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Abstract

Topological phenomena in solid state physics are conventionally studied
under the assumption of an infinite or large system. This allows the study
of topological properties of the bulk, which may be related to observable
phenomena with the bulk-boundary correspondence. This has resulted in
the very successful prediction of a large variety of unusual and novel phases
in such systems. Due to their topological nature, boundary properties of
such phases are resistant to disorder, however this is only exact in the infi-
nite limit. For a finite structure there is a finite disorder where boundary
phenomena are lost. We study exact topological properties in finite chiral
structures, where we wish to allow arbitrary continuous hopping disorder.
Our methods allow for studying topology where the bulk-boundary corre-
spondence no longer holds. In particular, we study topological protection
and topological phase transitions in such finite media. We propose a def-
inition of topological protection when topologically robust states are not
protected by a bulk. We then go on to study topological phase transitions
and reveal a rich classification in finite chiral structures when allowing
for arbitrary continuous hopping disorder. Allowing some hopping terms
to be constrained, we then study sequences of topological phase transi-
tions, where the number of states which close around a gap are iteratively
increased. Throughout our work we experimentally verify some of our
predictions using a flexible coaxial cable platform to create arbitrary real
tight binding Hamiltonians. First we demonstrate this platform by ex-
perimentally observing topological protection and a phase transition in a
Su-Schrieffer-Heeger chain. We also demonstrate a deep connection be-
tween the localisation properties of a topologically marginal finite chiral
structure, nut graphs, and core graphs and study nut graphs experimen-
tally, giving an experimental observation of omni-conduction.
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Chapter 1

Introduction

1.1 Topology and physics

Topology is the study of properties of shapes and spaces that are invariant under continuous
deformation. Topology has a long history in physics. One of the first applications of topol-
ogy to physics was an attempt to understand the (at the time, thought to be immutable)
elements of the periodic table [1] by modelling atoms as mathematical knots. (Rather
wonderfully non-trivial knots have now been realised in an atomic system [2]). There are
many applications of topology to physics: any physical system whose description lives in
a parameter space may have interesting topological properties. Remarkably changes in
topological properties of a space describing a physical system can alter observable physical
phenomena, giving rise to topological phase transitions.

In solid state physics, topology is most often used to study how properties of the bulk
alter physics at the boundary of a material. This has led to a wonderful and weird set of
materials which have gapless boundary modes [3], whose propagation may be protected [4],
can be superconducting [5], and may provide a robust platform for quantum computating
[6], all despite a possibly gapped bulk.

Excitement in topological phenomena has been enhanced by an often fast paced inter-
action between theory and experiment. For instance, the quantum Hall effect was predicted
in 1975 |7] and found experimentally in 1978 [8] before it was discovered to be topological
in 1982 [9). More recently the quantum spin Hall effect was predicted in 2005 |10] and
experimentally found just 2 years later in 2007 [11].

Underpinning topological phenomena, are equivalence classes of Hamiltonians which
define distinct topological phases. Materials that host a number of topological phases are
surprisingly common, with around 90% of all materials in the Bilboa material database
predicted to have non-trivial topological phases [12H14].

It is an exciting time to see the developments in topological physics.

1



1.2. Outline of thesis

1.2 Outline of thesis

Many topological phenomena are described by the bulk-boundary correspondence [15]
which relates topological indices associated to an infinitely periodic crystal to observable
physics on the boundary of a material. This allows topological phenomena to be predicted
with topological indices in the bulk or (for example) using local real space markers that,
via unit cell averaging, predict topologically non-trivial properties of the bulk [16} |17].
Boundary properties are generally asymptotic to the thermodynamic limit [18] so that in
finite structures, there is a finite disorder at which boundary properties are not retained
[19]. This opens up the question of what is topology in structures which, under significant
disorder or an unusual network topology, have effectively lost the bulk boundary correspon-
dence?

