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Abstract

Trapped lee waves, and resultant turbulent rotors downstream, present a hazard for

aviation and land-based transport. While high resolution numerical weather pre-

diction (NWP) models can represent such phenomena, there is currently no simple

and reliable automated method for detecting the extent and characteristics of these

waves in model output. Spectral transform methods can be used to characterise

regions of wave activity in model and observational data, however these methods

can be slow and have their limitations. Machine learning techniques offer potentially

fruitful methods for tackling this problem.

This thesis presents the development of deep learning models to detect and char-

acterise trapped lee waves from the characteristic patterns made by trapped lee

waves in NWP model output, performing well against hand-labels and spectral-

derived characteristics. The deep learning models are applied to a large archive of

high resolution NWP model data to produce climatology information for both the

present-day climate and a future climate projection. The climatology is interrog-

ated, showing that there is no diurnal cycle of lee waves, but there is a seasonal

cycle and influence of synoptic weather effects on lee waves and their characteristics.

The future climate projections (under Representative Concentration Pathway 8.5)

show little headline change in occurrence or characteristics of lee waves, but imply

changes to wave occurrence within different weather patterns, and a risk of more

high amplitude (> 3 m s−1) waves in the future.

These deep learning models could prove useful for forecasting in the development

of a computationally cheap post-processing tool for operational meteorologists, to

be able to more easily visualise the effects of lee waves and the potential hazards

involved. The climatology information explored in this thesis has informed further

understanding about lee waves, such as the weather conditions that result in the

vii



viii

strongest lee wave amplitudes, as well as potential changes to lee wave activity

under climate change.
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Chapter 1

Introduction

1.1 Trapped lee waves

Trapped lee waves are a type of internal gravity wave, which occur in a stratified

fluid with gravity as the restoring force. In this case, air that is stably stratified

ascending over orography can trigger waves that propagate away from the orography

(Durran, 2003). If this energy is trapped within a layer in the atmosphere, these

oscillations can propagate downstream on the lee side of the orography for tens of

kilometres (Vosper et al., 2018). Lee waves can lead to the generation of rotors,

low level regions of strong turbulence and overturning flow associated with gravity

waves that form on the lee side of the orography (Doyle and Durran, 2002), as well

as strong downslope winds (Colfescu et al., 2021).

Lee waves can sometimes produce lenticular clouds, where air condenses at each

wave crest, as seen for example in Figure 1.1 where some lenticular clouds can be

seen on the southern (lee) side of Pen-y-Ghent in the Yorkshire Dales. Characteristic

striped cloud patterns from lee wave activity can also be visible in satellite imagery

(e.g. Figure 1.2 [b]), and can be seen by eye in high resolution numerical weather

prediction (NWP) model output, such as within the vertical velocity field.

Some of the earliest studies of lee waves came from a desire to to understand len-

ticular clouds and what are now known as rotors in the late 19th and early 20th

centuries. Scorer (1961) describes how lee waves were exploited by glider pilots in

the 1930s, keen to achieve height during flights, who discovered that the winds on

1
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Figure 1.1: Lenticular clouds associated with lee wave activity, downstream from
Pen y Ghent on the left (northern) side of the image. The wind was approximately
northerly on this day (blowing from left to right).

the lee side of hills were more favourable for “soaring” than on the windward side.

Lee waves became recognisable by glider pilots from their characteristic clouds, or

winds associated with the formation of clouds on the lee side of the hills. There has

been a scientific interest since the late 19th Century in the Helm Wind (Britain’s

only named wind), a strong downslope wind accompanied by the formation of ro-

tors, which forms over Cross Fell in the Pennines in the north of England (Marriott,

1886; Marriott, 1889; Manley, 1945). The latter commented on the usefulness of

the rotor formations to glider pilots, and theorised that a standing wave train is

set up in Helm Wind conditions, with a series of stationary evenly spaced bars of

cloud. Figure 1.2 (a) shows a photograph depicting a Helm Bar (a characteristic

lee wave cloud that forms during a Helm Wind), and the accompanying Meteosat

Second Generation (MSG) image (Figure 1.2 [b]) from a similar time over Britain

and Ireland shows some of the characteristic lee wave cloud patterns present over

Cumbria to the West of Cross Fell.

Rotors can be hazardous for air and road transport (for example contributing to

strong turbulence experienced by pilots, aeroplane crashes and strong gusts at the

surface: Ágústsson and Ólafsson, 2014; International Civil Aviation Organization,

1968; Vosper et al., 2013). Meteorological agencies are interested in forecasting

rotors and their effects to be able to give detailed information to (among others) the

aviation and freight industries. Developing forecasting tools to identify lee waves

better, such as recognising wave activity from high resolution NWP model output,
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(a) (b)

Figure 1.2: (a) A photograph looking east from the Eastern fells of the Lake District
(left), towards Cross Fell, showing a Helm bar. Cross Fell is visible on the horizon.
The MSG Visible satellite image (b) from 20 minutes before the photograph was
taken is shown on the right. An orange dot shows the location of the photographer
in (a). A set of lee waves are visible over the Lake District in the satellite image.
Satellite image copyright EUMETSAT/Met Office 2023.

means that forecasters could be more informed on precisely where lee wave activity

is likely to occur with a domain, and how severe turbulence associated with wave

activity could be. By understanding which meteorological variables change when

lee waves occur, one can understand the drivers of lee wave conditions: potentially

making forecasting lee waves even when they are not explicitly resolved by NWP

simpler. One way to develop these tools would be to utilise progress made in the

past decade in artificial intelligence and machine learning.

1.2 Artificial intelligence and machine learning

Artificial intelligence (AI) is a broad term used to describe a large group of methods

for computers to interpret and learn from data, which are used to perform specific

tasks (Haenlein and Kaplan, 2019). Machine learning (ML) refers to a subset of AI

tasks, and describes the process of training a model to have skill at a given task (such

as classification, regression or pattern discovery) in a data set, and then assessing

the skill of the trained model at performing that task on unseen data (Reichstein

et al., 2019). One such task is segmentation: classifying each pixel within an input

image as belonging to a class. One simple example of this could be distinguishing

between the pixels in a photograph: classifying each pixel as either containing part
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of a cat or the background.

Deep learning methods describe a set of machine learning techniques that construct

large hierarchical structures to learn from and perform a task on a data set. Deep

learning typically involves the construction of artificial neural networks (ANNs) and

has seen increasing popularity and usage in recent years, thanks to the improvement

in computing power, especially the availability of graphics processing units (GPUs)

and the development of highly parallelised code and algorithms designed to train

models on GPUs, 10 to 20 times faster than had been done previously (Pandey

et al., 2022; LeCun et al., 2015). The term “neural network” was originally chosen

due to the method’s architecture trying to imitate how the brain learns and stores

information, but in reality ANNs are combinations of multiplication of tensors (n-

dimensional matrices) alongside nonlinear functions (Goh, 1995). Further details

about machine learning are given in Section 2.2.

In 1947, Alan Turing gave one of the first public lectures to mention machine learning

to the London Mathematical Society in which he proposed a machine which learned

from experience (Copeland, 2004, p. 375). Research in machine learning methods

was explored in the following decades, but with small progress because the then

computing capabilities were unable to process large ANNs, and there was a belief

that training would not produce satisfactorily trained models (Haenlein and Kaplan,

2019; LeCun et al., 2015). It was not until the availability of computing power

capable of training large neural networks in realistic lengths of time that the method

took off, leading to the current interest in deep learning, with applications within

the past decade vastly improving on previous efforts at using ML.

Hence, the use of ANNs was small until the mid-2000s onwards, when computing

power started to become large enough to produce sufficiently large, well-trained

deep learning models. Some early examples of artificial neural networks being used

during this resurgence include Krizhevsky et al. (2012), who used ANNs for image

classification, beating previous methods considerably. Silver et al. (2016) developed

a neural network to play the game Go, which has significantly more possible moves

than chess, making it harder for a player (human or computer) to consider the best

moves to make in a situation in Go, than in chess. The ANN, AlphaGo, won 99.8%

of games against other Go programs and beat the then European champion 5–0:

which was thought to be the first time a computer had beaten a professional Go
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player.

Machine learning models have been used within atmospheric science, and increas-

ingly so in recent years, typically for performing tasks using model data or obser-

vations. Some applications within atmospheric science involved the application of

models to supplement observations or NWP, such as the automated the classifica-

tion of clouds (Denby, 2020) or short-term “nowcasting” of precipitation (Shi et al.,

2015). More recently, entire NWP models have been replicated by machine learning

models with impressive results, and this is explored further in Section 2.2.

1.3 Motivation and thesis structure

This thesis looks at the use of machine learning tools on a large amount of NWP

model output in order to learn about lee waves and draw conclusions about what

affects their generation.

Since lee waves are resolved by high resolution NWP models and patterns from lee

wave activity can be identified by eye, it makes sense to explore the usage of model

output to better inform forecasting personnel, as well as investigating the relation-

ship between other model variables and lee wave activity, including high amplitude

cases. Lee waves are a mechanism for momentum transport in the atmosphere and

it is important to forecast lee wave and rotor activity well, for aviation and road

transport. For example, pilots need to be aware of the potential for lee waves to

be generated, so as to avoid rotors and regions of strong turbulence that can be

generated by high amplitude lee waves.

Using data-driven methods means that conclusions can be drawn directly from

the data. Machine learning methods are typically data-hungry, and there are vast

archives of well-labelled and organised meteorological data available in various archives

that are ripe for exploration or extracting further information using machine learning

methods, which have shown vast improvement in skill within recent years. Machine

learning offers the ability to apply a well-performing model to weather data (such

as NWP model output, or observations) to perform a task typically only performed

in the past by humans. This means it brings an opportunity to develop a com-

putationally cheap post-processing system to convey lee wave warning information
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to forecasters. In addition, it allows the opportunity to efficiently process large

amounts of historical data to learn about the drivers of lee waves. By applying the

same machine learning models to NWP model output forced to a future climate

scenario, insights can be made to how lee waves may change under climate change.

Therefore the aims of this thesis are the following:

• Test whether machine learning models can be used to detect and characterise

lee waves from high resolution Met Office NWP model output.

• Produce insights into the drivers of lee waves over Britain and Ireland and the

effects of different synoptic weather patterns on lee waves, by applying deep

learning models to a large high resolution data set of model output of the

present-day climate.

• Examine how the occurrence and characteristics of lee waves over Britain and

Ireland may change under a high emissions future climate scenario, by using the

machine learning models on high resolution model output of a future climate

scenario, and comparing this to the data from the present-day climate.

Chapter 2 contains an overview of the current literature about lee waves and ma-

chine learning, Chapter 3 introduces the data sources used in this thesis, Chapter 4

contains the results from training ML models to recognise and characterise lee waves,

Chapter 5 discusses the results from applying these trained ML models to a clima-

tology data set of Britain and Ireland’s present-day climate, and Chapter 6 analyses

how lee waves may change over Britain and Ireland under a future climate scenario.

Finally, some concluding remarks are presented in Chapter 7.



Chapter 2

Literature Review

This chapter presents an overview of the literature surrounding lee waves, machine

learning techniques, synoptic weather patterns, and climate change projections un-

der different emissions scenarios.

2.1 Trapped lee waves

Mountain waves are internal gravity waves produced by the forced ascent of stably

stratified air over orography (Durran, 2003). Mountain waves can be subdivided

into two main types: vertically propagating waves which can propagate vertically

for kilometres above the mountains, and up to the stratosphere (Smith, 2003); and

trapped lee waves (lee waves for short), where the gravity waves are trapped in the

lower troposphere and propagate horizontally rather than up into the stratosphere

or mesosphere. Figure 2.1 shows an idealised mountain and generation of both

vertically propagating and trapped lee waves for simple two-dimensional flow, with

horizontal wind speed U(z), along with some simple rotors forming under the crest

of the lee waves. This thesis looks at the latter of these mountain waves: trapped

lee waves.

Depending on the vertical atmospheric profile, lee waves occur over Britain and

Ireland on a regular basis, propagating downwind from orography, despite the oro-

graphy being relatively small in height and width compared to other mountain ranges

globally. Lee waves can propagate horizontally in excess of 100 km beyond the moun-

7
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Figure 2.1: A simplified two-dimensional schematic showing the generation of ver-
tically propagating waves and trapped lee waves for a given horizontal wind profile
for a theoretical isolated mountain, taken from Figure 1 of Teixeira (2014).

tain with horizontal wavelengths typically between 5 and 35 km (Ralph et al., 1997;

American Meteorological Society, 2012). The Scorer parameter (Scorer, 1949) is

often used to diagnose conditions conducive to mountain wave activity, either ver-

tically propagating waves or trapped lee waves, as considered here. The Scorer

parameter at a height z depends on the horizontal wind speed U(z) and the Brunt-

Väisälä frequency N(z). The Brunt-Väisälä frequency at some height z is a measure

of atmospheric stability, defined as (e.g. Durran, 2003):

N =
√

g

θ

∂θ

∂z
,

where θ is the potential temperature and g the acceleration due to gravity. The

Scorer parameter can be derived from linear wave theory in a dry inviscid atmo-

sphere, using a modified Taylor-Goldstein equation (e.g. Markowski and Richard-

son, 2010; Vosper, 2003). The Scorer parameter l at a height z is defined as (e.g.

Bretherton, 1969):
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l2(z) = N2

U2 − 1
U

d2U

dz2 .

In general, the first term in the Scorer parameter is the more important and the

second (shear) term is only significant when the wind shear is large (Blockley and

Lyons, 1994). Gravity waves can propagate vertically if their horizontal wavenumber

is greater than l.

While the full Scorer parameter takes into account the stability, wind speed and wind

shear, this second shear term 1
U

d2U
dz2 is often small, and is 0 in the case of constant U

(Nance and Durran, 1998). Blockley and Lyons (1994) note that the second term is

only significant when wind shear is large. In this thesis, the Scorer parameter is taken

as l =
√

N2

U2 , since the shear term is often small, and the model data used in this

thesis is only available on limited pressure surfaces as it is. Calculating the second

derivative of U with respect to z would only limit values of the Scorer parameter

available for analysis, since more data would be required to approximate d2U
dz2 on a

given pressure surface. In addition, several other studies use this simplified Scorer

parameter, such as Udina et al. (2020), Bramberger et al. (2018) and Vosper et al.

(2013). Blockley and Lyons (1994) note that “most authors” neglect the shear term,

however this study is now over 30 years old, but does demonstrate precedent for

neglecting the shear term when calculating the Scorer parameter, along with more

recent studies cited above which show that this simplification is still not uncommon.

If the Scorer parameter decreases with height, then these are favourable conditions

for trapped lee waves (Durran, 2003). That is, lee wave generation in general relies

on strong horizontal winds and decreasing stability with height. High amplitude lee

waves lead to a higher likelihood of rotors, regions of strong turbulence downstream

of the orography, which can be hazardous for air and road transport (Vosper et

al., 2013). Therefore, forecasting lee wave activity is important for meteorological

agencies, for example being able to advise aviation personnel on the likelihood of

rotors around airfields and flight paths. In addition, lee waves are a source of

horizontal momentum transport in the atmosphere, as well as wave drag (Bretherton,

1969; Shutts, 1992). Lee waves have been resolved in high resolution simulations

of the Met Office Unified Model (MetUM) since an upgrade of the dynamical core

in 2015, and are forecasted well in line with observations (Sheridan et al., 2017,
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expanded in Section 2.1.4).

2.1.1 Controls on trapped lee waves

The Taylor-Goldstein equation describes gravity waves in the atmosphere (Nappo,

2002). For a simplified case with constant density with height (Markowski and

Richardson, 2010),

d2ŵ

dz2 +
[

N2

(cx − u)2 + 1
(cx − u)

d2u

dz2 − k2
]
ŵ = 0

where ŵ is the complex wave amplitude, u the wind speed in the x (horizontal)

direction, cx is the phase speed of the waves in the x direction with wavenumber k

(assuming a steady state (cx = 0), the Scorer parameter can be substituted into the

square brackets). This equation has solution of the form ŵ = Aeimz +Be−imz, where

A and B are complex wave amplitudes. If m is real, then vertically propagating

waves are generated. If m is imaginary, then the generated waves will be trapped

(Holton and Hakim, 2013).

When the phase speed cx is the same as the horizontal wind speed u in the Taylor-

Goldstein equation, this is a singularity known as a critical level (Markowski and

Richardson, 2010). At critical levels, the waves can become unstable, overturn

and break, causing turbulence (Grubǐsić, 1997; Wurtele et al., 1996). There have

been few observational studies of wave breaking: Strauss et al. (2015) summarised

known observations of mid-troposphere wave-breaking, from Europe, the USA and

Antarctica, with reported turbulent kinetic energies of these wave-breaking events

varying from 4.6 m2s−2 to 150 m2s−2.

Idealised modelling of trapped lee waves typically use simplified conditions and

model setup, such as simple flows such as linear ridges (Vosper et al., 2006) or the

Witch of Agnesi (Bell, 1975), which although useful for developing theory when pro-

cesses are mostly linear, do not accurately reflect the complex non-linear interactions

in the atmosphere. Vosper (2003) developed a lee wave forecasting system (more

in Section 2.1.4) to produce numerical solutions to the Taylor-Goldstein equation.

They used radiosonde observations for the background flow and used the fluctu-

ations in vertical ascent rate of the radiosondes to represent gravity wave motion,
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finding that the model produced vertical velocities within 0.6 m s−1 of the radio-

sonde ascent velocity. Colfescu et al. (2021) observed a lee wave event in Iceland

using an aircraft, and used both linear theory and a NWP model to simulate the lee

wave generation, along with the aircraft observations to verify the modelled waves.

However, linear theory has limits. Vosper (2004) note that amplitude of waves is

governed by non-linear processes for more moderately sized hills, and lee wave amp-

litude underestimated by linear wave theory when the wavelength is significantly

less than the width of the hill.

2.1.2 Lee wave occurrence and characteristics

The prevalence and characteristics of lee waves over Britain have been investig-

ated before. Vosper et al. (2013) presented results from a three-year climatology of

trapped lee waves, using the output from the (then operational at the Met Office)

Three-Dimensional Velocities Over Mountains (3DVOM) model. 3DVOM was op-

erational at the Met Office from May 2006 until the early 2020s, and is an idealised

linearised model driven by a single profile from the global Met Office model config-

uration, with realistic orography (Vosper, 2003). They found that lee waves were

more likely to occur in winter months than in summer months, and large amplitude

lee waves (waves with vertical velocities > 3 m s−1) occur more frequently in the

Scottish Highlands than in North Wales or the Pennines. Worthington (2006) ex-

plored the possibility of a diurnal cycle of lee waves over Britain using Very High

Frequency (VHF) radar measurements (from one radar station near Aberystwyth

in Wales), and satellite imagery on a region covering Wales, Ireland and much of

the Midlands and Northern England from 1990–2006. They found no evidence of a

diurnal cycle in the orientation or amplitude of mountain waves, but there was a sea-

sonal cycle in the amplitude of mountain waves over their area of observations.This

previous work did not consider different synoptic weather conditions over Britain

and Ireland such as weather patterns, and only considered regions of known wave

activity over Britain and Ireland, rather than an analysis of lee wave activity within

the entirety of the islands.

However, there may be a diurnal cycle of mountain waves in other parts of the

world, despite there being no evidence of such a cycle in the studies completed in

Britain, albeit with their limitations. Ruff and Ólafsson (2019) attribute a small
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diurnal cycle in downslope windstorms in Iceland to the changing prevalence of

gravity waves throughout the day. During the Terrain-Induced Rotor Experiment

(T-REX) campaign in the Sierra Nevada, California, Jiang and Doyle (2008) used

observations and numerical models to diagnose the impact of a diurnal cycle on

the flow within the valley, and on downslope winds. This diurnal cycle was only

present for more moderate downslope winds, but not stronger cases of downslope

winds where dynamic forcing was the main driver (Sheridan and Vosper, 2012).

There have been several climatologies of mountain waves produced, in different parts

of the world, in addition to those discussed above which focused on Britain and

Ireland (Worthington, 2006; Vosper et al., 2013). These have focused on areas of

large orography, such as the Alps and North America. Wilson et al. (1991) produced

a climatology of vertically propagating waves between 30 km and 75 km in altitude,

using lidar observations. They found a seasonal cycle of wave activity, with maxima

during the winter months.

Grubǐsić and Billings (2008) produced a climatology of mountain wave clouds over

the Sierra Nevada from visual inspection of visual satellite imagery, from a two-year

period (1999 to 2001 inclusive). They classified mountain waves into single wave

clouds or a lee wave “train” of clouds forming the characteristic striped pattern.

They stated that the contemporary pattern identification methods from data (a

small ANN: Peak and Tag, 1992) were insufficient at identifying mountain wave

clouds from satellite imagery compared to the human eye, something that more

sophisticated models from developments within machine learning since the 1990s

should be able to supplant. Grubǐsić and Billings (2008) found that the most trapped

lee wave events around the Sierra Nevada occurred in April, with large variability

in January and April. However, this study only used two years worth of data, and

by using observations of wave clouds, limited themselves to cases where there was

sufficient moisture for cloud to be present. Lester (1978) also used clouds to produce

a climatology of lee waves, for Pincher Creek in Alberta, an area of relatively high

topography in Canada. They used hourly daylight observations made by staff at

the Pincher Creek observatory covering most of January 1964 to April 1967 and

acknowledged the subjectivity in deciding whether a cloud was a wave cloud by a

human observer. The data showed more lee wave clouds occurred during cooler

seasons of the year, and that there was a diurnal cycle of lee wave cloud formations,
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with minima at sunrise and sunset, and maxima during the mid to late afternoon.

By producing a climatology of lee waves over Britain and Ireland using data from

more sophisticated models, over a longer time period than those considered above,

and by taking into account more than amplitude, evidence either way will be clear

as to if there exists a diurnal cycle in lee waves in Britain and Ireland as has been

observed elsewhere (e.g. Lester, 1978). Since there is a diurnal cycle in the inversion

in the boundary layer, it is feasible to suggest that this could affect the trapping of

lee waves, and perhaps the amplitude of lee waves at different times of the day.

Vicari et al. (2024) analysed trapped gravity waves over the eastern Pacific (conclud-

ing that the gravity waves were more likely to be generated by convection rather

than orography as is more often the case in Britain and Ireland), using a Gaus-

sian filter on water-vapour measuring satellite brightness temperatures. They found

that trapping was linked to “increased upper-tropospheric wind shear”, and occurred

more often in December, January and February.
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Figure 2.2: Example of the UKV 700 hPa vertical velocity analysis data, at 00Z on
1 February 2022. Several lee wave patterns over Ireland, Wales, northern England
and Scotland can be discerned by eye. These regions are labelled to aid the reader
unfamiliar with the geography.
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2.1.3 Lee wave hazards

Lee waves with a sufficiently large amplitude can induce strong downslope winds

from topography and flow separation, where air close to the surface is transported

aloft (Vosper et al., 2006). The flow separation causes low-level turbulent vortices

near the surface. These regions of strong turbulence, where the flow at low levels

may be reversed compared to the background flow, are called rotors (Doyle and

Durran, 2002), where the boundary layer separation is dependent on the adverse

pressure gradients induced by the lee waves (Kühnlein et al., 2013).

In theory, rotors are classified into two types: type 1 rotors which are regions of

turbulence that form under the crests of lee waves (a simple version is shown in

Figure 2.1); and type 2 rotors which resemble hydraulic jumps (Hertenstein and

Kuettner, 2005). Figure 2.3 shows schematics of streamlines for these two types of

rotors. The type 1 rotors in (a) that have formed under the crest of the wave are

much more ordered than the complex pattern of turbulent eddies that have formed

in the type 2 rotors in (b). Observations of rotor activity in the Falkland Islands by

Mobbs et al. (2005) suggested that a strong temperature inversion near the summit

of the mountains was necessary for the formation of rotors in the Falklands, but this

is not a requirement for rotor activity in Britain and Ireland (Sheridan et al., 2007).

Udina et al. (2020) observed a rotor event in the Pyrenees during a field campaign

using a Lidar and UHF wind profiler. They noted that the strongest turbulence

was in a region on the upwind side of a lee wave crest. In addition, they noted that

rotors are characterised by complex 3D flow interactions, and the 2D structures seen

in literature were most likely over-simplistic. The T-REX campaign came to similar

conclusions: Strauss et al. (2016) looked at observations of lee waves and rotor-like

events in a deep valley in California. They found that pressure perturbations from

high amplitude lee waves were only one factor in lee wave formation, with other

effects such as dynamical and thermal processes also governing rotor and turbulence

formation within the valley. Also as part of T-REX, Cohn et al. (2011) used wind

profilers to observe rotor effects in the east of the Sierra Nevada in California. They

observed small regions of strong turbulence, which they called subrotors, around the

crest of lee waves, in agreement with earlier modelling studies (such as Doyle and

Durran, 2002).
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Figure 2.3: Schematic, reproduced from Figure 8 of Hertenstein and Kuettner
(2005), showing streamlines for type 1 (a) and type 2 rotors (b).
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Gusts associated with lee waves can be problematic for road transport, and Vosper et

al. (2013) noted that a number of wind-related incidents to high-sided vehicles have

occurred on the lee side of the Pennine hills in Northern England. The turbulence

that caused the crash of a commercial aeroplane over Mount Fuji in 1966 was attrib-

uted to mountain waves (International Civil Aviation Organization, 1968). Turbu-

lence and large wind shears associated with rotors on the lee side of a mountain are

particularly hazardous for aircraft, especially during take off and landing (Darby and

Poulos, 2006). During an investigation of lee waves over the Sierra Nevada, Holmboe

and Klieforth (1957) discuss the turbulence experienced by gliders during a field cam-

paign: one glider observed horizontal wind gusts in excess of 90 ft s−1 (∼ 27 m s−1),

while another was destroyed by gusts estimated at 120 ft s−1 (∼ 34 m s−1). Pilots

need to be aware of lee waves and rotors: Ágústsson and Ólafsson (2014) discussed

the severe turbulence experienced by an aircraft near Iceland in 2008 and the oc-

currence of strong turbulence hazardous to air traffic at Mount Pleasant Airfield in

the Falkland Islands motivated the rotor study by Mobbs et al. (2005), as well as

being relevant to airfields in Britain, such as those on the lee side of the Pennines.

Hence, forecasting centres are interested in identifying and communicating these

risks accurately.

2.1.4 Forecasting lee waves and their effects

Lee waves can sometimes be observed during daylight hours in visual satellite im-

agery, with characteristic striped cloud patterns, caused by condensation of water

vapour in air that has risen and cooled in the peak of the wave. When clouds are not

present, or at night, visual satellite imagery cannot be used to observe lee waves.

Water-vapour sensitive satellite data have also been used to detect gravity waves

(for example by Vicari et al., 2024). In addition to using satellite imagery to detect

the presence of gravity waves, lee waves can also be identified in the output data

from NWP models run at a sufficiently high spatial resolution to resolve the waves.

Weather and climate phenomena are linked by the same physical processes, and the

MetUM suite of models run by the United Kingdom (UK) Met Office (herein the

“Met Office”) consist of a nested suite of model configurations to forecast weather

and climate regionally and globally to account for processes on different scales

(Brown et al., 2012). This way, the physics of the different models, although they
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contain different configurations and resolutions, are kept similar to each other.

