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ABSTRACT

In this thesis, we apply local cohomology to the study of binomial edge ideals in order to
establish three main results:

1. A combinatorial characterisation of graphs whose binomial edge ideals are of König type.

2. The calculation of the local cohomology modules of the binomial edge ideals of the
complements of connected graphs of girth at least 5.

3. The calculation of the minimal attached primes of the local cohomology modules of the
binomial edge ideals of block graphs.

These first appeared in [Wil23a], [Wil23b], and [Wil24] respectively.

We employ several prime characteristic tools, such as the Frobenius functor and Lyubeznik’s
H -functor, in the proofs of some of these results, and prove several results of independent
interest concerning these tools.

Specifically, we use Lyubeznik’s H -functor to establish a correspondence between F -stable
secondary representations and primary decompositions in the category of F -finite F -modules,
and construct a concrete example to demonstrate that there are rings for which this category is
not closed under taking primary decompositions.

We also include a chapter compiling many graded analogues of local results, including some
which do not seem to have appeared previously in the literature, which we hope will be of
value to other researchers.
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Introduction

Background

The principal objects of study in this thesis are binomial edge ideals. These associate to a graph
G a homogeneous ideal J (G) in a polynomial ring over a field. Introduced by Herzog, Hibi,
Hreinsdóttir, Kahle, and Rauh in [Her+10], and independently by Ohtani in [Oht11], they found
immediate application to the subject of conditional independence statements in statistics, and have
since become widely studied objects in commutative algebra in their own right. There are often
correspondences between algebraic properties of J (G) and combinatorial properties of G, and
much work has been done investigating the binomial edge ideals of various classes of graphs.
See [HHO18, Chapter 7] for an overview of many of their properties, and some examples of
these correspondences.

A key tool we will make use of in their study is local cohomology. This was developed by
Grothendieck in the 1960s (see [GH67]) as a local analogue of the usual sheaf cohomology
in algebraic geometry, and was used to prove (amongst other things) various connectedness
theorems (see, for example, [Gro68]). In its algebraic form, it has found extensive use across
commutative algebra, and has been applied to combinatorial, geometric, and many other
settings. See [BS13] and [Iye+07] for some examples of such applications, as well as detailed
developments of the theory.

One drawback of local cohomology is that, in general, local cohomology modules are not
necessarily finitely generated, and so can be somewhat complex to work with. However it
transpires that, in certain cases, they are Artinian, and so we may apply the theory of Matlis
Duality, which was introduced by Matlis in [Mat58], over complete local rings. For such a ringR,
the Matlis Duality functor establishes an anti-equivalence of categories between the categories of
Artinian and Noetherian R-modules, and so, when applied to many local cohomology modules
we obtain a Noetherian R-module, which is often much easier to understand. We will see that,
in some cases, these are even simply Ext modules.

If we aim to study local cohomology modules via their Matlis duals, it is important to under-
stand how applying the Matlis Duality functor affects the various properties of a module. For
example, the annihilators of a module and its Matlis dual are equal. One powerful technique
for investigating Noetherian modules is to look at their primary decompositions and associated
primes. We will see that, particularly for Artinian modules, Matlis Duality provides us with a
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2 Background

dual theory: that of secondary representations and attached primes. These notions were introduced
independently by Kirby in [Kir73], Macdonald in [Mac73], and Moore in [Moo73], with Kirby’s
being the first paper received. In the case of local cohomology modules, there are situations
where we can say a surprising amount about their attached primes.

We will also make use of various prime characteristic techniques, which exploit the fact that
a ring of prime characteristic p > 0 comes equipped with the Frobenius endomorphism r 7→ rp.
The first of these is the notion of Frobenius actions, which generalise the idea of the Frobenius
endomorphism to modules. Crucially, we will see that many local cohomology modules possess
a natural Frobenius action.

The central prime characterstic tool we will use is the Frobenius functor introduced by Peskine
and Szpiro in [PS73]. In a sense, this allows a ring R of prime characteristic p > 0 to act on
R-modules via “pth roots” of their usual action, producing a new module FR(M) with this
modified action for any R-module M . A celebrated theorem of Kunz given in [Kun69] can be
restated in terms of this functor: it characterises Noetherian regular rings of prime characteristic
as precisely the Noetherian reduced rings for which this functor is exact. In many cases, this
functor commutes with the Matlis Duality functor, and possesses a wide range of other desirable
properties.

Building on this functor, Lyubeznik introduced the notion of F -modules in [Lyu97], which have
since become objects of extensive study. These are the R-modules M for which FR(M ) ∼= M ,
which includes many local cohomology modules. Moreover, such local cohomology modules
satisfy an even stronger property: they are also F -finite F -modules. Again introduced by
Lyubeznik in [Lyu97], these are the R-modules M which are isomorphic to the direct limit of
the system induced by repeatedly applying the Frobenius functor to some R-homomorphism
β :M → FR(M), with M a finitely generated R-module. When this β is injective, we say that
M is a root of M . When R is regular, every F -finite F -module has a root, and many important
properties of F -finite F -modules coincide with those of their roots. For example, their associated
primes agree. Then, in a similar way to Matlis Duality, they allow us to deduce properties of
potentially large modules via finitely generated ones.

Lyubeznik goes on to construct a functor in [Lyu97] which sends A-modules with a Frobenius
action to F -finite F -modules overR for certain classes of ringsA andR, denoted HR,A. This can
be used to relate certain local cohomology modules of various rings. Again, certain properties
of A-modules M with Frobenius actions can be inferred from HR,A(M), and vice versa.

The final set of techniques we apply concern graded modules. Many of the results stated so
far, especially those relating to Matlis Duality and local cohomology, are stated for local rings,
often assuming completeness. However binomial edge ideals are defined over polynomial
rings over a field. Fortunately, there is a general principle in commutative algebra that “most”
results concerning modules over local rings have analogues which hold for graded modules
over graded rings which have a unique proper homogeneous ideal which is maximal amongst
the homogeneous ideals of the ring. There is also an analogue of completeness over such rings.
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In this way, we will see that all of the results which will be necessary for our study of binomial
edge ideals can be applied in the graded case also.

Outline of Thesis

Chapter 1

We begin with an overview of four of the main concepts in this thesis:

1. Matlis Duality: injective hulls, the Matlis Duality functor, and the Duality Theorem itself.

2. Local Cohomology: key properties and vanishing/non-vanishing theorems, Local Duality,
and the Nagel-Schenzel Isomorphism.

3. Secondary Representations & Attached Primes: their existence for Artinian modules, some
of their interactions with local cohomology, and their duality with associated primes.

4. Binomial Edge Ideals: their primary decompositions and a formula for their heights.

Chapter 2

We first introduce Frobenius actions and the Frobenius functor, then proceed to discuss F -
modules, F -finite F -modules, and some of their important properties.

Next we describe Lyubeznik’s H -functor, as well as an original result providing a corre-
spondence between secondary representations stable under Frobenius actions and primary
decompositions in the category of F -finite F -modules.

Finally, we use this correspondence to deduce another result that we have not found in the
literature: that the category of F -finite F -modules over a ring R is not, in general, closed under
taking primary decompositions.

Chapter 3

In this chapter, we develop graded analogues of local theorems in order to apply our work in
Chapter 1 to binomial edge ideals. Much of this chapter consists of a synthesis of results from
disparate sources to provide a comprehensive account of these local analogues. Some of this
work is done in slightly greater generality than is strictly necessary for the remainder of the
thesis, but we hope that providing a consolidated reference for such results will be of value to
other researchers.

There are however some results which do not seem to have appeared previously in the literature,
such as a partial generalisation to the graded case of a theorem of Macdonald and Sharp.

Chapter 4

The majority of this chapter first appeared in [Wil23a].



4 Outline of Thesis

Our main aim in this chapter is to give a combinatorial characterisation of binomial edge ideals
which are of König type. These were introduced by Herzog, Hibi, and Moradi in [HHM21], as
a generalisation of König graphs, in which the matching number is equal to the vertex cover
number (see [HHM21, Section 1] for the details). A similar characterisation appeared in [LaC23,
Lemma 5.3], however the techniques used in our proofs are very different, and we also obtain a
certain independence result regarding our characterisation.

We then apply this characterisation to prove that certain classes of graphs have binomial edge
ideals of König type, and conjecture that this holds for some other classes also.

We conclude this chapter by calculating an explicit root of the local cohomology module
Hn−1

J (G)(R) as an F -finite F -module, where G is a Hamiltonian graph on n vertices (that is, it
contains a cycle of length n as a subgraph).

Chapter 5

The majority of this chapter first appeared in [Wil23b].

In this chapter, we make use of a Hochster-type formula introduced by Àlvarez Montaner in
[Àlv20] to calculate the local cohomology modules of the complements of connected graphs of
girth at least 5 (that is, they contain no cycles of length 3 or 4 as subgraphs). We then use this
calculation to deduce some properties of the binomial edge ideals of such graphs, and apply
prime characteristic techniques to say even more in that setting.

Chapter 6

The majority of this chapter first appeared in [Wil24].

In our final chapter, we use an exact sequence obtained by applying [Oht11, Lemma 4.8] to
vertices of block graphs with certain properties to calculate the minimal attached primes of
the local cohomology modules of the binomial edge ideals of block graphs. This yields a
combinatorial characterisation of which such local cohomology modules are non-vanishing.

During the writing of this thesis, it was shown by Lax, Rinaldo, and Romeo in [LRR24, Theo-
rem 3.2] that the binomial edge ideals of block graphs are sequentially Cohen-Macaulay (see
Definition 6.4.1). We will show that the main theorem of this chapter follows from their result,
although the techniques used in our original proof of our theorem are very different to those of
[LRR24].

We also provide an example of a graph whose binomial edge ideal has a local cohomology
module with an embedded attached prime.
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Conventions

Throughout this thesis, unless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwise:

• All rings will be unital, commutative, and .

• All modules will be unital.

• All graphs will be finite, simple, and undirected.

• By dimension, we mean Krull dimension, unlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunlessunless our ring is a field k, in which case, for
any k-module M , dimk(M) will denote the dimension of M as a k-vector space.

• By completion, we mean the m-adic completion of a local ring (R,m), or of a module over
such a ring.

• By graded, we mean Z-graded.

General Notation

• R will always denote a ring.

• For anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany ring R:

– We denote by R-Mod the category of R-modules and R-homomorphisms.

– We denote by R-FinMod the subcategory of R-Mod consisting of finitely generated
R-modules and R-homomorphisms.

– We denote by R-ArtMod the subcategory of R-Mod consisting of Artinian R-
modules and R-homomorphisms.

– For any R-modules M and N , we may denote the fact that an R-homomorphism
φ :M → N is an R-isomorphism by writing φ :M ∼−−→ N .

– For any R-module M , we denote by IdM the identity R-homomorphism on M .

– For any ideal a of R, we denote gradeR(a, R) by gradeR(a).

– For any ideals a and b of R, we denote by (a : b) the colon ideal

{r ∈ R : rb ⊆ a} ⊆ R

and by (a : b∞) the saturation
∞⋃
i=0

(a : bi) ⊆ R

We may denote these without brackets when there is no confusion.

For any element r ∈ R, we set (a : r) ··= (a : (r)) and (a : r∞) ··= (a : (r)∞).



6 General Notation

Furthermore, for any R-module M and R-submodule N of M , we set

(N :M a) ··= {m ∈M : aM ⊆ N} ⊆M

and
(N :R M) ··= {r ∈ R : rM ⊆ N} ⊆ R

– For any ideal a of R, we set

V (a) ··= {p ∈ Spec(R) : a ⊆ p}

– For any R-module M and element r ∈ R, we denote by Mr the localisation S−1M of
M at the multiplicatively closed subset

S = {ri : i ≥ 0} ⊆ R

– For any elements r, s ∈ R, we may write r | s to denote that r divides s (that is, there
exists some a ∈ R such that s = ar).

• For each prime p > 0, we denote by Fp the finite field Z/pZ.

• For a matrix A, we denote by AT the transpose of A.

• For any set S, we denote by P(S) the power set of S.

• For any finite set S, we denote by |S| the number of elements of S.

Graph Notation & Terminology

• For any graph G, we denote by V (G) the set of vertices of G, which will always be strictly
positive integers, and by E(G) the set of edges {i, j} of G.

• By K0 we denote the null graph with V (K0) = ∅ and E(K0) = ∅.

• By Km for m ≥ 1, we denote the complete graph with V (Km) = {1, . . . ,m}

• By KS , for a non-empty set of strictly positive integers S, we denote the complete graph
with V (KS) = S.

• We say that a graph G is a clique (on a non-empty set of strictly positive integers S) if it is
a complete graph (with V (G) = S).

• By Ka,b, for a, b ≥ 1, we denote the complete bipartite graph with V (Ka,b) = {1, . . . , a+ b}
and

E(G) = {{v, w} : 1 ≤ v ≤ a and a+ 1 ≤ w ≤ a+ b}

We call the graph K1,m, for m ≥ 1, the star with m edges.
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• By Pm, for m ≥ 1, we denote the path graph with V (Pm) = {1, . . . ,m} and

E(Pm) = {{i, i+ 1} : 1 ≤ i ≤ m− 1}

• By Cm, for m ≥ 2, we denote the cycle graph with V (Cm) = {1, . . . ,m} and

E(Cm) = E(Pm) ∪ {{1,m}}

For m = 1, we set Cm = Pm.

• For any graph G:

– We say that a graph H is in G, or contained in G, if it is a not-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily inducednot-necessarily induced
subgraph of G.

– We say that a vertex v of G is a cut vertex if the induced subgraph of G obtained by
removing v has a greater number of connected components than G.

– We say that a vertex v of G is universal if it is adjacent to every other vertex of G, or
isolated if it is adjacent to no other vertex of G.

– We say that a vertex v of G is a leaf of G if it is adjacent to exactly one other vertex w
of G, in which case we say that the edge {v, w} ∈ E(G) is a leaf edge of G.

– If G is a forest (that is, a disjoint union of trees), we say that any vertex v of G which
is not isolated or a leaf is a branch of G.

– For any vertex v of G, we denote the (open) neighbourhood of v in G by

NG(v) = {w ∈ V (G) : {v, w} ∈ E(G)}

and the closed neighbourhood of v in G by NG[v] = NG(v) ∪ {v}.

– As a slight abuse of notation, for any set of vertices S ⊆ V (G), we denote by G \ S
the induced subgraph of G obtained by removing all vertices in S. For example,
P3 \ {3} = P2.

– As another abuse of notation, for any set S ⊆ N of strictly positive integers, and a set

E = {{i, j} : i, j ∈ S with i ̸= j}

we denote be G ∪ E the graph with vertices V (G) ∪ S and edges E(G) ∪ E. For
example, P2 ∪ {{2, 3}} = P3.



Chapter 1

Preliminaries

1.1 Matlis Duality

Introduced by Matlis in [Mat58], Matlis Duality gives, over a complete local ring, a duality
between Noetherian and Artinian modules. Useful partial results also hold in the not-necessarily
complete case.

We begin with an overview of certain types of injective modules:

1.1.1 Injective Hulls & Cogenerators

We first introduce a special type of R-module extension:

Definition 1.1.1. Let M be an R-module and N an R-submodule of M . We say that M is an essential
extension of N if, for any non-zero R-submodule L of M , we have L ∩N ̸= 0.

Definition 1.1.2. Let M be an R-module. We say that an injective R-module E is an injective hull of
M if M is an R-submodule of E and E is an essential extension of M .

Note. Some sources refer to injective hulls as injective envelopes.

Proposition 1.1.3. [BH05, Proposition 3.2.4] Let M be an R-module. Then:

i) M admits an injective hull.

ii) If E1 and E2 are both injective hulls of M , then there exists an R-isomorphism φ : E1
∼−−→ E2

such that the diagram
M

E1 E2
∼
φ

commutes.

8
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Notation 1.1.4. Let M be an R-module. By Proposition 1.1.3, it makes sense to talk about the injective
hull of M , which we will denote ER(M).

Injective hulls behave well with respect to localisation:

Proposition 1.1.5. [BH05, Lemma 3.2.5] Let M be an R-module, and S a multiplicatively closed
subset of R. Then

S−1ER(M) ∼= ES−1R(S
−1M)

We next introduce another class of injective modules, and an important example of such a
module:

Definition 1.1.6. Let E be an injective R-module. We say that E is an injective cogenerator of R if,
for any non-zero R-module M , HomR(M,E) is also non-zero.

Proposition 1.1.7. [Mat86, Theorem 18.6 (i)] Suppose that (R,m) is local. Then ER(R/m) is an
injective cogenerator of R.

1.1.2 The Matlis Module & The Duality Theorem

Throughout this subsection, we assume that (R,m) is local.

With these concepts in hand, we now present the main result of this section:

Definition 1.1.8. We define the Matlis Duality functor to be

−∨ ··= HomR(−, ER(R/m)) : R-Mod→ R-Mod

ER(R/m) is sometimes called the Matlis module of R.

Note that this functor is exact since ER(R/m) is injective.

For any R-module M , we say that M∨ is the Matlis dual of M .

Note. Some sources denote −∨ as D(−) or −∗.

Theorem 1.1.9 (Matlis Duality). Let M be a Noetherian R-module, N an Artinian R-module, and L
any R-module. Then:

i) L ↪→ L∨∨.

ii) M∨ is Artinian.

Furthermore, if R is also complete, then

iii) N∨ is Noetherian.
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iv) M∨∨ ∼=M and N∨∨ ∼= N .

Proof.

i) See [BS13, Remarks 10.2.2].

ii) See [BS13, Theorem 10.2.19 (ii)].

iii) See [BS13, Theorem 10.2.12 (iii)].

iv) See [BS13, Theorem 10.2.12 (ii) & (iii)].

Another useful property of the Matlis Duality functor is the following:

Proposition 1.1.10. [BS13, Remarks 10.2.2 (ii)] Let M be an R-module. Then

AnnR(M) = AnnR(M
∨)

It is also worth noting a few further properties of the Matlis Module:

Proposition 1.1.11. [BS13, Corollary 10.2.8] Suppose that (R,m) is local, and let M be an R-module.
Then M is Artinian if and only if M ↪→ ER(R/m)t for some t ≥ 0.

This is similar to the fact that an R-module M is Noetherian if and only if Rt ↠ M for some
t ≥ 0 (since R is Noetherian).

Proposition 1.1.12. [BS13, Remark 10.2.9 & Theorem 10.2.11] ER(R/m) has a natural R̂-action.
Furthermore, for every φ ∈ ER(R/m)∨, there exists some r̂φ ∈ R̂ such that φ : e 7→ r̂φe for all
e ∈ ER(R/m), and

ER(R/m)∨ ∼= R̂

as R-modules via φ 7→ r̂φ.

Remark 1.1.13. When R is complete, Proposition 1.1.12 tells us that every R-homomorphism
fromER(R/m) to itself is given by multiplication by some element ofR, andR-homomorphisms
from ER(R/m)t to ER(R/m) for t ≥ 1 are given by diagonal t× t matrices with entries in R.

For example, take any R-homomorphism φ : ER(R/m)2 → ER(R/m). φ can be viewed as the
sum of two R-homomorphisms from ER(R/m) to itself, and so will act on each component by
multiplication. Then

φ :

e1
e2

 7→ rφe1 + sφe2 =

rφ 0

0 sφ

e1
e2


for some rφ, sφ ∈ R.

We will make use of this observation in the proof of Proposition 2.2.15.
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1.2 Local Cohomology

1.2.1 Definitions & First Properties

Introduced in its geometric form by Grothendieck in the 1960s (see [GH67]) to prove various
connectedness theorems in algebraic geometry (see, for example, [Gro68]), local cohomology
has since found widespread use in its algebraic form across commutative algebra.

There are several equivalent ways to define local cohomology algebraically, each with their own
advantages. We will discuss several here, beginning with a purely functorial description:

Definition 1.2.1. Let a be an ideal of R, and M and N R-modules. We define the a-torsion functor

Γa : R-Mod→ R-Mod

on M by setting
Γa(M) ··= {m ∈M : aim = 0 for some i ≥ 0}

and on an R-homomorphism φ :M → N by setting Γa(φ) ··= φ|Γa(M).

Proposition 1.2.2. [BS13, Lemma 1.1.6] Let a be an ideal of R. Then Γa is left-exact.

Definition 1.2.3. Let a be an ideal of R, and i ≥ 0. Since Γa is left-exact by Proposition 1.2.2, we may
define the ith local cohomology functor with support at a to be the ith right derived functor of Γa,
which we will denote H i

a.

That is, given an R-module M , we take an injective resolution

0 M I0 I1 I2 · · ·

of M (which we can do since R-Mod has enough injectives, see, for example, [BH05, Theorem 3.1.8])
and consider the cochain complex

0 Γa(I
0) Γa(I

1) Γa(I
2) · · ·δ−1 δ0 δ1 δ2

Then H i
a(M) ··= ker(δi)/ Im(δi−1). By general homological arguments, this construction does not

depend on the choice of injective resolution. Given an R-module N and R-homomorphism M → N , we
naturally obtain an R-homomorphism H i

a(M) → H i
a(N), and given an R-module L and short exact

sequence
0 N M L 0



12 Preliminaries

of R-modules, we naturally obtain a long exact sequence

· · · H i
a(N) H i

a(M) H i
a(L)

H i+1
a (N) H i+1

a (M) H i+1
a (L) · · ·

of R-modules. Furthermore, H0
a = Γa. See, for example, [Rot09, Section 6.2.3] for the details.

Note. It can be checked (and will be particularly clear from Definition / Theorem 1.2.7) that if a map
between two R-modules is given by r· for some r ∈ R, then the induced map on each of their local
cohomology modules is also given by this same multiplication.

This definition immediately allows us to deduce several useful properties of local cohomology:

Proposition 1.2.4. [Iye+07, Proposition 7.3 (2)] Let a and b be ideals of R such that
√
a =
√
b. Then

we have H i
a = H i

b as functors.

Proof. Since R is Noetherian, we have (
√
a)s ⊆ a and (

√
b)t ⊆ b for some s, t ≥ 0, so

at ⊆ (
√
a)t = (

√
b)t ⊆ b

and
bs ⊆ (

√
b)s = (

√
a)s ⊆ a

Then if an element is killed by some power of b, it must also be killed by some power of a, and
vice versa. This shows that Γa = Γb as functors, and so their derived functors H i

a and H i
b agree

also.

Proposition 1.2.5. Let a be an ideal of R, M an R-module, and i ≥ 0. Then for any p ∈ AssR(H
i
a(M)),

we have a ⊆ p.

Proof. Since p ∈ AssR(H
i
a(M)), we have p = AnnR(h) for some h ∈ H i

a(M). Take any a ∈ a.
With notation as in Definition 1.2.3, h is the equivalence class of an element of ker(δi) under
Im(δi+1). In particular, ajh = 0 for some j ≥ 0. Then aj ∈ p, so since p is prime we have a ∈ p,
and we are done.

Proposition 1.2.4 and Proposition 1.2.5 justify the geometric interpretation of local cohomology:
by Hilbert’s Nullstellensatz, in a polynomial ring over an algebraically closed field, ideals
with the same radical give rise to the same affine variety, so one would hope that their local
cohomology modules agree, and the fact that a is contained in any associated prime of H i

a(M)

justifies the use of the terminology “local cohomology with support at a”.

Our second definition (intuitively) follows quickly from the first:
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Definition / Theorem 1.2.6. Let a be an ideal of R. Then there is a natural isomorphism of functors

H i
a(−) ∼= lim−→ ExtiR(R/a

j ,−)

from R-Mod to R-Mod for all i ≥ 0.

Sketch of Proof. Note that there is a natural isomorphism of functors

Γa(−) ∼= lim−→ HomR(R/a
j ,−)

from R-Mod to R-Mod since, for any R-module M , we have

HomR(R/a
j ,M) ∼= (0 :M aj)

naturally via φ 7→ φ(1).

The direct system on the HomR(R/a
j ,−) induced by the natural projection R/aj+1 ↠ R/aj

is an example of a filtered colimit (see [Eis95, p. 709]), and so taking right derived functors
here commutes with the direct limit (this follows, for example, from [Eis95, Proposition A6.4]),
which yields the result. For a careful proof of this, see [BS13, Theorem 1.3.8].

The utility of this definition will become apparent later in this thesis (for example, in Proposi-
tion 2.1.23).

The last definition we will consider here comes from the cohomology of a certain Čech complex:

Definition / Theorem 1.2.7. [BH05, Theorem 3.5.6] Let a = (a1. . . . , at) be an ideal of R.

Set
Λ = P({1, . . . , t})

For any S ∈ Λ, let

a(S) =
∏
i∈S

ai ∈ R

with a(∅) = 1.

Furthermore, for any S ∈ Λ and 1 ≤ i ≤ t, set

σS,i = |{j ∈ S : j < i}|

We denote by C• the cochain complex

0 C0 C1 · · · Ct−1 Ct 0
δ−1 δ0 δ1 δt−2 δt−1 δt
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where
Cm =

⊕
S∈Λ
|S|=m

Ra(S)

(recall that Ra(S) denotes the localisation of R at the powers of a(S)), and δm : Cm → Cm+1 (for
0 ≤ m ≤ t− 1) is defined componentwise on each summand, with

r

a(S)l
7→ (−1)σS,i alir

a(T )l

when T = S ⊔ {i} for some 1 ≤ i ≤ t, and the zero map otherwise.

Then there is a natural isomorphism of functors

H i
a(−) ∼= H i(C• ⊗R −)

from R-Mod to R-Mod for all i ≥ 0.

This definition immediately allows us to deduce some other important properties of local
cohomology:

Theorem 1.2.8. [BS13, Theorem 3.3.1] Let a = (a1, . . . , at) be an ideal of R, and M an R-module.
Then H i

a(M) = 0 for all i > t.

Note. By Proposition 1.2.4, we can use Theorem 1.2.8 to bound the arithmetic rank of an ideal (that is,
its minimum number of generators up to radical).

Theorem 1.2.9 (The Independence Theorem). [BS13, Theorem 4.2.1] Let a be an ideal of R, S a
ring, and φ : R→ S a ring homomorphism. We can then view any S-module as an R-module, with the
R-action induced by φ. Then there is a natural isomorphism of functors

H i
aS(−) ∼= H i

a(−)

from S-Mod to R-Mod for all i ≥ 0.

Theorem 1.2.10 (The Flat Base Change Theorem). [BS13, Theorem 4.3.2] Let a be an ideal of R, S
a ring, and φ : R→ S a ring homomorphism. We can then view any S-module as an R-module, with
the R-action induced by φ. Then if φ is flat, there is a natural isomorphism of functors

S ⊗R H i
a(−) ∼= H i

aS(S ⊗R −)

from R-Mod to S-Mod for all i ≥ 0.

The following two corollaries of the Flat Base Change Theorem are of particular importance:

Corollary 1.2.11. Let a be an ideal of R, and T a multiplicatively closed subset of R. Then there is a
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natural isomorphism of functors

T−1H i
a(−) ∼= H i

aT−1R(T
−1−)

from R-Mod to T−1R-Mod for all i ≥ 0.

Proof. This follows immediately from the Flat Base Change Theorem, since localisation is flat
(see, for example, [Eis95, Theorem 7.2]).

Corollary 1.2.12. Suppose that (R,m) is local, and let a be an ideal of R. Then there is a natural
isomorphism of functors

R̂⊗R H i
a(−) ∼= H i

aR̂
(R̂⊗R −)

from R-Mod to R̂-Mod for all i ≥ 0.

Proof. This follows immediately from the Flat Base Change Theorem, since completion is flat
(see, for example, [Mat86, Theorem 8.8]).

When R is local, since completion is faithfully flat (see, for example, [Mat86, Theorem 8.1 (3)]),
Corollary 1.2.12 often allows us to assume that our ring is complete when we are investigating
the vanishing of local cohomology modules. By Cohen’s Structure Theorem (see [Coh46]), in
many cases (for example, in prime characteristic), we may assume that our ring is the quotient
of the power series ring over a field. Coupled with applying the Independence Theorem to the
natural projection from this power series ring onto its quotient, we can sometimes simply work
over the power series ring itself, the properties of which are well understood.

Note. There is another commonly used definition of local cohomology based on a direct limit of the
cohomology of certain Koszul complexes, however we will not need this for our purposes. See [BS13,
Section 5.2] for the details.

One drawback of local cohomology modules is that they are not, in general, finitely generated.
In fact, when (R,m) is local and M a finitely generated R-module of dimension d > 0, Hd

m(M)

cannot be finitely generated (see [BS13, Corollary 7.3.3]). However, the following theorem allows
us in some sense to compensate for this:

Theorem 1.2.13. [BS13, Theorem 7.1.3] Suppose that (R,m) is local, and let M be a finitely generated
R-module. Then H i

m(M) is Artinian for all i ≥ 0.

Note. When (R,m) is a complete local ring, by Theorem 1.2.13 and Matlis Duality (iii) we then have
that H i

m(M)∨ is finitely generated, and so is often much easier to work with than H i
m(M) itself. We will

see in Subsection 1.2.3 that, in certain cases, we can explicitly describe these duals.

We can also describe (Castelnuovo-Mumford) regularity using local cohomology. For an
introduction to regularity, and its significance, see, for example, [Eis05, Section 4A]. We begin
with a definition:
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Definition 1.2.14. Suppose that R is a polynomial ring over a field with the standard grading, and
denote by m the irrelevant ideal of R. Let M be a graded R-module. Then, denoting by Md the dth
graded component of M , we set

endR(M) ··= max{d ∈ Z :Md ̸= 0}

with endR(M) =∞ if no such d exists, or endR(M) = −∞ if M = 0.

Theorem 1.2.15. [Eis05, Corollary 4.5] Suppose that R is a polynomial ring over a field with the
standard grading, and let m denote the irrelevant ideal of R. For any finitely generated graded R-module
M , we will see in Lemma 3.2.4 that H i

m(M) is also graded for each i ≥ 0. Then we have

regR(M) = max{endR(H i
m(M)) + i : i ≥ 0}

With these properties established, we will next explicitly compute an example of an important
local cohomology module:

Example 1.2.16. [Iye+07, Example 7.16] Let R = k[x1, . . . , xn] for some field k and n ≥ 1, and
let m be the irrelevant ideal of R. We will compute Hn

m(R).

Note. The same result, with minor modifications to this calculation, also holds for R = k[[x1, . . . , xn]].

Set y = x1 · · ·xn, and

zi =
n∏
j=1
j ̸=i

xj

for 1 ≤ i ≤ n.

Then by Definition / Theorem 1.2.7, computing Hn
m(R) amounts to computing

coker

 n⊕
i=1

Rzi
δn−1

−−−→ Ry

= Ry /

 n∑
i=1

δn−1(Rzi)


where δn−1 is given by the natural maps

r

zti
7→ xtir

yt

up to some sign, but since the sign does not affect the image we can ignore it here.

Note that Ry ∼= k(x1, . . . , xn), the ring of Laurent polynomials in n variables over k, as R-
modules.

Furthermore, viewing each element of element of δn−1(Rzi) as a Laurent polynomial, the lowest
exponent of xi which can appear in each term is 0. Then quotienting out the sum of these
R-modules in Ry leaves us with the R-submodule of k[x−1

1 , . . . , x−1
n ] in which, in each term of
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every element, every xi has strictly negative degree. R acts on k[x−1
1 , . . . , x−1

n ] as one would
expect, but if under multiplication any element of a term would be raised to an exponent greater
than 0, that term is killed.

