays four different swapped faces. In column (a), subject A is shown with
four different sets of noses, eyes and mouths, considering as the ground truths for
the ‘NoseNet’ input. Column (b) illustrates the corresponding ground truths for
‘EyesNet’, featuring subjects with the template nose and four different subjects’ eyes
and mouths. Column (c) shows the ground truths for the ‘MouthNet’, where different
subjects’ mouths are swapped, but the nose and eyes remain consistent with the
template. (d) represents subject A’s remainder combined with the template’s nose,
eyes and mouth, as the ground truths for ‘RemNet’. (e) shows the template as the
ground truths of ‘SDFNet’.
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Figure 4.10: The SDF representations of one face in the FaceScape dataset are shown
from four different perspectives (a)-(d). The points in black represent the implicit
surface (SDF = 0); the points in blue represent the inside part (SDF < 0); and the
points in red represent the outside part (SDF > 0).

4.2.4 Evaluation Metrics

For a fair comparison, we adopt the same evaluation metrics as those used in [113] and
[117]. We re-run all the methods under comparison on both of our datasets, employing
these metrics to compare our performance. The Symmetric Chamfer Distance (SCD)
and F-Score are commonly used for evaluating 3D shape reconstructions, particularly
in the context of uncorresponded shapes. The Chamfer Distance measures the
distance between two sets of points. In our evaluation, we employ the SCD that
computes the distance bidirectionally, the equation as follows:

SCD(A, B) = 1
n

n∑
i=1

min
j

∥Ai − Bj∥2 + 1
n

n∑
i=1

min
j

∥Bi − Aj∥2, (4.13)

where A and B represent our ground truth shape and its corresponding reconstruc-
tion shape, respectively. Due to the variability in the number of vertices in the
reconstruction shapes – caused by random resolutions and the use of the Marching
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Figure 4.11: The SDF representations of one face in the Headspace dataset are shown
from three different perspectives (a) frontal, (c) back, and (d) side. The points in
black represent the implicit surface (SDF = 0); the points in blue represent the
inside part (SDF < 0); and the points in red represent the outside part (SDF > 0).
Given that the full head is a watertight shape, the inside part, marked in blue, is
difficult to be observed when the outside part and surface are displayed. Thus, we
exclusively show the inside part (SDF < 0) in the sub-figure (b). Sub-figures (a) and
(b) share the same perspective, and by combining them, a comprehensive view of
the inside, outside and surface areas is provided.

Cubes algorithm in the final generation step – we sample 150,000 vertices from
both generated shapes and ground truths. Thus, in Equation (4.13), the variable n

denotes this consistent number of vertices. The terms Ai, Bi, Aj and Bj represent
the sampled points.

Additionally, we employ F-Score as another metric to measure the completeness
and accuracy of 3D reconstructed shapes. The completeness is obtained from
computing the distance from each sampled point on the ground truth face shape to
the nearest point in the corresponding reconstructed shape. The accuracy, conversely,
is measured the distance from each sampled point on the reconstruct face shape to



4.2. Evaluation 97

Table 4.1: SCD results for expressive original 3D face shape reconstruction on the
FaceScape dataset [112, 120]. Compared with DeepSDF [79], FLAME [62], i3DMM
[113], and ImFace [117].

Method Part
Full Face Nose Eyes Mouth Rem

DeepSDF [79] 1.9393 2.0287 1.5491 1.462 1.982
FLAME [62] 1.483 0.623 0.803 0.717 0.695
i3DMM [113] 0.875 0.622 0.564 0.652 0.693
ImFace [117] 0.567 0.578 0.582 0.607 0.570

Ours 0.598 0.558 0.579 0.585 0.519

Table 4.2: F-Score results for expressive original 3D face shape reconstruction on the
FaceScape dataset [112, 120]. Compared with DeepSDF [79], FLAME [62], i3DMM
[113], and ImFace [117].

Method Part
Full Face Nose Eyes Mouth Rem

DeepSDF [79] 25.69 27.28 35.21 37.56 27.39
FLAME [62] 75.78 87.23 72.08 76.78 84.00
i3DMM [113] 74.91 86.56 89.40 81.74 84.19
ImFace [117] 94.81 90.15 88.75 84.85 96.40

Ours 92.86 91.41 89.40 86.67 96.52

Table 4.3: SCD results for original 3D face shape reconstruction on the Headspace
dataset [24, 122]. Compared with DeepSDF [79], i3DMM [113] and ImFace [117].

Method Part
Full Face Nose Eyes Mouth Rem

DeepSDF [79] 0.9809 1.1972 1.0740 0.9027 0.8612
i3DMM [113] 0.9009 0.7126 0.5623 0.6710 0.8810
ImFace [117] 0.6992 0.7173 0.6966 0.7077 0.7357

Ours 0.7184 0.7093 0.6496 0.5910 0.7207

the ground truth. We apply the specified threshold, 0.01, for all comparative analyses
to determine the proportions of distances falling within this threshold. It provides a
balanced measure of both completeness and accuracy of the reconstruction.
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Table 4.4: F-Score results for original 3D face shape reconstruction on the Headspace
dataset [24, 122]. Compared with DeepSDF [79], i3DMM [113] and ImFace [117].

Method Part
Full Face Nose Eyes Mouth Rem

DeepSDF [79] 70.41 49.23 55.00 63.95 73.47
i3DMM [113] 69.61 79.67 89.17 81.73 70.51
ImFace [117] 84.22 75.71 79.92 78.07 80.93

Ours 82.03 81.75 84.57 87.26 82.13

4.2.5 Reconstruction Evaluation

In our experiments, we evaluate the capability of our model for 3D face reconstruction
using SCD and F-Score, as introduced in Section 4.2.4. SCD is estimated by sampling
150,000 surface points from both the generated and ground truth full faces. To
further demonstrate the effectiveness of our learnt part latent representations, we
present results not only for full face reconstruction but also for the reconstruction of
each individual facial part (nose, eyes and mouth). For evaluating these part latent
vectors, we sample 6000 points for each part in the FaceScape dataset and 10,000
points in the Headspace dataset.

We show the results for the all expressive original face shapes from the FaceScape
dataset in Table 4.1 and Table 4.2, as well as visually in Figure 4.12. For the
Headspace dataset, the corresponding results for the original face shapes (exclusive
of any faces with swapped features) are detailed in Table 4.3 and Table 4.4, and
illustrated in Figure 4.13. It is noteworthy that DeepSDF, which learns a latent
code for each face shape and shows weak performance on capturing fine details, was
re-trained exclusively on 355 neutral face shapes rather than the full set of expressive
face shapes. Thus, the reconstructed expressive shapes by DeepSDF are not included
in Figure 4.12.

As observed from Table 4.1 and Table 4.3, lower SCD values indicate better
performance, as they represent a smaller distance between the reconstructed shapes
and their corresponding ground truths. Our method demonstrates state-of-the-art
performance in the reconstruction of local detail parts, particularly in the nose,
mouth and remainder region across both datasets. While our results are slightly
outperformed by ImFace in full face reconstruction – with ImFace achieving the best
results for full face reconstruction, showing its effectiveness in capturing overall facial
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structure – the minor gap in our full face reconstruction can be attributed to feature
swapping in predefined regions. The swapping process affects the smoothness of the
boundary between different facial parts, thereby impacting the overall SCD value for
full face reconstruction.