At low disorder non-trivial topology is still well predicted with a bulk-boundary cor-
respondence in even quite small structures [20, 21], and no matter the size of a structure,
use of a periodic supercell |22, |23] can be used to predict topological phase transitions in
disordered finite media, so long as they occur at zero momentum. This means the bulk-
boundary approach may still be used in finite structures, but phenomena are sometimes
made opaque: there may be fewer topological phases than predicted with a bulk calcula-
tion, or there may be more topologically distinct phases which have the same bulk index.
This motivates a completely finite approach, where distinct topological phases are defined
using the finite structure alone.

In this thesis we study exact finite topological phenomena in structures with arbitrary
hopping disorder, that have chiral symmetry. We then experimentally verify some of our
predictions using a coaxial cable network as a platform for tight binding structures.

We begin in chapter [2] where we discuss literature relating to our work and give a discus-
sion of the theoretical and experimental background to this thesis. In chapter 3| we give an
experimental study of topological physics in coaxial cable networks, and experimentally ob-
serve a topological phase transition and topological protection in the Su-Schrieffer-Heeger
model [24].

In chapter |4l we propose a definition for topologically protected states in finite media,
where topology of the bulk does not provide topological protection. We then discuss some
physical properties of such states and relate these to the network topology of the underlying
structure, as well as experimentally verify such topological protection in a small graphene
structure.

We propose a classification of topological phases in finite chiral structures in chapter
as well as predict a set of physical consequences in the localisation of zero energy states. Us-
ing such consequences, we demonstrate a deep connection between finite topological phase
transitions and nut graphs, and experimentally verify our classification in graphene.

We then demonstrate an experimental realisation of nut graphs in chapter [6] and con-
firm a prediction of the transport properties of nut graphs.

Finally, we discuss the topology of finite structures where we start to allow constrained
hopping terms, and study topological phenomena with an increasing number of zero en-
ergy states. We uncover (up to a few simple considerations) a universal sequence of phase

2



1.3. Notation and definitions guide

transitions, which correspond to novel localisation phenomena. Using this localisation we
then experimentally confirm this sequence in a coaxial cable network.
In chapter [§] we conclude and give an outlook on potential future work.

1.3 Notation and definitions guide



1.3. Notation and definitions guide

Notation Meaning Definition
AUB The union of two sets A, B -
ANB The intersection of the sets A, B -
A\ B The set A excluding any point also in B -
ACB The set A is a subset of B -
A— B An embedding/inclusion from A — B such that A C B -
A— B A map from the set A to the set B -

|- The determinant, or absolute value -
Sign(-) The sign of a number -
G An unweighted graph 2.1.3
H Tight binding Hamiltonian defined on a graph G 2.1.5
g An inducedﬂ subgraph g of G 2.1.9
h A Hamiltonian on a subgraph g of G -
A The adjacency matrix of a graph G 2.1.4
Q The biadjacency matrix of a bipartite graph G 2.1.6
q The biadjacency matrix of a bipartite induced subgraph g -
[H] An equivalence class of tight binding Hamiltonians H -
€ An energy eigenvalue of a tight binding Hamiltonian -
w Coaxial cable driving frequency -
T Coaxial cable transmission time -
M (e) A transfer matrix at energy e -
Gij Greens function for a coaxial cable network (CCN) 2.2.2
Gij Greens Function for a (CCN) connected 2.2.2
to a vector network analyser
Zi Cable impedance between a site ¢ and a site j in a CCN -
H; ; A hopping term between a site i and a site j in a CCNH -
Z The additive group of integers -
Zo A two element grou -
NZs Short hand for a direct sum @N Lo =7Uo®loyD--- -
i Dirac delta function -
x A variable with value in real space -
k A variable with value in momentum space -

“Often we wish to refer to a special type of induced subgraph which we call a section. This is defined
explicitely in chapter

"We often use lower case Roman letters to denote hopping terms.