The high resolution limited area deterministic NWP forecasting model configura-

tion, nested within the global model in the MetUM is UKV, which has a spatial

resolution of 1.5 km in mid-latitudes over Britain and Ireland (Tang et al., 2013;

Bush et al., 2023). The UKV model configuration has resolved lee waves since the

dynamical core was upgraded in 2015. The previous dynamical core used a greater

amount of off-centring, which meant that over the operational time step, gravity

wave motion would be damped by the time integration scheme (Shutts and Vosper,

2011). The current dynamical core, Even Newer Dynamics for General atmospheric

modelling of the environment (ENDGame) has better numerical stability than its

predecessor, meaning that gravity wave motions are no longer damped in simula-

tions with operational time steps (Elvidge et al., 2017). The ability of ENDGame to

resolve orographic gravity waves was tested by Wood et al. (2014), who found that

the simulated gravity waves broadly agreed with other modelling groups within the

Dynamical Core Model Intercomparison Project. More details about model setup

are given in Section 3.1.

Lee waves are visible in the UKV model output from a range of fields, however ver-

tical velocities just above the height of the orography are particularly helpful as the

background values of the vertical velocities of atmospheric motion not associated

with gravity waves are typically small and so the wave signal is clearer. Figure 2.2

shows an example of UKV vertical velocity model output on the 700 hPa surface

over Britain and Ireland (well above the height of the orography) where lee waves

have been resolved. The striped vertical velocity pattern associated with lee waves,

and their dominant orientation, amplitude and wavelength can be seen by eye, but

there is no operational method to automatically retrieve these characteristics from

the NWP output for further use (such as generating risk maps for operational met-

eorologists based on modelled lee wave amplitudes).

The UKV model configuration resolves lee waves in good agreement with obser-

vations from aircraft campaigns and surface observations. Sheridan et al. (2017)

note that lee waves predicted by the UKV model agree “fairly closely” with those

observed by an aircraft over the Grampian mountains in Scotland, and surface ob-

servations of 10 m horizontal wind variability was observed on similar timescales

and amplitudes to the UKV model fields. However, the authors note that the sparse
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nature of surface observations make validating modelled features difficult, and that

other complex interactions not resolved by the NWP model could have been occur-

ring at the surface observation sites, as the strongest effects of lee wave activity do

not typically occur at the surface (and so are not observed by surface meteorological

observation stations), but aloft.

Forecasting of lee wave effects at the Met Office is mainly concerned with the like-

lihood of rotor activity, and diagnostics are used to convey this information to fore-

casters, who may be, for example, advising aviation personnel on the safety of flying.

Output from UKV is now used for operational lee wave forecasting at the Met Of-

fice, combining UKV output with the diagnostic tools from its predecessor, the

3DVOM model (Vosper, 2003; Vosper et al., 2013). As noted above, UKV resolves

lee wave activity well, and more realistically than 3DVOM did (Sheridan et al.,

2017). 3DVOM was used to produce lee wave forecasts for multiple mountainous

areas (e.g. Scotland, the north of England, Wales, Dartmoor and northern Ireland)

by solving a dry, linear approximation for the equations of motion forced by simple

boundary conditions. Since UKV resolves lee waves realistically, model data from

UKV is suitable for an investigation into lee wave activity over Britain and Ireland.

In addition to forecasting rotor activity, gravity waves are of interest to forecasting

agencies for momentum transport, and gravity wave drag (Vosper et al., 2020). Since

gravity waves are typically too fine-scale to be captured at the horizontal spatial res-

olution of typical global NWP models, their effects need to be parametrised within

global models. A climatology of lee waves could help parametrise the effects of lee

waves in global models by improving the understanding the relationship between lee

wave events, particularly high amplitude waves, and other meteorological variables.

Before numerical models that can resolve lee waves were used operationally, there

were methods used to identify the risk of potentially hazardous effects associated

with lee wave generation, mentioned by Shutts (1997) and described in detail in

the then Forecasters’ Reference Book (Met Office, 1997). For example, one earlier

method describes unidirectional winds which get stronger with increasing height

and a higher static stability in the bottom 3 km of the atmosphere. These could be

diagnosed from data from radiosonde ascents, or the output of numerical models.

These rough rules of thumb above have been superseded: firstly, by numerical linear

models such as 3DVOM, and now by lee wave activity being resolved within the
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Figure 2.4: Example LOLAN chart from the Met Office (reproduced from Figure 11
of Morcrette et al., 2019), describing the weather relevant to aviation over North-
western Europe. Mountain wave activity is shown as MTW, with maximum vertical
velocities shown in feet per minute.

high resolution convection-permitting non-linear NWP model configurations.

Operational meteorologists at the Met Office produce a Low Level Aviation (LOLAN)

chart describing the weather forecast relevant to aviation, for Britain and Ireland

below 10 000 ft (∼ 3000 m) in altitude. These charts show regions of forecasted

mountain wave activity and describe the amount of turbulence expected, among

other features. An example LOLAN chart can be seen in Figure 11 of Morcrette et

al. (2019), and reproduced here as Figure 2.4. These charts are produced manually

by operational meteorologists and synthesise a lot of information into one document.

For example, in region A in Figure 2.4, the mountain waves (MTW) are forecasted to

have a maximum vertical velocity (MAX VSP) of 800 ft min−1 (∼ 4 m s−1) at 9000 ft

(090 on the chart; ∼ 2700 m) above sea level, in addition to the other information

regarding visibility, cloud, weather and freezing level.
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2.1.5 Spectral techniques for identifying gravity waves

Typically, spectral techniques are used to detect and measure gravity wave char-

acteristics, such as the Fourier transform, wavelet transform (e.g. Hindley et al.,

2015) or the Stockwell transform (S-transform, e.g. Stockwell et al., 1996; Hindley

et al., 2019). The S-transform is a spectral analysis technique used to provide local-

ised, spatial, spectral information of waves, given input data (so time-frequency or

distance-wavelength, depending on the dimensions of the input data), and has been

used extensively for retrieving gravity wave characteristics (though not necessarily

lee waves, until this work). One such application was an analysis of stratospheric

gravity waves over South Georgia using Atmospheric Infrared Sounder (AIRS) satel-

lite observations and MetUM models (Hindley et al., 2021). Another was the study

of stratospheric gravity waves in the Andes, using the S-transform to find gravity

waves with large momentum fluxes (Wright et al., 2017). The S-transform was used

by Alexander et al. (2008) to produce global gravity wave momentum flux informa-

tion from satellite observed temperature perturbations.

The S-transform is similar to a continuous wavelet transform, but extends it because

the magnitudes of the complex coefficients of the S-transform are related to the

magnitudes of the underlying amplitudes of the gravity waves (Alexander et al.,

2008). This is not the case for amplitudes derived using the continuous wavelet

transform (Hindley et al., 2016). The two-dimensional S-transform used for the

characterisation of stratospheric gravity waves in AIRS satellite data described by

Hindley et al. (2016) was later extended to an n-dimensional S-transform (Hindley

et al., 2019). More details on the S-transform implemented in this thesis are given

in Section 4.2.6.

2.2 Machine learning

Machine learning (ML) is a blanket term that refers to computer programs that

learn from data and apply that learning to complete tasks, and maximising the

ability of the programs to complete these tasks using statistics or other means. The

development of machine learning techniques means that automated analysis of large

data sets (such as NWP model output) can be performed efficiently. One example
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of ML is deep learning, such as the use of deep (i.e. the networks contain many

layers) convolutional neural networks which extract patterns from large quantities

of data through learning feature representation of data via convolutions and non-

linear transforms (Gu et al., 2018). This is particularly useful for two-dimensional

data such as images, or NWP model output on a pressure surface.

ML models are increasingly being used for forecasting and investigating climatolo-

gical trends, as well as in environmental science more generally. For example, Böhm

et al. (2021) produced a climatology of fog occurrence over the Atacama desert using

a neural network trained on satellite brightness temperatures. Weather fronts can

be identified using machine learning techniques and their climatology and impact on

precipitation events can be detected and evaluated (e.g. Niebler et al., 2022; Justin

et al., 2023).

Nowcasting is forecasting over a short length of time, and is commonly used to fore-

cast precipitation on short timescales (< 6 hours), by predicting where precipitation

will occur based on the current state. Typically, optical flow approaches are used

which approximate the motion of features within a series of consecutive images (for

example radar retrievals as done by Bowler et al., 2004). Optical flow methods as-

sume that the patterns in the data do not change in intensity over time, and only

account for motion (Fortun et al., 2015). Machine learning methods have also been

used for nowcasting, such as by Shi et al. (2015), who used ANNs to nowcast precip-

itation from radar retrievals in Hong Kong. Machine learning techniques have also

been used to nowcast lightning occurrence from air pressure, temperature, humdi-

tity and wind speed, with skill for 30 minute lead times (Mostajabi et al., 2019).

Entire NWP models have been replicated using machine learning models, and this

is detailed further in Section 2.2.3.

There are several methods of machine learning: supervised, unsupervised and rein-

forcement learning. In supervised learning, a model is trained to extract patterns

from a data set of labelled data and complete some task (for example classifying an

image as a dog or a cat). Then, the model’s ability to perform this task is evaluated

on an unseen (by the model) test data set (Reichstein et al., 2019). This ensures

that the trained model has been generalised to the population data rather than over-

fitting to the sample that it was trained on. Unsupervised learning does not require

labelled data and is more focused on pattern extraction: for example, clustering a
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data set (e.g. Section 2.2.1) into classes based on similarities between the data. In

reinforcement learning, models must discover optimal outputs from being rewarded

and penalised by experimentation, rather than being given explicit labelled training

data (Bishop, 2006).

Three different categories of ML are explored in this thesis, with most of the focus

being on deep learning, an example of which is using convolutional neural networks

(CNNs: Section 2.2.3). The other types of machine learning models that are explored

here are clustering and random forests.

2.2.1 Clustering

Clustering techniques involve grouping similar data based on their features. This

is useful when there is unlabelled data. k-means clustering (e.g. Steinley, 2006) in-

volves clustering data into k groups of similar features, where the Euclidean distance

between a member of a cluster and the centre of its cluster is at least as small as

the distance between that member and the centre of another cluster. The sklearn

Python library (Pedregosa et al., 2012) employs several algorithms to perform k-

means clustering, as well as other options to approximate k-means clustering in a

quicker time, involving taking different sized batches of data. Clustering is used in

atmospheric science, typically for grouping different weather conditions into regimes.

The weather patterns produced by Neal et al. (2016), introduced later in Section 2.4

and Section 3.3, used k-means clustering to group patterns of mean sea level pres-

sure (MSLP) into similar synoptic regimes. k-means clustering has also been used

for analysing pollution levels, as reviewed by Govender and Sivakumar (2020).

2.2.2 Random forests

Random forests are an ensemble of decision trees used to characterise data based

on features within the data (Breiman, 2001). Decision trees can be used as data

classification or regression methods where some input data are classified based on

a sequence of rules, where each node within each tree is split recursively until the

members within each node are given the same value, whether that be a class or

a value on a continuous interval (Kotsiantis, 2013). How these rules are created

depends on the implementation, with many algorithms proposed on how best to
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Figure 2.5: Example decision tree for classification (left), taken from Figure 9.2 of
Mohri et al. (2018). At each decision node, whether the statement in the node is
true (arrows pointing left) or false (arrows pointing right) dictates the flow within
the tree. The data set described by X1 and X2 has been characterised into five
classes R1, . . . , R5 (right) by this tree.

split data at nodes within decision trees. Breiman (2001) used random splitting

within trees as part of random forest creation, while another technique involves

growing trees by splitting each node based on the best classification, from testing

each input variable in turn (Bishop, 2006). Figure 2.5 shows an example decision

tree for a simple data set, where data described by X1 and X2 has been characterised

into five classes, R1, . . . , R5 by the rules within the decision tree.

Random forests train multiple decision trees on a random subset of the training

data, and the output of each decision tree is aggregated into the output of the

random forest (typically, this is averaging each tree’s probabilistic output as done

in Pedregosa et al., 2012). A schematic of a simple random forest is shown in

Figure 2.6. Random forests combine multiple (often 100 or more) decision trees,

each trained on a subset of the overall training data (bagging), and the combination

of the decorrelated trees to form the forest results in a powerful predictive model

(Grange et al., 2018). Random forests have fewer parameters to tune than deep

learning models and perform well on data with small sample sizes (Biau and Scornet,

2016).

Hill et al. (2020) used a random forest to predict severe weather across the United

States of America. The statistical relationships learned by the random forest was

similar to known physical relationships used to predict severe weather. For example,
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Figure 2.6: A schematic of a simple random forest, made up of three trees. The
output of each tree is aggregated to make the output of the forest.

the random forest identified the convective available potential energy, convective

inhibition and wind shear as being important for predicting severe weather, and these

are all used operationally to diagnose severe weather (Johns and Doswell, 1992).

Random forests were used by Grange et al. (2018) to explain changes in particulate

matter (PM) levels at Swiss monitoring sites from meteorological conditions and

time, performing well at predicting the concentration of PM10 at the monitoring

sites in the test data. The random forest was then used to produce a time series of

PM10, which was investigated using partial dependence plots, finding a significant

decrease in the concentration of PM10 at the monitoring sites.

ML techniques can be combined too: for example, Grazzini et al. (2020) used k-

means clustering combined with a random forest to classify extreme precipitation

events over Italy, along with a subjective method using thresholds of environmental

variables. They found that the approach using k-means clustering and a random

forest was more robust than the subjective method.

2.2.3 Deep learning

Deep learning, a type of machine learning, is the discipline of training deep (many

layered) artificial neural networks (ANNs) to autonomously extract nonlinear rela-

tionships between large quantities of data to produce a given prediction (Reichstein

et al., 2019). Deep learning models learn representations of data through matrix
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multiplication and non-linear transforms, by multiplying an input by various lay-

ers (LeCun et al., 2015). The optimal weights of these layers are learned through

successive passes through the model and updated using backpropagation (more in

Section 2.2.4).

An ANN is an example of a deep learning model. Artificial neural networks are a

simplification by a computer program of how the human brain’s neurons are wired for

learning patterns and were first proposed for hand-written digit recognition (LeCun

et al., 1989). Since then, ANNs have been used for signal and image processing in a

wide variety of fields and applications (e.g. Gu et al., 2018). A convolutional neural

network (CNN) is a type of ANN. CNNs combine convolutional layers (which fea-

ture convolutions) with non-linear scaling (or “activation”) functions. Convolutions

combine features in a neighbourhood around a point, ensuring that a set of local

features are passed down the network, leading to the model being able to learn rep-

resentations of features such as edges and corners (LeCun et al., 1999). The concept

of the neighbourhood around a point being able to influence the value of that point

is the idea of a receptive field: with too small a receptive field, CNNs would not be

able to learn features.

Figure 2.7 shows a schematic of a CNN, used for image classification (such as clas-

sifying a hand-written digit as an integer from 0–9). It shows the transformation

of a 3 × 128 × 128 image (on the left) through intermediate feature maps before

producing a 1 × 10 vector. It shows how the intermediate feature maps are pro-

duced, and the neighbourhoods used on the previous feature maps to inform the

next. Within this simple CNN, there are maximum-pooling layers (where the max-

imum value in a sliding window is taken, reducing the complexity of the feature

map), along with convolutional layers and dense layers (also called fully connected

layers), which perform a linear transformation of the previous feature map (O’Shea

and Nash, 2015). Finally, the output can be interpreted: in this case, the model will

produce a prediction of how closely the input resembles each of the integers 0–9.

One such task that deep learning can be applied to is segmentation: an image

classification problem where each pixel within an image is classified as belonging

to a specific predefined class. An example of a deep learning architecture for such

segmentation is a U-Net (called because of their architecture shaped like the letter

“U”), a type of CNN first described for the segmentation of medical imagery, for cell
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Figure 2.7: Neural network schematic for a simple CNN, created using LeNail (2019)

detection and shape measurement (Ronneberger et al., 2015). U-Nets are used for

pixel-wise predictions that can take the form of segmentation masks (boolean 0/1),

classification (discrete) and regression (continuous) problems. U-Nets are a type of

CNN designed for pixel-wise classification since the output of the neural network

can be the same height and width as the input data. This is useful for segmentation

tasks such as boundary detection.

Since its introduction, the U-Net architecture has been used for image segmentation

problems in a wide range of fields including within Earth Sciences. Examples in-

clude a land-cover classification from high-resolution satellite imagery over Beijing,

identifying regions of buildings, water, roads, vegetation, and separate classifications

for shadows, and “other” (Zhang et al., 2018), recognition of regions of clouds within

photographs of the sky (Dev et al., 2019) and estimation of gravity wave momentum

fluxes at 100 hPa from low-resolution winds, temperature and specific humidity data

at lower levels in the atmosphere using a 29-year reanalysis data set (Matsuoka et

al., 2020).

By using deep learning methods to automate tasks traditionally only capable of

being undertaken by humans or complex algorithms, machine learning models can

be used on unseen data to analyse and identify features, such as hazardous weather

phenomena (e.g. hailstorms: Gagne et al., 2019; thunderstorms: Guastavino et al.,

2022). In addition, the application of deep learning models to a large, in both size

and dimensionality, data set (such as an archive of NWP model output) provides

the opportunity to improve the understanding of weather phenomena by being able

to analyse large data sets for cases of interest, a task which would be unfeasible by

hand. Meteorological data, of which there are often large volumes on long timescales,
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offer a prime data source for typically data-hungry machine learning techniques.

While this thesis concerns itself with the application of machine learning techniques

to data produced by NWP models, during the past couple of years, neural networks

have been used to emulate entire NWP models and it would be remiss to not mention

the swathes of work occurring here. Keisler (2022) used graph neural networks to

produce skilful weather forecasts. Graph neural networks are suited to performing

on any data that can be constructed as a graph (a set of vertices and edges that

connect them), which means that operations such as convolutions that perform well

on image data are hard to construct, and do not take into account features that

are connected as may happen in a graph (Wu et al., 2021). Since then, networks

part-funded by large machine learning groups have also released their own ANNs

for weather forecasting, for example: FourCastNet (NVIDIA: Pathak et al., 2022),

PanguWeather (Huawei: Bi et al., 2023) and GraphCast (Google: Lam et al., 2023).

The European Centre for Medium-Range Weather Forecasts (ECMWF) have also

released their own AI version of their Integrated Forecasting System (IFS), dubbed

AIFS (Chantry et al., 2024). These achieved impressive results on a number of

metrics against the operational ECMWF global NWP model in a fraction of the

time. For example, Google (Lam et al., 2023) claim that GraphCast “significantly

outperforms” the IFS on 90% of its verification targets, and Huawei (Bi et al., 2023)

claim that PanguWeather outperforms the IFS on “all tested variables”. Output

from all these ML weather models can be viewed on the ECMWF website (ECMWF,

2024).

Ben-Bouallegue et al. (2023) compared the IFS to the PanguWeather model, find-

ing that the ML model performed well at forecasting 850 hPa temperature and

500 hPa geopotential height against NWP analysis, and skilful at 2m temperature

compared to observations. However, they note the relative lack of skill of Pan-

guWeather at forecasting tropical cyclone intensity and producing overly-smooth

forecasts. Charlton-Perez et al. (2024) compared the skill of GraphCast, Pan-

guWeather, FourCastNet, and the IFS, at forecasting the effects of Storm Ciarán,

a high impact extratropical cyclone over the UK in November 2023. This was an

extreme event: the Met Office observed the lowest mean sea level pressure on re-

cord for England in November during Storm Ciarán. While the machine learning

models forecasted the storm track and MSLP contours well, they performed less
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impressively than the conventional NWP at forecasting the 10 m wind speeds, and

the frontal structure of the storm. Weather forecasting is arguably most important

during extreme events, as people need to know what hazards may be coming their

way.

While machine learning based models have been shown to perform at least on par

with conventional NWP at weather forecasting, their trust is currently less than

that of conventional NWP. Case studies such as the study by Charlton-Perez et al.

(2024) are important to demonstrate where machine learning based forecasting can

emulate extreme events, and where it cannot replicate the physics of current NWP

(for example, forecasting the MSLP well but not linking this to the geostrophic

winds). Trust in weather forecasting depends on having explainable predictions

(for example by documentation and testing of model physics and parametrisation

schemes), and the explainability of machine learning models is not currently on par

with the documentation about model physics and parametrisation schemes used in

conventional NWP models. However, this does not discount that machine learning

models have been shown to perform well at weather forecasting.

2.2.4 Learning in artificial neural networks

An artificial neural network learns by using predictions made by the network, and

updating weights in the model so that performance improves. In supervised learning

(where the data are labelled), ANNs have a loss function relating the prediction made

by the model and the labels (the root mean squared error between a model prediction

and the labels being one possible loss function). Training aims to minimise this loss

function, by updating the weights of each layer in the model through many passes

through the network. Construction of the training data necessitates that the model

not only performs well on the seen training data but also is generalisable, meaning

that the trained model also performs well on unseen data too (Goh, 1995).

During training, after a pass through the network, the weights within each layer are

updated using backpropagation (multiple applications of the Chain Rule), where

the gradients between a layer’s input and its weights are calculated. Starting at the

output and working backwards, layer by layer until the input layer, the weight in

each layer is updated, by using the calculated gradient of the loss with respect to
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that weight to adjust the weights in the direction of decreasing loss (Elliott, 2001;

Parr and Howard, 2018). This is to have a smaller loss by the next forward pass

through the network.

2.2.5 Fitting models to data

Typically, during training, a portion of the training data is held back to check that

the trained model can generalise to, and perform similarly to the main training set

on, unseen data. Training can continue for a fixed number of epochs (one epoch

being one pass through the network, followed by backpropagation and updating

weights). However, a technique such as early stopping can be used to stop training

early, aiming to produce a sufficiently trained model on the training data that also

generalises well to unseen data (Prechelt, 1998). Under early stopping, training

continues until the loss for the main training set starts to diverge from the loss from

the validation set. At this point, the model may start to over-fit to the training

set, and therefore be less good at its task on some unseen data. Determining when

this divergence is occurring is not obvious all of the time since the training and

validation loss do not tend to decrease linearly. One method of early stopping

involves stopping training only when the validation loss has not decreased beyond

the previous minimum for n successive epochs (n = 5 was used in the models trained

in this thesis).

The learning rate specifies how far to follow the gradient of the loss function with

respect to a weight, when updating a weight during training. A learning rate that

is too small results in a network that takes a long time to train, and too large a

learning rate may mean that the weights are altered too quickly, missing out on a

possible optimal selection of weights (Yu and Chen, 1997).

It is useful to imagine the loss function as a surface of the weights, with many areas

of peaks and troughs of how the loss changes in response to different weights (as

in Li et al., 2017). At each point on the loss function surface, the aim is to follow

the gradient of the surface down to minimise the loss with respect to that weight.

Figure 2.8 shows one of these loss landscapes, where the loss with respect to the

higher dimensional set of weights is displayed. Various peaks and troughs within

the landscape can be seen.
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Figure 2.8: Example loss landscape for a convolutional neural network, created using
Ideami (2024). The surface with various local minima and maxima is visible, and
training aims to not converge on local minima.

In cases where there is limited data availability, there exist techniques to apply deep

learning models to these smaller than desired data sets. Transfer learning is the

process of taking a model trained on one data set, and re-training it, or part of it,

on new data or to perform a different task. It uses the features learned by the model

on the previous task as a starting point in the new task, which can be further refined

to the new task by training (Pan and Yang, 2010), either the whole model, or certain

layers – so (for example), an already well-trained feature extractor does not need

to be retrained. This is useful in the case where training data for the desired task

may be limited or difficult to collect, and means that models typically take less time

to train because they have already learned useful feature extraction (Weiss et al.,

2016).

2.2.6 Probing machine learning models

Machine learning models have a reputation as a “black-box”, where probing why

a model has predicted a certain outcome is not necessarily clear. Explainability

is important in science, particularly if machine learning techniques are used to in-

form decision-making (such as issuing weather warnings, for instance). Hence, vari-
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ous methods have been proposed to explain the predictions made by a ML model.

“Black-box” is not necessarily a fair term to describe a whole suite of modelling

techniques which have a range of interpretability depending on the technique. For

example, the individual decision trees within a random forest are obtainable, so the

output from a random forest can be probed, but exploring precisely why a neural

network produced a certain result is less clear.

Principal Component Analysis (PCA) is one such method for exploring intermediate

output from an ANN and provides a way for approximating high dimensional data

in terms of lower dimensional data, while still retaining much of the information in

the higher dimensional data (Wold et al., 1987). By taking n principal components

of a large data set (such as some mid-level output of a machine learning model), the

gist of this data can be found by reducing its dimensionality to 1 or 2 dimensions

(easily visualised by eye) while minimising the amount of information lost. Then

clustering techniques can be used to visualise the effects on the intermediate output

from a model by changing the input.

SHapley Additive exPlanation (SHAP) is a technique that explains each input fea-

ture’s contribution to the model output, by extending the concept of Shapley values

(Lundberg and Lee, 2017; Shapley, 1953). Shapley values are used in game theory to

estimate the contribution of different variables to a particular outcome, and SHAP

expands this to use the idea for explainability in machine learning models, by ap-

proximating Shapley values for each of the inputs to a machine learning model and

its contribution to the model output.

Shapley values in game theory describe coalition games played by a group of people,

and how the outcome of a game is affected by whether each person participates or

not (Chen et al., 2023). For a game G with n players P = {p1, . . . , pn}, the power set

P(P ) (the set of all possible subsets) of the players is taken, and the outcome of the

game for each element of the power set is calculated. For the player pi, let Q ⊂ P(P )

be the set of all games without pi participating, and Qk be the kth element of Q.

Then the Shapley value S for the player pi is calculated as (Chen et al., 2023):

S(pi) =
|Q|∑
k=1

|Qk|! × (|P | − |Qk| − 1)
|P |! ×

(
G(Qk ∪ {pi}) − G(Qk)

)
.
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As a simple example, for a two-player game with players a and b with outcomes 0

when nobody plays, 2 when only a plays, 1 when only b plays and 4 when both a and

b play, the Shapley value for player a would be calculated as follows. P({a, b}) ={
∅, {a}, {b}, {a, b}

}
, so Q = {∅, {b}}. Then

Sa = |∅|! × (|P | − |∅| − 1)!
|P |! ×

(
G({a}) − G(∅)

)
+ |{b}|! × (|P | − |{b}| − 1)!

|P |! ×
(
G({a, b}) − G({b})

)
= 0! × (2 − 0 − 1)!

2! × (2 − 0) + 1! × (2 − 1 − 1)!
2! × (4 − 1)

= 1
2 × 2 + 1

2 × 3 = 5
2 .

Similarly, Sb = 3
2 . However, machine learning models are not games with inputs

that are not necessarily binary as in this example. The method of finding SHAP

values for tree-based models (which is used in this thesis), TreeSHAP, transforms

the problem of a tree-based ML model and approximates the Shapley values by

collapsing the sum over all subsets of features (players in the game theory example

above) into calculations at each leaf node in the tree, and using the distribution of

the data set used during training (or otherwise supplied) (Lundberg et al., 2020).

Using SHAP values to visualise the importance of NWP variables to the prediction,

instead of other importance methods such as the permutation feature importance,

means that the correlation between variables in the data is accounted for in the game

theoretic approach, but does mean that SHAP values can still be spread between

features that are correlated (Chen et al., 2023).

