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Abstract

Topological phenomena in solid state physics are conventionally studied

under the assumption of an infinite or large system. This allows the study

of topological properties of the bulk, which may be related to observable

phenomena with the bulk-boundary correspondence. This has resulted in

the very successful prediction of a large variety of unusual and novel phases

in such systems. Due to their topological nature, boundary properties of

such phases are resistant to disorder, however this is only exact in the infi-

nite limit. For a finite structure there is a finite disorder where boundary

phenomena are lost. We study exact topological properties in finite chiral

structures, where we wish to allow arbitrary continuous hopping disorder.

Our methods allow for studying topology where the bulk-boundary corre-

spondence no longer holds. In particular, we study topological protection

and topological phase transitions in such finite media. We propose a def-

inition of topological protection when topologically robust states are not

protected by a bulk. We then go on to study topological phase transitions

and reveal a rich classification in finite chiral structures when allowing

for arbitrary continuous hopping disorder. Allowing some hopping terms

to be constrained, we then study sequences of topological phase transi-

tions, where the number of states which close around a gap are iteratively

increased. Throughout our work we experimentally verify some of our

predictions using a flexible coaxial cable platform to create arbitrary real

tight binding Hamiltonians. First we demonstrate this platform by ex-

perimentally observing topological protection and a phase transition in a

Su-Schrieffer-Heeger chain. We also demonstrate a deep connection be-

tween the localisation properties of a topologically marginal finite chiral

structure, nut graphs, and core graphs and study nut graphs experimen-

tally, giving an experimental observation of omni-conduction.
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Chapter 1

Introduction

1.1 Topology and physics

Topology is the study of properties of shapes and spaces that are invariant under continuous

deformation. Topology has a long history in physics. One of the first applications of topol-

ogy to physics was an attempt to understand the (at the time, thought to be immutable)

elements of the periodic table [1] by modelling atoms as mathematical knots. (Rather

wonderfully non-trivial knots have now been realised in an atomic system [2]). There are

many applications of topology to physics: any physical system whose description lives in

a parameter space may have interesting topological properties. Remarkably changes in

topological properties of a space describing a physical system can alter observable physical

phenomena, giving rise to topological phase transitions.

In solid state physics, topology is most often used to study how properties of the bulk

alter physics at the boundary of a material. This has led to a wonderful and weird set of

materials which have gapless boundary modes [3], whose propagation may be protected [4],

can be superconducting [5], and may provide a robust platform for quantum computating

[6], all despite a possibly gapped bulk.

Excitement in topological phenomena has been enhanced by an often fast paced inter-

action between theory and experiment. For instance, the quantum Hall effect was predicted

in 1975 [7] and found experimentally in 1978 [8] before it was discovered to be topological

in 1982 [9]. More recently the quantum spin Hall effect was predicted in 2005 [10] and

experimentally found just 2 years later in 2007 [11].

Underpinning topological phenomena, are equivalence classes of Hamiltonians which

define distinct topological phases. Materials that host a number of topological phases are

surprisingly common, with around 90% of all materials in the Bilboa material database

predicted to have non-trivial topological phases [12–14].

It is an exciting time to see the developments in topological physics.
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1.2. Outline of thesis

1.2 Outline of thesis

Many topological phenomena are described by the bulk-boundary correspondence [15]

which relates topological indices associated to an infinitely periodic crystal to observable

physics on the boundary of a material. This allows topological phenomena to be predicted

with topological indices in the bulk or (for example) using local real space markers that,

via unit cell averaging, predict topologically non-trivial properties of the bulk [16, 17].

Boundary properties are generally asymptotic to the thermodynamic limit [18] so that in

finite structures, there is a finite disorder at which boundary properties are not retained

[19]. This opens up the question of what is topology in structures which, under significant

disorder or an unusual network topology, have effectively lost the bulk boundary correspon-

dence?

At low disorder non-trivial topology is still well predicted with a bulk-boundary cor-

respondence in even quite small structures [20, 21], and no matter the size of a structure,

use of a periodic supercell [22, 23] can be used to predict topological phase transitions in

disordered finite media, so long as they occur at zero momentum. This means the bulk-

boundary approach may still be used in finite structures, but phenomena are sometimes

made opaque: there may be fewer topological phases than predicted with a bulk calcula-

tion, or there may be more topologically distinct phases which have the same bulk index.

This motivates a completely finite approach, where distinct topological phases are defined

using the finite structure alone.

In this thesis we study exact finite topological phenomena in structures with arbitrary

hopping disorder, that have chiral symmetry. We then experimentally verify some of our

predictions using a coaxial cable network as a platform for tight binding structures.

We begin in chapter 2 where we discuss literature relating to our work and give a discus-

sion of the theoretical and experimental background to this thesis. In chapter 3 we give an

experimental study of topological physics in coaxial cable networks, and experimentally ob-

serve a topological phase transition and topological protection in the Su-Schrieffer-Heeger

model [24].

In chapter 4 we propose a definition for topologically protected states in finite media,

where topology of the bulk does not provide topological protection. We then discuss some

physical properties of such states and relate these to the network topology of the underlying

structure, as well as experimentally verify such topological protection in a small graphene

structure.

We propose a classification of topological phases in finite chiral structures in chapter 5,

as well as predict a set of physical consequences in the localisation of zero energy states. Us-

ing such consequences, we demonstrate a deep connection between finite topological phase

transitions and nut graphs, and experimentally verify our classification in graphene.

We then demonstrate an experimental realisation of nut graphs in chapter 6 and con-

firm a prediction of the transport properties of nut graphs.

Finally, we discuss the topology of finite structures where we start to allow constrained

hopping terms, and study topological phenomena with an increasing number of zero en-

ergy states. We uncover (up to a few simple considerations) a universal sequence of phase

2



1.3. Notation and definitions guide

transitions, which correspond to novel localisation phenomena. Using this localisation we

then experimentally confirm this sequence in a coaxial cable network.

In chapter 8 we conclude and give an outlook on potential future work.

1.3 Notation and definitions guide

3



1.3. Notation and definitions guide

Notation Meaning Definition

A ∪B The union of two sets A,B -

A ∩B The intersection of the sets A,B -

A \B The set A excluding any point also in B -

A ⊂ B The set A is a subset of B -

A ↪→ B An embedding/inclusion from A→ B such that A ⊂ B -

A→ B A map from the set A to the set B -

| · | The determinant, or absolute value -

Sign(·) The sign of a number -

G An unweighted graph 2.1.3

H Tight binding Hamiltonian defined on a graph G 2.1.5

g An induceda subgraph g of G 2.1.9

h A Hamiltonian on a subgraph g of G -

A The adjacency matrix of a graph G 2.1.4

Q The biadjacency matrix of a bipartite graph G 2.1.6

q The biadjacency matrix of a bipartite induced subgraph g -

[H] An equivalence class of tight binding Hamiltonians H -

ε An energy eigenvalue of a tight binding Hamiltonian -

ω Coaxial cable driving frequency -

τ Coaxial cable transmission time -

M(ε) A transfer matrix at energy ε -

gi,j Greens function for a coaxial cable network (CCN) 2.2.2

Gi,j Greens Function for a (CCN) connected 2.2.2

to a vector network analyser

Zi,j Cable impedance between a site i and a site j in a CCN -

Hi,j A hopping term between a site i and a site j in a CCNb -

Z The additive group of integers -

Z2 A two element groupc -

NZ2 Short hand for a direct sum
⊕N Z2 = Z2 ⊕ Z2 ⊕ · · · -

δi,j Dirac delta function -

x A variable with value in real space -

k A variable with value in momentum space -

aOften we wish to refer to a special type of induced subgraph which we call a section. This is defined

explicitely in chapter 5.
bWe often use lower case Roman letters to denote hopping terms.
cOften we use this as short hand to denote two equivalence classes, but it only becomes a cyclic group

for an infinite structure.
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1.3. Notation and definitions guide

Notation Meaning Definition

F A field, generally taken to be -

the complex or real numbers

Xi A topological spacea 2.1.16

τ A topology τ on a topological space X 2.1.16

ξ A parameter space defined for H on G 2.1.17

π(X) The zeroth homotopy group of a space X 2.1.18

P(Xi) The zeroth homotopy group of a specific subspace of Xi 7.3.17

V or v A voltage in a CCN -

I A current in a CCN -

s11 Measured reflectance of a CCN -

s21 Measured transmission of a CCNb -

|s21| Measured transmittance of a CCN -

Γ or γ A loss term on a CCN from connecting to a VNA 2.2.2

Z or Zs The measured local impedance of a CCN 2.2.2

CV A vertex of a graph that supports a zero energy state 4.1.3

CFV A vertex of a graph which does 4.1.3

not support a zero energy state

TCV A vertex of a graph that supports a zero energy state 4.1.6

for almost all hopping terms

TCFV A vertex of a graph that does not support a zero 4.1.6

energy state for almost all hopping terms

TA A vertex adjacent to a TCV -

TR A vertex not adjacent to a TCV -

Ci,j A block matrix that connects two diagonal blocks 5 & 7

qi and qj of a matrix Q

N (H) The nullity of a matrix H 5.3.5

qk The k-th column of a matrix q 5.3.6

ql 6=k A submatrix of q where the k-th column has been deleted 5.3.6

aNote that sometimes the index is dropped.
bNote that the convention for transmission vs. transmittance seems to be different for optics and radio

frequency engineering, so we have used this convention.
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1.3. Notation and definitions guide

Notation Meaning Definition

b A constraint map defined as the solution to a polynomial 7.1.1

which is a restriction from a subspace Xi → Xj & 7.3.13

ψij The support of a nullstatea on a 7.1.14

block qj originating from a block qi
c2nj A map from a subspace Xj ⊂ ξ with 2n zero energy states 7.3.12

to a subspace Xk ⊂ ξ with 2n+ 2 zero energy states

Table 1.3.0.1: A notation and definition guide for this thesis. Most of the frequently used

notation is included here.

aThe Greek letter used is sometimes different.
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Chapter 2

Background

This section is split in to two main subsections. The first focusses on the theoretical back-

ground of our work, and the second is a discussion of the experimental methods we used

in this work.

Throughout sections 2.1.2, 2.1.2.2, 2.1.2.3, and 2.1.2.4 we will give a brief overview of

some of the previous work on topological classification, mostly focussing on classification

in non-interacting Hamiltonians. With this in mind we will give a short discussion on

tight binding models (and Hückel theory), and electronic band structure in section 2.1.1.

In section 2.1.4 we will discuss chiral symmetry, and the structure of a chiral symmetric

Hamiltonian when allowing for arbitrary continuous hopping disorder. Much of this thesis

uses some notions from graph theory and topology, so in section 2.1.5 we give a brief outline

of some of the preliminary details of graph theory and topology that we use in this work.

A small number of the theoretical predictions we make are verified experimentally using

a coaxial cable network to create tight binding structures. In section 2.2 we will discuss

the experimental basis for our experiments, first by demonstrating a map between coax-

ial cable networks in section 2.2.1, and then discussing experimental measurements and

experimental techniques in section 2.2.2. In section 2.2.2.1 we also give a brief overview

of topological classification in terms of transfer matrices — a convenient formalism for

transmission experiments.

2.1 Topology and materials

Topology studies properties of a space X which are unchanged under some continuous

deformation of the space X. Loosely speaking, this means the space may not be torn, or

have new holes introduced. One of the main questions of topology is, given two topological

spaces X and Y , can X be continuously deformed to the space Y ? To answer such a

question in complete generality is very difficult, but can be simplified by considering certain

properties of the space. A ubiquitous approach is to calculate a topological invariant for

the space X and the space Y . If they are distinct, then you can be certain the two spaces

may not be continuously deformed to one another.

One example of a topological invariant is the number of ways a circle may be mapped

7



2.1. Topology and materials

α ·
β·

γ ·

δ·

Figure 2.1.1: Roughly speaking the first homotopy group counts the number of ways a

circle may be drawn on a surface, and the zeroth homotopy group counts the number of

ways a point may be drawn on a surface. The torus has a first homotopy group of Z× Z.

It has two generators, corresponding to the circles drawn on the surface. Each circle may

be wound around the torus an integer number of times, resulting in a first homotopy group

of Z × Z. For a sphere every circle may be continuously mapped to a point, so the first

homotopy group is trivial. For both the torus and the sphere, any point may be mapped

to any other (for example α 7→ β for the torus, γ 7→ δ for the sphere) so both the torus

and the sphere have a trivial zeroth homotopy group. So a distinct topological invariant is

sufficient to show two spaces are topologically distinct, but not necessary.

to a space, such that the circle does not undergo a discontinuous change. That is, if you

have two surfaces X and Y and X has Z× Z different ways to draw a circle, but Y has 1

equivalent way, then we know X and Y must be topologically distinct. Such an example

is illustrated in Fig. 2.1.1. Roughly speaking, counting the number of ways a circle may

be drawn on a space is the first homotopy group of that space. One may also ask how

many different ways a point may be drawn on a space (the zeroth homotopy group). For

the example in Fig. 2.1.1 both a torus and a sphere have one way to do this. That is,

a topological invariant can be used to tell two spaces apart, but if they have the same

invariant, it does not mean the two spaces are topologically the same.

Broadly speaking questions of topology arise quite naturally in physical systems. In

a material context, we often have a Hamiltonian, with a certain set of physically defined

parameters. There are many topological properties here already: the Hamiltonian has an

Eigenspace and is acting in a Hilbert space. We may ask what are the topological properties

of this Eigenspace? Or even what the topological properties are of its full Hilbert space?

If we allow our physically defined parameters to change, what happens to the topological

properties of this space? Or perhaps as is more interesting in a physical context, if we drive

our system to undergo a topological change, does this have physical consequences?

Remarkably, physical properties of a system can be very dependent on the systems

underlying topological properties. The localisation and transport of electronic states [4, 25–

28] for instance, can often be related to the topological invariant associated to a particular

Hamiltonian. We say, if a topological invariant associated to a Hamiltonian changes, then

the system has undergone a topological phase transition.

In this work we wish to study exact topological properties in finite tight binding models.

8



2.1. Topology and materials

2.1.1 Tight binding approximation

Suppose we wish to describe the electronic properties of a system with N atoms. To write

down and solve the full Hamiltonian, in complete generality, is often not analytically possi-

ble. Using steady state approximations gives a system which is a little more approachable.

Assuming nuclear contributions to such a system are negligible (the Born-Oppenheimer ap-

proximation [29]), many numerical ab initio approaches have been developed to get highly

accurate descriptions of the electronic structure of a system from first principle. For in-

stance, Hartree-Fock [30, 31] and the highly successful density function theory [32], and

even (more recently) approaches using machine learning [33]. One of the simplest methods

to approximating the electronic structure of an N atom system is with the tight binding ap-

proximation, also known as Hückel theory in quantum chemistry [34–36]. We now present

an overview of the tight binding approximation in real and momentum space.

In the tight binding approach, it is assumed that on each atom there is a steady state

Hamiltonian with a set of orbitals n and that the overlap of eigenstates on two different

atoms is negligible. That is, each orbital of the atom is orthonormal and orbitals on

neighbouring atoms are orthogonal so that

〈ψ(x, n)|ψ(y,m)〉 = δx,yδn,m. (2.1.2)

where x, y denote atom positions and n,m denote atomic orbitals. To simplify notation,

let |i〉 = |ψ(x, n)〉. Labelling the probability of an electron hopping from |i〉 to |j〉 with

|hi,j |2 gives a tight binding Hamiltonian

H =
∑

i

Ei |i〉 〈i|+
∑

i,j

hi,j |i〉 〈j| . (2.1.3)

where Ei is an onsite energy and hi,j = h∗j,i.
The bulk Hamiltonian is defined on an infinitely periodic lattice L. This approximation

works well for a large enough physical system where the electronic properties away from

the boundaries behave as though they are in an infinitely periodic structure. A bulk

Hamiltonian may be defined in real or momentum space. This corresponds to defining H

on L directly, or on its reciprocal lattice R. For the set of primitive lattice vectors Ri, the

reciprocal lattice is defined by a set of vectors Ki such that Ki ·Rj = 2πδi,j .

To see that the reciprocal lattice takes values in momentum space, consider a translation

operator Tα : L → L with eigenvalue tα which translates a wavefunction ψ(x) by some

lattice vector α = n1R1 + n2R2 + · · · with integers ni defined on L. If the structure is

periodic on m unit cells in the α direction, then

Tmαψ(x) = Tmα ψ(x) = tmα ψ(x) = ψ(x). (2.1.4)

So eigenvalues of the translation operator are roots of unity tα = eia [34] where a =

2π n1+n2+···
m . As α is a lattice vector, we may decompose a = K·α

m where K = K1 +K2 + · · ·
on R or equivalently a = 1

m(n1K2 + n2K2 + · · · ) · (R1 + R2 + · · · ) = k · (R1 + R2 + · · · ).
This defines a Fourier series between functions on L and functions on R so Ki, Ri are the

canonical variables momentum and position.

9



2.1. Topology and materials

The unit cell of the reciprocal lattice defines the Brillouin zone (BZ) of L. As a conse-

quence of periodicity, all values of k are periodic on R so are defined up to the periodicity

of the lattice. That is

k = 2π

(
n1
m1

,
n2
m2

, · · ·
)

(2.1.5)

where each ni ∈ {0, 1, · · · ,mi − 1} where mi is the periodicity of the lattice in the ith

direction. For an N -dimensional lattice this defines the Brillouin torus TN . For an infinite

crystal, when limm→∞ each entry to k takes on a continuous value in the range [0, 2π).

As the Hamiltonian is periodic on L the eigenstates ψ(x) of H are eigenstates of the

translation operator T so they are periodic up to a phase factor. That is,

ψk(x+R) = eik·Rψk(x) (2.1.6)

where k labels the value taken in the BZ. This is Bloch’s theorem [37], and means eigenstates

may be defined in terms of periodic functions on L.

Definition 2.1.1. A Bloch state of a periodic structure with Hamiltonian H is given by

ψk(x) = eik·xuk(x) (2.1.7)

where the crystal momentum k takes values in BZ of the reciprocal lattice and u is periodic

on the lattice L, so that for any lattice translation a, uk(x+ a) = uk(x).

The band structure of a bulk Hamiltonian is defined by Fourier transforming a Hamil-

tonian from real space to momentum space. This gives a Hamiltonian H(k) with energy

levels E(k) corresponding to its spectrum. For an infinite crystal the BZ is continuous, so

each E(k) defines a function from momentum space to R.

The Bloch states may be transformed to real space giving a localised real space basis

for the eigenstates of H. This defines the Wannier functions [38].

Definition 2.1.2. The Wannier functions of a Bloch state ψk(x) are given by

Wx =
1√
N

∑

k∈BZ
e−ik·xψk(x). (2.1.8)

Or in the infinite limit

Wx =
1

V

∫

k∈BZ
dke−ik·xψk(x) (2.1.9)

where V is the volume of the BZ.

The Wannier functions form a complete orthonormal basis for the eigenstates of H [22, 23,

34, 38] and because they are localised in real space they provide an alternative basis for

the real space tight binding Hamiltonian.

The Bloch functions are unique up to a phase transformation, however the localisation

of Wannier functions may be altered by such a transformation. There has been a lot of

research in finding maximally localised Wannier functions [22, 23]. Using Wannier functions

an exact tight binding Hamiltonian may be found, so maximally localised Wannier functions

define an ideal basis for a tight binding Hamiltonian. Maximally localised Wannier functions

are typically defined by minimising the sum of variances of the position operator for each

Wannier function [22, 23]. Under this approach the maximally localised Wannier functions

are also unique.

10



2.1. Topology and materials

2.1.2 Development of topology in tight binding systems

Topology has a long history as a tool to understand physics. One of the first applications

of topology to physics occurred in the mid 19th century with W. Thomson proposing a

model of elements as non-trivial knots [1]. Since then, many physical phenomena have

been explained as having a topological origin [39, 40] for instance Van Hove singularities

were first predicted as a consequence of the topological properties of differentiable functions

defined on the Brillouin torus [41]. One of the first topological materials appeared with

the discovery of the quantum Hall effect [7, 8] which after its discovery was realised to be

a topological phenomenon [9]. The quantum Hall effect has been shown to relate to the

Berry phase [42] — a topological invariant of the Brillouin zone. We will discuss the Berry

phase in more detail in section 2.1.2.1.

2.1.2.1 Adiabatic evolution

The band structure of a material is particularly important for describing the electronic

properties of a periodic system. The band structure is found by taking a cyclic path

through the Brillouin zone and at each point k finding the spectrum of a Hamiltonian H(k).

Parametrising k as a function of time, we can understand finding the eigendecomposition of

H(k(t)) as solving the instantaneous Schrödinger equation. Under slow evolution we may

approximate solutions to the (time dependent) Schrödinger equation using instantaneous

solutions via the adiabatic theorem [43]. As we will discuss below, the way in which the

solutions to the Schrödinger equation are changed under a cyclic path through the Brillouin

zone has significant consequences on topological properties of a structure.

Consider a time dependent Schrödinger equation with a Hamiltonian H(t) and an in-

stantaneous eigenbasis |n(t)〉. If the Hamiltonian is evolving very slowly, then we can

approximate solutions to the Schrödinger equation with instantaneous solutions so that

H(t) |ψ(t)〉 = E |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 (2.1.10)

where |ψ(t)〉 =
∑
cn(t) |n(t)〉. Solving this equation reveals that a phase is picked up on

each instantaneous basis state — the adiabatic theorem [43]. That is, an eigenstate at a

time t is related to the eigenbasis at a time 0 by

|ψ(t)〉 =
∑

cn(0) exp (iγn(t) + iθn(t)) |n(t)〉 . (2.1.11)

The phase θn is a dynamic phase, caused by a change in the eigenvalues between H(0) and

H(t). That is

θn(t) =
−i
~

∫ t

0
En(T )dT (2.1.12)

where T parametrises time at each point between 0 and t. Of significant interest to this

work is the geometric phase, given by

γn,m(t) = i

∫ t

0
〈n(t)| ∂t |m(t)〉 · dT. (2.1.13)

11



2.1. Topology and materials

The dynamical phase corresponds to changes in eigenvalues of H(t) while the geometric

phase corresponds to changes in the eigenbasis |n(t)〉.
Now consider a time t+ ε very close to t. Then it is likely that solutions to H(t+ ε) are

quite similar to solutions to H(t). In such a case we may assume the eigenbasis between t

and t+ ε are related by

〈n(t± ε)|m(t)〉 ≈ αδn,m (2.1.14)

where |α| = 1. In such an instance the geometric phase is diagonal, so that 〈n(t)| ∂t |m(t)〉 =

0 for n 6= m. This assumption holds so long as there are no degenerate eigenvalues, or

equivalently that bands remain gapped throughout the path through the BZ. We refer to

evolution that satisfies the adiabatic approximation and has a diagonal geometric phase as

adiabatic evolution.

Consider adiabatic evolution for a Hamiltonian H(k) in a BZ, where the crystal mo-

mentum k(t) is time dependent. Adiabatically evolving the Hamiltonian through a cyclic

path C in the BZ defines the Berry phase

γn = i

∮

C∈BZ
〈n| ∇k |n〉 · dk (2.1.15)

where ∇k is the grad operator. Under non-cyclic adiabatic evolution, the geometric phase

may always be removed under a suitable phase transformation eiφn(t) of each Bloch state

|n(t)〉. But for cyclic adiabatic evolution where H(t+ T ) = H(t), then any phase transfor-

mation must satisfy eiφn(t) = eiφn(t+T ), so that φ(t+ T ) = φ(t) + 2πm for some integer m.

Consequently, γn mod 2π cannot be removed by any such phase transformation.

For certain systems, the Berry phase becomes quantized, and is a topological invariant

of momentum space. For instance, consider a two site periodic structure, with a unit cell

depicted in Fig. 2.1.2 (a) (this structure is the famed Su-Schrieffer-Heeger model [24] which

we will discuss more in Chapter 3). This structure has a momentum space Hamiltonian of

H(k) =

(
0 t1 + t2e

ikx

t1 + t2e
−ikx 0

)
= (t1 + t2 cos kx)σx + it2 sin(kx)σy (2.1.16)

where σx, σy are Pauli matrices. Taking a path that maps k 7→ k + 2π induces cyclic

evolution of H(k) and its eigenbasis |n〉 over the BZ. The Berry phase calculates a winding

number around the origin (this special case of the Berry phase is also called Zak’s phase

[44]), so is both quantised and represents a topological invariant of the BZ. An example of

the different evolution in the instantaneous eigenbasis for a trivial Berry phase, and Berry

phase of π is illustrated in Fig. 2.1.3.

A change in the winding number also corresponds to an unavoidable gap closure. To

see this, observe that the band structure is given by

E±k = ±
√
t21 + t22 + 2t1t2 cos kx. (2.1.17)

By continuously evolving the hopping terms t1 and t2 it is possible to change the winding

number from zero to one by evolving from t1 > t2 to t1 < t2. The origin passes through the

12



2.1. Topology and materials

• •· · · · · ·
t1 t2 t1

σy

σx

H(k)

(a) (b)

Figure 2.1.2: (a) A periodic structure with 2 sites in a unit cell, denoted by the dotted

circle. Hopping terms are indicated with t1, t2 where t1 is an intracellular hopping term

and t2 is an intercellular hopping term. The Brillouin zone for this 1D structure is a 1

dimensional torus, represented as the red circle drawn in (b) parametrised by the depen-

dence on the Pauli matrices in equation (2.1.16). Fixing the hopping terms, a cyclic path

through the BZ corresponds to evolving H(k) = t1 + t2e
ikx along the red circle, and the

Berry phase calculates the winding number around the origin and is zero if t1 > t2 or one

if t1 < t2.

|n(0)〉

|n(2π)〉

|n(0)〉

|n(2π)〉

(a) (b)

Figure 2.1.3: The instantaneous eigenbasis of a 1D Hamiltonian H(k) that is undergoing

cyclic evolution, as depicted in Fig. 2.1.2. (a) Denotes a Berry phase of 0, and (b) denotes

a Berry phase of π. The path is illustrated by the red dashed line. For every k, H(k) has

an instantaneous eigenbasis |n(k)〉, defining a vector space at each k.
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2.1. Topology and materials

BZ when t1 = t2 and corresponds to a gap closure, E+
k = E−k , at k = π — so a topological

change coincides with unavoidable non-adiabatic evolution.

If the BZ is an even dimension, then integrating the Berry phase over all k is also

quantised. To see this we consider a 2 dimensional Brillouin torus so we may use the

standard Stokes theorem, but this holds for the generalised Stokes theorem as well. Defining

the Berry connection as An = 〈n| ∇k |n〉 then we may define the Berry curvature Ωn =

∇×An so that

γn = i

∫

S
dS · Ωn (2.1.20)

where the surface S is the entire 2 dimensional Brillouin torus. We may evaluate γn by

integrating around a contractable closed path C , and contracting this path to a point.

That is

γn = i lim
C→0

[∫

S<C
dS · Ωn +

∫

S>C
dS · Ωn

]
(2.1.21)

where C cuts the BZ along a contractable closed path, S < C is the BZ on the side of the

path being contracted, and S > C is the BZ on the other side of the path. In the limit

of C → 0 the path maps the eigenbasis to itself, so by the definition of the BZ this has

solutions for |n(kx, ky)〉 = |n(kx + 2πn, ky + 2πm)〉 = e2πi(n+m) |n(kx, ky)〉, and the Berry

phase must take values of 2πp where p = n + m is an integer value. The integer p is the

Chern number [45], which is a topological invariant of an even dimensional BZ. A material

that can have a non-zero Chern number is known as a Chern insulator.

To see why the Chern number is a topological invariant, observe that with Gauss’

theorem we may evaluate equation (2.1.22) as

γn = i

∫

V
dV ∇ · Ωn (2.1.22)

where V is the volume enclosed by the surface S. So the Chern number can only be non-

zero if there are singularities of Ωn contained in S, the number of which is a topological

invariant.

We may interpret Ωn as an analogue magnetic field in momentum space. As such the

value γn in equation (2.1.22) corresponds to the flux of Ωn through S with singularities

in Ωn corresponding to monopoles enclosed by S. In order to change the Berry phase we

must pass singularities in Ωn through the surface of the Brillouin torus, this results in a

necessary gap closure in H(k). To see that a singularity in Ωn corresponds to a gap closure

in the spectrum, we expand the Berry curvature as,

Ωn = ∇× 〈n| ∇ |n〉 = 〈∇n| × |∇n〉 =
∑

m

〈∇n|m〉 × 〈m|∇n〉 . (2.1.23)

Using Levi-Civita notation, 〈∇n|m〉× 〈m|∇n〉 =
〈

∂
∂kµn

∣∣m
〉 〈
m
∣∣ ∂
∂kν n

〉
−
〈
∂
∂kν n

∣∣m
〉 〈
m
∣∣ ∂
∂kµ

〉

thus 〈∇n|n〉 × 〈n|∇n〉 = 0, so we can restrict the sum in equation (2.1.23) to m 6= n.

Finally, we note that 〈m|∇n〉 = 〈m|∇H|n〉
εn−εm so that

Ωn =
∑

m6=n

〈n| ∇H |m〉 × 〈m| ∇H |n〉
(εn − εm)2

(2.1.24)
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2.1. Topology and materials

which has singularities whenever εn = εm. That is, the Berry phase is only possible to alter

by taking a gap closure through S on the Brillouin torus, meaning adiabatically equivalent

Hamiltonians (with a 2 dimensional BZ) all have the same Berry phase.

Examples of Chern insulators (which may have a non-zero Chern number) include

materials which exhibit the quantum Hall effect — for a 2D material in a magnetic field,

due to cyclotron motion of the electrons, electronic transport is localised to the edge of the

material. The resulting conductance is quantised and exactly proportional to the materials

Chern number [9, 46].

More formally we may understand the band structure as a type of vector bundle.

Loosely speaking a vector bundle consists of some manifold M such that for every point

m ∈M there is a vector space V (m) along with some structure1 to ensure that there exists

an open neighbourhood U around m where for every m+ε ∈ U then limε→0 V (t+ε) = V (t).

In the band structure the manifold is given by the Brillouin torus, and a vector space is

defined for each k with a bulk Hamiltonian H(k). The topological classification of momen-

tum space Hamiltonians is therefore very closely related to the topological classification of

vector bundles on the Brillouin zone. The Berry phase is itself often a topological invariant

of a vector bundle. For instance in the above 1D example the Berry phase corresponds to

a winding number, and in the 2D case related to the Chern number [47] of the Brillouin

torus.

There are many physical properties which may only be changed by non-adiabatic evolu-

tion [45]. For instance, a protected band crossing cannot be removed without a gap closure

[48]. This can lead to protected chiral transport [4] localised to the materials boundaries

which is robust even in finite structures [20, 21]. The connection between the quantum

Hall effect and the Berry phase also ensures that the quantisation in the quantum Hall

effect is robust up to adiabatic evolution. So there is a strong physical motivation to define

equivalence classes for all Hamiltonians, where two Hamiltonians are in different equiva-

lence classes if they may not be related by adiabatic evolution.

For the purposes of this thesis two Hamiltonians H1 and H2 (in real or momentum

space) are considered topologically distinct if and only if there exists no adiabatic path

between them.

2.1.2.2 Bulk-boundary correspondence

Physically any real system must be finite, and so a bulk Hamiltonian does not fully describe

the physical system. For a topologically non-trivial system, boundary modes (whose be-

haviour is dictated by the topological index of the material) exist localised to the boundary.

The rigorous foundations for the bulk boundary correspondence are quite complicated and

are often formalised in terms of K-theory [15] and for disordered infinite systems can be

made rigorous with the use of non-commutative geometry [19, 49]. That said, the physical

premise behind the bulk boundary correspondence is quite intuitive.

Consider two semi-infinite d dimensional topological materials t1 and t2. The bulk is

1Note that this structure is quite technical, and is not too necessary to understand the work we present

in this thesis, so we omit the full definition of a vector bundle here.
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2.1. Topology and materials

well defined for each material, due to their semi-infinite nature. Suppose we choose for the

topological indices of each material to be different. If we sew the two materials together

along their d − 1 dimensional boundary, then we can imagine taking a path from some-

where deep in the bulk of t1 to somewhere deep in the bulk of t2. When far in the bulk

of either material it seems reasonable to approximate the local structure as being entirely

within the bulk of t1 or t2, so the topology in either location approximately corresponds to

the topology deep in the bulk (this can be made rigorous with the use of local topological

indices [16, 17, 50, 51]). As we follow the path from our position far in t1 to a position

far in t2 the topological index must change at some point. From the previous discussion

in section 2.1.2.1 a topological index may only change with a gap closure, so somewhere

along the path there is a boundary, with degenerate modes corresponding to a topological

phase transition.

A similar argument holds for a single material with one bulk topological index. The

vacuum may (roughly speaking) be considered a trivial topological material. In this case

our sample, with a single bulk index, will have degenerate modes localised to its boundaries

[3]. Other properties of the boundary modes are also dictated by bulk topological indices,

for instance protected (and quantised) transport [4].

In Hermitian systems the bulk boundary correspondence is well understood when the

material is taken to the infinite (thermodynamic) limit [15]. Furthermore, the bulk bound-

ary correspondence has been demonstrated to hold in the presence of arbitrary boundary

conditions [52, 53] assuming the system otherwise has no disorder.

2.1.2.3 Momentum space and the 10 fold way

We may choose to restrict adiabatic evolution of the Hamiltonian to ensure a certain sym-

metry is satisfied. For this section we consider the Altland Zirnbauer symmetries [54] that

define the fundamental symmetries of random matrix theory:

CHC† = −H chiral symmetry,

THT−1 = H time reversal symmetry,

PHP−1 = −H particle-hole symmetry,

(2.1.25)

where C is a unitary and T and P are antiunitary matrices. Note that particle-hole sym-

metry arises when a Hamiltonian acts symmetrically on particles excited above the Fermi

energy and the hole (created by the excitation) below the Fermi energy.

As mentioned in section 2.1.2.1 we may understand the Brillouin zone as a vector bun-

dle defined on the Brillouin torus. That is, for every point k in the Brillouin torus there is

a Hamiltonian H(k) defining a vector space. The topological classification of bulk Hamil-

tonians is therefore deeply connected to the topological classification of vector bundles on a

torus. We can impose constraints to ensure perturbations to vector bundles satisfy certain

symmetries.

We can imagine taking a bulk Hamiltonian and asking what happens to the topological

classification upon the addition of topologically trivial bands — that is, bands in the BZ

that have a trivial topological index. Topological properties that remain stable under an
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Symmetry Dimension

AZ (T,P,C) 0 1 2 3

AIII (0,0,1) 0 Z 0 Z
BDI (1,1,1) Z2 Z 0 0

DIII (-1,1,1) 0 Z2 Z2 Z
CII (-1,-1,1) 0 2Z 0 Z
CI (1,-1,1) 0 0 0 2Z

Table 2.1.2.1: The Altland Zirnbeaur classes that have chiral symmetry. Most of the

results in this thesis apply to classes AIII and BDI.

arbitrary addition of trivial bands falls in to the study of K-theory [15, 47, 55], and is the

origin of stable topological invariants [56].

From the perspective that adding or removing trivial bands (as much as one may desire)

does not change a topological classification, bulk Hamiltonians may all be characterised by

their fundamental symmetries. Combining symmetries in different ways leads to the famous

periodic table of topological insulators [56]. The periodicity of the table is a consequence

of Bott periodicity in the homotopy groups of vector bundles [47, 55].

The standard momentum space approach does not hold for strongly disordered systems.

This is because the bulk Hamiltonian may not well approximate the infinite system — a

consequence of the loss of translational invariance. One approach around this is the use of

non-commutative geometry [19, 49].

Non-commutative geometry allows for the study of spaces corresponding to non-commutative

algebras. The idea behind using non-commutative geometry is that translational invariance

was previously defined using a translation operator on an infinite lattice. The translation

operator is defined in a commutative algebra on the lattice. Under the loss of transla-

tion invariance, a translation operator may be defined in a non-commutative algebra [19].

Much like the use of a translation operator led to a commutative Brillouin zone, the non-

commutative translation operator leads to a non-commutative Brillouin zone.

Remarkably with the use of non-commutative geometry (in the infinite limit) it has

even been proven that topological properties remain for arbitrary disorder, for every entry

of the periodic table [57]. From the perspective of the 10 fold way, this gives a complete

picture of stable topological matter in infinite media.

2.1.2.4 Other approaches to classification

There are subtleties to the classification that even non-commutative geometry is unable to

resolve without further considerations. These include fragile topological materials. These

are materials such that the addition of trivial bands can change the topological classifica-

tion [58]. Furthermore, the presence of crystal symmetries, for instance the C3 symmetry

of graphene, can also affect topological classification. For example, this can lead to the

very rich classifications of higher order topology such as multipole topological insulators

[59]. Finally (and the most relevant to this thesis) is the properties of topology in finite
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systems.

For systems with crystal symmetry — crystalline topological insulators — the under-

lying space group becomes important. This is because the maximally localised Wannier

functions that form a basis for electronic functions of the crystal depend on the irreducible

representations (irreps) of the underlying space group [12]. Furthermore, any AZ symme-

tries may also combine with crystalline symmetries to reveal a very rich classification (for

example in second order topological insulators [60]).

One very successful approach is to compute the irreps of the underlying space group, to

predict if the maximally localised Wannier functions may be adiabatically localised to the

atomic limit [12–14]. It has been shown that if and only if the maximally localised Wan-

nier functions may be localised to atomic orbitals, then the Brillouin torus has a trivial

Chern number [61]. That is the irreps may be used to indicate the presence topologically

robust electronic states. This approach has been applied to the Bilbao material database,

and using DFT calculations, indicates around 90% of materials in the database have a

topologically non-trivial band structure.

There have also been a number of approaches to classification in finite media, often us-

ing (in some way) the bulk boundary correspondence. One approach is to use a topological

index which may be defined locally in real space [17, 62]. For instance, local Chern num-

bers [50, 51] have been used to predict the number of approximately topologically robust

modes in finite systems (the last two also using the non-existence of an atomic limit of

the maximally localised Wannier functions to predict non-trivial topological bands). Local

invariants are useful in calculating an index for finite systems, however finite size effects

mean topological degeneracy is not exact [18]. It has also been demonstrated that (for low

disorder) a rich phase diagram is realised for systems with inversion symmetry [21] giving

a larger number of topological indices as a direct result of finite size effects. Time reversal

symmetry has also been demonstrated to give non-trivial topology in finite structures [20].

2.1.3 The focus of this work

In finite media, topologically robust properties of the bulk are asymptotic to the infinite

limit. This means that even exact properties associated to topological phase transitions,

such as spectral gap closures and boundary properties, may be lost at sufficient disorder

[18]. The relationship between bulk topology and boundary physics may also be lost when

the network topology does not admit a clean definition of what constitutes a bulk and what

constitutes a boundary, for instance in random graphs.

In this thesis we propose a rigorous approach to the classification of finite media, where

we only consider gap closures topological if they remain for arbitrary (symmetry respect-

ing) continuous hopping disorder. As a result, our approach is entirely finite, with some

connection between our work and infinite media discussed throughout the thesis. That

is, we are interested in the exact topological properties of finite structures. Our approach

also allows for the consideration of arbitrary network topology, allowing for classification

beyond the bulk boundary correspondence.

We consider three main problems in this thesis. The first is the problem of topological
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protection. We consider a state to be topologically protected only if its eigenvalue is exactly

robust to hopping disorder. That is, it has an eigenvalue that is constant for any continuous

perturbation on the system. In finite systems this gives a direct connection between the

structure of the system, and the number of topologically protected states it may host. We

present a method for finding the number of topologically protected states in chapter 4 and

also discuss how this relates to the underlying network topology of a structure.

We then give an approach to classifying topological phase transitions in finite media

with chiral symmetry. In finite systems, boundary properties protected by a bulk index

converge exponentially in the thermodynamic limit [19]. For example, a gap opens split-

ting zero energy boundary modes in a finite chiral structure, with the gap size dependant

on disorder strength [18]. Furthermore, a gap closure separating topological phases in the

bulk does not necessarily indicate an exact gap closure in the finite sample. That is, at

sufficient disorder and small enough size, the bulk boundary correspondence is effectively

lost. Using a graph theoretic approach, we define topologically distinct equivalence classes

of finite Hamiltonians separated by exact energy gap closures. This allows us to relate a

structures network topology to its topological classification. We discuss this classification

and experimental confirmation of our classification in chapter 5.

The final main problem we consider is the topology of chiral Hamiltonians where we

begin to allow control of individual hopping terms. This allows us to study topology as

the number of degenerate states is sequentially increased. We give some general results

demonstrating topology in constrained chiral systems with exact gap closures is quite uni-

versal. This leads to some sequences of topological phase transitions that may occur in

finite structures. Such sequences alter the localisation of degenerate modes undergoing

such a phase transition, which we also confirm experimentally. This is discussed in chapter

7.

Throughout this thesis we present experimental measurements using a coaxial cable

network, corroborating some of our predictions. A coaxial cable platform, starting with

the SSH model is discussed in chapter 3. We also find many deep connections between

our classification and nut graphs, discussed in chapters 5 and 6. Using this platform we

experimentally confirm some predictions of the behaviour of nut graphs in chapter 6. A

definition and discussion of the literature surrounding nut graphs is given in this chapter

also.

2.1.4 Chiral symmetry

In this thesis we present results primarily relating to the classification of finite tight binding

models with chiral symmetry, at arbitrary continuous hopping disorder. We now present

some properties of chiral symmetry that we will use throughout this work.

As discussed in section 2.1.2.1 a Hamiltonian H has chiral symmetry if for some unitary

C

CHC† = −H. (2.1.26)

As a consequence, H and −H have the same eigenvalues, and so for any state with the

non-zero energy ε then there is also an eigenstate with the energy −ε. Furthermore, if H
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is a structure with an odd number of sites, then to maintain chiral symmetry there must

be at least one zero energy state. Similarly, if H has an even number of sites, then the

number of zero energy states is also even.

We are interested in chiral Hamiltonians with arbitrary hopping disorder. To allow this,

we define each non-zero hopping term hi,j to be algebraically independent from all other

hopping terms. It may be shown (with the use of the Harary Sachs theorem [63, 64]) that

this requires that the sites of the Hamiltonian may be permuted to give a basis of the form

H =

(
0 Q

Q† 0

)
. (2.1.27)

A Hamiltonian with this structure allows chiral symmetry to be interpreted in terms of

sublattices of the Hamiltonian, an example of which is given in Fig. 2.1.4. As will be

discussed in section 2.1.5.1 this means we can interpret a chiral structure as being a bipartite

graph.

◦

•

◦

•

a1 a2

a3a4

•

◦

•

◦

b1 b2

b3b4

c1 c2

Figure 2.1.4: An example chiral structure, with two sublattices — a black sublattice and

a white sublattice, where white sites may only connect to black sites and black sites may

only connect to white sites. Each labelled hopping term is algebraically independent.

In chapters 5 and 7 we will make a lot of use of the fact that for a chiral structure an

even number of sites ensures that zero energy states come in pairs. From the form of H

in equation (2.1.27) it follows that rank(H) = 2 rank(Q). This ensures we can study the

block Q to infer properties about the Hamiltonian, for instance in finding unavoidable gap

closures in the energy spectrum of H at zero energy.

Using the block Q to study the presence of unavoidable gap closures in the full Hamil-

tonian has a few advantages, but also has some subtle difficulties compared to using the

full Hamiltonian directly. This is because Q is not a normal matrix.

The first issue is the loss of Hermiticity. The Hamiltonian itself is Hermitian, so is

unitarily diagonalisable ensuring all eigenstates are necessarily orthogonal, however Q is

not. It is in chapter 7 where the consequences of this become most apparent, where Q

may not be diagonalisable, and the left and right eigenspace of Q may have quite different

properties.
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A matrix Q is not diagonalisable if it has defective eigenvalues. This occurs when there

are n ≥ 2 degenerate eigenvalues, but there are not n linearly independent eigenvectors of

that eigenvalue. For example, the matrix

Q =

(
1 2

0 1

)
(2.1.29)

has two eigenvalues of 1 but only one corresponding eigenvector of (1, 0)T .

A second issue is that two eigenvectors of Q may be linearly independent, but might

not be orthogonal. For instance, for

Q =

(
1 2

0 3

)
(2.1.30)

there are two linearly independent (unnormalised) eigenvectors,

(
1

0

)
,

(
2

1

)
. (2.1.31)

There is no linear combination of one that will give the other.

Orthogonality of eigenvectors does appear in another sense, however. Consider a non-

defective matrix Q. Then we have the eigendecomposition

A−1QA = Λ

A†Q†(A†)−1 = Λ∗
(2.1.32)

where A diagonalises Q and Λ is a diagonal matrix with eigenvalues λ of Q on the diagonal.

That is, the columns of (A†)−1 are the eigenvectors of Q†. The requirement that A−1A = I

ensures that — when Q is not defective — each eigenvector of Q is orthogonal to all but one

eigenvector of Q† (where we consider the eigenvectors |a〉 , |b〉 to be orthogonal if 〈a|b〉 = 0).

We use this orthogonality in chapter 7 to find ways of evolving hopping terms of H to get

large numbers of zero energy states.

2.1.5 Mathematical background

In this thesis we study topological properties of particular finite tight binding models, where

we only allow continuous hopping evolution. To study these structures in full generality,

we make use of some graph theory and topology. Some of the basic notions of graph theory

and topology that we use throughout this thesis are reviewed in section 2.1.5.1 and section

2.1.5.2 respectively.

2.1.5.1 Some notions in graph theory

In this thesis we study topological materials using a graph theoretic approach. As such, we

give a short discussion of some results in graph theory that we use throughout this thesis.
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Definition 2.1.3. A graph G is a pair {V,L} where V is a set of vertices, and L a set of

edges between the vertices. The number of edges that connect to an individual vertex we

refer to as vertex degree or vertex order.

Remark. In this thesis we will refer to vertices as sites or vertices. Here they are used

synonymously.

We will be studying, mostly, simple graphs which have at most one edge between two

vertices, and no edges that loop to the same vertex. That said, we sometimes relax the

restriction on loops in chapter 4 and section 5.6.

Occasionally we also wish to restrict to chemical graphs (in chapter 6). These are graphs

where each vertex has at most three nearest neighbours. Such graphs are theoretically

realisable with carbon nanostructures, such as benzenoids and nanographenes.

To see the connection between a graph and a tight binding model, we need to define an

adjacency matrix of G.

Definition 2.1.4. An adjacency matrix A of a graph G with N vertices is an N×N matrix

where

Ai,j :=

{
1 if vertex i and j share an edge

0 otherwise.
(2.1.33)

A related matrix, H, is the weighted adjacency matrix. In this matrix every edge is labelled

with a weight, so that

Hi,j :=

{
hi,j if vertex i and j share an edge

0 otherwise.
(2.1.34)

A tight binding model is a weighted adjacency matrix where entries to the matrix are given

by hopping terms, and hi,j = h∗j,i so that H† = H.

Remark. For many systems it is assumed there is only one orbital per atom. This means

that the graph G is also the chemical structure of the system. If a system has more than

one orbital for any atom, then G is no longer the chemical structure of the system.

Throughout this work we frequently wish to relate how a graph is connected to the

topological classification of a Hamiltonian defined on it. In order to do this we define two

objects of interest for every structure: a graph of the structure, and a Hamiltonian on the

graph.

Definition 2.1.5. A Hamiltonian H is defined on a graph G where a non-zero hopping

term hi,j is associated to each edge of the graph G.

As discussed in section 2.1.4 to allow, with full generality, hopping disorder in our tight

binding model, chiral symmetry is only present for Hamiltonians with the form

H =

(
0 Q

Q† 0

)
. (2.1.35)

We can partition the edges of such a weighted graph in to two partite sets: a black set b,

and a white set w. This defines a bipartite graph where the black set and white set of sites

each correspond to a partite set.
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Definition 2.1.6. A bipartite graph is a graph G which has two partite sets such that

edges may only be drawn between the partite sets. This leads to an adjacency matrix of

the form

A =

(
0 B

BT 0

)
(2.1.36)

with Hamiltonians of the form

H =

(
0 Q

Q† 0

)
. (2.1.37)

We refer to the matrix B and Q as the biadjacency matrix of G and/or H.

More generally we often wish to make more arbitrary partitions of a graph. To do this

we just define sets of vertices, each corresponding to a different partition, and label each

vertex based on which set it is in.

Throughout this work we sometimes wish to consider permutations of H or A such

maps take the graph from itself to itself, and correspond to a graph automorphism.

Definition 2.1.7. A map H1 → H2 such that the underling structure G is the same defines

a graph automorphism.

It is often useful to consider distinct vertices and edges that may be mapped to one an-

other under a graph automorphism. When allowing arbitrary edge weights such maps are

very rare, but for unweighted graphs G they are quite frequent. An example of such an

automorphism is given by mapping any vertices of the same colour (black, white, or green)

to one another in Fig. 2.1.5 (a).

Definition 2.1.8. Under a graph automorphism G→ G any two different edges or vertices

that may be mapped to one another are in the same orbit. That is, let P be the permutation

group of G and p ∈ P be an element of P . Then the orbit is given by

P (o) := {po ∈ G|p ∈ P}. (2.1.38)

where o is an object (an edge or vertex) of the graph G.

We also often wish to study particular subgraphs of a structure, especially in chapters

4, 5, and 7.

Definition 2.1.9. An induced subgraph g of G is a graph defined on a subset of vertices v

of G such that every edge between a vertex in v is present in g and G.

An example of such a subgraph is given in Fig. 2.1.5 (b). Note that most of the subgraphs

we study in this thesis are induced subgraphs. We will sometimes refer to a different

subgraph (in chapter 7) which we call an effective subgraph, but we will explicitly refer to

such a subgraph as an effective subgraph. As such we will drop the term induced, and every

time we refer to a subgraph without declaring it effective we mean an induced subgraph.