From the results presented in Table 4.2 and Table 4.4, it is evident that the higher
F-Score values indicate better performance. Similarly, as observed in Table 4.1 and
Table 4.3, our method achieves the best performance in reconstructing individual
facial part, while ImFace excels in full face reconstruction. We aim to address
this issue and improve our performance in full face reconstruction by employing
the Laplacian Blending algorithm. i3DMM demonstrates superior performance in
reconstructing one specific part (the eyes) compared to other methods due to its
preprocessing computation of ground truth SDFs wherein it samples more points
around semantic landmarks.

In Figure 4.12, the first three columns depict face shapes with neutral expressions,
and the remaining five columns show faces with different expressions. It can be proven
that our method facilitates both neutral and expressive face reconstruction through
our ExpNet and parts-based nets (NoseNet, EyesNet, MouthNet and RemNet). We
do not train expressive faces with DeepSDF, as it struggles to accurately capture
fine details, especially in the mouth region – one of the most expressive parts of the
face, saving both time and memory.

From the results displayed in Figure 4.13, we can observe that our method
demonstrates strong performance in both full face and specific part reconstructions,
particularly in the mouth region. However, i3DMM performs slightly better in
capturing certain details, e.g. in the eyes region, as it samples larger proportion of
vertices around key facial features like the nose, eyes and mouth. The Headspace
dataset consists of 3D shapes of the full head, which includes less semantically
significant regions like the back of the head. Therefore, the focussed sampling of
points in specific regions is advantageous for learning small local features on full heads.
This may suggest that improving our method’s performance in part reconstruction
could be achieved by adopting a similar preprocessing strategy.

4.2.6 Parts-based Disentanglement

Our proposed method aims to disentangle latent embeddings from each predefined
facial region. We conduct comprehensive experiments to evaluate the disentanglement
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Figure 4.12: Face reconstruction for unseen face shapes on the FaceScape dataset.
(a): Ground truths; (b) DeepSDF [79]; (c) FLAME [62]; (d) i3dMM [113]; (e)ImFace
[117]; (f) and Our method, respectively. Improved qualitative performance is most
evident in the mouth part. No generated expressive face shapes from DeepSDF [79]
due to the weak performance on detailed learning, especially the variation on the
expressive mouth.
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Figure 4.13: Face reconstruction for unseen face shapes on the Headspace dataset.
(a): Ground truths; (b) DeepSDF [79]; (c) i3dMM [113]; (d) ImFace [117]; (e) and
Our method, respectively. Note our qualitatively superior reconstruction around the
semantic facial parts, particularly evident on the mouth region.
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ability of our method. As presented in Figure 4.14 for the Headspace dataaset
and Figure 4.15 for the FaceScape dataset, we perform parts-based latent code
interpolation between two unseen reconstructed shapes from the test set in order to
observe the gradual deformation of each individual part.

Specifically, as shown in Figure 4.14, we have two subjects denoted as Subject ‘A’
and Subject ‘B’ of the Headspace dataset. The reconstruction shapes of these two
subjects are shown in the top box, which are generated from their corresponding latent
representations of all facial regions. Using these predicted latent representations, we
conduct part interpolations and visually illustrate the deformations of each facial
region from Subject ‘A’ to Subject ‘B’ in the respective color blocks. Starting from
the purple ‘Nose’ block, we display three noses in a sequence: the original nose of
Subject ‘A’, the interpolated nose, and the original nose of Subject ‘B’, all presented
from the same perspective to facilitate easier observation of the deformation process.
Notably, during the deformation from A’s nose to B’s nose, the position of the nose
tip shifts from the blue dot to the green dot, passing through the red dot. When
viewed from the side perspective of the whole head, there are differences in the
height of the nose tip, indicating that Subject ‘A’ has a higher nose bridge compared
to Subject ‘B’. In the second deformation example, as shown in the pink block of
Figure 4.14, we observe the transition from Subject A’s eyes to Subject B’s eyes.
During this process, the eyes gradually become smaller. In the green block displaying
the deformation of the mouth region, the appearance of beards and a downward
shift in the mouth corners can be observed. In the first three deformations, the nose,
eyes and mouth, transformations are localised to the corresponding region. However,
in the remainder block, the overall shape of Subject ‘A’ progressively aligns more
closely with that of Subject ‘B’. This comprehensive interpolations demonstrate how
our model not only modifies specific facial features but also captures the differences
between fine details among subjects.

In Figure 4.15, we show the interpolations of the learnt parts-based representations
from the subject ‘A’ to subject ‘B’ for the FaceScape dataset. It is important to note
that the deformation sequence is not strictly from nose to the remainder parts for
either dataset. Due to the independence of corresponding part latent representations,
various sequences can be achieved, e.g. interpolating from eyes, remainder, nose
to the mouth. The error maps of the per-vertex distance between two shapes, are
visualised in Figure 4.15. In the second row, the maps display the distance between
the current mesh and the first shape of the corresponding part, while for each initial
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Figure 4.14: Shape reconstruction and parts-based latent representations interpo-
lation for the Headspace dataset. The top box displays four head shapes of two
subjects (‘A’ in the first row, ‘B’ in the second row), with ‘G’ for ground truths and
‘R’ for reconstructions by our network. Coloured blocks show sequential interpolation
of facial features (nose, eyes, mouth, remainder) from left (Subject ‘A’) to right
(Subject ‘B’). The purple ‘Nose’ box, for example, illustrates this with a middle
column interpolating between ‘A’ and ‘B’s nose embeddings. Locally-deformed
details are magnified, highlighting nose tip position shifts (blue to green dot via red
dot) and differences in nose bridge height in the side view.
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Figure 4.15: Shape reconstruction and interpolation of Parts-based latent repre-
sentations for two individuals (A and B) in the FaceScape dataset. We perfrom
independent interpolations of the latent representations for different facial features,
i.e., the nose, eyes, mouth, and remainder (‘rem’), deforming from Subject ‘A’ (top)
to Subject ‘B’ (bottom), which are visually segmented into four groups, each using
a corresponding colour box. Within each group, we display the reconstructed and
interpolated face shapes in the first row. The second row presents the error maps
that represent the per-vertex distance between the current shape and the first shape
of the corresponding group. For each initial shape within each group, it is compared
with its predecessor.
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Figure 4.16: Examples of randomly generated faces/parts. The left columns are
original, unseen face shapes from the FaceScape dataset. Parts are generated through
random Gaussian sampling applied to their corresponding part latent vectors, as
illustrated in the ‘Nose’, ‘Eyes’, ‘Mouth’ and ‘Rem’ columns.

shape within a group, it is compared with its predecessor from the previous group.
This demonstrates that the deformation occurs only in the vertices corresponding to
the specific part, while the vertices of other parts remain unchanged. It is exemplified
in the ‘Nose’ and ‘Eyes’ columns of Figure 4.15. For example, in the second row
of the ‘Nose’ column,we observe the nose becoming wider, and in the first row of
the ‘Eyes’ column, the eyelids appear thicker. In both instances, the other parts
maintain their original shape.

In our analysis, we calculate the average per-vertex distance between the original
face and generated face within specific part regions, as well as across all remaining
parts, in the FaceScape dataset. To investigate the effectiveness of our parts-based
latent representations, we systematically vary a single part latent variable within
the first three dimensions from −0.01 to 0.01, while maintaining zero values in all
other dimensions of that specific part, as results shown in Figure 4.18.

