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Abstract

The Internet-of-Things (IoT) is an inevitable technological paradigm shift across hundreds
of application domains, including healthcare, manufacturing, and infrastructure. Commu-
nication of potentially sensitive or security-critical information is commonplace as with any
technological domain. Therefore, the security of such communication is key to providing trust
to enable wider adoption. IoT as a concept has many implications that need not always be as-
sumed for other communication environments, such as physical access and power/hardware
restrictions, which present challenges to established methods for securing communication.
This reality means that assumptions regarding the storage and transmission of sensitive data
must be stronger. In response to the new demands for such secure communication, Physical
Unclonable Functions (PUFs) were proposed to provide highly secure just-in-time crypto-
graphic tokens/keys to enable strong security at a low resource overhead. Various types
of PUF have been proposed since their conception, each with varying features, strengths
and weaknesses. Most notably, PUFs proposed have been consistently subjected to machine
learning modelling attacks (ML-MA). Dynamic Random Access Memory (DRAM) PUFs
were more recently proposed with promising features over similar PUF types. Limited works
have been explored investigating the applicability of utilising DRAM-PUFs to design se-
cure authentication protocols. Therefore, it is essential to develop techniques for and test
the effectiveness of DRAM-PUFs for enabling authentication in resource-constrained systems.

This thesis proposes three novel methods for enabling authentication by exploiting DRAM-
PUFs. Particularly, we develop a computer vision-based approach for accurately classifying
and retrieving noisy Latency DRAM-PUF responses for grouped devices, noting the highest-
performing classifiers for this task. Through this research, we develop and share a unique
temperature and voltage-dependent Latency DRAM-PUF dataset for use of the wider re-
search community. To improve the authentication scalability, we additionally present a
novel, generic obfuscation method for Strong PUFs, further demonstrating how utilisation
of DRAM-PUF characteristics can ensure high security against machine learning threats.
Finally, a hardware-level approach is tightly integrated into a privacy-preserving authenti-
cation protocol to enhance protection against threats with advanced prior PUF access and
knowledge to prevent powerful ML-MA.
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Chapter 1

Introduction

The need to prove the identity and authenticity of objects and communications has been
an important problem to be solved for thousands of years. Evidence for using signatures
to identify and authenticate objects even dates back as early as 3100 BC by the Sumeri-
ans of Mesopotamia [35]. In the modern world of electronic technology, the requirement for
deriving strong identity and authenticity has remained of paramount importance. As soci-
ety primarily adopts computerised technologies for storing, processing and communicating
potentially private, sensitive or even safety-critical data, providing strong trust becomes a
significant problem to tackle. While many methods have been developed to enable various
levels of trust in digital communications (for example, Transport Layer Security [18]), often,
most security assumptions are based on the cryptographic assumptions of the ciphers and
software which underpin the protocols. With the ever-growing adoption of technologies such
as the Internet-of-Things (IoT), increasingly, smart components and devices must communi-
cate openly on publicly accessible networks with fewer computational and power resources
available and - arguably most significantly - generally must be assumed to be physically
accessible to potential adversaries. With these new assumptions, novel problems arise in
protecting the security and practicality of communications. The concept of a ‘Root-of-Trust’
(RoT) describes the lowest level of security in the hardware/software abstraction stack∗ of
which where trust is assumed, further trust may be built upon it. While each layer must
include its own security architecture to prevent an attack at the given level, security vul-
nerabilities in lower abstractions cause security measures at higher abstractions to become
redundant as they can then be circumvented. Assuming attackers have physical access to
devices when considering the domain of IoT, physical hardware attacks must be considered.
Suddenly, hardware-level RoTs become essential to enable the overall security of the entire
abstraction stack. If the hardware cannot be trusted, the software cannot be trusted.

Physically Unclonable Functions (PUFs) were proposed as a method to provide a physical
RoT for electronic devices by exploiting entropy present in the integrated circuits (ICs) of
which a device is comprised [27]. Through the characterisation of micro-variations which
occur during the manufacturing process of the IC, PUFs enable system designers to provide
strong authentication and even key generation for embedded security applications based
upon an unpredictable and unique feature of an individual device. Since their conception,

∗Application code (highest-level software) down to the physics of the hardware itself, with levels of software
such as assembly code, machine code, instruction set architecture etc. in between.