The definition of an effective subgraph is quite technical, so we do not define this here.
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(a) (b)

Figure 2.1.5: (a) A graph where vertex orbits are indicated by the colour of the vertex,

and edge orbits are indicated by the solid, dashed, and dotted lines. A graph automorphism

maps any vertex or edge to another vertex or edge in the same orbit. (b) An example of

an induced subgraph g of G. The subgraph g is indicated with the dashed edges and white

sites, whereas G is the entire graph. Notice how every edge between a vertex of g is also

precisely the edges in G between the same subset of vertices.

In chapter 6 we wish to look at the properties that relate to a bridge between two

(connected) induced subgraphs. A bridge is a set of vertices that connect two subgraphs

such that the vertex degree of each vertex is two. And in chapter 5 we consider to properties

that relate to branches. A branch is a set of vertices such that it is terminated by a vertex

with degree one, and every vertex connecting this set has degree two. An example of a

bridge and a branch is given in Fig 2.1.6 (a) and (b) respectively.

A result we will use a lot in chapters 4, 5 and 7 is the Harary-Sachs theorem [63, 64].

This gives a connection between the way a graph is connected — its network topology —

and the terms that appear in its determinant. To discuss the Harary-Sachs theorem, we

need to make a few definitions about how vertices are connected. We then give a simple

proof of the Harary-Sachs theorem for a weighted bipartite graph in 2.1.13.

Definition 2.1.10. If two vertices of a graph G share an edge, we say there is a matching

between the vertices, or that the two vertices may be matched, or that the two vertices are

possible to match. An example of such a matching is given in Fig. 2.1.7.

Definition 2.1.11. If every vertex of a graph G is possible to match, such that each

matching is between a disjoint pair of sites, then we say G has a perfect matching. In this

thesis we also often refer to such a matching as a cover.

Definition 2.1.12. If a graph G has no perfect matching, we call a matching of the largest

subgraph which has a perfect matching the largest matching of the graph.
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(a) (b)

Figure 2.1.6: (a) An example of a bridge in a graph. The two induced subgraphs con-

nected by a bridge are encircled with ellipses. (b) An example of a branch in a graph,

indicated by the white vertices.

◦ •

◦

Figure 2.1.7: Part of a graph, where there exists a (dashed) matching between the black

site and one of the white sites, and a (dotted) matching between the black site and a second

white site. The two white sites are not connected, so do not have a matching.
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◦ •

◦•

a

d

c

b Q =

(
a b

d c

)
⇒ |Q| = ac− bd

Figure 2.1.8: There are two matchings of this graph, with the biadjacency matrix Q, the

solid matching (with hopping terms a and c) and the dashed matching (with hopping terms

b and d). By the Harary-Sachs theorem, every term in the determinant of the biadjacency

matrix, corresponds to the product of hopping terms in a complete matching, as is indicated

by computing |Q|.

Theorem 2.1.13. In a weighted bipartite graph with biadjacency matrix Q and a set of

perfect matchings {m}, then each term of |Q| is given by a sum of the product of each edge

weight that appears in a perfect matching m.

Proof. Consider the matrix

H =

(
0 Q

Q† 0

)
(2.1.42)

on a graph G. A perfect matching corresponds to a bijective map between one partite set

to the other partite set, labelled by edges. This is exactly any set of terms in Q that may

be permuted to be on a non-zero diagonal of Q.

Any non-zero term in Q corresponds to the product of a set of terms which may be

permuted to be on the diagonal of Q, therefore every non-zero term in |Q| corresponds to

a perfect matching. That is

|Q| =
∑

m

±
∏

i

hm,i (2.1.43)

where hm,i is the set of hopping terms on any edge in the matching m and the sign of the

product depends on the number of permutations to put this matching on the diagonal of

Q.

The Harary-Sachs theorem is particularly important to allow us to relate the determi-

nant of a structure to it’s underlying connectivity. This is because, to study a particular

structure with arbitrary hopping disorder, we often leave hopping terms as indeterminates

within some field (for instance the real numbers). As such, the determinant of the Hamil-

tonian is a polynomial of these indeterminates. Using theorem 2.1.13 we are able to relate

the structures connectivity to the determinant. An example of the correspondence between

the perfect matchings of a bipartite graph and the determinant of it’s biadjacency matrix

is illustrated in Fig. 2.1.8.

Another property we wish to make use of throughout this thesis is that when randomly

selecting edge weights for a graph G from some continuous field, if the graph can be non-

singular, then the graph is almost always non-singular.

26



2.1. Topology and materials

Proposition 2.1.14. For a weighted graph G where we independently and randomly select

edge weights, then if there exist a set of edge weights such that G is non-singular, then

with randomly selected edge weights the graph is almost always non-singular graph.

Proof. Let H denote the weighted adjacency matrix of G. If there exists edge weights such

that G is non-singular, then to get a singular graph requires solving |H| = 0. If solutions to

|H| = 0 exist, they constrain at least one edge weight of the graph. Fix all but one hopping

term h in the expansion of |H|, such that |H| is a non-constant polynomial. Solutions to

|H| = 0 correspond to individual points. Therefore, if h is selected from a continuous field,

such solutions are almost always avoided. This is true regardless of the choice of which

hopping terms are fixed or not, so for randomly selected hopping terms from a continuous

field |H| is almost always non-zero.

In chapters 5, 6 and 7 we often wish to study graphs where every vertex has non-zero

support of a nullstate — a vector in the nullspace of that graph. And in chapter 6 and

section 5.6 we also wish to study such graphs that have only one nullstate.

Definition 2.1.15. A graph G with N nullstates such that every vertex in the graph has

non-zero support of a nullstate is an N -core graph [65]. A nut graph is a core graph of

nullity 1 [66].

Nut graphs were first described by Irene Sciriha [66, 67], and have had numerous ap-

plications in chemistry [68–71] as we will discuss in more detail in chapter 6.

2.1.5.2 Some notions of topology

In this thesis we wish to study exact topological properties in finite tight binding models.

To this end, we give a brief introduction to topology. As indicated in section 2.1 in order

to study topology we need to define a topological space. A topological space consists of

some set X with additional structure — a topology τ — on X. A topology allows for some

notion of closeness between two points x and y in X without distance necessarily being

defined. Loosely speaking a continuous change to the space X only changes the distance

between any two points, so a topology allows us to study properties that are invariant up

to continuous changes to X.

A topology on a space X allows us to understand how different subspaces of X are

connected to one another, which may be done by defining subsets of X. For instance,

we may define X as the set of all vegetables and fruit. Culinary fruit and vegetables are

distinct, for example the set of fruit contains oranges, apples, and pears, and the set of

vegetables contains tomatoes, potatoes, and carrots. In culinary terms, we might suggest

that oranges are closer to apples then carrots are to apples. We may do this by defining a

subset of {oranges, apples, pears} ⊂ X and the subset {tomatoes, potatoes, carrots} ⊂ X.

Because the subset of vegetables and fruit are disjoint in the culinary sense, then under the

culinary topology X is a disconnected space. Alternatively, we may define the subsets of X

in terms of their botanical definition. In this case many culinary vegetables are fruits, but

all edible parts of a plant define a vegetable, so we may consider all vegetables as equally
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close to one another. In this sense we may only allow one subset of X, which is X itself.

Under this botanical topology (with a little extra structure this the trivial topology) we

can never find a fruit that is not a vegetable, and so X is not disconnected. That is, the

choice of topology will change how we understand the topological properties of the space

X.

In chapters 5 and 7 we need to define a topology on certain subspaces, in such a way

that the topological invariants we are interested in correspond to distinct topological phases.

This can either be done by careful choice of a topology (which we will remark on briefly

later in this section) or else by carefully defining your subspace of interest and using a quite

standard choice of topology. We have favoured the latter in this thesis, but we anticipate

the former also has advantages.

A topology on a space X may be defined in terms of open subsets (a definition first

proposed by Hausdorff [72]) but can also be defined in many other (equivalent) ways,

for example with closed subsets (using De Morgan’s laws). For our purposes I think the

definition in terms of open subsets is the most intuitive, as in chapter 7 we explicitly

calculate topological invariants of open subspaces Xi that are entirely contained within

other open subspaces Xj .

Definition 2.1.16. A topological space X is given by the pair (X, τ) where τ is the

topology on X. A topology τ is given by a collection of sets of X where

1. The empty set ∅ ⊂ τ and the whole space X ⊂ τ .

2. For any subsets U ⊂ τ and V ⊂ τ then the union U ∪ V ⊂ τ .

3. For any subsets U ⊂ τ and V ⊂ τ then the intersection U ∩ V ⊂ τ .

Subsets that combine according to these axioms we define as open.

Remark. Note that a closed subset of X is a subset whose complement is open.

We will make use of the so called usual topology on a space X, although I think our

approach to the classification problem may be (quite naturally) formulated in terms of a

Zariski-like topology where closed subsets are defined as solutions to the coefficients of the

secular equation of a Hamiltonian [73, 74]. The usual topology on an n dimensional space

X has open subsets defined in terms of open n-balls, as well as the empty set and X itself

[75]. An open n-ball in X consists of all points at a distance x < r around a point in X.

In order to study the exact topological properties of a finite tight binding model H we

define a parameter space ξ of which each H defines a point.

Definition 2.1.17. Let H be a tight binding Hamiltonian defined on a connected graph

G with algebraically independent non-zero hopping terms hi,j ∈ F \ 0 for some field (often

the real or complex numbers) F. Let (hi,j) be the tuple of hopping terms of H. This tuple

defines the parameter space ξ of G with the dimension of the number of edges of G.

Remark. Every Hamiltonian H on G with specific hopping terms defines a point in ξ. A

continuous map between two Hamiltonians H1, H2 ∈ ξ involves continuous evolution of the

hopping terms which defines a path in ξ.
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If two Hamiltonians H1 and H2 are topologically distinct, then any continuous path

between them involves a non-adiabatic change to the Hamiltonian. This allows us to define

a collection of disjoint open subsets of ξ with each subset corresponding to a topologically

distinct Hamiltonian. As will be discussed in chapters 5 and 7 we will define subspaces X

of ξ in which these collections of subsets become disconnected. The number of topological

phases is then found by counting the number of disconnected components of X. That is

if there exists an open n-ball in X that connects two points then the two points represent

topologically equivalent Hamiltonians.

The number of disconnected subspaces of a space X can be understood in terms of the

number of ways to map a point x to X. Formally this is the zeroth homotopy group of X.

Definition 2.1.18. Let X be a topological space with the topology τ . Let x ∈ X be

a point in X. Let S0 denote a point. The zeroth homotopy group π(X) is the set of

equivalence classes of maps f : S0 → X such that for a ∈ S0

f(a) = x (2.1.45)

where f1(a) and f2(a) are in the same equivalence class if there exists a continuous map

g : X → X such that g(f1(a)) = f2(a). We denote this as f1(a) ∼ f2(a).

f1(a)

f2(a)

·

·

g1(f1)

f3(a)

f4(a)

·

·

g2(f3)

Figure 2.1.9: A space X with two disconnected components, giving two equivalence

classes of the zeroth homotopy group π(X). If this space X represented the number of

topological phases a particular structure has, then this would give a Z2 classification.

Remark. All of the zeroth homotopy groups we calculate are of the form
⊕N Z2 which we

denote by NZ2. Elements of this group may be represented with an N -dimensional vector

(a, b, c, · · · ) where each a, b, c takes values in Z2.

In chapter 7 we wish to have an iterative way to define the subspaces of ξ. We can map

between a subspaces of ξ by some map fi,j : Xi → Xj . As we will define many different

subspaces of ξ it is convenient to represent this as a commutative diagram where each arrow

corresponds to a different map.
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Definition 2.1.19. A commutative diagram consists of a set of objects with a collection

of maps between them represented by arrows. If the starting point is an object A then

following any directed path that takes you to an object B will give the same image and

preimage. Note that an inverse of a particular arrow may not be defined.

Following multiple arrows corresponds to taking a composition of maps. As an example,

the following is a commutative diagram. This is taken from an example in section 7.7 of a

structure we study experimentally.

E0 E2 ∩X1 E4 ∩X2

X0 X1 X2

c10 c22

|q1|=0 |q2|=0

The rows denote different subspaces of ξ, with arrows indicating maps between these sub-

spaces, and the maps labelled on the arrow. Here we have represented by E2n a subspace

of ξ with exactly 2n zero energy states. By Xi we denote subspaces defined by solutions to

certain polynomials (which will be explained and defined in chapter 7). The hooked arrows

denote inclusion maps, that is E2n ∩Xi is a proper subset of Xi. We refer to such a map

as an inclusion or an embedding. A map from Xi → E2n ∩Xi or Xi → Xj where j > i we

will refer to as a restriction.

We also often wish to represent maps from spaces to zeroth homotopy groups. We will

represent these with arrows, but the general theory of such maps is outside the scope of

this thesis (and are described by category theory). From the same example, such maps are

represented as

X0 X1 X2

3Z2 Z2 0

|q1|=0 |q2|=0

where the bottom row represents a sequence of zeroth homotopy groups. Much of chapters

5 and 7 will revolve around computing these maps.

2.2 Coaxial cable networks as an experimental platform

In this work we often wish to observe topological phase transitions, and physical properties

that occur at topological criticality directly on some structure. To do this we use coaxial

cable networks, which are represented by tight binding models where cables correspond to

edges and junctions correspond to sites [76–78] (although it is possible to represent sites

with the centre of cables, which are connected at junctions [79]).

Topological phase transitions have been directly observed in tunable topological insu-

lators by altering lattice parameters and chemical properties of the structure [80] changing

the filling [81, 82] and even direct control of hopping terms in linear polariton devices [28,

82] and microwave arrays [83], as well as by creating multiple structures with different hop-

ping parameters [26]. Order-disorder topological phase transitions have also been observed
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in 2d photonic crystals [27] by detuning on site energy terms using sites with different

refractive indices.

One difficulty in observing topological phase transitions on a particular graph is that

its hard to change values of hopping terms independently, or without a significant change

to the connectivity of the maximally localised Wannier functions. This makes direct ob-

servations of topological phase transitions on graphs difficult to experimentally observe

without a discontinuous change to the underlying structure, or changing a symmetry of the

Hamiltonian.

Coaxial cable networks can be used to create structures which are modelled by a tight

binding model [76–79]. In these systems sites correspond to junctions in the network and

cables correspond to hopping terms. The value of a hopping term between two sites is

directly related to the impedance of the cable between the same two sites, allowing for

hopping terms to be changed while maintaining exactly the same underlying structure.

This allows for a very flexible platform for topological physics experiments.

Coaxial cable networks as an experimental platform have been used in a number of

experimental settings. Including to make quantum graphs [84–88], to study edge states

in graphene [78], and have been proposed as a good system for the study of topological

phenomena in large structures [79]. In this thesis we primarily use them to experimentally

study topological phase transitions in systems with arbitrary hopping disorder.

We may make two main measurements on a coaxial cable network using a vector network

analyser (VNA). The first is a single port measurement, which can be used to find the local

density of states (LDOS) (for example in chapters 3, 4, 5, 6, and 7). The second is a

transmission measurement, which relates the phase and amplitude of an eigenstate on one

site to that of another. We can use transmission to map out entire eigenvectors (as we

use in chapter 6), and we can also use transmission to give signatures of delocalisation

corresponding to topological phase transitions (as we use in chapters 3, 5, and 7).

This section is organised as follows. In section 2.2.1 we discuss a general mapping

discovered by David Whittaker between coaxial cable networks and tight binding models

[76, 77]. We then discuss experimental measurements of a coaxial cable network in section

2.2.2, and discuss a transfer matrix approach to classification, which helps tie together

signatures of a topological phase transition to transmittance measurements. The details

we discuss about experimental measurements of a coaxial cable network are based on results

of David Whittaker, much of which are also detailed in the supplementary material of [76].

2.2.1 An equivalence of tight binding models & coaxial cable networks

A coaxial cable consists of an inner conductor, an outer conductor, and a dielectric between

them. Due to their geometry coaxial cables are shielded which prevents interference from

neighbouring electromagnetic signals (see Fig. 2.2.1 for an example of the cross section of

a coaxial cable). When operating a coaxial cable, a current passes through the inner and

outer conductor, typically the same current which is antiparallel in the two conductors. This

results in an electromagnetic field in the dielectric through which transverse electromagnetic

modes may propagate.
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Outer conductor

Inner conductor

Dielectric, ε

Figure 2.2.1: A cross section of a coaxial cable.

Assuming lossless cables, and approximating a 1d system the frequency response in a

coaxial cable may be described by the Telegraphers’ equations

d

dx
V (x) = iZωκI(x)

d

dx
I(x) =

i

Z
ωκV (x)

(2.2.47)

where I(x), V (x) are current and voltage, Z is the cable impedance, ω is the current

frequency and κ−1 is the propagation velocity. Solving these equations yield

V (x) = V (0) cosωκx+ iZI(0) sinωκx

I(x) = I(0) cosωκx+
i

Z
V (0) sinωκx.

(2.2.48)

This defines the voltage and current at a point x in a cable (as illustrated in Fig. 2.2.2).

Using equation (2.2.48) it is convenient to relate I(x), V (x) to I(0), V (0) with a transfer

matrix, so that
(
V (x)

I(x)

)
=

(
cosωκx iZ sinωκx
i
Z sinωκx cosωκx

)(
V (0)

I(0)

)
= M

(
V (0)

I(0)

)
. (2.2.49)

We make significant use of this transfer matrix in studying the topology of an SSH chain

in chapter 3. This formalism can also be extended to more complex networks as discussed

in section 2.2.2.1. We make use of this generalisation in chapters 5 and 7.

We wish to make coaxial cable networks which are more complex than a linear chain

where, for every cable the transmission time τ = κx is the same. That is, we wish to relate

the voltage and current at any site in the network. Such a problem can be solved with a

standard eigenproblem. We may do this by considering Kirchhoff’s current rule — at any

site the sum of currents in the network is zero, so we can write

cosωτ
∑

n

i
Vj
Zn,j

=
∑

n

i
Vn
Zn,j

(2.2.52)
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V (x)
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•

I(x)

I(x)

x

Figure 2.2.2: The current I(x) and voltage V (x) at a position x of the coaxial cable.

where the sum is taken over the n nearest neighbours of the site j, Zn,j denotes the

impedance of a cable between site n and site j and Vn is the voltage at a site n. This

is a general eigenproblem with an eigenvector consisting of voltages v, diagonal matrix p,

and a matrix H,

cos(ωτ)pv = Hv. (2.2.53)

Let ‘energy’ be denoted ε = cosωτ . We may turn this in to a standard eigenproblem with

the map

εv̄ = p−
1
2Hp−

1
2 v̄ (2.2.54)

where v̄ = p
1
2 v. The scaling is given by a diagonal matrix with entries given by

p
− 1

2
j,j =

(∑

n

1

Zn,j

)− 1
2

(2.2.55)

where the sum is taken over the nearest neighbours of the site j.

Remark. Note that unless the transmission time for every cable is the same, or at least inte-

ger multiples of one another, then the energy ε is not separable in the general eigenproblem.

This makes the interpretation of energy in a system that lacks a constant transmission time

difficult, so we require all the networks we experimentally study in this work to have the

same transmission time τ (or an integer multiple of this).

We now have a standard eigenproblem which is equivalent to a Schrödinger equation

εv̄ = H̄v̄ (2.2.56)

where H̄ = p−
1
2Hp−

1
2 is Hermitian and defines a tight binding Hamiltonian with hopping

terms given by

H̄i,j =

(∑

n

1

Zn,i

)− 1
2
(∑

m

1

Zm,j

)− 1
2 1

Zi,j
. (2.2.57)

That is we may make arbitrary tight binding Hamiltonians with a coaxial cable network.

The scaled and unscaled Hamiltonian H̄,H are related by a non-singular diagonal matrix

so they are adiabatically equivalent and the topological properties of H̄ and H are the

same.
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Remark. Note that throughout this thesis we will typically drop the bar, and just refer to

the scaled Hamiltonian of the coaxial cable network as H.

The characteristic impedance of a coaxial cable may take complex values when they have

sufficient loss or capacitance or inductance. Although we will use only cables which have

an approximately real characteristic impedance at the frequencies we use for experiments

in this thesis. This allows us to experimentally probe topological physics in systems with

positive real hopping terms.

2.2.2 Measuring a coaxial cable network

As mentioned above, we make use of two main measurements on a coaxial cable network.

We are using a two port vector network analyser (depending on the experiment this is

a NanoVNA V2 Plus 4 or a NanoVNA V2 Plus 4 Pro) which has an input port and an

output port so we can directly measure reflectance and transmission in a structure. The

VNA itself measures the input and output amplitudes of power waves in the coaxial cable

network.

A VNA measures the scattering parameters of a coaxial cable network. In particular,

s11 is reflectance and s21 is transmission. These are given in terms of the left and right

moving power waves in the network. Power waves are defined in terms of the left and right

moving planar waves that form solutions to the telegrapher’s equations. That is

ain =
1

2
√
Z

(V + IZ)

aout =
1

2
√
Z

(V − IZ)

(2.2.58)

where Z is the (real) load on the port a of the VNA. The scattering parameters are then

given by

s11 =
aout
ain

s21 =
bout
ain

(2.2.59)

where a and b are the input and output ports of the VNA, respectively. Note that the

input waves of a are moving in the same direction as the output waves of b. Furthermore,

the input and output impedances are matched so

s21 =
Vb
Va
. (2.2.60)

To understand how these measurements relate to the states in the tight binding Hamil-

tonian, we need to model a coaxial cable system with input and output ports attached.

The following discussion follows similar lines to the supplementary material of [76]. The

VNA itself undergoes a calibration procedure (outlined in section 2.2.2.3) to correct the

port impedance to 50Ω. The circuit diagrams for connecting the VNA to the structure are

illustrated in Fig. 2.2.3.
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VNA

∼

Z
in
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Figure 2.2.3: A simplified circuit diagram for the input and output ports. The input port

is denoted with a signal generator to represent an inhomogeneous driving term. The two

circles on each port denotes the connection to the inner and outer conductor of the coaxial

cable.

Connecting an output port to the structure at a site j will result in the port drawing a

current I =
Vj
Zport

. By Kirchhoff’s current rule the sum of currents on a site is zero, so this

alters the onsite voltage by

Vj

(
−i
Zout

+ ε
∑

n

1

Zn,j

)
=

(∑

n

i
Vn
Zn,j

)
(2.2.62)

where n is summed over the neighbours of the site connected to the VNA. This adds an

imaginary onsite term to the unscaled Hamiltonian. Scaling reveals an onsite term of

− iγ = −ip−1j,j . (2.2.63)

So connecting the VNA directly to the network gives a scaled Hamiltonian of the form

H + iΓ (2.2.64)

where Γ is a diagonal matrix with non-zero terms representing an onsite imaginary energy

for each port connected to the VNA.

On the input port, there is also a driven voltage Vd, and the port draws a current so

connecting the input to site j yields Vj = Vd−IZin where Zin is the impedance of the input

port. This is an inhomogeneous driving term so we may write

(H + iΓ)v = εv + Vin (2.2.65)

where v is an eigenvector of H+iΓ and Vin is a vector with one non-zero term corresponding

to the site j where Vin = ip
1
2
j,j

Vd
Zin

.

The Greens functions of H + iΓ relate a voltage on a site k to the site j connected to

the input site by

vk = Gk,jVin. (2.2.66)

The physical voltages (corresponding to those of the unscaled system) are then related by

p
1
2
k,kVk = i

p
1
2
j,j

Zin
Gk,iVd. (2.2.67)
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So the transmission measurement is related to the Greens functions by

Vk
Vd

= i
p

1
2
j,j

Zinp
1
2
k,k

Gk,j . (2.2.68)

The reflectance measurement is most useful to find the LDOS of H. This is because

a large resonance in the structure may be indicated by a large loss (analogously to loss

increasing with amplitude in an oscillating mechanical system). The loss in a coaxial cable

network is indicated with the real part of the impedance, which we may calculate with the

reflectance.

To see how the local impedance is related to the s11 measurement we make use of the

power wave basis and the fact Iin = Vin
Zs

on an input port. Therefore

Zs = Zin
1 + s11
1− s11

(2.2.69)

where Zs is the impedance of the structure on that site.

To see that the LDOS is proportional to Zs we look to the Greens functions of H and

the Greens functions of H + iΓ for a single port measurement. A diagonal term of the

Greens functions of H is given by

gj,j(ε) =
∑

k

|ujk|2
1

ε− εk
(2.2.70)

where the sum is over the eigenstates uk with an entry ujk on site j and eigenvalues εk.

In the limit as ε → εk the Greens function is dominated by the term with eigenvalue εk
therefore

gj,j(εk) =
∑

k

|ujk|2δ(ε− εk) (2.2.71)

which is the local density of states. Note that we will use G for a Greens function of H+ iΓ

and g for a Greens function of H.

To relate impedance of the structure to the LDOS, we compare the Greens functions

when connecting one port to the network to the Greens functions of H. Using the Sherman-

Morrison formula the Greens function when connecting a single port to the VNA is related

to gj,j by

Vj
Vd

= ip
1
2
j,jGj,j =

ip
1
2
j,jgj,j

Zin + ip
1
2
j,jgj,j

. (2.2.72)

Viewing the coaxial cable network as an impedance in series with the input impedance

reveals that
Vj
Vd

=
Zs

Zin + Zs
(2.2.73)

and so Zs = ip
1
2
j,jgj,j . When driving the structure the onsite imaginary term −iγ that is a

consequence of connecting the VNA to the structure means −Im[gj,j ] corresponds to the

LDOS. That is

− Re[Zs] = p
1
2
j,j

∑

k

|ujk|2δ(ε− εk). (2.2.74)
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Using the reflectance to calculate the local impedance therefore gives us an experimental

measurement of the LDOS of the structure.

2.2.2.1 A transfer matrix approach

In many experiments we wish to measure the two site transmission of a coaxial cable

network. Generally, we make use of transmission measurements because properties of the

transfer matrix may be used to indicate a topological phase transition [76, 89, 90] (and as

we use in chapters 3, 5, and 7). It is also very useful for finding the phase relationship

between two sites, as we use in chapter 6.

To see the relationship between a phase transition and the transfer matrix consider an

infinite periodic structure with a transfer matrix of M(ε) for some slice of the structure.

Due to periodicity when a transfer matrix has an eigenvalue of eiφ for some phase factor φ

then there is a state with energy ε at k = φ in the Brillouin zone.

For a finite system we consider a transfer matrix defined for the complete structure. In

order to do this, we need to cut an individual site to make an input and output site (as

indicated in Fig. 2.2.4). In this structure if there is an eigenvalue of 1 then there is an

eigenstate which satisfies the boundary conditions of the uncut structure, so at ε = 0

|M(ε = 0)− I| = 0⇔ |H| = 0. (2.2.75)

For an uncut chiral structure that does not have topologically protected states, then this

indicates a closed gap. It is this property that we use to study topological phase transitions

experimentally.

•• •

◦◦ ◦
◦◦

InputOutput

Figure 2.2.4: An example of a structure cut for a transmission experiment. The edges

connecting sites in the ellipse are not drawn in so as to represent an arbitrary chiral struc-

ture. The input and output ports of the VNA are then each connected to a cut site.

The transfer matrix also indicates if an eigenstate is delocalised in a structure. Consider

a chiral structure with an even number of sites. Cutting the structure on a site introduces

an imbalance in the number of black sites nb and the number of white sites nw. This creates

a zero energy state on the cut structure. As in equation (2.2.60) measuring transmittance

then gives the relative magnitude of this state on the input and output sites. Because the

cut input and output sites are now quite distant from one another, support of the created

nullstate is the largest on both sites when the state is delocalised. The relationship between

delocalisation and transmittance has a few subtleties to it, as we discuss further in chapters

3, 5, and 7.

In chapter 6 we wish to make use of transmission experiments to experimentally find

the complete nullspace of a selection of nut graphs. Nut graphs have all real eigenvectors,
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so we wish to use these measurements to find the relative sign of a nullstate on two sites.

The transmission is related to the Greens functions as in equation (2.2.68), so we can

experimentally probe the phase relationship of H + iΓ on two sites with a transmission

measurement. We can relate these to the nullspace of the structure itself by using the

Woodbury matrix identity, giving

Ga,b =
ga,b

1 + γinγout(1− ε2)(ga,bgb,a − ga,agb,b) + i(1− ε2) 1
2 (γinga,a + γoutgb,b)

. (2.2.77)

For a nut graph, which has all real eigenvectors and has only one zero energy state ga,bgb,a−
ga,agb,b = 0. So we can relate the two Greens functions by

Ga,b = ga,b(1 + αi)−1 (2.2.78)

where α ∈ R. This alters the transmission by a phase factor in
(
−π

2 ,
π
2

)
so the real part of

the transmission can be used to get the sign dependence of an eigenstate on two sites.

2.2.2.2 Vector Network Analyser

A VNA measures the amplitude and phase of power waves that propagate a coaxial cable

network at a particular frequency. The basic working principle behind a VNA is to have

a signal generator to drive a structure and measure a frequency response of the network.

This response is then compared with a reference signal.

Roughly speaking the VNA we use has one driven input, and so the signal generator

is connected only to the input port. This is then split in to two arms, one to drive the

network and the other to measure the input signal. The arm which drives the network is

connected to a directional coupler — a resonator which is shorted on one end. This allows

the signal returning to the input port to be isolated from the signal driving the network.

The input and output signal are then compared to a reference oscillator, giving the s11
measurement.

The undriven port does not have an input on the structure, so only the output signal

is measured. This is connected to a directional coupler. The output of this coupler is

connected to the same reference oscillator, allowing measurement of the s21 term.

In combination this allows the frequency dependence of the reflectance and transmission

to be measured. A simplified diagram of this is illustrated in Fig. 2.2.5. It should be noted

that the NanoVNA itself uses a different architecture, where a careful use of switches allows

for only one directed coupled in the device. The working principle is still the same, however.

2.2.2.3 Experimental protocols

The VNA was operated with the software NanoVNA-Saver version 0.5.5. The software

runs a calibration procedure with a short-open-load measurement on the input port and a

through and isolated (both ports are shorted) measurement for a two port calibration. The

calibration itself is based on a direct reverse calibration measurement, as detailed in [91].
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∼
Signal

generator ∼
Ref. oscillator

Coupler Coupler

Processer

Port 1 Port 2 •

Figure 2.2.5: A highly simplified circuit diagram for a 2-port VNA, to measure s11 and

s21 parameters. Each coupler is a directed coupler to extract the incoming wave amplitude

on each port.

2.2.2.4 Experimental techniques

Making coaxial cable networks that represent arbitrary real tight binding models comes

with a few difficulties. We begin by discussing issues relating to manufacturing cables,

before detailing some experimental challenges of the networks themselves.

As discussed in section 2.2.1 one crucial aspect of making a coaxial cable network which

represents a TB model is to ensure that the transmission time of every cable is the same.

Of course, in practice this is not possible. Instead, we have a procedure for making two

cable types, each with a specific transmission time as close to the desired transmission time

as possible. The two cable types we use in our experiments are RG58 cables and RG62

cables, with a characteristic impedance of 50 Ω and 93 Ω respectively.

The coaxial cable networks are made with SMA connectors — one female end and

one male end. The commercial standard for such connectors is that they have a 50Ω

characteristic impedance. The length of the connectors alters the transmission time of

the complete cables. To get around this, for each cable type we attached with a male or

female connector to one end and left the other end as a cut cable. We then measured

the transmission time and attached a final female or male connector to the other end and

repeated the measurement. This gave us an experimental measurement of the transmission

time of each connector. We also compared this to the length of the connectors as detailed

in the relevant specification sheets for the connectors.

The connectors used were Amphenol RF132240 and Amphenol RF132231 for female

and male RG62 SMA connectors, and Telegartner J01151A0491 and Multicomp Pro 19-

03F-4-TGG for female and male RG58 SMA connectors.

Using the transmission time of a connector, we can calculate the required transmission

time of a cable connected with just a male end, to ensure the final complete cable has the

correct transmission time. Cable manufacturing then followed this procedure:

1. Cut a length of coaxial cable to roughly the right length (but intentionally slightly

too long).

2. Connect a male connector to the cable.
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3. Measure the transmission time, and iteratively cut the cable to the appropriate length,

until the measured transmission time matches the required time.

4. Attach the female connector to the cable.

5. Measure the final transmission time to ensure the cable has the appropriate length.

A completed cable was then characterised with a single port and two port measurement, to

ensure it was within a suitable range of the ideal transmission time, and its transmission

properties were suitable. Data were collected in a database, allowing for very precise

simulations of the networks. Note that most of the simulations we used to compare to

experimental data did not take in to account the specific cables, once we had a good

enough ensemble of individual cables.

In terms of making coaxial cable networks there are a few problems mainly relating to

measurements, and connections within the network.

Connecting a port of the VNA to a network introduces an extra length in the structure,

which results in a slightly off site measurement. This connection can be modelled as a short

coaxial cable which, as per equation (2.2.49), has the transfer matrix

Mc =

(
cosωκcdc iZc sinωκcdc
i
Zc

sinωκcdc cosωκcdc

)
(2.2.80)

where dc is the length, κ−1c is the transmission speed, Zc is the impedance all of the

connector, and ω is the driving frequency. This acts as a phase shift on the voltage and

current before and after the connector, and so the transmittance |s21| is unaffected by

measuring slightly off site.

For a single port measurement local impedance is related to the transfer matrix of the

complete structure by

Zm = −M22

M12
. (2.2.81)

Taking in to account the connector when connecting the network to a single port of the

VNA results in a shift of the impedance by

Zm =
−Mc22 +Mc22Zs
Mc11 −Mc12Zs

(2.2.82)

where Zm is the measured impedance, and Zs is the impedance of the structure on the site.

Finding Zs allows us to effectively calibrate out the connector forcing an off site measure-

ment.

Connections within a network also need to be accounted for. This can be most effec-

tively dealt with in a linear structure. The finite length of a connector alters the effective

length of 50Ω coaxial cable, which we can simply account for by increasing the length of

93Ω coaxial cable. The sites are then located where a change of impedance occurs. We also

allowed for double lengths of 93Ω cable without including a small 50Ω region by making

double length cables. To prevent a connector at the unconnected end affecting the mea-

surement, we made two cables which terminated without a connector. These allowed us to
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terminate the structure exactly on a site.

For a more complicated network we may need to connect n nearest neighbours to a par-

ticular site. Commercially only 3 port connectors are available2 (higher number of ports

are commercially available, but these distribute the power equally to each port which we

want to avoid in our structures). To reach higher connectivity we simply attached multiple

T-connectors to one another.

With T-connectors also being 50Ω this results in two problems. The first is that it is

not possible to have 93Ω connectors between two such sites, and the second is that con-

necting several T-connectors shifts the location of a particular site. Our approach here was

to maintain the transmission time of each complete cable (with SMA connectors attached).

To first order this results in a small on site energy, which was generally not sufficient to

affect measurements enormously and was not accounted for in data analysis. It may be

possible to have a more optimal approach, but this is not a trivial problem, and is currently

being worked on by colleagues. The second problem may be improved by manufacturing

custom connectors, although we do not address this approach here, and this also being

looked in to by colleagues.

There are also some issues which arise from the quality of a connection when the coax-

ial cable network is completely connected. Sometimes in making the cables, or repeated

plugging and unplugging of the connectors the internal pins can shift and no longer reach

the ideal point of a connector. This can result in a capacitive effect at the junction. At the

low radio frequencies we are running experiments this causes significant losses. To account

for this, once a cable is known to have connection issues it is characterised once again and

removed from the ensemble of cables used to make structures. This does not give a great

way to detect damaged cables, but any experimental data were compared with numerics

to ensure the structure was behaving as expected.

2Note that this means the most ideal graphs to make with a coaxial cable network are in the class of

chemical graphs, much to the pleasure and amusement of our chemist collaborators.
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Chapter 3

Exploring topological physics in

coaxial cable networks: the

Su-Schrieffer-Heeger model

As discussed in section 2.2, at radio frequencies, a coaxial cable network can be modelled

with a tight binding model [76, 78, 79]. Furthermore, coaxial cables are flexible, allowing a

simple method to make structures with a tight binding model of non-planar graphs, which

(up to the constraints of engineering suitable connectors) may have any geometry or con-

nectivity.

Coaxial cable networks can also be designed to have exact chiral symmetry. In many

systems it is difficult to exactly control the hopping terms between sites, while simultane-

ously letting them evolve. As discussed in section 2.2 this makes it hard to engineer systems

with exact symmetries. One significant advantage of coaxial cable networks is the ability to

exactly control the neighbours of individual sites, as well as hopping terms between them,

allowing exact symmetries — such as chiral symmetry — to be maintained. This makes

coaxial cable networks a promising platform for disordered topological photonics experi-

ments.

As an example of a coaxial cable network representing a topological system, we present

an experimental study of a Su-Schriefer-Heeger (SSH) model [24]. We demonstrate a topo-

logical phase transition, along with a topologically protected state of the kind that will be

discussed more in chapter 4.

The SSH model was originally developed as a model for a polyacetylene molecule (see

Fig. 3.0.1) which consists of a linear chain, with two sites in a unit cell. It is a tight binding

model with the Hamiltonian

H =
∑

i

ti1 |2i+ 1〉 〈2i|+ ti2 |2i+ 2〉 〈2i+ 1|+ H.c. (3.0.1)

where ti1 , ti2 are hopping terms, and H.c. denotes the Hermitian conjugate. The intracell

hopping is given by ti1 , while the intercell hopping is given by ti2 . When ti1 = tj1 and

ti2 = tj2 for every i 6= j the SSH model has no disorder.
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The SSH model has two sublattices, so it has chiral symmetry. As discussed in section

2.1.4, sublattice symmetry satisfies the requirement for chiral symmetry to survive when

allowing arbitrary continuous hopping disorder.

• ◦ • ◦ • ◦ • ◦ · · ·

Figure 3.0.1: The structure of the SSH model. Notice the two sets of sites (black and

white) corresponding to the two sub lattices. A unit cell is indicated by the dotted ellipse,

with the solid line an intercell hopping and the dashed line an intracell hopping.

In [76] we discuss experimental results corroborating the observation of a topological

phase transition, and a topologically protected state in a disordered SSH model. I gratefully

acknowledge Prof. David M. Whittaker who devised the project and also wrote [76]. I

contributed to the experimental work with the insightful and expert help of Dr. Qingqing

Duan, and I contributed a little to the development of the theory by helping to uncover the

relationship between the determinant of the SSH model, and the eigenvalues of the transfer

matrix. I also helped to solve several experimental problems with using coaxial cables, as

outlined below.

In [76] we observe a phase transition in a disordered SSH chain by using two methods.

In both cases we use a probability distribution to generate hopping terms, which may be

biased to take a structure away from a topological phase boundary. We then take the

structure through a phase transition by altering how this distribution is biased.

The first method we used to observe a phase transition was by direct measurement of the

LDOS in a looped SSH chain. This allowed us to detect a gap closure around zero energy

as we varied the probability distribution of hopping terms in an ensemble of randomly

generated SSH chains. To confirm the structure has two zero energy states at topological

criticality, the LDOS was measured on a site of both sublattices. Recall from section

2.1.4 that for a chiral structure a zero energy state may be localised to each sublattice,

so confirming non-zero support on both sublattices corroborates the presence of two zero

energy states. This was further demonstrated by a small energy splitting between the two

states, verifying the sublattices hosted distinct zero energy states.

Secondly, we cut the looped chain to create an open chain with an odd number of sites.

Measuring transmittance of the cut structure allowed us to observe a topological phase

transition, present in the equivalent looped structure. As discussed in section 2.2.2.1, at

zero energy the measured transmittance in the cut chain is a maximum when the looped

chain is topologically marginal. This is because — neglecting losses in the coaxial cables —

at zero energy, a topologically marginal looped chain corresponds to a cut structure that

has a transfer matrix with unit eigenvalues. As the chain is driven away from topological

criticality (by altering the values of hopping terms) the eigenvalues of the transfer matrix

are no longer one and the transmittance reduces. So by measuring the transmittance for

an ensemble of disordered SSH chains which were either topologically marginal, or on one

side of the phase boundary, we were able to observe a topological phase transition in the

structure. The experimentally measured transmittance for the ensemble of the SSH chains
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agreed well with the predicted transmittance from the transfer matrix treatment at zero

energy.

To observe a topologically protected state we measured the LDOS of the cut structure

(which, having an odd number of sites, has a topologically protected state) using the same

ensemble of structures as in the transmittance experiments. We demonstrated a very ro-

bust zero energy state, with a standard deviation of 0.2% over the ensemble.

To achieve this demonstration of a topological phase transition and topological pro-

tection in a coaxial cable network, required overcoming a few experimental problems (as

detailed in section 2.2.2.4). Largely these issues are a result of the finite junction lengths

that are necessary to connect two cables. We first recall issues with measuring the net-

work, and then discuss problems with how the network itself is connected. Furthermore,

as mentioned in section 2.2 it is difficult to independently change hopping terms in a struc-

ture without changing the connectivity of the maximally localised Wannier functions. As a

coaxial cable network allows for exact control of connectivity, we wished to unambiguously

demonstrate such a phase transition in a disordered structure, so we wanted to try and

overcome these issues as best as we could.

Ideally experimental measurements would be made exactly on a lattice site. However,

the finite size of the ports of the vector network analyser (VNA) mean measurements are

inherently made off site.

With a two port VNA we can make two measurements on a structure — reflectance

and transmission measurements. Because the topological properties we are most interested

in occur at zero energy (ε = cosωτ = 0) it is useful to know how measuring off site affects

reflectance and transmission near zero energy. For the purposes of studying the SSH model,

transmittance and reflectance are the two most useful measurements. As demonstrated in

section 2.2.2.4 transmission undergoes a phase shift with an off-site measurement, so trans-

mittance is not affected by measuring slightly off-site.

We use the reflectance data to find the local impedance, which (as shown in [76] and

discussed in section 2.2.2) has peaks corresponding to the LDOS. As discussed in section

2.2.2.4 we chose the sites of the SSH chain to correspond to where the impedance changes

in the structure. As a consequence the finite length of SMA connectors ensures all mea-

surements are made off-site, as illustrated in Fig. 3.0.2. Measuring off-site results in a shift

in the LDOS. As we demonstrated in section 2.2.2.4 this shift has a simple functional form,

and we are able to account for this by transforming the data by

Zs =
−Z cos(ωla) + iZa sin(ωla)

− cos(ωla) + i ZZa sin(ωla)
(3.0.3)

where Za is the impedance of the connector, ω is the frequency, la is the distance off the

site (it is positive when measuring off an RG62 cable, and negative when measuring off an

RG58 cable), and Z is the impedance calculated from the raw data. This transformation

allows us to infer the LDOS exactly on a lattice site.

If a cable does not terminate with a site this also leads to a shift in the measured LDOS.

To account for this we made special cables which are cut to the right length to terminate

the chain exactly on a lattice site.
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Figure 3.0.2: To account for the 50Ω characteristic impedance of the SMA connectors,

the coaxial cables are made so that a change in impedance matches a site in the structure.

When connecting to the VNA this forces the measurement to be taken slightly off-site, by

a length la. For an RG62 cable this puts the ideal place to measure away from the VNA,

and for an RG58 cable this puts the ideal place to measure inside the VNA port. We can

account for this shift with equation (3.0.3) to infer the LDOS on the actual site.

Another issue, as also mentioned in section 2.2.2.4, is that the connectors between any

two cables are of a finite size. Commercial SMA connectors are typically 50Ω. In this

work we used two types of cables: 50Ω (RG58) cables and 93Ω (RG62) cables. For linear

structures we we may get around this by using the connector lengths as an extension of the

50Ω cables. In this case, the lattice sites are located where the impedance shifts from 93Ω

to 50Ω. To account for this effective increase in the length of 50Ω cables the RG62 cables

were made slightly longer.

As we have discussed, cables were made using the VNA to benchmark the transmission

time of each cable, before both ends of the cable were fastened in place. This is much

more convenient to do when the complete cables (transmission line and the connectors)

both have the same transmission time, which is the approach we used for more complex

networks. However, the change in length of the complete cable (with the fastened ends)

means the complete RG62 cable is longer than the RG58 cable. To account for this we

measured the shift in transmission time of both cable types upon the addition of a female

connector. Using these data we were able to know the exact transmission time required of

each finished cable type. In combination with the cable manufacturing protocol discussed

in section 2.2.2.4 this allowed us to make ensembles of cables each with a standard deviation

of 2mm of the ideal length for our experiments1.

Another issue that arises from the 50Ω connectors is that if two RG62 cables neighbour

each other, then there will necessarily be a small 50Ω region between them. To solve this

we made double length RG62 cables, and restricted the distribution of structures so that

no more than two cables of the same type will neighbour each other.

1Calculated from the characterisation of the manufactured cables.
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3.1. Linear paper

Finally, there was a problem arising from the measured transmittance in certain struc-

tures. This resulted in a non-zero variance of measurements around what the simplest

transfer matrix approximation would reveal. However, by including losses in numerical

modelling resulted in states that were localised differently to when not considering losses.

This altered the transmittance, but we were able to predict the exact transmittance of a

particular structure very accurately in numerics when accounting for such losses. This was

generally an issue more for structures away from a phase transition.

3.1 Linear paper
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We report an experimental study of the disordered Su-Schrieffer-Heeger (SSH) model, imple-
mented in a system of coaxial cables, whose radio frequency properties map on to the SSH Hamil-
tonian. By measuring multiple chains with random hopping terms, we demonstrate the presence
of a topologically protected state, with frequency variation of less than 0.2% over the ensemble.
Connecting the ends of the chains to form loops, we observe a topological phase transition, charac-
terised by the closure of the band gap and the appearance of states which are delocalised, despite
the strong disorder.

The Su-Schrieffer-Heeger (SSH) model[1], originally a
description of the electronic states in polyacetylene, is
one of the simplest systems of topological physics. It
consists of a chain of sites, representing carbon atoms,
connected by hopping terms which alternate in strength,
corresponding to the bonds of the dimerised molecule. In
this periodic form, it has a band gap which closes when
the two hopping strengths are the same. The gap clo-
sure separates two topological phases, determined by the
relative magnitudes of the hopping amplitudes. With ap-
propriate termination, SSH chains can support localised
boundary states which are said to be topologically pro-
tected, because their energy is independent of disorder
in the hopping amplitudes. These non-trivial topological
properties are a consequence of the chiral, or sublattice,
symmetry of the SSH model: the sites can be divided into
two sublattices, such that there are only hopping terms
connecting the two types.

The topology of the SSH model is robust in the pres-
ence of disorder, provided that the chiral symmetry is
not broken. A chain with a random sequence of hopping
amplitudes can still be assigned to one of two topologi-
cal phases. We can thus talk about a topological phase
transition in an ensemble of random SSH loops, driven
by varying the parameters in the probability distribution
from which the hopping amplitudes are drawn[2]. The
theory of such random chains, with off-diagonal disor-
der, has a long history, dating back to work by Dyson[3–
5] and continuing through modern scaling theories of the
Anderson transition[6–10]. If the probability distribu-
tion for each hopping term is the same, leading to struc-
tures which are close to the topological phase boundary,
the states at zero energy are predicted to be delocalised.
Measurements of the localisation properties can thus pro-
vide a signature of a topological phase transition. In an
infinite chain, the transition is also predicted to be ac-
companied by a singularity in the density of states.

There have been numerous experimental studies of im-
plementations of the SSH model using electromagnetic
waves, in photonic and microwave structures[11–15], and
discrete electronics[16, 17]. It is generally hard to con-

trol all the couplings in these systems so as to main-
tain chiral symmetry with sufficient accuracy to observe
the effects we discuss, particularly while introducing con-
trolled disorder. This is has been achieved in cold-atom
systems[18], where delocalisation at a topological phase
boundary has been observed[19] for a momentum-space
SSH structure.

Coaxial cable networks are a very simple electromag-
netic system which can be used to investigate disorder[20]
and topological[21, 22] physics. We have shown[23] that
cable structure can be fabricated with radio frequency
properties which map very accurately onto the SSH
Hamiltonian. The hopping amplitudes are determined
by the impedances of the corresponding cables, so it is
easy to make a random ensemble of chains with full chi-
ral symmetry. In this letter, we use cable structures to
investigate experimentally the properties of random SSH
chains. By the use of impedance and transmission mea-
surements, we demonstrate very precise topological pro-
tection of a state, and show the delocalisation and closing
of the gap at the phase transition.

The derivation of the matrix description of a coaxial
cable network is given in the Supplementary Materials,
S1. We consider a network consisting of a set of sites,
labelled n, connected by sections of coaxial cable, all of
which have the same transmission time, τ , the length
divided by the transmission speed. The cable connect-
ing sites n and n′ has electrical impedance Znn′ . The
network has radio frequency resonances which are deter-
mined by a matrix eigenvalue equation Hv = εv, where
the dimensionless ‘energy’, ε, is related to the frequency,
ω, by ε = cosωτ . The components of the vector v are the
voltages at the sites, scaled such that the actual voltage
is Vn = σnvn. Here σn = (

∑
n′ Z

−1
nn′)−1/2, with the sum

taken over the sites n′ directly connected to n. The ma-
trix elements of the ‘Hamiltonian’ are then the hopping
amplitudes

Hnn′ = σnZ
−1
nn′σn′ . (1)

This one-to-one mapping from cables connecting sites to
hopping amplitudes means it is possible to create a net-
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FIG. 1. Sublattice colouring of an SSH chain, with black and
white sites labelled bn and wn, as in Eq.(2). The hopping
amplitudes, tn, follow Eq.(3).

work corresponding to any finite real matrix Hamilto-
nian, though in practice this is limited by the availability
of cables with arbitrary impedances.

We measure the radio frequency properties of the ca-
ble structures using a vector network analyser (VNA).
Two sorts of measurement are useful. A single port re-
flection measurement of the S11 parameter gives us the
impedance of the structure measured at a given site.
We show, in Supplementary Materials S2, that the real
part of this is proportional to the local density of states,
broadened only by losses in the cables. This enables us
accurately to determine the frequencies of the resonances
of the structure. Two port transmission measurements
(S21) provide information about the spatial extent of the
states, allowing us to detect the delocalisation which oc-
curs around the phase transition.