“Often we use this as short hand to denote two equivalence classes, but it only becomes a cyclic group

for an infinite structure.
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Notation Meaning Definition
F A field, generally taken to be -
the complex or real numbers

X; A topological spaceﬂ 2.1.16

T A topology 7 on a topological space X 2.1.16

1S A parameter space defined for H on G 2.1.17

m(X) The zeroth homotopy group of a space X 2.1.18
P(X;) The zeroth homotopy group of a specific subspace of X; 7.3.17]
V oorw A voltage in a CCN -

1 A current in a CCN -
S11 Measured reflectance of a CCN -
$91 Measured transmission of a CCNH -
|s1] Measured transmittance of a CCN -

T or~ A loss term on a CCN from connecting to a VNA 2.2.2
Z or Zs The measured local impedance of a CCN 2.2.2
CvV A vertex of a graph that supports a zero energy state 4.1.3
CFV A vertex of a graph which does 4.1.3
not support a zero energy state
TCV A vertex of a graph that supports a zero energy state 4.1.6
for almost all hopping terms
TCFV A vertex of a graph that does not support a zero 4.1.6
energy state for almost all hopping terms
TA A vertex adjacent to a TCV -
TR A vertex not adjacent to a TCV -
Cij A block matrix that connects two diagonal blocks &
¢; and g; of a matrix )
N(H) The nullity of a matrix H 5.3.5

g~ The k-th column of a matrix ¢ 5.3.6

el A submatrix of ¢ where the k-th column has been deleted 5.3.6

“Note that sometimes the index is dropped.
*Note that the convention for transmission vs. transmittance seems to be different for optics and radio
frequency engineering, so we have used this convention.
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Notation Meaning Definition

b A constraint map defined as the solution to a polynomial
which is a restriction from a subspace X; — X

Pt The support of a nullstateﬂ on a

block ¢; originating from a block ¢;
lox A map from a subspace X; C § with 2n zero energy states 7.3.12
to a subspace X C £ with 2n + 2 zero energy states

Table 1.3.0.1: A notation and definition guide for this thesis. Most of the frequently used
notation is included here.

*The Greek letter used is sometimes different.



Chapter 2

Background

This section is split in to two main subsections. The first focusses on the theoretical back-
ground of our work, and the second is a discussion of the experimental methods we used
in this work.

Throughout sections 2.1.2] 2.1.2.2] 2.1.2.3] and 2.1.2.4) we will give a brief overview of
some of the previous work on topological classification, mostly focussing on classification

in non-interacting Hamiltonians. With this in mind we will give a short discussion on
tight binding models (and Hiickel theory), and electronic band structure in section
In section we will discuss chiral symmetry, and the structure of a chiral symmetric
Hamiltonian when allowing for arbitrary continuous hopping disorder. Much of this thesis
uses some notions from graph theory and topology, so in section [2.1.5 we give a brief outline
of some of the preliminary details of graph theory and topology that we use in this work.

A small number of the theoretical predictions we make are verified experimentally using
a coaxial cable network to create tight binding structures. In section [2.2| we will discuss
the experimental basis for our experiments, first by demonstrating a map between coax-
ial cable networks in section [2.2.1] and then discussing experimental measurements and
experimental techniques in section In section [2.2.2.1] we also give a brief overview
of topological classification in terms of transfer matrices — a convenient formalism for
transmission experiments.

2.1 Topology and materials

Topology studies properties of a space X which are unchanged under some continuous
deformation of the space X. Loosely speaking, this means the space may not be torn, or
have new holes introduced. One of the main questions of topology is, given two topological
spaces X and Y, can X be continuously deformed to the space Y7 To answer such a
question in complete generality is very difficult, but can be simplified by considering certain
properties of the space. A ubiquitous approach is to calculate a topological invariant for
the space X and the space Y. If they are distinct, then you can be certain the two spaces
may not be continuously deformed to one another.