By examining the average vertex distance between the two shapes, we focus
particularly on the distance from the corresponding part, which is expected to be
large, and compare it with the distance from all other remaining parts, which is
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Figure 4.17: Independent control of four facial regions. Top Left: the ‘Remainder’
part of the face that excludes the nose/eyes/mouth is varied. Top Right: the nose
region only is varied. Bottom Left: the eyes region only is varied. Bottom Right: the
mouth region only is varied. To achieve this, these part-specific latent embeddings
are varied (±3σ) over their three principal components.
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Figure 4.18: Average per-vertex distance during the exploration of each latent variable
across the first three dimensions of the corresponding facial parts.
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expected to be relatively small. We can discern the impact of altering the latent
representation of one specific part while keeping other regions unchanged. This results
also prove the efficacy of our parts-based latent representation learning approach.
They demonstrate that modifying the latent variables of a particular facial feature
leads to significant changes in that feature while leaving the rest of the face largely
unaffected.

In addition, we explore new facial feature reconstructions in the FaceScape dataset
by randomly sampling values from a standard normal distribution, N (0, 1), based
on their corresponding latent representations, as illustrated in Figure 4.16. We also
apply PCA to the latent space of each facial part to explore its primary variation.
The first three components for each facial region, representing the most significant
variations within the training set, are visualised in Figure 4.17.

4.2.7 Ablation Studies

We conduct experiments to compare landmark selection strategies, specifically con-
trasting the five original landmarks (nose tip, outer eye corners, and mouth corners)
with those employed in our method, as predefined in Figure 4.4 and Figure 4.5. The
reconstructed results of the full faces and individual facial parts, i.e., nose, eyes, and
mouth, are presented in Table 4.5 for the FaceScape dataset and in Table 4.6 for the
Headspace dataset. Additionally, qualitative results are shown in Figure 4.19.

From these results, it is observable that our performance, using landmarks
specifically defined for each facial part, surpasses that of the strategy using just five
full-face landmarks. The predefined landmarks in our method enhance the ability to
accurately capture the fine details of each facial part. As depicted in Figure 4.19, it
is evident that the eyes and mouth are nearly disappearing in reconstructions that
use only five basic landmarks, highlighting the importance of our comprehensive
landmark strategy for detailed facial reconstruction.

We also conduct experiments specifically to evaluate the effectiveness of incorpo-
rating the Laplacian deformation step in our process of swapping key facial features,
which is important for the smoothness of full-face reconstructions. In Figure 4.20 and
Figure 4.21, we present comparisons of faces with swapped features between using
only affine transformation and a combination of affine transformation and Laplacian
deformation, for both FaceScape and Headspace datasets. It can be demonstrated
that the use of Laplacian deformation effectively eliminates the seams at the swapped
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Figure 4.19: Results of 3D face reconstructions using different landmark selection
strategies on both FaceScape and Headspace datasets, where different rows display
distinct strategies. Row (a) displays the ground truths of the face shapes; row (b)
displays the reconstructions with the basic strategy of only five landmarks; and row
(c) displays results of our comprehensive landmark selection strategy.

Table 4.5: Results of all 3D face (including both original and those with swapped
features) shape reconstruction with different landmark selection strategies on the
FaceScape dataset [112, 120].

Part SCD (mm) ↓ F-Score ↑
Ours Five Ours Five

Full Face 0.5639 0.5731 95.09 94.21
Nose 0.5919 0.6133 89.25 87.71
Eyes 0.6093 0.6608 87.20 82.99

Mouth 0.5887 0.6525 86.59 82.10
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Table 4.6: Results of all 3D face (including both original and those with swapped
features) shape reconstructions with different landmark selection strategies on the
Headspace dataset [24, 122].

Part SCD (mm) ↓ F-Score ↑
Ours Five Ours Five

Full Face 0.7218 0.7778 81.66 79.91
Nose 0.6884 0.7251 82.89 79.84
Eyes 0.6395 0.6538 84.72 83.64

Mouth 0.5772 0.5810 88.73 88.94

Table 4.7: Results of 3D original neutral face reconstruction with different swapping
feature strategies on the FaceScape dataset [112, 120], ‘W/o Lap’ means without
using Laplacian deformation and ‘With Lap’ means using Laplacian deformation.

Part SCD (mm) ↓ F-Score ↑
W/o Lap With Lap W/o Lap With Lap

Full Face 0.582 0.533 93.51 96.19
Nose 0.585 0.590 89.99 89.24
Eyes 0.627 0.564 86.40 90.16

Mouth 0.623 0.584 84.45 86.69
Rem 0.581 0.489 93.23 97.37

junctions. We also conduct a comprehensive comparison of both quantitative and
qualitative results for generated neutral faces using these two different swapping
feature strategies, in order to demonstrate how effective Laplacian deformation can
significantly impact the final results, as presented in Table 4.7 and Figure 4.22 for
the FaceScape dataset and in Table 4.8 and Figure 4.23 for the Headspace dataset.
(We focus exclusively on reporting the results for neutral faces, as this is sufficient to
illustrate the differences between the strategies.)

The PCA analyses, which explore variations within the latent spaces of individ-
ual facial parts across both datasets with face shapes processed using Laplacian
deformation, are detailed in Appendix A.

4.2.8 Limitations

While our proposed method is capable of learning both global expression and separate
part-based latent representations and this enables independent deformation on each
predefined region, human-understandable shape editing and further explainability of
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Figure 4.20: Comparison of face meshes with and without Laplacian deformation in
the FaceScape dataset. In the leftmost column labelled ‘gt’, we display the ground
truth face with three key facial features ready to be swapped. In the right 4 × 3
block, the first row shows the ground truth noses, eyes and mouths regions along
with their corresponding remainder; the second row depicts the swapping process
using only affine transformation; and the third row presents preprocessed faces of
combining both affine transformation and Laplacian deformation.



112 Chapter 4. Parts-Based Implicit 3D Face Modelling

Figure 4.21: Comparison of face meshes with and without Laplacian deformation in
the Headspace dataset. In the leftmost column labelled ‘gt’, we display the ground
truth face with three key facial features ready to be swapped. In the right 4 × 3
block, the first row shows the ground truth noses, eyes and mouths regions along
with their corresponding remainder; the second row depicts the swapping process
using only affine transformation; and the third row presents preprocessed faces of
combining both affine transformation and Laplacian deformation.
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Figure 4.22: Generated faces from our model for the FaceScape dataset. The row
‘gt’ shows the ground truth 3D swapped faces; the row ‘w/o’ shows 3D generated
faces where key facial features are swapped using only affine transformation; and the
row ‘with’ shows 3D generated faces with key facial features swapped using both
affine transformation and Laplacian deformation.

Table 4.8: Results of 3D original neutral face reconstruction with different swapping
feature strategies on the Headspace dataset [24, 122], ‘W/o Lap’ means without
using Laplacian deformation and ‘With Lap’ means using Laplacian deformation.

Part SCD (mm) ↓ F-Score ↑
W/o Lap With Lap W/o Lap With Lap

Full Face 0.718 0.708 82.03 83.07
Nose 0.700 0.679 82.47 84.24
Eyes 0.646 0.611 84.98 86.98

Mouth 0.580 0.561 88.01 89.75
Rem 0.722 0.710 81.97 83.20



114 Chapter 4. Parts-Based Implicit 3D Face Modelling

Figure 4.23: Generated faces from our model for the Headspace dataset. The row
‘gt’ shows the ground truth 3D swapped faces; the row ‘w/o’ shows 3D generated
faces where key facial features are swapped using only affine transformation; and the
row ‘with’ shows 3D generated faces with key facial features swapped using both
affine transformation and Laplacian deformation.

the latent spaces requires further work.

