
UNIVERSITY OF LEEDS

Development of Methodology,
Functionality and Optimisation

Tools for the Fermionic "Zombie"
Coherent State Method

Oliver Aidan Bramley

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

in the

Faculty of Engineering and Physical Sciences
School of Chemsitry

September 2024

http://www.leeds.ac.uk/
mailto: cm14oab@leeds.ac.uk
https://eps.leeds.ac.uk
https://eps.leeds.ac.uk/chemistry

Declaration of Authorship

The candidate confirms that the work submitted is their own, except where work
which has formed part of jointly authored publications has been included. The
contribution of the candidate and the other authors to this work has been explicitly
indicated below. The candidate confirms that appropriate credit has been given
within the thesis where reference has been made to the work of others.

The work in the final section of Chapter 2; Chapter 3; the first two sections of
Chapter 4; the first section of Chapter 5 and sections 4 and 5 of Appendix B have
appeared in The Journal of Chemical Physics, 2022, Volume 156, Page 174116, by
O. A. Bramley, T. J. H. Hele and D. V. Shalashilin. The candidate was responsible
for writing the program which generated the results, the running of the simulations,
creating the graphs and writing the majority of the text. The contribution of the
other authors was the derivation of the equations to generate Zombie states from
the vacuum state, the algorithmic algebra for the two electron Hamiltonian and
number operator; the idea to use imaginary time propagation and Gram-Schmidt
orthogonalisation along with an edit of the paper.

The work in Chapter 4 and Chapter 5 is currently in preparation to be published with
the manuscripts authored by O. A. Bramley, T. J. H. Hele and D. V. Shalashilin.
The candidate was responsible for writing the program which generated the results,
the running of the simulations and creating the graphs and the writing of the text.
The candidate independently developed the idea of using Gradient Descent and
derived the algorithmic process used. The candidate also developed the use of
Gram-Schmidt orthogonalisation with multiple Zombie state wave functions. The
other authors have contributed some of the text and editing.

This copy has been supplied on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper acknowledge-
ment.

©2024 The Univeristy of Leeds and Oliver Aidan Bramley

The right of Oliver Aidan Bramley to be identified as Author of this work has been
asserted by Oliver Aidan Bramley in accordance with the Copyright, Designs and
Patents Act 1988.

i

"The electron: may it never be of any use to anybody!"

– J. J. Thompson 1

1A slogan of his Cavendish Laboratory (early 1900s) [1].

iii

Acknowledgements

Firstly, I would like to thank my supervisor Prof. Dmitrii Shalashilin for his contin-
ual enthusiasm, support and scientific insight. I am grateful for how much he has
taught me about quantum mechanics and numerical methods. He has always shown
great confidence and faith in me and my work without which I certainly would not
be in the position I am today. He afforded me the freedom to shape the direction
of the Zombie states method while providing invaluable guidance and support when
necessary.

I am grateful for the assistance from my current and former colleagues in the Quan-
tum and Classical Molecular Dynamics group. Dr. Timothy Hele was very helpful
at the beginning of the project when getting to grips with the Zombie states method.
Ryan Brook has given me useful advice especially when working through some of
the mathematical concepts. Dr. Christopher Symonds was invaluable when I first
joined the group, during my Masters project in 2018, particularly when learning
how to use Fortran. His MCE code has been an useful example of modular program
design and best practise which I have incorporated into my own work.

I am indebted to Harry Tata and Alessio Zakaria who first explained the concept
of Gradient Descent to me. They both generously gave their time to answer my
various questions and were a useful sounding board as the project went on.

I would like to acknowledge the funding provided by the Engineering and Physical
Sciences Research Council and the University of Leeds. I would also like to ac-
knowledge that this work was undertaken on ARC3, part of the High Performance
Computing facilities at the University of Leeds.

I would like to acknowledge and thank my parents, Andrea and Ian, for all the
support they have given me. Their belief and encouragement that I was capable has
helped me through the many years of education. I am grateful to both my siblings
who have provided more company over the last four years than any of us probably
expected – Eve during the pandemic and Alex over the last year. Finally, I would
like to thank my partner Caitlin for all she has done for me throughout the PhD.
She has encouraged me during the hardest parts and happily let me talk, at length,
in minutiae detail about the project. She has supported me through the writing
process, taking up the slack so I could focus on writing, which has made a difficult
process so much easier.

v

UNIVERSITY OF LEEDS

Abstract
Faculty of Engineering and Physical Sciences

School of Chemsitry

Doctor of Philosophy

by Oliver Aidan Bramley

Zombie states are a novel addition to the Coupled Coherent States (CCS) family
of methods. These have been successfully used for simulation of the dynamics of
various quantum systems which primarily have been bosonic. Usually, such meth-
ods would be generalised, to describe fermions, by application of fermionic coherent
states. These are constructed using either Grassmann algebra or a Lie group with
appropriate topological properties which are not well suited to numeric calculations.
Zombie states are constructed as a superposition of "dead" and "alive" electronic
states. Antisymmetry is preserved by the addition of a simple sign-change rule to
the creation and annihilation operators. CCS methods are characterised by their
high chemical accuracy and low computational cost when compared to similar meth-
ods. Therefore, Zombie states are intended to maintain these properties for electron
dynamic simulations.

This thesis presents developments to the formulation and implementation of
the Zombie states method which are verified by application to a range of chemical
systems. Firstly, the Zombie states method is formulated using the general coherent
state definition; it is shown how this naturally gives rise to the sign-change rule. It
is then demonstrated that imaginary time propagation can be used to find exact
ground state energies with minimal computational cost, which greatly improves the
method’s practicality. Smaller basis sets incur lower computational costs. However,
an incomplete sized basis set of random Zombie states does not accurately recover
the ground state. Thus, necessitating the development of sampling and optimisation
techniques. Hence, gradient descent is adopted to find optimal sets of Zombie state
amplitudes that can recover the ground state energy using a small basis set. Finally,
the Zombie state method is extended to find excited states by incorporation of Gram-
Schmidt orthogonalisation. These excited states energies can be found with minimal
additional computational cost and with no requirement for a reference state.

vii

http://www.leeds.ac.uk/
https://eps.leeds.ac.uk
https://eps.leeds.ac.uk/chemistry
mailto: cm14oab@leeds.ac.uk

Contents

Declaration of Authorship i

Acknowledgements v

Abstract vii

Table of Contents viii

List of Figures xii

List of Tables xvi

List of Abbreviations xviii

Notation xxi

1 Introduction 1

2 Background and Theory 7
2.1 Introduction . 7
2.2 Hartree-Fock Theory . 11

2.2.1 Spin . 11
2.2.2 Hartree Products . 11
2.2.3 Slater Determinants . 12
2.2.4 Matrix Elements . 13
2.2.5 Second Quantisation . 14
2.2.6 Basis Sets . 16

2.2.6.1 Slater-Type Orbitals 16
2.2.6.2 Gaussian-Type Orbitals 16
2.2.6.3 Pople Basis Sets . 17
2.2.6.4 Correlation-consistent Basis Sets 18

2.2.7 The Hartree-Fock Approximation 18
2.2.7.1 The Fock Operator 19
2.2.7.2 Spin . 20

2.2.7.2.1 Restricted Closed-shell Equations 20

viii

2.2.7.2.2 Unrestricted Hartree Fock 21
2.2.7.2.3 Restricted Open-shell Equations 22

2.2.7.3 Roothaan-Hall Equations 22
2.2.7.4 Self Consistent Field Method 24

2.2.8 Post-Hartree-Fock . 25
2.2.8.1 Full Configuration Interaction 27
2.2.8.2 Methods for Optimal Truncation of Configuration

Space . 27
2.3 Coherent States . 30

2.3.1 General Definition of Coherent States 33
2.3.2 Canonical Coherent States of the Harmonic Oscillator 34
2.3.3 SU(2) Coherent States . 38
2.3.4 Standard Fermionic Coherent States 41

2.3.4.1 General Many-Fermion Coherent States 42
2.3.4.2 Grassmann Many-Fermion Coherent States 43

2.4 Zombie states . 48
2.4.1 Construction . 49
2.4.2 Creation and Annihilation Operators 50
2.4.3 Overlap of Two Zombie states 52
2.4.4 Normalisation . 53
2.4.5 The Zombie Wave Function 54
2.4.6 General Coherent Zombie states 55
2.4.7 Comparison to Standard Fermionic Coherent State Construc-

tions . 56
2.5 Concluding Remarks . 58

3 Finding the Ground State Energy 60
3.1 Introduction . 60
3.2 Long Time Propagation and Fourier Transformation 61
3.3 Imaginary Time Propagation . 62

3.3.1 Theory . 62
3.3.2 Application of Imaginary Time Propagation to Li2 64

3.4 Conclusions . 65

4 Reducing the Basis Set Size 66
4.1 Introduction . 66
4.2 Cleaning . 67
4.3 Biasing . 69

4.3.1 Results . 71
4.3.2 Conclusion . 73

4.4 Gradient Descent . 76

ix

4.4.1 Alternative Gradient Calculation 78
4.4.2 Algorithmic Specifications . 79

4.4.2.1 Initiating the Wave Function 83
4.4.2.2 Cloning . 84

4.4.3 Results . 84
4.4.3.1 Li2 (Truncated Basis Set) 85
4.4.3.2 Atomic Systems in the cc-pVDZ Basis 88
4.4.3.3 BH in the 6−31G∗∗ Basis 95
4.4.3.4 Diatomic Molecules in the cc-pVDZ Basis 95

4.5 Conclusions and future work . 99

5 Excited States 104
5.1 Introduction . 104
5.2 Theory . 105
5.3 Results . 106
5.4 Gradient Descent with Gram-Schmidt Orthogonalisation 109
5.5 Conclusions . 110

6 Conclusions and Outlook 114

Appendix A Mathematical Concepts for Coherent States 119
A.1 Groups and Fields . 119
A.2 The Exterior Product . 120
A.3 Algebra Over A Field . 121

A.3.1 Structure Coefficients . 122
A.4 Lie Groups and Lie Algebra . 123

A.4.1 Closed Subgroups . 124
A.4.2 Classical Lie Groups . 125

A.5 Grassmann Algebra . 126
A.5.1 Properties of Grassmann Generators 126
A.5.2 Derivatives and Integrals of Grassmann Algebra 128

Appendix B Algorithmic and Programming Details 131
B.1 Program Overview . 131

B.1.1 Program Design . 131
B.1.2 Program Implementation . 134

B.2 Zombie state Creation . 137
B.3 Operator Algorithms . 139

B.3.1 Hamiltonian Matrix Algorithm 139
B.3.1.1 Reduced Prefactor Hamiltonian Algorithms 140
B.3.1.2 Lower-scaling Hamiltonian Algorithm 142
B.3.1.3 Combined Hamiltonian Matrix Element Equation . . 143

x

B.3.2 Other Operators . 150
B.3.2.1 Number Operator 150
B.3.2.2 Spin Operators . 152

B.3.2.2.1 Ŝz operator 152
B.3.2.2.2 Faster Ŝ2

z computation 153
B.3.2.2.3 Total spin 153

B.4 Gradient Descent Algorithm . 158
B.4.1 Derivatives of the Overlap Matrix 158
B.4.2 Gradient Calculation Code . 158
B.4.3 The Algorithm . 161

B.5 Imaginary Time Propagation . 164
B.6 Parallelisation . 164

B.6.1 Parallel Code in the Zombie states Program 165

Appendix C Supplementary Theory 168
C.1 Hamiltonian Matrix Elements . 168

C.1.1 One-electron Operator . 169
C.1.2 Two-electron Operator . 170

C.2 Derivation of the Equations for the Gradient of the Energy Function . 172
C.2.1 Differentiating the Overlap Matrix 173
C.2.2 Differentiating the Second Quantization Hamiltonian 173
C.2.3 Differentiating the d Vector 174

Appendix D Using the Zombie states Program 177
D.1 Input Files . 177
D.2 Running the Program . 180
D.3 Output Files . 184

D.3.1 Plotting Outputs . 185

Bibliography 188

xi

List of Figures

2.1 Plots showing lack of uniqueness for coherent states generated using
the minimum-uncertainty relationship 32

3.1 Plots showing autocorrelation function and its Fourier transform for
LiH using a random Zombie basis set 62

3.2 Plot showing the imaginary time propagation for a complete Slater
determinant and complete random Zombie state basis for Li2 65

4.1 Plot of the imaginary time propagation of Li2 for a basis set of 200
random Zombie states . 67

4.2 Plots of the energy and norm distributions for each number of
electrons for a wave function of 200 random Zombie states 70

4.3 Plot of the occupational probability for all spin orbitals using the
biasing regime for Li2 . 72

4.4 Plot of the imaginary time propagation of two wave functions with
Zombie states constructed using the biasing method 74

4.5 Plot of the imaginary time propagation for three wave functions
with Zombie states constructed using the biasing method and the
resultant energy found by using the cleaning method 74

4.6 Plots of the energy and norm distributions for each number of
electrons for a wave function of 30 biased Zombie states 75

4.7 Plots showing how the ground state energy changes during gradient
descent when no back tracing is used 81

4.8 Flowchart summarising gradient descent algorithm 82
4.9 Plot showing gradient descent process for Li2 with a basis set of 30

Zombie states . 86
4.10 Plot comparing of the initial and final ground state energies to the

full-CI energy for Li2 with a basis set of 30 Zombie states 86
4.11 Plot of the occupational probability for all spin orbitals for Li2 before

and after gradient descent . 87
4.12 Plot showing gradient descent process and comparison of the initial

and final ground state energies to the full-CI energy Li atom with a
basis set of 40 Zombie states . 89

xii

4.13 Plot of the occupational probability for all spin orbitals for Li atom
before and after gradient descent . 90

4.14 Plot showing gradient descent process and comparison of the initial
and final ground state energies to the full-CI energy boron atom with
a basis set of 60 Zombie states . 92

4.15 Plot showing gradient descent process and comparison of the initial
and final ground state energies to the full-CI energy Be atom with a
basis set of 45 Zombie states . 93

4.16 Plot of the occupational probability for all spin orbitals for nitrogen
atom when initialised using biasing regime 2 94

4.17 Plot showing gradient descent process and comparison of the final
ground state energy to the full-CI and CCSD(T) energies for BH
with a bond length of 1.234 Å with a basis set of 300 Zombie states . 96

4.18 Plot showing gradient descent process and comparison of the final
ground state energy to the full-CI amf CCSD(T) energies for BH
with a bond length of 4.0 Å with a basis set of 245 Zombie states . . 97

4.19 Plot showing gradient descent process for Li2 in the cc-pVDZ basis
with basis set of 100 Zombie states 98

4.20 Plot showing gradient descent process for Be2 in the cc-pVDZ basis
with basis set of 170 Zombie states 98

4.21 Plot showing gradient descent process for N2 in the cc-pVDZ basis
with basis set of 200 Zombie states 99

5.1 Imaginary time propagation for ground state and first three excited
states for the truncated Li2 system, using a complete random Zombie
basis set . 107

5.2 Imaginary time propagation for the ground state and first three
excited states for the truncated Li2 system, using a basis set of 64
biased Zombie states . 107

5.3 Imaginary time propagation for the ground state and first three
excited states for the truncated Li2 system, using a random Zombie
basis set of 200 functions . 108

5.4 Imaginary time propagation for the ground state and first three
excited states for the truncated Li2 system, using a basis of 30
Zombie states optimised by gradient descent 108

5.5 Plot of energy during the gradient descent process to find the second
excited state for truncated Li2 . 111

5.6 Plot of the imaginary time propagation for four separate wave
functions each optimised to describe a different state of the truncated
Li2 system . 112

xiii

A.1 Plot visualising the exterior product 121
A.2 Plot visualising the manifolds of a unit sphere 124

B.1 Flowchart illustrating Zombie states program 133
B.2 Visualisation of Hamiltonian matrix element pre-processing algorithm 146
B.3 Diagram illustrating a sequential and parallel program 165

xv

List of Tables

4.1 Table detailing normal distributions used in biasing method for Li2 . 72
4.2 Table detailing θ values used in the generalised biasing regime. 84
4.3 Table comparing ground state energies for three optimised basis sets,

a biased basis and the full-CI energy for Li2 85
4.4 Table comparing full-CI and Zombie state ground state energies for

selected row one elements . 91

5.1 Table showing imaginary time propagation parameters used for
Gram-Schmidt orthogonalisation and gradient descent to find the
excited states of Li2 . 109

A.1 Table containing conditions for selected Classical Lie Groups 126

B.1 Table of modules, their purpose and dependencies for the Zombie
states program. 135

B.2 Table showing difference in time needed to calculate the two-electron
part of the Hamiltonian matrix between the Naïve and spin symmetry
considered algorithms. 140

B.3 Table showing difference in time needed to calculate the two-electron
part of the Hamiltonian matrix between the Naïve algorithm and the
spin symmetry considered algorithm with better loops. 140

B.4 Table showing difference in time needed to calculate the two-electron
part of the Hamiltonian matrix between the Naïve algorithm and the
zero-term considered algorithm. 142

B.5 Table comparing times needed to calculate the two-electron part of
the Hamiltonian matrix between the Naïve algorithm with O(N5

orb)
scaling and the faster O(N4

orb) scaling algorithm. 143
B.6 Summary of all possible multiplicand values in an overlap calculation

when calculating an element of the second-quantization Hamiltonian
matrix. 144

B.7 Table comparing the naïve two-electron Hamiltonian algorithm to
the pre-processed algorithm . 147

xvi

B.8 Table comparing the scaled Hamiltonian and pre-processed Hamilto-
nian algorithm . 147

B.9 Table comparing naïve and scaled algorithms for the number operator 152
B.10 Table comparing naïve and scaled algorithms for the Ŝz operator . . . 152
B.11 Table comparing the scaled and naïve algorithm for the Ŝ2

z operator . 153
B.12 Table comparing different algorithms for calculating ⟨ζ(a)|ŝ+ŝ−|ζ(b)⟩ . 157
B.13 Table comparing the naïve and scaled algorithms for calculating the

total spin of a Zombie state . 157

D.1 Table of input parameters, part 1 . 178
D.2 Table of input parameters, part 2 . 179

xvii

List of Abbreviations

TDSE Time Dependent Schrödinger Equation
TISE Time Independent Schrödinger Equation
HF Hartree Fock
DFT Density Functional Theory
RHF Restricted closed-shell Hartree-Fock
UHF Unrestricted Hartree-Fock,
ROHF Restricted Open-Shell Hartree-Fock
SCF Self-Consistent Field
MCSCF Multi-Configurational Self-Consistent Field
CASSCF Complete Active Space Self-Consistent Field

STO Slater-Type Orbital
GTO Gaussian-Type Orbital
CGF Contracted Gaussian Functions
cc Correlation-Consistent
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital

CC Coupled-Cluster
CCSD Coupled-Cluster Singles-and-Doubles
CCSDT Coupled-Cluster Singles-Doubles-and-Triplets
MBPT Many-Body Perturbation Theory
EOM-CC Equations-Of-Motion-Coupled-Cluster
CCLR Coupled-Cluster - Linear Response

CI Configuration Interaction
MRCI Multi-Reference Configuration Interaction
FCI Full Configuration Interaction

xviii

QMC Quantum Monte Carlo
FCIQMC Full Configuration Interaction Quantum Monte Carlo
MCCI Monte Carlo Configuration Interaction
CSF Configuration State Function

CCS Coupled Coherent States
ZS Zombie State
MCE Multi-Configurational Ehrenfest
AIMCE Ab initio Multi-Configurational Ehrenfest
BCH Baker-Campbell-Hausdorff
MCTDH Multi-Configurational Time-Dependent Hartree
MCTDHF Multi-Configurational Time-Dependent Hartree-Fock
GD Gradient Descent
GSO Gram-Schmidt Orthogonalisation

OMP/OpenMP Open Multi-Processing
MPI Message Passing Interface
SIMD Same Instruction Multiple Data

xix

Notation

Throughout this thesis the following conventions are used:

a,b Basis function, index given in superscript in parentheses, i.e. ζ(a)

i,j,k,l Orbital index, given as subscript, i.e. ζi.

m,n Wave function index, given as a subscript, i.e. Ψm.

ζ Is a one electron Zombie state representing a single orbital,
where |ζ⟩ = a1|1⟩+a0|0⟩ is a coherent state.

ζ Is a multi-electron Zombie state where |ζ⟩ = |ζ1ζ2 . . . ζi⟩.

Nxx Total number of a parameter for example Nel

is the total number of electrons and Nbf is the total number
of basis functions.

All other notation is specified in the text.

xxi

For Caitlin

xxiii

Chapter 1

Introduction

Theoretical simulation of chemical systems is now a well established scientific dis-
cipline and widely integrated into many stages of experimental work. Simulations
can be used as a predictive tool to shape the direction of new research; as a point
of comparison, to verify results, or to find results beyond what is currently experi-
mentally possible. All theoretical work sits within one of three categories: Classical,
considering only Newton’s laws of motion; Quantum, where all objects are treated
on a fully quantum level and Semi-classical, which treats some particles classically
and others as quantum. For any chemical system there must be a description of
its electrons which being quantum particles means, beyond treating them as a fixed
negative charge or field, they must be described using quantum mechanics. Thus,
it is necessary to find solutions for the Schrödinger equation which becomes in-
creasingly more difficult as the size of the system grows. The so-called curse of
dimensionality means that as the system size increases the computational cost of
finding solutions grows exponentially. Hence, developing methods with lower scaling
and computational cost is an active field of research with a large body of historic
work underpinning it. A standard framework for formulating a theoretical method
was set out by John Pople in 1973 [2]. These five stages have become the standard in
quantum chemistry, forming a key part of his 1998 Nobel Prize lecture, summarised
subsequently [3].

1. Target

The model should have a target level of accuracy. Models aiming to be quanti-
tative should be looking to replicate experimental accuracy and energies such
as heats of formation or ionization potentials which should be within 1 kcal/-
mole.

2. Formulation

The method must be precisely formulated and generalised so it can be applied
universally to any system.

1

2 1.0

3. Implementation

The model has to be implemented in a way that is reasonable in computational
time and cost.

4. Verification

The model must be tested against known chemical facts.

5. Prediction

Following verification, the model can then be applied to unknown chemical
problems.

Though simply stated no electronic structure method currently manages to fully
satisfy all of these conditions either requiring a loss of accuracy to be practical or
maintaining exactness which limits the applications due to unreasonable costs. Of
course, a method that meets all of these conditions would be ideal but using this
framework allows existing methods to be compared fairly and properly assess their
inherent trade-offs. The starting point of many discussions of electronic structure
theory is the Born-Oppenheimer approximation which allows the electronic and nu-
clear parts of the energy to be calculated separately. Henceforth, only solutions to
the electronic Schrödinger equation need to be considered which is predominately
achieved by using either a Hartree-Fock (HF) or post-Hartree-Fock method or Den-
sity Functional Theory (DFT).

The Hartree-Fock method is an Ab initio method fully defined in the early 1930s
[4–6]. The method describes the electrons in a molecule using a so-called Slater
determinant to maintain the antisymmetric property of the electrons; early use of
Hartree products was demonstrated by both Slater and Fock to not fully satisfy
this quality. The set of wave functions describing each electron together give the
total energy of the system which is then minimised using the variational method.
This is achieved by application of the Self Consistent Field method usually solved
iteratively in an algorithmic process to improve the description of each orbital. The
mean field of the other particles in the molecule is considered and the energy min-
imised which improves the orbital being considered. This process is then repeated
for each orbital until the energy has been minimised. The scope for using HF beyond
the very simplest systems was greatly limited until much faster computers became
available in the 1950s. Nonetheless, HF serves as basis for post-Hartree-Fock and
related methods. Configuration interaction takes a linear combination of Slater de-
terminants, each representing a different electronic configuration. This reaches the
full-CI limit, when a complete set of all possible configurations is used. However, this
is computationally expensive for all but the smallest systems. Multi-configurational
active space SCF methods try to remedy this by introducing three classifications for
spatial orbitals: core, always doubly occupied; active, partially occupied and vir-
tual, always empty. In the complete active space SCF (CASSCF) method a linear

2

3 1.0

combination of all Slater determinants that describe the possible electron configu-
rations created when the core orbitals are occupied, and the remaining electrons are
distributed across the active orbitals. Less computationally expensive post-Hartree-
Fock methods have been developed including many-body perturbation theory which
adds a small perturbation to the ground state wave function to account for electron
correlation. The coupled cluster theory starts with an exponential ansatz for the
wave function often using a Hartree-Fock determinant as a reference wave function.
However, all of these methods carry a computational cost that scales exponentially
with degrees of freedom making them unsuitable for even seemingly modest systems.

Density Functional Theory takes a different approach, mapping the many-body
problem onto a single-body one. DFT is centred around two key theorems devel-
oped by Hohenberg and Kohn in 1964 [7]. This first states that the ground state
electron density uniquely determines the external potential and so the total system
energy. Secondly, the ground state energy can be found variationally if an exact en-
ergy functional of the electron density can be found. In other words, with the right
functional the electron density can be described and this electron density can then
describe the system. The functional can be written as a sum of the electron kinetic
energy, electron-electron interaction and electron-nucleus interaction. This can be
solved once the external potential is known. But the external potential depends on
the system and so it is not possible to write a universal expression of the functional
equation. Kohn and Sham created a practical framework to carry out DFT calcula-
tions using a system of non-interacting particles that gives the same density as the
real system of interacting particles [8]. The internal energy functional is written as
the sum of the kinetic energy of the fictional non-interacting system; the electron
density of this system and the exchange-correlation functional contain the unknown
parts of the total energy. The description of the exchange-correlation functional re-
quires density functional approximations which are not theoretically exact and only
empirically shown to be effective. So, some would argue it is not a truly Ab initio
method due to the fitting of some correlation functionals. Further, DFT lacks the
systematic quantitative accuracy found in HF based methods. In many cases this
is not a problem and DFT has become an extremely popular method used widely
across many fields of research. However, DFT not being formulated in a way that
is entirely general and HF type methods suffering from large computational costs
at high levels of accuracy are problems that are unlikely to be fixed. Therefore, it
is worth considering the building of a new theory explicitly designed to avoid these
limitations.

Zombie states (ZS) are such a theory, first presented in 2018 by Shalashilin, they
offer a novel approach to electronic structure theory that is not based on Hartree-
Fock like Slater determinants. The method is constructed to main theoretical ex-
actness while also utilising electronic basis sets like HF methods to maintain a hi-

3

4 1.0

erarchy of quantitative accuracy [9]. Zombie states like much of Shalashilin and his
group’s work has been based around the Coupled Coherent States (CCS) method
[10]. Coherent states are an appealing quantum object, allowing system states to be
described as a superposition of constituent states which can be a better reflection
of the quantum nature of the overall system. This property was first applied to
electromagnetic radiation, describing photons using coherent states of the quantum
harmonic oscillator [11, 12]. In CCS the wave function is described using a basis of
coherent states which are coupled via time propagation equations. This was then
generalised to multiple electronic states in the form of the Multi-Configurational
Ehrenfest (MCE) method. The first version of MCE showed excellent agreement
with model system values [13]. A second version of MCE was developed to sepa-
rate the inter- and intra-function coupling. This gave rise to the Ab initio Multi-
Configurational Ehrenfest (AIMCE) method, which could be be propagated along a
potential energy surface calculated "on-the-fly", allowing the simulation of real sys-
tems [14]. However, the change of ansatz necessitated the development of multiple
sampling techniques so MCEv2 could replicate results, for model systems, that the
first version of MCE had previously achieved [15]. Most work with CCS and MCE
has focused on distinguishable systems particularly with bosons but some initial
work showed CCS could be adapted to deal with fermion dynamics [16].

The electronic ground state of a molecule is never exactly a single configura-
tion due to the constant movement of electrons in a chemical system. Hence, why
the exact, full configuration interaction, wave function is constructed using a linear
combination of all configurations. This motivates use of coherent states to describe
a fermionic system – a supposition of coherent states replacing the linear combina-
tion of configurations. Thus, the Zombie states method is proposed to describe a
fermionic system using a wave function of coherent states, that are superpositions of
all possible electron configurations. Each spin orbital in a Zombie coherent state is
described by a superposition of the occupied and unoccupied state. So the Zombie
wave function consists of functions that are, by definition, made up of all configu-
rations. This should make it possible to describe systems with the accuracy of a
full-CI calculation but without the computationally prohibitive size. Further, the
existing apparatus developed for CCS and MCE should then be easily applicable
to fermionic systems. This would hopefully allow accurate simulation of dynamics
while replicating the lower computational cost CCS type methods have demon-
strated when compared to similarly accurate methodologies [13, 17]. Fermionic
coherent states are not a new concept but are typically used to describe a specific
electronic configuration as a superposition of spin states [18, 19]. There are two
ways these fermionic coherent states are constructed, using either Grassmann alge-
bra or the Gilmore Perelomov general coherent state definition [20–22]. Elements
of Grassmann algebra are mathematical objects constructed to anticommute with

4

5 1.0

each other which ensures the antisymmetric property of the fermions is maintained.
Gilmore Perelomov’s general method, on the other hand, utilises Lie groups with
an appropriate topological structure to define and maintain the necessary proper-
ties of the coherent states. However, neither construction lends itself to numeric
simulations. The general coherent state definition allows all coherent states to be
constructed in the same manner which can be used to contextualise Zombie states
when compared to other types of coherent states. Using this definition, it is possible
to show how Zombie states are constructed using SU(2) coherent states and how
this naturally maintains the antisymmetric property and behaviour during creation
and annihilation operations.

The primary aim of this thesis is to detail the work undertaken to further develop
the Zombie states method. Within Pople’s framework this work aims to increase
the universality of the method and verify this by benchmarking results, for a range
of chemical systems, to full-CI energies. Further, the practical implementation of
the method is considered to minimise computational expense and execution time.
However, the Zombie states method is still in its infancy and will require further
work, beyond this, to be used and trusted for prediction. Therefore, this thesis is
also intended to serve as single starting point for subsequent development. Hence,
additional explanation, particularly of certain mathematical concepts, is given to
aid understanding. Chapter 2 will lay out some integral building blocks from the
Hartree-Fock method necessary for understanding the ZS method as well as a discus-
sion of some current methods aiming to recover full-CI energies. A general definition
for coherent states is given which is used to contextualise all the coherent states used
in the CCS family of methods. This is also used to show how fermionic coherent
states are constructed and compared to the Grassmann algebra construction. Within
this context the Zombie states method is then presented combining the original for-
mulation and building ZS from the vacuum state [9, 23]. Zombie states are then
constructed using the general coherent state definition. This makes clear how Zom-
bie states not only compare to other fermionic coherent state constructions but also
individual and linear combinations of Slater determinants. In Chapter 3 imaginary
time propagation is introduced as the primary method for efficiently optimising ZS
coefficients to find the ground state energy of a system. Chapter 4 forms the most
significant results of this thesis detailing the development of techniques to reduce
the size of the ZS basis set. This starts with simple amplitude biasing which leads
to the adoption of the optimisation technique Gradient Descent (GD). The under-
lying theory and algorithmic developments are presented followed by verification of
the method by application to a variety of chemical systems. In Chapter 5 the ZS
method is extended to find excited states using Gram Schmidt orthogonalisation.
Finally, conclusions and the outlook for future work is presented. The appendices
give additional theoretical background information and details of the Zombie states

5

6 1.0

program. The structure and function of the ZS program is discussed including the
development of the algorithms used.

6

Chapter 2

Background and Theory

2.1 Introduction
All discussions of quantum mechanics naturally start with the Schrödinger equation.
A system can be described by a wave function, |Ψ(t)⟩. The use of the bra-ket
notation here allows this to be done in terms of a chosen basis, which is often
position. The Time-Dependent Schrödinger Equation (TDSE),

iℏ
d

dt
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ (2.1)

is used to evolve |Ψ(t)⟩. The system Hamiltonian operator Ĥ corresponds to the
total energy of the system so a complete description of the system is maintained as
the wave function is evolved from an initial state at t= 0 by,

|Ψ(t)⟩ = e−iĤt/ℏ|Ψ(0)⟩. (2.2)

Through this process the energy states of the system are changed which describes the
chemical process being investigated. However, for some systems the energy states
are constant with time, such as the energy levels of a molecule at equilibrium. As
such the time dependence of the wave function can be removed; it can be written
in terms of the basis of energy eigenstates

|Ψ(t)⟩ =
∑
n
Ane

−iEnt/ℏ|ΨEn⟩, (2.3)

which can be substituted into Eq. (2.2). This can be simply rearranged to give the
Time-Independent Schrödinger Equation (TISE)

Ĥ|Ψ⟩ = E|Ψ⟩. (2.4)

E is the exact total energy associated with the eigenstate |Ψ⟩, the |ΨEn⟩ notation
has been simplified to |Ψ⟩ as the TISE is used exclusively throughout this thesis to

7

8 2.1

consider molecular electronic states.
The Hamiltonian for a multi-electron system with Nel electrons and Nnu nuclei

can be written as

Ĥ = −
Nel∑
i=1

1
2∇2

i −
Nnu∑
A=1

1
2MA

∇2
A−

Nel∑
i=1

Nnu∑
A=1

ZA
riA

+
Nel∑
i=1

Nel∑
j>i

1
rij

+
Nnu∑
A=1

Nnu∑
B>A

ZAZB
RAB

(2.5)

where riA = |ri− RA| is the distance between nucleus A and the ith electron; rij is
the distance between electrons i and j; RAB is the inter-nucleus distance between
nuclei A and B. MA is the atomic mass of nucleus A and ZA its charge, the operator
is in atomic units. Moving left to right the Hamiltonian contains terms representing
the electron kinetic energy, T̂e; the kinetic energy of the nuclei, T̂n; the Coulomb
attraction between nuclei and electrons, V̂ne; the electron-electron repulsion, V̂ee and
the nucleus-nucleus repulsion, V̂nn. So, the Hamiltonian can be written as sum of
each of these operators’ contributions

Ĥ = T̂e+ T̂n+ V̂ne+ V̂ee+ V̂nn (2.6)

It is impossible to solve Eq. (2.4) exactly in all but a few limited cases and so be-
gins the process of applying truncations and approximations to simplify (in relative
terms) the problem.

The first and most widely used approximation is the Born-Oppenheimer ap-
proximation which separates the nuclear and electronic contributions to the total
molecular energy. The mass of the nuclei being so much larger than the electrons
means that their motion occurs on different time scales, electrons moving far faster
than nuclei if given the same momentum. This allows the nucleus to be given a fixed
position i.e. T̂n = 0. The fixed position of the nuclei means the nucleus-nucleus re-
pulsion, Vnn, can be considered constant. Thus, the molecular Hamiltonian can
then be written as a sum of the nuclear and electronic parts and each part solved
independently of each other

Ĥ = −
Nel∑
i=1

1
2∇2

i −
Nel∑
i=1

Nnu∑
A=1

ZA
riA

+
Nel∑
i=1

Nel∑
j>i

1
rij

+Vnn. (2.7)

This Hamiltonian can then be used to construct the Schrödinger equation, solutions
of which correspond to different energy states of a molecular system.

This chapter is split into three main sections, Hartree-Fock, Coherent states and
Zombie states, each focusing on a different way to generate wave functions that
can be used to solve the Schrödinger equation made using Eq. (2.7). The Hartree-
Fock method is foundational to all electronic structure theory, including the Zombie
states method, and so a detailed description of it forms the first part of this chap-
ter. Significantly, the key antisymmetric character of fermionic systems is introduced

8

9 2.1

through the use of Slater determinant wave functions and parametrised in the second
quantisation approach by anticommutation of the creation and annihilation opera-
tors. Further, the use of electronic basis sets is introduced to describe the physical
shape of the orbitals and also the process for constructing a Hamiltonian matrix
using Eq. (2.7). Finally, the self-consistent method is detailed showing how the HF
method uses its Slater determinant wave function and basis set to find solutions
to the electronic Schrödinger equation. However, the original HF method is not
capable of recovering scientifically significant results. Thus, the post-Hartree-Fock
methods, Møller-Plesset theory and Coupled cluster theory are also discussed. The
configuration-interaction (CI) approach is also explained, introducing the full config-
uration interaction limit that is used extensively throughout this work to benchmark
the Zombie state method. Two methods that aim to recover full-CI energies while
using significantly smaller basis sets are full-CI Quantum Monte Carlo (FCIQMC)
and Monte Carlo-CI (MCCI) which are a useful point of comparison to the ZS
method [24, 25]. Moreover, it will be shown in subsequent chapters that the Zombie
states method borrows well tested processes already used in FCIQMC.

Post-Hartree Fock methods have been developed because a single Slater deter-
minant does not exactly describe a state of system, rather a single configuration
of electrons in the available spin orbitals. The electronic ground state of a system
is not one configuration of electrons but a superposition of multiple. Therefore, a
better description of the ground state could be made by using functions that are
not a fixed and specific configuration of electrons. Coherent states are such a func-
tion and have been an active area of quantum mechanical research since the early
1960s [11]. This initial work was catalogued by Klauder and Skagerstam in Ref.
[26] and more recently by Combescure and Didier in Ref. [20]. The Coupled Coher-
ent States (CCS) method and related techniques have been extensively applied to
a variety of different theoretical and real-world systems. CCS has been applied to
the molecular dynamics of CHD3 and the absorption spectrum of pyrazine [10, 27].
To allow problems with multiple dimensions to be investigated CCS was generalised
to produce the multi-configurational Ehrenfest (MCE) method. Initial verification
of the method was achieved through simulations of the model spin-boson system
[13, 28]. But it has also been applied to a variety of real molecular systems for
example the photodynamics of pyrrole and the excited state dynamics of a pheny-
lene ethynylene dendrimer [29–31]. As CCS and MCE have been developed various
sampling techniques have been added to the methods to improve their convergence
[14, 15, 32, 33]. CCS methods have primarily focused on distinguishable particles
but recently the CCS has been extended to describe indistinguishable bosons by em-
ploying second quantisation [34, 35]. Thus, within the context of this previous work
it is logical to want to extend the CCS family of methods to also include fermionic
systems hence, the novel Zombie states method. By describing fermionic systems

9

10 2.1

using coherent states the techniques developed in CSS for distinguishable parti-
cles can be easily transferred to indistinguishable fermions. Further, CCS methods
do not scale exponentially because they utilise Monte Carlo sampling which, the-
oretically, scales quadratically. This lower scaling means it is possible to simulate
much larger systems without incurring such a prohibitively large computational cost
while maintaining high accuracy. In fact, the bottle neck in MCE calculations of real
molecules is the repeated electronic structure calculations needed for the trajectories
to propagate along. Full-CI calculations also scale exponentially with the number
of basis functions and electrons, so developing a fermionic coherent state method
would hopefully allow similar reductions in computational cost seen for bosons using
MCE. Ultimately, this could mean molecular simulations with all particles treated
on an equal footing using a CCS type method meaning accuracy and computational
costs far lower than what is currently possible.

Therefore, the second part of this chapter focuses on the current standard ap-
proach to fermionic coherent states. A general definition for a coherent state is given
which forms a framework for describing the coherent states used in CCS and MCE
and fermionic coherent states. Some of the mathematical concepts used are possibly
novel to a mathematically minded chemist rather than a mathematician so a brief
précis is given in Appendix A which should give enough background information
to sufficiently understand the section and begin further research. There is a par-
ticular focus on SU(2) coherent states because these are used in the MCE method
and also underpin the Zombie states method’s construction. Fermionic coherent
states are then constructed using the general definition. It is also demonstrated how
an alternative construction utilises elements of Grassmann algebra to maintain the
fermionic antisymmetry property. In the final part of the chapter the Zombie states
method is presented demonstrating how ZS functions can be constructed from a
vacuum state. Significantly, Zombie states are constructed using the general coher-
ent state definition. The three fermionic coherent state constructions can then be
compared highlighting how the constructions can describe analogous states but also
their inherent differences.

10

11 2.2

2.2 Hartree-Fock Theory

2.2.1 Spin
The Hamiltonian in Eq. (2.7) only accounts for the spatial electronic coordinates
and so it is necessary to introduce spin. Electrons are fermionic particles and obey
the Pauli exclusion principle: no two electrons can occupy the same quantum state.
Two spin functions are introduced, up α(ω) and down β(ω),

⟨α|α⟩ =
∫
α∗(ω)α(ω)dω =

∫
β∗(ω)β(ω)dω = ⟨β|β⟩ = 1 (2.8)

⟨α|β⟩ =
∫
α∗(ω)β(ω)dω =

∫
β∗(ω)α(ω)dω = ⟨β|α⟩ = 0. (2.9)

Eq. (2.9) show that these two functions are complete, i.e. defined for all possible
values and are orthonormal, meaning α(ω) and β(ω) are normalised and orthogonal
to each other. These equations also introduce Dirac notation, a ket representing a
vector function with the corresponding bra being its complex conjugate. Therefore,
each electron is described by three spatial coordinates r and one spin coordinate ω
which can be summarised as x = {r,ω}. Hence, an N -electron system has a wave
function that is dependent on x1,x2, . . . ,xN that can be written as ϕ(x1,x2, . . . ,xN).
To account for the spin "A many-electron wave function must be antisymmetric with
respect to the interchange of the coordinate x (both space and spin) of any two
electrons"[36]

ϕ(x1, . . . ,xi, . . . ,xj , . . . ,xN) = −ϕ(x1, . . . ,xj , . . . ,xi, . . . ,xN). (2.10)

From this antisymmetric principle comes the adherence to the Pauli exclusion prin-
ciple.

2.2.2 Hartree Products
A single electron wave function can be constructed as a product of one-particle
orbital functions

ΨHP (x1,x2, . . . ,xN) = χi(x1)χj(x2) . . .χk(xN). (2.11)

This is the Hartree product and each function, χi(x), depends on both spatial and
spin coordinates which can be called spin orbitals [4].

χ2i−1(x) = ψi(r)α(ω)

χ2i(x) = ψi(r)β(ω)

 i= 1,2, . . . ,Nel (2.12)

11

12 2.2

However, if the number of electrons in the system is increased beyond one, the
Hartree product no longer satisfies the antisymmetric principle which was indepen-
dently pointed out by Slater and Fock [5, 37].

2.2.3 Slater Determinants
Considering the simplest multi-electron case: two electrons and two orthonormal
spin orbitals, it is possible to construct two Hartree products

ΨHP
12 (x1,x2) = χi(x1)χj(x2) (2.13a)

ΨHP
21 (x2,x1) = χi(x2)χj(x1). (2.13b)

These can be combined linearly, 2−1/2 ensuring normalisation

Ψ12(x1,x2) = 2−1/2(χi(x1)χj(x2)−χi(x2)χj(x1)). (2.14)

Slater showed [38] that this antisymmetric wave function could be written as a
determinant

Ψ12(x1,x2) = 2−1/2

∣∣∣∣∣∣χi(x1) χj(x1)
χi(x2) χj(x2)

∣∣∣∣∣∣ . (2.15)

Which can be generalised for an N -electron system

Ψ(x1,x2, . . . ,xN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) . . . χk(x1)
χi(x2) χj(x2) . . . χk(x2)

...
χi(xN) χj(xN) . . . χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.16)

Different spin orbitals are in each column and different electrons are in each row. To
change the position of an electron in the Slater determinant representation would
require the swapping of two columns in the determinant which would introduce a
negative sign. A sign change is also introduced if rows are swapped. Thus, the Slater
determinant mathematically ensures the preservation of the antisymmetric property
when the position of an electron is changed. A normalised Slater determinant can
be written succinctly,

Ψ(x1,x2, . . . ,xN) = |χi(x1)χj(x2) . . .χk(xN)⟩ (2.17)

which is equivalent to the Slater determinant in Eq. (2.16). The normalisation con-
stant is included but not shown and only the diagonal elements are shown for suc-
cinctness. Therefore, swapping elements in this notation is the equivalent to swap-

12

13 2.2

ping columns in the Slater determinant giving the expected antisymmetric property,

|χiχj . . .χk⟩ = −|χjχi . . .χk⟩. (2.18)

2.2.4 Matrix Elements
The Hamiltonian matrix for Eq. (2.7) is constructed by its operation between two
Slater determinants (formed of orthonormal orbitals), ⟨Ψ(A)|Ĥ|Ψ(B)⟩ and can be
explicitly written in two parts the first having single electron dependence, O1 and
the second being dependent on two electrons, O2,

Ĥ = O1 +O2 = −(
Nel∑
i=1

1
2∇2

i +
Nnu∑
A=1

ZA
riA

)+
Nel∑
i=1

Nel∑
j>i

1
rij

(2.19)

the nuclear-nuclear repulsion has been omitted as it is a constant. It is first necessary
to introduce some notation for both the one- and two-electron parts. The one-
electron operators are now shown together as "h" and the following bra-ket notation
is used to represent an integral,

⟨i|h|i⟩ = ⟨χi(x1)|h|χi(x1)⟩ =
∫
χ∗
i (1)h(1)χi(1)dx1. (2.20)

In a similar way the two-electron part uses the bra-ket notation for the integral,

⟨ij|ij⟩ = ⟨χi(x1)χj(x2)|χi(x1)χj(x2)⟩ =
∫
χ∗
i (1)χ∗

j(2) 1
r12

χi(1)χj(2)dx1dx2 (2.21)

the operator 1
rij

. For both the one- and two-electron part there are three types of
result dependent on the spin orbitals in |Ψ(A)⟩ and |Ψ(B)⟩.

1. |Ψ(A)⟩ = |Ψ(B)⟩ – Slater determinants have identical spin orbitals.

2. |Ψ(A)⟩ = |χi(1)χj(2) . . .⟩ and |Ψ(B)⟩ = |χk(1)χj(2) . . .⟩ – Slater determinants
differ by one spin orbital only.

3. |Ψ(A)⟩ = |χi(1)χj(2) . . .⟩ and |Ψ(B)⟩ = |χk(1)χl(2) . . .⟩ – Slater determinants
differ by more than one spin orbital.

The one-electron Hamiltonian part can take the following values:

⟨Ψ(A)|O1|Ψ(B)⟩ =

∑Nel
i ⟨i|h|i⟩ Case 1∑Nel
i ⟨i|h|j⟩ Case 2

0 Case 3

(2.22)

13

14 2.2

where h is the one electron operator. Similarly for the two-electron part

⟨Ψ(A)|O2|Ψ(A)⟩ =

1/2∑Nel

i

∑Nel
j ⟨ij|ij⟩−⟨ij|ji⟩ Case 1∑Nel

j ⟨ij|kj⟩−⟨ij|jk⟩ Case 2

0 Case 3

(2.23)

A full derivation of these results can be found in Appendix C.1.

2.2.5 Second Quantisation
Second quantisation takes the antisymmetric properties of the electronic wave func-
tion – the Slater determinants – and transfers them to the creation and annihilation
operators [6, 39, 40]. This gives rise to a modified Hamiltonian equation and allows
Slater determinants to just describe orbital occupancy. The one- and two-electron
integrals only have to be calculated once before calculating matrix elements. This
process is more practical for numerical applications hence, it is subsequently used
throughout this thesis. The creation operator, a†

j , is defined on an arbitrary Slater
determinant as

a†
j |χk . . .χl⟩ = |χjχk . . .χl⟩ (2.24)

a†
j creates an electron in spin orbital j. The anticommutation relation can then be

derived again

(a†
ia

†
j +a†

ja
†
i)|χk . . .χl⟩ = |χiχjχk . . .χl⟩+ |χjχiχk . . .χl⟩ =

|χiχjχk . . .χl⟩− |χiχjχk . . .χl⟩ = 0 ⇒
(2.25)

a†
ia

†
j +a†

ja
†
i = 0 = {a†

i ,a
†
j}. (2.26)

Note it is not possible to create two electrons in the same spin orbital so a†
ja

†
j |χk . . .⟩ =

0. The annihilation operator, aj can then be defined as the adjoint of a†
j so (a†

j)† = aj .
The annihilation works counter to the creation operator and only on the spin orbital
immediately to the left requiring Slater determinant columns to be interchanged

aj |χkχjχl⟩ = −aj |χjχkχl⟩ = −|χkχl⟩ = |χlχk⟩. (2.27)

As with the creation operator the anticommutator can be derived analogously to
give

ajai+aiaj = 0 = {aj ,ai}. (2.28)

14

15 2.2

Further, the operator relations can be defined and then combined with their respec-
tive anticommutation relations to give the anticommutation relation between both
operators

a†
iai+a†

iai = 1 = {ai,a†
i} (2.29a)

a†
iaj +a†

jai = 0 = {ai,a†
j}i ̸= j (2.29b)

a†
iaj +a†

jai = δij = {ai,a†
j}. (2.29c)

Next the concept of the empty vacuum state, |0⟩, is introduced. It is defined to
be normalised, ⟨0|0⟩ = 1. Any Slater determinant can be represented as a set of
creation operators acting on the vacuum state

|ψ1⟩ = |χlχk⟩ = a†
l a

†
k|0⟩ (2.30a)

|ψ2⟩ = |χjχi⟩ = a†
ja

†
i |0⟩ (2.30b)

which is shown here for two electrons in each Slater determinant but can easily be
extended to include any number of electrons. Hence, the overlap between two Slater
determinants can be found by repeated action of the operators to the right

⟨ψ1|ψ2⟩ = ⟨0|akala†
ja

†
i |0⟩ = ⟨0|ak(δlj −a†

jal)a
†
i |0⟩ = δlj⟨0|aka†

i |0⟩−⟨0|aka†
jala

†
i |0⟩

= δljδik⟨0|0⟩− δlj⟨0|a†
iak|0⟩− δli⟨0|aka†

j |0⟩+ ⟨0|aka†
ja

†
ial|0⟩

= δljδik⟨0|0⟩− δliδkj⟨0|0⟩+ δli⟨0|a†
jak|0⟩

= δljδik − δliδkj .