One example of a topological invariant is the number of ways a circle may be mapped

7



2.1. Topology and materials

Figure 2.1.1: Roughly speaking the first homotopy group counts the number of ways a
circle may be drawn on a surface, and the zeroth homotopy group counts the number of
ways a point may be drawn on a surface. The torus has a first homotopy group of Z x Z.
It has two generators, corresponding to the circles drawn on the surface. Each circle may
be wound around the torus an integer number of times, resulting in a first homotopy group
of Z x Z. For a sphere every circle may be continuously mapped to a point, so the first
homotopy group is trivial. For both the torus and the sphere, any point may be mapped
to any other (for example o — f for the torus, v — § for the sphere) so both the torus
and the sphere have a trivial zeroth homotopy group. So a distinct topological invariant is
sufficient to show two spaces are topologically distinct, but not necessary.

to a space, such that the circle does not undergo a discontinuous change. That is, if you
have two surfaces X and Y and X has Z x Z different ways to draw a circle, but Y has 1
equivalent way, then we know X and Y must be topologically distinct. Such an example
is illustrated in Fig. Roughly speaking, counting the number of ways a circle may
be drawn on a space is the first homotopy group of that space. One may also ask how
many different ways a point may be drawn on a space (the zeroth homotopy group). For
the example in Fig. both a torus and a sphere have one way to do this. That is,
a topological invariant can be used to tell two spaces apart, but if they have the same
invariant, it does not mean the two spaces are topologically the same.
Broadly speaking questions of topology arise quite naturally in physical systems. In

a material context, we often have a Hamiltonian, with a certain set of physically defined
parameters. There are many topological properties here already: the Hamiltonian has an
FEigenspace and is acting in a Hilbert space. We may ask what are the topological properties
of this Eigenspace? Or even what the topological properties are of its full Hilbert space?
If we allow our physically defined parameters to change, what happens to the topological
properties of this space? Or perhaps as is more interesting in a physical context, if we drive
our system to undergo a topological change, does this have physical consequences?

Remarkably, physical properties of a system can be very dependent on the systems
underlying topological properties. The localisation and transport of electronic states [4} 25~
28] for instance, can often be related to the topological invariant associated to a particular
Hamiltonian. We say, if a topological invariant associated to a Hamiltonian changes, then
the system has undergone a topological phase transition.

In this work we wish to study exact topological properties in finite tight binding models.



2.1. Topology and materials

2.1.1 Tight binding approximation

Suppose we wish to describe the electronic properties of a system with N atoms. To write
down and solve the full Hamiltonian, in complete generality, is often not analytically possi-
ble. Using steady state approximations gives a system which is a little more approachable.
Assuming nuclear contributions to such a system are negligible (the Born-Oppenheimer ap-
proximation [29]), many numerical ab initio approaches have been developed to get highly
accurate descriptions of the electronic structure of a system from first principle. For in-
stance, Hartree-Fock [30, [31] and the highly successful density function theory [32], and
even (more recently) approaches using machine learning [33]|. One of the simplest methods
to approximating the electronic structure of an N atom system is with the tight binding ap-
proximation, also known as Hiickel theory in quantum chemistry [34-36]. We now present
an overview of the tight binding approximation in real and momentum space.

In the tight binding approach, it is assumed that on each atom there is a steady state
Hamiltonian with a set of orbitals n and that the overlap of eigenstates on two different
atoms is negligible. That is, each orbital of the atom is orthonormal and orbitals on
neighbouring atoms are orthogonal so that

(W(@,n) b (y,m)) = b2,y0n.m.- (2.1.2)

where z,y denote atom positions and n,m denote atomic orbitals. To simplify notation,
let |i) = [¢(z,n)). Labelling the probability of an electron hopping from |i) to |j) with
|h; ;j|? gives a tight binding Hamiltonian

H:ZEZ-M) <¢|+Zhi,j|z'> (Gl (2.1.3)

where E; is an onsite energy and h;j = h7 ;.

The bulk Hamiltonian is defined on an infinitely periodic lattice £. This approximation
works well for a large enough physical system where the electronic properties away from
the boundaries behave as though they are in an infinitely periodic structure. A bulk
Hamiltonian may be defined in real or momentum space. This corresponds to defining H
on L directly, or on its reciprocal lattice R. For the set of primitive lattice vectors R;, the
reciprocal lattice is defined by a set of vectors K; such that K; - R; = 2md; ;.