Our method focuses on 3D parts-based facial generative modelling, which has the
potential to generate new expressions and parts and enables individual modification
of each facial part independently to subtly alter identities. We acknowledge that
utilising our method may have the potential to maliciously alter digital biometric
identities. Secure deployment of systems such as ours is necessary to mitigate these
concerns.
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4.3 SUMMARY

Unlike previous works that generated new faces based on full-identity latent repre-
sentations, our approach enables independent control of different facial parts, i.e.,
nose, mouth, eyes and also the remaining surface and yet generates new faces with
high reconstruction quality.

To achieve this, we propose a new approach for facial feature swapping for data
augmentation and a parts-based sequential deformation network to learn separate
latent embeddings for separate parts. We predefined three key parts of a human
face: nose, eyes and mouth - with the remainder of the facial structure (including
forehead, chin, cheeks, cranium) grouped together as a fourth part - although, in
principle, this ‘remainder’ part could be further subdivided.

To learn separate part representations, swapped facial features across pairs of
subjects using 3D affine mappings to enable data augmentation by applying affine
transforms to existing facial part shapes. We then trained a sequence of four sub-
modules - one for each part deformation. All three part features (nose, eyes, mouth)
belong to one subject, while the ‘remaining’ part is from a second subject. To
the best of our knowledge, our method is the first to propose latent 3D shape
representation learning that is both parts-based and implicit. Our approach fits
complex head shapes by part-specific deformation to generate locally-controllable,
high-resolution shapes, which demonstrates state-of-the-art performance in face
reconstruction and particularly in facial part reconstruction on both FaceScape and
Headspace datasets. We further improve our full shape reconstruction results by
employing a smoother feature swapping procedure, Laplacian deformation, which
effectively reduces curvature discontinuities at the swapped junctions.

In summary, the main contributions are:
• introduction of a parts-based face/head representations that enables separate,

localised deformations;

• the ability to generate new facial parts/faces/heads;

• state-of-the-art performance in face reconstruction (cf recent non-parts based
approaches).
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Critical Comparison of Contributions

Three-dimensional face modelling is an important topic of study for both shape
synthesis (3D model parameterisation from 2D images and 3D data, such as point
clouds and meshes) and subsequent analysis (face shape understanding) and has
the ability to generalise to unseen faces. In Chapters 3 and 4, we presented two
methods for 3D face modelling: the first method enables reconstruction based on
latent representations of identity and expression, while the second method facilitates
face reconstruction by modelling expressions and identities, which can be divided
into smaller specific regions, i.e., the nose, eyes, mouth and the other facial features.
In this chapter, we provide a comprehensive comparison of these two systems across
five main aspects:

1. quality of 3D face reconstruction;

2. quality of 3D face disentanglement, mainly focussing on identity and expression;

3. ability to generalise to new faces;

4. suitability for various face modelling applications;

5. training time and memory requirements.

The structure of this chapter is organised as follows. First, in Section 5.1, we
summarise the architectures of our networks, including the PointNet-based VAE-
GAN model using point clouds as representations of 3D faces, specialising in 3D
facial identity and expression disentanglement, and the SIREN-based deformation
networks using continuous signed distance functions (SDFs) as representations of 3D
faces, specialising in both 3D identity and expression, as well as parts-based identity
disentanglement. Then, in Section 5.2, we compare these two methods in terms of
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the above five aspects. Finally, in Section 5.3, we summarise our comparison results,
discussing the relative advantages and disadvantages of each system.

5.1 OVERVIEW OF THE TWO SYSTEMS

Our work concentrates on 3D face shape modelling, with a particular emphasis on
exploring nonlinear models using deep networks. To enhance the representation
of facial components and analyse face shapes more effectively, decoupled latent
representations of faces have garnered increasing attention. We proposed two
completely different approaches to achieve functionally similar models. The first
employs a VAE-GAN architecture, which utilised latent variables to model the
probability of observed data based on explicit shape representations, i.e., point
clouds. The second involves deformation networks that learn latent variables to drive
observed data towards a template shape, which is represented using implicit shape
representations, i.e., SDFs.

The simplified network architectures of these two methods are illustrated in
Figure 5.1 and Figure 5.2, respectively. Since the first VAE-GAN network focusses
only on the disentanglement of facial identity and expression, we omitted the
further disentanglement for facial regions in the second deformation networks in
our comparison. Instead, we base our comparison on the effectiveness of the latent
variables for identities and expressions. Nevertheless, we will discuss the applications
of both networks in their complete architectures.

Figure 5.1: The simplified overview of our VAE-GAN model for face identity-
expression disentanglement.
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Figure 5.2: The simplified overview of our deformation models (DeforModels) for
face identity-expression disentanglement.

As demonstrated in Figure 5.1, the VAE-GAN model employs one encoder and
two decoders for identity (generator) and expression respectively. This VAE part of
the framework aims to initially disentangle these two components of 3D faces. To
ensure that expressions are not included in the identities, the key idea is to employ
adversarial learning. This involves constructing a set of real data pairs (sharing same
identities) and generated pairs (one generated and one from the real data) to train
the identity discriminator.

Conversely, Figure 5.2 introduced a completely different network to achieve
the disentanglement of identity and expressions. This network processes the input
as SDFs of expressive face shapes. Through an expression deformation network,
expressions are neutralised to better align with their corresponding identities. During
this expression deformation process, the expressive latent representations are learnt.
Similarly to the identity deformation network, the deformed (expression removed i.e.,
identity) shapes undergo further deformation to align with a template face. During
this process, their corresponding identity latent representations are learnt.

Both of these two methods are designed to achieve face identity and expression
disentanglement and we utilise a common dataset for evaluation, i.e., the FaceScape
dataset [112, 120]. The VAE-GAN model processes point cloud representations of full
heads from the FaceScape dataset, whereas DeforModels employs SDFs on cropped,
pseudo-watertight faces. We conducted comparative analyses on this dataset to
evaluate their performance in 3D face reconstruction, disentanglement, and their
ability to generalise to new faces. In the original experiments conducted on these
two methods, introduced in Chapter 3 and Chapter 4, respectively, our DeforModels
was evaluated using 10 individuals (200 samples), while our VAE-GAN network
was tested on a significantly larger scale, involving 5055 samples. However, for our
comparative analysis, we adopted 10 subjects from both test sets, choosing those that
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are permitted for publication, thus complying with the guidelines of the FaceScape
dataset. Note that all comparisons were conducted under the same conditions for
both methods.

5.2 COMPARISON RESULTS

5.2.1 3D Face Reconstruction from 3D inputs

In the analysis of 3D face modelling, the evaluation of 3D face reconstruction
performance is an important metric. Therefore, to facilitate a thorough comparative
analysis between the two methods, we assess their reconstruction abilities using
the same test set, following the data preprocessing approach of the DeforModels
that involves cropping to a predefined unit sphere. We compare the capability of
reconstruction of generated face shapes from 10 individuals, each with 20 expressions,
through both methods based on their corresponding learnt latent representations.
For the first method (explicit, VAE-GAN), we employed point clouds on full heads
and the original reconstructed shapes were full heads, whereas for the second method
(implicit, DeforModels) we used cropped faces. Therefore, to ensure a fair comparison
in reconstruction performance, we need both methods to employ the same cropped
face data. To do this, we crop the full FaceScape head, as described in Chapter 4. To
recap, we normalise the data to a unit sphere as follows. First, we set the coordinate
origin to a point 4mm behind the nose tip, when the head is pose aligned. We crop
to a sphere of 1cm radius and then then downscale this to a radius of 1cm.