(2.31)

This derivation uses the fact ala†
j = δlj−a†

jal by simple rearrangement of Eq. (2.29c)
and note the action of the annihilation operator, on the vacuum state, to the right
causing terms to disappear. It is now possible to write the one- and two-electron
operators in terms of creation and annihilation operators

O1 =
∑
ij

⟨i|h|j⟩a†
iaj (2.32)

O2 = 1
2

∑
klij

⟨kl|ji⟩a†
ka

†
l aiâj . (2.33)

These operators can then be used to define the second quantisation Hamiltonian
equation

Ĥ =
∑
ij

hija
†
iaj + 1

2
∑
klij

a†
kâ

†
lWkljiaiâj (2.34)

with hij = ⟨i|h|j⟩ and Wklji = ⟨kl|ji⟩ being the one- and two-electron integrals.

15

16 2.2

2.2.6 Basis Sets
Slater determinants give a convenient way to describe the occupation of molecu-
lar orbitals while preserving the integral anti-symmetric property of the electrons.
However, in an actual molecule the space the electrons inhabit is a real space and
shape and so this has to be reflected in any simulation. To do this the concept of an
electronic basis set is introduced which introduces two approximations via the way
each orbital is constructed and the number of orbitals in the basis set. The basis
set consists of a set of known functions that can be taken as linear combinations
to describe an orbital. So molecular orbitals can be constructed by taking linear
combinations of the constituent atomic orbitals. The number of basis functions,
in most cases, is a finite set which sets the number of possible orbitals. The basis
set limit is approached as the number of basis functions is increased towards the
complete infinite basis set.

2.2.6.1 Slater-Type Orbitals
Slater-type orbitals (STO)s, named after John C. Slater, are similar to analytical
solutions to the Schrödinger equation for the hydrogen atom with the following form

χζ,n,l,m(r,θ,ϕ) =NYl,m(θ,ϕ)rn−1e−ζr (2.35)

where N is a normalisation constant, Yl,m is the spherical harmonics which depends
on quantum numbers l and ml; the radial part is given by rn−1 where n is a quantum
number and the size of the function is controlled by the Slater exponent ζ [41]. At
short and long distances from the nucleus they display the correct behaviour: a finite
slope at r = 0 and a slow decay as r −→ ∞. This is due to their similarity to the
hydrogen atom – they are based on a physical truth. Evaluation of their integrals
can, however, be computationally expensive.

2.2.6.2 Gaussian-Type Orbitals
Gaussian-type orbitals have become the most popular basis set due to the way they
can be simply combined [42]. A single Gaussian orbital function has the form

χα,lx,ly,lz(x,y,z) =Nxlxylxzlze−αr2
(Cartesian)

χα,n,l,m(r,θ,ϕ) =NYl,m(θ,ϕ)rn−1e−αr2
(Spherical)

(2.36)

where α is the Gaussian orbital exponent controlling the width. lx, ly, lz are non-
negative and sum l= lx+ ly+ lz to be equivalent to the angular momentum quantum
number [43, 44]. GTOs do not have the correct behaviour at both short and long

16

17 2.2

distance from the centre having a more rapid decay that STOs as r −→ ∞ and
having a zero slope when r = 0. But two Gaussians can be multiplied together
to give another Gaussian centred between the two original functions which makes
them simpler to combine than STOs when constructing molecular orbitals from
constituent atomic orbitals. To overcome the limitations of GTOs a single orbital is
constructed using a linear combination of primitive GTOs, so they better resemble
STOs. These are called contracted Gaussian functions (CGF)

χCGF =
∑
i

aiχ
GTO
i . (2.37)

These CGFs are variationally optimised with respect to the Hartree-Fock energy of
free atoms which will give a fixed set of coefficients and exponents in the primitive
GTOs. The optimal CGFs can then be used to construct the various types of
Gaussian-type basis sets.

2.2.6.3 Pople Basis Sets
The most basic, minimal, basis set is a single-ζ basis set where each orbital is
represented by one basis function. The most common form of this minimal basis
is the STO-nG, proposed by Pople, with n being the number of primitive GTOs
used to construct each CGF for each orbital [45]. But this representation is often
insufficient to properly describe each orbital. Thus, the number of CGFs for each
orbital can be increased giving double-ζ(DZ), triple-ζ(TZ) and quadruple-ζ(QZ)
basis sets with two, three and four functions respectively. These higher ζ sets are
usually used in split-valence sets where core orbitals used single-ζ functions and the
valence orbitals, more important in dictating the chemistry, have the higher-ζ basis
functions. These basis sets take the form n-ijG for DZ basis sets and n-ijkG for
the triple-ζ sets. n is the number of primitive Gaussian functions used for the core
orbitals, i, j (and k) give the number of primitive functions used in the first, second
(and third) CGFs of the valence orbitals.

Further modifications can be made to these basis sets to improve their descrip-
tion of molecular orbitals. Polarisation functions are added to the Gaussian atomic
orbitals to account for the fact when bonded s-orbitals take on some p-character,
p-orbitals acquire d-character and so on. Originally this polarisation was shown by
n-ijG∗ or n-ijG∗∗ the ‘∗’ symbol meaning polarisation of all heavy atoms and ‘∗∗’
polarisation of both the heavy and light atoms. This notation is inflexible, restrict-
ing the number and type of polarisation functions and so an improved notation is
introduced. For example, the 3-21G∗∗ basis with polarisation of all atoms is equiv-
alent to 3-21G(d,p) showing d-type functions added to the heavy atoms and p-type
functions added to the hydrogens. In systems with loosely bound electrons such
as anions or excited states diffuse functions can be added to better describe this

17

18 2.2

behaviour. They have small exponents and a rate of decay that slows with increas-
ing distance from the nucleus. Diffuse functions are usually of s- and p- type and
their inclusion is shown by adding a ‘+’ before the G for inclusion on the heavy
atoms and ‘++’ for their addition to both the heavy and light atoms. Therefore,
the 6-311+G(2df,2pd) basis would have 6 primitive Gaussians to represent the core
orbitals and the valence orbitals are represented with a set of three CGFs made up
of three, one and one Gaussian primitives. Two sets of d-orbitals and one set of
f-type functions as well as diffuse functions are added to the heavy atoms and two
sets of p-type and one of d-type functions are added to the hydrogens.

2.2.6.4 Correlation-consistent Basis Sets
Correlation-consistent (cc) basis sets were developed by Dunning and co-workers to
converge post-Hartree Fock wave function methods [46–50]. The functions are op-
timised using configuration interaction single and double excited wave functions.
These basis sets are denoted cc-pVXZ (X=D, T, Q, 5...), with ‘cc-p’ meaning
correlation-consistent polarised and the ‘V’ meaning it is a valence orbital only
set and ‘XZ’ being the X-ζ basis like in the Pople basis sets. The core-core and
core-valence electron correlation can be recovered by the addition of functions with
large exponents which is denoted as cc-pCVXZ, the ‘C’ showing the inclusion of
core orbitals. Further, diffuse functions can also be added for all orbital types al-
ready present in the basis which is illustrated by the ‘aug’ prefix giving the notation
aug-cc-pVDZ.

2.2.7 The Hartree-Fock Approximation
The Hartree-Fock approximation produces solutions to the electronic Schrödinger
equation and form the starting point for the Post-Hartree Fock methods as well as
the Zombie state method. The method was first presented in 1928 by Hartree and it
was then given a more substantial theoretical footing by independent work by Gaunt
and Slater [4, 51, 52]. Through use of the variation method a set of equations are
constructed that can be used to find the best set of spin orbitals that minimise the
ground state energy using the results from Eq. (2.22) and Eq. (2.23)

E0 = ⟨Ψ0|Ĥ|Ψ0⟩ =
∑
i

⟨i|h|i⟩+ 1
2

∑
ij

⟨ij|ij⟩−⟨ij|ji⟩ (2.38)

assuming the Ψ0 is normalised. The spin orbitals, {χi}, are systematically varied
subject to the constraint they remain orthonormal i.e. ⟨χj |χi⟩ = δij . This results in

18

19 2.2

a set of one-electron Fock equations

f̂iχi = ϵiχi (2.39)

where f̂i gives the effective one-particle Hamiltonian and ϵi is the orbital energy for
spin orbital χi.

2.2.7.1 The Fock Operator
The Fock operator is the sum of the core Hamiltonian operator, ĥi, and the effective
one-electron Hartree Fock operator, V HF

i ,

f̂i = ĥi+V HF
i = −1

2∇2
i −

Nnu∑
A

ZA
riA

+
∑
j

(Ĵj(1)− K̂j(1)) (2.40)

ĥi is the kinetic and potential energy for attraction to the nuclei for a single cho-
sen electron. V HF

i describes the electron-electron interactions, and consists of the
Coulomb, Ĵj , and exchange, K̂j , operators. The Coulomb operator is defined as

Ĵj(1) =
∫
χ∗
j(2)χj(2) 1

r12
dx2 =

∫
|χj(2)|2 1

r12
dx2. (2.41)

If electron 2 occupies χj then the two-electron potential experienced by electron
χi is obtained by averaging this interaction over all space and spin coordinates, x2,
weighted by the probability dx2|χj(2)|2 electron 2 occupies the volume dx2 at x2.
This is summed over i ̸= j to give the total averaged potential acting on electron χi
by the N − 1 electrons in the other spin orbitals. Taking Eq. (2.39) and extracting
just the exchange operator part

K̂j(1)χi(1) =
[∫

χ∗
j(2)χi(2) 1

r12
dx2

]
χj(1) (2.42)

the exchange operator can be defined with the single electron being made explicit. It
can be seen that the operator acting on χi(1) causes the electrons to be exchanged
and so there is no uniquely defined potential for K̂j(x1) at x1 as it depends on
χi throughout all space. The Coulomb operator is localised as Ĵj can be defined
independently of χi.

The Fock operator forms a set of coupled non-linear differential equations where
each spin orbital is a solution depending on all the other electrons. Therefore,
they are solved iteratively starting from guess set of orbitals to allow V HF

i to be
calculated. The Fock equations can then be solved which generates a new set of
orbitals. This process can then be repeated until the difference between the input
and new orbital set is below a predefined threshold.

19

20 2.2

2.2.7.2 Spin
How electrons are distributed across the set of spin orbitals dictates the spin of the
system which in turn gives different expressions for the HF equations. These distri-
butions can be classified as either closed- or open-shell depending on all the electrons
being paired up in orbitals or not. These expressions of the HF equations use spa-
tial representations of the electrons rather than the basis that includes spin that
has been used up until this point. So, integrals are over spatial coordinates, r, with
a spatial orbital containing at most two electrons. So, it is necessary to introduce
some analogous notation to the bra-ket integrals used in Eq. (2.22) and Eq. (2.23)
to calculate Hamiltonian matrix elements. The integral over spatial orbitals for the
one-electron part of the Hamiltonian, Eq. (2.7), are written as

(i|h|i) = (ψi(r1)|h|ψi(r1)) =
∫
ψ∗
i (1)h(1)ψi(1)dr1, (2.43)

the round brackets indicating spatial rather than spin orbitals. Similarly for the
two-electron part of the Hamiltonian,

(ij|kl) = (ψi(r1)ψj(r1)|ψk(r2)ψl(r2)) =
∫
ψ∗
i (1)ψj(1) 1

r12
ψ∗
k(2)ψl(2)dr1dr2. (2.44)

2.2.7.2.1 Restricted Closed-shell Equations
The restricted close-shell (RHF) case occurs when all electron spins are paired.
Thus, it is possible to convert the spin orbitals to spatial orbitals which gives a Fock
operator of the form

f̂RHFi = hi+
Nel/2∑
j

2ĴRHFj (1)− K̂RHF
j (1) (2.45)

where the Coulomb and exchange operators are defined as

ĴRHFj (1) =
∫
ψ∗
j (2) 1

r12
ψj(2)dr2 =

∫
|ψj(2)|2 1

r12
dr2 (2.46)

K̂RHF
j (1)ψi(1) =

[∫
ψ∗
j (2) 1

r12
ψ∗
i (2)dr2

]
ψj(1). (2.47)

As Nel is the number of electrons the sum in the Fock operator is now over the
Nel/2 occupied spatial orbitals. The energy for a single closed shell determinant,
⟨Ψ0| = ⟨ψ1ψ̃1 . . .ψNel/2ψ̃Nel/2| is given by

ERHF = ⟨Ψ0|Ĥ|Ψ0⟩ = 2
∑
i

(i|h|i)+
∑
ij

2(ii|jj)− (ij|ji) = 2
∑
i

hii+
∑
ij

2ĴRHFij − K̂RHF
ij

(2.48)

20

21 2.2

where

ĴRHFij =
∫
ψ∗
i (i)ψ∗

j (j)
1
rij
ψi(i)ψj(j)dridrj (2.49)

is the Coulomb energy between electrons i and j in the i-th and j-th orbitals, made
up of the pairwise interactions between all the electrons. The exchange energy

K̂RHF
ij =

∫
ψ∗
i (i)ψ∗

j (j)
1
rij
ψi(j)ψj(i)dridrj (2.50)

consists of only pairwise interactions between electrons with parallel spins.

2.2.7.2.2 Unrestricted Hartree Fock
For open-shell systems the Unrestricted Hartree Fock (UHF) method is commonly
used where any orbital is allowed to be left unpaired. The set of unrestricted spin
orbitals can be defined in terms of two sets of spatial orbitals

χk =

ψ
α
j (r)α(ω)

ψβj (r)β(ω)
(2.51)

accounting for the unpaired spin up or down electrons. Either set can then be
substituted into Eq. (2.39) and its respective spin integrated out. The α spin case
has the Fock operator

f̂αi = hi+
Nα∑
j

Ĵαj (1)− K̂α
j (1)+

Nβ∑
j

Ĵβj (1). (2.52)

where Nα is the number of orbitals occupied by α spin electrons and Nβ the number
of electrons of β spin. The Coulomb and exchange operators can then be defined

Ĵαj (1) =
∫
ψα∗
j (2) 1

r12
ψαj (2)dr2 (2.53)

K̂α
j (1)ψi(1) =

[∫
ψα∗
j (2) 1

r12
ψαi (2)dr2

]
ψαj (1). (2.54)

The set of operators for the opposite β spin case have an analogous form. The
ground state energy for the unrestricted electronic energy is then,

EUHF =
Nα∑
i

(i|hα|i)+
Nβ∑
i

(i|hβ|i)+ 1
2

Nα∑
i

Nβ∑
j

(Ĵααij − K̂αα
ij)+

1
2

Nα∑
i

Nβ∑
j

(Ĵββij − K̂ββ
ij)+

Nα∑
i

Nβ∑
j

Ĵαβij .

(2.55)

21

22 2.2

The Slater determinant is an eigenfunction of the Ŝz spin operator but not of the Ŝ2
z .

The method allows artificial mixing of states of different spins called spin contami-
nation which can give inaccurate energies. But due to the simplicity and computa-
tional efficiency UHF is widely used and a variety of methods have been developed
to eliminate the spin contamination [53, 54].

2.2.7.2.3 Restricted Open-shell Equations
The final way for dealing with open-shell systems is restricted open-shell HF (ROHF).
Antisymmetrised products are created from a doubly occupied closed-shell core, ψC
and a partially occupied open shell chosen from a set, ψO. The total wave function
is then made up by summing different products which are created by different sub-
sets of ψO. The combined set of orbitals is ψ = (ψC ,ψO) which is assumed to be
orthonormal. Thus, ψC and ψO are orthonormal and ⟨ψ(a)

C |ψ(b)
O ⟩ = 0, ψ(a)

C ∈ ψC and
ψ

(b)
O ∈ ψO [55]. This gives an energy

EROHF =2
∑
k

Hkk +
∑
kl

(2Jkl−Kkl)+f [2
∑
m
Hmm

+
∑
mn

(2aJmn− bKmn)+2
∑
km

(2Jkm−Kkm],
(2.56)

the indices k, l have been used for closed-shell orbitals and m,n for the open shell
orbitals which is consistent with Ref. [55]. f is the fraction of occupied spin orbitals
in the open shell; a and b are coupling coefficients [56]. So, the energy sum is made
up of a closed-shell, an open-shell and an interaction part. This method is used far
less frequently than UHF due to its higher computational cost.

2.2.7.3 Roothaan-Hall Equations
Finding direct solutions to the Fock equations is still difficult even when using the
RHF or UHF methods to eliminate the spin. Roothaan and Hall independently
proposed a method of solving the integro-differential into a set of algebraic equations
by introducing basis functions [57, 58]. The specifics of these functions are detailed
in the previous section 2.2.6. The unknown molecular orbitals of the system are
expanded in the set of Nbf known atomic basis functions, here the RHF case is
used.

ψi =
Nbf∑
µ=1

Cµiϕµ. (2.57)

This can then be substituted into Eq. (2.39) using ν as the index yields

f̂i

Nabf∑
ν
Cνiϕν(1) = ϵi

Nabf∑
ν
Cνiϕν(1). (2.58)

22

23 2.2

This can be multiplied by ϕ∗
µ(1) and integrated to give a matrix equation

∑
ν
Cνi

∫
dr1ϕ

∗
µ(1)fiϕν(1) = ϵi

∑
ν
Cνi

∫
dr1ϕ

∗
µ(1)ϕν(1) (2.59)

These are the Roothaan-Hall equations and can be written compactly as a matrix
equation

FC = SCϵ. (2.60)

S is the overlap matrix of the basis set, is Hermitian and of size K ×K. The
Fock matrix F is also a K×K Hermitian matrix and C is a K×K square matrix
containing the expansion coefficients Cνi. Each column of C describes the molecular
orbitals. For a closed-shell molecule the total charge density for a fully occupied
molecular orbital ψi is

ρ(r) = 2
N/2∑
i

|ψi(r)|2. (2.61)

This can be written in terms of the expansion coefficients as the density matrix

Pµν = 2
N/2∑
i

CµiC
∗
νi. (2.62)

Fock matrix can then be written in terms of the density matrix P

Fµν =Hcore
µν +

N/2∑
i

∑
λσ

CλiC
∗
σi[2(µν|σλ)− (µλ|σν)]

=Hcore
µν +

∑
λσ

Pλσ[(µν|σλ)− 1
2(µλ|σν)]

=Hcore
µν +Gµν

(2.63)

Hcore
µν is the core-Hamiltonian one-electron part, G is the two-electron part depend-

ing on the density matrix P and a set of two electron integrals. The basis set used
is usually not orthogonal i.e. the overlap matrix S has off diagonal elements but it
is possible to find a transformational matrix X that does form and orthogonal set

X†SX = 1. (2.64)

Once X has been found a new coefficient matrix C′ can be defined in terms of the
old coefficients C′ = X−1C and substituted into the Roothaan-Hall equations

FXC′ = SXC′ϵ (2.65)

(X†FX)C′ = (X†SX)C′ϵ (2.66)

23

24 2.2

A new Fock matrix can then be defined F′ = X†FX and so

F′C′ = C′ϵ (2.67)

These are called the transformed Roothaan-Hall equations which can be used iter-
atively to define new sets of C′ and orbital energies ϵ.

2.2.7.4 Self Consistent Field Method
It is now possible to fully define the Self Consistent Field process using the Roothaan-
Hall equations.

1. Define a system by its nuclear coordinates, atomic numbers and number of
electrons N and choose a basis set {ϕµ}.

2. Calculate the overlap matrix S and one- and two-electron integrals Hcore
µν and

(µν|σλ).

3. Diagonalise S to obtain X.

4. Guess the coefficients of the density matrix P.

5. Calculate matrix G and form the Fock matrix using Eq. (2.63).

6. Calculate the transformed Fock matrix using F′ = X†FX.

7. Diagonalise F′ to find C′ and ϵ.

8. Calculate new coefficients, C = XC′.

9. Form a new density matrix using Eq. (2.62).

10. Repeat the process from step 5 until convergence is achieved i.e. the newly
calculated density matrix is the same as P from the previous step (or within
a predetermined tolerance).

The initial guess for the density matrix P can be a zero matrix which would
neglect the two-electron component of the Fock matrix however this does not always
lead to convergence. There are of course a variety of different ways to make a better
initial guess such as using a superposition of atomic HF density matrices or atomic
potentials or the extended Hückle method where orbitals can be obtained from
diagonalising an effective one-particle Hamiltonian [59–61]. If a complete basis set
{ϕµ} is used then the expansion of the molecular orbitals would be exact and the
lowest variational energy, the Hartree Fock limit EHF , would be obtained. In reality
a finite basis will be used and the single Slater determinant wave function formed
by the occupied spin orbitals is the best approximation of the ground state.

24

25 2.2

Significantly, the motion of one electron can affect that of another electron.
However, though the mean field approximation this behaviour is not fully captured
in HF theory. Therefore, it is possible two electrons could occupy the same space
which is, of course, unphysical. Further, it is possible to construct configurations
of electrons that, though different, have the exact or nearly degenerate HOMO
and LUMO orbitals. By using a single determinant these configurations that could
contribute a similar weight to the system means the non-dynamic correlation is
excluded in the HF calculation. These contributions, though relatively small, can
be hugely important giving completely different chemistry. Thus, EHF is always an
upper bound to the true ground state energy.

2.2.8 Post-Hartree-Fock
It is necessary to extend the basic Hartree Fock theory to account for dynamic
electron correlation. In Many-Body Perturbation theory (MBPT) the electron cor-
relation is treated as a small perturbation to the ground state wave function. Møller-
Plesset theory, a form of Rayleigh Schrödinger perturbation theory, starts form the
eigenvalue problem for an electronic state, n [62].

Ĥ|Ψn⟩ = (Ĥ0 + V̂)|Ψn⟩ = En|Ψn⟩ (2.68)

where Ĥ0 is the sum of Fock operators from Eq. (2.40) and the perturbation is
defined as

V̂ = Ĥ− Ĥ0 = Ĥ−
N∑
i

f̂i. (2.69)

The wave function can be expanded as a power series

(Ĥ0 +λV̂)|Ψ(0)
n +λΨ(1)

n + . . .⟩ = (E(0)
n +λE(1)

n +λ2E(2)
n)|Ψ(0)

n +λΨ(1)
n + . . .⟩ (2.70)

with Ψ(0)
n = ΨHF making the reference determinant the Hartree Fock Slater deter-

minant. The different order perturbations can then be found

E(0)
n = ⟨Ψ(0)

n |Ĥ0|Ψ(0)
n ⟩ (2.71a)

E(1)
n = ⟨Ψ(0)

n |V̂ |Ψ(0)
n ⟩ (2.71b)

E(2)
n = ⟨Ψ(0)

n |V̂ |Ψ(1)
n ⟩. (2.71c)

The first order correction to the wave function is given by

|Ψ(1)
n ⟩ =

∑
m̸=n

⟨Ψ(0)
m |V̂ |Ψ(0)

n ⟩
E

(0)
n −E

(0)
m

|Ψ(0)
m ⟩ (2.72)

25

26 2.2

with all other eigenstates contributing. Therefore

E(2)
n =

∑
m̸=n

|⟨Ψ(0)
m |V̂ |Ψ(0)

n ⟩|
2

E
(0)
n −E

(0)
m

. (2.73)

Coupled cluster (CC) theory also starts with a reference wave function, |ψ0⟩
[63, 64]. This state is usually the HF determinant although other wave functions
can be used

|Ψ⟩ = eT̂ |ψ0⟩ = (1+ T̂
1
2 T̂

2 + 1
3! T̂

3)|ψ0⟩. (2.74)

The cluster operator T̂ can be written as a sum of operators that generate excitations
from a single, T̂1 to an N -tuple, T̂N for the reference wave function containing N

electrons

T̂ = T̂1 + T̂2 + . . .+ T̂N (2.75)

The energy of the system is calculated

E = ⟨ψ0|e−T̂HeT̂ |ψ0⟩ = ⟨ψ0|H̄|ψ0⟩ (2.76)

which has unknown amplitudes which can be found by solving

⟨ψ∗|H̄|ψ0⟩ = E⟨ψ∗|ψ0⟩ = 0. (2.77)

In practice the sum of the operator T̂ is truncated. Using just T̂1 and T̂2 gives
just single and double excitations and is called the coupled cluster singles-and-
doubles (CCSD) method. Higher order excitations can then be approximated, for
example T̂ 2

2 gives the quadruple excitation. CCSD can be extended to include
triple excitations (CCSDT) which is computationally much more expensive. To
remedy this the triple excitations can be calculated using a non-iterative many-body
perturbation theory, CCSD(T), the bracketed letter indicating which excitations
have been calculated using MBPT. CC methods have been applied to adsorption
and reaction energies on surfaces for atoms and molecules [65–69]. While also being
used to calculate excitation energies and a variety of spectra [70–75].

26

27 2.2

2.2.8.1 Full Configuration Interaction
Alternatively, a variational approach can be taken to account for electron correlation.
Configuration interaction (CI) constructs a wave function from a linear combination
of Slater determinants

ΨCI =
∑
m=0

cm|ψm⟩ = c0|ψ0⟩+
A∑

m=1
cm|ψm⟩+

B∑
m>A

cm|ψm⟩+ · · ·+

N !
K!(N−K)!∑
m>B

cm|ψm⟩

(2.78)

Each ψi in ΨCI has a different configuration of electrons with the maximum number
of configurations for a system with N electrons and K spin orbitals is N !

K!(N−K)! .
This is the full CI limit and will exactly solve the electronic Schrödinger equation.
Even for a small system the number of possible configurations in the full-CI space
can be extremely large so truncations are often necessary. To choose these trun-
cated sets a single HF Slater determinant is used as a reference configuration. Then
configurations containing a specified type of excitation can be generated, for exam-
ple CI singles-and-doubles (CISD) only includes single and double excitations of the
reference determinant. It is also possible to use more than one reference Slater deter-
minant which is called multi-reference CI (MRCI). The CI wave function coefficients
are then found by variational minimisation of the ground state energy

ECI = min
ΨCI

⟨ΨCI |Ĥ0|ΨCI⟩
⟨ΨCI |ΨCI⟩

(2.79)

2.2.8.2 Methods for Optimal Truncation of
Configuration Space

Using a full-CI basis set is appealing due to the exact solutions to the Schrödinger
equation that can be obtained but for most reasonable systems this is computa-
tionally expensive and potentially impossible. However, a significant number of
configurations will contribute a negligible amount to the system and can be ignored.
A key way to tackle this problem is by introducing an active space containing the
most important orbitals which can be occupied by a set of active electrons. Though,
intuitively, configurations with electrons in higher energy spin orbitals are less likely
to be of importance they cannot be systematically ruled out; by construction the
active space excludes configurations with these higher energy orbital occupations.
Hence, Quantum Monte-Carlo (QMC) methods have been developed to allow impor-
tant configurations with populated orbitals above the active space which smooths
the transition between the two regions. Green’s function MC and similarly Diffusion
MC propagate walkers in continuum space which removes the need for a one-electron

27

28 2.2

basis but are limited by not preserving the sign change needed to describe the anti-
symmetry of the fermionic wave function [76, 77]. Using a fixed node approximation
solves the antisymmetry problem but subsequent work has been limited [78].

A more practical and effective approach is to use a Monte-Carlo method to
select configurations which is achieved by a random walk in the manifold of Slater
determinants. Alavi and co-workers developed the Full Configuration-Interaction
Quantum Monte-Carlo (FCIQMC) method which uses a long-time propagation in
imaginary time with random walkers to stochastically describe the full CI wave
function [79, 80]. This takes the wave function ΨFCI

0 = ∑
iDi|Di⟩ and uses a coupled

linear first-order differential equation for the coefficients in terms of a K matrix,

−Ci
dτ

= (Kii−S)Ci+
∑
j ̸=i

KijCj . (2.80)

S is an energy shift parameter used to control the rate of population change. The
K matrix is defined by

Kij = ⟨Di|H|Dj⟩−EHF δij , (2.81)

which has positive diagonal elements. A set of "walkers" are then used to perform
the stochastic integration by projecting them through the Slater determinant space.
This process is controlled as such,

1. Spawn – For each walker on Di a coupled determinant Dj , that has the nor-
malised probability pgen(j|i), is selected and a child walker is attempted to be
spawned using,

ps(j|i) = − δτ |Kij |
pgen(j|i) . (2.82)

2. Death/cloning – Each parent walker is then removed with probability

pd(j) = δτ(Kii−S). (2.83)

3. Annihilate – All surviving walker pairs with opposite sign on the same deter-
minant are removed.

The coefficients are then proportional to the signed population of walkers on the
corresponding determinant Ci ∝ Ni. The simulation allows the shift parameter to
change until the coefficients are unchanging with time, so

∑
j

KijCj = SCi (2.84)

where S is the correlation energy of the ground state. The method evolves to the

28

29 2.2

Fermionic ground state with the annihilation step avoiding the fixed node approx-
imation [79]. The total number of walkers grows and then plateaus, the height
of which is used as a measure of the number of walkers needed to converge the
energy. Using FCIQMC full-CI energies have been recovered for computationally
expensive systems such as the neutral and cationic elements from Li to Mg [79, 81–
83]. The method has also been shown to effective at recovering the energy of N2 in
the cc-pVDZ basis and in cc-pVTZ and cc-pVQZ basis sets which is beyond what
is achievable with a regular full-CI calculation [80]. It has also been shown that
FCIQMC can find excited state energies with little additional computational cost
[24]. More recently FCIQMC has been applied to systems of bosons and also mixed
particle systems [84–86].

Monte Carlo Configuration Interaction (MCCI), developed by Greer, also utilises
a Monte-Carlo procedure to build a compact wave function of important configura-
tions [25, 87]. Unlike FCIQMC, configuration state functions (CSF) are used rather
than Slater determinants which take the form,

|ψ⟩ = AOS,MsΞ(R)Θ(σ) (2.85)

where A is an antisymmetrizer and OS,Ms is a spin projection operator. Ξ(R) and
Θ(σ) are primitive spatial and spin functions which are formed by making Hartree
products. Alternatively, two sets Aα and Bβ containing equal numbers of orbitals
can be used to construct CSFs. If the two sets have identical spatial orbitals then

|ψ⟩ = |Aα;Bβ⟩ (2.86)

without the need for spin projection. This is equivalent to a Slater determinant with
each spatial orbital doubly occupied. When Aα and Bβ do differ, the CSF has the
form,

|ψ⟩ = 1√
2

[|Aα;Bβ⟩+ |Bβ;Aα⟩]. (2.87)

The single particle orbitals are assumed to be orthogonal and so by the reasoning
discussed in section 2.2.4 if |ψA⟩ and |ψB⟩ differ by more than two orbitals the
Hamiltonian matrix element is zero. The CI wave function can be written in terms
of a reference function,

|ψ⟩ = (c0 +
∑
ij

hija
†
iaj +

∑
i<j

∑
k<l

a†
kâ

†
lWkljiaiâj + . . .)|ψ0⟩. (2.88)

Using a configuration A, single or double substitution gives a new state B so

HAB = ⟨ψA|Ĥ|ψb⟩ ̸= 0. (2.89)

29

30 2.3

MCCI works by taking a trial configuration and randomly generating a set of single
and double substitutions. The CI problem is then solved using the set of configu-
rations performing diagonalisation to find eigenvalues and eigenvectors. A selection
process then decides if the configurations should be kept or discarded. Configura-
tions are removed by either having a coefficient below a cut-off value or by calculating
the contribution a CSF has to an energy eigenvalue,

∆Ek = (E−HKK)c2k∑
A c

2
A− c2K

(2.90)

where cK is the coefficient of the CSF in question and HKK is the corresponding
Hamiltonian matrix element. This is the change in energy if the CSF is removed
from the CI expansion and all other coefficients are kept constant. This process is
repeated until the number of configurations stops increasing i.e. all the significant
configurations have been found or an energy criterion is reached.

MCCI was first applied to the single point energy of water and then the dissoci-
ation energy of water and HF [87, 88]. Significant work by Coe and Paterson et. al
continued the development of MCCI demonstrating it could generate potential en-
ergy curves, near chemical accuracy, for a range of molecules including N2 and CH4

[88]. Accuracy and convergence time, particularly at longer bond lengths, were im-
proved by introducing second-order perturbation theory and using natural orbitals
[89]. Natural orbitals are eigenfunctions of the first-order reduced density matrix
and converge better than HF molecular orbitals [90]. MCCI has also been used to
accurately simulate multipole moments [91]. Excited states have been computed fol-
lowing the inclusion of state averaging [92]. Both FCIQMC and MCCI shows good
agreement to the full-CI values when calculating ionisation energies with MCCI
needing a significantly smaller number of basis functions compared to the full-CI
space [91]. As these quantum MC methods are refined, the full-CI energies of larger
and more difficult systems can be approached [93].

2.3 Coherent States
In this section Coherent states are reviewed with specific attention to their appli-
cation to fermionic systems and electronic structure. Coherent states were first
introduced by Schrödinger as specific quantum states of the quantum harmonic os-
cillator when looking for solutions to the Schrödinger equation that satisfied the
correspondence principle. These Coherent states were minimal uncertainty wave
packets i.e. quantum solutions that most closely resembled classical behaviour [94].
However, despite being part of the genesis of quantum mechanics, research into
Coherent states was limited to condensed matter physics and particle physics [95–
98]. The active field of research properly began in 1963 with work by Glauber and

30

31 2.3

Sudarshan in the field of quantum optics, describing light quantum mechanically
[11, 99]. Glauber proposed in Ref. [12] that coherent states for the electromagnetic
field could be constructed using one of three definitions:

1. Coherent states |α⟩ are eigenstates of the harmonic-oscillator annihilation op-
erator,

a|α⟩ = α|α⟩ (2.91)

where α is a complex number.

2. Application of a displacement operator,

D(α) = eαa
†−α∗a, (2.92)

on the harmonic vacuum state obtains a coherent state

|α⟩ =D(α)|0⟩. (2.93)

3. Coherent states are quantum states with a minimum uncertainty relationship,

(∆p)2(∆q)2 = (1/2)2, (2.94)

defining position and momentum operators as q̂ = 1√
2(a+a†) and p̂= 1

i
√

2(a−
a†) respectively. Then

(∆f)2 = ⟨α|(f̂ −⟨f̂⟩)2|α⟩⟨f̂⟩) = ⟨α|f̂ |α⟩ (2.95)

Although it should be noted that work by Klauder showed that coherent states could
be expressed as eigenvectors of the annihilation operator that form an overcomplete
set [100]. Glauber’s work was driven by finding the complete factorisation of the
electromagnetic field correlation functions. However, not all systems can be de-
scribed by the harmonic oscillators used by Glauber, which motivates a generalised
definition of coherent states [19]. In the 1970s work by Perelomov and Gilmore
developed the mathematical structure of coherent states based on the theory of Lie
groups and set a general definition for coherent states based on Glauber’s second
definition using the vacuum state [21, 22].

Firstly, I will briefly discuss why generalisation of the Glauber’s first and third
coherent state definitions were found to not be particularly useful and did not be-
come the standard. To generalise Glauber’s first definition one would construct
coherent states from eigenstates of the annihilation operator. This method was
adopted by Barut and Girardello giving a non-Hermitian eigenvalue problem with
complex eigenvalues [101]. Gilmore showed that this definition would mean coherent

31

32 2.3

states could not be constructed for Hilbert spaces of finite dimension [102]. Further,
the coherent states defined in this way do not resemble physical states unless the
commutator of the annihilation operator and the creation operator commutator are
multiples of the identity operator. This generally limits the application of this def-
inition to the electromagnetic field essentially Glauber’s initial definition [19]. The
coherent states constructed by the minimum uncertainty definition states are not
unique as can be seen in Fig. 2.1. However, this definition was still generalised to
produce "intelligent" states by Aragone and co-workers with further work by Nieto
and co-workers Aragone [103–105]. Beyond the limitation of not producing unique
states the generalised definition only allows for coherent states to be constructed us-
ing the standard photon creation and annihilation operators which leads to limited
applications [19].

Figure 2.1: Plot showing that the minimum uncertainty relationship (∆p)2(∆q)2 =
(1/2)2 does not produce unique coherent states. The circle has ∆p = ∆q = 1/2 whereas
the ellipse has ∆p = 1/4, ∆q = 1. Both the circle and the ellipse give the same minimum
uncertainty but clearly the different shapes demonstrate how the coherent states gener-
ated in this manner are not necessarily unique.

32

33 2.3

2.3.1 General Definition of Coherent States
The general coherent state definition was developed by Gilmore and Perelomov[21,
102, 106, 107]. An arbitrary quantum-dynamic system can be defined so its Hamilto-
nian and transition operators, {A}, can be expressed in terms of the set of operators,
{Ti},

H =H(Ti), (2.96a)

A= A(Ti). (2.96b)

{Ti} ≡ g is a complete set of operators which means the commutator of any two
operators in the set is also a member of the set,

∀Ti,Tj ∈ g, [Ti,Tj] ∈ g. (2.97)

The Hamiltonian (in the mean-field approximation) can be classified as taking either
a linear or quadratic form,

H =
∑
i

diTi (2.98)

H =
∑
i

ciTi+
∑
i,j

cijTiTj . (2.99)

Note how the second quantisation Hamiltonian in Eq. (2.4.5) is of the form in
Eq. (2.99) with the set of operators {a†

iaj ,a
†
ia

†
j ,aiaj}. A Lie group, G, with its

accompanying algebra g is spanned by the translation operators

[Ti,Tj] =
∑
k=1

cki,jTk, (2.100)

the structure coefficients are produced in a similar way as in Eq. (A.12). The
Hamiltonian defines a Hilbert space, H which can be written as a unitary irreducible
representation of the group G. U(H Λ) is the set unitary operations on H Λ found
by the mapping

U :G→ U(H Λ) (2.101)

which satisfies the condition U(g)U(a) = U(ga) ∀g,a ∈ G. To be irreducible, a
closed subspace, κ, of H Λ, is defined

U(g) ⊆ κ (2.102)

33

34 2.3

which if defined for all g ∈ G then κ = H Λ, and ΓΛ is used to represent the irre-
ducible set U(H Λ). Finally, a reference state within the Hilbert space is defined as
normalising to unity, ⟨Φ0|Φ0⟩ = 1.

A subgroup, H, of G has elements h that leave the reference state invariant up
to a phase factor

h|Φ0⟩ = |Φ0⟩eiϕ(h) (2.103)

which is also called the stability group. Using the reasoning given in section A.4 the
coset space is defined with elements Ω ∈G/H, which have the property g = Ωh. A
coherent state can now be defined,

g|Φ0⟩ = Ωh|Φ0⟩ = Ω|Φ0⟩eiϕ(h) (2.104)

which can be written

|Λ,Ω⟩ = Ω|Φ0⟩ (2.105)

This representation preserves the algebra and topological properties of the coset
space G/H which in itself has been constructed to be homogeneous to the group
G [19]. This is in line with the definition given in Ref. [20] for a coherent state
system being "an orbit for an irreducible group action in a Hilbert space" – the orbit
being the irreducible representation of the Lie Group. Gilmore and Perelomov set
different conditions for the choice of group, Hilbert space and reference state which
are discussed further in Ref. [19].

2.3.2 Canonical Coherent States of the
Harmonic Oscillator

The Hamiltonian for the quantum harmonic oscillator is

Ĥ = p̂2

2m + 1
2mω

2q̂2 (2.106)

where ω is the angular frequency of the oscillator and q̂, p̂ are the position and mo-
mentum operators respectively. The creation and annihilation operators are defined,

a† =
√
mω

2ℏ (q̂− i

mω
p̂) (2.107)

a=
√
mω

2ℏ (q̂+ i

mω
p̂). (2.108)

34

35 2.3

The position and momentum operators can then be defined in terms of a and a†,

q̂ =
√

ℏ
2mω (a† +a) (2.109)

p̂= i

√
ℏmω

2 (a† −a). (2.110)

The canonical commutation relation is [q̂, p̂] = iℏ which can be used along with the
definition of the number operator N̂ = a†a to define the set of commutation relations,

[N̂ ,a†] = a†, [N̂ ,a] = −a, [a,a†] = I. (2.111)

This means the Hamiltonian can be written as

Ĥ = ℏω(N̂ + 1
2). (2.112)

It is now possible to start defining coherent states using the general definition. The
set of operators {N̂ ,a†,a,I} span the Lie algebra h4 which is used by the Heisenberg-
Weyl (Lie) group H4 [108]. The Hilbert space for the Lie group, H4 is spanned by
the number eigenstates,

N̂ |n⟩ = n|n⟩ (2.113)

|n⟩ = (a†)n√
n!

|0⟩ (2.114)

where |0⟩ is the vacuum state. The Hamiltonian acting on |n⟩ gives the energy
eigenstates,

Ĥ|n⟩ = ℏω(n+ 1
2)|n⟩ (2.115)

which makes the vacuum state, |0⟩ also the ground state and the reference state used
to generate the coherent states. The stability group for H4 is U(1) ⊗U(1). U(1) is
the unitary group that consists of all complex numbers with absolute value 1

U(1) = {z ∈ C : |z| = 1}. (2.116)

The stability group is spanned by {N̂ ,I} and h ∈ U(1)⊗U(1) is defined

h= ei(φII+φN̂ N̂) (2.117)

with φI ,φN̂ arbitrary coefficients this leaves the reference state invariant up to a
phase factor,

h|0⟩ = |0⟩eiφI . (2.118)

35

36 2.3

The coset space H4/U(1)⊗U(1) with elements Ω

g = Ωh=Dh (2.119)

with

D(α) = eαa
†−α∗a (2.120)

where α is an arbitrary complex number. Thus, a coherent state, |α⟩ can be defined

g|0⟩ =D(α)h|0⟩ =D(α)|0⟩eiφI = |α⟩eiφI . (2.121)

It is useful to state the Baker-Campbell-Hausdorff (BCH) identity which holds when
the commutator [A,B] commutes with both A and B

eA+B = eAeBe−(1/2)[A,B] (2.122)

The overlap between two coherent states is

⟨α|β′⟩ = exp(α∗β− 1
2(α∗α+β∗β)) (2.123)

and the identity in terms of coherent states is given by

I = 1
π

∫
d2α|α⟩⟨α| (2.124)

as the coherent states are over-complete [26]. The displacement operator D(α) can
be reformulated using the BCH identity

eαa
†−α∗a = eα

∗α/2e−α∗aeαa
†

= e−α∗α/2eαa
†
e−α∗a. (2.125)

Using this result the coherent state can be expanded in terms of number eigenstates

|α⟩ =D(α)|0⟩ = e−α∗α/2
∞∑
0

(αa†)n
n! |0⟩ = e−α∗α/2

∞∑
0

αn√
n!

|n⟩ (2.126)

which implies

|α⟩ = e
−|α|2

2 +αa†
|0⟩ (2.127)

and

⟨α|n⟩ = (α∗)n√
n!

e−α∗α/2 (2.128)

36

37 2.3

the arbitrary phase factor has been omitted in these equations. An arbitrary state
can also be expanded in terms of the number eigenstates,

|Ψ⟩ =
∑
n
cn|n⟩ =

∑
N

cn
(a†)n
n! |0⟩ (2.129)

the over-completeness relation can then be used,

|Ψ⟩ = I|ψ⟩ = 1
π

∫
d2α|α⟩⟨α|Ψ⟩ = 1

π

∫
d2α|α⟩

∑
N

cn
(α∗)n√
n!

. (2.130)

The 1D harmonic oscillator Hamiltonian is of quadratic form, as in Eq. (2.99), so
all Hamiltonians of the same form will have coherent states generated in the same
way. In fact, using this general method can yield coherent states analogous to those
detailed in the Coupled Coherent States method [109]. The general Hamiltonian is
denoted Ĥord(a†,a) as the powers of a† precede those of the annihilation operator.
Using an arbitrary coordinate parameter, γ, the creation and annihilation operators
are then defined

a=
√
γ

2 q̂+ i

ℏ

√
1

2γ p̂, a† =
√
γ

2 q̂− i

ℏ

√
1

2γ p̂. (2.131)

The so-called |z⟩ notation is used where z is a complex number [26, 110, 111] which
is equivalent to α in the previous notation

z = α =
√
γ

2 q+ i

ℏ

√
1

2γ p, z∗ = α∗ =
√
γ

2 q− i

ℏ

√
1

2γ p. (2.132)

Hence, using Eq. (2.121) derived from the general method, a canonical Gaussian
coherent state of the harmonic oscillator can be defined,

D(z)|0⟩ = eza
†−z∗a|0⟩ = e

−|α|2
2 +αa†

|0⟩ = |zHO⟩. (2.133)

The coherent state can then be defined in terms of x,

⟨x|zHO⟩ = ⟨x|e
−|z|2

2 +za†
|0⟩

= 4
√
γ

π
exp(−γ

2 (x− q)2 + i

ℏ
p(x− q)+ ipq

2ℏ)
(2.134)

by using the reasoning in Ref. [112] which demonstrates the equivalence of the CCS
coherent states and those derived using the general method [109]. This is similar to
the CCS method in general terms as in Ref. [113].

