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Abstract

Turbulent flows are broadly investigated using physical experiments and/or com-

putational fluid dynamics (CFD) where the accuracy, level of fidelity, and as-

sociated costs play competing roles. For practical CFD analyses such as de-

sign and analysis of aircraft, there is a heavy reliance on the Reynolds-averaged

Navier–Stokes (RANS) simulations due to their relative simplicity and low com-

putational cost. This comes at the cost of limited accuracy for complex flows. A

number of data-driven techniques have emerged that augment RANS-based tur-

bulence models using high-fidelity data. The novel contributions of this thesis in

data-driven augmentation of RANS-based turbulence models, categorised under

two themes, are: 1) the data in adjoint-based data assimilation, and 2) develop-

ing and employing neural network-augmented turbulence models for automated

aerodynamic design optimisation.

Firstly, we develop a novel sensor placement approach for generating sparse

experimental data for data assimilation. It leverages systematic eigenspace per-

turbations of the Reynolds-stress tensor to identify regions of flow where RANS

turbulence modelling assumptions are most erroneous and concentrate measure-

ments in these areas using a novel greedy algorithm. Results show that the error

reduction using our placement strategy is close in accuracy to the instances where

two to three orders of magnitude more data points than the placed sensors. We

further investigate fusing data for multiple quantities (e.g. velocity and surface

pressure measurements) to perform data assimilation, and investigate the relative
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importance of various physical quantities on the flow reconstruction.

Secondly, we employ the field inversion and machine learning technique to

augment an existing turbulence model for aerodynamic shape optimisation. As a

proof-of-concept we apply the framework to a separated periodic hill flow. Our

investigations highlight the role of the turbulence model on the optimal shapes

achievable, with the neural network-augmented turbulence model achieving ap-

proximately 4-times more drag reduction compared to the baseline model.
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CHAPTER 1

Introduction

1.1 Motivations

1.1.1 The need for predicting turbulent flows

Turbulent fluid flow phenomena are present across natural and engineered sys-

tems. The understanding and predictions of turbulent flows are crucial across

many scientific and engineering fields, such as environmental sciences; aerospace,

automotive and nuclear engineering; and beyond. Broadly, turbulent flows are in-

vestigated using real-world experiments, such as wind tunnel measurements and

numerical simulations. Computational fluid dynamics (CFD) analyses have be-

come an indispensable tool across many industries by allowing physical insights

into flow physics and enabling design optimisation of engineering applications

while reducing the expense, complexity, and technical limitations of a purely ex-

perimental design approach[144]. For instance, Fig. 1.1 shows an overview of the

use of CFD in the aircraft design process at Airbus.

1.1.2 High-fidelity approaches and their limitations

The Navier-Stokes equations, based on conservation of mass, momentum and

energy, describe turbulent fluid flows. For Newtonian, incompressible flows the
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Figure 1.1: Graphical representation of how “CFD moved from an exploratory
tool to a full flight physics production” in Airbus aircraft design cycle, image for
CFD application in 2010, and quote from the company’s head of aerodynamic
research and technology, [2].

N-S equations are:

∂ui

∂xi

= 0, (1.1)

∂ui

∂t
+ ∂uiuj

∂xj

= − ∂p

∂xi

+ 1
Re

∂2ui

∂xj∂xj

, (1.2)

where ui is the velocity, xi is the spatial coordinates, p is pressure, Re = ρlrefUref/µ

is the Reynolds number based on density, reference length and velocity, and dy-

namic viscosity respectively.

The main approaches to the use of N-S equations is illustrated in Figure 1.2.

Highest-fidelity can be achieved through direct numerical simulation (DNS) which

fully resolves the N-S equations in space and time [121]. The computational re-
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Figure 1.2: Classification of the main turbulence simulation and modelling ap-
proaches, diagram inspired from [87]. Abbreviations: DNS, direct numerical sim-
ulations; LES, large eddy simulations; DES, detached eddy simulations; WMLES,
wall-modelled LES; RANS, Reynolds-averaged Navier-Stokes; SST, shear stress
transport; S-A, Spalart-Allmaras.

quirements for DNS can be estimated using Kolmogorov’s hypothesis, which states

that at sufficiently high Reynolds numbers, small-scale turbulent motion is statis-

tically isotropic, and can be uniquely determined by the viscosity η and dissipation

rate ϵ. This leads to the definition of the Kolmogorov length, velocity, and time

scales defined as: η ≡ (ν3/ϵ)1/4, uη ≡ (ϵν)1/4 and τη ≡ (ν/ϵ)1/2, respectively. Thus

the ratio of the smallest to largest Kolmogorov scales can be determined as follows:

η/l0 ∼ Re−3/4, uη/u0 ∼ Re−1/4, and τη/τ0 ∼ Re−1/2 [121]. To fully resolve the N-S

equations, the spatial and temporal resolution should scale: (∆x)3 ∼ (l0/η)3 (in

three dimensions) and ∆t ∼ τ0/τη. Therefore, the total computational cost can

be estimated as (Re3/4)3 ·Re1/2 ∼ O(Re2.75). As an example of the computational

costs involved, in a 2022 DNS study of a transonic aerofoil at Re = 3 × 105 and
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freestream Mach number M∞ = 0.7, the meshes employed had 536 - 1800 million

cells, with a time step ∆t = 1.5 × 10−4 (baseline mesh) and ∆t = 1 × 10−4 (fine

mesh), and the flow statistics were accumulated over a time 40c/U∞, where c is

the chord length, and U∞ is the freestream velocity [124]. Given that for complex

aerodynamic flows the Reynolds number is O(106) and higher (e.g. flow over a

wing), DNS will require huge computational resources.

An alternative is large-eddy simulations (LES) [101] which involves resolving

the large-scale turbulence effects while a filtering process is applied to scales below

a threshold. The filtering process gives rise to the Smagorinsky stress tensor term,

in the momentum equation (Eqn. 1.2), which leads to the need for sub-grid scale

models to close the equation—unless the implicit LES approach is used [58]. The

computational cost of LES, based on the grid requirements, is estimated to scale

as N ∼ Re0.4 away from the wall, while scaling as N ∼ Re1.8−2 near the wall [7,

60, 79]. Despite reducing the computational costs compared to the DNS approach,

LES unfortunately still remains expensive for wall-bounded high Reynolds number

flows as the energetic scales – even if small – dominate the dynamics in the near-

wall region [146].

Other ideas that are computationally cheaper include wall-modelled LES (WM-

LES). In WMLES the energetic motions in the outer boundary layer are resolved

while the near-wall eddies are modelled. In WMLES the number of grid points

(N) required is estimated to be proportional to ReLx , where Lx is the flat plate

length in the streamwise direction, compared to N ∼ Re
13/7
Lx

for wall-resolved LES

[30]. Reviews in Refs. [79, 20] further divide WMLES into two categories: hybrid

RANS-LES and wall-stress-modelled LES approaches. In the former RANS equa-

tions are used near walls and interfacing to LES away from walls, while in the

latter LES governing equations are solved throughout the domain, with the wall

boundary conditions augmented to account for the effect of the unresolved inner
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layer of the boundary layer [20]. While WMLES is computationally cheaper than

DNS and LES, it can still be orders of magnitude more expensive than RANS

[79]. For many-query studies, e.g. iterative aerodynamic design optimisation

where multiple flow solutions are required, WMLES can still be very expensive.

1.1.3 Reynolds-averaged Navier-Stokes and associated inac-
curacies

Turbulence models based on Reynolds-averaged Navier-Stokes (RANS) equations

[4] remain the workhorse of most CFD analyses due to their relative simplicity,

ease of implementation, and considerably lower computational cost. The RANS

equations are so-called because the instantaneous velocity and pressure (ui and

p) in the N-S equations (Eqn. 1.1, and 1.2) are decomposed into a mean (Ui and

P ) and fluctuating (u′
i and p′) component through statistical ensemble averaging

[128], leading to:

∂Ui

∂xi

= 0, (1.3)

∂Ui

∂t
+ ∂(UiUj)

dxj

= −∂P
dxi

+ 1
Re

∂2Ui

∂xj∂xj

−
∂u′

iu
′
j

∂xj

. (1.4)

The rationale behind the averaging process is that for most of the engineering ap-

plications where turbulent flow behaviour simulations are required, the quantities

of interest mainly depend on mean flow (e.g. force coefficients for aerodynamic de-

sign optimisation)∗, thus the instantaneous fields are not resolved [170]. However,

the averaging process results in the Reynolds stress tensor, −ρu′
iu

′
j in Eqn. 1.4.

As the Reynolds stress tensor is a function of the velocity fluctuations—which are

not resolved—it must be modelled/“closed” in terms of the averaged quantities.
∗Counterexamples however exist where unsteady values are of interest, e.g. when assessing

aircraft ride quality.
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The prevalent RANS closures use the Boussinesq hypothesis by assuming a

linear relation between the eddy viscosity and the Reynolds stresses, and then

using surrogate variable(s) to model the eddy viscosity[81]. Widely used models

of this type are the two-equation k− ϵ [82], k−ω [162], and the k−ω shear stress

transport [105], and the one-equation Spalart-Allmaras (S-A) [143] models and

their variants, which have been formulated based on a combination of intuition,

empiricism, and theoretical constraints [41].

Despite their prevalent use, RANS-based simulations have well-documented

deficiencies for complex turbulent flows, such as flow separation, strong unsteadi-

ness, and strong flow curvatures [148]. For instance, Fig. 1.3 illustrates the RANS-

based prediction variability of lift and pitching momemnt coefficient for the NASA

common research model (CRM) at a Mach number of 0.85 and a Reynolds number

of 20 million. The data is from the seventh AIAA Drag Prediction Workshop in

2022.

For instance, RANS models are prone to inaccuracies in predicting flows over

wings at high angles of attack as the flows tend to separate. This is illustrated in

the comparative RANS predictions of the lift coefficient for the NASA high-lift

common research model (HL-CRM) in Fig. 1.3 from the 2017 American Institute

of Aeronautics and Astronautics (AIAA) High Lift Prediction Workshop[133].

Although most RANS predictions at lower angles of attack, α, have reasonable

agreement with wind-tunnel measurements, the prediction capabilities at higher

angles show high variability due the complex flows not being captured accurately

by the RANS models.

Figure 1.4 illustrates the rise in the use of popular RANS models against wind

tunnel tests in the design cycle of commercial aircraft. It is important to note that

the linear eddy-viscosity models developed by the 1990s are still in use. While a

plethora of elegant ideas have spurred in the turbulence research community such
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Experiment

Figure 1.3: Comparison of the wind tunnel lift and pitching moment coefficients
against various RANS-based turbulence models for the NASA Common Research
Modle (CRM). Data from the seventh AIAA Drag Prediction Workshop in 2022.
Letters on the lines designate various participants. For details refer to Ref. [151].

as non-linear eddy viscosity models [52], elliptic relaxation [59], and hybrid RANS-

LES [116] to address the deficiencies, their complexity and lack of generalisation

have limited their applications, leading to the conclusion that traditional RANS

modelling approaches may have reached a plateau [141].

1.1.4 Data-driven RANS-based turbulence modelling

Data-driven approaches such as machine learning have gained significant traction

across many disciplines, including the field of fluid dynamics, extensively reviewed

in Refs. [38, 22, 24, 37, 3, 155, 92, 117, 134]. Turbulence closure modelling is one

such avenue which will be reviewed in detail in the subsequent chapter.

Though traditional RANS models already make use of data by, for example,
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Figure 1.4: Timeline of popular RANS-based turbulence models. (a) The number
of wind tunnel tests for wing design during Boeing’s aircraft development program,
data reported up to the year 2000, from Johnson et al. [72], (b) the introduction
of popular RANS-based turbulence models: k− ϵ [82], Launder, Reece and Rodi’s
Reynolds Stress Model (RSM) [80], Wilcox k − ω [164], Spalart-Allmaras [143]
and k − ω shear stress transport model [104]. Figure based on Xiao & Cinnella
[170].

using experimental or DNS results from limited canonical cases to tune model

coefficients, the rise in data-driven turbulence modelling over the last decade

or so, is a more comprehensive effort to leverage data assimilation and machine

learning tools and the existence of richer high-fidelity datasets—from experiments

and scale resolving simulations—for improved turbulence modelling.

In this work we are interested in the augmentation of existing turbulence

models using the field inversion and machine learning framework (FIML) [119,

139]. The field inversion step—an adjoint-based data assimilation approach—is a

highly-dimensional optimisation problem where the transport equation for an ex-

isting model is perturbed by a scalar spatial field which is then adjusted iteratively

such that the error between the RANS prediction for a given quantity of inter-

est compared to the high-fidelity data is reduced. Machine learning techniques,

such as neural networks, are then used to generalise the augmentations for flows

beyond the training dataset. It is a relatively well-established framework, with

many variants, which will be reviewed in detail in chapter 2.3.1. Key advantages
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of the FIML framework include its ability to work with sparse training datasets,

and model-consistency since the governing equations are part of the training—this

will be further discussed in chapter 2.

1.2 Contributions of the present work

The contributions of this thesis can be categorised into two themes: the role of

sparse, experimentally measureable, data in adjoint-based data assimilation; and

the development and use of a neural network-augmented turbulence model for

aerodynamic shape optimisation.

Adjoint-based data assimilation has been shown to achieve considerable im-

provements using sparse, experimentally measureable, data. The types of data

used in literature have included volume/field data (e.g. velocity profiles [119]),

surface data (e.g. skin friction [39], pressure coefficient [12]), and integral data

(e.g. lift coefficient [139])—listed in terms of lowest to highest data sparsity.

Unexplored aspects to be investigated in this work are outlined below.

Sparse sensor placement using eigenspace perturbations

Most applications of data assimilation for turbulence model augmentation thus

far have been primarily dictated by the availability of existing data, usually mea-

sured for benchmarking and validation. This thesis presents a novel a priori sensor

placement strategy to measure the experimental data for data assimilation. The

strategy relies on eigenspace perturbations of the Reynolds stress tensors to iden-

tify regions of uncertainty in the flow domain due to the structural uncertainties

in the turbulence model and targets the sensors in these regions using a greedy

placement algorithm.

Research on this topic led to the following publications which are presented in

chapter 4 of the thesis:
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• Omid Bidar, Sean Anderson, and Ning Qin. “Sensor placement for data as-

similation of turbulence models using eigenspace perturbations”. In: Physics

of Fluids 36.1 (Jan. 2024). DOI: 10.1063/5.0182080. Author contributions:

Omid Bidar: Conceptualisation; Formal analysis; Investigation; Methodol-

ogy; Software; Writing – original draft; Writing – review & editing. Sean An-

derson: Conceptualisation; Formal analysis; Funding acquisition; Methodol-

ogy; Project administration; Supervision; Writing – review & editing. Ning

Qin: Conceptualisation; Formal analysis; Methodology; Supervision; Writ-

ing – review & editing.

• Omid Bidar, Sean Anderson, and Ning Qin. “A Priori Sensor Placement

Strategy for Turbulent Mean Flow Reconstruction Using Parametric Model

Perturbations”. In: AIAA SCITECH 2024 Forum. American Institute of

Aeronautics and Astronautics, Jan. 2024. DOI: 10.2514/6.2024-1580. Au-

thor contributions: Omid Bidar: Conceptualisation; Formal analysis; Inves-

tigation; Methodology; Software; Writing - original draft, review & editing.

Sean Anderson: Project administration; Supervision; Writing - review &

editing. Ning Qin: Supervision; Writing - review & editing.

Multi-sensor data for data assimilation

To date, data assimilation using adjoint-based methods have been limited to using

only a single source of data, e.g. surface pressure measurements, or velocity

profiles. This is a limitation because multiple sources can be used simultaneously

to reconstruct the flow and in theory improve the accuracy of the model and ensure

that it fits all available data correctly. This work extends the adjoint-based field

inversion framework, to make use of multiple data sources for enhanced data

assimilation using multi-objective optimisation.

Research on this topic led to the following publication, and is presented in
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chapter 5 of the thesis:

• Omid Bidar, Ping He, Sean Anderson, and Ning Qin. “Turbulent mean

flow reconstruction based on sparse multi-sensor data and adjoint-based field

inversion”. In: AIAA Aviation 2022 Forum. American Institute of Aero-

nautics and Astronautics, June 2022. DOI: 10.2514/6.2022-3900. Author

contributions: Omid Bidar: Conceptualisation; Formal analysis; Investiga-

tion; Methodology; Software; Writing - original draft, review & editing. Ping

He: Conceptualisation; Methodology; Software; Writing - review & editing.

Sean Anderson: Conceptualisation; Methodology; Project administration;

Supervision; Writing - original draft; Writing - review & editing. Ning Qin:

Conceptualisation; Methodology; Supervision; Writing - review & editing.

Relative importance of various physical quantities

It has been observed that the impact of data assimilation in terms of error reduc-

tion in all physical quantities of interest is sensitive to the type of data used. How-

ever, there has been no quantitative study of the relative importance of physical

quantities on data assimilation outcomes. In this work we compare the accuracy

of turbulent flow reconstruction using field inversion when using experimentally

measurable data such as surface pressure, skin friction, and velocity profiles.

The results from this work was presented at the UK Fluids Conference, and

is presented in chapter 3 of the thesis:

• Omid Bidar, “Relative Importance of Physical Quantities for Data-driven

RANS-based Turbulence Modelling”. Presented at the UK Fluids Confer-

ence, Sheffield, UK. 2022. DOI: 10.13140/RG.2.2.16569.44641.
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Aerodynamic shape optimisation with data-driven turbulence
modelling

Although the debate about universality of data-driven turbulence model is an im-

portant one to be had, in the context of aerodynamic flows, there is still scope for

customised models tailored to specific types of applications—aerodynamic shape

optimisation is one such case. It has become an important tool in the aircraft

design process [140]. The iterative process involves: starting with a given param-

eterised shape, manipulate the surfaces to optimise a given characteristic (e.g.

minimum drag) while satisfying various constraints: such as geometric constraints

(e.g. twist, span, thickness, etc.), aerodynamic constraints (e.g. the lift gener-

ated), and/or constraints on flow conditions.

Flow predictions during the iterative design optimisation is typically limited

to RANS-based simulations due to the computational costs of higher-fidelity ap-

proaches. However, when performing shape optimisation for mission critical ap-

plications in complex operating conditions, one of the limitations faced is the

inaccuracies due to turbulence modelling, for example, as discussed earlier in the

case of the NASA high-lift common research model at high angles of attack (Fig.

1.3). Therefore, this thesis explores the use of a neural network-augmented tur-

bulence model for aerodynamic shape optimisation of a proof-of-concept, highly

complex separated flow.

Research on this subject led to the following publications, and are presented

in chapter 6 & 7:

• Omid Bidar, Ping He, Sean Anderson, and Ning Qin. “Aerodynamic Shape

Optimisation Using a Machine Learning-Augmented Turbulence Model”. In:

AIAA SCITECH 2024 Forum. American Institute of Aeronautics and As-

tronautics, Jan. 2024. DOI: 10.2514/6.2024-1231. Author contributions:

Omid Bidar: Conceptualisation; Formal analysis; Investigation; Methodol-
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ogy; Software; Writing - original draft, review & editing. Ping He: Con-

ceptualisation; Methodology; Software; Writing - review & editing. Sean

Anderson: Conceptualisation; Project administration; Supervision; Writing

- review & editing. Ning Qin: Conceptualisation; Supervision; Writing -

review & editing.

• Omid Bidar, Sean Anderson, and Ning Qin. “A Hybrid RANS-LES Dataset

for Data-driven Turbulent Mean Flow Reconstruction”. Presented at the

Cambridge Unsteady Flow Symposium 2024. Author contributions: Omid

Bidar: Conceptualisation; Formal analysis; Investigation; Methodology; Soft-

ware; Writing - original draft, review & editing. Sean Anderson: Project

administration; Supervision; Writing - review & editing. Ning Qin: Super-

vision; Writing - review & editing.

Open-source implementation

As previously stated, data assimilation via field inversion involves the solution of a

high dimensional optimisation problem, where the number of design variables/de-

grees of freedom is equivalent to the size of the mesh. To make the optimisation

task computationally tractable, a gradient-based strategy is adopted which re-

quire the adjoint approach [75] for efficient gradient evaluations. The intrusive

nature of this approach involving the CFD flow solver, the adjoint solver, and

the optimiser makes its implementation a high entry barrier for most researchers

[37]. In this work we integrate existing open-source codes to enable a flexible

implementation of the FIML framework available to all researchers.

This led to the following publication, and is presented in chapter 3 of the

thesis:

• Omid Bidar, Ping He, Sean Anderson, and Ning Qin. “An open-source

adjoint-based field inversion tool for data-driven RANS modelling”. In:
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AIAA Aviation 2022 Forum. American Institute of Aeronautics and As-

tronautics, June 2022. DOI: 10.2514/6.2022-4125. Author contributions:

Omid Bidar: Conceptualisation; Formal analysis; Investigation; Methodol-

ogy; Software; Writing - original draft, review & editing. Ping He: Con-

ceptualisation; Methodology; Software; Writing - review & editing. Sean

Anderson: Conceptualisation; Project administration; Supervision; Writing

- review & editing. Ning Qin: Conceptualisation; Supervision; Writing -

review & editing.

1.3 Thesis structure

Figure 1.5: Summary of thesis structure.

CHAPTER 2 presents a literature survey of data-driven RANS-based turbulence

modelling, with a particular focus on field inversion and machine learning.

CHAPTER 3 formulates the adjoint-based data assimilation problem, briefly

outlines our open-source implementation, and investigates data assimilation

on a range of separated flows. The ten data assimilation scenarios consider
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different turbulence models, various data sources (e.g. experimental, scale-

resolving simulations) and data types (e.g. surface data such as lift coefficient

and skin friction, or field data such as velocity provides). It also investigates

the role of different physical quantities on the data assimilation.

CHAPTER 4 formulates and tests a novel sensor placement framework for data

assimilation using the eigenspace perturbations approach.

CHAPTER 5 investigates the use of multi-sensor data for adjoint-based data

assimilation.

CHAPTER 6 develops a neural-network augmented turbulence model for a proof-

of-concept case, and performs a priori and a posteriori tests of the augmented

model on different separated flows.

CHAPTER 7 investigates the application of the neural network-augmented model,

developed in chapter 6, for performing aerodynamic shape optimisation, com-

paring the augmented model against baseline Wilcox k − ω and shear stress

transport models. In addition hybrid RANS-LES predictions using the im-

proved delayed detached eddy simulation are performed on the RANS-based

optimal shapes to verify the flow predictions.

CHAPTER 8 concludes the thesis, and suggests avenues for future work.
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CHAPTER 2

Data-driven turbulence modelling: a
literature review

This chapter provides a high-level overview of the state-of-the-art on data-driven

approaches in the context of Reynolds-averaged Navier-Stokes (RANS) simula-

tions.

Most of the development in data-driven turbulence modelling has occurred

over the last decade. Beginning with quantifying uncertainties in existing mod-

els, researchers have then attempted to reduce the turbulence modelling errors,

broadly categorised as [38]: a) parametric errors: arising from the closure coef-

ficients, which are tuned based on a limited set of canonical flows, b) functional

errors: arising from the mathematical formulations of the turbulence model vari-

ables, e.g. turbulent kinetic energy, k, and turbulent dissipation rate, ϵ, and c)

structural errors: arising from the simplifying modelling assumptions, such as

the Boussinesq approximation, which assumes that Reynolds stresses are linearly

proportional to the mean strain rate. The three stated sources of errors relate

specifically to the turbulence closure modelling, but there also exist mesh-related

and numerical errors due to the finite dimensional discretisations of continuous

systems in any CFD simulation (reviewed in Ref. [48]) which is beyond the remit

of this thesis.
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2.1 Uncertainty quantification and parametric error reduc-
tion

Some representative ideas, based on data-driven uncertainty quantification, are

briefly outlined in this section—a comprehensive review has been conducted by

Xiao and Cinnella [170].

Deterministic closure model constants, empirically tuned on experimental data

for fundamental flows are one of the sources of uncertainties. Oliver et al. [118]

and Cheung et al. [29] have used a Bayesian framework, by treating the closure

coefficients of a number of eddy viscosity models as random variables, and used

DNS data to calibrate the models by producing posterior probability density func-

tions for the model constants. These, and similar studies, have shown that: a)

there are no universal closure parameter values, b) parameters must be adjusted

continuously when changing the dataset used for calibration, and c) closure coeffi-

cients calibrated on one dataset of flows are not necessarily valid for prediction of

a different set of flows [170], thus highlighting the limitations of a parametric er-

ror reduction approach. Additionally, a fully Bayesian analysis based on sampling

techniques can become computationally intractable for complex, high dimensional

flows.