To see that the reciprocal lattice takes values in momentum space, consider a translation
operator T, : £ — L with eigenvalue ¢, which translates a wavefunction (z) by some
lattice vector a = niR; + naRo + - -+ with integers n; defined on L. If the structure is
periodic on m unit cells in the a direction, then

Tatb(z) = TI(x) = (0 (2) = b(a). (2.1.4)

So eigenvalues of the translation operator are roots of unity t, = €@ [34] where a =
271'%. As « is a lattice vector, we may decompose a = % where K = K1+ Ko+ --
on R or equivalently a = %(ang—f—ngKg—i—-'J “(Ri+Ra+-)=k-(Ri+Ro+--).
This defines a Fourier series between functions on £ and functions on R so K;, R; are the

canonical variables momentum and position.



2.1. Topology and materials

The unit cell of the reciprocal lattice defines the Brillouin zone (BZ) of £. As a conse-
quence of periodicity, all values of k are periodic on R so are defined up to the periodicity

of the lattice. That is
k=2 <"1,"2 > (2.1.5)
mip ma
where each n; € {0,1,---,m; — 1} where m; is the periodicity of the lattice in the ith
direction. For an N-dimensional lattice this defines the Brillouin torus TV. For an infinite
crystal, when limm — oo each entry to k takes on a continuous value in the range [0, 27).
As the Hamiltonian is periodic on £ the eigenstates ¢(x) of H are eigenstates of the
translation operator 1" so they are periodic up to a phase factor. That is,

Uz + R) = ™y (x) (2.1.6)

where k labels the value taken in the BZ. This is Bloch’s theorem [37], and means eigenstates
may be defined in terms of periodic functions on L.

Definition 2.1.1. A Bloch state of a periodic structure with Hamiltonian H is given by
Ur(x) = e Py () (2.1.7)

where the crystal momentum k takes values in BZ of the reciprocal lattice and w is periodic
on the lattice £, so that for any lattice translation a, ug(x + a) = ug(z).

The band structure of a bulk Hamiltonian is defined by Fourier transforming a Hamil-
tonian from real space to momentum space. This gives a Hamiltonian H (k) with energy
levels E(k) corresponding to its spectrum. For an infinite crystal the BZ is continuous, so
each E(k) defines a function from momentum space to R.

The Bloch states may be transformed to real space giving a localised real space basis
for the eigenstates of H. This defines the Wannier functions [3§].

Definition 2.1.2. The Wannier functions of a Bloch state v (x) are given by

W, = eillC x’(/} (2.1.8)
-FZ

Or in the infinite limit 1

W, = — / dke™* Ty () (2.1.9)
V' Jkenz
where V is the volume of the BZ.

The Wannier functions form a complete orthonormal basis for the eigenstates of H [22] 23,
34, 138] and because they are localised in real space they provide an alternative basis for
the real space tight binding Hamiltonian.

The Bloch functions are unique up to a phase transformation, however the localisation
of Wannier functions may be altered by such a transformation. There has been a lot of
research in finding maximally localised Wannier functions |22, 23]. Using Wannier functions
an exact tight binding Hamiltonian may be found, so maximally localised Wannier functions
define an ideal basis for a tight binding Hamiltonian. Maximally localised Wannier functions
are typically defined by minimising the sum of variances of the position operator for each
Wannier function |22} [23]. Under this approach the maximally localised Wannier functions
are also unique.
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2.1. Topology and materials

2.1.2 Development of topology in tight binding systems

Topology has a long history as a tool to understand physics. One of the first applications
of topology to physics occurred in the mid 19th century with W. Thomson proposing a
model of elements as non-trivial knots [1]. Since then, many physical phenomena have
been explained as having a topological origin [39, |40] for instance Van Hove singularities
were first predicted as a consequence of the topological properties of differentiable functions
defined on the Brillouin torus [41]. One of the first topological materials appeared with
the discovery of the quantum Hall effect |7 8] which after its discovery was realised to be
a topological phenomenon [9]. The quantum Hall effect has been shown to relate to the
Berry phase [42] — a topological invariant of the Brillouin zone. We will discuss the Berry