37

38 2.3

2.3.3 SU(2) Coherent States
The 1D harmonic oscillator Hamiltonian can now be generalised to the multi-
dimensional case with an external field, γ, added

Ĥ =
∑
i

ℏωka†
iai+ ϵσ

(i)
0 +

∑
i,k

γ[σ
(i)
+√
N
ak + σ

(i)
−√
N
a†
k]. (2.135)

This can be simplified to just look at the two-level system by approximating the
field as classical,

Ĥ =
∑
i

∆Eσ(i)
0 +γσ

(i)
+ +γ∗σ

(i)
− (2.136)

where {σ(i)
0 ,σ

(i)
+ ,σ

(i)
− } are spin operators with the commutation relation

[σ(i)
0 ,σ

(j)
±] = σ

(i)
± δij . (2.137)

Many particle operators can then be defined

J0 =
∑
i

σ
(i)
0 , J± =

∑
i

σ
(j)
± (2.138)

which in turn have the commutation relations,

[J0,J±] = ±J±, [J+,J−] = 2J0. (2.139)

The Hamiltonian can be rewritten in terms of these new operators,

Ĥ = ∆EJ0 +γJ+ +γ∗J− (2.140)

which is a two-level system, with dynamical group SU(2). The general process can
then be applied by first defining the Hilbert space {|jm⟩,m= −j,−j+1, . . . , j−1, j}
where j is an integer for bosons or half integer for fermions. These are the Dicke
states [114],

|jm⟩ =

√√√√ (2j)!
(2j)!(j−m)!(J+)j+m|j− j⟩ (2.141)

and the action of the operators is defined,

J2|jm⟩ = j(j+1)|jm⟩, (2.142)

j0|jm⟩ =m|jm⟩. (2.143)

38

39 2.3

The reference state is the lowest weight state, |j− j⟩,

Ĥ|j− j⟩ = ∆EJ0|j− j⟩ = −∆Ej|j− j⟩ (2.144)

so Emin = −∆Ej. The stability group for SU(2) is U(1) which has elements

h= exp(iαJ0) (2.145)

which leaves the reference state invariant up to a phase factor,

h|j− j⟩ = |j− j⟩e−iαj . (2.146)

The coset space SU(2)/U(1) with elements Ω can then be defined in the usual way

Ω(ξ) = exp(ξJ+ − ξ∗J−). (2.147)

It is well known that SU(2)/U(1) has the geometry of a two-dimensional sphere
which allows the operators to be defined as matrices

J+ →

0 1
0 0

 , J− →

0 0
1 0

 J0 →

1/2 0
0 −1/2

 . (2.148)

Ω can then be defined

Ω(ξ) → Ω = exp
 0 ξ

−ξ∗ 0

 =
 cos|ξ| ξ

|ξ|sin|ξ|
− ξ∗

|ξ|sin|ξ| cos|ξ|

 . (2.149)

ξ can then be rewritten

ξ = θ

2e
−iφ 0 ≤ θ ≤ π,0 ≤ φ≤ 2π. (2.150)

Finally, the coherent states can be generated,

g|j− j⟩ = Ω(ξ)h|j− j⟩ = |j,ξ⟩e−iαj (2.151)

which corresponds to a point on a three-dimensional sphere i.e. a point on its bound-
ary which is a two-dimensional surface. There are a number of different expressions
that can be generated for D(z) for example,

D(z) = exp(ξJ+ − ξ∗J−)

= exp(τJ+)exp[ln(1+ |τ |2)J0] exp(−τ∗J−)

= exp(−τ∗J−)exp[−ln(1+ |τ |2)J0] exp(τJ+)

(2.152)

39

40 2.3

where τ = tan(θ2)eiφ is the "normal" form [19, 107]. Using the normal form and
Eq. (2.141) a coherent state can be written as,

|z⟩ =D(z)|j− j⟩ = (1+ |τ |2)−j exp(τJ+)|j− j⟩

= (1+ |τ |2)−j
∞∑
0

(τJ+)n
n! |j− j⟩

=
+j∑

m=−j

√√√√ (2j)!
(2j)!(j−m)!(cos(θ/2))j−m(sin(θ/2))j+me−i(j+m)φ|jm⟩

. (2.153)

Thus an SU(2) coherent state is formed out of the angular momentum coherent
states. More explicitly, for the case j = 1/2, a coherent state can be defined by
Eq. (2.153) to give,

|z 1
2
⟩ = cos(θ/2)|12

−1
2 ⟩+ sin(θ/2)e−iφ|12

1
2⟩. (2.154)

Alternatively, the coherent states can be derived explicitly from the reference state

|Φ0⟩ = |j− j⟩ =
1

0

 . (2.155)

The elements of the coset space are given by

Ω =
 cos(θ/2) −eiφsin(θ/2)
e−iφsin(θ/2) cos(θ/2)

 . (2.156)

The arbitrary phase can be eliminated by setting e−iαj = 1 because only the differ-
ence between the phases is significant [115]. Using Eq. (2.105), an SU(2) coherent
state can be generated

|z⟩ = Ω|Φ0⟩ =
 cos(θ/2)
eiφsin(θ/2)

 (2.157)

which can be more explicitly written as

|ζSU(2)(θ,φ)⟩ = cos(θ)|1⟩+sin(θ)eiφ|0⟩. (2.158)

The differing sign in the exponential between Eq. (2.154) and Eq. (2.158) is arbitrary
and can be rectified by using different parametrisations. The coherent states gener-
ated in his way are analogous to those used in the multi-configurational Ehrenfest
method which are used to describe two different quantum states or a single mixed
occupied/unoccupied state in terms of the angular momentum states [9]. In the
case of Ab initio MCE the coherent states are still made of the angular momentum
states but generated using standard electronic structure theory to describe a real

40

41 2.3

system [116]. Further in Ref. [33] it was shown how the Hamiltonian and equations
of motion could be derived for MCE in terms of Generalised Coherent States (GCS);
could be used in the MCE method; they were equivalent to a single Ehrenfest tra-
jectory. Significantly, it has been demonstrated that the general definition of an
SU(2) coherent can be generalised to produce SU(n) coherent states [115, 117–119].
Using states generated on an equal footing, regardless of dimension, makes it much
simpler to choose an appropriate size of spin coherent state for a specific system and
so broadens a methods application.

The SU(2) coherent states are often referred to as spin coherent states [120]. As
such they can be used to describe a single fermion system. The system Hamiltonian
is dependent on only a single pair of creation and annihilation operators. In this
case the SU(2) group is generated by the set of operators [100],

[a†,a] = 2(a†a− 1
2), [a†a− 1

2 ,a] = −a, [a†a− 1
2 ,a

†] = a†. (2.159)

These operators are one-to-one with the angular momentum operators for spin 1
2 and

a coherent state can be generated in an analogous way to Eq. (2.154). In CCS an
N -dimensional coherent state is constructed as product of 1D harmonic oscillators,

|z⟩ =
∏
a

|z(a)
HO⟩. (2.160)

But like Hartree product in Eq. (2.11) a simple product of spin half coherent states,
|z 1

2
⟩, does not preserve antisymmetry when constructing a multi-electron system.

In the following section two standard solutions to construct multi-body fermionic
coherent states are presented which then leads to the Zombie states method.

2.3.4 Standard Fermionic Coherent States
In this section two ways to construct many-fermionic coherent states are considered.
Firstly, the general method using dynamical groups is used to generate fermionic
coherent states. An alternative method that constructs coherent states using Grass-
mann algebra is also introduced. The basic idea of Grassmann algebra is introduced
but more mathematical detail is given in Appendix A. The equations and their no-
tation have been adapted from Ref. [20] in particular which has been supplemented
by Refs. [18, 121, 122].

41

42 2.3

2.3.4.1 General Many-Fermion Coherent States
Balian and Brezin showed that fermionic coherent states of an even degree can be
generally defined by first identifying the dynamical group G = SO(2n) [123]. The
coset space G/H = SO(2n)/U(n) can be used to generate coherent states of an
even degree, over a Hilbert space of dimension n [124, 125]. The corresponding Lie
algebra g = so(2n) is spanned by the operators

a†
iaj − 1

2δij ,1 ≤ i, j ≤ r

aiaj ,1 ≤ i ̸= j ≤ r

a†
ia

†
j ,1 ≤ i ̸= j ≤ r

(2.161)

and

[a†
iaj − 1

2δij ,a
†
kal−

1
2δkl] = δjk(a†

ial−
1
2δil)

− δil(a†
kaj − 1

2δjk)
(2.162a)

[a†
iaj − 1

2δij ,a
†
ka

†
l] = δjka

†
ia

†
l − δjla

†
ia

†
k (2.162b)

[aiaj ,a†
ia

†
j] = δik(a†

l aj − 1
2δlj)+ δlj(a†

kai−
1
2δki)

− δli(a†
kaj − 1

2δkj)− δki(a†
l ai−

1
2δli)

. (2.162c)

are their commutation relations [19]. The basis sets for this space are |χ1,χ2, . . . ,χNorb
⟩

where χi = 0,1 then Nel = ∑Norb
i=1 χi which is the number of occupied orbitals [126].

An even number of electrons allows coherent states to be generated from the vacuum
whereas an odd number of electrons requires a different reference state,

|0⟩ = |0,0, . . . ,0⟩ for Nel even (2.163)

|1⟩ = |1,0, . . . ,0⟩ for Nel odd. (2.164)

The regular procedure to define a coherent state can then be carried out by first
defining elements of the coset space. For simplicity just the even Nel case is con-
sidering, although an analogous process for Nel odd is possible. It was shown that
SO(2n)/U(n) is isomorphic to Spin(2n)/U(n)

Ω = exp(
∑

1≤j ̸=k≤n
(ηjka†

ja
†
k −η∗

jkakaj)). (2.165)

where ηjk is a complex number [124]. The exterior algebra of the coset space has
an anticommuting structure thus Ω can then be used to generate a coherent state
|zSO(2n)⟩ = Ω|0⟩ with the Pauli exclusion principle preserved. A one-to-one matrix
representation of Ω can also be constructed [124, 127]. η is an n×n antisymmetric

42

43 2.3

complex matrix which represents the operator

∑
1≤j ̸=k≤n

ηjka
†
ja

†
k. (2.166)

This can be constructed by,

a†
ia

†
l ↔ Ei,n+l−El,n+i (2.167)

aial ↔ En+i,l−En+l,i (2.168)

for 1 ≤ i, l ≤ n and Ei,l is a 2n×2n matrix with +1 in column i and row l and zeros
everywhere else. Ω is then equivalent to,

Ω →

√
In− ξξ† ξ

−ξ†
√
In− ξ†ξ

 (2.169)

In is an n×n identity matrix and

ξ = η
sin(

√
η†η)√

η†η
. (2.170)

This matrix can then be used to generate fermionic coherent states. A similar process
is available for the SO(2n+ 1) Lie group which describes fermionic states with an
even number of fermions distributed across an odd number of orbitals [19]. There
is however little literature on fermionic coherent states of odd degree or considering
the full Fock space i.e. the infinite dimensional case [128].

2.3.4.2 Grassmann Many-Fermion Coherent States
The use of Grassmann generators is now considered as a method for defining fermionic
coherent states. An N dimensional system can be described by the usual creation
and annihilation operators with the expected anticommutation relations. A Grass-
mann algebra denoted GC

N is also defined. Grassmann generators are complex num-
bers that have an anticommuting property with other Grassmann generators but
commute with ordinary complex numbers. Thus,

ξiξj = −ξjξi, ξiα = αξi ∀ξi, ξj ∈ GC
N , ∀α ∈ C, (2.171)

which for completeness gives the anticommutation relations,

{ξi, ξj} = 0, {ξ∗
i , ξj} = 0, {ξ∗

i , ξ
∗
j } = 0. (2.172)

43

44 2.3

Consequently, the square of a Grassmann generator vanishes, (ξi)2 = 0. GC
N contains

2N Grassmann generators as each has a conjugate, (ξi)† = ξ∗
i . It is also defined that

the Grassmann generators anticommute with the fermionic creation and annihilation
operators (and commute with the bosonic)

{ξi,aj} = 0, {ξi,a†
j} = 0. (2.173)

Further the Hermitian conjugate reverses the order of the operators and Grassmann
generators,

(aiξja†
kξ

∗
l)† = ξlakξ

∗
j a

†
i . (2.174)

As in Ref. [18] a unitary displacement operator can be defined for the Grassmann
generators, GC

N , with ξ used as shorthand,

D(ξ) = exp(
∑
i

a†
iξi− ξ∗

i ai)

=
∏
i

exp(a†
iξi− ξ∗

i ai)

=
∏
i

[1+a†
iξi− ξ∗

i ai+(a†
iai−

1
2)ξ∗

i ξi], ξ = (ξ1, . . . , ξN)

(2.175)

which is the multi-particle analogue to the displacement operator from Eq. (2.92)
although with elements of Grassmann algebra rather than the complex numbers
Glauber originally used [12]. The product is introduced in Eq. (2.175) because of
the commutation relations,

αjaj = −ajαj , ∀αj = ξj , ξ
∗
j (2.176a)

[a†
jξj , ξ

∗
kak] = ξjξ

∗
kδjk (2.176b)

[aj ,a†
kξk] = ξkδjk (2.176c)

[aj ,akξk] = 0. (2.176d)

The translation property of these operators is

D†(ξ)aiD(ξ) = ai+ ξi (2.177a)

D†(ξ)a†
iD(ξ) = a†

i + ξ∗
i (2.177b)

44

45 2.3

Using the BCH identity the displacement operator can be written in either nor-
mally or antinormally ordered form

DNormal(ξ) =D(ξ)exp(1
2

∑
i

ξ∗
i ξi) =D(ξ)e

ξ∗·ξ
2 (2.178a)

DAntinormal(ξ) =D(ξ)exp(−1
2

∑
i

ξ∗
i ξi) =D(ξ)e

−ξ∗·ξ
2 . (2.178b)

with the notation ∑
i ξ

∗
i ξi = ξ∗ ·ξ used. Hence, a coherent state is defined as

ψξ =D(ξ)|0⟩ = |ξ⟩ (2.179)

where ξ = (ξ1, . . . , ξN) is a set of Grassmann generators with each ξj corresponding to
a spin orbital. Like in the second quantisation representation of Slater determinants
the fermionic coherent states are constructed from the vacuum state |0⟩. Using
Eq. (2.175) a coherent state can be written in the form

|ξ⟩ =D(ξ)|0⟩ =
∏
i

[1+a†
iξi− ξ∗

i ai+(a†
iai−

1
2)ξ∗

i ξi]|0⟩

=
∏
i

(1+a†
iξi−

1
2ξ

∗
i ξi)|0⟩

= exp(
∑
i

(a†
iξi−

1
2ξ

∗
i ξi)|0⟩

(2.180)

Further, using the translation property, defined in Eq. (2.177a), the action of anni-
hilation operator,

ai|ξ⟩ = aiD(ξ)|0⟩

=D(ξ)D†(ξ)aiD(ξ)|0⟩

=D(ξ)(ai+ ξi)|0⟩ = ξiD(ξ)|0⟩

= ξi|ξ⟩

(2.181)

shows that the fermionic coherent states are eigenstates of the annihilation operator
– Glauber’s first definition of a coherent state. Further, the full state can be defined
as |1⟩ = ∏

ia
†
i |0⟩ and Eq. (2.177b) can be used to show that |ξ⟩′ is an eigenstate of

the creation operators

a†
i |ξ⟩′ = a†

iD(ξ)|1⟩

=D(ξ)D†(ξ)a†
iD(ξ)|1⟩

=D(ξ)(a†
i + ξ∗

i)|1⟩ = ξ†
iD(ξ)|1⟩

= ξi|ξ⟩′.

(2.182)

45

46 2.3

Thus |ξ⟩′ can be defined explicitly,

|ξ⟩′ =
∏
i

(1− ξ∗
i ai+

1
2ξ

∗
i ξi)|1⟩. (2.183)

The inner product of two fermionic coherent states,|ξ⟩ and |γ⟩ constructed using
the sets ξ and γ of Grassmann generators respectively,

⟨ξ|γ⟩ = exp
∑
i

(ξ∗
i γi−1/2(ξ∗

i ξi+γ∗
i γi) = exp(ξ∗ ·ξ−1/2(ξ∗ξ+γ∗ ·γ). (2.184)

Using this the following relation is found,

⟨ξ|γ⟩⟨γ|ξ⟩ = exp
[
−

∑
i

(ξ∗
i −γ∗

i)(ξi−γi)
]

=
∏
i

[1− (ξ∗
i −γ∗

i)(ξi−γi)] . (2.185)

In the second quantisation approach a Slater determinant with N electrons can
be built from the vacuum state using N creation operators which exist in an N -
dimensional Fock space labelled H N

F . For the fermionic coherent state analogue, it
is also necessary to create an N -dimensional space, H N , to contain the state. This
is a subspace of G2N constructed using holomorphic functions i.e. GC

N which gives
it the following properties,

ψ ∈ H N ⇒ (2.186)
∂

∂ξ∗
j

ψ = 0, ∀ 1 ≤ j ≤N. (2.187)

H N has the basis {ξϵ, ϵ ∈ E[N]}, with E[N] being the indexing set as previously
defined. An unambiguous description of the specific fermionic state is given by an
ordered set of creation operators acting on the vacuum state. The ordered set of
creation operators gives a configuration that can be written in a position basis and
so it is now possible to construct a multi-electron fermionic coherent state that is
an equivalent representation to a Slater determinant constructed from the same set
of creation operators. This can be summarised as being a map from the Fock space
to the H N a Hilbert space,

fψ : H N
F 7→ H Nf(|ψ(r1, r2, . . . , rN)⟩) = ψ(ξ1)ψ(ξ2) . . .ψ(ξN) = ψ(ξ) (2.188)

where |ψ⟩ is an arbitrary vector in the Fock space its electronic configuration de-
scribed by a position vector. fψ is a one-to-one mapping from the position basis to
the Grassmann generator products. A fermionic state can then be specified using the

46

47 2.3

fermionic coherent state definition and the known action of the creation operator,

|ψ⟩ =
∑

ϵ∈E[N]
cϵ(ψ)a†

ϵ|0⟩ (2.189)

using this definition and Eq. (2.180) a fermionic coherent state with a specified set
of occupied orbitals is represented by,

ψ(ξ) = ⟨ξ|ψ⟩ = e
−ξ∗·ξ

2
∑

ϵ∈E[N]
cϵ(ψ)ξ∗ϵ = e

−ξ∗·ξ
2

∑
ϵ∈E[N]

ψϵ (2.190)

Thus, a fermionic coherent state can be constructed from the vacuum state and
is also shown to be equivalent to the Slater determinant representation. H N is a
Hilbert space for the scalar product,

⟨ψ|φ⟩ =
∫
eξ

∗
eξψ∗(ξ)φ(ξ)dξdξ∗ (2.191)

which makes H N a Hilbert space with 2N dimensions over C and is now isomorphic
to the Fock space H N

F . The creation and annihilation operators can then be defined

(a†
jψ)(ξ) = ξjψ(ξ) (2.192a)

ajψ(ξ) = ∂

∂ξj
ψ(ξ). (2.192b)

Operators in in the Fock space can also be written as numbers in the G2N space.
A second set of Grassmann generators {γ,γ∗} which have the same properties as
{ξ,ξ∗} are defined. Then an operator Â acting on a fermionic coherent state is,

Âψ(ξ) =
∫
KA(ξ,γ∗)ψ(ξ)eγ

∗·γdγdγ∗,∀ψ ∈ H N . (2.193)

KA ∈ C[ξ,γ∗] is the so-called integral kernel that can be computed

KA(ξ,γ∗) =
∑

ϵ,ϵ′∈E[N]
⟨ψϵ′|Â|ψϵ⟩ψϵ′(ξ)ψϵ(γ)∗ (2.194)

the sums are over the indexing sets and so ψϵ(γ) = f(|ψϵ⟩). Which gives the result
that all linear operators have a unique decomposition

Â=
∑

ϵ,ϵ′∈E[N]
Aϵϵ′a

†ϵ′aϵ (2.195)

where Aϵϵ′ ∈ C.
For a single mode a complete set of operators are formed by a, a†, a†a− 1/2

and the identity. Each operator can be written as an integral over the displacement

47

48 2.4

operators,
∫
dξ∗dξ(ξ∗ξ)D((ξ)) =

∫
dξ∗dξξ∗ξ[1+a†ξ− ξ∗a+(a†a− 1

2)ξ∗ξ] = I (2.196)∫
dξ∗dξ(ξ)D((ξ)) =

∫
dξ∗dξ(ξ)[1+a†ξ− ξ∗a+(a†a− 1

2)ξ∗ξ] = a (2.197)∫
dξ∗dξ(−ξ∗)D((ξ)) =

∫
dξ∗dξ(−ξ∗)[1+a†ξ− ξ∗a+(a†a− 1

2)ξ∗ξ] = a† (2.198)∫
dξ∗dξD((ξ)) =

∫
dξ∗dξ[1+a†ξ− ξ∗a+(a†a− 1

2)ξ∗ξ] = a†a− 1
2 . (2.199)

Thus, the displacement operators form a complete set of operators for that mode.
Which is the same set of operators as in that generate an SU(2) coherent state for
single fermion. This can be easily generalised for the multimode case to give the set
of operators,

{aiaj ,a†
ia

†
j ,a

†
iaj − 1

2δij} (2.200)

defined for 1 ≤ i, j ≤N and form a complete set for all modes. These are the same set
of operators in Eq. (2.161) that generate the SO(2n) Lie group. In fact, it is possible
to project a set of 2N Grassmann generators on to a Lie algebra of so(4n), half the
generators being even and the other odd [129]. Thus, the Grassmann and general
definition of fermionic coherent states ensures that any state that is eigenstate of
the number operator must remain as such.

2.4 Zombie states
The two standard ways of generating fermionic coherent states discussed, use the
natural anticommuting properties of either the SO(2n) Lie or Grassmann genera-
tors to ensure the correct antisymmetry of the fermionic state. Both constructions
also create coherent states that are eigenstates of the number operator which is
strictly conserved. It has also been shown how a single fermion can be described
using an SU(2) coherent state that is a superposition of the two spin states of the
fermion. The Zombie states method takes a different approach describing a single
fermion state as an SU(2) coherent state of a two-level system which is defined as
a superposition of the occupied and unoccupied states. This can then be extended
to describe a multi-fermion state.

The Zombie state method will be formalised showing how action of ZS creation
and annihilation operators can be used to compute the second quantisation Hamil-
tonian [9]. Further, it will be demonstrated that Zombie states can be constructed
from a vacuum state [23]. Zombie states method will then be constructed using
analogous apparatus to the general coherent states method. This then allows direct
comparison between the construction of general fermionic coherent states, Grass-

48

49 2.4

mann algebra coherent states and Zombie states. Note that due to the introduction
of Zombie state coefficients, creation and annihilation operators are represented as
both b†i and bi where necessary to avoid confusion and keep the notation consistent
with previously published work.

2.4.1 Construction
The ith spin orbital of a Zombie state is given as

|ζ(a1i,a0i)⟩ = a1i|1i⟩+a0i|0i⟩ (2.201)

This is a coherent state consisting of antisymmetrized superpositions of "dead" and
"alive" electronic states rather than the two spin states of an electron [9]. |1i⟩
corresponds to their being an electron occupying spin orbital i and |0i⟩ to the ith spin
orbital being empty. In a similar way to Eq. (2.16) an N -particle Slater determinant
can be constructed from one-electron Zombie states

|ζ⟩ = |ζ1ζ2 . . . ζN ⟩ (2.202)

which is described by 2N coefficients

|ζ⟩ =
a11 a12 . . . a1(i−1) a1i a1(i+1) . . . a1N

a01 a02 . . . a0(i−1) a0i a0(i+1) . . . a0N

 . (2.203)

Note that in amii, mi = 0 refers to the ith spin orbital being ‘dead’ (unoccupied)
and mi = 1 to the ith spin orbital being ‘alive’ (occupied), and i refers to the spin
orbital number – this is the same notation used in Refs. [9, 23]. As detailed in Ref.
[130] and shown in Eq. (2.16) a given electronic occupancy can be written as an
antisymmetrised Slater determinant which is equivalent to Eq. (2.213). This can be
equivalently stated using second quantisation notation

|φ⟩ =
∏
k occ

b̂†k|0⟩ (2.204)

where |0⟩ is the vacuum state, ensuring the creation operators are applied in the
reverse order they appear in the Slater determinant. Trivially Eq. (2.204) can be
rewritten as

|φ⟩ =
N∏
j=1

[(1−mj)Î+mj b̂
†
j]|0⟩ (2.205)

49

50 2.4

and generalized to

|ζ⟩ =
N∏
j=1

(a0j Î+a1j b̂
†
j)|0⟩, (2.206)

where a0j and a1j are complex scalar coefficients. The same Slater determinant
is recovered if a1j = mj and a0j = (1 −mj) as found in Eq. (2.205). The Zombie
operator and its adjoint are then defined

ẑj =: a0j Î+a1j b̂
†
j , (2.207a)

ẑ†
j =: a∗

0j Î+a∗
1j b̂j , (2.207b)

giving rise to commutator and anti-commutator relations

[ẑj , ẑk] = 2b̂†j b̂
†
ka1ja1k (2.208a)

[ẑ†
j , ẑ

†
k] = 2b̂j b̂ka1ja1k (2.208b)

{ẑj , ẑk} = 2(a0ja0kÎ+a1ja0k b̂
†
j +a0ja1k b̂

†
k)Î (2.208c)

{ẑ†
j , ẑk} = 2(a0ja0kÎ+a1ja0k b̂j +a0ja1k b̂k). (2.208d)

Therefore, Eq. (2.206) can be rewritten

|ζ⟩ =
N∏
j=1

ẑj |0⟩. (2.209)

The notation ẑj ≡ ẑj(a0j ,a1j) is introduced for neatness.

2.4.2 Creation and Annihilation Operators
The action of creation and annihilation operators acting on a single orbital is defined

b̂|ζ⟩ = b̂(a1|1⟩+a0|0⟩) = 0|1⟩+a1|0⟩ (2.210)

b̂†|ζ⟩ = b̂†(a1|1⟩+a0|0⟩) = a0|1⟩+0|0⟩. (2.211)

When extended to the multi-electron case an additional sign change rule is required
which preserves the antisymmetry of the fermionic function

b̂†i |ζ
(b)⟩ =

−a(b)
11 −a(b)

12 . . . −a(b)
1(i−1) a

(b)
0i a

(b)
1(i+1) . . . a

(b)
1N

a
(b)
01 a

(b)
02 . . . a

(b)
0(i−1) 0 a

(b)
0(i+1) . . . a

(b)
0N

 , (2.212a)

b̂i|ζ(b)⟩ =
−a(b)

11 −a(b)
12 . . . −a(b)

1(i−1) 0 a
(b)
1(i+1) . . . a

(b)
1N

a
(b)
01 a

(b)
02 . . . a

(b)
0(i−1) a

(b)
1i a

(b)
0(i+1) . . . a

(b)
0N

 . (2.212b)

50

51 2.4

The operators b̂†i and b̂i not only act on the i-th orbital but also change sign of
all the alive amplitudes a1j for all orbitals with j < i leaving the dead amplitudes
unchanged. A standard Hartree Fock configuration |φ(j)

me⟩ which corresponds to me

electrons can be written as a Zombie state with "binary" amplitudes of dead and
alive states and me ones in the upper row

|φ(j)
me

⟩ =
1 0 . . . 0 1 0 . . . 1
0 1 . . . 1 0 1 . . . 0

 . (2.213)

In this case the sign change rule becomes equivalent to the Wigner-Jordan rule, but
it can be treated just like any other ZS. As previously shown, Slater determinants can
be constructed by a set of creation operations on the vacuum state. Similarly, the
action of the creation and annihilation operators can be extended to allow Zombie
states to be constructed from the vacuum state. First the action on a single Zombie
operator is defined for j ̸= k,

b̂j ẑk(a0k,a1k) = b̂j(a0kÎ+a1k b̂
†
k) = (a0kÎ−a1k b̂

†
k)b̂j = ẑk(a0k,−a1k)b̂j , (2.214a)

b̂†j ẑk(a0k,a1k) = b̂†j(a0kÎ+a1k b̂
†
k) = (a0kÎ−a1k b̂

†
k)b̂

†
j = ẑk(a0k,−a1k)b̂†j , (2.214b)

and if j = k,

b̂j ẑj(a0j ,a1j) = b̂j(a0j Î+a1j b̂
†
j) = a0jbj −a1k(1− b̂†j b̂j)

= ẑj(a0j ,−a1j)b̂j + ẑj(a1j ,0),
(2.215a)

b̂†j ẑj(a0j ,a1j) = b̂†j(a0j Î+a1j b̂
†
j) = a0j b̂

†
j = ẑj(0,a0j), (2.215b)

using the standard anticommutator relations Eq. (2.29c).
As before this can be generalised to the action on a whole Zombie state (which

is the product of Zombie operators as in Eq. (2.209))

b̂j |ζ⟩ = b̂j
N∏
k=1

ẑk(a0k,a1k)

=
j−1∏
k=1

ẑk(a0k,−a1k)
[
ẑj(a0j ,−a1j)b̂j + ẑj(a1j ,0)

] N∏
k=j+1

ẑk(a0k,a1k)
 |0⟩

=
j−1∏
k=1

ẑk(a0k,−a1k)
 ẑj(a1j ,0)

 N∏
k=j+1

ẑk(a0k,a1k)
 |0⟩

(2.216)

where the ẑj(a0j ,−a1j)b̂j term vanishes because b̂j tries to destroy an electron which

51

52 2.4

is not there. Hence,

b̂†j |ζ⟩ = b̂†j

N∏
k=1

ẑk(a0k,a1k)

=
j−1∏
k=1

ẑk(a0k,−a1k)
 ẑj(0,a0j)

 N∏
k=j+1

ẑk(a0k,a1k)
 |0⟩.

(2.217)

The annihilation operation, Eq. (2.216), is equivalent to the equations derived from
the sign changing rules, Eq. (2.214a) and Eq. (2.215a) and the same is true for the
creation operator, Eq. (2.217), to Eq. (2.214b) and Eq. (2.215b). This equivalence
can be made more explicit since, {amjj} = a then |ζ⟩ ≡ |ζ(a)⟩ and so these results
can be stated in terms of Zombie coefficients {anjj} by stating |ζ(j)(a(j))⟩ = b̂j |ζ(a)⟩.
Thus,

a
(j)
0k =

 a0k k ̸= j

a1k k = j
(2.218a)

a
(j)
1k =

−a1k k < j

0 k = j

a1k k > j

(2.218b)

and if |ζ(j)(a(j))⟩ = b̂†j |ζ(a)⟩ then,

a
(j)
0k =

 a0k k ̸= j

0 k = j
(2.219a)

a
(j)
1k =

−a1k k < j

a0k k = j

a1k k > j

(2.219b)

2.4.3 Overlap of Two Zombie states
The overlap, ⟨ζ(a)|ζ(b)⟩, between two Zombie states, each formed by the action of
M creation operators, can now be computed. Using Eq. (2.209) and defining

|ζ(b)
j ⟩ =

N∏
k=j

ẑk|0⟩ (2.220a)

|ζ(b)
1 ⟩ ≡ |ζ(b)⟩, (2.220b)

|ζ(b)
N+1⟩ ≡ |0⟩. (2.220c)

52

53 2.4

Therefore,

⟨ζ(a)
j |ζ(b)

j ⟩ = ⟨ζ(a)
j+1|ẑ(a)∗

j ẑ
(b)
j |ζ(b)

j+1⟩

= ⟨ζ(a)
j+1|a(a)∗

0j a
(b)
0j Î+a

(a)∗
0j a

(b)
1j b̂

†
j +a

(a)∗
1j a

(b)
0j b̂j +a

(a)∗
1j a

(b)
1j b̂j b̂

†
j |ζ

(b)
j+1⟩

= (a(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j)⟨ζ(a)

j+1|ζ(b)
j+1⟩

(2.221)

The second term in Eq. (2.221) is of the form ⟨ζ(a)
j+1|b̂†j |ζ

(b)
j+1⟩ with neither state having

a contribution from electron j the b̂†j operator acting to the left will try to destroy a
non-existent electron giving zero. Similarly, the third term in Eq. (2.221) vanishes,
but the fourth term survives. Combining Eq. (2.220c) and Eq. (2.221) gives,

⟨ζ(a)|ζ(b)⟩ =
N∏
j=1

(a(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j) (2.222)

Which can be succinctly written as

Ωab = ⟨ζ(a)|ζ(b)⟩ =
M∏
i=1

∑
mi=0,1

a
(a)∗
mii

a
(b)
mii
. (2.223)

2.4.4 Normalisation
For a Zombie state to be normalised Eq. (2.222) must equal unity when |ζ(a)⟩ = |ζ(b)⟩

N∏
j=1

|a(a)
0j |2 + |a(a)

1j |2 = 1, (2.224)

ensuring ⟨ζ(a)|ζ(a)⟩ ≡ ⟨ζ(a)
1 |ζ(a)

1 ⟩ = 1. However, a more general case can be consid-
ered where the wave function may not necessarily have a fixed number of Zombie
operators which gives the requirement

⟨ζ(a)
j |ζ(a)

j ⟩ = 1 (2.225)

for all j, 1 ≤ j ≤N . From Eq. (2.220c) and Eq. (2.221) it follows that

⟨ζ(a)
N |ζ(a)

N ⟩ = 1 = |a(a)
0N |2 + |a(a)

1N |2 (2.226a)

⟨ζ(a)
j |ζ(a)

j ⟩ = (|a(a)
0j |2 + |a(a)

1j |2)⟨ζ(a)
j+1|ζ(a)

j+1⟩ (2.226b)

and using the fact ⟨ζ(a)
N+1|ζ(a)

N+1⟩ ≡ ⟨0|0⟩ = 1, for Eq. (2.225) to be true for all j

|a(a)
0j |2 + |a(a)

1j |2 = 1 ∀j (2.227)

53

54 2.4

This is a stronger criterion than Eq. (2.224) so satisfying Eq. (2.227) will ensure that
Eq. (2.224) is satisfied (satisfying Eq. (2.224) does not mean Eq. (2.227) is). This
normalisation is equivalent to the normalisation used when introducing quantum
superposition sampling to the Multiconfigurational Ehrenfest method presented in
Ref.[33]. Following this work a simple choice to satisfy Eq. (2.227) is

a
(a)
0j = cos(θj), a

(a)
1j = sin(θj) (2.228)

where θj is a real number such that 0 ≤ θj < 2π. This means that a real, normalised
Zombie state can be completely described by N real {θj} values. This can be
generalized to complex states with

a
(a)
0j = cos(θj), a

(a)
1j = sin(θj)eiϕj (2.229)

where ϕj is drawn from the interval 0 ≤ ϕj < 2π [33].

2.4.5 The Zombie Wave Function
Elements of the second quantized electronic structure Hamiltonian, can now be
found for Zombie states, ⟨ζ(a)|Ĥ|ζ(b)⟩. Sequential application of the creation and an-
nihilation operators to |ζ(b)⟩ and overlapping the result with ⟨ζ(a)| using Eq. (2.223)

Hab = ⟨ζ(a)|Ĥ|ζ(b)⟩ =
∑
ij

hij⟨ζ(a)|ζ(b)
ij ⟩+ 1

2
∑
klij

Wklji⟨ζ(a)|ζ(b)
klij⟩, (2.230)

where |ζ(b)
klij⟩ = b̂†k b̂

†
l b̂ib̂j |ζ(b)⟩ and |ζ(b)

ij ⟩ = b†i b̂j |ζ
(b)
ij ⟩ [9]. An electronic wave function

can be represented as a superposition of Nbf basis Zombie states

|Ψ⟩ =
Nbf∑
a
da|ζ(a)⟩. (2.231)

and the matrix elements described above now allow usage of the ansatz Eq. (2.231)
for propagation or finding quantum states and their energies. Unlike the other
fermionic coherent state constructions, the Zombie states are not eigenstates of the
number operator since they are a superposition of all states of any number. There-
fore, a wave function of the form in Eq. (2.231) requires a sufficiently large Nbf

number of Zombie states with coefficients da to be optimised such that contributions
from unwanted numbers of electrons cancel out. This is a key departure from stan-
dard fermionic coherent states and Hartree Fock methods where each basis function
has a fixed number of electrons. However, this could be advantageous when investi-
gating molecular dynamics when the process is driven by electrons being added or
removed from the system.

54

55 2.4

2.4.6 General Coherent Zombie states
In Eq. (2.157) it was shown how a single SU(2) coherent state could be generated
using the language of generalised coherent states. For a single fermion this can be
explicitly defined as

|ξ⟩ = exp(ξb† − ξ∗b)|0⟩ = sin(θ/2)e−iφ|1⟩+ cos(θ/2)|0⟩ (2.232)

where ξ = (θ/2)e−iϕ and |0⟩ = |1
2

−1
2 ⟩, |1⟩ = |1

2
1
2⟩. This general definition takes the

same form as the single fermion displacement operator used to construct Grass-
mann type coherent states, Eq. (2.175). Thus, an N-particle Zombie state can be
constructed with a Zombie displacement operator,

D(ζ) = exp(
∑
i

b†iζi− ζ∗
i bi)

=
∏
i

exp(b†iζi− ζ∗
i bi) ζ = (ζ1, . . . , ζN)

(2.233)

where ζj = (θj/2)e−iϕj . A Zombie state can then be defined by the displacement
operator acting on the vacuum state |0⟩,

D(ζ)|0⟩ =
∏
i

exp(b†iζi− ζ∗
i bi)|0⟩ =

∏
i

sin(θi/2)e−iφi|1i⟩+ cos(θi/2)|0i⟩ (2.234)

where |1i⟩ is the occupied state for orbital i and |0i⟩ is the corresponding unoccupied
state. The vacuum state is defined as,

|0⟩ =
∏
i

|0i⟩ (2.235)

Thus, Zombie states can be constructed using a method derived from the general
method of constructing coherent states. The action of the displacement operator
on the vacuum state satisfying Glauber’s definition of a coherent state. Using this
definition the normalisation condition, Eq. (2.227), is satisfied by construction.

When originally formulated the antisymmetric property was ensured by creating
a Slater determinant of one-electron Zombie states and using a sign change rule with
the creation and annihilation operators. The fermionic coherent states generated
from the SO(2n) Lie group have a basis that equipped with an exterior algebra that
ensures anticommutation relation is preserved. Further, the Grassmann generators
also anticommute with each other and also the creation and annihilation operators.
The Zombie states defined using Eq. (2.234) naturally produce the sign change
behaviour when operated on by a creation or annihilation operator. An arbitrary

55

56 2.4

Zombie state is defined by an ordered set of coefficients ζ = (ζ1, . . . , ζi, ζj , . . . , ζN),

|ζ⟩ =D(ζ)|0⟩ =
 i∏
k=1

exp(b†kζk − ζ∗
kbk)|0⟩

 ·
(
exp(b†jζj − ζ∗

j bj)|0⟩
)

·
 N∏
k=j+1

exp(b†kζk − ζ∗
kbk)|0⟩

 .
(2.236)

The ZS produced is then |ζ⟩ = |ζ1, . . . , ζi, ζj , . . . , ζN ⟩. To operate on orbital j it must
be the left most within the ket and so the Zombie state can be rewritten,

aj |ζ⟩ = bj
(
exp(b†jζj − ζ∗

j bj)|0⟩
)

·

 i∏
k=1

exp(−b†kζk − (−ζ∗
kbk))|0⟩

 ·
 N∏
k=j+1

exp(b†kζk − ζ∗
kbk)|0⟩

 .
(2.237)

By swapping the order of the operators for orbitals<j the negative sign is introduced
and such an orbital is then defined,

|ζi⟩ =D(−ζi)|0⟩ = exp(−b†iζi− (−ζ∗
i bi))|0⟩

= sin(−θi/2)e−iφi|1i⟩+ cos(−θi/2)|0i⟩

= −sin(θi/2)e−iφi|1i⟩+ cos(θi/2)|0i⟩

(2.238)

using the fact sine and cosine are odd and even functions respectively. Thus, Zom-
bie states constructed using the general coherent state definition are by construction
normalised and antisymmetrised with creation and annihilation operations that pro-
duce the expected behaviour.

2.4.7 Comparison to Standard Fermionic
Coherent State Constructions

It is now possible to compare both standard fermionic coherent state constructions
and Zombie states. To do this a system with dimension N = 2 will be used which
corresponds to two spin orbitals. If both orbitals are occupied then a Slater deter-
minant can be constructed as

Ψ12(x1,x2) = 2−1/2(χi(x1)χj(x2)−χi(x2)χj(x1)) (2.239)

which can be written succinctly as |1,1⟩. Coherent states can now be defined to
describe this state. Using the Lie group SO(2 · 2) and the general coherent state

56

57 2.4

definition will give an element of the coset space as,

Ω = exp(η12a
†
1a

†
2 −η∗

12a2a1 +η21a
†
2a

†
1 −η∗

21a1a2). (2.240)

Which gives a coherent state by operating Ω on the reference state |ref⟩ = |0⟩,or
|1⟩,

|zSO(2·2)⟩ = Ω|ref⟩ = exp(η12a
†
1a

†
2 −η∗

12a2a1)exp(η21a
†
2a

†
1 −η∗

21a1a2)|ref⟩ (2.241)

note the phase factor created by the stability group has been omitted. A coherent
state can be defined by a set of four Grassmann generators ξ = (ξ1, ξ2, ξ∗

1 , ξ
∗
2). Then

using Eq. (2.180) the fermionic coherent states can be defined,

|zG2⟩ =D(ξ)|0⟩ = exp(a†
1ξ1 − 1

2ξ
∗
1ξ1 +a†

2ξ2 − 1
2ξ

∗
2ξ2)|0⟩

= exp(a†
1ξ1 − 1

2ξ
∗
1ξ1)exp(a†

2ξ2 − 1
2ξ

∗
2ξ2)|0⟩

(2.242)

Finally, a Zombie state can be defined by ζ = (ζ1, ζ2),

|ζ⟩ =D(ζ)|0⟩ = exp(b†1ζ1 − ζ∗
1b1 +a†

2ζ2 − ζ∗
2b2)|0⟩

= exp(b†1ζ1 − ζ∗
1b1)|01⟩exp(b†2ζ2 − ζ∗

2b2)|02⟩.
(2.243)

When written out explicitly the difference between the two standard fermionic co-
herent state constructions and Zombie states is clear. |zSO(2·2)⟩ and |zG2⟩ are con-
structed from the different spin states of each orbital. A system state can then
be described in terms of the fermionic coherent state. For two spin orbitals there
are three possible states of occupancy, |1,0⟩, |0,1⟩, |1,1⟩ and the vacuum state. To
describe the doubly occupied Ψ12 using |zSO(2·2)⟩ the reference state would be taken
to be |0⟩ but the single occupancy states would require a different reference state
to account for the unpaired spin. Whereas, the Zombie states are a superposition
of all possible configurations. The standard fermionic coherent states are a method
for describing a specific configuration in terms of its spin states requiring the state
to remain an eigenstate of the number operator. Zombie states can describe a sys-
tem as a superposition of all configurations. Thus, Zombie states offer a way of
describing the linear combination of configurations used in a CI wave function.

57

58 2.5

2.5 Concluding Remarks
This section uses a detailed description of the Hartree Fock method to motivate
understanding of the key concepts in electronic structure theory. It is shown how
the physical reality of electrons in a molecule can be represented as an antisym-
metrised Slater determinant; then the associated algebra necessary to construct a
Hamiltonian matrix. The concept of second quantisation is introduced which moves
the antisymmetric property to the action of the creation and annihilation operators.
This is followed by discussion of the self-consistent field method. These elemen-
tary building blocks serve as a basis for understanding the Zombie states method.
A Slater determinant exactly represents a single configuration of electrons in the
available spin orbitals. The full-CI wave function consists of all possible electron
configurations described using Slater determinants. Using this linear combination
of configurations exactly describes the system because it does not continually exist
in a single configuration. Generally, coherent states give a means to describe a sys-
tem as a superposition of another appropriate set of sets such as an electromagnetic
field using states of the harmonic-oscillator [11, 12, 99]. Fermionic coherent states
provide a method for describing a configuration as superposition of its spin states
whereas Zombie states can describe a system as a superposition of all configurations.

The Perelomov and Gilmore general definition constructs coherent states from
action of the displacement operator on a reference state [21, 106]. The displacement
operator is found by using the appropriate dynamical group and defining its coset
or quotient space by use of a stability group. Using this method the coherent
states of the Harmonic oscillator, used in the Coupled Coherent States method, and
the SU(2) coherent states, additionally used in the Multiconfigurational Ehrenfest
method, are derived. The general method results in coherent states of exactly the
same form used in CCS and MCE literature [13, 16, 109]. However, significantly
the general definition naturally produces SU(2) coherent states defined in the same
way as states initiated using Quantum Superposition sampling [33]. By couching
the CCS family of methods in terms of general coherent states establishes a simple
framework for constructing coherent states and also swamping the type of coherent
states used in a simulation.

Both the Grassmann algebra and SO(2n) Lie group coherent state construc-
tions ensure the correct antisymmetric properties are maintained. These standard
fermionic coherent states provide a method for describing a specific fermionic con-
figuration in terms of its spin states. In both constructions the fermionic coherent
states are eigenstates of the number operator which is strictly conserved; states de-
fined using the SO(2n) Lie group require different reference states depending on
whether the number of fermions is odd or even. For the construction, that uses
Grassmann algebra, to remain physical it is not permitted to have transitions from

58

59 2.5

an even to odd number of fermions or between different odd numbers of fermions
[18]. Further, Grassmann algebra does not lend itself to numerical computation –
there is little literature on the topic.

On the other hand, Zombie states are not eigenstates of the number operator.
Each Zombie orbital is a superposition of "dead" and "alive" coefficients the SU(2)
coherent state representing the occupied and unoccupied state. Therefore, the Zom-
bie state contains all configurations and so treats odd and even numbers of fermions
in the same way. If only binary coefficients are permitted when defining a Zombie
state then the state becomes equivalent to a Slater determinant with the same set
of occupied spin orbitals. However, when allowing fractional Zombie coefficients,
the Zombie state is a superposition of all configurations. So, a sufficiently sized
Zombie wave function with appropriately constructed Zombie states should be able
to exactly describe a system with the same energies as the full-CI wave function. It
has previously been shown that Zombie states can be constructed from a vacuum
state, and this maintains the sign change rule caused by creation and annihilation
operations [9, 23]. Here the general coherent state definition is applied to the Zombie
states for the first time which shows they can be constructed in a manner analogous
to the multi-dimensional harmonic oscillator coherent states used in CCS. Using
the action of the displacement operator on the vacuum state to construct a Zombie
state ensures the normalisation condition for the "dead" and "alive" coefficients is
automatically satisfied. Further, this method of construction naturally gives rise to
the sign rule following creation and annihilation operations – changing the sign of
"alive" coefficients but not "dead" ones.

Zombie states are placed on a similar footing to Slater determinants in the
second-quantisation representation. This allows much of the well established and
understood algebraic formalism from standard Hartree Fock theory to be trans-
lated to the Zombie states method. The hierarchy of electronic basis sets gives the
Hartree Fock method systematic quantitative accuracy. Conveniently, this property
translates to the Zombie states method and means the set of one- and two-electron
integrals, generated by any electronic structure package for a SCF calculation, can
be used to construct the Zombie state Hamiltonian matrix. Thus, chemical systems
can be set up easily using existing and optimised electronic structure packages while
allowing direct comparison between Hartree Fock and ZS results. The work detailed
in this thesis focuses on finding the ground state energy of chemical systems with the
aim of reaching energies equivalent to the full-CI energy. Both FCIQMC and MCCI
aim to find full-CI energies without using the entire set of possible configurations
hence, comparison to the ZS method is made where appropriate.

59

Chapter 3

Finding the Ground State Energy

3.1 Introduction
Quantum chemistry is built around finding solutions to the Schrödinger equation
which is a form of the eigenvalue problem. For the TISE the Hamiltonian matrix
can be diagonalised to form a new matrix D by P which is a non-singular square
matrix which in general terms is

P−1HP = D =⇒ HP = PD (3.1)

where each column of P is an eigenvector of H and the diagonal elements of D

are the eigenvalues – the lowest being the ground state energy. However, diagonal-
ising large matrices is computationally expensive meaning alternative methods are
considered. As previously seen for configuration interaction, variational minimisa-
tion of the ground state energy is used to find the optimal set of linear coefficients
to give the ground state energy. In this chapter two methods for finding ground
state energies are presented. Firstly, the method used in the original presentation
of Zombie states, a long-time propagation followed by a Fourier transform and the
second is imaginary time propagation [9]. Previous work has established that a small
basis of randomly selected, trajectory-guided Canonical Coherent States of the har-
monic oscillator are an effective way to describe the quantum dynamics of a system
with multiple particles and many degrees of freedom. The Coupled Coherent States
(CCS) method has been used to simulate the dynamics of nuclei in chemical reaction
dynamics [116, 131]. CCS has also been used to study the dynamics of electrons
in a strong laser field and quantum decoherence [16, 132]. Therefore, equations,
analogous to the CCS method, to propagate Zombie states were developed. These
allowed a system of Zombie states to be propagated and the energy of states to be
recovered.

However, the long-time propagation was not a particularly efficient way to re-
trieve energies. Computational efficiency is a key part of Pople’s framework for
method development and so an alternative approach was needed. The method,

60

61 3.2

which has now been adopted as the standard procedure, employs an imaginary time
propagation to recover ground state values. This is a key component of the well
established FCIQMC method validating its choice. Imaginary time propagation for
Zombie states is verified by comparison to exact energies obtained by diagonalisation
of a Hamiltonian constructed using a full-CI basis set.

3.2 Long Time Propagation and
Fourier Transformation

Throughout this work the TISE is used but when first presented a time dependent
basis was used to propagate the Zombie states. A 1D Canonical Coherent State is
a Gaussian wave packet

⟨x|z⟩ = ⟨x|q,p⟩ =
√
γ

2 exp(−
γ

2 (x− q)2 = ip(x− q)+ i
qp

2) (3.2)

with z =
γ1/2q+p

(
γ1/2ℏ

)−1

21/2 and γ1/2 being the width of the wave packet in the
vicinity of the phase space point q,p. Ideas developed for the Coupled Coherent
Sates method can be applied to fermionic Zombie states. The Zombie wave function
is made time dependent by making both the basis functions, |ζ(a)(t)⟩, and their
coefficients, da(t), time dependent. The time evolution is a system of linear equations

N∑
a

⟨ζ(b)|ζ(a)⟩dda
dt

= −
N∑
a

⟨ζ(b)|ζ
(a)

dt
⟩da

= −i
N∑
a

⟨ζ(b)|Ĥ|ζ(a)⟩da

(3.3)

As in CCS the analogue of the classical Hamilton’s equation is

dζ(a)

dt
= −i∂⟨ζ(b)|Ĥ|ζ(a)⟩

∂ζ∗(a) (3.4)

which is used to find the trajectory of |ζ(k)(t)⟩ [109, 131]. This produces a set of
trajectories based on a multiconfigurational wave function which can give an exact
value in that it can converge to the exact result [9]. This is significantly different
to single configuration methods like time-dependent Hartree-Fock Bogoliubov which
only uses a single Slater Determinant.