To maintain the consistency in our evaluation, we apply the same metrics, i.e.,
Symmetric Chamfer Distance (SCD) and F-Score, as those used for the DeforModels,
as defined in Equation (4.13), since they do not require the same topologies between
these cropped faces and those generated by the DeforModels. Unlike previous
evaluations, we opted not to sample 150,000 vertices from the generated shapes of
these two methods and their ground truths, as our aim is to compare performance
between our methods rather than aligning with other literature reviews. Moreover,
the number of vertices in the simplified 3D faces used in the first network does not
exceed 5000, which was a design decision in order to make the network training times
feasible. Therefore, for a fair comparison, we now sample 50,000 vertices from the
face meshes generated by both methods and align them with their own ground truths.
We present the results in Table 5.1. Further, we illustrate the 3D face shapes of two
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Table 5.1: Comparison of the 3D face reconstruction performance in the FaceScape
dataset using the first VAE-GAN with explicit representations and the second
DeforModels with implicit representations, evaluated based on metrics: SCD and
F-Scores.

Model SCD ↓ F-Score ↑
VAE-GAN 0.9382 64.96
DeforModels 0.7251 88.68

subjects with seven different expressions (neutral, smile, mouth stretch, anger, chin
raiser, lip puckerer and lip funneler), generated using these two methods, as shown
in Figure 5.4 and Figure 5.5. For each subject, four expressions are demonstrated,
facilitating a side-by-side comparison between both methods for the same set of
expressions.

From the analysis presented in Table 5.1, Figure 5.4 and Figure 5.5, we can
observe both quantitatively and qualitatively that deformation models based on
implicit functions outperform the VAE-GAN architecture using point clouds. There
may be two main reasons for this. Firstly, the flexibility in reconstruction resolution
using the implicit method results in high resolutions, where there are many vertices on
the face meshes, thus enhancing their smoothness, as shown in Figure 5.3. Secondly,
in our first network, we implemented a simplification strategy detailed in Chapter 3.
To recap, originally, each face mesh comprises 26,317 vertices and 52,261 faces. We
apply a quadric-based edge collapse strategy [35], aiming to reduce the mesh to
approximately 9000 faces. After the simplification, the face mesh contains 4547
vertices (no more than 5000) and 8999 faces. This preprocessing strategy causes
the discontinuity in the faces due to removed vertices and triangles. Although this
approach might not yield reconstructions as smooth as those may be achieved with
complete data, it significantly reduces memory usage and computational time.

5.2.2 3D Face Disentanglement

In addition to 3D face reconstruction, the capability to effectively disentangle 3D
facial identity and expression represents another crucial metric for assessing 3D
face modelling. Consequently, we extend our comparative analysis to include the
disentanglement performance of our two methods, utilising the same cropped face
shapes as in the 3D face reconstruction analysis.

For the disentanglement evaluation detailed in Chapter 3, we employed two
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Figure 5.3: Analysis of different resolutions for SCD and F-Scores of one predicted
face shape. Sub-figure (a) illustrates the relationship between SCD and the number
of vertices (resolution) in one predicted face shape. Sub-figure (b) illustrates the
relationship between F-Scores and the number of vertices (resolution) in one predicted
face shape.

quantitative metrics. However, due to the variance in topology between the cropped
generated facial identity shapes and those reconstructed identity shapes from the
DeforModels, even within their respective datasets, directly comparing them using
the same metrics poses a challenge. Consequently, we opt for a qualitative comparison.
In alignment with the quantitative metrics employed for 3D face disentanglement,
we will demonstrate the reconstructed facial identity shapes for each expression of
the same individual. This approach enables us to assess the similarity between the
generated identity shapes and the ground truth identity, while ensuring that no
expressions are presented in each predicted identity shape. Moreover, it facilitates
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Figure 5.4: 3D expressive face reconstruction comparing the VAE-GAN model
with DeforModels for Subject 1. Columns (a) and (b) represent ground truths and
generated face shapes from the VAE-GAN model, respectively. Columns (c) and (d)
represent ground truths and reconstructions from DeforModels. The rows from first
to fourth sequentially represent the expressions: neutral, smile, mouth stretch and
anger.
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Figure 5.5: 3D expressive face reconstruction comparing the VAE-GAN model
with DeforModels for Subject 2. Columns (a) and (b) represent ground truths and
generated face shapes from the VAE-GAN model, respectively. Columns (c) and (d)
represent ground truths and reconstructions from DeforModels. The rows from first
to fourth sequentially represent the expressions: neutral, chin raiser, lip puckerer
and lip funneler.
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observations of the stability and consistency of the identity across different expressive
face shapes from the same individual, comparing these aspects between the two
methods.

We select nine distinctly representative expressions from one subject and display
their corresponding generated identities. The reconstructed identity shapes using
the VAE-GAN model and DeforModels are presented in Figure 5.6.

Figure 5.6: Comparison of generated facial identity shapes from one subject using the
VAE-GAN network and DeforModels. The first row displays the original expressive
ground truths along with their corresponding expression indices for references. The
second row presents the disentangled facial identity shapes predicted by the VAE-
GAN network, while the third row presents those predicted by DeforModels. Identity
ground truths are labelled as ‘gt: id’. The generated identity shapes derived from the
decoupled identity latent vectors corresponding to various expressive shapes, each
labelled as ‘1’, ‘2’, and so forth.

We also illustrate the three principal components of the learnt identity and
expression latent representations obtained through the explicit and the implicit
methods in Figure 5.7 and Figure 5.8, respectively. These visualisations demonstrate
the effectiveness with which each model captures the variations in identity and
expression. It is noteworthy that in the PCA analysis conducted with the VAE-GAN,
uncropped head shapes are used to present the variations in identity and expression
latent representations, as the variations observed in the identity latent embeddings
specifically refer to variations in head shape.
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Figure 5.7: Independent variations of identity and expression representations obtained
through the VAE-GAN network. These latent representations are varied (±3σ) over
their corresponding three principal components.

Figure 5.8: Independent variations of identity and expression representations obtained
through the DeforModels. These latent representations are varied (±3σ) over their
corresponding three principal components.
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From Figure 5.6, it is evident that the identity shapes generated by both of our
methods are non-expressive. Observing the reconstructed identity shapes of the
same subject, derived from identity latent representations associated with various
expressions depicted in these two figures, we note a high degree of similarity among
them. This highlights the robustness of our methods in maintaining consistent
identity features despite varying expressions.

Simultaneously, from Figure 5.7 and Figure 5.8, which depict the most significant
variations along identity and expression latent vectors for both methods, we observe
a similar conclusion. When identity varies, the expression remains neutral, consistent
with the mean face. Conversely, when expression varies, the identity remains
unchanged, also consistent with the mean face. These findings further demonstrate
the strong performance of our methods in 3D face disentanglement between identity
and expressions.

5.2.3 Ability to Generalise to New Faces

The ability to generalise to unseen face shapes is an important aspect in the evaluation
of 3D face models. In our comparative analysis, we particularly focus on the ability
of latent representations of facial identity and expressions, learnt by our two methods,
to generate unseen faces.