A Hamiltonian has chiral symmetry if the sites can be
divided into two sublattices, which we call ‘black’ and
‘white’, Fig.1, such that there is only hopping between
sites on different sublattices. There can be no intra-
sublattice terms, including on-site energies. If this is the
case, ordering the basis such that all the black sites pro-
ceed the white sites gives an anti-diagonal form:

H

(
b
w

)
=

(
0 Q
Q† 0

)(
b
w

)
= ε

(
b
w

)
. (2)

From this we obtain (Q†Q)w = ε2w, so the eigenvalues
must either be zero, or occur in symmetric pairs with op-
posite signs. It immediately follows that for a chain with
an odd number of sites there must be at least one zero
energy state. Since this conclusion does not depend on
the values of the hopping amplitudes which form the ma-
trix elements of Q, the zero-energy state is topologically
protected against disorder. More generally, for a chiral
network with nb black sites and nw white sites, there are
at least |nb − nw| protected states.

Fig.2 shows the local density of states measurement for
a number of structures consisting of sequences of 16 ca-
bles connected end-to-end. The individual cables are ran-
domly selected from two impedances: 50Ω and 93Ω. The
structures thus map onto finite length SSH chains with
randomised hopping terms. More details of the cables
are given in the Supplementary Materials S3. Fig.2(a)
shows unlooped chains, with the measurement on a site
at the end of the structure. The 16 cables correspond
to 17 lattice sites, so we see, as expected, a topologically
protected ε = 0 state, at a frequency of approximately
114MHz. The topological protection is very good: the
inset shows combined results for this state in 41 random
structures. The standard deviation of the resonance en-

FIG. 2. (a) Measured impedance spectra (local density of
states) for a selection of unlooped length N = 16 random
SSH chains. The colours are an aid to distinguishing curves.
The spectra show the expected symmetry about the chiral
frequency (∼ 114MHz), which corresponds to zero energy in
the SSH Hamiltonian. The topological protection of the state
at ε = 0 is apparent. The inset shows, expanded and nor-
malised, the protected state in an ensemble of 41 unlooped
chains, demonstrating the minimal chiral symmetry break-
ing in our cable structures. (b) Impedance spectra for looped
length 16 random cables with various reduced lengths, Eq.(5):

M̃ = 0 (red), M̃ = 2 (purple) and M̃ = 4 (blue). Reducing

M̃ closes the gap, leading to a doubly degenerate state at
the chiral frequency for the topologically marginal M̃ = 0
structures. The inset shows spectra for M̃ = 0 around ε = 0
measured on adjacent sites, revealing the two states, one lo-
calised on each sublattice. Compared to (a), there is more
chiral symmetry breaking, and a slight lowering of the chiral
frequency, due to the extra length of the T-connector inserted
in the loop to make the measurement.

ergy is approximately 0.22MHz, which we believe is due
to small errors in the lengths of the cables.

A topological phase transition is signalled by the pres-
ence of a pair of degenerate states at zero energy, equiv-
alent to the gap-closure in a periodic structure. When
nb = nw, this corresponds to the condition that the de-
terminant |Q| = 0[25]. For our structures, |Q| is a simple
product of hopping amplitudes, the first term in Eq.(3),
which cannot be made zero without cutting the chain, so
there is, trivially, just one topological phase. However,
by joining the ends of the chains to form loops, we can
observe a transition between the two phases of the SSH
model, using measurements of the local density of states.
For chiral symmetry, the loops must consist of an even
number of sites, and thus be made from an even num-
ber of cables. In a loop with N cables, labelling hopping
amplitudes rather than the sites, t1, t2, . . . tN (Fig.1), we
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obtain

|Q| = t1t3 . . . tN−1 − (−1)(N/2)t2t4 . . . tN . (3)

However, since the tn contain the scaling factors σ as well
as the cable impedances Zn, Eq.(1), it is convenient to
look at the quotient of the two terms, where these cancel,
and define a quantity

M = 2 ln

(
Z1Z3 . . . ZN−1
Z2Z4 . . . ZN

)
. (4)

For our structures, where the impedances are taken from
a binary distribution, Za or Zb, there are typically can-
cellations in the ratio of the impedances, and we can
write

M = M̃ ln (Za/Zb) , (5)

where M̃ is an even integer, which we call the ‘reduced
length’ of the structure. For a loop where the length N
is an even multiple of 2, N = 4, 8 . . ., |Q| = 0 when M is
zero. The sign of M is thus a topological invariant: the
impedances, and corresponding hopping amplitudes, are
real, so if they were changed continuously, it would not
be possible to flip the sign of M without passing through
a marginal structure with |Q| = 0. For odd multiples of
2, N = 2, 6 . . ., the two terms in the expansion of |Q|
have the same sign, so, though M can be zero, to make a
topologically marginal structure would require a negative
hopping amplitude in the loop.

If, instead of making a loop, the chain is infinitely re-
peated to form a periodic structure, we find that the
topological classification from the sign of the reduced
length always agrees the generalised Berry phase[24] and
winding number invariants obtained from Brillouin zone
based calculations. These methods also predict a phase
transition when M = 0 in a chain with an odd number
of pairs. In a periodic structure this is correct, because
there are gap closures somewhere in the Brillouin zone
for both even and odd numbers of pairs. The two cases
differ because, for an even number of pairs, the closure
is at wavenumber k = 0 where the state is the same at
the end of each period, corresponding to the boundary
condition for a loop. For an odd number of pairs, the
closure is at k = π, so the loop boundary condition is
not satisfied. However, as we show below, the delocali-
sation associated with the phase transition can be seen
for both even and odd numbers of pairs. The M = 0
condition also corresponds to the phase boundary found
in Ref.[2] and observed experimentally in Ref.[19]; the
unusual reentrant shape of the boundary in these works
is due to the particular choice of rectangular probabil-
ity distribution from which the hopping amplitudes are
drawn.

In Fig.2(b), we plot the local density of states for some
random looped chains with length N = 16 and different
values of the reduced length M̃ . As expected, there is
always a gap around ε = 0, except in the marginal case
M̃ = 0, where the degenerate pair of zero energy states
is found. From this pair, it is always possible to make

states which are localised entirely on separate sublattices.
In the inset, this is demonstrated experimentally by com-
paring spectra from two adjacent sites, one on each sub-
lattice. The peaks correspond to two distinct states, as
can be seen by the small energy difference.

In order to explore the localisation of the zero energy
states, we make use of transmission measurements on
the unlooped chains. These are most simply described
using a transfer matrix treatment, which relates the cur-
rents and voltages entering and leaving the structure. At
zero energy, the transfer matrix, Supplementary Materi-
als Eq.(S5), for a single cable is

(
Vout
Iout

)
=Mn

(
Vin
Iin

)
=

(
0 iZn

i/Zn 0

)(
Vin
Iin

)
(6)

The matrix representing a sequence of N cables is then
just the product of the Mn for each cable, M =
MNMN−1 . . .M1. The non-zero elements of M are
the same ratios of impedance products as appear in M ,
Eq.(4), so we write, for even N ,

M = (−1)(N/2)
(
e−M/2 0

0 eM/2

)
. (7)

The measured transmission amplitude, S21, at ε = 0 is
then

S21 = sech

(
M

2

)
= sech

(
M̃

2
ln

(
Za
Zb

))
. (8)

For our binary distribution, this is the same as the trans-
mission for a periodic chain, ZaZbZaZb . . ., in which the
number of cables is equal to the reduced length M̃ (for
negative M̃ the sequence starts with Zb). This follows
because, at ε = 0, the transfer matrix for an adjacent
pair of cables with the same impedance is just minus the
unit matrix, so in calculating S21 we can iteratively re-
move such pairs from the structure until it is reduced to
a periodic chain.

Eq.(8) shows that the transmission at ε = 0 depends
only on the value of M , and has a value of unity in
chains with M = 0, which are topologically marginal
when joined to form a loop or repeated periodically. The
topologically protected states in the marginal cables are
completely delocalised[4, 5], having the same amplitude
at either end. Away from M = 0, the state is localised,
with a larger amplitude at one or the other end, depend-
ing on the sign of M , and thus the topological phase. The
simple treatment leading to Eq.(8) does not account for
the small resistive losses occurring in the cables, though
this easily included numerically. The losses always re-
duce the transmission, but they also cause some spread
of the ε = 0 values for a given value of M .

Experimental transmission results for our length 16
chains are shown in Fig.3, where we plot |S21| as a func-
tion of frequency for different values of the reduced length
M̃ . The spectra consist of peaks which correspond to the
states found in the S11 measurements of Fig.2, but with
much greater broadening, a result of losses due to the
finite (50Ω) input and output impedances of the VNA.
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FIG. 3. Measured transmission spectra, |S21| for a selection of
random unlooped chains with length N = 16. The curves are
coloured according to the reduced length of the structures,
Eq.(5): M̃ = 0 (red), M̃ = 2 (purple) and M̃ = 4 (blue),
as in Fig.2. The transmission at zero energy (top scale) is,

neglecting losses, predicted to depend only on M̃ . The inset
shows the dependence of this transmission on reduced length
(points), averaging over 7 to 9 structures for each M̃ . The
error bars show the standard deviation of the measured val-
ues. The solid line is the behaviour predicted in Eq.(8), with
a constant scaling to account for losses.

As predicted, the value at ε = 0 is fairly similar for all
structures with the same M̃ . In the inset, the average of
|S21| at ε = 0 is plotted as a function of M̃ , along with
the hyperbolic secant dependence predicted in Eq.(8),
scaled by a constant factor to account for losses in the
cables. With this scaling, the agreement is good, and
both the absolute values and the spread are consistent
with numerics using values for the losses deduced from
the measured broadening of the peaks in Fig.2.

In addition to the delocalisation which we have demon-
strated, Refs.[4–10]. predict a singular peak, the Dyson
singularity, in the density of states, ρ(ε), around ε = 0
for topologically marginal random structures of infinite
length. This has a functional form ρ(ε) ∼ |ε(ln ε)3|−1.
However, in finite structures this singularity is replaced
by a broader peak, which narrows as N increases. The
situation is further complicated by our use of cables with
only two impedances, which quantises the value of M ,
producing gaps in the density of states on either side of
ε = 0, as is apparent in the spectra of Fig.2. Numerical
simulations suggest that, with our choice of impedances,
an ensemble of structures with 50-100 cables would be
required to see a strong, reasonably narrow peak in the
averaged density of states.

We have shown that when a looped chiral structure is
split, the transmission through the corresponding chain
has unit value, in the absence of losses, if the original loop
was topologically marginal. Such perfect transmission
is thus an experimental signature of a topological phase
boundary. The result generalises, with some caveats, to
more complicated networks with chiral symmetry. If we

start from a balanced structure, having equal numbers of
sites on each sublattice, and break a loop by unplugging
a cable, we split a site, creating an imbalance, and thus a
topologically protected state through which transmission
can occur. The transfer matrix which determines the
transmission between the the two sides of the break will
always be diagonal at zero energy, like Eq.(7), of the form

M =

(
λ 0
0 λ−1

)
. (9)

As we have seen, this leads to perfect transmission when
λ = 1[26]. However, this is also the condition for the un-
split structure to be topologically marginal; then the volt-
ages and currents on either side of the break are identical,
which is the boundary condition which must be satisfied
to obtain a zero energy state when they are joined[27].

The connection between topological phase boundaries
and perfect transmission is not, however, universal. In
more complicated networks, there are cases where a
structure is marginal but it can be split in such a way that
the transmission between the ends is less than one, some-
times zero. Though a full discussion is beyond the scope
of the present paper, this occurs when, in the split struc-
ture, either the topologically protected state has zero am-
plitude on the input or output site, or there is more than
one zero energy state on the same sublattice.

To conclude, we have carried out an experimental
study of the topological properties of a coaxial cable sys-
tem which maps onto the SSH model. The accuracy of
this mapping is demonstrated by the small variation in
the frequencies of the topologically protected state in an
ensemble of random structures. By varying the param-
eters in the random distribution, we have shown that
looped structures can be taken through a topological
phase transition, characterised by the closure of the gap
and the appearance of a delocalised state at zero energy.
Coaxial cable structures provide an excellent system for
such topological physics experiments on finite structures.
They can readily be generalised to networks representing
more complicated Hamiltonians, where similar signatures
of phase transitions are predicted to be observable.

Qingqing Duan’s work is supported by the National
Natural Science Foundation of China under Grant
12090052.
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Chapter 4

Topology in finite chiral structures

1: topologically protected states

In the context of semi-infinite topological materials, topological protection conventionally

refers to boundary modes that are resistant against disorder. In finite systems with a large

amount of periodicity, and a sufficient size, such topological protection is well described

by bulk indices. For instance, in a 1 dimensional chiral structure, two times the winding

number indicates the number of topologically robust edge modes [92]. That is, topological

protection can be changed under a topological phase transition.

In a finite system, these modes are not robust to arbitrary hopping disorder [18] and

for sufficiently small systems the amount of disorder required to change the energy of

topologically robust modes is often quite small (for instance random disorder of 2% of the

largest hopping terms in an on site Zeeman field for some finite systems [21] is sufficient

to shift energies of topologically robust states). Furthermore, in systems where there is

not a well defined bulk or boundary, such as in random networks or graphs (and hence no

bulk-boundary correspondence) it is not clear how to define topologically robust modes.

In this chapter we instead consider topological protection not in terms of boundary modes

protected by a bulk invariant, but in terms of zero energy states that have completely

invariant energies under arbitrary continuous hopping evolution.

We do note, that through a super cell treatment, a bulk is possible to define for any

random graph. Indeed, it may be sensible to do so using a partition that we will discuss in

chapter 5, but at the scale of structures we are interested in, bulk protection is unlikely to

be substantial for arbitrary hopping disorder.

Remark. Note that in this chapter we often refer to exact topological protection with the

term exact, however often this is dropped to just refer to topological protection. For the

purposes of this chapter, we do not mean states protected by a bulk invariant.

One example of exact topological protection occurs in an open SSH chain with an odd

number of sites as we experimentally demonstrated in [76]. This occurs because of an excess

in the number of sites in one sublattice over the other and results in the Hamiltonian having

a minimum of 1 zero energy state (that is, for all values of hopping terms, the Hamiltonian

has a minimum nullity of 1). This state is stable to any continuous hopping evolution.
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Figure 4.0.1: A finite SSH chain with an odd number of sites, displayed with three

examples of the largest matchings of this chain. Notice that deleting any of the uncovered

black site results in a structure with only one cover. This means every non-zero first minor

of H cannot be set to zero and ensures a minimum and a maximum of one zero energy

state in this structure.

It should be noted that in a finite system an exactly topologically protected state can

still be localised — in a sense — to domain boundaries. For example, in the aforementioned

topologically protected state, the LDOS will have a local maximum where the sign of the

reduced length of one unit cell changes to the next unit cell. Recall that the reduced length

of a unit cell is the log of the ratio of the intracell hopping term to the intercell hopping

term to the next unit cell. When this sign changes, a local maximum in the LDOS will be

measured on the sublattice which supports the topologically protected state. As the sign

of the reduced length indicates the topological phase, we can interpret the topologically

protected state has local maximum on the domain boundaries in the structure. However,

although a topologically protected state may have local maxima on domain boundaries, as

we will show in section 4.1, which sites have non-zero support of nullstates is a topological

invariant of the graph, so not all domain boundaries will necessarily support the topologi-

cally protected state.

This example of topological protection in a finite disordered SSH chain is also quite

special because it has a maximum nullity of 1. This is because every subgraph with a non-

zero determinant has only one cover. So by the Harary Sachs theorem no such determinant

can be set to zero, and the structure has a maximum nullity of 1. As a consequence, under

any continuous evolution of the hopping terms, no spectral gaps can be closed around zero

energy. Examples of the covers that result in this protection are illustrated in Fig. 4.0.1

for a small SSH chain.

For this chapter we focus on the minimum nullity a graph may have, although in chap-

ter 7 the maximum nullity of a graph becomes of significant interest. This is considered an

open problem in full generality, although there has been significant work on this problem

in real weighted graphs [93, 94].

We consider systems with hopping terms defined in an arbitrary field1, although we

mostly consider complex or real hopping terms. Our conclusions hold for systems with any

1That is, a mathematical field consisting of a set and both an additive and multiplicative binary operator

— with respective inverses — such as the field of real numbers.
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symmetry, although in certain cases the number of exactly robust modes may be larger

than for the results we give here (and is not a question we have explored in full generality,

for example with Kramers degeneracy the number of topologically robust states may be

larger). Our methods exactly predict the number of topologically protected zero energy

states for bipartite and non-bipartite structure with either real and complex hopping terms

when allowing for arbitrary hopping disorder. That is the symmetry classes A, AI, AIII,

and BDI.

Remark. As in the bulk of this thesis, we consider a Hamiltonian H defined on a graph G

where a non-zero hopping term is defined on each edge of G. A non-zero hopping term hi,j
is not allowed to be set to zero, and a zero valued hopping term may not become non-zero.

As such hopping terms take a value in some field of hi,j ∈ F \ {0} with each hopping term

defined algebraically independently.

For a chiral structure defined on a bipartite graph, with nb black sites and nw white

sites, the minimum number of zero energy states is related to the maximum rank of the

biadjacency matrix because rank(H) = 2 rank(Q). By the rank-nullity theorem this gives

a lower bound on the number of topologically protected states as |nb − nw|.
In the graph theory literature, any zero eigenvalue beyond |nb−nw| for a bipartite graph

is called a supernumerary zero. This is defined with all hopping terms equal to 1, though

coincidentally many supernumerary zeros also happen to be topologically protected, such

as those found in Clars goblet [95] (see Fig. 4.0.2). For chiral structures such topologically

protected states are a consequence of there existing no covers of the structure. As we will

show all topologically protected states are a result of a particular induced subgraph of the

structure (which may itself be the entire graph) not having any covers. In the chemistry

literature such structures are called non-Kekuléan.

The number of zero energy states in a chiral structure has been of interest in theoretical

chemistry for a long time. In chemical graph theory one is usually interested in the number

of zero energy states for a structure with all unit eigenvalues and has most widely been

applied to benzenoids [96] which are chiral structures formed out of benzene rings that are

connected on one or two sites.

Interest in Kekuléan and non-Kekuléan structures dates back to the discovery of the

structure of benzene [97, 98]. Benzene is stable due to having two covers, which for ben-

zenoids is known as having two Kekuléan structures [96]. Kekuléan benzenoids have a

number of convenient properties for making calculations of resonance energies, and the

energies of delocalised electrons. It is also noted that, as a rule of thumb, the number of

covers a benzenoid has increases its stability. This is because in a Kekuléan structure, the

electrons resonate between different configurations of single and double bonds each of which

are alternating. Due to the absence of a cover, a non-Kekuléan structure has no way to

alternate single and double bonds. Due to an excess of electrons, this forces double bonds

to neighbour one another, resulting in unstable electron configurations [96]. As such, it is

only more recently non-Kekuléan benzenoids have been synthesised, with one of the first

being that of Clar’s Goblet [99].

In section 4.1 using a particular partition of a graph [100] along with some results of our
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Figure 4.0.2: Clar’s goblet [95] which has equal numbers of black and white sites yet

has two zero energy states. In this structure it is a consequence of there being no covers,

which results in 2 topologically protected zero energy states — at least two sites can never

be included in a matching. An example of one of the largest possible matchings of this

structure is drawn in.
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4.1. Numbers of topologically protected states and network topology

collaborator Prof. Barry T. Pickup [101] we demonstrate how the number of exactly robust

zero energy states is directly related to the network topology of a graph. We then show

that localisation of exactly zero energy topologically protected states is an invariant for

almost all hopping terms. Finally in section 4.2 we give some conclusions and limitations

of our methods.

The work of this chapter was completed as part of a collaboration, for which I gratefully

recognise and am enormously thankful to Prof. Barry T. Pickup, Prof. Patrick Fowler,

and Prof. David Whittaker. I have tried to make clear when propositions are not my own,

but to be completely unambiguous, propositions 4.1.1, 4.1.5, 4.1.8, and 4.1.9 are my own

original work.

4.1 Numbers of topologically protected states and network

topology

Exact topological protection is numerically quite simple to calculate, although it is harder

to prove the number of zero energy states you calculate are all topologically protected.

Consider a graph G with a Hamiltonian H defined on it. With randomly and independently

selected hopping terms from a continuous field then H almost always has the minimum

nullity. This is because the rank of H is given by the dimension of its largest non-singular

sub-matrix. Recall from section 2.1.5.1 that if a matrix can be non-singular, it is almost

always non-singular, so it follows that the largest sub-matrix of H that can be non-singular,

is also almost non-singular.

Computationally it is not quite so simple as randomly generated numbers are discrete.

However, the probability is still low that extra zero energy states will be found. So one may

simply calculate the nullity for an ensemble of randomly generated Hamiltonians defined

on G. Consider a matrix of indeterminates with a determinant that corresponds to an

irreducible polynomial. For an n-bit number the probability that this matrix with randomly

selected hopping terms satisfies the conditions for being singular is bounded above by

P ≤
(

n∑

m=0

2m

)−1
. (4.1.3)

To see the origin of this bound, recall from Prop. 2.1.14 in section 2.1.5.1, that if the

determinant of the matrix defines an irreducible polynomial, to satisfy the condition that it

is singular restricts at least one hopping term to a particular fixed value. If this has solution,

only one of the
∑n

m=0 2m possible values of an n bit number satisfy this condition, giving

the bound. Note that if the largest non-singular sub-matrix of a Hamiltonian defines a

reducible polynomial, and has κ irreducible factors, then the hopping terms for each factor

to be independently non-zero increase this probability to

P ≤ 1−


1−

(
n∑

m=0

2m

)−1

κ

. (4.1.4)
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4.1. Numbers of topologically protected states and network topology

However for the size of graphs we often consider κ� n hence P is still quite small. Taking

an ensemble of N randomly generated Hamiltonians H on G the probability that every

single one has a nullity greater than the protected nullity is PN which goes to zero quite

rapidly.

Despite the simplicity of this calculation this approach is not exact. It would be nice to

be able to prove that your approximate number of topologically protected states is exact.

Furthermore, this approach also makes any physics quite opaque. For instance, how do

these states localise? And how does this change as hopping terms are evolved? To answer

these questions we look to connect exact topological protection to the structures network

topology.

Remark. To avoid confusion, we will refer to the network topology of a graph as its connec-

tivity. When referring to the topology of a structure, we will generally mean the topological

properties of the parameter space ξ.

The connection between exact topological protection and connectivity of a graph is the

simplest to understand in chiral structures. To see this connection, we first relate the covers

of a graph to the topologically protected nullity.

Proposition 4.1.1. The number of topologically protected states in a finite chiral structure

is the minimum number of sites which can not be included in a matching.

Proof. Recally from section 2.1.4 that because G is chiral and hopping terms are alge-

braically independent, then we can write

H =

(
0 Q

Q† 0

)
(4.1.5)

for some permutation of the sites of G. Therefore, the rank of rank(H) = 2 rank(Q). We

can access any minor of Q as a primary minor of H so the largest non-singular subgraph

of G necessarily corresponds to the largest non-singular sub-matrix of H.

If a subgraph of G has a cover, then this structure has no topologically protected states.

Therefore, the largest subgraph with a cover gives the maximum rank. By the rank nullity

theorem, the number of sites not in this cover is exactly the minimum nullity.

As an example of topological protection, we display experimental results on a graphene

torus (see Fig. 4.1.1) which has a vacancy introduced by removing one site. Removing one

site created an imbalance in the number of black and white sites, therefore ensuring no

cover exists of the structure. This results in one topologically protected state. The state

is demonstrated to be a result of topological protection by measuring a sample of sites for

an ensemble of structures with randomly selected hopping terms.

The subgraphs of G that have covers are dictated by which sites are connected, so

proposition 4.1.1 gives a relationship between the connectivity of a graph and the num-

ber of topologically protected states. The relationship between connectivity and covers is

still quite opaque in this form, but we can be much more explicit about topological pro-

tection and connectivity. To do this we present a proof given by Barry T. Pickup [101]

58
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Figure 4.1.1: Topologically protected states in a coaxial cable network representing a

small graphene torus as displayed in (a). Cable impedances were selected randomly from a

binary distribution of 50Ω and 93Ω cables to generate an ensemble of random Hamiltonians

defined on the structure in (a). On each Hamiltonian a site was then selected (for example,

the red site), and the local density of states on three neighbouring sites was measured, with

results displayed in (b). Topological protection was quite exact, with the states having a

mean resonance at 114.0 MHz, and standard deviation of 0.4 MHz. This was sometimes

repeated in the same structure, where a different site was deleted. An ensemble of four

structures were measured for a total of 18 individual measurements, where hopping terms

were selected randomly for each of the four structures.

59



4.1. Numbers of topologically protected states and network topology
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Figure 4.1.2: A chiral structure graph with no complete matching. An example of a

largest matching is drawn. At least two sites can never be included in a matching of this

graph.

demonstrating the sites which support topologically protected states may not connect to

one another.

Proposition 4.1.2. If a graph has topologically protected states, then no vertices that

have support for topologically protected states may be connected.

Proof. Let εi be an eigenvalue of H corresponding to an eigenvector |ψi〉. If this state

is topologically protected, then under any change in a hopping term hj,k in H then εi is

unchanged. That is, for all hj,k then

d

dhj,k
εi =

d

dhj,k
〈ψi|H |ψi〉 = 0. (4.1.7)

With the addition of a chemical potential, it is always possible to set a topologically pro-

tected state to have zero energy, so we can require this without altering the number of

topologically protected states. As such for every j, k equation (4.1.7) reduces to

〈ψi|
(

d

dhj,k
H

)
|ψi〉 = 〈ψij |

(
d

dhj,k
hj,k

)
|ψik〉+ 〈ψik|

(
d

dhj,k
hk,j

)
|ψij〉

= 〈ψij |ψik〉+ 〈ψik|ψij〉 = 0

(4.1.8)

where |ψik〉 is support of the eigenstate |ψi〉 on site k. This is only generically possible if

|ψik〉 or |ψij〉 is zero for every hj,k. That is, no two vertices which support a topologically

protected state may be neighbours.

This proposition means there is a natural partition of the graph into sites that may

support topologically protected states, and those which cannot. As we will see this partition

is enormously useful because the set of sites that can host topologically protected states

are topologically protected. That is, the localisation of exactly topologically protected

nullstates is protected. To see this, it is useful to make a distinction between sites that can

support zero energy states and those that cannot.

Definition 4.1.3. Let a core vertex (CV) be a vertex that has non-zero support of a null

state. Let a core forbidden vertex (CFV) be a vertex which has no support of a nullstate.
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4.1. Numbers of topologically protected states and network topology

Because it must be possible to write any nullspace vector in terms of any basis of

nullspace vectors, it has been proven by Prof. Irene Sciriha in [65] that for a graph where

all edge weights are fixed the core vertices are an invariant of the graph G. That is, the sites

which have support of nullstates are invariant under a transformation of the nullspace. We

will now show that for any H on G for which every minor of H that can be non-singular is

non-singular, then the core vertices are always the same. That is, the nullstates of H are

almost always localised to the same subset of sites.

Definition 4.1.4. Let a Hamiltonian H on G such that every minor of H that can be

non-zero is non-zero be called maximally non-zero.

Proposition 4.1.5. Let G be a graph with a maximally non-zero Hamiltonian H on G

with n topologically protected states. For every such graph the set CV of core vertices is

the same.

Proof. Partition the graph G in to two sets of sites, a CV set and a CFV set. By proposition

4.1.2 this graph has an adjacency matrix of the form
(

0 Q

Q† A

)
. (4.1.10)

with all null vectors of the form

(
x

0

)
where x has all non-zero entries and Q†x = 0.

Assume, while H is maximally non-zero, that it is possible to choose hopping terms so

that some vertices in CV do not host any nullstate. If this is the case then we may partition

Q† such that any nullstate x only has support on the same subset of CV. That is

Q†x =
(
a b

)(xa
0

)
= 0. (4.1.11)

Because every minor that can be non-zero is non-zero, then the nullity of a is topologically

protected, so for every maximally non-zero H nullstates can always be restricted to a.

However, the set CV is an invariant for a graph with fixed weights (proposition 3.1 in [65])

so this is a contradiction. Therefore, for any maximally non-zero H the set CV is exactly

the same set of sites.

Remark. Note that proposition 4.1.5 means that the support of nullstates is always non-zero

on exactly the same subset of sites when H is maximally non-zero.

We note that when specifying certain hopping terms, it is possible to alter the local-

isation of nullstates. As a result, it is useful to make a distinction between generic core

vertices and core vertices of maximally non-zero Hamiltonians. Because, for almost all

hopping terms, a minor that can be non-zero is non-zero we give the following definition.

Definition 4.1.6. Let a topological core vertex (TCV) be a vertex that almost always has

non-zero support of a null state. Let a topological core forbidden vertex (TCFV) be a vertex

which almost always has no support of a nullstate. We sometimes refer to such vertices as

topologically protected.
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4.1. Numbers of topologically protected states and network topology

We may now extend proposition 4.1.1 to any graph, where the number of topologically

protected states is given by the minimum number of sites that cannot be included in a

cover of a particular subgraph. To do this it is convenient to define two sets of TCFV.

Definition 4.1.7. Let a TCFV which is adjacent to a TCV be denoted a topological

adjacent vertex (TA). Let a TCFV which is not connected to a TCV be denoted a topological

removed vertex (TR).

We can now define a TCV-TA-TR partition of the Hamiltonian,

H =




0 Q 0

Q† A C

0 C† R


 . (4.1.12)

This defines an analogue of the CAR partition [100] which is stable to allowing edge weights

to vary continuously. Note that the use of the CAR partition is from our collaborator Barry

T Pickup [101] who used this partition to show that the number of topologically protected

states is ≥ nCV−nA where nCV, nA are the number of (generic) core vertices and adjacent

vertices. We now show the number of topologically protected states is exactly nTCV−nTA
where nTCV, nTA are the number of topologically protected core vertices and topologically

protected adjacent vertices.

Proposition 4.1.8. The number of topologically protected states in a graph is given by

nTCV − nTA.

Proof. If there is a block of zeros of the size b × (nTCV − b) in Q† then there is an nTA ×
(nTCV − b) submatrix of Q† with the same nullity as Q†. We can therefore localise every

nullstate to this submatrix, which by proposition 4.1.5 is not possible, therefore no such

block exists.

If no b× (nTCV − b) block of zeros exists then we can permute the columns of Q† such

that there is one non-zero term in its b, b-th entry. In this permutation there is a non-zero

diagonal across the entries Q†b,b for every b. So by the Harary Sachs theorem every there

is an nTA × nTA submatrix of Q† that is almost always non-singular, so there are exactly

nTCV − nTA topologically protected states.

Remark. The form of the TCV-TA-TR partition ensures that any structure with topological

protection has a permutation of the sites with the form of (4.1.12) giving a direct connection

between connectivity and topological protection. Furthermore this form means, for almost

all hopping terms, topologically protected states are exactly localised to the set of TCV.

We now give the connection between the number of topologically protected states in a

chiral graph, and the number of topologically protected states in any graph.

Proposition 4.1.9. For a graph G under the TCV-TA-TR partition the number of topo-

logically protected states is given by the number of sites that cannot be included in a

matching of the induced subgraph Ḡ of topological core vertices and topological adjacent

vertices

Ḡ =

(
0 Q

Q† A

)
. (4.1.13)
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4.2. Conclusions and limitations

Proof. From the above discussion the number of topologically protected states is given by

N (Q†). Therefore, the largest non-singular submatrix of Q† gives the rank of Q†, which

corresponds to the largest non-zero diagonal of Q†. By the Harary Sachs theorem this

defines the largest matching of Ḡ. So by the rank nullity theorem the smallest number of

sites which cannot be included in a matching of Ḡ is the number of topologically protected

states.

4.2 Conclusions and limitations

We have discussed how exact topological protection occurs in finite tight binding models.

We have demonstrated that the number of topologically protected states in any graph may

be related to the connectivity of that graph, relying on the adjacency matrix taking a

TCV-TA-TR partition [101] with the form of

H =




0 Q 0

Q† A C

0 C† R


 . (4.2.14)

Using this form we have demonstrated that exactly topologically protected states in a finite

tight binding model are almost always localised to an invariant subset TCV of sites.

It is relatively simple to design a graph that has a certain number of topologically pro-

tected stated using the TCV-TA-TR partition. However, this alone may not be enormously

useful, and is a significant limitation of our above approach. For example, if you have a

large structure it may not be viable to find a TCV-TA-TR partition numerically.

One approach to study such structures is to take a finite set of small regions with

structural disorder and study these as isolated graphs. If you have a set of rules for how

these may combine with the larger structure, and how the number and localisation of zero

energy states is altered, it is possible to find the number of exactly protected states in the

much larger structure. Our collaborator Prof. Barry T. Pickup [101] has derived a set of

constructions that may be used for exactly this. The idea of the Pickup constructions are

to maintain a TCV-TA-TR partition in the larger structure.

Another problem we have not touched on in this chapter is the possibility of introducing

further zero energy states to a structure with topological protection. This will necessarily

close a gap, and so if unavoidable under some continuous evolution of hopping terms, would

be a topological phase transition. An infinite number of chiral and non-chiral examples of

such graphs exist, although we do not detail the general approach to the classification of

such graphs here. An example of a non-chiral graph with topological protection, and a Z2

classification is illustrated in Fig. 4.2.1.

Our approach also may not reveal topologically protected states that persist in chiral

structures with interactions. In infinite interacting spin models defined on chiral structures

the ground state degeneracy depends only on the difference in the number of sites in each

partite set [102, 103] — a consequence of the Lieb-Schultz-Mattis theorem [104] — so,

under our definition a number of supernumerary topologically protected states are lost. A

finite analogue of this is Ovchinnikov’s rule [105] which, based on a survey of a number
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Figure 4.2.1: A graph with two topologically protected states, which is not chiral and

has a topological classification of Z2.

of molecular systems by Alexandr Ovchinnikov, states that the degeneracy of the ground

state also only depends on |nw − nb| in chiral structures with the presence of interactions.

While this rule has not been proven mathematically, it may indicate that some number of

topologically protected states predicted with our methods are not robust to interactions in

chiral structures.

For non-chiral structures, it is unknown (at least to the author) as to how our definition

of topologically protected states may persist in the presence of interactions.
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Chapter 5

Topology in finite chiral structures

2: zeroth step topology

There have been several approaches to classifying the topology of finite structures [20, 21,

106]. In most cases the approach is to calculate a bulk index and relate phenomena in

the finite structure to a bulk index, or else to calculate a local realspace invariant which is

indicative of a non-trivial bulk index (for instance, via the obstruction to atomic maximally

localised Wannier functions [50, 51], or local markers that average to the correct bulk index

[16, 17]). In structures with a clear periodicity, or low disorder, these are good approaches

to predict the finite classification, and number of topologically robust states in a finite

sample. However, when allowing arbitrary network topology (that is, an arbitrary graph)

or strong disorder, changes in the bulk topology may not correspond to exact gap closures

in the finite structure. In systems where this occurs, we say the structure has lost the bulk

boundary correspondence. Furthermore, in such systems, properties associated with bulk

invariants such as a number of boundary modes or protected transport can be lost even

when the sample has a non-trivial bulk invariant.

To study finite topology while allowing the loss of a bulk boundary correspondence we

take an approach using exact gap closures. In finite systems, where the bulk boundary

correspondence is lost, the system may be represented by a real space tight binding Hamil-

tonian, H. The energy spectrum of H may still undergo exact gap closures, so we can

define topological phase boundaries for a finite real Hamiltonian.

Loosely speaking, for this chapter we define the topological classification of H as the

number of sets of Hamiltonians that are related under adiabatic evolution. That is, two

Hamiltonians H1 and H2 are topologically equivalent if they are related by continuous

evolution of their hopping terms, in such a way that preserves the underlying graph struc-

ture. Formally this defines equivalence classes of Hamiltonians. To allow arbitrary hopping

disorder, we let each hopping term in H be algebraically independent.

Remark. In this chapter we study topology using gap closures that lead to two zero energy

states. In Chapter 7 we will refer to this as zeroth step topology, however, for brevity in

this chapter we refer to this as the topology of a structure.

Following our work in [90] we wish to derive a classification for arbitrary finite chiral
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structures. To this end we define a tight binding Hamiltonian H on a graph G. Recall

from section 2.1.4 to allow a Hamiltonian with arbitrary hopping disorder, H is defined on

a bipartite graph G.

The classification itself is based on the possible factors of the determinant of the Hamil-

tonian, |H| = −|Q||Q†| where Q is the (weighted) biadjacency matrix of H. For structures

with an even number of sites, when |Q| = 0 there are two zero energy states in the Hamil-

tonian. Because |Q| is itself a polynomial of the hopping terms of H it might be possible

to factorise. Each irreducible factor may be possible to set to zero, and so we can associate

topological phases to irreducible factors of |Q|. The idea is that by counting the number

of irreducible factors of |Q| that can be set to zero we can arrive at the topological classi-

fication of G.

We will demonstrate that the topological classification of a particular structure is re-

lated to the underlying network topology of the graph G. That is, the number of irreducible

factors of |Q| is a direct consequence of how different subgraphs of G connect to one an-

other. This leads to some interesting consequences in the relationship between the average

vertex degree of the graph, and the number of topological phases this graph will have. Some

data based on the topological classification of 154131 non isomorphic graphs on 18 vertices

or fewer is displayed in Fig. 5.0.1. Interestingly for when the mean vertex degree is much

greater than 3, the graph is generally too connected to have many topological phases, and

for a mean vertex degree less than 3 the graph generally has too many branches to have

distinct topological phases. So there is evidence the most topologically interesting graphs

tend to have a mean vertex degree of 3.

In section 5.1 we give more details on the type of structures we can classify, and give a

qualitative description of our classification, and in sections 5.2 and 5.3 we give a description

of our classification and how it relates to a structure’s connectivity. Section 5.4 details an

algorithm we have developed that classifies an arbitrary finite chiral structure. In section

5.5 we give our classification paper. We then proceed to give some results that are outside

the scope of [90], including a proof of triangular transfer matrices for a structure in section

5.7 and we present a deep connection between nut graphs and a structures classification in

section 5.6. Limitations and conclusions to our classification are given in section 5.8.

5.1 Finite chiral structures and topology — an overview

In most approaches to classification [15, 19, 56, 57, 107] a system is assumed to be large

enough so that it may be approximated by an infinite system. Such an approach works

well, as properties of the finite system converge exponentially fast to the infinite limit, even

in the case where translation invariance has been lost [19]. However, convergence is only

exact for systems of infinite size, meaning no matter the size of the sample, there is a finite

disorder at which topologically robust properties of the boundary will likely be lost (this

has been shown that it will be lost for quasi-1D and 1D systems [18] section 6). So if we are

interested in developing an exact theory of topological phase transitions in finite structures,

we need to consider exact properties of the real space Hamiltonian.

In finite systems, with an arbitrary underlying connectivity, it is not immediately clear
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5.1. Finite chiral structures and topology — an overview

(a)

(b)

Figure 5.0.1: The distribution of graphs with a certain number of topological phases. (a)

Displays a green point for every graph classified, with the mean and median degree of the

graph plotted against the number of topological phases, and the total number of graphs

for each number of topological phases given with a log scale plot. (b) Displays a histogram

plotted with a log scale for each number of topological phases, showing the distribution of

graphs for each case.
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5.2. Determinants and phase boundaries

how to define a boundary or a bulk. As such, only zero momentum states may be exactly

defined in such systems. Of course, it is possible to periodically repeat a finite structure.

This will define a bulk Hamiltonian, but any unavoidable gap closures in the band structure

away from zero momentum will not correspond to gap closures in the finite Hamiltonian.

This further illustrates the loss of a bulk boundary correspondence. It should be noted

that gap closures in the band structure can still be interesting in the finite Hamiltonian,

for instance leading to extended states (an example of which is discussed in [76]), even if

there is no gap closure in the finite system. But in order to study the exact topological

properties of finite structures, we consider only the real space Hamiltonian.

We also impose some restrictions on the Hamiltonian. The first is that we wish to

allow arbitrary hopping disorder. To do this we let each hopping term be algebraically

independent. We also require that the Hamiltonian can undergo no discontinuous evolution,

so non-zero hopping terms must remain non-zero and zero valued hopping terms must

remain zero valued. Finally we assume that the system is itself connected.

For the hopping terms themselves we generally take them to be real, however they can

be complex or taken over some other field. Some of the consequences of having complex

hopping terms are discussed in section 5.7 and also discussed in section 7.4.1 of chapter 7.

5.2 Determinants and phase boundaries

In section 2.1.5 we introduced the parameter space that the Hamiltonian is in. In order

to consider the topology of more general chiral structures, we recall the definition of the

parameter space ξ.

Consider a Hamiltonian defined by,

H =


∑

i≥j
hi,j |i〉 〈j|


+H.c. (5.2.2)

where hi,j are algebraically independent and are taken from some field F. H.c. denotes the

Hermitian conjugate. For this chapter we primarily consider the field to be the real, but

other fields may also be chosen. H itself can be interpreted as a weighted graph defined on

an unweighted graph G.

In order to consider the parameter space of H, we take the underlying graph G, and

define H on G, where each non-zero hopping term in H is defined on an edge of G.
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Figure 5.2.1: The graph on the left G has unlabelled hopping terms, as we are only

interested in the connectivity of G. On the right is a Hamiltonian defined on G with the

hopping terms labelled.
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5.2. Determinants and phase boundaries

Definition 5.2.1. The parameter space ξ of G is an affine space given by the tuple of all

non-zero hopping terms (hi,j). Each point in ξ corresponds to a Hamiltonian H on G.

Remark. In ξ we can evolve each hopping term independently, meaning ξ is the space of

all Hamiltonians that can be defined on G.

For a finite Hamiltonian, H, non-adiabatic evolution corresponds to a gap closure in

the energy spectrum of H. Recall that a topological phase transition occurs when we

continuously evolve hopping parameters to map H1 7→ H2 and no matter the path chosen

in ξ we undergo non-adiabatic evolution. So for a finite structure a topological phase

transition occurs when there is an unavoidable closure in the energy spectrum of H. An

example of such evolution is given in Fig. 5.2.2.

For a chiral structure the topological phase boundaries are given by |H| = 0. This is

because chiral symmetry ensures that if ε is an eigenvalue of H then so is −ε. If H has

an even number of sites, then this symmetry is maintained only if there are a multiple of

2 zero energy states, ensuring |H| = 0 corresponds to a gap closure in the spectrum.

It follows from the Harary-Sachs theorem that non-zero gap closures in the energy

spectrum of H are always avoidable with algebraically independent hopping terms. We

can also see this from the characteristic equation of the Hamiltonian. Due to the chiral

symmetry we can write

|H − εI| =
∏

i

(ai − ε2) (5.2.4)

where ai is some function of the hopping terms of H, and ε = ±√ai define the eigenvalues

of H. If we are looking to constrain the Hamiltonian to have a state at some energy δ then

this occurs when

|H − (ε− δ)I| =
∏

i

(
√
ai − ε+ δ)(

√
ai + ε− δ) = 0. (5.2.5)

To get two states with the energy δ this requires two constraints on the hopping terms

δ = ±√ai,
δ = ±√aj .

(5.2.6)

So if there are two Hamiltonians H1 and H2 which may be evolved to one another without

going through |H| = 0, we can always avoid points where ai = aj . For δ = 0 then there is

only one constraint because (ε+
√
ai) = (ε−√ai) when ai = 0.

The Hamiltonian is chiral, so we can write the real space basis of the Hamiltonian in

an antidiagonal block form. This ensures the determinant

|H| = det

(
0 Q

Q† 0

)
= −|Q||Q†|. (5.2.8)

When |H| = 0 then |Q| = 0 and |Q†| = 0. This ensures there are two zero energy states,

one for each partite set, which closes a gap in the energy spectrum.

Each block Q contains algebraically independent hopping terms, therefore |Q| defines
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5.2. Determinants and phase boundaries

0.5 1 1.5
a

0.5

1

1.5
b

[H1]

[H2]

[H3]

[H4]

Figure 5.2.2: A slice of the parameter space for a 2Z2 structure, where every hopping

term but two (one for each section) are set to one. The dashed lines represent regions in

the parameter space that correspond to a singular Hamiltonian, and therefore doubly de-

generate zero energy modes. Each [Hi] denotes a different equivalence class of adiabatically

connected Hamiltonians, separated topological phase boundaries.

a polynomial that is linear in each hopping term in its expansion 1. Because |Q| depends

continuously on the evolution of hopping terms, Sign(|Q|) cannot be changed without going

through |Q| = 0. This ensures that solutions to |H| = 0 define surfaces that splits ξ in to

distinct regions. That is, the solutions to |H| = 0 give topological phase boundaries in ξ.

Remark. Recall that for the weighted graph H defined on G, the block Q corresponds to

the biadjacency matrix of H.

The idea behind the classification is that, as a polynomial, |Q| may be factorised.

Because of the algebraic independence of hopping terms, each factor is also algebraically

independent (we will give a sketch of the proof of this in section 5.3.1, with a full proof in

the supplementary material of [90]). Algebraic independence of factors ensures solutions to

each factor define a boundary to topologically distinct regions in ξ. Because of the linear

nature of |Q| each factor gives two distinct topological phases, so the factorisation of H is

given by 2N distinct topological phases. This is discussed in much more detail in [90].

Understanding phase boundaries in ξ allows us to take a geometric interpretation of

the classification of a structure. Taking the parameter space, ξ, and removing the phase

boundaries at |H| = 0 leaves a collection of disconnected regions. The number of discon-

nected regions is the number of distinct topological phases. This allows us to have a direct

geometric interpretation of the classification of a structure. As will be seen in section 5.2.1,

the number of topological phases corresponds to the zeroth homotopy group of a subspace

of ξ.

1Note that some terms in Q do not feature in the expansion of |Q|, that is |Q| is not linear in every

hopping term in Q.
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5.3. Network topology and a topological classification

5.2.1 Constructing a physically motivated topology on a structures pa-

rameter space

Recall that the topological phase boundaries of G correspond to the solutions of |Q| = 0.

In [90] we demonstrate that the factors of |Q| correspond to the determinant of subgraphs

of |Q|, and can provide more distinct phases to the structure. Suppose that we have the

factorisation |Q| = ∏ |qi|, then whenever a factor |qi| = 0 we have |Q| = 0. For a structure

that is not on a phase boundary taking |qi| > 0 to |qi| < 0 drives a topological phase

transition. Therefore, the sign of each factor Sign(|qi|) is a topological invariant. That is,

by finding the maximum number of factors of |Q| that can be set to zero we can arrive at

the number of distinct topological phases of G.

To see this factorisation is well defined, we show that the irreducible factorisation of

|Q| is unique in the supplementary material of [90].

To understand our notion of distinct phases in a topological context, we wish to formally

define a topology on the parameter space ξ. Recall that for a space X a topology τ on X

gives a notion of continuous deformation in terms of open or closed subsets of that space.

This allows us to calculate the number of equivalence classes of Hamiltonians [Hi]. In

section 2.1.5.2 we discussed the usual topology on a space X. Here we will define the usual

topology on a subspace of the parameter space ξ, where each distinct phase arising from a

factor |qi| of |Q| corresponds to a different equivalence class [Hi].

Definition 5.2.2. Let T denote the subspace of ξ that contains every singular Hamiltonian

|H| = 0 on G. Then let E0 = ξ \ T be the open the subspace of ξ with no singular

Hamiltonians on G. The open subsets of E0 are defined as an open n-ball around each

point H ∈ ξ. The topology τ is given by any intersection or union of an open subset of E0.

Note that this is the usual topology on E0.

We can now interpret the equivalence classes of [Hi] in this setting. From the previous

discussion E0 is a collection of disconnected open subsets. The number of disconnected

subspaces in E0 is the number of distinct topological phases. This number is given by the

zeroth homotopy group of E0.

5.3 Network topology and a topological classification

In this section we discuss the relationship between the network topology of a graph G and

the topological classification of a Hamiltonian H on G. In chapter 2.1.5.1 we discussed the

Harary Sachs theorem, which relates perfect matchings on a bipartite graph to terms in the

determinant of the adjacency matrix [63, 64]. As in section 2.1.5.1 and chapter 7 we will

refer to a perfect matching on a graph G as a cover of G. The covers of a graph depend on

the underlying network topology, so it is through the Harary Sachs theorem that we give a

connection between network topology and the classification of a graph.

Remark. To avoid ambiguity, we will refer to a graphs network topology as the connectivity

of that graph.
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5.3. Network topology and a topological classification

As we will argue in section 5.3.1 and prove in the supplementary material of [90], with

algebraically independent hopping terms the determinant of the biadjacency matrix |Q|
defines a polynomial which has irreducible factors fi where

|Q| =
∏

i

fi (5.3.9)

if and only if there exists an ordering of the sites of H that gives an upper triangular block

basis to Q. That is

Q =




. . .
...

...
...

qi−2 Ci−2,i−1 Ci−2,i · · ·
qi−1 Ci−1,i · · ·

qi · · ·
0

. . .



. (5.3.10)

Furthermore, this demonstrates that each factor is given by the determinant of a block on

the diagonal of Q, that is fi = |qi|.
As each factor |qi| can be associated to blocks on the diagonal of Q, we can interpret

each qi as the biadjacency of a subgraph of G. We denote such a subgraph as gi ∈ G.

Definition 5.3.1. The subgraph gi ∈ G associated to an irreducible factor |qi| of |Q| is a

section of G.
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Figure 5.3.1: A structure with a zeroth step topology of 3Z2. This structure has 3 sections

g1, g2, and g3. Each hopping term is labelled with a variable.

As discussed in [90] the physical consequences of our classification are revealed in the

way zero energy states localise when a structure is on a topological phase boundary. In
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5.3. Network topology and a topological classification

particular how an individual section connects to other sections alter the localisation of

nullstates originating from that section. To understand this localisation, we reproduce the

definition of the partial ordering of sections here.