The autocorrelation function was defined as

⟨Ψ(0)|Ψ(t)⟩ =
N∑
a
da(t)⟨Ψ(0)|ζ(a)(t)⟩. (3.5)

61

62 3.3

Figure 3.1: Results for LiH in the 6-31G∗∗ basis with four electrons in six spin or-
bitals. All one- and two- electron integrals were calculated using MOLPRO and com-
parisons made to the full-CI values the program produced. Frame (a) shows the rapid
oscillations of the autocorrelation function, ⟨Ψ(0)|Ψ(t)⟩. This was calculated by propa-
gating a single Hartree Fock configuration on the Zombie state basis. Frame (b) is the
real part of the autocorrelation Fourier transform. The peaks exactly match the eigen-
values of the electronic Hamiltonian. From Ref. [9].

LiH and Li2 were used to show that Zombie states could produce identical autocorre-
lation functions to exact benchmark values obtained using the electronic propagator
in the full Fock space. Fourier transforms of the function then also gave identical
peak positions for states of LiH which had the greatest configuration contributions
in the full-CI space this result is illustrated in Fig. 3.1 [9].

3.3 Imaginary Time Propagation

3.3.1 Theory
First a wave function, |Ψ⟩ = ∑

a da|ψ(a)⟩, is constructed from an orthonormal set of
states, {|ψ(a)⟩},a= 1, . . . ,Nbf . This wave function can then be substituted into the
time-dependent Schrödinger equation which gives

iℏ
d

dt
|Ψ⟩ = iℏ

∑
a
ḋa|ψ(a)⟩ =

∑
a
d(a)Ĥ|ψ(a)⟩ = Ĥ|Ψ⟩. (3.6)

Assuming the states have no intrinsic time dependency an equation for ḋb can be
found

ḋb = ddb
dt

= − i

ℏ
∑
a

⟨ψ(b)|Ĥ|ψ(a)⟩da (3.7)

which can be used to time evolve the states. In the standard way time evolution of
an initial state is found by |Ψ(t)⟩ = e−iĤt/ℏ|Ψ⟩ which can be expanded in terms of

62

63 3.3

its eigenstates |ϕn⟩ with energies En so

|Ψ(t)⟩ = e−iĤt/ℏ|Ψ⟩ =
∑
n

|ϕn⟩e−iEnt/ℏ⟨ϕn|Ψ⟩. (3.8)

Comparison of the Boltzmann operator e−βĤ and the time evolution operator e−iĤt/ℏ

shows that β = it/ℏ which can be substituted into this into Eq. (3.6) which yields,

− d

dβ
|Ψ⟩ = Ĥ|Ψ⟩ (3.9)

In a similar way to the TDSE the imaginary time evolution of |Ψ⟩ = ∑
a da|ψ(a)⟩ can

be found by,

ddb
dβ

= −
∑
a

⟨ψ(b)|Ĥ|ψ(a)⟩da. (3.10)

The wave function can be expanded again in terms of its eigenfunctions

e−βĤ |Ψ⟩ =
∑
n
e−βEn|ϕn⟩⟨ϕn|Ψ⟩. (3.11)

Assuming that the ground state, |ϕ0⟩, and its eigenvalue, E0, are non-degenerate,
then En >E0 ∀n > 0. Therefore,

lim
β→∞

eβE0e−βĤ |Ψ⟩ = lim
β→∞

∑
n
e−β(En−E0)|ϕn⟩⟨ϕn|Ψ⟩ (3.12)

=|ϕ0⟩⟨ϕ0|Ψ⟩ = p|ϕ0⟩. (3.13)

⟨ϕ0|Ψ⟩ = p is a numerical constant and provided p ̸= 0 then continued evolution in
imaginary time can be used to find the ground state. The Zombie basis is nonorthog-
onal therefore to apply imaginary time propagation, using the same reasoning as in
Ref. [133], the identity matrix is needed

I =
∑
a,b

|ζ(a)⟩Ω−1
ab ⟨ζ(b)|. (3.14)

A wave function |Ψ⟩ that can be expanded in the basis of Nbf Zombie states |ζ(a)⟩,
where Nbf ≤ 2Nel , which are normalised but not necessarily orthogonal,

|Ψ⟩ =
Nbf∑
a
da|ζ(a)⟩. (3.15)

Using the reasoning in Ref. [109] that |Ψ⟩ = I|Ψ⟩ so Eq. (3.10) can be transformed

−d⟨ζ(c)|Ψ⟩
dβ

= −
∑
a,b

⟨ζ(c)|Ĥ|ζ(a)⟩Ω−1
ab ⟨ζ(a)|Ψ⟩ (3.16)

63

64 3.4

ddc
dβ

= −
Nbf∑
a,b

da⟨ζ(c)|Ĥ|ζ(b)⟩Ω−1
ab (3.17)

which can be put into matrix notation as

ḋ = −Ω−1Hd. (3.18)

A single imaginary time step can then be defined as

da(β+∆β) = da(β)+ ḋa(β)∆β. (3.19)

3.3.2 Application of Imaginary Time
Propagation to Li2

As in the first presentation of the Zombie states method Li2 will be used as an
example system. It will be shown that imaginary time propagation is effective
and efficient when finding ground state energies. PyScf is used to calculate the
one- and two-electron integrals in the 6-31G∗∗ basis and the system is constructed
with five spacial (meaning ten spin) molecular orbitals [134]. The number of spin
orbitals has been truncated to ten to remove additional computational cost not
required to validate the use of imaginary time propagation. The energies obtained
are compared to a full-CI basis consisting of 1024 Slater determinants. This number
of Slater determinants is chosen as it contains all possible configurations for all
possible numbers of electrons, 210 = 1024. All calculations are carried out in atomic
units, so energies are in Hartrees. Trivially a complete basis set of 1024 Slater
determinant,|φ(j)

me⟩ Zombie states is considered. Using the six-electron restricted
Hartree Fock determinant as a starting point it can be seen in Fig. 3.2 that imaginary
time propagation yields the neutral ground state energy of Li2. Next a basis of
210 = 1024 randomly generated basis functions |ζ(k)⟩ was generated. The dead and
alive coefficients for each Zombie state were calculated a1j = cos(θj) and a0j = sin(θj)
respectively using a random number 0 ≤ θj < 2π. Rather than the binary Slater
determinant basis each random Zombie state consists of superposition of "dead"
and "alive" electrons. The initial vector of Zombie coefficients is a superposition of
random Zombie states chosen to be equal to the RHF determinant (although this is
not a requirement). Imaginary time propagation for the random Zombie basis, the
solid line in Fig. 3.2, matches the result obtained by using the Slater Determinant
basis. The final energy of each state obtained through imaginary time propagation
is verified by comparison to the eigenvalues found by diagonalizing the complete
Slater determinant Hamiltonian.

64

65 3.4

Figure 3.2: Imaginary time propagation starting at the 6-electron restricted Hartree
Fock Slater determinant energy for a complete Slater determinant basis (dashed, red
line) and a complete random basis (solid, orange line) of Zombie States. Both results
tend to the neutral ground sate energy of Li2 found by diagonalizing the Slater determi-
nant Hamiltonian, shown as a grey dotted line.

3.4 Conclusions
The implementation of imaginary time propagation to the Zombie state method is
an important step towards a practical electronic structure method. The lowest-lying
state of a system can be found using imaginary time propagation. For a complete
basis of randomly generated Zombie states there is exact agreement with the Slater
determinant basis for Li2. Although the system and ground state energy are trivial
it is significant that the need for long-time evolution and Fourier transforms is
removed. This makes the method more practical to use due to lower computational
expense and time which has enabled further development. It is now possible to
investigate larger more complicated systems which is integral when verifying the
applications of the method. Further, computationally expensive additions to the
method, like the gradient descent method described in the next chapter, are now
possible since significant time is not required to find ground state energies. The
adoption of imaginary time propagation has also led to using Zombie states to find
energies of excited states which is discussed in Chapter 5.

65

Chapter 4

Reducing the Basis Set Size

4.1 Introduction
The introduction of imaginary time propagation to find ground state energies ad-
vances the Zombie state method to be computationally inexpensive which is an
essential part of Pople’s framework for method development. However, thus far all
numerical results found using ZSs can be easily recovered when using wave functions
of Slater Determinants. For the method to be more than an academic endeavour
and eventually offer something beyond current electronic structure techniques it is
necessary to use less than complete sized basis sets and still recover exact or near
to exact energies. Using the same 6-31G∗∗ truncated basis of ten spin orbitals for
Li2 a random set of 200 Zombie states is constructed. In Fig. 4.1, the basis set is
no longer capable of reproducing the ground state energy. The energy obtained via
imaginary time propagation, in this smaller basis, no longer matches the value found
by diagonalising the complete Slater determinant basis.

For the Lithium dimer system used here a basis set of 200 functions, containing
basis functions with the incorrect number of electrons, is approximately 20% the size
of the complete basis. Moreover, when considering a basis of Slater determinants
containing only configurations with the correct number of electrons (10!/6!(10 −
6)! = 210) then 200 basis functions is 95% of set size. Clearly using an incomplete
set number of randomly generated Zombie states is not a practical approach; new
methods to generate generate Zombie states are required. In this section, I will
first outline the initial work that indicated a smaller set of Zombie states could be
used while still obtaining reasonable ground state energies. This took the form of
two methods named biasing and cleaning. Biasing being used to generate better
amplitudes in the Zombie states and cleaning being used to improve the ground
state energy achieved post imaginary time propagation.

However, neither method was appropriate for the long-term development of the
ZS method. Hence, Gradient Descent (GD) is introduced to the Zombie state
method. This forms a significant portion of the results of this thesis. It will be shown

66

67 4.2

how GD can systematically optimise the set of Zombie state coefficients without any
significant a priori knowledge of the system. The implementation of Gradient De-
scent to the Zombie states method is validated by a selection of systems considerably
more challenging than the truncated Li2.

4.2 Cleaning
The imaginary time propagation outlined in Chapter 3.3 relaxes the wave function
to its lowest energy state so long as the wave function contains contributions from
wave functions of the same symmetry and number of electrons as the lowest-energy
state. As Zombie state "dead" and "alive" coefficients give fractional spin-orbital
occupations ZSs are not restricted to a particular number of electrons. However,
they can be projected onto a Fock Space with a given number of electrons. This can
be used to improve the ground state energy obtained and also give insight into why
a wave function is not capable of recovering the exact ground state energy.

Figure 4.1: Imaginary time propagation starting at the 6 electron restricted Hartree
Fock Slater determinant energy and using a random basis of 200 Zombie sates. The neu-
tral ground sate energy of Li2 found by diagonalising the complete Slater determinant
Hamiltonian is also shown in grey. The one- and two- electron integrals were generated
using the PyScf program [134].

67

68 4.2

The identity operator, I, can be written as a sum of me electron identities Ime :

I =
∑

me=0,Nfci

Îme , (4.1)

meaning the identity covering the Fock Space with me electrons is

Ime =
∑
a

|φ(a)
me

⟩⟨φ(a)
me

| (4.2)

where the sum is over all Fock configurations with the correct number of electrons
i.e. ⟨φ(a)

me|N̂ |φ(a)
me⟩ = me. These Zombie states have "binary" amplitudes 1 and 0

and me unit amplitudes of alive electrons on me occupied spin-orbitals and so are
equivalent to one member configuration in a full-CI. The superposition of Zombie
states in Eq. (2.231) or Eq. (3.15) can then be projected onto a Fock Space of me

electrons as

|Ψme⟩ = Ime|Ψ⟩ =
∑
a
ca|φ(a)

me
⟩ (4.3)

where

ca =
∑

b=1,Nzs

db⟨φ(a)|ζ(b)⟩. (4.4)

The portion of the total energy from the me configurations and its norm can then
be calculated,

Eme =
∑
ba

c∗acb⟨φ(a)
me

|Ĥ|φ(b)
me

⟩, (4.5)

Nme =
∑
b

c∗bcb, (4.6)

respectively. The energy contribution for each me together will sum to the total
energy of the whole Zombie wave function Eq. (2.231) and all me norms add up to
1:

⟨Ψ|Ĥ|Ψ⟩ =
∑
me

Eme (4.7)
∑
me

Nme = 1. (4.8)

For a completely converged Zombie wave function the norm for the correct number
of electrons me will be one (the other configuration norms being zero) and so the
total energy will only be made up by contributions from configurations with the
correct number of electrons. But if convergence is incomplete the energy of the

68

69 4.3

converged me wave function |Ψc⟩ can be estimated as

⟨Ψc|Ĥ|Ψc⟩ ≈ Eme/Nme . (4.9)

by division of the me energy by the me norm.
Using the same 200 Zombie state basis set used in Fig. 4.1 for the lithium dimer

system the clean procedure can be run for each number of electrons the results
of which are shown in Fig. 4.2. The largest contribution to the energy (and so
also norm) is from the seven electron configurations followed by those with eight
electrons not from configurations containing six electrons that describe the ground
state. The total energy being dominated by configurations that give higher energy
states explains why the wave function is not able to converge to the ground state
energy as the complete basis could. Moreover, since the six electron norm is small
E(6e)/N(6e) does not yield a more accurate value for the ground state energy than
the system total. Therefore, it is clearly necessary to construct basis sets that contain
a much greater number of superpositions of configurations with the correct number
of electrons i.e. for Li2 minimise the norm for all numbers of electrons except six.

4.3 Biasing
Pople’s framework calls for methods to be applied generally so they can act as a
black box without the need for prior knowledge and input. However, this does
not mean that reasonable scientific intuition cannot be built into the method. As
previously established the restricted Hartree Fock determinant is a very reasonable
approximation for the true ground state energy [135]. However, a far larger basis
consisting of all possible configurations is necessary to guarantee the exact ground
state energy. This was also achieved by a basis of randomly selected 2M ZSs |ζ(k)⟩
which is also complete and is capable of yielding correct quantum energies and
wave functions. The random ZS basis functions are superpositions of all possible
configurations of electrons which together cancel out the configurations with the
incorrect number of electrons to give the exact energy. So if a smaller basis is used
the ZSs must be constructed to ensure proper cancellation of states with the wrong
number of electrons to also find the exact or reasonably close to the ground state
energy. This should also show a norm near to one for the correct number of electrons
when the cleaning procedure is run on the wave function.

In CASSCF calculations electrons and orbitals are split into three groups: inac-
tive, active and virtual [136]. From this we have designed a biasing method to set up
a ZS basis to better ensure proper cancellation of incorrect configurations. Inactive,
or core electrons, are low lying and are always (at least in a CASSCF calculation)
to be occupied; the active orbitals can either be occupied or unoccupied and virtual

69

70 4.3

Figure 4.2: Energy (top) and norm (bottom) distribution for each number of electrons
for a basis set of 200 randomly generated Zombie states. This is the same basis set used
in Fig. 4.1. Notice that less than 20% of the final wave function belongs to the Fock
space on ne = 6 electrons.

70

71 4.3

orbitals are always empty. The RHF determinant fits into the CASSCF system with
the lowest set of orbitals being occupied and the virtual orbitals empty. This is a
good approximation of the ground state energy because lower energy orbitals are
far more likely to be occupied that higher energy ones. Thus, the ZS amplitudes
within each Zombie state should reflect this. Rather than assigning each amplitude
randomly a biasing regime can be implemented so the amplitudes of each Zombie
state are more likely to closely resemble the restricted Hartree Fock determinant.
In practise this means, generally, lower energy spin orbitals will have larger "alive"
coefficients and high energy orbitals will have larger "dead" amplitudes which is
made possible by the fractional occupation of a Zombie state. Like in CASSCF core
orbitals are set to be completely "alive" while orbitals in the active space can be
biased to be to be more or less "dead" or "alive". In CASSCF virtual orbitals are
unoccupied which in the Zombie state representation would mean "dead" coefficients
set to 1. In practise there were no completely "dead" orbitals but instead a strong
bias towards "dead" coefficients of one for the higher energy orbitals.

"Dead" and "alive" amplitudes for Zombie states are randomly generated from a
normal distribution centred around either completely "alive" or completely "dead"
values with the width of the Gaussians used decided by the activity level of the
orbital. In practise, the low-lying core electrons have "alive" amplitudes set to one,
although a very narrow Gaussian could also be employed, which corresponds to a
normal distribution width of zero giving a δ function with a1j = 1 and a0j = 0. Next
the active space orbitals have normal distributions that can be centred to favour
either completely alive or dead amplitudes. The place where centring changes from
"alive" to "dead" being system dependent. Thinner distributions are used for orbitals
at either end of the active electron/orbital group and wider distributions for orbitals
where the chance, or not, of occupation is relatively equal. Normalisation stipulated
in Eq. (2.227) was satisfied by only randomly generating one amplitude and the
other being set using Eq. (2.228).

4.3.1 Results
Here the biasing method described above is implemented for the the Li2 system with
ten spin orbitals and six electrons with one- and two-electron integrals calculated
using the 6-31G∗∗ basis set in the PyScf program [134]. A biasing regime was
implemented using sensible chemical intuition of the electronic structure of Li2. To
ensure "dead" and "alive" coefficients were normalised Eq. (2.229) was used with each
θj generated randomly. Biasing towards "alive" electrons in the RHF determinant
[j = 1 . . .6] centred the normal distribution at 1

2π; "dead" orbital distributions were
centred around 0. The width, σ, of the normal distributions for each orbital are
summarised in Table. 4.1.

71

72 4.3

Table 4.1: Description of the normal distributions, centre µ and width σ, used to gen-
erate θj for the j-th electron of each Zombie state for Li2.

j-th Electron Normal Distributions
µ/2π σ/2π

1, 2, 3, 4 0.25 0
5, 6 0.25 0.175
7, 8 0 0.351
9, 10 0 0.120

The first four core orbitals are set to be always "alive" with the remaining orbitals
allowed to vary. This biasing regime is shown schematically in Fig. 4.3. The first
four spin orbitals always being occupied while the final six having occupations that
overlap but on average are biased towards higher orbitals being a smaller fractional
occupancy.

Figure 4.3: Occupational probability plotted against orbital number for ten orbitals.
The first four core spin orbitals are to be completely occupied, the remaining orbitals
are set using the normal distributions described in Table. 4.1. The average probability is
marked by a cross and one standard deviation either side is the bar.

Two wave functions were set up with 63 biased Zombie states and and an ad-
ditional Zombie state set to either the six electron RHF determinant or the seven
electron open-shell restricted Hartree Fock determinant. Depending on the choice
of the additional basis function it can be seen in Fig. 4.4 that each basis set is now

72

73 4.4

recovering the exact full-CI energy for either the ground state or the ground state
of the Li−2 anion. Smaller biased basis sets (of 10, 30 and 50 ZSs) were then tested
with the first function in all wave functions set as the six electron RHF determinant.
Fig. 4.5 shows the smaller basis sets again not being able to recover the exact ground
state which was possible with the 64 ZS wave function nonetheless these results are
more accurate than the 200 random ZS wave function. The cleaning procedure does
show an improvement for all biased basis set sizes. The complete set of results for
the cleaning procedure for the 30 ZS wave function are shown in Fig. 4.6. The
biasing method has created a wave function that has a norm almost entirely in the
six electron Fock space which improves the energy bringing it closer to the full-CI
result.

4.3.2 Conclusion
The biasing method clearly improves upon randomly setting Zombie state ampli-
tudes. However, the scheme sets the lowest four orbitals as occupied leaving two
electrons to be distributed across 6 orbitals which gives 26 = 64 Slater determinants
in a complete basis and increasing the number of functions creates singularities in the
overlap matrix due to linear dependencies. Thus, the basis of 64 functions is again a
complete set and reductions in the basis set size move away from the exact ground
state energy albeit giving results far closer to the true value than if a random set
of ZSs is used. 64 basis functions is less than the 210 possible configurations found
by placing six electrons in ten spin orbitals. (210 possible configurations are found
using N !

K!(N−K)! ,
10!

6!(10−6)! = 10!
6!4! = 210.) But it is much larger than the 15 configura-

tions found by placing two electrons in six orbitals caused by fixing the occupancy
of the first four spin orbitals. Here the use of ZSs has not given any improvement
in the number basis functions needed to recover an exact energy. For the small
active space the deviation from states with the correct number of electrons is not
advantageous. Furthermore, though cleaning does improve upon the ground state
energies, obtained while using the biased basis sets, it still requires the construction
of a Hamiltonian representing the entire Fock space. Constructing Hamiltonians for
trivially small Fock spaces is computationally inexpensive but for larger spaces it of
course becomes problematic without reasonable truncations requiring prior knowl-
edge of the important states. So the application of the cleaning method is possibly
limited as either the expense of using a complete set of configurations is immediately
required or there is reliance on another method such as FCIQMC to find the most
important subset of the Fock space rendering the Zombie states method superfluous.
Nonetheless, the biasing method results suggest that finding an optimal set of ZS
coefficients could give accurate results when using a small basis set.

73

74 4.4

Figure 4.4: Two bases of 63 biased Zombie state functions and an additional state ei-
ther the 6 electron RHF determinant (orange bottom line) or the 7 electron open-shell
RHF determinant (red top line). Imaginary time propagation evolves both cases to ex-
act values (horizontal lines) the six electron basis to the Li2 neutral ground state; the
seven electron basis to the higher Li−

2 anion ground state.

Figure 4.5: The first function in each set is the six electron RHF determinant and
the remaining ZSs are biased by the method in Table. 4.1. Imaginary time evolution
is shown for basis sets of 50, 30 and 10 functions. The exact value (solid horizontal line)
for the Li2 ground state for comparison. The cleaned energies, E(6e)/N(6e) are dashed
lines.

74

75 4.4

Figure 4.6: Energy (top) and norm (bottom) distribution for each number of electrons
for a basis containing 30 biased Zombie states the first ZS is exactly the six electron
restricted Hartree Fock determinant. 99% of the final wave function belongs to the Fock
space on ne = 6 electrons.

75

76 4.4

4.4 Gradient Descent
In MCCI and FCIQMC a random walk is used to explore the Fock space to find
the set of the most important configurations [79–81, 87, 88, 88, 137]. This means
there are two considerations to be made for each configuration in the Fock space: is
it included in the wave function and if so what weighting is it given within the set?
In FCIQMC the weighting question is handled by the number of walkers and the
decision of inclusion is controlled at the pruning step [79]. Whilst this ensures all
functions are eigenstates of the number operator a large number of walkers have to
be generated whilst also considering a large number of states for inclusion. Zombie
states are by construction non-binary meaning individual amplitudes can be altered
within a state changing the superposition of states the ZS encompasses rather than
removing or adding a specific configuration. With the weighting of individual Zombie
states controlled by imaginary time propagation constructing the ZS basis set can be
seen as an optimisation problem to find the set of "dead" and "alive" amplitudes that
give the minimal ground state energy. This intuitively leads to the Gradient Descent
(GD) process which is (in its simplest form) a first-order iterative optimization
algorithm used to find the local minimum of a differentiable function. A set of
variables X are the input to a differentiable function f(X) for which there exists
some set of values that give its minimum which can be found iteratively by,

Xn+1 =Xn−γ∇f(Xn). (4.10)

The learning rate γ is used to set the size of the step, in the negative gradient
direction, −γ∇f(Xn). This alters Xn to produce a new set of parameters Xn+1, the
process is repeated using the new set of X values. For the Zombie state method the
function to be minimized is the energy of the ground state

f(X) = E =
Nbf∑
ab

d∗
adb⟨ζ(a)|Ĥ|ζ(b)⟩ (4.11)

after imaginary time propagation. On first inspection one might expect X to be the
set of Zombie states, however, the X is in fact the set of values used to construct each
Zombie state. A Zombie state can be constructed using its displacement operator,

D(ζ)|0⟩ (4.12)

where ζ = (ζ1, . . . ζNorb
) and ζi = (θ′

i/2)e−iϕj . Since, only Zombie states with real
coefficients will be considered in this work the exponential term can be omitted so

76

77 4.4

ζi = θi with θi = 2θ′
i. Clearly, each Zombie state is defined by a unique set of values,

|ζ(a)⟩ =D(ζ(a))|0⟩ (4.13)

with ζ(a) being the unique set of values used to define |ζ(a)⟩ this set is given the
notation,

ζ(a) = (ζ(a)
θ1
, ζ

(a)
θ2
, . . . , ζ

(a)
θNorb

) (4.14)

to make clear which Zombie state and orbital each value corresponds to. Thus for
a basis set with Nbf Zombie states with Norb spin orbitals the set of values to be
optimised are,

X = {ζ(1)
θ1
, ζ

(1)
θ2
, . . . , ζ

(1)
θNorb

, . . . , ζ
(Nbf)
θ1

, . . . , ζ
(Nbf)
θNorb

}. (4.15)

The same set is also found by using the normalisation criterion defined in Eq. (2.228).
Therefore, the gradient vector is,

∇f(X) = ∇f
(
ζ

(1)
θ1
, . . . , ζ

(Nbf)
θNorb

)
=

 ∂f

∂ζ
(1)
θ1

, . . . ,
∂f

∂ζ
(Nbf)
θNorb

 (4.16)

where each ∂f

∂ζ
(a)
θi

is the partial derivative of the energy function with respect to θi
used to generate the "dead" and "alive" coefficients in the i-th orbital in Zombie state
"a", ζ(a). Therefore, a single element of the gradient vectors is given using,

∂E

∂ζ
(a)
θi

=
Nbf∑
ab

∂(d∗
a)

∂ζ
(m)
θi

db⟨ζ(a)|Ĥ|ζ(b)⟩+
Nbf∑
ab

d∗
a
∂(db)
∂ζ

(m)
θi

⟨ζ(a)|Ĥ|ζ(b)⟩

+
Nbf∑
ab

d∗
adb

∂⟨ζ(a)|Ĥ|ζ(b)⟩
∂ζ

(a)
θi

.

(4.17)

For Gradient Descent to be applicable Eq. (4.11) must be continually differentiable
and a full derivation of this proof can be found in Appendix C. The first two sum-
mations account for the Zombie coefficients becoming dependent on X through
imaginary time propagation, Eq. (3.19).

77

78 4.4

4.4.1 Alternative Gradient Calculation
To calculate the gradient using Eq. (4.17) directly is a computationally expensive
task that dominates the program execution but a simple algebraic re-framing re-
duces computational complexity. The energy equation in vector notation, d∗Hd, is
differentiated with respect to the the d vector

∂

∂d
d∗Hd = 2Hd = ∂E

∂d
. (4.18)

After each imaginary time step a new Zombie state coefficient vector is found de-
noted, c, which is then normalised to produce d. The normalisation occurs by,

d = c√
|c∗Ωc|

(4.19)

where c is the unnormalised Zombie coefficient vector and Ω is the overlap matrix.
This can then be differentiated with respect to an orbital in a Zombie state ∂

∂ζ
(a)
θi

∂

∂ζ
(a)
θi

c√
|c∗Ωc|

= −c

2(
√
c∗Ωc)3

c∗Ωc

|c∗Ωc|
c∗∂Ωc

∂ζ
(a)
θi

= ∂d

∂ζ
(a)
θi

. (4.20)

Then using the chain rule an expression for ∂E

∂ζ
(a)
θi

can be found by combining Eq. (4.18)

and Eq. (4.20),

∂E

∂ζ
(a)
θi

= ∂E

∂d
· ∂d

∂ζ
(a)
θi

= −cHd

(
√

|c∗Ωc|)3

c∗Ωc

|c∗Ωc|
c∗∂Ωc

∂ζ
(a)
θi

. (4.21)

The first two terms are the invariant regardless of the choice of derivative, and re-
quire very little extra calculation than is already required during imaginary time
propagation. c∗Ωc

|c∗Ωc| = ±1; (
√

|c∗Ωc|) is already required for normalisation and cHd

easily calculated. The only derivative that needs to be calculated is of the overlap
matrix which can be done very simply with modification of the choice of ampli-
tudes in the overlap equation. The derivative of an overlap matrix element with
respect to a coefficient not in that overlap will be zero as will any derivatives of
diagonal elements of Ω. This removes the need to directly calculate derivatives of
the Hamiltonian matrix which is computationally expensive.

78

79 4.4

4.4.2 Algorithmic Specifications
This development process can be split into two distinct categories: program design
and program implementation. The program design for Zombie Gradient Descent has
focused on deciding which ZS amplitudes are altered in a single step; the learning
rate, γ, used at each step and choices to ensure a good rate of convergence. The
implementation of the program requires the design of two key algorithms to produce
Hamiltonian elements and gradients which need to be made as efficient as possible
as well as the various decisions to be made about code base such as parallelisation
and library routines. Despite the distinct categorisation made between parts of
the development process both had to happen concurrently. In particular speed-
ups in the gradient calculation algorithm led to changes in the program design.
In this section a description of the program design will be given to understand the
overall process of the program. Whereas a full description of the specific algorithmic
choices implemented in the Zombie states program is given in Appendix B where
the algorithmic development is also detailed.

A single epoch is completed when the entire data set (in this case the ZS basis set)
is passed through the gradient descent algorithm. Generally, reducing the number
of epochs, required to reach the function’s minimum, will mean a faster program but
the length of time each epoch takes to complete is also an important consideration.
There are three main variations in the type of gradient descent algorithm that differ
in how a single epoch is completed. In batch GD the gradient is calculated for the
entire data set and all points updated concurrently. Conversely in stochastic GD the
gradient is calculated for a single instance which is used to estimate the gradient of
the entire data set; each epoch is made up N iterations as the process is repeated for
each individual data point. Mini-batch GD uses a subset of data points to estimate
the gradient before updating the input values which requires fewer iterations per
epoch than stochastic GD [138]. However, these methods have predominately been
developed for machine learning and neural network applications where input data
is used to train a system which is slightly different to the optimization problem for
a set of ZS basis functions. Within a basis set each ZS can be very different to
others as collectively they describe the electronic structure of the system so it would
not be appropriate to alter all ZSs based on the gradient calculated from either a
single or a small group of other ZS basis functions. The batch GD method was not
appropriate due to the back tracing condition duly discussed. Thus, a coordinate
gradient descent algorithm is employed: on every epoch each coefficient within each
ZS basis function is individually attempted to be altered [139]. So the gradient with
respect to each "dead" and "alive" coefficient within a single ZS is calculated and

79

80 4.4

that amplitude is then altered,

ζ
′(a)
θi

= ζ
(a)
θi

−γ · ∂Ep
∂ζ

(a)
θi

(4.22)

this altered ZS amplitude means an altered wave function, denoted |Ψ′⟩. With
any change in the wave function a new Hamiltonian can be calculated and using
imaginary time propagation a new ground state energy can be found E′ = ⟨Ψ′|Ĥ|Ψ′⟩.

However, rather than accepting every changed amplitude, a modified version of
the Armijo rule is used [140]. The energy from the previous step is denoted Ep

which gives the back tracing condition,

E′ ≤ Ep−α (4.23)

which if met then the new "dead" and "alive" coefficients are accepted and the system
ground state energy is updated, Ep+1 = E′. The parameter α can be set to control
the minimum step down in the ground state energy. In practice α is set to ensure any
reduction in the energy is within the numerical precision of the computer system.
The back tracing condition was integral for convergence without it ensuring lower
ground state energies the process just oscillates around a point. This is illustrated in
Fig. 4.7 which shows, for the truncated Li2 system, the gradient descent algorithm
getting stuck in a local minima rather than converging towards the ground state.
This justifies the "wasted" cost of calculating a new Hamiltonian element that are
not then used in a subsequent step. It is still important to try and minimise the
amount of wasted computational cost which is why the batch GD method was not
appropriate. If all amplitudes are altered concurrently then an entirely new Hamil-
tonian needs to be calculated and then possibly rejected. In fact this becomes more
likely the more amplitudes are changed at once. Whereas, attempting to change
amplitudes in a single Zombie state means it is only necessary to calculate a single
new row of Hamiltonian matrix elements. A completely new Hamiltonian would
also need to be calculated at each gradient descent step if amplitudes for the same
orbital across all Zombie states were also concurrently altered. The computational
cost of calculating a new Hamiltonian element is the same if a single orbital or all
orbitals in the same Zombie state have been changed. Thus, a basis set of Nbf ZSs
with Norb spin orbitals would take Nbf steps to complete an epoch if all amplitudes
in a single state were altered concurrently compared to Nbf ×Norb steps if altering
each amplitude individually. However, as established by the biasing method and the
principles of CASSCF calculations higher energy orbitals can be treated differently
to lower energy orbitals. Low energy core orbitals are likely to be occupied and
so have "alive" amplitudes close to 1. Once the amplitudes are within this region
they are likely to only need small corrections achieved with a small learning rate.
The same argument can be made for higher energy orbitals and "dead" amplitudes

80

81 4.4

Figure 4.7: The ground state energy over 100 epochs is shown when the back tracing
condition in Eq. (4.23) is not used. Accepting all alterations to the Zombie state ampli-
tudes causes the gradient descent process to oscillate around a local minima rather than
converge towards the ground state energy. A basis set of ten ZSs was used for the same
truncated Li2 system with ten spin orbitals in the 6−31G∗∗ basis.

being also being near to one. Orbitals in the active space have amplitudes that
can fluctuate much more greatly and can be changed using larger learning rates.
So attempting to concurrently alter amplitudes in a Zombie state using the same
learning rate could result in changes being rejected that individually would reduce
the ground state energy.

The learning rate is controlled according to a schedule: fixed for each epoch then
decreased for the next until a minimum is reach at which point the schedule restarts,

γp = νpγ (4.24)

with γ being the initial learning rate and ν the learning rate reduction parameter.
p is increased by 1 at each epoch if p > pmax then minimum learning rate has been
reached and the cycle is restarted by setting p= pmin = 0 to reset the learning rate
to γ. Larger learning rates mean greater steps and usually larger reductions in the
ground state energy at each step while smaller learning rates mean more orbitals
are likely to be changed per epoch. By using a decreasing learning rate scheme
large steps down in the ground step energy can be achieved while also allowing
multiple orbitals to be changed over the course of the schedule. A small change
to amplitudes in one ZS can facilitate larger changes in another because the wave

81

82 4.4

function as a whole needs to contain superpositions of the important Fock states but
not necessarily within each individual Zombie state. There is, however, a threshold
for the number of ZSs altered in an epoch which if not reached then that learning rate
is removed from subsequent schedules. As the minimum is approached the changes
to ζ

(a)
θi

that result in a reduction to the ground state energy become smaller and
hence a smaller learning rate is required. By removing learning rates that no longer
result in a significant number of amplitude alterations the wasted computational
cost, from calculating a new Hamiltonian that is rejected, is minimised. The range
of learning rates used is easily controlled by changing the maximum and minimum
values p can take. The gradient descent process is outline in Fig. 4.8. The criteria
used to terminate the GD process is not shown but if the maximum number of
epochs is reached or no further changes are possible the gradient descent process
ends.

Figure 4.8: Flowchart summarising the gradient descent process used to optimise Zom-
bie state amplitudes. Details of the exact termination criteria have been omitted for
clarity.

82

83 4.4

4.4.2.1 Initiating the Wave Function
The simplest way to initially set the Zombie wave function is to randomly generate
numbers 0 ≤ θ < 2π and then use Eq. (2.228) to assign the "dead" and "alive" coeffi-
cients as the sine and cosine of θ. A general biasing regime has been developed based
on the regime used for the truncated lithium dimer. The regime generates a set of
θj for each Zombie state which are then used to set the "dead" and "alive amplitudes
using Eq. (2.228). Each θj is drawn randomly from a normal distribution, the cen-
tring and the width of which are set by the biasing regime for each spatial orbital.
To set values the biasing regime uses the RHF configuration as a reference. So for
fully occupied spatial orbitals the normal distributions are centred at π/2 to bias
towards larger "alive" amplitudes. For all other orbitals the Gaussian distributions
are centred at 0. The width of the distributions are then equally spaced between
start and end points for the "dead" and "alive" biased orbitals. The "alive" biasing
distributions, centred at π/2, have widths starting and ending

σalive : ϵa1 · ⌈ 10
Norb

⌉ → ϵa2 · ⌈ 10
Norb

⌉. (4.25)

The distributions centred at 0 that start and end,

σdead : ϵd1 · ⌈ 10
Norb

⌉ → ϵad2 · ⌈ 10
Norb

⌉. (4.26)

ϵ values for the each set of distributions can then be set in the code. Each Zombie
state can then be initialised, the normal distribution for each spatial orbital being
used to generate θj for both constituent spin orbitals. This regime is refereed to as
biasing regime 1.

A second biasing regime was also developed that classifies the spin orbitals into
three groups in a similar way to CASSCF. The core orbitals are set to have a fully
occupied "alive" coefficient; active space orbitals are randomly generated from the
interval 0 ≤ θ <

1
2π and virtual orbitals are all set to θ = 1.0 × 10−4. Eq. (2.228) is

again used to ensure normalised "dead" and alive coefficients. The regime has been
summarised in Table. 4.2 showing how it is set up for different numbers of electrons.
It should be noted that regardless of the method used to initiate the Zombie states
all spin orbitals are treated equally and allowed to be altered by the gradient descent
program. Thus, core orbitals initially set to have "dead" and "alive" coefficients of
0 and 1, respectively, can still be altered. A final additional detail is that the first
basis function in all basis sets is set to be the RHF determinant and is unchanged
by the GD algorithm making the initial wave function energy a good first guess.

83

84 4.4

Table 4.2: Table showing the biasing regime used to initiate Zombie states used in the
gradient descent method1.

Nel
Values of θ for range of spin orbitals, ζi

Core, θ = 1/2π Active, 0 ≤ θ < 1/2π Virtual, θ = 1.0×10−4

> 4 1 ≤ ζi ≤ 4 5 ≤ ζi ≤ (Nel+Nact) (Nel+Nact)< ζi
4 1 ≤ ζi ≤ 2 3 ≤ ζi ≤ (Nel+Nact) (Nel+Nact)< ζi
< 4 1 ≤ ζi ≤ (Nel+Nact) (Nel+Nact)< ζi

4.4.2.2 Cloning
A simple modification to the initialisation process when is to incrementally increase
the size of the basis set once the existing ZS functions have undergone some opti-
misation by the gradient descent process. This is inspired by the cloning method
implemented in MCE [15]. Rather than starting with a large basis set and its asso-
ciated computational cost a smaller basis set ZS functions is initialised which can be
optimised faster. Then when the cloning conditions are satisfied additional Zombie
states are generated and a new wave function is calculated. A maximum basis set
size is set as well as the number of ZSs that are added. Cloning is initiated after
a certain number of epochs or when the number of Zombie states altered does not
reach a predetermined threshold. The cloning step occurs in-between an epoch.

4.4.3 Results
The gradient descent algorithm is demonstrated for a range of different chemical
systems and basis sets. All one- and two-electron integrals are calculated using
PyScf as are the comparative full-CI energies unless otherwise indicated [134]. PyScf
is used as a helper program separate to the main Zombie states code, full details
of how this works can be found in D. The type of initial Zombie state and the
electronic basis set used is indicated for each molecule. When cloning has been used
the additional Zombie states are of the same kind as the initial basis set. Different
maximum gaps between cloning events are used but conditional cloning is set so a
cloning event occurs when less than a third of the ZSs are altered, during an epoch
with the smallest learning rate. The minimum and maximum learning rates are
specified for each system but the learning rate reduction parameter, ν = 0.2, is used
universally. All energies are given in atomic units accurate to 1.0×10−6au which is
equivalent to 6.275×10−4 kcal/mol, 2.626 J/mol or 2.721×10−2 meV [141].

1Nel is the number of electrons; Nact = 4 if Nel is even or Nact = 5 if Nel is odd. "Dead" and
"alive" coefficients are generated using cos(θ) and sin(θ) respectively. The active space orbitals
are randomly generated.

84

85 4.4

4.4.3.1 Li2 (Truncated Basis Set)
For completeness the gradient descent process is applied to the truncated Li2 basis
with ten spin orbitals in the 6 − 31G∗∗ basis used throughout this thesis. Three
basis sets consisting of 10, 20 and 30 Zombie states underwent gradient descent. All
amplitudes were initiated randomly except the first Zombie state which was kept as
the RHF determinant. A learning rate cycle of γ = 2500 was used with a pmin = 6
giving a final learning rate of γ = 0.16. For the 30 ZS basis set the energy over the
course of the gradient descent process is shown in Fig. 4.9, with the reduction in the
ground state energy being clearly demonstrated in the Fig. 4.10. The results for all
three basis sets have been summarised in Table. 4.3. Unsurprisingly, increasing the
size of the basis set yields final ground state energies closer to the full-CI energy.
The ground state energy for the basis of 30 Zombie states set up using the original
biasing method, detailed in Table. 4.1, is also shown for comparison. Basis sets of
all sizes, that underwent gradient descent, produce final ground state energies far
closer to the true full-CI energy than the biased basis. Significantly, all spin orbitals
in the wave functions optimised by gradient descent are treated equally, meaning
no assumptions have been made about the electronic configurations. Further, the
optimised basis sets of 20 and 30 Zombie states have final ground state energies
within chemical accuracy of the full-CI energy, while being significantly smaller
than the complete basis set of 1024 configurations or 210 if only the correct number
of electrons are considered.

Table 4.3: Table summarising the ground state energies, for the truncated Li2 system
in the 6 − 31G∗∗ basis. The 10, 20 and 30 Zombie state basis sets have all undergone the
gradient descent process1.

Basis Set Ground State
Energy [au]

Percentage Error
with full-CI [%]

CPU
Time [s] Error/Time

RHF -14.863553 5.6×10−2

10 ZS -14.871912 1.4×10−5 145 9.7×10−8

20 ZS -14.871913 4.2×10−6 773 5.4×10−9

30 ZS -14.871914 1.4×10−7 2976 4.7×10−11

30 biased ZS -14.866963 3.3×10−2

full-CI -14.871914

1The 30 biased Zombie state basis is constructed using the biasing method detailed in Ta-
ble. 4.1. The full-CI energy was calculated by diagonalising the Hamiltonian matrix for the com-
plete Slater determinant basis. The biased basis gives a ground state energy with an error the
same order of magnitude as the RHF energy whereas the basis sets optimised by gradient de-
scent all show significantly improved energies compared to the full-CI energy. The CPU time
required to to complete the GD process for each basis set. The final column shows how the error
scales with CPU time.

85

86 4.4

Figure 4.9: Plot showing the gradient descent process for the truncated Li2 molecule
in the 6 − 31G∗∗ basis with a basis set of 30 randomly initialised Zombie states. The
full-CI energy, found by diagonalising the complete basis is also shown for comparison as
the solid (purple) line.

Figure 4.10: Plot comparing the imaginary time propagation for the initial and fi-
nal wave function to find the ground state energy of the truncated Li2 molecule in the
6−31G∗∗ basis. A basis set of 30 randomly initialised Zombie states. The full-CI energy,
found by diagonalising the complete basis is also shown for comparison as the solid (pur-
ple) line.

86

87 4.4

The average populations for each orbital, before and after gradient descent are
shown in Fig. 4.11. Random initialisation sets each orbital to have a broad range
of occupations, similar for each orbital. Looking first at the average populations for
the first four spin orbitals the gradient descent process clearly moves occupations
closer to full occupancy – as would be expected. The final six orbitals then have
significantly lower average populations. However, the spread of population values
is also important – darker plots showing overlapping values. The gradient descent
process causes populations to cluster at either end of the scale for each orbital.
Orbitals nine and ten have a higher average population than orbitals 5-8 but these
are clustered at either extreme. Whereas, the lower orbitals show a greater spread
of values indicating orbitals with a more variable occupation. This visualises how
a Zombie basis, when properly optimised, can effectively describe the ground state
of a system. The ZS functions cancel out incorrect configurations, with orbital
populations generally reflecting either an occupied or unoccupied state. However,
the Zombie states still include contributions from low population configurations that
are nonetheless crucial for recovering full-CI energies.

Figure 4.11: Occupational probability plotted against orbital number for ten spin or-
bitals for the lithium dimer before and after gradient descent. The population of each
Zombie state, for each orbital, is plotted with the average occupation marked with a
cross. Values in red are the initial randomly generated populations and blue values are
the populations after gradient descent.

87

88 4.4

4.4.3.2 Atomic Systems in the cc-pVDZ Basis
The ground state energies of row one elements are a good set of systems to demon-
strate the capabilities of an electronic structure method. The cc-pVDZ basis was
used as it offers a higher level of complication than the truncated Li2 system while
also having readily available exact energies for comparison. An initial basis of
Nbf = 4 Zombie states was used for the lithium atom. Cloning events occurred
at the end of each learning rate cycle until the maximum basis set size was reached.
This was initially set to Nbf = 40 and then extended to Nbf = 45 at 977 epochs.
The gap between cloning events was doubled when the basis set size was a multiple
of ten. An initial learning rate of γ = 62500 was used with a pmin = 14 giving a
final learning rate of γ = 1.05 × 10−5. The gradient descent process can be seen in
Fig. 4.12.a. which shows as the exact ground state energy is approached the rate
of reduction slows. 315 epochs and 23 ZSs were required to achieve a ground state
energy accurate to 5 d.p. but required a further 1574 epochs and 22 additional
Zombie states to be within 1.0 × 10−6au of the full-CI energy. Fig. 4.12.b. plots
imaginary time propagation for the initial and optimised wave function. The bias-
ing regime used the values ϵa1 = 0.0001, ϵa2 = 0.17, ϵd1 = 0.35 and ϵd2 = 0.15 to set
the start and end points for the widths of the normal distributions. The occupa-
tional probability for the initial and optimised wave function, for lithium, is shown
in Fig. 4.13. In a similar manner to the truncated Li2 system the gradient descent
process optimises amplitudes so the populations are clustered around either being
fully "alive" or "dead". The average optimised populations show the first three sin
orbitals having higher populations than any other and populations decreasing as or-
bital number increases. Comparing the initial biased populations in Fig. 4.13 to the
randomly generated ones in Fig. 4.11 the biasing regime better captures the trend
of decreasing populations for higher orbitals. However, the biasing regime sets aver-
age populations for all but the first spin orbitals much higher than their optimised
equivalents. There is also a drop in population between spin orbitals three and four,
as lithium has three electrons, that is not reflected in the average populations in the
biasing regime at all.

88

89 4.4

a: Plot showing the ground state energy over the course of the gradient descent process.

b: Imaginary time propagation for the initial (blue) and optimised (green) wave
functions. The full-CI energy is the (purple) horizontal line.

Figure 4.12: Plots showing the gradient descent process and initial and final ground
state energies for Li in the cc-pVDZ basis. An initial basis of Nbf = 4 ZSs was used,
cloning added a single ZS to reach a final basis set size of Nbf = 45. Learning rates
ranged from γ = 62500 to γ = 1.05 × 10−5. The biasing regime, with values ϵa1 = 0.0001,
ϵa2 = 0.17, ϵd1 = 0.35 and ϵd2 = 0.15 was used to initialise the ZSs.

89

90 4.4

Figure 4.13: Occupational probability plotted against orbital number for all 28 spin
orbitals (1-14 top, 15-28 bottom) for the lithium atom before (red) and after gradient
descent (blue). The orbital population of each Zombie state is plotted with the average
occupation marked with a cross. The biasing regime, with values ϵa1 = 0.0001,
ϵa2 = 0.17, ϵd1 = 0.35 and ϵd2 = 0.15 was used to initialise the ZSs.

90

91 4.4

For the boron atom an initial basis of Nbf = 4 was used with a maximum of
Nbf = 60 initialised using the biasing regime with the same ϵ values as for the
lithium atom. The same learning rate cycle was used as in the lithium atom with
the first regime set to have cloning events after one learning rate cycle. The gradient
descent process is plotted in Fig. 4.14.a, the initial 500 epochs showing the largest
and fastest reduction in energy after which the rate of change slows.

For the beryllium atom the optimised set of Zombie states from the lithium
atom were used as the starting point. The only change being the first ZS which
was swapping the Li RHF determinant for beryllium. The learning rate cycle was
also extended so pmin = 16 giving a minimum learning rate of γ = 4.10×10−7. The
gradient descent process and comparison of initial and final energies is shown in
Fig. 4.15. The gradient descent process has managed to optimise the wave function
to give a ground state energy that is significantly more accurate than the initial
energy. But the exact energy has not been returned because of the slow rate of
convergence combined with each epoch being computationally expensive.

The nitrogen atom was set up using the biasing method from Table. 4.2 with an
initial basis of Nbf = 4 with cloning set after two learning rate cycles until a final size
of Nbf = 60 was achieved. The learning rate cycled from γ = 500 to γ = 1.05×10−5

using reduction parameter ν = 0.2. The energy after 1738 epochs is not yet converged
as can be see by the energy in Table. 4.4. However, the updated biasing regime
shown in Fig. 4.16 is a much better reflection of the expected populations and is the
preferred method for initialising the Zombie states.

Table 4.4: Table comparing the ground state energies for selected row one elements
in the cc-pVDZ basis1. Restricted Hartree Fock and full-CI energies are calculated us-
ing PyScf which is also used to generate the one- and two-electron integrals used in the
Zombie state calculation [134].