As opposed to parametric errors, Dow et al. [36] quantified model-form un-

certainties in channel flows by leveraging DNS data to modify the eddy viscosity

field that minimised the difference between the velocity field predicted by k − ω

turbulence model and the DNS velocity field.

On the other hand, Ling et al. [88] utilises machine learning algorithms to

classify regions of high RANS uncertainties related to functional and structural

errors. They employ high-fidelity DNS and LES data for canonical flows to clas-

sify linear eddy-viscosity model breakdown in the entire flow domain due to the

following modelling assumptions: isotropic eddy viscosity, linear Reynolds stresses
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and strain rate relationship in the Boussinesq hypothesis, and non-negative eddy

viscosity. Although, promising results were achieved in terms of the models ca-

pability to classify uncertain regions and the capability to generalise to unseen,

albeit similar, flows, one of the key disadvantages of this method is the extent of

high-fidelity data required—nearly impossible to acquire for practical aerospace

applications.

Clearly uncertainty error quantification is important, but the turbulence mod-

elling community have come up with a plethora of ideas to use data for reducing

these errors, which will be reviewed in the following sections.

2.2 A priori learning

Most of the recent work on data-driven turbulence modelling has been concerned

with enhancing the predictive capability of traditional models by directly address-

ing the sources of functional and/or structural errors. Among these, a considerable

number attempt to train machine learning models directly on inputs and features

taken from high-fidelity data for the Reynolds stress tensor—an approach known

as a priori or CFD-free training [37].

Many a priori learning approaches start with a representation of the Reynolds

stress tensor that addresses the inadequacies of the existing turbulence model.

The Reynolds stress tensor, τ , based on eigen-decomposition can be expressed as

[121],

τ = −u′
iu

′
j = 2k

(1
3I + b

)
= 2k

(1
3I + V ΛV T

)
, (2.1)

where k = 1
2u

′
iu

′
i is the turbulent kinetic energy, I is the identity matrix, b is

the normalised anisotropy or deviatoric part of the Reynolds stresses which can

be expressed as a function of its eigenvalues Λ and eigenvectors V . The eigen-

decomposition is essential, because the turbulent kinetic energy, and eigenvalues

and eigenvectors of the Reynolds stress anisotropy, represent the amplitude, shape
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and orientation of the Reynolds stress tensor, and thus allow for a framework of

addressing the discrepancies in the Reynolds stress tensor while ensuring physical

realisability [42].

In one of the earlier attempts, Tracey et al. [152] used kernel regression

and DNS data to build a machine learning model of the error in the turbulence

anisotropy, and successfully showed a priori improvements to the baseline k − ω

SST model for a limited set of flows. Specifically, for the machine learning model

input they used: the eigenvalue anisotropy, Λ; the production-to-dissipation rate

of the turbulent kinetic energy k; and a marker function which indicates the

flow regions with high deviations from parallel shear flow—known to be poorly

modelled by existing eddy-viscosity models. As the output, they selected the

eigenvalues predicted by the DNS dataset. However, they used a very limited set

of flow features for machine learning training, and did not consider the physical

requirement of Galilean invariance∗.

Wang et al. [159] used the Reynolds stress tensor representation in Eqn.

2.1, and built a random forest model of the Reynolds stress anisotropy based

on DNS data for not only the eigenvalues, but also the turbulent kinetic energy

and the eigenvectors. Additionally, as the machine learning inputs, they used a

broader range of mean flow features (ten in total) which better characterised the

flow, while also ensuring these were Galilean invariant. They achieved significant

improvements in anisotropy predictions over the baseline models, however, these

improvements did not necessarily translate to better predictions of propagated

quantities of interest, such as the mean velocity field. Wu et al. [166], from the

same group, assigned this issue to the limited set of flow features used for training

the random forest regressor. To alleviate this, they constructed 47 invariant bases
∗This is the property that requires that the physics of the fluid flow should be independent

of coordinates frame of the observer. If this is not the case then identical flows will have
different predictions if the axes are defined in different directions by observers moving at different
velocities.
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from the following non-dimensionalised mean flow features: the mean strain and

rotation rates, the pressure gradient, and the gradient of the turbulent kinetic

energy. With these, they demonstrated improved results for not only the Reynolds

stress tensor, but also the associated propagated fields such as the mean velocity.

Ling et al. [91] argued that a priori training using traditional machine learning

algorithms such as random forest will have limited success, due to the above

difficulties in enforcing invariance properties, and proposed a novel neural network

architecture, called tensor basis neural network (TBNN), shown in Figure 2.1.

This framework embeded Galilean invariance, by exploiting the proof by Pope

[120], who showed that a general eddy viscosity model of the Reynolds stress

anisotorpy, a in Eqn. 2.1, can be expressed as linear combination of 10 isotropic

basis tensors, which are functions of the mean strain and rotation rate tensors

(which are functions of the gradient of mean velocity), and automatically satisfy

Galilean invariance:

τ = 2k
(1

3I + a
)

= 2k
(

1
3I +

10∑
n=1

g(n) (λ1, ..., λ5)T (n)
)
, (2.2)

where the goal of the tensor basis neural network is to determine the values of

the scalar coefficients fields g(n), given the tensor invariants λi with i ∈ [1, 5] are

known functions of the strain and rotation rate tensors, as the model input, see

Figure 2.1.

The TBNN was shown to make substantial improvement over existing lin-

ear and non-linear eddy viscosity models, and data-driven models with off-the-

shelf neural network algorithms, both in terms of the predictions of the Reynolds

stresses and other quantities of interest, such as the velocity fields. The framework

was also shown to have good generalisability capabilities for improved predictions

of cases not used in training. Other successful applications have been in turbu-

lence scalar flux [107] and turbulent heat flux modelling [108] for jet in crossflow
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Figure 2.1: The tensor basis neural network architecture proposed by [91], with
two input layers: the invariant input layers, for the five known tensor invariants
λi, followed by hidden layers, where the final hidden layer has ten elements rep-
resenting the scalar coefficient g(n) for n = 1, ..., 10, and the tensor input layer,
representing the ten isotropic basis tensors, T in Eqn. 2.2. The output layer
sums the results from the final hidden layer and the tensor input layer, to give
the Reynolds stress anisotropy.

and film cooling flows, respectively. Kaandorp et al. [73] have successfully imple-

mented a random forest regression version of this novel approach.

An aspect not entirely addressed in the frameworks reviewed so far, is that

of interpretability—the ability of expressing the machine learning-based model

closure in an explicit analytical form [22].

Weatheritt et al. [161] have attempted to use a regression technique based

on evolutionary algorithms, called gene expression programming, to build explicit

nonlinear models for the Reynolds stress anisotropy, of the form represented in

Eqn. 2.2. They only considered the first four isotropic basis tensors, T , and two

tensor variants λ. One of the advantages of such a framework is that the explicit
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form allows analysis of the relative importance of the different terms in the closure.

The results show good improvements in the prediction of the Reynolds stresses

and other quantities of interest, although there are still slight discrepancies in

components of the Reynolds stresses tensor as some of the invariant-basis tensors

in Eqn. 2.2 were ignored. This also adversely impacts the generalisability of the

model for problems it was not trained on.

On the other hand, Schmelzer et al. [135] have proposed using linear symbolic

regression to infer Reynolds stress anisotropy closures based on a library of can-

didate functions. They use three of the invariant bases in Eqn. 2.2, and two of

the tensor invariants, λi, to model the Reynolds stress anisotropy. Over-fitting

to data is avoided through sparsity-promoting regression: the chosen model is

constrained such that the error reduction is balanced against complexity of the

candidate model-form expression. In a similar vein, Beetham et al. [11] have used

linear sparse regression to form explicit, non-linear, Galilean invariant turbulence

closures for multi-phase flows.

Even though, a priori data-driven techniques have demonstrated promising

results, there are some considerable drawbacks:

• the amount of high-fidelity data required for model training, which for

aerospace applications are very challenging, if not impossible, to acquire;

• model consistency: while directly training on high-fidelity data may ensure

consistency with the quantities of the data, it does not necessarily guarantee

consistency in the predictive RANS setting, where these models operate after

training [149]. These issues have been ascribed to the difference between

features used for training, and those used for prediction, e.g. the DNS

quantities for length and time scales do not have a one-to-one correspondence

to the RANS equivalents; among other possible causes [37];
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Figure 2.2: Ill-conditioning of RANS equations by explicit propagation of
Reynolds stress tensor from high fidelity data. Figure from Wu et al. [167].
Dataset 1 is based on LES predictions of the Reynolds stress tensor using the
LESOCC solver [23], Dataset 2 and 3 are DNS predictions using the Incompact3d
solver [9] with mesh resolutions 512×257×128 and 768×385×128, respectively.
(a) Reynolds shear stress profiles from all three datasets, (b) streamwise velocity
profiles by solving the RANS equations where the Reynolds stress tensor is re-
placed by the high-fidelity data, instead of using a RANS-based closure model.

• ill-conditioning: Wu et al. [167] have shown that RANS models explicitly

trained on high-fidelity Reynolds stress tensor data, can have major robust-

ness and ill-conditioning issues in a predictive setting, especially when de-

viating from the training conditions, e.g. using data-driven model at higher

Reynolds numbers than the training cases. They showed that when the
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Reynolds stress tensor from DNS is explicitly used as a source term in the

RANS equations, the predicted mean velocity fields can have significant dis-

crepancies. This is because the mean velocity fields can be hugely sensitive

to small errors in the Reynolds stresses. For example, Fig. 2.2 compares the

streamwise velocity profiles in the periodic hill case (introduced in chapter

3.5.3) by solving RANS equations with explicit Reynolds stress tensor from

three different high-fidelity datasets. It is clear that while the Reynolds

shear stress is the same with all three datasets, there are differences in the

streamwise velocity profiles, especially with Dataset 2.

2.3 Model consistent learning

To deal with model consistency issues, a number of frameworks have been pro-

posed where the data-driven model training involves the imperfect RANS envi-

ronment by explicitly involving the baseline turbulence model. This is done by

solving a number of inverse problems where the goal is to minimise the discrep-

ancy between the baseline RANS models and higher fidelity data, a so-called field

inversion approach (sometimes also broadly termed data assimilation).

2.3.1 Field inversion and machine learning

In general, the field inversion problem is posed as follows: given some high-fidelity

data Y , with the transport equation of the augmented model represented by Ra,

infer the spatiotemporal discrepancy field (also called the corrective, or augmen-

tation field) δ(x, t) by solving the following optimisation problem [37]:

min
δ
L [Y, Ym (δ)] , s.t. Ra [Q,T , δ] = 0, (2.3)
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where Ym are the model outputs corresponding to the quantity from data; and

the transport equations represented by Ra are functions of the RANS state vari-

ables, Q , such as velocity and pressure; secondary model variables, T such as

eddy viscosity and turbulent quantities. While the notation δ(x, t) is used for

a generalised field inversion formulation, we will be using β for the spatial field

perturbing the production term of the turbulence transport equation(s) in the

following chapters.

Field inversion on its own has limited capability, as the corrective field δ(x, t)

is specific to the case for which the optimisation problem is solved. In other words,

it cannot be used for prediction of a different case — which is the ultimate goal.

Therefore, field inversion must be performed for a representative number of cases

to build a set of augmentation fields δi = [δ(1), ..., δ(n)], and then machine learning

tools can be used to map the fields in terms of a set of local flow features ηi =

[η(1), ...,η(n)] which are functions of the baseline model. A supervised learning

process can be expressed as follows:

min
w
L[δi(x, t), δ(ηi;w)], (2.4)

where w are the machine learning model parameters (weights and biases), and δm

is the machine learning model of the corrective fields that can be injected in the

baseline model Ra for improved predictions.

Aside from model consistency, one of the advantages of these approaches is

that, in principle, even sparse measurement data—which is a realistic scenario for

aerospace experimental datasets—can be used to augment existing models.

One of the earliest model consistent approaches, is the field inversion and

machine learning (FIML) framework, shown in Figure 2.3, originally proposed by

Duraisamy et al. [40] and further explored by Parish et al. [119]. As a proof-of-

concept they augmented the popular k−ω model to improve predictions for planar
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Figure 2.3: The processes in the field inversion and machine learning framework,
based on the diagram from Ref. [137].

channel flows. In the field inversion step, they modified the transport equation for

the turbulent kinetic energy, k, by multiplying the production term with a scalar

field β(x) (the discrepancy field, generally represented by δ in the discussion

above). Note that this field is a scalar value defined across the entire flow domain

in the CFD mesh. The optimisation problem was posed as a Bayesian inversion,

where the goal was to reduce the error between the velocity profiles from DNS

data, and the baseline model prediction.

The results were promising as the FIML-augmented model provided better

predictions compared to the baseline case when simulating channel flows at differ-

ent Reynolds numbers compared to the training. Singh et al. [138] extended the

field inversion step to more complex cases such as separated flow over aerofoils
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where substantial improvements were achieved with sparse data such as pres-

sure coefficient measurements on the aerofoil surface. In a follow-up publication

they also used neural networks to successfully model the field inversion corrective

fields using just lift coefficients for training: data-driven model trained on two

horizontal-axis wind turbine aerofoils at different incident angles and Reynolds

numbers was able to improve predictions of separated flow on an unseen aerofoil

with different operating conditions [139].

The results above also highlighted some challenges. Firstly, a fully Bayesian

inversion requires the use of sampling algorithms which quickly become compu-

tationally intractable because the number of design variables for optimisation is

the same as the number of mesh cells, which for aerospace flows can easily be of

O(105) and higher. They bypassed this problem by approximating the posterior

distribution of β(x) by its maximum a posterior (MAP) estimate [6], or formulat-

ing it as a regularised deterministic optimisation problem [139]. Secondly, a fully

Bayesian inversion also requires high quality statistics related to the data to build

the full covariance matrices, which is not always available. Finally, the highly

dimensional optimisation problem is computationally expensive, since a model

consistent framework by definition involves the governing equation in the objec-

tive function (Eqn. 2.3), so for gradient-based iterative optimisation methods the

derivatives of model state variables and secondary variables must be computed.

This problem can be resolved by using the adjoint method. However, the software

implementation is an entry barrier to most researchers [37].

Singh et al. [39] also explored a different formulation of field inversion, by

introducing the discrepancy field in the Reynolds stress anisotropy through the

eigenvalues, as in some of the a priori formulations described previously. But

unlike the a priori formulation where the DNS/LES anisotropy fields were used

for training, they trained the FIML model on DNS mean velocity data alone.
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Application to turbulent channel flow yielded interesting results: although the

FIML-model resulted in improvements in the mean velocity field and Reynolds

shear stress predictions, it failed to improve the Reynolds stress anisotropy.

Belligoli et al. [12] have also sought to address the Reynolds stress anisotropy

using field inversion, by perturbing the Reynolds stress tensor, through its eigen-

values and eigenvectors. They ensure physical realisability by guaranteeing the

Reynolds stresses are bounded by the barycentric map: a triangular domain pro-

posed by Banerjee et al. [8] for visualising physically realisable turbulence states.

While shown to make some improvements over the original formulations, the au-

thors do not directly compare the predicted Reynolds stresses with high-fidelity

data. Thus it is unclear if this method can improve anisotropy predictions. The

technique is also computationally expensive as the number of distinct optimisation

variables increases from one in the original formulation (i.e. β(x)), to six (three to

perturb the eigenvalues and three for eigenvector perturbations). Yet still, Volpi-

ani et al. [156] have used a different formulation of filed inversion by introducing

an additive vectorial source term as the corrective field in the momentum equation

of the RANS equations, Eqn 1.4. While demonstrated to improve the baseline

Spalart-Allmaras model for the periodic hill flow, the results are not compared

to original formulation, nor are the turbulent quantities compared between the

baseline model and their field inversion results – still leaving the effectiveness of

the new formulation over the original approach an open question.

Holland et al. [65] proposed the so-called “direct” FIML approach. They

argue that while field inversion step is model consistent, the learnability of the

discrepancies from field inversion cannot be guaranteed. Therefore, they coupled

the neural network learning of the discrepancy field as part of the field inversion

process to promote a self-consistent framework. Directly optimising the neural

network parameters while perturbing the turbulence model means that the gradi-
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ent computations become more expensive. This could also make the optimisation

process difficult since the CFD model is now a direct part of the training, whereas

in the original FIML framework the neural network is trained on static data. How-

ever, advantages include: a self-consistent framework where no offline training is

required, and the correction is optimally regularised for the chosen neural network

structure, since the limitations of the network structure is considered during the

inversion.

The FIML approaches discussed thus far have relied on neural network-based

augmentation of turbulence models, which is considered a black-box approach.

Jäckel adapted the FIML approach, such that a close-form correction to the

Spalart-Allmaras turbulence model can be achieved using Gaussian radial ba-

sis functions [68]. It was shown that the corrective field (β) from field inversion

can be described in an algebraic form with only seven parameters and improve

the baseline model for a number of separated aerofoil flows. In a similar vein, Wu

et al. [165] replaced the neural network-based learning algorithm with symbolic

regression to learn analytical relationship between the corrective field and the lo-

cal flow features using the k− ω SST model. The interpretable augmented k− ω

SST model showed promising generalisability capacities [165].

Other notable variants of the original FIML approach include its application

in transitional modelling using the ensemble-based field inversion approach and

random forests [172, 173], and using the adjoint-based field inversion and neural

networks [44]. Fidkowski also utilised the FIML approach for output-based error

estimation and mesh adaptation in the context of unsteady turbulent flows [46].

Specifically, FIML is used to forego the need for unsteady adjoint solutions (com-

putationally expensive for flows of industrial interest, and prone to being unstable

for chaotic systems), and instead provide an adjoint of the averaged solution com-

bined with averaged unsteady flow residual. Recently, Fang et al. [43] developed
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a framework for field inversion for unsteady flow simulations, by implementing a

time-accurate segregated adjoint method.

The FIML approach has received considerable attention due to the advantages

it offers: model consistency, addressing functional errors in baseline models, and

ability to improve turbulence model predictions with relatively sparse datasets,

such as those measured in experiments. In literature, particular attention has been

paid to various formulations of the FIML approach, as discussed above, however,

the following open questions remain:

• What are effective sensor configurations to experimentally collect sparse

data for use in data assimilation? Is it possible to systematically design

the placement of sensors without the need to undertake the experiments in

the first place? Can we utilise existing insights on the underlying assump-

tions leading to the uncertainties and inaccuracies in existing RANS-based

turbulence models to place sensors?

• Which physical quantities, if any, are most effective for data assimilation?

• Can adjoint-based data assimilation be enhanced using disparate data, i.e.

multiple physical quantities in different parts of the flow domain with varying

dimensions and quality?

• Can the FIML approach be extended to develop customised turbulence

model augmentation for aerodynamic shape optimisation?

2.3.2 Other model consistent approaches

Other model-consistent approaches besides FIML, include the CFD-driven ver-

sion of the gene-expression programming-based turbulence model augmentation

by Zhao et al. [176]. They propose modifying the baseline k − ω SST model

by introducing an additional term to the Reynolds stress tensor (τ , Eqn. 2.1),
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which will be learnt using an evolutionary algorithm. Similar to the FIML ap-

proach, a cost function is constructed based on a given quantity of interest from

the high-fidelity data and the RANS-based predictions. Saïdi et al. [13] have

also proposed a similar framework using deterministic symbolic regression and

the modifications of the production terms of the baseline k − ω SST turbulence

model. The advantages of these approaches include interpretability, and eas-

ier implementation in existing RANS codes. While promising results have been

achieved for two-dimensional turbulent flows, further investigations for more com-

plex three-dimensional flows are required.

While the current review has been mainly concerned with data-driven turbu-

lence closure modelling in the context of Reynolds-averaged Navier Stokes equa-

tions which is the remit of the present work, there has been sustained interest on

the use of data-driven methods in fluid dynamics more broadly. Examples include

discovering governing equations [130, 126] for simple flows; using physics-informed

neural networks to directly simulate incompressible Navier-Stokes equations for

laminar and low Reynolds number turbulent flows [71]; flow control through deep

learning reviewed by Rebault et al. [125]; development of reduced-order models

of complex flows review by Taira et al. [150]; mesh adaptation [47]; data-driven

closure models for large-eddy simulations reviewed by Beck et al. [10]; and aero-

dynamic shape optimisation reviewed by Li et al. [85].

2.4 Summary

This literature review has highlighted a number of research gaps in data assimila-

tion for turbulence modelling. The first gap is the lack of a standard, open-source,
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computational software tool for adjoint-based field inversion. This lack of soft-

ware tool is important because it is a barrier to developing research methods in

this domain. Therefore, chapter 3 in this thesis develops an open-source compu-

tational tool for adjoint based data assimilation and demonstrates the use of the

tool on some standard field inversion problems. This software tool is then used

throughout the thesis in all subsequent chapters. The second gap is the lack of

attention paid to sensor placement in adjoint-based field inversion. This is im-

portant because data-driven methods are highly dependent on the data collected

through experiments. This challenge is addressed in chapter 4, where a sensor

placement strategy is developed based on the technique of eigenspace perturba-

tions - a more specialised literature review of this method is given in the relevant

chapter. The third research gap highlighted is the lack of attention given to the

use of multiple, different types of sensor data in field inversion - current work has

focused only on a single sensor type. This gap is addressed in chapter 5, where

a multi-objective optimisation approach is developed for field inversion, which

can incorporate multiple different types of sensor data. The fourth and final gap

addressed here, is the lack of methods where field inversion is used to perform

a useful task such as in aerodynamic shape optimisation. Therefore, chapter 6

and 7 contribute a new method of shape optimisation that uses the field inversion

methods developed through the thesis.
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CHAPTER 3

Adjoint-based data assimilation

3.1 Introduction

This chapter addresses the problem of developing an open-source, computational

software tool for adjoint-based data assimilation. This is an important gap in

the literature because the lack of an open software tool is a barrier to research

being done in this domain. The novel contribution of this chapter is therefore an

open-source computational software tool, which has been published [18] and incor-

porated into the computational package DAFoam∗, an extension to OpenFOAM

for adjoint-based optimisation. The novel addition from this thesis extends the

capability of DAFoam to performing adjoint-based field inversion.

In this chapter, we:

• formulate the DA task as a deterministic inverse problem which is ultimately

a gradient-based optimisation problem,

• introduce the discrete adjoint approach for efficient gradient computations

during the optimisation,

• summarise the implementation of the DA approach in an open-source frame-

work,
∗https://github.com/mdolab/dafoam
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• and demonstrate the capabilities of the data assimilation implementation

for complex turbulent flows for three commonly used turbulence models

(Spalart-Allmaras, Wilcox k − ω, and k − ω shear stress transport (SST)),

and three different types of data (i.e. integral data in the form of lift co-

efficient, surface data in the form of skin friction and surface pressure, and

volume/field data in the form velocity profiles and fields).

By data assimilation in this work, we refer to the use of high-fidelity data† to

reconstruct turbulent mean flows. This process is also termed field inversion in

literature. Broadly, two approaches to field inversion has been pursued in paral-

lel: ensemble-based, and adjoint-based methods. Xiao and colleagues, amongst

others, have used the ensemble-based Kalman filter (EnKF) approach to model

the discrepancy in baseline turbulence models through eigenvalue perturbations

[169]. The advantages of this method include: relatively easy code development,

and the ability to compute confidence bounds for the quantity/quantities of in-

terest, albeit, complicated by the need to map the control parameters from a high

to low-dimensional space to reduce computational costs.

The alternative adjoint-based field inversion method originally proposed by

Duraisamy and co-workers relies on solving a gradient-based optimisation prob-

lem, where the derivatives of the cost function is computed using the adjoint

approach. A number of different variants of this method has been studied: per-

turbations of the Reynolds stress anisotropy eigenvalues [39]; perturbations of the

eigenvalues as well as the eigenvectors of the anisotropy tensor [12]; and modi-

fication of the turbulent model transport equation through a spatial scalar field

defined over the entire flow domain [119, 139, 66]. In this work, we use the latter

since it has proven to be simple and computationally cheap relative to the other

variants. The adjoint-method is, in principle, capable of recovering finer scales of
†Data from experimental measurements and/or turbulence resolving simulations such as LES

and DNS.
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turbulent mean flow compared to the ensemble-based method. However, a fully

Bayesian formulation with this method is computationally expensive [119], and

most researchers have opted for deterministic formulations.