Definition 5.3.2. Assume Q is in an upper triangular block basis with diagonal blocks

corresponding to the biadjacency matrices of sections. For every pair of sections gi, gj ∈ G
if the relative positions of qi and qj can be swapped while maintaining an upper triangular

block basis of Q then gi = gj . Otherwise, if qi is above qj on the diagonal of Q, then we

say gi > gj . That is

Q =




. . .
...

...
...

qi · · · Ci,j · · ·
. . .

...
...

qj · · ·
0

. . .



. (5.3.12)

This defines a partial ordering on the sections g of G. If gi > gj we say gi is above gj and

gj is below gi
2.

5.3.1 A factorisation theorem

In this subsection we give a sketch the arguments that demonstrate the relationship be-

tween the underlying connectivity of a graph G and the topological classification of the

Hamiltonians defined on that graph. The full proof is given in the supplementary material

of [90].

There are two main elements to our proof. The first is to show that if Q has an upper

triangular block basis, then |Q| is factored by the determinants of the diagonal block. To

show the converse we demonstrate that each section associated to an irreducible factor |qi|
of |Q| may only connect to other sections in a certain way, which leads naturally to an

upper triangular block basis of Q. We sketch out the proof of the converse here, as the

former assertion is not enormously complex, and may be generalised from the discussed in

[90].

The main idea behind our proof of the converse is to show that if a structure has

sections, then this implies the sections are connected in a certain way. The connectivity

that leads to these sections gives a triangular block basis of Q with biadjacency matrices of

each section on the diagonal. To do this we first show that, for almost all hopping terms,

every first minor of a section is non-zero.

Remark. For almost all hopping terms, the intersection of a first minor of q and |q| = 0

are measure zero in |q| = 0. To see this, consider a section g with biadjacency matrix q,

and a first minor |qm| of q. The polynomial |qm| is not factored by |q| so |q| = 0 does not

imply |qm| = 0. If |qm| = 0 is solvable, then the intersection of |qm| = 0 and |q| = 0 defines

a surface one dimension lower than |q| = 0 in ξ, and so the intersection of |qm| = 0 and

2Note that if Q maps from the white sublattice to the black sublattice, then in [90] we use the term

upper to denote an above section, and the term lower to denote a below section.
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5.3. Network topology and a topological classification

|q| = 0 are measure zero in |q| = 0. This is what we mean by every first minor of q being

non-zero for almost all hopping terms, even when |q| = 0.

With the use of the Harary-Sachs theorem, each first minor being almost always non-

zero ensures a subgraph of a section given by deleting one black site and one white site, has

a cover. We can then use such covers to show that if sections are connected in a certain

way, then this structure has a cover which is not given by the covers of the individual

sections. By the Harary-Sachs theorem this shows there is a term in the determinant that

is not factored by the determinant of the sections. This is contradictory to the definition

of a section, proving the converse.

To see why every first minor of a section is almost always non-zero we delete a black

site of a section. By the Harary-Sachs theorem a section (by definition) must have a cover,

so there exists a matching of the remaining graph that does not include a white site which

is a neighbour of the deleted black site. We then define a walk around the graph where we

match and unmatch sites to change which white site is unmatched. We show that if some

sites cannot be unmatched by this walk, then a section can be partitioned in to two sets,

each with independent covers. This implies the sections determinant is reducible, which is

a contradiction. Therefore, every first minor of a section is almost always non-zero. An

example of such a walk is given in Fig. 5.3.2.

We next show that two sections can, pairwise, connect on only one sub lattice. This is

because if two sections are connected on both sub lattices, we can construct a cover of the

two sections which is not a cover of the individual sections. We can do this by seeing what

happens if we delete two sites (a black and a white site) in each section (see Fig. 5.3.3 (a)

for an example). As every first minor is almost always non-zero then the remaining graph

is non-singular. So if we delete sites that connect between the two sections then by the

Harary Sachs theorem we have found a perfect matching of the two sections. This cover

is not related to the perfect matchings of the two individual sections. So two sections can

only connect to one another on one sub lattice.

To show this leads to a triangular basis of Q, we prove that in an N section structure,

at least one section may connect to all other sections on only one sub lattice.

Definition 5.3.3. An edge section is a section of G such that it may only connect to all

other sections from one sublattice.

We can then start with an N section structure and delete the edge section, of what remains

there must also be an edge section, and we can continue until only one section is left. This

defines a triangular basis of Q giving us the factorisation theorem.

To show there is always at least one edge section we define a section cycle.

Definition 5.3.4. Consider a set of sections {g} in G. If these sections have a section

cycle, then there is a path through every section in {g} such that the path starts on section

gi ∈ {g} and ends on section gi. The path goes through every section in {g} exactly once,

and enters each section on a white site, and leaves on a black site.

If no section cycles exist, then there must, by definition, be an edge section. To show no

section cycles exist we assume that we do have a structure with section cycles. We then
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Figure 5.3.2: (a) 3 rung ladder graphene, which has the classification Z2, and all 3 covers

of the structure denoted with a solid line, dashed line, and dash dot line. (b) Displays the

structure having deleted one of the black vertices, and covering all but one white vertex. By

swapping a single matching that neighbours the uncovered vertex at a time, it is possible

to leave any of the white sites unmatched. Deleting the unmatched white vertex shows

that for the deleted black vertex, deleting any of the white vertices leaves a cover.

delete a pair of sites from each section in the cycle (one black and one white) such that each

site is connected between two sections (see Fig. 5.3.3 (b) for an example). Because every

first minor of each section is almost always non-zero, then by the Harary-Sachs theorem

what remains has a cover. Putting back in the deleted sites we now have a cover for

the section cycle that is not given by the covers of the individual sections. This means

the determinant of the section cycle is not factored by the determinant of the individual

sections — a contradiction.

Putting all of this together, we then get the triangular basis of Q.

5.3.1.1 Localisation and topology

One of the important parts of proving the factorisation theorem is that every first minor

of a section is almost always non-zero. We can use this to infer some properties about the

nullstates of a Hamiltonian when |H| = 0, in particular, when only one section gi has a

singular biadjacency matrix |qi| = 0.

In the supplementary material of [90] we give a proof that when a section qi is critical
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Figure 5.3.3: Two structures with a Z2 classification. If the dashed edge were removed

(a) would be a 2Z2 structure, with two sections, however the drawn cover is not factorised

by the determinant of each section, exemplifying that sections may only connect on one

sublattice. If the dashed edge were removed from (b) it would be a 3Z2 structure, however

none of the determinants of sections in the structure with the deleted edge factorise the

term in the determinant corresponding to the illustrated cover. a consequence of the non-

existence of edge cycles.

(|qi| = 0) and all other sections are not critical, it almost always has support of the nullstates

on every site of gi. By almost always we mean that, if all but one hopping term of qi are

chosen randomly, and the final hopping term is chosen so that |qi| = 0 then with probability

1 the nullstates have support on every site of gi. This means a critical section is a weighted

core graph [65].

Definition 5.3.5. A Hamiltonian H on a graph G with a nullity N (H) = η defines a

weighted η-core graph if every vertex of G has non-zero support of the nullstates of H.

To see why a critical section is a weighted core graph we consider the first minors of qi.

By definition |qi| is an irreducible polynomial, and each first minor of qi is the determinant

of the biadjacency matrix of a subgraph of gi obtained by deleting one black and one white

site of gi. Let |qm| denote such a minor. As |qi| is irreducible it is not factored by any

|qm| so there are solutions to |qi| = 0 that do not satisfy any |qm| = 0. This ensures any

subspace of ξ satisfying |qi| = 0 and also |qm| = 0 is at least one dimension lower than the

subspace satisfying |qi| = 0. That is |qm| 6= 0 for almost all hopping terms. This means for

almost all hopping terms that satisfy |qi| = 0 every first minor |qm| 6= 0.

We now consider what this means for the nullstates of qi. To do this we wish to delete

a column of qi.

Definition 5.3.6. Let qki denote the kth column of qi, and let ql 6=ki denote the submatrix

of qi where we have deleted the kth column.
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Figure 5.3.4: A structure with |q2| = 0 and |q3| = 0. For almost all hopping terms which

satisfy the two constraints (|q2| = 0 and |q3| = 0) the only sites which may support zero

energy states are those drawn (sites with no support of states are not drawn). If Q contains

all the hopping terms from the black sites to the white sites then this structure has the

partial ordering of sections g1 < g2 < g3.

If we can localise a nullstate of qi to have no support on at least one site of gi then there

must be a nullstate that satisfies

ql 6=ki φ = 0. (5.3.16)

But deleting any row of ql 6=ki gives a non-singular submatrix, and so no φ with non-zero

entries exists. Therefore, any null vector of qi almost always has support on every site of

gi.

We also note that the partial ordering of section leads to consequences in how the null-

states of a topologically critical Hamiltonian localise. In [90] we discuss how the nullstates

localise when only one section is critical. However, when two sections or more are critical

there are some further consequences. To see this, consider a structure G with critical sec-

tions gi and gj where gi > gj . Let any section gk such that gi > gk > gj be critical, or not,

but otherwise assume any other section is not critical. Consider the biadjacency matrix

Q =




. . .
...

...
...

qi · · · Ci,j · · ·
. . .

...
...

qj · · ·
0

. . .



. (5.3.17)

Because |qi| = 0 there is some null vector φii that satisfies qjφ
i
i = 0. As no sections above
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5.4. A classification algorithm

gi are critical, we can define this null vector on the rest of Q which gives a nullstate for

the Hamiltonian. However, the nullstate from gj may also have support on gi, and this

needs to be, in some sense (as discussed in section 2.1.4) orthogonal to the nullstate from

gi. This requires further constraints on the hopping terms as will be discussed further in

chapter 7. We also have the nullstate on Q†,

Q† =




. . . 0

· · · q†i

· · · ...
. . .

· · · C†i,j · · · q†j

· · · ... · · · · · · . . .



. (5.3.18)

To get Q† into an upper triangular diagonal basis, we can reverse the order of the sites that

define the basis of H. Doing so reverses the partial ordering. Much like for Q this means

only the nullstate of q†j remains in Q†. That is, for almost all hopping terms, the nullstates

are split — on one sub lattice they have support on gi and above sections only, and on the

other sub lattice they have support on gj and below sections only. An example is given in

Fig. 5.3.4.

5.4 A classification algorithm

Full details of the classification algorithm are given in the supplementary material of [90].

This algorithm works by finding a permutation of Q which has the largest number of

diagonal blocks. By the factorisation theorem, this finds all the sections of a structure.

Once all the sections are found, and the domain of each hopping term is specified, a

second step calculates if each section has solutions within that domain or not. This gives

the number of non-trivial sections of a structure, therefore giving its classification.

5.5 Classification paper
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We present the theory and experimental demonstration of a topological classification of finite
tight binding Hamiltonians with chiral symmetry. Using the graph-theoretic notion of complete
matchings, we show that many chiral tight binding structures can be divided into a number of
sections, each of which has independent topological phases. Hence the overall classification is NZ2,
corresponding to 2N distinct phases, where N is the number of sections with a non-trivial Z2

classification. In our classification, distinct topological phases are separated by exact closures in
the energy spectrum of the Hamiltonian, with degenerate pairs of zero energy states. We show that
that these zero energy states have an unusual localisation across distinct regions of the structure,
determined by the manner in which the sections are connected together. We use this localisation to
provide an experimental demonstration of the validity of the classification, through radio frequency
measurements on a coaxial cable network which maps onto a tight binding system. The structure
we investigate is a cable analogue of an ideal graphene ribbon, which divides into four sections and
has a 4Z2 topological classification.

I. INTRODUCTION

Topology has become ubiquitous in modern physics,
with many lattice structures and materials shown to
have non-trivial topological attributes. A topological
material is characterised by properties which remain un-
changed during adiabatic evolution, making them robust
in the presence of disorder. For instance, boundary states
in one-dimensional topological lattices may have ener-
gies which are resistant to disorder [1], while in two-
dimensions they may provide directional transport which
is protected against backscattering [2–5]. In order to in-
vestigate these potentially useful properties, it is neces-
sary to be able to classify the different topological phases
of a given Hamiltonian.

Distinct topological phases are generally understood
from two perspectives. The first is that two phases are
distinct if, and only if, they cannot be related by (symme-
try respecting) adiabatic evolution. The second is that
a non-trivial topological phase has interesting boundary
properties. The first perspective allows us to assign topo-
logical indices to distinct phases, and the second gives a
physical significance to a classification. Both are con-
nected by the famous bulk-boundary correspondence [6]
which, since the discovery that the quantum Hall effect
is topological [2, 7] has proven a powerful tool for the
prediction of topological boundary phenomena. Most ap-
proaches to classification make use of the bulk-boundary
correspondence in some way.

A ubiquitous topological classification is that of the
10-fold way [8], in which K-theoretic methods are used
to classify each of the Altland-Zirnbauer (AZ) symme-
try classes of momentum-space Hamiltonians [9]. An-
other approach is topological quantum chemistry [10, 11],
where the classification is obtained by looking for topo-
logically non-trivial states. In particular, the presence
of states which cannot be adiabatically deformed to the
atomic limit indicates a topologically non-trivial band in
the bulk [12]. These methods provide a classification of

stable and fragile topological phases in a huge number of
systems [13].

A useful approach for strong disorder relies on defining
a non-commutative Brillouin zone [14–16]. Using non-
commutative geometry, the Brillouin zone is modified to
allow for variations in each unit cell of the structure,
by defining a configuration space for the set of distinct
unit cells. Translational invariance is no longer required,
giving a disordered bulk-boundary correspondence.

For finite structures, a spectral localiser [17, 18] can
predict the presence of approximately zero energy bound-
ary states (also by demonstrating states cannot be lo-
calised to an atomic limit), therefore classifying a struc-
ture via the converse of the bulk-boundary correspon-
dence. Alternatively local realspace markers may be used
[19, 20] whose average gives a topological index for the
entire structure. While this averages to a quantised value
in the thermodynamic limit, such local markers are not
exactly quantised in finite structures.

It has been shown that finite size effects may cause
a rich sequence of topological phase transitions, corre-
sponding to gap closures separating topological bubbles
[21] in inversion symmetric structures. The number
of approximately zero energy boundary states in such
a bubble takes an integer value corresponding to a Z
classification in finite, inversion-symmetric Hamiltonians.
These states are resistant to small amounts of disorder.
Such an approach has also been extended to time-reversal
symmetric systems [22]. Alternatively the finite structure
may be repeated as a periodic supercell [23, 24] allowing
the use of momentum-space methods to classify the topo-
logical phases.

These approaches leave open a problem: how may a
structure be classified when we completely lose the bulk-
boundary correspondence? That is, we no longer have
any way to define a boundary or a bulk. This situation
may occur in a small finite structure, particularly with
strong disorder and/or no underlying lattice structure
(for instance, a random finite network). Strongly disor-
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dered finite systems may have a non-trivial topological
classification [17, 25, 26] although the number of distinct
topological phases is not always clear, motivating a gen-
eral approach to topologically classify finite structures
which have lost the bulk-boundary correspondence. In
this paper, we propose a partial solution to this prob-
lem. Using graph-theoretic methods, we give a topolog-
ical classification for finite chiral symmetric structures.
We achieve this by considering equivalence classes of fi-
nite real space Hamiltonians with arbitrary values for the
hopping terms.

In a finite structure at sufficient disorder, a bulk may
not be possible to define, however non-adiabatic evolu-
tion may still be defined. For a finite system, a closing in
the energy spectrum is analogous to a band gap closing
in momentum space. In structures with chiral symmetry,
and thus a symmetric energy spectrum, this corresponds
to the appearance of pairs of zero energy states. Deter-
mining the conditions on the hopping terms which lead
to the presence of these states allows us to define equiv-
alence classes of Hamiltonians. A similar approach to
defining topological phase boundaries has been used in
[17, 25, 26].

Using this definition of equivalence classes we find that
many structures have a rich classification resulting from
the fact that they can be divided into a number of sec-
tions, each of which can be assigned an independent
topological phase. These sections are identified as cor-
responding to factors of the determinant. Such factors
may be determined by the hopping terms that appear in
the expansion of the determinant of the Hamiltonian, and
therefore play a role in defining the conditions for zero en-
ergy states. Any other hopping terms in the Hamiltonian
can be removed without affecting the classification. This
removal process results in the structure separating into
disconnected pieces, each constituting a section. For each
section we can determine an independent 0 or Z2 classi-
fication, using a sub-Hamiltonian defined on the section.

The existence of sections depends on the connectiv-
ity of the network representing the hopping terms in the
Hamiltonian. They can occur in structures with some
regularity, as in the graphene related examples which are
considered in this work. However, they can also appear in
more randomly connected structures. Checking 154131
non-isomorphic graphs which represent some of the con-
nected chiral structures with 18 sites or fewer, and using
randomised searches on larger finite chiral structures, we
find that the classification of a structure is the most rich
when each site has an average of three hopping terms.
For an average of two the underlying connectivity is gen-
erally too sparse to provide a rich classification, and at
four or greater, the structure is often too constrained by
its connectivity to allow the division into many sections.

Of the 154131 graphs classified, for all positive and real
hopping terms, 14% had no distinct topological phases,
with the remaining being topologically non-trivial. 82%
had two topological phases, and 4% had 4 to 16 distinct
topological phases, with only 18 of the classified graphs

having 16 phases. Including trivial and non-trivial sec-
tions 8% of structures has no sections, 68% had one sec-
tion, and 24% had 2 to 9 sections (trivial sections can
still affect physical properties, such as localisation).

The infinite and finite classification of the sub-
Hamiltonian corresponding to a section may be different.
Considering a section as a one-dimensional supercell of
an infinite lattice a transfer matrix treatment leads to
one trivial and one non-trivial topological phase, sepa-
rated by a gap closure somewhere in the Brillouin zone.
Hence, with this definition, every section has a Z2 clas-
sification. Furthermore, the classes AIII and BDI have
a Z classification using the 10-fold way. In this infinite
interpretation, a section having a non-trivial topological
phase results in boundary localised topologically robust
zero modes to one end of that section. This gives a con-
nection to higher order topology arising through stacked
chiral structures.

We seek to classify the actual finite structure, so we
adopt the convention that only unavoidable gap closures
which are observable (corresponding to closure at zero
momentum) separate topological phases. This means
that some sections will have a Z2 classification, while
others will be topologically trivial. The complete struc-
ture behaves as a stack of sections, connected together in
such a way that the topological phase of each section is
independent. This gives a classification as the direct sum⊕N

1 Z2
∼= NZ2 where N is the number of sections with

a non-trivial classification, and depends on the underly-
ing connectivity of the structure. For periodic materials,
the stacking is not unlike that seen in [27]. Others have
also shown that a rich classification can follow from the
underlying connectivity of a structure [28, 29].

We also show that the localisation of the zero energy
states that accompany a topological phase transition is
determined by the connections between the sections. We
define a partial ordering of the sections based on this con-
nectivity, such that each of the zero energy states created
by making one section topologically marginal spreads in
only one direction through the remaining sections. This
provides an experimentally accessible verification of the
existence of the sections. We perform such an experiment
using a coaxial cable network, which has been shown to
map onto a tight-binding Hamiltonian [26, 30–32]. The
structure we consider is a zigzag ‘graphene’ nanoribbon
consisting of four rows of sites, each of which forms a
separate section, leading to a 4Z2 classification.

We begin by discussing the theory behind the classifi-
cation in section II before discussing experimental results
in a small graphene structure in section III, and conclud-
ing in IV. Supplementary material is provided with more
mathematical and experimental details.
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II. CLASSIFYING FINITE CHIRAL
STRUCTURES

Chiral symmetry is one of the fundamental symmetries
of the Altland-Zirnbeaur symmetry classes [9]. A chiral
Hamiltonian H anticommutes with a unitary C, ensuring
non-zero eigenvalues come in ±ε pairs. When allowing
algebraically independent hopping terms (thereby letting
the structure have arbitrary hopping disorder) a Hamilto-
nian with chiral symmetry necessarily has two sublattices
of sites, which we label ‘black’ and ‘white’ (a consequence
of the Harary-Sachs theorem [33, 34]). Each black site
is only connected (through non-zero hopping terms) to
white sites, and each white site is only connected to black
sites. An example is shown in Fig. 1.

For a structure with nB black sites and nW white sites,
there are are always at least |nB−nW | zero energy states.
Since these exist independently of the values of the hop-
ping terms in H, they are described as topologically pro-
tected states. Such states can also occur in structures
with nB = nW . If a structure has such protected states,
the determinant of the Hamiltonian is necessarily zero for
all values of the hopping terms, so a classification based
on the conditions for |H| = 0 is not possible. In this
work, we consider only structures with equal numbers of
black and sites and no topologically protected states.

Two Hamiltonians H1 and H2, are considered to have
a different topological phase if they cannot be related
under adiabatic evolution. That is, there exists no con-
tinuous way to evolve between H1 and H2 without a gap
closing in the spectrum. For a chiral Hamiltonian with
an even number of sites, zero energy states necessarily
occur in degenerate pairs. This degeneracy corresponds
to a closed gap in the spectrum, indicating non-adiabatic
evolution. Therefore finding the conditions for a singu-
lar Hamiltonian determines the topological phase bound-
aries in a finite structure.

To explore distinct topological phases on a finite chiral
structure we consider a set of sites connected by non-zero
hopping terms. Formally this defines a graphG. OnG we

FIG. 1. A two row ribbon zigzag graphene, looped to form
a cylinder. The structure has chiral symmetry, with the two
sublattices indicated by the black and white sites. The topo-
logical classification of structures like this can be found using
the methods we describe: this one is 2Z2.

define a tight binding (TB) Hamiltonian, H, where each
hopping term may be continuously evolved, algebraically
independently. To ensure changes to G only include con-
tinuous evolution we do not allow new connections to
be introduced, or existing connections to be broken. In
terms of H, this means non-zero hopping terms must re-
main non-zero, and hopping terms which are zero cannot
be modified. Otherwise we allow complete freedom to
continuously evolve hopping terms of H, giving access
to strongly disordered Hamiltonians defined on G. We
do, however, restrict the hopping terms to be real: any
topological phase boundary in a finite structure can be
avoided, by evolving the Hamiltonian through a path in-
volving complex hopping terms. Although we can allow
negative values, the requirement for non zero real hop-
ping terms means that they cannot change sign as they
evolve.

The tuple of algebraically independent hopping terms
on G, defines an affine space, ξ. Each Hamiltonian H
on G defines a point in ξ. Continuously evolving hop-
ping terms in H corresponds to following a path in ξ.
We refer to ξ as the parameter space of G. Topological
phase boundaries in ξ correspond to boundary free sur-
faces one dimension lower than ξ. An example of a slice
of a parameter space is given in Fig. 3.

The classification problem can be completely reduced
to finding solutions to |H| = 0, which necessarily cor-
responds to degenerate zero energy states. Although
degeneracies can occur at non-zero energies, in a sys-
tem with algebraically independent hopping terms, such
a gap closure requires at least two constraints on the hop-
ping terms, a consequence of the Harary-Sachs theorem
[33, 34]. Such constraints are described by surfaces which
are at least two dimensions lower than ξ, and therefore
cannot divide it: they are always avoidable gap closures.
This ensures topological phase boundaries are only given
by a collection of surfaces in ξ corresponding to |H| = 0.

The Hamiltonian for a chiral structure has an antidi-
agonal block basis corresponding to ordering the sites by
sublattice,

H =

(
0 Q
Q† 0

)
, (1)

so the determinant |H| = −|Q||Q†|. For equal numbers of
black and white sites, Q is a square matrix, so |Q| = |Q†|,
and we can use either to determine the classification.

Every term in the expansion of Q is algebraically in-
dependent, so |Q| is a multi linear form of the hopping
terms. That is |Q| varies linearly with respect to each
hopping term in its expansion. For each hopping term
in |Q|, solutions to |Q| = 0 follow from solving a linear
equation, constraining exactly one hopping term. This
ensures that every solution to |Q| = 0 corresponds to a
surface in ξ which is both unbounded, and one dimension
lower than that of the parameter space, splitting ξ in to
distinct regions. This linear behaviour also ensures that
|Q| changes sign as we go over a phase boundary, mean-
ing Sign [|Q|] is a topological invariant [17]. This is in
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contrast to Sign [|H|], which does not change at a phase
boundary.

To classify a structure, we must understand how to
set |Q| to zero by continuously evolving hopping terms,
which may be done by finding the irreducible factors of
|Q|. If a factorisation of |Q| =

∏ |qi| exists, and it is
possible to solve |qi| = 0, then the factor |qi| defines a
pair of distinct phases, where Sign [|qi|] is a topological
invariant. We say such a factor is non-trivial. The classi-

fication of the structure is then given by
⊕N Z2

∼= NZ2

where N is the number of non-trivial factors.
The determinant |Q| defines a polynomial in a unique

factorisation domain (details are given in the supplemen-
tary material section A) ensuring the maximum number
of non-trivial factors, N , of |Q| is also a topological in-
variant, so the classification is well defined. It is only
possible to change N by removing or introducing new
hopping terms or sites, that is, under discontinuous evo-
lution of H.

◦

•

◦

•

a1 a2

a3a4

•

◦

•

◦

b1 b2

b3b4

c1 c2

FIG. 2. A simple two row graphene zigzag structure with the
hopping terms labelled as in Eq.(2). This structure has two
sections and four distinct topological phases, corresponding
to a 2Z2 classification.

To show a simple example, we consider a 2 row zigzag
graphene sructure, with 4 sites on each row, see Fig. 2.
This is described by the matrix

Q =



a1 a4 c1 0
a2 a3 0 c2
0 0 b1 b2
0 0 b4 b3


 (2)

giving the determinant,

|Q| = (a1a3 − a2a4)(b1b3 − b2b4) = |q1||q2|. (3)

The condition |Q| = 0 can be satisfied by
making either factor, |q1| or |q2|, equal to
zero. This gives four distinct topological
phases corresponding to (Sign[|q1|],Sign[|q1|]) =
(+1,+1), (+1,−1), (−1,+1), (−1,−1). Therefore this
structure has the classification 2Z2.

It is also apparent from this simple calculation that
some of the hopping terms – c1 and c2 – do not appear

in the expansion of |Q|. This means that the topological
classification will be the same as for a structure in which
these hopping terms have been set to zero. Physically,
removing these links creates two completely separate lat-
tices, the top and bottom loops in Fig.2. We call these
the two sections of the original structure.

The Hamiltonian, and thus Q, for a separated struc-
ture is block diagonal, so the determinant, |Q|, is simply a
product of the two block determinants, as the expansion
shows. The absence of the c terms from the expansion
of |Q| is a consequence of the block triangular form of
Eq.(2). However, this pattern is only explicit if the sites
are ordered correctly, which depends on finding the sec-
tions defining the blocks in the matrix. As we prove in
the supplementary material section A.1, the determinant
is factored if and only if there exists a block triangular
form of Q, so finding an appropriate ordering of sites
allows us to find the number of sections in a structure.

A graph-theoretic approach to this problem involves
enumerating the complete matchings of a structure. A
complete matching consists of a set of pairings of sites, or
matchings, which are connected (by a non-zero hopping
term), such that every site in the structure is included
in exactly one pair. Examples of such complete match-
ings are shown in Fig. 4, for the four row graphene rib-
bon which we investigate experimentally in section III. A
complete matching has an algebraic interpretation: if we
index separately the black and white sites such that each
each matched pair has the same index, the corresponding
hopping terms appear along the diagonal of the matrix
Q. The terms in the expansion of the determinant of
a matrix correspond to the product of the diagonal ele-
ments for every possible permutation of the columns (or
rows). Hence finding the set of complete matchings for
a structure gives all the terms in the expansion (to get
the signs, it is also necessary to keep track of the num-
ber of swaps required to go between matchings). This is
the Harary-Sachs theorem [33, 34] for weighted bipartite
graphs.

A consequence of the relationship between complete
matchings and the expansion of |Q| is that any connec-
tion which is not included in any matching does not ap-
pear in the expansion, so can be removed to reveal the
sections. In the case of the structure in Fig. 4, all the
connections between the rows can be removed, so the
structure has four sections. For each section, there are
two complete matchings, so each factor |qi| of |Q| con-
tains two terms. Since these have opposite signs, every
factor can be made to pass through zero, so the structure
has classification 4Z2. Note that even small changes in
connectivity can change this completely. If we add just
one connection between the a white site of top row and
a black site of the bottom row of the structure, we find
that there are complete matchings which include every
connection, so there are no sections and the classification
is Z2.

The relationship between the number of sections of a
structure and a block triangular form of Q in Eq.(2) can
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[H1]

[H2]

[H3]

[H4]

FIG. 3. A slice of the parameter space for 2 row ribbon zigzag
graphene, which has the classification 2Z2. This slice is de-
fined by setting all the hopping terms equal to 1, apart from
one in each row, a and b, which are allowed to evolve in-
dependently. [Hx] denotes a set of topologically equivalent
Hamiltonians, and the dashed lines denote phase boundaries.
The path shown undergoes 3 phase transitions between the
phases [H1], [H2], and [H3], where each phase transition is
identified by the appearance of a pair of unavoidable degen-
erate zero energy states.

(a) (b)

FIG. 4. (a) The four row ribbon graphene structure looped to
form a cylinder. (b) The complete matchings of this structure,
flattened for clarity. A complete matching consists of a solid
or dashed set of matchings from each row. The choice for
each row is independent so there are 24 complete matchings.
The connections between the rows do not appear in any of
the matchings, so each row forms a separate section. the
topological classification for this structure is 4Z2.

be made rigorous. In the supplementary material section
A.1, we prove that the factorisation of |Q| according to
sections, |Q| = ∏i |qi|, can be made if, and only if Q can

be written in the block triangular form

Q =




qj · · · ci+1,j ci,j
. . .

...
...

qi+1 ci,i+1

0 qi


 , (4)

where the qi and cij are matrix blocks. Therefore by
finding an appropriate order of the sites the number of
sections will be revealed in a structure.

The diagonal blocks, qi, in Eq.(4) define the sections
of the structure. They include the hopping terms which
connect the black and white sites within the section. The
off diagonal blocks, ci,j , contain the connections between
the sections. The hopping terms in the off diagonal blocks
do not appear in the expansion of |Q|. Note that the con-
necting terms only appear within superdiagonal blocks –
the corresponding subdiagonal is necessarily zero. Thus
the connections between sections are always between the
sublattices. For instance if Q maps from the black to
the white sublattice, then only the white sites of gj may
connect to the black sites of gi. We will make use of this
shortly to define a partial ordering of the sections.

The relationship between the block structure of a ma-
trix and the topological classification of a chiral structure
has allowed us to find an algorithm to classify a random
chiral network. Details of this algorithm are given in the
supplementary material section B. Of our classification
algorithm, the most numerically expensive part is find-
ing a basis with the largest number of triangular blocks.
An alternative algorithm for this part of the classifica-
tion is detailed in [35] although we have not compared
the complexity of our algorithm to this alternative ap-
proach.

The factorisation and triangular form of Q tells us
more than just the topological classification of the Hamil-
tonian. Physically the nature of localisation at criticality
(that is, at a topological phase boundary) is affected,
with nullstates exactly restricted to a particular subset
of sections. We consider a structure represented by the
graph G, with a section gi corresponding to the factor
qi. For a topologically marginal chiral structure each
nullstate can be localised to the black or white sub lat-
tice. If only one section is singular, the black state may
be non-zero only on a subset Gb of non-critical sections,
and the white state may be non-zero on a subset Gw
of non-critical sections. The sets Gw, Gb and the criti-
cal section gc are disjoint, so that the only section with
support of both the black and white states is gc. This
non-trivial localisation yields an experimental method to
find the classification of a structure, discussed in section
III.

To understand this localisation, we define a partial or-
dering of sections, (g ∈ G,≤), which provides the upper
triangular form in Eq.(4). We say that gi < gj , or gi is
lower than gj , if white sites of gi connect to black sites
of gj , and gi > gj , or gi is higher than gj , if black sites
of gi connect to white sites of gj . If the blocks qi and



6

qj can be permuted in Q to swap places on the diagonal
in such a way that maintains an upper triangular block
matrix Q, then gi = gj . Otherwise if gi and gj are not
directly connected, we look to neighbouring sections to
define the partial ordering. As the structure is connected,
we may always iterate to neighbours of neighbours un-
til we have the partial ordering relationship between any
two sections.

In order to demonstrate how the localisation of null-
states in a critical section is altered by the partial order-
ing of sections, consider a 4 section structure where Q
has the form

Q =



q1 c12 c13 0
0 q2 0 c24
0 0 q3 c34
0 0 0 q4


 (5)

where qi and ci,j are block matrices. The sections have
the partial ordering g1 < g2 = g3 < g4. Suppose that
section g3 is marginal, so |q3| = 0 and |q1|, |q2|, |q4| 6= 0.
Then there exists a null eigenvector |φ〉 such that q3 |φ〉 =
0. The solution over all of Q is then given by



q1 c12 c13 0
0 q2 0 c24
0 0 q3 c34
0 0 0 q4







−q−11 c13 |φ〉
0
|φ〉
0


 = 0 (6)

demonstrating the nullstate can have non-zero support

on the black sites of g1 and g3 only. Similarly |q†3| = 0 so
we have a similar solution for Q† where




q†1 0 0 0

c†12 q†2 0 0

c†13 0 q†3 0

0 c†24 c†34 q†4







0
0
|ψ〉

−(q†4)−1c†34 |ψ〉


 = 0 (7)

and q†3 |ψ〉 = 0. Hence this nullstate has non-zero support
on the white sites of g3 and g4 only. The localisation
of the support by sublattices is a direct consequence of
the partial ordering, in this example g1 < g2 = g3 <
g4. These rules generalise in a straightforward way when
there are more sections: the black zero energy state is
localised on the marginal section and those lower in the
partial ordering, while the white state is confined to the
marginal section and those which are higher.

It should be noted that within the critical section itself,
for a randomly selected distribution of hopping terms
that satisfy the condition for a section to be critical, the
zero energy states have, with probability one, support on
every site of the section. Proofs of this, and of the general
relationship between the factorisation and localisation,
are given in the supplementary material section A.1.

It is natural to ask what happens when a structure has
more than one critical section. In some instances it is pos-
sible to have more than two zero energy states. However,
for most structures, for almost all sets of hopping terms,

there remain only two zero energy states when there are
multiple critical sections. This is because the null states
originating from each critical section must be orthogo-
nal to each other, which imposes additional constraints
on the hopping terms, including those which connect the
sections. The conditions for such higher nullity will be
explored in future work.

III. EXPERIMENTAL DEMONSTRATION OF
CLASSIFICATION

To demonstrate the topological classification defined
in Section III, we have performed experiments on a coax-
ial cable network which represents the 4 row ribbon
graphene structure of Fig. 4. A network where all coax-
ial cables have the same transmission time, τ , maps on
to a tight binding model [26, 30] where the sites are the
junctions in the network. The ‘energy’, ε, is given by
ε = cosωτ where ω is the driving frequency. This yields
a Schrödinger type eigenvalue equation Hψ = εψ. En-
tries in ψ correspond to scaled voltages at the junctions.
Up to this scaling factor, individual hopping terms are
given by the reciprocal of the impedance of a cable con-
necting the sites. Swapping between cables of different
impedances thus allows us to traverse a structure’s pa-
rameter space ξ.

Experimental measurements are made with a vector
network analyser (VNA) and takes two forms. From on-
site reflectance measurements, we determine the struc-
ture’s impedance, the real part of which is proportional
to the local density of states (LDOS) at that site [26].
We use this to demonstrate the localisation of the null
states. Transmittance measurement give the relationship
between the magnitude of a state on two sites. This gives
a direct experimental determination of the block trian-
gular form of Q, Eq.(2), and thus the classification of the
structure.

1. Measuring the Local Density of States

Measuring the local density of states on every site al-
lows us to characterise the localisation properties of the
zero energy states in a marginal structure with multi-
ple sections, of which only one is critical. Fig. 5 dis-
plays the LDOS measurements of the disordered looped
4 row ribbon zigzag graphene in Fig. 4. According to
the classification of Sec. II, this structure has four non-
trivials sections, corresponding to the horizontal rows, so
its topological classification is 4Z2. Individual cables are
chosen randomly from a binary distribution of 50Ω and
93Ω cables (see more details in supplementary material
section C). One section is critical, the second row in the
figure, while the other three are not. The localisation of
the nullstates is clear: the white state only has signifi-
cant strength on the top two rows, while the black state
appears only on the lower three. This is in agreement
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with the predicted localisation, given the ordering of the
rows g1 > g2 > g3 > g4.

−1.0 −0.5 0.0 0.5 1.0
Energy, ε = cosωτ

0

1

-R
e{Z
}(

kΩ
)

a
b

a

b

1FIG. 5. Experimental measurement of the impedance spectra
in a topologically marginal 4 row ribbon graphene structure.
The strucure has four sections, correponding to the rows of
the structure. Spectra are shown for two sites on the black
sublattice, labelled a and b in the structure diagram in the
inset. In the plot of the structure the diameter of the circle
representing each site is proportional the amplitude of the zero
energy state at that point, which is derived from the strength
of the corresponding impedance peak. The widths of the lines
showing the connections indicates the impedance of the cor-
responding cable, with wide lines being 93Ω and narrow lines
50Ω cables. The red lines pick out the second row which is the
critical section. The localisation of the zero energy eigenstates
onto distinct sublattices on the upper and lower sections rela-
tive to the critical row agrees with our theoretical prediction.
Note that the structure has cylindrical boundary conditions
as displayed in Fig. 4 (b), with the hanging connections at
either side linked together.

2. Topological Classification through Transmittance

Measurements of the transmittance can be used to ver-
ify the triangular form of Q, Eq.(2), and thus the divi-
sion of the structure into sections. We describe here an
experiment where we make a cut in each section of the
structure, by disconnecting one end of a cable, and mea-
sure transmittance between various cuts. We show that
transmittance at zero energy (cosωτ = 0) only occurs
when the measurement is within one section: the trans-
mittance between sections is zero.

In order to describe the transmittance of the coaxial
cable network, we use a transfer matrix formalism to re-
late the voltages and currents at the output sites to those
at the input sites. If we cut a site on every section (creat-
ing an input and output site on each section), the transfer

matrix will have dimensions 2Ñ × 2Ñ , corresponding to
the voltage and current variables for each of the Ñ sec-
tions. Here we use Ñ for the total number of sections,

g2

•• •

◦◦ ◦
◦◦

g1

•• •

◦◦ ◦
◦◦

InputsOutputs

FIG. 6. A structure with two sections, g1 and g2, with the
partial ordering of g1 < g2 since white sites in g1 connect
to black sites in g2. The sections correspond to the ellipses,
and contain arbitrary numbers of sites, which are not shown
individually. The hopping terms connecting the two sections
are denoted schematically by bunches of three lines, but they
may join any white sites of g1 to any black sites of g2. Each
section has been cut to create input and output sites for trans-
mittance measurements.

to distinguish from N , the number of topologically non-
trivial sections from earlier.

For a chiral structure at zero energy, all the variables
can be coloured black or white, according to the two sub-
lattices, in such a way that the matrix consists of two
Ñ × Ñ diagonal blocks. At zero energy the voltage at a
given site is determined entirely by the currents flowing
out of the neighbouring sites. The neighbours in a chiral
structure are on the other sublattice, so, if we assign the
voltage the same colour as its site, and the currents flow-
ing into and out of a site the opposite colour to the site,
the variables of the two colours are completely indepen-
dent, giving the two blocks.

To see how the form of the transfer matrix for the cut
structure is related to the sections, consider making a
cut within a section, forming an input and output site.
The cut adds a site to the structure, unbalancing the
black and white sublattices in the section, and thus cre-
ating a new zero energy state. For instance cutting on
a white site creates one extra white site, resulting in a
zero energy state that only has support on the white sites
of that section and of any higher sections in the partial
ordering. This means that the block triangular form of
the matrix Q in Eq.(2) translates to a triangular form of
each block of the transfer matrix. This triangular form
persists regardless of the site at which the cut is made
in each section; it can shown to exits if, and only if, the
uncut structure has at least Ñ sections.

As a simple example, consider a structure with just two
sections, g1 and g2, as shown in Fig. 6. The white sites
in g1 connect to the black sites in g2, so in the partial
ordering, g1 < g2. Each section is cut at a white site, so
the white block of the transfer matrix relates the input
and output voltages, while the black block connects the
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currents. The transfer matrix is thus



Ig1out
Ig2out
V g1out

V g2out


 =



γ δ 0 0
0 β 0 0
0 0 α 0
0 0 ν µ






Ig1in
Ig2in
V g1in
V g2in


 , (8)

where the non-zero matrix entries represented by Greek
letters are functions of the hopping amplitudes in the
Hamiltonian, and depend on the details of the actual
structure.

It is not possible to measure directly the form of such
a transfer matrix using a two-port VNA, which can only
give the transmittance between one input and one output
site. The voltages and currents at the other input and
output sites cannot simply be made zero: we can either
leave them open circuit, in which case there can be a
voltage on the site, but no current flowing in or out, or
they can be shorted, giving a current but no voltage.
In our experiment, the output site is always open circuit,
and the choice of whether to short or leave open the input
site is made according to the partial ordering.

To see how this works, consider the case where the
input and output are connected to section g1 and the in-
put to g2 is open circuit. Then Ig2in = 0 and Ig2out = 0.
From Eq.(8), we get Ig1out = γIg1in and V g1out = αV g1in ,
so non-zero transmittance occurs. However, if the in-
put to g2 is shorted, the boundary conditions instead
become V g2in = 0 and Ig2out = 0. This gives Ig1out = 0
and V g1out = αV g1in , so no transmittance can be seen, be-
cause this requires both the output voltage and current
to be non-zero. Hence, for our classification experiment
to work, with intra-section transmittance non-zero, we
need the g2 input site to be open circuit.

Proceeding in the same way, we find that if the input
port is connected to the input site of g1 and the output
port to the output site of g2, we get non-zero transmit-
tance if the input to g2 is shorted, but not if it is open
circuit. Thus, to see no transmittance between sections,
we again need g2 to be open circuit.

If we do these experiments with input port connected
to the input site of g2, the requirement is reversed: the g1
input site has to be shorted to get non-zero transmittance
within the section g2, and no transmittance between sec-
tions g1 and g2. The reason for this difference is the
partial ordering of the sections g1 < g2. However, these
rules only work because we have cut the sections on the
white sites. Going through the different cases, we find

that the requirement for shorting or leaving open the un-
used input sites depends on the sublattice of the site and
the position of the section in the partial ordering relative
to the input site connected to the VNA. These require-
ments are summarised in Table I. When these rules are
satisfied, there is non-zero transmittance between the in-
put and output sites when they are on the same section,
but not when they are on different sections. This pat-
tern is a direct consequence of the triangular blocks in
the transfer matrix, and does not occur otherwise. For
example, in a structure without sections but with two
cuts on white sites, shorting one of the input sites results
in no transmittance for either output site.

Input site Higher Lower Equal
Black Short Open Open/Short
White Open Short Open/Short

TABLE I. Conditions for shorting or leaving open circuit the
inputs to the sections where the input site is not connected to
the VNA. The requirements depend on the sublattice which
the input belongs to, black or white, and its position in the
partial ordering, higher or lower than the connected section.
With these choices, non-zero transmittance occurs only when
the output site is in the same section as the input.

Having established these rules, we use transmittance
measurements to verify the presence of the sections in
the looped four row zigzag graphene ribbon shown in
Fig. 4 (which has been used as an example elsewhere
in this paper). Recall that this structure has four sec-
tions, corresponding to the four rows of sites. Where the
subscript of each row is sequentially labelled, the partial
ordering of the sections is g1 > g2 > g3 > g4. A cut is
made in each row, so the looped structure is transformed
into a sheet, shown in Fig. 7 (a), creating an extra site
on each row. Note, however, that the sections we find
correspond to the uncut loop rather than the sheet. In
two of the sections, the cut is on a white site, while in
the other two the site is black. We perform transmittance
measurements going through the four output sites, and
measuring a spectrum for every input sites in each case.
The rules in Table I determine whether the unconnected
input sites are left open circuit or shorted. For example,
when the VNA is connected to the input site on the sec-
ond row, the first row, which is higher in the ordering and
has a white input site, is left open, while the third and
fourth rows are, respectively, shorted and open circuit.
Using the transfer matrix for the clean structure, where
all the cables have impedance Z0 = 50Ω, this input gives
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FIG. 7. (a) The looped four row zigzag ribbon structure cut so it forms a flat sheet. The looped structure is predicted to
consist of four sections, corresponding to the four rows of sites. Input sites for the transmittance measurements are labelled on
the right hand side, and outputs on the left hand side. For the disordered structure, dashed lines indicate 93Ω RG62 cables,
while solid lines indicate 50Ω RG58 cables. The clean structure had only 50Ω RG58 cables. (b) Experimental transmittance
data. Each subplot corresponds to a different output site according to the labels in (a), with spectra shown for all four inputs
in each case. The blue spectrum is for the case where the input and output site are on the same section, with the dashed red
spectra corresponding to transmittance between sections. The transmittance at zero energy is expected to be zero if the input
and output sites are in different sections, but non-zero when they are in the same section. The experiment thus confirms that
each row is a separate section.




V g1out

Ig2
out

V g3out

Ig4out
Ig1out
V g2
out

Ig3out
V g4out




=




1 Z0i −1 −Z0i
0 1 1

Z0
i −1

0 0 1 Z0i
0 0 0 1

1 0 0 0
Z0i 1 0 0
−1 1

Z0
i 1 0

−Z0i −1 Z0i 1







V g1

Ig2

in
0
0
0

V g2

in
Ig3

V g4




=




V g1 + Z0iI
g2
in

Ig2

in
0
0
0

V g2

in

Ig3 + 1
Z0
iV g2in

V g4 + Z0iI
g3 − V g2in




. (9)

For the disordered structure, the blocks of the matrix are
still triangular, but the expression for the elements are
more complicated. The numerical value for this matrix
if given in the supplementary material section C.

If the other port of the VNA is not attached to the
output site on the second row, it is left open circuit, that
is Ig2out = 0. However, this forces Ig2in also to be zero,
so no current enters the structure, and no transmittance
occurs. However, for the output on the same row, Ig2out =
Ig2in and V g2out = V g2in , so, in the absence of absorption,
there is a perfect transmittance of 1.

The transmittance experiment was carried out twice,
first using a ‘clean’ structure with all 50Ω (RG58) cables,
and then for a disordered structure where hopping terms
were randomly selected from a binary distribution of 50Ω
(RG58) and 93Ω (RG62) cables, identical to the one in

Sec. III 1. The clean structure has reflection symmetry
about a line between the second and third rows, so we
need only need to use two outputs, α and β (labelled in
Fig.7 (a)), but in each case we measure transmittance for
all four input sites. In the disordered structure this sym-
metry is broken, requiring measurements for every input
and output site in order to complete the experiment.

The measured transmittance spectra are shown in Fig.
7 (b). Each panel shows data for a particular output
site, with the four spectra corresponding to the different
input sites. As predicted, in both the clean and disor-
dered structures, the transmittance at ε = cosωτ = 0 is
non-zero only when the output site is on the same sec-
tion as the input (blue curves). This confirms that the
structure has 4 sections, experimentally verifying the 4Z2

classification of this structure. The actual value of the
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zero-energy transmittance between the sites within the
section is determined by how close the section is to be-
ing topologically marginal. For a marginal section, the
ideal transmittance, in the absence of losses, would be ex-
pected to have a value of unity [26]. Although the differ-
ences are not great, it can be seen that the transmittance
is highest in the clean structure, where all the sections
are marginal, and for the second row section of the dis-
ordered structure (output (b)), which is also marginal.

As the structure has chiral symmetry, we expect a sym-
metry in the transmittance spectra around zero energy.
The slight asymmetry in the data is mainly a result of
losses in the cables, which have more effect at higher fre-
quencies, but there is also some chiral symmetry breaking
due to imperfections in the structure. These necessarily
occur because the mapping of the coaxial cable structure
to the tight binding model requires the sections of cable
between the sites to be of uniform impedance. However,
the SMA connectors which form the junctions between
the cables are 50Ω components, so for the connections
with 93Ω cables this uniformity is necessarily unachiev-
able. As a result, the symmetry breaking is generally
greater for the disordered structure than the clean one,
where minor variations in the cable lengths are the likely
cause.

IV. CONCLUSION

We have described an approach to determining exact
topological phases in finite chiral structures, identifying
the phase boundaries by the appearance of degenerate
pairs of zero energy states. This has been shown, in
many cases, to lead to a rich topological classification,
obtained by finding a division into sections which cor-
respond to irreducible factors of the determinant of the
Hamiltonian. The topological classification is then NZ2,
where N is the number of topologically non-trivial sec-
tions or factors. The sections can be identified using the
complete matchings of the underlying structure, relating
the topological classification to the structures underly-
ing connectivity. Each complete matching is related to
a term in the expansion of the determinant, so a hop-
ping term which does not appear in any matching can

be omitted without changing the determinant. The sec-
tions correspond to parts of the structure which become
separated when these connections are removed. We also
give, in section B of the supplementary material, a sim-
ple computational algorithm for finding the sections of a
structure.

We have defined a partial ordering of the sections in
a structure which gives rise to an unusual localisation
of the zero energy states which are present when one of
the sections is topologically marginal. The zero energy
states can be separated so they each have support on a
single sublattice. With our definition, the white state
is confined to the marginal section and those which are
higher in the ordering, while the black state appears on
the marginal section and lower sections. This localisation
can be seen as a property of finite structures which has
some equivalence to the bulk boundary correspondence
in infinite structures.

This localisation provides a way in which the sec-
tions, and corresponding topological classification can be
demonstrated experimentally. We have performed such
experiments on simple coaxial cable networks which map
directly onto chiral tight binding models. When we make
one section marginal, we can use impedance measure-
ments to map out the local density of states on each site.
This provides a direct demonstration of the predicted
localisation related to the partial ordering. Even with-
out a marginal section, we can use transmittance mea-
surements to show that the structure separates into the
expected sections. We have used this method to confirm
the 4Z2 classification which our theory predicts for a four
row ribbon graphene structure.
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[35] I. S. Duff and B. Uçar, On the Block Triangular Form of
Symmetric Matrices, SIAM Review 52, no. 3, 455–470
(2010).