Zombie state PySCF
Atom Energy [au] Nbf RHF

Energy [au]
Full-CI

Energy [au]
Nbf

Li(a) −7.432638 45 −7.432420 −7.432638 3276
Be(a) −14.61701 45 −14.572338 −14.617410 20475

B −24.588697 56 −24.526591 −24.590630 98280
N(a) −54.435063 60 −54.248220 −54.480115 1184040

1For the Zombie states Nbf is the final number of functions used whereas for the PyScf
calculation Nbf is the maximum number of electron configurations with the correct number of
electrons i.e Norb!

Nel!(Norb−Nel)! . In all cases the Zombie state method requires orders of magnitude
fewer functions to achieve chemically equivalent energies. (a) Energies are also equivalent to full-
CI results in Ref. [135]. All energies are in atomic units.

91

92 4.4

a: Plot showing the ground state energy over the course of the gradient descent process.

b: Plot showing the imaginary time propagation for the initial wave function and the
final wave function optimised by gradient descent. The full-CI energy calculated using

PyScf is the (purple) horizontal line [134]

Figure 4.14: Plot showing imaginary time propagation for an initial basis set of
Nbf = 4 ZS and final wave function of Nbf = 60 ZSs optimised using gradient descent
for Boron in the cc-pVDZ basis. Zombie states were initialised using the biasing regime
with values ϵa1 = 0.0001, ϵa2 = 0.17, ϵd1 = 0.2 and ϵd2 = 0.001. Learning rates ranged
from γ = 62500 to γ = 1.05×10−5 with a reduction parameter of ν = 0.2.

92

93 4.4

a: Plot showing the ground state energy over the course of the gradient descent process.

b: Plot showing the imaginary time propagation for the initial wave function and the
final wave function optimised by gradient descent. The full-CI energy calculated using

PyScf is the (purple) horizontal line [134]

Figure 4.15: Plots showing the gradient descent process and initial and final ground
state energies for Be atom in the cc-pVDZ basis. The optimised Zombie states from the
lithium atom, from Fig. 4.12 were used as the initial basis. The learning rates ranged
from γ = 62500 to γ = 1.05×10−5 with a reduction parameter of ν = 0.2.

93

94 4.4

Figure 4.16: Occupational probability plotted against orbital number for the all 28
spin orbitals for the nitrogen atom before (red) and after (blue) gradient descent. The
population of each Zombie state, for each orbital, is plotted with the average occupation
marked with a cross. The populations were set using the biasing regime described in
Table. 4.2.

94

95 4.4

4.4.3.3 BH in the 6− 31G∗∗ Basis
Two systems of for BH with different bond lengths were considered using Zombie
states. Firstly BH with a bond length of 1.234 Å was considered with an initial basis
set of Nbf = 25 growing to a final basis set size of Nbf = 300 all initialised using the
biasing method in Table. 4.2. The learning rate cycle which ranged from γ = 2500 to
γ = 2.56×10−4 at the end of which cloning was used to add five additional Zombie
states. A similar system was also investigated with a bond length of 4.0 Å initial
basis of Nbf = 20 which is increased by a five ZSs, at the end of the learning rate
cycle, up to a maximum basis set size of Nbf = 245.

The BH molecule in the 6−31G∗∗ has 38 spin orbitals and six orbitals which gives
a total of 2,760,681 possible configurations with the correct number of electrons so
both systems are using basis sets that are significantly smaller than the complete
Fock space. Though not completely converged to the full-CI result the Zombie
state method is approaching the the full-CI energy with the stretched configuration
approximately 1.40 kcal/mol higher than the exact energy. For the 1.234 Å bond
length system the ZS method has a ground state energy that is 2.2 kcal/mol higher
than the full-CI energy. However, for the stretched bond length the Zombie state
method does give a ground state energy that is more accurate than the CCSD(T)
method. In both Fig. 4.17.a and Fig. 4.18.a the gradient descent process has not
plateaued and with further epochs the full-CI energy should be achieved.

4.4.3.4 Diatomic Molecules in the cc-pVDZ Basis
Gradient descent was also applied to three larger diatomic molecules using the cc-
pVDZ basis. Using the second biasing regime a Li2 system was set up with ten
Zombie states. The learning rate cycled from γ = 62500 to γ = 0.16 with a single
Zombie state added at the end of the cycle until a maximum of Nbf = 100 was
reached. The gradient descent process is shown in Fig. 4.19 with the full-CI energy
for comparison shows the process has not yet fully converged but this should be
possible with more epochs.

95

96 4.4

a: Plot showing the ground state energy over the course of the gradient descent process.

b: Plot showing the imaginary time propagation for the final wave function optimised
by gradient descent. The full-CI energy is the purple horizontal line and the CCSD(T)

the orange.

Figure 4.17: Plots showing the gradient descent process and final ground state ener-
gies for BH in the 6 − 31G∗∗ basis with a bond length of 1.234 Å for Nbf = 300. A set of
Nbf = 25 Zombie states was initialised with biasing regime 2 with 5 additional functions
added at the end of a learning rate cycle which ranged from γ = 2500 to γ = 2.56×10−4.

96

97 4.4

a: Plot showing the ground state energy over the course of the gradient descent process

b: Plot showing the imaginary time propagation for the final wave function optimised
by gradient descent. The full-CI energy is the purple horizontal line and the CCSD(T)

the orange.

Figure 4.18: Plots showing the gradient descent process and final ground state ener-
gies for BH in the 6−31G∗∗ basis with a bond length of 4.0 Å. A set of Nbf = 20 Zombie
states was initialised with biasing regime 2 with 5 additional functions added at the end
of a learning rate cycle which ranged from γ = 12500 to γ = 2.05×10−6.

97

98 4.4

Figure 4.19: Plot showing the gradient descent process for Li2 in the cc-pVDZ basis.
An initial basis of Nbf = 10 was used, set up using biasing regime 2, with cloning occur-
ring at the end of each learning rate cycle. A single ZS was added up to a maximum of
Nbf = 100. The learning rate cycled from γ = 2500 to γ = 0.16. The full-CI energy calcu-
lated using PyScf is the (purple) horizontal line [134].

Figure 4.20: Plot showing the gradient descent process for Be2 in the cc-pVDZ basis.
An initial basis of Nbf = 10 was used, set up using biasing regime 2, with cloning occur-
ring at the end of each learning rate cycle. A single ZS was added up to a maximum of
Nbf = 170. There were three available learning rates γ = 2500,500,100 in the cycle. The
CCSD(T) energy calculated using PyScf is the (purple) horizontal line [134].

98

99 4.5

A Be2 molecule was then investigated using an initial ZS basis of Nbf = 10 and
cloning used to increase the number of Zombie states, at the end of each learning
rate cycle, to a maximum of Nbf = 170. A learning rate cycle of γ = 2500,500,100
was used to grow the size of the basis set quickly. The nitrogen dimer was set up
using the same running conditions reaching a maximum basis set of Nbf = 200. The
gradient descent process in both Fig. 4.20 and Fig. 4.21 is clearly not yet converged.
But the ground state energy is still decreasing at a reasonable rate and so needs to
be continued with lower learning rates available.

Figure 4.21: Plot showing the gradient descent process for N2 in the cc-pVDZ basis.
An initial basis of Nbf = 10 was used, set up using biasing regime 2, with cloning occur-
ring at the end of each learning rate cycle. A single ZS was added up to a maximum of
Nbf = 200. There were three available learning rates γ = 2500,500,100 in the cycle. The
CCSD(T) energy calculated using PyScf is the (purple) horizontal line [134].

4.5 Conclusions and future work
The use of gradient descent to optimise Zombie state coefficients has significantly
increased the complexity of system the method is capable of handling. The truncated
lithium dimer system has been used throughout this work as a simple numerical
example to verify properties of the Zombie state method. The biasing method
indicated that, with proper sampling of ZS amplitudes, it should be possible to
recover exact energies while using an incomplete basis set size. However, the biasing
method when applied to Li2 was limited by the need to fix core orbital occupations

99

100 4.5

to fully "alive" and the method overall lacked universality, as each orbital bias was
set using a process of trial and error. The gradient descent algorithm essentially
generalises the biasing process optimising "dead" and "alive" Zombie coefficients so
the wave function can better describe the ground state energy. For the truncated Li2
system, a basis set of 30 optimised Zombie states was required to recover the full-CI
ground state energy. It should be noted that the number of epochs required for
convergence is considerably longer than other results which is due to the relatively
high minimum learning rate. This limits the number of possible alterations that are
accepted as the exact energy is approached. In fact it can be seen from Fig. 4.10
that the energy is almost converged by 500 epochs and most are spent making very
small adjustments. This highlights the importance of a range of learning rates being
available to ensure a reasonably timed convergence. However, the energy did still
converge with a basis set half the size required for the biased ZSs to achieve the
same result. Moreover, the gradient descent process optimises amplitudes with no
a priori information about electron configurations beyond the RHF determinant.
Thus, allowing all orbitals in a system to be treated on an equal footing. This
significantly improves the ZS method’s ability to be applied universally, a stipulation
in Pople’s framework [3].

The fourth stage of Pople’s framework for method development is the verification
of the method compared to known quantities. The results summarised here evidence,
for the first time, that the Zombie states method can be applied to larger systems
that have not been significantly truncated. Atomic studies were used to verify both
FCIQMC and MCCI and a similar set of results has been produced by the ZS method
[83, 91]. The cc-pVDZ basis, for the first row elements contains 28 spin orbitals,
significantly larger than the 10 in the truncated Li2 system. For the lithium atom
it was possible to optimise the Zombie basis to return the full-CI energy. Table. 4.4
shows that even for the unconverted systems the GD process does make significant
improvements to the wave function’s ability to describe the ground state, while using
a basis set orders of magnitude smaller than the complete Fock space. Nonetheless,
to allow direct comparison between the ZS method, FCIQMC and MCCI, further
simulation of these atomic systems should be completed using the aug-cc-pVDZ
basis. It should then also be possible to start calculating properties of the system
beyond just the ground state energy such electron affinities. Applying the gradient
descent process to the two BH systems showed promising results, with the energy
nearly converging to the exact values. However, the diatomic systems in the cc-
pVDZ basis demonstrated that the method is still hindered by its computational
expense. For Be2 and N2 the steepness of the plots in Fig. 4.21 and Fig. 4.20
indicates that the gradient descent process is nowhere near complete but has been
limited by the time required to complete a single epoch with these larger systems.

An important consideration in Pople’s framework for developing a new method is

100

101 4.5

achieving reasonable computational time and cost. Despite the improvements to the
Hamiltonian algorithm, outlined in Appendix B.3.1.3 and the indirect method for
gradient calculation, the gradient descent process is still slow. For example, PyScf
is able to calculate the full-CI ground state energy for any of the atomic systems
discussed in this work in less than a minute whereas using gradient descent to op-
timise ZS coefficients takes multiple hours with multi-threading. Of course, these
systems have been chosen precisely because there is a known point of comparison
to demonstrate the capabilities of the ZS method rather than its current speed.
Nonetheless, remedying the long calculation times is still important and there are
number of different approaches that could be considered. The bottleneck in the
gradient descent calculation is the recalculation of Hamiltonian matrix elements.
The simplest solution would to use more computing power – increasing the number
of parallel threads available. This approach is limiting, simulations of larger sys-
tems will quickly reach the computational limits again. Although, using multiple
CPUs to calculate different matrix elements rather than splitting the calculation
over multiple threads on a single CPU could be considered [142]. Alternatively, the
computing power of a GPU could be utilised which is effective at completing large
numbers of repetitions of the same calculation using different bits of data. For a
particular system all Hamiltonian matrix elements are calculated using exactly the
same summation of one- and two-electron components which ultimately can be seen
as the same set of multiplication and additions simply using different Zombie states.
Thus, the same instruction multiple data (SIMD) model used on a GPU would be
well suited to a Hamiltonian matrix element calculation.

Further, it should also be possible to reduce the number of times the Hamiltonian
recalculation algorithm is called. This can be achieved by reducing the number of
epochs, increasing the efficiency of each epoch and finding an alternative to the
Hamiltonian algorithm. Firstly, the number of epochs needed for convergence can
be greatly reduced by using a basis set with an initial energy as close to the full-CI
ground state energy as possible. In the MCE method sampling techniques have been
shown to be very important and this is clearly the case with Zombie state amplitudes
[15]. The current biasing regime only accounts for the number of electrons and sets
all Zombie states in the same way. However, Fig. 4.11 shows that once optimised,
although many of the orbital populations follow the expected pattern, there are still
a significant number of amplitudes indicating the opposite – populations in higher
orbitals and empty lower orbitals. Therefore, the biasing regime should attempt
to replicate some of this behaviour while also taking into account system specific
properties. The starting point of this work should be a systematic analyses of how
the magnitudes, combinations and placement of "dead" and "alive" amplitudes, both
within individual Zombie states and the basis set effect the ground state energy.

The current gradient descent algorithm optimises amplitudes by minimising the

101

102 4.5

ground state energy alone but there are of course parameters that could also be
optimised including the number of electrons and the total spin. Simplest of all, each
parameter could be optimised sequentially however this could be counter productive
if for example the Zombie state is optimised to better satisfy the number operator
but in doing so increases the overall ground state energy. Thus, it would likely be
beneficial to optimise the ZSs taking all functions into account at the same time
which can be done using the weighted sum method [143]. A new objective function,
h(X), can be defined,

h(X) =
∑
i

wifi(X) (4.27)

with the weights wi to be decided. The ZSs amplitudes can then be optimised us-
ing gradient descent with the gradient now being the weighted sum of gradients of
multiple functions. The total spin, number of electrons and their configurations all
contribute to describing the state of a system. Each Zombie state contains superpo-
sitions of states containing any number of electrons, with incorrect states hopefully
being cancelled out to allow a accurate description of a state. By minimising the
ground state energy and other system parameters concurrently the Zombie wave
function should converge to the ground state faster. Rather than leaving these
other, important, system parameters to be optimised by chance adding them to the
gradient descent process ensures their optimisation aiding the cancelling of incorrect
states. Moreover, the final wave function should also provide a better description of
the ground state.

As described the, GD algorithm considers all ZS amplitudes for alteration in a
single epoch. This means with the current back tracing method multiple Hamilto-
nian matrix elements are calculated and then discarded, which is computationally
wasteful and time consuming. Therefore, reducing the number of Hamiltonian ma-
trix elements that need to be calculated in an epoch, should give a faster convergence
time. Firstly, if the algorithm can make smarter choices about which amplitudes to
attempt to change, the number of rejected Hamiltonian matrix elements can be re-
duced. Some possible parameters that could be used to indicate when an alteration
should be attempted could include the magnitude of the gradient; the resultant dif-
ference in "dead" and "alive" coefficients or the frequency of previous alterations.
The data from the proposed analyse of "dead" and "alive" amplitudes could also be
used to make the ZSs added in a cloning step more useful to the basis set. A further,
widely used way to improve the rate of convergence uses the second derivative to
direct a gradient descent step. The second derivative is a measure of how the gradi-
ent will vary as the input is varied. This information can be used so each gradient
descent step can be optimally sized [144].

However, new Hamiltonian matrix elements will still have to be calculated carry-
ing significant computational cost. Therefore, finding a way to predict Hamiltonian

102

103 4.5

matrix elements without direct calculation could offer even greater speed ups. It
should be possible to train an artificially intelligent algorithm to make Hamiltonian
matrix element predictions. When the GD process attempts to change a ZS ampli-
tude, the current Hamiltonian matrix is known as well as all the amplitudes used
in its calculation. These amplitudes are all the same except for a single orbital.
Each Hamiltonian matrix element is calculated using the same set of creation and
annihilation operations followed by an overlap calculation. The parts of which will
only differ for the altered orbital. Thus, the algorithm can be trained to predict
Hamiltonian values based on the value of the Hamiltonian element; the original
and altered Zombie amplitudes and the placement of the altered orbital. Moreover,
comparing the Hamiltonian calculations between systems, the key difference is just
the one- and two-electron integrals, the effect of which can be integrated into the
training procedure allowing the algorithm to be applied universally.

103

Chapter 5

Excited States

5.1 Introduction
The Zombie states method is being developed with the aim of using it in non-
adiabatic molecular dynamics simulations. Thus, having the capability to compute
low-lying excited states would be beneficial as they are often an import part of a
reaction mechanism. Excited states can be found by diagonalising the Hamiltonian
of a complete, full-CI, wave function as they are simply the higher energy eigenvalues.
This can, of course, be computationally expensive and necessitates using alternative
methods. However, most electronic structure methods are designed to find ground
states with the excited electronic states found using the ground state as a baseline.
The equations-of-motion coupled-cluster (EOM-CC) method uses a coupled cluster
reference state operator on a linear excitation operator of the form,

Rn = 1
n!2

abc...∑
ijk...

a†
aaia

†
baja

†
cak (5.1)

where a,b,c are unoccupied orbitals and i, j,k are occupied producing excited con-
figurations in reference to the the ground state [145, 146]. This produces an effective
Hamiltonian that is formerly exact although in practise reasonable truncations to Rn

are made [147]. An alternative extension to the coupled cluster method is coupled-
cluster linear response (CCLR) which introduces a time-dependent perturbation in
the form of the linear-response function. This is produced using a time-independent
operator, which has a time-dependent expectation value induced by an external field.
The excited states occur at the poles of the CCLR function and are the eigenvalues of
the CCLR matrix [148–151]. CCLR has been used to calculated excitation energies
and dipole transitions [151–153]. Rather than using a single reference state a multi-
configurational self-consistent field (MCSCF) approach can be taken, the most well
known of which is CASSCF [154–157]. Multi-reference CI (MRCI) can then produce
a set of excited determinants generated from the MCSCF space [158–160].

Further, using the FCIQMC method it was shown that, with minimal extra

104

105 5.2

computational cost, a Gram-Schmidt orthogonalisation (GSO) procedure could be
used to find multiple low-energy excited states [24]. The orthogonality of the Slater
determinants is exploited by using a different wave function to describe the ground
state and each excited state. The regular FCIQMC algorithm is applied to each wave
function to find and weight the electron configurations drawn from the complete
Fock space. To find an excited state GSO is used between wave functions which
has the effect of removing ground state contributions from the excited state wave
function. Since configurations for the ground state are removed the excited state
becomes the lowest available state that imaginary time propagation will evolve the
wave function to. The orthogonalisation step is implemented once the FCIQMC
random walk step has completed for each of the wave functions allowing them to
be treated completely separately until orthogonalisation which is the reason for the
low additional computational cost [24]. Like FCIQMC the Zombie states method
has access to every possible configuration and with a shared use of imaginary time
propagation it was logical to also implement GSO in the Zombie states method.

5.2 Theory
In general, Gram-Schmidt orthogonalisation, for any set of vectors, is defined

un = vn−
n−1∑
m=1

projum
(vn) (5.2)

with the projection operator

proju(v) = ⟨u,v⟩
⟨u,u⟩

u. (5.3)

A set of vectors can then be orthogonalised by first setting u1 = v1 and then following
the above process for each vector in the set. Gram-Schmidt orthogonalisation can
then be applied to two wave functions denoted |Ψ(m)⊥⟩ and |Ψ(n)⟩; the ⊥ symbol is
used to show orthogonalisation. Thus, a projection operator can be defined,

proj|Ψ(m)⊥⟩(|Ψ
(n)⟩) = ⟨Ψ(m)⊥|Ψ(n)⟩

⟨Ψ(m)⊥|Ψ(m)⊥⟩
|Ψ(m)⊥⟩. (5.4)

Therefore an orthogonalised wave function can be found by

|Ψ(n)⊥⟩ = |Ψ(n)⟩−
n−1∑
m=1

⟨Ψ(m)⊥|Ψ(n)⟩
⟨Ψ(m)⊥|Ψ(m)⊥⟩

|Ψ(m)⊥⟩. (5.5)

In FCIQMC a basis of Slater determinants is used which means that the orthog-
onalisation step is simple, removing components of the lower energy states from

105

106 5.3

the higher states [24]. A Zombie state wave function however is a superposition of
all possible configurations and so the same set of Zombie states is used but with a
different Zombie coefficient vector which means Eq. (5.5) can be rewritten as

|Ψ(n)⊥⟩ = |Ψ(n)⟩−
n−1∑
m=1

d∗(m)⊥Ωd(n)

d∗(m)⊥Ωd(m)⊥ |Ψ(m)⊥⟩ (5.6)

where Ω is the overlap matrix between Zombie states, evaluated using Eq. (2.223).
Further since |ζ(m,a)⟩ = |ζ(n,a)⟩ ∀a the orthogonalisation process can be further
simplified to

d(n)⊥ = d(n) −
n−1∑
m=1

d∗(m)⊥Ωd(n)

d∗(m)⊥Ωd(m)⊥ d(m)⊥. (5.7)

The Nes lowest electronic states are found using the same number of ZS coefficient
vectors are required to be orthogonalised and then propagated in imaginary time as
in Eq. (3.19)

ḋ(n)⊥ = −Ω−1Hd(n)⊥. (5.8)

This gives a single time step of,

d(n)⊥(β+∆β) = d(n)⊥(β)+ ḋ(n)⊥(β)∆β

−
n−1∑
m=1

d(m)⊥(β+∆β) ·
(
d(n)⊥(β)+ ḋ(n)⊥(β)∆β

)
d(m)⊥(β+∆β) ·d(m)⊥(β+∆β)

d(m)⊥(β+∆β).

(5.9)

Which gives a final repeating procedure of orthogonalisation, normalisation followed
by propagation.

5.3 Results
Using the truncated Li2 system, that has been used as a proof of concept throughout
this work, Gram-Schmidt orthogonalisation is shown to be capable of recovering
excited states when a complete basis of random Zombie states is used. In Fig. 5.1 the
ground state and first three excited states are exact when compared to the eigenstate
energies found by diagonalising the Hamiltonian matrix. A much longer imaginary
time propagation is needed to evolve all of the states to the correct energies. In a
similar result to the complete random basis, the biased basis of 64 Zombie states
(described in Table. 4.1) also evolves to the ground state and excited states.

Reducing the size of the basis set so it is no longer complete as in Fig. 5.3 renders
the wave function unable to describe the ground state or any of the excited states.

106

107 5.3

Figure 5.1: Imaginary time propagation with GSO for a complete random basis for
truncated Li2. The final energies correspond to the ground, degenerate anion and first
excited states with comparison to the eigenvalues of the complete Slater determinant
basis.

Figure 5.2: Imaginary time propagation using GSO with a biased basis of 64 ZSs for
Li2. The biasing regime is described in Table. 4.1. The exact energies for the ground,
degenerate anion and first excited state are shown as dashed lines for comparison.

107

108 5.3

Figure 5.3: Imaginary time propagation with GSO for a basis of 200 random ZSs for
the truncated Li2 system. The final energies of each state correspond, in order, to the
neutral ground, degenerate anion and first neutral excited states.

Figure 5.4: Imaginary time propagation with GSO for the optimised wave function
from Fig. 4.10. The final energies of each state correspond, in order, to the neutral
ground, degenerate anion and first neutral excited states.

108

109 5.4

Similarly, in Fig. 5.4 when GSO is applied to the final wave function containing
30 Zombie states optimised using gradient descent to find the ground state energy.
The optimised wave function is propagated in imaginary time with GSO once the
gradient descent process is complete which shows the correct ground state energy
but incorrect energies for the excited states. The eigenvalue energies are not shown
in either Fig. 5.3 or Fig. 5.4 as the energies for the excited states are too inaccurate
to warrant comparison.

5.4 Gradient Descent with Gram-
Schmidt Orthogonalisation

As can be seen in Fig. 5.4 the GD process has optimised "dead" and "alive" am-
plitudes to describe the ground state which gives a poor description of the excited
states, similar to the basis set of 200 random ZS as in Fig. 5.3. However, it is also
possible to implement GSO during the gradient descent process so the wave function
is optimise to describe an excited state. Like in FCIQMC a separate wave function
is required for each state each requiring a separate set of Zombie coefficient vectors
for the state of interest and all states below it. For example, the second excited
state would require three coefficient vectors one for the state of interest and then a
further two for the ground and first excited state. So for an excited state, arbitrarily
labelled n, the gradient descent process then proceeds as normal with the addition
of GSO using the time step outline in Eq. (5.9). Gradients are then calculated using
d(n)⊥ and a gradient descent step attempted. This is the only modification required
to the standard GD process.

Table 5.1: Table detailing the initial and final energies for the first four states of Li2 in
the 6 − 31G∗∗ basis. The gradient descent with Gram-Schmidt orthogonalisation process
was used to optimise each wavefunction1.

State Initial/finalNbf
Energy [au] EpochInitial Final full-CI

1 30/30 −14.863582 −14.871914 −14.871914 10334
2 2/12 −13.005780 −14.858062 −14.858062 2000
3 3/23 −11.254147 −14.858062 −14.858062 34700
4 4/20 −14.605008 −14.841836 −14.841836 5754

1Each wave function was initialised randomly and the first state set as the RHF determi-
nant. State 1 is the ground state and is the result from Fig. 4.10. For states 2 and 3 GSO was
used with the gradient descent process and the cloning method was used to grow the number of
basis functions. An additional ZS was added to the basis sets after, at most, 280 epochs. This
was reduced to 99 epochs for State 4 with 1 ZSs being added and all amplitudes initialised us-
ing the biasing regime from Table. 4.2. States 2 and 3 are the degenerate 7 electron anion state
and state 4 is the first neutral excited state. The number of epochs required for the energy to
converge to the full-CI energy, found by diagonalising the complete basis Hamiltonian.

109

110 5.4

Using the truncated Li2 system, in the 6 − 31G∗∗ basis1, gradient descent is
completed with Gram-Schmidt orthogonalisation for the first three excited states.
Each basis set was initialised randomly and the cloning method was used to increase
the number of ZSs adding an extra function after no more than 280 epochs for states
2 and 3. For state 4 a single ZS was added after no more than 99 epochs with the
biasing regime from Table. 4.2 used to set the initial amplitudes. The gradient
descent process used a maximum learning rate of γ = 2500 being reduced on each
epoch to a minimum of γ = 0.16, before the maximum number of basis functions was
reach, then decreasing further to γ = 5.12×10−5. The gradient descent process with
GSO to find the first excited state is shown in Fig. 5.5. The final energies for each
wave function are given in Table. 5.1 along with the number of epochs, required for
the energy to converge. The initial and final basis set sizes and the full-CI energy are
also given for comparison. The different epoch lengths are exemplify the importance
of available Zombie states and learning rates. For the third state, at around 30,000
epochs, the learning rate was allowed to reduce further to γ = 4.10×10−7. At 34400
epochs the maximum basis set size was extended from 20 to 23 ZSs, which were
added using cloning. Whereas, for the fourth state the gradient descent process was
set to allow the learning rate to reach γ = 4.10 × 10−7 and was initialised with 20
ZSs.

Figure 5.5: Plot of energy during the gradient descent process to find the second ex-
cited state truncated Li2 in the 6-31G∗∗ basis. 30 randomly generate ZSs were optimised
using gradients calculated following imaginary time propagation using GSO. The energy
of the second excited state is shown as the solid (purple) line.

1The absence of hydrogen means the 6−31G∗ basis could have been used.

110

111 5.5

Figure 5.6: Plot of the imaginary time propagation for four separate wave functions
optimised using the gradient descent process to describe a specific state for the trun-
cated Li2. Each wave function is optimised separately. The final energies of each state
correspond accordingly: State 1 is the neutral ground state; states 2 and 3 are the anion
ground state and state 4 is the first excited state. The exact energies are shown for com-
parison as dashed lines, found by diagonalising the Slater determinant Hamiltonian.

The final imaginary time propagations for each wave function and the ground
state from Fig. 4.10 are all plotted in Fig. 5.6. The final energies for each state
are equivalent to the full-CI energies found by diagonalising the Slater determinant
Hamiltonian.

5.5 Conclusions
The Zombie states method is capable of finding excited states using a GSO pro-
cess using a complete basis set. Excited states are orthogonal to each other so by
orthogonalising the set of ZS coefficients during imaginary time propagation forces
the coefficients to evolve to the the next lowest available state. Unsurprisingly, an
incomplete random basis does not evolve to the correct ground state excited state
energies. Moreover, when applying the GSO imaginary time propagation process to
an incomplete basis that has been optimised to describe the ground state the basis
is also not capable of describing the excited states. The gradient descent process
optimises the "dead" and "alive" coefficients of each Zombie state to find the ground
state energy. This improves the cancellation of contributions from configurations

111

112 5.5

not in the ground state and stops the wave function from being able to effectively
describe the higher energy states.

Significantly, it is possible to find excited states with basis sets that are not of
a complete size if GSO is used during the gradient descent optimisation process.
By using separate wave functions and the appropriate orthogonalised ZS coefficient
vector it is demonstrate in Fig. 5.5 that the gradient descent process can optimise ZS
amplitudes so the wave function describes an excited state. The plot of imaginary
time, Fig. 5.6, for the first four states of Li2 requires four separate wave functions
containing a total of 85 basis functions. This is significantly fewer than the complete
basis set of 1024 functions and is also smaller than the total number of possible
configurations containing six and seven electrons, 210+120 = 330 (the seven electron
configurations are included as the first two excited states of Li2 are its anion).

As previously discussed most methods for finding excited states require the use
of a reference state which is usually the ground state to be calculated first. Even
in the FCIQMC utilisation of GSO, the separate wave functions have to be brought
together for the orthogonalisation process. This means that a time step for the
ground step must be complete before orthogonalisation of the excited state wave
function can occur [24]. However, there is no requirement for a resolved reference
state or wave function when using the Zombie excited state gradient descent pro-
cess. Each wave function, describing a different state, can be treated separately
at all times. Gradient descent minimises a function to find a local minima and
imaginary time propagation finds the lowest state. The addition of Gram-Schmidt
orthogonalisation redirects the gradient descent process away from the global min-
imum to another local minima – an excited state. In FCIQMC wave functions are
constructed by finding the best set of configurations drawn from the complete Slater
determinant basis; GSO then removes contributions from lower states. This overall
creates a process of adding configurations and then removing others from the wave
function. For a Zombie wave function all possible configurations are, by construc-
tion, present from initialisation with Gram-Schmidt orthogonalisation directing the
gradient descent process to optimise the wave function to the excited state rather
than adding and removing configurations. The complete separation of the wave
functions during the optimisation process means it is possible to find the energy of
any excited state without having to consider the construction of any states below it,
beyond the inclusion of the additional coefficient vectors. This has great potential
for using Zombie states in simulations requiring multiple electronic states due to the
possible time and computational cost savings. Firstly, only states necessary to the
simulation need to be calculated, so if only a set of excited states are required there
is no requirement to find the ground state to reference from. These states can also
be calculated concurrently with no need to share information between them; with
the availability of multi-processor clusters this has the potential to reduce overall

112

113 5.5

computation times.
The process is still in its infancy and needs to applied to a variety of systems.

There is large variability in the number of epochs, shown in Table. 5.1, required
to converge the energies for each state. The third excited state took the greatest
number of epochs to converge due to both an insufficient number of ZSs and the
minimum learning rate initially being set too high. Whereas, the availability of
lower learning rates and the use of the biasing regime meant state 4 require fewer
epochs to be resolved. As discussed in the previous chapter there are multiple
places the gradient descent process can be improved to aid faster and less expensive
convergence. Some of these proposed improvements, such as the faster calculation of
matrix elements, will be universally beneficial. But it will also be necessary to tailor
certain parameters to finding excited states. The learning rate cycle, initial basis set
size and timing of cloning events all need investigation specifically for excited states.
Further, for the small lithium dimer the random initialisation was mainly used when
finding both the ground and excited states with gradient descent. However, when
verifying the GD method for larger systems the biasing regime was required to find
ground state energies and even biasing the ZSs to the ground state helped resolve
the fourth state of Li2 faster than with random initialisation. Therefore, it is highly
likely that a specifically designed biasing regime will be required when verifying the
GD with GSO method for the excited states of these larger systems. Nonetheless,
even as just a proof of concept, the addition of Gram-Schmidt orthogonalisation to
the Zombie state gradient descent process is an important expansion to the method.
The ZS method is capable of recovering both the ground and excited states which
is integral to simulations of non-adiabatic dynamics.

113

Chapter 6

Conclusions and Outlook

The work presented in thesis advances the Zombie states (ZS) method from a the-
oretically interesting idea to a viable method with various avenues of development.
Within the context of Pople’s framework, this means improvements to the formu-
lation and implementation of the method, which has been verified by comparison
to a number of chemical systems. It has been shown that the ZSs method can re-
cover ground state energies, with accuracy comparable to using full-CI basis. The
addition of gradient descent to optimise ZS amplitudes has made it possible to use
considerably smaller basis sets while maintaining high accuracy. This is evidenced
using a range of chemical systems containing considerably more spin-orbitals than
the example systems used as an initial proof of concept [9]. However, despite al-
gorithmic improvements and the implementation of imaginary time propagation to
find ground state energies, computation times are still a limiting factor in need of
improvement. Although, the potential applications of the method have been signifi-
cantly increased by the addition of Gram-Schmidt orthogonalisation to find excited
states. This simple addition allows the ZSs to describe excited states with minimal
computational cost and without the need for any sort of reference state.

In Chapter 2 the Zombie state method is formulated in three different but equiva-
lent ways. Originally, a multi-particle Slater determinant is made up of one-electron
Zombie states in a manner that is similar to the standard Slater determinants used
in HF theory [9]. It is also demonstrated that Zombie states can be built using a
Zombie operator that acts on a vacuum state analogous to the method used in the
second quantization approach [23]. The general coherent state definition, outlined
by Perelomov and Gilmore, allows the coherent states used in CCS and MCE to
be derived using the same method – all starting from a reference, vacuum state
[21, 22]. This definition can also be applied to the construction of Zombie states
from which their key properties are naturally defined. The Zombie displacement
operator construction ensures the correct normalisation of "dead" and "alive" coeffi-
cients and gives rise to the sign change rule when undergoing creation or annihilation
operations by construction. Further, by defining Zombie states in this manner, it
is easy to make comparison between them and standard fermionic coherent state

114

115 6.0

constructions. Both the Lie group and Grassmann algebra fermionic coherent state
constructions take a specific configuration of electrons and describe it as superposi-
tion of its spin states, which makes them fixed eigenstates of the number operator
[18, 19]. On the other hand, Zombie state orbitals are superpositions of the occupied
and unoccupied states and so contain all configurations of electrons. Hence, ZSs are
generally not eigenstates of the number operator, which allows them to describe
the multiple configurations necessary to give an accurate description of a state but
also allows configurations with incorrect numbers of electrons. This gives ZSs the
potential to return full-CI energies using small basis sets but also necessitates the
work to ensure incorrect configurations cancel each other out.

The implementation of imaginary time propagation, outlined in Chapter 3, has
facilitated the other developments detailed in this thesis. Being able to find ground
state energies in a practical amount of time, rather than needing a long time propa-
gation, is in isolation progress. However, without this improved practicality, it would
not have been possible to implement gradient descent. The method relies on being
able to recalculate and check the ground state energy to ensure convergence; with-
out imaginary time propagation this process would not be computationally practical.
Further, its addition has led to the adoption of Gram-Schmidt orthogonalisation to
find excited states which again would not have been possible without the ease with
which energies can now be found. The work in Chapter 4 has demonstrated, for
the first time, the full potential of the Zombie states method to describe chemical
systems with high accuracy while using significantly contracted basis sets. Gradi-
ent descent minimises the ground state energy by optimising the ZS amplitudes. It
was demonstrated that Zombie states achieve ground state energies comparable to
the full-CI results but with much smaller basis sets. Although, the larger systems
are currently limited by the slow convergence of the method. The extension of the
method to include excited states, while using a truncated basis set, significantly
broadens its applications. Further, the method does not require the excited states
to be found using a reference state. This potentially offers large computational sav-
ings for simulations requiring various electronic states as each state can be resolved
completely independently.

The addition of gradient descent to find ground and excited states has the po-
tential to be a computationally inexpensive tool for describing electronic systems.
However, in its current form the process converges very slowly when compared to
the heavily optimised code used for full-CI calculations in PyScf. Thus, systematic
work is required to find computational savings at all points in the Zombie state
program. There are relatively simple improvements that can be made to the code
base to ensure all subroutines and functions are as efficient as possible. Significant
improvements to the time needed per epoch can be made by offloading the repetitive
Hamiltonian recalculation to a GPU, which should provide a significant reduction

115

116 6.0

to the total gradient descent time. With better initial sampling fewer optimisation
steps should be required offering the largest computational saving. The starting
point of this process should be an analysis of the effect of the value of "dead" and
"alive" amplitudes and the combination of values both within a single Zombie state
and a basis set as a whole. This should also influence the cloning technique which
currently adds a Zombie state using the same initialisation method, not taking into
account the existing Zombie state values or how they have been optimised so far.
Similarly, the gradient descent algorithm can be profiled with the aim of making it
"smarter" and so more efficient. The current algorithm attempts to alter all Zom-
bie amplitudes with equal frequency with no ability to consider the likelihood of
an alteration being successful. Finding relationships between existing or very eas-
ily calculated data points and a successful alteration should allow the algorithm to
be formulated to be less computationally wasteful. Some possible data points that
should be analysed include the success of previous alterations, the magnitude of the
gradient or the resultant difference in ZS amplitudes.

However, finding the energy levels of a system is not the envisaged final use
case of the Zombie states method. Existing electronic structure methods can be
used to ascertain various properties of a system. To bring the ZSs method in-line
with well-established methods it needs to be capable of producing a range of data
points about a chemical system. A simple addition would be producing the average
orbital populations which is possible with CI methods. Further, adding the abil-
ity to to calculate the Hessian matrix would allow vibrational frequencies of the
molecule to be found. This would also facilitate the optimisation of the molecular
geometry. Moreover, CCS was developed for the simulation of the quantum dynam-
ics of systems with many degrees of freedom and so the Zombie states method, as
the fermionic analogue to CCS, is ultimately aimed to simulate electron dynamics
[32]. The CCS family of methods has often been benchmarked against Multiconfig-
urational Time-Dependent Hartree (MCTDH) method while incurring lower com-
putational cost [13, 17]. The Multiconfigurational Time-Dependent Hartree-Fock
(MCTDH-F) extends MCTDH to treat many-body fermionic systems which allows
a unified method to describe both the nuclear and electronic wave packets in a quan-
tum dynamical manner [139, 161–168]. Currently, the CCS family of methods use
the time-dependent wave function,

|Ψ⟩ =
Nbf∑
a
ca|ψ(a)⟩ (6.1)

|ψ(a)⟩ = |χ(a)⟩|z(a)⟩ (6.2)

where Nbf is the number of electronic states (N = 1 for CCS and N > 1 for MCE);
ca is the basis function coupling; |z(a)⟩ are the coupled coherent states and |χ(a)⟩
is an electronic state. Using an adiabatic basis, electronic structure calculations

116

117 6.0

are used to calculate the potential energy surface which then also requires the
calculation of the non-adiabatic coupling matrix. Zombie states would replace
|χ(a)⟩ = ∑Nzs

a da|ζ(a)⟩, Nzs being the number of Zombie states needed to describe
a single electronic state. So, the wave function with a single electronic state would
have the form,

|Ψ⟩ =
Nzs∑
a
da|ζ(a)⟩|z(a)⟩. (6.3)

The quantum dynamics can then be found by using the propagation equations for
CCS and Zombie states. As shown, the Zombie states can be constructed using
the one- and two-electron integrals from computationally inexpensive Hartree-Fock
calculations. The gradient descent method has the potential to reduce the number of
Zombie states required to describe an electronic state making the proposed dynamic
simulations possible. But this can only be achieved if the computational cost of the
gradient descent process is significantly reduced.

117

Appendix A

Mathematical Concepts
for Coherent States

In this Appendix some key mathematical concepts used to define general coherent
states and the Grassmann algebra needed for fermionic coherent states are briefly
discussed. The reasoning given here assumes an appreciation of some mathematical
concepts and notation more akin to a background in physical chemistry rather than
rigorous mathematics. Thus, the exterior product is first defined and then used to
construct algebra over a field; Lie groups and stability subgroups.

A.1 Groups and Fields
Firstly, a group G is defined as a non-empty set that has a binary operation, the
group operator, ·, defined for all elements of G with the following properties

∀x,y ∈G, x ·y ∈G (A.1a)

∀x,y,z ∈G, (x ·y) · z = x · (y · z) (A.1b)

∃1 : 1 ·x= x ·1 = x, ∀x ∈G (A.1c)

∀x ∈G ∃ x−1 : xx−1 = x−1x= 1. (A.1d)

A field, F , is an extends a group by the addition of a second binary operator, +,
which has the following properties 1

∀x,y ∈ F, x+y = z ∈ F (A.2a)

∀x,y ∈ F, x+y = y+x (A.2b)

∀x,y,z ∈ F, (x+y)+ z = x+(y+ z) (A.2c)

∃0 : 0+x= x+0 = x, ∀x ∈ F (A.2d)

∀x ∈ F ∃ −x : x+(−x) = −x+x= 0 (A.2e)

∀x,y,z ∈ F, x · (y+ z) = (x ·y)+(x · z). (A.2f)

119

120 A.2

A.2 The Exterior Product
First the exterior product of two vectors gives a bivector which has the fundamental
anti-symmetric quality

x̂∧ ŷ = −ŷ∧ x̂ (A.3)

It is easy to see how then taking the exterior product of a vector with itself is zero

x̂∧ x̂ = 0 (A.4)

This can be visualised by taking two vectors x̂ and ŷ in three dimensions, that are
defined using the basis e1, e2 and e3,

x̂ = a1e1 +a2e2 +a3e3

ŷ = b1e1 + b2e2 + b3e3
(A.5)

The exterior product of x̂ and ŷ,

x̂∧ ŷ = (a1e1 +a2e2 +a3e3)∧ (b1e1 + b2e2 + b3e3)

= (a1b1)e1 ∧ e1 +(a1b2)e1 ∧ e2 +(a1b3)e1 ∧ e3

+(a2b1)e2 ∧ e1 +(a2b2)e2 ∧ e2 +(a2b3)e2 ∧ e3

+(a3b1)e3 ∧ e1 +(a3b2)e3 ∧ e2 +(a3b3)e3 ∧ e3

(A.6)

This can be simplified using the fact ei∧ei = 0 and the antisymmetric characteristic
to give,

x̂∧ ŷ = (a2b3 −a3b2)e2 ∧ e3 +(a3b1 −a1b3)e3 ∧ e1 +(a1b2 −a2b1)e1 ∧ e2. (A.7)

This bivector can be visualised as the area created by the exterior product of the
two vectors which is shown in two dimensions in Fig. A.1.

120

121 A.3

Figure A.1: Plot showing the exterior product between two vectors x̂ = ae1 + be2 and
ŷ = ce1 + de2. The exterior product x̂ ∧ ŷ = (ad − bc)e1 ∧ e2 which is the area of the
parallelogram formed by the two vectors.

A.3 Algebra Over A Field
The concept of algebra over a field will be formalised using real vectors in 3-
dimensions as the motivating example. As previously seen, the vectors e1, e2 and e3

form a basis for 3-dimensional Euclidean space and take the form (1,0,0),(0,1,0)
and (0,0,1) respectively. With these three vectors it is possible to generate any
other vector of the form x̂ = (x1,x2,x3) using some linear combination of e1, e2 and
e3, x̂ = x1e1 + x2e2 + x3e3. This is perhaps obvious but in more mathematically
rigorous terms these vectors are the generating set for the vector space over the field
of real numbers F = R in N = 3 dimensions, R3. Further, as the vectors are all lin-
early independent the set B = {e1, e2, e3} can also be described as a basis set. Two
arbitrary vectors can be defined, x̂ = (a1e1 +a2e2 +a3e3) and ŷ = (b1e1 +b2e2 +b3e3)
which both belong to the vector space R3. Each vector will be placed in its own
vector space so x̂ ∈ X and ŷ ∈ Y . The cross product of these two vectors can be

121

122 A.3

found using the following rules as

e1 × e2 = e3

e2 × e3 = e1

e3 × e1 = e2

(A.8)

x̂× ŷ = (a2b3 −a3b2)e1 +(a3b1 −a1b3)e2 +(a1b2 −a2b1)e3 = ẑ (A.9)

Notice that the coefficients are the same as in the exterior product, Eq. (A.7). So,
the cross product forms a vector perpendicular to x̂ and ŷ and the exterior product
a bivector with an area of the same magnitude as the perpendicular cross product
vector. This new vector ẑ can also belong to a new vector space, ẑ ∈ Z. This means
the cross product is a bilinear map which is defined as a function that takes three
vector spaces, X,Y and Z over the same field and combines any pair of elements in
X and Y to produce an element of Z,

B :X×Y → Z (A.10)

Explicitly for the vector space R3 over the field of real numbers, R, the cross product
is the bilinear map defined

R3 ×R3 → R3. (A.11)

A vector space over a field with a bilinear map is called algebra over a field. Different
vector spaces have different bilinear operators to create an algebra over a field for
example, a vector space of Rn×n square matrices uses matrix multiplication as its
bilinear map and as will be shown Grassmann generators over the field of complex
numbers use the exterior product as the bilinear map.

A.3.1 Structure Coefficients
Each vector space is constructed from a basis set, the multiplication of which controls
the bilinear map. For the R3 vector space the basis vector multiplication rules
were shown in Eq. (A.8). These rules and the associated, scalar coefficients can be
summarised as such,

eiej =
N∑
k=1

cki,jek (A.12)

122

123 A.4

where for R3 N = 3 for example if i= 1, j = 2 then k = 3

e1e2 = c31,2e3 = a1b2e3, (A.13)

cki,j is a scalar quantity corresponding to the coefficient in Eq. (A.9) for e3 written
using Einstein notation. The structure coefficients are constructed to ensure the
bilinear map functions correctly for all basis functions.

A.4 Lie Groups and Lie Algebra
A Lie group is defined as a mathematical group, G, that has a manifold structure
where all group operations are smooth. A manifold, M , is a topological space that
for any point within M the neighbourhood around the point resembles an open
set in Euclidean space. For example, in Fig. A.2 a unit sphere with the equation
x2 +y2 +z2 −1 = 0 is shown to have a two-dimension manifold as it can be split into
6 different regions, hemispheres either side of each axis, which only depend on two
coordinates which map perfectly onto two-dimensional disks. The manifold for the
regions z > 0 and z < 0 are described by disks with the equation x2 +y2 < 1. These
regions resemble a part of R2 Euclidean space. Further, the disks are said to be an
open set of R2 because at any point, p, on the disk there exists a positive value, ϵ,
that for any other point, pϵ, less than the distance, ϵ, away from p is also on the
disk. The smooth condition means that the manifold is locally similar enough to a
vector space allowing the application of calculus. In the same way a Lie group is
a group with additional properties a Lie algebra is specific type of algebra over a
field. A Lie algebra is defined for a vector space g which has the bilinear map, or
Lie bracket, [·, ·] : g×g → g which satisfies the antisymmetric property,

[x,y] = −[y,x], ∀x,y ∈ g (A.14)

and the Jacobi identity

[x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0,∀x,y,z ∈ g (A.15)

These two concepts are naturally related a Lie Group has an accompanying Lie
algebra.

123

124 A.4

Figure A.2: Plot showing the unit sphere with equation x2 + y2 + z2 − 1 = 0. The man-
ifolds for regions z > 0 and z < 0 are the two disks with equation x2 +y2 < 1.

A.4.1 Closed Subgroups
An arbitrary Lie group, G, is defined to have Lie algebra, g then another group,
H, is said to be a subset of G, denoted H ⊂ G, if every element of H is found in
G. The complement, G \H is the set of elements in G not contained in H, if this
complement is an open set then H is a closed subgroup. If H is a closed subgroup
of Lie group G then the conditions for Cartan’s theorem are met meaning that H
is an embedded Lie subgroup of G [169]. The Lie algebra of H is then defined as

h = {X ∈ g|etX∀ t ∈ R}. (A.16)

The left translation is a map, Lg, for any fixed g ∈G is defined

Lg :G→G Lg(a) = ga ∀a ∈G. (A.17)

Lg is a continuously differentiable map on G which is also a diffeomorphism of G,
L−1
g = Lg−1. A quotient or coset space G/H is a decomposition of all the elements

of G into unique subsets of equal size that when multiplied by an element of H an

124

125 A.5

element of G is returned so

G/H×H →G Ωh= g (A.18)

where g ∈G, h ∈H, Ω ∈G/H which means that the left cosets of H in G are found
by multiplying every element in G by a fixed element in G

G×H →G/H Ω = gh, g ∈G, ∀h ∈H (A.19)

which can alternatively be written as gH, element g left multiplying all elements
in H. If H ⊂ G is a closed Lie subgroup then the coset space G/H is a unique
real-analytic manifold. The coset space is homogeneous to G space if there is a
continually differentiable mapping

π :G×G/H →G/H g(aH) = (ga)H, ∀g,a ∈G (A.20)

and if Lg(x) ∈G/H∀x ∈H,g ∈G. Which gives the mapping

τg :G/H →G/H ∀ x,y ∈G/H ∃ g ∈G : y = gx (A.21)

which is the left translation by g [170]. A further condition of H to be a maxi-
mal compact subgroup can also be applied which means H is the maximum sized
subgroup of G that is both closed and bounded.