We randomly sample values from a normal distribution, N (0, σ), corresponding
to the identity and expression latent embeddings from both methods. The results
are shown in Figure 5.9 for the VAE-GAN architecture and in Figure 5.10 for the
deformation models. For the VAE-GAN method, we employ full head shapes, as we
did for PCA in Section 5.2.2, instead of the cropped face shapes. This is because
the learnt latent embeddings are based on 3D full head shapes, thus capturing
variations not only in the facial features but also in the overall head shape. In
Figure 5.9 and Figure 5.10, we display the mean face on the left side, with other
varied face shapes (eight for identity variations and eight for the expression variations)
presented in two rows. From these two figures, we observe the varied identities and
expressions, which demonstrated that our methods are able to generate new unseen
faces across both identity and expression components. However, in faces generated
by the VAE-GAN architecture, bumps are observed in the facial identity shapes,
but not in the expressive shapes. We will further explore this issue in our future
research. The unseen face shapes, generated by sampling within PCA spaces of
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latent representations, are depicted in Appendix A.

Figure 5.9: Examples of randomly generated facial identity shapes and expressive
face shapes from the VAE-GAN model. Facial identities and expressions are gen-
erated through random Gaussian sampling applied to their corresponding latent
representations, as shown as ‘Identity’ and ‘Expression’. The left column is the mean
face shape.

Figure 5.10: Examples of randomly generated facial identity shapes and full ex-
pressive face shapes from the DeforModels. Facial identities and expressions are
generated through random Gaussian sampling applied to their corresponding latent
representations, as shown as ‘Identity’ and ‘Expression’. The left column is the mean
face shape.
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Figure 5.11: Face editing using DeforModels - Nose Region. Two views, frontal and
side, are provided to compare the edited faces with the original face. Four specific
edited deformations: making the nose tip area rounder or sharper, and adjusting the
nose to be wider or narrower.

5.2.4 Applications

In Sections 5.2.1, 5.2.2 and 5.2.3, we conducted a comparative analysis focussing on
3D face reconstruction, disentanglement and the ability to generalise to new data for
both methods. Given the versatility of robust latent representations can be applied
in many applications, such as 3D facial expression transfer and identity/expression
latent representations interpolation, this section demonstrates specific applications
based on our proposed methods.

Having successfully decoupled identity and expression latent variables, our meth-
ods facilitate both expression transfer and interpolation through the learnt latent
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Figure 5.12: Face editing using DeforModels - Eyes Region. Four specific edited
deformations are depicted: making both eyes bigger or smaller, or specifically making
the left eye bigger or smaller (the left eye remains unchanged).

Figure 5.13: Face editing using DeforModels - Mouth Region. Four specific edited
deformations are depicted: making mouth lips thicker or thinner, or specifically
making the up lip thicker or thinner.
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Figure 5.14: Expression transfer using latent representation from the VAE-GAN
model. Two sets of expression transfers are shown. The left column shows the
original facial ground truths before the expression transfer, and the right column
shows predicted original faces and the corresponding faces after the transfer.
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embeddings. Although our analysis primarily concentrated on the learning of identity
and expression latent variables, our DeforModels also facilitates disentanglement for
specific facial regions, i.e., the nose, eyes, mouth and the remainder. This capability
for finer region latent representation offers significant potential for face editing,
highlighting a promising and necessary application in the field of 3D face modelling.
Building upon this, we demonstrate expression transfer using latent representations
from the VAE-GAN model, shown in Figure 5.14 and Figure A.5, and editing of
specific facial regions based on the learnt facial feature representations from the
DeforModels in Figures 5.11, 5.12 and 5.13.

Through our DeforModels, we achieved the disentanglement of facial parts-
based identity latent representations, enabling their application in face editing. We
predefined certain regions for editing, such as the nose tip, eye corners and lips, along
with thresholds to precisely control the directions and magnitude of changes. In our
experiment, we opted to edit only one facial feature at a time for the specific face
since it simplifies the observation of changes in the edited region while ensuring that
other facial region remains unaffected. Once the edited parameters, e.g. the direction,
area and threshold, are established, we use the original latent representation as a
starting point. From there, we optimise it to achieve the desired modifications in
the facial features. Examples of the face editing for the nose, eyes, mouth regions
are illustrated in Figure 5.11, Figure 5.12 and Figure 5.13, respectively.

5.2.5 Resource Requirements

For our VAE-GAN model, we initially pretrained the identity discriminator for 100
epochs with a batch size of 32 on the FaceScape dataset. The pretraining was
implemented with PyTorch and executed on an NVIDIA GeForce RTX 3090 GPU,
taking approximately 2 hours. Following this, the joint end-to-end network was
trained for 280 epochs, also with a batch size of 32. We conducted the end-to-end
network using PyTorch on an NVIDIA A40 system. This end-to-end training process
was completed in around 10 hours.

For our DeforModels, we implemented the deformation networks using PyTorch
and deployed them on two NVIDIA A40 GPUs. The model was trained using a
batch size of 36 and 850 epochs for the FaceScape dataset, and 1000 epochs to fit
latent representations. We ran training process for approximately 124 hours on the
FaceScape dataset.
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The VAE-GAN model indicates efficient training times and memory usage during
training and inferences, while DeforModels demonstrates superior accuracy and
detail in 3D face reconstruction, albeit with higher resource demands.

5.3 SUMMARY

In this chapter, we present a thorough comparison of our two generative models,
i.e., VAE-GAN and DeforModels, for 3D face modelling. This comparative analysis
focusses comprehensively on five aspects: quality of 3D face reconstruction, quality
of 3D face disentanglement of identity and expression, ability to generalise to new
faces and resource requirements, including training time and memory. These are
summarised in Table 5.2. Furthermore, we explore their applications, e.g. expression
transfer and face editing, which significantly contribute to the human understanding
and practical utility of 3D face modelling. The applications that can be achieved are
listed in Table 5.3.

Table 5.2: Comparison of VAE-GAN and DeforModels across different perspectives.
The symbol ✓denotes a superior method.

Perspective VAE-GAN DeforModels
3D face reconstruction ✓

3D face disentanglement ✓

Ability to generalise to new faces ✓

Resource efficiency ✓

Table 5.3: Comparison of Applications between VAE-GAN and DeforModels.

Application VAE-GAN DeforModels
Interpolations in facial identity latent space ✓ ✓

Interpolations in expression latent space ✓ ✓

Interpolations in facial parts latent space ✗ ✓

Expression transfer ✓ ✓

Face recognition ✓ ✓

Face editing ✗ ✓

The 3D face shapes reconstructed by our first explicit network, which utilises the
VAE-GAN architecture, show less smoothness in comparison to the reconstructed 3D
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face shapes from the second implicit network. However, it is more resource-efficient,
requiring less time and memory during training on the FaceScape dataset. Both
generative models demonstrate strong performance in 3D face disentanglement,
with their learnt latent spaces capable of generating new data. This effectiveness
proves that the designs for adversarial learning and deformation from expressive to
non-expressive shapes are both successful in decoupling latent embeddings.

Our second network, i.e., DeforModels, performs well on more diverse applications.
It is specifically designed for the disentanglement of not only identity and expression
but also different facial region features. This approach significantly improves the
controllability of face generation. Given that implicit representations provide greater
flexibility for generating 3D shapes, the reconstructed shapes from DeforModels
using SDFs are smoother and preserve finer details, as evidenced.
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Conclusions

In this chapter, we summarise the key research contributions in 3D face modelling,
particular in improving the controllability and explainability of models. We will
highlight the significance of our research and its potential applications. Additionally,
we will discuss the limitations of our studies and explore directions for future work.