1



CHAPTER 1. INTRODUCTION 2

many different PUF designs have been proposed, each with various features, providing unique
strengths and weaknesses for enabling security applications.

Certain PUFs known as ‘Strong’/‘Extensive’ PUFs (described in detail in Section 2.3.1)
showed promising properties for use in ultra-lightweight challenge/response authentication
protocols due to an ability to produce an exponentially growing number of unique input/output
pairs - known as challenge/response pairs (CRPs) - with physical PUF size. Verifiers could
send one-time challenges to PUF devices with an expected response (already stored in a
database after an initial enrollment period), and the PUF device could excite the PUF to
generate the response on the fly and return it to the verifier in order to perform authenti-
cation. Shortly after this proposal, however, it was discovered that it is possible to utilise
machine learning algorithms to clone PUFs using a relatively small amount of CRPs from
the total CRP space, enabling a counterfeit model to accurately output correct responses to
novel challenges, effectively allowing attackers to impersonate the PUF, and thus the PUF
device [74]. Since then, all strong PUF proposals have been later shown to be vulnerable
to machine learning modelling attacks (ML-MA) [16, 23, 44, 76, 77, 90]. In response to this
significant vulnerability, obfuscation schemes have been proposed with the aim to obscure the
hardware interface to the underlying PUF circuit and/or reduce the linearity in the correla-
tion between the challenges and responses and thus increase the difficulty for an attacker to
perform modelling, physical and side-channel attacks [20,24,28,92,95,96]. Such schemes, how-
ever, often either vary in their effectiveness in preventing ML-MA or often require an amount
of hardware overhead, which prevents the solution from remaining lightweight enough for
reasonable application to a resource-constrained embedded system.

So-called ‘Weak’/‘Constrained’ PUFs are a second key type of PUF which have under-
gone development concurrently with Strong PUFs, characterised by a single or small number
of supported unique CRPs of a large individual size (hence ‘Weak’, though not a reflection
on security properties). These PUFs were originally proposed as relatively complicated op-
tical measurement circuits exploiting unique speckle patterns from shining a laser through
a diffuser [71]. Despite the naming convention, Weak PUFs have found broader adoption
and applicability within the academic community and have even started to be adopted
commercially for key generation purposes as an alternative to key storage in Non-Volatile
Memories (NVMs). While the limited CRP space makes Weak PUFs unsuitable for support-
ing challenge/response-based authentication, it does provide an intrinsic resilience against
ML-MA due to a lack of available data to perform sufficiently accurate cloning of the PUF
behaviour. Resultantly, some works have also proposed to utilise the stability of Weak PUFs
to enhance the security of Strong PUFs in a combined fashion in an attempt to perform
obfuscation of Weak PUFs while keeping resource overheads low [14,53].

Memory PUFs were developed utilising Static and Dynamic Random Access Memories
(SRAM/DRAM) to derive entropy from power-cycle/refresh cell-state and read/write la-
tency phenomena. These ‘Software PUFs’ (denoted by their method of entropy measurement
occurring through software) are particularly attractive due to their relative stability and
pre-existing presence in computer systems, allowing for efficient use of on-device resources
over a requirement for custom hardware additions. While SRAM-PUF has seen extensive
exploration in the literature and are one of the very few PUF types which has been adopted
commercially, DRAM-PUFs have some key promising features over SRAM, namely, faster
PUF access time, higher density (higher available CRP space) and no requirement for a dis-
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ruptive device power cycle. Due to the ubiquitous nature of DRAM in computer systems,
ranging from high performance to commodity down to some embedded systems, the inves-
tigation into methods for exploiting DRAM-PUFs for better enhancing secure applications
with advanced threat models becomes an attractive area of research.