A.4.2 Classical Lie Groups
GL(n,F) is the group of n×n invertible matrices with elements of form F where
F = R,C. Then using Cartan’s theorem any closed subgroup of GL(n,F) is a Lie
group. Weyl called these subgroups over the real, R, and complex, C, numbers and
quaternions, H, the Classical groups[171]. These groups can be used to construct
coherent states, some of the most common are summarised in table A.1. These
special Lie groups have a determinant of one so are a subgroup of the group con-
taining matrices of the same construction (but with determinants not necessarily
equal to one.) These are in turn a subgroup of GL(n,F) for the appropriate field.
For example,

SU(n) ⊂ U(n) ⊂GL(n,C) (A.22)

the special unitary group is a subgroup of the unitary group which is a subgroup of
the general linear group over the complex field.

125

126 A.5

Table A.1: Summary of a selection of Classical Lie groups used in constructing co-
herent states. All groups consist of n × n invertible matrices, U with elements from the
specified field. All matrices which have a determinant of one, det(U) = 1. Additionally,
n = p+ q when needed

Name Group Field Construction Maximal
compact
subgroup

Special linear SL(n,R) R SO(n)
Complex

special linear
SL(n,C) C SU(n)

Special
orthogonal

SO(n) R UT = U−1 S(O(p)×O(q))

Special
unitary

SU(n) C U∗ = U−1 S(U(p)×U(q))

A.5 Grassmann Algebra
In this section the concept of Grassmann algebra is outlined including some useful
results for manipulating them. Equations notation has been adapted with particular
reference to Refs. [18, 20, 121, 122].

A.5.1 Properties of Grassmann Generators
The concepts of algebra over a field and the exterior product are combined. V is a
set of N Grassmann generators V = {ξ1, ξ2, . . . , ξN} which form a complex basis for
vector space of dimension N . The Grassmann generators by definition anticommute
with each other so

ξiξj = −ξjξi (A.23)

and so, their squares vanish (ξi)2 = 0 and they commute with ordinary complex
numbers ξix = xξi. The Grassmann generators form an algebra over the field of
complex numbers, C, with the exterior product being the bilinear operator. This is
called the exterior algebra and is formally defined as

Λ(V) = C⊕V ⊕ (V ∧V)⊕ . . .⊕ (V ∧V ∧ . . .∧V)︸ ︷︷ ︸
N

≡ C⊕Λ1V ⊕Λ2V ⊕ . . .⊕ΛNV

(A.24)

This exterior algebra or Grassmann algebra can be given the symbol GN . A general
Grassmann number within GN is an arbitrary product of at most N Grassmann

126

127 A.5

generators which is given as

g = c0(g)+
N∑
k≥1

∑
i1,i2,...,ik

ci1,i2,...,ik(g)ξi1ξi2 . . . ξik (A.25)

where c0(g) and ci1,i2,...,ik(g) are complex numbers. This definition becomes unique
if it is stipulated that i1 < i2 < .. . < ik are strictly increasing. Therefore, a basis
is formed, GN = {ξi1 . . . ξik , i1 < i2 < .. . < ik}, with 2N distinct possible products,
including the empty product which has a value of one.

For example, G2 has elements that can be uniquely written as

g = g0 +g1ξ1 +g2ξ2 +g3ξ1ξ2, (A.26)

where gi = ci(g) and for neatness of notation ξ1 ∧ ξ2 = ξ1ξ2 but the exterior product
is still present. The Grassmann numbers form a vector space that is isomorphic to
C2N which for the case G2 is

1 7→

1
0
0
0

 , ξ1 7→

0
1
0
0

 , ξ2 7→

0
0
1
0

 , ξ1ξ2 7→

0
0
0
1

 ⇒ g 7→

g0

g1

g2

g3

 (A.27)

The left multiplication by a Grassmann number is linear operation on G2 which can
be represented

1 7→

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ξ1 7→

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , ξ2 7→

0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 ,

ξ1ξ2 7→

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ⇒ g 7→

g1 0 0 0
g2 g1 0 0
g3 0 g1 0
g4 −g3 g2 g1

(A.28)

GN is a Grassmann algebra with N generators which allows for an index set,
E[N] = {0,1}N to be introduced. Hence, if ϵ ∈ E[N], then ϵ = (ϵ1, . . . , ϵN) with
ϵj = 0,1. So, a set of N Grassmann generators can be denoted ξϵ = ξϵ11 ξϵNN .
Note |ϵ| = ϵ1 + . . .+ ϵN is the number of occupied fermionic states. So Eq. (A.26)
can be written so a Grassmann number g ∈ GN is

g =
∑

ϵ∈E[N]
cϵ(g)ξϵ. (A.29)

127

128 A.5

g is invertible only if g0(g) ̸= 0. Odd and even functions are be defined for a Grass-
mann number ψ ∈ GN as such

f(−ψ) = f(ψ) Even function (A.30a)

f(−ψ) = −f(ψ) Odd function. (A.30b)

If a function is smooth around zero a Taylor formula can be defined

f(ψ) =
∑
k∈N

f (k)(0)
k! ψk (A.31)

which is finite because for ψk = 0 ∀k >N . 2N Grassmann generators can be defined
by ξ = (ξ1, . . . , ξN) and γ = (γ1, . . . ,γN) then f(ξ,γ) = eξ·γ is well defined for ξ ·γ =∑

1≤k≤N ξkγk,

eξ·γ = 1+ξ ·γ +
∑

ϵ∈E[N],|ϵ|≥2
(−1)µ(ϵ)ξϵγϵ (A.32)

µ(ϵ) is defined1 by,

µ(ϵ) =

1 if 2,3 ≡ |ϵ|mod(4)

0 if 0,1 ≡ |ϵ|mod(4)
(A.33)

where |ϵ|mod(4) is the remainder of |ϵ|/4.

A.5.2 Derivatives and Integrals of Grass-
mann Algebra

Derivatives with respect to a Grassmann generator,ξ, can be defined as such if
g = g0 + ξig1 and g ∈ GN and both g0 and g1 are independent of ξi then

∂

∂ξi
g = g1. (A.34)

The order of the differential operator is important if i ̸= j

∂

∂ξi
ξj(a+ ξib+ ξjc+ ξiξjd) =− bξj (A.35)

ξj
∂

∂ξi
(a+ ξib+ ξjc+ ξiξjd) =bξj (A.36)

1This result is derived in lemma 72 in Ref [20].

128

129 A.5

else if i= j

∂

∂ξi
ξi(a+ ξib) =a (A.37)

ξi
∂

∂ξi
(a+ ξib) =ξib. (A.38)

The two objects clearly commute and so

{ ∂

∂ξi
, ξj} = δij = {ai,a†

j} (A.39)

is the anticommutator relation which is equal to Eq. (2.29c) and means creation and
annihilation operators can be defined as ξj and ∂

∂ξi
respectively. Let ψ ∈ GN and

GN = {ξ1 . . . ξN ,1 ≤ i1 < i2 < .. . < ik ≤N} then
∫
ψdξi1 . . .dξik ∈ GN (A.40)

is the Grassmann integration a linear map GN 7→ GNwhich has the following prop-
erties

∫
dξj = 0,∀j = 1 . . .N (A.41a)∫
dξjξj = 1,∀j = 1 . . .N (A.41b)∫
ξjdξk = δjk,∀j,k (A.41c)∫
dξjdξk = 0,∀j,k (A.41d)∫ ∫
ψ(ξj)φ(ξk)dξjdξk =

∫
ψ(ξj)dξj

∫
φ(ξk)dξk,∀j,k. (A.41e)

Thus, integration coincides with differentiation so
∫
ψdξi1 . . .dξik = ∂

∂ξik
. . .

∂

∂ξi1
ψ(ξ1, . . . , ξN). (A.42)

It is useful to construct a complex structure for the Grassmann algebra. G2N is
generated by ξ1, . . . ξN ;ξ∗

1 , . . . ξ
∗
N with the following conditions

(zα)∗ = z̄α∗ if z ∈ C and α ∈ G2N (A.43a)

(αβ)∗ = β∗α∗,∀α,β ∈ G2N (A.43b)

129

130 A.5

which give rise to the following anticommutation relations,

{ξi, ξj} = 0 (A.44a)

{ξ∗
i , ξj} = 0 (A.44b)

{ξ∗
i , ξ

∗
j } = 0. (A.44c)

This complex (and conjugate) structure can be denoted GC
N . Integration of the

Grassmann algebra, with this specified complex structure, is defined
∫
ψdξdξ∗ =

∫
ψdξ1dξ

∗
1 . . .dξNdξ

∗
N (A.45)

the notation dξdξ∗ to show the integral is over all values of ξ and its conjugate.
Note that dξidξ∗

i = −dξ∗
i dξi. It is noted that the integral

∫
ψdξdξ∗ is invariant under

unitary change of variable, ξ = Uζ,U ∈ SU(n)
∫
ψdξdξ∗ =

∫
ψ(Ūζ,Uζ)dζdζ∗. (A.46)

as ξN . . . ξ1 = (detU)ζN . . . ζ1 then

ξ∗
NξN . . . ξ

∗
1ξ1 = (ζ∗

NζN . . . ζ
∗
1ζ1)detU detU = ζ∗

NζN . . . ζ
∗
1ζ1. (A.47)

Further, if B is an N×N Hermitian matrix then the diagonal matrix of B is defined
by UBU † = bIN where b= (b1, . . . , bN), then using η = Uξ

∫
e−ξ∗Bξdξ∗dξ =

∫
e−η∗bINηdη∗dη =

∏
1≤j≤N

∫
e−bjη

∗
j ηjdη∗

jdηj

= detB.
(A.48)

130

Appendix B

Algorithmic and Programming De-
tails

B.1 Program Overview

B.1.1 Program Design
The Zombie states program was designed to fulfil the following requirements

• The program must be highly accurate.

• The program must be efficient with minimal redundant or superfluous code.

• The program must make use of parallelisation when possible while also con-
sidering future possible hand-off to GPUs.

• The program must be designed to run for any type of molecule or atom and
allow for a variety of different one- and two-electron sources.

While most considerations are self-explanatory the final point and GPUs are worth
further discussion. There are multiple well used programs used to generate one- and
two-electron integrals such as Q-Chem, MOLPRO and the open source PyScf [134,
172]. As will be subsequently detailed the Zombie state program has been designed
to use PyScf to generate one- and two-electron integrals however this integration
is independent of the main program and other sources could be very easily used
with very minimal additional code needing to be written. This allows the program
to be used more universally giving users freedom to use their electronic structure
package of choice or for personal code to be used. The current program is written
for CPU execution only making use of parallelisation opportunities where possible
but the possibility of using GPUs for execution of simple but numerous calculations
has been considered in the design of the algorithms. GPUs can run many simple
concurrent tasks on parallel threads and their adoption in machine learning has
driven recent advancements in the field. By designing algorithms that consist of

131

132 B.1

repeated multiplications and additions large future speed-ups should be more easily
achieved by moving these parts of the algorithm to a GPU kernel for concurrent
calculation.

The program has been designed in a modular way which allows for easier program
development allowing modules to be restructured without major revisions to the
code base being required elsewhere. Further, by using a modular structure future
integration with other programs such as ab initio MCE is considerably simpler. The
program is organised into the following main sections:

• Main Program, which determines the overall flow,

• Electron integral module contains subroutines to read in the one- and
two-electron integrals and carry out the pre-processing for the Hamiltonian
calculation,

• Zombie state generation module, set-ups the initial Zombie state func-
tions,

• Hamiltonian generation module, generates Hamiltonian and overlap ma-
trix elements

• Imaginary time propagation module, contains code for the imaginary
time evolution process.

• Cleaning module, contains code to run the Zombie state cleaning routine.

• Gradient descent module, carries out the gradient descent process to op-
timise Zombie state "dead" and "alive" coefficients.

• Input module, reads in run parameters.

• Output module, produces data outputs for the simulations.

A basic summary of the program is illustrated in Fig. B.1. The detail of how a
gradient descent epoch occurs has been omitted as it has been detailed in Fig. 4.8.
Note the program uses some library functions from the BLAS library.

132

133 B.1

Figure B.1: Flow chart showing the layout of the Zombie states program.

133

134 B.1

B.1.2 Program Implementation
The main program has been written in a Fortran95 separated into modules con-
taining related subroutines and functions. These modules are listed in Table. B.1
which also details their respective dependencies. However, it should be noted that
the program does currently use the iso_fortran_env intrinsic module to define the
precision of numerical parameters and standard outputs. This module was intro-
duced in Fortran 2003 and updated in Fortran 2008 so should not be an issue if
a relatively modern compiler is being used [173]. But to ensure portability the
iso_fortran_env module is imported into the mod_types module and its values as-
signed to program specific parameters – see Listing. B.1. If the compiler is not
compatible with iso_fortran_env then this module can be simply edited to redefine
the standard outputs and variable precision. The parameter "wp" is used through-
out the program as the working precision which is set to be double precision in the
GlobVars module. Note the rangen module used for random number generation also
uses iso_fortran_env which would require more work to make compatible with an
older compiler and it would probably be easier to change the method of random
number generation.

1 module mod_types

2 use iso_fortran_env , only: int8 , int16 , int32 , int64 ,

real32 , real64 , input_unit , output_unit , error_unit

3 implicit none

4 integer , parameter :: sp = real32

5 integer , parameter :: dp = real64

6 integer , parameter :: int8_t = int8

7 integer , parameter :: int16_t = int16

8 integer , parameter :: int32_t = int32

9 integer , parameter :: stdin = input_unit

10 integer , parameter :: stdout = output_unit

11 integer , parameter :: stderr = error_unit

12 end module

Listing B.1: Mod_types module which allows program wide variable precision and
standard outputs to be set to the iso_fortran_env standard and easily altered if
necessary.

134

135 B.1

Table B.1: Table of modules, their purpose and dependencies for the Zombie states
program.

Module Name Module Purpose Module Dependencies
rangen Generate random numbers iso_fortran_env

mod_types Set iso_fortran iso_fortran_env
GlobVars Store global variables mod_types
AlArrays Allocate and deallocation of

arrays
mod_types
GlobVars

Electrons Process one- and
two-electron integrals

GlobVars
AlArrays

Zom Initiate Zombie functions mod_types
GlobVars

Ham Calculate Hamiltonian and
overlap matrices

mod_types
GlobVars
AlArrays

Imgtp Perform imaginary time
propagation

mod_types
GlobVars
AlArrays

ReadPars Read in the simulation
parameters

mod_types
GlobVars

Outputs Generate data output files mod_types
GlobVars

Clean Perform cleaning routine mod_types
GlobVars
AlArrays

Zom
Outputs
ReadPars

Ham
Gradient_descent Contain gradient descent

routine and gradient
calculation routines

mod_types
GlobVars
AlArray

Zom
Outputs

Ham
Imgtp

MainZombie Controls program flow mod_types
rangen

GlobVars
AlArrays
Electrons

Zom
Imgtp

ReadPars
Outputs
Clean

Gradient_descent
135

136 B.1

All processes in the Zombie state program are centred round a set of ZS functions
and so a defined type is used to contain this information Listing. B.2. The wave
function is then constructed as an array of the Zombie state data type equal to the
number of basis functions.

1 type Zombiest

2 real(wp),dimension (:) ,allocatable :: phi

3 real(wp),dimension (:) ,allocatable :: val

4 integer :: gram_num

5 end type Zombiest

Listing B.2: Definition of the "Zombiest" data type.

Within each Zombie state there are two arrays and an integer the variable phi is
allocated to the number of orbitals and contains the set of values used to generate
the "dead" and "alive" coefficients. The array val is set to be indexed from 0 to double
the number of orbitals. The "alive" coefficients are placed in indexes 1 → Norb and
the "dead" coefficients are stored in indexes Norb+1 → 2Norb, the value at index zero
is set to also be zero which is used when calculating Hamiltonian matrix elements.
The gram_num variable is used to keep track of which wave function a Zombie state
is in when Gram Schmidt orthogonalisation is being used. A Hamiltonian data type
is defined to contain the Hamiltonian, overlap and inverse overlap matrix as well as
the product of the Hamiltonian and inverse overlap matrix the structure of which is
shown in Listing. B.3 with all arrays allocated to be of size Nbf ×Nbf .

1 type hamiltonian

2 real(wp), dimension (: ,:) , allocatable :: hjk

3 real(wp), dimension (: ,:) , allocatable :: ovrlp

4 real(wp), dimension (: ,:) , allocatable :: inv

5 real(wp), dimension (: ,:) , allocatable :: kinvh

6 end type hamiltonian

Listing B.3: Definition of the "Hamiltonian" data type.

Error checking has been built into the program to handle fatal errors caused by
incorrect inputs or a problem with the machine. If an error is caught an error
message is returned to the standard error output including the error code; the global
variable errorflag is then set to 1. Each subroutine and function starts with the
line of error check code shown in, Listing. B.4 which has the effect of skipping all
further processes forcing the program to its end. Rather than simply terminating
the program at the point of error, the skipping behaviour makes it easier to find
the location of unexpected errors. The program contains a non-standard method
to check for infinite or undefined numerical values which usually occur when there

136

137 B.2

is unexpected division by zero. Due to some of the aggressive optimisation flags
being used (e.g. -Ofast in gfortran) the standard methods to check for these errors
sometimes did not work. Thus, an alternative method written by Zaikun Zhang is
used which is contained in three files inf.f90, infnan_constants.f90 and infnan.f90
[174]. The function is_nan(x) takes a numerical input and then checks if it has the
value infinity or NaN which then returns a Boolean.

1 if (errorflag .ne. 0) return

Listing B.4: Check for prior errors at the beginning of each subroutine or function.

B.2 Zombie state Creation
Zombie states are initialised with either random values, biased "dead" and "alive" co-
efficients or integers so they are equivalent to a HF Slater determinant. The random
and biased initialisation routines require random number generation. The Multi-
configurational Ehrenfest method program utilises the ZBQL∗ family of subroutines
to generate random numbers and since there is the possibility of future integration
with the MCE program it was sensible to continue using these functions [175]. The
set of random number generation routines used in MCE were written by Richard
Chandler and Paul Northrop with subsequent modification by Stuart Reed [176].
The library is written as a set of external subroutines in Fortran77 style and is not
thread safe when used in parallel programming. The Zombie states program uses
a modified version of the original library that contains all the subroutines within a
Fortran module and is written in an updated Fortran95 style. The original common
block is shown in Listing. B.5.

1 BLOCK DATA ZBQLBD01

2 COMMON / ZBQL0001 / ZBQLIX ,B,C

3 DOUBLE PRECISION ZBQLIX (43) ,B,C

4 INTEGER I

5 DATA (ZBQLIX (I),I=1 ,43) /8.001441 D7 ,5.5321801 D8 ,

6 ...

7 +2.63576576 D8/

8 DATA B / 4.294967291 D9 /

9 DATA C / 0.0 D0 /

10 END

Listing B.5: Common block structure used in rangen.f external subroutine [176]. For
neatness some of the numerical values in the variable ZBQLIX have been omitted.

137

138 B.2

The module variables used in the modified version are shown in Listing. B.6 using
the same variable names as in the original code. The variable attribute, save, is used
to ensure that when re-accessing the module all necessary values are retrained to
continue generating random numbers. Clearly there are additional variables present
in Listing. B.6 that are not present in Listing. B.5 this is because certain subroutines
and functions also have variables that need to be accessed again on subsequent calls.

1 MODULE randgen

2 use iso_fortran_env , only: int8 , int16 , int32 , int64 ,

real32 , real64 , input_unit , output_unit , error_unit

3 implicit none

4 real(real64), private , save ::B,C

5 real(real64), private , save , dimension (43) :: ZBQLIX

6 integer , private , save :: CURPOS ,ID22 ,ID43

7 integer , private , save :: INIT

8 integer , private , save :: STATUS

9 real(real64), save :: SPARE

10 real(real64), parameter ::PI = 4.0 D0*DATAN (1.0 D0)

11 real(real64), parameter :: RLN2P = 0.5 D0*DLOG (2.0 D0*PI)

12 real(real64), private , parameter , dimension (0:6) :: zbqllg_c

=[1.000000000190015 D0 , ... , -0.5395239384953D -5]

13

14 contains

15

16 subroutine ZBQLBD01 ()

17 implicit none

18

19 ZBQLIX =[8.001441 D7 ,5.5321801 D8 ,

20 ...

21 3.20429173 D8 ,2.63576576 D8]

22 B = 4.294967291 D9

23 C = 0.0 D0

24 CURPOS = 1

25 ID22 = 22

26 ID43 = 43

27 STATUS = -1

28

29 end subroutine ZBQLBD01

Listing B.6: Random generation module variables and initialisation routine modified
from original rangen.f library [176]. For neatness some numerical values in the variables
ZBQLIX and zbqllg_c have been omitted.

The other type of Zombie state are those analogous to a Slater determinant. Defining
the Zombie states is simple as the "dead" and "alive" coefficients are binary. A single

138

139 B.3

Slater determinant with a specific set of occupied orbitals can be encoded manually.
To generate a complete set of Slater determinants containing all possible electron
configurations adapted from Ref. [177] is used. The algorithm takes the number of
spin orbitals Norb and the number of electrons, Nel, as inputs and produces a list of
all possible ways Nel electrons can be distributed across the available orbitals. Using
the list of configurations the corresponding Zombie states are then be generated.

B.3 Operator Algorithms

B.3.1 Hamiltonian Matrix Algorithm
The calculation of the Hamiltonian matrix is the most computationally expensive
part of the entire Zombie states program and so there has been much work to
construct more efficient algorithms to complete the task. Initial work focused on
just the two-electron part of the Hamiltonian as this was the greatest source of the
bottleneck. From equation Eq. (2.230) each two-electron part of the Hamiltonian
matrix element,

Ĥ2 = 1
2

∑
i,j,k,l

⟨ij|kl⟩b̂†i b̂
†
j b̂lb̂k. (B.1)

can, naïvely, be calculated by summing the result of sequential applications of cre-
ation and annihilation operators followed by calculation of an overlap

⟨ζ(a)|Ĥ2|ζ(b)⟩ = 1
2

Norb∑
ijkl

⟨ij|kl⟩⟨ζ(a)|ζ(b)
ijlk⟩ (B.2)

where |ζ(b)
ijlk⟩ = b†i b̂

†
j b̂lb̂k|ζ(b)⟩ [9]. This requires Norb4 terms to be evaluated because

each term has four creation/annihilation operations each of which is ∼ O(M) due
to the sign changing rule followed by an overlap calculation which is O(M) as

Ωab = ⟨ζ(a)|ζ(b)⟩ =
M∏
m=1

∑
nm=0,1

a(a)∗
nmma

(b)
nmm. (B.3)

Therefore, naïve evaluation of Eq. (2.4.5) overall has O(M5) scaling. Therefore, by
the same reasoning the one-electron part requires M2 creation/annihilation opera-
tions and is O(M3) overall. Improvements to the two-electron algorithm are made by
firstly reducing the prefactor and then the overall scaling of the algorithm. Finally,
the current Hamiltonian algorithm that brings together the one- and two-electron
parts into a single algorithm using the concepts introduced for the two-electron part.

139

140 B.3

B.3.1.1 Reduced Prefactor Hamiltonian Algorithms
The prefactor of the two-electron algorithm is reduced by removing parts of the
summation already known to be zero. This is done by using spin symmetry

⟨ij|kl⟩ = δσ(i)σ(k)δσ(j)σ(l) (B.4)

where σ(i) is the spin of spin orbital i. Thus, it is only necessary to evaluate |ζ(b)
ijlk⟩ =

b†i b̂
†
j b̂lb̂k|ζ(b)⟩ if ⟨ij|kl⟩ ≠ 0 on spin symmetry grounds. As shown in Table. B.2 when

the code is modified to ignore the zero values there is nearly a four-fold speed up
when calculating a matrix element between two ten-orbital ZSs. This is as expected
as three quarters of the two-electron integrals are zero from spin symmetry.

Table B.2: Time (in seconds) to compute a two-electron Hamiltonian matrix element
between two Zombie states with either 10 or 50 orbitals for N2 in the 6 − 31G∗∗ basis.
The naïve algorithm loops through all indices the second algorithm only applies creation
and annihilation operators when ⟨ij|kl⟩ ̸= 0. This gives a good speed improvement.

Number of orbitals Norb Naïve Ignore zeros Speed up
10 0.2466 0.0634 3.89
50 463.9408 29.2356 15.87

Further, albeit modest, improvements can be made if only combinations of {ijkl}
already known to be non-zero are included in the loop. So, loops are constructed to
only include orbitals which satisfy, |ζ(b)

ijlk⟩, see Table. B.3.

Table B.3: Time (in seconds) to compute a two-electron Hamiltonian matrix element
between two Zombie states with either 10 or 50 orbitals for N2 in the 6 − 31G∗∗ basis.
The naïve algorithm loops over all indices the second algorithm considers ijkl with ap-
propriate spin symmetry and values known to be non-zero before calculating the action
of creation and annihilation operators. This gives a good improvement on the naïve al-
gorithm and slight improvement on the algorithm above that does not have improved
looping.

Number of orbitals Norb Naïve Ignore zeros and better loops Speed up
10 0.2466 0.0630 3.91
50 463.9408 27.9327 16.61

Alternatively, the number of expensive creation and annihilation operations can
be reduced. Eq. (B.1) and Eq. (B.2) can be rearranged to give

⟨ζ(a)|Ĥ2|ζ(b)⟩ = 1
2

Norb∑
ijkl

⟨ij|kl⟩⟨ζ(a)
ij |ζ(b)

lk ⟩ (B.5)

140

141 B.3

where

⟨ζ(a)
ij | =⟨ζ(a)|b̂†i b̂

†
j =

(
b̂j b̂i|ζ(a)⟩

)†
(B.6)

|ζ(b)
lk ⟩ =b̂lb̂k|ζ(b)⟩ (B.7)

{|ζ(a)
ij ⟩}∀i, j can then be calculated and {|ζ(b)

lk ⟩}∀l,k, requiring N2
orb creation and

annihilation operations while still overall being O(M5). With {|ζ(a)
ij ⟩} and {|ζ(b)

lk ⟩}
precomputed Eq. (B.5) can then be computed. Further, if both the "dead" and
"alive" amplitudes for the same orbital are zero from the definition of the overlap
in Eq. (2.223) then its overlap with any other ZS will be zero. So, for the jth spin
orbital

|ζ(c)⟩ =
a(c)

11 a
(c)
12 . . . a

(c)
1(m−1) 0 a

(c)
1(j+1) . . . a

(c)
1Norb

a
(b)
01 a

(c)
02 . . . a

(c)
0(m−1) 0 a

(c)
1(j+1) . . . a

(c)
0Norb

 (B.8)

Furthermore, as the creation and annihilation operators only move amplitudes within
an orbital the overlap with |ζ(c)⟩ will continue to be zero regardless of any creation
or annihilation operation. So, if a state with zero "dead" and "alive" amplitudes is
generated by creation and annihilation operation it does not need to be considered
in in further calculations. As previously established it is impossible to annihilate an
electron that does not exist and so if a1 = 0 then

b̂|ζ⟩ ≡ b̂

a1

a0

 =
 0
a1

 . (B.9)

returns a vanishing state with no overlap. Hence, if an annihilation operation on
orbital i returns a vanishing state when looping over orbital indices in Eq. (B.5) any
further calculations for any other index j, l,k can be disregarded and the next index
i considered. So, if any a(a)∗

0j a
(b)
0j +a

(a)∗
1j a

(b)
1j terms are zero in

Ωab = ⟨ζ(a)|ζ(b)⟩ =
Norb∏
j=1

a
(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j (B.10)

then Ωab = 0 and the calculation can be terminated. Implementation of these im-
provements gave a similar time improvement to the spin symmetry changes when
considering with ten orbitals, but only a half as good time improvement when states
have 50 orbitals as detailed in Table. B.4.

141

142 B.3

Table B.4: Time (in seconds) to compute a two-electron Hamiltonian matrix element
between two Zombie states with either 10 or 50 orbitals for N2 in the 6 − 31G∗∗ basis.
The naïve algorithm loops through all indices the second algorithm precomputes {|ζ(a)

ij ⟩}
and {|ζ(b)

lk ⟩} and applies a rule that if any a
(a)∗
0j a

(b)
0j + a

(a)∗
1j a

(b)
1j terms are zero, then Ωab =

0. This gives a good improvement on the naïve algorithm for 10 orbitals but the time
improvement is not as good for 50 orbitals as the previous algorithms.

Number of orbitals Norb Naiv̈e Precomputation Speed up
10 0.2466 0.0668 3.69
50 463.9408 49.1610 9.44

B.3.1.2 Lower-scaling Hamiltonian Algorithm
It is also possible to reduce the scaling of the two-electron Hamiltonian algorithm
from O(N5

orb) to O(N4
orb). Writing the two-electron Hamiltonian as

⟨ζ(a)|Ĥ2|ζ(b)⟩ = 1
2

Norb∑
ijkl

⟨ij|kl⟩⟨ζ(a)
ij |b̂l|ζ

(b)
k ⟩. (B.11)

For a specific set of i, j,k it is possible to calculate ⟨ζ(a)
ij |b̂l|ζ

(b)
k ⟩ with O(N3

orb) scaling
and then summing over all values of l must be done in O(Norb) operations to give
an overall scaling of O(N4

orb). ⟨ζ(a)|b̂l|ζ(b)⟩ can be written as

⟨ζ(a)|b̂l|ζ(b)⟩ =
l−1∏
i=1

a
(a)∗
0i a

(b)
0i −a

(a)∗
1i a

(b)
1i

 ·a(a)∗
0l a

(b)
1l ·

 Norb∏
j=l+1

a
(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j

(B.12)

and then define

si =a(a)∗
0i a

(b)
1i , (B.13a)

ei =a(a)∗
0i a

(b)
0i −a

(a)∗
1i a

(b)
1i , (B.13b)

fi =a(a)∗
0i a

(b)
0i +a

(a)∗
1i a

(b)
1i . (B.13c)

which can be trivially calculated in O(Norb) steps. As such the following can be
defined,

gl =
l∏

i=1
ei, (B.14a)

hl =
M∏
i=l
fi (B.14b)

which can also be calculated recursively in O(Norb) steps. Thus

⟨ζ(a)|b̂l|ζ(b)⟩ = gl−1slhl+1 (B.15)

142

143 B.3

which requires O(Norb) steps. Comparing the reduced scaling algorithm to the naïve
algorithm shows and improvement in the time needed to calculate the two-electron
matrix elements of over 20 times for 10 orbitals and over 100 times for 50 orbitals.

Number of orbitals Norb Naïve Scaled Speed up
10 0.2466 0.0116 21.31
50 463.9408 4.5004 103.09

Table B.5: Time (in seconds) to compute a two-electron Hamiltonian matrix element
between two Zombie states with either 10 or 50 orbitals for N2 in the 6 − 31G∗∗ basis.
The naïve algorithm loops through all indices and scales O(N5

orb) the scaled algorithm is
O(N4

orb).

B.3.1.3 Combined Hamiltonian Matrix Element
Equation

The introduction of the Gradient descent method meant that Hamiltonian matrix
elements were being recalculated throughout the program and despite the improve-
ments to the two-electron Hamiltonian algorithm it continued to be the most time
intensive part of the program. Therefore, to reduce the matrix element calculation
time it is useful to carry out as much pre-processing as possible once at the beginning
of the program minimising the total number of operations at the point of matrix
element calculation. The new algorithm takes aspects of the reduced scaling and re-
duced prefactor algorithms used for the two-electron Hamiltonian and applies them
to the entire Hamiltonian matrix element calculation. Each part of the Hamiltonian
matrix element is the sum of overlap calculations, between two Zombie states acted
on by some combination of creation and annihilation operations, multiplied by a
one- or two-electron integral. Each Hamiltonian matrix element is calculated using
the same order and set of operations. So, to maximise computational efficiency, by
requiring fewer processor decisions to be made during execution, the set of creation
and annihilation operations can be stored along with the integral they correspond
to. So, the one- and two-electrons parts can be combined into a single summation
calculated in any desired order with operations being chosen from a stored list.

Using the rules established for the two-electron algorithm it is possible to remove
all zero values from the stored list of creation and annihilation operations. Next it is
possible to explicitly qualify the different types of values that can occur in an overlap
calculation according to the combinations of creation and annihilation operations.
These values are summarised in Table. B.6 for an arbitrary orbital, j, note that
the negative values occur due to the sign change rule when there are creation and
annihilation operations on higher orbitals and the number of operations must be
odd for this effect not to be cancelled out.

143

144 B.3

Table B.6: Summary of all possible values that could occur in an overlap calculation
between ⟨ζ(a)| and |ζ(b)⟩ for orbital j. Negative values are caused by an odd number of
creation and/or annihilation operations on higher orbitals. The terms are classified so
they can be processed accordingly. No operator terms are the same as in the overlap
matrix; Sign change terms only have a negative sign in front of the alive coefficient and
the rest are classified according to the operator(s) acting on that orbital.

Term in Overlap Operators Classification
a

(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j No operator

a
(a)∗
0j a

(b)
0j −a

(a)∗
1j a

(b)
1j Sign change

a
(a)∗
0j ·0+a

(a)∗
1j a

(b)
0j = a

(a)∗
1j a

(b)
0j b̂†j Creation

a
(a)∗
0j ·0−a

(a)∗
1j a

(b)
0j = −a(a)∗

1j a
(b)
0j b̂†j Creation

a
(a)∗
0j a

(b)
1j +a

(a)∗
1j ·0 = a

(a)∗
0j a

(b)
1j b̂j Annihilation

−a(a)∗
0j a

(b)
1j +a

(a)∗
1j ·0 = −a(a)∗

0j a
(b)
1j b̂j Annihilation

a
(a)∗
0j ·0+a

(a)∗
1j a

(b)
1j = a

(a)∗
1j a

(b)
1j b̂†j b̂j Both

a
(a)∗
0j ·0−a

(a)∗
1j a

(b)
1j = −a(a)∗

1j a
(b)
1j b̂†j b̂j Both

Like in the lower scaling algorithm it is possible to reduce the number of required
operations by allowing values to be shared between overlap calculations. For exam-
ple, ⟨ζ(a)|b̂†l b̂j |ζ(b)⟩ has the same set of multiplicands in the overlap calculation as
⟨ζ(a)|b̂†l b̂j+1|ζ(b)⟩ up to orbital j− 1. Hence, values up to a specific orbital can be
calculated once and then used repeatedly in other calculations which is similar to
the idea of the lower scaling algorithm but now also including the one-electron parts.
Further, the first term in Table. B.6 is identical to that found in the calculation of
an element of overlap matrix Ωab and within the Hamiltonian matrix element calcu-
lation these are the most common multiplicand across the entire summation. Since,
it is necessary to calculate the overlap matrix Ω anyway the number of processes
can be reduced by calculating the overlap once and then multiplying that value by
an appropriate set of ωj defined as

ωj = f(ζ(a), ζ(b))
a

(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j

(B.16)

where

f(ζ(a), ζ(b)) =

a
(a)∗
0j a

(b)
0j −a

(a)∗
1j a

(b)
1j

±a(a)∗
1j a

(b)
0j

±a(a)∗
0j a

(b)
1j

±a(a)∗
1j a

(b)
1j

(B.17)

Using the values in Table. B.6 each term in every overlap calculation needed in the
Hamiltonian matrix summation can be classified and this information stored. So,
the Hamiltonian can be calculated by summing together the overlap matrix element

144

145 B.3

multiplied by a specific set of values defined by Eq. (B.16) and Eq. (B.17).
The pre-processing starts by removing zero valued overlaps and then classifying

all parts of the overlap calculation for each set of creation and annihilation op-
erations. Next each overlap is checked to see if any sign changes for orbitals with
creation, annihilation or both operations cancel over the entire multiplication if they
do not the corresponding electron integral is multiplied by -1. This allows orbitals
that are operated on to be considered the same in the calculation. The largest cat-
egory of multiplicand for each spin orbital is found which is then used to decide the
order the calculation for each orbital is carried out in. The order of the integral
summation is decided by first grouping integrals with the same classification for
the first orbital together. The pre-processing then moves across all of the orbitals
reordering the summation so the maximum number of calculations can be reused.
So, the first orbital set the summation as No operator, Creation, Annihilation, Sign
change, Both then at the next orbital the summation would be reordered for each
previous classification – the set of integrals within the No operator classification for
the first orbital could then be reordered No operator, Annihilation, Creation, Sign
change, Both for the second orbital. This process continues for all orbitals. The in-
dices where No operator are stored to allow the algorithm to skip over these as they
are no different to the overlap multiplicand. This allows the longest possible blocks
of the term to be created and used in multiple overlap calculations. The behaviour
of the pre-processing algorithm is shown in Fig. B.2. Each column is a different
part of the Hamiltonian summation and each of the orbital classifications are given
a different colour. The first 50 parts of the sum are shown before and after process-
ing. The algorithm completes all of the operations in the first row before starting
on the next orbital, adjacent squares of the same colour have the same value and so
recalculation is not necessary. The top panel shows the summation before processing
and the bottom the order of summation after processing. Fig. B.2 makes it easy to
visualise how the processing reduces the recalculation of intermediate values.

145

146
B.3

Figure B.2: Visualisation of Hamiltonian matrix element pre-processing algorithm showing the number of intermediate values needed to be calculated
is reduced. The first 50 summations in the Hamiltonian matrix equation are shown for the unprocessed (top) and processed (bottom) using Li2 con-
taining 10 spin orbitals. The algorithm starts in the top left-hand corner and works along the row before starting on the next orbital. Adjacent colours
have the same value and so do not need recalculating. Before processing each orbital contribution is calculated in order of index whereas this is opti-
mised along with the order of summation to ensure a greater number of repeated intermediate values. Unchanged values are red, annihilation opera-
tions are blue, creation operations are white and a negative alive amplitudes are green.

146

147 B.3

Table B.7: Time (in seconds) to compute a two-electron Hamiltonian matrix element
between two Zombie states with either 10 or 50 orbitals for N2 in the 6 − 31G∗∗ basis.
The pre-processed algorithm is significantly faster than the naïve algorithm that loops
through all indices.

Number of orbitals
Norb

Naïve Pre-processed Speed up

10 0.2466 1.8291×10−5 13482
50 463.9408 2.7561×10−2 16833

At the point of execution ωj for all possible f(ζ(a), ζ(b)) for every orbital j is
calculated sequentially as a(a)∗

0j a
(b)
0j +a

(a)∗
1j a

(b)
1j is calculated to find the overlap matrix.

The algorithm then loops over all orbitals using the applicable ωj to alter terms in
each summand. Using the list of indices stored in the pre-processing step if terms
up to the current orbital but in different summands are the same the value is shared
rather than recalculated. Finally, each summand value can be multiplied by its
respective Wklji or hij value which now hold any sign change information followed
by the final summation.

Comparing the pre-processed algorithm, considering just the two-electron inte-
grals, to the naïve algorithm Table. B.7 shows over 13000 and 16000 times speed-ups
for 10 and 50 spin orbitals respectively. The pre-processed algorithm also compares
well with the scaled algorithm. When calculating the 2-electron Hamiltonian ele-
ments the pre-processed algorithm gives a 630 times speed up for 10 orbitals and
160 times speed up for 50 orbitals for N2 in the 6 − 31G∗∗ basis. Also shown in
Table. B.8 is the time the algorithm requires to calculate the complete Hamiltonian
matrix element and overlap matrix element. Despite the overall sum being larger
the overall time is lower than when just calculating the two-electron part. The in-
clusion of the one-electron integrals reduces the number of intermediate values that
have to be computed directly.

Table B.8: Time (in seconds) to compute a two-electron Hamiltonian matrix element
between two Zombie states with either 10 or 50 orbitals for N2 in the 6 − 31G∗∗ basis.
The pre-processed algorithm is faster than the scaled algorithm and is marginally faster
when calculating the full Hamiltonian and the overlap matrix. Thus, overall is a better
choice for calculating the entire Hamiltonian matrix.

Number of
orbitals Norb

Scaled Pre-processed Speed
up

Full algorithm

10 1.1571×10−2 1.8291×10−5 632.61 1.2746 ×10−5

50 4.5004×100 2.7561×10−2 163.28 2.7200×10−2

To store the values necessary to use the pre-processed algorithm a derived type
is used which is shown in Listing. B.7. The variable num stores the total number
of non-zero one- and two-electron integrals, NInt which is the length of the array

147

148 B.3

integrals and hnuc is the nucleus energy. The array orbital_choice3 stores the or-
der of orbitals used in the Hamiltonian and orbital_choice stores the multiplicand
classifications making it a Norb×NInt array. The array orbital_choice2 stores the
indices to be looped over for each orbital, for each orbital pairs of start and end
indices for each classification to be calculated are stored, which allows the algorithm
to skip over any unchanged multiplicands. The first dimension of the array is allo-
cated 0 → Norb which allows the program to store the total number of index pairs
for each orbital and the second dimension is then the largest number of index pairs.

1 type elecintrgl

2 integer :: num

3 real(wp), dimension (:) , allocatable :: integrals

4 integer , dimension (: ,:) ,allocatable :: orbital_choice

5 integer , dimension (: ,:) ,allocatable :: orbital_choice2

6 integer , dimension (:) ,allocatable :: orbital_choice3

7 real(wp) :: hnuc

8 end type elecintrgl

Listing B.7: Definition of the "elecintrgl" data type.

A single matrix element is then calculated using the code in Listing. B.8 which starts
by calculating the overlap matrix element and the different orbital multiplicands,
storing them in the 4×Norb array perts for Zombie states z1d and z2d. The nucleus
contribution is added to the final Hamiltonian total and the 1-D array ovrlp_vec
length NInt is set to the overlap value. The algorithm then loops through each
orbital, index k, altering the values in ovrlp_vec by the appropriate value in perts,
index l and copying the value to other parts of the sum if it is the same, index j.
Finally, the values can be summed together to give the final Hamiltonian matrix
element.

148

149 B.3

1 ovrlp =1
2 do j=1, norb
3 ! Alive coefficients multiplied together
4 aa=z1d(j)*z2d(j)
5 ! Dead coefficients multiplied together
6 dd=z1d(j+norb)*z2d(norb+j)
7 ! Alive coefficient multiplied with dead coefficient
8 ad=z1d(j)*z2d(norb+j)
9 ! Dead coefficient multiplied with alive coefficient

10 da=z1d(j+norb)*z2d(j)
11 ! Contribution to overlap matrix for orbital j
12 div(j)=aa+dd
13 ! Creation operator multiplicand for orbital j
14 perts (1,j)=da/div(j)
15 ! Annihilation operator multiplicand for orbital j
16 perts (2,j)=ad/div(j)
17 ! Both operators multiplicand for orbital j
18 perts (3,j)=aa/div(j)
19 ! Negative alive coefficient multiplicand for orbital j
20 perts (4,j)=(-aa+dd)/div(j)
21 ! Overlap matrix element calculation
22 ovrlp=ovrlp*div(j)
23 end do
24 ! Nucleus contribution to Hamiltonian matrix element
25 ham_tot =ovrlp*elecs%hnuc
26 ! Set all parts of summation to the overlap value
27 ovrlp_vec =ovrlp
28

29 do k=1, norb ! Loop over the rows in elecs% orbital_choice
30 do l=1, elecs% orbital_choice2 (0,k)
31 ov= ovrlp_vec (elecs% orbital_choice2 (k,(l*2) -1))*perts(

elecs% orbital_choice (k,elecs% orbital_choice2 (k,(l*2) -1)),
elecs% orbital_choice3 (k))

32

33 ! elecs% orbital_choice3 (k) selects the orbital
34 ! elecs% orbital_choice (k,elecs% orbital_choice2 (k,(l*2)

-1)) is the category
35 ! elecs% orbital_choice2 (k,(l*2) -1) starting the index
36 ! and elecs% orbital_choice2 (k,l*2) the end index
37

38 do j=elecs% orbital_choice2 (k,(l*2) -1),elecs%
orbital_choice2 (k,l*2)

39 ovrlp_vec (j)=ov
40 end do
41 end do
42 end do
43 ! Final sum of all values to give Hamiltonian matrix element
44 do j=1, elecs%num
45 ham_tot = ham_tot +(ovrlp_vec (j)*elecs% integrals (j))
46 end do

Listing B.8: Code used to calculate Hamiltonian matrix element.

149

150 B.3

B.3.2 Other Operators
As established, the observable properties of a Zombie state can be computed by iter-
ative application of creation and annihilation operators [9]. Here similar algorithms
to the lower scaling two-electron Hamiltonian algorithm are considered for com-
monly used properties such as the number of electrons and spin properties. These
algorithms have been implemented in an additional Fortran module contained in a
file operators.f90 available with the other source code files.

B.3.2.1 Number Operator
The number operator is

N̂ =
Norb∑
i=1

n̂i =
Norb∑
i=1

b̂†i b̂i (B.18)

where b̂i is the annihilation and b̂†i the creation operator for Zombie state i. So,

n̂i|ζ(b)⟩ =
a(b)

11 a
(b)
12 . . . a

(b)
1(i−1) a

(b)
1i . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
0(i−1) 0 . . . a

(b)
0Norb

 (B.19)

n̂i effectively “deletes" the coefficient a(b)
0i with the sign change being cancelled out.

This means the number operator, N̂ is O(Norb) because the summation is over Norb
terms. So overall computing the number of electrons represented by a Zombie state,
⟨ζ(a)|N̂ |ζ(b)⟩ would be O(N2

orb) due to the number operator and then an overlap
calculation which is O(Norb).

However, this scaling can be reduced to O(Norb) by adapting an algorithm from
Ref. [178]. Explicitly the action of the number operator is.

⟨ζ(a)|N̂ |ζ(b)⟩ =
Norb∑
l=1

⟨ζ(a)|n̂l|ζ(b)⟩

=
Norb∑
l=1

l−1∏
j=1

a
(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

a(a)∗
1l a

(b)
1l

 Norb∏
j=l+1

a
(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

 .
(B.20)

Defining,

di = a
(a)∗
1i a

(b)
1i (B.21)

150

151 B.3

and then using Eq. (B.13c)

gi =
m∏
i=1

fi. (B.22)

This can be used along with Eq. (B.14b) to give the recursion relations:

g1 =f1, (B.23a)

gl =gl−1fl, l = 2,3, . . .Norb (B.23b)

hNorb
=fNorb

, (B.23c)

hm =hl+1fl, l =Norb−1,Norb−2, . . . ,1. (B.23d)

Computation of Eq. (B.21), Eq. (B.13c) and {gl} and {hm}, using the recursion
relations, are all O(Norb). Putting these into Eq. (B.20),

⟨ζ(a)|N̂ |ζ(b)⟩ =
Norb∑
l=1

gl−1dlhl+1 (B.24)

which is a summation computed in O(Norb) steps. Application of the scaled al-
gorithm shows a large improvement on the naïve algorithm. In Table. B.9 it is
demonstrated that when increasing the number of orbitals by a factor of 10, the
new algorithm is approximately a further 10 times faster than the naïve one which
is to be expected.

Zombie states are usually not eigenstates of the number operator, unlike most
Slater determinants, so the uncertainty in the in number of electrons can be defined
as a standard deviation

σN =
√

⟨N̂2⟩−⟨N̂⟩ (B.25)

For N̂2,

⟨ζ(a)|N̂2|ζ(b)⟩ =
Norb∑
k=1

⟨ζ(a)|N̂ n̂k|ζ(b)⟩. (B.26)

n̂k|ζ(b)⟩ is then simply delete the "dead" coefficient for orbital k. So |ζ(b)
k ⟩ = n̂k|ζ(b)⟩

can be defined and computed

⟨ζ(a)|N̂2|ζ(b)⟩ =
Norb∑
k=1

⟨ζ(a)|N̂ |ζ(b)
k ⟩ (B.27)

using the scaled algorithm for the number operator, which means the overall N̂2 is
O(N2

orb) rather than O(N3
orb).

A "Ghost" operator that counts the "dead" Zombie states rather than the "alive"

151

152 B.3

can be defined,

Ĝ=
Norb∑
l=1

ŝl :=
Norb∑
l=1

b̂lb̂
†
l . (B.28)

The same scaling arguments as for N̂ can then be made for Ĝ.