In other words, Hn
m(R) is generated over k by the set of monomials

{x−a11 · · ·x−ann : ai ≥ 1 for all 1 ≤ i ≤ n}

with the expected R-action, subject to the condition that

xi(x
−1
1 · · ·x

−1
n ) = 0

for all 1 ≤ i ≤ n. Notice that this is not a finitely generated R-module.

As a simple application of Example 1.2.16, take n = 1, and considerH1
(x)(k[x]). From a geometric

point of view, the fact that the equivalence class of 1
x in this module is non-vanishing corresponds

to the fact that we cannot extend the domain of 1
x to the whole of A1

k (see [BS13, Remark 2.3.3]).

When k is algebraically closed, by Serre’s Affineness Criterion (see, for example, [BS13, Theorem
6.4.4]), the non-vanishing of Hn

m(R) tells us that Ank \{0} is not affine for any n ≥ 2.

For an ideal a of R with t generators, we can also compute a useful description of Ht
a(R), after

first introducing some notation:

Notation 1.2.17. For an ideal a = (a1, . . . , at) of R, and l ≥ 1, we set

a[l] ··= (al1, . . . , a
l
t)

Proposition 1.2.18. [BS13, Exercise 5.3.7] Let a = (a1, . . . , at) be an ideal of R, and set a = a1 · · · at.
Then

Ht
a(R)

∼= lim−→

[
R/a

a·−−→ R/a[2]
a·−−→ R/a[3]

a·−−→ · · ·
]

(where a· denotes multiplication by a).

Proof. Set
ai = a1 · · · ai−1ai+1 · · · at

for 1 ≤ i ≤ t.

Then we have
Ht

a(R)
∼= coker(δt−1)

where

δt−1 :
t⊕
i=1

Rai → Ra

is the map detailed in Definition / Theorem 1.2.7.
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This means that a typical element of Ht
a(R) looks like [ r

ai
] for some r ∈ R and i ≥ 0, with the

brackets denoting the fact that this is really an equivalence class of elements.

Furthermore, a typical element of the direct limit system in the statement of the proposition
looks like [r + a[i]] for some r ∈ R and i ≥ 0, where again the brackets denote the fact that this
is really an equivalence class of elements.

By [BS13, Lemma 5.3.2 (ii)], we have that [ r
ai
] = 0 if and only if there exists some l ≥ i such that

al−ir ∈ a[l]. It is then easily checked that the map [r + a[i]] 7→ [ r
ai
] is well-defined and yields an

isomorphism between the direct limit system and Ht
a(R).

1.2.2 Vanishing & Non-Vanishing Theorems

Much of the utility of local cohomology comes from its ability to compute or bound many
important invariants of R-modules. We have already seen that local cohomology can be used to
bound the arithmetic rank of an ideal, and to characterise regularity. We will see next that it
also gives information about dimension, grade, depth, and (in certain cases) height.

We begin with two general results:

Theorem 1.2.19 (Grothendieck’s Vanishing Theorem). [BS13, Theorem 6.1.2] Let a be an ideal of
R, and M an R-module. Then H i

a(M) = 0 for all i > dimR(M).

Theorem 1.2.20. [BS13, Theorem 6.2.7] Let a be an ideal of R, and let M be a finitely generated
R-module such that aM ̸=M . Then gradeR(a,M) is the least integer i such that H i

a(M) ̸= 0.

When R is local, we can precisely characterise dimension using local cohomology:

Theorem 1.2.21 (The Non-Vanishing Theorem). [BS13, Theorem 6.1.4] Suppose that (R,m) is
local, and let M be a non-zero finitely generated R-module of dimension d. Then Hd

m(M) ̸= 0.

Note. We will see a refined version of the Non-Vanishing Theorem in Theorem 1.3.8, which gives us
further information about these local cohomology modules.

Corollary 1.2.22. Suppose that (R,m) is local, and let M be a non-zero finitely generated R-module.
Then dimR(M) is the greatest integer i such that H i

m(M) ̸= 0.

Proof. The result follows immediately from Grothendieck’s Vanishing Theorem and the Non-
Vanishing Theorem.

Again when R is local, we can also use local cohomology to calculate depth:

Corollary 1.2.23. Suppose that (R,m) is local, and let M be a non-zero finitely generated R-module.
Then depthR(M) is the least integer i such that H i

m(M) ̸= 0.
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Proof. Nakayama’s Lemma tells us that mM ̸=M since M is non-zero and finitely generated,
and so applying Theorem 1.2.20 with a = m yields the desired result.

Note. We will refer to the non-vanishing local cohomology modules at the highest and lowest indices as
the top and bottom local cohomology modules respectively.

We can then use local cohomology to determine when a finitely generated R-module over a
local ring (R,m) is Cohen-Macaulay:

Corollary 1.2.24. Suppose that (R,m) is local, and let M be a non-zero finitely generated R-module.
Then M is Cohen-Macaulay if and only if H i

m(M) ̸= 0 for i = dimR(M) and vanishes otherwise.

Proof. This is immediate from Corollary 1.2.22 and Corollary 1.2.23.

Local cohomology has many useful properties in prime characteristic, which we will see more
of in Chapter 2. We state one here:

Theorem 1.2.25. [Iye+07, Theorem 21.29] Suppose that R is a regular domain of prime characteristic
p > 0, and let a be an ideal of R. Then if R/a is Cohen-Macaulay, we have that H i

a(R) = 0 for
i ̸= heightR(a).

1.2.3 Canonical Modules & Local Duality

Throughout this subsection, we assume that (R,m) is local.

Canonical modules were, again, introduced by Grothendieck (see [GH67, Section 5]), mainly to
prove results such as Local Duality. We begin with the definition of [BS13, Definition 12.1.2]:

Definition 1.2.26. Let n = dim(R). We say that a finitely generated R-module C is a canonical
module of R if

C∨ ∼= Hn
m(R)

Note. In some sources (for example, [GH67]), canonical modules are instead called dualising modules.

Importantly, when such modules exist, they are unique:

Proposition 1.2.27. [BS13, Theorem 12.1.6] Suppose that C1 and C2 are both canonical modules of
R. Then C1

∼= C2.

Notation 1.2.28. By Proposition 1.2.27, it makes sense to talk about the canonical module of R (when
one exists), which we will denote as ωR.
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Not every local ring has a canonical module. In fact, not even every Cohen-Macaulay local ring
has a canonical module (see, for example, [Nis12, Example 6.1]). However, we can describe
exactly which Cohen-Macaulay local rings have canonical modules:

Proposition 1.2.29. [BS13, Remark 12.1.26 & Remarks 12.1.3 (v)] Suppose that R is Cohen-
Macaulay. Then R has a canonical module if and only if it is the homomorphic image of a Gorenstein
local ring.

In particular, whenR is also complete, it has a canonical module by Cohen’s Structure Theorem ([Coh46]).

Furthermore, we can characterise Gorenstein local rings using canonical modules:

Proposition 1.2.30. [BS13, Corollary 12.1.22] Suppose that R is Cohen-Macaulay. Then R is
Gorenstein if and only if ωR ∼= R.

They also behave well with respect to localisation and completion:

Proposition 1.2.31. [BS13, Theorem 12.1.18 (ii)] Suppose thatR is Cohen-Macaulay, and furthermore
that it has a canonical module ωR. Then, for any p ∈ Spec(R), (ωR)p is the canonical module of Rp (and
so we may denote it as ωRp).

Proposition 1.2.32. [BS13, Remarks 12.1.3 (ii)] Suppose that R has a canonical module ωR. Then ω̂R
is the canonical module of R̂ (and so we may denote it as ω

R̂
).

It was mentioned in the note following Theorem 1.2.13 that, in some cases, we can explicitly
describe the Matlis duals of local cohomology modules. We do this via Local Duality, which was
first proved by Grothendieck (in much greater generality than we will need here, see [Har66,
Chapter V]):

Theorem 1.2.33 (Local Duality). [BS13, Theorem 12.1.20 (ii)] Suppose that (R,m) is a Cohen-
Macaulay local ring of dimension n, and furthermore that it has a canonical module ωR (in particular,
when R is also complete by Proposition 1.2.29). Then there is a natural isomorphism of functors

H i
m(−) ∼= Extn−iR (−, ωR)∨

from R-FinMod to R-Mod for all 0 ≤ i ≤ n (that is, the isomorphism holds when the argument of H i
m

is finitely generated).

This is particularly useful when performing explicit calculations. For example, say we were
interested in the vanishing of local cohomology modules over R = k[x1, . . . , xn] for some finite
field k and n ≥ 0. Then, for any finitely generated R-module M , we can explicitly compute
ExtiR(M,R) for any i ≥ 0 using computer algebra systems such as Macaulay2. Since R̂ is
Gorenstein local, by Proposition 1.2.30 we have ω

R̂
∼= R̂. Then by Corollary 1.2.12 and Local

Duality, we can compute all i for which H i
m(M) ̸= 0 (where m is the irrelevant ideal of R), since
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we know that H i
m(M) = 0 for all i ≥ n ≥ dimR(M) by Grothendieck’s Vanishing Theorem and

we can compute dimR(M).

1.2.4 The Nagel-Schenzel Isomorphism

Parts of this subsection first appeared in [Wil23a].

We conclude this section on local cohomology with a result of Nagel and Schenzel from [NS94].
Before giving its statement, we must introduce a generalisation of regular sequences. We first
recall the definition of regular sequences themselves:

Definition 1.2.34. Let M be an R-module. A sequence of elements r1, . . . , rt ∈ R is said to be an
M-sequence if, for each 1 ≤ i ≤ t, ri is a non-zerodivisor on

R/(r1, . . . , ri−1)

When M = R, we simply call such a sequence a regular sequence.

Unless specified otherwise, we will assume that an M -sequence r1, . . . , rt is proper, by which we mean
that

R/(r1, . . . , rt) ̸= 0

We now define a generalisation:

Definition 1.2.35. [HQ19, Lemma 2.4] Let I be an ideal of R, and M a finitely generated R-module.
A sequence of elements r1, . . . , rt ∈ I is called I-filter regular on M if, for all p ∈ SuppR(M) \ V (I)

and i ≤ t such that r1, . . . , ri ∈ p, we have that r11 , . . . ,
ri
1 is a (possibly improper) Mp-sequence.

When M = R, we simply say that such a sequence is I-filter regular.

In a local ring, or in certain graded contexts, any permutation of a regular sequence is again a
regular sequence (see, for example, [BS13, Proposition 1.1.6] and [Mat86, Theorem 16.3]). This
is not the case with I-filter regular sequences. For example, take a field k, and set

R = k[[x, y, z]]/(xy, xz)

Then it is noted in [MQS20, p. 246] that x+ y, z is an (x, y, z)-filter regular sequence, but z, x+ y

is not (in fact, even just z is not).

However, unlike regular sequences, there always exist I-filter regular sequences of arbitrary
length:

Proposition 1.2.36. [AS03, Proposition 2.2] Let I be an ideal of R, and M and R-module. Then, for
any t ≥ 1, there exists a sequence of elements r1, . . . , rt ∈ I which is I-filter regular on M .

We are now ready to state the main theorem of this subsection:
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Theorem 1.2.37 (The Nagel-Schenzel Isomorphism). [NS94, Lemma 3.4] Let I be an ideal of R,
and M a finitely generated R-module. Furthermore, let r1, . . . , rt be an I-filter regular sequence on M ,
and set a = (r1, . . . , rt). Then

H i
I(M) ∼=

H
i
a(M) if 0 ≤ i < t

H i−t
I (Ht

a(M)) if i ≥ t

In particular, for i = t, we have

Ht
I(M) ∼= H0

I (H
t
a(M)) = ΓI(H

t
a(M))

Note. The Nagel-Schenzel Isomorphism is stated in [NS94, Lemma 3.4] only for local rings (R,m) and
m-filter regular sequences on finitely generated R-modules. [AS03, Proposition 2.3] naturally generalises
this to I-filter regular sequences on finitely generated R-modules. In both of these papers, the proof of the
isomorphism makes use of spectral sequences. For an elementary proof, and of a slightly more general
result, see [HQ19, Theorem 2.7].

1.3 Secondary Representations & Attached Primes

Parts of this section first appeared in [Wil24].

1.3.1 Definitions & First Properties

Note. Whilst we assume that R is Noetherian, many of the results in this section hold without this
assumption. See, for example, [Mac73] for statements of some such results with more precise conditions.

Secondary representations were introduced independently by Kirby in [Kir73] (there called “co-
primary decompositions”), Macdonald in [Mac73], and Moore in [Moo73] (again as “coprimary
decompositions”), with Kirby’s being the first paper received.

They represent a dual notion to the theory of primary decompositions, in a sense we will make
precise.

We begin with their definitions:

Definition 1.3.1. We say that a non-zero R-module S is secondary if, for each r ∈ R, either rS = S

or rmS = 0 for some m ≥ 1.

In this case, p =
√

AnnR(S) is prime, and we say that S is p-secondary.

Definition 1.3.2. Let M be an R-module. If there exist pi-secondary R-submodules Si of M such that

M = S1 + · · ·+ St
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for some t ≥ 1, then we call this a secondary representation of M , and M is said to be representable.

Such a representation is said to be minimal when

i) The pi are all distinct.

ii) For every 1 ≤ i ≤ t, we have

Si ⊈
t∑

j=1
j ̸=i

Sj

Note. It is easily shown that the sum of any two p-secondary modules is p-secondary, and so any
secondary representation can be refined to be minimal.

We can already see some duality here, for anR-moduleM , anR-submoduleN ofM is p-primary
for some p ∈ Spec(R) if and only if multiplication by each element of R is either injective or
nilpotent on M/N , whereas it is p-secondary if multiplication by each element of R is either
surjective or nilpotent on N .

There is a useful alternative characterisation of secondary modules (when R is Noetherian),
dual to the fact that an R-module M has p ∈ Spec(R) as an associated prime if and only if we
can embed R/p into M :

Proposition 1.3.3. [Mac73, (2.5)] Let M be an R-module, and p ∈ Spec(R). Then M is p-secondary
if and only if there exists some R-submodule N of M such that AnnR(M/N) = p.

There are several uniqueness theorems concerning secondary representations. The first allows
us to define a notion dual to associated primes:

Theorem 1.3.4. [Mac73, (2.2)] LetM be a representableR-module, and Si the pi-secondary summands
in a minimal secondary representation of M for some t ≥ 1. Then both t and the set {p1, . . . , pt} are
independent of the choice of minimal secondary representation.

Definition 1.3.5. Let M be a representable R-module, and Si the pi-secondary summands in a minimal
secondary representation of M for some t ≥ 1. Then we set

AttR(M) ··= {p1, . . . , pt}

and these are said to be the attached primes of M .

If an attached prime is minimal (with respect to inclusion) in this set, we say that it is isolated, otherwise
we say that it is embedded.

The second shows that the secondary modules in a secondary representation corresponding to
the isolated attached primes are unique:
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Theorem 1.3.6. Let M be a representable R-module, and S the component in a minimal secondary
representation of M corresponding to an isolated attached prime p. Then

S =
⋂

r∈R\p

rM

Furthermore, if M is Artinian, then S = aM for some a ∈ R \ p.

Proof. For the first claim, apply [Mac73, (3.1)] to R \ p.

For the second, note that any chain

M ⊇ r1M ⊇ (r1M) ∩ (r2M) ⊇ (r1M) ∩ (r2M) ∩ (r3M) ⊇ · · ·

with ri ∈ R must stabilise since M is Artinian. Then

S =
⋂

r∈R\p

rM =

l⋂
i=1

aiM

for some ai ∈ R \ p and l ≥ 1. Let a = a1 · · · al. This also belongs to R \ p since p is prime, so we
have

S =
l⋂

i=1

aiM ⊇ aM ⊇
⋂

r∈R\p

rM = S

and the result follows.

In the same way that any Noetherian module has a primary decomposition, the following is
true of Artinian modules:

Theorem 1.3.7. [Mac73, (5.2)] Let M be an Artinian R-module. Then M is representable.

In particular, when (R,m) is local, H i
m(M) is representable for any finitely generated R-module

M and i ≥ 0 by Theorem 1.2.13 and Theorem 1.3.7. This leads us to the alternative version of
the Non-Vanishing Theorem which was mentioned earlier, proved by Macdonald and Sharp in
[MS72]:

Theorem 1.3.8. [MS72, Theorem 2.2] Suppose that (R,m) is local, and let M be a finitely generated
R-module of dimension d. Then

AttR(H
d
m(M)) = {p ∈ AssR(M) : dim(R/p) = d}

1.3.2 Duality with Primary Decompositions & Associated Primes

Throughout this subsection, we assume that (R,m) is local.



1.3. Secondary Representations & Attached Primes 25

As mentioned at the start of this section, secondary representations are in a certain sense dual
to primary decompositions. This duality can be made explicit over local rings using Matlis
Duality. We begin by “converting” primary decompositions into secondary representations:

Lemma 1.3.9. [Sha76, Section 3.2] LetM be a NoetherianR-module, andN a p-primaryR-submodule
of M for some p ∈ AssR(M). Then (M/N)∨ is a p-secondary R-submodule of M∨.

Lemma 1.3.10. [Sha76, Sections 3.3 – 3.5] Let M be a Noetherian R-module with minimal primary
decomposition

Q1 ∩ · · · ∩Qt = 0 ⊆M

with each Qi being pi-primary for some pi ∈ AssR(M).

Then
M∨ = (M/Q1)

∨ + · · ·+ (M/Qt)
∨

is a minimal secondary representation of M∨, with each (M/Qi)
∨ being pi-secondary. In particular

AttR(M
∨) = AssR(M)

The dual results are also well known, we present proofs here for convenience:

Lemma 1.3.11. LetM be anR-module, andN a p-secondaryR-submodule ofM for some p ∈ AttR(M).
Then (M/N)∨ is a p-primary R-submodule of M∨.

Proof. Note that the elements of (M/N)∨ are maps from M/N to ER(R/m), which we may view
as the maps from M to ER(R/m) such that N lies in their kernel.

Let
L =M∨/(M/N)∨

We want to show that multiplication by each element of p is nilpotent on L, and that multiplica-
tion by each element of R \ p is injective on L.

First, take any r ∈ p, so rmN = 0 for some m ≥ 1 since N is p-secondary. Then for any φ ∈M∨,
we have that

rmφ(N) = φ(rmN) = φ(0) = 0

so rmφ ∈ (M/N)∨, and therefore multiplication by r is nilpotent on L.

Next, take any r ∈ R \ p and suppose that, for some φ ∈M∨, we have rφ ∈ (M/N)∨. That is,
rφ(N) = 0. Since N is p-secondary, we have rN = N , and so

φ(N) = φ(rN) = rφ(N) = 0

Then φ ∈ (M/N)∨, so multiplication by r is injective on L, and we are done.



26 Preliminaries

Lemma 1.3.12. Let M be a representable R-module with minimal secondary representation

M = S1 + · · ·+ St

with each Si being pi-secondary for some pi ∈ AttR(M).

Then
(M/S1)

∨ ∩ · · · ∩ (M/St)
∨ = 0 ⊆M∨

is a minimal primary decomposition of M∨, with each (M/Si)
∨ being pi-primary. In particular

AssR(M
∨) = AttR(M)

Proof. Take any A ⊆ {1, . . . , t}, and let

SA =
∑
i∈A

Si

Furthermore, let
Ui = {φ ∈M∨ : Si ⊆ ker(φ)}

and
UA = {φ ∈M∨ : SA ⊆ ker(φ)}

Then (M/Si)
∨ ∼= Ui and (M/SA)

∨ ∼= UA as R-modules. Each Ui is pi-primary by Lemma 1.3.11.

We have the exact sequence

0 SA M M/SA 0

so taking Matlis duals gives us the exact sequence

0 UA M∨ S∨
A 0

Now, ER(R/m) is an injective cogenerator for R by Proposition 1.1.7, and so by exactness we
have that UA = 0 if and only if SA =M . Set

IA =
⋂
i∈A

Ui

Let φ ∈M∨. If Si ⊆ ker(φ) for each i ∈ A, then certainly SA ⊆ ker(φ), so IA ⊆ UA. Conversely,
if SA ⊆ ker(φ) then Si ⊆ SA ⊆ ker(φ) for each i ∈ A, so UA ⊆ IA. Then IA = UA, and so the
result follows by the minimality of the secondary representation of M .
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1.4 Binomial Edge Ideals

Throughout this section, we set

R = k[x1, . . . , xn, y1, . . . , yn]

for some field k and n ≥ 1, and δi,j ··= xiyj − xjyi.

Parts of this section first appeared in [Wil23a].

1.4.1 Definition & First Properties

Binomial edge ideals were introduced in [Her+10], and independently in [Oht11]. There is a rich
interplay between the algebraic properties of these ideals and the combinatorial properties of
the corresponding graph. For an overview of some of these interactions, see [HHO18, Chapter
7].

We begin with their definition:

Definition 1.4.1. Let G be a graph. We define the binomial edge ideal of G as

J (G) ··= (δi,j : {i, j} ∈ E(G))

We may also denote this ideal as JG.

A key fact about binomial edge ideals is the following:

Theorem 1.4.2. [Her+10, Corollary 2.2] Binomial edge ideals are radical.

In fact, an explicit description of the primary decomposition can be given by purely combinato-
rial means, but we must first introduce some notation:

Notation 1.4.3. LetG be a graph, and S ⊆ V (G). Denote by cG(S) the number of connected components
of G \ S (we will just write c(S) when there is no confusion). Then we set

C(G) ··= {S ⊆ V (G) : S = ∅ or c(S \ {v}) < c(S) for all v ∈ S}

That is, when we “add back” any vertex in S ∈ C(G) to G \ S, it must reconnect at least two separate
connected components of G \ S.

Example 1.4.4. Let

G =

1 2

3

45

6
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Then
C(G) = {∅, {1}, {1, 4}, {2, 4}, {2, 5}}

Notation 1.4.5. Let G be a graph, and S ⊆ V (G). Denote by G1, . . . , Gc(S) the connected components
of G \ S, and let G̃i be the complete graph with vertex set V (Gi). Then we set

PS(G) ··= (xi, yi : i ∈ S) + J (G̃1) + · · ·+ J (G̃c(S))

Proposition 1.4.6. J (KS) is prime for any S ⊆ {1, . . . , n}, and therefore PT (G) is prime for any
graph G and T ⊆ V (G) also.

Proof. This follows from [BV88, Theorem 2.10].

Theorem 1.4.7. [Her+10, Corollary 3.9] Let G be a graph. Then

J (G) =
⋂

S∈C(G)

PS(G)

is the primary decomposition of J (G).

We will also make use of the following:

Lemma 1.4.8. [Her+10, Lemma 3.1] Let G be a graph, and S ∈ C(G). Then

heightR(PS(G)) = |S|+ n− c(S)

In particular, the height of a binomial edge ideal does not depend on the underlying field k.



Chapter 2

Prime Characteristic Tools

Throughout this chapter, we assume that R is of prime characteristic p > 0.

Parts of this chapter first appeared in [Wil23a].

2.1 The Frobenius Endomorphism

The Frobenius endomorphism equips any ringR of prime characteristic p > 0 with a non-trivial
ring endomorphism sending r 7→ rp, since (r + s)p = rp + sp for any r, s ∈ R. This gives rise to
many additional tools in prime characteristic, several of which we will make use of here.

2.1.1 Frobenius Actions

Notation 2.1.1. We denote by feR the iterated Frobenius endomorphism of R sending r 7→ rp
e . We

will omit e when e = 1, and omit R when there is no confusion.

There are several ways to define Frobenius maps. We begin with perhaps the most natural:

Definition 2.1.2. Let M be an R-module. For any e ≥ 1, we say that an additive map φ :M →M is
an eth Frobenius map if

φ(rm) = rp
e
φ(m)

for all r ∈ R and m ∈M . When e = 1, we simply say that φ is a Frobenius map.

Note. Frobenius maps are not usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphismsnot usually R-homomorphisms.

Another makes use of a particular skew-polynomial ring:

Definition 2.1.3. Let T be an indeterminate over R. For any e ≥ 1, we define the eth Frobenius
skew-polynomial ring to be the R-module

R[T ; fe] = R⊕RT ⊕RT 2 ⊕ · · ·

29
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which we turn into a usually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutativeusually noncommutative ring by setting r ·T = rT and T · r = rp
e
T for all r ∈ R.

As before, when e = 1, we omit e and simply say that R[T ; f ] is the Frobenius skew-polynomial ring.

Note. When discussing R[T ; fe]-modules and actions, we will always mean  R[T ; f ]-modules and
actions.

Specifying an eth Frobenius map φ :M →M for some R-module M is the same as equipping
M with an R[T ; fe]-module structure:

• Given an R-module M and eth Frobenius map φ : M → M , we can define an R[T ; fe]-
action on M by extending the R-action additively, setting (rT l) ·m = rφl(m) for all r ∈ R
and m ∈M .

• Given an R[T ; fe]-module M , we can view M as an R-module in the natural way, and
define an eth Frobenius map φ :M →M by setting φ(m) = Tm for all m ∈M .

With this equivalence in mind, we define the following:

Definition 2.1.4. Suppose that M is an R-module with a Frobenius map φ :M →M , or, equivalently,
that M is an R[T ; f ]-module. When the Frobenius map or R[T ; f ]-action is clear, we say M has a
Frobenius action.

Many R-modules have Frobenius actions. For example, the Frobenius endomorphism is clearly
a Frobenius action on R. The most important class of such modules for our purposes is the
following:

Proposition 2.1.5. [Iye+07, Definition 21.14] Let a be an ideal of R. Then H i
a(R) has a Frobenius

action for any i ≥ 0, induced by the Frobenius endomorphism on R in the Čech complex definition of
H i

a(R).

In some cases, it is easy to describe this action explicitly:

Example 2.1.6. [Iye+07, Example 21.15] Let R = k[x1, . . . , xn], or k[[x1, . . . , xn]], for some field
k and n ≥ 0, and let m be the irrelevant ideal of R. We saw in Example 1.2.16 that Hn

m(R) is
generated over k by the monomials

{x−a11 · · ·x−ann : ai ≥ 1 for all 1 ≤ i ≤ n}

Then the Frobenius action is given by the map

αx−a11 · · ·x−ann 7→ αpx−pa11 · · ·x−pann

for all α ∈ k.

Proposition 2.1.5 allows us to make the following definition:
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Definition 2.1.7. Suppose that (R,m) is local. By Proposition 2.1.5, H i
m(R) has a Frobenius action for

any i ≥ 0. If this action is injective for all i ≥ 0, we say that R is F -injective.

Note. If (R,m) is local and a an ideal of R, then by Proposition 2.1.5 and the Independence Theorem,
H i

m(R/a) has a Frobenius action as an R-module for any i ≥ 0, and R/a is F -injective if and only if
this action is injective on H i

m(R/a).

F -injectivity is the subject of much research, and many classes of rings have been shown to be
F -injective. Most importantly for our purposes:

Theorem 2.1.8. [DMN22, Corollary 3.6] Let k be a field of prime characteristic p > 0, G a graph on
n vertices for some n ≥ 1, and

R = k[x1, . . . , xn, y1, . . . , yn]

Then R/JG is F -injective.

The effect of a Frobenius action on R-submodules is also a topic of particular importance.

Definition 2.1.9. Let M be an R-module with a Frobenius action φ :M →M , and N an R-submodule
of M . If φ(N) ⊆ N , we say that N is F -stable.

Moreover, when M is representable, if M has a secondary representation in which every component is
F -stable, we say that M has an F -stable secondary representation.

Note. Some sources use the terminology “F -stable” in a different sense, for example [Ene09], where
F -stability in our sense is instead called F -invariance.

As an illustration of the importance of this property, De Stefani and Ma showed in [DM21,
Theorem 3.4] that, for a Noetherian local ring (R,m) of prime characteristic, if H i

m(R) has an
F -stable secondary representation for all i ≥ 0, then F -injectivity deforms (meaning that, if
R/(a) is injective for all non-zerodivisors a ∈ R, then R is F -injective). At the time of writing,
both the question of the deformation of F -injectivity in general, and even the question of
whether such local cohomology modules always have F -stable secondary representations, are
open.

We do however know the following:

Proposition 2.1.10. [DM21, Lemma 3.2] Let M be a representable R-module, and S a p-secondary
submodule of M for some p ∈ AttR(M). Then if p ∈ MinAttR(M), S is F -stable.

In particular, when (R,m) is local of dimension n, Hn
m(R) has an F -stable secondary representation by

Theorem 1.3.8.

2.1.2 The Frobenius Functor

Introduced by Peskine and Szpiro in [PS73], the Frobenius Functor has found a wide range of
applications across commutative algebra and algebraic geometry, and will be crucial for later
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results in this thesis.

It is a somewhat unusual construction, which we will give in two parts:

Definition 2.1.11. For any e ≥ 1, we denote by F e∗R the ring

{F e∗ r : r ∈ R}

with
F e∗ r + F e∗ s = F e∗ (r + s)

and
(F e∗ r)(F

e
∗ s) = F e∗ (rs)

In other words, we take R, and simply “decorate” its elements with F e∗ .

We turn this into anR- by setting r ·(F e∗ s) = F e∗ (rs) and (F e∗ s) ·r = F e∗ (sr
pe) for all r, s ∈ R.

Definition 2.1.12. For any e ≥ 1, we define the eth Frobenius Functor as the functor

F eR(−) ··= F e∗R⊗R − : R-Mod→ F∗R-Mod

and identify F e∗R with R via F e∗ r 7→ r to view F eR as a functor from R-Mod to R-Mod. Again, when
e = 1, we omit e and simply say that FR is the Frobenius Functor.

Note. Some sources call FR the Peskine-Szpiro Functor.

The Frobenius Functor behaves in the following way (here we are taking e = 1):

Let M be an R-module. Take any m ∈M and r, s ∈ R. Then

r · (s⊗R m) = (rs)⊗R m

and
r ⊗R (sm) = (spr)⊗R m

In a sense, the Frobenius Functor makes R act on M via “pth roots”. If we were to denote this
new action by ◦, we would have r ◦ m = r

1
pm for r ∈ R and m ∈ M . Of course, not every

element of R necessarily has a pth root, so they are “kept” on the left hand side of the tensor
product, until we have at least p terms of “r

1
p ” in a product, after which we can take “a whole r”

across the tensor product to act on m in the usual sense.

Note. It is routine to check that
F e+1
R (−) ∼= FR(F

e
R(−))

naturally as functors for every e ≥ 1, so there is no ambiguity in our notation.

One of the key properties of this functor is a restatement of a theorem of Kunz:
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Theorem 2.1.13 (Kunz’s Theorem). [Kun69, Corollary 2.7] R is regular if and only if it is reduced
and FR is exact.

With Kunz’s Theorem in mind, we assume that R is regular for the remainder of this
chapter.

Several other important properties follow from this:

Lemma 2.1.14. We have that:

i) FR commutes with arbitrary direct sums and finite intersections. [Lyu97, Remarks 1.0 (b)]

ii) FR commutes with direct limits. [Lyu97, Remarks 1.0 (g)]

iii) FR commutes with localisation. [Lyu97, Remarks 1.0 (i)]

iv) For any finitely generated R-module M , R-module N , and i ≥ 0, we have

FR(Ext
i
R(M,N)) ∼= ExtiR(FR(M), FR(N))

functorially in both M and N . [Lyu97, Remarks 1.0 (f)]

Furthermore, it also behaves well with respect to Matlis duality over complete local rings:

Lemma 2.1.15. [Lyu97, Lemma 4.1] Suppose that (R,m) is complete local. Then there exists a natural
isomorphism of functors

τ− : FR(−)∨ ∼−−→ FR(−∨)

from R-ArtMod to R-ArtMod (that is, the isomorphism holds when the argument of FR(−)∨ is
Artinian).