2.2.7 Alternatives and supplements to machine learning

There have been several well-publicised crowdsourced labelling campaigns of met-

eorological data, where members of the public (“citizen scientists”) labelled records

that would have been infeasible for a handful of researchers to do themselves. For

example, Hawkins et al. (2019) describes a project to digitise meteorological obser-

vations made at the Ben Nevis summit observatory between 1883 and 1904. 3500

members of the public took part in the project, and it was completed in 3 months.
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Several platforms exist to crowdsource labels, such as Zooniverse used for the Ben

Nevis observations. However, getting a sufficient number of participants requires

the project to be well-publicised, and with a simple interface and sufficiently well

explained for participants to understand the task well. There are also issues with

data quality – a simpler task when all the humans need to do is transcribe numbers

as was the case for digitising hand-written observations, but harder if the volunteers

need to make a more subjective decision (such as the segmentation of an image into

classes).

Tools such as Zooniverse can also be used to generate training data for use in machine

learning models – which is useful if there is a large volume of data and a limited

supply of volunteers. It can also be used to develop an understanding of subjectivity

and to investigate more probabilistic predictions made by machine learning models

by having multiple labels for the same data.

2.3 Climate projections

As the Earth’s climate changes, various scenarios have been produced which re-

flects the different mitigations that humans may choose to do, in order to limit

(or not) climate change. The Intergovernmental Panel on Climate Change (IPCC)

explain that the scenarios are based on a range of assumptions, and are not “pre-

dictions or forecasts”, but a quantitative projection of how the Earth’s climate may

change under a range of different changes in emissions (IPCC, 2023). These differ-

ent Representative Concentration Pathway (RCP) scenarios cover a broad range of

possible climate change outcomes, representing a range of radiative forcings experi-

enced in the year 2100, from a mitigation scenario: a peak of 3 Wm−2 decreasing to

a forcing of 2.6 Wm−2 in 2100 (RCP 2.6), to a high emissions scenario: a forcing of

8.5 Wm−2 in 2100 (RCP 8.5: van Vuuren et al., 2011). RCP 8.5 is a scenario with

little mitigation against climate change, and high levels of greenhouse gas emissions

(Andrade et al., 2021), with projected global warming since 1850 in excess of 4 K

and ∼1370 ppm CO2 by the year 2100 (IPCC, 2023; Riahi et al., 2011).

Climate models are challenging to produce because the climate system consists of

many interacting processes and feedbacks on many different spatial and temporal

scales, which need to be captured well within the models (Laprise, 2008). Hence,
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there are many uncertainties within climate models because it is not fully certain how

quickly the Earth’s climate will change, and is changing in response to greenhouse

gas emissions (IPCC, 2023; Lemos and Rood, 2010). Multi-model projects such

as the Coupled Model Intercomparison Project (CMIP) aim to understand climate

changes (both past and future) through the evaluation of climate models based on

performance on past data, and quantifying the factors contributing to spread in

future simulations (Taylor et al., 2012; WCRP, 2024).

The United Kingdom Climate Projections (UKCP18) data set are a set of global

climate projections run by the Met Office with a spatial resolution of 60 km, with

nested regions of higher resolution (Lowe et al., 2018) (with the Local projections

having a spatial resolution of 2.2 km). They span a 100 year period covering past

and future climate, from ∼1980 to 2080. Data from the UKCP18 projections have

been used to analyse potential changes due to climate change, such as an increase

in winter precipitation over the UK (Kendon et al., 2020), and changes in urban

heat island effects under climate change in the UK (Doger de Speville et al., 2023).

The UKCP18 projections of heat extremes under climate change were compared

to Coupled Model Intercomparison Project Phase 5 (CMIP5) models by Kennedy-

Asser et al. (2021), who found that the UKCP18 simulations performed comparably

to CMIP5, and they found that projected summer air temperatures in the UK

increase quicker than the global mean.

2.4 Weather patterns

The mean sea level pressure over Western Europe have been clustered into sim-

ilar weather patterns by Neal et al. (2016), by grouping similar synoptic weather

conditions into 30 patterns and further into 8, more broad, patterns.

The weather patterns have been used to explore the relationship between synoptic

weather and observed lightning activity by Wilkinson and Neal (2021), who found

that there were seven (of 30) patterns where thunderstorms were observed more than

50% of the time during the summer, with the three most likely to result in thun-

derstorms associated with either slack low pressure conditions, or “Spanish plume”

southerly flow conditions over Britain and Ireland, known to be associated with

strong thunderstorm activity (Morris, 1986). The weather patterns have also been
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used by Hendry et al. (2019) to investigate coastal flooding impacts (involving surge,

river flow or both flooding types) under different weather patterns. They found that

the stormiest conditions (involving strong cyclonic westerly or southwesterly flow

over the UK) resulted in surge flooding events over the west coast of Britain, and

cyclonic or low pressure conditions over the UK were related to high river flooding

events. Richardson et al. (2018) created a climatology of precipitation and drought

conditions over Britain and Ireland using the weather patterns, finding that, on the

full set of 30 patterns, 6 of the patterns were related to nationwide drought, others

were related to regional drought. The smaller set of 8 weather patterns were not

sufficient for drought analysis as some of the patterns within the 8 were clustered

from others with drastically different precipitation anomalies.

In addition to being used on current or past meteorological data, the weather pat-

terns have been used on UKCP18 future climate data. Pope et al. (2022) used the

weather patterns on the global UKCP18 data, finding that in winter, weather pat-

terns favouring cyclonic, stormy conditions are projected to increase in occurrence

over Britain and Ireland, and in summer a move to drier, less windy weather pat-

terns than the current climate. Cotterill et al. (2023) agreed and noted that the

shift to drier weather patterns in the summer, and fewer storms, could occur within

the 2020s. However, they found that the signal strength differed between different

models within the UKCP18 projections. Perks et al. (2023) investigated future flood

risk under climate change using the UKCP18 data and the 30 weather patterns from

Neal et al. (2016). Under RCP 2.6, the change in patterns from the current clima-

tology to 2079-90 did not exceed 20%. Under RCP 8.5, the pattern was not clear:

some of the weather patterns associated with storm surges were modelled to increase

in frequency of occurrence but others were modelled to decrease.
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Chapter 3

Data sets

This chapter describes the Met Office NWP model output data sets used in the

thesis. These are:

• Output from the Met Office UKV model configuration, used for operational

forecasting in the UK (further details in Section 3.1).

• Output from the Met Office UKCP18 Local data: high resolution current

and future climate projections over Britain and Ireland (further details in

Section 3.2).

Figure 3.1 shows the domains of the NWP model data, and some subsets of the

data, used within the thesis.

3.1 UKV

The MetUM is the Met Office’s current operational NWP and climate model (Met

Office, 2019c). The global deterministic configuration has a horizontal spatial res-

olution of ∼10 km in midlatitudes, and 70 vertical levels, with a run time of up

to 6 days (Met Office, 2019a). The current dynamical core of the MetUM is

called Even Newer Dynamics for General atmospheric modelling of the environ-

ment (ENDGame): full details are provided by Wood et al. (2014). ENDGame

solves the non-hydrostatic (that is, the hydrostatic approximation ∂p
∂z = −ρg is not

37
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Lee Waves Data Summary
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Training data region
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Figure 3.1: The model domains used in this study. The UKV areas shows the full
extent of the UKV area and the section with a spatial resolution of 1.5 km, and the
training data region that the data were cropped to when generating the lee wave
training data. The UKCP18 area shows the extent of the Local simulations used for
the lee wave climatology.
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made: Markowski and Richardson, 2010) fully compressible deep-atmosphere equa-

tions of motion, using a semi-implicit, semi-Lagrangian formulation (Walters et al.,

2019). Semi-implicit, semi-Langrangian schemes aim to provide stable models with

long time steps, through re-mapping Langrangian (parcel-following) advected fields

onto a regular Eulerian grid and treating the linear terms for the propagation of

gravitational oscillations implicitly (Diamantakis, 2013; Staniforth and Côté, 1991;

Wood et al., 2014).

Nested within the global model is the high resolution convective scale UKV config-

uration. UKV has a horizontal grid spacing of ∼1.5 km in the centre of the domain,

and ∼4 km on the outer domain (shown as the “Small UKV area” and “Large UKV

area” in Figure 3.1 respectively), with a transition zone of varying grid spacing

between the two areas (Tang et al., 2013). UKV has 70 vertical levels, and is run

every hour for up to 120 hours into the future, using boundary conditions from the

global model (Met Office, 2019a). UKV uses the second Regional Atmosphere and

Land (RAL2) configuration of physics schemes and dynamics of the atmosphere,

consisting of the ENDGame dynamical core and physics schemes, such as those for

radiation, microphysics and atmospheric boundary layer turbulence (Bush et al.,

2023). Convection is explicitly modelled in UKV, unlike in the global model where

it is parametrised (Tang et al., 2013).

UKV has permitted the generation of lee waves since the dynamical core was up-

graded in 2015. The improved numerical stability in ENDGame compared to the

previous dynamical core (New Dynamics) allows the use of reduced off-centring in

the temporal discretization, and the numerics of the transport scheme is more ac-

curate compared to New Dynamics (Elvidge et al., 2017). Hence, UKV more readily

supports short wavelength gravity waves, without the need to use shorter time steps

for wave motion to not be damped by the semi-implicit scheme (Sheridan et al.,

2017; Vosper et al., 2013). Under New Dynamics, the off-centring meant that over

the operational time step (15 minutes), gravity wave motion was damped unless a

significantly shorter time step was used (1–2 min were used by Shutts and Vosper,

2011). The scheme used by Sheridan and Vosper (2012) using New Dynamics for

simulations of lee waves in the Sierra Nevada during the T-REX campaign required

a short time step (30 s or less) to maintain numerical stability so that wave motion

was resolved within the high resolution model configuration.
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Figure 3.1 shows the domain of UKV, and the parts of the domain with a horizontal

resolution of ∼ 1.5 km, and ∼ 4 km (Met Office, 2019a). The data used for training

the lee wave model is also displayed, mostly within the domain of the 1.5 km area.

The UKV model data used in this thesis were regridded from their native variable

resolution grid (1.5 km on the inner domain and 4 km on the boundaries, details in

Tang et al., 2013) to a 2 km regular grid prior to archival. Although some detail

may have been lost in the regridding from 1.5 km to 2 km, characteristics such as

wavelength were more easily diagnosed on a regular fixed resolution grid than on a

variable resolution grid. The concept of effective resolution suggests that at least 6

grid points are needed in order to represent a wave and so waves with wavelength

over 12 km should be detectable (Sheridan et al., 2017). The UKV data used in this

thesis is all “analysis” data, valid at T + 0.

While this training data region does extend slightly beyond the borders of the small

(inner) UKV domain in Figure 3.1 to the east and west of Britain and Ireland, this

should not affect the identification of lee waves, since the majority of lee wave activity

was expected to be over the land than out to sea. Therefore, this compromise allows

square training data over the entirety of Britain and Ireland, to the cost of smaller

wavelength lee waves being less likely to be resolved on the boundaries of the model.

However, these cases will be rare due to the edge of the domain being over the sea,

well away from land. Having a smaller training data domain to fit entirely within the

small UKV area would have meant either cropping out part of Britain and Ireland,

which was rejected due to Scotland in the north and Dartmoor in the south both

being locations of wave activity, or having non-square training data, which makes

pre-proccessing the data more difficult before training a model. Hence, this resulted

in the compromise of including some data that had been regridded from 4 km to

2 km on the edge of the domain within the training data set.

3.2 United Kingdom Climate Projections (UKCP18)

As introduced in Section 2.3, the United Kingdom Climate Projections (UKCP18)

data set were used to investigate the prevalence and characteristics of trapped lee

waves for both the present-day climate, and a future climate scenario.

Within UKCP18, the global climate model (HadGEM3-GC-3.05-PPE: Murphy et
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al., 2019) provides the boundary conditions for a nested regional climate model

(RCM) over Europe, which in turn provides the boundary conditions for a nested

convection permitting model (CPM) using the MetUM version 10.6. The setup of

the CPM is similar to, and based on, the 1.5 km resolution UKV configuration of the

MetUM used operationally by the Met Office (Met Office, 2019b). The data from

the CPM (herein UKCP18 Local) has a horizontal spatial resolution of 2.2 km, and

70 vertical levels (Manning et al., 2023). The spatial extent of the UKCP18 Local

data is shown in Figure 3.1.

There was some evaluation of the RCM output in Murphy et al. (2019). For example,

the RCM output generally agrees with observed summer precipitation, but for a

case study of a heavy precipitation event, the amount of precipitation modelled

was underestimated compared to National Climate Information Centre observations.

Manning et al. (2023) evaluated the performance of UKCP18 data for windstorms

and strong wind gust events. The UKCP18 Local data, while underestimating the

frequency of occurrence of the strongest wind gusts (> 32 m s−1) compared to point-

based observations, performed better than the ECMWF Reanalysis (ERA)-Interim

reanalysis at representing strong wind gusts.

The UKCP18 Local data is split into three time slices (TSs): TS1, covering the

present-day climate from 1982–2012; TS2, covering the future climate from 2021–

2041, and TS3 also covering the future climate, from 2060–2080. The simulation

for TS1 used in this thesis was driven by ERA-Interim data (Dee et al., 2011), and

the lee waves climatology analysis from TS1 is presented in Chapter 5. Chapter

6 looks at how lee waves might change under the high emissions future climate

scenario RCP 8.5, and uses data from the UKCP18 simulations driven by a perturbed

parameter ensemble (PPE) for TS2 and TS3. ERA-Interim has been superseded by

reanalysis products using more observations, and with better spatial resolution (such

as ERA5), but has still been used to drive analysis of small-scale phenomena. For

example, Lorenz and Barstad (2016) downscaled ERA-Interim reanalysis to a 3 km

grid for use in wind energy applications, finding that the additional features captured

within the downscaled model were a benefit, being closer to observations than the

reanalysis.
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3.2.1 UKCP18 Local: Present-day climatology

The UKCP18 Local data for the present-day climatology (TS1) were hindcasts, with

the global model driven by ERA-Interim data (Dee et al., 2011; Kendon et al., 2021).

Using the UKCP18 Local data instead of the archive of operational UKV data meant

that there was a longer (31 years vs ∼8 years) data set, and that the data were all

produced with a consistent MetUM version (10.6), whereas the archive of UKV

output will be produced from different MetUM versions because it is the archive

of the operational model output. Therefore, using UKCP18 Local data were more

appropriate for developing a climatology of lee waves than UKV, despite UKV being

available on a slightly higher spatial resolution (2.2 km vs 2 km). Using UKCP18

Local data also enables comparison with the future climate scenario discussed in

Section 3.2.2.

The climatology meteorological data consisted of Met Office UKCP18 Local vertical

velocity data at 700 hPa. The data were available at three hourly intervals at a 2.2 km

horizontal resolution from 1 January 1982 03 Coordinated Universal Time (UTC)

until 30 December 2012 21 UTC inclusive (Kendon et al., 2021). The data were

available through the Met Office Managed Archive Storage System (MASS), and

accessed via the Natural Environment Research Council (NERC) computing facility

JASMIN. Vertical velocity slices on the 700 hPa pressure surface were acquired from

MASS for the full period 1982–2012.

In addition to the vertical velocity slices used by the deep learning models, other

variables from the UKCP18 Local data were used to understand which conditions are

important for the generation of lee waves. These variables included the horizontal

wind speed and direction, virtual potential temperature and height on pressure

surfaces from 925 hPa to 200 hPa. The model orography was also obtained, and used

to calculate a measure of local orography variability by calculating a 2D standard

deviation of the orography (with a kernel of 5 × 5 pixels). Data from these other

variables were a subset of the available data, covering 1982–1983. More data would

have taken a disproportionately long time to acquire from MASS (on the order of

months), taken a long time to train models with and would be difficult to store: the

data that was acquired for just these two years took up more than 500 GB of storage

space.
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3.2.2 UKCP18 Local: Future climatology

The UKCP18 data for the two future time slices (TS2 and TS3) provide model

output for a future climate, under the high-emissions RCP 8.5 scenario (Kendon et

al., 2021). The global model in the two future time slices consists of a 15 (originally

25, see below) member PPE, in addition to 13 models from the CMIP5 to make 28

members in total (Met Office, 2019b). Within the PPE, combinations of the model

parameters were varied to capture as much of the parameter space as possible, while

also remaining realistic: 25 combinations of 47 parameters were perturbed (Sexton

et al., 2021).

The PPE was assessed in Yamazaki et al. (2021): ten of the original 25 ensemble

members in the PPE were dropped because the simulated climate was too cool

(due to the Atlantic meridional overturning circulation being too weak), but the

remaining members were plausible simulations, despite simulating a narrower range

of surface temperature changes than the authors hoped for.

12 of the remaining 15 ensemble members were then used as boundary conditions for

the RCM over Europe, which in turn provides the boundary conditions for the CPM.

Each of the 12 ensemble members is shown in Table 3.1. All the ensemble members

used to produce the Local data were ensemble members of the HadGEM3-GC3.05

model, rather than from CMIP5 (Murphy et al., 2019).

Similarly to the data from TS1, the future climate data from UKCP18 for TS2

and TS3 were available at three hourly intervals on a 2.2 km grid. Vertical velocity

slices on the 700 hPa pressure surface were obtained from MASS for each ensemble

member in both time slices. In addition, the MSLP for each day were obtained for

each ensemble member from the Centre for Environmental Data Analysis (CEDA)

archive, as was some 750 hPa wind speeds for two weather patterns from MASS.

Due to the size of the data (12 ensemble members for 40 years, so approximately 16

times the size of the present-day climatology data), it was not feasible to retrieve

and store the data to replicate the analysis in the present-day climate (TS1) for

the two future-climate time slices. One year’s worth of horizontal wind speed data

is 28 GB in size, so the full data (40 years, and 12 ensemble members) would take

up over 13 TB in storage, which was not feasible with the storage available. In
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Table 3.1: Description of each UKCP18 Local ensemble member, adapted from Table
D1 in Met Office (2018).

Climate
Model

Global
Climate
Model Name

Member
ID

Perturbed-
Physics
ID

Suite ID
(2021-40)

Suite ID
(2061-80)

Met Office
Hadley Centre
climate model

HadGEM3-
GC3.05

01 r001i1p00000 mi-bb188 mi-bb189
02
03
04 r001i1p01113 mi-bb191 mi-bb192
05 r001i1p01554 mi-bb194 mi-bb195
06 r001i1p01649 mi-bb197 mi-bb198
07 r001i1p01843 mi-bb200 mi-bb201
08 r001i1p01935 mi-bb203 mi-bb204
09 r001i1p02123 mi-bb210 mi-bb211
10 r001i1p02242 mi-bb215 mi-bb216
11 r001i1p02305 mi-bb218 mi-bb219
12 r001i1p02335 mi-bb221 mi-bb222
13 r001i1p02491 mi-bb224 mi-bb225
14
15 r001i1p02868 mi-bb206 mi-bb208

addition, the time taken to retrieve all the data from MASS (on the order of months,

assuming everything was working) was not feasible. A full data set replicating all

the meteorological variables used for the TS1 analysis would be needed to account

for future changes, rather than a subset as used for the present-day climatology.

Hence, the changes from TS1 to TS2 and TS3 are analysed using changes in mean

sea level pressure and weather patterns in Chapter 6.

3.3 Synoptic weather patterns

As introduced in Section 2.4, the mean sea level pressure (MSLP) patterns over

Western Europe have been clustered into similar weather patterns by Neal et al.

(2016). The clustering algorithm was a simulated annealing variant of k-means

clustering, as presented by Philipp et al. (2007). Simulated annealing is a clustering

method that approximates the global optimal clusters, rather than converging to

local optima as the other methods compared by Philipp et al. (2007) did. They also

found that using simulated annealing resulted in more stable and more reproducible

clusters than the other methods that they tried.

Figure 3.2 shows the MSLP for each of the 8 patterns (reduced from a larger set of
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Figure 3.2: Neal et al. (2016) 8 weather patterns for climatology period, 1982–
2012 inclusive. MSLP contours at 4 hPa for each pattern, except NAO-, which has
contours at 2 hPa intervals.

30: it is these 8 which are used in this thesis, to make visualising the patterns more

manageable). Patterns 1 and 2 deal with synoptic pressure regimes analogous to

the two phases of the North Atlantic Oscillation (NAO). The negative NAO phase

is associated with a flow blocking and trough pattern (Benedict et al., 2004), while

a positive NAO is associated with strong westerly flow over Britain and Ireland

(Washington and Palmer, 1999). The remaining six patterns all deal with locations

of cyclonic and anticyclonic flow relative to northwestern Europe, and the resultant

synoptic wind directions over Britain and Ireland. The weather patterns have been

produced for the present-day climate data (every day for the period 1850–2020), as

well as for each ensemble member in the future UKCP18 data and were available

from the CEDA archive for the future climate projections (Met Office Hadley Centre,

2020). The present-day climatology weather patterns data from Wilkinson and Neal

(2021) were provided by Jonathan Wilkinson.

In this thesis, the 8 weather patterns are employed to investigate the effects of

different synoptic meteorological conditions on lee waves and their characteristics.

They are used here to examine broad changes in synoptic meteorology and their

effect on lee waves to aid visualisation of the effects on lee wave generation, especially

geographically. They are then used to compare how lee waves change in the future

climate projections, comparing how lee waves change within the weather patterns,

and how the weather within the patterns changes, in the future climate projections.
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Chapter 4

Identifying and characterising
trapped lee waves using deep
learning techniques

4.1 Introduction

This chapter demonstrates the training and application of a U-Net deep learning

model to recognise and segment regions of lee wave activity from high-resolution

NWP model output. The trained segmentation model is re-trained using synthetic

data to diagnose the lee wave characteristics in the NWP model output. An overview

of the methodology is given in Section 4.2; the results are presented in Section 4.3;

and conclusions are given in Section 4.4.

4.2 Methodology

A U-Net is trained to segment lee waves from data from the Met Office UKV model

configuration, specifically the vertical velocities on the 700 hPa pressure surface.

Previous work by Sheridan et al. (2017) has shown that the characteristics and

impacts of lee waves in UKV is in agreement with observations, as described in

Chapter 2. Using NWP model data provides spatially dense and continuous coverage

over a long time period, regardless of meteorological or daylight conditions, unlike

the use of satellite imagery to observe lee waves from wave clouds. Visible or infrared

satellite imagery is an unreliable indicator of lee waves because it requires cloud to

47
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be coincident with lee wave motion, and even then higher level cloud may mask

the lee wave cloud patterns. By using vertical velocities from NWP model output,

most lee wave cases can be identified without biasing the sample to conditions with

suitable cloud cover.

The approach used here to segment lee waves using a neural network relied on

having some explicit “truth” data as a target. This is known as supervised learning.

In this case, the truth data were a hand-labelled mask of each vertical velocity

snapshot containing the location of wave packets which the U-Net tries to predict.

While human labellers are good at differentiating between waves and other sources

of vertical motion (e.g. convection), precisely identifying where the boundary of

the wave packets are is difficult by eye when labelling the data. For example, in

Figure 2.2 it is not a trivial task to decide for every pixel, especially those on the

edge of a wave region, which pixels contain a wave and which do not. Therefore it

is important to assess whether the trained neural network has learned to recognise

what lee waves look like rather than learning the precise boundaries of wave regions

in the hand-labelled masks.

The Met Office have archived the output of their operational UKV model since

2018, and a subset of this archive of hourly data were used to train and test a model

to learn to identify and characterise the patterns of lee waves. Vertical velocity

analysis data over Britain and Ireland on the 700 hPa surface from the Met Office

UKV output were obtained from 1 January 2018 until 30 June 2022, and data from

January, February and July 2021 was labelled by hand. The 700 hPa surface has

been used before for lee wave detection from model data over the UK, such as by

Vosper et al. (2013). The 700 hPa surface is above the height of the orography in

the UK, and so incorrectly interpolated values of vertical velocity within the data

due to the chosen pressure surface intersecting with the orography are avoided.

4.2.1 Segmentation model training data

The data were split into sets, one used for training and the other to test the skill of

the trained model after training. The training and test vertical velocity slices were

labelled to produce binary segmentation masks with 0s for pixels with no waves;

and 1s for pixels where there was a wave. The wider forecast area was cropped to
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(a) (b)

Figure 4.1: Overview of labelling process for an example of test set data. (a) Vertical
Velocity data without coastline overlaid, and hand drawn regions of wave activity
(in red). (b) Produced segmentation mask. white (0): no waves, black (1): waves.

512 × 512 pixels (1024 × 1024 km) to create square training data, but the cropped

area still contained the entirety of Britain and Ireland (shown in Figure 3.1).

512 × 512 pixel binary segmentation masks were created using a custom Jupyter

notebook utilising matplotlib interactive notebook functionality. A 512×512 pixel

array containing zero everywhere was created. Then the human labeller drew around

the regions they wished to label as a wave (regions in red in Figure 4.1 [a]). Pixels

within each hand-drawn shape (closed by drawing a line from the last point to the

first) were then changed to 1 from 0 in the mask array. When done, the binary

mask containing 0s for regions with no waves and 1s for regions containing waves

was saved (Figure 4.1[b]).

Training data comprised pairs of 335 vertical velocity cross-sections at 700 hPa from

1-18 January 2021, covering different times of day, and corresponding binary seg-

mentation masks. Some examples containing no wave activity were excluded from

the training set, so that the number of samples with and without waves was similar,

in order not to encourage the model to never predict waves. Despite these meas-

ures, in the training set there was still a class imbalance where 10% of pixels were

labelled as waves. Two test data sets were created, one from February 2021 and

one from July 2021. These test sets contained vertical velocity cross-sections and

segmentation masks from 0900 UTC each day within the respective month. The

purpose of the July set was to check that the trained model had not learned to
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identify waves only within winter months. 16% of pixels were labelled as waves in

the February test set, and 3% of pixels were labelled as waves in the July test set.

Although there could be some variation between months on the range and scale of

waves, this should be unimportant because the model was being trained to recognise

the pattern of waves.

4.2.2 Characteristic models training data

For wave characteristic prediction, creating a dataset from model output with pixel-

wise true wave characteristics would be exceedingly difficult and perhaps impossible

to do correctly. This is often a challenge in supervised learning applications. To

work around this, synthetic data were created with explicitly known wavelength,

orientation and amplitude, with characteristics selected to mimic the gravity waves

seen by eye in the UKV data.

The synthetic data were generated by placing non-intersecting ellipses of differing

sizes at random locations within an image of 512 × 512 pixels, using the code and

methodology from Denby (2023). Each ellipse contained a Gaussian wave packet of

regular cosine waves with an orientation chosen from a uniform distribution between

0◦ and 180◦ to ensure all orientations were covered equally. Wavelength was chosen

at random from a chi-squared distribution with 2 degrees of freedom. Wavelengths

up to 80 km were used, so the synthetic data more than spanned typical lee wave

wavelengths of 5 to 35 km (American Meteorological Society, 2012), with the chi-

squared distribution ensuring that there were more examples of waves in the typical

range of wavelengths than there were exceeding 35 km, and that all wavelengths were

positive. The amplitude decays to the edge of the wave packets to simulate waves

decaying, as seen in the vertical velocity NWP model data. For each example of

synthetic data, a number of wave packets with different orientations, amplitudes and

wavelengths were produced. For wavelength and orientation prediction, amplitudes

were kept constant at 1 m s−1 in all wave packets. For the synthetic data created for

amplitude prediction, peak synthetic wave amplitude within a wave packet varied

in the range 1 to 5 m s−1, chosen at random from a uniform distribution, consistent

with the range of lee wave characteristics observed in the UKV data.