phase in more detail in section [2.1.2.1

2.1.2.1 Adiabatic evolution

The band structure of a material is particularly important for describing the electronic
properties of a periodic system. The band structure is found by taking a cyclic path
through the Brillouin zone and at each point & finding the spectrum of a Hamiltonian H (k).
Parametrising k as a function of time, we can understand finding the eigendecomposition of
H(k(t)) as solving the instantaneous Schrédinger equation. Under slow evolution we may
approximate solutions to the (time dependent) Schrodinger equation using instantaneous
solutions via the adiabatic theorem [43]. As we will discuss below, the way in which the
solutions to the Schrédinger equation are changed under a cyclic path through the Brillouin
zone has significant consequences on topological properties of a structure.

Consider a time dependent Schrédinger equation with a Hamiltonian H(t) and an in-
stantaneous eigenbasis |n(t)). If the Hamiltonian is evolving very slowly, then we can
approximate solutions to the Schrédinger equation with instantaneous solutions so that

H(D) [0(0) = Bl(®) = ih o [0(0) (2.10)

where [1(t)) = > c,(t) |n(t)). Solving this equation reveals that a phase is picked up on
each instantaneous basis state — the adiabatic theorem [43]. That is, an eigenstate at a
time ¢ is related to the eigenbasis at a time 0 by

[$(8) = > eal0) exp (iya(t) + i (1)) In(t)) - (2.1.11)

The phase 6, is a dynamic phase, caused by a change in the eigenvalues between H(0) and
H(t). That is

On(t) = _hz/ot By (T)dT (2.1.12)

where T' parametrises time at each point between 0 and t. Of significant interest to this
work is the geometric phase, given by

am(t) = i /0 (n(t)] 0 [m()) - dT. (2.1.13)

11



2.1. Topology and materials

The dynamical phase corresponds to changes in eigenvalues of H(t) while the geometric
phase corresponds to changes in the eigenbasis |n(t)).

Now consider a time ¢+ € very close to t. Then it is likely that solutions to H (¢ + €) are
quite similar to solutions to H(t). In such a case we may assume the eigenbasis between ¢
and t + € are related by

(n(t£e)m(t)) = adpm (2.1.14)

where |a| = 1. In such an instance the geometric phase is diagonal, so that (n(t)| 0 |m(t)) =
0 for n # m. This assumption holds so long as there are no degenerate eigenvalues, or
equivalently that bands remain gapped throughout the path through the BZ. We refer to
evolution that satisfies the adiabatic approximation and has a diagonal geometric phase as
adiabatic evolution.

Consider adiabatic evolution for a Hamiltonian H (k) in a BZ, where the crystal mo-
mentum k(t) is time dependent. Adiabatically evolving the Hamiltonian through a cyclic
path % in the BZ defines the Berry phase

Tn = z% (n| Vi |n) - dk (2.1.15)
¢eBZ

where Vy, is the grad operator. Under non-cyclic adiabatic evolution, the geometric phase
may always be removed under a suitable phase transformation e*»®) of each Bloch state
[n(t)). But for cyclic adiabatic evolution where H(t +T) = H(t), then any phase transfor-
mation must satisfy e'?n(t) = ei®n(t+T) 5o that ¢(t + T) = ¢(t) + 2mm for some integer m.
Consequently, v, mod 27 cannot be removed by any such phase transformation.

For certain systems, the Berry phase becomes quantized, and is a topological invariant
of momentum space. For instance, consider a two site periodic structure, with a unit cell
depicted in Fig. (a) (this structure is the famed Su-Schrieffer-Heeger model [24] which
we will discuss more in Chapter [3|). This structure has a momentum space Hamiltonian of

0 t1 + tzeikx .
H(k) = b 4 taeika 0 = (t1 + tacoskx)o, + ity sin(kx)oy (2.1.16)

where o,,0, are Pauli matrices. Taking a path that maps k — k 4 27 induces cyclic
evolution of H (k) and its eigenbasis |n) over the BZ. The Berry phase calculates a winding
number around the origin (this special case of the Berry phase is also called Zak’s phase
[44]), so is both quantised and represents a topological invariant of the BZ. An example of
the different evolution in the instantaneous eigenbasis for a trivial Berry phase, and Berry
phase of 7 is illustrated in Fig. 2.1.3