The simplest application of the Frobenius Functor is to R itself:

Proposition 2.1.16. We have FR(R) ∼= R.

Proof. We can write any element of FR(R) in the form r ⊗R 1 for some r ∈ R, since

t∑
i=1

(ri ⊗R si) =

 t∑
i=1

ris
p
i

⊗R 1

Then the map FR(R)→ R sending r⊗R 1 7→ r clearly provides the desired R-isomorphism.

With these properties in hand, we can compute a presentation of FR(M) for any finitely gen-
erated R-module M . Note that, since R is Noetherian, finitely generated R-modules are also
finitely presented. Then when we take a presentation

Rn Rm M
A
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of M , we may view A as an m× n matrix.

Applying FR, which is exact by Kunz’s Theorem, we then have

FR(R
n) FR(R

m) FR(M)
FR(A)

which, by Proposition 2.1.16 and Lemma 2.1.14 (i), may be viewed as

Rn Rm FR(M)
FR(A)

and so to determine FR(M), it suffices to understand FR(A). We will do this carefully:

Proposition 2.1.17. Let A : Rn → Rm be given by an m × n matrix with entries (ai,j) for some
m,n ≥ 1 and ai,j ∈ R. Then FR(A) : Rn → Rm is given by the m× n matrix A[p] ··= (api,j).

Proof. Note that by, for example [Rot09, Theorem 2.65], we have that FR(R)l ∼= FR(R
l) via

φ : (a1 ⊗R r1, . . . , al ⊗R rl) 7→
l∑

i=1

(ai ⊗R (0, . . . , 0, ri, 0, . . . , 0︸ ︷︷ ︸
0 except the ith position

))

and as shown in Proposition 2.1.16 we have FR(R) ∼= R via ψ : a⊗R b 7→ bpa. Then the source
and target of FR(A) are as claimed.

We have

A


r1
...
rn

 =


a1,1 · · · a1,n

...
. . .

...
am,1 . . . am,n



r1
...
rn

 =



n∑
i=1

a1,iri

...
n∑
i=1

am,iri


Next:

• Let ei denote the vector in Rn with 0 in every position except the ith, where there is 1.

• Let zi denote the vector in Rm with 0 in every position except the ith, where there is

n∑
j=1

ai,j

• Let αi denote the vector in FR(R)m with 0 in every position except the ith, where there is

ri ⊗R

 n∑
j=1

ai,j
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• Let βi denote the vector in Rm with 0 in every position except the ith, where there is n∑
j=1

ai,j

pri =
 n∑

j=1

api,j

ri = n∑
j=1

api,jri

Now, FR(A) = IdR⊗RA, and so

FR(A)


r1
...
rn

 ψ−1

= FR(A)


r1 ⊗R 1

...
rn ⊗R 1

 φ
= FR(A)

 n∑
i=1

ri ⊗R ei

 =
n∑
i=1

(FR(A)(ri ⊗R ei))

=
n∑
i=1

(ri ⊗R A(ei)) =
n∑
i=1

(ri ⊗R zi)
φ−1

=
n∑
i=1

αi

ψ
=

n∑
i=1

βi =



n∑
i=1

ap1,iri

...
n∑
i=1

apm,iri


= A[p]


r1
...
rn



as desired.

Corollary 2.1.18. For any ideal a of R, we have

FR(R/a) ∼= R/a[p]

Proof. Since R is Noetherian, we may write a = (a1, . . . , at) for some ai ∈ a and t ≥ 0. Then
apply Proposition 2.1.17 to

Rt R R/a


a1

...
at



Note. For any ideal a of R and e ≥ 1, we say that a[pe] is the eth Frobenius power of a.

Another important property of FR is the following:

Lemma 2.1.19. [HS93, Proposition 1.5] For any injective R-module I , we have FR(I) ∼= I .

In particular, when (R,m) is local, we have

FR(ER(R/m)) ∼= ER(R/m)

Proposition 2.1.17 gives us an outline of a quick proof for Lemma 2.1.15 (which can be made
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rigorous, as is done in [Lyu97, Lemma 4.1]):

Sketch of Proof. Suppose that (R,m) is complete local. By Proposition 1.1.11, for an Artinian
R-module M we can obtain an exact sequence

M ER(R/m)m ER(R/m)n
A

for some m,n ≥ 1. Note that

HomR(ER(R/m), ER(R/m)) = ER(R/m)∨ ∼= R

by Proposition 1.1.12 since R is complete, and so we can view A as an n×m matrix with entries
inR. By Proposition 2.1.17, Proposition 2.1.16, and Lemma 2.1.14 (i), applying the Matlis Duality
functor followed by FR then yields

(AT )[p]R
n Rm FR(M

∨)
(AT )[p]

since trivially R∨ ∼= ER(R/m).

Using the same results, along with Lemma 2.1.19, applying FR followed by the Matlis Duality
functor yields

(A[p])TR
n Rm FR(M)∨

(A[p])T

Then Lemma 2.1.15 simply amounts to noticing that taking the transpose of a matrix commutes
with raising all entries to the pth power.

Another important property of FR is the following straightforward generalisation of [HS93,
Corollary 1.6] from regular local rings to regular rings:

Lemma 2.1.20. Let M be an R-module. Then

AssR(FR(M)) = AssR(M)

Proof. Take any p ∈ Spec(R). By Lemma 2.1.14 (iii), we have FR(M)p ∼= FRp(Mp) asRp-modules.

Furthermore, by [HS93, Corollary 1.6], we have

AssRp(FRp(Mp)) = AssRp(Mp)
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Then

p ∈ AssR(FR(M))⇐⇒ pRp ∈ AssRp(FR(M)p)

⇐⇒ pRp ∈ AssRp(FRp(Mp))

⇐⇒ pRp ∈ AssRp(Mp)

⇐⇒ p ∈ AssR(M)

and we are done.

2.1.3 F -Modules

We have seen in Proposition 2.1.16 that FR(R) ∼= R. There is a term for such modules, introduced
by Lyubeznik in [Lyu97]:

Definition 2.1.21. Let M be an R-module. If there exists an R-isomorphism θ : M ∼−−→ FR(M ),
we say that (M , θ) is an F -module (more properly, an FR-module, but we will omit R when it is
clear from context). When there is no confusion, we will just write M , and say that θ is the structure
isomorphism of M .

Given two F -modules (M1, θ1) and (M2, θ2), we say than an R-homomorphism φ : M1 →M2 is an
F -module homomorphism if the diagram

M1 M2

FR(M1) FR(M2)

φ

∼θ1 θ2∼

FR(φ)

commutes.

We say that an R-submodule N of M is an F -submodule of M if θ(N ) = FR(N ), viewing FR(N )

as a subset of FR(M ) by applying FR to the inclusion N ↪→M . This inclusion is then an F -module
homomorphism from (N , θ|N ) to (M , θ).

With the work we have done so far, we can show that the local cohomology modules of
F -modules are also F -modules ([Lyu97, Example 1.2(b)]). We first state a preliminary lemma:

Lemma 2.1.22. Let a be an ideal of R. Then there is a natural isomorphism of functors

H i
a(−) ∼= lim−→ ExtiR(R/a

[pj ],−)

from R-Mod to R-Mod for all i ≥ 0.

Proof. This follows from the direct limit definition of H i
a(−), since taking successive Frobenius

powers of an ideal is cofinal to taking successive usual powers.
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Proposition 2.1.23. Let M be an F -module. Then H i
a(M ) is also an F -module for any ideal a of R

and i ≥ 0.

Proof. We have

FR(H
i
a(M )) ∼= FR(lim−→ ExtiR(R/a

[pj ],M )) ∼= lim−→ FR(Ext
i
R(R/a

[pj ],M ))

∼= lim−→ ExtiR(FR(R/a
[pj ]), FR(M )) ∼= lim−→ ExtiR(R/a

[pj+1],M )

∼= lim−→ ExtiR(R/a
[pj ],M ) ∼= H i

a(M )

by Lemma 2.1.14 (ii) and Lemma 2.1.14 (iv).

2.1.4 F -Finite F -Modules

A particularly special class of F -modules can be determined entirely from a finitely generated
R-module, even if they are not finitely generated themselves. Again, these were introduced by
Lyubeznik in [Lyu97]:

Definition 2.1.24. Let M be an F -module. We say that M is an F -finite F -module (more properly,
an FR-finite FR-module, but we will again omit R when it is clear from context) if

M ∼= lim−→

[
M

β−−→ FR(M)
FR(β)−−−−−→ F 2

R(M)
F 2
R(β)
−−−−−→ · · ·

]
for some finitely generated R-module M and R-homomorphism β :M → FR(M).

In this case, we say that β is a generating morphism of M , and that M generates M . If no morphism
is specified, we say that a finitely generated R-module M generates M is there exists a generating
morphism of M with source M .

If β is also injective, we say that it is a root morphism of M , and that M is a root of M . We can
then view M as an R-submodule of M via β. Again, if no morphism is specified, we say that a finitely
generated R-module M is a root of M is there exists a root morphism of M with source M .

If no other root of M is contained in M , we say that it is a minimal root.

We denote by FR-FinMod the category of F -finite F -modules and F -module homomorphisms between
them.

Note. To see that an F -finite F -module is an F -module, simply note that the diagram

M FR(M) F 2
R(M) · · ·

FR(M) F 2
R(M) F 3

R(M) · · ·

β

β

FR(β)

FR(β)

F 2
R(β)

F 2
R(β)

FR(β) F 2
R(β) F 3

R(β)

commutes, and the direct limits of the top and bottom rows are clearly isomorphic, so the vertical maps
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induce a structure isomorphism θ : M ∼−−→ FR(M ).

Crucially, every F -finite F -module has a root:

Proposition 2.1.25. [Lyu97, Proposition 2.3 (c) & Theorem 3.5] Let M be an F -finite F -module.
Then M has a root, and, furthermore, if (R,m) is also complete local, then M has a unique minimal
root, which is contained in every other root of M .

FR-FinMod is closed under several common operations. We first state a definition:

Definition 2.1.26. Let M be an F -finite F -module with root morphism β : M ↪→ FR(M) for
some finitely generated R-module M . We say that an R-submodule N of M is β-compatible if
β(N) ⊆ FR(N).

We will also require the following proposition:

Proposition 2.1.27. [Lyu97, Corollary 2.6] Let M be an F -finite F -module with root morphism
β :M ↪→ FR(M) for some finitely generated R-module M . Then there is a one-to-one correspondence
between β-compatible R-submodules of M and F -finite F -submodules of M .

Namely, a β-compatible R-submodule N of M gives rise to an F -finite F -submodule of M with root
morphism β|N , and an F -finite F -submodule N of M has root N ∩M which is β-compatible.

Proposition 2.1.28. Let M be an F -finite F -module with root morphism β :M ↪→ FR(M) for some
finitely generated R-module M . Furthermore, let N1 and N2 be F -finite F -submodules of M with
roots N1 ⊆M and N2 ⊆M respectively. Then N1 ∩N2 is an F -finite F -submodule of M , with root
N1 ∩N2.

Proof. We have

β|N1∩N2
: N1 ∩N2 ↪→ FR(N1) ∩ FR(N2) ∼= FR(N1 ∩N2)

by Lemma 2.1.14 (i), and so N1 ∩N2 generates an F -finite F -submodule L of M . The inclusion
L ⊆ N1 ∩N2 is easily checked, and the converse follows since any element of N1 ∩N2 has a
representative in some F i1R (N1) and F i2R (N2), for some i1, i2 ≥ 0, in their respective direct limit
systems, and so we can find a representative for both in F iR(N1 ∩N2), where i = max{i1, i2}, by
taking further applications of F jR(β|N1∩N2) for increasing j to the representative in the earlier
term in the limit if necessary.

Proposition 2.1.29. Let M be an F -finite F -module with root morphism β :M ↪→ FR(M) for some
finitely generated R-module M . Furthermore, let N be an F -finite F -submodule of M with root
N ⊆M . Then M /N is an F -finite F -module, with root M/N .

Proof. This follows from the proof of [Lyu97, Theorem 2.8].
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One of the advantages of F -finite F -modules is that many of their properties can be deduced
from those of a root, which, being finitely generated, is often easier to understand. For example,
their associated primes agree (this is well known, we include a proof for convenience):

Proposition 2.1.30. Let M be an F -finite F -module with generating morphism β :M → FR(M) for
some finitely generated R-module M . Then

AssR(M ) ⊆ AssR(M)

Proof. Take any p ∈ AssR(M ), so there exists some x ∈ M such that AnnR(x) = p. Now, x
corresponds to the image in M of some x ∈ F eR(M) for some e ≥ 0, and we may take e to be
minimal.

Let
ψi = F i−1

R (β) ◦ · · · ◦ F eR(β) : F eR(M)→ F iR(M)

for each i > e, and set ψe = IdF e
R(M). We then have

AnnR(x) = {r ∈ R : ψi(rx) = 0 for some i ≥ e}

Since R is Noetherian, we can write p = (a1, . . . , at) for some ai ∈ R and t ≥ 1. Then, for each
1 ≤ i ≤ t, there exists some li ≥ e such that ψli(aix) = 0.

Now, let
l = max{li : 1 ≤ i ≤ t}

Then
aiψl(x) = ψl(aix) = 0

for each 1 ≤ i ≤ t, so setting y = ψl(x) ∈ F lR(M) we have p ⊆ AnnR(y).

Conversely, if r ∈ AnnR(y), then

ψl(rx) = rψl(x) = ry = 0

and so r ∈ AnnR(x) = p. Then AnnR(y) ⊆ p, so AnnR(y) = p, and therefore p ∈ AssR(F
l
R(M)).

Then repeatedly applying Lemma 2.1.20 yields p ∈ AssR(M), and the result follows.

Lemma 2.1.31. Let M be an F -finite F -module with root morphism β :M ↪→ FR(M) for some finitely
generated R-module M . Then

AssR(M ) = AssR(M)

Proof. Since M is a root of M , the canonical inclusion is an injection, so M ⊆M . Then we have

AssR(M) ⊆ AssR(M )

and so we are done by Proposition 2.1.30.
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There is also an F -finite version of Proposition 2.1.23:

Proposition 2.1.32. [Lyu97, Proposition 2.10] Let M be an F -finite F -module. Then H i
a(M ) is also

an F -finite F -module for any ideal a of R and i ≥ 0.

In some cases, we can easily calculate an explicit generating morphism of the F -finite F -modules
of Proposition 2.1.32:

Proposition 2.1.33. Let a = (a1, . . . , at) be an ideal of R. Then, setting a = (a1 · · · at)p−1, we have
that a· : R/a→ R/a[p] is a generating morphism of Ht

a(R) (where a· denotes multiplication by a).

Proof. We have

Ht
a(R)

∼= lim−→

[
R/a

a−→ R/a[2]
a2·−−−→ R/a[3]

a3·−−−→ · · ·
]

∼= lim−→

[
R/a

a·−−→ R/a[p]
ap·−−−→ R/a[p

2] ap
2 ·−−−→ · · ·

]
∼= lim−→

[
R/a

a·−−→ FR(R/a)
FR(a·)−−−−−→ F 2

R(R/a)
F 2
R(a·)
−−−−−→ · · ·

]
with the first isomorphism following from Proposition 1.2.18, and the result follows.

In many cases, when the ai form a regular sequence, Proposition 2.1.33 in fact gives us a root of
Ht

a(R):

Lemma 2.1.34. Suppose that a1, . . . , at ∈ R is a regular sequence, and that either

1. R is local.

2. R is non-negatively (Z-)graded, and the ai are hommogeneous of strictly positive degree.

Let a = (a1, . . . , at), take any p ≥ 2, and set a = (a1 · · · at)p−1. Then (a[p] : a) = a.

Proof. Note that our conditions onR and the ai ensure that aα1
1 , . . . , aαt

t is also a regular sequence
for all αi ≥ 1, and that any permutation of this sequence is again a regular sequence (see [Mat86,
Theorem 16.1] and the corollary to [Mat86, Theorem 16.3]).

Set
bi = (a1 · · · ai)p−1

Now, clearly a ⊆ (a[p] : a), and so suppose that r ∈ (a[p] : a), so ar ∈ a[p]. Then

btr = r
(1)
1 ap1 + · · ·+ r

(1)
t apt

for some r(1)1 , . . . , r
(1)
t ∈ R, so

ap−1
t (bt−1r − r(1)t at) = r

(1)
1 ap1 + · · ·+ r

(1)
t−1a

p
t−1 ∈ (ap1, . . . , a

p
t−1)
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and so, since ap1, . . . , a
p
t−1, a

p−1
t is a also regular sequence, we have

bt−1r − r(1)t at ∈ (ap1, . . . , a
p
t−1)

Then
bt−1r = r

(2)
1 ap1 + · · ·+ r

(2)
t−1a

p
t−1 + r

(1)
t at

for some r(2)1 , . . . , r
(2)
t−1∈ R, so

ap−1
t−1 (bt−2r − r(2)t−1at−1) = r

(2)
1 ap1 + · · ·+ r

(2)
t−2a

p
t−2 + r

(1)
t at ∈ (ap1, . . . , a

p
t−2, at)

and so, since ap1, . . . , a
p
t−2, at, a

p−1
t−1 is also a regular sequence, we have

bt−2r − r(2)t−1at−1 ∈ (ap1, . . . , a
p
t−2, at)

Then
bt−2r = r

(3)
1 ap1 + · · ·+ r

(3)
t−2a

p
t−2 + r

(2)
t−1at−1 + r

(3)
t at

for some r(3)1 , . . . , r
(3)
t−2, r

(3)
t ∈ R, so

ap−1
t−2 (bt−3r − r(3)t−2at−2) = r

(3)
1 ap1 + · · ·+ r

(3)
t−3a

p
t−3 + r

(2)
t−1at−1 + r

(3)
t at ∈ (ap1, . . . , a

p
t−3, at−1, at)

and so, since ap1, . . . , a
p
t−3, at−1, at, a

p−1
t−2 is also a regular sequence, we have

bt−3r − r(3)t−2at−2 ∈ (ap1, . . . , a
p
t−3, at−1, at)

Then
bt−3r = r

(4)
1 ap1 + · · ·+ a

(4)
t−3a

p
t−3 + r

(3)
t−2at−2 + r

(4)
t−1at−1 + r

(4)
t at

for some r(4)1 , . . . , r
(4)
t−3, r

(4)
t−1, r

(4)
t ∈ R.

Continuing in this way, we eventually arrive at

b0r = r
(t)
1 a1 + r

(t+1)
2 a2 + · · ·+ r

(t+1)
t at ∈ a

for some r(t)1 , r
(t+1)
2 , . . . , r

(t+1)
t ∈ R, and so, since b0r = r, we are done.

2.2 Lyubeznik’s H -Functor

Throughout this section, we assume that (R,m) is complete regular local of dimension
n, and that (A, n) is a local ring, with a surjective ring homomorphism R ↠ A so that
every A-module can be given the structure of an R-module. We denote the kernel of this
homomorphism by a (and so A ∼= R/a).
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2.2.1 Definition & First Properties

In [Lyu97, Theorem 4.2], Lyubeznik introduces a functor sending Artinian modules with a
Frobenius action to F -finite F -modules:

Definition / Theorem 2.2.1. [Lyu97, Theorem 4.2] For any Artinian A[T ; f ]-module M , we define
an R-homomorphism γM : FR(M)→M via

r ⊗R m 7→ rTm

By Lemma 2.1.15, there is a canonical R-isomorphism τM : FR(M)∨ ∼−−→ FR(M
∨), and so we can

construct an R-homomorphism

βM ··= τM ◦ γ∨M :M∨ → FR(M
∨)

Now, by Matlis Duality (iii), M∨ is Noetherian since M is Artinian and R is complete, and so we may
construct an F -finite F -module

HR,A(M) ··= lim−→

[
M∨ βM−−−→ FR(M

∨)
FR(βM )−−−−−−→ F 2

R(M
∨)

F 2
R(βM )
−−−−−−→ · · ·

]
Given another Artinian A[T ; f ]-module N and A[T ; f ]-homomorphism φ :M → N , it can be checked
that the diagram

N∨ FR(N
∨) F 2

R(N
∨) · · ·

M∨ FR(M
∨) F 2

R(M
∨) · · ·

βN

φ∨

FR(βN )

FR(φ∨)

F 2
R(βN )

F 2
R(φ∨)

βM FR(βM ) F 2
R(βM )

commutes, and so we have an induced FR-module homomorphism

HR,A(φ) : HR,A(N)→HR,A(M)

Then HR,A defines a contravariant, additive functor from A[T ;f ]-ArtMod to FR-FinMod.

When A = R and there is no confusion, we will simply write H .

Before examining the properties of this functor, we must introduce some notation:

Notation 2.2.2. Let S be a ring of prime characteristic p > 0, and M an S[T ; f ] module. Then we set

M∗ ··=
∞⋂
i=0

(ST iM)
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When M is Artinian, the descending chain

M ⊇ TM ⊇ T 2M ⊇ · · ·

must stabilise, and so M∗ = T iM for some i ≥ 0.

If M∗ = 0, we say that M is nilpotent.

Furthermore, we set
Mnil ··= {m ∈M : T im = 0 for some i ≥ 0}

and
Mred ··=M/Mnil

These operations commute:

Lemma 2.2.3. Let S be a ring of prime characteristic p > 0, and M an S[T ; f ]-module. Then

(Mred)
∗ ∼= (M∗)red

Proof. We have

(Mred)
∗ =

∞⋂
i=0

(ST iMred)

=
∞⋂
i=0

(ST i(M/Mnil))

=
∞⋂
i=0

((ST iM +Mnil)/Mnil)

=

 ∞⋂
i=0

(ST iM +Mnil)

/Mnil

=

 ∞⋂
i=0

(ST iM) +Mnil

/Mnil

= (M∗ +Mnil)/Mnil

∼=M∗/(M∗ ∩Mnil)

It is clear that
M∗ ∩Mnil = (M∗)nil

and so
(Mred)

∗ ∼=M∗/(M∗ ∩Mnil) =M∗/(M∗)nil = (M∗)red

as desired.

There is then no ambiguity in writing M∗
red.
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Theorem 2.2.4. [Lyu97, Theorem 4.2 & Lemma 4.3] We have that:

i) HR,A is exact.

ii) HR,A(M) = 0 if and only if M is nilpotent.

iii) M∨ is a root of HR,A(M) if and only if M =M∗, and (M∗
red)

∨ is the minimal root of HR,A(M).

iv) HR,A(M) ∼= HR,A(N) in FR-FinMod if and only if M∗
red
∼= N∗

red in A[T ;f ]-Mod.

The most important application of this functor for our purposes is the following:

Proposition 2.2.5. By Proposition 2.1.5, H i
n(A) has a natural A[T ; f ]-module structure induced by the

Frobenius endomorphism on A. It is easily checked that this gives rise to an R[T ; f ]-module structure on
H i

n(A). By The Independence Theorem, we have H i
n(A)

∼= H i
m(R/a) as R-modules, and so we can equip

H i
m(R/a) with an R[T ; f ]-module structure. Then, under this structure, we have

H (H i
m(R/a))

∼= Hn−i
a (R)

in FR-FinMod for all 0 ≤ i ≤ n, with the FR-module structure on Hn−i
a (R) being as in Proposi-

tion 2.1.23.

Proof. The proof is essentially the same as that of [Lyu97, Example 4.8].

2.2.2 A Correspondence Theorem

Throughout this subsection, we assume that M is an Artinian R[T ; f ]-module. Fur-
thermore, for simplicity, we also suppose that M = M∗ (so M∨ is a root of H (M) by
Theorem 2.2.4 (iii)), and adopt the notation of Definition / Theorem 2.2.1.

In this subsection, we establish a correspondence between F -stable secondary representations
of R[T ; f ]-modules and primary decompositions in FR-FinMod.

Lemma 2.2.6. For any R[T ; f ]-submodule N of M , we have that (M/N)∨ is a βM -compatible R-
submodule of M∨.

Proof. Since FR is exact by Kunz’s Theorem, we have

FR(M)/FR(N) ∼= FR(M/N)

via
ψ : r ⊗R m+ FR(N) 7→ r ⊗R (m+N)

Letting π :M ↠M/N and ρ : FR(M) ↠ FR(M)/FR(N) be the canonical projections, we then
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have

FR(M/N)∨ FR(M)∨

(FR(M)/FR(N))∨

FR(π)∨

ψ∨
ρ∨

Take any φ ∈ FR(M/N)∨ and r ⊗R m ∈ FR(M). Then

FR(π)
∨(φ)(r ⊗R m) = φ(FR(π)(r ⊗R m)) = φ(r ⊗R (m+N))

and

ρ∨ ◦ ψ∨(φ)(r ⊗R m) = φ(ψ(ρ(r ⊗R m))) = φ(ψ(r ⊗R m+ FR(N))) = φ(r ⊗R (m+N))

so the diagram commutes and we may identify

FR(M/N)∨ ∼= (FR(M)/FR(N))∨ ∼= {ϕ ∈ FR(M)∨ : FR(N) ⊆ ker(ϕ)} ⊆ FR(M)∨

Now, again take any φ ∈ (M/N)∨, and any r ⊗R n ∈ FR(N) ⊆ FR(M). Then

γ∨M (φ)(r ⊗R n) = φ(γM (r ⊗R n)) = φ(rTn) = rφ(Tn) = r · 0 = 0

because Tn ∈ N since N is an R[T ; f ]-module and N ⊆ ker(φ).

We then have that FR(N) ⊆ ker(γ∨M (φ)), and so γ∨M (φ) ∈ FR(M/N)∨. Then

γ∨M ((M/N)∨) ⊆ FR(M/N)∨

and applying τM/N from Lemma 2.1.15 completes the proof.

Theorem 2.2.7. If M has an F -stable secondary representation, then H (M) has a primary decomposi-
tion in FR-FinMod.

Proof. Let
M = S1 + · · ·+ St

be an F -stable secondary representation of M , with AttR(Si) = {pi} for some pi ∈ Spec(R).
Then, by Lemma 1.3.12, we have that

(M/S1)
∨ ∩ · · · ∩ (M/St)

∨ = 0 ⊆M∨

is an irredundant primary decomposition of M∨, with each (M/Si)
∨ being pi-primary.

Furthermore, each M/Si is βM -compatible by Lemma 2.2.6. Then, by Proposition 2.1.27, each
(M/Si)

∨ generates an F -finite F -submodule of H (M), which we will denote Ni, and

N1 ∩ · · · ∩Nt = 0 ⊆H (M)



2.2. Lyubeznik’s H -Functor 47

by Proposition 2.1.28, since the intersection of the generating R-modules is 0.

We know that M∨/(M/Si)
∨ generates H (M)/Ni by Proposition 2.1.29, and so

∅ ̸= AssR(H (M)/Ni) ⊆ AssR(M
∨/(M/Si)

∨) = {pi}

by Proposition 2.1.30. Then each Ni is pi-primary, and we are done.

We will now prove the reverse direction:

Proposition 2.2.8. Let L be an R-module. Then

⋂
ϕ∈L∨

ker(ϕ) = 0

Proof. Suppose that l ∈ L belongs to this intersection, and consider Rl ⊆ L. Since ER(R/m)

is injective, we can extend any R-homomorphism from Rl to one on the whole of L. Then
ϕ(l) = 0 for any ϕ ∈ (Rl)∨, so (Rl)∨ = 0, and so since ER(R/m) is an injective cogenerator by
Proposition 1.1.7, we must have Rl = 0. Then l = 0, and we are done.

Lemma 2.2.9. If N is a βM -compatible R-submodule of M∨, then (M∨/N)∨ is an R[T ; f ]-submodule
of M∨∨ ∼=M .

Proof. We will first determine the R[T ; f ]-action on M∨∨.

For any m ∈M , let
ψm :M∨ = HomR(M,ER(R/m))→ ER(R/m)

be given by φ 7→ φ(m). It is shown in the course of the proof of [BS13, Theorem 10.2.12 (ii)] that
the map

ψ :M → HomR(HomR(M,ER(R/m)), ER(R/m)) =M∨∨

given by m 7→ ψm is an R-isomorphism. Then for any z ∈ M∨∨, we have z = ψmz for some
mz ∈M , and the R[T ; f ]-action on M∨∨ is given by Tz = ψTmz .

Now, we may identify
(M∨/N)∨ ∼= {z ∈M∨∨ : N ⊆ ker(z)}

Furthermore, by Proposition 2.1.27 and [Lyu97, Lemma 4.3 (a)], we have N = (M/L)∨ for some
R[T ;F ]-submodule L ⊆M , and so we may identify

N = (M/L)∨ ∼= {φ ∈M∨ : L ⊆ ker(φ)}

We can now show that (M∨/N)∨ is an R[T ;F ]-submodule of M∨∨.

Take any z ∈ (M∨/N)∨, so z ∈ M∨∨ is such that N ⊆ ker(z), and recall that we can write
z = ψmz for some mz ∈M . Then we want to show that ψTmz(N) = 0 also.
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By the definition of ψmz , we have that φ(mz) = 0 for all φ ∈ N ∼= (M/L)∨, and so by Proposi-
tion 2.2.8 we have mz ∈ L. Then, for any φ ∈ N , we have

ψTmz(φ) = φ(Tmz) = 0

since Tzm ∈ L, because L is an R[T ; f ]-submodule of M , and L ⊆ ker(φ) since φ ∈ N .

Then we have ψTzm(M) = 0, so N ⊆ ker(Tz), and so Tz ∈ (M∨/N)∨. We have then shown that
(M∨/N)∨ is an R[T ;F ]-submodule of M∨∨ ∼=M as desired.

Theorem 2.2.10. If H (M) has an irredundant primary decomposition

N1 ∩ · · · ∩Ns = 0 ⊆H (M)

in FR-FinMod, then M has an F -stable secondary representation.

Proof. By Proposition 2.1.27, each Ni corresponds to a βM -compatible R-submodule Ni of M∨,
with Ni = Ni ∩M∨. Then

N1 ∩ · · · ∩Ns = (N1 ∩M∨) ∩ · · · ∩ (Ns ∩M∨) = (N1 ∩ · · · ∩Ns) ∩M∨ = 0 ∩M∨ = 0

Say that Ni is pi-primary for some pi ∈ Spec(R). By Proposition 2.1.29, we have that H (M)/Ni

has root M∨/Ni, and so

AssR(M
∨/Ni) = AssR(H (M)/Ni) = {pi}

by Lemma 2.1.31. Then Ni is pi-primary, and

N1 ∩ · · · ∩Ns = 0 ⊆M∨

is an irredundant primary decomposition of M∨.

We can now apply Lemma 1.3.10 and Lemma 2.2.9 to complete the proof.

To summarise:

Theorem 2.2.11. M has an F -stable secondary representation if and only if H (M) has a primary
decomposition in FR-FinMod.

For an example application of Theorem 2.2.11, we consider the following:

As noted previously in Subsection 2.1.1, [DM21, Theorem 3.4] gives us considerable interest
in understanding for which local rings (R,m) we have that H i

m(R) has an F -stable secondary
representation for all i ≥ 0.