Another limitation of the adjoint-based field inversion is the time-consuming

and laborious software development process due to the intrusive nature of adjoint-

based optimisation, which is a high barrier to entry for many researchers. We

tackle this problem by introducing an open-source tool which interested practi-

tioners can use to apply and investigate the adjoint-based field inversion method.

3.2 Field inversion: mathematical formulation

The incompressible, steady Reynolds-averaged Navier-Stokes equations, Eqn. 1.2,

are re-stated:

∂Ui

∂xi

= 0, (3.1)

∂Ui

∂t
+ ∂(UiUj)

dxj

= −∂P
dxi

+ 1
Re

∂2Ui

∂xj∂xj

−
∂u′

iu
′
j

∂xj

, (3.2)

where τij = −u′
iu

′
j is the Reynolds stress tensor. Employing the Boussinesq as-

sumption, a linear eddy viscosity model for the stress tensor is derived [81]:

τij = 2νtSij −
2
3kδij, (3.3)

with Sij = 1
2

(
∂Ui

∂xj

+ ∂Uj

∂xi

)
, (3.4)

where νt is the turbulent eddy viscosity, Sij is strain rate, k is the turbulent

kinetic energy and δij is the Kronecker delta function. The turbulence model

can be introduced through the turbulent kinematic viscosity, νt. In this work we

have explored data assimilation with three of the most commonly used turbulence

models:
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1. Spalart-Allmaras [143] (equations in Appendix A.1):

νt = ν̃fv1, (3.5)

where ν̃ is a surrogate eddy viscosity, fv1 is an intermediate (Eqn. A.2). In

the standard S-A model the term involving the turbulent kinetic energy, k,

in Eqn. 3.3 is ignored since it is not readily available.

2. Wilcox k − ω [163] (equations in Appendix A.2):

νt = k

ω
, (3.6)

where ω is specific dissipation rate.

3. k − ω shear stress transport (SST) [105, 106] (equations in Appendix A.3):

νt = a1
k

max (a1ω, SF2)
, (3.7)

where a1 is a model constant, S is the strain rate (Eqn. 3.4), and F2 is an

intermediate function (Eqn. A.9).

The transport equation(s) for the turbulent variables, T , (e.g. ν̃ in the S-A

model, or k in the two equation models), are of the following general form:

DT

Dt
= P(Q,T ) + T (Q,T )−D(Q,T ), (3.8)

where Q represents the conversed flow variables such as velocity and pressure, the

source terms P , T , and D represent the turbulence production, transport, and

dissipation.

The adjoint-based field inversion approach aims to recover the functional dis-

crepancy in the existing turbulence model. This is achieved by perturbing the

36



production term of the transport equation, Eqn. 3.8 by a spatial scalar field,

β(x) ∈ RNcells ,

DT

Dt
= β(x) · P(Q,T ) + T (Q,T )−D(Q,T ), (3.9)

where β(x) = 1 recovers the baseline model. For most linear eddy viscosity

models, by modifying the production term, the corrective field directly influences

the Reynolds stress term, e.g. Pk = τij∂Ui/∂xj in the Wilcox k − ω model

(Appendix A.2), and most studies have chosen to follow this approach (e.g. Refs.

[119, 139, 12, 45]). In principle, it is also possible to perturb the other terms

(e.g. Ref. [165] modifies the destruction term of the ω equation in the SST

model), or perturb the RANS momentum equation by adding a source term [156].

Recently, Cato et al. [26] compared six different types of corrections to eddy

viscosity models. Their results illustrated that while all the approaches led to

improvements to the baseline model, adding a source term to the momentum

equation was the most effective.‡

For the Spalart-Allmaras model the perturbation is straight-forward as it in-

volves a single transport equation for turbulence modelling. For models with two

or more transport equations, e.g. Wilcox k − ω, or SST, previous studies have

opted to perturb the turbulent kinetic energy (k) (e.g. [137]), or the turbulent

dissipation (ω) (e.g. [12, 64, 165]). We follow the latter approach as we have found

that the equation for the turbulent kinetic energy is very sensitive to the β per-

turbations and to numerical instabilities and diverging flow predictions, while the

dissipation rate ω is relatively more robust to the perturbations. Not modifying

the transport equation for the turbulent kinetic energy may restrict the impact of

field inversion for data assimilation. Future work will investigate simultaneously

perturbing both k and ω.
‡Majority of the work in this thesis were completed prior to this publication.
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After the perturbation, the following optimisation problem is solved,

min
βFI

L = ∥qRANS
i

(
βFI

)
− qdata

i ∥2
2 + λ∥βFI − 1∥2

2, (3.10)

subject to R(Q,T ) = 0, (3.11)

where Eqn. 3.10 is the loss/objective function, and Eqn. 3.11 represents the

RANS equations. qdata
i ∈ D represents high-fidelity physical quantities of size

Ns, qRANS
i represents the equivalent quantity predicted by the turbulence model,

and ∥.∥2 is the L2 norm. The first term in the equation is normalised by the

baseline L2 norm such that its value is unity at the start of the optimisation. The

second term in Eqn. 3.10 tuned by the relaxation parameter λ is to regularise the

problem by avoiding huge deviations from the baseline turbulence model, avoiding

an ill-posed optimisation problem and reducing the risk of over-fitting.

As previously mentioned in Chapter 3.1, the highly dimensional nature of

the optimisation (i.e. number of design parameter is equivalent to the number

of mesh cells) means gradient-free approaches will be computationally expensive

even for very simple flows. Thus, a gradient-based approach with efficient gradient

evaluations is required.

3.3 Discrete adjoint approach

In terms of the adjoint implementation there are two approaches: continuous

and discrete adjoint. He et al. [61] have applied the field inversion framework

to the Spalart-Allmaras model using a continuous adjoint implementation. In

this framework, the adjoint equations for the governing equations are derived in

the continuous form, and then discretised for numerical solutions. They achieved

promising results on a number of cases that included a three-dimensional wall-

mounted cube. The continuous adjoint method has the advantages of low com-
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putational cost due to lower memory requirement and is simpler to implement in

existing CFD codes. However, derivations of the adjoint equations are complex,

and has to be repeated for every new turbulence models, boundary conditions,

and objective function formulations (depending on what quantity is used from

data) [75]. To avoid these, we use the discrete-adjoint method.

In the discrete approach the adjoint equations are derived for the discretised

governing equation from the outset. The advantages are: ability to achieve more

accurate gradient information since these are consistent with the discretised objec-

tive function evaluations; and the ability to use algorithmic differentiation (AD)

which does not require an updated adjoint equation derivation for every new

model, boundary condition, or objective function formulation. However, using

AD to compute partial derivatives (to be introduced in section 3.3.1) can lead to

large memory requirements. AD relies on using the chain rule to differentiate the

sequence of elementary arithmetic operations that constitute a computer code,

by producing differentiated version of the code [115]. There are two derivative

computation modes for AD: forward, and reverse-mode. The latter is computa-

tionally much more efficient when one is interested in the sensitivity of a small

number of output quantities with respect to a large number of input parameters

[53], which is the case for data assimilation. The memory requirement in reverse-

mode AD arises from the need to store intermediate variables for use in reverse

accumulation of the derivatives [75]. However, the memory requirements can be

overcome if the source-transformation implementation of AD is utilised [113].

3.3.1 Discrete adjoint equations

The derivations here are based on the theory presented in [75]. The goal is

to compute the derivative dL/dβ efficiently, where the scalar L is the objective

function, and β ∈ Rnβ is the vector of design variables. As mentioned earlier it is
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assumed that the governing equations are available in a discretised form, and the

discrete residual equations R(Q,T ,β) = 0, where w = [Q,T ] is the vector of all

state variables, is satisfied.

Using the chain rule the derivative dL/dβ can be expressed as,

dL
dβ︸︷︷︸

1 × nβ

= ∂L
∂β︸︷︷︸

1×nβ

+ ∂L
∂w︸︷︷︸

1 × nw

dw
dβ︸︷︷︸

nw × nβ

, (3.12)

where the computational cost of computing the partial derivatives ∂L/∂β and

∂L/∂w is relatively cheap as these only involve explicit computations. However,

the total derivative matrix dw/dβ must be implicitly determined by the residual

equations R(β,w) = 0, and is thus computationally expensive. To compute the

total derivative dw/dβ, the chain rule can be applied for R, noting that dR/dβ

must equal zero in order for the governing equations to satisfy R(β,w) = 0:

dR
dβ = ∂R

∂β
+ ∂R

∂w

dw
dβ = 0, (3.13)

which can be expressed as the following linear system

dw
dβ = −∂R

∂w

−1∂R

∂β
. (3.14)

The expression for dw/dβ is now substituted in Eqn. 3.13 to get the following:

dL
dβ = ∂L

∂β
− ∂L
∂w

∂R

∂w

−1

︸ ︷︷ ︸
ψT

∂R

∂β
, (3.15)

where ψ is the adjoint vector. Transposing the state Jacobian matrix ∂R/∂w

and solving with [∂L/∂w]T as the right-hand side of Eqn. 3.15 yield the adjoint

equation,
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∂R

∂w
ψ = ∂L

∂w

T

. (3.16)

Having solved Eqn. 3.16, the total derivative dL/dβ can now be computed by

substituting the adjoint vector ψ into Eqn. 3.15 as follows:

dL
dβ = ∂L

∂β
−ψT ∂R

∂β
. (3.17)

The efficiency of the adjoint approach can now be illustrated using the fact that

for each computation of the objective function, the adjoint equation is only solved

once since the design variable is not explicitly present in Eqn. 3.16. In other words,

the computational cost is proportional to the number of objective functions, e.g.

one for our purposes, and is independent of the number of design variables, e.g.

the number of mesh cells, O(105) for our purposes.

The partial derivative ∂R/∂β in Eqn. 3.17 is solved using reverse-mode algo-

rithmic differentiation (AD) utilising the CoDiPack (Code Differentiation Pack-

age) suite [97] which relies on the operation-overloading approach to performing

AD [115].

3.4 Implementation

A high-level flow chart for the field inversion process is shown in Fig. 3.1. The

process involves:

1. solution of the governing equations, including the baseline turbulence model

using OpenFOAM,

2. using these results to compute the objective function (Eqn. 3.10 ),

3. computing the derivative of the objective function with respect to the design

variable, (β), using DAFoam,
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4. using an optimiser to update the β field such that the least-squares difference

between model predictions and data is minimised, using the optimiser suite

pyOptSparse,

5. and repeating steps 1-4 until a user-specified optimisation convergence cri-

terion has been met.

Flow Solver

Calc. Objective

Adjoint Solver

Optimiser

Converged?

Data

qRANS

L

∂L/∂βFI

qdata

βFI
optimal

Start

Figure 3.1: Flow diagram for the iterative adjoint-based method for field inversion.

Flow solver: OpenFOAM

Open field operation and manipulation (OpenFOAM) is popular, open-source

CFD package, based on the finite volume method and written in C++, with an

active developer and user base [69]. In this work, we have employed two of its main

solvers: simpleFoam, used for the solution of the steady Navier-Stokes equations

for incompressible fluids, and rhoSimpleFoam which is a compressible steady-state

solver. Both solvers, use the semi-implicit method for pressure-linked equations

(SIMPLE) algorithm to solve the coupled continuity and momentum equations.
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Many of the popular turbulence models are available on OpenFOAM, and the

modified Spalart–Allmaras and k − ω turbulence models for field inversion, are

based on the original OpenFOAM implementation. The field inversion models

require minimal code modification, and extensions to other turbulence models do

not require deep C++ programming skills.

Adjoint solver: DAFoam

DAFoam is another open-source package, that allows effective adjoint solutions.

It has been specifically tailored for OpenFOAM and has been successfully applied

for multi-disciplinary design optimisation [62].

Large-scale optimiser: pyOptSparse

Once the total derivative ∂J /∂β is computed, we use the pyOptSparse package

to find the optimal β field that minimises the objective function. pyOptSparse is

a object-oriented Python interface of various optimisers which can be used for for-

mulating and solving constrained nonlinear optimisation [168]. It allows efficient

handling of large-scale optimisations through the use of sparse matrices in the

code. We have successfully employed two of the large-scale optimisation packages

available in pyOptSparse: SNOPT (based on sequential quadratic programming

[54]), and IPOPT (based on a primal-dual interior point method [158]). All the

field inversion results presented in the thesis are based on the IPOPT optimiser.

Python user interface

A high-level Python layer is used to set and run the field inversion simulation

process outlined in Fig. 3.1. Specifically, the following parameters are set in a

Python script: primal flow solver (e.g. simpleFoam); flow solver boundary con-

ditions and residuals convergence tolerance; the field inversion objective function
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specialisation and the relevant parameters (so far, the following have been im-

plemented: full fields, velocity profiles, surface pressure and skin friction, and

aerodynamic force coefficients) and the regularisation constant, λ in Eqn. 5.1;

adjoint solver parameters such as state normalisation constants, and the equation

solution options; and finally the optimiser and its parameters such as β field con-

straints (upper and lower bounds), convergence tolerance, maximum number of

iterations, etc.

Enabling field inversion with DAFoam

Having been designed for multidisciplinary design optimisation, DAFoam had

many preexisting capabilities to enable field inversion–the process shown in flow

diagram in Fig. 3.1. Here we summarise the additional capabilities in DAFoam

to enable field inversion:

• Flow solver: we added β modified versions of the Spalart-Allmaras, Wilcox

k − ω and k − ω SST models.

• Objective functions: we added a new class needed to compute the loss

functions based on the different reference high-fidelity data. This included

adding capability to read the reference data from disk, and compute the

equivalent RANS predictions for the loss function calculations.

• Adjoint solver: algorithmic differentiation capability was introduced to com-

pute the partial derivatives in the adjoint equations. Previously, finite-

differencing was used to compute these derivatives.

• Optimiser: originally, DAFoam mainly relied on the SLSQP and SNOPT

optimisers from pyOptSparse. SLSQP is freely available, but only works

with relatively small number of design variables. SNOPT requires a paid li-

cense. Since, field inversion involves a very large number of design variables,
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we enabled the free open-source large-scale optimiser IPOPT in DAFoam as

an alternative optimiser to SNOPT.

• To enable neural-network augmentation of turbulence models (to be detailed

in Chapter 6) we also enabled the calculations of various neural network

inputs/features, and the coupling with TensorFlow.

• All the additions have been incorporated on the DAFoam GitHub repository:

https://github.com/mdolab/dafoam.

3.5 Results

In this section we demonstrate data assimilation using the adjoint-based field

inversion approach on a number of cases, summarised in Table 5.1. The selected

cases involve both internal and external flows, with the Reynolds number ranging

5.6× 103 − 2× 106. All the cases involves various levels of flow separation, which

is inaccurately predicted by commonly employed turbulence models.

These cases were chosen based on data availability, and to demonstrate likely

field inversion scenarios based on types of data used for flow reconstruction. Gen-

erally, three types of data sources can be considered: integral data (e.g. lift or

drag coefficients), surface data (e.g. surface pressure, or skin friction), and vol-

ume data (e.g. velocity fields/profiles at certain locations). We consider all three

scenarios in the following sections.

3.5.1 Aerofoil flows at high angles of attack

Existing turbulence models are known to perform poorly in predicting the flow

over aerofoils at high incidence angles, where the flow generally separates. We

utilise field inversion to improve the prediction of separated flow over the NREL
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Table 3.1: Summary of case setups, where Cl, Cp, Cf , and Ux are the lift coef-
ficient, pressure coefficient, skin friction coefficient, and the streamwise velocity,
respectively. Dimension column refers to the size of the data used.

Case Geometry Data Data size Data source Turbulence model Re

1a S809 Aerofoil Cl 1 Integral Spalart–Allmaras 2× 106

1b Cp 32 Surface

2 NACA 4412 Ux 41,968 Volume Spalart-Allmaras 1.52× 106

3a Conv.-Div. Channel Cf 564 Surface Spalart–Allmaras 12,600

3b Cp 564 Surface

3c Ux 1,400 Volume

3d Ux 98,000 Volume

4a Periodic Hill Ux 447 Volume Spalart–Allmaras 5,600

4b Wilcox k − ω

4c k − ω SST

S809 horizontal-axis wind turbine section, also investigated in [139, 12], and the

NACA 4412 aerofoil.

S809 aerofoil: field inversion using Cl and Cp data

Experimental studies of the S809 aerofoil by Somers [142] found that at high

angles-of-attack (α ⪆ 10◦) the flow separates near mid-chord. We take the flow at

α = 14.24◦ as a test case, where the available experimental data include surface

pressure Cp, and lift coefficient Cl, at the following flow conditions: Reynolds

number based on chord length, Rec = 2 × 106, and freestream Mach number,

M∞ = 0.2.

Since the Mach number is relatively low, the flow can be assumed to be incom-

pressible. However, to demonstrate the capabilities of the developed tool, we em-

ploy both an incompressible (simpleFOAM) and a compressible solver (rhoSimple-

FOAM). The latter case solves an energy equation along with the Navier-Stokes

46



Figure 3.2: Close-up of the mesh for the S809 aerofoil, with around 8.9×105 cells.

equations. The flow is assumed to be two-dimensional and steady, and the

Spalart–Allmaras model is used as the baseline turbulence model. The simu-

lations use an structured O-grid mesh, Fig. 3.2, with an average non-dimensional

wall distance, y+ < 1 on the aerofoil. The relatively dense mesh is used to reduce

mesh-related inaccuracies.

As summarised in Table 5.1, two types of data are considered for field inversion:

lift coefficient Cl and surface pressure coefficient Cp. The Cp data is extracted

from [142], and only the values on the suction-side are used for field inversion—

this is the region most prone to inaccurate predictions by the baseline model. The

regularisation constant λ in Eqn. 5.1 is set to 10−4 following Ref. [139].

Table 3.2: Comparison of lift-coefficient prediction. Experimental Cl = 1.083.

Scenario Incompressible Error Compressible Error

Baseline Spalart–Allmaras 1.310 20.9% 1.346 24.3%

Field inversion, Cl data 1.107 2.2% 1.145 5.7%

Field inversion, Cp data 1.093 0.9% 1.133 4.6%

All field inversion scenarios result in significant error reduction in the Cl and

Cp predictions, as shown in Table 3.2 and Fig. 3.3, respectively. Compared to

only lift-coefficient value, the use of surface pressure data results in slightly better
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Figure 3.3: Comparison of the pressure distribution for S809 aerofoil. Legend:
Experiment ( ), Spalart–Allmaras ( ), field inversion, Cl data ( ), and field
inversion, Cp data ( ). Panels in each diagram show close-ups of Cp prediction
on the suction side at 0.35 ≲ x/c ≲ 0.45. Marginally better performance is
achieved when inverting with Cp data.

improvement of the baseline results as shown in Cp predictions in the close-up

panels in Fig. 3.3. This is expected due to the significant difference between

the sizes of two datasets used for field inversion, as outline in Table 5.1. Both

the compressible and incompressible solvers produce similar predictions for the

surface pressure distribution, lift coefficient, and velocity fields.

The baseline model over-predicts the lift generated, while under-predicting

the pressure on the suction side. The baseline model also under-predicts the flow

separation location and the size of the separation bubble, as shown in the velocity

field contours in Fig. 3.4. The corrective fields, β, shown in Fig. 3.5, account for

the errors in the baseline model by reducing the turbulent production (i.e. regions

with β < 1), and hence predicting an earlier separation, and a larger separation

bubble.
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(a) Incompressible, baseline (b) Incompressible, FI Cp data

(c) Compressible, baseline (d) Compressible, FI Cl data
Figure 3.4: Comparison of the streamwise velocity field along with streamlines
for the different S809 simulations. The velocity fields for incompressible FI using
Cl data and compressible FI using Cp data are very similar to two field inversion
velocity predictions shown here, thus removed for brevity.

Most significant changes made by the β field for the different scenarios are

in the boundary layer close to the aerofoil. Additionally, it is interesting to note

that the relatively different β field distributions shown in Fig. 3.5 lead to similar

distribution of the surrogate turbulence variable ν̃ and the velocity field, as shown

in Fig. 3.6 and Fig. 3.4, respectively. A similar observation was made by He et

al. [61] who argue that this might be due to the eddy viscosity hypothesis, which

assumes that the Reynolds stress tensor can be modelled using a scalar in the form

of eddy viscosity. The corrective field changes the entire balance of the turbulence

model transport equation, which may also explain the multi-optimal nature of the

optimisation results. Additionally, these differences could also be explained as the

tendency of the optimiser towards driving the solutions to local minima.
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(a) Incompressible, Cl data (b) Incompressible, Cp data

(c) Compressible, Cl data (d) Compressible, Cp data
Figure 3.5: Comparison of the corrective field, β, for the different S809 cases.

(a) Incomp., baseline (b) Incomp., FI Cl data (c) Incomp., FI Cp data

(d) Compressible, baseline (e) Compressible, FI Cl data (f) Compressible, FI Cp data
Figure 3.6: Comparison of the surrogate turbulence variable ν̃ in the S-A model
before and after modification by the corrective scalar field β, shown in Fig. 3.5.

NACA 4412: field inversion using velocity wake measurements

The goal of this test case is to demonstrate data assimilation using velocity data

(vs. surface pressure and lift coefficient data used for the S809 case in the previ-

50



ous section). Flying-hot-wire streamwise velocity measurements from Coles and

Wadcock [32] near the trailing edge (Fig. 3.7(b)) is used as high-fidelity data.

The angle of attack is set to α = 13.87◦, with the Reynolds number based on the

chord length Rec = 1.52× 106, and the freestream Mach number M∞ = 0.09.

Like all the other cases in this work, we use a relatively fine mesh to minimise

the numerical/discretisation errors. DAFoam also requires relatively fine meshes,

to avoid using wall functions, for better performance. It is assumed that the

modelling errors are the dominant source of uncertainty in the selected cases, as

most of these have also been used in other studies where RANS-based models

are shown to perform poorly. The NACA 4412 mesh from the NASA Turbulence

Modelling Resource used over 230 × 103 cells, with an average y+ < 0.5 on the

aerofoil.

The streamwise velocity profiles, locations illustrated in Fig. 3.7(b), are com-

pared in Fig. 3.8. The baseline Spalart-Allmaras model is unable to accurately

capture the small separation bubble near the trailing edge as it under-predicts the

effects of adverse pressure gradients in the boundary layer. Field inversion is able

to match the experimental measurements well in the boundary layer close to the

aerofoil surface, however, slight discrepancies remain at the edge of the boundary

layer. The corrective field, β, is shown in Fig. 3.9(a).

The corrections are achieved by reducing the turbulent production in the

boundary layer on the suction side, which results in lower surrogate eddy viscosity

production in the wake of the aerofoil, as illustrated in the ν̃ predictions before

and after data assimilation in Figs. 3.9(b-c), respectively. The reduced turbulence

production means there is less turbulence mixing to delay flow separation.
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(a) NACA 4412 mesh

(b) Trailing edge velocity measurements

Figure 3.7: The mesh used for the NACA 4412 case from the NASA Turbulence
Modelling Resource [131], along with the normalised streamwise velocity measure-
ments near the trailing edge by Coles and Wadcock [32]. The six perpendicular
black lines mark the profiles where velocity predictions will be compared.
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Figure 3.8: Comparison of the velocity profiles for the NACA 4412 case.

(a) Corrective field β (b) Baseline ν̃ (c) FI ν̃

Figure 3.9: The corrective field, the baseline and modified surrogate viscosity for
the NACA 4412 aerofoil.

3.5.2 On the relative importance of different physical quan-
tities

It has been variously observed that the impact of field inversion in terms of error

reduction in all physical quantities of interest are highly sensitive to the type of53



data used. However, there has been no quantitative study of the relative impor-

tance of physical quantities for data-driven turbulence modelling. In this section

we will explore this topic.

12.56H

H

UIN
x

y

Velocity profile locations

Figure 3.10: Mesh for the converging-diverging channel, with 9.87×105 cells, with
the locations of the velocity profiles used for data assimilation.

We will use limited data from a DNS dataset to emulate experimental scenarios

(e.g. pressure taps, hot-wire anemometers, or PIV measurements), and perform

field inversion. We will then compare the data-driven turbulence model predic-

tions against the rich DNS data in terms of physical quantities of interest (e.g.

surface pressure, skin friction, velocity field). This will allow us to use error met-

rics to analyse the relative importance of different quantities, and will be the first

step towards creating a list of ingredients for the experimental fluid dynamicist,

and bridge the gap between experimental and computational approaches.