Pixel-wise random Gaussian noise from the normal distribution with mean 0 and
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Figure 4.2: Example synthetic normalised vertical velocity input data generated
for lee wave characteristic learning, at different standard deviations of normally
distributed noise and output wave characteristics that the model was tasked to
predict. For wavelength and orientation learning, the amplitude was set to 1. For
amplitude learning, this value varied between 1 and 5.

standard deviation σ was also added to the data in order to train models that were

more robust to realistic gravity waves embedded alongside other sources of vertical

atmospheric motion. σ took values between 0 m s−1 and 1 m s−1. The noise array

was then added to the synthetic data to produce noisy data. Several examples of

the noisy data for σ = 0.125 m s−1 & 0.25 m s−1, and an example without noise

(σ = 0 m s−1) are shown in Figure 4.2. This ensured a range of noisy data, from

σ = 0 m s−1 with no noise through to σ = 1 m s−1 where the amplitude of the waves

is the same as the amplitude of the noise.

It is highly likely that in reality the non-wave sources of vertical motion (“noise”) in

the UKV data are correlated to the waves. More complicated methods of approx-

imating this distribution in the UKV data may produce better synthetic data, and

better models, but for simplicity Gaussian noise was used here.

4.2.3 Network Architecture & Model Training

The basis of the deep learning models used here is the U-Net, a type of neural

network commonly used for segmentation problems, which takes 2D data and makes

pixelwise predictions. A simplified overview of the U-Net used in this study is shown
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Encoder/backbone Decoder

SEGMODEL

WLMODEL

ORIENT

MODEL
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Head: 1x1 & 3x3 convolutional and non-linear 
layers fine-tuned for wave characteristics

Skip connections to 
retain high spatial fidelity

Input: 
700 hPa
vertical 
velocity

AMPMODEL

Figure 4.3: Overview of the U-Nets used. The encoder and decoder parts are shown,
as well as the head of the model for making final predictions based on the features
extracted.

in Figure 4.3. A U-Net consists of two main parts, an encoder and a decoder. The

encoder (or backbone) can extract spatially complex patterns by coarse-graining the

input data with increasing depth in the network and compositing learned features.

The number of channels (the scalar values at a single spatial location) is increased

through the encoder to maintain information capacity, to account for the data being

spatially coarse-grained in the encoder. The decoder uses the patterns extracted

by the encoder and upsamples the data while reducing the number of channels

(decreasing the depth), so that a prediction can be made for each pixel. In addition,

the upsampled data are combined with data from the encoder at the same level

(skip-connections). These skip-connections allow the U-Net to retain high spatial

fidelity by combining the up-scaled values in the decoder with more spatially dense

values from the encoder. Finally, the head is where the remaining pixel-wise learnt

spatial features are further manipulated through pixel-wise transforms to produce

predictions per pixel.

The variation of the U-Net used here was the “Dynamic U-Net” implemented in the

Python library fastai (Howard and Gugger, 2020). This uses a model designed to

extract patterns from data (a Resnet34, pretrained on the ImageNet data set: He

et al., 2016; Deng et al., 2009) as an encoder, which means that the part of the model

dedicated to extracting patterns from data is already trained to do this. Fastai is a
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wrapper for the Python deep learning library PyTorch (Paszke et al., 2019). Fastai

allows an approach to deep learning that is understandable and easy to access for

a user with limited experience with deep learning, yet still produces accurate deep

learning models.

4.2.4 Segmentation

The segmentation model (referred to as the SEGMODEL from this point) takes the

2D regridded 700 hPa vertical velocity field as an input and outputs a 2D boolean

mask of the same shape, containing a prediction of where gravity waves are present.

Supervised learning was used to train the SEGMODEL, and so labelled data were

needed, as described in Section 4.2.1. The labelled training set was divided randomly

into a train set (80% of the data) and a validation set (20% of the data), during

training. This prevented overtraining by stopping training while the trained model

performed similarly on the train and validation set. The test set was only used to

assess how well the trained SEGMODEL performed at segmenting lee waves on data

not used during training.

The training data were augmented using the built in fastai augmentation functions

including flipping, rotation (up to 360◦ and a probability of 0.9 of any rotation being

applied) and zooming (up to 20× and probability of 0.5 of any zoom being applied)

of the data. The vertical velocity data were normalised to have a mean of 0 and

standard deviation of 1. Augmentation of the data minimises over-fitting of the

model during training (Shorten and Khoshgoftaar, 2019). By augmenting the data,

the model was exposed to waves at a range of wavelengths and orientations during

training, beyond the original training data. For example, by rotating the lee waves

data, the model can learn waves at a variety of angles, not just the waves in the

typical southwesterly flow over the UK. Zooming should allow the model to learn

to recognise waves of longer wavelengths than those available in the training data.

Waves are generated through the same mechanism regardless of the orientation, so

rotating the data during training should not affect learning negatively.

Cross Entropy Loss, which prefers models with a high degree of confidence in their

predictions, was used as the loss function as it is well suited for boolean prediction

problems such as this (Jadon, 2020), rather than other metrics such as the Jaccard
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score (which is not differentiable), used later for model evaluation. To prevent

overtraining, training continued until the validation loss appeared to be increasing

again, using the built-in fastai Early Stopping callback, with an epoch window

(patience) of 5 epochs. Once the SEGMODEL was trained, its performance was assessed

using the unseen test data set, consisting of 28 examples of vertical velocity data

and hand labelled lee waves from February 2021 and 31 examples from July 2021.

4.2.5 Wave Characteristics

Given that the neural network has learned to recognise lee waves during training,

then it should also have learned something about the wave characteristics. By fine-

tuning only the layers in the head (see Figure 4.3) on synthetic wave data with

known characteristics, a model can be produced that predicts a wave characteristic

instead of a segmentation. This is an efficient way of training networks to extract

multiple characteristics, and if successful, supports the hypothesis that the original

model was learning some properties of the waves.

Three copies of the trained SEGMODEL were taken: WLMODEL to predict wavelength;

ORIENTMODEL to predict wave orientation; and AMPMODEL to predict wave amplitude.

In each of the copies, the weights in the encoder and decoder were frozen. Only

the weights of the layers in the head of the copies (labelled as such in Figure 4.3),

consisting of non-linear scaling functions, 1 × 1 and 3 × 3 convolutional layers, were

trained (fine-tuned) on the synthetic data (see Section 4.2.2) to predict the desired

characteristic. In general, these layers in the head transform U-Net feature vectors

into predictions. By freezing the weights of the spatial feature extracting encoder in

the model, the contextual information about waves in UKV data that the SEGMODEL

had learned was retained.

The wavelength network WLMODEL was trained to predict the wavelength in kilo-

metres, while the orientation network ORIENTMODEL predicted the sine and cosine of

a wave’s orientation so the orientation could be recovered using the arctangent. By

predicting the sine and cosine of the orientation (the direction of wave propagation,

perpendicular to the wave fronts) rather than the wave direction in degrees, the

discontinuity of angles around 0◦ and 360◦ was avoided. Orientation was predicted

in the range (−90◦, 90◦] because waves with orientation 180◦ apart look identical.
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Lee waves are often quasi-stationary, and even for propagating waves the direction

and speed cannot be calculated with single time snapshots of data. Since the wave

characteristics were not available in the UKV training data, synthetic data were

created to re-train these models, as outlined in Section 4.2.2. 550 examples of data

were created, with explicitly known orientation and wavelength. 500 examples were

used as training data (with a 80/20% train/validation split) and an additional 50

examples used as test data. In a similar vein to training the SEGMODEL, the altered

models WLMODEL and ORIENTMODEL were trained using the Early Stopping callback,

with an epoch window (patience) of 5. The loss function used was the Mean Squared

Error, as these tasks are regression rather than classification.

4.2.6 The S-transform

The neural network predicted wave characteristics (wavelength, orientation, amp-

litude) were compared against characteristics derived using an established spectral

analysis technique: the 1-D Stockwell transform (S-transform). The S-transform

provides time-frequency or distance-wavelength localisation of signals present in in-

put data and is thus ideally suited for the measurement of gravity wave packets. The

S-transform therefore provides an existing spectral technique to which to compare

the predictive skill of the neural networks, but note that the S-transform measure-

ments should not necessarily be taken as “truth”. The S-transform is being used

here as a means of verifying that the ML models are producing wave characterist-

ics that are realistic and reasonable in line with an existing technique for deriving

characteristics of gravity waves.

The 2-D S-transform application developed by Hindley et al. (2016) and Hindley

et al. (2019) is used, which provides the dominant local spectral properties (wave

amplitude, wavelength, orientation) at every pixel of the input image, but then

restricted to those regions recognised as waves by the SEGMODEL. This gives undue

credit to the S-transform which does not segment waves into wave and non-wave

regions as the SEGMODEL does. Hindley et al. (2019) describe the below equation to

produce the n-dimensional S-transform S for some input n-dimensional data h(x) =

h(x1, . . . , xn), translations τ = τ1, . . . , τn and spatial frequencies f = f1, . . . , fn.



56 CHAPTER 4. LEE WAVE DETECTION & CHARACTERISATION

S(τ , f) =
∫ ∞

−∞
h(x) w(x − τ , f) e−i2πf ·x) dx

In this case, using two-dimensional input (x, y), this becomes

S(τx, τy, fx, fy) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y) w(x − τx, y − τy, fx, fy) e−i2π(xfx+yfy) dx dy

w is a function that provides spatial and spectral localisation, typically a Gaussian

window (Hindley et al., 2016). One feature of the S-transform application used here

is that it can be tuned to provide improved performance for waves present in a

given dataset. Specifically, the analysis first computes the Fast (Discrete) Fourier

Transform (FFT) of h and selects the N elements (number of frequency voices)

with the largest spectral power for further localisation analysis. The larger the

number of frequencies N , the higher the fidelity of the analysis but the longer the

run length. For images containing simplified large-scale monochromatic waves, only

small values of N are required, but for images with numerous small-scale waves with

complex structures, higher N values can be useful. Secondly, a scaling parameter

c can be used to tune the spectral sensitivity of the S-transform (within w). From

a default of c = 1, increasing c improves spectral localisation at the expense of

spatial localisation, while decreasing c achieves the opposite. For each of these N

frequency voices, the S-transform equation above is calculated in Fourier space by

multiplying the Fourier-transformed h with a Fourier-domain voice Gaussian for the

nth frequency voice. Then the inverse FFT is taken to transform the output back

into the original domain (Hindley et al., 2019).

The S-transform was applied to the synthetic and NWP vertical velocity data with

three different numbers of frequency voices (N = 15, 80, 150) to determine the most

appropriate value to capture all relevant waves in the data. A scaling parameter of

c = 0.25 was used for this initial test, as used in previous studies (Wright et al., 2017;

Hindley et al., 2021). Later, the value of c was adjusted to calculate an optimal value

to use for further analysis. Using N = 15 frequency voices resulted in a cut-off in

the output wavelength, with shortest wavelengths of 50 km, while frequency voices

of N = 80 and above resulted in a cut-off around 10 km. Given that the horizontal
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Table 4.1: Comparison of R2 least squares correlation coefficient (to 3 decimal
places) for wavelength, orientation and amplitude derivation using S-transforms with
scaling parameter c = 0.25, three values for the number of frequency voices N used
in the spectral analysis, and machine learned WLMODEL, ORIENTMODEL, AMPMODEL vs
known truth on synthetic data without noise.

Least squares linear regression coefficient R2 (3 d.p.)
Wavelength Orientation: sin Orientation: cos Amplitude

WLMODEL 0.997
ORIENTMODEL 0.961 0.979
AMPMODEL 0.997
S-transform
(N = 15)

0.042 0.198 0.071 0.237

S-transform
(N = 80)

0.969 0.974 0.941 0.793

S-transform
(N = 150)

0.968 0.974 0.940 0.799

spacing of the vertical velocity data is 2 km, a cutoff of 10 km is an appropriate limit

for the smallest wavelength that can be reliably measured.

To measure the ability of the ML models and S-transform to reconstruct the waves,

the least-squares correlation coefficient R2 with the ML wavelengths on the synthetic

data was computed. The R2 values for the three sets of S-transform characteristics

and the machine-learned characteristics were compared against the true values and

are given in Table 4.1. From these tests a value of N = 80 or 150 frequency voices

gave similarly good correlation against the true wavelength and orientation, but 80

frequency voices was computationally cheaper and so is used in the remainder of the

chapter.

However, the S-transform assumes a idealised mathematical representation of waves

(such as planar, monochromatic waves) and cannot acquire a knowledge of “real

world” wave characteristics where the physical scales, orientations and frequencies

of waves may vary within one wave cycle, unlike with the machine learning approach.

However, it does provide a means of assessing the predictions made by the ML models

trained to predict wave characteristics.
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4.2.7 Wavelength & Orientation model selection

The synthetic data were much simpler than the original UKV data it was attempting

to replicate, as the synthetic data did not contain other sources of vertical velocity,

nor superposition of waves. Since the SEGMODEL could detect where gravity waves

are, it is feasible to suggest that machine learning models may be able to extract

the salient features of gravity waves, irrespective of whether there are other physical

processes creating vertical velocity variations. Originally, the synthetic data were

noiseless, as it was thought that the SEGMODEL had retained sufficient learning from

its initial training to handle the vertical velocities in the UKV data not associated

with lee waves, when predicting characteristics. However, the wavelengths predicted

by the model trained on noiseless data produced unrealistically long wavelengths

on the UKV data. To address this, seven more wavelength models were trained on

noisy data at a range of standard deviations σ in [0.125, 0.25, 0.375, 0.5, 0.6, 0.8, 1].

Some examples of the noisy data are shown in Figure 4.2.

The performance of all the ML models and the S-transforms were compared for

different noise levels. Figure 4.4 shows the performance of the eight ML wavelength

models, and three S-transforms with 80 frequency voices and c = 0.25, c = 1 and

c = 4. The best performing machine learning model in each case was the model that

was trained on the data most similar in noise level to the corresponding test set at

lower values of σ. At values of σ > 0.5, the picture is less clear, with RMSEs higher

than for values of σ ≤ 0.5. Models trained with noise performed better on data

without noise than the model trained with no noise performed on data with noise,

suggesting that adding noise during training allows the model to better generalise

to different levels of noise. Over a range of noise amplitudes (σ = 0.125 − 0.5),

the models are fairly robust at accurately predicting the wavelength from data with

different noise levels within this range, as shown by the plots in Figure 4.4. The

model trained on noise σ = 0.125 has R2 > 0.8 for all apart from the noisiest

synthetic data. This suggests that the WLMODEL trained on no noise was overfitted

to the training data (expecting a specific level of noise) and rapidly decreases in

skill compared to models trained with some noise. The addition of noise to the

training data seems to have mitigated this overfitting. While the Gaussian noise

in the synthetic data is relatively simplistic compared to the correlated non-wave

sources of vertical velocity in the UKV data, the trained models were all exposed to
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the non-wave sources of vertical velocity during the training of the SEGMODEL.

At σ < 0.5, the S-transform wavelengths showed good correlation with the true

wavelengths, with R2 > 0.8. However, the S-transform results consistently had a

worse least squares correlation coefficient than the best performing machine learning

model, which is likely due to the limited frequency voices (and thus orientations)

of using the discrete Fourier transform to calculate the S-transform (Hindley et al.,

2019), which results in a slightly less “exact fit” for the input waves.

Figure 4.5 shows a comparison of the orientation derivation techniques on the syn-

thetic data. Due to the circular nature of the data, the two methods used in Fig-

ure 4.5 to analyse the accuracy of the predictions are the euclidean distance and

the least squares regression coefficient R2 for the cosine of the orientation. The

euclidean distance metric E between the angles θ and ϕ is defined as

E(θ, ϕ) =
√

(cos θ − cos ϕ)2 + (sin θ − sin ϕ)2

For example, a pair of angles 90◦ out of phase with each other would have E =
√

2,

and a pair of angles 30◦ apart would have E = 2 −
√

3 ≈ 0.27. The R2 plotted is of

the cosine of the angles to avoid discontinuity around −90◦ and 90◦.

There is a smaller difference between the ML and S-transform techniques in Fig-

ure 4.5 than in Figure 4.4, with the S-transform c = 1 performing better than some

of the ML models in the synthetic test data. The skill of an ML model for wave

orientation decreases more rapidly when applied to data with other noise levels com-

pared to the wavelength models. That said, the orientation models trained on any

noise are more robust to other noise levels than the orientation model trained on

noiseless data. The model trained on noisy data with σ = 0.25 has a least squares

coefficient > 0.8 for data up until σ = 0.6, so is robust to a range of noise amplitudes.

From these tests, the WLMODEL trained on data with noise σ = 0.125 was used to

predict UKV wavelengths, and the ORIENTMODEL trained on data with noise σ = 0.25

was used to predict UKV orientation. To select which c to use in the S-transform,

local variations in wavelength with c = 0.25 were found to be too large while choosing

c = 1 resulted in a spatially smoother wavelength field. Setting c = 4 resulted in

oversmoothing that produced inaccurate wavelength estimates. Hence, c = 1 was
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used for future comparisons in synthetic and model data.

4.2.8 Amplitude

A neural network, AMPMODEL, (fine-tuned in the same way as described above for

wavelength and orientation) was used to extract the amplitude of the waves from the

UKV data. The neural network was trained on synthetic data but with wave packets

of variable amplitudes in between 1 and 5 m s−1. The synthetic data had a small

amount of noise (σ = 0.0625) added, which resulted in a smoother amplitude model

prediction over the UK, compared to a model trained on synthetic data without

additional noise. The amplitude of observed waves and the synthetic data decays

towards the edge of each wave packet, so the model was trained to predict this

smooth envelope. On the synthetic test data, the trained amplitude model scored

an R2 of 0.999.

4.3 Results

This section presents the results of the segmentation model SEGMODEL against the

hand labelled truth, and the results of the wave characteristics models (WLMODEL,

ORIENTMODEL and AMPMODEL), with the wavelength, orientation and amplitude out-

put compared against those from the S-transform. The machine learning models ran

significantly faster than the S-transform on the UKV test data. For example, it took

an hour and ten minutes for a standard laptop CPU to produce the S-transformed

data for the 28 examples in the February UKV test set, while it took the same laptop

5.5 minutes to produce the wave mask, wavelength, orientation and amplitude for

the same set, a speed up of 12.7×. Table 4.2 shows the mean and standard devi-

ation of the time taken for the two methods to produce wave characteristics for each

example of the February 2021 test data.

4.3.1 Lee wave segmentation

Figure 4.6 shows two examples of lee wave segmentation on vertical velocity data:

one example of test data from February 2021 (a) and another from July 2021 (b).
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Table 4.2: Comparison between the U-Net and S-transform, and the time taken
for the two methods to produce wave characteristics, for each example in the UKV
February 2021 test set.

Method Mean time taken Standard Deviation

U-Net 12.1 s 2.61 s
S-transform 150.9 s 12.3 s

These results show that the model has learned typical patterns of gravity waves

during training. The SEGMODEL is skillful at recognising wave-like patterns, and is

capable of ignoring non-wave sources of vertical velocity. This is evidenced in Fig-

ure 4.6 (a) which shows an occasion where there are large regions of lee waves in the

data, which the SEGMODEL has recognised as waves. The area to the north of Ireland

where the vertical velocity patterns look very different is likely to be convection,

and not wave activity, as there is precipitation in the model associated with it. The

SEGMODEL correctly did not classify these regions as lee waves. Figure 4.6 (b) shows

an example where waves are apparent over Ireland, with smaller regions with lee

wave like features elsewhere.

Two test sets were used to analyse the performance of the trained SEGMODEL. One

was from February 2021, and one was from July 2021. This was to check that the

model was able to recognise waves from throughout the year. There are typically

fewer lee waves in summer months so the results from the two months are presented

separately. As a reference, the output from a baseline “model” that always returned

no waves everywhere (the ZEROS model) are presented alongside the results from

SEGMODEL.

Four metrics of model performance on the test sets are summarised in Table 4.3, the

pixel accuracy, Jaccard Score, Precision score and Recall score. The pixel accuracy

is the percentage of pixels that were correctly identified by the model, compared to

the hand labelled truth.

The Jaccard Score (or intersection over union) is given by

Jaccard Score =
(

|P0 ∩ T0|
|P0 ∪ T0|

+ |P1 ∩ T1|
|P1 ∪ T1|

)
÷ 2

where Pi is the model’s prediction and Ti is the hand-labelled truth for the ith class
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UKV Lee Wave ML Segmentation

Figure 4.6: Two examples of the SEGMODEL predicted lee wave segmentation over
the UK. Vertical velocities at 700 hPa are shown in colour filled contours, with wave
regions predicted by the model shown by the black line contour. The dotted line
contour shows the hand labelled waves. (a) is an example from the test set in
February 2021. Against the “truth” data, the segmentation in (a) achieved a pixel
accuracy of 94% and a Jaccard score of 0.87. (b) is an example of data from July
2021 containing waves segmented by the model with a pixel accuracy of 97% and a
Jaccard score of 0.78.

of pixel (i = 0: no wave; i = 1: wave). The Jaccard Score is computed for each class

by the area of overlap divided by the area of the union, of the model’s prediction

and the truth. Then the mean of these is taken to find the Jaccard score for the

example of test data. The score shows how similar the prediction is to the hand

labels and therefore how good the model is. While it is feasible to have used the

Jaccard score as a loss function, the model was trained using cross entropy due to

its good performance as a loss function in segmentation tasks (Jadon, 2020).

The Precision score is the number of true positives (correctly identified waves) di-

vided by the number of true positives plus the number of false positives, and the

recall score is the number of true positives divided by the number of true positives

plus the number of false negatives (Pedregosa et al., 2012).

Table 4.3 shows that on the February 2021 test set, the trained SEGMODEL performed

at 95% pixel accuracy. In this test set, only 16.9% of pixels were labelled as waves,

even though this was from a winter period with higher wave activity. The ZEROS

model “performs” well in the pixel accuracy metric in the February test set, reflecting

the small amount of wave activity compared to the background. The SEGMODEL has a

Jaccard score of 0.78 compared to ZEROS with a Jaccard score of 0.42 in this set. The
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Table 4.3: Performance on the February 2021 and July 2021 test sets, by the
SEGMODEL U-Net and ZEROS (a model that never predicts waves).

Pixel
Accur-
acy

Jaccard
Score

Precision Recall

February 2021
Test Set

SEGMODEL 95.0% 0.78 0.87 0.70
ZEROS 84.4% 0.42 0.0 0.0

July 2021
Test Set

SEGMODEL 98.0% 0.66 0.48 0.42
ZEROS 97% 0.49 0.0 0.0

Table 4.4: Confusion matrices for the SEGMODEL predictions for the February and
July test sets. The matrices are normalised so the values sum to 1.

February test set July test set
Prediction Prediction

No wave Wave No wave Wave

Truth No wave 0.70 0.14 0.97 0.004
Wave 0.05 0.11 0.01 0.01

SEGMODEL is demonstrating skill by detecting waves in plausible locations compared

to never predicting waves. Gravity waves have by their very nature a decaying

amplitude envelope which makes defining a hard edge to a gravity wave envelope a

poorly defined problem, which in turn means that exactly achieving a Jaccard score

of 1 would be difficult. The precision and recall scores indicate a reasonable ratio

between the number of correctly identified pixels and those incorrectly identified by

the SEGMODEL. The ZEROS model scores 0 for both of these metrics since it did not

correctly identify any waves.

On the July 2021 test set, Table 4.3 shows that waves occurred very infrequently

from the pixel accuracy of the ZEROS model. However, the difference in Jaccard score

shows that the SEGMODEL outperforms the ZEROS model by localising waves when

they occurred. This infrequency of wave occurrence is reflected in the precision and

recall scores. In addition, Table 4.4 shows the confusion matrices for the two test

sets, again demonstrating the high occurrence of non-wave conditions over Britain

and Ireland, particularly in July.
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Lee Wave Test Data: Characteristics Prediction 2021-02-14 T0900Z

Figure 4.7: Example of lee wave characteristic prediction with: (a) vertical velocity
and predicted lee wave regions (black line contour); (b) predicted wavelength for
lee wave regions (model trained on data with noise σ = 0.125); (c) Predicted wave
amplitude for lee wave regions; and (d) orientation of lee waves for lee wave regions
(perpendicular to wave fronts), (model trained on data with noise σ = 0.25). The
two inset regions in (a) demonstrate the difference in wavelength, amplitude and
orientation in Scotland and Ireland for this particular case.
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4.3.2 Lee wave characteristics

Having demonstrated the accuracy of the lee waves prediction network, the seg-

mentation U-Net model is next utilised to infer lee wave characteristics: wavelength,

orientation and amplitude. These predicted characteristics were then restricted to

regions containing waves using the predicted wave masks from earlier.

As discussed in Section 4.2.5, transfer learning was used to fine-tune the final layers

of the SEGMODEL network to learn wavelengths (WLMODEL), orientation (ORIENTMODEL)

and amplitude (AMPMODEL) of the waves. Figure 4.7 shows one such example of the

predicted characteristics, from an example of unseen test data.

The predicted characteristics were compared against a spectral technique, the S-transform,

in order to have a method to compare characteristic predictions against. The fol-

lowing subsections will deal with each characteristic in turn.

4.3.2.1 Wavelength

The ML model and S-transform approaches were contrasted both on synthetic

wavelength data samples (where the true wavelength value is known) and UKV

simulation output (where the true value is not known). If the ML approach works

well on the synthetic data compared with an S-transform, then this gives confid-

ence that the ML derived wavelengths from UKV data are reasonable. While the

S-transform derived wavelengths cannot necessarily be regarded as “truth”, they

can be used to ensure that the ML model is consistent with the S-transform and

produces physically realistic wavelengths.

Figure 4.8 (a) and (b) show a 2D histogram for the synthetic test data set, comparing

the ML model predictions and S-transform (N = 80 frequency voices and c = 1)

derived wavelengths against the true wavelengths. The ML wavelengths compare

well against the synthetic wavelengths, with R2 = 0.996. There is a high density of

points along the y = x line in Figure 4.8 (a). The S-transform derived wavelengths

compare with the truth favourably, though less so than the ML wavelengths, which

is reflected in the lower R2 value of 0.889, and the slightly larger scatter of points

about the y = x line in Figure 4.8 (b). The S-transform derived wavelengths are

too small at wavelengths greater than 80 km, which is not seen in the ML derived
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(a) Truth vs ML Wavelength. 
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(b) Truth vs S-transform Wavelength.
 N = 80, c = 1. R2 =  0.889
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(c) Truth vs ML Orientation. 
R2 =  0.975
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(d) Truth vs S-transform Orientation.
 N = 80, c = 1. R2 =  0.854
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(e) Truth vs ML amplitude.
 R2 = 0.998
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(f) Truth vs S-transform amplitude.
 R2 = 0.793
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Figure 4.8: Synthetic data: comparison between true characteristics, ML model
prediction, and S-transform characteristics for the synthetic test data set (with 80
frequency voices and a scaling parameter c of 1). (a, c, e): Histogram of truth
vs ML derived characteristic from the test data set; (b, d, f) Histogram of true
characteristic vs S-transform from the test data set. The black line in (a) - (f) is the
line y = x.
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Lee Wave Test Data: Wavelength Prediction 2021-02-14

Figure 4.9: One selected example of machine learned wavelengths against
S-transform wavelength from UKV data, from 2021-02-14 0900 UTC. (a) 700 hPa
UKV vertical velocities and recognised lee wave regions; (b) WLMODEL (normally dis-
tributed noise, standard deviation σ = 0.125 in training data) derived wavelengths.
(c) S-transform wavelength (N = 80 frequency voices, scaling parameter c = 1).

wavelengths.