Let R = k[[x1, . . . , xn]], and take a homogeneous ideal a of R. We denote by d the dimension of
R/a.
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By [DM21, Theorem 3.4], F -injectivity deforms for R/a if and only if H i
m/a(R/a) has an F -stable

secondary representation over R/a for all i ≥ 0. It is routine to check that such a representation
gives rise to an F -stable secondary representation over R, and we have

H i
m/a(R/a)

∼= H i
m(R/a)

as R-modules by The Independence Theorem.

We are only interested in i ≤ d, since otherwise H i
m(R/a) vanishes by Corollary 1.2.22. When

i = d, every attached prime of H i
m(R/a) is minimal by Theorem 1.3.8, and so H i

m(R/a) has an
F -stable secondary representation by Proposition 2.1.10. Then suppose that 0 ≤ i < d.

Now, we have
H (H i

m(R/a)
∗) = H (H i

m(R/a))
∼= Hn−i

a (R)

by Theorem 2.2.4 (iv) and Proposition 2.2.5. Then, by Theorem 2.2.11, if H i
m(R/a)

∗ is non-zero,
it has an F -stable secondary representation if and only if Hn−i

a (R) has a primary decomposition
in FR-FinMod.

Take an a-filter regular sequence a1, . . . , an−i, and set an−i = (a1, . . . , an−i). Then

Hn−i
a (R) ∼= Γa(H

n−i
an−i

(R))

by the Nagel-Schenzel Isomorphism.

Let a = (a1 · · · an−i)p−1. By [Lyu97, Proposition 2.3], we have that

R/(an−i : a
∞)

a·
↪−−→ R/(an−i : a

∞)[p]

is a root of the F -finite F -module with generating morphism

R/an−i
a·−−→ R/a

[p]
n−i

and so, setting b = (an−i : a
∞), we have

Hd−i
a (R) ∼= Γa(H

n−i
an−i

(R))

∼= Γa

lim−→

[
R/an−i

a·−−→ R/a
[p]
n−i

ap·−−−→ R/a
[p2]
n−i

ap
2 ·−−−→ · · ·

]
∼= Γa

lim−→

[
R/b

a·
↪−−→ R/b[p]

ap·
↪−−→ R/b[p

2] ap
2 ·

↪−−−→ · · ·

]
∼= lim−→

[
Γa(R/b)

a·
↪−−→ Γa(R/b

[p])
ap·
↪−−→ Γa(R/b

[p2])
ap

2 ·
↪−−−→ · · ·

]

∼= lim−→

[
(b : a∞)/b

a·
↪−−→ (b[p] : a∞)/b[p]

ap·
↪−−→ (b[p

2] : a∞)/b[p
2] ap

2 ·
↪−−−→ · · ·

]
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by Proposition 2.1.33 (we will apply a technique similar to this in the proof of Lemma 4.1.11).

Now, we can compute a-filter regular sequences, as well as saturations, quotients, and dim(R/a),
using Macaulay2 when k is a finite field. We can also compute a primary decomposition

(c1/b) ∩ · · · ∩ (ct/b) = 0/b ⊆ (b : a∞)/b

of (b : a∞)/b for some ideals b ⊆ cj ⊆ (b : a∞) of R and t ≥ 1.

By our previous work in this subsection, if

acj/b ⊆ c
[p]
j /b

[p]

for all 1 ≤ j ≤ t (that is, each cj/b is a·-compatible), then Hn−i
a (R) has a primary decomposition

in FR-FinMod.

Since we can compute whether or not these containments hold in Macaulay2, we are able to,
starting only with a, perform a series of calculations which could establish that H i

m(R/a)
∗ has

an F -stable secondary representation when k is a finite field.

There are two major caveats to this procedure however. Firstly, H i
m(R/a)

∗ may not necessarily
equal H i

m(R/a), and the existence of an F -stable secondary representation of H i
m(R/a)

∗ may not
necessarily imply the existence of such a representation for H i

m(R/a). Secondly, the failure of
this procedure does not necessarily establish thatH i

m(R/a)
∗ has no F -stable secondary represen-

tation, only that our particular choice of a-filter regular sequence and primary decomposition
of (b : a∞)/b does not give rise to one.

Note. Being completely rigorous, we cannot apply Macaulay2 exactly as described here, since it
performs its calculations over a polynomial ring rather than a power series ring. However, in a similar
fashion to Chapter 3, it is possible to develop the theory of this procedure in the graded case, though we
will not do so here since it is not necessary for the remainder of this thesis. Many results concerning the
theory of graded F -modules can be found, for example, in [LSW16, Section 2].

2.2.3 Primary Decompositions in the Category of F -Finite F -Modules

Throughout this subsection, we let R = Fp[[x, y]] for some prime p > 0, and set m = (x, y).

This subsection constitutes our main application of Theorem 2.2.11: to explicitly construct an
F -finite F -module without a primary decomposition in the category of F -finite F -modules.
Using our work in Subsection 2.2.2, we do this by applying Lyubeznik’s H -functor to an
example given by De Stefani and Ma ([DM21, Example 3.3]) of an Artinian R[T ; f ]-module with
no F -stable secondary representation.

We begin with the definition of their example:
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Definition / Theorem 2.2.12. [DM21, Example 3.3] Let

W ··= R/m⊕H2
m(R)

Viewing H2
m(R) as in Example 1.2.16, we define a map f :W →W on W via

f :

a+m

h

 7→
 a+m

ax−py−1 + hp


Then f is an injective Frobenius map on W , and W has no F -stable secondary representation.

The fact that f is injective tells us that Wred =W . We will now calculate W ∗:

Proposition 2.2.13. We have W ∗ =W .

Proof. We want to compute

W ∗ =
∞⋂
i=1

(RT iW ) =
∞⋂
i=1

W f i

where W f i denotes the R-submodule of W generated by all elements of the form f i(w) for
w ∈W (so we are using the notation of our first definition of Frobenius actions).

Since W is Artinian, we have W ∗ =W fe for some e ≥ 1, as noted when defining W ∗.

Now, we have

fe


1 +m

0


 =

1 +m

0

+

e∑
i=1

 0 +m

x−p
i
y−p

i−1


For each 1 ≤ i ≤ e, we have 0 +m

x−p
i
y−p

i−1

 = xp
e−piyp

e−pi−1 · fe


 0 +m

x−1y−1


∈W ∗

and so
e∑
i=1

 0 +m

x−p
i
y−p

i−1

∈W ∗

which means that 1 +m

0

 = fe


1 +m

0


− e∑

i=1

 0 +m

x−p
i
y−p

i−1

∈W ∗

Then Fp ⊕ 0 ⊆W ∗.
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Furthermore, for any i, j ≥ 1, there exists some l ≥ e such that pl ≥ max{i, j}, so

 0 +m

x−iy−j

 = xp
l−iyp

l−j · f l


 0 +m

x−1y−1


∈W ∗

Then 0⊕H2
m(R) ⊆W ∗, and so W ∗ =W .

We know that H2
m(R) is Artinian by Theorem 1.2.13, and clearly R/m is Artinian, so W is an

Artinian R[T ; f ]-module. Furthermore, by Proposition 2.2.13 and Theorem 2.2.4 (iii), we have
shown that W∨ is the minimal root of H (W ), which we know has no primary decomposition
in FR-FinMod by Theorem 2.2.11.

We will now give an explicit description of H (W ). Before doing so, we require a preparatory
lemma. Whilst not difficult, we include a proof for completeness:

Lemma 2.2.14. Let S be any ring, and suppose that we have exact sequences of S-modules

A B C 0
α β

and
A B D 0

α γ

Then, slightly abusing the notation of preimages, the map δ : C → D given by

c 7→ γ(β−1(c))

is a well-defined S-isomorphism.

Proof. We will first show that δ is well-defined. That is, we must show that, if β(b1) = β(b2),
then γ(b1) = γ(b2).

We have
β(b1 − b2) = β(b1)− β(b2) = 0

and so
b1 − b2 ∈ ker(β) = Im(α) = ker(γ)

by exactness. Then
γ(b1)− γ(b2) = γ(b1 − b2) = 0

so γ(b1) = γ(b2) as desired.

In order to show that δ is an S-isomorphism, we must first show that it is an S-homomorphism.

Take any c1, c2 ∈ C. Since β is surjective, there exist some b1, b2 ∈ B such that β(b1) = c1 and
β(b2) = c2. Then

β(b1 + b2) = β(b1) + β(b2) = c1 + c2
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so
δ(c1 + c2) = γ(b1 + b2) = γ(b1) + γ(b2) = δ(c1) + δ(c2)

Now take any r ∈ R and c ∈ C. Again since β is surjective, there exists some b ∈ B such that
β(b) = c. Then

β(rb) = rβ(b) = rc

so
δ(rc) = γ(rb) = rγ(b) = rδ(c)

and so δ is an S-homomorphism as desired.

We will next show that δ is injective. Take any c ∈ C such that δ(c) = 0. Since β is surjective,
there exists some b ∈ B such that c = β(b). We then have

γ(b) = δ(c) = 0

so
b ∈ ker(γ) = Im(α) = ker(β)

by exactness. Then
c = β(b) = 0

and so δ is injective.

Finally, we will show that δ is surjective. Since γ is surjective, for any d ∈ D there exists some
b ∈ B such that γ(b) = d. Then we have

δ(β(b)) = γ(b) = d

so we are done.

Proposition 2.2.15. H (W ) has root morphism

xp−1yp−1 yp−1

0 1

R/m⊕R R/m[p] ⊕R ∼= FR(R/m⊕R)

xp−1yp−1 yp−1

0 1



Proof. Note that, since R is Gorenstein, it is a canonical module for itself by Proposition 1.2.30,
and so we may also view H2

m(R) as E ··= ER(R/m) by Local Duality. Then, throughout this
proposition, we will view W as R/m⊕ E.

Furthermore, note that, for any a ∈ Fp, we have ap = a by Fermat’s Little Theorem. When
referring to elements a+m of R/m, we will always assume that a ∈ Fp.
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The goal of this proposition is construct R-isomorphisms µ and λ such that the diagram

xp−1yp−1 yp−1

0 1


R/m⊕R R/m[p] ⊕R FR(R/m⊕R)

W∨ FR(W )∨ FR(W
∨)

∼µ

xp−1yp−1 yp−1

0 1


λ
∼

FR(µ)∼

γ∨W

∼
τW

(⋆)

commutes, where γ∨W is as in Definition / Theorem 2.2.1 and τW is as in Lemma 2.1.15.

Our first aim is to calculate τW . We begin by constructing the start of an injective resolution of
W :

a+m

e

 7→
ax−1y−1

e


x 0

y 0

0 W E2 E2

a+m

e

 7→
ax−1y−1

e


x 0

y 0


(∗)

Now, FR is exact by Kunz’s Theorem since R is regular, it is additive by Lemma 2.1.14 (i), and
FR(E) ∼= E canonically by Proposition 2.1.23 (recall that we are identifying E and H2

m(R)), and
so by Proposition 2.1.17, applying FR to (∗) we obtain

1⊗R

a+m

e

 7→
ax−py−p

ep


xp 0

yp 0

0 FR(W ) E2 E2

1⊗R

a+m

e

 7→
ax−py−p

ep


xp 0

yp 0



Then, since −∨ is exact because E is injective by definition, clearly additive, and E∨ ∼= R

canonically by Proposition 1.1.12 since R is complete, applying −∨ (noting Remark 1.1.13) we
obtain

xp yp

0 0


r
s

7→
1⊗R

a+m

e

7→ rax−py−p+sep

R2 R2 FR(W )∨ 0

xp yp

0 0


r
s

 7→
1⊗R

a+m

e

 7→ rax−py−p+sep



Since this last map is surjective, for any ψ ∈ FR(W )∨ there exist some rψ, sψ ∈ R such that ψ is
given by

1⊗R

a+m

e

 7→ rψax
−py−p + sψe

p

Conversely, if we first apply −∨ to (∗), by the same properties as before we obtain

x y

0 0


r
s

 7→

a+m

e

 7→ rax−1y−1+se

R2 R2 W∨ 0

x y

0 0


r
s

 7→

a+m

e

 7→ rax−1y−1+se



to which we now apply FR, noting this time that FR(R) ∼= R canonically by Proposition 2.1.16,



2.2. Lyubeznik’s H -Functor 55

to obtain

xp yp

0 0


r
s

7→ r⊗R


a+m

e

 7→ ax−1y−1

+ s⊗R


a+m

e

 7→ e

R2 R2 FR(W
∨) 0

xp yp

0 0


r
s

 7→ r⊗R


a+m

e

 7→ ax−1y−1

+ s⊗R


a+m

e

7→ e



Lemma 2.2.14 then tells us that τW is given by

(ψ : FR(W )→ E) 7→ rψ ⊗R


a+m

e

 7→ ax−1y−1

+ sψ ⊗R


a+m

e

 7→ e


We will next calculate γ∨W . Recall that the Frobenius map on W is given in Definition / Theo-
rem 2.2.12 as

f :

a+m

e

 7→
 a+m

ax−py−1 + ep


which yields

γW : 1⊗R

a+m

e

 7→
 a+m

ax−py−1 + ep


and so

γ∨W : (ψ :W → E) 7→

1⊗R

a+m

e

 7→ ψ


 a+m

ax−py−1 + ep





Next, we will construct
µ : R/m⊕R ∼−−→W∨ = (R/m⊕ E)∨

By Proposition 1.1.12, we have

R/m⊕R ∼−−→ (R/m)∨ ⊕ E∨

via a+m

r

 7→
(1 +m) 7→ ax−1y−1

e 7→ re


and so

µ :

a+m

r

 7→

b+m

e

 7→ abx−1y−1 + re



Finally, we will construct
λ : R/m[p] ⊕R ∼−−→ FR(R/m⊕R)

We have
R/m[p] ⊕R ∼−−→ FR(R/m)⊕ FR(R)
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via r +m[p]

s

 7→
r ⊗R (1 +m)

s⊗R 1


and so

λ :

r +m[p]

s

 7→ r ⊗R

1 +m

0

+ s⊗R

0 +m

1


We now claim that

τW ◦ γ∨W ◦ µ


a+m

r


 = FR(µ) ◦ λ


xp−1yp−1 yp−1

0 1

a+m

r




By our previous work, we have

τW ◦ γ∨W ◦ µ


a+m

r




= τW ◦ γ∨W


b+m

e

 7→ abx−1y−1 + re


= τW

1⊗R

b+m

e

 7→ abx−1y−1 + rbx−py−1 + rep


= (axp−1yp−1 + ryp−1)⊗R


b+m

e

 7→ bx−1y−1

+ r ⊗R


b+m

e

 7→ e


and

FR(µ) ◦ λ


xp−1yp−1 yp−1

0 1

a+m

r




= FR(µ) ◦ λ


axp−1yp−1 + ryp−1 +m

r




= FR(µ)

(axp−1yp−1 + ryp−1)⊗R

1 +m

0

+ r ⊗R

0 +m

1




= (axp−1yp−1 + ryp−1)⊗R


a+m

e

 7→ ax−1y−1

+ r ⊗R


a+m

e

 7→ e


so (⋆) commutes and the result follows.
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To summarise this subsection:

Theorem 2.2.16. Let R = Fp[[x, y]] for some prime p > 0, and set m = (x, y). Then the F -finite
F -module with root morphism

xp−1yp−1 yp−1

0 1

R/m⊕R R/m[p] ⊕R ∼= FR(R/m⊕R)

xp−1yp−1 yp−1

0 1



has no primary decomposition in FR-FinMod. Furthermore, R/m ⊕ R is the minimal root of this
F -finite F -module.



Chapter 3

Graded Analogues of Local Theorems

Throughout this chapter, we assume that R is (Z-)graded.

Many results, especially those relating to Matlis Duality and local cohomology, are stated for
local rings, often assuming completeness. We will show that a broad range of such results will
hold in the case that R = k[x1, . . . , xn] for some field k and n ≥ 0, as well as in more general
cases, when working with homogeneous ideals and graded modules. Most of these results are
well known, but we collect them together and provide proofs (or references) for convenience.

3.1 Basic Definitions & Results

Definition 3.1.1. We denote by ∗R-Mod the category of graded R-modules and homogeneous R-
homomorphisms of degree 0.

Definition 3.1.2. We denote by ∗Spec(R) the set of homogeneous prime ideals of R.

Definition 3.1.3. Let a be an ideal of R. We denote by a∗ the largest homogeneous ideal contained in a.
Equivalently, it is the ideal generated by all the homogeneous elements of a.

A key property of this operation is the following:

Proposition 3.1.4. [BH05, Lemma 1.5.6 (a)] Let p ∈ Spec(R). Then we have p∗ ∈ ∗Spec(R).

Note. Proposition 3.1.4 tells us that when R is non-zero, we have ∗Spec(R) ̸= ∅, since R must contain
a maximal ideal m, and so m∗ ∈ ∗Spec(R).

We also have the following relationship between p and p∗:

Proposition 3.1.5. Let M be a non-zero finitely generated graded R-module, and p a prime ideal of R

58
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which is notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot homogeneous. Then

gradeR(p,M) = gradeR(p
∗,M) + 1

Proof. Note that p∗ is prime by Proposition 3.1.4.

We see in the proof of [BH05, Theorem 1.5.9] that

rankR/p(Ext
i+1
R (R/p,M)) = rankR/p∗(Ext

i
R(R/p

∗,M))

and so since
gradeR(a,M) = min{0 ≤ i ≤ dimR(M) : Ext(R/a,M) ̸= 0}

for any ideal a of R by [BH05, Theorem 1.2.5 & Proposition 1.2.14], we are done if we can show
that gradeR(p,M) ̸= 0. But if this were the case then we would have p ∈ AssR(M), since this
would mean that

HomR(R/p,M) = 0

We will see in Proposition 3.10.1 that all associated primes of M are homogeneous, so this
cannot happen, which concludes the proof.

Furthermore, ∗R-Mod is closed under several common operations:

Lemma 3.1.6. Let a be a homogeneous ideal ofR,M and L gradedR-modules,N a gradedR-submodule
of M , and φ :M → L a homogeneous R-homomorphism. Then:

i) Arbitrary sums and intersections of graded modules are graded. [Nor68, Section 2.13, Proposition
29]

ii) M/N is graded via (M/N)i = π(Mi), where π :M ↠M/N is the natural projection. [Nor68,
pp. 116–117]

iii)
√
a is homogeneous. [Nor68, Section 2.13, Proposition 32]

iv) aM and (N :M a) are graded R-submodules of M . [Nor68, Section 2.11, Proposition 31]

v) (N :R M) is homogeneous. In particular, AnnR(M) = (0 :R M) is homogeneous. [Nor68,
Section 2.11, Proposition 30]

vi) Im(φ) and ker(φ) are graded R-submodules of L. [Nor68, Section 2.11, Lemma 11]

3.2 Graded Local Cohomology

We first define graded versions of Hom and Ext:

Definition 3.2.1. Let M and N be graded R-modules. Then we denote by ∗HomR(M,N)i the R-
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submodule of HomR(M,N) consisting of the homogeneous R-homomorphisms of degree i, and set

∗HomR(M,N) ··=
⊕
i∈Z

∗HomR(M,N)i

This is a graded R-module, and is an R-submodule of HomR(M,N).

It is well known that every graded R-module has a graded free resolution (see, for example, [Eis95,
p. 474]), and so we can define ∗ExtR(−, N) as the left derived functor of ∗HomR(−, N) in ∗R-Mod.

Note. Some sources denote ∗HomR as HomR or HOMR, and ∗ExtiR as ExtiR or EXTiR.

Forgetting the grading, these are in many cases equivalent to their non-graded counterparts.
For example:

Lemma 3.2.2. Let M be a finitely generated graded R-module, and N any graded R-module. Then

∗HomR(M,N) = HomR(M,N)

and
∗ExtiR(M,N) = ExtiR(M,N)

for all i ≥ 0.

Proof. The first claim is shown in [HOI88, Lemma 33.1 (2)], the second is then immediate.

We can now define a graded version of local cohomology:

Definition 3.2.3. Let a be a homogeneous ideal of R, M a graded R-module, and i ≥ 0. Then,
analogously to the non-graded case, we define the ith graded local cohomology functor with support
at a to be

∗H i
a(−) ··= lim−→

∗ExtiR(R/a
j ,−) : ∗R-Mod→ ∗R-Mod

This functor sends graded R-modules to graded R-modules, and homogeneous R-homomorphisms to
homogeneous R-homomorphisms, since the transition maps in the direct limit system are also graded.

Note. Some sources denote ∗H i
a as H i

a.

Forgetting the grading, this is also often equivalent to its non-graded counterpart. For example:

Lemma 3.2.4. [BS13, Remarks 13.4.6 (v)] Let M be a finitely generated graded R-module, and a a
homogeneous ideal of R. Then

∗H i
a(−) ∼= H i

a(−)

naturally as functors from ∗R-FinMod to R-Mod for all i ≥ 0 (that is, the isomorphism holds when
the argument of ∗H i

a is finitely generated).

For a very careful treatment of graded local cohomology, see [BS13, Chapters 13 & 14].
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3.3 ∗Local & ∗Complete Rings

Definition 3.3.1. We say that a proper homogeneous ideal m of R is ∗maximal if the only homogeneous
ideal containing m is R. If R has a unique ∗maximal ideal m, we say that (R,m) is ∗local.

If, in addition to this, the ring R0 generated by the degree 0 elements of R is complete with respect to
m0 = R0 ∩m, we say that (R,m) is ∗complete.

Whilst ∗maximal ideals need not be maximal in the usual sense, they are prime:

Proposition 3.3.2. Let m a ∗maximal ideal of R. Then m is prime.

Proof. Since m is ∗maximal, every non-zero homogeneous element in R/m is invertible, and so
we may apply [BH05, Lemma 1.5.7]. This tells us that either R/m ∼= k, or R/m ∼= k[t, t−1] for
some field k and homogeneous indeterminate t of positive degree, as graded rings. In either
case, we see that R/m is an integral domain, and the result follows.

There are, however, many situations where ∗maximal ideals are maximal in the usual sense. For
example, as noted in [BH05, p. 35]:

Proposition 3.3.3. Suppose that R is non-negatively graded, and let m be a ∗maximal ideal of R. Then
m is maximal.

Proof. As in the proof of Proposition 3.3.2, we see that either R/m ∼= k, or R/m ∼= k[t, t−1] for
some field k and homogeneous indeterminate t of positive degree, as graded rings. But R/m is
non-negatively graded since R is, whereas deg(t−1) < 0. Then we must have R/m ∼= k, and so
m is maximal as claimed.

Just as Rm is a faithfully flat R-module over a local ring (R,m), we have the following:

Lemma 3.3.4. [BH05, Proposition 1.5.15 (c)] Suppose that (R,m) is ∗local. Then

Rm ⊗R − : ∗R-Mod→ Rm-Mod

is faithfully flat.

We also have a graded version of Nakayama’s Lemma:

Lemma 3.3.5 (Graded Nakayama’s Lemma). Suppose that (R,m) is ∗local, and let M be a finitely
generated graded R-module. Then mM =M if and only if M = 0.

Proof. This follows from [BH05, Exercise 1.5.24 (a)], taking N = 0.
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3.4 ∗Injective Hulls

Definition / Theorem 3.4.1. [BS13, Theorem 13.2.4 (i) & (ii)] Injective hulls exist in ∗R-Mod,
and are unique up to graded R-isomorphism. We denote by ∗ER(M) the ∗injective hull of a graded
R-module M in ∗R-Mod.

∗Injective hulls are always contained in the usual, non-graded, injective hull (see [BS13, Theorem
13.2.4 (i)]). However, there are cases where the two coincide. For example:

Proposition 3.4.2. [BH05, Corollary 3.6.7] Let m be a ∗maximal ideal of R. Then there exists an
R-isomorphism

∗ER(R/m) ∼= ER(R/m)

We next introduce the graded analogue of Definition 1.1.1, and prove several graded versions
of well-known results concerning essential extensions:

Definition 3.4.3. Let M be a graded R-module and N a graded R-submodule of M . We say that M is a
∗essential extension of N if, for any non-zero graded R-submodule L of M , we have L ∩N ̸= 0.

Proposition 3.4.4. Let N ⊆ M ⊆ L be graded R-modules. Then N ⊆ L is ∗essential if and only if
N ⊆M and M ⊆ L are ∗essential.

Proof. First suppose that N ⊆ M and M ⊆ L are ∗essential, and take any non-zero graded
R-submodule A of L. Then A ∩M ̸= 0 since M ⊆ L is ∗essential. Now, A ∩M is a graded
R-submodule of M , and so

A ∩N ⊇ (A ∩M) ∩N ̸= 0

since N ⊆M is ∗essential. Then N ⊆ L is ∗essential as desired.

Now suppose that N ⊆ L is ∗essential. Take any graded R-submodule B of M . Then B is
also a graded R-submodule of L, so B ∩ N ̸= 0 since N ⊆ L is ∗essential, and so N ⊆ M is
∗essential. Next take any graded R-submodule C of L. Again since N ⊆ L is ∗essential, we
have C ∩N ̸= 0, and so

C ∩M ⊇ C ∩N ̸= 0

because N ⊆M . Then M ⊆ L is ∗essential, and we are done

Lemma 3.4.5. ∗Injective hulls are maximal ∗essential extensions. That is, let M be a graded R-module.
Then M ⊆ ∗ER(M) is ∗essential, and for any graded R-module N with M ⊆ N ∗essential, there exists
a homogeneous R-isomorphism φ : N ∼−−→ L of degree 0 for some graded R-submodule L of ∗ER(M),
with L ⊆ ∗ER(M) ∗essential, such that the following diagram commutes:

M N

ER(M) L

∼
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Proof. This follows from the proof of [BH05, Theorem 3.6.2].

Lemma 3.4.6. Let M be a graded R-module, and N a graded R-submodule of M such that N ⊆M is
∗essential. Then

∗ER(N) ∼= ∗ER(M)

as graded R-modules.

Proof. SinceN ⊆M is ∗essential by assumption, andM ⊆ ∗ER(M) is ∗essential by Lemma 3.4.5,
we have thatN ⊆ ∗ER(M) is ∗essential by Proposition 3.4.4. Then ∗ER(M) ∼= L for some graded
R-submodule L of ∗ER(N), with L ⊆ ∗ER(N) ∗essential, by Lemma 3.4.5.

Since ∗ER(N) is ∗injective, we then have ∗ER(N) = A⊕ L for some graded R-submodule A of
∗ER(N). Because this sum is direct, we have A ∩ L = 0, but L ⊆ ∗ER(N) is ∗essential, so A = 0

and therefore
∗ER(N) = L ∼= ∗ER(M)

This concludes the proof.

3.5 Graded Chain Conditions

Next, we define versions of the familiar chain conditions in ∗R-Mod:

Definition 3.5.1. We say that a graded R-module M is ∗Noetherian (resp. ∗Artinian) if it satisfies
the ascending (resp. descending) chain condition in ∗R-Mod.

We have the following relationships between R-modules being ∗Noetherian/∗Artinian and
Noetherian/Artinian:

Lemma 3.5.2. [NO04, Theorem 5.4.7] Let M be a ∗Noetherian R-module. Then M is Noetherian.

Proposition 3.5.3. Suppose that R is non-negatively graded, and let M be a ∗Artinian R-module. Then
M is Artinian.

Proof. This follows from [NO04, Proposition 5.4.5 (1)].

We can say even more in the ∗local case, and so we assume that (R,m) is ∗local for the
remainder of this section.

Lemma 3.5.4. Let M be a graded R-module. Then if Mm is an Artinian Rm-module, we have that M is
∗Artinian.

Proof. Take a descending chain
M ⊇ N1 ⊇ N2 ⊇ · · ·
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of graded R-submodules of M . This gives us the descending chain

Mm ⊇ (N1)m ⊇ (N2)m ⊇ · · ·

of Rm-submodules of Mm.

Since Mm is an Artinian Rm-module, there exists some i ≥ 1 such that, for all j ≥ 0, we have
(Ni)m = (Ni+j)m, and so (Ni/Ni+j)m = 0. Since the Ni/Ni+j are graded, we are then done by
Lemma 3.3.4.

This allows us to deduce that several important graded R-modules are ∗Artinian:

Corollary 3.5.5. ∗ER(R/m) is ∗Artinian.

Proof. We have
ER(R/m)m ∼= ERm((R/m)m) ∼= ERm(Rm/mRm)

by Proposition 1.1.5, which is Artinian as an Rm-module by Proposition 1.1.11, and so we are
done by Lemma 3.5.4.

Corollary 3.5.6. Let M be a finitely generated graded R-module. Then ∗H i
m(M) is ∗Artinian for all

i ≥ 0.

Proof. We have
∗H i

m(M)m ∼= H i
m(M)m ∼= H i

mRm
(Mm)

as Rm-modules by Lemma 3.2.4 and Corollary 1.2.11, so we are done by Theorem 1.2.13 and
Lemma 3.5.4.

Analogously to Proposition 1.1.11 (as noted in [BH05, p. 142], since their proof of [BH05,
Theorem 3.2.13 (4)] makes no use of completeness), we have the following:

Proposition 3.5.7. Let M be a graded R-module. Then M is ∗Artinian if and only if

M ⊆
t⊕
i=1

∗ER(R/m)(ai)

for some t ≥ 0 and degree shifts ai ∈ Z.

Proof. We essentially follow the proof of [BH05, Theorem 3.2.13], but take gradings into consid-
eration.

∗ER(R/m) is ∗Artinian by Corollary 3.5.5, and so the reverse direction is immediate.

For the forward direction, we first define the ∗socle of M to be

∗SocR(M) ··= (0 :M m)
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which is graded by Lemma 3.1.6 (v). We will show that ∗SocR(M) is ∗essential in M :

Take any non-zero homogeneous m ∈M , and consider the descending chain

Rm ⊇ m(Rm) ⊇ m2(Rm) ⊇ · · ·

of graded R-submodules of Rm. Since Rm is Artinian, this chain must stabilise, say at some
minimal integer i. Note that we must have i > 0 by Graded Nakayama’s Lemma, since Rm ̸= 0

and so we cannot have Rm = m(Rm). Then m(mi−1(Rm)) = 0 (again by Graded Nakayama’s
Lemma), and so

0 ̸= mi−1(Rm) ⊆ ∗SocR(M)

which means that
(Rm) ∩ ∗SocR(M) ̸= 0

We have then shown that ∗SocR(M) is ∗essential in M , and so

∗ER(M) ∼= ∗ER(
∗SocR(M))

by Lemma 3.4.6.

Now, by [BH05, Exercise 1.5.20], and since M (and therefore ∗SocR(M)) is Artinian, we have

∗SocR(M) ∼=
t⊕
i=1

(R/m)(ai)

for some t ≥ 0 and degree shifts ai ∈ Z.

Taking ∗injective hulls commutes with taking finite direct sums (this can be shown using essen-
tially the same argument as in the case of injective hulls. See, for example, [AF12, Proposition
18.12 (4)]), and so

M ⊆ ∗ER(M) ∼= ∗ER(
∗SocR(M)) ∼= ∗ER

 t⊕
i=1

(R/m)(ai)


∼=

t⊕
i=1

∗ER((R/m)(ai)) =
t⊕
i=1

∗ER(R/m)(ai)

with the the last equality following directly from the construction of ∗injective hulls (again, see
[BH05, Theorem 3.6.2]).