The next case is the flow over a smooth converging-diverging channel, Fig.

3.10. The flow involves adverse pressure gradients and a small separation bubble

on the curved region of the lower wall which cannot be predicted accurately by

the S-A model. Of the cases investigated in this work, the converging-diverging

channel has the richest dataset available based on direct numerical simulation

(DNS) results of Laval et al. [83]. We use the two-dimensional, steady, incom-

pressible Navier–Stokes equations and the Spalart–Allmaras model to simulate

the flow. The Reynolds number based on the channel half-height and maximum

inlet velocity is 12,600. The structured mesh used for the simulations are from
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[103], with an average y+ < 0.2. Using the same approach as McConkey et al.

[103] the inlet boundary conditions are generated by simulating a fully-developed

boundary layer using the same turbulence model, and Reynolds number. The

regularisation constant λ is set to 10−6—a small value to reflect high-confidence

in the available low-noise data.

For data assimilation we use the following quantities: streamwise velocity

profiles at the locations outlined in Fig. 3.10, the skin friction on the lower

wall, and the surface pressure on the lower wall. The effectiveness of the flow

reconstruction will be quantitatively assessed as a function of the root-mean-

square error reduction defined as follows:

∆ϵ(q) = 1− ϵfield inversion

ϵbaseline
, (3.18)

with q representing the mean physical quantities, which are the streamwise and

wall normal velocities, the skin friction, and the surface pressure. The root-mean-

square error ϵ is defined as,

ϵ =

√√√√∑N
i=1 (qDNS

i − qRANS
i )2

N
. (3.19)

The data assimilation error reduction using different quantities are outlined in

Table 3.3 and summarised as follows:

• While using a single type of data results in improvements across all quanti-

ties, the relative error reduction in each quantity is clearly impacted by the

type of data used.

• Usually, maximum error reduction is observed for the quantity used for data

assimilation. Even using a large amount of data, i.e. the entire streamwise

velocity field does not lead to maximum error reduction in the skin friction

55



Table 3.3: Comparison of the root-mean-square error reduction (Eqn. 3.18) with
different physical quantities used for data assimilation. n represents the size of
data used for field inversion.

Data ∆ϵ(U) ∆ϵ(Cf ) ∆ϵ(Cp) avg. ∆ϵ n avg. ∆ϵ/n

Cf 0.50 0.81 0.46 0.59 564 1.0× 10−3

Cp 0.25 0.49 0.83 0.52 564 9.2× 10−4

Ux profiles 0.47 0.46 0.64 0.52 1,400 3.7× 10−4

Ux field 0.79 0.58 0.48 0.62 98,700 6.4× 10−6

and surface pressures relative to the scenarios where the surface quantities

are used for data assimilation.

• The average error reductions (column five in Table 3.3) illustrate that the

velocity profiles and surface pressure lead to a similar mean flow reconstruc-

tion. More interestingly, data assimilation using the skin friction on the

lower wall is 7% more effective than the other two scenarios (i.e. using sur-

face pressure and velocity profiles). Using much more data in the form of

the entire velocity field data leads to a 3% additional error reduction only

(compared to the case with Cf data).

• Admittedly, the average error reduction (avg. ∆ϵ in Table 3.3) does not

account for the sizes of the different quantities, i.e. N = 98, 700 in the

root-mean-square error calculations for the velocity components, while it is

N = 564 for the surface quantities. As a crude way of accounting for this,

we normalise the average error reduction by the number of data points used

for data assimilation, n. Results in the last column clearly shows that of

the various data assimilation scenarios considered, using skin friction data

leads to the most effective flow reconstruction. (Note: a larger value for

avg. ∆ϵ/n signifies a better data assimilation as a function of the amount
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of data used.)

Figs. 3.11-3.12 compare the skin friction and surface pressure predictions

for the different field inversion scenarios, respectively. The baseline model over-

predicts the extent of the separated shear layer, hence a much delayed reattach-

ment location, as recorded in Table 3.4. This is significantly improved by all field

inversion scenarios. The skin friction is more sensitive to the quantity used for

data assimilation, for instance, some discrepancies still exist in the reconstructed

predictions for the field inversion scenarios when the entire Ux field (Fig. 3.11(a)),

the surface pressure (Fig. 3.11(c)), and the velocity profiles (Fig. 3.11(d)), is used.

On the other hand, the surface pressure is less sensitive as seen in the plots in

Fig. 3.12.
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Figure 3.11: Skin friction comparison with different physical quantities used for
data assimilation.

The streamwise velocity profiles, shown in Fig. 3.13 illustrate that field in-

version scenarios with the entire streamwise velocity field (Fig. 3.13 (a)) and the

skin friction (Fig. 3.13 (b)) are more effective than the wall pressure and velocity

profiles. While the former is expected, the latter is of particular interest as skin

friction measurements (e.g. using hot-wire anemometer) require much less exper-

imental resources compared to detailed velocity field measurements (e.g. using

particle image velocimetry techniques). While all scenarios lead to significantly
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Figure 3.12: Surface pressure comparison with different physical quantities used
for data assimilation.

Table 3.4: Flow re-attachment location comparison with different physical quan-
tities used for data assimilation

Scenario Re-attachment location, x/c Error

DNS 6.60 -

Baseline S-A 9.54 30.82%

FI, Ux field 6.62 0.30%

FI, Cf 6.58 0.30%

FI, Cp 6.67 1.05%

FI, Ux profiles 6.44 2.48%

improved velocity predictions, some errors remain in the field inversion scenarios

with Cp (Fig. 3.13 (c)) and velocity profiles data (Fig. 3.13(d)), especially at

x/H = [5.5, 6.5]. This is also reflected in the corrective fields shown in Fig. 3.14,

where for the stated field inversion scenarios, minimal corrections are made near

the lower wall apex at x/H ≈ 5 (Fig. 3.14 (c-d)). This may be explained by the

optimiser concentrating the corrections in the near-wall regions with the largest

discrepancy between the DNS and baseline S-A results, i.e. 7.5 ≲ x/H ≲ 11.5.
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Figure 3.13: Velocity profiles comparison with different physical quantities used
for data assimilation.
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Figure 3.14: Comparison of the corrective field β for the various field inversion
scenarios.

3.5.3 Data assimilation with different turbulence models

The last case, is the periodic hill geometry, which has become a prototypical case

for testing turbulence models. The periodic hill case, shown in Fig. 3.15, is a

simple geometry comprised of curved surfaces joined by a flat plate. As the flow

moves over the first hill, it separates with a large recirculating bubble surrounded

by an unsteady shear layer. It then reattaches, and undergoes strong acceleration

at the subsequent hill. The flow at the top wall is observed to remain attached

with high pressure gradients. These complex features are poorly predicted by

RANS turbulence models [84]. Additionally, this case has well defined boundary
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conditions, and relatively affordable computational cost which has made it an

oft-used benchmark case for high-order simulations (LES e.g. Refs. [55, 50], and

DNS e.g. Refs. [76, 171]), evaluation of RANS turbulence models, and data-driven

frameworks. Extensive experimental data are also available: [127, 23].

Most linear eddy-viscosity based RANS models are known to perform poorly

in predicting the flow with large separation after the initial hill. Data assimilation

is performed using the Spalart-Allmaras, the Wilcox k − ω, and the k − ω shear

stress transport (SST) models.

Figure 3.15: The mesh used for the periodic hills case supplied with the dataset,
with ∼ 1.4× 104 cells.

We use the DNS dataset by Xiao et al. [171]. In particular, we use the

streamwise velocity profiles at (x/H = 0, 3, 6) for field inversion. The Reynolds

number is set to 5,600 following the data, and the two-dimensional, incompressible,

Navier-Stokes equations are solved. A source/forcing term is added to the x-

momentum equation to maintain a constant bulk velocity to achieve the LES

Reynolds number, defined as:

Reb = ubH

ν
, (3.20)

ub = 1
2.035H

∫ 3.035H

H
Ux (y) dy, (3.21)

where ub is the bulk velocity, H is the hills height, ν is the kinematic viscosity,

and Ux is the streamwise velocity component. No-slip boundary conditions are
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applied at the walls, and cyclic boundary conditions are set at the inlet and outlet.

The structured mesh has an average y+ < 1 at the walls.

Table 3.5: Comparison of the root-mean-square error for the periodic hill case
with three different turbulence models.

Model Baseline ϵ(U) Field inversion ϵ(U) ∆ϵ(U)

Spalart-Allmaras 1.619× 10−3 5.904× 10−4 63.5%

Wilcox k − ω 1.258× 10−3 6.656× 10−4 47.1%

k − ω SST 1.857× 10−3 5.487× 10−4 70.4%
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Figure 3.16: Comparison of the baseline and reconstructed surface friction distri-
bution on the periodic hill lower wall with the three different turbulence models
considered. The reference DNS surface friction data is from [76] et al. (for the
geometry and flow conditions) as it is not available from the dataset used for data
assimilation.

Table 3.5 summarises the baseline and reconstructed errors in the velocity

predictions for the three turbulence models considered. The Wilcox k − ω model

is the most accurate in terms of velocity predictions, while the k − ω SST is the

least accurate. The most effective field inversion scenario is for the SST model,

with an error reduction of 70.4%. This is also reflected in the streamwise velocity

profiles, and the surface friction distribution on the lower wall, in Figs. 3.17, and

3.16, respectively. The velocity profiles and skin friction predictions show that
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Figure 3.17: Periodic hill streamwise velocity profiles comparison with different
turbulence models.

all the baseline turbulence models over-predict the size of the separation bubble,

leading to flow re-attachment at a later point compared to the reference DNS data.

This is due to the under-predicted turbulent viscosity, especially in the shear layer,

as illustrated in the baseline and field inversion νt in Fig. 3.18. For all the three

turbulence models, field inversion magnifies the eddy viscosity in the separated

shear layer, and throughout the centre of the periodic hill domain. These are

achieved through a complex, highly non-linear magnification and dampening of

the turbulent variable (ν̃ for the S-A model, and ω for the two-equation models)
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in the domain, as illustrated in the corrective β fields in Fig. 3.19. However,

there are differences between the baseline and field inversion turbulent viscosity

contours for all three models, which could be attributed to the wholly different

model structures. The beta field range is between 0 to 10 for the S-A model where

the production term in the surrogate viscosity is adjusted by upto a factor of 10,

whereas the range for the Wilcox k − ω and the SST model is 0 to 3. We found

that the latter two models are more sensitive to the corrective field, and higher

values of β could cause stability issues, where the flow would not converge.
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Figure 3.18: Comparison of the baseline and field inversion turbulent eddy vis-
cosity for the periodic hill case.
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Figure 3.19: The corrective fields β for the three different turbulence models.
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3.6 Summary

This chapter introduced and implemented the adjoint-based field inversion ap-

proach for turbulent mean flow reconstruction using data from high-fidelity simu-

lations and experiments. Field inversion involved introducing a spatially varying

field in the transport equation of the turbulence model, and optimising this field

such that the error between the data and model predictions is minimised. This

highly dimensional inverse problem is solved with gradient-based optimisation,

driven by efficient derivative computations of the cost function using the discrete-

adjoint method. The open-source implementation required intrusive code imple-

mentation involving the CFD flow solver, the adjoint solver, and the optimiser.

In this work, open-source packages OpenFOAM, DAFoam and pyOptSparse were

integrated to achieve this. Ten field inversion scenarios (summarised in Table

5.1) were presented for wall-bounded and external aerodynamic turbulent flows

at Reynolds number in the range 104 − 106. All the flows involved some level of

flow separation which were poorly predicted by the baseline turbulence model(s).

Data assimilation using limited, experimentally measureable, data was demon-

strated to be highly effective in reconstructing the flows to match the high-fidelity

reference data.
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CHAPTER 4

Sparse sensor placement using eigenspace
perturbations

4.1 Introduction

This chapter addresses the problem of sensor placement in field inversion methods.

Obtaining high quality data is important in data driven methods and currently

there is a lack of research performed on where to place sensors for field inversion

problems. Existing methods tend to rely on expert knowledge and experience

for predicting the most useful locations of sensors. This chapter provides the

novel contribution of a sensor placement method to guide users, where sensors

locations are chosen in regions of high uncertainty in the physics model. This

uncertainty is obtained through eigenspace perturbations of the physics model -

it is computationally efficient, simple to use (with few hyper-parameters) and is

a principled, objective way for a user to choose sensor locations. This work has

been published in [16, 15].

Sensor placement in fluid flows has been studied in the context of model reduc-

tion, for example using proper orthogonal decomposition (POD) [110, 31, 174],

resolvent analysis [70], and deep learning [122]. It has also been explored for flow

control, for example Refs. [77, 5]. Manohar et al. [99] introduced a sparse sensor

placement strategy using singular value decomposition and QR pivoting. Calla-

ham et al. [25] proposed using sparse representation techniques to reconstruct
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flow fields given sparse measurements. Lu et al. [93] reconstructed flow around a

surface-mounted prism using a combination of POD and a data-driven estimator

using sparse velocity and scalar measurements. Recently, Karnik et al. [74] intro-

duced a constrained sensor placement strategy using a greedy algorithm for flow

reconstruction in nuclear digital twins. High-dimensional fields were reconstructed

based on sparse sensor data using reduced order models.

In the context of RANS-based turbulent flow reconstruction, sensor place-

ment has been investigated both in the context of ensemble- and adjoint-based

data assimilation. Deng et al. [35] proposed a deep neural network (DNN)-based

strategy to obtain the spatial sensitivity of the velocity field with respect to per-

turbations to RANS model constants. The a priori sensitivity analysis requires

running ensembles of flow simulations with modified RANS model constants (100

CFD calculations in Ref. [35]) and using a feature importance layer in a deep neu-

ral network to map the velocity fields to the respective modified constants. The

feature importance layer is effectively weights in the entire CFD mesh, and after

DNN training the sensors are placed at the locations with the highest weights.

The EnKF-based data assimilation by calibrating model coefficients may not be

sufficient to reconstruct turbulent flows, as RANS-based discrepancy is thought

to be mainly due to the structural forms of the turbulence model equations (i.e.

uncertainties due to the Boussinesq hypothesis), rather than model parameters

[170]. In addition, it is not clear how the bounds for model constants should be

set for generating the ensemble data for DNN training.

Mons et al. [111] investigated sensor placement in the context of variational

data assimilation for an unsteady laminar flow past a rotationally oscillating

cylinder. The proposed framework involves the maximisation of the sensitivity of

observations with respect to changes in initial and boundary conditions using a

first-order adjoint approach. It is unclear how this method can be extended to
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turbulent flows, and if the initial and boundary conditions are effective metrics

to account for discrepancies due to parametric, functional, and structural uncer-

tainties in turbulence models. Recently, Mons et al. [112] also proposed a more

comprehensive linear and non-linear sensor placement strategies for laminar mean-

flow variational data assimilation. The data assimilation is based on inferring a

forcing term that corresponds to the divergence of the Reynolds stress tensor in

the RANS momentum equation (as in Ref. [49]). The optimisation problem was

formulated in two contexts: linear and non-linear. In the linear approach, the

sensor placement strategy involves identifying the forcings that result in the most

important variations in the mean velocity field, and placing sensors at the dom-

inant locations to allow for accurate reconstruction. In order for this approach

to be most effective, the analysis needs to be performed close to the true states

of the flow—which is a limitation for a priori analyses. To overcome this issue

a non-linear approach based on the second-order adjoint method was proposed

that involves the minimisation of the condition number of the Hessian of the

assimilated flow. While this approach was found to be considerably more effec-

tive compared to the linear approach, the Hessian evaluation is computationally

expensive—especially when applied to high Reynolds number three-dimensional

turbulent flows—and difficult to implement.

4.2 Proposed novel approach

In this work we propose an optimisation-based approach to variational sensor

placement that involves the following:

1. Initially, we generate a spatial sensitivity map of the flow by employing the

eigenspace perturbation approach for epistemic structural uncertainty in a

baseline turbulence model [67]. Unlike the examples presented from litera-

ture, here the aim is to directly address the main source of discrepancy—the
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epistemic structural errors in turbulence models [170]—and use it to tailor

sensor placement for mean turbulent flow assimilation.

2. After the uncertainty map is generated, an optimisation problem is solved

where the regions of highest uncertainties are targeted. This process is de-

coupled from the RANS-based solution, unlike the variational sensor place-

ment strategies discussed above. The advantages are a very low computa-

tional cost, an easy implementation and algorithm tuning, compared to the

adjoint-based analyses in Refs. [111, 112].

3. Once sensor locations have been identified, we then perform the variational

data assimilation using the field inversion framework. This approach has

the advantage of model-consistency [38], and the aforementioned capacity

to perform reasonably with limited data. In addition, unlike the method

in Ref. [35], this approach is not limited to parametric adjustment of the

baseline turbulence model, and addresses the functional discrepancy.

4.3 Mathematical formulation

We will begin by motivating the approach to sensor placement, with a general

overview of our proposed strategy, followed by the details of components involved

in the framework, described sequentially. Very broadly, the task of sensor place-

ment can be posed as an optimisation problem as follows:

max
x

f [S(x)], or min
x

f [S(x)]−1,

subject to C(x),
(4.1)

where x represents the desired sensor locations, which we will also denote S

henceforth, S is an operator for the desired sensor locations, and C represents

any/all the constraints (e.g. number of sensors, regions of interest, minimum
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Figure 4.1: Overview of the proposed framework for sensor placement and data
assimilation. The sensor placement and data assimilation problems are decou-
pled. X: spatial coordinates of flow domain; Q: flow variables such as velocity
and pressure; V variance of any given quantity (q) following the five eigenspace
perturbations; and S: coordinates of optimised sensor locations. The relevant
sections (§) of the paper are highlighted in each block.

distance between sensors, other physics-based constraints including the governing

equations of the system, etc.).

Short of a brute-force exhaustive search, the so-called “generate and test”

approach, which will have huge time and cost implications, the goal is to have an

a priori sensor placement approach, i.e. placing sensors by approximating regions

of uncertainty based on physical and/or expert knowledge before undertaking the

experiment(s). The function f [S(x)] can be based on the determinant of the

Fisher information matrix (e.g. Ref. [114]), some measure from a deep neural

network (e.g. Refs. [35, 122]), or any other appropriate cost function (e.g. Refs.

[111, 112, 74]). We stress, the goal is for f [S(x)] in Eqn. 4.1 to effectively capture

the uncertainty in the underlying system, and target spatial sensors in the regions

of high uncertainty.

Fig. 4.1 illustrates the proposed framework. Starting with a linear-eddy vis-
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cosity RANS closure, we perturb the Reynolds stress tensor to their extrimal

states to generate an uncertainty map, a surrogate for the operator S(x) in Eqn.

4.1. Specifically, five CFD simulations are run sequentially: two simulations per-

turbing the eigenvectors, and three simulations perturbing the eigenvalues—for

all cells at once. All five simulations result in as many realisations of the flow

prediction, allowing us to generate uncertainty maps–based on the variances–for

various quantities of interest, e.g. a variance map of the streamwise velocity, with

a value for each mesh cell, etc. Then, for a prescribed number of sensors and for a

given quantity of interest, an optimisation problem is solved by a greedy search to

ensure sensors are placed in regions of flow field with highest uncertainty. After

identifying these locations the turbulent flow is reconstructed using adjoint-based

data assimilation.

4.3.1 Eigenspace perturbations

The eigen-decomposition of the Reynolds stress tensor in Eqn. 3.3 results in:

uiuj = 2k
(
δij

3 + νinΛnlνlj

)
, (4.2)

where νin is the orthornormal eigenvectors matrix and Λnl is a diagonal matrix

composed of eigenvalues, λl. The eigen-decomposition is useful because now the

shape and orientation of the Reynolds stress tensor are directly represented by

the eigenvalues and eigenvectors, respectively.

The eigenvalues can be represented in the Barycentric map [8], shown in Fig.

4.2. This is an alternative to the anisotropy-invariant maps (AIM) introduced

by Lumley and Newman [94]. AIM is constructed as a function of the nonlinear

principal invariants (II and III) of the anisotropy tensor aij = uiuj/(2k)− δij/3,

with II = aijaji, and III = aijainajn. The Barycentric map is constructed from

the eigenvalues of the Reynolds stress tensor in Eqn. 4.3.1. The Barycentric
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map (represented in 2D space with an arbitrary turbulence state defined by the

coordinates x = (x, y)) is formed such that all realisable turbulent states are

encompassed by the equilateral triangle, with the vertices representing the limiting

states.

Two-component
(axisymmetric)
 One-component

Three-component
(isotropic)


Initial


Figure 4.2: Barycentric triangle used to perturb eigenvalues to their three lim-
its. Mapping turbulence states on the Barycentric map is useful as all realisable
turbulence states are bounded and presented by the edges and vertices of the equi-
lateral triangle. In eigenspace perturbations an arbitrary Reynolds stress state x
is sequentially perturbed from the initial state to the three vertices x1c, x2c, and
x3c.

Using spectral theorem for second-order tensors, Banerjee et al. [8] show

that the Barycentric triangle vertices (x1c, x2c, x3c) in Fig. 4.2 represent one-

component, two-component (axisymmetric) and three-component (isotropic) tur-

bulence states, respectively. These vertices correspond to the following eigenvalue

vectors:

λx1c =


2/3

−1/3

−1/3

 , λx2c =


1/6

1/6

−1/3

 and λx3c =


0

0

0

 . (4.3)

Therefore, a given Reynolds stress tensor in a mesh cell, can be represented on the

72



Barycentric map as x = (x, y). It is formed as a linear function of the eigenvalues

of the Reynolds stress tensor, λ = (λ1, λ2, λ3)T , and the vertices of the triangle,

as follows [8]:

x = x1c(λ1 − λ2) + x2c(2λ2 − 2λ3) + x3c(3λ3 + 1). (4.4)

The mapping in Eqn. 4.4 and the requirement that the sum of eigenvalues must

be zero, can be written as an invertible one-to-one mapping, x = Bλ. Eqn.

4.3 maps the eigenvalues to the three limiting vertices, e.g. λx1c
= B−1x1c =

(2/3,−1/3,−1/3)T .

Uncertainty can now be introduced in the Reynolds stresses by perturbing the

eigenvalues to their limiting states, i.e. the three vertices in the Barycentric map.

The perturbed states x∗ can be defined as [42, 67, 109]:

x∗ = x+ ∆B(x(t) − x), (4.5)

where x is the arbitrary initial state, ∆B ∈ [0, 1] is the relative distance between

x, and the target vertex x(t) of the Barycentric triangle. Using the mapping

λ = B−1x, the perturbed eigenvalues, λ∗ can be calculated as

λ∗ = B−1x∗ (4.6)

= B−1
[
x+ ∆B(x(t) − x)

]
, (4.7)

= (1−∆B)B−1x︸ ︷︷ ︸
=λ

+∆B B
−1x(t)︸ ︷︷ ︸
=λ(t)

, (4.8)

= (1−∆B)λ+ ∆Bλ
(t), (4.9)

where λ is the vector of eigenvalues calculated from the eigen-decomposed Reynolds

stress tensor, and λ(t) is the eigenvalues for any target vertex given in Eqn. 4.3.
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In practice, eigenvalue perturbations corresponding to three CFD flow solutions

perturbing the baseline eigenvalues to their three limiting states, i.e. three vertices

of the Barycentric triangle.

The eigenvector perturbations modulate the turbulent kinetic energy produc-

tion, Pk = −uiuj(∂Ui/∂xj), which represents the transfer of kinetic energy from

the mean flow to the fluctuating velocity field [67]. This corresponds to varying

the alignment of the Reynolds stress ellipsoid. Mathematically, this modulation

is achieved by varying the Frobenius inner product ⟨A,R⟩F = tr(AR), with A

representing the mean velocity gradient, and R the Reynolds stress tensor. As

with the eigenvalue perturbations, the extremal states are sought by considering

the bounding values of the inner product to consider all permissible dynamics.

[67] show that the bounds on the inner product are

⟨A,R⟩F ∈ [λ1γ3 + λ2γ2 + λ3γ1, λ1γ1 + λ2γ2 + λ3γ3] , (4.10)

with λ1 ≥ λ2 ≥ λ3 representing the eigenvalues of the symmetric components of

the mean velocity gradient A, which is also the strain rate tensor. Thus in the

coordinate system defined by the eigenvectors of the strain rate tensor, the bounds

for the Reynolds stress alignments of the Reynolds stress eigenvectors are:

νmin =


0 0 1

0 1 0

1 0 0

 and νmax


1 0 0

0 1 0

0 0 1

 .