Figure 4.9 shows the S-transform and the ML derived wavelengths for one example

of UKV test data. The wavelengths predicted by the WLMODEL are reasonable, and

relative wavelengths observed by eye correspond appropriately in both the ML pre-

diction and the S-transform. For example in Figure 4.9 there is a region of longer

wavelengths over the south of Ireland compared to shorter wavelengths over Scot-

land, which is predicted as such by the WLMODEL. The WLMODEL prediction shows

a smoother field with greater variation in wavelength over the UK, but longer

wavelengths than those produced by the S-transform. The S-transform wavelengths

are, by comparison, more uniform compared to the ones from the WLMODEL. The

sharp boundaries between regions in S-transform derived wavelengths are a product

of the S-transform reproducing a clean wave field. However, this results in unreal-

istic discontinuities in the S-transform wavelengths. For example in Figure 4.9 (c),

there is a discontinuity in wavelength over the south of Ireland according to the

S-transform, which is not seen by eye in Figure 4.9 (a).

Figure 4.10 shows a histogram for the UKV February 2021 test set, comparing the

WLMODEL predictions against the S-transform. The histogram only shows locations

where the SEGMODEL predicts wave activity in the first place. Overall, the WLMODEL

produces physically reasonable wavelengths (typical lee wave wavelengths are in the

range 5 km to 35 km American Meteorological Society, 2012).

The WLMODEL wavelengths are slightly longer than the S-transform wavelengths. The
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Figure 4.10: A histogram of the WLMODEL wavelengths against the S-transform
wavelengths for the UKV test set.

range of wavelengths is smaller in the WLMODEL output than the S-transform. Overall,

the WLMODEL gives reasonable indications of wavelength on the UKV data, compared

to the S-transform. On the UKV data, while the WLMODEL wavelengths are typically

longer than the wavelengths derived using the S-transform technique, the longest

ML derived wavelengths are less than 50 km compared to the longest S-transform

wavelengths being over 70 km. These longer S-transform wavelengths can occur in

unrealistic locations (for example one case occurs in a region less than 50 km in

diameter). This is despite good correlation in the synthetic test data.

4.3.2.2 Orientation

The angle predictions from the ORIENTMODEL and S-tranform were combined with

the output from the original segmentation model, so that orientation predictions

were only produced for regions containing waves. Figure 4.8 (c) and (d) compare

the performance of ORIENTMODEL (σ = 0.25) and S-transform (80 frequency voices

and c = 1) derived orientations on the synthetic test set. Figure 4.8 (c) shows

that the S-transform derived orientations compare well with the true orientation,
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(a) ML Orientation = 0.25 (b) S-transform N = 80; c = 1 (c) UKV 700 hPa wind direction
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Lee Wave Orientation Comparison, 2021-02-18T0900UTC

Figure 4.11: Comparison of the ORIENTMODEL predicted wave orientation,
S-transform orientation and UKV 700 hPa wind direction. The black arrows show
the direction of wave propagation/wind direction and are therefore perpendicular to
the wave fronts. Wind direction is the closest variable in UKV to compare predicted
wave orientation with.

with some seemingly random scatter across the axes. Figure 4.8 (d) shows that the

ML derived orientations also compare well with the truth, but with greater spread

towards 0◦. Both methods of deriving orientation line up well along the y = x line

in each subplot.

In simple flows the wave crests would be expected to be perpendicular to the wind

direction, and so wind direction can be used as a proxy for wave orientation. Due to

the 3-D nature of the orography and the fact that the waves are not monochromatic,

this assumption is not perfectly true, however the UKV wind direction at 700 hPa

is still useful as an independent sanity check on the derived wave orientations.

Figure 4.11 shows an example of wave orientation (the ORIENTMODEL and S-transform)

alongside UKV wind direction. ORIENTMODEL has done a good job of predicting the

angle of the waves by eye. Neither tell the full picture, as the wind direction is not

necessarily the same as the orientation of a wave. For example, regions with reg-

ular wave-like structures, such as those over Scotland, Wales, South East England

and South West England have plausible predicted orientations. However, waves

with less structure, such as those over Ireland, have predicted orientations which

are less convincing by eye. The S-transform in this case has not captured fully the

change in orientation over Scotland, and has the orientation more northerly than

the ORIENTMODEL, which by eye seems to have captured the northwest/southeast

orientation better.

Figure 4.12 (a) shows the ORIENTMODEL orientation against the UKV wind direction
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Comparison between ML ( = 0.25) Orientation, S-transform (N = 80, c = 1) Orientation and UKV Wind Direction for February 2021 Test Set

Figure 4.12: Histograms comparing the ORIENTMODEL orientation, S-transform ori-
entation (N = 80, c = 1) and UKV wind direction at 700 hPa for the February 2021
test set in degrees from north (0◦). In each case the line y = x is plotted in black.

for the test set. The data contain a high degree of scatter, though there is a rela-

tionship by eye between the ML orientation and wind direction. The least squares

correlation coefficient R2 = 0.116 is low, however. Figure 4.12 (a) does show that,

in general, as the ORIENTMODEL orientations veer, the wind direction veers as well,

though not quite along the y = x line. Figure 4.12 (b) compares the S-transform

orientation against the wind direction. This plot is also noisy, though by eye shows

correlation against the wind direction. As stated above, the wind direction is not

necessarily a good predictor for the wave orientation, and the fact that the data in

Figure 4.12 does not follow a 1:1 line may actually be for a good physical reason, for

example because there is a preferential orientation of many of the mountain ranges

over the UK. Finally Figure 4.12 (c) compares the ORIENTMODEL predictions against

the S-transform. A positive trend is shown by eye, approximately along the y = x

line. The discontinuity in the S-transform measured orientations around 0◦ and 90◦

is due to its formulation using the discrete FFT. When orientated in exactly the x

or y directions, wavenumbers in the orthogonal direction are equal to 0, correspond-

ing to an infinite wavelength, which is just the signal mean in that direction and

is therefore not able to be localised. This is not a limitation for the ML approach.

The data contain a high amount of scatter, but do show some relationship between

the ML derived orientation and S-transform, suggesting that the output from the

ORIENTMODEL is reasonable. However it also suggests that deriving wave orientation

is hard for both traditional spectral methods and ML methods.
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Figure 4.13: Histogram comparing the ML derived amplitudes against those from
the S-transform for the February 2021 UKV test set. As with similar plots here, the
line y = x is plotted in black.
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4.3.2.3 Amplitude

Figure 4.7 (c) shows the wave amplitude predictions by the ML model for 0900 UTC

on 14 February 2021. The largest amplitudes tend to be over hilly areas, such as

in Scotland. The amplitude predictions produced are reasonable when compared by

eye to the vertical velocities in Figure 4.7 (a). An alternative approach using pixel-

wise wavelengths to retrieve amplitudes by selecting the maximum vertical velocity

within a region the size of the wavelength for each pixel resulted in unrealistic large

local variations in amplitude. This meant that there were large regions containing

unreasonably large amplitudes. The neural network approach as described here

produces amplitudes that are more consistent and smoothly varying over the length-

scale of the gravity wave envelopes seen visually in the vertical velocity data.

Figure 4.8 (e) and (f) compare the ML and S-transform amplitudes to the true

amplitudes for the synthetic data. The ML model performs well, with an R2 =

0.997, while the S-transform amplitudes had R2 = 0.729 compared to the truth.

Figure 4.13 compares the AMPMODEL derived amplitudes against the amplitudes from

the S-transform. The amplitudes are well correlated, with a Spearman ρ = 0.750,

and mainly focused around the y = x line. At smaller amplitudes (≈ 0.5 m s−1), the

ML model overestimates amplitude slightly compared to the S-transform, while at

higher ML amplitudes (> 2 m s−1), there is a higher spread of S-transform predicted

amplitudes.

4.3.3 Dimensionality reduction

The learned latent features of the trained SEGMODEL were probed using a dimen-

sionality reduction technique, PCA, described in more detail in Section 2.2.1. This

was in order to understand what the SEGMODEL had learned about lee waves during

training. Some simple cosine wave data were generated at different wavelengths (w0-

w5; w2 and w3 have identical wavelengths but are rotated by 90◦) and orientations

(o0-o6; o0 and o6 are identical). These are shown in Figure 4.14.

The intermediate outputs at the end of the encoder (shown in Figure 4.3) were

used for this. At this point in the U-Net, the input data has had its features

extracted and been coarsened in the x and y direction: each now had the dimensions
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Figure 4.14: Different data for probing the learned latent features of the trained
neural network.

512×16×16, (512 features and 16 pixels in both the x and y directions). In each case

for wavelength and orientation, the first two principal components of the reduced

space were taken and plotted as boxplots for each sample, shown in Figure 4.15.

The first two principal components of the reduced data with different wavelengths

(wo-w5), shown in Figure 4.15 (a) and (b) explain more of the variance than the

orientation data (o0-o6), in Figure 4.15 (c) and (d). These were 44% and 15%

compared to 23% and 19%. The first principal component of the wavelength data

(a), shows the data with longer wavelengths occupying larger spaces. w2 and w3 had

identical wavelengths but rotated by 90◦, and the first principal component in (a)

shows the distributions for w2 and w3 as being similar. Similarly for the orientation,

o0 and o6 have similar distributions of principal components in (c) and (d), with

the intervening data examples spreading out (o1 and o5, for example) and showing

different distributions of principal components.

The change in wavelengths between w0 and w5 are shown clearly by eye in Fig-

ure 4.15(a) and the cycle of orientations from o0 to o6 are visible in the first two

principal components in Figure 4.15 (c) and (d). These demonstrate that the trained

U-Net has been able to learn the difference between different wavelengths and ori-

entations within some wave-like patterns, even within the principal components of

the three-dimensional output of an intermediate layer within the U-Net. This shows

that during training, the U-Net has learned to distinguish between wave patterns of

different wavelengths and orientations, which is then utilised in the fine-tuning of

the SEGMODEL to produce the characteristics models discussed in Section 4.3.2.
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Figure 4.15: Box plots for the first two principal components for synthetic
wavelength and orientation data. The median value is shown in black and the
mean in white.
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4.3.4 Crowdsourced labelling

Additional crowd-sourced labels for the test set were generated using the online

platform Zooniverse (Simpson et al., 2014), to investigate the subjective nature of

the hand-labelling of the segmentation masks used to train the SEGMODEL. Six logged

in users contributed labels, in addition to some users who were not logged in. The

Zooniverse tool works slightly differently to the hand-labelling tool produced for the

original mask making (discussed in Section 4.2.1), so there are slight differences in

the methodology to produce a mask. The Zooniverse tool tends to produce masks

with very straight edges.

The vertical velocity data presented to the labellers were presented upside down, to

prevent the labellers using their geographical knowledge about likely wave locations

over Britain and Ireland and therefore (consciously or unconsciously) be biased in

their identification of waves. A revised test data set was created, where a pixel

was only predicted to be a wave if at least 60% of labellers labelled it so, to ensure

multiple labellers had to agree, while also not restricting the output to being the

intersection of all labellers. Figure 4.16 shows two examples of crowdsourced lee

wave labels on the data. Figure 4.16 also shows that there was a deviation between

labellers as to what they perceived to be a lee wave, although there was more con-

sensus for regions where waves were very obvious to the eye. When the boundaries

between wave regions and the background are not clear cut, this adds ambiguity to

the model output since there is some subjectivity between human labellers on what

constitutes a wave.

There was some uptake among volunteers to label data, but labelling a large data

set in this way would require a large amount of interest in the project in order to

have multiple labels per vertical velocity slice. In addition, labellers would need to

be aware of lee waves and how to recognise them from vertical velocity data. Crowd-

sourcing data has proved useful for meteorological data, for example the Weather

Rescue project (Hawkins et al., 2019), which recruited members of the public to tran-

scribe historic observations from the Ben Nevis and Fort William weather stations -

albeit involving the clear-cut transcription of hand-written observations, rather than

the subjective decisions about lee wave boundary labelling as was the case here.



78 CHAPTER 4. LEE WAVE DETECTION & CHARACTERISATION

(i) Data & Threshold mask (ii) ML model prediction

4
3
2
1

0
1
2
3
4

Ve
rti

ca
l v

el
oc

ity
 (m

s
1 )

4
3
2
1

0
1
2
3
4

Ve
rti

ca
l v

el
oc

ity
 (m

s
1 )

(iii) Contribution Mask

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
te

d 
M

as
k

(iv) Truth - Prediction

1.0

0.5

0.0

0.5

1.0
Tr

ut
h 

- P
re

di
ct

io
n

(a) Test Data 2021-02-13. Jaccard Score: 0.72. Threshold: 0.60

(a) Example of crowdsourced labelling for 2021-02-13.
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(b) Test Data 2021-02-18. Jaccard Score: 0.75. Threshold: 0.60

(b) Example of crowdsourced labelling for 2021-02-18.

Figure 4.16: Two examples of Zooniverse data at a 60% threshold. In each group of
four: (i) shows the combined “threshold” hand-labelled mask (where 60% of labellers
need to agree for a wave to be labelled as so); (ii) shows the predicted wave mask by
the SEGMODEL; (iii) shows each hand-labelled mask for that data, where 0 indicates
that nobody thought that a wave was in that location, and (1) everybody thought a
lee wave existed in that location. (iv) The crowdsourced “truth” minus the SEGMODEL
prediction, so blue indicates the model predicted a wave when the labellers did not,
and red indicates a Zooniverse wave not recognised as such by the SEGMODEL.
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4.4 Conclusions

This chapter shows the development of a set of deep learning models capable of

identifying regions of lee waves over Britain and Ireland from vertical velocity model

data. The final layers of the network have subsequently been fine-tuned separately

to predict wavelength, orientation and amplitude of the waves. Spectral techniques

(for example the S-transform) do not permit the creation of a pixel-wise wave mask

as has been done here.

The trained segmentation model has a pixel accuracy of > 95% when compared

against hand labelled truth. Despite being trained with a relatively modest training

set of 335 scenes of vertical velocity data covering the whole of Britain and Ireland

at 2 km resolution, the SEGMODEL U-Net is skilful. The segmentation produced by

the SEGMODEL is realistic, and in coherent regions, for example those shown in Fig-

ure 4.6. The produced segmentation mask is on the same resolution as the NWP

data, allowing precise localisation of wave forecasts. An accuracy closer to 100%

would be difficult to obtain given the subjective nature of labelling waves near the

edges of wave packets.

By using transfer learning, the copies of the trained SEGMODEL were fine-tuned on

synthetic gravity wave data to estimate wave characteristics of gravity waves in

UKV model output. The characteristics models still retain learned weights from

being trained on the NWP data, with the synthetic data being used to extract

characteristics from the model instead of a segmentation mask. Originally, these

characteristics models were trained on data without noise, which, for the wavelength

model, resulted in too long wavelengths being predicted on the NWP data. This

has been rectified by training the characteristics models on noisy data.

On the UKV data, the wavelength model trained with noise tended to predict

shorter wavelengths than with no noise, but longer than wavelengths derived us-

ing an S-transform. While the noise used within the synthetic training data are

unlikely to be the same as the background vertical velocities in the UKV data, these

results do suggest that using noisy synthetic data might help make the ML models

more robust to noise in real world applications. How much noise to include in the

training data, or how it should be distributed remains an avenue to be explored,

though using a small amount of noise such as σ = 0.125 or 0.25 seems reasonable
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given models trained on this magnitude of noise perform well across the different

levels of noise in the synthetic data.

The orientation predictions, such as those shown in Figure 4.11 demonstrate that

the ORIENTMODEL performs well at predicting the orientation of waves. Figure 4.11

shows that the wind direction at 700 hPa is not sufficient on its own to show the wave

direction so this method of deriving the wave orientation from the vertical velocities

could add value to existing forecasts of waves and rotor activity. Figure 4.12 shows

that the wind direction is less correlated with the ML (ρ = 0.403) and S-transform

(ρ = 0.437) predictions compared with the S-transform and ML predictions (ρ =

0.623). On the UKV data, the models trained on noisy data still retain a smooth

field, but with wavelengths and orientation closer to those from the S-transform.

Several wavelength and orientation models could be run on the data to obtain a

measure of the uncertainty between the ML model derived characteristics.

The AMPMODEL produces a smoothly varying prediction of the wave amplitude, where

individual peaks in vertical velocity are smoothed out. The test set, despite being

small, contains cases of large amplitude waves (velocities in excess of 3 m s−1, as

used in Vosper et al., 2013) as shown in Figure 4.7 (c). Large amplitude waves

have potential impacts downstream for the formation of rotors and so successfully

identifying these is important for forecasters.

While this work has used U-Nets to create an ML model capable of identifying and

characterising lee waves, it also highlights the wider potential of these methods to

be used in identifying a wide range of weather features and phenomena in high resol-

ution model data. The study also offers useful examples of leveraging the maximum

impact from limited hand labelled data by supplementing with augmentation and

carefully constructed synthetic data sets. It is also a valuable example of how with

fine-tuning an ML model developed to classify features can be used to identifying

underlying physical characteristics of the features. While these ideas could easily

be applied to other wave problems in geophysical systems, they could equally be

applied to a range of other types of feature in the atmosphere.

The following chapters of this thesis explore the application of these trained models

to large climate data sets, so as to develop a climatology of lee waves, and then

interrogate the conditions that affect the generation of lee waves.
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Chapter 5

A climatology of trapped lee
waves over Britain and Ireland
obtained through deep learning
models applied to high resolution
model output

5.1 Introduction

This chapter outlines the development of a climatology of trapped lee waves over

Britain and Ireland, created by applying the deep learning models developed in

Chapter 4 to 31 years of high resolution regional climate model output using the

United Kingdom Climate Projections (UKCP18) Local data. The features in the

climatology include the frequency of occurrence, wavelength, amplitude and orient-

ation of trapped lee waves, covering a much longer period of time and using a more

sophisticated model than the work of Vosper et al. (2013). Variations in lee wave

location, frequency of occurrence and characteristics are investigated as a function

of time of day, season and weather pattern. Finally, random forests are used to

investigate relationships between lee waves and 40 other model variables in order to

evaluate the important physical processes controlling the climatology.

The generation of this climatology aims to help answer questions regarding the gen-

eration and characteristics of lee waves over Britain and Ireland. The diurnal cycle

83
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within the inversion in the boundary layer could affect the trapping, amplitude or

wavelength of lee waves over Britain and Ireland, and this climatology data set allows

this to be tested. In addition, by examining different weather patterns within the

climatology, the effects of changing synoptic meteorology on the generation and char-

acteristics of lee waves can be investigated, spatially and also through distributions

of characteristics. In addition, the relationships between different meteorological

variables and lee wave generation and characteristics can be examined, such as wind

speed and wave amplitudes, and the Scorer parameter and lee wave wavelengths.

An overview of the method and the data used is given in Section 5.2, the results

are presented and discussed in Section 5.3 and some concluding remarks are given

in Section 5.4.

5.2 Methodology

5.2.1 Developing a climatology of lee waves

As in Chapter 4, vertical velocity on the 700 hPa surface was used to identify lee

waves from the model output. In addition to the vertical velocity slices used by the

deep learning models, other variables from model output were used to understand

which conditions are important for the production of lee waves (as discussed in

Chapter 3).

The ERA-Interim driven UKCP18 Local data (as introduced in Section 3.2.1) were

obtained from MASS, specifically the vertical velocities on the 700 hPa surface, for

the three-hourly data from 1 January 1982 03 UTC to 30 December 21 UTC inclus-

ive. The trained deep learning models trained in Chapter 4 were applied to the 31

years worth of UKCP18 Local model data to produce a wave segmentation mask

(a pixelwise classification into non-wave and lee wave pixels), and the wavelength,

orientation (the direction of wave propagation, perpendicular to the wave-fronts)

and amplitude of lee waves over Britain and Ireland during 1982–2012.

These segmentation masks and characteristics were then interrogated to investigate

how lee waves differ at different times of the day, seasonally, and between synoptic

weather patterns. This was done using the dask library in Python to produce stat-
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istics for the prevalence and characteristics of lee waves geographically, and overall

(using distributions and histograms), for Britain and Ireland from the individual

segmentation mask and characteristic files.

5.2.2 Relationship of lee waves with other meteorological variables

In order to examine which meteorological variables were important for the generation

of lee waves, several upland regions of Britain and Ireland with a high frequency

of occurrence of lee waves (shown in Figure 5.1) were subsetted from the data.

These regions were deliberately chosen to be similar to those used by the 3DVOM

forecast domains as shown in Sheridan et al. (2017), but with the region over Wales

being extended and the inclusion of a new region over the south west of Ireland.

These were given rough geographical names related to their location (for example,

the “Northern Ireland” box does not necessarily align with the political borders of

Northern Ireland, but does contain the orography in that part of Ireland). The lee

waves produced by the segmentation ML model were compared with other variables

from the UKCP18 Local data within these regions in order to explore the relationship

between meteorological conditions and lee wave generation.

To do this, as introduced in Section 3.2, a set of variables likely to be correlated

to lee wave activity were initially chosen, on available pressure surfaces, (for ex-

ample, variables used in the calculation of the Scorer parameter were included): the

horizontal wind speed on the 200, 300, 500, 650, 750, 850 and 925 hPa pressure

surfaces and at 10 m ; the change in horizontal wind direction between each of the

aforementioned pressure surfaces; the virtual potential temperature θv on the 200,

300, 500, 650, 700, 750, 800, 850 and 925 hPa surfaces; the Brunt-Väisälä frequency;

the Scorer parameter; the weather pattern; the half-sine of the month of the year

(precisely sin
(

π(m−1)
12

)
, where m is the month of the year: m = 1 is January and so

on); and the orography and its local standard deviation (to capture the variability

of orography), to make 40 inputs in total.

The mid-level Brunt-Väisälä frequency at x hPa was calculated as N(x) =
√

g
θv

dθv
dz ,

where dθv
dz was calculated using the surfaces above and below x hPa, and θv at x hPa

by interpolating the data from the surfaces above and below x hPa. This produced

mid-level values of N , on the 887, 825, 775, 725 and 675 hPa surfaces. A bulk



86 CHAPTER 5. LEE WAVES: PRESENT-DAY CLIMATOLOGY

SH

NI

SWI

Pn

Da

Wa

10°W 7.5°W 5°W 2.5°W 0°

50°N

52°N

54°N

56°N

58°N

60°N

UKCP model orography and upland regions

0

200

400

600

800

1000

su
rfa

ce
_a

lti
tu

de
 [m

]

Figure 5.1: UKCP18 Local model orography over Britain and Ireland. Black bound-
ing boxes indicate upland regions used in later analysis and are labelled for identi-
fication in the text: SH: Scottish Highlands; NI: Northern Ireland; SWI: South West
Ireland; Pn: Pennines; Wa: Wales; Da: Dartmoor.
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Brunt-Väisälä frequency was also calculated, by using a mid-profile value of θv, at

775 hPa, being representative of most of the vertical profile, and using the highest

and lowest values of θ (925 hPa and 650 hPa) to calculate dθv
dz .

The Scorer parameter was calculated as l2 = N2

U2 , with the smaller (and harder

to calculate accurately) curvature term neglected. However, the influence of chan-

ging wind direction was still explored, by including the change in wind direction

between each pressure surface as separate inputs. Values of the Scorer parameter

were produced on the same pressure surfaces as the Brunt-Väisälä frequency by in-

terpolating U onto the same surfaces as the Brunt-Väisälä frequency (Blockley and

Lyons, 1994). The bulk Scorer parameter was calculated using the bulk measure of

the Brunt-Väisälä frequency, and using the horizontal wind speed at 775 hPa. This

is a mid-profile measure of the horizontal wind speed so most likely to represent most

of the profile as well as being above the boundary layer and keeping consistency with

the value of θv used to calculate the bulk Brunt-Väisälä frequency. The change in

the Scorer parameter from 887 hPa to 675 hPa was also calculated. These variables

are summarised in Table 5.1.

Random forests (see Section 2.2.2) were trained on these variables (one random

forest per region in Figure 5.1) with the aim of predicting whether or not lee waves

were present. Random forests were used because of the lack of normalisation or

augmentations required on the input data, and because they are quicker to train

than neural networks. The nodes in each decision tree are based on the data, for

example horizontal wind speed being greater than some threshold. Then, because of

the relative ease of probing a random forest’s predictions (compared to, for example

ANNs), the influence of each of these variables on the random forest’s prediction

was measured using SHAP values (see Section 2.2.6 and Lundberg and Lee, 2017).

Here, the version of SHAP for tree based models (TreeExplainer: Lundberg et al.,

2020) was used.

In addition, the correlation between the amplitude of lee waves and the horizontal

wind speed aloft was examined. The local maximum lee wave amplitude and 750 hPa

wind speeds were grouped for 8 × 8 pixel blocks (17.6 km × 17.6 km) for part of the

climatology period (1982–87 inclusive). This reduced set was used to reduce the time

taken to obtain the additional data, and conserve disk space and processing time, as

opposed to using the full data set. Grouping the data into these blocks meant that
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Table 5.1: Summary of the inputs for the random forests for meteorological variables
on heights and pressure surfaces. In addition to these 35, the weather pattern, half-
sine of the month of the year, the difference in Scorer parameter between the 887 hPa
and 675 hPa pressure surfaces, the model orography and its local standard deviation
were also included.

Height/Pressure surface Variable
√

U2 + V 2 Wind shear θv N l =
√

N2

U2

10 m ✓
925 hPa ✓ ✓
887 hPa ✓ ✓ ✓
850 hPa ✓ ✓
825 hPa ✓ ✓
800 hPa ✓ ✓
775 hPa ✓ ✓
750 hPa ✓ ✓
725 hPa ✓ ✓
700 hPa ✓ ✓
675 hPa ✓ ✓
650 hPa ✓ ✓
575 hPa ✓
500 hPa ✓ ✓
400 hPa ✓
300 hPa ✓ ✓
250 hPa ✓
200 hPa ✓ ✓

Bulk measure ✓ ✓
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small local variations in wind speed and amplitude were removed, meaning a fairer

comparison between broader wind speeds and amplitudes. The crest of a wave and

therefore the peak amplitude should occur within these squares in all cases apart

from the longest wavelength lee waves, without losing too much fine detail for short

wavelength lee waves.

5.3 Results

5.3.1 Frequency of occurrence of lee waves

Figure 5.2 shows the seasonal frequency of occurrence of lee waves over Britain and

Ireland. The general location of lee waves changes little between seasons, with lee

waves tending to occur more often over hilly areas (Scotland, Northern England,

Wales, South West Ireland). However, the winter months contain the highest fre-

quency of occurrence of lee waves and the summer months the least. Over the

Highlands of Scotland, lee waves occur 60% to 70% of the time during winter in

the UKCP18 Local data, compared with 40% to 50% of the time during summer

months. This is consistent with Vosper et al. (2013), where lee waves were forecast

57% of the time over the Grampians in Northern Scotland.