1

Supplementary Materials: A Topological Classification of Finite Chiral Structures
using Complete Matchings

A. FACTORISATION THEOREM

In this section we prove a theorem relating the triangular block form of Q to the factorisation of |Q|. Consider a real
or complex matrix Q, where Q is a chiral block of a Hamiltonian

H =

(
0 Q
Q† 0

)
. (S1)

Below we show that, for algebraically independent hopping terms, then |Q| is reducible if and only if there exists
a way of ordering the sites such that Q is upper block triangular. We refer to the resultant form of Q as the
maximal triangular block basis, or triangular block basis of Q, but it should be emphasised that this basis specifically
corresponds to a permutation of H. We will use this in section B to define an algorithm that classifies a particular
structure.

Note that often in the following arguments we will refer to a property that occurs almost always. By this we mean
that if hopping terms were selected randomly from a continuous distribution (possibly one that satisfies a certain
constraint) then this property occurs with probability 1.

We proceed by showing that the factorisation is well defined, before proving that a square weighted matrix has a
factored determinant (for all matrix entries) if and only if it is block triangular. In proving this relationship we will
show that when a section is singular, for almost all hopping terms a section has non-zero support of an eigenstate on
all sites.

In order to interpret determinants of a matrix as a polynomial, we consider a polynomial ring that contains them.
Formally this ring is larger then the set of polynomials corresponding to determinants, but this is unimportant for
our discussion. In particular we are interested in determinants of matrices, so we consider an N ×N matrix,

Qi,j = Xi,j (S2)

where Xi,j is an indeterminate over some field, or else fixed at 0, and all non-zero Xi,j are algebraically independent.
Generically we take this to be R or C, but more arbitrary fields are perfectly reasonable to consider. We then take the
polynomial ring P [Xi,j ] over the indeterminates Xi,j . The determinants |Q| are polynomials in this ring which are
linear for each hopping term in |Q|. To consider the matrices that may only represent tight binding models undergoing
continuous evolution, then we need to restrict the domain for each indeterminate to be R± or C \ {0} or else fixed at
0. Non-zero indeterminates are then in a semiring.

Formally when we classify a structure we are interested in the subspace E0 of ξ which has no (exactly) zero energy
states. We then wish to calculate the number of ways we can map a Hamiltonian to this subspace, which corresponds
to calculating the zeroth homotopy group of E0 under the usual topology. The zeroth homotopy group of a space
counts the number of disconnected components of that space. The irreducible factorisation of |Q| tells us the number
of path connected components in E0.

Definition A.1. Let X be the subspace of ξ corresponding to a solution to |Q| = 0. Then E0 := ξ \X.

In order for our classification to be well defined, we need there to exist a factorisation of |Q| that is irreducible and
unique, that is we need the polynomial ring to be prime. This follows directly from the fact that the indeterminates
are taken over a field. In other words P is a unique factorisation domain. For a less abstract argument, consider the
following:

Proposition A.2. If for some hopping terms |Q| 6= 0 then |Q| has a unique irreducible factorisation in P .

Proof. Suppose |Q| = ∏
ai and |Q| = ∏

bi such that ai, bi are irreducible. Assume that for the irreducible factor aj
there is no irreducible factor bk such that aj = mbk for some non zero constant m, then

∏

i 6=j
ai 6=

∏
i 6=k bi
m

. (S3)

multiplying by aj = mbk we see

aj
∏

i 6=j
ai 6= bk

∏

i 6=k
bi (S4)
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which is a contradiction. Hence for every j there is a k such that aj = mbk for some constant m, showing a factorisation
of |Q| is unique and irreducible.

Given that the irreducible factorisation of |Q| is well defined, we now give a proof that |Q| = ∏ |qi| if and only if there
exists a block triangular structure of Q with qi as diagonal blocks.

A.1.

Here we aim to prove that a determinant of Q is factored if and only if there exists a block triangular basis of Q. A
corollary of one of the propositions is that a critical section almost always has non-zero support of the nullstates on
every site. To prove this we first show that two sections, pairwise, may only connect on one sublattice. Then we show
that for a structure with N sections there must always be at least one section that may only connect to any other
section on one sublattice. As this is true for any number of sections N this implies that if |Q| is factored, then there
exists a triangular block structure of Q.

More specifically, given a section gi, if every first minor of qi is almost always non-zero then deleting a black and
a white site from gi will result in a structure with a complete matching, because the determinant of the remaining
structure is almost always non-zero. Therefore if we have two sections, gi and gj and they connect to one another on
both sub lattices, then we can delete a black and a white site from both sections (each) that are connected to one
another. The remaining structure has a complete matching because the associated minor is factored by a first minor
of qi and a first minor of qj . Consequently gi and gj can connect to one another on only one sublattice.

Our proof relies on knowing when hopping terms are in a complete matching of some graph or not. For this we
need to define a type of matching.

Definition A.3. A valid matching is a matching between two sites on some graph g such that the matching is part
of a complete matching of g.

We then show that there cannot exist a particular type of cycle of sections (see Definition A.8). This ensures at
least one section can only connect to other sections from one sublattice. This is true for an arbitrary number of
sections, giving the triangular structure to Q.

For consistency if two sections gi and gj connect from a black site in gi to a white site in gj we say gi connects to
gj on the black sub lattice.

Proposition A.4. Given a section gi with tight binding model hi =

[
0 qi
q†i 0

]
such that |qi| is irreducible, then every

first minor of qi is almost always nonzero.

Proof. Given that hi is chiral, a non-zero term in |qi| corresponds to a complete matching of gi. Any first order
minor of qi can be accessed by deleting a white and a black site from gi, with the first order minors corresponding to
determinants of the (N − 1) × (N − 1) sub matrices of qi. So if there exists a complete matching of every structure
where we delete a black and a white site from gi then for almost all hopping terms the minor is non-zero.

Suppose that we have a section with the set of complete matchings C = {Ci} and delete a black site b1. Match
all the remaining sites possible from the complete matching Ci, leaving a single unmatched white site w1. If an
individual site is in only one valid matching, as every complete matching must include a matching on every site,
this would factorise the determinant. So every site is in at least two distinct valid matchings contained in the set
of complete matchings C . So w1 may be matched to a black site b2 with a matching in Cj . Removing the original
matching containing b2 which is in the complete matching Ci leaves a second white site w2 unmatched. This process
has changed which site is the unmatched white site, see Fig. S1 for an example. Iterating this step defines a walk
over the structure. If we delete the unmatched white site, we automatically get a complete matching of the remaining
structure, showing the associated minor is almost always non-zero.

We now demonstrate any white site in a section may be unmatched by such a walk. Assume there are a set Wm of
white sites that cannot be unmatched by iterating this walk, and a set W̄u of white sites that can be unmatched by
iterating this walk. In Ci all Wm white sites are matched to a black site. If there exists a valid matching from a black
site b1 to a white site in Wm and a valid matching from b1 to a white site in W̄u, then the site in Wm is unmatchable.
So the black neighbours of Wm sites do not have a valid matching to any white site in W̄u. If a white site has a valid
matching to b1 it is possible to unmatch, so no white site wm ∈ Wm has a valid matching to b1. This partitions the
sites of G in to two sets: one with white sites that can be unmatched U , and one with white sites that cannot be
unmatched M , with valid matchings. The valid matchings over M are therefore independent of the valid matchings
over U , giving a factorisation of |qi|. By contradiction all white sites in a section are possible to unmatch via such a
walk. As the choice of b1 was arbitrary, this proves the existence of a complete matching of a section when deleting
one white and one black site, that is, every first minor of |qi| is non-zero.
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FIG. S1. (a) 3 rung ladder graphene, which has the classification Z2, and all 3 complete matchings of the structure denoted with
a solid line, dashed line, and dash dot line. (b) Displays the structure having deleted one of the black vertices, and matching
all but one white vertex. By swapping a single matching that neighbours the unmatched vertex at a time, it is possible to leave
any of the white sites unmatched. Deleting the unmatched white vertex shows that for the deleted black vertex, deleting any
of the white vertices leaves a structure with a complete matching.

Corollary A.5. Suppose a section is singular, then qi |ψ〉 = 0 for some non-zero |ψ〉, and for almost all hopping
terms |ψj〉 indexed over the j sites of gi is non-zero for every j.

Proof. By Prop. A.4 every first minor of qi is almost always non-zero. Therefore any submatrix q̄i resulting from
deleting a white and black site of gi is almost always non-singular. Projecting the eigenstate qi |ψ〉 = 0 on to the
submatrix gives

q̄i
∣∣ψ̄
〉
6= 0 (S5)

for all q̄i. Therefore given any submatrix of
[
q̄i α

]
of qi such that

qi =

[
q̄i α
A

]

and |ψ〉 =

[ ∣∣ψ̄
〉

|ψα〉

]
for qi |ψ〉 = 0

(S6)

we see

q̄i
∣∣ψ̄
〉

= −α |ψα〉 . (S7)

As every first minor is non-zero then for almost all hopping term values |ψ〉 has non-zero support on every site of
gi.

We now wish to show that, given a pair of sections gi, gj then they may only connect on one sublattice.

Proposition A.6. Given two section gi, gj then non-zero hopping terms may only be between black sites on gi to
white sites on gj .
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Proof. Given two sections gi, gj assume they connect to one another on both sublattices. Delete four sites, a black
and a white site in gi and a white and a black site in gj that connect to the original white and black site gi. By Prop.
A.4 the resulting structure has a complete matching. Therefore if we put back in the four deleted sites, and match
them via their associated hopping terms, then there exists a complete matching of gi and gj that is not factored by
|qi| and |qj |. So by contradiction gi and gj connect on only one sublattice.

To show that given N sections there exists a section which can only connect to any other section from one sub lattice,
we first define an edge section.

Definition A.7. An edge section is a section that may only connect to all other sections from one sub lattice.

To prove there always exists an edge section we consider a cycle of sections.

Definition A.8. A section cycle is a path through a subset of sections in G such that it starts and ends on the
same section following hopping terms in gi and leaves each section on a different sub lattice to the one it entered on.

We now show there cannot exist a section cycle.

Proposition A.9. A section cycle cannot exist in any structure.

Proof. Suppose every section is in a cycle, then every section connects to a distinct section on both sub lattices. For
each distinct section cycle we can delete a pair of sites, one black and one white, from each section in the cycle such
that the black and white sites connect to different sections in the cycle. By Prop. A.4 the resulting structure has a
complete matching. Putting back in the deleted sites and hopping terms, we can now construct a complete matching
that is not factored by any of the sections in that cycle. Therefore by contradiction there exist no section cycles.

Corollary A.10. In a structure with N sections there exists at least one edge section.

Proof. Suppose every section gi connects to at least one other section gj on the white sub lattice and one different
section gk on the black sub lattice. Given such a requirement, then if no edge section exists there must be at least
N + 1 sections. Therefore by the pigeonhole principle, if every section connects on both sub lattices a section cycle
exists, which is not possible by Prop. A.8 giving a contradiction.

We now wish to show that the existence of an edge section gives the triangular basis to Q.

Theorem A.11. If |Q| =
∏ |qi| for |Q|, |qi| ∈ P [Xi,j ] then there exists a permutation of H that gives a triangular

block basis for Q.

Proof. Given a structure with N sections then by corollary A.10 there is at least one section, g1, which only connects
to all others from one sub lattice. Taking G and deleting g1 yields a new structure, Ḡ, with N − 1 sections. By
corollary A.10 this structure also has an edge section g2. This may be iterated until only one section remains. This
gives the partial ordering of the structure and therefore defines a triangular block basis of Q.

B. A CLASSIFICATION ALGORITHM

We present an algorithm to find the classification of a structure based on Theorem A.11. That is, we take some input
structure, with a chiral Hamiltonian and find an ordering of the sites where Q is block triangular, and every diagonal
block corresponds to a section of the structure. We refer to the corresponding basis as the maximal triangular
block basis of Q. Then, given the domain of each hopping term and numerical bounds on the determinant, we check
if a section is trivial or not. We anticipate that this algorithm can be significantly optimised, but currently we are
able to analyse up to random networks with around 50 sites. Of course, given a more consistent underlying lattice
structure it often makes sense to classify a large (say many thousand sites or more) system by proving some simple
results about the complete matchings of that lattice, coupled with some boundary conditions.

There are two main parts of the algorithm: to find a triangular block basis of Q with all sections on the diagonal,
and then to classify each section. The former is more technically challenging. The first part uses the fact that to get
a triangular block structure to and N × N size Q there needs to be a j × (N − j) block of zeros, so by taking the
complement of Q (with all unit hopping terms) then we can find overlaps in zeros by taking dot products between
column vectors, or a generalised product over several column vectors. The generalised product is defined as follows.
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Definition B.1. The generalised product of N column vectors {ci} is given by

p =
∑

j

∏

i

cij (S8)

where j denotes the jth entry of the column vector ci.

Given N − j columns, if p ≥ j then there is a j × (N − j) block of zeros in Q. The algorithm then follows the
following general outline

1. Compute Q◦ where Q◦i,j = 1 if Qi,j = 0, otherwise Q◦i,j = 0

2. Check for 1× (N − 1) blocks of zeros by checking
∑
iQ
◦
i,j for every j. Take indices of all blocks of this size.

3. Find pairwise overlap matrix, A, of two column vectors of Q◦i,j = 1,

Ai,j =
∑

k

Q◦k,iQ
◦
k,j (S9)

4. If any Ai,j ≥ N − 2 there is a 2× (N − 2) block of zeros. Take indices of all blocks of this size.

5. For j ≥ 2 take all columns that have overlap greater than N − j. If number of columns with such an overlap
≥ N − j set Check = 1.

If Check==1:

For all combinations of N − j columns with pairwise overlap ≥ N − j compute p.

If p ≥ N − j return indices of j × (N − j) block of zeros.

A simple way to optimise this algorithm slightly is to project on to a sub matrix of Q that excludes any individual
section, whenever a relevant j × (N − j) block of zeros is found. Then the combinations of column vectors that need
to be checked to find more blocks of zeros is significantly smaller. Furthermore the complexity of the search scales
with the number of potential column vectors to check. So if the search for zero blocks can be done up until j ≤ N

2 for
the column vectors, and then switched to do a search over the remaining row vectors the algorithm may be faster.

The second part of the algorithm is much simpler, and only applies when hopping terms are restricted to being
real. By the fundamental theorem of algebra if all hopping terms are complex then a solution to |qi| = 0 always exists
for at least a 2 × 2 size block qi corresponding to a section. For hopping terms restricted to R± we require some
more computation. The first part of the algorithm computes the number of sections of Q, and by indexing blocks of
zeros finds a maximal triangular block basis for Q. So we now need to see if each factor can be set to 0. This works
by considering bounds for the largest value of |qi| for all |u| ∈ (0.5, 1] hopping terms, where the sign of u set by the
domain of that individual hopping term (i.e. if u ∈ R+ then u > 0.5 and if u ∈ R− then u < −0.5). All hopping
terms are then selected as a random float in ±(0.5, 1], and it is checked if this gives a singular section, if not we
proceed, otherwise we reselect randomly reselect hopping terms. Suppose all hopping terms in qi are non-zero, then
by Prop. A.4 every hopping term appears in the expansion of |qi|. The maximum number of non-zero terms in the
determinant of an N ×N matrix is N ! and so |qi| ≤ N !. Therefore if a particular hopping term, a, is left free to vary
then |qi| = aA+ B. If solutions to |qi| = 0 exist for some a then for |a| × (0.5)N−1 > (N − 1)! and |qi| has one sign,
and for a = 0 then |qi| = B and has a different sign. This is then repeated for every hopping term until a solution is
shown to exist, or it is shown to not exist for all sections. That is

1. Randomly select all hopping terms u so that |u| ∈ (0.5, 1] and the sign corresponds to the domain of that
hopping term. If |qi| 6= 0 proceed, otherwise randomly reselect all hopping terms until |qi| 6= 0.

2. Keeping the hopping terms as in the first step set a = ±2N (N − 1)! where the sign is specific to the domain of
a. Calculate Sign(|qi|).

3. Keeping the hopping terms as in the first step set a = 0 where the sign is specific to the domain of a. Calculate
Sign(|qi|).

4. If a change of sign is found:

Return section non-trivial
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5. Else:

If all hopping terms checked:

Return section trivial

Else:

Set a to its value from step 1 and repeat from step 2 for a different hopping term b

This part of the algorithm can be optimised by finding a set of sites connected on a loop within the section that is
itself non-trivial, then only one hopping term would need to be varied (one from this ring) for qi to be non-trivial.

C. EXPERIMENTAL DETAILS

Experimental data were collected with a NanoVNA V2 Plus 4 and NanoVNA V2 Plus 4 pro. Two measurements were
considered: two port measurements for transmittance and a single port measurement for reflectance. To operate the
VNA, the software NanoVNA-Saver was used. In making a structure, cables were taken from a binary distribution of
50Ω RG58 SMA cables, and 93Ω RG62 SMA cables. SMA connecters are generically available at only 50Ω impedances
and so for the clean structure all cables were chosen to be 50Ω. The exact cables used in the disordered structures
are displayed in Fig. S2.

Data were collected between 1− 240MHz with ≈ 114MHz being the frequency at which ε = cosωτ = 0.
For transmittance data, the four input states described in Table I were measured in both the clean and disordered

structure, and transmittance data taken in separate experiments on each of the four output sites.

Input site Input 1 Input 2 Input 3 Input 4
g1 (I, V ) Open Open Open
g2 Open (I, V ) Short Short
g3 Short Short (I, V ) Open
g4 Open Open Open (I, V )

TABLE I. The input states for the classification experiments in the graphene CCN. An entry of (I, V ) denotes that this is the
site where the input port of the VNA is attached to the CCN.

At zero energy, the transfer matrix for the disordered 4 row ribbon graphene is given by the following




50
93 100i − 143

93 − 2500
804357 i

0 1 143
2500 i − 8649

2500
0 0 93

50
557450
8649 i

0 0 0 50
93

93
50 0 0 0

557450
8649 i 50

93 0 0
− 1161857

804357
143
8649 i 1 0

− 125000
8649 i − 50

93 186i 93
50




(S10)

where numerical values are a consequence of the 50 Ω and 93 Ω coaxial cables. By applying the four input states of
Table I to equation (S10) shows the transmittance is only non-zero for sites in the same section.
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FIG. S2. The disordered structure the transmittance experiment was performed on, as discussed in section III 2 of the paper,
with sites in each section already cut for measurements. The dashed lines denote the 93Ω RG62 cables, and the solid lines
denote 50Ω RG58 cables. The same structure with all 50Ω RG58 cables is the clean structure used for the transmittance
experiments. The dash-doted ellipses denote the input and output sites. The same structure with uncut sites was used for the
localisation experiment in section III 1 of the paper. This structure has 4 sections and a 4Z2 classification.



5.6. An aside on nut graphs

5.6 An aside on nut graphs

Recall from chapter 2.1.5.1 that in the graph theory literature a core graph of nullity 1 is

known as a nut graph [66, 67]. That is

Definition 5.6.1. A nut graph is an unweighted graph γ with nullity 1 such that a nullstate

has support on every site of γ.

We can use the result of section 5.3.1.1 to provide an algebraic definition of a weighted nut

graph. In order to do this we need to give an algebraic interpretation of our classification.

We do this by considering a polynomial ring that contains |Q|. Take an N ×N matrix

A = aij (5.6.19)

where aij is an indeterminate in the field F. Then P [aij ] is the polynomial ring over the

indeterminates ai,j for all N × N sized matrices. For every possible G the polynomial

|Q| ∈ P .

Remark. Note that the unique irreducible factorisation of the determinant also follows from

the fact that P is a ring over a field, and therefore all irreducible polynomials in P are

unique. That is P is a prime ring.

As we will see below, we can then define weighted nut graphs as being associated to prime

polynomials of P .

In general, a critical section gi is almost always a weighted 2-core graph. However, a

large number of sections also satisfy the following symmetry (up to a graph automorphism)

qi = q†i . (5.6.20)

In such instances we can interpret qi as the weighted adjacency matrix of its own graph.

This leads to a natural definition of a weighted nut graph.

Definition 5.6.2. A weighted nut graph with adjacency matrix γw is a graph such that

when edge weights satisfy |γw| = 0 then γw is almost always a 1-core graph.

Furthermore, from our discussion in section 5.3.1.1 and from the definition of a section then

every weighted nut graph γw has an irreducible determinant |γw|. From the definition of

the ring P we can associate every section to a prime polynomial in this ring. Formally this

means we can consider weighted nut graphs as being, in some sense, prime.

Definition 5.6.3. A weighted nut graph with adjacency matrix γw is a graph such that if

|γ| 6= 0 then |γ| is a prime polynomial in P .

Finally, we note two properties of a weighted nut graph. The first is that, by the

factorisation theorem, adding any edges to a weighted nut graph does not stop it being a

weighted nut graph. This means we can define a minimal weighed nut.

Definition 5.6.4. A minimal weighted nut graph is a weighted nut graph such that the

graph remaining upon the removal of any edge is no longer a weighted nut graph.

97



5.7. A classification experiment

• • • •

•

••
•

•

•
•

••

•
•

•

••

•
•

Figure 5.6.1: A selection of small weighted nut graphs.

It is unknown currently if a minimal weighted nut is unique (up to a graph isomorphism),

however I currently believe it is likely not. Secondly from the factorisation theorem for every

number of vertices there exist sections, and so there are an infinite number of weighted nut

graphs. We give a selection of some small weighted nuts in Fig. 5.6.1. We go into some

more details of unweighted nut graphs in Chapter 6.

5.7 A classification experiment

As discussed in [90] and in sections 5.3.1 a structures classification is directly related to

the existence of an upper triangle basis of a Hamiltonian H on a graph G. That is the

classification follows from finding a way to order the sites of G that give a block upper

triangular basis to H. As discussed in section 5.3 this gives a connection between the

connectivity of G and its topological classification.

The connection between a graphs connectivity and its topological classification may

be observed in the localisation of null states of the Hamiltonian, as discussed in [90].

Furthermore, this gives a connection between the form of the transfer matrix, and the

topological classification of a structure. This is discussed in the context of an experiment

to verify the classification of ribbon graphene in [90], but here we give a general proof that

a triangular transfer matrix is a consequence of the topological classification of a particular

structure.

In order to prepare a structure for the classification experiment, the structure is cut

once on each section, on a hopping term connecting a site to that section, as illustrated in

a Fig. 5 of [90]. The cut site now becomes two sites, one may be labelled an input site,

and the other an output site, one of each for every section.

Definition 5.7.1. Let i label the section, so that (V in
i , I

in
i ) is the voltage and current on

an input site of the ith section, and (V out
i , Iouti ) is the voltage and current on an output site

of the same section. For an input (output) site, let an input (output) current or voltage be

called an input (output) variable.

Definition 5.7.2. A transfer matrix M(ε) maps the voltages and currents of the input

98



5.7. A classification experiment

sites to those of the output sites, at energy ε = cosωτ . That is

M(ε)




...

V in
i

I ini
...




=




...

V out
i

Iouti
...



. (5.7.22)

For brevity, we denote the transfer matrix at zero energy with M = M(ε = 0).

To demonstrate that there exists a permutation of M that is upper triangular, we use

the connectivity of G to show that for each output site, one output variable may be written

as a linear combination of the input variables of that section and above sections, and the

other output variable may be written as a linear combination of the input variables of that

section and below sections. This defines a permutation of M that is upper triangular.

We first notice that due to chiral symmetry, the voltage on one sublattice does not affect

the voltage on the other. As we discuss in [90] this demonstrates that for a white (black)

input site i the input current I ini affects voltage on the black (white) sub lattice only, and

the input voltage V in
i affects voltage on the white (black) sub lattice only. We also recall

that at zero energy, the transfer matrix for an individual coaxial cable is given by
(

0 i
Z

iZ 0

)
. (5.7.23)

Proposition 5.7.3. The current output Iouti on a white site on section gi depends only on

the voltages of the black sites of gi and above sections.

Proof. By Kirchhoff’s rules, the voltage on a site must be equal in every cable terminating

on the site, so we can write

V = iIjZj (5.7.24)

for every nearest neighbour j. This means we can always write the voltage on a black

(white) site in terms of the current output of a neighbouring white (black) site within the

same section. So it is only through the current on sites in which an output variable picks

up dependence on the input variables of different sections.

Furthermore, by Kirchhoff’s rules, the current on a single site must sum to zero. So we

can write the current output as

Iouti =
∑

j

i
Vj
Zj

(5.7.25)

where we sum over all nearest neighbours j. For a white site the current output depends on

the voltage of all neighbouring black sites. By the partial ordering, all neighbouring black

sites are either in gi or above sections. Therefore, we can write Iouti as a linear combination

of the input current on gi and the voltage of black sites of above sections.

In turn, the voltage on a section gk > gi depends only on one input variable of gk and

the voltage of black sites of sections above gk. So we may write the current output on a

white site Iouti as a linear combination of the current input I ini of gi and one input variable

of each above section.
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Corollary 5.7.4. The output voltage V out
i on a white site is given by a linear combination

of the input voltage on gi and one input variable of each below section.

Proof. Due to chiral symmetry V out
i depends on the current outputs of white sites. By the

partial ordering white sites may only connect to the same section and below sections.

To show that this leads to a triangular basis for M , we now demonstrate that for any

section gj < gi the output variable of gj that depends on the input variable of gi depends

on the same input variable. Furthermore, we also show that for any section gk > gi the

output variable of gk that depends on the input variable of gi depends on the other input

variable of gi.

Proposition 5.7.5. For all sections gj < gi the output variable of gj that depends on an

input variable of gi all depend on the same input variable of gi.

Proof. By proposition 5.7.3 the only output variable of section gj below gi that depends

on an input variable of gi depends on the voltages of the black sites of gi. Therefore, the

only input variable of gi that affects an output variable of gj is the input current I ini of the

white input site of gi.

Corollary 5.7.6. For all sections gk > gi the output variable of gj that depends on the

input variables of gk depend on the same input variable of gi.

Proof. By symmetry, the only input variable of gi that affects an output variable of gk
is the voltage on white sites of gi which, by the partial ordering, only affect the current

output of black sites of gk and voltage output of white sites on gk.

So we now know that the output variables must depend on the same set of input variables

from above sections, and from below sections. Along with the fact that on each output site,

one output variable depends on input variables of the same section and above sections, and

the second output variable depends on the other input variable of the same section and

below sections this defines a permutation of M that is triangular.

Remark. Because the triangular basis of M follows from the connectivity of G, the permu-

tation of sections that gives the triangular basis of M is given by the partial ordering of the

sections. More precisely M has two diagonal triangular blocks, one block follows exactly

the partial ordering of Q, and the second block follows the reverse partial ordering of Q.

5.7.1 A note on complex Hamiltonians

Recall from the discussion in section 2.2.2.1 that topological phase transitions can be ob-

served in the transfer matrix. When M has a pair of eigenvalues given by 1 (which come as

pairs due to the chiral symmetry) then the transfer matrix defines two zero energy states

which satisfy the boundary conditions of the uncut Hamiltonian. When cut once on each

section the triangular structure of M ensures that for a real Hamiltonian its eigenvalues

are real, so taking any eigenvalue of M from greater than one to less than one corresponds

to a topological phase transition.
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This notion can be extended to complex Hamiltonians, and gives a way to connect our

classification to the infinite case. Suppose the Hamiltonian has complex hopping terms.

This means that topological phase boundaries are not well defined, as the determinant

|H| = 0 now imposes two constraints on an individual hopping term u, given by

u = a+ bi (5.7.26)

for some a, b ∈ R. This is discussed a little further in section 7.4.1. However, we can use

the transfer matrix to make an observation about the topology of periodic structures.

Suppose u is a hopping term associated to the section g ∈ G, and we cut g on one site

and repeat it periodically, then when |u| = |a + bi| an eigenvalue of the transfer matrix is

given by eiθ, so for some θ there is a zero energy state of the Hamiltonian. This ensures there

is a closed gap somewhere in the Brillouin zone, defining a topological phase boundary.

Furthermore, this is independent of the number of sections that are cut and made

infinitely periodic. It is possible to associate each side of such a topological phase boundary

to a winding number, although this winding number changes depending on how unit cells

are defined for each period.

5.8 Conclusions and limitations

We have proposed a rigorous method for the topological classification of finite chiral struc-

tures. By relating topological properties of a Hamiltonian to the polynomial associated

to a determinant we have given a classification that allows for arbitrary hopping disorder.

Using irreducible factors of the determinant, we have demonstrated all non-singular finite

chiral structures have 2N topological phases associated to an NZ2 topological classification.

We have shown a connection between the irreducible factors of the determinant, and

subgraphs we call sections g of the structure G. By considering properties of sections,

we have given a definition for weighted nut graphs and shown a deep connection between

weighted nut graphs and the topological classification of a particular structure.

The localisation properties of a Hamiltonian on a topological phase boundary are asso-

ciated with the partial ordering of sections. This gives experimentally observable properties

to a finite chiral Hamiltonian undergoing a topological phase transition. We have demon-

strated that for coaxial cable networks this gives a transfer matrix with an upper triangular

form. Using a kind of transfer matrix tomography (as discussed more in [90]) we can probe

this form giving an experimentally viable method to confirm the topological classification

of a particular structure.

As we have not made any assumptions about the underlying connectivity of the struc-

ture our methods could perhaps give a rigorous way to see how finite structural defects

may affect the classification of a much larger structure. We believe this may be done by

separating the defect and studying the topology of the structure and the defect separately.

The topological classification we have discussed here is limited to chiral symmetry in a

non-interacting system. It is possible to use some of the methods described in this chap-

ter to classify an interacting system, however as the size of the Hilbert space grows so
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5.8. Conclusions and limitations

rapidly when allowing interactions, this becomes computationally non-viable for all but

the smallest of systems. Beyond this we have not considered how interactions may affect

our classification.

Experimentally we have given a general approach to verify a structures classification,

however this may not be so simple to implement in atomic structures especially for struc-

tures that do not have exact chiral symmetry. How exactly the validity of our classification

is altered when allowing disorder that breaks chiral symmetry, is a question entirely un-

explored by our work. I suspect if the breaking of chiral symmetry is adiabatic, then our

classification remains valid, however this may alter the localisation of null states at topo-

logical criticality. Such chiral breaking disorder would be interesting to study.

The connection between our notion of topology in finite systems is also not enormously

easy to relate to the classification of infinitely periodic systems. For instance, if allowing

each section to become infinitely periodic, both phases can have a non-trivial Berry phase,

or a trivial Berry phase depending on which sites are chosen to be in a unit cell. Fur-

thermore, because the connectivity of G allows for each section to be infinitely extended

independently, it is not clear how to interpret the number of dimensions in an infinite NZ2

structure. This makes it difficult to see how our classification relates the 10 fold way. We

discuss a little on infinitely periodic structures later in section 7.4.1.

We have also presented an algorithm to classify an arbitrary graph, G. Our algorithm

uses permutations of the columns of submatrices of the Hamiltonian. Without further op-

timisation, this limits our classification of structures with arbitrary connectivity to those

with around 50 sites or less. I am reasonably confident further optimisation will improve

this limit, but for now this is a considerable constraint. Although for structures with a

highly consistent connectivity, it is possible to prove a structure has a particular classifica-

tion (for instance finite graphene ribbons with different boundary conditions), but this is

not an easily generalisable approach.
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Chapter 6

Nut graphs: an experimental

realisation in coaxial cable

networks

As discussed in section 2.1.5.1 a nut graph is an unweighted graph with one null vector such

that every vertex of the graph has support of the null vector. They were first described by

Irene Sciriha [66, 67] in 1998. Nut graphs have all real edge weights, so their nullstates are

real. We display a selection of nut graphs — the Sciriha graphs — each on 7 vertices, and

the smallest chemical nut graph in Fig. 6.0.1.

In chemical graph theory nut graphs have been of particular importance [68], due to

the fact there is only one nullstate and it is delocalised [69, 70]. This delocalisation leads

to significant consequences in the ballistic transport properties of a chemical graph repre-

senting a tight binding system, resulting in the phenomena of omni-conduction [71] at zero

energy. At zero energy the ballistic transport is related to the transmission properties of

coaxial cable networks, so predictions of omni-conduction can be explored experimentally

with this platform.

An omni-conductor is a chemical graph, such that attaching two microscopic leads to

sites, will result in non-zero ballistic transport between the two leads. If, when connecting

the leads to the same site, conduction is non-zero for every site the structure is an ipso

omni-conductor, and if connecting between any pair of distinct sites the conduction is non-

zero the graph is said to be a distinct omni-conductor. A graph that is both is a strong

omni-conductor [71].

Let A be the adjacency matrix of a graph. It has been shown (Theorem 4.2 of [71])

that a graph of nullity one conducts between two sites i and j if the minor of the entry

Ai,j is non-zero. In a nut graph, the delocalised nature of the null state is a consequence

of the first minors all being non-zero (Theorem 6.1 [66]) so this is exactly the requirement

for a strong omni-conductor. Note that this means all weighted nut graphs are strong

omni-conductors for almost all edge weights that satisfy the graph being singular (that is

|H| = 0).

Nut graphs themselves are difficult to make in a molecular setting. Especially nut
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6.1. Measuring eigenstates

graphs whose nullstate is near the Fermi level. In this chapter we present some results

that experimentally confirm some properties of nut graphs in a coaxial cable network. In

particular we demonstrate support of a single null state on every site of a nut graph for a

selection of small nut graphs. Using the two site transmission of a graph we experimentally

verify that a particular nut graph is omni-conducting [71]. Finally, we give an experimental

demonstration of one of the constructions for chemical nut graphs, in particular the addition

of two vertices on a bridge maintains graph being a nut [66, 68].
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Figure 6.0.1: The Sciriha graphs (a), (b) and (d) — the smallest nut graphs each on 7

vertices. Four of the sites of (a) have been coloured to indicate the input and output sites

for some measurements displayed in Fig. 6.1.1 and Fig. 6.1.3. (c) Displays the smallest

chemical nut graph.

6.1 Measuring eigenstates

As discussed in section 2.2.2 we can make two main measurements on a coaxial cable net-

work. The first is of the local density of states (LDOS) which is proportional to the real

part of the local impedance. Using this measurement, we can go site by site and experi-

mentally verify if a particular coaxial cable network does have support of a null state on

every vertex, confirming if it is a nut graph.

The second measurement we make is of the transmission (that is the s21 parameter
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6.1. Measuring eigenstates

of the scattering matrix) which (at zero energy) gives the (complex) phase relationship

between the support of the nullstate on two sites. We may use this to get the sign of the

nullstate on every site, giving us experimental access to the entire nullspace of a coaxial

cable network. Throughout the rest of this thesis, we make use of the transmittance, how-

ever this loses the phase information of a two site measurement. The use of transmission

does leave some experimental problems, however.

The first issue is that VNA has finite size ports. This means that transmission and

reflectance measurement are not taken directly on a site. A special measurement cable was

made to account for the length of the VNA port, but the slightly off site measurement

does result in a small shift in the measured LDOS between sites. Furthermore, to allow

sites with a large degree, connectors were made with a combination of T-connectors. This

also results in a slight frequency shift in the data. This shift was sufficiently small so that

calculating the LDOS and the relative sign of the nullstate around the graph from the data,

the shifts were not accounted for. Despite this our data agree well with the theory.

Secondly on the VNA itself the input and output ports are calibrated to have 50Ω losses

which sometimes leads to a phase shift in the measured transmission, as displayed in Fig.

6.1.1. This phase shift is a consequence of the non-infinite impedance of the output and

input port of the VNA. However, because the nullstates of a nut graph are real, the phase

shift is never enough to change the sign of the real part of the transmission.

To see this, recall that (with the application of the Woodbury matrix identity, as dis-

cussed in sections 2.2.2 and 3, and also in [76]) when connecting the VNA to two sites a, b

the Greens functions between the two sites is given by

Ga,b =
ga,b

1 + ΓinΓout(1− ε2)(ga,bgb,a − ga,agb,b) + i(1− ε2) 1
2 (Γinga,a + Γoutgb,b)

(6.1.2)

where gi,j is the Greens function of the Hamiltonian when not connected to the VNA

between two sites i, j, and Γ ∼ Z−10 is the scaled loss term of the VNA ports for the port

impedance Z0.

The Greens functions relate the voltage on one site, relative to a reference input voltage.

Because the nut graph has real eigenvectors, in the limit of zero energy each term gi,j is

real. Furthermore because there is only one null state at zero energy ga,agb,b − ga,bgb,a =
Va
V in
a

Vb
V in
b

− Va
V in
b

Vb
V in
a

= 0 so we may rewrite the denominator as

1 + αi (6.1.3)

where α = (1−ε2) 1
2 (Γinga,a+Γoutgb,b) and is real. This results in a phase shift in (−π

2 ,
π
2 ) of

the transmission. So we can use the real part of the transmission to experimentally verify

the relative sign of the nullstate on one site, to that of the nullstate on another.

One further issue with the measurements is that the measured voltages are scaled in

order to realise the map between a coaxial cable network and a tight binding model, as

discussed in section 2.2.1. Recall that we may interpret such a scaling on the hopping terms

of the tight binding model itself, given by

HCCN = p−
1
2Ap−

1
2 (6.1.4)
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6.1. Measuring eigenstates

where p−
1
2 is a non-singular diagonal matrix, and A is the adjacency matrix of the nut

graph. Because a nut graph has all unit edge weights, every cable used in a nut graph

has the same impedance Z0. Because p−
1
2 is a non-singular diagonal matrix support of the

nullstate on every site is still maintained in HCCN, but this does mean the eigenstates of

HCCN are scaled relative to the eigenstates of A.

Recall from section 2.2.1 the scaling matrix p−
1
2 is given by

p
− 1

2
i,i =




∑

i>j

Zi,j


+


∑

i>j

Zj,i





− 1

2

. (6.1.5)

Because every cable has the same impedance this means

p
− 1

2
i,i = (Z0di)

− 1
2 (6.1.6)

where di is the degree of the vertex i. This scales the eigenstate on each site i by (Z0di)
− 1

2 .

To measure the nullstates of A this scaling does not need to be accounted for in data

analysis, however. Recall from section 2.2.1 that for an eigenstate of HCCN with support

v̄i on site i the measured voltages correspond to p
1
2
i,iv̄i. This is exactly the scaling between

eigenstates of A and HCCN , and so the measured voltages correspond to the eigenstates of

the nut graph itself. In all cases our measured data agrees quite well with the eigenstates

of A.
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Figure 6.1.1: A plot of transmission measured experimentally (denoted E in the legend)

and calculated numerically (denote N in the legend) using the Greens functions between

the yellow and white sites of the Sciriha graph in Fig. 6.0.1 (a). The subscript in the

legend denotes the impedance of the input and output port, demonstrating that changing

loss can give a phase shift to the transmission. The experimental data were included to

demonstrate the measured phase shift is a consequence of the losses.

One fascinating property of nut graphs is that they display omni-conductance [71, 108].

In a molecular setting this means that if connecting any two vertices to a microscopic lead,
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6.1. Measuring eigenstates

the ballistic conduction is non-zero. At zero energy the ballistic transport properties of a

molecular system and the transmission properties of a coaxial cable network are related

to the same transmission coefficients. So a prediction of omni-conduction in a molecular

system is also a prediction of omni-conduction in a coaxial cable system.

It has been shown that the requirements for omni-conduction can be related entirely to

graph theoretic properties of a structure [71, 108]. In particular for graphs of nullity 1 if the

minor associated to the entry of the Hamiltonian Hi,j is non-zero then transmission is non-

zero between site i and j. Strong omni-conduction occurs when every minor is non-zero,

which is exactly the case for nut graphs.

In section 6.1.1 we present results experimentally demonstrating omni-conductance for

one of the Sciriha graphs.

As a final experiment we also demonstrate that the addition of two vertices to a bridge

of a nut graph constructs a new nut graph. We do this with the smallest chemical nut graph

as displayed in Fig. 6.1.2. We can imagine this construction as adding two additional equal

impedance cables to it, which (at zero energy) has the transfer matrix of

(
−1 0

0 −1

)
. (6.1.8)

Because this is true for any two vertices of the bridge this maintains a single nullstate of

the graph with support on every site. However, the sign of the transfer matrix switches

the relative sign of the nullstate on one side of the two added vertices, compared to the

original graph.
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Figure 6.1.2: (a) The smallest chemical nut graph, and (b) a chemical nut graph con-

structed with the addition of 2 vertices on the bridge (for example the two vertices in

white).

107



6.1. Measuring eigenstates

6.1.1 Experimental results

In Fig. 6.1.3 we give an example plot of the transmission and LDOS data for a single site

of the nut graph in Fig. 6.0.1 (a). LDOS data were collected for each site in each graph,

while transmission data are collected from one site in each graph to every other site. This

gives us the relative sign of the eigenvector on each site, allowing us to reconstruct the

nullspace experimentally.

In order to compare the experimentally measured nullstate, and that of the original nut

graph, we need to find an appropriate normalisation of the graphs nullstate. To do this

we scaled the experimentally measured nullstate and normalised by the largest voltage. To

normalise the predicted nullstate of the nut graph we multiplied it by some scalar k which

minimises the standard deviation. This minimum is found for

k =

∑
i a

graph
i V exp

i∑
i

(
agraphi

2
) (6.1.10)

where agraphi is the nullstate on site i calculated directly from the adjacency matrix of the

nut graph, and V exp
i is the experimentally measured support of a nullstate on site i (using

the transmission for the sign and the square root of the LDOS for the amplitude). The

resultant standard deviation for each structure is indicated in each figure caption.

Normalising the eigenstates of the nut graph, and the measured nullstate so that they

each have an inner product of 1 we then calculated the fidelity. In each case the fidelity was

above 97% with a maximum of 99.9% demonstrating how precisely we are able to create

a tight binding structure with a coaxial cable network. The fidelity for each experiment is

indicated in each figure caption.

In Fig. 6.1.4 we present the experimentally measured nullstates for the three Sciriha

graphs. The colour of a vertex corresponds to the relative sign of the nullstate, as measured

by the real part of the transmission. The diameter of each vertex is proportional to the

LDOS on that site, measured as an integral of the experimental LDOS between 104-119

MHz. For each graph the point of zero energy is slightly shifted, due to the addition of

multiple T-connectors to create high degree sites, as such this frequency range corresponds

to the energy windows of ε = −0.12 to ε = 0.09 for the graphs (b) and (d) of Fig. 6.0.1

and ε = −0.04 to ε = 0.17 for (a) of Fig. 6.0.1. The convention was chosen to integrate

the LDOS over the same frequency range instead of over the same energy window, due to

a possible ambiguity arising in how to define zero energy when different sites have signifi-

cantly different degrees, as is the case for the Sciriha graphs. The diameter on each vertex

agrees well with the scaling from the adjacency matrix of the underlying nut graph and the

Hamiltonian of the coaxial cable network.

In Fig. 6.1.5 we present the same experiment but for the smallest chemical nut, and

another chemical nut constructed by the addition of two vertices to the bridge, experimen-

tally corroborating this construction maintains a nut graph. These LDOS measurements

were integrated over a 109-119MHz range (to account for the lower average degree in both

of these graphs compared to the Sciriha graphs) or equivalently ε = −0.04 to ε = 0.09. Our

data agrees well with the scaled voltages, and we experimentally confirm this construction
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6.2. Conclusions and limitations

Figure 6.1.3: Experimentally measured transmission (with real and imaginary compo-

nents represented as the magenta solid and dashed lines respectively) and LDOS (blue

dashed dotted line) of the Sciriha graph in Fig. 6.0.1 (a). The transmission data were mea-

sured between the blue and yellow site of Fig. 6.0.1 (a) and the LDOS data were measured

on the red site.

has produced a new nut graph from the other.

In Fig. 6.1.6 and Fig. 6.1.7 we give the transmittance data for Sciriha graph in Fig. 6.0.1

(b). There are three distinct orbits of vertices in this graph, as indicated by the different

colour vertices in Fig. 6.1.6 (a). To verify the graph is an omni-conductor we need only put

an input on one vertex of each orbit, reducing the number of required experiments. In Fig.

6.1.6 (b-d) we demonstrate that for each pair of input and output sites the transmittance

is non-zero, where transmittance is indicated by the opacity of the output site vertex. We

plot the transmittance for every pair of input and output vertices in Fig. 6.1.7. Our data

experimentally confirm this nut graph is a distinct omni-conductor. Furthermore, the peaks

in the LDOS occur only when the reflectance is near unity, so the fact that the LDOS is

non-zero on every site demonstrate nut graphs are ipso-omni-conductors. Our experimental

data therefore confirm this graph is a strong omni-conductor.

6.2 Conclusions and limitations

We have detailed an experimental platform for the realisation of nut graphs using coaxial ca-

ble networks. Using the fact that the nullstate of a nut graph is real, we have demonstrated

a complete experimental measurement of the null space of a selection of nut graphs. Using

a combination of transmission and reflectance measurements we have experimentally con-

firmed 5 coaxial cable networks of graphs — the Sciriha graphs, and two chemical graphs

— are nut graphs. Furthermore, we have given the first experimental demonstration of

strong omni-conduction in one of the Sciriha nut graphs.
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(a)

(b)

(c)

Figure 6.1.4: Support of a nullvector on each site where the diameter is proportional

to the square root of the experimentally measured integrated local density of states for

each of the nullvectors of the three Sciriha graphs. The relative sign is indicated by the

colour of the vertex and found experimentally with the transmission. Normalising the

experimentally measured eigenstate by the site with the largest support, the measured

eigenstates had a standard deviation of 0.08, 0.03, and 0.08, and each measurement was

within ±0.12,±0.03,±0.12 with a fidelity of 99.3%, 99.9%, and 99.3% of the graph theoretic

prediction for (a), (b), and (c) respectively.
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(a)

(b)

Figure 6.1.5: The support of a nullstate on each site, calculated from the square root of

the experimentally measured integrated local density of states for (a) the smallest chemical

nut graph, and (b) a chemical nut graph constructed with the addition of two vertices on

a bridge. The relative sign is indicated by the colour of the vertex, and the diameter is

proportional to the support of the nullstate on that vertex. Notice that the sign of the null-

state on the pentagon are opposite on the two nut graphs. Normalising the experimentally

measured eigenstate by the site with the largest support, the measured eigenstates had a

standard deviation of 0.07 and 0.1 and all measurements were within ±0.18 and ±0.22,

with a fidelity of 98.6% and 97.9% of (a) and (b) respectively.
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(a) (b)

(c) (d)

Figure 6.1.6: (a) Displays the three vertex orbits of this nut graph: a black orbit, a white

orbit, and a blue orbit. We only need to attach the input to one vertex of each orbit in order

to verify omni-conduction. (b-d) Display the transmittance on every site but the input site

(denoted in blue). The opacity of the red is proportional to the transmittance measured on

that site at zero energy, with complete transparency corresponding to no transmittance.
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Figure 6.1.7: The transmittance for every pair of input and output sites. Observe that

at zero energy the transmittance is non-zero for every pair. These data confirm this graph

is a distinct omni-conductor.

As discussed in section 5.6 there is a deep connection between nut graphs and a critical

section. This is a consequence of every minor of a biadjacency matrix being almost always

non-zero. In fact, core graphs in general are closely related to the finite classification we

discuss in this thesis, as we will detail more in chapter 7.

Despite the good agreement of our data with both simulation of the measurements, and

graph theoretic prediction of networks behaviour, there are some complications relating

to the measurements on a structure. These are a consequence of the fact that on site

measurements are not possible with SMA connectors — the connectors themselves have a

finite length. We have accounted for this with making a measurement cable (as discussed

in section 2.2.2.4) which is slightly shorter to account for the extra length of introduced

to the system when connecting the VNA. This does result in a small shift in energy of the

LDOS however.

A second issue results from some sites having a large number of neighbours. To allow

such a large number of connections T connectors were combined to one another, this resulted

in some quite bulky sites that also result in an energy shift in the LDOS data. We anticipate

that both this and the issue with measuring slightly off a site can be improved with the

design of custom connectors for this purpose.
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Chapter 7

Topology in finite chiral structures

3: sequential topology — iterative

topological phase transitions

In chapter 5 we studied exact and unavoidable gap closures of 2 zero energy states between

non-singular Hamiltonians with different hopping terms. This allowed us to give a well

defined notion of finite topologically distinct Hamiltonians at strong disorder. In this

chapter, we extend this approach to study unavoidable gap closures with 2n exactly zero

energy states, separating equivalence classes of Hamiltonians with 2n−2 zero energy states.

In order to find such topological phase transitions, we put constraints on the hopping

terms. For example, if an almost always non-singular chiral structure with the Hamiltonian

H satisfies the constraint |H| = 0, then the structure has 2 zero energy states. Given

the set of all Hamiltonians that satisfy |H| = 0, is there a topological phase boundary

corresponding to 4 zero energy states? To answer this question, we apply sequences of

constraints to the hopping terms of H, and study the topological properties of the surfaces

that satisfy this sequence of constraints. We call this sequential topology, and the associated

topological classification, a sequential classification. Our application of constraints results

in a rich sequence of iterative topological phase transitions.

In sequential topology, we study lower dimensional topological features of a Hamilto-

nian’s parameter space, and so there is a significant analogy with higher order topology.

We proceed with a brief discussion of higher order topology.

In first order topological materials, for a topologically non-trivial phase a d dimensional

system has robust d − 1 dimensional boundary states, a direct consequence of the bulk-

boundary correspondence. Higher order topology studies d− n− 1 dimensional boundary

states in a d dimensional system [109–112]. To explain such phenomena, theory for a higher

order bulk-boundary correspondence has been developed [113, 114] as well as theory for

systems with bulk and crystalline symmetries [60, 110, 112, 115, 116]. Due to the difficulty

of relating lower dimensional boundary states to the bulk a complete picture of the bulk

boundary correspondence for higher order topological insulators has not yet been devel-

oped.
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The theory of higher order topological materials has made a large number of predictions

in the behaviour of topological boundary states. For instance, localisation of corner and

hinge states in 2 and 3 dimensional topological insulators, respectively [60, 109–113, 115,

116].