Therefore, two additional CFD flow solutions are needed to perturb the eigen-

vectors to their limiting states. The eigenspace perturbations implementation of

[109] in the SU2 CFD suite is used in this work. The implementation in Ref. [109]

has been tested on both two- and three-dimensional flows.
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4.3.2 Greedy search placement algorithm

The uncertainty map generated as described in the previous section can now

be used as a surrogate for the f [S(x)] operator in Eqn. 4.1. One approach of

formulating the optimisation problem for sensor placement, with a prescribed

number of sensors, Ns, can be

max
x
J = 1

∥J0∥

Ns∑
i=1
Vq(xi), subject to d(x) ≥ dmin, (4.11)

where Vq represents the variance-based uncertainty map from eigenspace pertur-

bation for a quantity q, x ∈ χ represents the sensor coordinates, where χ ⊆ X

represents the space of potential sensor locations, and for Ns > 1, d(x) represents

a minimum distance constraints between any two sensors, prescribed by the user

(based, for example, on operational parameters/constraints, etc.). Additionally,

the distance constraint is essential for the problem to be well-posed in order to

avoid sensor clustering.

One approach to solving the optimisation problem in Eqn. 4.11 can be using

global search methods, such as genetic algorithms, with many off-the-shelf imple-

mentations to choose from. However, this can be a computationally challenging

optimisation problem due to the very large design space involved in turbulent

flows, i.e. the computational budget required in high Reynolds number, three-

dimensional flows of industrial interest is not anticipated to scale well. Given

this, we propose a more computationally efficient solution based on a greedy

search, which uses the heuristic of making the locally optimal decision at each

choice of sensor location, i.e. the sensor is placed at the next permissible location

of maximal uncertainty in each iteration.

The sensor placement procedure, summarised in Fig. 4.3 and Algorithm 1, is

as follows:
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Figure 4.3: Sensor placement visualisation using the proposed greedy algorithm,
in Algorithm 1. The contour represents the uncertainty in the streamwise velocity
predictions from eigenspace perturbations, V(Ux). The number of sensors Ns = 5
in this example, placed sequentially. The sensors are represented by the square
markers, and the circles labelled Ωn represent the exclusion domain defined by
radius rn, where the radius is calculated using the expression in Eqn. 4.12 for
n > 1, and the initial radius r1 is selected iteratively using M1 in Eqn. 4.13.

1. Given a prescribed number of sensors, Ns, the potential sensor sites χ ⊆X,

uncertainty map for a given quantity, Vq, place the first sensor in the cell

with the highest variance, Vq, and store the spatial coordinates, Sn. An

initial radius, rinitial, must also be prescribed for defining the circular (in

two-dimensional cases)—or spherical in three-dimensional flows—exclusion

zone, Ωn with n = 1, to avoid subsequent sensors clustering around the

sensor placed previously. This is an important hyper-parameter which we

will return to shortly.

2. Exclude the cells in the domain Ωn, for n ≥ 1, and update χ and Vq accord-

ingly.

3. Place the next sensor at the cell with highest variance (based on the updated

Vq and χ), and store the coordinates Sn.
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4. Select the radius, rn for n > 1, for the exclusion domain Ωn using the

following

rn = [1 + (Vq
n−1 − Vq

n)] rn−1. (4.12)

Using the relation in Eqn. 4.12 we linearly increase the size of the exclusion

domain based on the change in variance between subsequent sensors. In

the results to be presented in section 4.4 this linear relationship leads to

satisfactory outcomes. While this can also be a nonlinear function, the

choice of the form of the function is heuristic, which can be investigated in

future works.

5. Repeat steps 2-4 until all sensors are placed.

Algorithm 1 Greedy algorithm for sensor placement
Inputs: Ns = number of sensors; χ ⊆ X = x, y, z Cartesian coordinates of
mesh cell centres; Vq = eigenspace perturbation-based variance of quantity to
be measured; rinitial = initial radius for exclusion domain.
Output: S = sensor locations (x, y, z coordinates)

1: procedure PlaceSensors(Ns, χ, Vq, rinitial)
2: r ← rinitial ▷ radius for exclusion domain
3: for all n ∈ 1, . . . , Ns do
4: i = max(Vq) ▷ i = index of cell with max. variance
5: S [n, :] = χ [i, :] ▷ save x, y, z coordinates of sensor n
6: χ̂, V̂ = [] ▷ storage for non-excluded regions
7: M ← size(χ)
8: for all m ∈ 1, . . . ,M do
9: x, y, z ← χ [m, :]

10: if x, y, z /∈ Ωn then ▷ only keep cells outside Ωn

11: χ̂← concatenate(x, y, z)
12: V̂ ← concatenate(Vq [m])
13: j ← max (V̂) ▷ j = index of cell with max. variance
14: r ←

[
1 +

(
Vq[i]− V̂ [j]

)]
∗ r ▷ update radius for Ωn+1

15: χ← χ̂
16: Vq ← V̂
17: return S
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There are two hyper-parameters in the proposed greedy algorithm. The first

one is the initial radius for the circular exclusion zone. This determines how far

the sensors are placed. For a given number of sensors, we propose an iterative

approach to guide this selection, using the following metric M1:

M1 =
∑Nχ

i V
q
i∑Ns

n

∑Ωn
m Vq (xm)

, (4.13)

where we iteratively vary the initial radius, illustrated in Fig. 4.4. The numerator

is the sum of variances, Vq, over the entire potential sensor sites, χ, and the

denominator is the sum of variances over the excluded circular domains with the

sensors locations at the centres (refer to illustrative exclusion domains, Ωn, in Fig.

4.3). The initial radius can be defined as a proportion of some characteristic length

of the case under consideration. As it increases,M1 in Eqn. 4.13 approaches unity.

Thus, we can select the initial radius iteratively, using some relative threshold

(i.e. with respect to unity). This will be practically demonstrated and assessed

numerically in the following section. In addition, this approach of selecting the

initial radius parameter is a practical one, given the low computational cost of

the entire sensor placement algorithm.

The number of sensors can be considered as the second hyper-parameter. We

note that based on the experimental approach, this can be dictated by other

constraints (e.g. in the instance where only a discrete given set of sensors are

available). Nonetheless, as an approximate guide to how many sensors may be

considered, we propose the following metric, M2:

M2 =
(

Ns∑
n

Vq
n

)−1

, (4.14)

which is the sum of variances over the sensor locations, S. As the number of

sensors increase Ns will level off, as illustrated in Fig. 4.4, with detailed numerical

78



Initial radius, r0

0

1

M
1

limr0!1

PN@

i
Vq

iPNs

n

P+n

m
Vq(xm)

A clustered

overstretched
#

target
zone

Number of sensors, Ns

M
2 1PNs

n Vq
n

2!1

Figure 4.4: Illustrative plot of the metric in Eqn. 4.13 for guiding the selection
of the initial radius hyper-parameter. The initial radius for the exclusion domain,
required by the greedy sensor placement algorithm, can be iteratively selected,
i.e. any point in the “target zone” when M1 levels off.

analysis in the results section.

4.4 Results

In this section we apply the proposed framework to three fully-turbulent wall-

bounded benchmark flows, all involving challenging flow physics (e.g. separa-

tion and reattachment) for RANS-based simulations. In all the cases we use the

streamwise velocity as the quantity from high-fidelity data, since it is one of the

most commonly measured (in terms of volume data, i.e. measured quantities in

the flow domain). All flows are simulated as two-dimensional, steady, and incom-

pressible.

4.4.1 NASA wall-mounted hump

The flow over the well-established 2D wall-mounted hump, Fig. 4.5, part of the

NASA Turbulence Modelling Resource database [131], is selected as the first test
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case. It involves flow separation as a result of adverse pressure gradients over the

smooth hump surface. The flow is commonly used as a benchmark case for ver-

ifying and validating turbulence models since most linear eddy viscosity models

perform poorly in predicting the separation, reattachment and boundary recovery

by over-predicting the size of the separation bubble due to under-predicted tur-

bulent shear stress in the separation region. The chord-based Reynolds number

is 9.36× 105 with a Mach number of 0.1.

0 0.2 0.4 0.6 0.8 1 1.2

x=c

0

0.2

0.4

0.6

0.8

y
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10:39c

Figure 4.5: 2D NASA smooth hump, with the dots marking cell-centres, X, in
the mesh used [131]. The blue bounding box represent the region of potential
sensor sites, χ ⊆X.

We use wall-resolved large eddy simulation (LES) data by Uzun et al. [154]

as a surrogate for experimental data. These results have been validated against

experimental data, and are preferred over limited publicly available experimental
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Figure 4.6: Streamwise velocity profiles with uncertainty bounds based on
eigenspace perturbations. The dashed-dotted lines represent the five ESP scenar-
ios. The UQ bounds are the minimum and maximum values from the 5 eigenspace
perturbations.

results as it allows for benchmarking data assimilation with sparse experimental

data against the scenario when extensive data is available, such as those generated

in particle image velocimetry (PIV) experiments.

The baseline k − ω SST, LES, and eigenspace perturbation streamwise ve-

locity profiles are shown in Fig. 4.6. The SST predictions are most erroneous

near the wall, in the separated shear layer, due to a very high flow reversal aft of

the hump apex, resulting in an over-predicted circulation zone. The eigenspace

perturbation results show a high degree of variability compared to the SST pre-

dictions in the near-wall region. Increasing the turbulent production mechanism

(e.g. x(t) = x1c, ν = νmin) reduce the flow separation. thus shifting the results

closer to the reference data, while damping the production (e.g. x(t) = x3c) lead to

higher separation. The ESP results essentially subsume the LES references data,

especially near the wall, in the separated shear layer, and becomes negligible as

we approach the freestream (as expected).

We can now map the uncertainty for any given physical quantity, q ⊆ Q (in the
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Figure 4.7: The uncertainty map in streamwise velocity for the NASA wall-
mounted hump case.

case of vector quantities, we can look at individual scalar components, as at the

present work, or some normalised sum of different components) as a function of

the variance based on eigenspace perturbation results. As the reference data will

be the streamwise velocity, Ux, Fig. 4.7 shows the uncertainty map, normalised

by the maximum variance. We use a logarithmic scale to better illustrate the

degree of uncertainty in the different regions of the flow domain. The high regions

of uncertainty are in the near the hump, aft of hump apex, increasing to the

highest uncertainty in the separated shear layer—overall, qualitatively, bearing

engineering scrutiny.

Sensors are now placed using the uncertainty map, and our proposed heuristic

greedy algorithm. In order to benchmark the framework, we will present results

for the following scenarios, shown in Fig. 4.8: a) uniformly spaced, manually

placed sensors, ending up with Ns = 33 over the entire potential sensor sites,

χ ⊆ X, fixed for the subsequent two scenarios, b) randomly placed sensors, c)

sensor placed using our algorithm with Ns = 33, d) using our algorithm but

reducing the number of sensors by over one order of magnitude, i.e. Ns = 3, and
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Figure 4.8: Various sensor placement scenarios used for data assimilation. ESP
refers to the proposed placement algorithm, and the contour lines represent the
uncertainty map in Fig. 4.7.
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Figure 4.9: Comparing the root-mean-square error change in velocity predictions
(left: streamwise component, Ux; right: wall-normal component, Uy) for various
sensor placement scenarios shown in Fig. 4.8. ESP I and II refer to the cases with
Ns = 33, and Ns = 3, respectively, where sensors are placed using our proposed
algorithm.
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e) using the streamwise velocity over the entire potential sensor sites, χ ⊆ X.

Note: only one random placement realisation is considered. A more thorough

analysis to illustrate the sensitivity of data assimilation to sensor locations should

consider multiple realisations, which is an oversight in our analysis. Nevertheless,

the uniform placement vs. the other scenarios, clearly illustrate the sensitivity of

DA to sensor locations.

We compare the turbulent mean flow reconstruction results for the stated sce-

narios in Fig. 4.9, in terms of the change in root-mean-square error in the baseline

SST predictions of the velocity components. As anticipated, the random sensor

placement case is the least effective (negligible improvement in the streamwise

velocity despite the use of Ux data in field inversion), highlighting the need for

informed sensor placement. The uniform sensor placement case reduces the av-

erage error in the velocity components by 38%. For the same number of sensors

as the previous two discussed scenarios (i.e. Ns = 33), with our proposed sen-

sor placement algorithm, the average errors reduce by 60% (labelled “ESP I” in

Fig. 4.9), compared to a 74% reduction when using all the streamwise velocity

data (labelled “Full” in Fig. 4.9). The case with all the data shows that using

very large datasets does not necessarily results in proportionally similar data as-

similation error reduction. Notably, the results for this flow show that with our

approach the same error reduction is achievable even if the number of sensors is

reduced by over an order of magnitude, i.e. Ns = 3, (labelled “ESP II” in Fig.

4.9), with an average error reduction of 61%.

Next, we investigate the two hyper-parameters for the proposed sensor place-

ment algorithm as discussed in Section 4.3.2: initial radius for the circular exclu-

sion domain, and the number of sensors.

Fig. 4.10 compares the initial radius against the metric M1 in Eqn. 4.13

(proposed to guide selecting an appropriate rinitial a priori) and the subsequent
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Figure 4.10: The tuning metricM1 (Eqn. 4.13) on the left axis, and the effect of
initial radius on flow reconstruction error reduction on the right axis. Number of
sensors is set to ten.

error reduction through data assimilation, with 0.01 ≤ rinitial/c ≤ 0.20, where

c is chord length for the hump (Fig. 4.5). The number of sensors is fixed to

Ns = 10. The metric, M1 sharply decreases in the range 0.01 ≤ rinitial/c ≤ 0.05,

reaching ≤ 5% of the asymptotic value ofM1, i.e. limrinitial→∞M1(rinitial) ≤ 1.05.

The average percentage error reduction in the velocity is: 44% ≤ ∆RMSE(U) ≤

61%. (For reference, with only a third of the sensors, the lower bound is still

an improvement on the uniformly placed sensors case, Fig. 4.9.) Illustrative

placement scenarios are shown in Fig. 4.12. Near the lower initial radius bound

the sensors are clearly too clustered, while near the upper bound, the sensors are
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Figure 4.11: The tuning metricM2 (Eqn. 4.14) on the left axis, and the effect of
number of sensors on flow reconstruction error reduction on the right axis.

overstretched (some placed in regions of low uncertainty, while many regions of

higher uncertainty are not considered during the placement). The configuration in

and close to the “target zone” in Fig. 4.10, 0.05 ≤ rinitial/c ≤ 0.1, seem to be good

potential candidates. This is broadly confirmed by the similar error reduction

in the streamwise component of velocity. Admittedly, the prescribed metric M1

does not guarantee the optimal solution, and requires the exercises of an element

of engineering judgement.

Investigations of the second hyper-parameter, the number of sensors, are sum-

marised in Fig. 4.11 and 4.13. The analysis is with reference to the second

metric, M2 introduced in Section 4.3.2. For all the number of sensors consid-
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Figure 4.12: Illustrative sensor configurations, for investigating the effect of the
initial radius on data assimilation. The number of sensors is fixed to Ns = 10.

ered, the initial radius is chosen iteratively using the previously described ap-

proach: the final rinitial is chosen before M1 reaches an asymptotic value of 1.02

(see illustrative placement configurations in Fig. 4.13). The value of the metric

M2 initially reduces sharply up to 10-15 sensors, then gradually levelling from

N ≥ 35, in Fig. 4.11. The average percentage error reduction in the velocity is:

53% ≤ ∆RMSE(U) ≤ 71%. The error reduction in the streamwise velocity (the

quantity used as reference data for field inversion, and the dominant component

in terms of contribution to velocity magnitude) levels after around 20 sensors, and

is reasonably close to the scenario when all the data is used. On the other hand,

the reduction in the wall-normal velocity component, is less clear as a function of

number of sensors. Fig. 4.11 demonstrates that the metric introduced, M2, can
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Figure 4.13: Illustrative sensor configurations, for investigating the effect of num-
ber of sensors on data assimilation.
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hump case before and after data assimilation for different number of sensors.
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Figure 4.15: Surface pressure predictions on the 2D NASA hump wall. For the
legend refer to Fig. 4.14.
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Figure 4.16: The corrective field β for the 2D NASA hump case, modifying the
SST transport equation after data assimilation. This is for the case with Ns = 33.
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be used as a reasonable guide to approximating the number of sensors a priori (i.e.

by setting the number of sensors around the values when M2 levels off). How-

ever, there is no guarantee of optimality. In addition, as previously mentioned,

the number of sensor may also be dictated by other constraints, (e.g. operational

budget, etc.).

Next, we present some more detailed results in terms of normalised streamwise

velocity profiles (Fig. 4.14) and surface pressure distribution on the hump wall

(Fig. 4.15). The velocity profiles show that all field inversion scenarios are able

to considerably reduce the errors in the separated shear layer. Broadly, increasing

the number of sensors leads to an improved reconstructed quantity, however, as

previously mentioned, using a very large dataset does not mean a proportionally

similar error reduction. Encouragingly, Fig. 4.15 shows that using relatively

sparse velocity data also leads in better reconstruction of the surface pressure

distribution, notably in and around the separation zone, 0.5 ≲ x/c ≲ 1.5.

Finally, the corrective field β is shown in Fig. 4.16. Highly non-linear β

distribution is observed near the hump wall, especially in the shear layer. However,

corrections are also applied in the farfield (i.e. β ̸= 1 for y/c ⪆ 0.2), where the

baseline model predictions are satisfactory. Ideally, the β value should be close

to unity in these regions. This can be because the optimisation is not well-

regularised, i.e. the constant of regularisation λ in Eqn. 3.10 is too small, to

avoid huge deviations from the baseline model.

4.4.2 Converging-diverging channel

The second test case is the converging-diverging channel, Fig. 3.10, previously

used in Ch. 3.5.2. The eigenspace perturbation-based uncertainty map for the

streamwise velocity field is shown in Fig. 4.17. The regions of highest uncertainty

is aft of the channel bump apex, particularly concentrated in the separated shear
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layer. We show comparison of the streamwise velocity profiles in Fig. 4.18. The

baseline k − ω SST model significantly over-predicts the flow separation and the

recirculation zone. For data assimilation, we prescribe Ns = 15 sensors, and place

these using the proposed algorithm. The entire domain is assumed to be potential

sites for sensors, i.e. χ = X ∈ RNcells , with Ncells = 98, 700. The initial radius is

selected using the metric, M1 (Eqn. 4.13) leading to rinitial = 0.53H.
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Figure 4.17: The streamwise velocity uncertainty map for the converging-diverging
channel.

The resulting sensor locations are shown in Fig. 4.17. Reconstructed flow

result with this configuration demonstrates significant improvements to the base-

line predictions, especially in the separation and flow recovery region near the

lower wall. As the velocity profiles demonstrate, the flow reconstruction with the

streamwise velocity data in the entire flow field, leads to a marginally better field

inversion result, also summarised in terms of the root-mean-square error reduction

in Table 4.1.

Similar to the NASA hump case, the corrective field β distribution in the
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Figure 4.18: Velocity profiles comparison for the converging-diverging channel.
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Figure 4.19: The corrective field β for the converging-diverging channel flow, using
Ns = 15.

Table 4.1: Data assimilation root-mean-square error reduction for the converging-
diverging channel flow.

Case Ns ∆RMSE(Ux), % ∆RMSE(Uy), % Average, %

ESP 15 51.4 58.4 54.9

All Ux 98,700 57.3 59.5 58.4

farfield is not equal to unity. Again, this may be due to poor regularisation.

4.4.3 Periodic hill

The final test case is the separated periodic hill flow, Fig. 3.15, previously used in

Ch. 3.5.3. The uncertainty map from eigenspace perturbations are shown in Fig.

4.20. The uncertainty map is based on the combined variances of the streamwise

and wall-normal velocity components, and the pressure. The maximum regions of

uncertainty are concentrated near the upper and lower walls in general, and around

the hills, in particular. Again, we place 15 sensors, with the initial exclusion

domain radius, rinitial = 0.68H, which is selected iteratively using the metric M1

(Eqn. 4.13).

We present flow reconstruction results using Ns = 15 sensors placed using

the proposed framework, and using the entire streamwise velocity field data (i.e.

Ns ≡ Ncells = 14, 751). The root-mean-square errors for the velocity components

in the two field inversion scenarios are reported in Table 4.2. We note that the
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flow reconstruction with just 15 sensors is marginally inferior to the case when all

the streamwise velocity data is used.
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Figure 4.20: The uncertainty map for the periodic hill case. The variance is based
on a combination of the streamwise and wall normal velocity components, and
the pressure.

Streamwise velocity profiles are shown in Fig. 4.21. The baseline SST model

is inaccurate near the walls, especially in the separated shear layer near the lower

wall, as captured in the uncertainty ranges from the eigenspace perturbations. The

baseline model over-predicts the size of the separation bubble. Both field inversion

scenarios are able to improve the predictions, however, some discrepancies remain

in the region close to the second hill. Once again, the improvements using only

15 data points vs. the entire streamwise velocity field is noteworthy.

Table 4.2: Data assimilation root-mean-square error reduction for the periodic
hill flow.

Case Ns ∆RMSE(Ux), % ∆RMSE(Uy), % Average, %

ESP 15 42.5 50.1 46.7

All Ux 14,751 55.6 43.3 49.4
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Figure 4.21: The streamwise velocity profiles comparison for the periodic hill case.
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Figure 4.22: The corrective field β for the separated periodic hill flow.

4.5 Summary

We presented a novel strategy to sensor placement for data assimilation in the

context of RANS-based turbulent flow reconstruction. The framework relied on

generating a spatial uncertainty map through systematic perturbations of the

Reynolds stress tensor. An optimisation-based greedy search was proposed to

place sensors. Data assimilation was performed using a variational (adjoint-based)

approach.

The proposed framework was tested on three two-dimensional wall-bounded

fully turbulent flows with Reynolds numbers ranging from 5.6× 103 to 9.36× 105.

All flows involved mild to massive separation which were over-predicted by the

baseline k−ω SST model. Data assimilation were performed using streamwise ve-
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locity data. Average root-mean-square error reduction in the velocity predictions

(compared to the baseline SST model) after data assimilation are summarised as

follows:

1. 2D NASA wall-mounted hump: the error was reduced by 61% just using

3 sensor data points using the proposed placement method. For compari-

son, using 33 sensor points with uniform sensor placement led to an error

reduction of 38%, while using the entire available streamwise velocity data

(30.7× 103 data points) achieved 74% error reduction.

2. Converging-diverging channel: average error reduction of 55% with 15 sensor

points using the proposed method, compared to a 58% reduction when using

all the streamwise velocity field (98.7× 103 data points).

3. Periodic hill flow: average velocity error reduction of 47% with 15 sensor

points, compared to 49% when using all the data (14.7× 103 data points).
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CHAPTER 5

Multi-sensor data for data assimilation

5.1 Introduction

Following on from chapter 4, we further investigate the synergy of experimental

measurement data and RANS-based simulations in this chapter. This chapter

addresses the problem of using multiple types of sensor data in adjoint-based field

inversion. This is an important gap in the literature because different types of

sensor data can be collected for use in data assimilation and ideally, a compu-

tational model should accurately describe all the data. In practice, there can

be a trade-off in optimising the model to describe different types of sensor data,

making this a challenging problem. The novel contribution of this chapter is the

development of a multi-objective optimisation scheme for field inversion that can

handle multiple sensor types, which has been published in [19].

Zhang et al. [175] have investigated the use of ensemble-based data assimi-

lation with multiple data sources simultaneously. They employed a regularised

ensemble Kalman method for three incompressible flows: one-dimensional channel

flow, 2D flow over a flat plate, and the 2D periodic hill flow. Types of data used

included velocity profiles in the flow field, and wall measurements (pressure at the

walls, surface friction, and lift and drag forces). Results presented show that the

accuracy of reconstructed mean flow quantities such as velocity and pressure can

be further enhanced when using multi-sensor data.
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Waschkowski et al. [160] developed interpretable algebraic closures using a

gene expression programming (GEP) algorithm. They use high-fidelity simulation

data to perform a multi-objective optimisation with two different physical quan-

tities in the loss function. The multi-objective optimisation is based on the non-

dominated sorting genetic algorithm (NSGA-II) [34], which employs the concept

of Pareto dominance. The framework was tested on two flows: a one-dimensional

vertical natural convection flow, and the periodic hills flow. In both cases, only

volume data (profiles in the flow domain) were used, as opposed to volume and

wall quantities in the aforementioned work by Zhang et al. [175]. For the natural

convection flow the quantities used were the streamwise velocity and the temper-

ature profiles, while for the periodic hill case it was the streamwise velocity and

the turbulent kinetic energy profiles. It was shown that using multi-sensor data

results in better mean flow reconstruction of not only the quantities used during

training, but also other mean flow variables.