This allows us to deduce the following:

Proposition 3.5.8. Suppose that m is maximal, and let M be a ∗Artinian R-module. Then M is
Artinian.

Proof. By Proposition 3.5.7, it suffices to show that ∗ER(R/m) is Artinian.
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Note that ∗ER(R/m) ∼= ER(R/m) by Proposition 3.4.2, and take a descending chain

ER(R/m) ⊇ N1 ⊇ N2 ⊇ · · ·

of R-submodules of ER(R/m). This gives us the descending chain

ER(R/m)m ⊇ (N1)m ⊇ (N2)m ⊇ · · ·

of Rm-submodules of ER(R/m)m.

We have
ER(R/m)m ∼= ERm((R/m)m) ∼= ERm(Rm/mRm)

by Proposition 1.1.5. This is Artinian as an Rm-module by Proposition 1.1.11, so there exists
some i ≥ 1 such that, for all j ≥ 0, we have (Ni)m = (Ni+j)m, and so (Ni/Ni+j)m = 0.

Now, AssR(ER(R/m)) = {m} by [BH05, Lemma 3.2.7], and so AssR(Ni) ⊆ {m} since Ni ⊆
ER(R/m). In particular, SuppR(Ni) = {m} since MinSuppR(Ni) ⊆ AssR(Ni). This means that
(Ni/Ni+j)n = 0 for any n ∈ MaxSpec(R), so Ni/Ni+j = 0. Then Ni = Ni+j for all j ≥ 0, and we
are done.

Corollary 3.5.9. Suppose that m is maximal. Then ∗ER(R/m) is Artinian.

Proof. This is immediate from Corollary 3.5.5 and Proposition 3.5.8.

Corollary 3.5.10. Suppose that m is maximal, and let M be a finitely generated graded R-module. Then
∗H i

m(M) is Artinian for all i ≥ 0.

Proof. This is immediate from Corollary 3.5.6 and Proposition 3.5.8.

3.6 Graded Matlis Duality

Throughout this section, we assume that (R,m) is ∗local.

In this section, we will introduce a graded version of Matlis Duality.

Definition 3.6.1. We define the graded Matlis Duality functor to be

−∨ ··= ∗HomR(−, ∗ER(R/m)) : ∗R-Mod→ ∗R-Mod

Note that this functor is exact in ∗R-Mod since ∗ER(R/m) is ∗injective, and that it coincides with the
usual Matlis Duality functor when its argument is finitely generated by Lemma 3.2.2.

For any graded R-module M , we say that M∨ is the graded Matlis dual of M .
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Note. This definition is slightly different to that given in [BH05, p. 141], however they are shown to be
equivalent in [BH05, Proposition 3.6.16 (b) & (c)].

This functor differs from the usual Matlis Duality functor for many non-finitely generated
modules, even in the ∗complete case. For example:

Proposition 3.6.2. [HOI88, Remark 34.9] Suppose that R is ∗complete. Then

∗HomR(
∗ER(R/m), ∗ER(R/m)) ∼= R

but
HomR(

∗ER(R/m), ∗ER(R/m)) ∼= R̂m

However, this functor still shares many useful properties with the usual Matlis Duality functor:

Theorem 3.6.3 (Graded Matlis Duality). LetM be a ∗NoetherianR-module,N a ∗ArtinianR-module,
and L any graded R-module. Then

i) L ↪→ L∨∨

ii) M∨ is ∗Artinian.

Furthermore, if R is also ∗complete, then

iii) N∨ is ∗Noetherian.

iv) M∨∨ ∼=M and N∨∨ ∼= N as graded R-modules.

Proof.

i) See the proof of Proposition 3.6.4.

ii) See [BS13, Exercise 14.4.2 (i)].

iii) See [BH05, Theorem 3.6.17 (a)].

iv) See [BH05, Theorem 3.6.17 (b)].

A graded analogue of Proposition 1.1.10 also holds:

Proposition 3.6.4. Let M be a graded R-module. Then

AnnR(M) = AnnR(M
∨)

Proof. We adapt [BS13, Remarks 10.2.2] to the graded case, and so will first show that M ↪→
M∨∨.



68 Graded Analogues of Local Theorems

For any non-zero homogeneous m ∈ M , note that Rm is a graded R-submodule of M by
Lemma 3.1.6 (iv), and define

θm : Rm→ R/m

rm 7→ r +m

We will first show that this is well-defined. Suppose that rm = sm for some r, s ∈ R, and let ri
and si denote the ith graded components of r and s respectively. Then, since m is homogeneous,
we must have rim = sim for all i ≥ 0, and so (ri − si)m = 0. Since m ̸= 0, ri − si cannot be
a unit, and so we must have ri − si ∈ m since it is homogeneous. Then r − s ∈ m, so θm is
well-defined as claimed.

Since θm has degree −deg(m), and the natural homogeneous inclusion

R/m ↪→ ∗ER(R/m)

has degree 0, composing them we obtain a homogeneous R-homomorphism from Rm to
∗ER(R/m) of degree −deg(m). Because ∗ER(R/m) is ∗injective, we can extend this to a homo-
geneous R-homomorphism θm of degree −deg(m) from M as below:

Rm M

R/m

∗ER(R/m)

θm

θm

Then θm ∈M∨, and θm(m) ̸= 0.

Next, define

φ :M →M∨∨

m 7→ (ψ 7→ ψ(m))

It is routine to check that this is homogeneous of degree 0. Since θm(m) ̸= 0 for any non-zero
homogeneous m ∈M , any homogeneous element of ker(φ) must be 0. But ker(φ) is a graded
R-submodule of M by Lemma 3.1.6 (vi) since φ is homogeneous, and so ker(φ) = 0 as desired.

Then
AnnR(M) ⊆ AnnR(M

∨) ⊆ AnnR(M
∨∨) ⊆ AnnR(M)

and we are done.
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3.7 ∗Dimension

Next, we define a graded version of (Krull) dimension:

Definition 3.7.1. We define the ∗dimension of R as

∗dim(R) ··= max{heightR(m) : m ∈ ∗MaxSpec(R)}

or∞ if R contains homogeneous primes of arbitrarily large height.

For a graded R-module M , we set

∗dimR(M) ··= ∗dim(R/AnnR(M))

We do not need to introduce a notion of “∗height”, and be concerned with whether or not the
primes in our chains when calculating these heights are homogeneous, due to the following
result:

Proposition 3.7.2. Let p ∈ ∗Spec(R), and set d = heightR(p). Then there exists a chain of homoge-
neous primes

q0 ⊊ · · · ⊊ qd = p

Proof. This follows from [BH05, Theorem 1.5.8 (a)].

When (R,m) is ∗local, the ∗dimension of finitely generated graded R-modules has a particularly
simple expression:

Lemma 3.7.3. Suppose that (R,m) is ∗local, and let M be a finitely generated graded R-module. Then

∗dimR(M) = dimRm(Mm)

In particular, for any homogeneous ideal a of R, we have

∗dim(R/a) = dim(Rm/aRm)

Proof. Since M is finitely generated, we have

AnnR(M)m = AnnRm(Mm)

Let A = R/AnnR(M). Then

∗dimR(M) = ∗dim(A) = heightA(mA) = dim(Rm/AnnR(M)m) = dim(Rm/AnnRm(Mm))

= dimRm(Mm)

and the result follows.



70 Graded Analogues of Local Theorems

There are many cases where the usual dimension and the ∗dimension coincide. For example:

Lemma 3.7.4. Suppose that R is non-negatively graded. Then

dim(R) = ∗dim(R)

Proof. This follows from [NO04, Theorem 5.5.1 (1)].

Note. The definition of Krull dimension given in [NO04, Appendix B] is a generalisation of the usual
definition in terms of chains of prime ideals to the possibly non-commutative case, however this definition
agrees with the usual notion for commutative rings (see [GR73, Corollary 8.14]).

Even without assuming that the grading is non-negative, these dimensions still cannot differ by
much:

Lemma 3.7.5. Suppose that ∗dim(R) = d <∞. Then

d ≤ dim(R) ≤ d+ 1

Proof. This follows from [NO04, Theorem 5.5.6 (2)].

In the ∗local case, we can say precisely when these dimensions coincide:

Proposition 3.7.6. Suppose that (R,m) is ∗local. Then ∗dim(R) and dim(R) are finite, with dim(R) =
∗dim(R) if and only if m is maximal.

Proof. Since R is the unique ∗maximal ideal of R, we have ∗dim(R) = dim(Rm) by Lemma 3.7.3.
This is finite because Rm is local and Noetherian (since R is), so dim(R) is finite by Lemma 3.7.5,
which proves the first claim.

If dim(R) = dim(Rm) then clearly m must be maximal, and so it remains only to show the
converse.

Then suppose that m is maximal. We know that dim(R) = dim(Rn) for some n ∈ MaxSpec(R).
If n is homogeneous then n = m and we are done, so suppose not. We then have

dim(Rn) = dim(Rn∗) + 1

by [BH05, Theorem 1.5.8 (b)].

Now, n∗ ⊆ m, because n∗ is homogeneous and (R,m) is ∗local, and n∗ ⊊ n since n is not
homogeneous, so we must have n∗ ⊊ m because m is maximal. Then

dim(R) = dim(Rn) = dim(Rn∗) + 1 ≤ dim(Rm) ≤ dim(R)

and we are done.
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In the ∗local case, we can also characterise ∗dimension using local cohomology, similarly to
Corollary 1.2.22:

Theorem 3.7.7. Suppose that (R,m) is ∗local, and let M be a non-zero finitely generated graded
R-module. Then ∗dimR(M) is the greatest integer i such that ∗H i

m(M) ̸= 0.

Proof. We have
∗H i

m(M)m ∼= H i
m(M)m ∼= H i

mRm
(Mm)

as Rm-modules by Lemma 3.2.4 and Corollary 1.2.11, and so we are done by Corollary 1.2.22,
Lemma 3.3.4, and Lemma 3.7.3.

3.8 ∗Depth

Throughout this section, we assume that (R,m) is ∗local.

Analogously to the local case, we make the following definition:

Definition 3.8.1. Let M be a graded R-module. Then we define the ∗depth of M as

∗depthR(M) ··= gradeR(m,M)

or ∞ if mM = M (which, when M is finitely generated, can only happen if M = 0 by Graded
Nakayama’s Lemma).

Note. Whilst we use the notation ∗depth in this thesis for consistency with ∗dim, many sources simply
use depthR(M) to denote gradeR(m,M) in the ∗local case.

When M is finitely generated, we have the following alternate characterisation of ∗depth:

Proposition 3.8.2. [BS13, Proposition 1.5.15 (e)] Let M be a finitely generated graded R-module.
Then

∗depthR(M) = depthRm
(Mm)

We cannot always find an M -sequence of length ∗depthR(M) consisting solely of homogeneous
elements, even when M = R and R is Cohen-Macaulay (see [HOI88, Remark 35.8] for an
example of such a ring). However in many common situations, we can find such a sequence.
For example:

Proposition 3.8.3. Let M be a finitely generated graded R-module, and suppose that m can be generated
by elements of strictly positive degree. Then there exists anM -sequence of length ∗depthR(M) consisting
of homogeneous elements.

Proof. This follows from [BH05, Proposition 1.5.11].
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In the general case, m does not necessarily contain a regular sequence of maximal length even
allowing non-homogeneous elements. For example, take R = k[x, y]/(x2, xy) for some field k.
Then m = AnnR(x), and so gradeR(m) = 0, but y + 1 is a regular element of R. However, when
(R,m) is Cohen-Macaulay and m is maximal, such a situation cannot arise:

Proposition 3.8.4. Suppose that R is Cohen-Macaulay, and that m is maximal. Then m contains a
regular sequence of maximal length.

Proof. Suppose that n is a maximal ideal of R which is notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot homogeneous. Note that n∗ is prime
by Proposition 3.3.2. Furthermore, we have n∗ ⊆ m since n∗ is homogeneous and m is ∗maximal,
and n∗ ⊆ n by definition, so we must have n∗ ⊊ m, since m is maximal and m ̸= n since m is
homogeneous whereas n is not.

Since R is Cohen-Macaulay, by [BH05, Corollary 2.1.4] we have

gradeR(a) = heightR(a)

for any ideal a of R, and so by Proposition 3.1.5 we have

gradeR(n) = gradeR(n
∗) + 1 = heightR(n

∗) + 1 ≤ heightR(m) = gradeR(m)

which concludes the proof.

We can also characterise ∗depth using local cohomology, similarly to Corollary 1.2.23:

Theorem 3.8.5. Let M be a non-zero finitely generated graded R-module. Then ∗depthR(M) is the
least integer i such that H i

m(M) ̸= 0.

Proof. We have mM ̸=M by Graded Nakayama’s Lemma, and so the result is immediate from
Theorem 1.2.20.

3.9 ∗Canonical Modules & Graded Local Duality

Throughout this section, we assume that (R,m) is Cohen-Macaulay ∗local.

The theory of canonical modules also carries over to the graded case:

Definition 3.9.1. Let n = ∗dim(R). We say that a finitely generated graded R-module C is a
∗canonical module of R if there exists a homogeneous R-isomorphism

C∨ ∼= ∗Hn
m(R)

Note. This definition differs from that of [BH05, Definition 3.6.8], however the two are reconciled in
[BS13, Corollary 14.5.12].
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Similarly to the case of local rings, there are classes of ∗local rings where ∗canonical modules
are known to exist:

Proposition 3.9.2. Suppose thatR is either ∗complete, or the graded homomorphic image of a Gorenstein
∗local ring. Then R has a ∗canonical module.

Proof. For the first case, see [BH05, Theorem 3.6.19]. For the second, see [BS13, Example
14.5.2].

As might be expected given Lemma 3.2.4, we have the following result:

Proposition 3.9.3. [BH05, Proposition 3.6.9 (a)] If C is a ∗canonical module of R, then C is also a
canonical module of R.

In some cases, we also have uniqueness:

Proposition 3.9.4. [BH05, Proposition 3.6.9 (b)] Suppose that m is maximal, and that R has a
∗canonical module C. Then C is unique up to homogeneous R-isomorphism.

These modules also characterise ∗local Gorenstein rings as in the usual local case:

Proposition 3.9.5. R is Gorenstein if and only if R(a) is a ∗canonical module of R for some degree shift
a ∈ Z.

Proof. This follows from [BH05, Proposition 3.6.11] and [BS13, Corollary 14.5.16].

Furthermore, they behave well with respect to localisation:

Proposition 3.9.6. [BS13, Proposition 14.5.3] If C is a ∗canonical module of R, then Cm is a canonical
module of Rm.

We can now state a graded version of Local Duality:

Theorem 3.9.7 (Graded Local Duality). [BS13, Theorem 14.5.10] Suppose that R has a ∗canonical
module C (in particular, when R is also ∗complete by Proposition 3.9.2), and let n = ∗dim(R). Then
there is a natural isomorphism of functors

∗H i
m(−) ∼= ∗Extn−iR (−, C)∨

from ∗R-FinMod to ∗R-Mod for all 0 ≤ i ≤ n (that is, the isomorphism holds when the argument of
∗H i

m is finitely generated).

3.10 ∗Secondary Representations & ∗Attached Primes

The theory of primary decompositions of graded modules is well known. For example:
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Proposition 3.10.1. [BH05, Lemma 1.5.6 (b)] Let M be a graded R-module. Then each p ∈ AssR(M)

is homogeneous, and is the annihilator of a homogeneous element of M .

There is an analogous theory of secondary representations of graded modules:

Definition / Proposition 3.10.2. [Sha86, Proposition 2.2] Let S be a non-zero graded R-module. We
say that S is ∗secondary if, for each homogeneous r ∈ R, either rS = S or rmS = 0 for some m ≥ 1.
In this case, p =

√
AnnR(S) is a homogeneous prime ideal of R, and we say that S is p-∗secondary.

Definition 3.10.3. Let M be a graded R-module. If there exist pi-∗secondary submodules Si in M such
that

M = S1 + · · ·+ St

for some t ≥ 1, then we call this a ∗secondary representation ofM , andM is said to be ∗representable.

Such a representation is said to be minimal when

i) The pi are all distinct.

ii) For every 1 ≤ i ≤ t, we have

Si ⊈
t∑

j=1
j ̸=i

Sj

Note. It is easily shown that the sum of any two p-∗secondary modules is p-∗secondary, and so any
∗secondary representation can be refined to be minimal.

The following graded version of [Mac73, (1.1)] is easily checked:

Proposition 3.10.4. Let M be a p-∗secondary R-module for some p ∈ ∗Spec(R), and N a proper graded
R-submodule of M . Then M/N is also p-∗secondary.

We next want to define a graded version of attached primes, but this requires showing the
uniqueness of the primes associated with a minimal ∗secondary representation, as is done for
standard secondary representations in [Mac73, (2.2)]. To do this, we will prove the following
graded analogue of part of this theorem:

Lemma 3.10.5. Let M be a ∗representable R-module with minimal ∗secondary representation

M = S1 + · · ·+ St

for some ∗secondary R-submodules Si of M , and t ≥ 1.

Then, for any p ∈ ∗Spec(R), we have that p =
√
AnnR(Si) for some 1 ≤ i ≤ t if and only if there exists

a graded R-module N with
√
AnnR(N) = p and a homogeneous R-epimorphism M ↠ N .

Proof. We essentially follow the proof of [Mac73, (2.2)], but take gradings into consideration.
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First, assume without loss of generality that S1 is p-∗secondary, and set

Q =

t∑
i=2

Si

This is graded, and it is easily checked that the maps in the various isomorphism theorems are
homogeneous of degree 0, so

M/Q = (S1 +Q)/Q ∼= S1/(S1 ∩Q)

as gradedR-modules. M/Q is then p-∗secondary by Proposition 3.10.4, and so
√
AnnR(M/Q) =

p. It is easily checked that the natural projection M ↠M/Q is homogeneous, which completes
the proof of the forward direction.

For the converse, suppose that we have a graded R-module N with AnnR(N) = p, and a
homogeneous R-epimorphism φ :M ↠ N . Set Q = ker(φ), and renumber the Si so that Si ⊈ Q

for 1 ≤ i ≤ l and Si ⊆ Q for l + 1 ≤ i ≤ t (for some integer l) if necessary. Note that l ≥ 1 since
if Si ⊆ Q for all 1 ≤ i ≤ t then M = Q, so N = 0 which would contradict that

√
AnnR(N) is

prime.

Then we have

N ∼=M/Q =

t∑
i=1

(Si +Q)/Q =

l∑
i=1

(Si +Q)/Q

and so

AnnR(N) = AnnR

 l∑
i=1

(Si +Q)/Q

=
l⋂

i=1

AnnR((Si +Q)/Q)

As before, we have
(Si +Q)/Q ∼= Si/(Si ∩Q)

and each Si/(Si ∩Q) is pi-∗secondary by Proposition 3.10.4, so

p =
√

AnnR(N) =

l⋂
i=1

√
AnnR(Si/(Si ∩Q)) =

l⋂
i=1

pi

Then p = pi for some 1 ≤ i ≤ l since it is prime, and we are done.

Lemma 3.10.5 allows us to define the following:

Definition / Theorem 3.10.6. LetM be a ∗representableR-module, and Si the pi-∗secondary summands
in a minimal ∗secondary representation of M for some t ≥ 1. Then both t and the set {p1, . . . , pt} are
independent of the choice of minimal ∗secondary representation by Lemma 3.10.5. We call these primes
the ∗attached primes of M , denoted ∗AttR(M).

Since R is Noetherian, we can refine Lemma 3.10.5 in a similar manner to [Mac73, (2.5)]:
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Proposition 3.10.7. Let M be a ∗representable R-module. Then, for any p ∈ ∗Spec(R), we have
p ∈ ∗AttR(M) if and only if there exists a graded R-module N with AnnR(N) = p and a homogeneous
R-epimorphism M ↠ N .

Proof. We essentially follow the proof of [Mac73, (2.5)], but take gradings into consideration.

Since p is prime we have
√
p = p, and so the reverse direction follows immediately from

Lemma 3.10.5. We proceed then with notation as in the forward direction of Lemma 3.10.5.

If p(M/Q) = 0 then we are done, since we would then have

p ⊆ AnnR(M/Q) ⊆
√
AnnR(M/Q) = p

and the natural projection M ↠M/Q is homogeneous.

Otherwise, sinceR is Noetherian, we have pa ⊆ AnnR(M/Q) for some a ≥ 1, and so pa(M/Q) =

0. Because we now assume that M/Q ̸= 0, we must have M/Q ̸= p(M/Q), so

N = (M/Q)/p(M/Q)

is non-zero and therefore p-∗secondary, again by Proposition 3.10.4. Then AnnR(N) = p since

p ⊆ AnnR(N) ⊆
√
AnnR(N) = p

as in the previous case.

Since p is homogeneous and M/Q is graded, p(M/Q) is graded also, so N is graded. It is easily
checked that the natural projections

M ↠M/Q↠ N

are then homogeneous, which completes the proof.

The standard existence theorem for secondary representations of Artinian modules also has a
graded counterpart:

Theorem 3.10.8. [Sha86, Proposition 2.4] Let M be a ∗Artinian R-module. Then M is ∗representable.

In some cases (but not all, see Example 3.13.1), the notions of secondary and ∗secondary coincide.
For example:

Lemma 3.10.9. [Ric03, Theorem 1.5] Suppose that R is non-negatively graded, and let S be an
Artinian p-∗secondary R-module. Then S is p-secondary.

We then have the following:
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Theorem 3.10.10. Suppose thatR is non-negatively graded, and letM be an Artinian gradedR-module.
Then M has a minimal secondary representation in which each component is graded and each attached
prime is homogeneous.

Proof. This follows from Theorem 3.10.8 and Lemma 3.10.9.

It is well known that, for a Noetherian R-module M , we have p ∈ AssR(M) if and only if there
exists an R-submodule N of M such that AnnR(N) = p. We will next prove a graded analogue
of this result:

Proposition 3.10.11. Let M be a ∗Noetherian R-module. Then p ∈ AssR(M) if and only if there exists
some graded R-submodule N of M such that AnnR(N) = p.

Proof. If p ∈ AssR(M) then p = AnnR(m) for some homogeneous m ∈M by Proposition 3.10.1,
and p is homogeneous. Then R/p is graded, and the R-monomorphism R/p ↪→ M given by
1 + p 7→ m is homogeneous (possibly after some degree shift), so the forward direction follows.

For the converse, note that since M is ∗Noetherian, it is also Noetherian by Lemma 3.5.2. Then
N is also Noetherian, and so we can write

N = a1R+ · · ·+ atR

for some a1, . . . , at ∈ N . We then have

p = AnnR(N) = AnnR(a1R+ · · ·+ atR) =

t⋂
i=1

AnnR(ai) ⊇
t∏
i=1

AnnR(ai)

so AnnR(ai) ⊆ p for some 1 ≤ i ≤ t since p is prime. Then

p = AnnR(N) ⊆ AnnR(ai) ⊆ p

and so AnnR(ai) = p. We then have R/p ↪→M via 1 + p 7→ ai, so p ∈ AssR(M) as desired.

With these results in hand, we can now describe the effect of Graded Matlis Duality on attached
and associated primes in a sufficiently nice setting, in a similar way to Lemma 1.3.10 and
Lemma 1.3.12 (although here we assume ∗completeness for convenience):

Theorem 3.10.12. Suppose that (R,m) is ∗complete ∗local, and let M be a ∗Noetherian R-module. Then

∗AttR(M
∨) = AssR(M)

Proof. We essentially follow the argument of [BS13, Remark 10.2.14], but take gradings into
consideration.

First, suppose that p ∈ AssR(M). This is homogeneous by Proposition 3.10.1, so we have an
inclusion of graded R-modules R/p ↪→ M . Then applying −∨, we obtain a homogeneous
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R-epimorphism M∨ ↠ (R/p)∨. By Proposition 3.6.4, we have

AnnR((R/p)
∨) = AnnR(R/p) = p

and so p ∈ ∗AttR(M
∨) by Proposition 3.10.7.

Conversely, if p ∈ ∗AttR(M
∨), then by Proposition 3.10.7 there exists a graded R-module N

with AnnR(N) = p and a homogeneous R-epimorphism M∨ ↠ N . Applying −∨ yields an
inclusion

N∨ ↪→M∨∨ ∼=M

of graded R-modules by Graded Matlis Duality (iv). Again,

AnnR(N
∨) = AnnR(N) = p

by Proposition 3.6.4. Since M is ∗Noetherian, N∨ is also, so p ∈ AssR(M) by Proposition 3.10.11
and we are done.

Corollary 3.10.13. Suppose that (R,m) is ∗complete ∗local, and let M be a ∗Artinian R-module. Then

AssR(M
∨) = ∗AttR(M)

Proof. This follows immediately from applying Theorem 3.10.12 to M∨, noting that M∨∨ ∼=M

by Graded Matlis Duality (iv).

We can use this to prove a graded analogue of Theorem 1.3.8. Note that Macdonald and Sharp
do not require (R,m) to be Cohen-Macaulay or complete in [MS72, Theorem 2.2], however we
suppose that (R,m) is Cohen-Macaulay and ∗complete for convenience, since this will suffice
for the purposes of this thesis.

Theorem 3.10.14. Suppose that (R,m) is Cohen-Macaulay ∗complete ∗local of ∗dimension n, and let
M be a non-zero finitely generated graded R-module of ∗dimension d. Then

∗AttR(H
d
m(M)) = {p ∈ AssR(M) : ∗dim(R/p) = d}

Proof. By Proposition 3.9.2, there exists a ∗canonical module C of R, and by Proposition 3.9.6
we have that Cm is a canonical module of Rm.

Now, by the usual local version of Local Duality, we have

Hd
mRm

(Mm) ∼= Extn−dRm
(Mm, Cm)

∨

as Rm-modules, and so

AttRm(H
d
mRm

(Mm)) = AssRm(Ext
n−d
Rm

(Mm, Cm))
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by [BS13, Corollary 10.2.20].

Since M is finitely generated, ExtiR(M,−) commutes with localisation for all i ≥ 0. Then by
Lemma 3.2.2, Lemma 3.2.4, Graded Local Duality, Theorem 3.10.12, and Lemma 3.7.3 we have

AttRm(H
d
mRm

(Mm)) = AssRm(Ext
n−d
Rm

(Mm, Cm))

= AssRm(Ext
n−d
R (M,C)m)

= {pRm : p ∈ AssR(Ext
n−d
R (M,C)) with p ⊆ m}

= {pRm : p ∈ AssR(Ext
n−d
R (M,C))}

= {pRm : p ∈ ∗AttR(H
d
m(M))}

with the penultimate equality following since every associated prime of Extn−dR (M,C) is homo-
geneous by Proposition 3.10.1.

We can also use the usual local version of [MS72, Theorem 2.2], along with Lemma 3.7.3, to
obtain

AttRm(H
d
mRm

(Mm)) = {pRm ∈ AssRm(Mm) : dim(Rm/pRm) = d}

= {pRm ∈ AssRm(Mm) :
∗dim(R/p) = d}

= {pRm : p ∈ AssR(M) with p ⊆ m and ∗dim(R/p) = d}

= {pRm : p ∈ AssR(M) with ∗dim(R/p) = d}

where again we have applied Proposition 3.10.1 since M is graded, and so we are done.

3.11 Some Properties of Cohen-Macaulay Graded Rings & Modules

Throughout this section, we assume that (R,m) is ∗local.

It is well known (for example, see [BH05, Theorem 2.1.2 (b)]) that, for a Cohen-Macaulay local
ring (R,m) and ideal a of R, we have

gradeR(a) = dim(R)− dim(R/a)

We will next prove a graded version of this result:

Lemma 3.11.1. Suppose that R is Cohen-Macaulay and non-negatively graded. Then, for any homoge-
neous ideal a of R, we have

gradeR(a) =
∗dim(R)− ∗dim(R/a)

In particular, when R is non-negatively graded, we have

gradeR(a) = dim(R)− dim(R/a)
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Regardless of the grading, we also have

gradeR(a) = heightR(a)

Proof. We have

gradeR(a)
(1)
= gradeRm

(aRm)
(2)
= dim(Rm)− dim(Rm/aRm)

(3)
= ∗dim(R)− ∗dim(R/a)

where (1) follows from [BH05, Proposition 1.5.15 (e)], (2) follows from [BH05, Theorem 2.1.2]
since R, and therefore Rm, is Cohen-Macaulay, and (3) follows from Lemma 3.7.3. This proves
the first claim.

When R is non-negatively graded, R/a is also, and so by Lemma 3.7.4 we have dim(R) =
∗dim(R) and dim(R/a) = ∗dim(R/a), which proves the second claim.

The last claim follows from [BH05, Corollary 2.1.4].

It is also well known (for example, see [Mat86, Theorem 17.3 (i)] and [BH05, Corollary 2.14]) that,
over a Cohen-Macaulay local ring, all associated primes of a finitely generated Cohen-Macaulay
module over that ring are of the same height. This is also true in the ∗local case:

Lemma 3.11.2. Let M be a finitely generated Cohen-Macaulay graded R-module, and take any p ∈
AssR(M). Then ∗dim(R/p) = ∗dimR(M). Furthermore, if R is also Cohen-Macaulay, then we have

heightR(p) =
∗dim(R)− ∗dimR(M)

In particular, when R is non-negatively graded, we have

heightR(p) = dim(R)− dimR(M)

Proof. Every associated prime of M is homogeneous by Proposition 3.10.1, and so must be
contained in m. Then

AssRm(Mm) = {pRm : p ∈ AssR(M) with p ⊆ m} = {pRm : p ∈ AssR(M)}

Since M is a Cohen Macaulay R-module, Mm is a Cohen-Macaulay Rm-module, and so
dim(Rm/pRm) = dimRm(Mm) by [Mat86, Theorem 17.3 (i)]. Then ∗dim(R/p) = ∗dimR(M)

by Lemma 3.7.3. The last two claims then follow from Lemma 3.11.1 and Lemma 3.7.4.

Before proving the final result of this chapter, we state an important lemma characterising when
a ∗local ring is Cohen-Macaulay:

Lemma 3.11.3. [BH05, Exercise 2.1.27 (c)] Let M be a finitely generated graded R-module. Then M
is Cohen-Macaulay as an R-module if and only if Mm is Cohen-Macaulay as an Rm-module.

We can now prove a graded version of Corollary 1.2.24:
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Lemma 3.11.4. Let M be a non-zero finitely generated graded R-module. Then M is Cohen-Macaulay
if and only if H i

m(M) ̸= 0 for i = ∗dimR(M) and vanishes otherwise.

Proof. By Lemma 3.11.3, M is Cohen-Macaulay if and only if Mm is Cohen-Macaulay as an
Rm-module, which by the usual result on local rings holds if and only if H i

mRm
(Mm) ̸= 0 for

i = dimRm(Mm) and vanishes otherwise. Then since dimRm(Mm) =
∗dimR(M) by Lemma 3.7.3,

we are done by Lemma 3.3.4, since taking local cohomology commutes with localisation by
Corollary 1.2.11.

3.12 Summary of Graded Results

We now summarise the results we have collected in this chapter. We will assume that (R,m) is
Gorenstein ∗complete ∗local, non-negatively graded of dimension n, and so all of the conditions
on R for every result in this chapter are satisfied.

In particular, this is the case when R = k[x1, . . . , xn] for some field k.