A change in the winding number also corresponds to an unavoidable gap closure. To
see this, observe that the band structure is given by

Efft = i\/t% + 3 + 21t cos kx. (2.1.17)

By continuously evolving the hopping terms ¢; and t9 it is possible to change the winding
number from zero to one by evolving from t; > t5 to t; < ta2. The origin passes through the

12



2.1. Topology and materials

e vtl i

Ox

(a) (b)

Figure 2.1.2: (a) A periodic structure with 2 sites in a unit cell, denoted by the dotted
circle. Hopping terms are indicated with t1,ts where ¢; is an intracellular hopping term
and t9 is an intercellular hopping term. The Brillouin zone for this 1D structure is a 1
dimensional torus, represented as the red circle drawn in (b) parametrised by the depen-
dence on the Pauli matrices in equation . Fixing the hopping terms, a cyclic path
through the BZ corresponds to evolving H (k) = t1 4 t2e¢** along the red circle, and the
Berry phase calculates the winding number around the origin and is zero if £; > to or one
if t1 < to.

Figure 2.1.3: The instantaneous eigenbasis of a 1D Hamiltonian H (k) that is undergoing
cyclic evolution, as depicted in Fig. m (a) Denotes a Berry phase of 0, and (b) denotes
a Berry phase of w. The path is illustrated by the red dashed line. For every k, H(k) has
an instantaneous eigenbasis |n(k)), defining a vector space at each k.
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2.1. Topology and materials

BZ when t; = t5 and corresponds to a gap closure, E,:r = E, , at k =m — so a topological
change coincides with unavoidable non-adiabatic evolution.

If the BZ is an even dimension, then integrating the Berry phase over all k is also
quantised. To see this we consider a 2 dimensional Brillouin torus so we may use the
standard Stokes theorem, but this holds for the generalised Stokes theorem as well. Defining
the Berry connection as A, = (n| Vi |n) then we may define the Berry curvature Q,, =
V X A, so that

ynzz'/ds-fzn (2.1.20)
S

where the surface S is the entire 2 dimensional Brillouin torus. We may evaluate 7, by
integrating around a contractable closed path %, and contracting this path to a point.

That is
Y =1 lim {/ ds - Q, +/ ds - Qn] (2.1.21)
=0 | Js<% S>¢

where ¥ cuts the BZ along a contractable closed path, S < % is the BZ on the side of the
path being contracted, and S > ¥ is the BZ on the other side of the path. In the limit
of ¥ — 0 the path maps the eigenbasis to itself, so by the definition of the BZ this has
solutions for |n(ky, ky)) = [n(ks + 210, ky + 27m)) = 2™+ |n(k,, k,)), and the Berry
phase must take values of 27p where p = n 4+ m is an integer value. The integer p is the
Chern number [45], which is a topological invariant of an even dimensional BZ. A material
that can have a non-zero Chern number is known as a Chern insulator.

To see why the Chern number is a topological invariant, observe that with Gauss’

theorem we may evaluate equation (2.1.22)) as
= z/ av v -, (2.1.22)
1%

where V is the volume enclosed by the surface S. So the Chern number can only be non-
zero if there are singularities of €2, contained in S, the number of which is a topological
invariant.

We may interpret €2, as an analogue magnetic field in momentum space. As such the
value 7, in equation (2.1.22)) corresponds to the flux of €2, through S with singularities
in §2,, corresponding to monopoles enclosed by S. In order to change the Berry phase we
must pass singularities in €2, through the surface of the Brillouin torus, this results in a
necessary gap closure in H (k). To see that a singularity in €, corresponds to a gap closure
in the spectrum, we expand the Berry curvature as,

2, =V x(n|V|n) =(Vn| x|Vn) = Z (Vn|m) x (m|Vn). (2.1.23)

m

Using Levi-Civita notation, (Vn|m) x (m|Vn) = <({%n}m> <m‘a%l,n> - <8%,n‘m> <m‘8%>
thus (Vn|n) x (n|Vn) = 0, so we can restrict the sum in equation (2.1.23) to m # n.