Most applications of field inversion using adjoint-based methods has been lim-

ited to using only a single source of data. The types of single source data used

have included volume data (e.g. velocity profiles [119]), surface data (e.g. skin

friction [39], and pressure coefficient [12]), and integral data (e.g. lift coefficient

[139])—listed in terms of lowest to highest data sparsity. Using only a single

source of data is a limitation because multiple sources can be used simultaneously

to train the model and in theory improve the accuracy of the model and ensure

that it fits all available data correctly.

The aim of this chapter is to extend the adjoint-based field inversion frame-

work, a popular data assimilation alternative to the two techniques discussed

above, to make use of multiple data sources for enhanced turbulent mean flow re-

construction. The approach we take is to use a composite objective function with

least squares error terms representing the data for multiple sensors and sources—
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leading to a weighted least squares optimisation problem. We investigate the

multi-objective nature of this optimisation by systematically varying the weighting

terms to recover a Pareto-optimal front of the trade-off resulting from differences

in weighting the sources of data.

5.2 Weighted sum multi-objective optimisation

The one-equation Spalart–Allmaras (S-A) model is chosen as the baseline turbu-

lence model, and modified by the corrective field β as described in chapter 3.2.

The weighted-sum objective function for the optimisation can be written as,

min
β
J =

Nd∑
i=1

wi
1
J0,i

∥Gi (β)− di∥2
2

+ λ∥β − βprior∥2
2, (5.1)

where ∥.∥2 is the L2 norm; the index i ∈ RNd represents the different data quan-

tities (e.g. velocity, and pressure); di represents the specific quantity from high-

fidelity data, with Gi(β) representing the RANS model equivalent; wi are the

weights; J0,i are the least-square errors between the baseline model and data; λ

is a regularisation parameter, and βprior is typically assumed to be 1, to bias the

solution closer the baseline model. The formulation would be ill-posed without

the regularisation term because of noisy data and the high degree of freedom in

the model compared to the number of data points. We systematically vary the

weights wi to perform a multi-objective optimisation and investigate the trade-off

between weighting different sources of data and obtain the Pareto-optimal front

describing this trade-off.

5.3 Results

We present the results for two separated flow cases: 1) the 2D NASA wall-mounted

hump [57], with available experimental data from the NASA Turbulence Modelling
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Table 5.1: Summary of cases, where M , Re, Cp, Cf are the Mach number,
Reynolds number, surface pressure, and skin friction respectively.

Geometry Flow conditions Data Data type Data source

2D hump Mref = 0.1 Ux/Uref Volume Experiment

Rec = 936, 000 Cp Surface

Periodic hill Mref = 0.2 Ux/Ub Volume LES

ReH = 10, 595 Cf Surface

Resource database, and 2) flow over a periodic hill, with detailed LES results

from [55]. Both cases involve complex flow features due to separation resulting in

discrepancy between eddy viscosity model predictions compared to high-fidelity

results, as shown in the preceeding chapters. The cases are summarised in Table

5.1.

5.3.1 NASA wall-mounted hump

This case involves flow separation, as a result of adverse pressure gradients, over

a smooth hump surface, shown in Fig. 5.1.

Figure 5.1: Close-up of the NASA wall-mounted hump.

Linear eddy viscosity models, such as Spalart–Allmaras, are known to poorly

predict the separation, reattachment and boundary recovery by over-predicting

the size of the separation bubble due to under-predicted turbulent shear stress
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in the separated region, as also shown for the k − ω SST model in chapter 4.4.1.

The available data include experimental surface pressure, and velocity profiles

near the hump. For field inversion we use the surface pressure data in the region

−0.8 ≤ x/c ≤ 2.1, and four streamwise velocity profiles as shown in Fig. 5.1. The

objective function is:

J = wu

J0,u

Nu
d∑

i=1
[Ux,i (β)− Uxdata,i]2︸ ︷︷ ︸

Ju

+ wp

J0,p

Np
d∑

j=1
[Cp,j (β)− Cpdata,j]2︸ ︷︷ ︸

Jp

+λ
Nm∑
k=1

[βk − 1]2 ,

(5.2)

where wu + wp = 1, and the regularisation constant λ is set to 10−6. To simu-

lated the flow, we solve the incompressible, two-dimensional, steady Navier–Stokes

equations on a structured mesh, shown in Fig. 5.1.

Figure 5.2: The root-mean-squared error for the 2D hump for the baseline model
(labelled as w = (0, 0)), and various field inversion scenarios. The RMSE values
are normalised by the respective RMSE values of the baseline model.
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Fig. 5.2 shows the root-mean-squared error in velocity and surface pressure

predictions. It is clear that the total error can be significantly reduced by all field

inversion scenarios. The least effective field inversion scenarios are when using

data for only one quantity, as expected, although the reconstruction with velocity

data is more effective than pressure data. Broadly, the field inversion scenarios

with multi-sensor data lead to similar total error reduction, although there are

clear differences in individual quantities. We observe that, generally, a larger

weight for a particular quantity leads to a large error reduction for that quantity,

and vice-versa, as intuitively expected.
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Figure 5.3: The Pareto front plot for the 2D hump. The weights are provided
next to markers: weights, w = (wu, wp).

A comparison of the individual objective function terms Ju and Jp is shown

in Fig. 5.3. It broadly shows an emerging Pareto front for the multi-objective

optimisation, demonstrating the need for a trade-off between the two objectives:

one of terms in the composite objective function degrades when the other is im-
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proved. According to both figures, the best case scenario is with the weights,

(wu, wp) = (0.3, 0.7). However, this is not far superior to equally weighting the

objective function terms, thus it could be argued that equal weights is sufficient,

for this case.
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Figure 5.4: Comparison of surface pressure on the NASA wall-mounted hump
wall. Legend: Experiment ( ), Spalart–Allmaras ( ); field inversion, Cp data
( ); field inversion, Ux profile data ( ); and field inversion, equally weighted
Cp and Ux profile data ( ). The RMSE label refers to the root-mean-squared
error between the simulation and experimental data, with values colour-coded to
match the legend.

Next, we will compare the baseline and field inversion results (with single and

equally-weighted multi-sensor data) in more detail. Fig. 5.4 shows the surface

pressure distribution. It is clear that the S-A model struggles to accurately predict

the pressure in the separated shear layer, which is improved by all three field

inversion scenarios. However, there is still some error in the pressure distribution

when using velocity profiles alone.
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Figure 5.5: Comparison of the velocity profiles in the separated flow region of
the NASA wall-mounted hump. Legend: Experiment ( ), Spalart–Allmaras ( );
field inversion, Cp data ( ); field inversion, Ux profile data ( ); and field in-
version, equally weighted Cp and Ux profile data ( ).
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(a) Velocity profiles data (b) Surface pressure data (c) Equally-weighted U and
Cp data

Figure 5.6: Comparison of the corrective field, β, for the NASA wall-mounted
hump with different field inversion scenarios.

(a) Baseline Spalart–Allmaras (b) FI, Ux profiles data

(c) FI, Cp surface data (d) Equally-weighted U and Cp data

Figure 5.7: Comparison of the eddy viscosity, νt, for the NASA wall-mounted
hump case before and after modifications by β fields shown in Fig. 5.6.

The velocity profiles in Fig. 5.5 show that the baseline model under-predicts

the streamwise velocity in the separated shear layer closer to the hump wall. This

means that the baseline model predicts a larger separation bubble, and hence de-

layed reattachment, compared to the experimental data. Performing field inver-

sion with velocity data leads to a more accurate characterisation of the separation,

as shown in the velocity profiles. Additionally, it is clear that although the surface

pressure data can lead to a very good improvement in the pressure distribution,

it is less effective in reducing the error in the velocity predictions—supporting the

case for flow reconstruction based on multi-sensor data.

The corrective fields modifying the baseline model to reconstruct the turbulent
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mean flow is shown in Fig. 5.6. All cases show a complex distribution where the

surrogate turbulence variable, ν̃, in the S-A model is magnified or dampened,

especially in and around the separation. Interpreting the β fields with reference

to the eddy viscosity νt contours in Fig. 5.7 show that the various field inversion

scenarios increase νt in the shear layer which reduces the size of the separation

bubble. Negative values of β in the recirculation region and close to the hump

wall lead to a reduction of eddy viscosity, hence a slightly delayed separation. The

farfield β values for the field inversion case with Cp data and combined pressure

and velocity data are close to unity (Fig. 5.6 (b-c)), which is expected since the

baseline model predictions are satisfactory in these regions. However, for the case

with velocity profile data the values are between 1 and 2. As discussed in chapter

4.4.1, this may be due to poor regularisation.

5.3.2 Periodic hill

The second flow is the periodic hill case, previously used in chapters 3.5.3 and

4.4.3. In this section, the LES dataset by Gloerfelt et al. [55] is used for flow

reconstruction, with the flow conditions summarised in Table 5.1.

Figure 5.8: The structured periodic hill mesh, with the location of the velocity
profile used for data assimilation.

Two sources of data are used for field inversion: 1) vertical continuous slice of

streamwise velocity at x/H = 4 station (chosen as this is the region close to flow

reattachment), and 2) the skin friction in the lower wall. The objective function
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Figure 5.9: The periodic hill root-mean-squared error for the baseline model (la-
belled as w = (0, 0)), and various field inversion scenarios. The RMSE values are
normalised by the respective RMSE values of the baseline model.

is similar to the hump case, with the Cp term in Eqn. 5.2 replaced by Cf , and

the regularisation constant is set to λ = 10−10, a very small value to reflect high

confidence in the data used for reconstruction.

Fig. 5.9 shows that all field inversion scenarios can considerably reduce the

root-mean-squared errors for velocity and skin friction prediction compared to the

baseline Spalart–Allmaras model. However, using skin friction data on the lower

wall is significantly more effective compared to the velocity profile at x/H =

4. This is also reflected in the fact that the RMSE is lower for wf ≥ 0.5 (i.e.

more biased towards fitting Cf data) compared to wu ≥ 0.5. The most effective

scenario in terms of RMSE error reduction is when the individual data terms in

the objective function (i.e. Ju and Jf ) are equally-weighted.

Fig. 5.10 shows a comparison of the individual objective terms, Ju and Jf ,

for different weights. In contrast to the hump case, this case does not necessarily
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Figure 5.10: The Pareto front plot for the periodic hill. The weights are provided
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Figure 5.11: Comparison of skin friction on the lower wall for the periodic hill
case. Legend: LES ( ); Spalart–Allmaras ( ); FI, Ux profile at x/H = 4 ( );
FI, Cf ( ); and FI, equally weighted with Cf and Ux ( ).
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show a clear conflict between minimising the individual terms in the objective

function. While in the hump case the error reduction in an individual objective

function term is proportional to the weight, in the periodic hill case this is not as

clear. In fact, field inversion scenarios with multi-sensor data can lead to further

error reduction in both objectives compared to data from a single source (unlike

the hump case). This is expected as Cf is a function of the velocity derivative at

the wall.

A comparison of the skin friction predictions by the baseline model and field

inversion scenarios with Cf data, velocity profile, and both (equally-weighted) is

shown in Fig. 5.11. The baseline model significantly over-predicts the size of

the separation bubbles, and thus a very delayed flow reattachment. The field

inversion scenarios with skin friction data, and equally weighted velocity profile

and Cf data, significantly improve the prediction of separation and reattachment

between 1 ≤ x/H ≤ 4. Neither the baseline model, nor the different field inversion

scenarios capture the slight separation at the initial hill crest, but all field inversion

scenarios show improved Cf peak predictions on the second hill, compared to the

baseline case. Flow reconstruction with a single velocity profile at x/H = 4 is

insufficient to capture the complex flow characteristics in the near-wall region,

although it does improve it compared to the baseline, by reducing the size of the

separation bubble—a mild separation is still observable in and after the location

the LES data suggests flow reattachment.

The velocity profiles shown in Fig. 5.12 show that field inversion with Cf data

can highly improve the near wall (lower) velocity predictions. But, the effect away

from the wall is diminished, notably towards the first-half of the domain. On the

other hand, using the velocity profile can lead to improved velocity prediction

through the majority of the domain, except some errors in the near wall region

prior the second hill. It is clear that when combining both datasets, the velocity
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Figure 5.12: Comparison of velocity profiles for the periodic hill case. Legend:
LES ( ), Spalart–Allmaras ( ), and field inversion ( ).
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(a) Velocity profiles data (b) Surface pressure data (c) Equally-weighted U and
Cp data

Figure 5.13: Comparison of the corrective field, β, for the periodic hill with
different field inversion scenarios.

(a) FI, Ux profile data (b) FI, Cf surface data

(c) Equally-weighted U and Cf data (d) Baseline Spalart–Allmaras

Figure 5.14: Comparison of the eddy viscosity, νt, for the periodic hill before and
after modifications by β fields shown in Fig. 5.13.

predictions can be significantly improved throughout the domain.

The corrective fields modifying the baseline S-A transport equation is shown in

Fig. 5.13. All three field inversion scenarios show substantial changes to ν̃ (thus

νt) throughout the domain, with considerable variations of β in the separated

shear layer. In the least effective case (field inversion with velocity profile data)

the eddy viscosity (Fig. 5.14a) is increased in most of the domain, with reduction

(β ≤ 0) above the recirculation zone, and the boundary layer in the top wall. In

the other two cases, there are drastic magnifying of eddy viscosity in/surrounding

the shear layer 5.14 b and c), while eddy viscosity is reduced around the crest of

the second hill (Fig. 5.13 b and c).
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Similar to the hump case, the baseline Spalart–Allmaras model under-predicts

the eddy viscosity in the separated shear layer, causing a large separation bubble

(hence, delayed flow reattachment). Given enough data, field inversion can remedy

this issue, as demonstrated.

5.4 Summary

In this chapter the enhanced capability of turbulent mean flow reconstruction

using multi-sensor data was demonstrated for two flows involving strong pres-

sure gradients and flow separation. The variational/adjoint-based field inversion

involved modification of the Spalart–Allmaras turbulence model through a spa-

tial corrective field introduced in the model transport equation. The two cases

tested showed that when using multi-sensor data, equally-weighting the individual

terms in the objective function is appropriate. It was also shown that the baseline

Spalart–Allmaras model under-predicts the eddy viscosity in the separated shear

layer, which results in a larger separation bubble than observed in high-fidelity

data. In the wall-mounted hump case we observed that velocity profiles were

more effective in reconstructing turbulent flow compared to surface pressure. On

the other hand, the periodic hill case was more sensitive to skin friction (velocity

derivative) data, compared to the streamwise velocity profile.
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CHAPTER 6

Development of a neural
network-augmented turbulence model

6.1 Introduction

This chapter is the first part, paired with chapter 7, in moving toward addressing

the problem of shape optimisation using field inversion methods. The methods

developed up to this point in the thesis provide a computational framework to

perform field inversion. This chapter uses these methods and augments them with

the crucial second step, which is neural network correction of the physics model

using results generated by field inversion. This chapter provides the groundwork

for chapter 7 where the outputs from this chapter are used in shape optimisation.

Together, chapters 6 and 7 address the research gap of using field inversion meth-

ods to improve separated turbulent flow predictions in the context of aerodynamic

shape optimisation. This has been published in Ref. [17].

6.2 Field inversion and machine learning framework

Recall that field inversion approach modifies an existing turbulence model by in-

troducing a spatial corrective field, β(x), to the model transport equation and

then optimising the β field to reduce the error between the RANS output and

the high-fidelity data . The spatial nature of the corrective field—defined for ev-
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ery mesh cell—limits it to the case (i.e. flow conditions and geometry) for which

the flow is reconstructed using the high-fidelity data. The corrective information

through the data assimilation should then be converted into modelling knowl-

edge to be used for predictions for different flows. Therefore, machine learning

approaches such as deep neural networks (e.g. [139]) or Gaussian processes (e.g.

[119]) are used to generalise the model corrections for unseen flow conditions/ge-

ometries for predictions. To achieve this, a number of field inversion solutions are

required to gain sufficient corrective information for model training.

Machine
Learning

β(1)(x),
η(1)(Q, T )

β(2)(x),
η(2)(Q, T )β(n)(x),

η(n)(Q, T )

β(η)

ML
Query

Flow Solver
Ra [Q, T ,β] =

0

η(Q, T )

β(x)

Offline Online

Dataset 1

Field
Inversion 2

Field
Inversion n

Field
Inversion 1

Dataset 2 Dataset n

Figure 6.1: Graphical overview of the field inversion and machine learning frame-
work.

The field inversion and machine learning framework, graphically represented

in Fig. 6.1, is therefore as follows:

• Let R[Q,T ] = 0 represent the Reynolds-averaged Navier-Stokes (RANS)
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equations, whereQ are the mean flow quantities such as pressure, and veloc-

ity, and T are the secondary variables introduced by the turbulence model.

The k − ω shear stress transport (SST) is used as the baseline turbulence

model, which has been shown to perform poorly predicting complex turbu-

lent flows (see chapter 3.5.3 and chapter 4.4). Thus the secondary variables

are the turbulent kinetic energy (k) and the turbulence dissipation (ω).

• Let i ∈ [1, n] represent a set of turbulent flows (i.e. different flow conditions,

e.g. Reynolds numbers, and/or different geometries).

• The field inversion problem for turbulent flow i is then posed as follows (see

chapter 3.2 for details),

βi(x) · P(Q,T ), (6.1)

min
β
L[Yd, Ym(β)] s.t. R[Q,T ,β] = 0, (6.2)

where P represent the production term in the transport equation for a tur-

bulence variable T , Yd represent the flow quantity from data, Ym represents

the RANS-based flow quantity, and β is the corrective field. As described

in chapter 3.2, the β field is introduced in the production term of the ω

transport equation.

• Once the corrective fields β(x) are inferred for i flows, then neural networks

are used to map the spatial fields to local flow features, η ∈ [1, j] (Table

6.2), which is another optimisation problem posed as,

min
w
L[βi(x),βm(ηj;w)], (6.3)

where w represents the neural network parameters (i.e. weights and biases).

• Following the neural network training and validation (to be discussed next
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in chapter 6.3), the RANS equations with the neural network-augmented

turbulence model used for predictions becomes

R[Q(βm(η)),T (βm(η))]. (6.4)

6.3 Neural network: theory and implementation

Fig. 6.2 illustrates a typical fully-connected deep neural network architecture,

consisting of an input layer, hidden layer(s), and an output layer. Neural networks

are useful to represent complex nonlinear dependencies of some output(s) to some

input(s) to performed regression or classification tasks. For our purposes the input

features are non-dimensional local flow variables based on physical quantities (η),

while the output is the corrective field, β.

Input layer

Hidden layers

Output layer

Figure 6.2: Neural network architecture.

Feature selection is critical for the neural network to be able to capture trends

in the data. We use an often-employed set of features (Table 6.1 and 6.2) originally

curated by Ling et al. [89] and subsequently used (in full or in part with additional

features) in many studies, e.g. [159, 156, 63, 98]. The chosen features satisfy

115



a number of characteristics that are deemed essential: the features are locally

non-dimensionalised which makes the learned corrective field applicable to flow

conditions and/or geometries beyond the training data [37], and are Galilean-

invariant, which requires that the physics of the fluid flow should be independent

of coordinates frame of the observer [90].

Table 6.1: Description of features used as neural network inputs.

Feature Description

η1 Q-criterion

η2 Turbulence intensity

η3 Wall-distance based Reynolds number

η4 Pressure gradient along streamline

η5 Ratio of pressure normal stresses to shear stress

η6 Non-orthogonality between velocity and its gradient

η7 Ratio of total to normal Reynolds stress

η8 Streamline curvature

η9 Ratio of convection to production of TKE

The rationale behind some of the selected features such as the turbulent in-

tensity (η2), the ratio of total to normal Reynolds stress (η7) and the ratio of

convection to production of turbulent kinetic energy (η9) are clear. These quanti-

ties are explicitly involved in turbulence closure modelling through the k−ω SST

model, and hence appropriate input features for the neural network.

The Q-criterion (η1) is a widely used feature in traditional CFD post-processing

to identify vortex structures, and is the ratio of the magnitudes of the rotation-

(Ω) to strain-rate (S). η1 > 0 implies the rotational effects dominate shear ef-

fects [27]. The wall-distance based Reynolds number (η3), also widely used in

wall-functions in traditional turbulence modelling, is a marker that differentiates
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Table 6.2: Formulae for features used as neural network inputs. Lc in η8 is a
characteristic length, which is also used in the Reynolds number calculation.

Feature Formula Normalisation

η1
1
2 (∥Ω∥2 − ∥S∥2) ∥S∥2

η2 k
1
2UiUi

η3 min
√kd

50ν , 2
 not applicable

η4 Uk

∂P

∂xk

√√√√ ∂P

∂xj

∂P

∂xj

UiUi

η5

√
∂P

∂xi

∂P

∂xi

1
2ρ
∂U2

k

∂xk

η6 |UiUj

∂Ui

∂xj

|

√√√√UlUlUi

∂Ui

∂xj

Uk

∂Uk

∂xj

η7 ∥u′
iu

′
j∥ k

η8 |
DΓ
Ds
| where Γ ≡ U/|U |,

1
Lc

Ds = |U |Dt

η9 Ui

dU

dxi

|u′
ju

′
kSjk|

between shear flows and boundary layers, hence important in RANS models [159].

The pressure gradient along streamline (η4) is a measure of the alignment of the

pressure gradient to the velocity. Positive values of η4 indicate adverse pres-

sure gradients which enhance turbulence, while negative values show favourable

pressure gradients which diminish it [63]. η5 is a measure of the dominance of

pressure normal stresses to shear stresses, and vice versa. η6 is a measure of the

non-orthogonality between velocity and its gradient and was originally proposed

by Gorlé et al. [56] to indicate flow deviation from 2D parallel shear flows. Most
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baseline RANS models are calibrated to perform well for parallel shear flows (e.g.

plane channel flow), however, they are known to perform poorly for flows that de-

viate from this, making η5 an important feature [89, 159]. Finally, the streamline

curvature (η8) proposed by Wang et al. [159], is used because of its impact on the

levels of turbulent shear stress, and thus its potential impact on the accuracy of

turbulence models [21, 145].

The neural network output is constructed as a linear combination of inputs

(the features for the first hidden layer, or the outputs from the preceding hidden

layer), which are transformed through a nonlinear activation function. Thus, the

output, β(η), can be expressed as follows:

β(η) = w(l)σ
[
w(l−1)η + b(l−1)

]
+ b(l), (6.5)

where l represents intermediate layers, σ is the activation function, w is the

weights matrix, and b is the biases. The neural network training involves solving

an optimisation problem (Eqn. 6.3) with the goal to estimate the values of the

weights and biases. A number of activation functions are available. In this work

we employed two commonly used functions: the rectified linear unit (ReLU) and

the hyperbolic tangent (tanh ) functions, and found the training algorithm to be

insensitive to it. The particular loss function used to measure the training quality

is the coefficient of determination, or simply R2, function.

The two key hyper-parameters that the training was found to be particularly

sensitive to were the number of hidden layers and the number of neurons per

layer. Manual adjustments of these showed that many hidden layers and tens of

neurons per layer are required to achieve reasonable accuracy when the neural

network-augmented turbulence model is used for predictions. The chosen number

of hidden layers was 10, with 100 neurons per layer. Fewer hidden layers and/or

fewer neurons per layer resulted in poor NN predictions of the β field when tested
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on the periodic hill test case in section 6.4. The training data (described in

chapter 6.4) was spilt such that ninety percent was used to train the model, while

ten percent is used for validation. Early-stopping was used to avoid over-fitting.

The Adam optimiser is used, with the learning rate set to 10−3. TensorFlow [1]

was used for the neural network implementation, and coupled with OpenFOAM

for CFD solutions, using a similar approach to Maulik et al. [102].