Throughout,M will denote a non-zero Noetherian gradedR-module of dimension d and ∗depth
t, N a non-zero Artinian graded R-module, and a a homogeneous ideal of R.

Then:

1. d is the greatest integer i such that H i
m(M) ̸= 0.

(Lemma 3.2.4, Theorem 3.7.7, and Lemma 3.7.4)

2. t is the least integer i such that H i
m(M) ̸= 0.

(Lemma 3.2.4 and Theorem 3.8.5)

3. M is Cohen-Macaulay if and only if H i
m(M) ̸= 0 for i = d and vanishes otherwise, and in

this case all associated primes of M are of height n− d.
(Lemma 3.11.4 and Lemma 3.11.2)

4. H i
m(M) is an Artinian graded R-module for all i ≥ 0.

(Lemma 3.2.4 and Corollary 3.5.10)

5. M∨ is Artinian and N∨ is Noetherian.
(Graded Matlis Duality (ii), Graded Matlis Duality (iii), Proposition 3.5.8, and Lemma 3.5.2)

6. M∨∨ ∼=M and N∨∨ ∼= N as graded R-modules.
(Graded Matlis Duality (iv))

7. N has a minimal secondary representation in which every component is graded and every
attached prime is homogeneous.
(Theorem 3.10.10)

8. We have
H i

m(M) ∼= Extn−iR (M,R)∨

as graded R-modules for all 0 ≤ i ≤ n.
(Lemma 3.2.4, Graded Local Duality, and Proposition 3.9.5)

9. We have
AttR(N) = AssR(N

∨)
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and
AssR(M) = AttR(M

∨)

(Theorem 3.10.12 and Corollary 3.10.13)

10. We have
AttR(H

d
m(M)) = {p ∈ AssR(M) : dim(R/p) = d}

(Lemma 3.2.4, Corollary 3.5.10, Lemma 3.10.9, Theorem 3.10.14, and Lemma 3.7.4)

11. We have that
heightR(a) = gradeR(a) = n− dim(R/a)

is the length of the longest homogeneous regular sequence contained in a.
(Lemma 3.11.1 and Proposition 3.8.3)

With these results established, we can apply many of the tools established in Chapter 1 to our
coming work on binomial edge ideals.

3.13 A Counterexample & Further References

To see that the conditions we impose on R are, in many cases, necessary, we consider the
following example:

Example 3.13.1. Let R = k[t, t−1] for some field k (the ring of Laurent polynomials over
k). This is not non-negatively graded, but ∗Spec(R) = {0}, so it is ∗local, however clearly
0 /∈ MaxSpec(R). This causes many of the preceding results to fail. For example:

1. R is ∗Artinian as a graded R-module, but it is clearly not Artinian, consider for example

(1 + t) ⊋ (1 + t)2 ⊋ · · ·

2. Viewing (R,m) as a ∗local ring with m = (0), we have that H0
m(M) = M for any M ∈

∗R-Mod, and so H0
m(M) is not ∗Artinian unless M itself is.

3. As noted in [Sha86, p. 215], R is ∗secondary as a graded R-module since homogeneous
elements of R are of the form atl for some a ∈ k and l ∈ Z, but not secondary since
multiplication by 1 + t is neither surjective nor nilpotent.

However, some of the results we have presented here are far from the most general. Many
more results concerning Z-graded rings and modules, as well as Z-graded local cohomology
and Local Duality, can be found in [BH05, Sections 1.5 & 3.5]. [BS13, Chapters 13 & 14] extends
many of these results to the case when R is graded by Zt for t ≥ 1. [NO04] contains many
general results on rings and modules graded by any group, and [Nor68, Sections 2.11, 2.12 and
2.13] presents results on rings and modules graded by certain monoids.



Chapter 4

LF-Covers and Binomial Edge Ideals of
König Type

Throughout this chapter, we set

R = k[x1, . . . , xn, y1, . . . , yn]

for some field k and n ≥ 1, and δi,j ··= xiyj − xjyi.

In this chapter, we give a combinatorial characterisation of connected graphs whose binomial
edge ideals are of König type, developed independently to the similar characterisation given in
[LaC23, Lemma 5.3], and exhibit some classes of graphs satisfying our criteria.

For any connected Hamiltonian graph G on n vertices, we also compute an explicit root of
Hn−1

J (G)(R) as an F -finite F -module.

The majority of this chapter first appeared in [Wil23a].

4.1 The Main Theorem

4.1.1 Statement & Preliminaries

The notion of ideals of König type was introduced by Herzog, Hibi, and Moradi in [HHM21] as
a generalisation of König graphs, for which the matching number is equal to the vertex cover
number (see [HHM21, Section 1] for the details). There are several ways to define these ideals,
but for binomial edge ideals there is a particularly elegant characterisation. We first introduce
some terminology and notation:

Notation 4.1.1. We say that a graph is a linear forest if every connected component is a path. For a
graph G, we say that a linear forest in G is maximal if no other linear forest in G has a greater number
of edges. We denote by LF(G) the number of edges of such a linear forest.

83
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Note. In [HHM21] and [LaC23], the term semi-path is used in place of linear forest, however linear
forest appears the more commonly used graph theoretic term, and so we adopt it here.

Definition 4.1.2. [HHM21, Theorem 3.5] Let G be a graph on n vertices. We say that J (G) is of
König type if and only if

gradeR(J (G)) = LF(G)

The left-hand side of this equality is stated in [HHM21] as 2n− dim(R/J (G)), but this is the
same as our statement by Lemma 3.11.1, since we then have

2n− dim(R/J (G)) = dim(R)− dim(R/J (G)) = gradeR(J (G))

We now introduce the notion of LF-covers:

Definition 4.1.3. Let G be a graph. If there exists a maximal linear forest F in G, and a set S ⊆ V (F )

such that:

1. No vertex in S is a leaf of F .

2. No two vertices in S are adjacent in F .

3. For every edge {i, j} ∈ E(G), one of the following holds:

i) At least one of i or j belongs to S. In this case, we say that this vertex covers {i, j}.

ii) Both i and j belong to the same connected component of F \ S.

then we say that (F, S) is an LF-cover of G, and that G is LF-coverable.

This notion is similar to that introduced in [LaC23, Lemma 5.3], with our final criterion expressed
differently, however the techniques we use are very different to those of [LaC23].

To illustrate this concept, we consider several examples:

Example 4.1.4. Let

G =

1

2 3

4

5 6

7 8
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Then G has a unique maximal linear forest

F =

1

2 3

4

5 6

7 8

and LF-covers (F, S) for

S ∈ {{4}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}

In particular, the minimal S with respect to containment (here circled) are

1

2 3

4

5 6

7 8

1

2 3

4

5 6

7 8

and so such minimal S need not contain the same number of vertices.

To see that these are LF-covers, note that {2, 4} and {3, 4} are the only edges of G \ F . In the
first example, both {2, 4} and {3, 4} are covered by 4, whilst in the second example, {2, 4} is
covered by 2, and {3, 4} is covered by 3. In both examples, no two vertices in S are adjacent in
F , and no vertex in S is a leaf of F .

Example 4.1.5. (Pn,∅) is an LF-cover of Cn for any n ≥ 3, because both endpoints of the only
remaining edge {1, n} in Cn \ Pn belong to the same connected component of Pn \ ∅ (this
example is also trivially true in the cases that n = 1 or n = 2, since then Cn = Pn).

Example 4.1.6. Let

G =
1

2
3

4
5

6

7

8

It is easily checked that, up to isomorphism, the maximal linear forests in G are

F1 =
1

2
3

4
5

6

7

8

F2 =
1

2
3

4
5

6

7

8
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Note that (F1, S1) and (F2, S2) are LF covers of G if and only if

S1, S2 ∈ {{1, 3}, {1, 4}, {1, 3, 4}}

It is not a coincidence that these collections agree: we will see in Theorem 4.1.9 that, for any
graph G, (F, S) being an LF-cover of G for some S ⊆ V (G) is independent of the choice of
maximal linear forest F .

Unfortunately, not all graphs are LF-coverable (we will see more such examples in Section 4.3):

Example 4.1.7. Let

G = 1

2 3

4

5 6

This is sometimes called the net or 3-sunlet.

Up to isomorphism, the maximal linear forests in G are

F1 = 1

2 3

4

5 6

F2 = 1

2 3

4

5 6

Suppose that we had an LF-cover (F1, S1) of G. The only way to cover {1, 4} would be to
include 1 in S1, since we cannot include 4 in S1 because it is a leaf of F1. However 2 and 3

would then belong to separate connected components of F1 \ S1, and so we would need to
include either 2 or 3 in S1 to cover {2, 3}. But each of these are adjacent to 1 in F1, and so cannot
be added to S1.

Now suppose that we had an LF-cover (F2, S2) of G. In order to cover {1, 3} and {2, 3}, we
would need to include both 1 and 2 in S2, since we cannot add 3 to S2 because it is a leaf of F2.
However 1 and 2 are adjacent in F2, and so cannot both belong to S2.

Note. By the second claim of Theorem 4.1.9, to show that a graph G is not LF-coverable, it suffices to
check a single maximal linear forest in G.

We can characterise LF-covers algebraically:

Lemma 4.1.8. Let G be a graph on n vertices, F a maximal linear forest in G, and S ⊆ V (F ). Then
(F, S) is an LF-cover of G if and only if S ∈ C(F ) and J (G) ⊆ PS(F ).

Proof. Criterion 1 and Criterion 2 of Definition 4.1.3 are equivalent to saying that S ∈ C(F )
since F is a linear forest. We have that J (G) ⊆ PS(F ) if and only if δi,j ∈ PS(F ) for every edge
{i, j} ∈ E(G), which is clearly equivalent to Criterion 3 in Definition 4.1.3 by the definition of
PS(F ), and the result follows.
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Our aim is to prove the following:

Theorem 4.1.9. Let G be a graph on n vertices. Then J (G) is of König type if and only if G is
LF-coverable.

Furthermore, (F, S) being an LF-cover of G for some S ⊆ V (G) is independent of the choice of maximal
linear forest F .

The proof will be given in Subsection 4.1.3.

We begin by showing part of what is proved in [HHM21, Lemma 3.3], although we do so
avoiding the use of initial ideals:

Proposition 4.1.10. Let G be a graph on n vertices, and let e1, . . . , et denote the elements of J (G)
associated to the edges of G. Then the ei form a regular sequence if and only if G is a linear forest.

Proof. Note first that being a linear forest is equivalent to not containing any cycle Cm for
3 ≤ m ≤ n or K1,3 (the star with 3 edges, sometimes called the claw). Since R is graded and the
ei are homogeneous of positive degree, if they form a regular sequence then any permutation of
this sequence will remain a regular sequence (see, for example, [Mat86, Theorem 16.3]), and so
to show necessity it is enough to show that δ1,2, δ2,3, . . . , δm−1,m, δ1,m and δ1,2, δ1,3, δ1,4 do not
form regular sequences (the second condition need not be checked when n ≤ 3).

Firstly, we have

(J (Pm) : δ1,m) =

 ⋂
S∈C(Pm)

PS(Pm)

: δ1,m =
⋂

S∈C(Pm)

(PS(Pm) : δ1,m) =
⋂

S∈C(Pm)
δ1,m /∈PS(Pm)

PS(Pm)

=
⋂

S∈C(Pm)
S ̸=∅

PS(Pm) ⊋ J (Pm)

since the PS(Pm) are prime, and so δ1,2, δ2,3, . . . , δm−1,m, δ1,m cannot be a regular sequence.

We similarly have that

(J (K1,3) : δ1,4) = ((x1, y1)∩J (K3)) : δ1,4 = ((x1, y1) : δ1,4)∩(J (K3) : δ1,4) = J (K3) ⊋ J (K1,3)

and so δ1,2, δ1,3, δ1,4 cannot be a regular sequence either. This proves necessity.

For sufficiency, we will first prove by induction that δ1,2, δ2,3, . . . , δm−1,m is a regular sequence
for m ≥ 2.

The case m = 2 is trivial since R is a domain.

We now proceed by induction, and so assume that δ1,2, δ2,3, . . . , δm−2,m−1 is a regular sequence.
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As before, we have that

(J (Pm−1) : δm−1,m) =
⋂

S∈C(Pm−1)
δm−1,m /∈PS(Pm−1)

PS(Pm−1) =
⋂

S∈C(Pm−1)

PS(Pm−1) = J (Pm−1)

since clearly δm−1,m /∈ PS(Pm−1) for any S ∈ C(Pm−1), and so δ1,2, δ2,3, . . . , δm−1,m forms a
regular sequence as desired.

Joining regular sequences from multiple disjoint paths will still result in a regular sequence,
since they have no variables in common. Then we have shown sufficiency, and so we are
done.

4.1.2 LF-Covers & Local Cohomology

Throughout this subsection, we assume that k is of prime characteristic p > 0.

The next stage of our proof of Theorem 4.1.9 will make use of prime characteristic techniques.
Our aim is to relate LF-covers to the associated primes of a certain local cohomology module.

The crux of our proof of the main theorem of this subsection is as follows:

Lemma 4.1.11. Let G be a graph on n vertices, and set g = J (G). Furthermore, let F be a maximal
linear forest in G, and set f = J (F ). Then (f : g)/f is a root of Hd

g (R), where d = |E(F )|.

Proof. Let e1, . . . , ed be the elements of f corresponding to the edges of F , which generate f. By
Proposition 4.1.10, the ei form a regular sequence. In particular, they form a g-filter regular
sequence since f ⊆ g. Then, by the Nagel-Schenzel Isomorphism and Proposition 2.1.33, we
have

Hd
g (R)

∼= Γg(H
d
f (R))

∼= Γg

lim−→

[
R/f

u·
↪−−→ R/f [p]

up·
↪−−→ R/f [p

2] up
2 ·

↪−−−→ · · ·

]
∼= lim−→

[
Γg(R/f)

u·
↪−−→ Γg(R/f

[p])
up·
↪−−→ Γg(R/f

[p2])
up

2 ·
↪−−−→ · · ·

]

∼= lim−→

[
(f : g∞)/f

u·
↪−−→ (f [p] : g∞)/f [p]

up·
↪−−→ (f [p

2] : g∞)/f [p
2] up

2 ·
↪−−−→ · · ·

]

where u = (e1 · · · ed)p−1.

The injectivity of the first map follows from Lemma 2.1.34 since the ei form a regular sequence,
and the injectivity of the subsequent maps is a result of the exactness of the Frobenius functor
(which is due to Kunz’s Theorem since R is regular) and the left exactness of Γg.

Since f = J (F ) is radical by Theorem 1.4.2, we have (f : g∞) = (f : g), and so we are done.

The following lemma is not difficult (and holds over any ring), but we include a proof for
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completeness:

Lemma 4.1.12. Let a be a radical ideal of R with minimal primary decomposition

a =

t⋂
i=1

pi

for some pi ∈ Spec(R) and t ≥ 1. Furthermore, let

b =
m⋂
i=1

pi

for some 1 ≤ m < t. Then
AssR(b/a) = {pi : m+ 1 ≤ i ≤ t}

Proof. Let b ∈ b, and suppose that rb ∈ a for some r ∈ R. Then rb ∈ pi for all 1 ≤ i ≤ t. Since
the pi are prime, we must have that r ∈ pi for each m+ 1 ≤ i ≤ t such that b /∈ pi. Then

AnnR(b+ a) ⊆
t⋂

i=m+1
b/∈pi

pi

The converse clearly holds, and this ideal is only prime when b /∈ pi for exactly onem+1 ≤ i ≤ t,
so

AssR(b/a) ⊆ {pi : m+ 1 ≤ i ≤ t}

Since the primary decomposition of a is minimal, no pi is redundant. Then we can find

bj ∈
t⋂
i=1
i ̸=j

pi \ pj

for each m+ 1 ≤ j ≤ t, and the result follows.

We can now prove the main result of this subsection:

Theorem 4.1.13. Let G be a graph on n vertices, and set g = J (G). Furthermore, let F be a maximal
linear forest in G with |E(F )| = d, and set f = J (F ). Then

AssR(H
d
g (R)) = {PS(F ) : S ∈ C(G) such that (F, S) is an LF-cover of G}

Proof. We have that

(f : g) =

 ⋂
S∈C(F )

PS(F )

: g =
⋂

S∈C(F )

(PS(F ) : g) =
⋂

S∈C(F )
g⊈PS(F )

PS(F )
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since each PS(F ) is prime. Since (f : g)/f is a root of Hd
g (R) by Lemma 4.1.11, their associated

primes are equal by Lemma 2.1.31. By Lemma 4.1.12 and Lemma 4.1.8, these primes are exactly
as claimed.

Note. At the time of writing, we do not know if Theorem 4.1.13 holds in characteristic 0.

4.1.3 Proof of the Main Theorem

We now allow k to be of any characteristic again.

Whilst we have only proven Theorem 4.1.13 in prime characteristic, this will allow us to prove
Theorem 4.1.9 in arbitrary characteristic:

Proposition 4.1.14. Let G be a graph on n vertices, set g = J (G), and let F be a maximal linear forest
in G. Then if G has an LF-cover (F, S) for some S ⊆ V (G), g is of König type.

Proof. Let d = |E(F )|. Suppose first that k has prime characteristic p > 0. Since (F, S) is an
LF-cover of G, then by Theorem 4.1.13 we know that AssR(Hd

g (R)) is non-empty. In particular,
we have that Hd

g (R) ̸= 0, and so gradeR(g) ≤ d by Theorem 1.2.20. But, by Lemma 1.4.8 and
Lemma 3.11.1, gradeR(g) is independent of the characteristic of k, and so this inequality holds
in any case.

Conversely, the elements of g corresponding to the edges of F form a regular sequence by
Proposition 4.1.10, so gradeR(g) ≥ d and we are done.

Proposition 4.1.15. Let G be a graph on n vertices, set g = J (G), and suppose that g is of König type.
Then G is LF-coverable.

Proof. Let F be a maximal linear forest in G, and set f = J (F ). Since g is of König type, and f is
trivially of König type, we have

gradeR(g) = LF(G) = LF(F ) = gradeR(f)

and so
dim(R/g) = dim(R)− gradeR(g) = dim(R)− gradeR(f) = dim(R/f)

by Lemma 3.11.1.

Let d = dim(R/g). Then we can find p0, . . . , pd ∈ Spec(R) such that

f ⊆ g ⊆ p0 ⊊ · · · ⊊ pd

Now, p0 must be minimal over f, since otherwise we would have dim(R/f) > d, and so
p0 ∈ AssR(f). Then p0 = PS(F ) for some S ⊆ V (F ), and we are done by Lemma 4.1.8.
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Proof of Theorem 4.1.9. The first claim follows immediately from Proposition 4.1.14 and Proposi-
tion 4.1.15.

We will now prove the second claim, so suppose that (F, S) is an LF-cover ofG, and take another
maximal linear forest F ′ in G. When k has prime characteristic p > 0, we have

PS(F ) ∈ AssR(H
d
g (R))

by Theorem 4.1.13, where d = LF(G) and g = J (G). This local cohomology module does not
depend on the choice of maximal linear forest, and so, again by Theorem 4.1.13, we must have
PS(F ) = PS′(F ′) for some S′ ⊆ V (F ′) such that (F ′, S′) is an LF-cover of G. By definition,
xi, yi ∈ PS(F ) if and only if i ∈ S, and similarly xi, yi ∈ PS′(F ′) if and only if i ∈ S′. Then since
PS(F ) = PS′(F ′), we must have S = S′, and so (F ′, S) is an LF-cover of G. Since LF-covers can
be characterised purely combinatorially, and are therefore independent of characteristic, the
result follows.

4.2 Some Classes of LF-Coverable Graphs

We will next show that traceable, complete bipartite and trivially perfect graphs are LF-coverable.
We will show the same for trees, by way of constructing an algorithm for calculating an explicit
LF-cover.

We also conjecture that several well-known classes of graphs are LF-coverable, with computa-
tional evidence to support this.

Definition 4.2.1. If a graph G on n vertices contains Pn, we say that G is traceable. If it contains Cn,
we say it that is Hamiltonian.

We recover, phrased differently, a similar result to one direction of [Oht11, Proposition 5.2]:

Proposition 4.2.2. Traceable graphs are LF-coverable.

Proof. Take F to be a path connecting all the vertices of the graph, and set S = ∅.

Note. It is shown in [Pós76] that almost all graphs are Hamiltonian. In particular, they are traceable,
and so almost all binomial edge ideals have grade n− 1.

Proposition 4.2.3. Complete bipartite graphs Ka,b are LF-coverable for all a, b ≥ 1.

Proof. We may assume without loss of generality that a ≥ b. Let v1, . . . , va and w1, . . . , wb be the
vertices in each partition.

If a = b then take
F = {{v1, w1}, {w1, v2}, {v2, w2}, . . . , {va, wb}}

and S = ∅.
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If a > b then take

F = {{v1, w1}, {w1, v2}, {v2, w2}, . . . , {va, wb}, {wb, va+1}}

and S = {w1, . . . , wb}.

Definition 4.2.4. We say that a graph G is trivially perfect if it can be constructed inductively,
starting from a single vertex K1, via either the disjoint union of smaller trivially perfect graphs, or the
addition of a vertex adjacent to all other vertices of a smaller trivially perfect graph (that is, taking the
join ∗ of a smaller trivially perfect graph with K1).

Proposition 4.2.5. Trivially perfect graphs are LF-coverable.

Proof. If a graph G1 has an LF-cover (F1, S1), and a graph G2 has an LF-cover (F2, S2), then
G1 ⊔G2 clearly has an LF-cover given by F = F1 ⊔ F2 and S = S1 ∪ S2. Then we may assume
that G is connected.

The graph K1 trivially has an LF-cover, and so we may proceed by induction on |V (G)|.

We can obtain any connected trivially perfect graph G with more than one vertex by starting
with a smaller trivially perfect graph G′, then taking G = G′ ∗K1. We have an LF-cover (F ′, S′)

of G′ by the inductive hypothesis.

If F ′ consists of a single connected component then it must be a path, so G′ is traceable. Clearly
the join of any traceable graph with a single point remains traceable, and so we are done by
Proposition 4.2.2.

If F ′ consists of more than one connected component, then certainly two leaves from separate
components, say l1 and l2, become joined in G. If we say V (K1) = {v}, then we may extend
F ′ by joining these two connected components along {l1, v} and {v, l2} to create a new linear
forest F . Since l1 and l2 are leaves in F , we may set S = S′ ∪ {v}. This will cover all the new
edges added by v in G, and so (F, S) is an LF-cover of G.

There are several related classes of graphs which we conjecture are also LF-coverable:

Definition 4.2.6. We say that a graph G is a cograph if it contains no induced P4.

Conjecture 4.2.7. Cographs are LF-coverable.

We have verified this conjecture using Macaulay2 for all cographs with up to 13 vertices.

Trivially perfect graphs can be alternatively characterised as those with no induced P4 or C4

(see [JJC96, Theorem 3]), and so form a subclass of cographs. Then Conjecture 4.2.7 implies
Proposition 4.2.5.
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Definition 4.2.8. Let ρ = (σ1, . . . , σm) be a permutation of the integers 1, . . . ,m. Then we define the
permutation graph G associated to ρ by setting V (G) = {1, . . . ,m} and

E(G) = {{v, w} : σw appears before σv in ρ, 1 ≤ v < w ≤ m}

Conjecture 4.2.9. Permutation graphs are LF-coverable.

We have verified this conjecture using Macaulay2 for all permutation graphs with up to 11

vertices.

Since permutation graphs are a superclass of cographs (see [BBL98, pp.280–281]), Conjec-
ture 4.2.9 implies Conjecture 4.2.7.

Definition 4.2.10. Let I1, . . . , Im be a collection of intervals on the real line. Then we define the interval
graph G associated to this collection by setting V (G) = {1, . . . ,m} and

E(G) = {{v, w} : Iv ∩ Iw ̸= ∅, 1 ≤ v < w ≤ m}

Conjecture 4.2.11. Interval graphs are LF-coverable.

We have verified this conjecture using Macaulay2 for all interval graphs with up to 10 vertices.

Interestingly, trivially perfect graphs are exactly the graphs which are both cographs and interval
graphs (again, see [JJC96, Theorem 3]), and so Conjecture 4.2.11 implies Proposition 4.2.5 also.

Before proving that trees are LF-coverable, we first introduce a definition and some notation:

Definition 4.2.12. Let T be a tree and b and branch point of T . We say that b is extremal if it is adjacent
to at most one other branch point.

Note. Definition 4.2.12 is not established terminology.

Notation 4.2.13. For a tree T and vertex v ∈ V (T ), we denote by LT (v) the set of vertices of T which
are leaves adjacent to v, and set LT [v] ··= LT (v) ∪ {v}.

Proposition 4.2.14. Let T be a tree on n vertices, where n ≥ 3. Then T has an extremal branch point.

Proof. The proof will be by induction on n. The case n = 3 is clear, so suppose that n > 3.
Remove a leaf l and apply the inductive hypothesis to T \ {l}, so T \ {l} has an extremal branch
point b. When l is reconnected, if it is adjacent to a leaf l′ of b then l′ is now an extremal branch
point. Otherwise b will remain an extremal branch point, and so we are done.

We can now prove that trees are LF-coverable, and exhibit an algorithm for efficiently computing
an LF-cover of any tree T . A distinct method is given in [LaC23, Algorithm 5.8] for computing a
linear forest and set satisfying their criteria.



94 LF-Covers and Binomial Edge Ideals of König Type

These algorithms are of independent interest, since they effectively calculate the dimension of
J (T ) by Lemma 3.11.1. For example, an algorithm to compute this dimension is given as a
special case of [MR20, Theorem 2.2].

Theorem 4.2.15. Let T be a tree on n vertices, where n ≥ 2. Then T is LF-coverable, and we can
inductively construct a maximal linear forest F in T and a set of vertices S ⊆ V (F ) such that (F, S) is
an LF-cover of T .

Proof. The proof will be by induction on n. The case n = 2 is trivial: take F = T and S = ∅.

Then suppose that n > 2, and that the statement of the theorem holds for all trees with fewer
than n vertices.

We may choose an extremal branch point b of T by Proposition 4.2.14, and consider two cases:

1. If b has a single leaf l, then b must be adjacent to another branch point b′, since T cannot
be a star because n > 2. Let T ′ = T \ {l}. By the inductive hypothesis, T ′ has an LF-cover
(F ′, S′).

Let F = F ′ ∪ {{b, l}}, and set S = S′. We claim that (F, S) is an LF-cover of T . The three
conditions of Definition 4.1.3 are clearly satisfied, so it remains only to show that F is a
maximal linear forest in G. Since {b, b′}must satisfy the conditions of Definition 4.1.3 for
(F ′, S′), we must either have that {b, b′} ∈ E(F ′), in which case F is a linear forest since
we will just be extending the path containing this edge, or {b, b′} /∈ E(F ′) and b′ ∈ S′, in
which case {b, l} will be its own connected component in F , and so F is a linear forest in
this case also. Maximality is clear, since T has one more edge than T ′, and F has one more
edge than F ′ (which is maximal in T ′).

2. Now suppose that b has at least two leaves l1 and l2, and set T ′ = T \ LT [b]. Again by the
inductive hypothesis, T ′ has an LF-cover (F ′, S′). Note that if T is a star, T ′ will be the
null graph K0, which trivially has LF-cover (∅,∅).

Let
F = F ′ ∪ {{b, l1}, {b, l2}}

and set S = S′ ∪ {b}. In this case, {{b, l1}, {b, l2}} will be its own connected component
in F , since we removed LT [b] from T when obtaining F ′, and so F is a linear forest. It is
maximal in T since we are adding a star (centred at v) to T ′, and so we can add at most
two edges to F ′ before introducing a claw (that is, K1,3). Furthermore, every other leaf
edge of b, and the edge {b, b′} for some branch point b′ ∈ E(T ) which will exist if T is
not a star, will be covered by b ∈ S, and so (F, S) is an LF-cover of T . This concludes the
proof.

The resulting algorithm is very simple:
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Algorithm 4.2.16.
Input: A tree T .
Output: An LF-cover (F, S) of T .

F ← K0

S ← ∅
while T ̸= K0 do

if T has a single edge e then
F ← F ∪ {e}
T ← K0

else
b← some extremal branch point of T
if b has a single leaf l then

F ← F ∪ {{b, l}}
T ← T \ {l}

else
l1 ← some leaf of b
l2 ← some leaf of b other than l1
F ← F ∪ {{b, l1}, {b, l2}}
S ← S ∪ {b}
T ← T \ LT [b]

end
end

end
return (F, S)

We will now illustrate the operation of Algorithm 4.2.16:

Example 4.2.17. Let

T =

1

2

3

4 56

7 8

9
10

11

We will compute F and S inductively, showing that we can obtain
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F =

1

2

3

4 56

7 8

9 11

and S = {3, 7} by following the proof of Theorem 4.2.15.

Note. F and S may depend on choices of extremal branch points and leaves in Algorithm 4.2.16. In this
example there are many alternative choices, as a somewhat trivially different LF-cover we could remove
say {7, 9} and add {7, 10} in E(F ) whilst keeping S the same.

We will explain in detail the first two steps of Algorithm 4.2.16 in this example, before presenting
every step in a table.

We begin with the full tree T , and select an extremal branch point. Here we choose b = 7 (as
indicated by a square):

T =

1

2

3

4 56

7 8

9
10

11

This puts us in Case 2 of the proof of Theorem 4.2.15. With notation as in that case, we choose
l1 = 9 and l2 = 11. Then the edges {7, 9} and {7, 11} will be added to the linear forest F , and 7

will be added to S (as indicated by a circle):

F =
7

9 11

Note that 7 then covers {4, 7} and {7, 10}.

We then remove 7 and its leaves from T . This leaves us with

T =

1

2

3

4 56

8

for which we must continue calculating an LF-cover.



4.2. Some Classes of LF-Coverable Graphs 97

Then we next select the extremal branch point b = 4:

T =

1

2

3

4 56

8

We are then in Case 1 of the proof of Theorem 4.2.15. With notation as in that case, we then have
l = 6, so {4, 6}will be added to the linear forest F :

F =

46

7

9 11

We then remove 6 from T . This leaves us with

T =

1

2

3

4 5

8

for which we must continue calculating an LF-cover.

The full execution of Algorithm 4.2.16 for this example is as follows (the light grey vertices and
edges are simply placeholders to allow us to visualise each step in the context of the original
tree):

Step Current T Resulting F Remaining T

1

1

2

3

4 56

7 8

9
10

11
7

9 11

1

2

3

4 56

8

2

1

2

3

4 56

8

46

7

9 11

1

2

3

4 5

8



98 LF-Covers and Binomial Edge Ideals of König Type

3

1

2

3

4 5

8

4 56

7 8

9 11

1

2

3

4 5

4

1

2

3

4 5

3

4 56

7 8

9 11

1

2

5

1

2

1

2

3

4 56

7 8

9 11

Then we have calculated F and S as claimed, and so by Theorem 4.1.9 we have

gradeR(J (T )) = |E(F )| = 7

4.3 Some Graphs Without LF-Covers

Example 4.3.1. For n = 6, we saw directly in Example 4.1.7 that

G =

is not LF-coverable. It can be checked using Macaulay2 that gradeR(J (G)) = 5, but LF(G) = 4.
This example is minimal in the sense that all graphs with 6 vertices or fewer are LF-coverable
other than this one.