PUFs, which measure extremely low-level physical variations, are inherently susceptible to
noise induced by environmental factors such as temperature, humidity, voltage fluctuations,
and ageing. DRAM-PUFs are no exception to these challenges, meaning measurements often
contain noise, which can increase in particularly adverse conditions. Additionally, DRAM
consists of memory regions which are typically more stable than others, which is also affected
by noise. While unstable regions can be exploited for generating random numbers (given
exceptionally unstable characteristics), these regions reduce the effective space for reliable
CRP generation suitable for authentication. Furthermore, unstable regions are typically not
clustered together physically on the DRAM die itself; rather are scattered at the bit-cell level
among the stable cells, making large PUF measurements difficult to remove noise from. In
cryptographic applications, noise prevents the reliable generation of secret keys containing
zero noise. Commonly, error correction methods are employed, such as Fuzzy Extraction (FE)
to remove noise from key data with the aid of helper data; however, they have been shown to
leak information which enables ML-MA on the target PUF [79]. Computer-vision techniques
have been tested to enable authentication of Memory-PUF responses without performing
denoising actively; however, they come with a trade-off in computational overhead.

1.1 Aims and Objectives

DRAM-PUFs demonstrate highly promising characteristics for enabling security in resource-
constrained systems. Additionally, there is a significant potential for Strong PUFs to enable
highly secure and very lightweight authentication in such systems. Based on the currently
unexplored aspects in the current state-of-the-art, we identify the current open questions as
hypotheses, with the first :

Hypothesis 1: Computer vision-based authentication can be employed using DRAM-
PUFs for authentication in a practically lightweight fashion. Highly acceptable false posi-
tive/false negative rates for authentication can be achieved across multiple devices (multi-class
classification) for highly noisy responses.

Since DRAM-PUFs do not support an extremely high number of unique CRPs, it is
important to investigate how they can be further integrated alongside currently vulnerable
Strong PUFs in order to enable ideal challenge/response-based authentication. Currently, the
obfuscation of Strong PUFs is highly resource-consuming, therefore, our second hypothesis is:

Hypothesis 2: DRAM-PUF entropy can be exploited to enhance the obfuscation of Strong
PUFs for authentication such that required hardware overhead is minimised while resistance
against ML-MA remains high.

Finally, while obfuscation of Strong PUFs enhances resilience against ML-MA, ensur-
ing authentication protocols are compatible with the design for optimal use remains vital.
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Additionally, hardware design alone cannot prevent ML-MA, where adversaries have more
advanced knowledge of the PUF at various stages in the device life cycle. We particularly
note a semi-honest threat, where it is assumed that a previously honest actor in the authen-
tication process becomes dishonest and attempts to exploit previously collected PUF data in
order to compromise future authentication, which hardware design alone cannot overcome.
For this reason, our final hypothesis is as follows:

Hypothesis 3: A privacy-preserving protocol can be designed which tightly integrates a
DRAM-PUF-enhanced Strong-PUF obfuscation design in order to provide further resilience
against ML-MA, including resilience against adversaries with significantly elevated privileges
to collect PUF data and mount attacks.

Collectively, the hypotheses (and thus experimental research) attempt to enhance the
application of DRAM-PUFs as useful cryptographic primitives for resource-constrained en-
vironments, particularly for enabling strong authentication of devices against sophisticated
threats.

1.2 Thesis Contributions

As a result of the research carried out based on our initial hypotheses, the major contributions
provided in this thesis are as follows:

• The introduction of the concept of a ‘PUF Phenotype’ as a way to describe an observed
PUF response, including its environmentally-dependant noise features, such that not
only underlying PUF structures contribute to identity but also its specific measured
interaction with environmental change (i.e. noise).

• The proposal and evaluation of a Convolutional Neural Network (CNN) based authenti-
cation methodology for DRAM-PUF ‘Phenotypes’, enabling accurate identification and
authentication of noisy DRAM-PUF responses without a requirement for denoising or
error-correction approaches. This approach is performed at a lower overhead than the
state-of-the-art and supports group-based authentication through multi-class (multiple
device) classification.

• The production of a novel temperature and voltage variant Latency DRAM-PUF re-
sponse ‘Phenotype’ dataset.

• The proposal and evaluation of a novel generic and low-cost obfuscation scheme for se-
curing Strong PUFs against ML-MA by exploiting DRAM-PUFs, validated in hardware
on Field Programmable Gate Array (FPGA).