6.1 SUMMARY OF CONTRIBUTIONS

In the introduction, we explained the traditional and recent techniques used in
constructing 3DMMs and proposed our two primary research objectives and questions.
The first objective was to achieve the disentanglement of 3D face identity and
expressions using explicit point cloud representation, and the second was to learn
parts-based latent representations for 3D face shapes with a core use of implicit
shape representation (SDF) in the model. Both objectives aimed to model 3D faces
and to enhance both the explainability and controllability of face models.

In the literature review chapter, we methodically introduced relevant research
work across four perspectives. We started with representations of 3D shapes, the
foundation of our work. Subsequently, we introduced the core of our research, i.e.,
3DMMs, the deep learning algorithms employed to build 3DMMs, and recent studies
focussing on the development of explainable latent spaces for 3D face modelling.

Based on our two research questions, we presented two main technical chapters,
as well as a shorter chapter for comparisons on both 3D face models. The main
contributions will be detailed in the following subsections.
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6.1.1 Disentangling Identity and Expressions

We have proposed an end-to-end deep learning network that disentangles 3D face
identity and expressions, which can be applied in different scenarios. In detail, we
employed a VAE-GAN framework that employs one encoder and two decoders to
separately learn latent representations for face identity and expressions, as our initial
step toward disentanglement. To ensure the independence and separation of these
two latent representations, we introduced an adversarial learning approach that
incorporates an identity discriminator. This discriminator is effective in scenarios
with both known or unknown identity ground truths (neutral expressions). The
principal concept behind our identity discriminator differs from traditional designs
that categorise predicted identities as real or fake, based on reference identity ground
truths. Instead, our identity discriminator is pretrained without requiring these
ground truths, using pairs of expressive shapes as inputs. It determines whether the
input pairs share the same identity. In this context, face pairs with the same identity
are classified as real samples, whereas those with different identities are determined
as fake. During the end-to-end training process, in combination with the generator,
our identity discriminator ensures the predicted identity shapes preserve common
information between face pairs. Specifically, for pairs sharing the same identity, this
shared feature is regarded as the neutral, inherent to their shared identity. Our
method was evaluated on three datasets, i.e., the CoMA, BU3DFE and FaceScape
dataset, under the same experimental conditions. These included scenarios both with
and without available identity ground truths to ensure a fair comparison, showing
comparative performance. We also conducted ablation studies to demonstrate the
effectiveness of our identity discriminator, particularly in cases where facial identity
ground truths are unavailable.

6.1.2 Parts-based face Modelling

We proposed a deformation network designed for modelling 3D face shapes by in-
dependently learning facial parts-based latent representations. Our architecture
is implemented using implicit representation of 3D face shapes, i.e., SDFs, dis-
tinguishing our network from other methods focussed on learning 3D facial parts.
We predefined three semantic facial regions, i.e., the nose, eyes and mouth, and
employed a facial feature swapping strategy for data augmentation. To address the
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issue of discontinuities at the border of swapped regions that arose during the data
augmentation, we further explored the implementation of the Laplacian blending to
seamlessly integrate these parts. In our deformation model, we employed a series of
sequential neural networks to facilitate deformations, including a nose net, eyes net,
mouth net, remaining part net and a template net. A template face, derived from
the training data, is regarded as the reference target for deformation. For each facial
part net, the input face shape is transformed to align with the corresponding part of
the template face. In other words, after processing through a specific facial part net,
the unique nature of that part on the input face is modified to stay consistent with
the template part. During this process, the latent representations corresponding to
each facial part are estimated. Moreover, we utilised facial landmarks to capture
finer details in the learning of facial parts and facilitate adaptive blending of facial
regions for a more natural face. Notably, the template net in our deformation models
computes the SDFs for each deformed template face. Our sequential deformation
model is designed for the independent learning of facial parts under their neutral
expressions, as well as for the learning of latent representations for facial expressions
through a expression net. This network successfully achieves the disentanglement of
expression from identity. Our experimental evaluation was carried out on both 3D
face shapes in the FaceScape dataset and 3D head shapes in the Headspace dataset.
The strong performance observed in both datasets validates our model’s efficacy in
learning latent representations for expressions and facial parts.

6.1.3 Comparative Analysis of 3D Face Models

We conducted a comparative analysis of the two 3D face models outlined in our con-
tributions, focussing on their capabilities to disentangle face identity and expressions.
This comparison was structured across five key aspects: 3D face reconstruction, 3D
face identity and expression disentanglement, the ability to generalise to unseen 3D
face shapes, applications of 3D face models, and training time and memory require-
ments. Both face models demonstrate exhibit strong performance in reconstruction,
disentanglement and generalising to new faces. Particularly, the face model based
on implicit representations outperforms the explicit one due to its flexible resolution
selection, resulting in reconstructed face shapes with superior high-level details and
smoothness. Furthermore, both learnt latent representations that can be applied in
various applications, enhancing the explainability and controllability of the generated
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face shapes by modifying the relative latent representations of facial identity parts
or expressions.

6.2 LIMITATIONS

We introduced two deep learning networks for 3D face modelling, significantly
enhancing the models’ explainability and controllability. To the best of our knowledge,
our research uniquely addresses the scenario where facial identity ground truths
are not available. Furthermore, we are the first to employ SDFs as representations
for 3D face modelling, where the learning of parts-based latent representations is
enabled. Moreover, unlike prior work using explicit representations for disentangling
facial parts, our framework is the first to achieve the disentanglement of both facial
identity parts and facial identity and expressions.

Despite these advancements, a common challenge in our initial work with a VAE-
GAN framework is maintaining balanced training between the identity and expression
generators and the identity discriminator. It is non-trivial to determine the optimal
parameters for balancing the adversarial process. Our identity discriminator is
primarily designed for scenarios lacking identity ground truths. Thus, when identity
ground truths are available, the identity decoder’s generation process is strongly
supervised through the loss functions between the identity ground truths and the
predicted facial identities. This strong supervision can potentially mitigate the need
for an additional discriminator, which slightly affects the reconstruction results.

Furthermore, in our second research work, the incorporation of a sequential
deformation network significantly increases the required training time. Additionally,
the data preprocessing for implicit representations necessitates the watertightness
of 3D shapes. This requirement presents a challenge and extends the preprocessing
time needed to close all holes in the raw shapes.

6.3 FUTURE WORK

In this section, we discuss potential directions of our future work aimed at improving
the explainability and controllability of 3D face modelling. These directions are
further extensions and investigations based on our current 3D face models.
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Parallel Deformation Networks
To significantly reduce the training time of our deformation network, one promising
direction for 3D parts-based face modelling is the exploration and implementation
of parallel deformation networks. In this approach, neural networks dedicated to
different facial regions could be configured in parallel within a single framework. This
means the network simultaneously deforms each part of input face. Additionally,
a novel blending field network could be proposed to selectively integrate only the
deformed parts that match their corresponding template regions, thereby fusing a
natural template face. While the core functionality of the deformed neural networks
remains unchanged, their manner shifts from sequential to parallel processing. More-
over, the potential to develop a new blending network for the efficient fusion of facial
parts can be further investigated.