6.4 Training dataset and test cases

The neural network-augmented k − ω SST turbulence model is trained on the

streamwise velocity field DNS data on a set of parameterised periodic hills, shown

in Fig. 6.3. While the baseline geometry, i.e. α = 1.0, is a canonical flow fre-

quently used in data-driven turbulence modelling literature, Xiao et al. parame-

terised it by stretching/contracting the hill width in the streamwise direction as

a function of α, where the total horizontal length Lx, normalised by the constant

hill crest height, H, is given by [171]: Lx/H = 3.858α + 5.142. The resulting

geometries lead to flows with mild to massive separations. In this thesis, the

baseline geometry (α = 1.0 in Fig. 6.3) has previously been used as a test case

in chapters 3.5.3, 4.4.3 and 5.3.2 to demonstrate the discrepancies in commonly

used turbulence models, and the ability of field inversion to effectively reconstruct

the turbulent mean flow from high-fidelity data.

α=0.5 0.8 1.0 1.2 1.5

H

Lx

Ly

Figure 6.3: Parameterised periodic hill geometries.
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Table 6.3: Geometries used for training and testing the neural network-augmented
k − ω SST turbulence model.

Training cases Periodic hills, α = {0.5, 0.8, 1.2, 1.5}, Re = 5, 600

Test cases Periodic hill α = 1.0, Re = 5, 600

Converging-diverging channel, Re = 12, 600

NASA-wall mounted hump, Re = 936, 000

Table 6.3 outlines the four periodic hill geometries used for training, and the

three cases for testing the neural network-augmented k− ω SST model. The test

cases will not only investigate the interpolation capabilities of the neural network-

augmented turbulence model (i.e. with the baseline periodic hill case), but also

evaluate it for cases beyond the training flow configurations with very different

geometries and Reynolds numbers.

6.5 Results

6.5.1 Periodic hills

This section compares the predictive capabilities of the neural network-augmented

k − ω SST turbulence model, both a priori, i.e. α = {0.5, 0.8, 1.2, 1.5} where the

field inversion data has been used for training the neural network model, and a

posteriori, i.e. α = 1.0 which was left out of the training dataset.

The error reduction (compared to the baseline k − ω SST model) are shown

in Table 6.4. Field inversion is able to achieve significant error reductions in the

velocity predictions. While the neural network predictions also reduce the errors in

the baseline simulations to a large extent, these do not perform as well as the field

inversion scenarios. Specifically, for all the shapes considered, the average root-

mean-square error change (∆ϵ) for field inversion and neural network predictions
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Table 6.4: Comparison of the root-mean-square error reduction (∆ϵ) from field
inversion (FI), and the neural network-augmented model (NN) for the periodic hill
case. α, Ux, Uy, τxx, τxy represent the geometric parameter, the streamwise and
wall-normal velocity components, and the normal and shear Reynolds stresses.

Error reduction, ∆ϵ = [1− (ϵ/ϵbaseline)]× 100, %

Case, α ∆ϵ(Ux) ∆ϵ(Uy) ∆ϵ(τxx) ∆ϵ(τxy)

FI NN FI NN FI NN FI NN

0.5 58.2 17.0 53.2 30.0 22.3 10.5 28.4 9.9

0.8 69.5 47.5 71.5 51.7 37.0 20.7 36.3 26.1

1.2 62.4 60.4 62.5 53.5 22.9 16.5 27.3 23.5

1.5 82.0 65.3 83.2 63.0 36.0 19.6 34.6 24.2

1.0 71.9 66.7 73.8 60.1 40.0 24.7 34.9 28.5

compares as follows:

• streamwise velocity: field inversion: 68.8%; neural network 51.5%,

• wall-normal velocity: field inversion: 68.8%; neural network 51.7%,

• Reynolds stress (normal): field inversion: 31.6%; neural network 18.4%,

• Reynolds stress (shear): field inversion: 32.3%; neural network 22.4%.

The streamwise velocity predictions, overlayed by the streamlines, for the base-

line (α = 1.0), steepest (α = 0.5), and least-steep (α = 1.5) periodic hill geome-

tries are shown in Fig. 6.4. The streamlines show that the steeper the hill, the

larger the size of the separation bubble. As previously shown for the baseline

geometry, the baseline k − ω SST model tends to massively over-predict the size

of the separation bubble. These are significantly improved by both field inversion,

and the neural-network augmented k − ω SST model.
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(a) Baseline k − ω SST

(b) Field inversion

(c) Neural network k − ω SST

(d) DNS

Figure 6.4: Comparison of the streamwise velocity contours using the different
RANS-based models against the DNS data for the periodic hill cases.

The skin friction comparison for the baseline shape (α = 1.0) is shown in Fig.

6.5. The baseline k−ω SST model fails to capture to flow reattachment, as shown

in previous chapters. Both the field inversion and the neural network-augmented

model predictions are nearly identical, and are able to largely match the DNS

data from Krank et al. [76].

Fig. 6.6 shows the corrective field, β, contour for the baseline shape (α = 1.0)

from field inversion and the neural network prediction. As previously noted, the

field inversion results was not included in the neural network training dataset.
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Figure 6.5: Comparison of the skin friction for the baseline periodic hill.
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Figure 6.6: The corrective field β from field inversion vs. the neural-network
prediction for the baseline periodic hill geometry, α = 1.0.

The neural network β predictions is qualitatively similar to the field inversion

case for the majority of the flow domain, however, it is not as smooth. This could

be as a result of sub-optimal neural network training.

On the other hand, the flow features (η) are less sensitive to the β field differ-

ences discussed above, as illustrated in Figs. 6.7 - 6.8. Comparisons of the input

features also illustrate the impact of the corrective field in modifying the turbu-

lence model, and the significant changes required to match the flow predictions
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Figure 6.7: η1−η6: comparison of the features in Table 6.1 for the baseline periodic
hill case, α = 1.0. Left to right columnwise: baseline, field inversion, and neural
network (FIML) predictions.

to the high-fidelity data. In addition, it is notable that despite difference in field

inversion and neural network predicted β fields, the input features for the two

scenarios are largely similar. The neural network model struggles to achieve the
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Figure 6.8: η7−η9: comparison of the features in Table 6.1 for the baseline periodic
hill case, α = 1.0. Left to right columnwise: baseline, field inversion, and neural
network (FIML) predictions.

same correction in the pressure gradient along streamline (η4) feature, near the

first hill crest (Fig. 6.7(d)). As previously mentioned, this may be due to poor

training of the neural network hyper-parameters and ineffective regularisation.

More broadly, the inherent decoupled nature of the FIML approach (i.e. field

inversion and machine learning training being separate steps) means there are no

guarantees that the field inversion corrections are fully learnable.

6.5.2 Converging-diverging channel

This case is used to further assess the extrapolation capabilities of the neural

network-augmented k − ω SST model. It is not only significantly different in

terms of the geometry from the cases used for neural network training, but is

at a higher Reynolds number and has a milder flow separation, as discussed in

chapter 3.5.2, compared to the training dataset, making it a challenging case for

the augmented turbulence model.
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Fig. 6.9 compares the streamwise velocity profiles for the baseline and aug-

mented k−ω SST model, against the available DNS data. The augmented model

significantly improves the flow predictions beyond x/H ≈ 7.5, where the flow is

re-attached based on the DNS data, whereas the baseline SST model predicts a

large separation. Similarly, Fig. 6.10 shows that the pressure predictions by the

NN-augmented SST model is much closer to the DNS results beyond the sepa-

rated shear layer. Overall, the neural network-augmented k − ω SST model is

effective in extrapolating to this case.

6 7 8 9 10 11 12

x=H; Ux=Ub + x=H

0.0

0.5

1.0

1.5

2.0

y
=H

DNS Baseline SST FIML-augmented SST

Figure 6.9: Comparison of the streamwise velocity profiles with the neural
network-augmented turbulence model for the CDC case.

6.5.3 NASA wall-mounted hump

The final extrapolation test is the NASA wall-mounted hump, which again has a

significantly different geometry, and a much higher Reynolds number compared

to the neural network training dataset.

The streamwise velocity profiles from around the hump apex (locations shown

in Fig. 5.1) are shown in Fig. 6.11. Again, the baseline k − ω SST model over-

predicts the flow separation. The neural-network augmented turbulence model

struggles to match the LES reference data when the flow reverses, in the range

0.65 ≲ x/c ≲ 0.8, especially very close to the lower wall, however beyond this
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Figure 6.10: Surface pressure comparison with the neural network-augmented
turbulence model for the CDC case.
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Figure 6.11: Comparison of the streamwise velocity profiles for the NASA wall-
mounted hump case.

range the augmented SST matches the reference LES data fairly well. It under-

predicts the size of the separation bubble, which it “learned” on the training
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Figure 6.12: Comparison of the surface pressure predictions for the NASA wall-
mounted hump case.

dataset which had much larger separation bubbles (in some periodic hill geome-

tries this is several times the size of the characteristic length). However, since the

separation is milder for this case, the NN-augmented model is over-correcting the

baseline model. This is not unexpected, due to the significantly different geome-

try, Reynolds number, and hence flow characteristics of the hump case compared

to the parameterised periodic hills used for training.

Finally, the surface pressure predictions on the hump wall are shown in Fig.

6.12. The NN-augmented turbulence model performs poorly overall, by over-

correcting the baseline k − ω SST model in the separated shear layer. Overall,

the extrapolative capabilities of the neural network-augmented SST model for

this case are limited. This can be both a result of poor neural network train-

ing, over-fitting to the training data and a lack of generalisation. Neural network

training issues may be partially remedied by performing a more systematic op-

128



timisation of the network structure and hyper-parameters. Over-fitting may be

avoided by using early stopping more effectively and adding dropout layers in the

neural network training. It might also be possible to reduce the network size by

performing a feature importance analysis and considering entirely different set of

features. In addition, generalisation can be also improved by training on a more

varied dataset. However, there might be an inherent limitation within the original

FIML framework, where the field inversion and neural network training steps are

decoupled. As discussed in chapter 2.3.1, there are not guarantees that the field

inversion corrections are learnable when the neural network is trained on static

data. This may be improved by employing the FIML-direct approach proposed by

Holland et al [65]. Finally as previously argued, and also shown in literature such

as Refs. [132, 147], data-driven augmented turbulence models that are universally

applicable are very difficult to achieve. Instead, it is more pragmatic to develop

customised models for specific flows, which will be demonstrated in the following

chapter where the augmented model developed here is applied for aerodynamic

shape optimisation of a periodic hill flow, a case for which the augmented model

performs very well as we have demonstrated in this chapter.

6.6 Summary

In this chapter a RANS-based baseline turbulence model—k − ω shear stress

transport (SST)—was augmented using the field inversion and machine learning

(FIML) approach. The two-step process involved flow reconstruction through

inverse modelling (an adjoint-based optimisation where the goal is to minimise the

errors between some high-fidelity data and the baseline RANS model by applying

a correction field, β, to the production term of the turbulent transport equation),

and the generalisation of the β field using neural networks, used for predictions

beyond the training dataset. Key findings are summarised as follows:
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• We augmented the baseline k−ω SST model using the FIML approach. The

augmented model was trained on DNS streamwise velocity fields for a set of

parameterised periodic hills involving mild to massive flow separations.

• A priori test of the NN-augmented SST model on the periodic hill case

showed that the baseline SST model was able to significantly reduce the

errors in most of the quantities of interest, and was shown to match reference

DNS data well.

• A posteriori tests on flow cases with significantly different geometries and

Reynolds numbers showed that the NN-augmented model can improve the

baseline predictions (significantly in for the converging-diverging channel

flow, and to some degree for the NASA wall-mounted hump case). However,

there is a risk of over-fitting, as seen in the deficiencies in the surface pressure

predictions for the hump case.
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CHAPTER 7

Aerodynamic shape optimisation with
neural network-augmented turbulence

modelling

7.1 Introduction

This chapter addresses the problem of improving aerodynamic shape optimisation

using the field inversion and machine learning framework (FIML). There is a

research gap in leveraging the potential benefits of the FIML in aerodynamic shape

optimisation using high-fidelity data – this is an important opportunity because

ideally the FIML approach should lead to improved turbulence models, which in

turn should enable improved aerodynamic shape designs. This chapter provides

the novel contribution of using the FIML approach to improve aerodynamic shape

optimisation, bringing together the contributions from the previous chapters in

order to solve an important problem in aerospace design optimisation. The work

has been published in Refs. [17, 14].

Aerodynamic shape optimisation based on computational fluid dynamics (CFD)

analyses is a vibrant research field and is expected to play a significant role in

industry [141, 100], for applications such as modern aerospace vehicles design,

more efficient renewable energy solutions (e.g. wind turbines), etc. Turbulence

is a ubiquitous flow phenomenon in these applications, which can be numeri-

cally simulated using techniques with various levels of fidelity. Low fidelity ap-
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proaches such as potential-flow or Euler equations ignore viscous effects, while

turbulence can be partially or fully resolved in large eddy simulations (LES) and

direct numerical simulations (DNS), respectively. As aerodynamic shape opti-

misation is an iterative process, that requires many function evaluations, LES

and DNS are computationally prohibitive. Alternatively, simulations based on

the Reynolds-averaged Navier-Stokes (RANS) equations are considered adequate

for CFD-based on-design aerodynamic shape optimisation due to their relative

simplicity, low computational cost, and robustness. However, RANS simulations

have well-documented deficiencies for complex flows (e.g. [148]), such as those

involving separation, which means the models are inadequate in these scenarios,

especially for off-design conditions. In this work, we explore aerodynamic shape

optimisation in the presence of a massive flow separation, simulated by a machine

learning-augmented RANS-based turbulence model.

Like many areas of science the use of machine learning techniques in aero-

dynamic shape optimisation has received noticeable attention. Main application

areas as identified by Li et al. in the recent review are [85]: geometric parame-

terisation of the design space to exclude aerodynamic shapes which are deemed

abnormal, thus allowing the use of fewer design variables; predictions of aerody-

namic coefficients leveraging machine-learning-based predictive simulations; and

new optimisation architectures, such as replacing CFD-based optimisation with

surrogate-based optimisation. However, the use of machine learning techniques in

aerodynamic shape optimisation for more accurate turbulence flow predictions in

the RANS setting is less well-explored.

Investigation of aerodynamic shape optimisation sensitivity to the choice of

turbulence model has shown that while it is less sensitive in on-design conditions

with relatively simple flows (e.g. small or no separation, no shock boundary layer

interactions, etc.), it can be sensitive in off-design conditions in deterministic
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optimisation setups (i.e. when uncertainty due to turbulence modelling is un-

accounted) [157]. Cook et al. investigated performing shape optimisation while

accounting for structural uncertainties in turbulence closure modelling through

the eigenspace perturbation approach [33]. They concluded that performing de-

sign optimisation under turbulence model uncertainty can lead to more robust

solutions, and avoids sub-optimal designs where turbulence model sensitivities

are unaccounted.

Inspired by the FIML approach, Fidkowski recently investigated aerodynamic

shape optimisation for unsteady turbulent flows [45]. The training data was

generated using 2D (unsteady) detached eddy simulations and used to correct

steady RANS-based flow simulations. The design objective and constraints were

time-averaged quantities. The results achieved demonstrated that accounting for

unsteady flow behaviour leads to improved designs, compared to steady flow sim-

ulations. In this work we augment an existing steady turbulence model (k − ω

SST) trained on time-averaged high-fidelity simulation data from DNS.

7.2 Optimisation framework

An overview of the proposed methodology for aerodynamic shape optimisation is

provided in Fig. 7.1, involving three steps:

1. Baseline geometry: we choose the periodic hill flow as a proof-of-concept

case, also used in the previous chapters. As previously stated, this case is

chosen due to the availability of the high-fidelity DNS data for the set of

parameterised periodic hills (Fig. 6.3), making it an appropriate choice to

investigate aerodynamic shape optimisation with neural network-augmented

turbulence modelling.

2. RANS-based aerodynamic shape optimisation: we perform aerodynamic shape
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Figure 7.1: Overview of the aerodynamic shape optimisation of the periodic hill
case.

optimisation using the neural network-augmented k − ω SST model, devel-

oped and tested in chapter 6). In order to investigate the sensitivity of the

aerodynamic shape optimisation to the turbulence model, we will also em-

ploy two existing turbulence models: the baseline k−ω SST, and the Wilcox

k−ω. The shape optimisation problem will be formulated in chapter 7.2.1,

with the implementation details in chapter 7.2.2.

3. Flow verification: Once the aerodynamic shape optimisation is performed,

it is important to validate the predictive capabilities of the different RANS-

based turbulence models using a higher-fidelity method. In this work, we

use the improved delayed-detached eddy simulation (IDDES) hybrid RANS-

LES approach, which will be detailed and validated in chapter 7.3.

7.2.1 Problem formulation

We solve an aerodynamic shape optimisation problem where the goal is to op-

timise the lower wall for minimum drag. The objective function formulation for

this particular case is more of a mathematical construct than an application of
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aerodynamic engineering design optimisation. We stress that the goal is to as-

sess the proposed framework in the presence of complex flow structures which

are encountered in engineering applications, making this proof-of-concept case a

suitable one, nonetheless.

The objective functions and constraints are defined as follows:

min
∆y

Cd,lower wall = 1
1
2ρU

2
b S

(∫∫
S
τw(t̂ · î)ds+

∫∫
S
p(n̂ · ĵ)ds

)
,

subject to:

− 0.4 ≤ ∆y/H ≤ 0.4,

∇p = ∇pprescribed,

T.B. =
Ncells∑
i=1

ϕViνt,i ≥ T.B.prescribed, ϕ = 103,

(7.1)

where ∆y (representing the manipulation of the lower wall in the y-direction) is

the design variable, and Cd is the drag coefficient. The unit vectors î, ĵ, t̂ and n̂

represent the directions parallel and perpendicular to the bulk velocity, Ub. τw, p,

ρ, and S are the wall shear stress, wall pressure, density, and surface area. The

constraints are the upper and lower bounds for the possible y-coordinates values,

the prescribed pressure gradient to achieve a constant bulk flow, and the sum of

turbulent viscosity over the entire flow field. The last constraint, T.B., is used to

penalise the optimiser tendency to essentially turn the lower wall into a flat wall

to reduce the drag by eliminating the flow separation. This is to ensure that a

certain turbulence level continues to characterise the flow. The constant ϕ = 103

is chosen to scale the T.B. constraint to have a value close to unity.
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7.2.2 MACH-Aero

The aerodynamic shape optimisation problem is solved using the open-source

MACH-Aero framework∗. The framework relies on a gradient-based approach

to perform design optimisation, which is computationally cheaper—in terms of

function evaluations required—compared to gradient-free approaches, especially

for cases of industrial interest, e.g. airfoil [123], or wing [96] optimisation. The

approach is illustrated in Fig. 7.2 using the extended design structure matrix

(XDSM) [78].

Figure 7.2: Extended design structure matrix (XDSM) diagram [78]. Diagonal
rectangles represent processes/modules (software), while off-diagonal parallelo-
grams represent data input and output. Thick lines illustrate data flow between
modules, while the black lines show the process flow for the adjoint solver (for
derivative computation). Rounded rectangle(s) denote an iterative process, also
called the ‘driver’.

The shape optimisation procedure as depicted in numerical order in Fig. 7.2

is as follows:

1. Generate a volume mesh for the geometry, and an initial free-form deforma-

tion (FFD) box with volumetric control points, Fig. 7.3. The FFD technique
∗https://github.com/mdolab/MACH-Aero
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(a) Baseline mesh, overlayed by the FFD points.

(b) Close-up of mesh, left: baseline, right: deformed during optimisation.

Figure 7.3: The periodic hill mesh and the FFD points.

is used for morphing the design surface, and is described in step 3.

2. Provide a set of baseline design variables to the optimiser. The optimisation

problem is formulated using pyOptSparse [168]. The optimiser updates the

design variables and outputs them to the geometry parameterisation module.

The optimiser used in the current work is based on the sequential least

squares programming (SLSQP) algorithm, which was found to be sufficient

for the number of design variables involved. The two key parameters for the

SLSQP optimiser in pyOptSparse is the termination criterion (convergence

accuracy, set to 10−12) and the maximum number of optimisation iterations

(set to 100) †. Fig. 7.4 shows the optimisation histories for the optimisation

results in section 7.4.

3. Deform the design surface based on the updated design variables and the
†https://tinyurl.com/594sykfw

137

https://tinyurl.com/594sykfw


0 20 40 60

Iterations

0.030

0.035

0.040

0.045

0.050

D
ra

g
co

e,
ci
en

t,
C

d

k ! ! SST
Wilcox k ! !
NN-augmented SST

Figure 7.4: Objective function history with the different turbulence models during
the optimisations. The maximum number of iterations is set to 100, and the
convergence accuracy is set to 1× 10−12.

FFD points. The geometry parameterisation uses the free-form deformation

technique whereby the design surfaces are embedded in an FFD volume

which maps the surface coordinates to the FFD control points using a set of

B-splines curves. The design surface can than be deformed by moving the

FFD points.

4. Update the volume mesh based on the deformed design surface(s). An

example of the original and deformed mesh is shown in Fig. 7.3 (b).

5. Run RANS-based flow simulations on the updated geometry/mesh. As out-

lined in chapter 3.4, in this work we use DAFoam for flow predictions.

6. Run the adjoint computations, using the discrete adjoint approach, detailed

in chapter 3.3. All the turbulence models, including the NN-augmented k−ω

SST, are differentiated using the reverse-mode algorithmic differentiation

approach utilising CoDiPack [97].
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7. Compute the derivatives of the objective and constraint functions with re-

spect to the design variables, and supply these to the optimiser.

8. Repeat steps 2-7, until the objective function satisfies a predefined metric.

7.3 Hybrid RANS-LES verification framework

Hybrid methods utilise a closure model in the near-wall region of the flow, while

performing eddy-resolving simulation away from the wall. The predictions with

these methods can be significantly more accurate than RANS models, while re-

quiring a coarser mesh than required for wall-resolved LES, or DNS [51, 28]. In

this work we use the Spalart-Allmaras IDDES model. The surrogate eddy viscos-

ity ν̃ is defined as [136]:

∂ν̃

∂t
+Ui

∂ν̃

∂xj

= cb1S̃ν̃+ 1
σ

[
∇ · (ν̃∇ν̃) + cb2 (∇ν̃)2

]
− cw1fw

(
r̃
(

ν̃

lIDDES

)2)
, (7.2)

where the turbulent eddy viscosity is defined as νt = fv1ν̃. The functions fv1 and

fw are for near-wall corrections, S̃ is the strain rate tensor, the non-dimensional

term r̃ is defined as νt/(S̃κ2d2
w), where κ is the von Kármán constant, dw is the

distance from the wall, and {σ, cb1, cb2, cw1} are model constants. The modified

length scale lIDDES is used to switch the transition from the unsteady RANS

to scale-resolving LES, and along with the intermediate variables and functions,

which are defined as:

lIDDES = f̃d (1 + fe) dw + (1− f̃d)lLES, (7.3)

lLES = CDESψ∆, CDES = 0.65, (7.4)

∆ = min(max([Cwdw, Cwhmax, hwn])), (7.5)

f̃d = max(1− fd, fB), (7.6)

fd = 1− tanh
[
8
(
r3

d

)]
, (7.7)
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fB = min
[
2exp

(
−9α2

)
, 1.0

]
, (7.8)

α = 0.25− dw

hmax

, (7.9)

fe = max [(fe1 − 1), 0]ψfe2. (7.10)

For detailed discussions refer to Shur et al. [136].

7.3.1 Simulation setup

IDDES simulations are performed on all the periodic hill geometries. The flow

is driven by a constant pressure gradient which is established by adding a source

term in the momentum equation. The Reynolds number is ReH = 5, 600 for

all the parameterised geometries. Cyclic boundary conditions are applied at the

inlet, outlet, and the spanwise directions, while no-slip is imposed at the hills

and top wall. Two different mesh resolutions are used. For α = {0.5, 0.8, 1.0}

the number of cells is nx × ny × nz = 200× 160× 80 = 2.56× 106, while for α =

{1.2, 1.5}, the number of cells is nx × ny × nz = 400× 220× 80 = 7.04×106. The

mesh are deliberately dense to reduce mesh related inaccuracies. The geometry in

the spanwise direction is extended by half the streamwise length of the baseline

geometry, i.e. Lz = 4.5H following the DNS dataset. The time-step used is

∆t = 0.0004, and the data is collected over a time period of T = 350H/Ub.