Table B.9: Time (in seconds) to compute orbital occupancy of a Zombie state popu-
lated randomly generated "dead" and "alive" coefficients. The Naïve algorithm is signifi-
cantly slower in absolute terms, with worse scaling.

Number of orbitals Norb Naïve algorithm New Algorithm Speedup
100 0.028711 0.00056004 51.27
1000 3.0294 0.0051531 587.87

B.3.2.2 Spin Operators

B.3.2.2.1 Ŝz operator
It is assumed that the Zombie states are only used in restricted calculations such
that for all orbitals with spin |α⟩ (spin up, ms = +1/2) there exists an orbital
with the same spatial wave function but opposite spin component |β⟩ (spin down,
ms = −1/2). Thus, for a system with Norb spin orbitals, there will consequently be
Nspa spatial orbitals where Nspa =Norb/2,Nspa ∈ N. Further it is stipulated that all
up-spin orbitals have an odd index i= 1,3, . . .Norb− 1 and so all spin orbitals with
down spin are even indexed i = 2,4, . . . ,Norb. So, for the spatial orbitals indexed
j = 1,2, . . . ,Nspa the |α⟩ spin orbital is i = 2j− 1 and the |β⟩ spin orbital is i = 2j
for the jth spatial orbital. Using this numbering convention, in second quantization
notation

Ŝz =1
2

Nspa∑
j=1

n̂2j−1 − n̂2j

=1
2

Norb∑
i=1

(−1)i−1n̂i.

(B.29)

The optimised number operator can then be adapted by introducing a sign change
rule which finds Sz in O(Norb) steps. Comparing the scaled algorithm to the naïve
algorithm, which uses sequential creation and annihilation operations, the improved
calculation time is clear – see Table. B.10.

Table B.10: Time (in seconds) to compute Sz for randomly generated Zombie states
using the slow naïve and faster scaled Ŝz algorithm. The new algorithm clearly demon-
strates better scaling and is faster in absolute terms.

Number of orbitals Norb Slow Ŝz Fast Ŝz Speedup
100 0.029760 0.00062376 47.71
1000 3.7123 0.0063864 581.28

152

153 B.3

B.3.2.2.2 Faster Ŝ2
z computation

Calculation of Ŝ2
z would be O(N3

orb) if Eq. (B.29) is used with no modification,

Ŝ2
z =1

4

Norb/2∑
k

Norb/2∑
j

(n̂2k−1 − n̂2k)(n̂2j−1 − n̂2j) = 1
4

Norb∑
k

Norb∑
j

n̂kn̂j(−1)j+k (B.30)

there are O(Norb) steps for the summation over k and the same for the summation
over j, and then O(Norb) to evaluate the overlap. However, the scaled number
operator algorithm can be used for Ŝ2

z ,

⟨ζ(a)|Ŝ2
z |ζ(b)⟩ = 1

2

Norb∑
i

⟨ζ(a)|Ŝzn̂i|ζ(b)⟩(−1)i. (B.31)

n̂i|ζ(b)⟩ gives another Zombie state denoted |ζ(b,i)⟩ so,

⟨ζ(a)|Ŝ2
z |ζ(b)⟩ = 1

2

Norb∑
i

⟨ζ(a)|Ŝz|ζ(b,i)⟩(−1)i. (B.32)

The bra-ket due to the operations can be evaluated in O(Norb) followed by an overlap
making the Ŝ2

z operator calculation O(N2
orb).

Table B.11: Time (in seconds) to compute S2
z of random Zombie states using the un-

scaled and faster scaled Ŝ2
z algorithm. The new algorithm clearly demonstrates better

scaling and is faster in absolute terms.

Number of orbitals Norb Slow Ŝ2
z Fast Ŝ2

z Speedup
100 6.6990 0.23865 28.07
1000 3554.8 6.8003 522.74

B.3.2.2.3 Total spin
Often it is useful to calculate the total spin [36],

Ŝ2 =Ŝ2
x+ Ŝ2

y + Ŝ2
z

=Ŝ+Ŝ− − Ŝz + Ŝ2
z

(B.33)

The faster Ŝz and Ŝ2
z algorithms as detailed above. Ŝ+ and Ŝ− are raising and

lowering operators,

Ŝ+ =
Nspa∑
k=1

ŝ+,k (B.34a)

Ŝ− =
Nspa∑
k=1

ŝ−,k (B.34b)

ŝ+,k =b̂†2k−1b̂2k (B.34c)

ŝ−,k =b̂†2k b̂2k−1 (B.34d)

153

154 B.3

where Nspa is the number of spatial orbitals with the kth spatial orbital containing
|α⟩ spin orbital number 2k−1 and |β⟩ spin orbital number 2k. ŝ+,k and ŝ−,k acting
on a Zombie state (where j = 2k)

ŝ+,k|ζ(b)⟩ = b̂†2k−1b̂2k

a(b)
11 a

(b)
12 . . . a

(b)
1(j−1) a

(b)
1j a

(b)
1(j+1) . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
0(j−1) a

(b)
0j a

(b)
0(j+1) . . . a

(b)
0Norb

= b̂†2k−1

−a(b)
11 −a(b)

12 . . . −a(b)
1(j−1) 0 a

(b)
1(j+1) . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
0(j−1) a

(b)
1j a

(b)
0(j+1) . . . a

(b)
0Norb

=

a(b)
11 a

(b)
12 . . . a

(b)
0(j−1) 0 a

(b)
1(j+1) . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . 0 a

(b)
1j a

(b)
0(j+1) . . . a

(b)
0Norb

(B.35)

and

ŝ−,k|ζ(b)⟩ = b̂†2k b̂2k−1

a(b)
11 a

(b)
12 . . . a

(b)
1(j−1) a

(b)
1j a

(b)
1(j+1) . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
0(j−1) a

(b)
0j a

(b)
0(j+1) . . . a

(b)
0Norb

= b̂†2k

−a(b)
11 −a(b)

12 . . . 0 a
(b)
1j a

(b)
1(j+1) . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
1(j−1) a

(b)
0j a

(b)
0(j+1) . . . a

(b)
0Norb

=

a(b)
11 a

(b)
12 . . . 0 a

(b)
0j a

(b)
1(j+1) . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
1(j−1) 0 a

(b)
0(j+1) . . . a

(b)
0Norb

(B.36)

The sign change in both cases exactly cancels so can be ignored when evaluating Ŝ+

or Ŝ−. The scaling of the algorithm can also be reduced by first defining ŝ−,k|ζ(b)⟩ =
|ζ(c)
k ⟩ which has O(Norb) scaling. So,

⟨ζ(a)|Ŝ+Ŝ−|ζ(b)⟩ =
Nspa∑
k=1

⟨ζ(a)|Ŝ+|ζ(c)
k ⟩ =

Nspa∑
k=1

K∑
l=1

⟨ζ(a)|ŝ+,m|ζ(c)
k ⟩

=
Nspa∑
k=1

 K∑
l=1

l−2∏
j=1

a
(a)∗
1j a

(c)
1j +a

(a)∗
0j a

(c)
0j

 ·a(a)∗
0(l−1)a

(c)
1(l−1) ·a(a)∗

1l a
(c)
0l ·

 Norb∏
j=l+1

a
(a)∗
1j a

(c)
1j +a

(a)∗
0j a

(c)
0j

(B.37)

Using a similar reasoning to the scaled Hamiltonian with, Eq. (B.13c) and the num-
ber operator with Eq. (B.22) and Eq. (B.21) the following functions can be defined,

154

155 B.3

fi =(a(a)∗
1i−1a

(c)
1i−1 +a

(a)∗
0i−1a

(c)
0i−1) · (a(a)∗

1i a
(c)
1i +a

(a)∗
0i a

(c)
0i) (B.38a)

gl =
l∏

i=1
fi (B.38b)

hl =
K∏
i=l
fi (B.38c)

di =a(a)∗
0(i−1)a

(c)
1(i−1)a

(a)∗
1i a

(c)
0i (B.38d)

Which gives

⟨ζ(a)|ŝ+l|ζ
(c)
k ⟩ = gl−2dlhl+1 (B.39)

Thus overall, the scaling is reduced from O(N3
orb) to O(N2

orb). Application of this
new algorithm compared to the naïve algorithm which uses the no sign change rule
are shown in Table. B.12.

However, it is possible to construct an algorithm for ⟨ζ(a)|ŝ+ŝ−|ζ(b)⟩ eliminating
the need to calculate |ζ(c)⟩. By setting m= 2l and n= 2k,

ŝ+,lŝ−,k|ζ(b)⟩ = b̂†2l−1b̂2lb̂
†
2k b̂2k−1

a(b)
11 a

(b)
12 . . . a

(b)
1m . . . a

(b)
1n . . . a

(b)
1M

a
(b)
01 a

(b)
02 . . . a

(b)
0m . . . a

(b)
0n . . . a

(b)
0M

 (B.40)

which can have the following outcomes

ŝ+,lŝ−,k|ζ(b)⟩ =

a(b)
11 a

(b)
12 . . . 0 a

(b)
0n . . . a

(b)
0(m−1) 0 . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
1(n−1) 0 . . . 0 a

(b)
1m . . . a

(b)
0Norb

2k < 2l
a(b)

11 a
(b)
12 . . . a

(b)
0(m−1) 0 . . . 0 a

(b)
0n . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . 0 a

(b)
1m . . . a

(b)
1(n−1) 0 . . . a

(b)
0Norb

2k > 2l
a(b)

11 a
(b)
12 . . . a

(b)
1(m−2) a1(m−1) 0 a

(b)
1(m+1) . . . a

(b)
1Norb

a
(b)
01 a

(b)
02 . . . a

(b)
0(m−2) 0 a0m a

(b)
0(m+1) . . . a

(b)
0Norb

2k = 2l

(B.41)

155

156 B.3

which gives

⟨ζ(a)|ŝ+,lŝ−,k|ζ(b)⟩ =

k−2∏
j=1

a
(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

a(a)∗
0(k−1)a

(b)
1(k−1)a

(a)∗
1k a

(b)
0k · l−2∏

j=k+1
a

(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

a(a)∗
1(l−1)a

(b)
0(l−1)a

(a)∗
0l a

(b)
1l · M∏

j=l+1
a

(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

 , 2k < 2l

l−2∏
j=1

a
(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

a(a)∗
1(l−1)a

(b)
0(l−1)a

(a)∗
0l a

(b)
1l · k−2∏

j=l+1
a

(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

a(a)∗
0(k−1)a

(b)
1(k−1)a

(a)∗
1k a

(b)
0k · M∏

j=k+1
a

(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

 , 2k > 2l

l−2∏
j=1

a
(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

a(a)∗
1(l−1)a

(b)
1(l−1)a

(a)∗
0l a

(b)
0l · M∏

j=l+1
a

(a)∗
1j a

(b)
1j +a

(a)∗
0j a

(b)
0j

 , 2k = 2l

(B.42)

The recursion relations are then defined,

fi =(a(a)∗
1(i−1)a

(b)
1(i−1) +a

(a)∗
0(i−1)a

(b)
0(i−1)) · (a(a)∗

1(i) a
(b)
1(i) +a

(a)∗
0(i) a

(b)
0(i)) (B.43a)

ci =a(a)∗
0(i−1)a

(b)
1(i−1) ·a(a)∗

1i a
(b)
0i (B.43b)

di =a(a)∗
1(i−1)a

(b)
0(i−1) ·a(a)∗

0i a
(b)
1i (B.43c)

si =a(a)∗
1(i−1)a

(b)
1(i−1)a

(a)∗
0i a

(b)
0i (B.43d)

which are calculated in O(Norb) steps. Then the following functions are defined,

gl =
l∏

i=1
fi (B.44a)

hl =
K∏
i=l
fi (B.44b)

t(l,p) =
p∏
i=l
fi (B.44c)

Eq. (B.44a) and Eq. (B.44b) are then calculated recursively in O(Norb) steps and

156

157 B.4

Eq. (B.44c) in O(N2
orb). Therefore,

⟨ζ(a)|Ŝ+Ŝ−|ζ(b)⟩ =
Nspa−1∑
k=1

Nspa∑
l=k+1

gk−1ckt(k+1,l−1)dlhl+1+

Nspa−1∑
l=1

Nspa∑
k=l+1

gl−1dlt(l+1,k−1)ckhk+1 +
Nspa∑
l=1

gl−1slhl+1

(B.45)

The speed up this algorithm provides compared to the naïve algorithm can be seen
in the final column of Table. B.12.

Table B.12: Time (in seconds) to compute ⟨ζ(a)|Ŝ+Ŝ−|ζ(b)⟩ of random populated Zom-
bie states. The naiv̈e algorithm uses the no sign change rule for Ŝ+ or Ŝ−. The scale
reduced algorithm requires the calculation of |ζ(c)⟩. The prefactor reduction directly
computes Ŝ+ and Ŝ− acting on |ζ(b)⟩. The speedups are between the scaled algorithm
when compared to the naiv̈e algorithm. Both scaled algorithms show a real time im-
provement but by reducing the prefactor as well as the scaling doubles the improvement
on just reducing the scaling.

Number of
orbitals Norb

Naiïve Scale
reduction

Prefactor
reduction

Speedups Naiïve with
Scale

reduction
Prefactor
reduction

100 0.85121 0.055180 0.025146 15.43 33.85
1000 792.20 5.2828 2.3451 149.96 337.81

So, the naïve total spin algorithm is made up of three separate algorithms Ŝ+Ŝ−,
Ŝz, Ŝ2

z that scaled O(N3
orb), O(N2

orb) and O(N3
orb) respectively. The reduced scal-

ing algorithms by contrast have O(N2
orb), O(Norb) and O(N2

orb) scaling respectively.
Comparing the two sets of algorithms, in Table. B.13, demonstrates that Ŝ2 calcu-
lation for 1000 orbitals is over 460 times faster with the scaled algorithms compared
to the naïve algorithm.

Table B.13: Time (in seconds) to compute total spin of randomly generated Zombie
states. The naïve algorithm uses none of the scaled algorithms whereas the new algo-
rithm uses the scaled Ŝ2

z and the fastest algorithm to calculate ⟨ζ(a)|Ŝ+Ŝ−|ζ(b)⟩. The
new algorithm is considerably faster than the original implementation and shows much
better scaling.

Number of orbitals Norb Naïve Scaled Speedup
100 6.4861 0.092060 70.45
1000 4106.4 8.77818 467.60

157

158 B.4

B.4 Gradient Descent Algorithm

B.4.1 Derivatives of the Overlap Matrix
As shown in section 4.4.1 it is possible to calculate the gradient of the energy function
indirectly. The only derivative that needs to be calculated is that of the overlap
matrix which is not computationally expensive. The "dead" and "alive" coefficients
of a Zombie state for orbital j are cos(θj) and sin(θj) respectively. First it is trivially
noted that ∂Ωab

∂ζ
(c)
θj

̸= 0 only if c = a, or b. As the derivative is being calculated with

respect to a specific spin orbital only that orbital needs to be considered and the
rest of the overlap can be considered a scalar which can be denoted Ωj

ab. So, if
ζ(c) = ζ(a) = ζ(b) then the derivative of the overlap for orbital j is,

∂Ωcc

∂ζ
(c)
θj

= Ωj
cc

(sin(θ(c)
j)sin(θ(c)

j)+ cos(θ(c)
j)cos(θ(c)

j))

∂ζ
(c)
θj

= Ωj
ab · (sin(2θ(c)

j)− sin(2θ(c)
j) = 0.

(B.46)

Therefore, the only non-zero derivative is calculated,

∂Ωab

∂ζ
(c)
θj

= Ωj
ab

(sin(θ(a)
j)sin(θ(b)

j)+ cos(θ(a)
j)cos(θ(b)

j))

∂ζ
(c)
θj

= Ωj
cb · (cos(θ(c)

j)sin(θ(b)
j)− sin(θ(c)

j)cos(θ(b)
j)) ζ(c) = ζ(a), ζ(a) ̸= ζ(b).

(B.47)

These values can the calculated in a similar way to the Hamiltonian matrix by
dividing the overlap by the contribution to the multiplication for orbital j and then
multiplying by the orbital derivative. These results are summarised,

∂Ωab

∂ζ
(c)
θj

=

0 ζ(c) ̸= ζ(a), ζ(b)

0 ζ(c) = ζ(a) = ζ(b)

Ωab · cos(θ
(c)
j)sin(θ(b)

j)−sin(θ(c)
j)cos(θ(b)

j)

sin(θ(c)
j)sin(θ(b)

j)+cos(θ(c)
j)cos(θ(b)

j)
ζ(c) = ζ(a) ̸= ζ(b)

(B.48)

B.4.2 Gradient Calculation Code
To carry out the Gradient Descent process, a type is defined to contain all of the
relevant variables which is shown Listing. B.9. The variable prev_erg stores the en-
ergy from the previous gradient step which can be compared to the newly calculated
energy and updated if the change is accepted. vars and grad_avlb are Norb ×Nbf

sized arrays ordered to allow faster access to gradients within a Zombie state. vars
store the value of the gradient for each orbital in each Zombie state, grad_avlb takes

158

159 B.4

either 1 if the gradient has already been calculated or a 0 if it needs calculating.
The availability array stops the program wasting time recalculating values already
in memory.

1 type grad

2 real(wp):: prev_erg

3 real(wp),dimension (: ,:) , allocatable :: vars

4 integer , dimension (: ,:) ,allocatable :: grad_avlb

5 real(wp),dimension (: ,: ,:) ,allocatable :: ovrlp_grad

6 integer , dimension (: ,: ,:) ,allocatable :: ovrlp_grad_avlb

7 end type grad

Listing B.9: Definition of the "grad" data type.

ovrlp_grad and ovrlp_grad_avlb are Norb×Nbf ×Nbf sized arrays used to store the
values and availability of the partial derivatives of the overlap matrix. The variables
are set up, so the first index gives the orbital, thetaj , the partial derivative is found
with respect to; the second index is the other ZS in the overlap calculation and
the final index is the Zombie state containing the orbital the derivative is being
calculated for, ζ(c)

θj
. Thus ∂Ωcb

ζ
(c)
θj

is stored,

1 ovrlp_grad (j,b,c)

Listing B.10: Demonstration of indexing convention in ovrlp_grad and
ovrlp_grad_avlb. Shown is the index for the partial derivative with respect to orbital
j in Zombie state ζ(c) of the overlap between ZSs b and c, ⟨ζ(c)|ζ(b)⟩.

To calculate the gradient the equation Eq. (4.21) is used which is

∂E

∂ζ
(c)
θj

= −cHd

(
√

|c∗Ωc|)3

c∗Ωc

|c∗Ωc|
c∗∂(Ω)c
∂ζ

(c)
θj

= sgn(−c∗Ωc) · cHd

||d||
c∗∂(Ω)c
∂ζ

(c)
θj

. (B.49)

where c is the unnormalised ZS coefficient vector which is denoted d once normalised
and ||d|| is its norm. The program using the derived type to contain the ZS coefficient
vector values d is d; d_1 is the unnormalised vector, c; norm is

√
|c∗Ωc|) and d_o_d

is either 1 or −1 depending on c∗Ωc being positive or negative.

1 type dvector

2 real(wp), dimension (:) , allocatable ::d

3 real(wp), dimension (:) , allocatable :: d_1

4 real(wp), dimension (: ,:) ,allocatable :: d_gs

5 real(wp):: norm

6 integer (int8):: d_o_d

7 end type dvector

Listing B.11: Definition of the "dvector" data type.

159

160 B.4

The process to calculate a partial derivative is shown in Listing. B.12 for a single
spin orbital. The term in Eq. (B.49) containing the Hamiltonian is independent of
the partial derivative being calculated and so only needs to be calculated once. At
the end of the imaginary time process the program stores all values in the instance
of the dvector type, dvec. The Hamiltonian term in Eq. (B.49) is calculated using
the library function DGEMV and stored in the variable ham_c_d. The partial
derivatives are then calculated using Eq. (B.48). The derivative of the overlap
matrix will be zero except in row and column corresponding to Zombie state |ζ(c)⟩.
So, when calculating ∂(Ω)c the resultant vector has elements Ωca · c(a) except for
element c which is ∑

aΩac ·c(a) hence the need for line 13 in Listing. B.12

1 if(grad_fin % grad_avlb (orb ,pick)==0) then

2 call DGEMV("N",ndet ,ndet ,1.d0 ,haml%hjk ,ndet ,dvecs%d ,1 ,0.d0

,temp ,1)

3 ham_c_d =(dvecs%d_o_d /(dvecs%norm*dvecs%norm*dvecs%norm))*

dot_product (temp ,dvecs%d_1)

4 do j=1, ndet

5 if(grad_fin % ovrlp_grad_avlb (orb ,j,pick).eq .0) then

6 grad_fin % ovrlp_grad (orb ,j,pick)=haml%ovrlp(j,pick)*&

7 (zstore (j)%val(orb)* zstore (pick)%val(orb+norb)-

zstore (j)%val(orb+norb)* zstore (pick)%val(orb))/&

8 (zstore (j)%val(orb)* zstore (pick)%val(orb)+ zstore (j)%

val(orb+norb)* zstore (pick)%val(orb+norb))

9 grad_fin % ovrlp_grad_avlb (orb ,j,pick)=1

10 end if

11 end do

12 temp= grad_fin % ovrlp_grad (orb ,:, pick)*dvecs%d_1

13 temp(pick)= dot_product (grad_fin % ovrlp_grad (orb ,:, pick),

dvecs%d_1)

14 grad_fin %vars(pick ,orb)= dot_product (temp ,dvecs%d_1)*

ham_c_d

15 grad_fin % grad_avlb (orb ,pick)=1

16 else

Listing B.12: Code used to find the gradient of the energy function with respect to a
ZS orbital. The chosen Zombie state is held in variable "pick" and the chosen orbital is
stored in variable "orb".

160

161 B.4

B.4.3 The Algorithm
The algorithm implemented in the code follows the process laid out in Fig. 4.8. The
process starts by generating a random order for the Zombie states which is stored in
a variable called picker. The learning rate for the epoch is then set using the code
in Listing. B.13.

1 t=lr*(lr_alpha ** lralt_zs)

Listing B.13: Code used to set the learning rate, t. The variable lr is the initial
learning rate, lr_alpha is the learning rate reduction parameter and lralt_zs learning
rate scheduling parameter.

The algorithm then iterates through each orbital within each Zombie state calculat-
ing the gradient, using the code in Listing. B.12, to calculate a new set of "dead" and
"alive" amplitudes; recalculating the Hamiltonian and finding a ground state energy.
The updated ZS amplitudes are accepted if the ground state energy is reduced. Once
the epoch is complete the code in Listing. B.14 is used to advance the learning rate
and check if a sufficiently large number of ZSs have been altered at that learning
rate. The variable acpt_cnt_2 is used to store the number of Zombie states altered
in that epoch. lralt_extra is initially set to 0 and is used to remove larger learning
rates from the schedule when an insufficient numbers of Zombie states are altered in
an epoch. The variables tracker and extra_flag are used to ensure the learning rates
are removed in size order and this can only happen once per learning rate cycle.
The second if statement resets the learning rate at the end of a cycle which also
sets extra_flag back to zero making it possible for a learning rate to be removed
again. A new random order of ZSs is also generated, updating the variable picker
using the function scramble.

The variable tracker is used to control increases to the learning rate schedule
and conditional cloning events. chng_chng is used to instigate cloning or changes
to the learning rate schedule after a fixed number of epochs have occurred. If
cloning is possible the Zombie basis set is increased by a predefined number of ZSs.
If the maximum basis set size has been reached or cloning has not been specified
the program attempts to allow a lower learning rate by increasing the value of
lr_loop_max. If the minimum learning rate has already been reached the cycle is
reset making all learning rates available again. The variable tracker is then set to -1
which ensures all Zombie states are attempted to be altered at all possible learning
rates at least twice. The algorithm then returns to the beginning of the loop setting
a new learning rate and proceeding as before. The loop stops when the maximum
number of epochs is reached or the number of consecutive epochs with no change to
the energy is more than value of 50×Nbf .

161

162 B.4

1 if ((acpt_cnt_2 .lt .(0.15* ndet)).and .(extra_flag .eq .0).and .(

lralt_zs .eq. lralt_extra).and .(tracker .gt .-1))then

2 lralt_extra = lralt_extra +1

3 extra_flag =1

4 end if

5

6 lralt_zs = lralt_zs +1

7 chng_chng =chng_chng -1

8 if(lralt_zs .gt. lr_loop_max)then

9 picker = scramble (ndet -1)

10 lralt_zs = lralt_extra

11 extra_flag =0

12 if((acpt_cnt_2 .lt .((ndet)/3)).or .((ndet.gt .5).and .(

acpt_cnt_2 .lt .3)).or.(tracker .lt .0))then

13 tracker = tracker +1

14 end if

15 end if

16

17 if ((((tracker .ge .1).and .(lralt_extra .gt. lr_loop_max -2)).or .(

chng_chng .le .0)))then

18 if(ndet.lt. ndet_max)then

19 ! Cloning code

20 else if(lr_loop_max .lt. min_clone_lr)then

21 ! Increase learning rate schedule code

22 else

23 ! Reset learning rate

24 end if

25 end if

Listing B.14: Code used to advance the learning rate and check if a sufficient number
of Zombie states have been altered.

162

163 B.4

1 dvecs%d_1 =0.0 d0
2 dvecs%d_1 (1) =1.0 d0
3 dvecs%d_gs =0.0 d0
4 do k=1, gramnum
5 dvecs%d_gs(k,k+1) =1.0 d0
6 end do
7 call gs_dvector (dvecs ,haml%ovrlp)
8 db=beta/ timesteps
9

10 do k=1, timesteps +1
11 call DGEMV("N",size ,size ,1.d0 ,haml%ovrlp ,size ,dvecs%d_1

,1 ,0.d0 ,temp ,1)
12 norm= dot_product (temp ,dvecs%d_1)
13 dvecs%norm = sqrt(abs(norm))
14 dvecs%d=dvecs%d_1/dvecs%norm
15 do g=1, gramnum
16 call DGEMV("N",size ,size ,1.d0 ,haml%ovrlp ,size ,dvecs%d_gs

(g ,:) ,1,0.d0 ,temp ,1)
17 norm= dot_product (temp ,dvecs%d_gs(g ,:))
18 dvecs%d_gs(g ,:)=dvecs%d_gs(g ,:)/sqrt(abs(norm))
19 end do
20

21 call DGEMV("N",size ,size ,1.d0 ,haml%hjk ,size ,dvecs%d ,1 ,0.d0
,temp ,1)

22 erg (1,k)= dot_product (temp ,dvecs%d)
23 do g=1, gramnum
24 call DGEMV("N",size ,size ,1.d0 ,haml%hjk ,size ,dvecs%d_gs(g

,:) ,1,0.d0 ,temp ,1)
25 erg(g+1,k)= dot_product (temp ,dvecs%d_gs(g ,:))
26 end do
27

28 call DGEMV("N",size ,size ,db ,haml%kinvh ,size ,dvecs%d ,1 ,0.d0
,ddot ,1)

29 dvecs%d_1=dvecs%d-ddot
30 do g=1, gramnum
31 call DGEMV("N",size ,size ,db ,haml%kinvh ,size ,dvecs%d_gs(g

,:) ,1,0.d0 ,ddot ,1)
32 dvecs%d_gs(g ,:)=dvecs%d_gs(g ,:) -ddot
33 end do
34 call gs_dvector (dvecs ,haml%ovrlp)
35 end do
36

37 call DGEMV("N",size ,size ,1.d0 ,haml%ovrlp ,size ,dvecs%d_1 ,1 ,0.
d0 ,temp ,1)

38 norm= dot_product (temp ,dvecs%d_1)
39 dvecs%d_o_d= sign_d_o_d (norm)
40 dvecs%norm = sqrt(abs(norm))
41 dvecs%d=dvecs%d_1/dvecs%norm

Listing B.15: Code for imaginary time propagation which makes uses of the BLAS
routine DGEMV to complete some of the matrix vector multiplications. Gram-Schmidt
orthogonalisation is also shown but can be omitted by removing lines 3-7, 15-19, 23-26
and 30-34.

163

164 B.6

B.5 Imaginary Time Propagation
The algebraic details of imaginary time propagation are given in Chapter 3. The
code used for imaginary time propagation is shown in Listing. B.15 including the
Gram-Schmidt orthogonalisation process. The BLAS routine DGEMV is used to
multiply the unnormalised d vector with the overlap matrix and placing it in the
variable temp before the dot product is used to find the norm. DGEMV is also
used when calculating the energy using the Hamiltonian matrix. The d vectors for
higher energy states are all stored in the variable dvecs%d_gs which is an array of
size Nes ×Nbf where Nes is the number of excited states. Imaginary time steps
and energies are calculated in the same ways for the ground state except with the
additional orthogonalisation process. The Zombie states program uses a version
of this subroutine that omits the GSO sections, and another used during gradient
descent which only calculates the final energy rather than storing the values in the
array erg so they can be outputted.

B.6 Parallelisation
Completing computing tasks one after another can result in very slow computation
times. Parallelisation of code allows certain tasks to be completed concurrently mak-
ing full use of available computing resources. Modern personal computers using a
single processor still have multiple cores to complete tasks on and high-performance
cluster computers contain multiple processors each with many cores. To allow si-
multaneous execution of code there are two approaches defined by the use of either a
shared or distributed memory system. A shared memory approach such as OpenMP
allows sections of code to run on multiple threads all accessing the same shared mem-
ory. Whereas the distributed memory approach, such as MPI splits processes across
multiple processors each with their own shared memory.

OpenMP or Open Multi-Processing is a standard approach for adding parallel
execution to program without having to make substantial alterations to existing
serial code. Where an OpenMP parallel section is created formerly serial code is
forked and executed independently before being joined back together, this process
is illustrated in Fig. B.3. Since, a shared memory architecture is being used each
parallel thread can access the same set of memory addresses without the need for
message passing. This allows parallel threads to access the same variables with
little additional overhead. On the other hand, Message Passing Interface or MPI
uses multiple separate processes to complete tasks concurrently. Usually, a main
processor controls the overall process and then moves different sets of tasks to dif-
ferent processors. Each processor completes its set of tasks and returns a result.

164

165 B.6

Figure B.3: Illustration of a sequential program (a) and a program that contains par-
allel regions (b) created by the fork/join function in OpenMP.

This differs from OpenMP as message passing is needed for each processor to be
able to communicate with each other. Though there is a cost to move information
between processors the memory limit of a single processor’s memory is removed,
and further parallelisation is then possible on each processor. Thus, MPI is useful
for large systems where memory requirements are a concern.

Both OpenMP and MPI are CPU based approaches to adding parallelism to
code but increasingly GPUs are being utilised to greatly reduce computation times.
GPUs contain a considerably larger number of computational cores than a CPU
allowing far more computations to be computed concurrently. GPUs work on a
single instruction multiple data SIMD model which means the exact same type of
calculation is completed on different data. Further, the type of tasks each thread on
a GPU can complete is generally less complicated than on a CPU. A single OpenMP
thread could complete multiple parts of a calculation whereas a single GPU thread
would be limited to a single operation for example adding two values together. Like
with MPI there is an overhead passing information from the CPU cached memory
to the CPU. Therefore, using a GPU to complete concurrent tasks is only appro-
priate in certain circumstances. With a large system that requires multiple, simple,
operations of the same type using a GPU can greatly reduce computation times.

B.6.1 Parallel Code in the Zombie states
Program

The Zombie states program currently uses OpenMP parallel directives where pos-
sible to reduce overall computation times. This approach was chosen as the places
where parallelisation is possible will benefit from having access to a shared memory.
Further, it is relatively simple to add OpenMP directives to serial code with little
rewriting necessary. OpenMP works by using directives that enclose a parallel region

165

166 B.6

1 !$omp parallel do default (none) &
2 !$omp & private (j) &
3 !$omp & shared (elecs ,zstore ,temp ,row ,norb ,orb ,size)
4 do j=1, size
5

6 !Code here
7

8 end do
9 !$omp end parallel do

Listing B.16: Example of an OpenMP parallel directive to parallelise a do loop.
Notice the use of shared and private variables.

instructing the compiler to interpret the following code in a specific way. In Fortran
the directives are always preceded by !$omp and so a parallel region is always en-
closed by !$omp parallel and !$omp end parallel. If a parallel region only encloses
a loop it is possible to combine the usual parallel directive with !$omp do –used to
split loop iterations onto different threads. In Listing. B.16 an example of how a
do loop is parallelised is shown the !$omp parallel do opens a parallel environment
and tells the compiler to complete each iteration of the loop on a different thread.
The variables are then classified as either private, so each thread has its own copy
of a variable or shared meaning each thread accesses the same memory location for
these variables. The !$omp critical directive is used so only a single thread can
access code within the region at a time. The UCL random number generator is not
entirely thread safe so when utilised in the MCE program subroutines and functions
that required random number generation are enclosed in the !$omp critical directive
[175]. In the modified version of the code employed in the Zombie states program
the parallel directives have been added to the library function. Central to all random
number generation is the ZBQLU01 function which has been modified so only a sin-
gle thread can access it at a time. The modified function is shown in Listing. B.17,
the critical directive ensures each thread can access and alter shared values used for
random number generation including the functions ZBQLU01_pointer_check and
ZBQLU01_X_value().

166

167 B.6

1 FUNCTION ZBQLU01 (dummy)

2 implicit none

3 real(real64):: ZBQLU01 ,X,B2 ,BINV

4 integer :: dummy

5

6 !$omp critical

7 B2 = B

8 BINV = 1.0 D0/B

9

10 X = ZBQLU01_X_value ()

11 ZBQLIX (ID43) = X

12 call ZBQLU01_pointer_check ()

13

14 do while(X.LT.BINV)

15 B2 = B2*B

16 X = ZBQLU01_X_value ()

17 ZBQLIX (ID43) = X

18 call ZBQLU01_pointer_check ()

19 end do

20

21 ZBQLU01 = X/B2

22 !$omp end critical

23

24 END FUNCTION ZBQLU01

Listing B.17: Modified ZBQLU01 function that can only be accessed by a single
thread at a time. All other functions in the random generation library directly or
indirectly use it to generate random numbers.

167

Appendix C

Supplementary Theory

C.1 Hamiltonian Matrix Elements
The Hamiltonian matrix is constructed by its operation between two Slater de-
terminants (formed of orthonormal orbitals), ⟨Ψ(A)|Ĥ|Ψ(B)⟩. The Hamiltonian in
Eq. (2.7) can be rewritten to explicitly have two parts, the first having single electron
dependence, O1 and the second being dependent on two electrons, O2,

Ĥ = O1 +O2 = −(
Nel∑
i=1

1
2∇2

i +
Nnu∑
A=1

ZA
riA

)+
Nel∑
i=1

Nel∑
j>i

1
rij

(C.1)

the nuclear-nuclear repulsion has been omitted as it is constant. A set of k spin-
orbitals containing Nel electrons is defined as ϕ = χi(1), χj(2), . . . , χk(N) with
χ(l) ≡ χ(Xl) as defined as in Eq. (2.12). Two arbitrary Slater determinants are
constructed from ϕ, |Ψ(A)⟩ and |Ψ(B)⟩. It is useful define a Slater determinant as a
function of a general element

|Ψ(A)⟩ = 1
Nel!1/2

Nel!∑
n=1

(−1)Pn

N∏
l=1

χPnl
(l) (C.2)

Pn is an operator that generates the nth permutation of the electron labels and
so Pnl

being the lth element in that sequence and Pn the number of interchanges
needed to reach this permutation.

168

169 C.1

C.1.1 One-electron Operator
Firstly, the one electron part can be calculated

⟨Ψ(A)|O1|Ψ(B)⟩ =
Nel∑
i=1

⟨ϕA|h(i)|ϕB⟩ =N⟨ϕA|h(1)|ϕB⟩ (C.3)

Since the electrons are indistinguishable h(1) = h(i) and each part of the summation
is equivalent, h(1) is used by convention.

⟨Ψ(A)|O1|Ψ(B)⟩ = Nel
Nel!

Nel!∑
i=1

Nel!∑
j=1

(−1)Pi(−1)Pj

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)]h(1)[
Nel∏
l=1

χPjl
(l)] (C.4)

This has three possible solutions the first of which is the case when |Ψ(A)⟩ = |Ψ(B)⟩

⟨Ψ(A)|O1|Ψ(A)⟩ = Nel
Nel!

Nel!∑
i=1

Nel!∑
i=1

(−1)Pi(−1)Pj

∫
dϕ[

N∏
l=1

χ∗
Pil

(l)]h(1)[
Nel∏
l=1

χPjl
(l)] =

1
(Nel−1)!

Nel!∑
i=1

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)]h(1)[
Nel∏
l=1

χPil
(l)] =

(Nel−1)!
(Nel−1)!

Nel∑
i

∫
dX1χ

∗
i (1)h(1)χi(1) =

Nel∑
i

⟨i|h|i⟩

(C.5)

The double summation is simplified to a single sum over Nel! as the integral evaluates
to zero for permutations when i ̸= j because different permutations mean a different
spin orbital occupation and as by Eq. (2.9) their orthogonality means the integral
is zero. Note Nel/Nel! = Nel/((Nel − 1)! ×Nel) = ((Nel−1)!)−1. This is further
simplified by noticing that when placing the first electron in orbital χi there are
(N−1)! possible permutations when allocating the remaining electrons to the Nel−1
available spin orbitals. Since i= j the integral over electrons 2,3, . . . ,Nel will evaluate
to one as the spin orbitals are normalised.

169

170 C.1

The second case is when |Ψ(A)⟩ = |χi(1)χj(2) . . .⟩ and |Ψ(B)⟩ = |χk(1)χj(2) . . .⟩
i.e. there is a single spin orbital different between the two Slater determinants.

⟨Ψ(A)|O1|Ψ(B)⟩ = Nel
Nel!

Nel!∑
i=1

Nel!∑
i=1

(−1)Pi(−1)Pj

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)]h(1)[
Nel∏
l=1

χPjl
(l)] =

1
(Nel−1)!

Nel!∑
i=1

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)]h(1)[
Nel∏
l=1

χPjl
(l)] =

(Nel−1)!
(Nel−1)!

∫
dX1χ

∗
i (1)h(1)χj(1) =

Nel∑
i

⟨i|h|j⟩

(C.6)

Using the same reasoning as in the first case the double sum is reduced to a single
one. Then using the orthogonality of different spin orbitals both χi and χj must be
occupied by the same electron which is electron 1 to associate it with the operator
h(1). With this condition there are (Nel−1)! possible combinations. Finally, if the
two Slater determinants vary by more than a single spin orbital the one-electron
portion of the Hamiltonian matrix element will be zero. To ensure both orbitals
in each Slater determinant are not orthogonal would require them all to be occu-
pied by electron 1 which is impossible as it can only occupy one orbital per Slater
determinant.

C.1.2 Two-electron Operator
The same set of cases can then be applied to the two-electron portion of the Hamilto-
nian like the one-electron part the two-electron operator cannot distinguish between
pairs of electrons and so the summation can be reduced to the action of r−1

12 multi-
plied by the number of electron pairs

⟨Ψ(A)|O2|Ψ(B)⟩ =
Nel∑
i=1

Nel∑
j>i

⟨ϕA| 1
rij

|ϕB⟩ = Nel(Nel−1)
2 ⟨ϕA| 1

r12
|ϕB⟩ (C.7)

In the first case when |Ψ(A)⟩ = |Ψ(B)⟩ the following can be derived

170

171 C.1

⟨Ψ(A)|O2|Ψ(A)⟩ = Nel(Nel−1)
2Nel!

Nel!∑
i=1

Nel!∑
j=1

(−1)Pi(−1)Pj

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)] 1
r12

[
Nel∏
l=1

χPjl
(l)] =

1
2(Nel−2)!

Nel!∑
i=1

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)] 1
r12

[((χPi1
(1)χPi2

(2))− (χPi1
(2)χPi2

(1)))
Nel∏
l=3

χPil
(l)] =

(Nel−2)!
2(Nel−2)!

Nel∑
i

Nel∑
j ̸=i

∫
dX1dX2χ

∗
i (1)χ∗

j(2) 1
r12

[χi(1)χj(2)−χi(2)χj(1)] =

1
2

Nel∑
i

Nel∑
j

⟨ij|ij⟩−⟨ij|ji⟩

(C.8)

As previously established with the one-electron operator permutations must be the
same for both Slater determinants if the integral over these electrons is to evaluate to
a non-zero value. As the spin orbitals are the same in both Slater determinants both
electron 1 and 2 can be placed in either orbital χPi1

or χPi2
resulting in a non-zero

integral. So, either ordering of electrons 1 and 2 are permitted and swapping their
order gives the other permutation which is the source of the negative sign in the
term after the operator. The restriction j ̸= i can be dropped because when i= j the
integral sums to zero ⟨ii|ii⟩−⟨ii|ii⟩. The second case when the Slater determinants
differ by a single spin orbital is now considered for the two-electron operator

⟨Ψ(A)|O2|Ψ(B)⟩ = Nel(Nel−1)
2Nel!

Nel!∑
i=1

Nel!∑
j=1

(−1)Pi(−1)Pj

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)] 1
r12

[
Nel∏
l=1

χPjl
(l)] =

1
2(Nel−2)!

Nel!∑
i=1

∫
dϕ[

Nel∏
l=1

χ∗
Pil

(l)] 1
r12

[((χPj1
(1)χPj2

(2))− (χPj1
(2)χPj2

(1)))
Nel∏
l=3

χPjl
(l)] =

(Nel−2)!
2(Nel−2)!

Nel∑
j ̸=i

∫
dX1dX2[χ∗

i (1)χ∗
j(2) 1

r12
[χk(1)χj(2)−χk(2)χj(1)]+

χ∗
j(1)χ∗

i (2) 1
r12

[χj(1)χk(2)−χj(2)χk(1)]] =

Nel∑
j ̸=i

∫
dX1dX2χ

∗
i (1)χ∗

j(2) 1
r12

[χk(1)χj(2)−χn(1)χp(2)] =

Nel∑
j

⟨ij|kj⟩−⟨ij|jk⟩

(C.9)

171

172 C.2

The simplification used for the second term uses the fact r−1
12 = r−1

21∫
dX1dX2χ

∗
j(1)χ∗

i (2) 1
r12

[χj(1)χp(2)−χj(2)χk(1)] =∫
dX1dX2χ

∗
j(2)χ∗

i (1) 1
r21

[χj(2)χp(1)−χj(1)χk(2)] =∫
dX1dX2χ

∗
i (1)χ∗

j(2) 1
r12

[χk(1)χn(2)−χk(2)χj(1)]

(C.10)

As in the one electron case, using the same reasoning, if there more than one different
spin orbitals between the Slater determinants the integral is zero.

C.2 Derivation of the Equations for
the Gradient of the Energy
Function

In this section a full derivation of the Gradient of the energy function is given.
These equations were originally encoded into the Zombie states program to calculate
derivatives of the energy function. However, a more efficient method requiring far
fewer calculations is now employed as shown in section B.4.1. However, they prove
that a Gradient Descent method is an applicable choice to optimise the Zombie
state coefficients as the energy function is continually differentiable. First it is
worth restating that "dead" and "alive" coefficients for each Zombie state orbital are
generated as follows

a
(a)
0j = cos(θj), a

(a)
1j = sin(θj). (C.11)

So the gradient for a basis set of Nbf ZSs with Norb spin orbitals will be vector of
length Nbf ·Norb where each element is the partial derivative with respect to ζ

(a)
θj

i.e. the θj that generates the "dead" and "alive" coefficients for the jth spin orbital
in the ath ZS. The energy equation to be differentiated can be written as,

f(X) =
Nbf∑
ab

d∗
adb

Norb∑
ij

hij⟨ζ(a)|b†i b̂j |ζ
(b)⟩+ 1

2

Norb∑
klij

Wklji⟨ζ(a)|b̂†k b̂
†
l b̂ib̂j |ζ

(b)⟩+HnucΩab

 .
(C.12)

172

173 C.2

An element in ∇f(X) is then ∂f(X)
∂ζ

(c)
θj

. By differentiating by parts

∂f(X)
∂ζ

(c)
θj

=
Nbf∑
ab

∂(d∗
a)

∂ζ
(c)
θj

db⟨ζ(a)|Ĥ|ζ(b)⟩+d∗
a
∂(db)
∂ζ

(c)
θj

⟨ζ(a)|Ĥ|ζ(b)⟩+d∗
adb

∂⟨ζ(a)|Ĥ|ζ(b)⟩
∂ζ

(c)
θj

(C.13)

This derivative can then be split into three parts differentiating d∗
a,db and ⟨ζ(a)|Ĥ|ζ(b)⟩

separately.

C.2.1 Differentiating the Overlap Matrix
The overlap is found multiplicatively so when differentiating with respect to a single
ζ

(a)
θj

only the jth term will be effected giving two possible outcomes

∂

∂θ
(a)
j

(a(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j) =

−sin(θ(a)
j)cos(θ(b)

j)+cos(θ(a)
j)sin(θ(b)

j) ζ(a) ̸= ζ(b)

sin(2θ(a)
j)− sin(2θ(b)

j) = 0 ζ(a) = ζ(b)

(C.14)
meaning derivatives of diagonal elements of the overlap matrix will always be zero.

C.2.2 Differentiating the Second Quantiza-
tion Hamiltonian

Following creation and annihilation operations an overlap is then calculated to find
Hamiltonian matrix elements. So, if the derivative is being found for an orbital where
no creation or annihilation operations have taken place the result of Eq. (C.14) can
be used. For derivatives of orbitals which have creation/annihilation operations the
following results are found for operators all enacting to the right on ⟨ζ(b)

j |Ô|ζ(b)
j ⟩

where Ô is a creation or annihilation operator or both,

∂

∂θ
(a)
j

Ô(a(a)∗
0j a

(b)
0j +a

(a)∗
1j a

(b)
1j) =

cos(θ(a)
j)cos(θ(b)

j) ζ(a) ̸= ζ(b), Ô = b̂†j

−sin(θ(a)
j)sin(θ(b)

j) ζ(a) ̸= ζ(b), Ô = b̂j

cos(θ(a)
j)sin(θ(b)

j) ζ(a) ̸= ζ(b), Ô = b̂j b̂
†
j

sin(2θ(a)
j) ζ(a) = ζ(b), Ô = b̂†j

−sin(2θ(a)
j) ζ(a) = ζ(b), Ô = b̂†j

sin(2θ(a)
j) ζ(a) = ζ(b), Ô = b̂j b̂

†
j

(C.15)

173

174 C.2

Using these results, it is possible to differentiate the second quantization Hamiltonian

∂

∂ζ
(c)
θj

⟨ζ(a)|Ĥ|ζ(b)⟩ =

Norb∑
ij

hij
∂⟨ζ(a)|b†i b̂j |ζ(b)⟩

∂ζ
(c)
θj

+

1
2

Norb∑
klji

Wklji
∂⟨ζ(a)|b̂†k b̂

†
l b̂j b̂i|ζ(b)⟩

∂ζ
(c)
θj

+Hnuc
∂⟨ζ(a)|ζ(b)⟩

∂ζ
(c)
θj

=

Norb∑
ij

hij
∂⟨ζ(a)|ζ(b)

ij ⟩

∂ζ
(c)
θj

+ 1
2

Norb∑
klji

Wklji

∂⟨ζ(a)|ζ(b)
klji⟩

∂ζ
(c)
θj

+Hnuc
∂⟨ζ(a)|ζ(b)⟩

∂ζ
(c)
θj

 .
(C.16)

Eq. (C.15) and Eq. (C.14) can then be applied as necessary to evaluate the summa-
tion.

C.2.3 Differentiating the d Vector
Derivatives of the Hamiltonian and Overlap matrix are used regularly throughout
the following section so the notation ∂Hab = ∂

∂θ
(a)
j

Hab and ∂Ω = ∂

∂θ
(a)
j

Ω to represent

partial derivatives of the Hamiltonian and overlap matrices with the subscript ab
used to show a specific matrix element. d is found by an iterative process using
imaginary time propagation starting at a value d0 which is initially set as either 1
or 0. An imaginary time step in matrix notation is

dt(β) = dt−1(β)+ ḋt(β)∆β = dt−1 −Ω−1Hdt−1∆β, (C.17)

and then the resultant vector is normalised

d̂t = dt√
|d∗
tΩdt|

. (C.18)

Thus, a single equation for d̂t is

d̂t = dt−1√
|d∗
t−1Ωdt−1|

−Ω−1H
dt−1√

|d∗
t−1Ωdt−1|

∆β. (C.19)

174

175 C.2

The norm can be written as ||dt−1|| =
√

|∑Nbf

ab d
∗(a)
t−1 d

(b)
t−1⟨ζ(a)|ζ(b)⟩| Therefore, the

partial derivative of d̂t is

∂d̂t
∂ζ

(c)
θj

= ∂

∂ζ
(c)
θj

(dt−1√
|d∗
t−1Ωdt−1|

)

−

∂(Ω−1)
∂ζ

(c)
θj

H
dt−1√

|d∗
t−1Ωdt−1|

+Ω−1∂(H)
∂ζ

(c)
θj

dt−1√
|d∗
t−1Ωdt−1|

+Ω−1H
∂

∂ζ
(c)
θj

(dt−1√
|d∗
t−1Ωdt−1|

)

∆β.