In chiral symmetric systems, N stacked 1d topological insulators have been predicted

to have non-trivial higher order phases [110]. Theory of such systems demonstrates the

presence of a certain number of corner states in each 1d topological insulator. As discussed

in Chapter 5, in finite structures the network topology of stacking topological insulators

have significant impact on the number of topological phases. In section 7.4.1 we demon-

strate the classification we discussed in Chapter 5 can be thought of as a finite analogue of

the higher order topology of stacked 1d topological insulators.

In section 7.6 we will show that the localisation of zero energy states to certain sections

is a physical consequence of a structures sequential classification. Much like the number of

d− n− 1 dimensional boundary states is related to higher order bulk invariants in higher

order topology, localisation in sequential topology corresponds to the number of zero energy

states on each section. Such localisation gives a further analogy between our sequential

topology and higher order topology. We then experimentally verify such properties in

section 7.7, demonstrating the physical validity of our sequential topological classification.

Recall that ξ is the parameter space of a structure G with a tight binding Hamiltonian

H defined on it. The main work of this chapter will be studying unavoidable gap closures

with 2n exactly zero energy states, separating Hamiltonians with 2n−2 zero energy states.

In further analogy to higher order topology, we demonstrate such gap closures may be

predicted with lower dimensional topological features in ξ. In sections 7.2, 7.3 and 7.4 we

will demonstrate that this is exactly the same classification problem as in chapter 5 but

translated to such lower dimensional subspaces. As such, a considerable part of this chapter

is devoted to how we find and translate this problem to these subspaces of ξ.

Remark. Note that sequential topology does not fit cleanly with higher order topology. This

is because sequential topology is the simplest to study when considering multiple sections.

Depending on how the dimension of a section is interpreted, this means sequential topology

may be best interpreted as increasing the dimension of relevant zero energy states. However,

as such states only exist at topological criticality, in the absence of a bulk it is not clear

how best to interpret the dimension of our sequential classification. The interpretation of

dimension is even more complex when considering sequential topology for an individual

section.

To summarise the differences between higher order topology, and sequential topology

for finite chiral structures, we refer to Table 7.0.0.1.

An alternative way of understanding sequential topology of a structure is to flip the

question around. Take a Hamiltonian H with 2n zero energy states. What is maximum

amount of allowable disorder while maintaining 2n zero energy states? Here we interpret

the maximum amount of disorder to mean the minimum number of hopping terms that need

to be constrained or the maximum number of degrees of freedom. From this perspective

we are interested in the largest dimensional subspaces Xi of ξ that correspond to 2n or
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Table 7.0.0.1: A summary of differences between higher order topology, and sequential

topology in finite chiral structures

Property Higher order topology Sequential topology

Physical Number of d− n Number of zero energy

states boundary states states at phase boundary

Topological Lower dimensional features Lower dimensional features

invariants of momentum space of ξ

Localisation Localisation of robust Localisation of zero energy

boundary states states at phase boundary

[H1]

[Hc
1]

[Hc
2]

[H2]
Hc = H

s.t. |H| = 0

Figure 7.0.1: A slice of the parameter space ξ of a structure where Hc denotes the

subspace corresponding to |H| = 0. Hc defines a phase boundary separating the two

equivalence classes of Hamiltonians [H1], [H2]. For this structure a subspace corresponding

to four zero energy states exists within the subspace Hc and splits Hc in to two topologically

distinct regions corresponding to the equivalence classes [Hc
1], [Hc

2].

more zero energy states. To get the subspaces Xi we derive a set of algebraic constraints

on hopping terms of H. Relaxing one of these constraints can lead to a subspace Xi−1 to

which Xi defines a topological phase boundary.

Consider the parameter space ξ of a balanced structure (that is, the same number of

black and white sites) G without topological protection. The Hamiltonian H on G has

phase boundaries given by |H| = −|Q||Q†| = 0. To understand the constraints on H to get

a particular number of zero energy states, we can look to the secular equation

|H − λI| =
∑

n=0

anλ
n (7.0.2)

where a0 = |H|. The set of constraints which satisfy a1 = a2 = 0 while maintaining

|H| = 0 defines the subspace of ξ with four zero energy states. Each individual constraint
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is defined by the solution to a polynomial, so satisfying one more constraint gives a surface

one dimension lower than the previous constraints. Therefore, each satisfiable constraint

defines a new subspace. We can go further, setting a0 = a1 = a2 = a3 = a4 = 0 gives six

zero energy states. Setting each term an = 0 gives a set of constraints on the hopping terms

of H, which defines a sequence of subspaces in ξ. So the question of sequential topology, is

the question of classifying this sequence of subspaces.

Remark. For clarity we call the topological classification of a Hamiltonian satisfying n

constraints, the nth step topology. That is, the classification we discuss in chapter 5 is the

0th step or zeroth step topology of a structure.

As will be shown in section 7.2.1, constraints themselves are given by the determinants

of sub Hamiltonians hi of H (which correspond to minors of H). So there is a very natural

way to understand the relevant subspaces in ξ as the zeroth step topology of subgraphs of

G.

0.1 0.38 0.7
Hopping term, a

−0.5

0.0

0.5

En
er

gy
,ε

Figure 7.0.2: The energy spectrum of a structure as it undergoes a 1st step (sequential)

topological phase transition, going from 2 to 4 to 2 zero energy states.

To give an intuitive understanding of the sequence of subspaces we look at the structure

in Fig. 7.0.3. This structure has three sections, and a 0th step classification of 3Z2. For

this structure each section is not capable of hosting more than two zero energy states (as

we will prove in section 7.5.3). But a higher nullity can be realised by ensuring that zero

energy states from distinct sections are mutually orthogonal on each section. We can use

this to derive sequential constraints on a particular structures’ hopping terms. To begin we

can set |q1| = 0 which corresponds to the surface af − be = 0, and gives two zero energy

states.

To get four zero energy states in this structure, there are two further additional con-

straints. The first is to set another section to be singular. This is because g1 can only

host two zero energy states, so we get the constraint |q2| = 0 or |q3| = 0. For the pur-

poses of this example, we take |q2| = 0. Recall from chapter 5 that nullstates of a section
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Figure 7.0.3: A structure with a zeroth step topology of 3Z2. This structure has 3 sections

g1, g2, g3. Each hopping term is labelled with a variable.

g spread throughout the structure in a very particular way. With two singular sections,

|q1| = 0, |q2| = 0 for all the nullstates of both sections to satisfy the Hamiltonian, all four

nullstates must also spread out throughout G. These states need to be well defined on all

of G to satisfy H. This requires that the null states are orthogonal on each singular section.

For this we get our third constraint

dfm− bhm+ bgn− cfn = 0 (7.0.5)

which gives a structure with four zero energy states. Suppose that |q1| = 0 and one of

these constraints is satisfied, while the other is not. The remaining constraint splits the

relevant subspace in to two distinct regions separated by a necessary gap closure. That is,

the subspace with all but one constraint satisfied has a Z2 classification. Under a phase

transition in this subspace, the spectrum of H undergoes a gap closure illustrated in Fig.

7.0.2.

Finally, we consider the constraints needed to get 6 zero energy states. Like before we

cannot use an individual section in this structure for extra zero energy states, so our first

constraint is from |q3| = 0. We then need the zero energy states from g1, g2 and g3 to be

well defined on each section g1, g2, g3. For this we get two more constraints,

lns− jps+ jot− knt = 0

df − bh = 0.
(7.0.6)

The first constraint ensures the null states for g2 are defined on g3 and for g3 are defined on

g2. This requires the nullstates to be mutually orthogonal as discussed in section 2.1.4. The
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second ensures nullstates from g1 and g3 are mutually orthogonal in this sense. Once again,

if all but one of these constraints is satisfied, the structure lies on a subspace in ξ with four

zero energy states. The final constraint splits this subspace in to two topologically distinct

regions, giving the classification Z2. Similar arguments will be generalised in sections 7.3

and 7.4 to classify the sequential topology of arbitrary finite chiral structures.

Suppose the above 6 constraints are satisfied, then H has 6 zero energy states. In this

structure each section can only have a nullity of at most 2 (as we will prove in section 7.3)

so with 3 sections for this structure we have reached a maximum number of zero energy

states. So we now have the complete sequential topological classification for this structure

and the relevant constraints to construct a sequence of subspaces, Xi. We illustrate this

sequence in the below diagram.

(ξ =)X0 X1 X2 X3

X6 X5 X4

af−be=0 in−mj=0 dfm−bhm+bgn−cfn=0

q
t−
r
s=

0

df−bh=0 lns−jps+jot−knt=0

This sequence of subspaces defines a sequence of zeroth homotopy groups which give the

sequential classification of this structure

3Z2 → 0→ Z2 → 0→ 0→ Z2 → 0. (7.0.7)

Each arrow corresponds to a single constraint defining a subspace in ξ. We will show in

section 7.3 that this sequence of subspaces corresponds to a minimum number of constraints

to get a certain number of zero energy states. For each subspace we will also calculate the

topological classification in an analagous way to the zeroth step topology of chapter 5.

In this chapter, we prove that (up to some consideration in the partial ordering of

sections discussed in chapter 5, and how nullstates localise in the structure) the sequential

topological classification of finite chiral structures is given by a sequence of zeroth homotopy

groups

NZ2 → 0→ Z2 → 0→ 0→MZ2 → 0→ 0→ 0→ PZ2 → · · · (7.0.8)

for Hamiltonians with real hopping terms, and where M,P are natural numbers. And

0→ NZ2 → 0→ 0→ 0→ Z2 → 0→ 0→ 0→ 0→ 0→MZ2 → · · · (7.0.9)

for Hamiltonians with complex hopping terms. As in the above example, each arrow is a

map that takes a subspace Xi 7→ Xi+1 where Xi+1 is one dimension lower than Xi, that is,

each arrow adds one constraint to the hopping terms. In both the complex and real cases

N comes directly from the classification discussed in chapter 5.

This chapter is split roughly in to two main components. The first is focussed on

the topology of the space ξ itself, and the second details physical consequences of this

topology, allowing us to connect our theory to experiments, and test these out in a coaxial

cable network.
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7.1. An overview of sequential topology

In section 7.2 we discuss how the subspaces of interest are defined, before describing their

topological properties for real Hamiltonians in section 7.3. We then describe an extension

to this for complex Hamiltonians, and give a brief discussion of how this relates to infinite

structures in section 7.4. The last section that focusses on topological properties of ξ is

section 7.5 which deals with the case when sections may have more than two nullstates,

and the limit of sequential topology. In section 7.1 we give a higher level overview of the

main results of these sections.

In section 7.6 we discuss how a Hamiltonian lying on a sequential phase boundary has

unusual properties in the localisation of eigenstates, much like that seen in chapter 5. Using

these localisation properties we show how transmittance is altered when a structure is on

a higher steps’ phase boundary. In section 7.7 we give a case study of a structure fully

classified with the methods developed in section 7.3. Furthermore, using the experimental

signatures discussed in section 7.6 we experimentally verify the sequence of zeroth homotopy

groups of this structure, corroborating the validity of our sequential classification.

7.1 An overview of sequential topology

In this section we give a higher level description of sequential topology in finite chiral struc-

tures. The claims we make here are made more rigorous in sections 7.2, 7.3, and 7.4. There

are some more physically relevant details discussed in the more rigorous sections, however

these are not discussed in sections 7.6 and 7.7 and so are not enormously consequential in

understanding the main physical discussion of this chapter. Specifically, these details are

discussed in sections 7.4.1 and 7.5. In section 7.4.1 we discuss an extension to sequential

topology for infinitely periodic materials and draw some parallels between sequential topol-

ogy and higher order topology. In section 7.5 we discuss sequential topology in individual

sections, however our results for individual sections are only for an approximate sequence

of non-trivial subspaces of ξ.

In section 7.2 we also give a different interpretation of the sequential topology of a

structure. In this second interpretation we are interested in asking what is the maximum

amount of disorder (that is, the minimum number of constraints) a system can have while

maintaining 2n zero energy states? This can be understood by considering the subspaces

of ξ with a certain number of zero energy states, and in section 7.2 we study how such

subspaces are related. This interpretation is not explored in this section, but the maps

between subspaces with different numbers of zero energy states can be defined with com-

positions of constraints on a Hamiltonian (which are discussed in this section).

In section 7.1.1 we discuss some the geometric properties of sequential topology, and how

this relates to constraints on the Hamiltonian. And in section 7.1.2 we give a description

of the most significant proofs we present in later sections.

7.1.1 A triangular number of constraints

In the introduction to this chapter, we described how a Hamiltonian may be constrained

to lower dimensional subspaces in ξ. Under certain conditions this subspace may be topo-
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7.1. An overview of sequential topology

logically non-trivial, with distinct regions separated by an unavoidable gap closure in the

energy spectrum. In section 7.2 we discuss in detail a geometric understanding of these

subspaces. The main idea is that when a Hamiltonian is constrained to have 2n − 2 zero

energy states, further constraints may be imposed that give 2n zero energy states. Relaxing

a single one of these further constraints defines a subspace with 2n− 2 zero energy states,

with a topological phase boundary corresponding to a gap closure with 2n zero energy

states. Such a subspace is topologically non-trivial.

As discussed above, we may use the secular equation to classify subspaces of ξ. For a

chiral Hamiltonian the energy spectrum is symmetric about zero energy. We can therefore

write |H − λI| = λp
∏
i(λ

2 − ε2i ) where p is the number of topologically protected states.

Expanding this equation ensures (when no topological protection is present) that only even

order terms are non-zero (for more details see proposition 7.2.3). So we can write

|H − λI| =
∑

a2nλ
2n. (7.1.10)

When a2m = 0 for all m < n − 1 then H has 2n − 2 zero energy states. To find the

constraints on H that give 2n zero energy states therefore comes from solving a2(n−1) = 0.

In general, solving each term (a2n = 0) of the secular equation requires more than one

constraint on the hopping terms of H. This is because a2n is given by a sum of 2nth

order principal minors of H, as will be shown in proposition 7.2.4. This means we may

interpret higher step constraints as relating to the determinants of subgraphs of G. That

is, sequential topology directly relates to the zeroth step topology of subgraphs as explored

in section 7.2.1.

Satisfying each constraint defines a subspace in ξ, as in definition 7.3.13. We denote by

Xi ⊂ ξ a subspace of ξ which satisfies some set of constraints. To find these subspaces we

can use a composition of maps acting on the hopping terms of H. Each map takes a space

satisfying some set of constraints, to a space satisfying one more constraint. We call a map

that takes one subspace to another b : Xi → Xj such that Xj satisfies one more constraint

than Xi a constraint map. So by applying a composition of constraint maps we now have

a subspace within ξ that may or may not be topologically interesting.

There are two problems with this approach alone to find if each subspace Xi is topo-

logically non-trivial. The first is how to choose constraint maps. The second is how to tell

apart topologically distinct Hamiltonians on a subspace Xi.

The first problem arises because we may be required to solve a reducible polynomial

(as each polynomial is defined from the determinant of a subgraph). This means there may

be more than one choice for each constraint map. The simplest example of why this is a

problem is for a structure G with at least two sections g ∈ G. For a Hamiltonian H on G

the constraints to set |H| = 0 are given by a reducible polynomial, and so we may choose

|H| = 0, or any number of the irreducible factors to define a constraint map.

Ambiguity in the choice of constraint map can result in missing a topologically non-

trivial subspace of ξ with our sequential classification. The simplest example of this is for

a 3 section structure, with two equal sections (by the partial ordering). In this structure

there are a minimum of 2 constraints required to be satisfied to get 4 zero energy states,

defining an unbounded subspace two dimensions lower than ξ and one dimension lower
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7.1. An overview of sequential topology

than |H| = 0. It stands to reason that this splits |H| = 0 in to two topologically distinct

regions. However, using the unequal section (by the partial ordering) it is possible to find

a path between these two regions that does not increase the nullity of the Hamiltonian,

thus avoiding the 1st steps’ phase boundary. Details of this path are given in proposition

7.3.8. The existence of such paths indicate that the notion of sequential topology is not well

motivated. However to follow such a path requires (in places) exact control of 2 hopping

terms, so if we assume only 1 hopping term may be exactly controlled, then such paths are

almost always avoided. This allows us to recover a notion of topologically distinct 1st step

Hamiltonians, which we may achieve with our definition of a constraint map.

To prevent our classification depending on paths such as those previously described,

we define constraint maps using irreducible polynomials associated to setting a2n = 0 (this

approach is detailed much more in section 7.3.2). This allows us to use the dimension of a

subspace corresponding to a certain number of zero energy states to study the sequential

topology of a structure.

Definition 7.1.1. Let Xj ⊂ Xi ⊂ ξ be subspaces of the parameter space where a Hamilto-

nian constrained to Xi has 2n− 2 zero energy states. A constraint map b : Xi → Xj is the

set of all points in x ∈ Xi that satisfy an irreducible polynomial p(x) given by a constraint

map needed to solve a2(n−1) = 0 under the above convention. That is

bXi := Xj = {x ∈ Xi|p(x) = 0} (7.1.11)

where p(x) is defined from the set of constraints that are needed to be satisfied to solve

a2(n−1) = 0.

We now need to find an approach for choosing the order in which we apply constraint

maps. This is because for any particular subspace Xi ⊂ ξ applying the composition of

constraint maps define the same subspace, regardless of the order in which we apply the

constraint maps. This is because the solutions to an irreducible polynomial define a con-

nected subspace of ξ, and so any composition of the same constraint maps define the same

subspace1.

There is a way to group constraint maps that ensures we can know which subspaces are

topologically non-trivial just from the number of constraint maps we have applied to the

Hamiltonian. To do this we define a convention for the order we apply constraint maps.

The idea is that we choose a non-singular section, and then derive the set of constraint

maps that will make this section singular, and increase the nullity of H without increasing

the nullity of any other individual section. More details of this convention are given in

the discussion around definition 7.2.1 in section 7.2, and it is important for the proofs in

sections 7.3.2 and 7.3.3.1.

This now brings rise to the second problem. We are interested in the zeroth homotopy

group of the subspace Xi, as this counts the number of equivelance classes of topologically

1A consequence of the fact an irreducible polynomial cannot be decomposed as the union of two discon-

nected algebraic sets, which satisfies the topological definition of connectivity: the surface that corresponds

to the solution to an irreducible polynomial cannot be decomposed in to disjoint irreducible open subsets,

so is connected.
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7.1. An overview of sequential topology

distinct Hamiltonians in Xi. But, from the definition of constraint maps, each Xi is defined

with a set of irreducible constraints and so Xi is connected. To solve this problem, we do

not classify the subspace Xi directly, but instead we calculate the zeroth homotopy group

of the space Xi \T where we remove any higher steps’ topological phase boundaries T . Let

this zeroth homotopy group be denoted by P(Xi) = π(Xi \ T ). This is in direct analogy

to the zeroth homotopy groups calculated in Chapter 5 but is now translated to a lower

dimensional subspace of ξ. More details of the geometric picture of these subspaces are

discussed in section 7.2.

Under the aforementioned convention (with two exceptions) a subspace is topologically

non-trivial only when one less than a triangular number of constraint maps are applied to

the Hamiltonian. To see this, we consider an example of a Hamiltonian H with zeroth step

classification 3Z2 and biadjacency matrix Q. From Chapter 5 we know if H on G has N

sections g ∈ G, then there exists a permutation of the ordering of sites on G that gives Q

an upper triangular block form. For our 3Z2 example this gives

Q =



q1 C1,2 C1,3

0 q2 C2,3

0 0 q3


 . (7.1.12)

Suppose that |q1| = 0 then there is a nullvector of Q given by



q1 C1,2 C1,3

0 q2 C2,3

0 0 q3






ψ1
1

0

0


 . (7.1.13)

where ψij denotes a null vector on a section qj which has originated from the section qi.

If |q2| = 0 then q2φ
2
2 = 0, but as C1,2 is a non-zero matrix then if a nullvector of Q has

support on q2 we need to solve the equation



q1 C1,2 C1,3

0 q2 C2,3

0 0 q3






φ21
φ22
0


 =



q1φ

2
1 + C1,2φ

2
2

0

0


 = 0. (7.1.14)

This is solved when q1φ
2
1 = −C1,2φ

2
2. If solutions to this equation exist, then we must be

able to write C1,2φ
2
2 as a linear combination of the column vectors of q1, which requires

C1,2φ
2
2 to be orthogonal to the column nullspace of q1.

Remark. When this condition is satisfied, there are two linearly independent null vectors

satisfying Q. This gives 4 zero energy states to the Hamiltonian. For a more detailed

discussion on this see lemma 7.3.1 and corollary 7.3.2 in section 7.3.1.

We can check when C1,2φ
2
2 is orthogonal to the column nullspace of q1 by deleting a

column of q1 and replacing it with the vector C1,2φ
2
2. Denote by ql 6=k1 the matrix with

a deleted column of ql1. Replacing the vector deleted column with C1,2φ
2
2 then gives the

matrix

κ =
(
ql 6=k1 C1,2φ

2
2

)
. (7.1.15)
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7.1. An overview of sequential topology

If C1,2φ
2
2 is a linear combination of the remaining columns of q1 then the determinant of

this resulting matrix is zero. This gives three total constraints to get 4 zero energy states:

|q1| = 0, |q2| = 0, |κ| = 0. So we have one constraint for 2 zero energy states, and three for

4 zero energy states.

We can go further and ask about getting 6 zero energy states. A similar process gives 6

total constraints with three from before, |q1| = 0, |q2| = 0, |κ| = 0. An additional constraint

is from |q3| = 0, another to allow the nullvector from q3 to be orthogonal to the column

nullspace of q2, and a final one to allow the nullvector from q3 to be orthogonal to the

column nullspace of q1. This gives 6 total constraints.

The number of constraints are a direct results of the triangular form of Q, so if we

iterate this process to get 8 zero energy states (say if there was a fourth section) then there

are now 4 additional constraints, giving 10 in total. More generally (up to some simple

considerations, and the convention to group constraint maps) there is a minimum of a

triangular number of constraints to get a certain number of zero energy states. A general

proof is given in section 7.3.17.

Let Xi ⊂ ξ denote a subspace of ξ satisfying i constraints. Let P(Xi) denote the

topological classification of that space. As discussed above, only if all but one constraint

is satisfied, we get a topologically non-trivial subspace. Up to some simple considerations

this gives the sequence of zeroth homotopy groups

NZ2 → 0→ P(X2)→ 0→ 0→ P(X5)→ 0→ 0→ 0→ P(X9)→ · · · (7.1.16)

where an arrow denotes the application of a constraint map, and P(Xi) = 0 if i is not one

less than a triangular number.

In proposition 7.3.7 we use the dependence of hopping terms of subgraphs two demon-

strate that, for two unequal sections gi < gj with biadjacency matrices qi, qj then there

are exactly three constraints to get 4 zero energy states. In doing so we demonstrate the

equivalence of all first minors of a particular submatrix of Q. As such we can write the

third constraint |κ| = 0 as an irreducible polynomial so P(X2) = Z2.

More generally P(Xi) = MZ2. Much like in the zeroth step topology of chapter 5 M

comes from the number of irreducible factors of the final polynomial that needs to solved

to give 2 more zero energy states. Choosing one of these irreducible factors defines the final

constraint map. This is discussed in more detail in section 7.3.2.

There are exceptions to the number of constraints giving a certain number of zero en-

ergy states is triangular. This occurs when Ci,jφ
i
j = 0 already. This localises a nullstate to

specific sections and can happen in two instances. The first is when two sections are equal

by the partial ordering, and so Ci,j has all zero entries ensuring Ci,jφ
i
j = 0. The second case

is when a constraint itself is satisfied by Ci,jφ
i
j = 0. In both cases the minimum number

of constraints to increase the number of zero energy states is reduced. This is explored in

more detail in section 7.3.17.

We can extend the sequential topological classification to complex Hamiltonians quite

simply. To do this we note that each constraint map is satisfied when, for some hopping

term h ∈ C
h = a+ bi. (7.1.17)
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7.2. Sequential topology and the parameter space

To satisfy this equation, Re(h) = a and Im(h) = b. This means we need to modify

each constraint map to act as the composition of two constraint maps. One that satisfies

Re(h) = a and one for Im(h) = b. For an example of such constraint maps see definition

7.4.2 in section 7.4. This doubles the number of constraint maps required to get a certain

number of zero energy states, that is P(Xi) is non-trivial when i = 2t − 1 where t is a

triangular number, so for complex Hamiltonians the sequence of zeroth homotopy groups

is

0→ NZ2 → 0→ 0→ 0→ Z2 → 0→ 0→ 0→ 0→ 0→ P(X11)→ · · · (7.1.18)

7.1.2 Overview of main arguments

There are three main results in sections 7.2, 7.3, 7.4, and 7.6. The first is a no go theorem

which states that under the least restricted definition for a constraint map, no finite chiral

Hamiltonian can have non-trivial 1st step topology. The second is the sequences of zeroth

homotopy groups for real or complex chiral Hamiltonians. The final results are some

experimental signatures discussed in section 7.6. Of these results the most technical proofs

are for finding sequences of zeroth homotopy groups. We give an outline of the main idea

behind the proof of the sequence of zeroth homotopy groups below. Throughout sections

7.2, 7.3, 7.4, and 7.6 we make use of the Harary-Sachs theorem, especially to relate terms

in the secular equation to subgraphs of G.

To get the sequence of zeroth homotopy groups, we first define a subspace that we

calculate the zeroth homotopy group for. As previously discussed, this subspace is given

by Xi \ T , which is detailed more in section 7.3.3.

We then assume the support of nullstates from a singular section on above sections.

This assumption is violated only by the two exceptions described in section 7.1.1. Then

we use the triangular block structure of Q to show there are at least n(n−1)
2 constraints

to get 2n zero energy states under the convention described above, and will be defined in

definition 7.2.1. This follows a very similar argument to the example described in section

7.1.1 and uses the algebraic independence of sections to demonstrate these constraints are

also algebraically independent.

In order to satisfy the set of constraints requires orthogonality of a nullstate of the

section gn and the column null spaces of all above sections gi. Using a minimum number

of constraints, we define a protocol to increase the nullity of the Hamiltonian and we show

this satisfies the minimum number of constraints. With this assumption we therefore know

the sequence of which zeroth homotopy groups are non-trivial.

7.2 Sequential topology and the parameter space

We are essentially interested in the same classification problem as Chapter 5, however, now

we wish to extend it to lower dimensional subspaces of ξ. In order to do this, we need to

understand how to derive the constraint maps to define such subspaces, and how to define

a topology on these subspaces.
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7.2. Sequential topology and the parameter space

As discussed in section 7.1.1 in this thesis we take the convention that, given a structure

H with 2n zero energy states, and choosing a section qi which is non-singular. Then we

satisfy (in some order) the set of constraints with the minimum number of constraints such

that the nullity of H becomes 2n+2 and (other than qi) all non-singular sections qj remain

non-singular. We make this convention explicit in the following definition.

Definition 7.2.1. The sequence of constraints are chosen iteratively. Let H be a non-

singular Hamiltonian defined on a structure G. To find a set of constraints, we choose

a non-singular section. The first constraint is chosen from a section gi ∈ G with the

biadjacency matrix qi. The first constraint is |qi| = 0. Later constraints are chosen as

follows:

1. Choose a non-singular section gj ∈ G.

2. Maintaining all the previously applied constraint maps on H, find the set of constraint

maps cj = {b1, b2, · · · } with the smallest cardinality such that nullstates are supported

on both sub lattices of gj (ensuring |qj | = 0) and no other non-singular sections are

made singular.

3. Apply a composition of constraint maps from cj in any order you choose.

Repeat this step to get new sets of constraints.

There are sequences of constraint maps that do not follow this convention. However,

under our convention we have a way to understand the largest dimensional subspaces in ξ

that have a certain number of zero energy states, while controlling the localisation of these

states. In other words, what the allowable amount of disorder in a structure is to achieve

a certain number of zero energy states, and a certain localisation. Thus giving a physical

motivation to our convention.

We can interpret a set of constraint maps in definition 7.2.1 as a kind of boundary

operator. Definition 7.2.1 is a set of constraint maps that increase the number of zero

energy states by 2. Now consider the subspace E2n ⊂ ξ of Hamiltonians with exactly 2n

zero energy states. If all but one constraint map of c2ni are fulfilled, then we are in this

subspace. Fulfilling the final constraint map gives 2n + 2 zero energy states, however any

infinitesimal change of the final constraint gives a structure with 2n zero energy states.

Therefore, satisfying the set of constraints defines a boundary of E2n with 2n + 2 zero

energy states (this boundary may be several dimensions lower then E2n).

Note that there may be multiple constraints that define subspaces with 2n zero energy

states, so we need to distinguish between these subspaces. To do this we associate a space

Xi to satisfying some composition of constraints. So for each subspace E2n we often need

to specify a space given by the intersection of E2n ∩Xi which satisfies a certain number of

constraints.

We can iterate this process, giving us a sequence of subspaces with a certain number of

zero energy states, a set of constraints that give a boundary operator, and a set of sections

that support zero energy states on both of their sub lattices.
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7.2. Sequential topology and the parameter space

E0 E2 ∩Xi E4 ∩Xj E6 ∩Xk · · ·c00 c2i c4j c6k

The order in which we choose sections does change this sequence, as it alters the choice

of constraints. Therefore, for each structure there is a family of such sequences. So,

loosely speaking, we are only studying a part of the subspace of 2n zero energy states when

considering one sequence of boundary operators, that consist of choosing a set of sections

to make singular.

We currently have two ways to understand the sequence of subspaces in ξ of interest.

The first is to have one map for each constraint, as discussed in the previous section. The

second is to restrict only to subspaces with a certain number of zero energy states. We can

relate these by looking at the boundary operator between two such subspaces. Consider

the boundary operator from E2n to E2n+2 given by

E2n ∩Xi E2n+2 ∩Xi+f .
c2ni

The boundary operator c2ni ∼ b1 ◦ b2 ◦ · · · ◦ bf is really the composition of a set of constraint

maps on the Hamiltonian, such that no extra constraint maps are satisfied. Each constraint

map lowers the dimension of the subspace by one dimension, so we can expand this in to

a diagram of constraint maps and boundary operators

E2n ∩Xi E2n+2 ∩Xi+f

Xi Xi+1 Xi+2 · · · Xi+f .

c2ni

b1 b2 b3 bf

The vertical arrows denote inclusion maps. This is because Xi ⊂ ξ is the subspace which

satisfies a certain set of constraints, and so can have more then 2n zero energy states. But

E2n ∩Xi is the intersection of these constraints and the subspace of exactly 2n zero energy

states. So Xi may also have a subspace with more zero energy states. The horizontal

arrows denote either the boundary operators (between subspaces of a particular nullity)

or maps adding individual constraints (between subspaces Xi). The maps between Xi are

restrictions.

Each row of the above diagram provides a different way to imagine the subspaces of ξ.

But using both pictures helps give a well defined way to study the topology of a structure.

That is, a subspace Xi ⊂ ξ is topologically non-trivial, when Xi \
(⋃

j E2m+2j

)
for some m

has a non-trivial zeroth homotopy group. We now recall the definition of the usual topology

on the subspace Xi \
(⋃

j E2m+2j

)
.

Definition 7.2.2. Let Xi be a subspace defined by some sequence of constraints, with

2n zero energy states. Let Xi \
(⋃

j=1E2m+2j

)
be the open subspace of Xi with exactly

2n zero energy states. The open subsets of Xi \
(⋃

j=1E2m+2j

)
are defined as an open

n-ball around each point where n is the dimension of Xi. Let the empty set ∅ and Xi \(⋃
j=1E2m+2j

)
be in the topology τ , along with any intersection or union of an open subset

of Xi \
(⋃

j=1E2m+2j

)
.

128



7.2. Sequential topology and the parameter space

X3

X2

X1

X0

E4 ∩X3

E2 ∩X1

E0 ∩X0 = E0

Figure 7.2.1: The relationship between the subspaces E2n ∩Xi, Xi. The maps between

each E2n ∩Xi are given by a boundary operator, and for maps between each Xi are given

by a constraint map. Note that each black circle denotes a difference of one dimension of

each respective subspace.

So far our discussion has got more abstract than in chapter 5 but this is effectively still

the same problem, just for a subspace of ξ rather than all of ξ. In the previous discussion

we have demonstrated how to translate our approach to zeroth step topology to the same

problem in subspaces of ξ.

◦ • ◦ • ◦ · · · •

• ◦ • ◦ • · · · ◦

q1

q2

C1,2

Figure 7.2.2: Finite 2 row ribbon graphene, with a multiple of 4 sites in each section, and

algebraically independent hopping terms. This structure has a 2Z2 zeroth step classification

and requires 3 constraints on the hopping terms to get 4 zero energy states.
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7.2. Sequential topology and the parameter space

For example, consider 2 row ribbon graphene illustrated in Fig. 7.2.2 with a zeroth step

classification of 2Z2. The first terms of the secular equation are given by

|H − λI| = −|q1||q2||q†1||q†2|+
(
α|q1|α∗|q†1|+ β|q2|β∗|q†2|+ γγ∗

)
λ2 + · · · (7.2.21)

where α, β, γ are polynomials of hopping terms. To get 2 zero energy states, there are two

solutions. One for |q1| = 0 and the second for |q2| = 0. To set a2 = 0 and get 4 zero energy

states there are three total constraints

|q1| = |q2| = γ = 0. (7.2.22)

Note that γ is actually given by the first order minor of the biadjacency matrix Q of the

structure G. More details are given in section 7.3.

Remark. Use the shorthand of cji = {γ1 = 0, γ2 = 0, · · · } to denote the map

cji (E2n ∩Xi) : = E2n+2 ∩Xi+f

= {x ∈ E2n+2 ∩Xi+f |γ1 = 0, γ2 = 0, · · · and N (H) = 2n+ 2}.
(7.2.23)

This gives us the following boundary operators c01 = {|q1| = 0}, c02 = {|q2| = 0}, c11 =

{|q1| = 0, γ = 0}, c12 = {|q2| = 0, γ = 0}. Setting |q1| = 0 first, then |q2| = 0 gives us the

following sequence of subspaces

E0 E2 ∩X1 E4 ∩X3

ξ X1 X2 X3.

c01={|q1|=0} c12={|q2|=0,γ=0}

|q1|=0 |q2|=0 γ=0

The important features of the above sequence of subspaces are sufficiently low dimensional

to be able to visualise. This is because we are applying 3 constraints, which we can

associated to three dimensions, with E4 and X3 denoted as a point. A suitable slice of

the parameter space of two row ribbon graphene to illustrate this sequence of subspaces is

given in Fig. 7.2.3, with the relationship of the subspaces for this example illustrated in

Fig. 7.2.1.

Remark. When the maximum number of zero energy states is reached, then the subspace

E2n ∩Xm is exactly the subspace Xm. This is because there are no subspaces of Xm with

more than 2n zero energy states so the inclusion between E2n ∩ Xm and Xm is just the

identity map. Furthermore, in the 2 row graphene example E4 = E4 ∩X3. We conjecture

that for any Hamiltonian H defined on the structure G, when maximum nullity is reached

then E2n ∩ Xm = E2n. That is there is exactly one set of constraints that define the

subspace E2n.

Now we have a geometric picture for the maps between certain subspaces of ξ, we turn

to defining the exact boundary operators for each E2n corresponding to constraints in the

subspaces Xi. The simplest way to do this is to use the terms in the secular equation, ai,

as a boundary operator. However, as we argued in section 7.1 and will prove with a no go

theorem in section 7.3.1, this is not always a sensible choice. As mentioned (an proven in

section 7.2.1) we give a way to interpret such boundary operators from subgraphs of the

structure, and give a complete definition for a boundary operator for real Hamiltonians in

section 7.3.2 and for complex Hamiltonians in section 7.4.
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E4
•

X2

E0

E2 ∩X1

E2 ∩X1

E0

ξ︷ ︸︸ ︷

︸

︷︷

︸

X1

Figure 7.2.3: A slice of the parameter space of 2 row ribbon graphene. In this structure

there is one constraint map to get at least 2 zero energy states, and three constraint maps

to get 4 zero energy states. Each subspace satisfying a certain number of constraints is

denoted Xi where i is the number of satisfied constraint maps. This structure cannot host

more than 4 zero energy states, so E4 is uniquely defined.

7.2.1 A connection between subgraphs and sequential topology

As discussed in sections 7.1 and 7.2 to define a topology on each subspace, the secular

equation is particularly important. In this subsection we wish to give a way of interpreting

the terms of the secular equation as subgraphs on the Hamiltonian. By doing so, we demon-

strate each constraint is given by the determinant of a sub-Hamiltonian — an example of

a subgraph corresponding to such a sub-Hamiltonian is given in Fig. 7.2.4. To do this we

first show we are only interested in even order terms of the secular equation, and that each

of these terms can be understood as a sum of principal minors of H.

Proposition 7.2.3. For a balanced chiral structure, the secular equation is given by |H −
λI| = ∑ a2nλ

2n.

Proof. As the Hamiltonian is chiral, the solutions to the secular equation come in λ = ±ε
pairs. Therefore we can write

|H − λI| = λp
∏

i

(λ2 − ε2i ) (7.2.25)

where p is the number of topologically protected states. For p = 0 then expanding equation

7.2.3 gives a polynomial with only even powers of λ. Therefore

|H − λI| =
∑

a2nλ
2n (7.2.26)
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7.2. Sequential topology and the parameter space

Remark. From proposition 7.2.3 we know the Hamiltonian has 2m + 2 zero energy states

when a2n = 0 for all n ≤ m.

We now show that a2n can be interpreted as the sum of determinants of chiral subgraphs

of G. This is an application of the Harary-Sachs theorem [63, 64] for the secular equation

of weighted bipartite graphs. To do this we interpret

H − λI (7.2.27)

as a structure with on site energies −λ.

Proposition 7.2.4. Any term |qm| in the sum a2n = ±∑ |qm||q†m| is the determinant of a

subgraph of G.

Proof. By the Harary-Sachs theorem any term in the secular equation that multiplies λ2n

multiplies a 2nth principal minor of H. A principal minor of H defines a chiral Hamiltonian

on a subgraph g of G.

From chapter 4 we know that any structure with a different number of black and white

sites is singular, therefore the only terms that persist in the secular equation are from

deleting n black and n white sites of H. So we can write

a2n = (−1)n
∑

m

|qm||q†m| (7.2.28)

where (−1)n comes from the negative −λ term in H−λI and qm is the biadjacency matrix

of a subgraph of G.

◦ • ◦◦

•

••

◦ • ◦

• ◦◦

•

••

◦ ◦

(a) (b)

Figure 7.2.4: (a) Example of a chiral structure with a zeroth step classification of Z2. (b)

A subgraph obtained by deleting a black and a white site. The determinant of this subgraph

is a polynomial with two irreducible factors, one trivial polynomial from the matching on

the branch, and a non-trivial factor from the matchings of the complementary subgraph.

The constraints to set a2n = 0 are not immediately clear from the secular equation

alone. This is because it is generally not possible to solve a2n = 0 with only one constraint.

Proposition 7.2.5. The minimum (under the convention in definition 7.2.1) number of

constraints for a2n = 0 is bounded above by the number of non-zero minors that a2n sums

over.
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7.3. Sequential topology in real finite chiral structures

Proof. Each subgraph is Hermitian so |qm||q†m| ≥ 0. Therefore a2n = 0 only when |qm| = 0

for each m.

In proposition 7.2.5 we demonstrate a2n = 0 is not generally solvable with only one con-

straint and get a simple upper bound on the number of constraints as the number of

non-zero principal minors. In sections 7.3 and 7.4 we discuss how an exact number of

constraints can be found.

7.3 Sequential topology in real finite chiral structures

In this section we give a detailed overview of how to get boundary operators from the

secular equation and infer the number of constraints to get a certain number of zero energy

states in a real Hamiltonian. We begin by illustrating a no go theorem for non-trivial

sequential topology in section 7.3.1 which can be overcome with a subtlety in the definition

of the boundary operator detailed in 7.3.2.

In section 7.3.3 we derive the sequence of zeroth homotopy groups given in the diagram

(7.0.8) and show it is (up to some simple considerations) independent of the underlying

structure. Later in section 7.5 we go on to show how this sequence is altered when we allow

individual sections to have a nullity greater than 2.

7.3.1 A no go theorem for real Hamiltonians

In this section we will demonstrate that even for 1st step topology, the simplest choice of

boundary operator does not give well defined topological phases. That is a boundary oper-

ator corresponding to a2n = 0. This is true for any case where the zeroth step classification

is NZ2 for N ≥ 2. Using the arguments developed in this section we will motivate a more

general choice of boundary operator which works for defining a sequence of subspaces.

The fact that |H| = 0 does not define a good boundary operator stems from the fact it

can be factorised. Using these distinct factors, we will show that the subspace |H| = 0 is

connected under a topology with closed sets of a2 = 0. That is, there is no non-trivial 1st

step topology for this choice of boundary operator. As we will argue in section 7.3.2 we

can get non-trivial 1st step topology by using constraints directly from the factors of |H|.
To show that using |H| = 0 as a boundary operator never gives non-trivial 1st step

topology, we first demonstrate that an individual section requires at least four constraints

to satisfy |H| = a2 = 0. We then show for any structure with all non equal sections (by

the partial ordering of sections given in chapter 5) at least three constraints are required

to get |H| = a2 = 0. These two cases illustrate that the subspace of 4 zero energy states

does not divide the subspace of |H| = 0 in to distinct regions for a structure with all equal

sections (by the partial ordering of chapter 5).

Finally, we consider the case where there are two or more equal sections (by the partial

ordering of sections) then there can be two constraints to satisfy |H| = a2 = 0. However us-

ing the map we discussed in section 7.1.1 we describe a path around this pair of constraints

that remains on |H| = 0. The existence of this path is what necessitates the different
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7.3. Sequential topology in real finite chiral structures

definition of a boundary operator given in section 7.3.2, and ensures it is the number of

constraints that define a topological phase boundary.

Consider a Hamiltonian H with the zeroth step classification NZ2. We proceed by con-

sidering a single section gi in the structure G that H is defined on, with the corresponding

sub Hamiltonian

hi =

(
0 qi

q†i 0

)
. (7.3.30)

Recall that for a matrix A we use N (A) to denote the nullity of A.

Lemma 7.3.1. If N (hj) = 4 and all other sections are non-singular then N (H) = 4.

Proof. If N (hj) = 4 then N (qj) = 2, so there are two orthogonal nullstates |φ〉 , |ψ〉 such

that

qj |φ〉 = 0, qj |ψ〉 = 0. (7.3.31)

Suppose

Q =




. . .
...

...
...

qj−2 Cj−2,j−1 Cj−2,j · · ·
qj−1 Cj−1,j · · ·

qj · · ·
0

. . .




(7.3.32)

then

Q




...

q−1j−2
(
Cj−2,j−1q

−1
j−1Cj−1,j − Cj−2,j

)
|ψ〉

−q−1j−1Cj−1,j |ψ〉
|ψ〉
0
...

0




= Q |Ψ〉 = 0. (7.3.33)

Similarly for |φ〉,

Q




...

q−1j−2
(
Cj−2,j−1q

−1
j−1Cj−1,j − Cj−2,j

)
|φ〉

−q−1j−1Cj−1,j |φ〉
|φ〉
0
...

0




= Q |Φ〉 = 0. (7.3.34)

Because hi is Hermitian, its eigenvectors are orthogonal so |ψ〉 and |φ〉 are linearly inde-

pendent. Therefore |Ψ〉 and |Φ〉 are in the nullspace of Q and are linearly independent.

By symmetry we can define two linearly independent nullstates for Q† giving a dimen-

sion 4 nullspace to H, hence N (hi) = 4⇒ N (H) = 4.
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Corollary 7.3.2. If a connected subgraph Ḡ ∈ G of sections {gi} with associated submatrix

h̄ has N (h) = 2n and the minor of G when deleting Ḡ is non-singular, then N (H) = 2n.

Proof. There are 2n linearly independent null states on h. As the minor when deleting Ḡ

from G is non-singular, we can define each null state on the remaining graph, giving 2n

linearly independent null states on H.

Remark. Suppose a section |qi| = 0 with nullity N (qi) = 1 and that gi is a subgraph of G

and G has the biadjacency matrix Q of equation (7.3.32). If qiψ
i
i = 0 then index by i the

eigenstate over the section gi of G, so that

Q |Ψ〉 = Q




ψi1
...

ψii
...




= 0 (7.3.35)

then the term ψii−n is given by

ψii−n = q−1i−n
(
−Ci−n,i + Ci−n,i−1q

−1
i−1Ci−1,i − Ci−n,i−2q−1i−2Ci−2,i

+Ci−n,i−2q
−1
i−2Ci−2,i−1q

−1
i−1Ci−1,i + · · ·

)
ψii

=
∑

s∈S

∏

(m,p)∈s
(−qi−mCi−m,i−p)ψii

=: −q−1i−nCi,jψii.

(7.3.36)

Where ψij denotes the support of the nullstate originating from section i on section j and

s is a sequence of integer pairs (m, p) such that m < p ≤ i and m starts with m = i − n.

The next m is given by the previous p and so on. That is

mj+1 = pj , mj+1 < pj+1 < i. (7.3.37)

S is then the set of all such sequences of s between i− n and i.

The matrix C allows us to study a smaller effective structure when considering sequen-

tial topology.

Definition 7.3.3. Let Ci,j be the matrix given between two sections biadjacency matrices

in the previous remark. Then the effective subgraph or effective sub-Hamiltonian is given

by the adjacency matrix 


qi Ci,j
0 qj

q†i 0

C †i,j q†j


 . (7.3.38)

Let {gc} be the set of singular sections of G. Then Ci,j is no longer well defined for any two

sections in {gc}. But we can define the contribution to Ci,j which does not multiply the

135



7.3. Sequential topology in real finite chiral structures

inverse of a singular biadjacency matrix. Let C̄i,j denote this contribution. The effective

subgraph of the {gc} singular sections is defined by the biadjacency matrix




qc1 C̄c1,c2 · · · C̄c1,cn
0 qc1 · · · C̄c2,cn
...

...
. . .

...

0 0 · · · qcn



. (7.3.39)

The effective subgraph can also be generalised to find the constraints for 2n zero energy

states between n sections.

Proposition 7.3.4. At least four constraints are required to set N (hi) = 4.

Proof. Take a section gi with the biadjacency matrix qi. Assume this section can be con-

strained to have a nullity of 4.

If N (hi) = 4 then each first minor of qi is zero. By proposition 7.2.4 this defines a set

of subgraphs of gi which have one deleted black site, and one deleted white site.

Assume every first minor of qi is factored by a solvable polynomial α. From the fac-

torisation theorem in chapter 5 we know α is associated to a subgraph gα of g. So now

take a minor of g that deletes a black site from gα, and a white site from somewhere else

in the section. From Chapter 5 we know this subgraph has a minor that is almost always

non-zero, because g is a section. Furthermore, we know this minor is solvable, because we

have assumed g can have a nullity of 4. Therefore, we now have a minor that is not factored

by α, giving at least two constraints.

Let this minor be given by the product of polynomials
∏
βi with each factor associated

to the subgraph gβi of g.

Now take a minor for each factor βi with a white site deleted from gα and a black

site deleted from gβi . As every first minor of qi is almost always non-zero this defines a

set of non-zero minors. The sum of these minors not factored by α or any factor of
∏
βi.

Therefore, there is at least one more constraint necessary to solve a2 = 0.

Finally, we also require |qi| = 0, giving at least four total constraints.

Corollary 7.3.5. For an individual section gi at least four constraints are required to set

a2 = 0.

Proof. By proposition 7.3.1 if the section gi has four nullstates, and all other sections are

non-singular, then H has four nullstates. By proposition 7.3.4 this requires at least four

constraints.

Remark. We will show in section 7.5 that it is exactly 4 constraints to get an individual

section with 4 zero energy states. Only upper bounds are known for higher nullity of an

individual section, as also detailed later on.

We have now demonstrated that using |H| = 0 to define a boundary operator gives no

non-trivial 1st step topology for an individual section. But with |H| = 0 as a boundary

operator is it possible that there is non-trivial topology when setting two sections to be
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individually critical? To show it is not, we will use two arguments, the first only works for

two unequal sections (by the partial ordering), but we proceed with this argument as it

illuminates certain properties of a structure when it is on a higher steps’ phase boundary.

The second is a stronger argument which uses the fact that the subspace E2 is path con-

nected, therefore demonstrating any two sections (even equal ones, by the partial ordering)

must have at least three constraints to have non-trivial 1st step topology.

Proposition 7.3.6. For two sections which are not equal by the partial ordering of sections,

at least three total constraints are required to set a2 = 0.

Proof. Consider the biadjacency matrix of the effective subgraphs of two sections gi > gj
such that

Q =

(
qi Ci,j
0 qj

)
. (7.3.40)

From corollary 7.3.2 we know that if N (Q) = 2 and all other sections are singular than

N (H) = 4. Therefore, we can restrict questions about the nullity of H to the nullity of Q.

We have assumed extra constraints on the Hamiltonian are coming from two sections,

each being singular, so the first two constraints are defined by

|qi| = 0, and |qj | = 0. (7.3.41)

Let qiφ
i
i = 0 and qjψ

j
j = 0, where ψji is the support of the nullstate originating from qj on

qi. Therefore Q has nullity 2 when

qiψ
j
i = −Ci,jψ

j
j . (7.3.42)

We now show Ci,j is non-zero, so this defines at least one more constraint on the hopping

terms.

By the definition of the partial ordering of sections, for gi > gj then there must exist at

least one sequence of sections that are connected such that gi > gα > gβ > · · · > gγ > gj .