Figure 5.3 shows a histogram relating the UKCP18 Local model orography and the

frequency of occurrence of lee waves per pixel (normalised by column). The standard

deviation σ of the model orography for the 5 × 5 pixel box surrounding each grid

cell were calculated and plotted against the grid cell’s frequency of wave occurrence

during the period of interest. There is a correlation (least squares R2 = 0.711

and Spearman rank ρ = 0.662) between the local orography variability σ, and the

frequency of occurrence of waves. There is spread within the histogram: this is likely

due to lee waves propagating well downstream past the orography, and the influence

of meteorology which will vary across the country.

5.3.2 Diurnal effects

Figure 5.4 shows the frequency of occurrence of lee waves for each of the hours

of the day in the UKCP18 Local data. There is no discernible diurnal variation
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Figure 5.2: Maps showing the frequency of occurrence of lee waves by season.
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Figure 5.4: Map plots showing the frequency of occurrence of lee waves by hour of
the day in the UKCP18 Local data over the climatology period 1982–2012.

geographically in the frequency of occurrence of lee waves over the entirety of Britain

and Ireland.

Figure 5.5 shows the probability density functions (PDFs) for the frequency of oc-

currence and characteristics of lee waves for each time of day, and confirms that

there is very little diurnal variation in either the frequency of occurrence or the

characteristics of lee waves in the data. The temporal resolution of the data is

3 hourly, so unpicking the potential effects of sunrise and sunset on lee waves is

not immediately obvious. However, the data at 0600Z and 1800Z cover either side

of sunrise and sunset respectively, depending on the time of year, and there is no

variation in the distribution of the data at these times to suggest that sunrise and

sunset affect the generation of lee waves materially. There is no change between

distributions of wave characteristics. Within the range of amplitudes observed in

Figure 5.5 (b), from < 0.1 m s−1 to > 5 m s−1, the lack of a diurnal change except

at very low probabilities and high amplitudes suggests there is little diurnal change

in lee wave amplitude during the day. Likewise for the wavelength (Figure 5.5[c])

of lee waves, most observed lee waves have a wavelength in the range 10−20 km

but no diurnal change. Most lee waves are either north east/south west; or north

west/south east aligned (Figure 5.5[d]), but there is not an observed diurnal cycle
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of lee wave orientations.

Hence, there is little evidence to suggest a diurnal cycle in lee wave frequency of

occurrence or characteristics over Britain and Ireland, similar to the conclusions of

Worthington (2006), who found very little diurnal change in mountain wave amp-

litude, albeit using a different method (they used VHF radar observations).

5.3.3 Weather patterns

There is a variation in the frequency of occurrence of lee waves according to the

synoptic weather pattern (introduced in Sections 2.4 and 3.3, and in more detail

in Neal et al., 2016). Figure 5.6 shows the frequency of occurrence of lee waves

geographically by weather pattern (0% indicates that lee waves never occur in a

given weather pattern, and 100% indicates that lee waves always occur under that

pattern), with the insets showing for each season the total number of days on which

the respective weather pattern occurred during the climatology period 1982–2012.

The weather patterns most conducive to lee waves being generated are the NAO+

and Southwesterly patterns. The Scottish Highlands receive the most lee waves in

all conditions, but the trend is not consistent across regions: the Pennines receive a

similar amount of waves in NAO+ conditions, but comparatively less so under the

Azores high pattern. While the spread of NAO− weather patterns is fairly constant

between seasons, NAO+ conditions, which have a high frequency of occurrence of

lee waves, occur more often during the winter than in the summer. This may explain

the seasonal changes of lee waves in Figure 5.2: more lee wave conducive weather

occurs during the winter than in the summer. Under Scandinavian high conditions,

lee waves occur infrequently over most of Britain and Ireland except for in Scotland

and a small patch in south west Ireland.

Figure 5.7 shows an overview of the frequency of occurrence and characteristics of

lee waves under different synoptic weather patterns. Each subplot shows a PDF of

the weather pattern’s lee wave frequency of occurrence or characteristic. For the

frequency of occurrence Figure 5.7 (a) shows that the most lee waves occur during

NAO+ and Southwesterly conditions, and the least during the NAO− and Scand-

inavian high patterns. The following subsections will consider the characteristics

shown in Figure 5.7 (b)–(d) in more detail.
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Figure 5.6: Lee wave frequency of occurrence by weather pattern (Neal et al., 2016)
from the UKCP18 model data over the climatology period 1982–2012. Mean sea
level pressure contours are plotted for each pattern. The inset axes for each subplot
show the number of days 1982–2012 where each weather pattern was prevalent.
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Table 5.2: Table showing how often lee waves of different maximum amplitudes
occur, for each region. This includes times when there is no wave activity in a region,
and the number in brackets excludes examples where there is no wave activity in a
region.

Region Percentage of time with maximum wave amplitude:
≥ 1 m s−1 ≥ 2 m s−1 ≥ 2.5 m s−1 ≥ 3 m s−1

Scottish
Highlands

34.7% (49.9%) 5.4% (7.7%) 1.66% (2.38%) 0.383% (0.551%)

Northern
Ireland

11.3% (25.5%) 0.4% (0.9%) 0.06% (0.14%) 0.006% (0.012%)

SW
Ireland

14.6% (28.3%) 0.8% (1.6%) 0.18% (0.36%) 0.023% (0.045%)

Pennines 20.1% (37.4%) 1.4% (2.6%) 0.28% (0.53%) 0.041% (0.076%)
Dartmoor 5.6% (18.9%) 0.2% (0.8%) 0.04% (0.12%) 0.006% (0.019%)
Wales 18.9% (38.3%) 1.4% (2.9%) 0.23% (0.46%) 0.025% (0.052%)
Overall 51.0% (59.7%) 10.0% (11.7%) 2.89% (3.39%) 0.624% (0.732%)

5.3.3.1 Amplitude

Figure 5.7 (b) shows that the amplitude of lee waves is distributed similarly between

weather patterns. The largest amplitude lee waves occur under Northwesterly and

Southwesterly flows, however the changes in amplitude between weather patterns

are small compared to the actual mean amplitudes. The vast majority of lee waves

have amplitude < 1 m s−1, and the largest amplitudes in the data are ≈ 5 m s−1.

Figure 5.8 shows the 95th percentile amplitude of lee waves for each of the weather

patterns. No weather pattern shows a distribution of 95th percentile amplitudes

noticeably stronger than any other. The regions where the stronger amplitudes

occur tend to be places with higher orography, such as the Scottish Highlands in

each weather pattern, the Pennines and Wales (particularly in the NAO+ pattern).

Table 5.2 shows how often lee waves of different amplitudes occur in the regions

outlined in Figure 5.1. While being rare in general, the strongest lee waves occur

most frequently in the Scottish Highlands, where high amplitude lee waves (amp-

litude in excess of 3 m s−1) occur 0.383% of the time within the region (0.551% of

the time when only counting when lee waves are generated). The Pennines have the

next most frequent occurrence of high amplitude lee waves, at 0.041% of the time,

almost ten times less likely than in the Scottish Highlands region. High amplitude

lee waves are the rarest in Northern Ireland and Dartmoor.
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Figure 5.7: PDFs of lee wave frequency of occurrence and characteristics under
different synoptic weather patterns.
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Figure 5.8: Maps showing the 95th percentile lee wave amplitude for each weather
pattern.



96 CHAPTER 5. LEE WAVES: PRESENT-DAY CLIMATOLOGY

5.3.3.2 Wavelength

Figure 5.7 (c) shows the PDF of the wavelengths of lee waves under the different

weather patterns. Lee waves under most regimes (all except NAO+ and South-

westerly) have a modal wavelength in the range 10 to 15 km. Lee waves produced

under Southwesterly flow have a modal wavelength of approximately 15 km, while

the longest modal wavelengths of approximately 20 km occur under NAO+ condi-

tions.

Figure 5.9 shows the mean wavelength of lee waves over Britain and Ireland by

weather pattern. The longest wavelengths occur in general in NAO+ conditions,

to the east of Ireland, and on the lee (east) side of the Pennines. The shortest

wavelengths tend to occur under NAO− conditions, though with some longer wavelengths

in Scotland. Apart from the NAO+ case (and to a lesser extent, Southwesterly con-

ditions), the mean wavelengths remain generally similar between patterns. The dis-

tribution of wavelengths in Figure 5.7 are broadly similar for all the patterns except

for NAO+ and Southwesterly. According to theory, the wavelength is related to the

Scorer parameter (e.g. World Meteorological Organization, 1993). However, outside

the NAO+ and Southwesterly patterns, there is little change in the wavelengths

produced overall. This could be because the length scale of the orography influ-

ences the wavelength of the lee waves produced because the length of the orography

controls whether or not lee waves are produced at their theoretical wavelength, and

therefore the wavelengths are less influenced by the synoptic weather than other

characteristics.

5.3.3.3 Orientation

Figure 5.7 (d) shows that there is a different orientation pattern depending on the

weather pattern. The orientations under some weather patterns have a unimodal

distribution, such as the Southwesterly or Northwesterly patterns. Others, such as

the NAO+ and Low close to UK patterns, have bimodal orientation distributions.

Since the 8 patterns are themselves groupings of 30 more varied ones, there could

be more than one pressure regime grouped together, resulting in the bimodal wave

orientations under certain patterns.
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Figure 5.9: Map showing the mean lee wave wavelength by weather pattern.

Figure 5.10 shows the mean orientation of lee waves for each weather pattern over

Britain and Ireland, with MSLP contours overlain for the respective pattern. Lee

waves are broadly aligned with the MSLP contours, notably so in Northwesterly

and Southwesterly conditions. However, there is a large spread in the orientation

predictions, shown by the red arrows (indicating σ > 45◦) in Figure 5.10. The

least variation in wave direction occurs under the Northwesterly and Southwesterly

weather patterns, and the most variation in the Low close to the UK, again perhaps

due to the clustering to form the 8 patterns resulting in a large variation in MSLP

patterns being clustered together.

5.3.4 Correlation between lee waves and other NWP variables

To investigate any correlation between lee waves and other meteorological variables,

random forest models are used to investigate how well lee waves can be predicted

from other NWP variables. A random forest is trained on a set of meteorological vari-

ables deemed to have influence on the generation of lee waves in each of the regions

shown in Figure 5.1 (one random forest per region), as introduced in Section 5.2.2:

the horizontal wind speed on different pressure surfaces; the directional wind shear

between surfaces; the virtual potential temperature θv; the Brunt-Väisälä frequency;
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Figure 5.10: The mean orientation of lee waves for each weather pattern. Arrows
in maroon indicate that the standard deviation, σ of the orientation at this point is
> 45◦, while black arrows indicate σ ≤ 45◦.
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Figure 5.11: (a) SHAP values for each of the inputs into the random forest to predict
lee wave generation, by region of Britain and Ireland, and (b), each region’s SHAP
values are normalised so that the sum of the SHAP values for each region is 1, and
then the mean of these are plotted (continued overleaf).
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Figure 5.11: (a) SHAP values for each of the inputs into the random forest to predict
lee wave generation, by region of Britain and Ireland, and (b), each region’s SHAP
values are normalised so that the sum of the SHAP values for each region is 1, and
then the mean of these are plotted.
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Table 5.3: Table showing the variables with the largest SHAP value by region.

Region Variable with largest SHAP value
South West Ireland Bulk Scorer parameter
Scottish Highlands Scorer parameter 887 hPa

Wales Scorer parameter 887 hPa
Dartmoor 750 hPa wind speed

Northern Ireland 925 hPa wind speed
Pennines Scorer parameter 887 hPa

a measure of the Scorer parameter (only the first term - see Section 5.2.2); the oro-

graphy and its local standard deviation; the weather pattern; and the half-sine of

the month of the year. These variables were chosen because of their involvement in

the Scorer parameter (the stability, horizontal wind speed, turning effects) or the

generation of lee waves seen earlier in this section (the month of the year, weather

pattern and orography). The relative importance of each of these are calculated us-

ing SHAP values (Section 2.2.6), and are shown by region in Figure 5.11 (a), and a

normalised average over the regions in Figure 5.11 (b). Table 5.3 shows the variables

with the largest SHAP value for each of the 6 regions considered: in each region

the variable with the largest SHAP value are all either horizontal wind speeds or a

measure of the Scorer parameter.

The Scorer parameter between the 925 hPa and 850 hPa surfaces (i.e. at 887 hPa),

in this case taken to be the ratio between the squares of the Brunt-Väisälä frequency

and horizontal wind speed, has the largest SHAP importance value in the Scottish

Highlands, Wales and the Pennines. A bulk measure of the Scorer parameter has the

highest importance value in South West Ireland. In Northern Ireland, the 925 hPa

horizontal wind speed is the most important while in Dartmoor, the 750 hPa wind

speed is the most important. The Scorer parameter at 887 hPa has at least the

third highest SHAP value in every region examined here. The wind speed with the

larger SHAP values differs depending on the region: for example regions with gen-

erally taller orography, such as the Scottish Highlands and Wales, have higher wind

speed SHAP values at 850 hPa, while regions with lower orography such as North-

ern and South West Ireland have higher SHAP values for wind speeds at 925 hPa

and 10 m respectively. The Brunt-Väisälä frequencies at 825 hPa and 775 hPa have

higher SHAP values than the other pressure surfaces. The SHAP values of the

Brunt-Väisälä frequencies are more consistent (but also lower) between surfaces and
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Lee wave frequency of occurrence alongside distributions of other meteorological variables by region

South West Ireland Scottish Highlands Wales Dartmoor Northern Ireland Pennines

Figure 5.12: Distributions showing the relationship between the variable with the
highest SHAP values and lee wave occurrence (bottom of each pair of subplots).
The PDF of that variable is also shown by region (top).

regions than the horizontal wind speeds. The virtual potential temperature, and

changes in the wind direction have lower SHAP values than the horizontal wind

speeds on pressure surfaces below 500 hPa. While SHAP is not a perfect measure of

understanding the importance of different features due to it sharing credit between

variables, it does attempt to address this more than other methods such as permuta-

tion importance. It has also picked out the Scorer parameter as being important for

lee waves, which is not unsurprising so the results from SHAP are not unexpected.

To further unpick this, distributions of the variables with the six highest SHAP

values were obtained and plotted, along with the lee wave occurrence as a function

of these variables, for each region. These are shown in Figure 5.12. In every case, the

occurrence of lee waves does not reach 100% in any region outside the very tails of the

distributions, and there is a notable difference between regions. This may be due to

the regions (shown in Figure 5.1) not being fully covered by topography. However,

additional tests (not shown) restricting to pixels where the model orography was

> 100 m only partly reduced the differences between regions. These results suggest a

combination of conditions are important for lee wave occurrence in different regions,

and lee wave occurrence cannot be described by one other variable alone. However,
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the differences in lee wave occurrence in different regions does relate to the orography

in the regions: there are fewer lee waves in Dartmoor and South West Ireland, which

have relatively small hills than the Scottish Highlands where there are much larger

hills, and a higher occurrence of lee waves.

Different measures of the Scorer parameter (Figure 5.12 [a]–[c]) show a relatively

steep gradient (particularly the bulk measure in [a]) around 10−3m−1. The distri-

bution of bulk Scorer parameters, mostly in the range of 10−3m−1 to 3 × 10−4m−1

suggest that wavelengths in the range 5 km to 20 km are supported by the model,

approximately in line with the range of wavelengths shown in Figure 5.5 (c) and

Figure 5.7 (c). Values of the Scorer parameter higher than 10−3m−1 would approx-

imately correspond to wavelengths shorter than 5 km, which cannot be resolved in

the model anyway (World Meteorological Organization, 1993). The drop off in lee

wave occurrence after this point may suggest that any lee waves that are present

may not be resolved in the model, however these small-wavelength waves are likely

to be of small amplitude. The horizontal wind speed at 850 hPa (Figure 5.12 [d])

and 925 hPa (Figure 5.12 [e]) also shows a cut-off between wave occurrence and in-

creasing wind speed, again with regional differences. There is no such change in lee

wave occurrence for the Brunt-Väisälä frequency in Figure 5.12 (f), suggesting that

it is changing horizontal wind speed rather than the Brunt-Väisälä frequency that

tends to control the Scorer parameter for lee wave occurrence in Britain and Ireland.

5.3.5 Relationship between lee wave amplitude and horizontal wind speed

Figure 5.13 shows a comparison between the amplitude of lee waves and the 750 hPa

wind speeds for 1982–1987, for coarse-grained data (8 × 8 pixel regions as described

in Section 5.2.2). This shorter subset of the full climatology data was obtained

to save on disk space and time consumed pulling data from MASS. The 750 hPa

surface was chosen as it is one of the closest pressure surfaces available to the data

used to predict the amplitudes (700 hPa). However, repeating the analysis using the

horizontal wind speeds on the 650 hPa surface and the 10 m wind speeds produced

similar histograms to those in Figure 5.13.

The raw data shown in Figure 5.13 (a) is dominated by the high number of cases of

small amplitude lee waves (< 1 m s−1), with a large spread of surface wind speeds
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Figure 5.13: Histograms to compare between the local (17.6 km × 17.6 km, or 8 × 8
grid-points) maximal amplitude and 750 hPa wind speed for 1982–1987 over Britain
and Ireland. (a) shows the raw data, while (b) and (c) are normalised: by amplitude
(b: each row shows a probability density function (PDF) of 750 hPa wind speeds for
each amplitude), and by wind speed (c: each column shows a PDF of amplitudes
for each 750 hPa wind speed) .

at lower amplitudes. The Spearman rank correlation coefficient is ρ = 0.389, which

does not show a strong correlation between the amplitude of lee waves and the

750 hPa wind speed. When normalising by amplitude in (b), there is a positive

trend where stronger lee waves have stronger 750 hPa wind speeds associated with

them. For example, the modal 750 hPa wind speed for lee waves with an amplitude

of 1 m s−1 is ≈ 22 m s−1, and the modal 750 hPa wind speed for lee waves with an

amplitude of 3 m s−1 is ≈ 30 m s−1. However, when normalising by the surface wind

speed in (c), there are a similar distribution of lee wave amplitudes for each wind

speed. This shows that high wind speeds are necessary for strong amplitude lee

waves, but certainly not sufficient, with the majority of events of high horizontal

wind speeds on the 750 hPa still corresponding to low amplitude lee waves.

5.4 Conclusions

This chapter presents a new climatology of lee waves, produced using machine learn-

ing models trained to detect and characterise lee waves from NWP model output.

This study builds on previous work to investigate lee waves over Britain and Ire-

land (such as Vosper et al., 2013; Worthington, 2006) in several ways. This study

creates a climatology over a longer period (1982–2012) than Vosper et al. (2013)
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and Worthington (2006), with full coverage over the entirety of Britain and Ireland.

This study uses data from a more sophisticated NWP model than the dry, linear

3DVOM model used in Vosper et al. (2013). The machine learning techniques used

to develop the climatology of lee waves detect and characterise lee waves resolved

by the NWP model, rather than using peak wave amplitudes. While the findings in

this chapter support the conclusions of previous studies, this work goes further, for

example investigating the relationship between lee waves, their characteristics, and

weather patterns as well as exploring which underlying meteorological variables are

driving the variability in lee waves.

This chapter verifies some of the findings from Vosper et al. (2013): for example

both studies found that lee waves are relatively common in the Scottish Highlands,

the north of England/Pennines and north Wales; that lee waves occur more often in

the winter months than the summer (Figure 5.2); amplitudes stronger than 3 m s−1

occur rarely (Figure 5.7 [b]); and that the strongest amplitude lee waves occur during

westerly flow: which corresponds to the strongest amplitude lee waves produced in

NAO+ and Southwesterly regimes (Figures 5.7 [b]). In addition, both pieces of work

show that the amplitude of lee waves increased with increasing horizontal wind speed

(Figure 5.13).

The work in this chapter did not find any evidence within the UKCP18 Local data to

suggest a diurnal cycle in trapped lee waves or their characteristics, consistent with

the findings of Worthington (2006). The analysis presented here expands on that

from Worthington (2006) to cover a much longer time period (1982–2012) than they

used, over a larger region (the entirety of Britain and Ireland compared to a region

centred around central Wales and one VHF radar). This lack of a diurnal cycle of lee

waves is not necessarily replicated elsewhere in the world: Ruff and Ólafsson (2019)

attribute observed diurnal changes in downslope wind storms to gravity waves. It

may also be that any diurnal cycle may be too small to be captured by the NWP

model, although the lee waves simulated in the output of the MetUM used here are

generally in good agreement with observations, as shown by Sheridan et al. (2017).

Another possibility is that the impacts of the diurnal cycle are most significant in a

shallow layer near the surface and so they only impact on the shortest wavelengths

of gravity waves which are not resolved in the model data used.

Lee waves occur more often in autumn and winter months than in the spring and
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summer months: this is likely due to the prevalence of weather patterns more condu-

cive to strong winds in the winter than the summer. The NAO+ and Southwesterly

weather patterns, which have some of the highest prevalence of lee waves across the

country (Figure 5.6), occur more often in the autumn and winter (40% of days) than

the spring and summer (33% of days) during the climatology period 1982–2012. The

weather patterns have more influence on lee waves than any diurnal effects: with

relatively few lee waves being produced during NAO− and Scandinavian high con-

ditions, compared to NAO+ or Southwesterly conditions. In general, the frequency

of occurrence of lee waves is determined by the orography: there is correlation (Fig-

ure 5.3) between the local orography and whether lee waves occur. However, the

geographic pattern of lee wave occurrence changes depending on the weather pattern.

The spatial difference in lee waves under weather patterns is likely due to the relative

strong winds experienced in different locations; for example the greater occurrence of

lee waves over Scotland compared to (for example) Wales in Figure 5.6 under Azores

high conditions and Southwesterly or NAO+ conditions are likely due to Scotland

experiencing higher wind speeds under Azores high conditions than Wales, and more

equal wind speeds between the two under Southwesterly or NAO+ regimes. Hence

weather patterns with stronger wind speeds experience more conditions conducive

to trapped lee waves.

There is some variation in lee wave amplitude depending on the weather pattern:

while the amplitude of most lee waves is less than 1 m s−1 (Figure 5.7 [b]), the mean

amplitudes in NAO+ conditions are stronger than the mean of the complete data

set over most of Britain and Ireland. Wavelengths of lee waves are the longest under

NAO+ conditions with Southwesterly conditions exhibiting a similar distribution of

wavelengths, with a larger spread than the other patterns. Wavelengths under all

the other weather conditions present a smaller distribution of wavelengths (as in

Figure 5.7 [c]), but with some differences as to where lee waves are located (Fig-

ure 5.9). For example, under NAO− conditions, lee waves tend to be confined to

Scotland, portions of Ireland and the west coast of England and Wales. In contrast,

lee waves in other patterns (such as Northwesterly, Low close to the UK, and Azores

high) are more likely to propagate further, such as over the Pennines and towards

the eastern coast of Britain. The orientation of lee waves is broadly in line with

the synoptic wind direction (Figure 5.10), though with some large spread within the

data depending on the regime, but this is likely due to the multimodal distribution of
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the orientation under some weather patterns. The Northwesterly and Southwesterly

patterns have lee waves oriented north-west/south-east and south-west/north-east

respectively. In Figure 5.7 (d), the orientation of lee waves under these two patterns

have a unimodal distribution, while the lee wave orientations in the rest of patterns

tend to exhibit more bimodal behaviour (such as that seen for lee waves in NAO+

conditions).

When predicting the occurrence of lee waves based on other meteorological variables,

the Scorer parameter, horizontal wind speed and Brunt-Väisälä frequency came out

as being more important (having larger SHAP values) than the directional wind

shear, virtual potential temperature or the month of the year (despite there being a

seasonal cycle of lee waves). There is a height dependence, with surfaces around and

below where the lee waves were originally predicted (700 hPa) being more important

than those well above (compare the SHAP values for horizontal wind speeds at

850 hPa and 925 hPa with 200 hPa and 300 hPa in Figure 5.11). The smaller SHAP

values for the month of the year and weather patterns are likely due to the smaller

variations within these values. They do affect the generation of lee waves, as seen

in Figures 5.2 and 5.6, but the variation of other meteorological conditions is more

important. For example, the weather patterns drive the synoptic conditions which

result in more conducive conditions for lee waves.

The relationship between lee wave occurrence is shown for the Scorer parameter

and the horizontal wind speed, but not the Brunt-Väisälä frequency in Figure 5.12,

suggesting that the horizontal wind speed tends to control the Scorer parameter

rather than the stability. However, there is a variation in occurrence of lee waves

between regions for these variables, and the cut-offs in the distributions of the Scorer

parameter correspond to reasonable wavelength lee waves.

The relationship between amplitude and horizontal wind speeds is explored in Fig-

ure 5.13. However, despite a dominance of smaller amplitudes in the data, there

is correlation between the 750 hPa wind speeds and the amplitude of the lee waves

at 700 hPa, when the data is normalised by lee wave amplitude, but no such sim-

ilar correlation when normalising by the 750 hPa wind speed in Figure 5.13. This

shows that strong wind speeds are a necessary but not sufficient indicator of high

amplitude lee waves.
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The next chapter will explore the application of these trained machine learning

models to the future time slices of the UKCP18 Local data to examine the effects,

if any, on lee waves over Britain and Ireland under climate change.



Chapter 6

How do lee waves change under a
future climate scenario?

6.1 Introduction

This chapter investigates how the frequency of occurrence and characteristics of

lee waves over Britain and Ireland may change in the future, by using the high

resolution regional climate simulations from UKCP18 under the RCP 8.5 scenario

and expanding on the work of Chapters 4 and 5. Under climate change, the number

of years with severe storms affecting Britain and Ireland is projected (in the UKCP18

projections) to increase (Bloomfield et al., 2024). In addition, Manning et al. (2023)

found the severity of windstorms were projected to increase in a future climate (for

example, a current one in ten year event is projected to be a one in five or six year

event under RCP 8.5). These projected changes in occurrence of high wind speed

events could mean more occurrences of high amplitude lee wave events and therefore

more rotor events in a future climate, due to the changing distribution of strong wind

speeds (as discussed in Section 5.3.5).

The machine learning models from Chapter 4 are used to produce data from UKCP18

on the frequency of occurrence and characteristics of lee waves under RCP 8.5.

Chapter 5 used data from the first time slice of the UKCP18 Local data, TS1 (1982–

2012), where ERA-Interim re-analysis was used to drive the CPM to produce the

data for the present-day climate. This chapter uses the output from the UKCP18

Local simulations for the future climate time slices, TS2 (2021–2041) & TS3 (2060–

109
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2080).

This chapter is not intended to be a repeat of the methods in Chapter 5 but for future

climate data, but instead to highlight how lee waves may change from the present

climate to a future, high emissions scenario, climate. The physics is not changing:

the formation of lee waves still depends on the Scorer parameter decreasing with

height. However, changes in the synoptic meteorology in a future climate scenario

may have an impact on how often lee waves are generated, or the characteristics of lee

waves in this future scenario. For example, a projected increase in the occurrence of

high amplitude (> 3 m s−1) lee waves may strongly impact aviation activity through

the increased risk of rotors and turbulence under RCP 8.5. In addition, the future

climate data is an ensemble, so the uncertainty within the predictions can also be

assessed.