(m|VH|n)
en—tm so that

Finally, we note that (m|Vn) =

Q, - Z (n|VH |m) x (m|VH |n) (2.1.24)

m#n (En o gm)2
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2.1. Topology and materials

which has singularities whenever ¢, = €,,. That is, the Berry phase is only possible to alter
by taking a gap closure through S on the Brillouin torus, meaning adiabatically equivalent
Hamiltonians (with a 2 dimensional BZ) all have the same Berry phase.

Examples of Chern insulators (which may have a non-zero Chern number) include
materials which exhibit the quantum Hall effect — for a 2D material in a magnetic field,
due to cyclotron motion of the electrons, electronic transport is localised to the edge of the
material. The resulting conductance is quantised and exactly proportional to the materials
Chern number [9, |46].

More formally we may understand the band structure as a type of vector bundle.
Loosely speaking a vector bundle consists of some manifold M such that for every point
m € M there is a vector space V' (m) along with some structureﬂ to ensure that there exists
an open neighbourhood U around m where for every m+¢ € U then lim,_,o V (t+¢) = V (t).
In the band structure the manifold is given by the Brillouin torus, and a vector space is
defined for each k with a bulk Hamiltonian H (k). The topological classification of momen-
tum space Hamiltonians is therefore very closely related to the topological classification of
vector bundles on the Brillouin zone. The Berry phase is itself often a topological invariant
of a vector bundle. For instance in the above 1D example the Berry phase corresponds to
a winding number, and in the 2D case related to the Chern number [47] of the Brillouin
torus.

There are many physical properties which may only be changed by non-adiabatic evolu-
tion [45]. For instance, a protected band crossing cannot be removed without a gap closure
[48]. This can lead to protected chiral transport [4] localised to the materials boundaries
which is robust even in finite structures |20, 21]. The connection between the quantum
Hall effect and the Berry phase also ensures that the quantisation in the quantum Hall
effect is robust up to adiabatic evolution. So there is a strong physical motivation to define
equivalence classes for all Hamiltonians, where two Hamiltonians are in different equiva-
lence classes if they may not be related by adiabatic evolution.

For the purposes of this thesis two Hamiltonians H; and Hj (in real or momentum
space) are considered topologically distinct if and only if there exists no adiabatic path
between them.

2.1.2.2 Bulk-boundary correspondence

Physically any real system must be finite, and so a bulk Hamiltonian does not fully describe
the physical system. For a topologically non-trivial system, boundary modes (whose be-
haviour is dictated by the topological index of the material) exist localised to the boundary.
The rigorous foundations for the bulk boundary correspondence are quite complicated and
are often formalised in terms of K-theory [15] and for disordered infinite systems can be
made rigorous with the use of non-commutative geometry [19} |49]. That said, the physical
premise behind the bulk boundary correspondence is quite intuitive.

Consider two semi-infinite d dimensional topological materials ¢; and t5. The bulk is

Note that this structure is quite technical, and is not too necessary to understand the work we present
in this thesis, so we omit the full definition of a vector bundle here.
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2.1. Topology and materials

well defined for each material, due to their semi-infinite nature. Suppose we choose for the
topological indices of each material to be different. If we sew the two materials together
along their d — 1 dimensional boundary, then we can imagine taking a path from some-
where deep in the bulk of ¢; to somewhere deep in the bulk of t5. When far in the bulk
of either material it seems reasonable to approximate the local structure as being entirely
within the bulk of £; or £, so the topology in either location approximately corresponds to
the topology deep in the bulk (this can be made rigorous with the use of local topological
indices [16, |17, 50, 51]). As we follow the path from our position far in ¢; to a position
far in to the topological index must change at some point. From the previous discussion
in section [2.1.2.1] a topological index may only change with a gap closure, so somewhere
along the path there is a boundary, with degenerate modes corresponding to a topological
phase transition.

A similar argu