The simulations are run in OpenFOAM [69], based on the finite-volume method.

The convective term in the momentum equation is discretised using the hybrid

scheme of Travin et al. [153] blending a second-order central difference scheme

for the LES regions, and a second-order upwind scheme for the RANS regions.

All other terms were discretised using a second-order limited linear differencing

scheme. The PIMPLE algorithm is used for the pressure-velocity coupling, which

combines the Pressure-Implicit with Splitting of Operators (PISO) and the Semi-

Implicit Method for Pressure Linked Equations (SIMPLE) algorithms [129].
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7.3.2 IDDES predictions vs. DNS

0 2 4

5Ux=Ub

0

1

2

3

y
=H

x=H = 0:05

0 2 4

5Ux=Ub

x=H = 1

0 2 4

5Ux=Ub

x=H = 2

0 2 4

5Ux=Ub

x=H = 4

0 5

5Ux=Ub

x=H = 6

0 5

5Ux=Ub

x=H = 8

IDDES DNS

(a) Streamwise velocity

0 0.2 0.4

5Uy=Ub

0

1

2

3

y
=H

0 0.2 0.4

5Uy=Ub

-0.2 0

5Uy=Ub

-0.4 -0.2 0

5Uy=Ub

-0.2 -0.1 0

5Uy=Ub

0 0.5 1

5Uy=Ub

(b) Wall-normal velocity

0 0.5 1

15=xx=U
2
b

0

1

2

3

y
=H

0 0.5 1

15=xx=U
2
b

0 0.5 1

15=xx=U
2
b

0 0.5 1

15=xx=U
2
b

0 0.5 1

15=xx=U
2
b

0 0.5

15=xx=U
2
b

(c) Normal stress

-0.2 -0.1 0

20=xy=U
2
b

0

1

2

3

y
=H

-0.4 0

20=xy=U
2
b

-0.4 0

20=xy=U
2
b

-0.4 -0.2 0

20=xy=U
2
b

-0.4 -0.2 0

20=xy=U
2
b

-0.4-0.2 0 0.2

20=xy=U
2
b

(d) Shear stress

Figure 7.5: IDDES vs. DNS vs. RANS predictions of velocity and Reynolds
stresses for the baseline shape, α = 1.0.

In this section we will verify the IDDES predictions against the DNS data

from Xiao et al. [171]. For brevity, the results will primarily focus on the baseline
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periodic hill geometry (α = 1.0).

Profiles of streamwise and wall-normal velocity components, and the normal

and shear Reynolds stresses are plotted in Fig. 7.5. The IDDES predictions for

the baseline geometry show excellent agreement with the DNS data.
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Figure 7.6: Comparison of the skin friction and surface pressure for the baseline
geometry, α = 1.0.

The surface quantities on the hill wall is plotted in Fig. 7.6. In addition,

predictions from the Wilcox k−ω, k−ω SST, and the neural network-augmented

k−ω SST are shown for comparison. The wall quantities are not available from the

DNS dataset by Xiao et al. [171], and are instead a comparison to the DNS data

from Krank et al. [76] for the same geometry and flow condition. The skin friction

predictions from IDDES are in excellent agreement with the DNS reference data.

However, for the surface pressure, there is a considerable discrepancy between the

IDDES prediction and the DNS data for x/H ≥ 3. It is unclear what causes this

discrepancy. However, the pressure predictions by the neural-network augmented

SST and the Wilcox k−ω models are in good agreement to the reference DNS data.

Fig. 7.7 compares the drag coefficient prediction on the hill wall for the different
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geometries, with the different models. It is clear that the drag rises as the hill

crests become steeper, causing larger separation. The IDDES and baseline SST

model have comparable drag predictions. However, it is important to note that

the pressure drag is the dominant component (compared to the viscous drag) in

the total drag, and as previously discussed, the IDDES and baseline SST pressure

predictions are least accurate compared to the reference DNS data (for the baseline

shape, α = 1.0).
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Figure 7.7: Comparison of the drag coefficient predictions for the different periodic
hill geometries.

Finally, comparisons of the root-mean-squared errors for the IDDES and var-

ious RANS-based simulations against the DNS dataset for all the geometries are

shown in Fig. 7.8. For the four quantities considered (streamwise and wall nor-

mal velocity components, and the normal and shear stresses), the IDDES results

show considerably lower errors compared to the baseline k − ω SST model pre-

dictions for all the geometries. The IDDES predictions are also more accurate

compared to all the RANS-based predictions for the wall normal velocity and

Reynolds stresses. However, the neural network-augmented SST model has the

least error in the streamwise velocity predictions. This is because the model has

been trained on the streamwise velocity data from DNS. Similarly, by using the
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Figure 7.8: Root-mean-squared error comparison of the IDDES results compared
to three RANS-based results. α, Ux, Uy, τxx, τxy represent the five periodic hills,
the streamwise and wall-normal velocity components, and the normal and shear
Reynolds stresses, respectively.

corresponding high fidelity data for the other quantities, even higher accuracy

in these quantities may be possible. This will be investigated further in future

works. The Wilcox k−ω and the neural network-augmented SST models are con-

sistently more accurate than the baseline k− ω SST model for all four quantities

considered.

Having verified the accuracy of the IDDES predictions compared to DNS pre-

dictions, we will now proceed to presenting the shape optimisation results, along

with IDDES verification of the flow predictions.
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7.4 Optimisation results

The aerodynamic shape optimisation results using the three turbulence models

considered, k−ω SST, FIML-augmented k−ω SST, and the Wilcox k−ω model

will be presented in this section.
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Figure 7.9: The baseline shape overlaid with the optimised shapes for the three
RANS-based turbulence models. The lower wall surface friction and surface pres-
sure for the baseline and optimised shapes are also shown using the three respec-
tive turbulence models in each column. In addition, IDDES predictions for the
optimised shapes are shown for comparison.

The optimised shapes, along with lower wall pressure and skin friction distri-

butions are shown in Fig. 7.9. Tables 7.1 and 7.2 show comparisons of the drag

coefficients. Contours of streamwise velocity, and the streamlines for the RANS
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Figure 7.10: The baseline and optimised streamlines with normalised streamwise
velocity. The first two rows show the predictions from the respective RANS-based
turbulence models used during the shape optimisation, while the final row shows
the IDDES predictions of the optimised shapes.

Table 7.1: Drag coefficient predictions for the optimised hill walls using the dif-
ferent models. Cd RANS column is the drag prediction by the turbulence model
used during aerodynamic shape optimisation, i.e. the model in column one. ∆Cd

is the percentage drag reduction compared to the baseline shape.

Optimisation case Cd RANS Cd IDDES Error ∆Cd RANS ∆Cd IDDES

k − ω SST 0.035371 0.033291 6.25% 6.53% 4.52%

NN-augmented SST 0.031191 0.026043 19.77% 20.81% 25.30%

Wilcox k − ω 0.033695 0.027963 20.50% 35.30% 19.80%

models and IDDES results are shown in Fig. 7.10, with velocity profiles com-

parisons in Fig. 7.11. Finally, turbulent flow structures are illustrated through

Q-criterion contours from IDDES in Fig. 7.12. The key findings are summarised

as follows:

1. The choice of turbulence model for flow predictions clearly impacts the aero-
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Figure 7.11: Streamwise velocity profiles for the optimised shapes using the three
different RANS models compared against the IDDES results.

Table 7.2: Predictions of drag components for the three turbulence model optimi-
sation scenarios. Cd,p and Cd,v refer to the pressure and viscous (friction) forces.

Optimisation case Cd,p RANS Cd,p IDDES Cd,v RANS Cd,v IDDES

k − ω SST 0.03514 0.03211 0.00024 0.00119

FIML-augmented SST 0.02867 0.02423 0.00252 0.00181

Wilcox k − ω 0.03132 0.02608 0.00237 0.00188
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Figure 7.12: Visualisation of the turbulent flow structures for the baseline and
optimised shapes, using IDDES flow predictions. Contours show the Q-criterion,
coloured by the normalised streamwise velocity.

dynamic shape optimisation outcome, as the three models result in three

distinct “optimal” shapes. The FIML-augmented k − ω and the Wilcox

k − ω share some similarities which we will discuss shortly.

2. Table 7.1 shows that the baseline k − ω SST model achieves the least drag

reduction–based both on the RANS predictions and the IDDES results.

The FIML-augmented k−ω SST and the Wilcox k−ω achieve considerably

higher reductions. However, there are considerable errors between the RANS

and IDDES predictions. This could be as a result of the issue in pressure

predictions in the IDDES results.

3. All three models attempt to reduce the drag in the baseline shape by de-

creasing the flow separation. The FIML augmented k − ω SST and the

Wilcox k−ω achieve this by raising the lower wall. This results in a smaller
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separated shear layer compared to the baseline shape, as demonstrated by

the earlier flow reattachment locations on the skin friction plots (Fig. 7.9),

and the streamlines in Fig. 7.10. On the other hand, while the baseline

k − ω SST reduces the size of the recirculation zone after the first hill, it

introduces a second larger recirculation zone adjacent to the first one (based

on the RANS predictions).

4. In terms of the skin friction predictions, the baseline k − ω SST model

continues to be the most erroneous, similar to the baseline shape. Both the

FIML-augmented k − ω SST and the Wilcox k − ω model predictions are

similar to the IDDES.

5. For the surface pressure distributions, there are considerable discrepancies

between the SST RANS models (both baseline and FIML-augmented), while

the Wilcox k − ω predictions are similar. Again, further investigation is

required to discern how accurate the IDDES predictions are before using

these for benchmarking the RANS predictions.

6. The baseline k−ω SST model continues to over-predict the flow separation in

the shear layer, in comparison to the IDDES results, as shown in the velocity

contours in Fig. 7.10 and the streamwise velocity profiles in Fig. 7.11. The

Wilcox k − ω model is somewhat more accurate in velocity predictions,

however, discrepancies exist near the walls. On the other hand, the FIML-

augmented k − ω SST match the IDDES velocity predictions well (Fig.

7.11).

7. Finally, turbulent flow structures are visualised using the Q-criterion in Fig.

7.12. The baseline case has much larger turbulent structures near the hills.

These are reduced by various degrees in the different optimised cases. Large

regions of flow reversal (negative Ux/Ub values) in the optimisation case with
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the baseline k − ω SST model also illustrate the higher drag prediction for

this geometry.

7.5 Summary

This chapter presented an aerodynamic shape optimisation framework in which

a RANS-based baseline turbulence model—k − ω shear stress transport (SST)—

is augmented using the field inversion and machine learning (FIML) approach,

presented in chapter 6. The framework was applied to a proof of concept periodic

hill case. Key steps and findings are summarised as follows:

• The adjoint-based aerodynamic shape optimisation was formulated as that

of reducing the surface drag on the lower wall of the periodic hill geometry.

• In order to demonstrate the inherent sensitivity of the shape optimisation

outcome on the choice of RANS-based turbulence model for flow predictions,

we also used the Wilcox k − ω model to perform shape optimisation. We

also demonstrated that of the two existing (baseline) turbulence models

considered, the Wilcox k − ω model was overall more accurate in terms of

flow prediction comparisons to the reference DNS data.

• We also proposed using a higher-fidelity approach to validate RANS-based

flow predictions for the optimised shapes. For this, the Spalart-Allmaras

based improved delayed detached eddy simulations (IDDES) was used. We

validated the IDDES results against the available reference DNS data. While

the IDDES results were much more accurate compared to the baseline

RANS-based predictions in most quantities (velocity, Reynolds stress com-

ponents, and skin friction), it failed to match the reference DNS pressure

distribution. The cause of this discrepancy is subject to future investiga-

tions. Additionally, future work can entirely rely on the IDDES data for
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training the neural network-augmented turbulence model (instead of the

DNS dataset used in the present work), which will ensure that the training

and validation high-fidelity framework is consistent.

• The three different RANS-based turbulence models—baseline k − ω SST,

FIML-augmented k − ω SST, and the Wilcox k − ω—resulted in different

optimal shapes, highlighting the sensitivity of the final outcome to the tur-

bulence model.

• The drag reductions were quantified both based on the respective RANS-

based flow predictions of the baseline and optimised shapes, and the IDDES-

based predictions, Table 7.1.

• The baseline k − ω SST model led to the least drag reduction: 4.5%. The

FIML-augmented k−ω SST model achieved a drag reduction of 20.8%. The

Wilcox k − ω model achieved an error reduction of 19.8%.

• In comparison to the IDDES predictions, the baseline k−ω SST model was

the least accurate in terms of velocity and skin friction predictions. Both

the Wilcox k − ω and the FIML-augmented k − ω SST model matched the

skin friction and velocity predictions from IDDES fairly well.

• The performance of the baseline k−ω model is similar to the NN-augmented

k − ω SST, naturally, leading one to argue that the latter is unnecessary.

However, the use of the Wilcox k − ω model in this work is to illustrate

the sensitivity of aerodynamic design optimisation to the turbulence model

in complex flows. The choice to augment the SST model in this work has

been due to: 1) the knowledge that this model performs poorly for the

separated periodic hill flows, and 2) to investigate the application of FIML

to augment turbulence models for aerodynamic design optimisation, i.e. a
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proof-of-concept study. The methodology presented is equally applicable to

other turbulence models, including the Wilcox k − ω, which while effective

for the periodic hills, can perform poorly for other flows.

• Arguably, the T.B. constraint (Eqn. 7.1) is artificial—a mathematical con-

struct for a proof-of-concept test case. Future work will explore other con-

straints. For example, a minimum integrated area between the hills apex (i.e.

y/H ≤ 1, with an appropriate range constraint for x/H, e.g. 1 ≤ x/H ≤ 8).

Similar to the T.B. constraint this should avoid the optimiser turning the

lower wall into a flat plate in order to reduce the drag. Additionally, we will

also consider entirely different flow cases, e.g. aerofoils.
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CHAPTER 8

Conclusions and future work

8.1 Conclusions

Reynolds-averaged Navier-Stokes (RANS) equations with turbulence models con-

tinue to be the workhorse for predictions of complex flows despite their limitations.

In recent years a number of data assimilation techniques have been introduced for

improved RANS turbulence modelling. While some rely on huge datasets of high-

fidelity data, such as those available from direct numerical simulations (DNS),

other frameworks have been shown to achieve considerable improvements using

limited, experimentally measurable, data. One such framework is field inversion:

an approach that involves perturbations of the turbulence model transport equa-

tion through a spatial field and the iterative optimisation of this field such that

the error between model prediction and data is minimised.

In this thesis we develop a novel sensor placement approach for generating

sparse experimental data for data assimilation. It leverages systematic eigenspace

perturbations of the Reynolds-stress tensor to identify regions of flow where RANS

turbulence modelling assumptions are most erroneous and concentrate measure-

ments in these areas using a novel greedy algorithm. The method is a priori,

directly addressed structural errors in the existing model, and is computationally

cheaper compared to many existing approaches in literature. Our results for vari-

ous test cases show that the error reduction using our method for sensor placement
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is close in accuracy to the instances where the entire flow field data are used for

flow reconstruction, which are two to three orders of magnitude more data points

than the placed sensors.

We investigate fusing data from various quantities (e.g. velocity and surface

pressure measurements) to perform data assimilation using multi-objective op-

timisation. Results demonstrate that multi-sensor data leads to enhanced flow

reconstruction. In addition, the tests results show that equally weighting the

different terms in the composite multi-objective loss function is appropriate. In

addition we investigate the relative importance of various physical quantities on

the flow reconstruction. It is quantitatively shown that skin friction data can

achieve overall error reduction comparable to using the streamwise velocity for

the entire domain. On the other hand, using surface pressure data and discrete

velocity profiles lead to similar overall error reductions.

Another area of interest for us is adjoint-based aerodynamic shape optimi-

sation at off-design conditions where the flows exhibit complex behaviour, such

as separation, poorly predicted by RANS models. Using higher fidelity methods

(e.g. DNS, LES), or even unsteady RANS simulations, for iterative shape opti-

misation is prohibitively expensive as many function evaluations are required. To

tackle this challenge, we propose the use of machine learning techniques trained

on high-fidelity data for a relatively small parameter space to enhance the RANS-

based models and then using the augmented model for shape optimisation, at a

computational cost similar to the existing RANS-based approaches. We perform

field inversion for geometries/flow conditions sufficiently representative of the de-

sign space. Next, neural networks are employed to predict the corrective fields

for unseen geometries and/or flow conditions. We perform preliminary hypothesis

testing on a proof-of-concept case based on a parameterised set of periodic hills

which involve mild to massive flow separations with a drag reduction objective
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function. Investigations highlight the role of the turbulence model on the optimal

shapes achievable, with the data-driven model achieving approximately 4-times

more drag reduction compared to the baseline model.

8.2 Future work

The following directions are identified for potential future research.

Sensor placement

While the framework was tested with adjoint-based data assimilation, it is directly

applicable to other methods, such as the ensemble-based field inversion, since the

placement strategy is decoupled from the data assimilation process. Future work

can investigate this and compare the data assimilation outcomes between adjoint-

and ensemble-based data assimilation approaches.

The framework was tested on well-established two-dimensional cases, how-

ever, the same methodology outlined in chapter 4 is directly applicable to three-

dimensional flows, which will be investigated in the future. In addition, future

work will investigate sensor placement for surface measurements (the thesis hav-

ing only focused on velocity measurements within the flow domain). Especially

for three dimensional flows the proposed strategy can be used to generate un-

certainty maps for the surface pressure and skin friction predictions and then

apply the placement algorithm to concentrate sensors at the regions of highest

uncertainty.

As previously discussed, once the uncertainty maps are generated using eigens-

pace perturbations, sensors are placed using a novel greedy algorithm introduced

in chapter 4.3.2—these two sequential steps being decoupled from one another.

The decoupled nature of the strategy may be a limitation as we do not consider

the sensitivity of the RANS model states with respect to the regions of uncertainty
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during the sensor placement procedure. Our assumption is that the uncertainty

map—variance for any one given quantity to be measured (e.g. Ux or p) based

on the five predictions from eigenspace perturbations—can sufficiently inform the

sensor placement. However, the sensitivity of that quantity to other flow variables

are not necessarily taken into account when placing sensors. The advantage of this

is the substantially lower computational cost of the placement strategy. However,

future work can investigate the use of deep learning methods to incorporate the in-

sights from the eigenspace perturbations into a single step with sensor placement.

For instance, neural networks can be used to develop a reduced order model of

the sensitivity of the flow variables to spatial regions of the flow, and incorporate

this in an optimisation problem similar to the deep neural network used in Ref.

[35]. This may make the heuristic minimum distance constraint to avoid sensor

clustering in the greedy algorithm introduced in chapter 4.3.2 redundant.

Multi-sensor data

We demonstrated enhanced flow reconstruction when using data for multiple

quantities when performing adjoint-based field inversion. As noted throughout

the thesis, neural network approaches are required to generalise the field inversion

corrections in order to use the augmentations beyond the cases used for training.

Future work will investigate if the enhanced field inversion capability using multi-

sensor data can also extend to enhanced capabilities when training the neural

network-augmented turbulence model for flows beyond the training cases.

Aerodynamic shape optimisation

While we demonstrated the FIML utility in aerodynamic shape optimisation for a

proof-of-concept case (due to the available high-fidelity data for the parameterised

geometry)—the periodic hill flow—future work will apply the methodology to
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aerospace flows of interest. In addition, we used commonly employed features/in-

puts for the neural networks. In future, the importance of these features will

be investigated using methods such as SHAP (SHapley Additive exPlanations)

analysis [95], leading to addition or deletion of features where appropriate. In ad-

dition, we will further investigate if other sets of features can be used to improve

the neural-network training and prediction performance. In particular, the set

of features we used required very large neural-network architectures, as discussed

in chapter 6.3. It would be beneficial to note if another set of features can be

selected that require a smaller neural network such as the one used in Ref. [45].

Finally, we will investigate if the FIML-direct approach as discussed in chapter

2.3.1 can lead to improved neural network training.

The black-box neural network approach can be replaced with closed-form cor-

rections [68], or symbolic regression [165], to develop interpretable augmentations

of turbulence models. A closed-form augmented model with simple algebraic

expressions, such as in Ref. [68] can also reduce the computational overhead. Fi-

nally, we will investigate how the training data for any particular application can

be generated systematically. It is critical that the training dataset sufficiently cov-

ers the parameter space to allow maximum flexibility and accuracy in predictions

during the aerodynamic shape optimisation process. To achieve this, approaches

such as Latin hypercube sampling and novel deep learning approaches will be

investigated [140, 86].

Open-source implementation

The open-source FIML was implemented on three commonly used linear eddy

viscosity turbulence models, and tested on incompressible and low Mach num-

ber compressible, two-dimensional steady flows. Future works can extend the

capabilities to more complex flows, such as those in the transonic and supersonic
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regime. The implementation can be extended to more sophisticated turbulence

models, such as non-linear eddy viscosity models, and transitional models. In

addition, the topics investigated in this thesis can be incorporated into the new

capability for time-accurate unsteady flows in DAFoam [43]—the platform where

we implemented the original open-source FIML capability.
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Appendix A

Transport equations for baseline
turbulence models

A.1 Spalart-Allmaras

The transport equation for the surrogate variable, ν̃ along with the intermediate

functions, and model constants are as follows [143]:

∂ν̃

∂t
+ uj

∂ν̃

∂xj

= cb1 (1− ft2) S̃ν̃ −
[
cw1fw −

cb1

κ2 ft2

] (
ν̃

d

)2

+ 1
σ

[
∂

∂xj

(
(ν + ν̃) ∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
, (A.1)

where the intermediate functions are

fv1 = χ3

χ3 + c3
v1
, χ = ν̃

ν
, fw = g

[
1 + c6

w3
g6 + c6

w3

]1/6

, g = r + cw2(r6 − r),

r = ν̃

Ω̃κ2d2
, Ω̃ = Ω + ν̃

κ2d2fv2, fv2 = 1− χ

1 + χfv1
, cw1 = cb1

κ2 + 1 + cb2

σ
,

(A.2)

with Ω representing the rotation rate, and d the wall distance. The model con-

stants are as follows: cb1 = 0.1355, cv1 = 7.1, σ = 2/3, cb2 = 0.622, κ = 0.41,

cw2 = 0.622, and cw3 = 2.0.
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A.2 Wilcox k − ω

The transport equation for the two-equation turbulence model solving for the

turbulent kinetic energy and dissipation rate, along with the model constants are

outlined below [163]:

(∂k)
∂t

+ Uj
∂(k)
∂xj

= τij
∂Ui

∂xj

− β⋆ωk + ∂

∂xj

[(
µ+ σ∗ k

ω

)
∂k

∂xj

]
, (A.3)

∂ω

∂t
+ Uj

∂ω

∂xj

= α
ω

k
τij
∂Ui

∂xj

− βω2 + ∂

∂xj

[(
ν + σ

k

ω

)
∂ω

∂xj

]
, (A.4)

where

τij = νt

(
2Sij −

2
3
∂uk

∂xk

δij

)
− 2

3kδij, (A.5)

Sij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (A.6)

and the model constants are as follows: α = 5/9, β = 3/40, β⋆ = 9/100, σ = 1/2,

and σ∗ = 1/2.

A.3 k − ω shear stress transport

The k − ω shear stress transport (SST) [105, 106] model blends the k − ω model

in regions close to walls, and k− ϵ in the farfield. The transport equations for the

turbulent variables are

∂k

∂t
+ Uj

∂k

∂xj

= Pk − β∗kω + ∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
, (A.7)
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∂ω

∂t
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∂ω

∂xj

= αS2 − βω2 + ∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+

2 (1− F1)σω2
1
ω

∂k

∂xj

∂ω

∂xj

, (A.8)

where

F2 = tanh
[max

(
2
√
k

β∗ωy
,
500ν
y2ω

)]2, (A.9)

Pk = min
(
τij
∂Ui

∂xj

, 10β∗kω

)
, (A.10)

F1 = tanh


{

min
[
max

( √
k

β∗ωy
,
500ν
y2ω

)
,

4σω2k

CDkωy2

]}4, (A.11)

CDkω = max
(

2ρσω2
1
ω

∂k

∂xi

∂ω

∂xi

, 10−10
)
, (A.12)

with the following model constants: α1 = 5/9, α2 = 0.44, β1 = 3/40, β2 = 0.0828,

β∗ = 9/100, σk1 = 0.85, σk2 = 1, σω1 = 0.5, and σω2 = 0.856.
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