An overview of the methodology is given in Section 6.2, the results are discussed in

Section 6.3 and some concluding remarks are given in Section 6.4.

6.2 Methodology

In the same vein as in Chapter 5, lee waves over Britain and Ireland were identified

from UKCP18 Local data, specifically the vertical velocities on the 700 hPa surface.

The vertical velocity data, from each of the 12 ensemble members for TS2 and TS3,

were acquired from MASS. The machine learning models described in Chapter 4

were applied to the vertical velocity data to produce masks of lee wave occurrence,

amplitude, wavelength and orientation for each of the ensemble members. From

this, a climatology was built up of lee waves within each ensemble member for TS2

and TS3.

This large data set was analysed in several ways: by comparing the headline change

in lee wave occurrence from TS1 to TS2 (2021–2041) and TS3 (2060–2080) using

probability density functions (PDFs); changes within the diurnal cycle of lee wave

occurrence and characteristics using PDFs and maps; and finally using the weather

patterns (described in Section 2.4 and Section 3.3) from Neal et al. (2016) to ex-

amine changes to lee wave occurrence and characteristics by weather pattern, again

using PDFs and maps. The weather patterns proved useful for examining the ef-
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Lee wave frequency of occurrence: Ensemble and ERA-Interim driven simulation comparison (TS1, "1982")

Figure 6.1: Comparison of lee wave frequency of occurrence between ERA-Interim
driven simulation and the PPE for “1982”.

fects of different synoptic weather conditions on the generation and characteristics

of lee waves over Britain and Ireland for TS1 in Chapter 5. In this chapter, they are

also employed to investigate how the synoptic weather changed within these pat-

terns from TS1 to the future time slices, and whether modelled changes in lee wave

characteristics are attributable to changes in the occurrence of particular weather

patterns. The weather pattern data were available every day, for each ensemble

member in the future climate simulations.

These distributions and map-style plots were, as in Chapter 5, produced by using the

Python library dask to process the large number of masks (segmentation and char-

acteristics) outputted by the machine learning models from Chapter 4. Together,

these data will give an overview of how lee wave activity is projected to change

over Britain and Ireland from the current climate to a future climate scenario under

RCP 8.5.

6.2.1 Examining the differences between the ERA-Interim driven simu-

lation and the PPE

Despite still using the same model setup, there is a difference between the present-

day (ERA-Interim driven) and future (PPE) climate simulations because they are
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Figure 6.2: 14 day rolling mean lee wave frequency of occurrence for the PPE and
the ERA-Interim driven simulation, for “1982”.
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driven by different boundary conditions, because there will be biases in the cli-

mate model in the PPE compared to the reanalysis-driven model used for TS1

in Chapter 5. To analyse this difference, a subset of the PPE data for TS1 was

compared with the ERA-Interim driven ensemble. Figure 6.1 shows the lee wave

frequency of occurrence between each of the 12 ensemble members in the PPE, for

“1982” and the ERA-Interim driven simulation for 1982. The ERA-Interim driven

simulation compares well against the other ensemble members, with a similar fre-

quency of occurrence of lee waves occurring in the same (mountainous) areas in

both the ERA-Interim driven simulation, and within the PPE. Figure 6.2 shows

the lee wave frequency of occurrence for the PPE and the ERA-Interim driven sim-

ulation (for 1982, and the mean occurrence for the whole simulation). The seasonal

cycle in lee wave frequency of occurrence is shown in both the ERA-Interim driven

simulation, and the PPE. The ERA-Interim simulation in 1982 is within the 95%

confidence interval of the ensemble mean 79.0% of the time and the ERA-Interim

driven simulation mean (for the full TS1 period) is within the 95% confidence in-

terval 100% of the time, suggesting a similar climatology in both the ERA-Interim

driven simulation and the PPE for TS1. Hence, while care needs to be taken in

comparing the ERA-Interim driven simulation with the PPE for the future climate

simulations, both the ERA-Interim driven simulation and the PPE show similar oc-

currences in lee waves over Britain and Ireland throughout TS1, meaning that this

comparison is appropriate.

6.3 Results

The overall projected changes in lee wave occurrence and characteristics from TS1

to TS2 and TS3 are small. Figure 6.3 shows PDFs for the lee wave frequency of

occurrence and characteristics in the three time slices considered in this study: TS1

of the present-day climate, and TS2 and TS3 of the future climate under RCP 8.5.

There is little change within the probability distributions from TS1 to the future

climate scenarios for frequency of occurrence (a) and wavelength (c). For the amp-

litude (b), while the bulk of the distributions look very similar, at the stronger amp-

litudes within the tail of the distributions, there are cases of amplitudes stronger

than 5 m s−1 in TS2 and TS3, which do not occur in the data for TS1. 7 of the 12

ensemble members in TS2 had PDFs containing amplitudes stronger than 5 m s−1,
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Figure 6.3: Headline PDFs of lee wave frequency of occurrence and characteristics
for TS1 (1982–2012), TS2 (2021–2040) and TS3 (2060–2080). Shading shows the
95% confidence intervals for the ensemble mean for TS2 and TS3.

Table 6.1: Table comparing the percentage of the time (to 3 significant figures) where
lee waves of amplitude exceeding 1 m s−1, 3 m s−1 and 5 m s−1 occurred somewhere in
the domain over Britain and Ireland, for TS1, TS2 and TS3. For TS2 and TS3, the
ensemble means are given as well as a 95% confidence interval from the ensemble.

Time Slice % of the time where lee waves of amplitude occurred (3 s.f.)
≥ 1 m s−1 ≥ 3 m s−1 ≥ 5 m s−1

TS1 51.0% 0.624% 0%
TS2 51.3% ± 1.49% 0.711% ± 0.110% 0.00389% ± 0.00201%
TS3 51.2% ± 1.65% 0.691% ± 0.0995% 0.00524% ± 0.00242%

while in TS3 the PDFs of 9 members contained amplitudes stronger than 5 m s−1.

It should be emphasised that these cases of stronger amplitudes are very rare within

the data, and while the majority (in both TS2 and TS3) of ensemble members con-

tain these stronger amplitudes, the rest of the distribution changes little. There is a

significant shift in orientation (d) from TS1 to TS2 and TS3, where there are more

lee waves with a west-north-west/east-south-east orientation and fewer north/south

oriented waves in the future scenario.

Table 6.1 shows how often lee waves of amplitude greater than 1 m s−1 and 3 m s−1

were produced somewhere in the UKCP18 Local domain (shown in Figure 3.1) for

TS1, TS2 and TS3. For TS2 and TS3, the ensemble mean occurrences as well
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Figure 6.4: Mean diurnal cycle for each ensemble member for the two future time
slices of lee wave frequency of occurrence, averaged over the Scottish Highlands,
with the ensemble mean, and the present-day time slice overlain for comparison.
The 95% confidence interval for the ensemble mean is shaded in grey.

as a 95% confidence interval are shown. While the ensemble mean occurrences of

amplitudes stronger than 1 m s−1 and 3 m s−1 in TS2 and TS3 represent a slight

increase from TS1, the 95% confidence interval of the ensemble in both TS2 and

TS3 includes the values from TS1.

The following sections investigate any diurnal effects and effects due to weather

patterns (Neal et al., 2016) on lee waves in the future climate scenario.

6.3.1 Diurnal effects

Figure 6.4 shows the mean diurnal cycle of lee wave frequency of occurrence for

each ensemble member for TS2 and TS3, and the data from the present-day (TS1

[1982–2012]) climatology, in each case averaged across the Scottish Highlands region.

There is little change between ensemble members at each time of day, and the current

climatology (TS1) is well within the 95% confidence interval (grey shading) of the

ensemble mean of the future climatology for both time slices. While the spread

between ensemble members increases in TS3 from TS2, the ensemble mean frequency

of occurrence of lee waves over the Scottish Highlands changes little from TS1 to

TS2 and TS3, remaining within 1 percentage point of 38%.

Figure 6.5 shows PDFs for lee wave frequency of occurrence and characteristics by

hour of the day, for TS3 as a proportion of the distributions in TS1 (i.e. as a
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Figure 6.5: PDFs of lee wave frequency of occurrence (a) and characteristics (b)–(d)
for TS3, by hour of the day as a proportion of the PDFs from the TS1 climatology.

proportion of the distributions plotted in Figure 5.5: the raw distributions for TS3

can be seen in Appendix A). In Figure 6.5, 1 would indicate no change from TS1 to

TS3.

There is no systematic change in diurnal cycle of lee wave occurrence or character-

istics from TS1 to TS3 (the plots for TS2 look very similar to this, showing a similar

amount of change from TS1). The very small changes in amplitude (b) are at very

small probabilities: lee waves of amplitude stronger than 3 m s−1 occur somewhere

within the domain less than 1% of the time according to Table 6.1. The distribu-

tions of lee wave wavelength (c) and orientation (d) remain similar at every time

during the day in the data, but the data overall shows a shift towards more east-west

oriented lee waves in the future data from more north-westerly/south-easterly seen

in TS1.

6.3.2 Weather patterns

Since the occurrence of the weather patterns changes from TS1 to TS2 and TS3, it

was examined whether changes in lee wave frequency of occurrence were attributable

to the changes in the weather patterns. Here we focus on TS3 since we expect the
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Figure 6.6: Maps showing the change in percentage points due to the changing pre-
valence of weather patterns in TS3, and the modelled change in lee wave prevalence
in TS3. In (a), the expected change in lee wave occurrence if only the change in
weather pattern occurrence, (b) the modelled change in lee wave occurrence from
the UKCP18 Local data. In (c), the standard error on the ensemble mean is shown
for just the weather pattern occurrence and (d) within the modelled data.

most significant differences to occur at the later time slice. The spatial distribution

of lee waves under each weather pattern for TS1 were obtained (i.e. as shown in

Figure 5.6). Then, by using the frequency of occurrence of each weather pattern in

TS3, an expected overall map of lee wave occurrence was produced assuming the

changes in lee wave occurrence depended only on the changing occurrence of the

weather patterns from TS1 to TS3. For example, NAO+ conditions occurred 19.3%

of the time in TS3, down from 20.1% in TS1. To produce this “expected” change

map, the spatial pattern of NAO+ lee waves from TS1 were expected to occur 19.3%

of the time in TS3.

Figure 6.6(a) shows what the change would be having adjusted the TS1 spatial
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distribution of lee waves under the weather patterns to TS3 and (b) shows the

ensemble mean lee wave frequency of occurrence change for TS3. The change in (a) is

small, at most a decrease in lee wave occurrence of 1 percentage point. This contrasts

with the modelled change in lee wave occurrence in (b), from the UKCP18 data.

While the signs mostly agree (decrease in waves), the magnitude of the decrease

is 3 percentage points in the hilliest regions. (c) and (d) show the standard error

between the ensemble members. For (c), this only depends on the occurrence of

the different weather patterns between ensemble members, and in (d), the variation

in the physics of the different ensemble members, as well as the weather pattern

occurrence.

Hence, the modelled change in lee wave occurrence in the UKCP18 Local data in

TS3 is significantly more than that which can be explained by only a change in

distribution of the weather patterns in the future climate data, and there must be

changes in lee wave occurrence within the weather patterns too.

Figure 6.7 shows the PDFs of lee wave occurrence and characteristics by weather

pattern, as a proportion of the TS1 climatology for TS2 and TS3. There is a much

greater change within the weather patterns for occurrence and characteristics than

by the time of day (Figure 6.5). The raw distributions (equivalents of Figure 5.7 for

TS2 and TS3) can be seen in Appendix A. Figure 6.8 shows the change in occurrence

and characteristics from TS2 to TS3, removing the effect (if any) from the differently

driven models (ERA-Interim for TS1 and the PPE for TS2 and TS3).

The following subsections take each of these characteristics in turn.

6.3.2.1 Lee wave frequency of occurrence

Figure 6.9 shows how the lee wave frequency of occurrence changes from TS1 to

TS2 and TS3 within the different weather patterns, compared to TS1. The most

lee waves occur in the NAO+, Southwesterly, and the High pressure centred over

UK patterns, and the least in NAO− and Scandinavian high, similar to in TS1.

The biggest change in lee wave frequency of occurrence happens in the Azores high

pattern, which only accounts for 4.3% (4.1%) of days in TS2 (TS3), the smallest

share of the weather patterns. Under Azores high conditions, the frequency of

occurrence of lee waves decreases by more than 10 percentage points in the Scottish
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Figure 6.7: PDFs of lee wave frequency of occurrence (i) and characteristics (ii-iv)
for TS2 (a) and TS3 (b), by weather pattern, as a proportion of the PDFs from
the TS1 climatology. Values of 1 indicate no change from TS1 to the future. The
95th percentile amplitude of lee waves for each weather pattern in the time slice is
marked as a vertical line in (ii).
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Figure 6.8: PDFs of lee wave frequency of occurrence (i) and characteristics (ii-iv)
for TS3, by weather pattern, as a proportion of the PDFs from the TS2 climatology.
Only sections where the change from TS2 to TS3 was significant (the entirety of the
95% confidence interval on the mean change had the same sign) are shown.

Highlands compared to TS1, in both TS2 and TS3. In TS1, the highest frequency

of occurrence of lee waves occurred under the NAO+ pattern, and the frequency of

occurrence of lee waves increases in TS3 compared to TS1. There are also more lee

waves generated in TS3 during the High pressure centred over UK and Low close

to UK weather patterns compared to TS1. From TS2 to TS3 in Figure 6.8(i), while

there are significant changes projected in the occurrence of lee waves under different

weather patterns, these are relatively small and show no systematic change across

weather patterns. There is a projected increase in occurrence of lee waves under the

NAO+ pattern from TS2 to TS3, which matches modelled increases in Figure 6.7.

The changes from TS2 to TS3 in Figure 6.8 are smaller than those in Figure 6.7 for

TS1 to TS2 and TS3.

Figure 6.9 also shows the projected change of MSLP contours within the weather

patterns. Solid lines show the ensemble MSLP contours for the weather pattern,

and dotted the MSLP contours for TS1. For example, the orientation of the MSLP

under the High pressure over UK pattern are projected to change, as is the mean

position of the low under the Low close to UK pattern. In Figure 6.7 (a & b [i]),

the frequency of occurrence of lee waves in the future climate simulations remains
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Figure 6.9: TS2 & TS3 ensemble mean change in lee wave frequency of occurrence
compared to TS1, by weather pattern. Colour contours show the percentage point
change in lee wave frequency of occurrence in TS2 & TS3 compared to TS1 (for ex-
ample +2% here may represent a change from 20% in TS1 to 22% in TS2). Hatching
shows the lee wave frequency of occurrence in TS2 or 3. The percentage in brackets
after each pattern’s name indicates how often that pattern occurs in that time slice,
and how often it occurred in TS1 (TS1→TS2/3). Grey contour lines show the MSLP
pattern for that period: dotted for TS1 and solid for TS2/3.
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similar to TS1 for pixels with wave activity up to 30% of the time, and general

increases in occurrence at the tail of the distribution for all the patterns except

Azores high. In the Azores high pattern, there is a strong decrease in occurrence of

lee waves from TS1 for both TS2 and TS3. This change could be attributed to the

changing patterns of horizontal wind speeds from the present-day to future climate

scenarios under these two patterns.

Figure 6.10 shows PDFs of 750 hPa horizontal wind speeds under the High pressure

centred over UK (a) and Azores high (b) weather patterns for TS1 and each ensemble

member in TS2 and TS3. Under the High pressure centred over UK pattern, the

occurrence of wind speeds in the range 5 m s−1 to 15 m s−1 decreases in TS2 and

TS3 from TS1. This decrease in occurrence of horizontal wind speeds in the range

8 m s−1 to 12 m s−1 is significant at the 95% confidence level from TS1 to TS3,

but not from TS1 to TS2 or from TS2 to TS3. There is also higher occurrence

of 750 hPa horizontal wind speeds stronger than 15 m s−1 in TS2 and particularly

TS3, and this change from TS1 to TS3 for wind speeds in the range 25 m s−1 to

30 m s−1 is significant at the 95% confidence level. Under the Azores high pattern,

the occurrence of 750 hPa wind speeds between 10 m s−1 and 20 m s−1 decreases from

TS1 to TS2 and TS3, and the occurrence of 750 hPa wind speeds slower than 10 m s−1

increases in TS2 and TS3 from TS1. The decrease in occurrence of horizontal wind

speeds in the range 10 m s−1 to 14 m s−1 from TS1 to TS2 and TS3 is significant at

the 95% confidence level.

The modelled changes in lee wave frequencies of occurrence under these two patterns

in Figure 6.7 (a & b [i]) and Figure 6.9 suggest that the shift to slower horizontal

wind speeds in the Azores high pattern may be linked to the decrease in occurrence

of lee waves under Azores high conditions. The pattern is less clear for the High

pressure centred over UK pattern: there is still a decrease from TS1 to TS2 and

TS3 in occurrence of 750 hPa horizontal wind speeds between 5 and 15 m s−1, but

an increase in 750 hPa horizontal wind speeds faster than 15 m s−1 could be linked to

the modelled increase in lee wave occurrence under the High pressure centred over

UK pattern. Lee wave generation depends on the Scorer parameter, of which the

horizontal wind speed contributes: so there could be changes in stability occurring

too.
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Figure 6.10: PDFs showing the 750 hPa wind speed under TS1, TS2 and TS3 for
the High pressure centred over UK (a) and Azores high (b) weather patterns. For
TS2 and TS3, each ensemble member is plotted (thin lines), along with the ensemble
means (bold lines) and the 95% confidence interval on the mean (shading).

6.3.2.2 Amplitude

Figure 6.7 (a & b [ii]) shows the change in PDFs of the lee wave amplitude for each

weather pattern from TS1 to TS2 and TS3, with the 95th percentile lee wave amp-

litude in TS2 and TS3 for each weather pattern shown. The amount of change from

TS1 to TS2 and TS3 is similar, but with large uncertainties at amplitudes stronger

than 3 m s−1. The cases of lee wave amplitudes stronger than 2 m s−1 increase for

the NAO+, Southwesterly, High pressure centred over UK and Azores high patterns,

and decrease for the NAO− regime. The Low close to the UK pattern shows a de-

crease in amplitude between 2 and 4 m s−1 for TS2 and an increase for TS3 compared

to TS1. The pattern is unclear for amplitudes stronger than 3 m s−1 in general –

but cases of lee wave amplitudes stronger than 3 m s−1 occur rarely (Table 6.1) so

care must be taken to not read too much into the data. Figure 6.8 (ii) shows the

significant (at the 95% confidence level) change in lee wave amplitude by weather

pattern from TS2 to TS3. There are more modelled cases of lee wave amplitudes

stronger than 2 m s−1 in the Azores high pattern and Low close to the UK pattern

in TS3 than TS2, with the other patterns showing similar, but significant decreases

in amplitudes stronger than 2 m s−1 from TS2 to TS3.

Figure 6.11 shows maps displaying the projected change in the ensemble mean 95th

percentile amplitudes for the 8 weather patterns for TS2 (a) and TS3 (b), where this

change is significant at the 95% confidence level. As Figure 6.7 (a & b [ii]) shows,

for each weather pattern, the 95th percentile lee wave amplitude is approximately
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(a) UKCP18 Local: TS2 Ensemble mean, 95th percentile lee wave amplitude change
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(b) UKCP18 Local: TS3 Ensemble mean, 95th percentile lee wave amplitude change

Ensemble mean 95th percentile TS2 lee wave amplitude (ms 1)
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Figure 6.11: The change in the ensemble mean 95th percentile lee wave amplitude by
weather pattern for TS2 (a) and TS3 (b). Colour contours show the change (where
significant at the 95% confidence level) in the amplitude from the TS1 climatology,
and hatching shows the respective amplitude for the future climatology period. As
in Figure 6.9, the solid contours show the MSLP pattern for TS2/3, and dotted for
TS1.
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1 m s−1, so the projected changes to higher amplitude lee waves are at the tail of

the amplitude distribution, far beyond the 95th percentile as shown in Figure 6.11.

Under each weather pattern, the 95th percentile amplitude decreases over Scotland,

except for a small but significant increase in NAO+ conditions in the West High-

lands, and the far North Highlands in Low close to UK conditions. The Scottish

Highlands are typically where the largest amplitude waves are seen, shown by dots

within the hatches in Figure 6.11 (a) and (b). Over the rest of Britain and Ireland,

the 95th percentile amplitude within each weather pattern decreases in most cases

(all apart from Low close to UK conditions), especially by TS3, but there is no clear

pattern to the changes in amplitude in TS2 and TS3. There are changes to the

MSLP contours, both in orientation and gradient, which could affect the generation

of lee waves at different amplitudes, and as shown in Chapter 5, the wind speed

seemed to have more of an effect on amplitudes than the stability.

6.3.2.3 Wavelength

Figure 6.7 (a & b [iii]) shows PDFs of the ensemble mean lee wave wavelength for

each weather pattern for TS2 and TS3, as a proportion of the TS1 climatology

distribution. The distribution of wavelengths does not change much for wavelengths

shorter than 50 km, compared to TS1, which covers most cases of lee waves. For very

long wavelength (> 50 km) lee waves, the change is similar for both TS2 and TS3,

with all patterns showing an increase compared to TS1 in the future. The change

in wavelength under NAO+ conditions is smaller than the rest of the patterns – but

the longest wavelength lee waves in TS1 occurred under NAO+ conditions, as Figure

5.7 (c) shows, albeit there being few cases of wavelengths longer than 50 km overall.

In Figure 6.8(iii), there is little significant projected change in wavelengths shorter

than 50 km for all patterns except for Scandinavian high conditions which shows a

significant increase in wavelengths between 30 km and 60 km. At wavelengths longer

than 50 km, although rare, there is a significant projected increase in long wavelength

waves under Low close to the UK conditions, and a decrease in long wavelength lee

waves under High pressure centred over UK and Northwesterly conditions from TS2

to TS3.

Figure 6.12 shows spatially the change in the ensemble mean lee wave wavelength for

each of the weather patterns for TS2 (a) and TS3 (b) from TS1 as colour contours.
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(a) UKCP18 Local: TS2 mean lee wave wavelength change

Ensemble mean TS2 lee wave wavelength (km)
10.00 < x 16.00 16.00 < x 22.00 22.00 < x 28.00 28.00 < x 34.00

48°N

50°N

52°N

54°N

56°N

58°N

60°N
1. NAO-

1016

10
20

10
20

2. NAO+

996

1000

1004

1008

1012

1016

996

1000

1004

1008

1012

1016

3. Northwesterly

1008

1012

1016

1008

1012

1016

1020

4. Southwesterly

10
00

10
04

10
08

10
12

1016

10
04

10
08

1012

1016

1020

10°W 5°W 0° 2.5°E
48°N

50°N

52°N

54°N

56°N

58°N

60°N
5. Scandinavian high

10
12

1016

1020

10
16

1020

1024

10°W 5°W 0° 2.5°E

6. High pressure centred over UK
1016

1020

1024

1020

1024

1028

10°W 5°W 0° 2.5°E

7. Low close to UK

10
04

10
08

10
12

10
00

10
04

1008

10°W 5°W 0° 2.5°E

8. Azores high
1008

1012

1016

1020

1024

1012

1016

1020

1024

4

2

0

2

4

En
se

m
bl

e 
m

ea
n 

wa
ve

le
ng

th
 c

ha
ng

e 
(k

m
)

(b) UKCP18 Local: TS3 mean lee wave wavelength change

Ensemble mean TS3 lee wave wavelength (km)
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Figure 6.12: The change in mean lee wave wavelength from TS1 to TS2 (a) and
TS3 (b) by weather pattern. Hatches show the ensemble mean wavelength for the
respective time slice. As in Figure 6.9, the solid contours show the MSLP pattern
for TS2/3, and dotted for TS1.
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The respective mean lee wave wavelength for each weather pattern for that time slice

is also shown as hatches. The mean wavelength changes by at most 5 km, with the

largest changes seen in the Low close to the UK weather pattern, where the mean

wavelength increases from TS1 to TS3. Despite the decrease in mean wavelength

compared to TS1 under NAO+ conditions, the longest mean wavelengths still occur

under NAO+ conditions in TS2 and TS3.

The change in wavelength from TS1 to TS2 and TS3 is mostly significant at the

95% confidence level, illustrated by the hatched areas for TS2 and TS3 in Figure

6.13. This shows that the changes in wavelength are consistent between ensemble

members at the 95% confidence level, but there is no uniform pattern across Britain

and Ireland geographically or between weather patterns. This change in wavelength

may be attributable to the changing distribution of the Scorer parameter under

different weather patterns (due to the changing geostrophic winds from the present-

day to future climate) affecting the wavelengths that lee waves are generated at in

the future climate simulations.

6.3.2.4 Orientation

Figure 6.7 (a & b [iv]) shows the PDFs of lee wave orientations under the different

weather patterns for TS2 (a) and TS3 (b) compared to TS1. The shift to more

east/west orientations in TS2 and TS3 is again evident in most of the weather

patterns – particularly the Low close to UK cases. Conversely, the NAO− pattern

has a slight decrease in east/west oriented waves in the future simulations compared

to TS1. Orientations in the NAO+, High pressure over UK and Northwesterly

patterns remain similar to those in TS1. In TS2, the orientations of lee waves in

Azores high conditions gets more northwesterly, but this pattern is not continued

in TS3. This pattern is also shown in Figure 6.8(iv), where the orientations of lee

waves are shown to be significantly more east-west oriented from TS2 to TS3 in

NAO+, Southwesterly, Northwesterly and Azores high conditions, but less so under

NAO−. The remaining patterns do not show a significant decrease in east-west

oriented waves from TS2 to TS3.

Figure 6.14 shows the mean orientation by weather pattern for TS2 (a) and TS3 (b),

with the mean orientations from TS1 shown as semi-transparent arrows. Any area
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(b) UKCP18 Local: TS1 to TS3 significant lee wave wavelength change

Figure 6.13: Maps showing only the significant wavelength change from TS1 to
the future climate (95% confidence level). Colour contours as in Figure 6.12, but
hatching showing locations of significant change.
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(b) UKCP18 Local: TS3 ensemble mean orientation change

Figure 6.14: Maps showing mean lee wave orientation (the direction of wave propaga-
tion, which is perpendicular to the wave fronts) by weather pattern for TS2 (a) and
TS3 (b). Red arrows indicate a significant change in orientation from present-day
to future climate at the 95% confidence level. The semi-transparent overlay are the
mean lee wave orientations by weather pattern from TS1 (as in Figure 5.10). Simil-
arly to Figure 6.9, the solid contours show the MSLP pattern for TS2/3, and dotted
for TS1.
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 UKCP18 Local: TS3 ensemble mean orientation, compared with TS2

Figure 6.15: Maps showing the mean orientation (the direction of wave propagation,
which is perpendicular to the wave fronts) by weather pattern for TS3, with TS2
shown as a semi-transparent underlay. Red arrows indicate a significant change in
orientation from TS2 to TS3 at the 95% confidence level. The solid line contours
show the MSLP pattern for TS3, and dotted TS2.
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where this change from the present-day climate is significant at the 95% confidence

level are shown as red arrows. As in TS1, the orientation of lee waves broadly

follows the MSLP contours for that case. For example lee waves generated under

the Southwesterly weather pattern generally propagate in a north east/south west

direction. The mean lee wave orientation has not changed in any great measure

within weather patterns from TS1 to TS2 and TS3: the greatest deviations are

where there is a large standard error between ensemble members. There is also

no clear large change in lee wave orientation within weather patterns from TS2

to TS3 (Figure 6.15). However, within the High pressure centred over UK and

Azores high patterns, the mean wind direction (from the MSLP isobars) has shifted

in the future simulations, and this is reflected in the mean orientations shown in

Figure 6.14. There are small, but significant changes in mean lee wave orientation,

even from TS2 to TS3 as shown in Figure 6.15, for example under the NAO+ and

Southwesterly patterns in the Scottish Highlands, and the Northwesterly weather

pattern over Ireland, Scotland, Wales and northern England. There is a change in

the MSLP contours from TS2 TS3 under the Northwesterly weather pattern, perhaps

explaining the significant changes in lee wave orientation under this pattern.