(C.20)

The notation ∂(d(a)
t−1) =

∂d
(a)
t−1

∂ζ
(c)
θj

is introduced as shorthand for the partial derivative

of element d(a)
t and ∂(||dt−1||) being the partial derivative of the norm. Hence,

∂d
(c)
t

∂ζ
(c)
θj

=
||dt−1||∂(d(c)

t−1)−d
(c)
t−1∂(||dt−1||)

||dt−1||2

−
Nbf∑
b

Ω−1
cb

∂(Ωcb)
∂ζ

(c)
θj

Ω−1
cb Hcbd̂

(b)
t−1∆β−

Nbf∑
b

Ω−1
cb

∂(Hcb)
∂ζ

(c)
θj

d̂
(b)
t−1∆β

−
Nbf∑
b

Ω−1
cb Hcb

||dt−1||∂(d(b)
t−1)−d

(b)
t−1∂(||dt−1||)

||dt−1||2
∆β.

(C.21)

The derivative identity ∂(A−1) = −A−1(∂A)A−1 is used to find the second term
[179]. The partial derivative of the norm is given by

∂(||dt−1||)
∂ζ

(c)
θj

= ∂

∂ζ
(c)
θj

√√√√√|
Nbf∑
ab

d
∗(a)
t−1 d

(b)
t−1⟨ζ(a)|ζ(b)⟩|

= 1
2||dt−1||

Nbf∑
ab

∂(d∗(a)
t−1)d∗(b)

t−1 |d(b)
t−1⟨ζ(a)|ζ(b)⟩|

|d∗(a)
t−1 |

+
|d(a)
t−1|d(b)

t−1∂(d(b)
t−1)|⟨ζ(a)|ζ(b)⟩|

|d(b)
t−1|

+
d

∗(a)
t−1 d

(b)
t−1⟨ζ(a)|ζ(b)⟩∂(⟨ζ(a)|ζ(b)⟩)

|⟨ζ(a)|ζ(b)⟩|

= 1

2||dt−1||

Nbf∑
ab

∂(d∗(a)
t−1)d∗(a)

t−1 |d(b)
t−1Ωab|

|d∗(a)
t−1 |

+
|d(a)
t−1|d(b)

t−1∂(d(b)
t−1)|Ωlk|

|d(b)
t−1|

+
d

∗(a)
t−1 d

(b)
t−1Ωab∂(Ωab)
|Ωab|

(C.22)

175

176 C.2

where ∂(Ωab) = ∂(Ωab)
∂ζ

(c)
θj

. Finally, the derivative of d0 needs to be computed. d0 is set

at the beginning of imaginary time propagation before normalisation and so does
not have any dependence on θ

(c)
j until it is normalised. So, the derivative can be

found by modifying Eq. (C.22),

∂d̂0

∂ζ
(c)
θj

= ∂

∂ζ
(c)
θj

d̂0√
|∑Nbf

ab d
∗(a)
0 d

(b)
0 ⟨ζ(a)|ζ(b)⟩|

= d̂0

2||d̂0||3

Nbf∑
ab

d
∗(a)
0 d

(b)
0 Ωab∂(Ωab)
|Ωab|

 .
(C.23)

The gradient with respect to each ζ(c)
θj

for ∂(H),∂(Ω) and ∂(Ω−1) can be calculated
using the results from Eq. (C.15) and Eq. (C.14). These can then be used to calculate
the gradient of d̂t at each imaginary time step. This derivation demonstrates the
energy equation is continually differentiable which verifies the ability to use the
Gradient Descent process. Clearly, using this direct calculation is computationally
expensive due to the large number of intermediate variables needed to be calculated
and stored. The indirect method shown in Eq. (4.21) eliminates the need to calculate
∂(H) and ∂(Ω−1) and requires a single calculation rather than an iterative process
to compute the d̂t component of the gradient.

176

Appendix D

Using the Zombie states Program

The Zombie states program is designed to be used for, in theory, any type of atomic
or molecular electronic structure simulation. The program files are sorted into three
folders: run, src, and build. The src folder contains the source files written in
Fortran; the build folder contains the Makefiles needed to compile the program
on specific systems and any temporary compilation files generated; the run folder
contains scripts to run and compile the program, input files and scripts to generate
results written in Python. The control scripts are the part of the program all users
will have to interact with and so Python was chosen as the language of choice due
to its popularity and easily comprehensible syntax. Therefore, it should be easier
for other users to make changes to the inputs or graphic outputs. The set-up and
execution of the Zombie states program is controlled by run.py with some additional
helper functions kept in integral_write.py. All variables to be set by the user are
contained in the inputs.json file and will be discussed first before explanation of how
the run.py uses the inputs to set-up and begin the program execution.

D.1 Input Files
The program inputs are set in the inputs.json file with similar parameters logically
grouped together. The set of input parameters are summarised in Table. D.1 and
Table. D.2

177

178 D.1

Table D.1: Parameters in inputs.json file, part 1.

Parameter Values Effect Restrictions
runfolder string Runs program in a folder with the

name string
Case

insensitive
runtime string Requested time ’hh:mm:ss’ for HPC

job
Maximum
48:00:00

nodes number No. nodes to request on cluster
computer

1 ≤ Integer
≤ 100

cores number No. threads to run per node 1 ≤ Integer
≤ 40

submissions number Submits multiple jobs on a cluster
computer to run sequentially

datafolder string Name of folder within run folder that
contains files to be used to set-up

program execution

Case
insensitive

elecs

PyScf Generates electron integrals using
PyScf

mol Generates electron integrals from an
existing Molpro file

integrals Copies existing h1ei.csv, h2ei.csv and
hnuc.csv to execution folder

no Copies existing elec_integrals.csv file
to execution folder

pyscf_file string Name of the .json file with PyScf
system information

Case
insensitive

ndet number Initial number of Zombie state basis
functions

Integer

seed number Seed of the random number generator Default 0 takes
seed from

/bin/
urandom

zomgen y/n Zombie states generated
hamgen y/n Hamiltonian generated

clean y/n Cleaning procedure is carried out
imagprop y/n Zombie states are propagated in

imaginary time
beta number Length of imaginary time propagation Real number

timesteps number No. imaginary time steps Integer
grad y/n Use gradient descent
gram y/n Use Gram-Schmidt orthogonalisation

178

179 D.1

Table D.2: Parameters in inputs.json file, part 2.

Parameter Values Effect Restrictions
norb number No. spatial orbitals Integer
nel number No. electrons in the system Integer
spin number Total spin of the system Integer

zomtyp

HF HF-like Zombie states
ran Randomly generates ZS

amplitudes
bb Uses biasing scheme to set up

ZSs
rhf_1 y/n Sets first ZS as the RHF

Slater determinant
Required for

gradient
descent

epoc_max number Maximum No. epochs Integer
initial_learning_rate number The initial learning rate Real number
learning_rate_decay number Learning rate scaling

parameter
0< Float < 1

decay_ steps number No. of learning rates Integer
clone y/n Use the cloning procedure to

increase the basis set size
clone_max number Maximum basis set size Integer
clone_steps number Maximum No. epochs

between cloning events
Integer

clone_num number No. ZSs added during a
cloning event

Integer

gramnum number No. excited states used in
Gram-Schmidt

orthogonalisation

Integer

hamfile string Name of Hamiltonian file in
datafolder

Case
insensitive

ovrlfile string Name of overlap file in
datafolder

Case
insensitive

elecfile string Name of processed electron
integral file in datafolder

Case
insensitive

179

180 D.2

D.2 Running the Program
The Zombie states program can be executed, on any type of operating system, using
the command python run.py in the run folder. The run script starts by checking
the input parameters meet the following criteria

• The node and thread parameters are numbers greater than 0

• The number of threads is less than 40 and the number of nodes is less than
100

• The type of Zombie state specified is either random, HF or biased

• The one- and two- electrons are of a type supported by the program

• The Zombie generation flag is either ’y’ or ’n’

• The RHF Zombie state flag is either ’y’ or ’n’

• The imaginary time propagation flag is either ’y’ or ’n’

• The number of imaginary time steps and β are both numbers

• The Hamiltonian generation flag is either ’y’ or ’n’

• The cleaning flag is either ’y’, ’n’ or ’f’ (if using an input file)

• The Gram-Schmidt orthogonalisation flag is either ’y’ or ’n’

• The gradient descent flag is either ’y’ or ’n’

• Previous parameters are compatible with Gradient descent

• The number of learning rates is greater than 1

• The learning rate adjustment parameter is a number between 0 and 1

• The maximum number of epochs is a number greater than 2

• The gradient descent cloning parameter is either ’y’ or ’n’

• The maximum basis set size is a number

• The maximum number of epochs between cloning events is a number

• The number of Zombie states added to the basis set when cloning is a number

• Any files to be copied to the execution folder are present

180

181 D.2

Once the input variables have been checked the execution folder is set up. Within
each run folder a separate data folder is created to contain the Zombie function
files and the Hamiltonian and overlap matrix output files. The run script can copy
existing one- and two-electron integrals, if specified in inputs.json, to the run folder
integral folder. Alternatively, the program can generate new integrals using either
Molpro or PyScf. If using Molpro the integrals must have already been generated
and be available in the run folder so the Zombie run script can read them in and
process them to be used by the main ZS program. But if new integrals are to be
calculated using PyScf the functionality is integrated into the run script. A json file
containing information about the system is read in by the run script and example
file for the truncated Li2 in the 6−31G∗∗ basis is shown in Listing. D.1.

1 pyscf ={

2 # The units the geometry of the molecule is set up in

3 ’units ’:’Bohr ’,

4 # The geometry of the molecule being investigated

5 ’atoms ’: ’Li 0 0 0; Li 0 0 6’,

6 # The type of basis used to generate the 1 and 2

electron integrals

7 ’bs’ : ’6-31g**’,

8 # How verbose do you want the PyScf output to be in your

terminal ?

9 ’verbosity ’ : 4,

10 ’symmetry ’ :True ,

11 ’spin ’:0,

12 ’charge ’:0,

13 ’symmetry_subgroup ’ : 0,

14 # Number of spatial orbitals

15 ’norb ’: 5,

16 # Number of electrons

17 ’nel ’:6

18 }

Listing D.1: Example of a PyScf molecule json file for Li2. The run script uses this to
generate relevant one- and two-electron integrals.

Using the system specific information one- and two-electron integrals are generated
using the code in Listing. D.2. A molecule is set-up using the gto.M() function which
takes parameters specifying the system from the input file. A restricted Hartree Fock
calculation is then performed and the molecular orbitals are then extracted. The
one- and two-electron integrals are then put into separate variables h1e and eri_full
and the nuclear repulsion Hnuc is then written to a file. These are the same variables
if values have been read in from Molpro.

The integral_write.py script is then called for which puts the integrals into the

181

182 D.2

form of creation/annihilation operations on each spin orbital. Any zero valued
integrals or combinations of creation and annihilation operations that result in a
zero valued overlap (see section B.3.1.3 for more details) are removed and these are
then written to two files h1e.csv and h2e.csv which are placed in the integral folder.
1 mol = gto.M(

2 unit = inputs .pyscf[’units ’],

3 atom = inputs .pyscf[’atoms ’],

4 basis = inputs .pyscf[’bs’],

5 verbose = inputs .pyscf[’verbosity ’],

6 symmetry = inputs .pyscf[’symmetry ’],

7 spin= inputs .pyscf[’spin ’],

8 charge = inputs .pyscf[’charge ’],

9 # symmetry_subgroup = inputs .pyscf[’

symmetry_subgroup ’],

10)

11 myhf=scf.RHF(mol)

12 myhf. kernel ()

13 # Extract AO ->MO transformation matrix

14 c = myhf. mo_coeff

15 # Get 1- electron integrals and convert to MO basis

16 h1e = reduce (numpy.dot , (c.T, myhf. get_hcore (), c))

17 # Get 2- electron integrals and transform them

18 eri = ao2mo. kernel (mol , c)

19 # Ignore all permutational symmetry , and write as

four -index tensor , in chemical notation

20 eri_full = ao2mo. restore (1, eri , c.shape [1])

21 # Scalar nuclear repulsion energy

22 Hnuc = myhf. energy_nuc ()

Listing D.2: Code used to generate one- and two-electron integrals using PyScf. A
restricted Hartree Fock calculation is run and the integrals put into spin orbitals.

The main program is then compiled using the appropriate make file to produce the
ZOMBIE executable. For complete portability the GNU Fortran compiler, gfortran,
is used as it is open source. Care has been taken to ensure non-standard Fortran
functions are not used and so alternative compilers such as intel could be used with
some modification to make files, but this has not been extensively tested. The inputs
needed by the main program are then written to a file ’rundata.csv’ which can be
easily read into the main ZS program at the beginning of its run.

If the program is being run locally on a personal computer the code in Listing. D.3
is used which sets up the number of OpenMP threads and then runs the ZOMBIE
executable. If the program is being run on a HPC requiring the program to be
submitted to a scheduler then a short bash script is created as shown in Listing. D.4.
This sets the number of threads; the maximum amount of time the program can

182

183 D.2

run for; the amount of memory to request per thread and loads the Math Kernel
library which contains the BLAS and LAPACK libraries.

1 if(inputs .run[’cores ’]!=1):

2 os. environ [" OMP_NUM_THREADS "]= str(inputs .run[’cores ’])

3 subprocess .run (["./ ZOMBIE "])

Listing D.3: Code used to initiate the Zombie states program on a personal computer

The run script then either submits a single job or multiple jobs each to start when
the previous one has completed. It is convenient to make multiple job submissions
at once as cluster computers, with many users, often have a time limit for each
job meaning the program can be aborted before execution is complete. By setting
multiple dependent jobs the program can automatically restart from the place the
previous job aborted from. To restart a program or to submit further jobs after
the original set of submissions are complete the restart.py script can be called from
within the execution folder. This runs a similar set of error checks as the run.py
script before restarting the program or submitting more jobs to the scheduler.

1 #$ -cwd -V

2 #$ -pe smp 16

3 #$ -l h_rt =48:00:00

4 #$ -l h_vmem =1G

5 module add mkl

6 time ./ ZOMBIE

Listing D.4: Example run script requesting 16 threads to run for 48 hours, 1 Gigabyte
of memory per core and loading the Math Kernel Library to access the BLAS/LAPACK
routines.

183

184 D.3

D.3 Output Files
The output files for the Zombie state program are all of .csv type which were chosen
because they are easily written and read into the Fortran program allowing the
program to continue execution if restarted. Moreover, data can also be extracted
using library functions in the python script used to generate plots of the simulation
this also makes it simple for users to write custom scripts to extract data or open
them using spreadsheet software. As such output files have been designed to make
them computer friendly rather than necessarily easily read by a user. The files take
either the naming convention <name>.csv or <name>_#.csv where # is a number.

• zombie_X#.csv contains data about the Zombie state where # denotes its
number in the basis set. # has up to two leading zeros meaning it takes values
001 → 999. X takes the value 1 if the program is carrying out gradient descent
and stores the unconverged ZS, in all other cases including when outputting
the converged Zombie state information X=0. The file is arranged in rows of
three with Norb columns for each spin orbital. The first row is the set of θj
used to generate the Zombie state coefficients running across from the first to
the final orbital. The next two rows are the "dead" and "alive" coefficients of
the ZS which are cos(θj) and sin(θj). If the program is undergoing gradient
descent every time the ZS coefficients are changed the updated coefficients are
written to the zombie_1#.csv file.

• ham.csv contains the initial Hamiltonian matrix data.

• ham_final.csv contains the Hamiltonian matrix data once the gradient descent
process has completed.

• ovrlp.csv contains the initial overlap matrix data.

• ovrlp_final.csv contains the overlap matrix data once the gradient descent
process has completed.

• dvec#.csv contains the Zombie state coefficient data # is zero if Gram-Schmidt
orthogonalisation is not being used or is the number of the state if it is. The
first row will contain the initial values after imaginary time propagation is
complete if gradient descent is being used the second row will be the ZS co-
efficient values after gradient descent has complete. Each row will be Nbf

long.

• energy.csv contains the energy at each step during imaginary time propagation.
The first column contains the time step and the second the energy at that time.
If Gram-Schmidt orthogonalisation is being used the changing energy for each
excited state is written to in column three onwards.

184

185 D.3

• energy_final.csv takes exactly the same form as energy.csv but for the imagi-
nary time propagation data once gradient descent has been completed.

• epoc.csv contains the gradient descent process data. The first column is the
epoch number; the second is the energy at the end of the epoch; the third is
the learning rate this is followed by the indices of the Zombie states altered
on that epoch.

• elec_integrals.csv contains the processed one- and two-electron integral data
which can be reused on restarted runs. For full details of how the program
processes the integral can be found in section B.3.1.3. The first row contains
the total number of one- and two- electron integrals, Nint. Each subsequent
row from 2−Nint is then contains the integral value and its corresponding set
of creation and annihilation operator classifications for each orbital. Next the
maximum number of changes in classification for an orbital is written. The
next row is the number of classification changes for each orbital. This followed
by the start and end indices for each classification change for each orbital.
Next the optimised order of orbital calculation is given and the final row is the
nuclear repulsion. This file is unchanged by gradient descent or Gram-Schmidt
orthogonalisation.

The ZS, Hamiltonian, overlap and Zombie coefficient files are stored in the data
folder and the elec_integrals.csv is placed in the integrals folder. The energy and
epoch data files are placed in the execution folder as these are the main program
outputs.

D.3.1 Plotting Outputs
Once the main Zombie states program has completed its execution, the results can
be plotted using the graph.py python script. This script is executed in the run folder
and uses the input data to automatically complete set of graphs accordingly. Each
plot uses the naming convention <name>.png and produces an image 3.37 × 5.055
inches in size with a dpi=300.

• energy_state_#.png plot of energy in atomic units against imaginary time for
state number, #, if Gram-Schmidt orthogonalisation used.

• energy.png plot of (initial) energy in atomic units against imaginary time which
contains all states if Gram-Schmidt orthogonalisation used.

• energy_final_state_#.png plot of energy in atomic units against imaginary
time after gradient descent has completed for state number, #, if Gram-
Schmidt orthogonalisation used.

185

186 D.3

• energy_final.png plot of energy in atomic units against imaginary time after
gradient descent has completed.

• initial_and_final_energy.png plot of imaginary time propagation for the con-
verged and initial wave function. This puts the data in energy.png and en-
ergy_final.png onto the same plot. If Gram-Schmidt orthogonalisation is used
this will contain information about all states.

• epoc_#.png plot of ground state energy against the epochs showing how the
energy changes over the gradient descent process for state number, # when
using gradient descent.

• epoc.png plot of ground state energy against the epochs showing how the
energy changes over the gradient descent process.

These files are all saved in the execution folder.

186

Bibliography

[1] R. I. of Great Britain, Proceedings of the royal institution of great britain,
in Proceedings of the Royal Institution of Great Britain, volume 35, page 251,
The Institution, 1951. [Cited on page iii.]

[2] Energy, structure and reactivity, Proceedings of the 1972 Boulder conference
on theoretical chemistry, 1973. [Cited on page 1.]

[3] J. A. Pople, Rev. Mod. Phys. 71, 1267 (1999). [Cited on pages 1 and 100.]

[4] D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical
Society 24, 111 (1928). [Cited on pages 2, 11, and 18.]

[5] J. C. Slater, Phys. Rev. 35, 210 (1930). [Cited on pages 2 and 12.]

[6] V. Fock, Zeitschrift fur Physik 75, 622 (1932). [Cited on pages 2 and 14.]

[7] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). [Cited on page 3.]

[8] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). [Cited on page 3.]

[9] D. V. Shalashilin, The Journal of Chemical Physics 148, 194109 (2018). [Cited
on pages 4, 5, 40, 48, 49, 54, 59, 60, 61, 62, 114, 139, and 150.]

[10] D. V. Shalashilin and M. S. Child, The Journal of Chemical Physics 119,
1961 (2003). [Cited on pages 4 and 9.]

[11] R. J. Glauber, Phys. Rev. 130, 2529 (1963). [Cited on pages 4, 9, 31, and 58.]

[12] R. J. Glauber, Phys. Rev. 131, 2766 (1963). [Cited on pages 4, 31, 44, and 58.]

[13] D. V. Shalashilin, The Journal of Chemical Physics 130, 244101 (2009). [Cited
on pages 4, 9, 58, and 116.]

[14] D. V. Makhov, W. J. Glover, T. J. Martinez, and D. V. Shalashilin, The
Journal of Chemical Physics 141, 054110 (2014). [Cited on pages 4 and 9.]

[15] C. Symonds, J. A. Kattirtzi, and D. V. Shalashilin, The Journal of Chemical
Physics 148, 184113 (2018). [Cited on pages 4, 9, 84, and 101.]

188

189 6.3

[16] A. Kirrander and D. V. Shalashilin, Phys. Rev. A 84, 033406 (2011). [Cited
on pages 4, 58, and 60.]

[17] M. Ronto and D. V. Shalashilin, The Journal of Physical Chemistry A 117,
6948 (2013). [Cited on pages 4 and 116.]

[18] K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999). [Cited on
pages 4, 41, 44, 59, 115, and 126.]

[19] W.-M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).
[Cited on pages 4, 31, 32, 34, 40, 42, 43, and 115.]

[20] R. D. Monique Combescure, Coherent States and Applications in Mathemati-
cal Physics, Springer Cham, 2 edition, 2021. [Cited on pages 4, 9, 34, 41, 126,
and 128.]

[21] A. M. Perelomov, Communications in Mathematical Physics 26, 222 (1972).
[Cited on pages 4, 31, 33, 58, and 114.]

[22] R. Gilmore, Journal of Mathematical Physics 20, 891 (1979). [Cited on pages
4, 31, and 114.]

[23] O. A. Bramley, T. J. H. Hele, and D. V. Shalashilin, The Journal of Chemical
Physics 156, 174116 (2022). [Cited on pages 5, 48, 49, 59, and 114.]

[24] N. S. Blunt, S. D. Smart, G. H. Booth, and A. Alavi, The Journal of Chemical
Physics 143, 134117 (2015). [Cited on pages 9, 29, 105, 106, and 111.]

[25] L. Tong, M. Nolan, T. Cheng, and J. Greer, Computer Physics Communica-
tions 131, 142 (2000). [Cited on pages 9 and 29.]

[26] J. R. Klauder, Coherent states : applications in physics and mathematical
physics, World Scientific, Singapore ;, 1985 - 1985. [Cited on pages 9, 36,
and 37.]

[27] D. V. Shalashilin and M. S. Child, The Journal of Chemical Physics 121,
3563 (2004). [Cited on page 9.]

[28] D. V. Shalashilin, The Journal of Chemical Physics 132, 244111 (2010). [Cited
on page 9.]

[29] K. Saita, M. G. D. Nix, and D. V. Shalashilin, Phys. Chem. Chem. Phys. 15,
16227 (2013). [Cited on page 9.]

[30] D. V. Makhov, K. Saita, T. J. Martinez, and D. V. Shalashilin, Phys. Chem.
Chem. Phys. 17, 3316 (2015). [Cited on page 9.]

189

190 6.3

[31] S. Fernandez-Alberti, D. V. Makhov, S. Tretiak, and D. V. Shalashilin, Phys.
Chem. Chem. Phys. 18, 10028 (2016). [Cited on page 9.]

[32] D. V. Shalashilin and M. S. Child, The Journal of Chemical Physics 128,
054102 (2008). [Cited on pages 9 and 116.]

[33] O. Bramley, C. Symonds, and D. V. Shalashilin, The Journal of Chemical
Physics 151, 064103 (2019). [Cited on pages 9, 41, 54, and 58.]

[34] J. A. Green, Development and application of new numerical extensions to
the coupled coherent states family of multidimensional quantum dynamics
methods, 2018. [Cited on page 9.]

[35] J. A. Green and D. V. Shalashilin, Phys. Rev. A 100, 013607 (2019). [Cited
on page 9.]

[36] A. Szabo and N. S. Ostlund, Modern quantum chemistry : introduction to
advanced electronic structure theory, Dover Publications, New York, 1989.
[Cited on pages 11 and 153.]

[37] V. Fock, Zeitschrift für Physik 61, 126 (1930). [Cited on page 12.]

[38] J. C. Slater, Phys. Rev. 34, 1293 (1929). [Cited on page 12.]

[39] P. A. M. Dirac, The Quantum Theory of the Emission and Absorption of
Radiation, pages 243–265, Springer Dordrecht, London, 1927. [Cited on page
14.]

[40] P. Jordan and E. Wigner, Zeitschrift für Physik 47, 631 (1928). [Cited on
page 14.]

[41] J. C. Slater, Phys. Rev. 36, 57 (1930). [Cited on page 16.]

[42] P. M. W. Gill, Advances in Quantum Chemistry 25, 141 (1994). [Cited on
page 16.]

[43] R. J. Mathar, International Journal of Quantum Chemistry 90, 227 (2002).
[Cited on page 16.]

[44] H. B. Schlegel and M. J. Frisch, International Journal of Quantum Chemistry
54, 83 (1995). [Cited on page 16.]

[45] R. Ditchfield, W. J. Hehre, and J. A. Pople, The Journal of Chemical Physics
54, 724 (1971). [Cited on page 17.]

[46] D. E. Woon and J. Dunning, Thom H., The Journal of Chemical Physics 98,
1358 (1993). [Cited on page 18.]

190

191 6.3

[47] J. Dunning, Thom H., K. A. Peterson, and A. K. Wilson, The Journal of
Chemical Physics 114, 9244 (2001). [Cited on page 18.]

[48] A. K. Wilson, D. E. Woon, K. A. Peterson, and J. Dunning, Thom H., The
Journal of Chemical Physics 110, 7667 (1999). [Cited on page 18.]

[49] B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, and A. K. Wilson,
Theoretical Chemistry Accounts 128, 69 (2011). [Cited on page 18.]

[50] J. Dunning, Thom H., The Journal of Chemical Physics 90, 1007 (1989).
[Cited on page 18.]

[51] J. C. Slater, Phys. Rev. 32, 339 (1928). [Cited on page 18.]

[52] J. A. Gaunt, Mathematical Proceedings of the Cambridge Philosophical So-
ciety 24, 328 (1928). [Cited on page 18.]

[53] H. B. Schlegel, The Journal of Chemical Physics 84, 4530 (1986). [Cited on
page 22.]

[54] J. S. Andrews, D. Jayatilaka, R. G. Bone, N. C. Handy, and R. D. Amos,
Chemical Physics Letters 183, 423 (1991). [Cited on page 22.]

[55] C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960). [Cited on page 22.]

[56] T. Tsuchimochi and G. E. Scuseria, The Journal of Chemical Physics 133,
141102 (2010). [Cited on page 22.]

[57] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951). [Cited on page 22.]

[58] G. G. Hall, Proceedings of the Royal Society of London. Series A, Mathemat-
ical and Physical Sciences 205, 541 (1951). [Cited on page 22.]

[59] S. Lehtola, Phys. Rev. A 101, 012516 (2020). [Cited on page 24.]

[60] S. Lehtola, Journal of Chemical Theory and Computation 15, 1593 (2019).
[Cited on page 24.]

[61] R. Hoffmann, The Journal of Chemical Physics 39, 1397 (1963). [Cited on
page 24.]

[62] C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934). [Cited on page 25.]

[63] O. Sïnanoğlu, The Journal of Chemical Physics 36, 706 (1962). [Cited on
page 26.]

[64] J. C̆íz̆ek, The Journal of Chemical Physics 45, 4256 (1966). [Cited on page
26.]

191

192 6.3

[65] D. Usvyat, K. Sadeghian, L. Maschio, and M. Schütz, Phys. Rev. B 86, 045412
(2012). [Cited on page 26.]

[66] T. Tsatsoulis, S. Sakong, A. Groß, and A. Grüneis, The Journal of Chemical
Physics 149, 244105 (2018). [Cited on page 26.]

[67] T. Tsatsoulis et al., J Chem Phys 146, 204108 (2017). [Cited on page 26.]

[68] A. Kubas et al., J Phys Chem Lett 7, 4207 (2016). [Cited on page 26.]

[69] A. D. Boese and J. Sauer, Journal of Computational Chemistry 37, 2374
(2016). [Cited on page 26.]

[70] L. Meissner, K. Jankowski, and J. Wasilewski, International Journal of Quan-
tum Chemistry 34, 535 (1988). [Cited on page 26.]

[71] M. Abe et al., Phys. Rev. A 90, 022501 (2014). [Cited on page 26.]

[72] H. Sekino and R. J. Bartlett, International Journal of Quantum Chemistry
26, 255 (1984). [Cited on page 26.]

[73] O. Christiansen, The Journal of Chemical Physics 120, 2149 (2004). [Cited
on page 26.]

[74] S. Perera and R. J. Bartlett, Chemical Physics Letters 314, 381 (1999). [Cited
on page 26.]

[75] J. Cullen, Chemical Physics 202, 217 (1996). [Cited on page 26.]

[76] M. H. Kalos, Phys. Rev. 128, 1791 (1962). [Cited on page 28.]

[77] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys.
73, 33 (2001). [Cited on page 28.]

[78] J. B. Anderson, The Journal of Chemical Physics 63, 1499 (1975). [Cited on
page 28.]

[79] G. H. Booth, A. J. W. Thom, and A. Alavi, The Journal of Chemical Physics
131, 054106 (2009). [Cited on pages 28, 29, and 76.]

[80] D. Cleland, G. H. Booth, and A. Alavi, The Journal of Chemical Physics 132,
041103 (2010). [Cited on pages 28, 29, and 76.]

[81] G. H. Booth, D. Cleland, A. J. W. Thom, and A. Alavi, The Journal of
Chemical Physics 135, 084104 (2011). [Cited on pages 29 and 76.]

[82] G. H. Booth and A. Alavi, The Journal of Chemical Physics 132, 174104
(2010). [Cited on page 29.]

192

193 6.3

[83] D. M. Cleland, G. H. Booth, and A. Alavi, The Journal of Chemical Physics
134, 024112 (2011). [Cited on pages 29 and 100.]

[84] J. Brand, M. Yang, and E. Pahl, Phys. Rev. B 105, 235144 (2022). [Cited on
page 29.]

[85] M. Yang, M. Čufar, E. Pahl, and J. Brand, Condensed Matter 7 (2022). [Cited
on page 29.]

[86] R. J. Anderson, C. J. C. Scott, and G. H. Booth, Phys. Rev. B 106, 155158
(2022). [Cited on page 29.]

[87] J. C. Greer, The Journal of Chemical Physics 103, 1821 (1995). [Cited on
pages 29, 30, and 76.]

[88] J. P. Coe, D. J. Taylor, and M. J. Paterson, The Journal of Chemical Physics
137, 194111 (2012). [Cited on pages 30 and 76.]

[89] J. P. Coe and M. J. Paterson, The Journal of Chemical Physics 137, 204108
(2012). [Cited on page 30.]

[90] P.-O. Löwdin, Phys. Rev. 97, 1474 (1955). [Cited on page 30.]

[91] J. P. Coe, D. J. Taylor, and M. J. Paterson, Journal of Computational Chem-
istry 34, 1083 (2013). [Cited on pages 30 and 100.]

[92] J. P. Coe and M. J. Paterson, The Journal of Chemical Physics 139, 154103
(2013). [Cited on page 30.]

[93] J. P. Coe, Journal of Chemical Theory and Computation 19, 874 (2023).
[Cited on page 30.]

[94] E. Schrödinger, Naturwissenschaften 14, 664 (1926). [Cited on page 30.]

[95] T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953). [Cited on
page 30.]

[96] P. W. Anderson, Phys. Rev. 110, 827 (1958). [Cited on page 30.]

[97] J. G. Valatin and D. Butler, Il Nuovo Cimento (1955-1965) 10, 37 (1958).
[Cited on page 30.]

[98] J. Schwinger, Proceedings of the National Academy of Sciences of the United
States of America 37, 452 (1951). [Cited on page 30.]

[99] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963). [Cited on pages 31
and 58.]

193

194 6.3

[100] J. R. Klauder, Annals of Physics 11, 123 (1960). [Cited on pages 31 and 41.]

[101] A. O. Barut and L. Girardello, Communications in Mathematical Physics 21,
41 (1971). [Cited on page 31.]

[102] R. Gilmore, Revista Mexicana de Física 23, 143 (1974). [Cited on pages 32
and 33.]

[103] C. Aragone, G. Guerri, S. Salamo, and J. Tani, Journal of Physics A: Mathe-
matical, Nuclear and General 7, L149 (1974). [Cited on page 32.]

[104] M. M. Nieto and L. M. Simmons, Phys. Rev. Lett. 41, 207 (1978). [Cited on
page 32.]

[105] M. M. Nieto and L. M. Simmons, Phys. Rev. D 20, 1321 (1979). [Cited on
page 32.]

[106] R. Gilmore, Annals of Physics 74, 391 (1972). [Cited on pages 33 and 58.]

[107] A. M. Perelomov, Soviet Physics Uspekhi 20, 703 (1977). [Cited on pages 33
and 40.]

[108] H. Weyl, Monatshefte für Mathematik und Physik (1928). [Cited on page 35.]

[109] D. V. Shalashilin and M. S. Child, Chemical Physics 304, 103 (2004), Towards
Multidimensional Quantum Reaction Dynamics. [Cited on pages 37, 58, 61,
and 63.]

[110] W. Louisell, Quantum Statistical Properties of Radiation, A Wiley-
Interscience publication, Wiley, 1973. [Cited on page 37.]

[111] A. Perelomov, Generalized Coherent States and Their Applications, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1 edition, 1986. [Cited on page 37.]

[112] J. J. Sakurai, Modern quantum mechanics, Cambridge University Press, Cam-
bridge, third edition. edition, 1994. [Cited on page 37.]

[113] A. Grigolo, T. F. Viscondi, and M. A. M. de Aguiar, The Journal of Chemical
Physics 144, 094106 (2016). [Cited on page 37.]

[114] K. Hepp and E. H. Lieb, Annals of Physics 76, 360 (1973). [Cited on page
38.]

[115] K. Nemoto, Journal of Physics A: Mathematical and General 33, 3493 (2000).
[Cited on pages 40 and 41.]

[116] D. V. Makhov, C. Symonds, S. Fernandez-Alberti, and D. V. Shalashilin,
Chemical Physics 493, 200 (2017). [Cited on pages 41 and 60.]

194

195 6.3

[117] M. Mathur and H. S. Mani, Journal of Mathematical Physics 43, 5351 (2002).
[Cited on page 41.]

[118] D. Dahlbom, C. Miles, H. Zhang, C. D. Batista, and K. Barros, Phys. Rev. B
106, 235154 (2022). [Cited on page 41.]

[119] S.-H. Do et al., npj Quantum Materials 8, 5 (2023). [Cited on page 41.]

[120] J. M. Radcliffe, Journal of Physics A: General Physics 4, 313 (1971). [Cited
on page 41.]

[121] R. Oeckl, Journal of Physics A: Mathematical and Theoretical 48, 035203
(2014). [Cited on pages 41 and 126.]

[122] M. Lüscher, Communications in Mathematical Physics 54, 283 (1977). [Cited
on pages 41 and 126.]

[123] R. Balian and E. Brezin, Il Nuovo Cimento B (1965-1970) 64, 37 (1969).
[Cited on page 42.]

[124] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure
and applied mathematics ; 80, Academic Press, New York ;, 1978. [Cited on
page 42.]

[125] F. A. Berezin, Communications in Mathematical Physics 63, 131 (1978).
[Cited on page 42.]

[126] R. Gilmore and D. Hsuan Feng, Progress in Particle and Nuclear Physics 9,
479 (1983). [Cited on page 42.]

[127] L. keng Hua, Harmonic analysis of functions of several complex variables in
the classical domains, 1963. [Cited on page 42.]

[128] R. Oeckl, Journal of Physics A: Mathematical and Theoretical 48, 035203
(2015). [Cited on page 43.]

[129] R. Delbourgo, P. D. Jarvis, and R. C. Warner, Journal of Mathematical
Physics 34, 3616 (1993). [Cited on page 48.]

[130] A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 81, 022124
(2010). [Cited on page 49.]

[131] M. Ben-Nun and T. J. Martínez, Ab Initio Quantum Molecular Dynamics,
pages 439–512, Advances in Chemical Physics, 2002. [Cited on pages 60
and 61.]

[132] S.-Y. Ye, D. Shalashilin, and A. Serafini, Phys. Rev. A 86, 032312 (2012).
[Cited on page 60.]

195

196 6.3

[133] D. Huber and E. J. Heller, The Journal of Chemical Physics 89, 4752 (1988).
[Cited on page 63.]

[134] Q. Sun et al., Pyscf: the python-based simulations of chemistry framework,
2017. [Cited on pages 64, 67, 71, 84, 91, 92, 93, 98, 99, and 131.]

[135] W. A. Al-Saidi, S. Zhang, and H. Krakauer, The Journal of Chemical Physics
124, 224101 (2006). [Cited on pages 69 and 91.]

[136] G. Li Manni, S. D. Smart, and A. Alavi, Journal of Chemical Theory and
Computation 12, 1245 (2016), PMID: 26808894. [Cited on page 69.]

[137] E. Vitale, A. Alavi, and D. Kats, Journal of Chemical Theory and Computa-
tion 16, 5621 (2020). [Cited on page 76.]

[138] S. Ravichandiran, Hands-on deep learning algorithms with python master deep
learning algorithms with extensive math by implementing them using Tensor-
Flow, Packt, Birmingham, 2019. [Cited on page 79.]

[139] P. Tseng and S. Yun, Mathematical programming 117, 387 (2009). [Cited on
pages 79 and 116.]

[140] L. Armijo, Pacific Journal of Mathematics 16, 1 (1966). [Cited on page 80.]

[141] N. I. of Standards and Technology, Fundamental physics constants,
https://physics.nist.gov/cgi-bin/cuu/Value?hr, 2018, [Accessed: 27.04.2024].
[Cited on page 84.]

[142] A. F. Al-Refaie and J. Tennyson, Computer Physics Communications 221, 53
(2017). [Cited on page 101.]

[143] R. T. Marler and J. S. Arora, Structural and Multidisciplinary Optimization
41, 853 (2010). [Cited on page 102.]

[144] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org. [Cited on page 102.]

[145] D. J. ROWE, Rev. Mod. Phys. 40, 153 (1968). [Cited on page 104.]

[146] H. J. Monkhorst, International Journal of Quantum Chemistry 12, 421 (1977).
[Cited on page 104.]

[147] J. F. Stanton and R. J. Bartlett, The Journal of Chemical Physics 98, 7029
(1993). [Cited on page 104.]

[148] E. Dalgaard and H. J. Monkhorst, Phys. Rev. A 28, 1217 (1983). [Cited on
page 104.]

196

http://www.deeplearningbook.org

197 6.3

[149] H. Koch et al., The Journal of Chemical Physics 92, 4924 (1990). [Cited on
page 104.]

[150] H. Koch and P. Jo/rgensen, The Journal of Chemical Physics 93, 3333 (1990).
[Cited on page 104.]

[151] H. Koch, H. J. A. Jensen, P. Jo/rgensen, and T. Helgaker, The Journal of
Chemical Physics 93, 3345 (1990). [Cited on page 104.]

[152] R. Kobayashi, H. Koch, and P. Jφrgensen, Chemical Physics Letters 219, 30
(1994). [Cited on page 104.]

[153] H. Koch, R. Kobayashi, A. Sanchez de Merás, and P. Jo/rgensen, The Journal
of Chemical Physics 100, 4393 (1994). [Cited on page 104.]

[154] G. Das and A. C. Wahl, The Journal of Chemical Physics 44, 87 (1966).
[Cited on page 104.]

[155] B. O. Roos, P. R. Taylor, and P. E. Sigbahn, Chemical Physics 48, 157 (1980).
[Cited on page 104.]

[156] B. O. Roos, International Journal of Quantum Chemistry 18, 175 (1980).
[Cited on page 104.]

[157] G. Das, The Journal of Chemical Physics 58, 5104 (1973). [Cited on page
104.]

[158] S. R. Langhoff and E. R. Davidson, International Journal of Quantum Chem-
istry 8, 61 (1974). [Cited on page 104.]

[159] P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chemical
Reviews 112, 108 (2012). [Cited on page 104.]

[160] H. Lischka et al., Chemical Reviews 118, 7293 (2018). [Cited on page 104.]

[161] J. Caillat et al., Phys. Rev. A 71, 012712 (2005). [Cited on page 116.]

[162] O. Koch, W. Kreuzer, and A. Scrinzi, Applied Mathematics and Computation
173, 960 (2006). [Cited on page 116.]

[163] M. Nest, T. Klamroth, and P. Saalfrank, Zeitschrift für Physikalische Chemie
224, 569 (2010). [Cited on page 116.]

[164] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, The Journal of Chemical
Physics 127, 154103 (2007). [Cited on page 116.]

[165] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A 76, 062501
(2007). [Cited on page 116.]

197

198 6.3

[166] O. E. Alon et al., Chemical Physics 401, 2 (2012), Recent advances in electron
correlation methods and applications. [Cited on page 116.]

[167] I. S. Ulusoy and M. Nest, The Journal of Chemical Physics 136, 054112
(2012). [Cited on page 116.]

[168] H. Kono, S. Ohmura, T. Kato, H. Ohmura, and S. Koseki, Journal of Physics:
Conference Series 1412, 042004 (2020). [Cited on page 116.]

[169] E. Cartan, La théorie des groupes finis et continus et l’analysis situs, volume 42
of Mémorial des sciences mathématiques, Gauthier-Villars, 1930. [Cited on
page 124.]

[170] T. Koda, An introduction to the geometry of homogeneous spaces, in Pro-
ceedings of The Thirteenth International Workshop on Differential Geometry,
volume 13, pages 121–144, 2009. [Cited on page 125.]

[171] H. Weyl, The Classical Groups: Their Invariants and Representations, Num-
ber no. 1, pt. 1 in Princeton Landmarks in Mathematics and Physics, Princeton
University Press, 1946. [Cited on page 125.]

[172] H.-J. Werner et al., Molpro, version 2019.2, a package of ab initio programs,
2019, see. [Cited on page 131.]

[173] Free Software Foundation Inc., Iso_fortran_env (the gnu fortran compiler),
https://gcc.gnu.org/onlinedocs/gfortran/ISO_005fFORTRAN_005fENV.html,
2022, Accessed: 27.03.2024. [Cited on page 134.]

[174] Z. Zaikun, infnan, https://github.com/equipez/infnan, 2023, Accessed:
6.03.2023. [Cited on page 137.]

[175] C. C. Symonds, Development and applications of new basis set sampling
and basis set handling procedures for the coupled coherent states family of
methods, 2015. [Cited on pages 137 and 166.]

[176] R. Chandler and P. Northrop, Random number generation, 2003. [Cited on
pages 137 and 138.]

[177] R. Code, Combinations — rosetta code,
https://rosettacode.org/wiki/Combinations?oldid=348688, 2022, [Accessed:
18.07.2022]. [Cited on page 139.]

[178] T. J. H. Hele, An electronically non-adiabatic generalization of ring polymer
molecular dynamics, Master’s thesis, Exeter College, University of Oxford,
2011. [Cited on page 150.]

[179] K. B. Petersen and M. S. Pedersen, The matrix cookbook, 2012, Version
20121115. [Cited on page 175.]

198

	Declaration of Authorship
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Notation
	1 Introduction
	2 Background and Theory
	2.1 Introduction
	2.2 Hartree-Fock Theory
	2.2.1 Spin
	2.2.2 Hartree Products
	2.2.3 Slater Determinants
	2.2.4 Matrix Elements
	2.2.5 Second Quantisation
	2.2.6 Basis Sets
	2.2.6.1 Slater-Type Orbitals
	2.2.6.2 Gaussian-Type Orbitals
	2.2.6.3 Pople Basis Sets
	2.2.6.4 Correlation-consistent Basis Sets

	2.2.7 The Hartree-Fock Approximation
	2.2.7.1 The Fock Operator
	2.2.7.2 Spin
	2.2.7.2.1 Restricted Closed-shell Equations
	2.2.7.2.2 Unrestricted Hartree Fock
	2.2.7.2.3 Restricted Open-shell Equations

	2.2.7.3 Roothaan-Hall Equations
	2.2.7.4 Self Consistent Field Method

	2.2.8 Post-Hartree-Fock
	2.2.8.1 Full Configuration Interaction
	2.2.8.2 Methods for Optimal Truncation of Configuration Space

	2.3 Coherent States
	2.3.1 General Definition of Coherent States
	2.3.2 Canonical Coherent States of the Harmonic Oscillator
	2.3.3 SU(2) Coherent States
	2.3.4 Standard Fermionic Coherent States
	2.3.4.1 General Many-Fermion Coherent States
	2.3.4.2 Grassmann Many-Fermion Coherent States

	2.4 Zombie states
	2.4.1 Construction
	2.4.2 Creation and Annihilation Operators
	2.4.3 Overlap of Two Zombie states
	2.4.4 Normalisation
	2.4.5 The Zombie Wave Function
	2.4.6 General Coherent Zombie states
	2.4.7 Comparison to Standard Fermionic Coherent State Constructions

	2.5 Concluding Remarks

	3 Finding the Ground State Energy
	3.1 Introduction
	3.2 Long Time Propagation and Fourier Transformation
	3.3 Imaginary Time Propagation
	3.3.1 Theory
	3.3.2 Application of Imaginary Time Propagation to Li2

	3.4 Conclusions

	4 Reducing the Basis Set Size
	4.1 Introduction
	4.2 Cleaning
	4.3 Biasing
	4.3.1 Results
	4.3.2 Conclusion

	4.4 Gradient Descent
	4.4.1 Alternative Gradient Calculation
	4.4.2 Algorithmic Specifications
	4.4.2.1 Initiating the Wave Function
	4.4.2.2 Cloning

	4.4.3 Results
	4.4.3.1 Li2 (Truncated Basis Set)
	4.4.3.2 Atomic Systems in the cc-pVDZ Basis
	4.4.3.3 BH in the 6-31G** Basis
	4.4.3.4 Diatomic Molecules in the cc-pVDZ Basis

	4.5 Conclusions and future work

	5 Excited States
	5.1 Introduction
	5.2 Theory
	5.3 Results
	5.4 Gradient Descent with Gram-Schmidt Orthogonalisation
	5.5 Conclusions

	6 Conclusions and Outlook
	Appendix A Mathematical Concepts for Coherent States
	A.1 Groups and Fields
	A.2 The Exterior Product
	A.3 Algebra Over A Field
	A.3.1 Structure Coefficients

	A.4 Lie Groups and Lie Algebra
	A.4.1 Closed Subgroups
	A.4.2 Classical Lie Groups

	A.5 Grassmann Algebra
	A.5.1 Properties of Grassmann Generators
	A.5.2 Derivatives and Integrals of Grassmann Algebra

	Appendix B Algorithmic and Programming Details
	B.1 Program Overview
	B.1.1 Program Design
	B.1.2 Program Implementation

	B.2 Zombie state Creation
	B.3 Operator Algorithms
	B.3.1 Hamiltonian Matrix Algorithm
	B.3.1.1 Reduced Prefactor Hamiltonian Algorithms
	B.3.1.2 Lower-scaling Hamiltonian Algorithm
	B.3.1.3 Combined Hamiltonian Matrix Element Equation

	B.3.2 Other Operators
	B.3.2.1 Number Operator
	B.3.2.2 Spin Operators
	B.3.2.2.1 z operator
	B.3.2.2.2 Faster z2 computation
	B.3.2.2.3 Total spin

	B.4 Gradient Descent Algorithm
	B.4.1 Derivatives of the Overlap Matrix
	B.4.2 Gradient Calculation Code
	B.4.3 The Algorithm

	B.5 Imaginary Time Propagation
	B.6 Parallelisation
	B.6.1 Parallel Code in the Zombie states Program

	Appendix C Supplementary Theory
	C.1 Hamiltonian Matrix Elements
	C.1.1 One-electron Operator
	C.1.2 Two-electron Operator

	C.2 Derivation of the Equations for the Gradient of the Energy Function
	C.2.1 Differentiating the Overlap Matrix
	C.2.2 Differentiating the Second Quantization Hamiltonian
	C.2.3 Differentiating the d Vector

	Appendix D Using the Zombie states Program
	D.1 Input Files
	D.2 Running the Program
	D.3 Output Files
	D.3.1 Plotting Outputs

	Bibliography