Being bipartite is also not enough to ensure LF-coverability:
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Example 4.3.2. For n = 10 and

G =

=

it can be checked using Macaulay2 that gradeR(J (G)) = 9, but LF(G) = 8. This example is
minimal in the sense that all bipartite graphs with fewer than 10 vertices are LF-coverable, and
there is only one other bipartite graph on 10 vertices which is not LF-coverable:

G =

=

which also has gradeR(J (G)) = 9 and LF(G) = 8, however this contains an additional edge,
and there are no other bipartite examples with 11 edges or fewer.

In all of the examples we have seen so far, gradeR(J (G)) and LF(G) differ by at most 1. However
this is not necessarily the case:

Example 4.3.3. For n = 11 and

G =

it can be checked using Macaulay2 that gradeR(J (G)) = 10, but LF(G) = 8. This example is
minimal in the sense that there are no other such examples (where gradeR(J (G)) and LF(G)

differ by more than 1) with 12 edges or fewer. There is however a single such example with 10

vertices or fewer, given by

G =

which has gradeR(J (G)) = 9 and LF(G) = 7 for n = 10.
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4.4 Calculating Explicit Roots

Lemma 4.1.11 suggests that we may be able to explicitly calculate roots of Hd
J (G)(R) when

a graph G on n vertices has an LF-cover with d edges. In fact, using the Nagel-Schenzel
Isomorphism, we could calculate roots of any local cohomology module of the binomial edge
ideal of any graph if we could find a J (G)-filter regular sequence of sufficient length.

However, in practice, proving that a sequence of elements is J (G)-filter regular turns out to
be quite difficult. Even in the case of LF-coverable graphs with covers with d edges, explicitly
calculating roots of Hd

J (G)(R) is not easy.

We perform this calculation here for Hamiltonian graphs. We will first do this for the complete
graph Kn, and then extend the result to all Hamiltonian graphs.

We now again assume that k is of prime characteristic p > 0, and that n ≥ 3.

Furthermore, we define an Nn-grading on R by setting

deg(xi) = deg(yi) = ei

where ei is the n-tuple with 0 everywhere except for 1 at the ith position.

Let G = Kn, and set g = J (G). We have that (Pn,∅) is an LF-cover of Kn by Proposition 4.2.2
since Kn is traceable, and we set a = J (Pn). We may assume that

E(Pn) = {{1, 2}, . . . , {n− 1, n}}

By Lemma 4.1.11, we can obtain an explicit root of Hn−1
g (R) by calculating (a : g).

Notation 4.4.1. For 0 ≤ l ≤ n− 2, set

zl ··= x2 · · ·xn−1−lyn−l · · · yn−1

Here l should be thought of as the number of ys in this expression.

For example, when n = 5 we have

z0 = x2x3x4

z1 = x2x3y4

z2 = x2y3y4

z3 = y2y3y4

We aim to prove the following:
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Theorem 4.4.2. Let
b = a+ (z0, . . . , zn−2)

Then (a : g) = b, and so b/a is a root of Hn−1
g (R).

To show that b ⊆ (a : g), we must prove that, for any 0 ≤ l ≤ n− 2 and 1 ≤ i < j ≤ n, we have
zlδi,j ∈ a.

We will do this by proving a slightly stronger statement.

Notation 4.4.3. For any 1 ≤ i < j ≤ n and 0 ≤ l ≤ j − i− 1, set

zi,jl ··= xi+1 · · ·xj−1−lyj−l · · · yj−1

with zi,i+1
l = 1.

These should be thought of as truncated versions of the zl, with all indices lying strictly between
i and j, but still l terms involving y appearing, so zl = z1,nl .

For example, keeping n = 5 we have

z1,40 = x2x3

z1,41 = x2y3

z1,42 = y2y3

Proposition 4.4.4. For any 1 ≤ i < j ≤ n and 0 ≤ l ≤ j − i− 1, we have zi,jl δi,j ∈ a.

Proof. The proof will be by induction on j − i.

If j − i = 1, then δi,j = δi,i+1 ∈ a since a = J (Pn), and so zδi,j belongs to a for any z ∈ R.

Now suppose that j − i ≥ 2 and that the result holds for all smaller such differences.

If l = 0 then xi+1 | zi,jl , and so

zi,jl δi,j = zi,jl (xiyj − xjyi)

= zi,jl xiyj − z
i+1,j
l xixjyi+1 + zi+1,j

l xixjyi+1 − zi,jl xjyi
= xiz

i+1,j
l (xi+1yj − xjyi+1) + xjz

i+1,j
l (xiyi+1 − xi+1yi)

= xi(z
i+1,j
l δi+1,j) + (xjz

i+1,j
l )δi,i+1

We have zi+1,j
l δi+1,j ∈ a by the inductive hypothesis, and δi,i+1 ∈ a since a = J (Pn), so

zi,jl δi,j ∈ a.
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Similarly, if l ̸= 0 then yj−1 | zi,jl , and so

zi,jl δi,j = zi,jl (xiyj − xjyi)

= zi,jl xiyj − z
i,j−1
l−1 xj−1yiyj + zi,j−1

l−1 xj−1yiyj − zi,jl xjyi
= yjz

i,j−1
l−1 (xiyj−1 − xj−1yi) + yiz

i,j−1
l−1 (xj−1yj − xjyj−1)

= yj(z
i,j−1
l−1 δi,j−1) + (yiz

i,j−1
l−1 )δj−1,j

We have zi,j−1
l−1 δi,j−1 ∈ a by the inductive hypothesis, and δj−1,j ∈ a since a = J (Pn), so

zi,jl δi,j ∈ a.

Then, in either case, we have zi,jl δi,j ∈ a as desired.

Corollary 4.4.5. We have b ⊆ (a : g).

Proof. This follows immediately from Proposition 4.4.4, since for any 1 ≤ i < j ≤ n and
0 ≤ l ≤ n − 2, we have that zi,jl′ | zl for some 0 ≤ l′ ≤ n − 2, l′ is simply the number of
occurrences of “y”s in zl with indices strictly between i and j.

We will now show the reverse inclusion, for which we need a few preparatory results:

Lemma 4.4.6. For any 2 ≤ i ≤ n− 1, we have

(a : δi−1,i+1) = (xi, yi) + a

Proof. We have

(a : δi−1,i+1) =
⋂

S∈C(Pn)

(PS(Pn) : δi−1,i+1) =
⋂

S∈C(Pn)
δi−1,i+1 /∈PS(Pn)

PS(Pn) =
⋂

S∈C(Pn)
i∈S

i−1,i+1/∈S

PS(Pn)

= (xi, yi) + J (P{1,...,i−1}) + J (P{i+1,...,n}) = (xi, yi) + a

since the PS(Pn) are prime.

Here P{v1,...,vt} denotes the graph on v1, . . . , vt with edges {v1, v2}, . . . , {vt−1, vt}, that is, the
path on v1, . . . , vt.

Proposition 4.4.7. Every homogeneous element of R with degree (0, 1, . . . , 1, 0) belongs to b.

Proof. To see this, simply note that xiyi+1 = xi+1yi modulo a for every 1 ≤ i ≤ n− 1, and so we
may “swap” adjacent terms of xs and ys in our zl whilst staying within b.

Corollary 4.4.8. We have (a : g) ⊆ b.

Proof. Take any c ∈ (a : g). Since a and g are homogeneous we have that (a : g) is homogeneous
also, and so we may assume that c is homogeneous. Because c ∈ (a : g), we have in particular
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that cδi−1,i+1 ∈ a for every 2 ≤ i ≤ n− 1 since δi−1,i+1 ∈ g.

In Lemma 4.4.6 we saw that
(a : δi−1,i+1) = (xi, yi) + a

and so we can write c = f2 + a2 for some f2 ∈ (x2, y2) and a2 ∈ a. Note that f2 = c− a2 ∈ (a : g)

also, so we can write f2 = f3 + a3 for some f3 ∈ (x3, y3) and a3 ∈ a. Continuing in this way, we
arrive at

c = fn−1 + (a2 + · · ·+ an−1)

where either xi | fn−1 or yi | fn−1 for each 2 ≤ i ≤ n − 1. This means that each term in
fn−1 is divisible by a homogeneous element of R of degree (0, 1, . . . , 1, 0), so fn−1 ∈ b by
Proposition 4.4.7. Then c ∈ b also, and we are done.

This concludes the proof of Theorem 4.4.2 for G = Kn. We will now extend this result.

We now allow G to be any Hamiltonian graph on n vertices, otherwise our notation is as
before. Since G is Hamiltonian it contains Cn, and we may assume that

E(Cn) = {{1, 2}, . . . , {n− 1, n}, {1, n}}

Since Kn is Hamiltonian, to prove Theorem 4.4.2 for all Hamiltonian graphs, it will suffice to
show that (a : g) is independent of the choice of Hamiltonian graph:

Proposition 4.4.9. We have (a : g) = (a : δ1,n).

Proof. We will first show that (a : δ1,n) ⊆ (a : δi,j) for any 1 ≤ i < j ≤ n.

We know
(a : δi,j) =

⋂
S∈C(Pn)

(PS(Pn) : δi,j) =
⋂

S∈C(Pn)
δi,j /∈PS(Pn)

PS(Pn)

since the PS(Pn) are prime, and δ1,n ∈ PS(Pn) if and only if S = ∅. Clearly δi,j ∈ P∅(Pn) for
any 1 ≤ i < j ≤ n, and so the desired containment holds.

Then we have

(a : g) = a :

 ∑
{i,j}∈E(G)

(δi,j)

 =
⋂

{i,j}∈E(G)

(a : δi,j) = (a : δ1,n)

with the last equality following since G contains Cn because it is Hamiltonian and so {1, n} ∈
E(G).

This concludes the proof of Theorem 4.4.2.

As an example application of Theorem 4.4.2, we show the following:
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Proposition 4.4.10. We have
AssR(H

n−1
g (R)) = {J (Kn)}

Proof. By Theorem 4.4.2 and Proposition 4.4.9, we have that b/a is a root of Hn−1
g (R), and so

AssR(H
n−1
g (R)) = AssR(b/a)

by Lemma 2.1.31.

Let p be any associated prime of b/a, so p = AnnR(b+ a) for some non-zero b+ a ∈ b/a. This is
equivalent to saying that p = (a : b).

Since b ∈ b = (a : J (Kn)) we have bJ (Kn) ⊆ a, so certainly J (Kn) ⊆ p. We will now show the
converse.

By definition, we have pb ⊆ a ⊆ J (Kn). Now, J (Kn) = P∅(Kn) is prime, and so either
p ⊆ J (Kn) as desired, or b ∈ J (Kn). We know that bJ (Kn) ⊆ a, and so in this case we have
b2 ∈ a. But a = J (Pn) is radical, so b ∈ a. Then b + a = 0 + a, which contradicts that b + a is
non-zero, and so we are done.



Chapter 5

Local Cohomology Modules of Binomial
Edge Ideals of Complements of Graphs
of Girth ≥ 5

Throughout this chapter, unless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwiseunless specified otherwise, we set

R = k[x1, . . . , xn, y1, . . . , yn]

for some field k and n ≥ 1, and δi,j ··= xiyj − xjyi.

In this chapter, we calculate the local cohomology modules of the binomial edge ideals of the
complements of connected graphs of girth at least 5 using the tools introduced in [Àlv20, Section
3]. We then use this calculation to compute or bound various invariants of these binomial edge
ideals.

The majority of this chapter first appeared in [Wil23b].

5.1 Àlvarez Montaner’s Hochster-Type Formula

The key tool we will make use of is a Hochster-type decomposition of the local cohomology
modules of binomial edge ideals given by the (reduced) cohomology of intervals in the order
complex of a certain poset associated to the binomial edge ideal, which was introduced by
Àlvarez Montaner in [Àlv20, Section 3].

We begin by defining the poset itself:

Definition 5.1.1. For a graph G, we construct the poset QJ (G) as follows:

1. We start with the associated primes p1, . . . , pt of J (G).
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2. Next, we add all sums of these primes to our poset.

3. If any of these sums is not prime, replace it with the primes in its primary decomposition.

4. Now add to the poset all sums of the previous elements and these new primes.

5. Repeat this process until all ideals in the poset are prime and all sums are included.

This process terminates after a finite number of steps, as explained in [Àlv20, Definition 3.3].

We then order these ideals by reverse inclusion, and adjoin a maximal element 1QJ (G)
.

Note. These ideals are all Cohen-Macaulay, as explained in the introduction of [Àlv20, Section 3.2].

Example 5.1.2. If
G =

1 2 3 4

then 1QJ (G)
is given by

1QJ (G)

P∅(G) P{2}(G)

P∅(G) + P{2}(G)

P{3}(G)

P∅(G) + P{3}(G) P{2}(G) + P{3}(G)

P∅(G) + P{2}(G) + P{3}(G)

We now describe a simplicial complex associated to a poset:

Definition 5.1.3. Let (P,≤) be a poset. Then we define the order complex associated to (P,≤) as the
simplicial complex whose facets are the maximal chains in P .

Given S1, S2 ∈ P with S1 ≤ S2, we denote by (S1, S2) the order complex on that open interval in the
poset, that is, the complex with facets given by the maximal chains strictly between S1 and S2.

The key theorem is then as follows:

Theorem 5.1.4. [Àlv20, Theorem 3.9] We have isomorphisms

Hr
m(R/J (G)) ∼=

⊕
q∈QJ (G)

H
dq
m (R/q)Mr,q
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of graded k-vector spaces for all r ≥ 0, where dq = dim(R/q) and

Mr,q = dimk(H̃
r−dq−1((q, 1QJ (G)

); k))

Note. We will compute reduced homology groups rather than reduced cohomology groups, which we
can do since these have the same dimension as k-vector spaces when finite dimensional (see, for example,
[MS05, p.11]).

Example 5.1.5. Again, let
G =

1 2 3 4

and set

pS1,S2 = PS1(G) + PS2(G)

q = P∅(G) + P{2}(G) + P{3}(G)

for S1, S2 ∈ C(G).

Then we have

I dim(R/I) (I, 1QJ (G)
) dimk(H̃

−1) dimk(H̃
0) dimk(H̃

1)

PS(G)
S∈C(G)

5 ∅ 1 0 0

pS1,S2

S1,S2∈C(G)
4 PS1(G) PS2(G) 0 1 0

q 3

P∅(G) P{2}(G) P{3}(G)

p∅,{2} p∅,{3} p{2},{3}

0 0 1

and so

H5
m(R/J (G)) ∼=

 ⊕
S∈C(G)

H5
m(R/PS(G))

⊕
 ⊕
S1,S2∈C(G)

H4
m(R/pS1,S2)

⊕H3
m(R/q)

as graded k-vector spaces, with all other local cohomology modules vanishing.

This (along with Lemma 3.11.4) tells us that R/J (G) is Cohen-Macaulay of dimension 5.

5.2 Some Properties of Complements of Graphs of Girth at Least 5

We begin with a definition:

Definition 5.2.1. Let G be a graph. We define the girth of G to be the number of vertices in the smallest
cycle contained in G, or∞ if G is acyclic (or, equivalently, if G is a forest).
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For the remainder of this chapter, unless specified otherwise, G will denote a connected
graph of girth at least 5.

We also suppose that G has no universal vertex, since then that vertex will be isolated
in G, and so will not affect QJ (G) (other than raising each dq by 2). For clarity, we will
denote by v the vertex in G corresponding to the vertex v in G, although the two are
really the same.

Furthermore, we may assume that n ≥ 5: Any graph with fewer than 5 vertices but girth
greater than 5 must be a tree, and it is easily checked that all trees on up to 4 vertices
contain a universal vertex other than P4 = P4, which we have already dealt with in
Example 5.1.5.

Finally, we denote by H the subgraph of G obtained by removing all leaves of G. Note
that V (H) ̸= ∅ since G has no universal vertex.

We first describe C(G):

Lemma 5.2.2. We have
C(G) = {∅} ∪ {NG(v) : v ∈ V (H)}

Proof. Trivially we have ∅ ∈ C(G). Take any other S ∈ C(G). We will first show that G \ S
consists of exactly two connected components. We know that it must have more than one. Say
we had the induced subgraph

v2

v1

v3

in G \ S. Then we would have the 3-cycle

v2

v1

v3

in G, a contradiction.

Next we will show that one of these components must be an isolated vertex. Suppose that we
had the induced subgraph

v1

v2

v3

v4
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in G \ S. Then we would have the 4-cycle

v1

v2

v3

v4

in G, again a contradiction, and so one component must be an isolated vertex as claimed.

Let v denote this isolated vertex. We now claim that v ∈ V (H). Otherwise, suppose that v is
adjacent to a single vertex w in G, so v is adjacent to every vertex in G other than w. Then for
v to be isolated with G \ S consisting of more than one connected component, we must have
S = V (G) \ {v, w}. This would mean that G \ S is just

v w

Since G ̸= K2 and is connected, we know that w has at least one other neighbour, say a, and we
must have a ∈ S. But adding a back to G \ S gives

v

a

w

which does not decrease the number of connected components, contradicting that a ∈ S.

This shows that v is as claimed. Since v is isolated in G \ S, we must have NG(v) ⊆ S.

Now take any a ∈ S, so adding a back to G \ S must decrease the number of connected
components. We have shown there are only two connected components in G\S, one of which is
{v}, and so a must be adjacent to v in G. This means that S ⊆ NG(v), so S = NG(v) as desired.

Finally, we will show that for any v ∈ V (H), we have NG(v) ∈ C(G). Take any w ∈ NG(v). This
means that w is not adjacent to v in G.

We know that v has at least two neighbours, say a1 and a2, in G, since v ∈ V (H). If we had the
induced subgraph

v

w

a1

a2
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in G then we would have the 4-cycle

v

w

a1

a2

in G, a contradiction. Then w must be adjacent to both v and one of its neighbours in G, so
reintroducing it will reconnect the two disjoint components of G \ S, and we are done.

We will also make use of the following:

Proposition 5.2.3. G is connected.

Proof. If we had the induced subgraph

v1

v2

v3

v4

in G, then we would have the 4-cycle

v1

v2

v3

v4

in G, a contradiction.

This means that either G is connected, or it contains an isolated vertex v. But for v to be isolated
in G, it must be universal in G, contradicting our assumptions on G.

5.3 An Equivalence of Posets

We next define a poset which we will show is equivalent to that of Definition 5.1.1 for G.

Note. As vertex sets, we have
NG(v) = V (G) \NG[v]

for any v ∈ V (H).

Definition 5.3.1. We first define a set PG consisting of the following ideals:
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j ··= J (Kn)

av ··= (xi, yi : i ∈ V (G) \NG[v]) + J (KNG(v))

bv ··= (xi, yi : i ∈ V (G) \NG[v]) + J (KNG[v])

c{v,w} ··= (xi, yi : i ∈ V (G) \ {v, w})

d{v,w} ··= (xi, yi : i ∈ V (G) \ {v, w}) + (δv,w)

ev ··= (xi, yi : i ∈ V (G) \ {v})

for v ∈ V (H)

for v ∈ V (H)

for {v, w} ∈ E(H)

for {v, w} ∈ E(H)

for v ∈ V (H) with |NH(v)| > 1

If there exist v, w ∈ V (H) with |NH(w)| > 1 and w /∈ NG[v], then we also add m to this set.

We next adjoin an element 1PG
, which will be maximal in the poset, and then turn PG into a poset by

taking the transitive and reflexive closure of the following relations (the relation being reverse inclusion):

m ≤ ev

ev ≤ d{v,w}

d{v,w} ≤ bv, bw, c{v,w}

bv ≤ j, av

c{v,w} ≤ av, aw

j, av ≤ 1QJ (G)

for w ∈ NH(v)

Note. It is easily seen that all of these ideals are prime.

Lemma 5.3.2. We have QJ (G) = PG as posets.

Proof. We will first show that QJ (G) ⊆ PG.

By Lemma 5.2.2, j and the ai are precisely the associated primes of J (G). Take any non-empty
S ⊆ V (H), and set

σ =
∑
v∈S

av

If we have some v1 and v2 in S which are not adjacent and share no neighbours, then

NG[v1] ∩NG[v2] = ∅

and so σ = m. Note that if this is the case, since H is connected (because G is and we are only
removing leaves), we must have a path P in H on at least 4 vertices with endpoints v1 and
v2. If we consider the subpath P ′ starting at v1 consisting of exactly 4 vertices, this must be an
induced subgraph of G, since the girth of G is at least 5. Denote by w the neighbour of v1 in P ′,
and by v the neighbour of v1 not adjacent to w in P ′. Then |NH(w)| > 1 and w /∈ NG[v], so the
criterion for the inclusion of m in PG is satisfied.

We may now assume that each vertex in S is either adjacent to, or shares a neighbour with,
every other.

If S = {v1, v2} with v1 and v2 adjacent, then σ = c{v1,v2}, since they cannot have a common
neighbour as this would mean that G contains a 3-cycle.
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Otherwise, we may assume that S consists of at least 3 vertices. At least 2 of these vertices, say
v1 and v2, cannot be adjacent, since otherwise G would contain a 3-cycle. We next assume that
they have a common neighbour, say w, since otherwise we are in the case σ = m. Note that
w ∈ V (H) also, since we know it has at least two neighbours. If v1 and v2 had another common
neighbour then G would contain a 4-cycle, so this cannot be the case, and therefore

NG[v1] ∩NG[v2] = {w}

We then have
av1 + av2 = ew

Since

ew + av =

ew if w ∈ NG[v]

m otherwise

we now know that σ must be either av, c{v1,v2}, ew or m for some v, v1, v2, w ∈ V (H).

Furthermore, we have

av + j = bv

c{v,w} + j = d{v,w}

ew + j = ew

m+ j = m

and so QJ (G) is contained in PG.

It is easily seen that we can achieve each bv, c{v,w} and d{v,w} through sums of j and the ai. If we
have any ew in PG, then by definition we have some w ∈ V (H) and v1, v2 ∈ NH(w), so

av1 + av2 = ew

as shown above. Finally, if m is in PG then by definition we have such a w, along with some
v ∈ V (H) with w /∈ NG[v], so

ew + av = m

again as shown above. This shows that we can achieve every element of PG through sums of j
and the ai, so PG ⊆ QJ (G).

Clearly the orders on QJ (G) and PG agree, and so QJ (G) = PG as posets as claimed.

Note. PG is also equal to the poset PJ (G) of [Àlv20, Section 3.1], since each sum of the associated
primes of J (G) is itself prime.
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Example 5.3.3. Let

G =

1 2 3 4 5 6

7

8

so

H =

2 3 4 5

7

This yields the poset

1QJ (G)

j a2

b2

a3

b3

a4

b4

a5

b5

a7

b7 c{2,3}

d{2,3}

c{3,4}

d{3,4}

c{3,7}

d{3,7}

c{4,5}

d{4,5}

e3 e4

m

Note. We may not always get the ev and m layers of the poset. For example, if

G =
1 2 3 4 5

then we obtain the poset
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1QJ (G)

j a2

b2

a3

b3

a4

b4 c{2,3}

d{2,3}

c{3,4}

d{3,4}

e3

If
G =

1 2 3 4

then we obtain

1QJ (G)

j a2

b2

a3

b3 c{2,3}

d{2,3}

However, since G has no universal vertex it cannot be a star, so H has at least one edge and therefore
some d{v,w} will always be present.

5.4 The Main Theorem & Some Corollaries

In order to apply Theorem 5.1.4, we must calculate the dimensions of the ideals in our poset:
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Proposition 5.4.1. We have

dim(R/j) = n+ 1

dim(R/av) = |NG[v]|+ 2

dim(R/bv) = |NG[v]|+ 1

dim(R/c{v,w}) = 4

dim(R/d{v,w}) = 3

dim(R/ev) = 1

Proof. This follows immediately from the fact that the dimension of the binomial edge ideal of a
complete graph on m vertices is m+ 1 (see for example [Her+10, Example 1.7 (a) & Corollary
3.4]).

We must also calculate the necessary values of Mr,q. The most involved q ∈ QJ (G) for which to
calculate Mr,q is q = ev. We will show that, in this case, Mr,q = 0 for all j.

Proposition 5.4.2. For any ev ∈ QJ (G), all reduced homology of the order complex ∆ of the open
interval (ev, 1QJ (G)

) vanishes.

Proof. The facets of ∆ are

{d{v,w}, bv, j}

{d{v,w}, bv, av}

{d{v,w}, bw, j}

{d{v,w}, bw, aw}

{d{v,w}, c{v,w}, av}

{d{v,w}, c{v,w}, aw}

for w ∈ NH(v).

Let w1, . . . , wm denote the vertices in NH(v). To simplify notation, we make the relabellings

d{v,wi} 7→ ai

bv 7→ b

bwi 7→ ci

c{v,wi} 7→ di

j 7→ e

av 7→ f

awi 7→ gi
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so our facets become

m⋃
i=1

{{ai, b, e}, {ai, b, f}, {ai, ci, e}, {ai, ci, gi}, {ai, di, f}, {ai, di, gi}}

When m = 2, our complex is

d1 f d2

g1
a1 b a2

g2

c1 e c2

Increasing m will simply add more squares joined along

e b f

We can take a geometric realisation (here pictured for m = 8) of ∆ which looks like:

f

b

e

(e, b and f have been added to this illustration to highlight how the squares are joined in ∆,
they are not actually points in R3).

This is clearly contractible, and so all reduced homology of ∆ vanishes as desired.

We are now ready to prove our main theorem:

Theorem 5.4.3. We have the following isomorphisms

H5
m(R/J (G)) ∼=

 ⊕
v∈V (H)
|NG[v]|=3

[H5
m(R/av)⊕H4

m(R/bv)]

⊕
 ⊕

{v,w}∈E(H)

[H4
m(R/c{v,w})⊕H3

m(R/d{v,w})]
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H i
m(R/J (G)) ∼=

 ⊕
v∈V (H)

|NG[v]|=i−2

[H i
m(R/av)⊕H i−1

m (R/bv)]



Hn+1
m (R/J (G)) ∼= Hn+1

m (R/j) ⊕

 ⊕
v∈V (H)

|NG[v]|=n−1

[Hn+1
m (R/av)⊕Hn

m(R/bv)]


of graded k-vector spaces (for 5 < i < n+ 1), with all other local cohomology modules vanishing.

Proof. We aim to apply Theorem 5.1.4 to QJ (G).

Note that, since G has no universal vertex by assumption, we cannot have any v ∈ V (H) such
that |NG[v]| > n− 1, and since every vertex in H has at least two neighbours in G, we cannot
have |NG[v]| < 3.

Taking into account Proposition 5.4.1, the following values are easily computed:

I dim(R/I) (I, 1QJ (G)
) dimk(H̃

−1) dimk(H̃
0) dimk(H̃

1)

j n+ 1 ∅ 1 0 0

av |NG[v]|+ 2 ∅ 1 0 0

bv |NG[v]|+ 1 j av 0 1 0

c{v,w} 4 av aw 0 1 0

d{v,w} 3

j av aw

bv bw c{v,w}

0 0 1

Then, in light of Proposition 5.4.2, we are done if we can show that all reduced homology of the
order complex ∆ of the open interval (m, 1QJ (G)

) vanishes.

We have that the length of a maximal chain in (m, 1QJ (G)
) is 4, and so ∆ has non-vanishing

reduced homology at index 3 at the highest. From the definition of the Mr,q, we see that
the smallest i for which the terms in the table can contribute to H i

m(R/J (G)) is 5, and since
dimR(R/m) = 0, the largest i for which m can contribute to H i

m(R/J (G)) is 4. Then, by
Theorem 3.8.5, we are done if we can show that ∗depthR(R/J (G)) > 4.

By [RSK21, Theorem 5.2 & Theorem 5.3], we have that ∗depthR(R/J (G)) ≥ 4 since G is
connected by Proposition 5.2.3, with equality if and only if G can be written as a join

G = (K1 ⊔K1) ∗G′

for some graph G′. But if this were the case, then we would have G = K2 ⊔G′, contradicting
that G is connected.
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We can use this theorem to calculate the dimension, depth, and regularity of R/J (G). In the
case where k is of prime characteristic p > 0, we can also calculate the cohomological dimension
and bound the arithmetic rank.

Corollary 5.4.4. We have

∗depthR(R/J (G)) = 5

dim(R/J (G)) = n+ 1

and R/J (G) is Cohen-Macaulay if and only if G = P4.

Proof. We see from Theorem 5.4.3 that H5
m(R/J (G)) and Hn+1

m (R/J (G)) always contain non-
vanishing summands, and so are the bottom and top local cohomology modules respectively.
The first claims then follow from Theorem 3.8.5 and Theorem 3.7.7.

We then have that R/J (G) is Cohen-Macaulay if and only if n+ 1 = 5 by Lemma 3.11.4 and
Lemma 3.7.4. The only such graph satisfying our criteria on G is P4, and so we are done.

Corollary 5.4.5. Suppose that k has prime characteristic p > 0. Then H i
J (G)

(R) is non-vanishing if
and only if

i ∈ {n− 1, 2n− 5} ∪ {2n− (NG[v] + 2) : v ∈ V (H)}

Consequently, we can compute the cohomological degree

cdR(J (G)) = 2n− 5

and bound the arithmetic rank
2n− 5 ≤ araR(J (G)) ≤ 2n

with the lower bound being sharp.

Proof. Note that
cdR(J (G)) = max{1 ≤ i ≤ 2n : H i

J (G)
(R) ̸= 0}

by [Iye+07, Theorem 9.6].

We will make use of the functor ∗H defined in [LSW16, Theorem 4.2]. This is the graded
counterpart to the functor defined in Section 2.2.

By [LSW16, Proposition 2.8], we have that

∗H (H i
m(R/J (G))) ∼= H2n−i

J (G)
(R)

Now, by Theorem 2.1.8 we have that Frobenius is injective on H i
m(R/J (G)), and so the first

claim follows from [LSW16, Theorem 2.5 (2)] and Theorem 5.4.3.

We have araR(J (G)) ≤ 2n by [Iye+07, Theorem 9.13 & Remark 9.14], and 2n− 5 ≤ araR(J (G))
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by [Iye+07, Proposition 9.12], since we have shown that the cohomological dimension is 2n− 5.

Furthermore, J (P4) is generated by 3 elements, so the lower bound is sharp as claimed.

Note. At the time of writing, we do not know if Corollary 5.4.5 holds in characteristic 0.

We need a few results about regularity before we compute it, these are not difficult but we
include proofs for completeness:

Proposition 5.4.6. Let R be a polynomial ring over a field with the standard grading, I a homogeneous
ideal of R, and z an indeterminate. Then

regR[z](R[z]/(IR[z] + (z))) = regR(R/I)

Proof. Note that
R[z]/(IR[z] + (z)) ∼= R/I

as R[z]-modules if we let z act on R/I by killing any element. Then the result follows immedi-
ately from applying [Eis05, Corollary 4.6] to R/I and R ↪→ R[z].

Proposition 5.4.7. Let R be a polynomial ring over a field with the standard grading, I a homogeneous
ideal of R, and z an indeterminate. Then

regR[z](R[z]/IR[z]) = regR(R/I)

Proof. A minimal graded free resolution of R/I over R remains so over R[z], since R[z] is free
(and therefore flat) over R, and its grading is compatible with that of R.

We will make use of the following notation:

Notation 5.4.8. Let 1 ≤ i ≤ n, and let G be a graph with vertices 1, . . . , j for some j ≤ i. Then we set

R′
i
··= k[x1, . . . , xi, y1, . . . , yi]

and denote by Ji(G) the binomial edge ideal of G in R′
i.