6.4 Conclusions

The ensemble mean frequency of occurrence of lee waves is modelled as decreasing

slightly under RCP 8.5, however, the TS1 frequency of occurrence is well within

the 95% confidence interval of the ensemble mean for TS2 and TS3 in the Scottish

Highlands, and there were ensemble members with a modelled increase in lee wave

occurrence over the Scottish Highlands (7 in TS2, and 5 in TS3 with an increased

frequency of occurrence compared to TS1). From Figure 6.4, there is no significant

change in the occurrence of lee waves from the present-day to the future climate.

However, within different weather patterns, the occurrence and characteristics of lee

waves are modelled as changing from the present-day to the future climate.

The occurrence of the 8 different weather patterns (from Neal et al., 2016) is mod-

elled as changing from TS1 to TS2 and TS3. By using the geographical distribution

of lee wave occurrence under these weather patterns from TS1, and applying them

to the distribution of weather patterns under TS2 and TS3, the influence of weather
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patterns alone (rather than the meteorology changing) was calculated. Figure 6.6

shows that the modelled variation between ensemble members of lee wave occurrence

from TS1 to TS3 is greater than the variation of wave occurrence between ensemble

members if the change in weather pattern distribution from the present-day to fu-

ture climate was the only factor in the changing occurrence of lee waves from the

present-day to future climate. In some cases the weather-pattern predicted change

was the opposite sign to the UKCP18 future climate modelled change in lee waves,

such as in the far north of Scotland. The modelled magnitude of change in lee wave

occurrence in UKCP18 from TS1 to TS3 is greater than that attributable to the dis-

tribution of weather patterns changing. Hence, the meteorology within the weather

patterns changes in the future simulations, resulting in different frequencies of lee

wave occurrence, and as Figure 5.13 suggests this is likely to be because of changes

in the Scorer parameter and the horizontal wind speed. In addition, as Figure 6.14

shows, the change in MSLP patterns results in a changing orientation of lee waves

(for example under the High pressure centred over UK regime).

As was the case in TS1, the most lee waves are generated under NAO+ conditions in

TS2 and TS3. The mean frequency of occurrence increased over most of Britain and

Ireland under NAO+, High pressure and Low close to UK regimes, and decreased

under Northwesterly, Southwesterly, Scandinavian high and, most of all, Azores high

regimes from the present-day climate. The decrease in the occurrence of wind speeds

between 10 and 20 m s−1, and the increase in wind speeds < 10 m s−1 during the

Azores high weather pattern under the future scenario is likely to contribute to the

decrease in occurrence of lee waves under the Azores high. In contrast, the increase in

frequency of occurrence of lee waves under the High pressure centred over UK pattern

seems to be linked to the changing distribution of 750 hPa horizontal wind speeds,

with a decrease in the occurrence of 750 hPa horizontal wind speeds between 5 m s−1

and 15 m s−1 being compensated for by an increase in the occurrence of 750 hPa

horizontal wind speeds faster than 20 m s−1. The modelled changes in amplitude,

wavelength and orientation of lee waves are small, where they are significant at

the 95% confidence level, under these two patterns compared to the changes under

other weather patterns. Characteristics generally change less under the Azores high

pattern in TS3 than in the other regimes in the future simulations

There were more cases of very high amplitude lee waves in TS2 and TS3 (> 5 m s−1)
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than in TS1, but these high amplitude lee waves occur very rarely. The 95th percent-

ile lee wave amplitudes do not change systematically, even within weather patterns

(Figure 6.11). Within the ensemble members, there was a great variation of cases

of lee wave amplitude stronger than 1 m s−1 and 3 m s−1, with the TS1 climatology

well within the 95% confidence interval of the ensemble in all cases. The ensemble

mean change was for a slight but not significant increase in cases of lee wave amp-

litude stronger than 1 m s−1 and 3 m s−1 from TS1 to TS2 and TS3. From TS2 to

TS3, the change in occurrence of lee waves exceeding amplitudes of 1 m s−1, 3 m s−1

and 5 m s−1 is not significant at the 95% confidence level. The projected ensemble

mean change in lee wave wavelength under the Azores high pattern is less than 1 km

across almost the entirety of Britain and Ireland, compared with changes in excess

of 4 km in parts of the Pennines in the Low close to the UK pattern. While this

is a small magnitude change, it is significant at the 95% confidence level in places.

The mean orientation of lee waves shifts significantly to be more east/west under

RCP 8.5 than in TS1. This change is most notable in the Low close to the UK and

Southwesterly patterns. In general however, the mean orientation still follows the

MSLP contours for the pattern. The ensemble MSLP patterns change from TS1 to

TS2 and TS3, suggesting a shift in the storm track or similar from the present-day

to the future climate.

While these results do not show anything particularly drastic occurring under the

UKCP18 Local future climate scenario, and indeed disagreement between ensemble

members in some cases on the sign of a change in lee wave occurrence from the

present-day climate to the future under RCP 8.5, they still represent a worthy study

into the occurrence and characteristics of lee waves under a future climate scenario.

The increase in occurrence of high amplitude lee waves in RCP 8.5 suggests that

there is a higher likelihood of rotors and strong turbulence in the future, however

this as at the tail of the distribution, and there is uncertainty between ensemble

members. Apart from the Azores high pattern, the occurrence of high amplitude

lee waves significantly decreases from TS2 to TS3. However, there are significant

increases in occurrence of high amplitude lee waves from TS1 to TS2 and TS3, for

example under the NAO+ and Azores high patterns. The changes in the weather

patterns, such as the MSLP contours changing in the future climate scenario suggests

that the weather patterns are changing themselves (such as the shifting of the mean

position of the low in the Low close to UK conditions), as seen by the changing
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orientation of lee waves in the future climate scenarios.

There is still much uncertainty over what will change in a future climate, even within

the case of models forced to one emissions scenario such as this one.



Chapter 7

Discussion and Conclusions

The work presented in this thesis has analysed whether machine learning models

can be trained to detect and characterise trapped lee waves from NWP model data.

The trained models were applied to large archives of NWP model output to develop

a climatology of lee waves for both the present-day climate and a future climate

scenario, to understand what affects the generation of lee waves over Britain and

Ireland, and how that may change under a high emissions climate change scenario.

Chapter 4 describes the training and testing of several deep learning models designed

to predict the location, wavelength, orientation and amplitude of trapped lee waves

over Britain and Ireland, from 2D UKV vertical velocity data on the 700 hPa pressure

surface, using the Python library fastai (Howard and Gugger, 2020). The model

for segmenting (classifying each pixel in the input as either containing a lee wave or

not) the input vertical velocity slice performed well against hand-labelled truth data,

and the models trained to predict wave characteristics performed favourably against

a spectral technique, the S-transform (Hindley et al., 2016; Stockwell et al., 1996),

while also delivering a significant speed increase against the S-transform. Chapter 4

demonstrates that these models perform well at recognising and characterising lee

waves, and this work has received interest from national meteorological agencies in

potentially making these models operational as a post-processing forecasting tool.

Trapped lee waves form over Britain and Ireland on a regular basis, and can lead

to the generation of strong turbulence under their crests. Chapter 5 examines the

prevalence and characteristics of lee waves in different seasons, regions of Britain and

135
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Ireland, diurnally and through synoptic weather patterns by the creation of a 31-

year climatology of lee waves, from the ERA-Interim driven UKCP18 Local data set

for 1982–2012. More lee waves are generated under weather patterns with generally

faster synoptic wind speeds, such as the positive phase of the NAO, and these

patterns have a higher likelihood of higher amplitude waves. The mean orientation

of waves is broadly in line with the synoptic wind direction, though with a large

spread in some cases. Figure 4.12 shows deviation from the UKV wind direction at

700 hPa and the S-transform and ML orientations in the test data set around 0°. This

spread, which is systematically more easterly for northerly wind directions, could

be caused by differences between the surface wind speed at the wind speed on the

700 hPa pressure surface, which may explain the spread seen between the geostrophic

wind speeds inferred from the MSLP contours and the lee wave orientations in Figure

5.10. There is a correlation between the amplitude of lee waves and the horizontal

winds experienced aloft, with higher amplitude waves implying stronger horizontal

wind speeds, but not vice-versa. There is little evidence in the data of a diurnal

cycle of lee wave prevalence. When other meteorological variables are used to predict

the prevalence of lee waves in different regions using random forests and associated

SHAP values, the Scorer parameter is the most important for predicting lee waves

being generated in 4 out of 6 regions, and the range of the Scorer parameter where

waves are present in the UKCP18 data correspond to plausible wavelengths.

Finally, Chapter 6 investigates how the occurrence and characteristics of lee waves

may change under a high emissions future climate scenario (RCP 8.5), using the

machine learning models applied to the future climate time slices (2021–2041 and

2060–2080) of the UKCP18 Local data. In the future climate projections, there was

a slight decrease in the frequency of occurrence of lee waves over the Scottish High-

lands from TS1 to TS2 and TS3, but with a large ensemble spread: some ensemble

members showed an increase in occurrence of lee waves. The weather patterns from

Neal et al. (2016) again proved useful at investigating different synoptic weather pat-

terns on lee waves and their effects – with changes within weather patterns having

more of an effect on lee wave occurrence than the changing distribution of weather

pattern occurrence (Figure 6.6). There is evidence (e.g. Table 6.1) to suggest a slight

but insignificant increase in the occurrence of high amplitude (amplitudes stronger

than 3 m s−1) lee waves in the future climate scenario, but the occurrence from TS1

is within the 95% confidence interval of the ensemble for TS2 and TS3 for lee waves
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of amplitudes exceeding 1 m s−1 and 3 m s−1. There were no lee waves of amplitude

exceeding 5 m s−1 in the ERA-Interim driven TS1 simulation, but the overall change

from TS2 to TS3 of lee waves of amplitude exceeding 5 m s−1 is not significant at

the 95% confidence level. The mean orientation of lee waves is significantly more

east/west in the future scenario than in TS1 in most weather patterns but orienta-

tions are still broadly in line with the synoptic wind directions as seen in the MSLP

contours.

7.1 Broader implications

The machine learning models trained and discussed in Chapter 4 provide a compu-

tationally easy way to automatically derive information about lee waves from NWP

model output. One benefit of using the segmentation and characteristics tools de-

scribed there is that the perceived severity of lee waves can be understood by the

output of amplitude from the neural network. In addition, the generation of lee

waves can be understood in relation to the meteorology.

The outputs from the ML models perform well against the S-transform, with a

smoother and more physically plausible field produced rather than the more dis-

crete regions produced by the S-transform. One key advantage of the ML models

is that, once trained, they can be significantly cheaper and more efficient to run

than traditional spectral based methods such as the S-transform. For the 28 high

spatial resolution images in the February UKV test set used in Chapter 4, the U-Net

models can be up to 13 times faster than the S-transform to produce the wave mask,

amplitude, wavelength and orientation measurements (as shown in Table 4.2).

This efficiency combined with their realistic output makes these machine learning

models a powerful new tool for post-processing NWP model output. There is no

reason why this can be limited to lee waves: any high impact phenomena recognised

by eye that is resolved by NWP models can be used to create well-performing post-

processing tools. The trained models have a potential benefit for forecasters in

producing an automatic detection and characterisation of trapped lee waves directly

from operational UKV model output. Indeed, there has been interest from national

meteorological agencies, in potentially making these models operational as a post-

processing tool to help forecasters diagnose regions of high amplitude lee waves more
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easily. This shows the ease at which machine learning tools can be used to make

interpreting model output much easier.

Another benefit of machine learning models applied to weather and climate data is

the easy creation of climatology data of phenomena resolved within archives of met-

eorological data. For example, the climatology of lee waves described in Chapter 5,

which were produced by applying the models from Chapter 4 to a 31 year archive of

the UKCP18 Local data could not have been as easily generated without machine

learning models trained to detect and characterise these phenomena.

There is no reason why the UKCP18 data could not be used to produce climatology

information of other features (such as convection) identified via machine learning

models. The climatology of lee waves created in Chapter 5 shows the ability to link

together data from different sources to produce detailed insight into the drivers of

lee waves. For example, by combining information on the weather patterns from

Neal et al. (2016), the effects of different synoptic conditions on phenomena can be

seen.

The use of tools such as feature attribution techniques (in this case SHAP), means

that large swathes of data can be combined to probe the importance of different

features in the result of a process - in Chapter 5 this was whether or not lee waves

were generated. With the SHAP values indicating that the Scorer parameter and

horizontal wind speed being the most important for lee wave generation, this is

perhaps not surprising from simple linearised models of gravity waves. However,

the ML approach in this thesis provides a way to test these assumptions in a more

realistic 3-D model with all the real-world complexity of multi-scale orography, non-

stationary waves and non idealised profiles.

The availability of the UKCP18 future climate simulations means that conclusions

can be drawn about the changing nature of phenomena under a future climate

scenario, and how the change in weather patterns has affected this. While there is

a lot of uncertainty around future climate change and its effects on the meteorology

experienced in Britain and Ireland, the ability to view potential changes to lee waves

in this future climate scenario can aid planning. For example, the projected slight

increase in high amplitude (> 3 m s−1) lee wave events modelled in the future climate

scenario (Table 6.1) means that rotor events may be more likely under the RCP 8.5
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scenario, which may affect aviation and road transport.

7.2 Limitations

The hand-labelled training data used to train the lee wave segmentation model in

Chapter 4 used a small subset of the available UKV archive of NWP model output,

labelled by one human (the author). Since there is some subjectivity in deciding

precisely where lee wave boundaries are, there are limitations on the effectiveness of

this training. Section 4.3.4 attempted to quantify this subjectivity through the use

of crowdsourced labelling using the online platform Zooniverse, albeit with a differ-

ent labelling practice than the original hand labels, using the in-house Zooniverse

labeller, rather than the one created using a Jupyter notebook (see Section 4.2.1).

There was a small uptake from volunteers using the Zooniverse labelling tool, mean-

ing that there was insufficient data to have a full idea of subjectivity between la-

bellers, because there were data that had only been labelled twice. Since the edge

of wave packets is not always easily defined, this subjectivity would be more reliably

quantified with the addition of more crowdsourced labels.

Another approach which could have been fruitful was to train the segmentation

model using a signed distance field (for example, values of 0 at pixels on the bound-

aries of the hand-drawn wave packets, and pixels with values increasing in magnitude

the further away from the boundaries they are) – or similar – rather than a binary

mask, which would not penalise the model as much for getting the “wrong” classific-

ation close to the boundaries of a wave packet, as labelled by the hand-labels. This

problem was taken into account, to an extent, with the use of other metrics like the

Jaccard Score to assess the trained segmentation model.

The characteristics ML models in Chapter 4 were trained on data containing syn-

thetic “noise”: normally distributed randomly generated data, in addition to syn-

thetic wave packets. As discussed in Chapter 4, this was to train models to predict

wave characteristics on data with other, non-wave, sources of vertical velocity. While

the characteristics models were fine-tuned (so all the previous feature identification

learning from the UKV data was retained), the data the characteristics models were

trained on should reflect the “real-life” data as much as possible, which is not really

the case for the synthetic data used – either in its regularly shaped oval wave pack-
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ets, or the “noise”. That said, on the UKV data, the ML characteristics models

performed reasonably in line with the S-transform at predicting lee wave character-

istics, suggesting that the synthetic data were sufficient enough for fine-tuning the

segmentation model to produce wave characteristics.

The probing of the climatology of lee waves in Chapter 5 to understand which other

variables were important for lee wave generation used just one feature attribution

technique: SHAP. While SHAP attempts to account for cross correlation between

variables, a more thorough investigation using different techniques (such as per-

mutation feature importance) could compare these techniques and their metrics of

“importance”. In addition, this analysis could have been repeated, only focusing on

cases of high amplitude lee waves to be able to distinguish between cases of more

impactful lee waves, where there is a higher likelihood of rotor events.

Repeating the analysis from Section 5.3.4 for the future climate would have been a

useful study, to see how the other meteorological variables affecting lee wave genera-

tion changed under the future climate scenarios. However, this would require a large

volume of data for the 42 years to be pulled from MASS, a task that would take

months, and require disk space on the order of terabytes - which was not feasible.

The ensemble within the future climate UKCP18 Local data covers a range of pos-

sible outcomes within the RCP 8.5 scenario. Probing why certain ensemble members

show different changes in lee wave occurrence and characteristics would have been

worthwhile. As Section 6.3.2 shows, changes in lee wave occurrence (and variation

between ensemble members) in the future climate ensemble cannot be explained

by the distribution of weather patterns alone. This suggests that there are differ-

ences in the meteorology and how conducive the meteorology is to lee wave activity,

between individual ensemble members in the PPE. However, the precise distribu-

tion of changed parameters is not available, and the ensemble should be treated

as covering the range of possible outcomes to the climate under RCP 8.5. Each

ensemble member has a set of parameters perturbed, so being able to say precisely

which parameters within the combination are responsible for the change in lee wave

occurrence and characteristics would not be straightforward. Instead, the ensemble

is to be treated as representing a range of outcomes expected under RCP 8.5.
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7.3 Recommendations for future work

The models described in Chapter 4 have been trained on and applied to 2D ver-

tical velocity NWP data over Britain and Ireland. Applying the same technique to

other regions of the world would likely require retraining the models on the new

data, as although the wave patterns would look similar, the other sources of ver-

tical velocity in the data may not. Adding synthetic noise to the synthetic data

to train characteristics models did produce better performing models than training

on data without noise, and the trained models performed favourably compared to

the S-transform. In addition, this approach used 2D slices of vertical velocities, at

700 hPa since lee waves are coherent in UKV model output over Britain and Ireland

at 700 hPa. Using data on other pressure surfaces, or training a model on 3D data,

or with other variables such as vertical profiles of the Scorer parameter in addition

to the vertical velocities, may produce models that are more skilful than the ones

presented in Chapter 4.

This thesis restricted itself to lee waves that form over Britain and Ireland, mainly

because the majority of the data immediately available was from the MetUM, over

Britain and Ireland. This work could be broadened beyond Britain and Ireland,

but for a close as possible recreation of the work here, would require high resolution

model simulations where lee waves have been resolved. In addition, the different

meteorology and other non-wave sources of vertical velocities may produce different

features in other parts of the world, so the fine-tuning of the ML models on data from

the other parts of the world may result in better results (as opposed to only training

on labelled data of lee waves from Britain and Ireland), and a more generalisable

set of models. The use of satellite imagery was originally considered, but is not a

like-for-like replacement: for example the visible satellite imagery requires presence

of cloud cover and daylight for lee waves to be visible, restricting the cases that can

be observed through visible satellite imagery.

There are high resolution MetUM simulations available from the Rockies and South

Georgia where waves have been resolved. It would be well worth fully testing the

performance of the ML models trained on data over Britain and Ireland on data

where other sources of vertical velocity may look different to those the models were

trained on. Figure 7.1 shows one such segmentation on an example from the Rockies,
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Figure 7.1: Example lee wave segmentation on data available from the Rockies
(vertical velocities at 3000 m). Some regions of convection have been incorrectly
recognised as lee waves by the model, suggesting some fine tuning to the region may
be needed.

using the trained segmentation model from Chapter 4. Some regions of convection to

the west have been incorrectly recognised as waves, suggesting that some fine-tuning

to the model output over the Rockies may be needed to produce the best-performing

model on data from the Rockies. However, qualitatively, the segmentation model

performs well given it has not been exposed to data from the Rockies during training.

There is also the option to investigate whether models can be trained from satellite

data to detect and characterise gravity waves. With lee waves, there may be more of

a binary difference between peaks and troughs of the waves rather than a sinusoidal

waveform as seen in the vertical velocity data. Lee waves do not tend to show up in

satellite imagery if there is insufficient moisture, or if there is high level cloud cover

obscuring the view of the waves.
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There are also avenues worth exploring within ML model development, such as

investigating the effects of feeding additional data to the ML models. These could

include vertical velocities at different heights, surface winds, orography or the Scorer

parameter. Incorporating known physical relationships between different variables

for lee waves into a deep learning model may help a tool such as those described

in Chapter 4 better diagnose waves, and address some nervousness about using

“black box” machine learned models such as these operationally. The use of a

U-Net architecture was chosen due to its performance at segmentation tasks in

previous literature (both inside and outside atmospheric science: Dev et al., 2019;

Ronneberger et al., 2015), but there could well be more effective model architectures

for this task: for example, transformer based models have been shown to perform

well at segmentation (Li et al., 2023).

The machine learning-derived climatology described in Chapter 5 presents an op-

portunity to investigate the correlation between the physics of lee waves and other

meteorological phenomena, for example, for parametrisation schemes: lee waves are

important for momentum transport, as well as surface impacts such as rotors (Breth-

erton, 1969). This could lead to the creation of a parametrisation scheme for global

models where lee waves and their effects are currently not represented, if there is

sufficient correlation between other (well resolved) variables in global models.

The 8 more broad weather patterns from Neal et al. (2016) were used here, but

there is an option to use the more specific 30 weather patterns to further hone in

on which specific regimes within the 8 patterns are more conducive to lee waves

over Britain and Ireland. However, comparing PDFs or maps is harder for more

patterns. A version of Figure 5.6 with 30 subplots instead of 8 would be much

harder to interpret, especially when some patterns are rather similar and differences

between the regimes could be more subtle than for the 8 broad patterns. As shown

in Chapter 6, the MSLP patterns within the 8 weather patterns are modelled as

changing from the present-day to the future. Work could be done to investigate

which of the 30 regimes change in dominance from the present-day to the future,

and how that affects meteorology over Britain and Ireland, not just for lee waves as

investigated here.

The climatology of lee waves produced in Chapter 5 only explored the influence

of horizontal wind speed on lee wave amplitude: further work investigating the
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distribution of lee wave characteristics and different meteorological variables may

help clarify the findings from using the SHAP importance to find which variables

had the most influence on the generation of lee waves, especially the highest impact

events with high amplitude waves.

In addition, a more thorough investigation on the difference between the ERA-

Interim driven climatology and the ensemble for the present-day climate in TS1 may

be useful to properly quantify the differences between the future climate projections

and the present-day. The climatology data in Chapter 6 used the ensemble data from

the UKCP18 Local data set to probe how lee waves may change in the high emissions

RCP 8.5 scenario, while the present-day climate data were from the UKCP18 Local

data driven by ERA-Interim reanalysis. It may have been more appropriate to

use the same ensemble data to better track the changes from the present-day to

future climate. It is highly possible that the differences between the ERA-Interim

model data and the ensemble data for TS1 are small, as the analysis in Section 6.2.1

suggests. However, the reanalysis-driven model data is a better indication of the

present-day climate than the present-day data from the PPE. Despite this, the

reanalysis-driven model data used for the analysis of lee waves in TS1 was produced

using the same configuration of the CPM (MetUM version 10.6) as for the future

climate simulations. This configuration is similar to the UKV configuration of the

MetUM that the machine learning models were originally trained on. Hence, resolved

lee waves look similar in the CPM output regardless of whether it was driven by

ERA-Interim reanalysis or the PPE.

7.4 Concluding remarks

Machine learning tools continue to complete tasks with skill previously thought to

be near on impossible for computers to complete, and at a fast rate of progress. This

thesis has shown the ability for machine learning to potentially aid forecasters by the

production of accurate machine learning models which can detect and characterise

trapped lee waves, and also inform meteorology and climate research through an

investigation of the drivers behind lee waves over Britain and Ireland, as well as a

study of the potential for lee waves to change under a high emissions future climate

scenario.
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Appendix A

Distribution of lee wave

occurrence and characteristics in

the future climate scenario

As an addition to the PDFs shown in Chapter 6 (Figures 6.5 and 6.7), which show

the change in distribution between the present-day climate time slice (TS1) and

the future climate time slices (TS2 and TS3), these plots are just the PDFs of the

occurrence and characteristics of lee waves (analogues of Figures 5.5 and 5.7, but

for the future climate).

Figure A.1 shows PDFs for lee wave frequency of occurrence and characteristics by

hour of the day, for TS3 (the plots for TS2 look very similar). There is no noticeable

diurnal cycle in lee wave occurrence or characteristics. The very small changes in

amplitude (b) are at very small probabilities (< 10−7). The distributions of lee wave

wavelength (c) and orientation (d) remain similar at every time during the day in

the data.

Figure A.2 shows probability density functions (PDFs) of lee wave frequency of

occurrence and characteristics (amplitude, wavelength and orientation) for the 8

different synoptic weather patterns for TS2 (a) and TS3 (b). The distributions are

similar to those in TS1. Most lee waves occur under NAO+ and Southwesterly con-

ditions, and NAO+ has conditions that produce the longest wavelength lee waves.

Orientations under (for example) NAO+ and High pressure centred over UK con-
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Figure A.1: PDFs of lee wave frequency of occurrence (a) and characteristics (b-d)
for TS3, by hour of the day. The plots for TS2 are very similar, showing very little
change in lee wave prevalence or characteristics between hours of the day.

ditions exhibit a bimodal distribution, while other patterns such as Northwesterly

and Southwesterly are more unimodal and exhibit a distribution in line with their

name.
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(a) UKCP18 Local data: Weather pattern effects on lee waves (TS2 2021 - 2041)
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6. High pressure centred over UK

7. Low close to UK
8. Azores high

0 20 40 60 80 100
Frequency of wave occurrence (%)

1e-07
1e-06
1e-05

0.0001
0.001
0.01

0.1
0.5

PD
F

(i) Frequency of wave occurrence

0 1 2 3 4 5 6
Wave Amplitude (ms 1)

1e-10

1e-08

1e-06

0.0001

0.01

0.5

PD
F

(ii) Wave Amplitude

0 10 20 30 40 50 60 70 80
Wavelength (km)

0.00

0.05

0.10

0.15

PD
F

(iii) Wavelength

-90°

-60°

-30°
0°

30°

60°

90°
0.000.020.040.060.080.10

(iv) Orientation

(b) UKCP18 Local data: Weather pattern effects on lee waves (TS3 2060 - 2080)

1. NAO-
2. NAO+

3. Northwesterly
4. Southwesterly

5. Scandinavian high
6. High pressure centred over UK

7. Low close to UK
8. Azores high

Figure A.2: The ensemble mean frequency of occurrence and characteristics of lee
waves for the 8 weather patterns in TS2 (a) and TS3 (b). Shading either side of
each line indicates 1 standard deviation away from the ensemble mean.
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