Explainable Face Editing
Although we independently learn latent representations for 3D facial parts and
features (identity and expression), achieving human-understandable latent repre-
sentations remains an open challenge. We could design a network that facilitates a
bi-directional mapping between our learnt latent space and the PCA space. This
would enable direct face editing through manipulation of the most significant variances
within the PCA space, thereby transforming the non-linearly learned latent space in
a more interpretable manner. Alternatively, we could define human-understandable
measurement metrics and develop a mapping network that connects our latent spaces
with these metrics. It facilitates a more intuitive manipulation process.

Two Models Combination
We could explore the integration of the networks from two face models. This
combination aims to leverage the strengths of each model. For example, the GAN
architecture achieves disentanglement of identity and expressions under different
scenarios. Once we successfully disentangle the facial identities, we could then employ
the deformation network to further achieve disentanglement based on parts-based
latent codes. This combination may decrease the overall training time, offering an
efficiency improvement in modelling.
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Appendix

A.1 PCA ANALYSES ON FACIAL PARTS

Similar to the analysis presented in Figure 4.17, we perform PCA on the latent spaces
of facial parts, derived from swapping facial features using Laplacian deformation
techniques, to observe their principal variations. As illustrated in Figure A.1 for the
FaceScape dataset, no seams and discontinuities are apparent on the the principally
varied face shapes, especially in the nose and eyes regions when compared with
those in Figure 4.17. Moreover, variations are confined to specific facial parts, as
shown in Figure A.1 and Figure A.2 for the FaceScape and Headspace dataset,
respectively. This not only demonstrates the effectiveness of our proposed method in
learning independent latent representations for facial parts but also highlights how
the Laplacian deformation technique contributes to reconstructing smooth faces.

A.2 GENERALISATION TO UNSEEN FACE SHAPES

In Section 5.2.3, we illustrate the ability to generalise new faces by randomly
sampling values from a normal distribution, N (0, σ), for the identity and expression
latent embeddings learnt from both VAE-GAN model and deforModels. We further
perform randomly sampling within the PCA spaces of latent embeddings for identity
and expression, following a normal distribution, N (0, σ), derived from these two
methods. The PCA components utilised for this analysis are detailed in Section 5.2.2.
The generated unseen face shapes are depicted in Figure A.3 for the VAE-GAN
architecture and in Figure A.4 for the deforModels.
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Figure A.1: Independent control of four facial regions for the FaceScape dataset. Top
Left: the ‘Remainder’ part of the face that excludes the nose/eyes/mouth is varied.
Top Right: the nose region only is varied. Bottom Left: the eyes region only is varied.
Bottom Right: the mouth region only is varied. To achieve this, these part-specific
latent embeddings are varied (±3σ) over their three principal components.
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Figure A.2: Independent control of three facial regions for the Headspace dataset.
The ‘Nose’ region only is varied. The ‘Eyes’ region only is varied. The ‘Mouth’
region only is varied. To achieve this, these part-specific latent embeddings are
varied (±3σ) over their three principal components.
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Figure A.3: Examples of facial identity and expressive shapes generated by random
sampling within PCA spaces of their respective latent representations using the
VAE-GAN model.

Figure A.4: Examples of facial identity and expressive shapes generated by random
sampling within PCA spaces of their respective latent representations using the
deforModels.
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A.3 ADDITIONAL EXAMPLES OF APPLICATIONS

In Section 5.2.4, we demonstrate the application, i.e., expression transfer, achieved
by decoupled identity and expression latent representations from our VAE-GAN
model. We illustrate additional examples of expression transfer in Figure A.5 as the
application of the VAE-GAN model.

Figure A.5: Additional examples of expression transfer using latent representation
from the VAE-GAN model.
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Appendix: Network Architectures

The detailed architecture for our VAE model, introduced in Chapter 3, is shown in
Figure B.1. This VAE, inspired by PointNet [86], is designed to learn the distributions
of identity and expression, and to sample their latent representations zid and zexp

respectively. Two decoders are employed separately: one to reconstruct the identity
shape and the other to reconstruct the expression deformation, based on their
corresponding latent vectors.

Figure B.1: Detailed pipeline of the VAE model. The encoder follows a PointNet-
based architecture, outputting distributions for sampling latent vectors representing
facial identity and expression deformation. The decoder, shared between the identity
and expression branches, utilises an MLP with 256 hidden neurons to generate
predicted face shapes.
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Table B.1: Architecture of the Deform-Nets and SDFNet in the Deformation Net-
works.

Module Layer In-Feature Out-Feature

Expression Deform-Net

Linear Sine 15 128
Linear Sine 128 128
Linear Sine 128 128
Linear Sine 128 128

Linear 128 15

Nose/Eyes/Mouth Deform-Net

Linear Sine 15 48
Linear Sine 48 48
Linear Sine 48 48
Linear Sine 48 48

Linear 48 15

Remainder Deform-Net

Linear Sine 15 112
Linear Sine 112 112
Linear Sine 112 112
Linear Sine 112 112

Linear 112 20

SDFNet

Linear Sine 3 112
Linear Sine 112 112
Linear Sine 112 112
Linear Sine 112 112

Linear 112 1

The detailed architectures for the implementation of our deformation networks,
as previously discussed in Chapter 4, are presented below.

Our networks are composed of five deformation modules and one module specif-
ically designed for predicting SDFs of a template face. The architecture for both
the deformation module (Deform-Net) and the SDFs prediction module (SDFNet)
consists of five fully connected layers. Except for the output layer, each of these
layers is followed by a sine activation function. We base our design on the SIREN
architecture [91] that leverages hyperparameters networks to optimise latent rep-
resentations and predict weights for each deformation module. For the landmark
generation network, we utilise the model proposed in ImFace [117]. Additionally, we
detail the network for blending facial parts into a whole face. The comprehensive
architectures of our networks are listed in Tables B.1 to B.4.



146 Appendix B. Appendix: Network Architectures

Table B.2: Architecture of the Hyper-Net in the Deformation Networks. NwExp−Deform
,

NwN/E/M−Deform
and NwRem−Deform

represent the numbers of weights in Expression
Deform-Net, Nose/Eyes/Mouth Deform-Net and Remainder Deform-Net, respec-
tively.

Module Layer In-Feature Out-Feature

Expression Hyper-Net
Linear ReLU 128 128
Linear ReLU 128 128

Linear 128 NwExp−Deform

Nose/Eyes/Mouth Hyper-Net
Linear ReLU 48 48
Linear ReLU 48 48

Linear 48 NwN/E/M−Deform

Remainder Hyper-Net
Linear ReLU 112 112
Linear ReLU 112 112

Linear 112 NwRem−Deform

Table B.3: Architecture of the Landmarks-Net (LMs-Net) in the Deformation
Networks.

Module Layer In-Feature Out-Feature

Expression LMs-Net
Linear LeakyReLU 128 256
Linear LeakyReLU 256 256

Linear 256 15

Nose/Eyes/Mouth LMs-Net
Linear LeakyReLU 48 256
Linear LeakyReLU 256 256

Linear 256 15

Remainder LMs-Net
Linear LeakyReLU 112 256
Linear LeakyReLU 256 256

Linear 256 15

Table B.4: Architecture of the Blending WeightsNet in the Deformation Networks.

Module Layer In-Feature Out-Feature

Blending PartsNet
Linear LeakyReLU 3 128
Linear LeakyReLU 128 128

Linear Softmax 128 5
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