Proposition 5.4.9. For any m ≥ 2, we have

regR′
m
(R′

m/Jm(Km)) = 1

Proof. Since
regR′

m
(Jm(Km)) = 2

(see for example [KS12, Remark 3.3]), the result is immediate from the fact that

regR′
m
(R/I) = regR′

m
(I)− 1
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for any (homogeneous) ideal I of R.

We can now compute the regularity of R/J (G):

Corollary 5.4.10. We have
regR(R/J (G)) = 3

Proof. Fix vertices v and w of H , and set m = |NG(v)|. We may relabel the vertices of G so that
NG(v) = {1, . . . ,m} and v = m+ 1.

By Theorem 1.2.15, for any finitely generated graded R-module M , we have

regR(M) = max{endR(H i
m(M)) + i : i ≥ 0}

Each ideal in QJ (G) is Cohen-Macaulay, and so only has a single non-vanishing local cohomol-
ogy module. Furthermore, the isomorphisms in Theorem 5.4.3 are isomorphisms of graded
k-vector spaces, and so to calculate regR(R/J (G)) we need only calculate the regularities of
R/j, R/av, R/bv, R/c{v,w}, and R/d{v,w}, which we do as follows:

j: We have regR(R/j) = 1 by Proposition 5.4.9.

av: Note that
R/av ∼= R′

m+1/Jm+1(Km) ∼= (R′
m/Jm(Km))[xm+1, ym+1]

We have
regR′

m
(R′

m/Jm(Km)) = 1

by Proposition 5.4.9. Next, we have

regR′
m+1

(R′
m+1/Jm+1(Km)) = regR′

m+1
((R′

m/Jm(Km))[xm+1, ym+1]) = 1

with the second equality following by Proposition 5.4.7, and so applying Proposi-
tion 5.4.6 we obtain regR(R/av) = 1.

bv: In this case, we have
R/bv ∼= R′

m+1/Jm+1(Km+1)

and
regR′

m+1
(R′

m+1/Jm+1(Km+1)) = 1

by Proposition 5.4.9, and so, again by applying Proposition 5.4.6, we have regR(R/bv) =

1.

c{v,w}: Relabel the vertices again so that v = 1 and w = 2. Then R/c{v,w} ∼= R′
2. Now, R′

2 clearly
has regularity 0 over itself, and so by Proposition 5.4.6 we have regR(R/c{v,w}) = 0.

d{v,w}: Again, relabel the vertices so that v = 1 and w = 2. Then

R/d{v,w} ∼= R′
2/J2(K2)
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This has regularity 1 over R′
2 by Proposition 5.4.9, and so, as before by Proposition 5.4.6,

we have regR(R/d{v,w}) = 1.

This then yields

endR(H
5
m(R/J (G))) = max{ endR(H5

m(R/av)), endR(H
4
m(R/bv)),

endR(H
4
m(R/c{v,w})), endR(H

3
m(R/d{v,w}))}

= max{1− 5, 1− 4, 0− 4, 1− 3}

= max{−4,−3,−4,−2}

= −2

and for 5 < i < n+ 1

endR(H
i
m(R/J (G))) = max{endR(H i

m(R/av)), endR(H
i−1
m (R/bv))}

= max{1− i, 1− (i− 1)}

= max{1− i, 2− i}

= 2− i

and finally

endR(H
n+1
m (R/J (G))) = max{endR(Hn+1

m (R/j)), endR(H
n+1
m (R/av)), endR(H

n
m(R/bv))}

= max{1− (n+ 1), 1− (n+ 1), 1− n}

= max{−n,−n, 1− n}

= 1− n

Then

regR(R/J (G)) = max{−2 + 5, (2− i) + i, (1− n) + (n+ 1)}

= max{3, 2, 2}

= 3

and we are done.



Chapter 6

Attached Primes of Local Cohomology
Modules of Binomial Edge Ideals of
Block Graphs

Throughout this chapter, we set

R = k[x1, . . . , xn, y1, . . . , yn]

for some field k and n ≥ 1, and δi,j ··= xiyj − xjyi.

In this chapter, we calculate the minimal attached primes of the local cohomology modules of the
binomial edge ideals of block graphs. In particular, we obtain a combinatorial characterisation
of which of these modules are non-vanishing.

During the writing of this thesis, it was shown by Lax, Rinaldo, and Romeo in [LRR24, Theorem
3.2] that the binomial edge ideals of block graphs are sequentially Cohen-Macaulay (see Defi-
nition 6.4.1). We will show that this result implies the main theorem of this chapter, although
the techniques used in our original proof of our main theorem are very different to those of
[LRR24].

The majority of this chapter first appeared in [Wil24].

6.1 A Short Exact Sequence for Block Graphs

We begin with some definitions:

Definition 6.1.1. A graph is said to be biconnected if it is connected, and remains connected if any
one of its vertices is removed. Maximal biconnected subgraphs of a graph G are called biconnected
components of G.

122
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Definition 6.1.2. We say that a graph G is a block graph if every biconnected component of G is a
clique.

Note. Block graphs are sometimes also called clique trees, since they roughly resemble trees in which
the edges have been replaced by cliques.

Definition 6.1.3. We say that a maximal clique of a block graph G is a leaf clique of G if it contains at
most one vertex which intersects with another maximal clique, or a branch clique of G otherwise.

Note. Definition 6.1.3 is not established terminology.

Next, we introduce some notation:

Notation 6.1.4. For any cut vertex v of G, we denote by Gv the graph obtained by adding the edges of
the complete graph with vertex set NG(v) to G (that is, we complete the neighbourhood of v in G).

Suppose that G has a cut vertex. By [Oht11, Lemma 4.8], we have

JG = JGv ∩ (JG + (xv, yv))

Note that
JG + (xv, yv) = JG\{v} + (xv, yv)

and
JGv + (JG + (xv, yv)) = JGv\{v} + (xv, yv)

For brevity, we set

G′ = Gv

G′′ = G \ {v}

H = Gv \ {v}

and

Q1 = JG′

Q2 = JG′′ + (xv, yv)

Q3 = JH + (xv, yv)

Then we obtain the short exact sequence

0 R/JG R/Q1 ⊕R/Q2 R/Q3 0

Example 6.1.5. If

G =

a v
b
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then the cliques containing the vertices a and b are leaf cliques, will all other cliques being
branch cliques, and

G′ = G′′ = H =

6.2 Some Properties of Cut Vertices of Block Graphs

Throughout this section, we suppose that G is a block graph on n vertices which is not a
disjoint union of cliques, and so it has at least one cut vertex.

v will always denote a cut vertex of G, and we adopt the notation of Section 6.1.

We will next compute C(G′), as well as C(G′′) and C(H) for certain v, relative to C(G).

We begin with a preliminary lemma:

Lemma 6.2.1. For any S ⊆ V (G) with v /∈ S, and any vertices a and b of G \ S other than v, the
following are equivalent:

1. a and b are connected by a path in G \ S.

2. a and b are connected by a path in G′ \ S.

3. a and b are connected by a path in H \ S.

Proof.

(1)⇒ (2): This follows immediately from the fact that E(G′) ⊇ E(G).

(2)⇒ (3): Let P be a path connecting a and b in G′ \ S. Since H = G′ \ {v}, the only issue
that may arise is if P passes through v. Then suppose that this is the case, so P

contains edges {w1, v} and {v, w2} for some w1, w2 ∈ NG(v) \ S. Since NG(v) has
been completed in H , we may replace {w1, v} and {v, w2} in P with {w1, w2}. This
new path then connects a and b in H \ S.

(3)⇒ (1): Now let P be a path connecting a and b in H \ S. Since H is obtained by completing
NG(v) in G and then removing v, the only issue that may arise here is if P includes
any edges of the form {w1, w2} for some w1, w2 ∈ NG(v) \ S with {w1, w2} /∈ E(G),
so suppose that this is the case. Since v /∈ S, we know that the edges {w1, v} and
{v, w2} belong to G \ S, and so we may use these edges to replace {w1, w2} in P . If P
contains several such “bad” edges, the graph obtained by making these replacements
in P , say Q, will no longer be a path. However, it will still be connected, and so we
can find a subgraph of Q which is a path connecting a and b in G \ S.

We can now compute C(G′):
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Proposition 6.2.2. We have
C(G′) = {S ∈ C(G) : v /∈ S}

Proof. We will first show that

C(G′) ⊇ {S ∈ C(G) : v /∈ S}

Take any S ∈ C(G) such that v /∈ S, and any w ∈ S. To show that S ∈ C(G′), we must show that
addingw back toG′\S reconnects (at least) two vertices lying in separate connected components
of G′ \S. We know that adding w back to G \S reconnects at least two vertices a, b ∈ NG(w) \S
lying in separate connected components of G \ S since S ∈ C(G). By Lemma 6.2.1, a and b will
lie in separate connected components of G′ \S also, and will be reconnected in G′ \S by adding
w back to G′ \ S. Then S ∈ C(G′), and the first inclusion follows.

We will now show that
C(G′) ⊆ {S ∈ C(G) : v /∈ S}

Take any S ∈ C(G′), and any w ∈ S. Note that any vertices in NG(v) \ S will be connected in
G′ \ S (since we obtained G′ from G by completing NG(v)), and so we cannot have v ∈ S, since
adding it back to G′ \ S cannot then reconnect any separate connected components of G′ \ S,
which would contradict that S ∈ C(G′).

To show that S ∈ C(G), we must show that adding w back to G \ S reconnects (at least) two
vertices lying in separate connected components of G \S. We know that adding w back to G′ \S
reconnects at least two vertices a, b ∈ NG′(w) \ S lying in separate connected components of
G′ \ S since S ∈ C(G′). By Lemma 6.2.1, a and b will lie in separate connected components of
G \ S also, and will be reconnected in G \ S by adding w back to G \ S. Then S ∈ C(G), and the
result follows.

We will make use of the following two lemmas:

Lemma 6.2.3. Suppose that G has at least two cut vertices. Then there exists a leaf clique of G which
intersects with exactly one branch clique of G.

Proof. The proof will be by induction on the number of cut vertices of G. If G has a exactly two
cut vertices then the result is obvious, so suppose that G has more than two cut vertices.

Since G has a cut vertex, we may choose a leaf clique L of G with a cut vertex w ∈ V (L), and
set A = G \ (C \ {w}). That is, we obtain A by removing L from G, but keeping w. A has fewer
cut vertices than G, and so we can find a leaf clique C of A which intersects with exactly one
branch clique of A by induction.

If C remains a leaf clique in G, then it must intersect with exactly one branch clique of G, since
we only removed a leaf clique from G to obtain A. The only way for C to become a branch
clique in G is if L is a leaf clique intersecting with it. In this case, since C is a leaf clique in A,
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the only branch clique that L can intersect with in G is C. Then, in either case, we can find a
leaf clique of G which intersects with exactly one branch clique of G, so we are done.

Lemma 6.2.4. Suppose that S ∈ C(H), and that NG(v) ⊆ S. Then S ∈ C(G′′).

Proof. Since NG(v) ⊆ S, we have H \ S = G′′ \ S. The only edges in H that are not in G′′ are
between neighbours of v, but these are all removed in H \ S, so adding any single vertex back
to either H \ S or G′′ \ S will have the same effect.

For the purposes of Subsection 6.3.2, we will need to choose v with a particular property:

Proposition 6.2.5. There exists a cut vertex v of G such that

C(G′′) = {S \ {v} : S ∈ C(G) with v ∈ S} (†)

Proof. The inclusion
C(G′′) ⊇ {S \ {v} : S ∈ C(G) with v ∈ S}

clearly holds for any cut vertex v of G, and so we will now find a cut vertex of G satisfying the
reverse inclusion.

We proceed by induction on the number of cut vertices of G. If G has a single cut vertex then
the result is obvious, so suppose that G has more than one cut vertex.

By Lemma 6.2.3, we can choose a leaf clique L of G, with cut vertex w ∈ V (L), which intersects
with exactly one branch clique B of G.

If this w belongs to at least two leaf cliques, then, for any S ∈ C(G′′), we have S ∪ {w} ∈ C(G),
since adding w back to G \ S will reconnect these cliques, and so the desired inclusion would
be satisfied by taking v = w.

Otherwise, w belongs to a single leaf clique, and so we are in the situation

G = L

w

B

(where circles denote cliques).

As in Lemma 6.2.3, set A = G \ (L \ {w}). A has fewer cut vertices than G, and so we can find
some cut vertex v of A satisfying (†) for A by induction. We claim that this v also satisfies (†)
for G itself.

Take any S ∈ C(G′′). We aim to show that S ∪ {v} ∈ C(G).

Now, clearly S \ {w} ∈ C(A′′) (note that we do not necessarily have w ∈ S), and so by the
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inductive hypothesis we have

(S \ {w}) ∪ {v} ∈ C(A) ⊆ C(G) (⋄)

Then if w /∈ S we are done, so suppose that w ∈ S.

For any u ∈ S, adding u back to G′′ \S reconnects at least two vertices au, bu ∈ NG′′(u) \S lying
in separate connected connected components of G′′ \ S since S ∈ C(G′′). Neither au nor bu can
be v since v /∈ V (G′′), and so

au, bu ∈ NG(u) \ (S ∪ {v})

Furthermore, we have
G′′ \ S = G \ (S ∪ {v})

so au and bu will also lie in separate connected components of G \ (S ∪ {v}), and will still be
reconnected by adding u back to G \ (S ∪ {v}).

Note in particular that, since w ∈ S, we have at least two vertices

aw, bw ∈ NG(w) \ (S ∪ {v})

and since w belongs to only two cliques, L and B, in G, we may assume (without loss of
generality) that aw ∈ V (L) and bw ∈ V (B), as aw and bw must lie in separate connected
components of G′′ \ S.

To conclude the proof, we wish to show that adding v back to G \ (S ∪ {v}) reconnects (at least)
two vertices lying in separate connected components of G \ (S ∪ {v}).

For brevity, let U = (S \ {w}) ∪ {v}. We saw in (⋄) that U ∈ C(G), and so adding v back to
G \ U reconnects at least two vertices av, bv ∈ NG(v) \ U lying in separate connected connected
components of G \ U . Note that neither av nor bv can belong to L, since v ̸= w and w is the only
cut vertex belonging to L.

Removing w from G \ U simply disconnects B and L, so, if neither av nor bv is w, av and bv will
trivially lie in separate connected components of G \ (S ∪ {v}), and will still be reconnected by
adding v back to G \ (S ∪ {v}).

However, if we have say bv = w, then bv /∈ G \ (S ∪{v}), and so the result does not immediately
follow. In this case, we have v ∈ V (B), since the only branch clique that w belongs to is B, and
so every cut vertex that w is adjacent to must belong to B also. Then we are in the following
situation:

G = L

w

aw

B

v

bw av

We may then instead consider av and bw ∈ V (B) \ (S ∪ {v}). We have bw ∈ NG(v) \ (S ∪ {v}),
av and bw will clearly lie in separate connected components of G \ (S ∪ {v}), and adding v back
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to G \ (S ∪ {v}) reconnects av and bw. Then S ∪ {v} ∈ C(G), and we are done.

We can compute C(H) for such a v:

Proposition 6.2.6. Let v be as in Proposition 6.2.5. Then we have

C(H) = {S ∈ C(G) : v /∈ S and NG(v) ⊈ S}

Proof. We will first show that

C(H) ⊇ {S ∈ C(G) : v /∈ S and NG(v) ⊈ S}

Take any S ∈ C(G) such that v /∈ S and NG(v) ⊈ S, and any w ∈ S. To show that S ∈ C(H),
we must show that adding w back to H \ S reconnects (at least) two vertices lying in separate
connected components of H \ S. We know that adding w back to G \ S reconnects at least two
vertices a, b ∈ NG(w) \ S lying in separate connected components of G \ S since S ∈ C(G). We
may assume that neither a nor b is v, sinceNG(v) ⊈ S and so we may replace v with a neighbour
if necessary. By Lemma 6.2.1, a and b will lie in separate connected components of H \ S also,
and will be reconnected in H \ S by adding w back to H \ S. Then S ∈ C(H), and the first
inclusion follows.

We will now show that

C(H) ⊆ {S ∈ C(G) : v /∈ S and NG(v) ⊈ S}

Take any S ∈ C(H). Trivially, v /∈ S. If NG(v) ⊆ S, then, by Lemma 6.2.4, we have S ∈ C(G′′).
Since v is as in Proposition 6.2.5, we then have S ∪ {v} ∈ C(G). But NG[v] ⊆ S ∪ {v}, so this
clearly cannot belong to C(G), since adding v back to G \ (S ∪ {v}) would not reconnect any
separate connected components of G \ (S ∪ {v}). Then we must have NG(v) ⊈ S.

Now take any w ∈ S. To show that S ∈ C(G), we must show that adding w back to G \ S
reconnects (at least) two vertices lying in separate connected components of G \ S. We know
that adding w back to H \ S reconnects at least two vertices a, b ∈ NH(w) \ S lying in separate
connected components of H \ S since S ∈ C(H). By Lemma 6.2.1, a and b will lie in separate
connected components of G \S also, and will be reconnected in G \S by adding w back to G \S.
Then S ∈ C(G), and the result follows.

To summarise this section, when v is as in Proposition 6.2.5, we have

• C(G′) = {S ∈ C(G) : v /∈ S} by Proposition 6.2.2.

• C(G′′) = {S \ {v} : S ∈ C(G) with v ∈ S} by Proposition 6.2.5.

• C(H) = {S ∈ C(G) : v /∈ S and NG(v) ⊈ S} by Proposition 6.2.6.
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6.3 The Main Theorem

Our goal is to show that, for any block graph G, we have

MinAttR(H
i
m(R/JG)) = {p ∈ AssR(R/JG) : dim(R/p) = i}

We must prove a few results beforehand.

6.3.1 A Preliminary Lemma

Proposition 6.3.1. Let R be a ring and z an indeterminate. Furthermore, set S = R[z], and let M be
an S-module such that zM = 0, viewed also as an R-module in the natural way. Then

AssS(M) = {qS + (z) : q ∈ AssR(M)}

Proof. First, note that
AnnS(N) = AnnR(N)S + (z)

for any S-submodule N of M (with N also viewed as an R-module in the natural way).

If p ∈ AssS(M) then p = AnnS(m) for some m ∈M . We have that

R/AnnR(m) ∼= S/(AnnR(m)S + (z)) = S/p

is an integral domain since p ∈ Spec(S), so AnnR(m) ∈ AssR(M) and therefore

p = AnnR(M)S + (z)

is of the desired form.

Conversely, if q ∈ AssR(M) then q = AnnR(m) for some m ∈M . We have that

S/AnnS(m) = S/(AnnR(m)S + (z)) ∼= R/AnnR(M) = R/q

is an integral domain since q ∈ Spec(R), so

qS + (z) = AnnS(m) ∈ AssS(M)

and we are done.

Lemma 6.3.2. Let R be a ring, a an ideal of R, and z an indeterminate. Set S = R[z], and let
b = aS + (z). Then

AssS(Ext
i
S(S/b, S)) = {qS + (z) : q ∈ AssR(Ext

i−1
R (R/a, R))}
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Proof. By [Ree56, Theorem 2.1] we have that

ExtiS(S/b, S)
∼= Exti−1

R (R/a, R)

as S-modules by setting A = S, g = (z), M = S/b and N = S in their notation, since S/b ∼= R/a

as R-modules, and z ExtiS(S/b, S) = 0, so we are done by Proposition 6.3.1.

6.3.2 Proof of the Main Theorem

By Graded Local Duality and Theorem 3.10.12, we have

AttR(H
i
m(R/JG)) = AssR(Ext

2n−i
R (R/JG, R))

and so our main theorem amounts to showing that

MinAssR(Ext
i
R(R/JG, R)) = {p ∈ AssR(R/JG) : heightR(p) = i}

since
heightR(p) = 2n− dim(R/p)

by Lemma 3.11.1 (which we may apply since every associated prime of JG is homogeneous by
Proposition 3.10.1).

We first introduce some notation:

Notation 6.3.3. For any R-module M and i ≥ 0, we set

AssiR(M) ··= {p ∈ AssR(M) : heightR(p) = i}

Notation 6.3.4. For any ideal a of R and i ≥ 0, we set

EiR(a) ··= ExtiR(R/a, R)

Notation 6.3.5. For any 1 ≤ v ≤ n, we set

Rv ··= k[xi, yi : 1 ≤ i ≤ n with i ̸= v]

Our key proposition is as follows:

Proposition 6.3.6. Let G be a block graph. Then any associated prime of EiR(JG) contains an associated
prime of R/JG of height i.

Proof. WhenG is a disjoint union of cliques,R/JG is Cohen-Macaulay (this follows, for example,
from [BV88, Corollary 2.8] and [BK02, Theorem 2.1]). By Theorem 3.10.14 and Lemma 3.7.4, the
attached primes of Hd

m(R/JG) are exactly the associated primes of R/JG of height dim(R/JG).
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Since R/JG is Cohen-Macaulay in this case, it has no other such local cohomology modules by
Lemma 3.11.4, and so the result is immediate.

We will induct first on n, the number vertices of G. When n = 2, we must have G = K2, so G is
a clique. We have already dealt with this case, and so the base case is established.

We now induct on the number of cut vertices of G. When G has no cut vertices, it must be a
disjoint union of cliques. Again, we have already dealt with this case, and so the base case is
established for this induction also.

We may assume then that G contains a cut vertex, and can choose such a cut vertex v of G as in
Proposition 6.2.5. We adopt the notation of Section 6.1.

The short exact sequence

0 R/JG R/Q1 ⊕R/Q2 R/Q3 0

gives rise to the long exact sequence

· · · EiR(Q1)⊕ EiR(Q2) EiR(JG) Ei+1
R (Q3) · · ·αi αi+1

Setting
Ai ··= (EiR(Q1)⊕ EiR(Q2))/ Im(αi)

we then have the short exact sequence

0 Ai EiR(JG) ker(αi+1) 0

Suppose that EiR(JG) ̸= 0, and take any p ∈ AssR(E
i
R(JG)). Localising at p gives us the short

exact sequence

0 Aip EiR(JG)p ker(αi+1)p 0

If Aip = 0, then
EiR(JG)p = ker(αi+1)p ↪→ Ei+1

R (Q3)p

so p ∈ SuppR(E
i+1
R (Q3)). Then p contains some associated prime of Ei+1

R (Q3), and

AssR(E
i+1
R (Q3)) = {qR+ (xv, yv) : q ∈ AssRv(E

i−1
Rv

(JH))}

by Lemma 6.3.2 (where JH is viewed here as an ideal in Rv).

By the (first) inductive hypothesis, we have

MinAssRv(E
i−1
Rv

(JH)) = {q ∈ AssRv(Rv/JH) : heightRv
(q) = i− 1}
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We know then that p contains qR + (xv, yv) for some q ∈ AssRv(Rv/JH) with heightRv
(q) =

i − 1, and we can write q = PS(H) for some S ∈ C(H). We claim that PS(G) ⊆ p, and that
heightR(PS(G)) = i.

This first claim follows since
PS(G) ⊆ PS(H)R+ (xv, yv)

because the only edges of G \ S which may not belong to H \ S are of the form {v, w} for some
w ∈ NG(v), and so any elements of PS(G) introduced by these edges will be included in (xv, yv).
We will now prove the second claim.

By Proposition 6.2.6, we have

C(H) = {S ∈ C(G) : v /∈ S and NG(v) ⊈ S}

Then cG(S) = cH(S), since v is the only vertex in G \ S which is not in H \ S, and NG(v) ⊈ S,
so v will belong to the same connected component as at least one of its neighbours in G \ S.

By Lemma 1.4.8, we then have

heightR(PS(G)) = |S|+ n− cG(S) = (|S|+ (n− 1)− cH(S)) + 1 = heightRv
(PS(H)) + 1 = i

as desired, and so the result holds in the case that Aip = 0.

If Aip ̸= 0, then we must have either p ∈ SuppR(E
i
R(Q1)), or p ∈ SuppR(E

i
R(Q2)).

In the case that p ∈ SuppR(E
i
R(Q1)), we have that p contains some associated prime of EiR(Q1).

Note that G′ has fewer cut vertices than G (since we have completed the neighbourhood of v,
and so it cannot be a cut vertex). Then we can apply the (second) inductive hypothesis to obtain

MinAssR(E
i
R(Q3)) = {q ∈ AssR(R/JG′) : heightR(q) = i}

Then p contains some q ∈ AssR(R/JG′) with heightR(q) = i, and we can write q = PS(G
′) for

some S ∈ C(G′). We also have S ∈ C(G) by Proposition 6.2.2, and PS(G) ⊆ PS(G
′) (since we

have only added edges to G to obtain G’), so we are done with this case if we can show that
heightR(PS(G)) = i. By Lemma 1.4.8, this amounts to showing that cG(S) = cG′(S). This follows
from Lemma 6.2.1, which we may apply since S ∈ C(G′) and so v /∈ S by Proposition 6.2.2.
Then the result holds in this case also.

Finally, in the case that p ∈ SuppR(E
i
R(Q2)), we have that p contains some associated prime of

EiR(Q2), and
AssR(E

i
R(Q2)) = {qR+ (xv, yv) : q ∈ AssRv(E

i−2(JG′′))}

by Lemma 6.3.2 (where JG′′ is viewed here as an ideal in Rv).

By the (first) inductive hypothesis, we have

MinAssRv(E
i−2
Rv

(JG′′)) = {q ∈ AssRv(Rv/JG′′) : heightRv
(q) = i− 2}



6.4. An Alternative Proof of the Main Theorem 133

We know then that p contains qR+(xv, yv) for some q ∈ AssRv(Rv/JG′′) with heightRv
(q) = i−2,

and we can write q = PS(G
′′) for some S ∈ C(G′′).

Now, we have S ∪ {v} ∈ C(G) (since we have chosen v to be as in Proposition 6.2.5), and

PS∪{v}(G) = PS(G
′′)R+ (xv, yv)

is clearly of the correct height (to see this using Lemma 1.4.8, note that G \ {S ∪ {v}} = G′′ \ S),
so we are done.

We can now prove our main theorem:

Theorem 6.3.7. For any block graph G, we have

MinAttR(H
i
m(R/JG)) = {p ∈ AssR(R/JG) : dim(R/p) = i}

Proof. By [EHV92, Algorithm 1.5], for any finitely generated R-module M , we have

AssiR(M) = AssiR(Ext
i
R(M,R))

Combining this with Proposition 6.3.6 completes the proof.

Corollary 6.3.8. Let G be a block graph. Then we have that H i
m(R/JG) ̸= 0 if and only if R/JG

has an associated prime of dimension i. This can be checked combinatorially via Lemma 1.4.8 (noting
Lemma 3.11.1).

Note. Corollary 6.3.8 can be seen as a generalisation of the main result of [EHH11, Theorem 1.1] which,
by Theorem 3.8.5, is equivalent to stating that, for a block graph G on n vertices, we have

min{i ≥ 0 : H i
m(R/JG) ̸= 0} = n+ c

where c is the number of connected components of G. It is easily seen that n+ c is the height of P∅(G),
and that this height is minimal amongst the heights of the associated primes of R/JG, so applying
Corollary 6.3.8 yields this result.

Whilst block graphs are not explicitly given as the family of graphs in the statement of [EHH11, Theorem
1.1], it can been seen that these families are the same via, for example, [How79, Theorem 2.6].

6.4 An Alternative Proof of the Main Theorem

We first describe a generalisation of Cohen-Macaulay R-modules first introduced by Stanley:

Definition 6.4.1. [Sta96, p. 87, Definition 2.9] Let k be a field, and R a non-negatively Z-graded
k-algebra of finite type such that the homogeneous elements of R of degree 0 are precisely k. We say that
a finitely generated Z-graded R-module M is sequentially Cohen-Macaulay if there exists a filtration
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of graded R-modules
0 =M0 ⊆M1 ⊆ · · · ⊆Mt−1 ⊆Mt =M

for some t ≥ 0 such that:

1. For each 1 ≤ i ≤ t, we have that Mi/Mi−1 is Cohen-Macaulay.

2. We have
dimR(Mj/Mj−1) < dimR(Mj+1/Mj)

for each 1 ≤ j ≤ t− 1.

An important alternative characterisation of sequentially Cohen-Macaulay R-modules was
given by Peskine. We state it here in the specific case of a polynomial ring over a field:

Theorem 6.4.2. Let R = k[x1, . . . , xn] for some field k and n ≥ 0 with the standard Z-grading, and let
M be a finitely generated Z-graded R-module of dimension d. Then M is sequentially Cohen-Macaulay
if and only if, for all 0 ≤ i ≤ d, we have that Extn−iR (M,R) is either 0 or Cohen-Macaulay of dimension
i.

Proof. This follows from [HS02, Theorem 1.4] and Proposition 3.9.5 since R is Gorenstein.

Characterising families of graphs which give rise to sequentially Cohen-Macaulay binomial
edge ideals is an active area of study. During the writing of this thesis, Lax, Rinaldo, and
Romeo showed in [LRR24] that several well-known classes of graphs have sequentially Cohen-
Macaulay binomial edge ideals. In particular:

Theorem 6.4.3. [LRR24, Theorem 3.2] For any block graphG,R/JG is sequentially Cohen-Macaulay.

As was mentioned at the start of this chapter, this theorem implies Theorem 6.3.7. In fact, it
implies the following stronger result:

Theorem 6.4.4. For any block graph G, we have

AttR(H
i
m(R/JG)) = {p ∈ AssR(R/JG) : dim(R/p) = i}

We will prove Theorem 6.4.4 using Theorem 6.4.3 and the following proposition:

Proposition 6.4.5. Let R = k[x1, . . . , xn] for some field k and n ≥ 0 with the standard Z-grading, and
let M be a finitely generated Z-graded R-module. Then, if M is sequentially Cohen-Macaulay, we have

AssR(Ext
i
R(M,R)) = AssiR(M)

Proof. As noted in the proof of Theorem 6.3.7, we have

AssiR(Ext
i
R(M,R)) = AssiR(M)
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by [EHV92, Algorithm 1.5]. Then if ExtiR(M,R) = 0, we must have AssiR(M) = ∅, so the result
is trivially true in this case.

Otherwise, by Theorem 6.4.2 we have that ExtiR(M,R) is Cohen-Macaulay of dimension n− i,
so every associated prime of ExtiR(M,R) is of height n− (n− i) = i by Lemma 3.11.2, and we
are done.

Proof of Theorem 6.4.4. By Theorem 6.4.3, we may apply Proposition 6.4.5 to R/JG. As we noted
earlier, we have that

AttR(H
i
m(R/JG)) = AssR(Ext

2n−i
R (R/JG, R))

and so the result follows.

6.5 Some Counterexamples

Theorem 6.3.7 is very far from true in general, as computations in Macaulay2 (taking k = Z/2Z)
show:

When n = 5 and

G =

we have H5
m(R/JG) ̸= 0, but R/JG has no associated prime of dimension 5.

We can also have embedded attached primes. For example, let n = 8 and

G =

Then Macaulay2 tells us that there are p, q ∈ Spec(R) such that

AttR(H
7
m(R/JG)) = {p, q}

with q ⊊ p and dim(R/p) = 7, so H7
m(R/JG) has an embedded attached prime, and the minimal

attached prime of H7
m(R/JG) is not of dimension 7.
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