From the definition of Ci,j this defines a sequence of integer pairs that denote sections as

defined in equation 7.3.37. Each section in this sequence, apart from gi and gj is assumed

to be non-singular, therefore this defines a non-zero contribution to Ci,j . As each hopping

term is algebraically independent this ensures Ci,j is non-zero for almost all hopping terms.

Hence there are at least 3 constraints to get N (H) = 4 with two unequal sections, each of

nullity 2.

We now have that there are at least 3 constraints to get N (H) = 4 with two unequal

sections when we only allow each section to have nullity 2. We now give a proof that there

are exactly 3 constraints to get N (H) = 4 with two unequal sections.

Proposition 7.3.7. For two unequal sections gi > gj and each section limited to a nullity

less than or equal to 2, there are three constraints to get N (H) = 4 when all other sections

are not singular.
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Proof. From chapter 5 we know each section is almost always a core graph when singular.

Therefore, for each singular section gi we can write each row (column) of qi as a linear

combination of every other row (column) of qi. Label each column of qi as qli. Take qi and

delete a column. Denote the matrix where the column qki has been deleted as

(
ql 6=ki

)
. (7.3.43)

When qi is singular each column is almost always a linear combination of every other

column (a consequence of a section being a weighted 2-core graph), so there exists some

invertible matrix Ak,m for every deleted row k and deleted row m such that we can write

(
ql 6=ki

)
=
(
ql 6=mi

)
Ak,m. (7.3.44)

By symmetry we can do this for the rows of qi. To avoid ambiguity, we denote a row of qi
as qil . Let the sub matrix of qi with the row qik deleted be denoted by

(
qil 6=k

)
. Then for

some invertible matrix Bk,m for every row k,m

(
qil 6=k

)
= Bk,m

(
qil 6=m

)
. (7.3.45)

We can therefore write for a submatrix where we have deleted a column of qi and a row of

qj

P1qmP2 =

(
I 0

0 Bo,k

)(
qil 6=k Ci,j

0 qm6=nj

)(
Ap,n 0

0 I

)
=

(
qil 6=o Ci,j

0 qm 6=pj

)
. (7.3.46)

Let hk,o be the adjacency matrix of the effective subgraph of gi and gj where we have

deleted the kth column of qi and nth row of qj . Then

dethk,n = det

[(
P1 0

0 P−12

)
hk,n

(
P−11 0

0 P2

)]
= detho,p. (7.3.47)

From proposition 7.2.4 we know dethk,n is the square of an irreducible polynomial, so

detho,p is as well. Furthermore, from the above argument this irreducible polynomial is

given by

det

(
ql 6=oi Ci,j

0 qjm 6=p

)
(7.3.48)

therefore dethk,n = detho,p for any k, n, o, p.

Finally, if we delete two sites from gi (gj) this keeps qi (qj) on the diagonal, so all

such minors are zero. If we take a minor from a term in Ci,j then the block of zeros is

sufficiently large to make all such minors zero. So the only non-zero minors are of the form

detho,p. This ensures all such minors define the same constraint, giving exactly three total

constraints.

Remark. We will give another proof in section 7.3.3.1 that it is exactly three constraints

needed to set |H| = 0 and a2 = 0. The argument used later more easily generalises to

higher than 1st step topology.
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Proposition 7.3.8. For two equal sections exactly two constraints are required to get a2 =

0. However, this boundary is not a topological boundary for the subspace corresponding

to |H| = 0.

Proof. Take two sections gi and gj which are equal by the partial ordering. The effective

subgraph for two such sections has the biadjacency matrix
(
qi 0

0 qj

)
. (7.3.49)

Therefore, to get N (H) = 4 requires satisfying two constraints given by |qi| = 0 and

|qj | = 0.

However, we know G is connected, so there must be a subgraph of G which is connected

in some way to the two equal sections. Because gi = gj by the partial ordering any section

gk which is above (or below) gi is also above (or below) gj . For the following argument

assume gk < gi = gj but the argument works the same for gk > gi = gj .

Take the effective subgraph of gk, gi, gj with the biadjacency matrix



qk Ck,i Ck,j
0 qi 0

0 0 qj


 . (7.3.50)

Because gk < gi and gk < gj the submatrices Ck,i and Ck,j are non-zero. Consider a map

that continuously connects the following points.

H(t) =





|qi| = 0, |qk| > 0, |qj | > 0 for t = 0

|qi| = 0, |qk| = 0, |qj | > 0 at t = 1
5

|qi| > 0, |qk| = 0, |qj | = 0 at t = 2
5

|qi| > 0, |qk| = 0, |qj | < 0 at t = 3
5

|qi| = 0, |qk| = 0, |qj | < 0 at t = 4
5

|qi| = 0, |qk| > 0, |qj | < 0 at t = 1

(7.3.51)

It is possible to continuously evolve the hopping terms of each section independently, so

there exists such a map where |qi| = 0 and |qj | = 0 are not satisfied at the same time.

Furthermore, from proposition 7.3.6 we know when |qi| = 0 and |qk| = 0 there are only

two nullstates without satisfying further constraints, so such a map exists that maintains

a nullity of 2.

This is the same map we first discussed in section 7.1.1. To make the argument in Prop.

7.3.8 clearer, we give display an example of this map in Fig. 7.3.1.

Corollary 7.3.9. The boundary operator corresponding to |H| = 0 gives all trivial 1st

step topology.

Proof. There are two main ways we can increase the nullity of H by constraining hopping

terms. The first is to increase the nullity of an individual section. The only other alternative
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H(0)

H(1)

•

|qj | = 0 |qk| = 0

|qi| = 0

Figure 7.3.1: A slice of the parameter space ξ for some structure with three sections

related by the partial ordering gk > gi = gj . The evolution between H(0) and H(1)

maintains 2 zero energy states throughout this path, because when |qj | = |qk| = 0 the

nullity is 2 unless a further constraint map is satisfied. When the map is red, green, or

blue, it is passing through the subspace corresponding to the solution to one of the factors

being zero.

is to increase the nullity of multiple sections. We know that every section is either equal,

or not equal, by the partial ordering. Therefore propositions 7.3.5, 7.3.6 and 7.3.8 show

every way to increase nullity of a Hamiltonian to get 4 zero energy states, has at least 3

constraints. Therefore using |H| = 0 as a boundary operator gives no non-trivial 1st step

topology.

We now have an argument against using the terms a2n directly to define a boundary

operator. So how should we define such boundary operators? We will argue in section 7.3.2

that the most sensible definition is from using irreducible polynomials for each constraint

map, and their composition for boundary operators.

7.3.2 A modified boundary operator

In section 7.3.1 we demonstrated that the subspace corresponding to |H| = 0 has no non-

trivial 1st step topology. This is because we can get around a boundary corresponding to

a2 = 0 while maintaining |H| = 0 using the intersection of constraints from two sections

|qi| = 0 and |qj | = 0. Mathematically we may wish to have a topological classification that

can ‘detect’ features such as the dimension of a subspace with a certain number of zero

energy states.

We can also understand a physical motivation for rejecting |H| = 0 as the relevant

zeroth step boundary operator. Suppose we turn the sequential classification problem

around and start with a subspace of hopping terms that give a Hamiltonian with 2n zero
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energy states. Then it would be convenient to know exactly how many hopping terms

may be unconstrained, yet we retain 2n zero energy states. That is, what is the minimum

number of constraints necessary for a certain number of zero energy states? So it is useful

to have a topological classification where the number of constraints is given by a topological

phase boundary of some subspace.

The map (in Fig. 7.3.1) which prevents |H| = 0 giving any non-trivial 1st step topology

can be understood as requiring more control of the system then a particular boundary

operator. This is because the map constructed in proposition 7.3.8 requires (at points)

exact control of two hopping terms to avoid a boundary (to set |qk| = 0 and |qj | = 0. The

boundary itself divides a surface in ξ with a constraint on only one hopping term. So for

almost all Hamiltonians satisfying |H| = 0 we can assign a sequential topological phase if

we allow only one hopping term to be controlled. This larger allowance for disorder is our

physical motivation for a different boundary operator.

From chapter 5 we know the factorisation of |Q| =
∏ |qi| tells us the zeroth step

classification of H. So we can use a boundary operator using the factors of |Q|.

Definition 7.3.10. A zeroth step constraint map b0i : X0 → X1 is defined from the set of

factors {|qi| = 0||Q| = ∏ |qi|} so that

b0iX0 = X1 := {x ∈ X1|x ∈ ξ solves |qi| = 0}. (7.3.53)

Definition 7.3.11. A zeroth step boundary operator c0i : E0 → E2 ∩ X1 is defined from

the constraint map of definition 7.3.10 and the intersection of the subspace with exactly

two zero energy states. That is

c0iE0 = E2 ∩X1. (7.3.54)

The reason maps such as that used in proposition 7.3.1 exist is that the subspace

associated to |H| = 0 defines a connected subspace of ξ. That is, each factor |qi| of |Q|
defines a dim ξ−1 surface in ξ. As |qi|, |qj | are polynomials over distinct hopping terms any

set of factors can be solved simultaneously. Therefore, these surfaces all intersect. In the

case that a2n is irreducible such a map no longer exists, so it is only when a2n is reducible

that this issue arises. This requirement that a constraint map is irreducible will also be

used in the more general definition of a constraint map.

As mentioned in sections 7.1.1 and 7.2 we can apply constraint maps in different orders.

So we allow, up to the convention in definition 7.2.1, each sequence of spaces to be a valid

choice. Under this convention we can choose any subset of sections, and have each singular

section provide two nullstates to the Hamiltonian. This allows us to detect the largest

dimensional features of a particular subspace of 2n zero energy states that intersect with

our sequence of constraints. We now give the definition for a general boundary operator

and constraint maps for a real chiral Hamiltonian.

Definition 7.3.12. The boundary operator c2ni maps E2n ∩Xi 7→ E2n+2 ∩Xj such that

c2ni satisfies the composition of each constraint map given in the convention described in

definition 7.2.1.
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Definition 7.3.13. Take a Hamiltonian with 2n zero energy states, so that H is in the

subspace E2n∩Xi. The constraint map bi : Xi → Xi+1 defines a subspace in ξ that ensures

H satisfies one irreducible polynomial necessary to set a2n = 0 under the convention in

definition 7.2.1.

For example, consider the structure in Fig. 7.0.3. To take N (H) = 2 to N (H) = 4

defines two constraint maps. In that example the constraint maps are satisfied when

b1iXi : = Xi+1 = {H ∈ Xi|in−mj = 0}
b2iXi : = Xi+1 = {H ∈ Xi|dfm− bhm+ bgn− cfn = 0},

(7.3.55)

while maintaining the previous constraints. There are three further constraint maps to get

6 zero energy states, so the subspace E4 ∩X3 is given when the above constraint maps are

satisfied, but not all of the three further constraint maps. This defines a boundary operator

c2i : X1 ∩ E2 → X3 ∩ E4 by

c2iX1 ∩ E2 :=X3 ∩ E4

={H ∈ X1 ∩ E2|in−mj = 0, dfm− bhm+ bgn− cfn = 0,

qt− rs+ df − bh+ lns− jps+ jot− knt 6= 0}.
(7.3.56)

Boundary operators and constraint maps can be derived analogously once the constraining

polynomials are known. Note that the way we have defined boundary operators endures

that c2n+2
i ◦c2nj E2n∩Xi = 0 because the image of c2nj E2n∩Xi is in the kernel of c2n+2

i E2n+2∩
Xi.

As in the zeroth step case for |H| = 0 for each sequence of subspaces defined using these

boundary operators, we can often map between each sequence while maintaining a nullity

of at least 2n < 2N (where the number of non-trivial sections of H is N) such that each

section has N (qi) ≤ 1. This is because, under certain circumstances, there exists a path

between each subspace E2n ∩Xi to E2n ∩Xj that maintains at least 2n zero energy states.

To prove this, we demonstrate below that we can change which sections provide (at most

2) nullstates to the structure without changing nullity.

In the following, let Xα denote a subspace of ξ with 2n zero energy states, with a set of

n singular sections (including the section gα) such that each singular section has N (qi) = 1

and all the remaining sections are non-singular. Let Xα,β ⊂ Xα be a subspace of Xα with

2n + 2 zero energy states, where an additional section gβ has N (qβ) = 1. And let Xβ

denote a subspace of ξ with 2n zero energy states with a set of n singular sections, such

that gα is non-singular, but gβ is.

Proposition 7.3.14. If Xα,β exists then Xα and Xβ are connected.

Proof. If Xα,β exists, then there are constraint maps such that

Xα → Xα,β,

Xβ → Xα,β
(7.3.57)

so we can define a map Xα → Xα,β → Xβ. Because Xα,β ⊂ Xα and Xα,β ⊂ Xβ then this

map does not reduce nullity.
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Remark. The intersection of Xα ∩ Xβ is often larger dimensional than Xα,β. As such

there is, in many cases, a map Xα → Xβ which maintains exactly 2n zero energy states.

Furthermore in the case that Xα,β does not exist, there are still many cases where Xα∩Xβ

does. For this reason, we conjecture that
⋃
iE2n ∩Xi is a connected subspace

Corollary 7.3.15. Consider two Hamiltonians H1 and H2 with a different set of singular

sections, where each singular section has N (qi) = 1 and N (H1) = N (H2). Consider a set

of pairwise substitutions for which set of singular sections the Hamiltonian changes (like in

Prop. 7.3.14) such that H1 → H2. If there exists a space Xα,β for any pair of substituted

sections gα, gβ along such an evolution, then there exists a map H1 → H2 which maintains

at least 2n zero energy states.

Proof. By Prop 7.3.14 we can always change one section being singular at a time without

decreasing nullity. Therefore, we can define a sequence of section substitutions that take

us from H1 → H2 without decreasing nullity.

Corollary 7.3.16. If, for an N section structure, there exists a subspace E2N ⊂ ξ with

each section having N (qi) = 1 then every subspace Xi with at least 2N − 2b zero energy

states for b > 1 is connected.

Proof. In such a case then Xα,β exists for every pair of sections gα, gβ so such maps exist.

Remark. We conjecture that E2n itself is path connected for any nullity n. However, we

have no proof of this more general statement.

By corollary 7.3.15 whenever we are on a higher steps’ phase boundary, we can often map

between different sequences of subspaces without decreasing the nullity of the Hamiltonian.

In the below diagram, each horizontal arrow corresponds to a constraint map, and vertical

arrows indicate a map between subspaces where a2n = 0. The starting and ending subspace

in the diagram does not depend on the choice of path, and so this diagram is commutative.

As we will see in section 7.3.17 following the convention we defined in section 7.2 for most

real finite chiral structures, this is the general structure for such a diagram where we only

allow for individual sections to have at most a nullity of 2. For complex Hamiltonians this

structure is very similar, as discussed in section 7.4.2.
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X0 X1
1 X1

2 X1
3 · · ·

X0 X2
1 X2

2 X2
3 · · ·

X0 X3
1 X3

2 X3
3 · · ·

X0 X4
1 X4

2 X4
3 · · ·

...
...

|q1|=0

|q2|=0

|q3|=0

|q4|=0

Here Xg
f denotes a subspace defined by f constraint maps, and g denotes the choice of

zeroth step boundary operator.

7.3.3 Multiple critical sections: a zeroth homotopy theory

In this subsection we will discuss the sequential topology of a structure when only allowing

individual sections to have a nullity of at most N (qi) = 1. In particular we will show how

to derive constraint maps for a particular structure, and associated boundary operators.

We will then show these boundary operators follow the convention given in definition 7.2.1.

Finally, we will show that (up to some simple considerations) these boundary operators

and constraint maps give the sequence of zeroth homotopy groups given in the diagram

7.0.8, and how to alter the sequence to account for these considerations.

Before we discuss maps on the parameter space, we first recall how the zeroth homotopy

group gives a physical number of sequential topological phases. Recall that we are interested

in how many ways a Hamiltonian H1 can be continuously mapped in some subspace Xi \(⋃
j E2n+2j

)
⊂ ξ to a Hamiltonian H2. This is exactly the question of whether a continuous

map (confined to the subspace) exists between the two Hamiltonians. As each individual

Hamiltonian defines a point in ξ this corresponds to the number of path connected regions

of the subspace, which is exactly what the zeroth homotopy group detects.

In section 7.2 we make the claim that the zeroth homotopy group, π
(
Xi \

[⋃
j E2n+2j

])
,

is non-trivial (that is, there are two or more topologically distinct phases) when we satisfy

all but one constraint in a boundary map. We formalise this notion here.

Definition 7.3.17. Let Xi be a subspace of ξ, defined by a set of constraint maps. Suppose

these constraint maps ensure any point in Xi has at least 2n − 2 zero energy states. The

number of topological phases of Xi is given by

P(Xi) := π


Xi \


⋃

j=0

E2n+2j




 . (7.3.58)

We now show that the constraint maps can be used to find P(Xi).
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Proposition 7.3.18. The zeroth homotopy group P(Xi) can be deduced from the con-

straint maps.

Proof. By proposition 7.2.5 we know each constraint can be associated to the determinant

of a subgraph of the structure G, and that each subgraph is chiral. So each constraint map

defines a subspace in ξ that satisfies

|qm||q†m| = 0 (7.3.59)

for some biadjacency matrix qm. Fixing all hopping terms in qm apart from a single

hopping term h and multiplying through by any denominator of |qm| and |qm|† gives a pair

of polynomials f(h), f∗(h) respectively. Expanding out we have

f(h) =
∑

n=0

αnh
n (7.3.60)

which is defined for all h ∈ R. If f(h) = 0 has solutions, we can divide f in to three regions

where f = 0, f > 0 and f < 0. Therefore, if f has solutions then f with the solutions

removed, that is f(h) \ {h|f(h) = 0}, is disconnected.

The choice of hopping term h is arbitrary, and the choice of how we fixed the remaining

hopping terms in f(h) is also arbitrary, so by continuity, if we can satisfy the constraint

map ci : Xi → Xi+1 then Xi \Xi+1 is disconnected.

Suppose that Xi \ Xi+1 has 2n zero energy states, and Xi+1 has at least 2n + 2 zero

energy states. Then by definition 7.3.12 of the boundary operator Xi+1 ⊂
[⋃

j=1E2n+2j

]
.

Furthermore, the union of all irreducible constraint maps (where we reference the constraint

map by the superscript a that defines a subspace of Xa
i+1 ⊂

⋃
j=1E2n+2j) gives every

subspace of Xi with 2n + 2 or more zero energy states. Therefore, the zeroth homotopy

group is given by

P(X) = π


Xi \


⋃

j=1

E2n+2j




 = π

(
Xi \

[⋃

a

Xa
i+1

])
(7.3.61)

so can be deduced from the constraint maps.

It is important to note that the above argument works only when we use the constraint

maps which are defined with irreducible polynomials. This is because our definition for

constraint maps ensures each solvable constraint map ci : Xi 7→ Xi+1 takes a subspace of

dimension di to a subspace of dimension di − 1, so no maps like those given in Fig. 7.3.1

exist.

Now we have a way to distinguish topological phases on a subspace Xi we need to

find the classification of Xi. Later we will show that when P(Xi) is non-trivial, then

P(X) = MZ2 where M is the number of irreducible factors that can define a final constraint

map. Note that this means the classification is altered by the order of applying constraint

maps, but the dimension of the subspace is not altered by the order of applying constraint

maps.
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7.3.3.1 A sequence of constraints

In section 7.3.2 we gave a proof that there are exactly 3 required constraint maps to get

N (H) = 4 when we require all sections have at most a nullity of 2. We give an alternative

proof here, which only relies on the zero energy states being mutually orthogonal. While

this treatment makes the constraints themselves a little opaque, it is more convenient to

generalise to cases with a larger number of zero energy states.

Our argument here uses the effective subgraph between the two sections we wish to be

critical, and the biadjacency matrix

(
qi Ci,j
0 qj

)
. (7.3.62)

We assume the two sections are not equal via their partial ordering, hence Ci,j is non-zero.

Proposition 7.3.19. For two unequal sections via their partial ordering, and the conven-

tion in definition 7.2.1, exactly three constraints are required to get N (H) = 4.

Proof. By the convention in definition 7.2.1 the first two constraints are given by |qi| = 0

and |qj | = 0. Assume these constraints are satisfied, so that qiψ
i
i = 0 and qjφ

j
j = 0.

If all other sections are non-singular, then recall that we can define an eigenvector over

the complete Hamiltonian for |ψ〉 given by

ψii−n = q−1i−n
(
−Ci−n,i + Ci−n,i−1q

−1
i−1Ci−1,i − Ci−n,i−2q−1i−2Ci−2,i

+Ci−n,i−2q
−1
i−2Ci−2,i−1q

−1
i−1Ci−1,i + · · ·

)
ψii

=
∑

s∈S

∏

(m,p)∈s
(−qi−mCi−m,i−p)ψii

= q−1i−nCi,jψ
i
i.

(7.3.63)

as defined in equation 7.3.36. We can almost do the same with φjj up to the section qi
where we need to find a solution to

(
qi Ci,j
0 qj

)(
φji
φjj

)
= 0. (7.3.64)

That is,

qiφ
j
i = −Ci,jφ

j
j = φ̄. (7.3.65)

If we can solve equation 7.3.65 then we must be able to write φ̄ as a linear sum of the

columns of qi. We can do this when φ̄ is orthogonal to the left null space of qi. That is

ψiiL φ̄ = 0 where we have the left null vector of qi satisfying ψiiLqi = 0.

Because a section is almost always a core graph when singular, labelling each column

with a superscript j then we can write when ψiiLqi = 0

qji =
∑

k 6=j
αkq

k
i (7.3.66)
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where αk is non-zero for all qki . So deleting a single column of qi does not alter the left null

vector ψiiL . Now take any column qki of qi and replacing it with φ̄ to define a new matrix κ

κ =
(
ql 6=ki φ̄

)
. (7.3.67)

While maintaining |qi| = 0 when |κ| = 0 then we have a solution to ψiiL φ̄ = 0 and to

qi |ψ〉 = 0, giving two linearly independent null states to Q, ensuring N (H) = 4.

When solutions to |κ| = 0 exist, it constrains exactly one hopping term. Giving three

constraints total.

We now have the following sequence of constraints

E0 E2 ∩X1 E4 ∩X3

(ξ =)X0 X1 X2 X3.
|q1|=0 |q2|=0 |κ|=0

Assuming each constraint has solutions, then we are interested in classifying the following

sequence of zeroth homotopy groups

PX0 PX1 PX2 PX3
|q1|=0 |q2|=0 |κ|=0

where we have dropped the brackets for convenience.

From proposition 7.3.19 we know |κ| is just a determinant. So we can put the constraint

for |κ| = 0 on a previously unconstrained hopping term in qi or Ci,j or qj . For another

perspective, we also know from the previous way we proved there are three constraints in

proposition 7.3.7 that this is a linear constraint, and so there are two topologically distinct

regions to PX2. Finally, we know from section 7.3.1 PX1 is trivial as it is path connected.

This leads to the following sequence of zeroth homotopy groups

NZ2 → 0→ 0→ Z2 → PX3 → · · · . (7.3.68)

In proposition 7.3.6 we know there must be at least three constraints to satisfy N (H) =

4. In proposition 7.3.19 we have given a construction requiring exactly three constraints

on the hopping terms of H. Therefore, this construction follows the convention given in

definition 7.2.1.

We now generalise this argument to get a longer sequence for the sequential topology

of a finite chiral structure. Once again, we limit ourselves to considering structures where

N (qi) ≤ 1, and there are no equal sections by the partial ordering of chapter 5. For the

higher steps’ constraints, we also now assume that no constraint gives Ci,jφ
j
j = 0. We will

consider the case where a constraint gives Ci,jφ
j
j = 0 later on.

To deal with the general sequential case, under the assumption that each constraint has

solutions we first give a minimum number of constraints given the convention of definition

7.2.1. We then show that if we satisfy, pairwise, the condition for mutual orthogonality of

null states from any set of sections, then this gives a higher nullity.

147



7.3. Sequential topology in real finite chiral structures

Definition 7.3.20. For the following proofs we require making an assumption about the

support of nullstates. We will go beyond this assumption later on. For each pair of sections

qi, qj (with the partial relation gi > gj) then if |qj | = 0 and qi has non-zero support of the

nullstate from qj , then we can write the nullstate of the biadjacency matrix Q as

∣∣Ψj
〉

=




A1ψ
j
1

A2ψ
j
2

...

Aj−1ψ
j
j−1

ψjj
0
...

0




. (7.3.69)

Where Aj is some non zero matrix, and ψjj is the nullstate of qj . Let this be known as the

assumption of support.

Proposition 7.3.21. Consider a finite chiral structure with N (qi) ≤ 1 for all sections

i, 2n − 2 zero energy states, and with the assumption of support. By the convention in

definition 7.2.1 there are at least n further constraints to get 2n zero energy states.

Proof. Suppose Q has n − 1 null vectors, giving 2n − 2 zero energy states. Index each

nullvector by
∣∣Ψj
〉

and left null vector by
〈

Ψj
L

∣∣∣ when the section j is the origin of this (left)

null vector. For a new null vector from a section gn with the biadjacency matrix qn and

null vector |Ψn〉 to satisfy Q we need
〈

Ψj
L

∣∣∣Ψn
〉

= 0 for all left null vectors
〈

Ψj
L

∣∣∣ defining

a set of n− 1 equations.

Under the assumption of support for each pair of sections qi, qj with the partial relation

gi > gj then each qi has non-zero support of the nullstate from qj given by Ai

∣∣∣ψji
〉

.

Therefore, every constraint to ensure the mutual orthogonality of the original n − 1 null

vectors of Q depend individually on each
∣∣ψj
〉
. Each

∣∣ψj
〉

is only changed by each section’s

biadjacency matrix qj so we can alter each constraint independently, by changing hopping

terms in each qj . That is the mutual orthogonality condition for each left null vector and

the new null vector is independent,
〈

Ψj
L

∣∣∣Ψn
〉

= 0 6⇒
〈
Ψi
L

∣∣Ψn
〉

= 0. (7.3.70)

So under the assumption of support there are at least n− 1 independent equations of this

form, and one from |qn| = 0 giving at least n algebraically independent constraint maps

that need to be satisfied to increase the nullity of H.

Iterating this bound on the number of constraints, we see there are at least
∑n

1 m =

n(n+ 1)/2 total constraints to get a nullity of 2n following our convention.

Now we have a minimum number of constraints to get a certain nullity in our NZ2

structure, when the conditions in definition 7.3.20 is fulfilled, follows the triangular num-

bers. We will now give a construction for the constraint maps that exactly satisfy this

lower bound.
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Proposition 7.3.22. For a structure with a nullity of 2n − 2, then for a Hamiltonian

satisfying the conditions in definition 7.3.20 there are exactly n further constraints required

to get N (H) = 2n.

Proof. Take a Hamiltonian H of a graph G with the biadjacency matrix Q. Let gn be

the section that will be made singular (under the convention in definition 7.2.1). For each

singular section gi with biadjacency matrix qi, let
∣∣Φi
〉

denote the nullstate of Q with an

origin from the section gi. Let φij denote the support of the nullstate
∣∣Φi
〉

on the section

gj .

By the conditions in definition 7.3.20 the nullstate
∣∣Φi
〉

has support on each qj where

gj > gi by the partial ordering. Take the singular sections and partition them to two sets:

m below sections gi < gn and n−m− 1 above sections gi > gn by the partial ordering.

The first constraint is to set |qn| = 0. Let this define a potential nullstate |Ψn〉 of Q

with support on each section above gi > gn of ψin.

We now take the m below sections. By the condition in definition 7.3.20 each nullstate

from a below section has support on qn. For each nullstate to be defined on Q we need to

be able to write φin as a linear sum of the columns of qi — the orthogonality condition —

for each below section. Letting φin denote the support on qn from the nullstate originating

from qi then we can define a nullstate
∣∣Φi
〉

on Q when

det
(
ql 6=kn φin

)
= 0. (7.3.71)

From proposition 7.3.21 we know for each nullstate this constraint is independent, defining

m constraints on the hopping terms of H.

We now consider the n−m−1 above singular sections. For |Ψn〉 to be defined on Q we

need to be able to write, for each above section with the biadjacency matrix qi, the support

of nullstate ψni on qi as a linear combination of the columns of qi. This is satisfied when,

for each qi

det
(
ql 6=ki ψni

)
= 0. (7.3.72)

Under the conditions in definition 7.3.20 this needs to be satisfied for each above section

biadjacency matrix qi giving n−m− 1 further constraints.

Satisfying all of these constraints allows n linearly independent null vectors to be defined

onQ, thereforeN (Q) = n andN (H) = 2n. In total this corresponds to 1+m+n−m−1 = n

constraints on the hopping terms.

Remark. The boundary operator c2n−2i+n : E2n−2∩Xi → E2n∩Xi+n is defined with the com-

position of the n constraint maps defined in proposition 7.3.20, such that the Hamiltonian

does not have 2n+ 2 zero energy states.

Remark. We now have n further constraints to satisfy a Hamiltonian with 2n−2 zero energy

states. Iterating for each n this gives a total of n(n+1)
2 constraints on the Hamiltonian. So

if we relax one constraint, then the Hamiltonian has, for almost all hopping terms, 2n− 2

zero energy states. It is the subspace defined by n(n+1)
2 −1 constraints that is topologically

non-trivial.
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7.3. Sequential topology in real finite chiral structures

We now know that (under our convention from definition 7.2.1) a zeroth homotopy

group is non trivial when it is over a subspace defined by one less than a triangular number

of constraints. So we have the following sequence of subspaces

NZ2 → 0→ Z2 → 0→ 0→ PX5 → · · · (7.3.73)

where the zeroth homotopy group (under our convention for constraints) is non-trivial

when the index i of PXi is one less than a triangular number. Furthermore we know from

proposition 7.2.4 that each constraint map corresponds to solving the determinant of a

subgraph of G, so this sequence becomes

NZ2 → 0→ Z2 → 0→ 0→MZ2 → · · · (7.3.74)

where M is the number of irreducible factors of the final constraint map.

Now we have the number of constraints that define a boundary operator c2ni+n : Xi ∩
E2n−2 → Xi+n ∩ E2n. However, there are some instances this number of constraints is

reduced. This happens exactly when the assumption of support is not satisfied. That is,

the conditions in definition 7.3.20 are not met as now Aj−nψ
j
j−n = 0 for some Aj−n. There

are two possible ways this can happen, under the convention defined in 7.2.1.

The first case is when two (or more) sections are equal by the partial ordering. Consider

two sections gi and gj which are equal by the partial ordering (gi = gj) then the effective

subgraph of these two sections has the biadjacency matrix

(
qi 0

0 qj

)
. (7.3.75)

Therefore, any nullstate from gj (gi) has no support on gi (gj). For each equal section

(by the partial ordering) to the section being made singular (by a boundary operator) this

reduces the number of constraint maps in the boundary operator by one.

The second way the assumption of support is broken is when a constraint map sets

Aj−nψ
j
j−n = 0 for some n. For each n that Aj−nψ

j
j−n = 0 this reduces the number of

constraint maps by one. Individually a constraint that sets Aj−nψj = 0 can ensure the

nullstate is not supported on sections which are further from the new critical section (by

the partial ordering), so it is important constraints are calculated via the partial ordering.

Because this is accounted for when computing constraints, then our approach still captures

the sequential topology of a structure under the convention in definition 7.2.1.

To tie all of the above together, we now outline the procedure to compute the sequential

topological classification of a particular structure. To do this we consider a Hamiltonian

H with 2n− 2 zero energy states, a set of n− 1 singular sections {gj} which originate the

null states, and a section gn which we wish to make singular. Let gj provide the null vector

that satisfies Q
∣∣Φj
〉

which has support on the section qi with φji . This procedure requires

partitioning the set of singular sections into m sections below gn and n −m − 1 sections

above gn.

We denote by Cj,i the matrix connecting the jth section to the ith section in Q, and

φji is the support of the null vector originating from the jth section on the ith section.
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7.3. Sequential topology in real finite chiral structures

For gn specifically ψni is the support of the nullvector from gn on the ith section. For a

biadjacency matrix qi then ql 6=ki is qi with the kth column deleted.

The procedure is as follows:

1. Require qn to be non-singular (for now). Let q̄n be the biadjacency matrix of gn
where |q̄n| = 0.

2. Compute the set of null vectors that satisfy Q.

3. Start with the section gj most below gn.

(a) Compute

φ̄jn =
∑

gi<gn

Cn,iφ
j
i . (7.3.76)

(b) Delete a column q̄kn of q̄n, replacing it with φ̄jn. Compute

det
(
q̄l 6=kn φ̄jn

)
. (7.3.77)

(c) Choose an irreducible factor of this equation, this defines a constraint map.

Satisfy this on the Hamiltonian.

(d) Repeat, increasing the sections via the partial ordering, until the constraint maps

are satisfied for all the below singular sections of gn.

Now we turn to the sections above gn.

1. We now require |qn| = 0, so set qn = q̄n.

2. Begin the the section gj that is the least above gn.

(a) Compute

ψ̄ni =
∑

gn<gi<gj

Cj,iψ
n
i . (7.3.78)

(b) Delete a column qkj of qj , replacing it with ψ̄ni . Compute

det
(
q̄l 6=kj ψ̄ni

)
(7.3.79)

(c) Choose an irreducible factor of this equation, this defines a constraint map.

Satisfy this constraint on the Hamiltonian.

(d) Repeat, increasing in the partial ordering of the sections.

This procedure defines a set of constraint maps for the boundary operator c2ni+n : E2n−2 ∩
Xi → E2n∩Xi+m. Even though this procedure defines an order to satisfy constraint maps,

now we have the constraint maps we can apply them in any order to satisfy the boundary

operator.

151



7.4. An extension for sequential topology in complex finite chiral structures

7.4 An extension for sequential topology in complex finite

chiral structures

As discussed in section 5.7.1 the zeroth topology of a finite complex chiral Hamiltonian is

trivial, but such structures can have a non-trivial sequential topology. To understand this

consider closing a gap by solving

|H| = −
∏
|qi||q†i | = 0. (7.4.80)

As in the real case, |qi| is linear for each hopping term in its expansion, but it is now

over complex terms. Solving equation (7.4.80) thus imposes 2 constraints on an individual

hopping term, one on the absolute value and one on the phase (or equivalently one on the

real part and another on the imaginary part). That is to satisfy an irreducible polynomial

which defines constraints for a hopping term u ∈ C then

u = a+ bi. (7.4.81)

As in section 7.3.2 we can define constraint maps to satisfy |H| = 0. Satisfying these

two constraints indicates a complex finite Hamiltonian can have a non-trivial sequential

topology.

The sequences of zeroth homotopy groups of a real Hamiltonian, defined on some struc-

ture G, and those of a complex Hamiltonian defined on the same structure G are very

related. For each constraint map of a real structure, there are two constraint maps of a

complex structure. This means that the number of constraint maps is doubled for each

boundary operator. This allows a simple extension of the theory of sequential topology on

real structures to be extended to complex structures.

There are two further consequences to the classification of a complex structure. The

first is that the fundamental theorem of algebra ensures each polynomial that defines a pair

of constraint maps always has a solution. As a result, the upper bound (we will discuss in

section 7.5.1) on the nullity of a structure is tight. The second is that each pair of constraint

maps becomes a single constraint when we make the structure infinitely periodic. This is

a natural extension of the topology discussed in chapter 5.

We begin by proving the correspondence between the sequence of homotopy groups for

real structures. Because each polynomial that defines constraints now defines two constraint

maps, we then define a pair of constraint maps to satisfy this polynomial.

Proposition 7.4.1. Under the convention in definition 7.2.1 each polynomial defining a

constraint map in a real Hamiltonian HR defined on a structure G gives two constraint

maps for a complex Hamiltonian HC defined on G.

Proof. From proposition 7.2.4 we know that each term in the secular equation can be

written as a sum of the determinants of subgraphs of the structure,

a2n = ±
∑
|qm||q†m|. (7.4.82)
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7.4. An extension for sequential topology in complex finite chiral structures

So constraint maps are defined as the sum of polynomials |qm| = pm. Writing pm =

(αm + βmh) for some hopping term h we see

pmp
∗
m = |αm|2|h|2 + αmβ

∗
mh+ α∗mβmh

∗ + |βm|2 (7.4.83)

which is a non-negative equation with all real terms. So the polynomials pmp
∗
m and pm′p∗m′

in the sum in equation 7.4.82 can only be combined if they share a common factor. This is

exactly the origin of the polynomials that define constraint maps under the convention in

definition 7.2.1, so the boundary operators are defined by the same polynomials, but now

over the complex numbers.

Finally, for each polynomial that defines constraint maps, in a complex structure this

defines two constraint maps.

We now have a simple way to extend the classification of the sequential topology of

real structures to that of complex ones. The boundary operators have double the number

of constraint maps that define them, otherwise the classification is largely the same. For

structures that satisfy the condition in definition 7.3.20 this means a subspace is non-trivial

exactly when it is indexed by 2 times a triangular number minus one. Otherwise, the

boundary operators are defined in exactly the same way, ensuring each such subspace has

the classification Z2. Thus giving the general classification (when each section is constrained

by N (qi) ≤ 1)

0→ NZ2 → 0→ 0→ 0→ Z2 → 0→ 0→ 0→ 0→ 0→ 0→MZ2 → · · · (7.4.84)

To make this extension to complex Hamiltonians explicit, we define the pair of constraint

maps for each polynomial that defines a boundary operator. We note that there are many

equivalent ways we these constraint maps may be defined.

Definition 7.4.2. For each polynomial p defining constraints on the Hamiltonian, the

constraint maps come in pairs. Let p have solutions when h = ρeiθ. The first constraint

map acts on the absolute value of h,

babsi (Xi) := {Xi+1 ||h| = ρ} . (7.4.85)

The second constraint map takes arg(h) 7→ θ, where

bargi (Xi) := {Xi|arg(h) = θ}. (7.4.86)

Just as in the case for the constraint maps on a real Hamiltonian, the constraint maps that

define a boundary operator on a complex Hamiltonian may be applied in any order.

7.4.1 A note on sequential topology and infinitely periodic structures

In chapter 5 we demonstrated that a structure with an NZ2 zeroth step classification

necessarily has a 2N × 2N upper triangular transfer matrix when cutting the structure for

one input and one output site on each section. Using the triangular transfer matrix we

demonstrated that for complex Hamiltonians, the zeroth step topology becomes non-trivial
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7.4. An extension for sequential topology in complex finite chiral structures

when extending each section to be infinitely periodic. We now give an extension to this

to understand how our notion of sequential topology extends to infinite structures with

complex Hamiltonians.

In the introduction, we remarked how our zeroth step topology can be used to predict

the higher order topology of an infinitely periodic system, where we periodically repeat each

section. To see this, consider infinitely repeating each section of the Hamiltonian giving

a structure with N stacked 1d topological insulators. For each section we may define a

1d winding number around Brillouin zone, which may have a trivial or non-trivial Berry

phase. The Berry phase associated to each section relates to the finite topological invariant

of each section, as discussed in chapter 5. As such, the zeroth step classification does, in

a sense, predict the higher order topology of chiral structures. If we truncate our system

to be semi-infinite for each section, a section in a non-trivial phase will have topologically

robust zero energy states localised to the boundary of that section.

We now wish to understand how sequential topology is extended to an infinitely periodic

system. That is, when a section is topologically marginal, what number of constraints on the

hopping terms are needed to give a second gap closure in the spectrum? For this discussion

we assume that such a system is infinitely periodic in each section, and all hopping terms

are complex unless otherwise specified.

To avoid confusion, we refer to higher order topology of a Hamiltonian as T (H) and

sequential topology as τ(H).

Definition 7.4.3. For a Hamiltonian H on G which is infinitely periodic in each section

g of G, then τ(H) is the topological classification of a subspace of ξ corresponding to a

(higher steps’) topological phase boundary.

To understand gap closures in an infinitely periodic system, we will use the transfer

matrix formalism, where we infinitely and periodically repeat each individual section and

so we have a triangular transfer matrix (as discussed in section 5.7) with two entries on

the diagonal corresponding to each section. Consider a real Hamiltonian with the transfer

matrix M and eigenvalue λi corresponding to the section gi. If we evolve hopping terms of

H such that

λi > 1→ λi < 1 (7.4.87)

then if λj 6= 1 for all j 6= i this system undergoes a topological phase transition. The

reason sequential topology τ(H) is trivial for many subspaces of ξ is that if λj = 1 as

λi > 1 → λi < 1 then M becomes defective. In other words, M does not have linearly

independent null states. The problem of τ(H) in finite systems studies the constraint maps

on H that make it not defective, in other words this is the problem we discuss in section

7.3. This problem changes for complex infinite Hamiltonians.

For a complex infinite Hamiltonian, the problem of defective eigenvalues ofM is reduced.

This is because a triangular matrix M is almost always defective when M has degenerate

eigenvalues, but if all eigenvalues of M are distinct, then M is not defective. For a complex

Hamiltonian the eigenvalues of M have a phase. This ensures eigenvalues of the same

magnitude are almost always non-defective.
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7.4. An extension for sequential topology in complex finite chiral structures

In a complex Hamiltonian then H undergoes a spectral gap closure somewhere in the

Brillouin zone when

|λi| > 1→ |λi| < 1 (7.4.88)

if λi is not defective when |λi| = 1. That is, if Arg(λi) 6= Arg(λj) for all j such that

|λj | = 1 during this transition then there is an unavoidable gap closure in the Brillouin

zone. So if we maintain all |λj | = 1 eigenvalues of M having distinct phases, then we get

a non-trivial sequential topology τ(H). This requirement defines a constraint map on the

hopping terms.

Definition 7.4.4. Let {λi} be the set of eigenvalues of M such that |λi| = 1. Let λj(t) be

an eigenvalue of M that is being continuously evolved such that

|λj(0)| > 1→ |λj(t)| < 1. (7.4.89)

Let b : C× R→ C act on λj such that

b(λj , t) := λje
2πiθt (7.4.90)

where Arg
(
λje

2πiθt
)
6= Arg(λi) when |λj | = 1 for all i 6= j.

There are two ways we can interpret this constraint map. The first assumes we have

complete control of the phases of hopping terms in the Hamiltonian. In such a case the

constraint map is fundamentally important to ensure τ(H) is non-trivial, so

PXi (7.4.91)

is non-trivial only for even i. However, this constraint map is different from the constraint

maps defined in our previous discussion. This is because the constraint map gives a subset

of spaces all the same dimension as the subspace the constraint map operates, as displayed

in Fig. 7.4.1. This gives rise to a second, perhaps more physically relevant interpretation

of τ(H).

The second interpretation of τ(H) is to assume we do not have exact control of the

(complex) phases of hopping terms, this makes every higher steps’ subspace of ξ topologi-

cally non-trivial. This is because the complement of the constraint map defines a subspace

of ξ is one dimension lower than the subspace b is operating on, so is measure zero on the

phase boundary. As such, if we do not have exact control of the phases of hopping terms

with probability 1 the map

|λi| > 1→ |λi| < 1 (7.4.93)

defines a τ(H) sequential topological phase transition.

Given these two pictures, we now have which subspaces of ξ (for τ(H)) of an infinitely

periodic complex Hamiltonian are topologically non-trivial.

We now show each non-trivial subspace has a Z2 classification. The constraint map for

each subspace is given by solutions to

|λi| = 1. (7.4.94)
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L

X︷ ︸︸ ︷

Figure 7.4.1: A 2D plane representing a slice X of a parameter space ξ. The collection

of lines L denote the set of phases that give defective eigenvalues in the transfer matrix.

The lines are of zero width so have zero measure in X.

Let h be a hopping term in the section gi. Then for each section we get the irreducible

polynomial

|qi| = ah+ b (7.4.95)

where a, b are polynomials of the hopping terms in gi. When

|h| =
∣∣∣∣
−b
a

∣∣∣∣⇒ |λi| = 1. (7.4.96)

Because |qi| is an irreducible polynomial there are two disconnected regions separated by

|λi| = 1, so we get a Z2 classification of each non-trivial subspace.

This gives two sequences for τ(H) for infinitely periodic complex Hamiltonians, one for

each interpretation on the necessity of the constraint map in definition 7.4.4.

NZ2 → 0→ Z2 → 0→ Z2 → 0→ Z2 → 0→ Z2 → · · ·
NZ2 → Z2 → Z2 → Z2 → Z2 → Z2 → Z2 → Z2 → · · · .

(7.4.97)

7.5 Approximate homotopy for individual sections

So far, we have considered only allowing each section to provide at most 2 zero energy states

to the structure. But in many structures, it is possible to have a section that provides more

than 2 zero energy states. To distinguish from multiple critical sections (as discussed

previously) we refer to a section with a nullity greater than 2 as a hyper-critical section.

Definition 7.5.1. Consider a structure G with a section g having the biadjacency matrix

q. If N (q) ≥ 2 we say g is hyper-critical or has hypercriticality.

If a section can become hyper-critical then the sequence of subspaces, and therefore our

zeroth homotopy theory, is altered. This is because we can no longer rely on the localisation

of nullstates to be related to the partial ordering of sections. This ensures the number of
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7.5. Approximate homotopy for individual sections

constraint maps that define a boundary operator are no longer given by a triangular num-

ber. As we will demonstrate, if hyper-criticality is possible on an individual section, then

hyper-criticality requires at most a square number of constraints. We conjecture that under

a similar convention to that in definition 7.2.1 this is an optimal number of constraints,

however, we have no proof of this.

The sequence of subspaces is altered in a second way. In section 7.5.2 we will show

the number of constraints required to satisfy hyper-criticality and multiple critical sections

simultaneously, alters the number of constraint maps that define a boundary operator. Fur-

thermore, we give an upper bound to the number of constraints required for each boundary

map under the convention in definition 7.2.1 in the presence of hyper-critical sections. This

change is not dependent on the number of constraints to get a hyper-critical section.

7.5.1 An upper bound

To understand how an individual section g can host hyper-criticality, we first look at the

constraints on q to get N (q) = 1 from a non-singular q. Consider the M ×M biadjacency

matrix q with rows qi, that is

q =




· · · q1 · · ·
· · · q2 · · ·

...

· · · qi · · ·
...



. (7.5.98)

If we delete a row of q we have an (M − 1) ×M matrix. As demonstrated in chapter 5

every first minor of q is almost always non-singular, so the submatrix of q with one deleted

row has maximum row rank of M − 1. The sub-matrix when we delete the first row has a

null vector ψ. That is,

q1ψ =




· · · q2 · · ·
...

· · · qi · · ·
...



ψ = 0. (7.5.99)

When the row q1 is orthogonal to ψ then N (q) is 1. This requires one constraint on q1.

To generalise this argument, we consider the case to get N (q) ≥ 2. We then demonstrate,

by induction, that the number of constraints grows by a maximum of n2 where n is the

desired nullity.

Proposition 7.5.2. The number of constraints on a section g with biadjacency matrix q

to get N (q) = 2 is exactly 4 constraints.

Proof. By proposition 7.3.4 we know there are at least 4 constraints to set a section with

N (q) = 2. So here we give a construction that only requires four constraints.
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7.5. Approximate homotopy for individual sections

Consider the biadjacency matrix q with the first two rows deleted, that is

q2 =




· · · q3 · · ·
...

· · · qi · · ·
...



. (7.5.100)

This submatrix is (M −2)×M so has at least 2 linearly independent null vectors. Suppose

we initially have |q| 6= 0 then there is an (M−2)×(M−2) submatrix of q2 that contains all

but 2 terms of a complete matching of g. Because q is non-singular, this matrix is almost

always non-singular, therefore q2 has (almost always) maximum rank. The maximum rank

of q2 is M − 2 giving two linearly independent null vectors ψ1 and ψ2.

To get N (q) = 2 we must satisfy the equation
(
q1

q2

)(
ψ1 ψ2

)
= 02 (7.5.101)

where 02 is the 2 × 2 zero matrix. Because each null vector is linearly independent, the

constraint to satisfy q1ψ1 = 0 does not satisfy q1ψ2 = 0. Similarly, because q1 and q2 are

initially linearly independent, this defines four total constraints, two for each row to satisfy

orthogonality to each nullvector.

Remark. For each null vector ψi and non-orthogonal row qj there is one constraint for on

the row qj which is not already orthogonal to ψi. This is because each constraint map

qjψi = 0 is satisfied by the solutions to a polynomial of hopping terms in H.

We now prove that there are at most n2 constraints on q to get N (q) = n.

Proposition 7.5.3. The number of constraints to get a N (q) = n is less than or equal to

n2.

Proof. Take the (M − n)×M sub matrix qn of q where we have deleted the first n rows of

q, and we initially have |q| 6= 0. Each complete matching of q must contain M − n terms

from qn so qn almost always has the rank M − n. Because |q| 6= 0 each row qi is initially

linearly independent.

Index the n linearly independent null vectors ψi of qn by the subscript i. Let 0n denote

the n× n zero matrix. When


q1

...

qn



(
ψ1 · · · ψn

)
= 0n (7.5.102)

is satisfied then N (q) = n. As in the N (q) = 2 case, satisfying
(
q1
)(

ψ1 · · · ψn

)
(7.5.103)

defines n constraints. Because each row qi of q is initially linearly independent, we must

satisfy (independently) this for every row qi with i ≤ n. Thus giving n2 total constraints

on the hopping terms of q.
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Unfortunately, we do not have a proof that this sequence is optimal, under a convention

like that in definition 7.2.1 for multiple critical sections. However, we conjecture that under

a similar convention, this does give an optimal sequence of constraints.

7.5.2 Hyper-critical sections and multiple critical sections

We now have a picture for the sequential topology for multiple sections, as well as an

upper bound for the number of constraint maps that define boundary operators for hyper-

criticality in an individual section. We now turn to how the number of constraint maps for

a boundary operator is altered when we allow both hyper-critical sections, and multiple

critical sections.

Definition 7.5.4. A structure G where we allow both individual sections with hyper-

criticality, and multiple critical sections is referred to as a structure with mixed criticality

or is mixed critical.

Much like in the case for hyper-criticality, we will give bounds on the number of con-

straint maps that define a boundary operator for a mixed critical structure. To find an

upper bound we assume a hyper-critical section g defines a core subgraph of G. Assuming

g is core when hyper-critical ensures that each nullstate can be localised over the structure

in a certain way, giving us an upper bound on the number of constraint maps. This re-

quires writing each nullstate as a core vector of the biadjacency matrix. We can then use

the boundary operators for multiple sections to get the number of constraint maps for a

boundary operator.

Proposition 7.5.5. Let gi be a section with a biadjacency matrix qi having nullity ni− 1.

Let a boundary operator take ni − 1 7→ ni so that the nullity of H increases by 2. Let all

other singular sections gj of H have a biadjacency matrix qj with nullity nj . The number

of constraint maps to increase nullity by 2 for a mixed criticality structures is bounded

above by n2i +
∑

j 6=i nj .

Proof. We wish to find the constraint maps that allow each nullstate from a section to be

defined on the remaining critical sections of the structure. Take the effective subgraph of

the critical sections of G. Let ζij denote the support of the i-th critical sections biadjacency

matrix qi’s nullstates on the j-th critical sections biadjacency matrix qj , where each column

of ζii a null vector. Let νj denote the left null vectors of qj .

When

qjζ
i
j = Aζii (7.5.104)

has solutions for some matrix A (defined from how gi and gi are connected in the Hamil-

tonian), and every pair of sections gi < gj , then every nullstate from a critical section is

defined on G. If equation 7.5.104 is satisfied, then we can write each column of ζij as a

linear combination of the columns of qj . That is every left null vector of qj is linearly

independent of every null vector of qi so

νjAζii = 0. (7.5.105)
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Because the nullity of qi is increasing by one, only one column of ζii is not already orthog-

onal to each row of νj . This defines nj constraint maps. This is true pairwise, for each

critical section.

Including the upper bound of constraint maps from the hypercritical section in proposi-

tion 7.5.3 this gives an upper bound of n2gi +
∑

j 6=i ngj constraint maps to define a boundary

operator in a structure with mixed criticality.

Remark. The constraint maps given above are defined for real Hamiltonians. To extend this

to complex Hamiltonians, we can use the same argument as in section 7.4. This doubles

the number of constraint maps (two for each constraint map in the real case) for complex

mixed critical structures.

7.5.3 A limit on non-trivial sequential topology

Using the relationship between the subgraphs of a structure G and the terms of the secular

equation, we can give a simple upper bound to the number of zero energy states that a

structure may host. This is because the largest rank submatrix of H defines the rank of H.

We know that any triangular matrix has only one cover, therefore the largest triangular

submatrix h of H gives a minimum bound on the rank of H. Let h be n × n and H be

m×m, then by the rank nullity theorem N (H) ≤ m− n.

We can use this bound to find a limit of nullity for certain structures. For example,

ladder graphene and an SSH chain can have at most a nullity of 2. Furthermore, recall from

proposition 7.3.4 there are four constraints for an individual section to have 4 zero energy

states. This ensures there are at least three cycles in each section. So this is a necessary

condition for an individual section to be able to have a nullity greater than 2.

As an example, we show that a looped SSH chain can have a nullity of at most 2.

Proposition 7.5.6. For a looped SSH chain N (H) ≤ 2.

Proof. Delete any neighbouring sites in the SSH chain. The remaining structure is a con-

nected open chain with an even number of sites. Therefore, this structure has exactly one

cover so a2 = 0 has no solutions.

This is useful because there are many structures which naturally have sections given by

SSH chains (for example, graphene ribbons). We give an experimental case study of a

structure with sections that are analogous to looped SSH chains in section 7.7.

7.6 Experimental signatures

Physically a system on a higher steps’ phase boundary has a lot of similar properties to

those discussed for the zeroth step topology in chapter 5. These consequences fall in to two

main categories. The first relates to the localisation of null states in a structure, and the

second (a consequence of this localisation) relates to the transmittance between two sites

of a cut structure. We begin by discussing some properties of the localisation of null states

of a structure on a higher steps’ phase boundary. We then discuss how transmittance is
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affected in such a structure.

For the purposes of this section, we say a structure is on a higher steps’ phase boundary

when only the minimum number of constraints are satisfied for the structure to be on

that boundary (under the convention in definition 7.2.1). This is because the localisation

of nullstates is altered when further constraint maps are satisfied, as discussed below.

Furthermore, because we only have an upper bound on the number of constraint maps for

individual sections, unless otherwise stated, we consider multiple critical sections only.

We begin by considering a structure G with a subset of n singular sections {gs} ∈ G,

such that the minimum number of constraint maps are satisfied to ensure N (H) = 2n with

N (qs) = 1.

Proposition 7.6.1. For such a structure on a higher steps’ phase boundary with critical

sections gs of G, then each critical section has support for a nullstate on both sub lattices.

Proof. When we satisfy a boundary operator for all the gs sections, then each section, a

priori, provides two nullstates to G. That is each critical sections’ biadjacency matrix q

originates a state on one partite set, and q† on the complementary partite set. Therefore,

each critical section, when the Hamiltonian is on a higher steps’ phase boundary, hosts a

state on both partite sets.

We can give a much stronger consequence when no first minor of a section can be set to

zero. This is a feature in a large number of structures, such as those with SSH like sections.

Proposition 7.6.2. Consider a structure such that no first minor of a section can be set

to zero. For such a structure on a higher steps’ phase boundary with 2n zero energy states,

and n critical sections {gs} of G, then for the set of critical sections {gs} has a 2n-core

effective subgraph.

Proof. On each section, no first minor of a section can be set to zero. Therefore, for each

critical section gs is a 2-core graph. So the effective subgraph of the gs critical sections is

2n-core.

Remark. We conjecture that, for any structure which is on a higher steps’ phase boundary,

the effective subgraph of all the singular sections is a core graph. This is something we

have found numerically for all investigated structures, but we do not have a proof.

We now consider how the partial ordering affects support of nullstates on non-critical

sections. For a non-singular section g there are three possibilities: g is below all singular

sections, g is above all singular sections, and g has both above and below singular sections.

In the first two cases, the localisation of nullstates is identical to that of a single section

as discussed in section 5.3.1.1. This is because nullstates on g are restricted to only one

sublattice for each nullstate from a singular section.

The final case is different, because a structure may now have at least one singular section

gi < g and at least one singular section gj > g that provide nullstates to H.

Proposition 7.6.3. If a non-singular section g is below some singular sections, and above

others, g may have support of nullstates on both sub lattices.
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Proof. We can partition the singular sections in to two sets, those below g and those above

g. From Chapter 5 we know every singular section below g may provide nullstate to G with

support on one sublattice of g. Furthermore, we know there are nullstates for a section

above g defined over G. This may provide support to nullstates on the other sub lattice of

g. Therefore, g may support nullstates on both sub lattices.

Corollary 7.6.4. If G is a core graph, then any non-singular section g ∈ G which is not

equal to at least one singular section (by the partial ordering) has support of nullstates on

at least one site of each sublattice of g which may support nullstates.

Proof. Take a non-singular section gi. Let Ga denote the effective subgraph of above singular

sections and Gb denote below singular sections. Take the effective subgraph of g,Ga,Gb with

the biadjacency matrix 

Qa Ca,i Ca,b
0 qi Ci,b
0 0 Qb


 . (7.6.106)

Because qi is not equal to any section in Ga,Gb then Ca,i and Ci,b are non-zero. Furthermore,

G is core so every site in the effective subgraph of Ga and Gb has non-zero support of a

nullstate. Therefore, gi supports a nullstate on at least one site of each sub lattice of qi
that may support a nullstate.

We now turn to a consequence in the transmittance of a structure on a higher steps’

phase boundary. Suppose we have two sections gi and gj and by the partial ordering gi > gj .

Assume |qi| = 0 and |qj | = 0. Cut a site on gi that connects to a below section gk such

that gk ≥ gj . Assume for all l the sections gi < gl < gj are non-singular. An example of

this kind of cut is given in Fig. 7.6.1. We will show that unit transmittance occurs on a

cut structure with a core effective subgraph only if the structure is on a higher steps’ phase

boundary.

Proposition 7.6.5. Inter section transmittance for a structure cut as in Fig. 7.6.1 is

value 1 between sections with a core effective subgraph only when on a higher steps’ phase

boundary.

Proof. Take the subgaph Ḡ of g for every section gi ≥ gk ≥ gj by the partial ordering. Cut

the site on gi as described in Fig. 7.6.1. This gives the corresponding biadjacency matrix

for the cut structure of

q̄cut =




qi Ci,i+1 · · · Ci,j a

0 qi+1 · · · Ci+1,j 0
...

...
. . .

...
...

0 0 · · · qj 0



. (7.6.107)

Let q̄ denote the biadjacency matrix for the corresponding uncut structure. Then if G is

on a higher steps’ phase boundary, and the effective subgraph is core then there is a null
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state of the uncut structures biadjacency matrix q̄ such that

q̄Ψj = q̄




ψji
ψji+1

...

ψjj




= 0 (7.6.108)

where ψji has support on the site of qi that we cut. Summing over all nullstates of critical

sections gj < gi we get the nullstate

Ψ =
∑

gj<gi

Ψj (7.6.109)

where Ψj is a nullstate originating from the section gj . We now partition the support of Ψ

over the cut and uncut sites of gi to get

Ψi =



φ1
α

φ2


 (7.6.110)

where α is the support of the sum of nullstates on the cut site, φ2 is support on below sec-

tions gj < gi and φ1 is support on the uncut sites of gi, equal sections and above sections

gk ≥ gi.
Because we are looking for a higher steps phase transition, we already have some null-

states in the uncut structure so we can define a nullstate of the biadjacency matrix of the

uncut structure q̄ (related to the biadjacency matrix in equation (7.6.107)) given by

(
Ψ

α

)
. (7.6.111)

where α is the voltage on the site that will be cut. Because cutting the structure introduces

one extra site then we always have

q̄cut

(
Ψ

β

)
= 0 (7.6.112)

If β = α satisfies this equation, then

q̄Ψ = 0 (7.6.113)

which occurs only when on a higher steps’ phase boundary. This ensures the input and

output voltage is the same.

We now consider the transfer matrix for the structure on the cut site only. At zero

energy this is a 2× 2 transfer matrix M where

(
Vout
Iout

)
=

(
a 0

0 b

)(
Vin
Iin

)
(7.6.114)
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Where a, b are rational functions of the hopping terms of H. We know from the above

argument that Vout = Vin, so assuming no losses |M | = 1 so b = 1 too, so at a higher steps’

phase boundary the current input equals the current output.

Finally, we have assumed that the uncut subgraph corresponding to q̄ is core when on a

higher steps’ phase boundary. This ensures that every white site in q̄ has non-zero support

of null states, meaning the voltage output and the current output are both non-zero, giving

perfect transmittance.
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•

•

◦ ◦

•

•

◦ ◦

•

•

◦

•

Cut In

Out

Figure 7.6.1: A structure with three non-trivial sections corresponding to a 3Z2 structure.

One site is cut on a hopping term that connects the two different sections (represented by

a dotted line). This creates a new site connected on the dashed line, and the dotted

connection between the two sections is removed. This allows the transmittance experiment

described above to be undertaken.

7.7 A theoretical and experimental case study

In this section, we will give a case study where we use the techniques developed in section 7.3

to classify the sequential topology of a particular structure. We will then predict physical

attributes of sequential phase transitions in this specific structure following the predictions

in section 7.6. Finally, we experimentally verify these predictions in a coaxial cable network

of the structure displayed in Fig. 7.7.1.
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Figure 7.7.1: The structure we will carry out an experimental and theoretical case study

on. Each labelled hopping term is real and algebraically independent. The green solid site

denotes the site which was experimentally measured to confirm properties of the localisation

throughout different sequences of sequential phase transitions.

For a case study, we consider the structure illustrated in Fig. 7.7.1 with all real hop-

ping terms. We initially assume algebraically independent hopping terms before applying
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constraint maps. This structure has a 3Z2 zeroth step classification, and the following

biadjacency matrix

Q =



q3 C3,2 C3,1

0 q2 0

0 0 q1


 =




m n k l 0 0

o p 0 0 e f

0 0 g h 0 0

0 0 i j 0 0

0 0 0 0 a b

0 0 0 0 c d



. (7.7.117)

This structure has SSH like sections so by proposition 7.5.6 each section can have, at

most, a nullity of 2. So for each sequence of zeroth homotopy groups, using the convention

for defining constraint maps in definition 7.2.1, there is one boundary operator for each

section.

There are 6 distinct sequences of homotopy groups for this structure. This is because,

as we will demonstrate, each constraint map for this structure is irreducible. So with 3

sections there are 3! = 6 distinct sequences of subspaces. We now give the full derivation for

the boundary operators for one of these sequences, and then state the boundary operators

for the remaining sequences.

We consider the sequence of boundary operators associated to setting g1 then g2 then

g3 to be singular. The first boundary operator is defined with the constraint map which is

satisfied when

|q1| = ad− bc = 0. (7.7.118)

For this example, to apply this constraint map we set c = ad
b .

For the second boundary operator we can use the partial ordering g2 = g1. That is,

there are no singular sections above or below g2 so the second boundary operator is defined

with the constraint map which is satisfied when

|q2| = gj − ih = 0. (7.7.119)

This is irreducible, so the 1st steps’ subspace has a classification of Z2. For the purpose of

this example, we apply this constraint map by setting i = gj
h .

Finally, we have the section g1 = g2 < g3. So with 2 singular sections above g3 by the

protocol outlined in the list 7.3.3.1 the first constraint map comes from setting g3 to being

singular. So the first constraint map is given with

|q3| = mp− on = 0. (7.7.120)

As the two remaining sections are equal by the partial ordering, we can choose to find the

remaining constraint maps in either order. We first consider g2. By proposition 7.3.22 to

find this constraint map we need to find the null vector of q2. Letting i = gj
h this gives a

null vector

ψ2
2 =

(
h

−g

)
. (7.7.121)
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We now need to find a set of hopping terms for which the equation

q3ψ
2
3 = −C3,2

(
h

−g

)
(7.7.122)

has solutions. By proposition 7.3.20 this is satisfied when

|κ1| = det

(
n 0

p kh− lg

)
= m(kh− lg) = 0 (7.7.123)

defining the second constraint map for this boundary operator. For this example, we solve

equation (7.7.123) with k = lg
h .

We now consider g1. Because g1 = g2 by the partial ordering, the final constraint map

is satisfied when

q3ψ
1
3 = −C3,1

(
b

−a

)
(7.7.124)

has solutions. So we now need to solve

|κ2| = det

(
n 0

p eb− fa

)
= n(eb− fa) = 0. (7.7.125)

This gives the three constraint maps for the final boundary operator, which are defined by

mp− on = 0

kh− lg = 0

eb− fa = 0

(7.7.126)

each of which is irreducible, so relaxing a single constraint map gives a subspace with the

classification of Z2.

To illustrate one of the 6 sequences of subspaces, and zeroth homotopy groups (for

setting g1 then g2 then g3 as singular) we choose to apply the constraint maps for the final

boundary operator in the order derived above. This gives the following diagram

E0 E2 ∩X1 E4 ∩X2 E6 ∩X5

(ξ =)X0 X1 X2 X3 X4 X5

3Z2 Z2 0 0 Z2 0

c01 c42 c65

|q1|=0 |q2|=0 |q3|=0 |κ1|=0 |κ2|=0

There are 5 remaining topologically distinct sequences of subspaces. To classify these se-

quences we only need to consider the order we define boundary operators. This is because

the constraint maps for each sequence are the same, but they are grouped together differ-

ently for each boundary operator, a consequence of the commutativity of constraint maps.

To see this, consider a pair of unequal (by the partial ordering) sections gi < gj , setting gi
then gj to being singular defines three constraint maps. The first is from solving |qi| = 0
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the second is from solving |qj | = 0 and the third from satisfying the solutions of qi on qj .

Applying these constraint maps in any order defines the same subspace.

Under these considerations, we have the following diagram of subspaces, where we use

the superscript to denote the order in which sections are being set to being singular.

X0 X1
1 X1,2

2 X1,2,3
3 X1,2,3

4 X1,2,3
5

X0 X2
1 X2,1

2 X2,1,3
3 X2,1,3

4 X2,1,3
5

X0 X1
1 X1,3

2 X1,3
3 X1,3,2

4 X1,3,2
5

X0 X2
1 X2,3

2 X2,3
3 X2,3,1

4 X2,3,1
5

X0 X3
1 X3,1

2 X3,1
3 X3,1,2

4 X3,1,2
5

X0 X3
1 X3,2

2 X3,2
3 X3,2,1

4 X3,2,1
5

|q1|=0 |q2|=0 |q3|=0 kh−lg=0 eb−fa=0

|q2|=0 |q1|=0 |q3|=0 kh−lg=0 eb−fa=0

|q1|=0 |q3|=0 eb−fa=0 |q2|=0 kh−lg=0

|q2|=0 |q3|=0 kh−lg=0 |q1|=0 eb−fa=0

|q3|=0 |q1|=0 eb−fa=0 |q2|=0 kh−lg=0

|q3|=0 |q2|=0 kh−lg=0 |q1|=0 eb−fa=0

Because each constraint map is defined from an irreducible polynomial, each topologically

non-trivial subspace has a Z2 classification. This gives two distinct sequences of zeroth

homotopy groups connected by paths in the E2n subspaces of ξ.

3Z2 Z2 0 0 Z2 0

3Z2 0 Z2 0 Z2 0

(7.7.127)

From the perspective of zero energy subspaces E0, E2, E4, E6 of ξ we have the following

diagram.
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E0 E2 ∩X1
1 E4 ∩X1,2

2 E6 ∩X1,2,3
5

E0 E2 ∩X2
1 E4 ∩X2,1

2 E6 ∩X2,1,3
5

E0 E2 ∩X1
1 E4 ∩X1,3

2 E6 ∩X1,3,2
5

E0 E2 ∩X2
1 E4 ∩X2,3

2 E6 ∩X2,3,1
5

E0 E2 ∩X3
1 E4 ∩X3,1

2 E6 ∩X3,1,2
5

E0 E2 ∩X3
1 E4 ∩X3,2

2 E6 ∩X3,2,1
5

Using the commutativity of constraint maps, this reduces to the following diagram of

distinct subspaces.

E2 ∩X1
1 E4 ∩X1,2

2

E0 E2 ∩X2
1 E4 ∩X1,3

3 E6 ∩X1,2,3
5

E2 ∩X3
1 E4 ∩X2,3

3

(7.7.128)

We use a coaxial cable network to experimentally verify the homotopic structure for G.

First we randomly assign hopping terms for G from a binary distribution such that none of

the constraint maps are initially satisfied. This allows us to make G from RG58 (50Ω) and

RG62 (93Ω) coaxial cables. Then we choose a path through the homotopic structure of G.

To satisfy each constraint, we use a random number generator to indicate which hopping

term may be changed to satisfy a constraint map of the relevant boundary operator. Then,

as we add each constraint map, we take measurements on the structure to verify predictions

in the localisation, and transmittance of eigenstates in the structure. Details of the exact

distribution of hopping terms for each structure measured are given in Appendix A.

As each homotopic sequence falls in to two types (illustrated in the diagram (7.7.127))

so we consider two paths through the homotopic structure, one path for each type. The first

path uses boundary operators for g2 then g1 then g3. The constraint maps were satisfied
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in the following order:

|q2| = 0

|q1| = 0

|κ2| = 0

|κ1| = 0

|q3| = 0.

(7.7.129)

The second path uses boundary operators for g3 then g1 then g2. Boundary maps were

taken in the following order:

|q3| = 0

|q2| = 0

|κ2| = 0

|q1| = 0

|κ1| = 0.

(7.7.130)

We can make quite broad predictions about the localisation of nullstates at each point

in the diagram 7.7.127. As discussed in section 7.6 the first is when a structure is on a

higher steps’ topological phase boundary, but no extra constraint maps are satisfied. At

this point in a homotopic sequence, the effective subgraph for the singular sections is a

core graph (as each section is SSH like). The second relates to how states localise when

extra constraints are satisfied. This follows from the partial ordering of sections and is a

sequential analogue of the localisation discussed in chapter 5.

To demonstrate the core properties of a subgraph of G when on a higher steps’ phase

boundary, we plot the experimentally measured LDOS for a particular structure on every

site (at ε = cosωτ = 0). These results are given in Fig. 7.7.2. These confirm our prediction

of a core effective subgraph for a structure on a higher steps’ phase boundary.

We now turn to how localisation throughout a structure is altered when following a

homotopic sequence. To illustrate these results, we consider a single site of our structure,

in each point of both sequences given in the diagrams (7.7.129) and (7.7.130). The LDOS

are displayed in Fig. 7.7.3. We have also experimentally measured the LDOS for 2 sites

in each section through both sequences of subspaces. We have attached these data plotted

in a similar way to these results in Appendix A, corroborating our predictions of section

specific localisation.

Finally, as discussed in section 7.6 in a coaxial cable network the transmittance between

two sections, when a structure is cut as described above, is non-zero only when a structure

is on a higher steps’ phase boundary. For this experiment we cut the structure as displayed

in Fig. 7.7.4 (b). Measuring transmittance on a higher steps’ phase boundary, and away

from a higher steps’ phase boundary we confirm our prediction of unit transmittance only

on the higher steps’ phase boundary, as displayed in Fig. 7.7.4 (a).
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Figure 7.7.2: (a) The structure on a higher steps’ phase boundary. RG58 cables are

indicated with a dashed line, and RG62 cables with a solid line. The vertex diameter is

proportional to the experimentally measured local density of states when this structure is

on a higher steps’ phase boundary. Observe that the two sections on the right hand site

have a core subgraph, as predicted in section 7.6. The local density of states was taken as

an integral over the impedance on that site between 100 MHz and 126 MHz. (b) Displays

the local density of states for the white site with a blue and dashed boundary.

7.8 Conclusions and limitations

We have defined and studied sequential topology for finite chiral structures in terms of

highly degenerate spectral gap closures in a Hamiltonian H defined on a graph G. Under

our convention, we have shown that the number of zero energy states in G, localised to

certain subgraphs of G, can be understood from the topology of lower dimensional sub-

spaces within the parameter space ξ. Furthermore, we have demonstrated to what extent

a Hamiltonian H on G can exhibit disorder in hopping terms (that is the largest degree of

freedom of hopping terms) yet retain a certain number of zero energy states localised to a
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Figure 7.7.3: The orange plots denote the LDOS of the site C0 for the first sequence

setting the constraints in equation (7.7.129). The blue plots denote the site C0 for the

second sequence setting the constraints in equation (7.7.130). The top left sub plot satisfies

no constraint maps, and the bottom left subplot satisfied 3 constraint maps. Each subplot

satisfies one more constraint map then its left neighbour.
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Figure 7.7.4: (a) Transmittance between the site when taking the structure through a

sequence of sequential phase transitions. E2n denotes if the structure lies on the 2n zero

energy subspace of ξ, the superscript c indicates if the structure is on a higher (i.e. beyond

zeroth) steps’ phase boundary. (b) A picture of the structure with the cut hopping term,

as it is taken to from 4 zero energy states (but not on a phase boundary) to 6 zero energy

phase boundary, this corresponds to the E4 and Ec6 data in (a). The solid lines are RG62

cables, and the dashed lines are RG58 cables. The dash dot line is changed from an RG58

to an RG62 cable.
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certain region of G.

Higher order topology, where zero energy states localise to certain dimensional bound-

aries of a structure, loses meaning when the bulk boundary correspondence is lost. We

believe our sequential topology has, in some sense, well defined parallels to a notion of

higher order topology in finite chiral structures. We do note, however, that there are many

different ways to define a topology on the parameter space ξ. We have focussed solely on

spectral gap closures around zero energy, but non-zero energy gap closures may also give

a physically significant way to define a sequential topology on ξ, or even something not

involving gap closures. Such alternative approaches will likely calculate different invariants

and give different physical predictions from topological properties of a system, properties

we have neglected here.

Under our approach, we have demonstrated that (up to some simple considerations)

a sequence of which subspaces of ξ are topologically non-trivial is universal for a real or

complex finite chiral structure. We have also given a method to calculate the classification

of each non-trivial subspace. Under our choice of topology, this gives a well defined classifi-

cation of the zeroth homotopy groups a structure. Using the techniques we have developed,

we can calculate such sequences exactly for an arbitrary chiral structure.

Using properties in the localisation of null states in a Hamiltonian H on G, we have

demonstrated a set of physical consequences of sequential topological phase transitions.

Furthermore, we have verified predictions in the localisation and transmittance of states

experimentally in a coaxial cable network. Such properties may be useful in the design of

quantum networks.

Our approach does have limitations, however. Topological phenomena are very likely

highly non-trivial outside the limited scope we have explored. Furthermore, there are large

computational limits to our approach.

One significant limit relates to the convention we use for multiple critical sections. The

question of how sequential topology is altered when we do not follow our convention for

defining constraint maps and boundary operators has been left unexplored. There may be

large amounts of topological phenomena using different conventions, or having no conven-

tion at all.

We have not given a computationally efficient method for sequential classification.

This is because our classification protocol requires directly calculating determinants and

nullspaces of individual sections and subgraphs of G. As such, our results currently may

only be applied in full generality to very small structures with an order of 10s of sites.

However, for structures exhibiting large symmetry in their network topology, our results

can be generalised quite efficiently through analytical observations. This does give a signif-

icant computational limit to our approach, however. We anticipate significant optimisation

is possible.

We also have many unanswered conjectures about sequential topology for finite chiral

structures even under our convention. These include questions on defining a convention

for constraint maps in mixed and hyper-critical sections, and whether our upper bound on

constraint maps in such cases are in any way optimal. We also have unanswered questions

in the localisation of null states, for example is an effective subgraph on a higher steps’
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phase boundary almost always core? Or on the path connectivity of 2n zero energy state

subspaces E2n of ξ.

Questions about how our sequential topology relates to structures with a bulk bound-

ary correspondence are also not fully answered. For instance, which subgraph of G, when

periodically repeated, exhibits robust zero energy states when a structure is on one side

of a higher steps’ phase boundary? How should a structure be cut to find such a bulk

boundary correspondence?

We also anticipate many unexplored physical consequences of our sequential classifica-

tion, or how it is altered when we have hopping terms over fields other than real or complex

numbers. The question of whether a similar approach can be defined for systems with dif-

ferent symmetries, such as negative time reversal symmetry, or particle hole symmetry is

also a direction where many interesting questions remain unexplored.

Mathematically we have formalised finite sequential topology in terms of minors of a

Hamiltonian, to define subspaces. Formally these subspace correspond to determinantal

varieties. However, there are many results from algebraic geometry on determinantal vari-

eties that we have not explored in our work. We believe the connections between our work

and algebraic geometry may lead to many fruitful results to some of the above questions,

and more.
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Chapter 8

Conclusion and outlook

We have presented a description of a few topological phenomena in finite and strongly dis-

ordered chiral structures. In particular we have proposed a definition of exact topological

protection and studied a selection of topological phase transitions in finite media. Through-

out this work we have demonstrated some of our theoretical predictions experimentally and

have also shown the promise and flexibility of using coaxial cable networks for topological

physics experiments.

We began by demonstrating an exact topological phase transition for the SSH model

in a coaxial cable network and experimentally found a very precise topologically protected

state in chapter 3. These results showed the flexibility and promise of coaxial cable networks

for topological physics experiments, and also experimentally confirmed the map between

coaxial cable networks and tight binding models. Our results verified our predicted exper-

imental signatures of topological phenomena in coaxial cable networks.

In chapter 4 we proposed a definition for topological protection where the bulk does

not protect any states. We found a deep connection between a structure’s connectivity

and numbers of topologically protected states. Using this connection, we demonstrated

that topologically protected states are, almost always, exactly localised to a subset of sites

and also provided a simple probabilistic protocol to find numbers of topologically protected

states in finite structures with any symmetry. We also experimentally found such topolog-

ically protected states in both an SSH chain and graphene with a vacancy.

We then studied topological phase transitions in finite chiral structures in chapter 5 and

uncovered a rich NZ2 classification of many finite chiral structures by finding a connection

between topological phases and structural connectivity, thereby giving a basis for design-

ing topologically interesting structures for experiments and applications. By surveying a

large number of small bipartite graphs, we also demonstrated that the proportion of topo-

logically non-trivial finite chiral structures is significant. Furthermore, we derived some

physical consequences of our finite classification regarding the nature of localisation at a

topological phase boundary. In doing so we demonstrated a deep connection between nut

graphs and a structures topological classification. We experimentally confirmed physical

consequences of our classification in a graphene sample and gave a simple algorithm for the

classification of finite chiral structures.
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In chapter 6 we made use of coaxial cable networks to experimentally verify some prop-

erties of nut graphs. We experimentally showed that 5 different nut graphs: the three

Sciriha graphs, and two small chemical nut graphs have support of nullstates on every ver-

tex, and using transmission were able to map the nullstates of these structures. We then

gave an experimental confirmation of omni-conduction in one of the Sciriha graphs, but a

general property of all nut graphs. With the two smallest chemical nut graphs, we also

verified one of the constructions of nut graphs, by extending a bridge with two vertices.

Our experimental data agreed well with theory.

Finally in chapter 7 we studied topology as we begin to allow constraints on hopping

terms — sequential topology. This allowed us to study phase transitions in topologically

critical structures. We demonstrated that under the least restricted definition for a topo-

logical phase boundary, first step topological phase transitions do not exist in finite chiral

structures. By carefully choosing a more restricted definition for a topological phase bound-

ary we uncovered (up to some simple considerations) a universal homotopic sequence for

real finite chiral Hamiltonians, and a corresponding sequence for complex Hamiltonians.

We gave a protocol for finding the distributions of hopping terms necessary for a structure

to undergo a series of sequential phase transitions, allowing for a theoretical case study. We

then demonstrated that for a large class of structures, their sequential phase transitions

are deeply connected to core graphs, where support of zero energy states occurs on every

sight of a particular subgraph of the structure. Using this localisation, we experimentally

observed a complete sequence of topological phase transitions in an experimental compo-

nent of our case study.

We hope this work has given a small survey of some of the basic topological properties

of finite media and that we have demonstrated that topology, even in the smallest of sam-

ples, and those with a complex connectivity, is an interesting area of study. We hope that

some of our work will perhaps go on to inspire a greater use of graph theoretic approaches

in condensed matter physics, especially in finite structures.

8.1 Outlook

We have demonstrated that even in very small structures, there can be interesting topo-

logical properties. But there remain many unanswered questions. Beyond the conjectures

we leave open in this work, from a convention for sequential topology in mixed and hyper-

critical structures to the exact nature of localisation on higher steps’ phase boundaries,

there are a number of directions which I believe would be interesting to study.

One of the more open questions left unanswered in our work is the interplay of our

classifications compared to infinite classifications. It would be interesting to see exactly

how the bulk-boundary correspondence scales with system size, and at what point only a

finite treatment remains valid. The converse would also help give some interpretation to

our classification in finite media: for instance, what is the dimension of an infinite structure

with N sections? It would also be interesting to see how our finite sequential topology is

altered when we take the limit to infinite structures, would we be able to interpret our

sequential classification in the context of the 10 fold way? What does a bulk boundary
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correspondence look like in this case? We anticipate new phases in larger systems may be

uncovered when constraining hopping terms, such as non-crystalline higher order topolog-

ical insulators.

Beyond this it would be interesting to know how topology in finite structures with dif-

ferent symmetries behave. Can a graph theoretic approach also be applied to such systems?

What does topological phenomena look like in such systems where the bulk boundary cor-

respondence has been completely lost?

Our approach allows us to study finite structures with strong disorder. But what is the

limit of disorder for which our zeroth step and higher step classification still, in some sense,

holds? That is, if we have a Hamiltonian H and provide disorder in the form of H + W

where W is some matrix, what properties of W do we require so that the topological prop-

erties of H +W are the same as H?

We also believe that the effects of structural disorder on topological protection and

topological classification may also be possible to study analytically, by considering struc-

tural disorder as a set of finite graphs and seeing how they combine to a larger otherwise

perfect structure. It would be interesting to study how such structural disorder alters topo-

logical classification.

It would also be interesting to see what parts of topological protection, and our clas-

sification are maintained in systems with interactions. It is possible to model interacting

Hamiltonians with a much larger effective 1 particle Hamiltonian [117] so can some of our

results directly apply to such structures? Or will understanding topology in interacting

finite structures require a whole new approach? What does topology look like in finite T-J

models or Heisenberg models? It may even be possible to explore these questions exper-

imentally using electronics to create on site non-linearities in a coaxial cable network or

using gain.

It would also be interesting to study some of our theoretical work in other experimental

systems. For instance, micropillar polariton devices can have dynamically changed hopping

terms [28, 82], could some of our predicted phenomena be observed in such systems? It

would be interesting to explore what experimental signatures of finite topology might be

present in such systems. Another possible platform is in integrated photonic devices to

create some structures designed to have highly non-trivial topological properties, perhaps

from a macroscopic pcb down to much smaller integrated chips. What experimental signa-

tures of finite topology may look like in different systems, such as spin chains, will also be

interesting to find.

There are also some applications of the coaxial cable network platform that would be

interesting to study experimentally. For instance, a recently discovered renormalisation

group treatment for random graphs [118, 119] would be possible to experimentally study

in a coaxial cable network. Or experimental tests of the different equivalence classes of

diffusion scales [120] experimentally implemented in coaxial cable networks. It would also

be interesting to study non-Euclidean devices in coaxial cable networks.

Finally, there may be a number of technological applications worth exploring. For in-

stance, can phase transitions be used in nanographene for controlling the localisation of

zero energy states? Could this open the door for controlled braiding in possible Majorana
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devices? Some of our results also broadly apply to networks in general, and so may aid

in the design of robust quantum networks, or a topological basis for radio frequency en-

cryption or in designing topological filters or antennas. It would be interesting to see in

what ways our results relating spectral gaps or topological protection might be useful in

designing such structures.
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Appendix A

Sequential topology — further

experimental details

Here we detail all of the structures used for the sequential topology experiments of section

7.7. In particular we confirm the homotopic structure of the structure in Fig. A.0.1. That

is the diagram of zeroth homotopy groups

3Zα2 Zβ2 0γ 0δ Zε2 0µ

3Zα2 0ν Zθ2 0ζ Zκ2 0σ

where the superscript denotes the specific structure, which is labelled in the data presented

in Fig.’s A.0.3 to A.0.13. To confirm this homotopic structure experimentally we measure

the LDOS on two sites on each section. This works because of the localisation nullstates

as we drive a structure through sequential phase transitions.

Recall from section 5.3.1.1 that for a structure with two zero energy states a non-singular

section may host zero energy states on at most one sublattice. For a structure with more

than two zero energy states, then a non-singular section gi may host nullstates on both sub

lattices only if nullstates originate from at least one above section gj > gi and one below

section gk < gi as by proposition 7.6.3, otherwise a non-singular section will host nullstates

on at most one sub lattice. The structure we experimentally study has two equal sections

g1 = g2 and one section g3 < g2 = g1 so a non-singular section will only host nullstates on

at most one sublattice.

The structure we experimentally study has all SSH like sections, so by proposition 7.6.2

a structure on a higher steps’ phase boundary has a core effective subgraph. Therefore, if

we measure the LDOS on two sites of every section, for a structure at each point in the

above homotopic diagram, we will have verified the number of zero energy states at each

point, as well as which section zero energy states originate.

To illustrate these sequences of sequential phase transitions we give the data below for

the LDOS on two sites for each section, where the diameter is proportional to the LDOS

on that site calculated as an integral between 110.9 MHz and 125.9 MHz. This is roughly
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Figure A.0.1: The structure we use for a case study in section 7.7. The sites are labelled

for easier reference to the LDOS data. We experimentally confirm the homotopic structure

of this graph.

from ε = −0.146 to ε = 0.058, the reason the integral was not exactly around zero energy

is that the inclusion of a large number of T-connectors shifted the zero energy point of

the structure which was not accounted for in the calculation. The distribution of hopping

terms is indicated on each structure. These data are given in Fig.’s A.0.3 to A.0.13. The

LDOS measurements are normalised relative to the largest LDOS measured for the entire

sequence of structures. And an × on a site indicates the site was not measured.

We also reproduce the transmittance data below while taking a structure through

the sequential phase transitions in Fig. A.0.2. The structures for each measurement is

made by cutting the site C0 on the hopping term between B3 and C0, where the plots

E0, E2, E
c
4, E4, E

c
6 correspond to the structures α, ν, θ, κ, σ in the above sequence of homo-

topy groups.
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Figure A.0.2: Transmittance between the cut site C0 when taking the structure through

a sequence of sequential phase transitions. E2n denotes if the structure lies on the 2n

zero energy subspace of ξ, the superscript c indicates if the structure is on a steps’ phase

boundary. The plots E0, E2, E
c
4, E4, E

c
6 correspond to the structures α, ν, θ, κ, σ in the above

sequence of homotopy groups.
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Figure A.0.3: This is the structure α in the sequence of zeroth homotopy groups. This

structure has no zero energy states, although the data for the site B0 has a non-zero LDOS

at zero energy. We believe this is a consequence of a highly broadened LDOS for this

measurement, perhaps as a result of a faulty connection. Despite this, zero energy occurs

at a minima in the LDOS, so we infer that there are no zero energy states in this structure.

We anticipate remeasuring B0 will give better data. A site with an × indicates the site

was not measured. RG58 cables are indicated with a dashed line, and RG62 cables with a

solid line.
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Figure A.0.4: This is the structure β in the sequence of zeroth homotopy groups. Only

one section is critical, resulting in two zero energy states. This is confirmed with support of

nullstates only on both sublattices of one section. RG58 cables are indicated with a dashed

line, and RG62 cables with a solid line.
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Figure A.0.5: This is the structure γ in the sequence of zeroth homotopy groups. With

two critical sections, being the equal sections (by the partial ordering) results in four zero

energy states. This is confirmed with support of nullstates on both sublattices of each equal

section. RG58 cables are indicated with a dashed line, and RG62 cables with a solid line.
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Figure A.0.6: This is the structure δ in the sequence of zeroth homotopy groups. With

two critical sections and a further constraint map being satisfied, this structure has four zero

energy states, confirmed in the support of nullstates on both sublattices of each singular

section. There is also support on the non-singular section on one sublattice — a consequence

of the partial ordering. Notice that support on the nullstates of g2 have changed compared

to the structure γ, this is a result of the change in hopping term between B3 and C2. RG58

cables are indicated with a dashed line, and RG62 cables with a solid line.
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Figure A.0.7: This is the structure ε in the sequence of zeroth homotopy groups. This

structure satisfies all but one constraint for 6 zero energy states. For this structure this is

satisfied when the nullstates have no support on the unequal section, as confirmed in (a).

RG58 cables are indicated with a dashed line, and RG62 cables with a solid line.
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Figure A.0.8: The structure µ which satisfies all the constraint maps for zero energy

states, confirmed by support of nullstates on both sub lattices of each section. As a conse-

quence of the partial ordering of this structure, this confirms there are 6 zero energy states.

RG58 cables are indicated with a dashed line, and RG62 cables with a solid line.
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Figure A.0.9: This is the structure ν in the sequence of zeroth homotopy groups. One

section is critical in this structure, resulting in two zero energy states, as indicated by the

location where nullstates have support. RG58 cables are indicated with a dashed line, and

RG62 cables with a solid line.
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Figure A.0.10: This is the structure θ in the sequence of zeroth homotopy groups. Two

sections are critical in this structure, but they are not equal by the partial ordering and the

constraint map for mutual orthogonality is not satisfied. This results in two zero energy

states indicated by non-zero support on both sublattices somewhere in the structure, but

no one section supports nullstates on both sub lattices. RG58 cables are indicated with a

dashed line, and RG62 cables with a solid line.
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Figure A.0.11: This is the structure ζ in the sequence of zeroth homotopy groups. Two

unequal sections are critical in this structure, and the constraint map for mutual orthogo-

nality is now satisfied. This results in four zero energy states indicated by non-zero support

on both sublattices for two sections. RG58 cables are indicated with a dashed line, and

RG62 cables with a solid line.
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Figure A.0.12: This is the structure κ in the sequence of zeroth homotopy groups. All

sections are critical in this structure, and the constraint map for mutual orthogonality is

satisfied for two of the sections. This results in four zero energy states indicated by non-zero

support on both sublattices on one section, and support on only one sublattice for each of

the two sections where mutual orthogonality is not satisfied. Note that due to the narrow

gap for the sites A0 and B1 these data were integrated between ε = −0.025 and ε = 0.025

(113.3MHz and 117MHz). RG58 cables are indicated with a dashed line, and RG62 cables

with a solid line.
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Figure A.0.13: This is the structure σ in the sequence of zeroth homotopy groups. All

sections are critical in this structure, and the constraint map for mutual orthogonality

are satisfied. This results in six zero energy states indicated by non-zero support on both

sublattices of every section. RG58 cables are indicated with a dashed line, and RG62 cables

with a solid line.
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Supplementary Materials: Observation of a Topological Phase Transition in Random
Coaxial Cable Structures with Chiral Symmetry

S1 DERIVATION OF TIGHT BINDING HAMILTONIAN

Our system consists of a series of sections of transmission line of length dn, with transmission speed cn and impedance
Zn. Wave proagation in such a structure is determined by the telegraph equations. In each section, the voltage V (x)
is determined by a Helmholtz equation

d2V

dx2
+

(
ω

cn

)2

V = 0 , (S1)

where ω is the frequency. At the boundaries between sections both V and the current,

I = −i cn
ωZn

dV

dx
, (S2)

are continuous.
For a piece-wise continuous system, we conventionally solve this equation using transfer matrices. In a given section,

the solution can be written

V (x) = V (0) cos (ωx/cn) + iZnI(0) sin (ωx/cn) (S3)

I(x) = iZ−1n V (0) sin (ωx/cn) + I(0) cos (ωx/cn). (S4)

Thus, at the end of the section x = dn,
(
V (dn)
I(dn)

)
=Mn

(
V (0)
I(0)

)
=

(
cos (ωdn/cn) iZn sin (ωdn/cn)

i/Zn sin (ωdn/cn) cos (ωdn/cn)

)(
V (0)
I(0)

)
(S5)

FIG. S1. Site n of the network and its neighbours. Inn′ is the current flowing out of site n towards n′.

We next demonstrate that a transmission line network is equivalent to a tight-binding system when each section
has the same transit time, τ = dn/cn. To show this, let us add to the notation a little so that Vn is the voltage at the
nth junction (site), and Inn′ is the current flowing out of that junction to connected site n′. Znn′ is the impedance of
the section between sites n and n′. Then the transfer matrix gives

Vn′ = Vn cosωτ + iZnn′Inn′ sinωτ, (S6)

We can use this to find Inn′ in terms of Vn and Vn′ , then apply Kirchhoff’s junction rule,
∑
n′ Inn′ = 0, to get

∑

n′

Z−1nn′(Vn′ − Vn cosωτ) = 0 . (S7)

Here, the sum over n′ includes the sites which are directly connected to n. Identifying ε = cosωτ , this becomes

∑

n′

Z−1nn′Vn′ = ε
∑

n′

Z−1nn′ Vn . (S8)

This is a generalised eigenvalue problem, but we can turn it into the standard form by defining scaled voltages
depending on the impedances of the cables connected to site n:

vn =

(∑

n′

Z−1nn′

)1
2

Vn = σ−1n Vn . (S9)
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Then we have the tight binding system

∑

n′

Hnn′vn′ = ε vn , (S10)

with

Hnn′ = σnZ
−1
nn′σ

′
n . (S11)

Note that the ‘energy’, ε is not the frequency, so zero energy corresponds to finite frequency; indeed the spectrum
repeats periodically in frequency.

S2 ADDING INPUTS AND OUTPUTS

In this section, we show how to add inputs and outputs to the tight binding model derived above. We shall consider
an experiment where we connect an input to site α, which we model as an ideal voltage source with amplitude Vin in
series with an impedance Zin. We measure an output voltage at site β, using a detector which is modelled as an ideal
voltmeter in parallel with an impedance Zout. The measured output voltage is simply the site voltage Vout = Vβ .

We start with the detector. From the circuit point of view, this is simply an impedance Zout, which causes an
additional current out of the site β, with magnitude Iout = Vβ/Zout. The expression from Kirchhoff’s rule for site β
is then modified to

∑

n′

Z−1βn′Vn′ + iZ−1out

√
1− ε2 Vβ = ε

∑

n′

Z−1βn′ Vβ , (S12)

since sinωτ =
√

1− ε2. Now scaling the voltages as in Eq.(S9), the tight binding equation for site β becomes

∑

n′

Hβn′vn′ + iΓout

√
1− ε2 vβ = ε vβ , (S13)

where Γout = σ2
β Z
−1
out; the finite impedance leads to an on-site imaginary energy for site β.

Doing a similar thing for the source, on site α, we get a slightly more complicated result. If the source voltage is
Vin, and it has an impedance Zin, there is an extra current flowing into site α, Iin, determined by

Vα = Vin − IinZin . (S14)

subtracting this from the Kirchhoff expression gives

∑

n′

Z−1αn′Vn′ + iZ−1in

√
1− ε2 (Vα − Vin) = ε

∑

n′

Z−1αn′ Vα . (S15)

Rearranging, and scaling, we get

∑

n′

Hαn′vn′ + iΓin

√
1− ε2 vα = ε vα + i

√
1− ε2 vin , (S16)

where Γin = σ2
α Z
−1
in and vin = σα Z

−1
in Vin. The input adds an on-site imaginary energy and a driving term at site α.

We now have a matrix system which takes the form

(H + iΓ)v = εv + iV , (S17)

where the ‘Hamiltonian’ H is the same as in Eq(S10), and Γ is diagonal with the only entries the loss terms Γin

√
1− ε2

and Γout

√
1− ε2 on sites α and β. The driving term V has the single entry

√
1− ε2 vin on site α.

We can diagonalise H to find its eigenvalues εk, and eigenvectors u(k). Then H = UDU† where U is the unitary

with matrix elements Uij = u
(j)
i and D is a diagonal matrix with Dii = εi. This can be used to invert H − ε1 to get

the Green’s function

g = (H − ε1)−1 = U(D − ε1)−1U†, (S18)

so that

gij =
∑

k

u
(k)
i u

(k)∗
j

εk − ε
. (S19)
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With this, we can relate the output and input voltages for the case where the input and output impedances are
infinite, so the loss terms, Γin and Γout are zero:

vout = vβ = igβα
√

1− ε2 vin . (S20)

However, we really want to find G = (H + iΓ− ε1)−1, to deal with the case where there are finite losses. Since Γ
has only two non-zero entries, this can be calculated using the Sherman Morrison formula twice to obtain

Gβα =
gβα

1 + ΓinΓout(1− ε2)(gβαgαβ − gααgββ) + i
√

1− ε2(Γingαα + Γoutgββ)
. (S21)

Then

vout = iGβα
√

1− ε2 vin , (S22)

or, in terms of the unscaled physical quantities,

Vout = iσβσαGβα Z
−1
in

√
1− ε2 Vin . (S23)

For a single port measurement, connecting only to site α and measuring Vα to obtain the complex reflectance, we
put Γout = 0 and get

Vα
Vin

= iσ2
α Z
−1
in

√
1− ε2 gαα

1 + iΓin

√
1− ε2 gαα

=
iσ2
α

√
1− ε2 gαα

Zin + iσ2
α

√
1− ε2 gαα

. (S24)

However, we can also think of the circuit as simply a potential divider, with the input Vin connected across the input
impedance Zin in series with an effective impedance Zα representing the network. In these terms, we get

Vα
Vin

=
Zα

Zin + Zα
, (S25)

so the network impedance is just

Zα = iσ2
α

√
1− ε2 gαα . (S26)

Hence

− Re{Zα}
σ2
α

√
1− ε2

= Im{gαα} =
∑

k

|u(k)α |2 δ(ε− εk) , (S27)

which is the unbroadened local density of states on site α. In practice, the delta function peaks are broadened by the
small resistive losses within the cables.

S3 EXPERIMENTAL DETAILS

We make our experimental structures using two types of coaxial cable: RG58 and RG62, with impedances of,
respectively, 50 and 93Ω. In order to obtain the mapping onto the tight binding Hamiltonian, and thus chiral
symmetry, it is essential that the transmission time, τ , in each section of the cable is the same. For our choice of
zero energy at ∼ 114MHz, this corresponds to nominal cable lengths of approximately 41cm and 55cm for the RG58
and RG62 cables, as they have different propagation speeds. However, to obtain the accurate chiral symmetry in our
results, it was necessary to consider the contribution of the SMA connectors used to join the cables, which all have
50Ω impedance. To account for these, the RG58 cables were shortened and the RG62 cables lengthened, such that, in
a structure where they alternate, the transmission times in the 50Ω and 93Ω sections were the same. However double
sections of the same cable type are then the wrong length, and the RG62 doubles contain a pair of 50Ω connectors
in the middle. We avoided this problem by using special double length cables of each type. It is clearly possible also
to make triple and greater lengths, but instead we restricted our random sequences to those containing no more than
pair repeats.

Radio frequency spectra were obtained using a vector network analyser (NanoVNA V2 Plus4). Our results use two
types of measurements. We find the impedance, and thus the local density of states, using a single port measurement
of the S11 parameter. The structure impedance is then given by

Zs =
1 + S11

1− S11
Zin , (S28)



4

where Zin is the output impedance of the VNA. The value of the transmission amplitude, S21, is obtained directly
from a two port measurement between the ends of the cable. The adjustments to the cable lengths to account for
the connectors, as described above, moves the effective junctions, and hence the sites in the tight binding model, to
the points where the RG62 cables enter their SMA connectors. In the impedance measurements on the terminated
chains, we accounted for this by calculating the correction to the impedance due to the transmission through the
SMA connector between the physical junction with the VNA and the effective site position. At the opposite end to
the measurement, the length of the terminating cable also needed to be modified, so that the final site corresponds
to the end of the cable. For an RG62 termination, we simply removed the connector at the end, while in the RG58
case a slightly longer cable accounted for the pair of SMA connectors required to obtain the correct position.
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