• The proposal and evaluation of a novel PUF-based authentication protocol designed to
operate with DRAM-PUF-based Strong PUF obfuscating hardware.
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1.3 Thesis Overview

The overall thesis is structured as shown in Figure 1.1 to address the aims, objectives and
hypotheses described in the earlier subsections. This is presented in the following chapters:

Figure 1.1: Thesis structure overview

In Chapter 2, titled ‘Background and Related Work’, we provide the definitions of
general concepts relevant for the understanding of all technical chapters, including relevant
related works, identifying their limitations to supplement the motivations for the undertaking
of this research.
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In Chapter 3, titled ‘PUF-Phenotype: A Robust and Noise Resilient Approach
to Aid Group-Based Authentication With DRAM-PUFs Using Machine Learn-
ing’, we propose a novel approach to authenticating noisy DRAM-PUF responses. By utilis-
ing a combination of CNNs and classical ML classifiers, we classify the origin of a response to
a given device in a group and infer the authenticity of the input via model confidence. The
proposed approach is empirically tested on several machine learning algorithms, including an
ablation study against simulated fraudulent samples.

In Chapter 4, titled ‘A Generic Obfuscation Framework for Preventing ML-
Attacks on Strong PUFs through Exploitation of DRAM-PUFs’, we introduce a
novel approach to obfuscate the challenge/response interface of any Strong PUF. Our method
leverages the advantageous traits of DRAM-PUFs to prevent ML-MA when using Strong
PUFs for remote authentication. We provide experimental evidence to demonstrate the ef-
ficacy of our approach. Furthermore, we implement and evaluate the proposed scheme on a
Xilinx Field Programmable Gate Array (FPGA) to assess the associated hardware resource
overhead.

In Chapter 5, titled ‘A Privacy-Preserving Protocol Level Approach to Prevent
Machine Learning Modelling Attacks on PUFs in the Presence of Semi-Honest
Verifiers’, we propose an authentication protocol for preventing ML-MA against remote
attackers, introducing an additional threat as a ‘semi-honest verifier’. We build upon the
hardware obfuscation scheme in Chapter 4 and integrate a modified PUF obfuscation, which
we synthesise and evaluate on a Xilinx FPGA.

In Chapter 6, titled ‘Conclusions and Future Work’, we provide a summary of the
significant findings and contributions of the research, concluding with recommendations for
future work.

1.4 Key Publications

The works presented in the key technical chapters of this thesis have appeared in the following
peer-reviewed publications:

1. Millwood, O., Miskelly, J., Yang, B., Gope, P., Kavun, E. B., & Lin, C. (2023). PUF-
Phenotype: A Robust and Noise-Resilient Approach to Aid Group-Based Authentica-
tion With DRAM-PUFs Using Machine Learning. IEEE Transactions on Information
Forensics and Security (TIFS).
This publication can be found online at: https://ieeexplore.ieee.org/document/

10099450 This work is presented in Chapter 3.

2. Millwood, O., Pehlivanoglu, M. K., Pasikhani, A. M., Miskelly, J., Gope, P., &
Kavun, E. B. (2023). A Generic Obfuscation Framework for Preventing ML-Attacks on
Strong-PUFs through Exploitation of DRAM-PUFs. 8th IEEE European Symposium
on Security and Privacy (EuroS&P).

https://ieeexplore.ieee.org/document/10099450
https://ieeexplore.ieee.org/document/10099450
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This publication can be found online at: https://ieeexplore.ieee.org/document/

10190495 This work is presented in Chapter 4

3. Millwood, O., Hongming, F., Gope, P., Narlı, O., Pehlivanoğlu, M. K., Kavun, E. B.,
& Sikdar, B. (2023). A Privacy-Preserving Protocol Level Approach to Prevent Machine
Learning Modelling Attacks on PUFs in the Presence of Semi-Honest Verifiers. 2023
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
326–336. IEEE.
This publication can be found online at: https://ieeexplore.ieee.org/document/

10133804 This work is presented in Chapter 5

https://ieeexplore.ieee.org/document/10190495
https://ieeexplore.ieee.org/document/10190495
https://ieeexplore.ieee.org/document/10133804
https://ieeexplore.ieee.org/document/10133804


Chapter 2

Background and Related Work

This chapter will present the preliminary knowledge relevant to all components of the thesis,
including descriptions of relevant technologies and concepts alongside the relevant state-of-
the-art literature.

2.1 Physically Unclonable Functions

A Physically Unclonable Function (PUF) is a hardware-rooted security primitive that is used
to provide electronic devices/components with an intrinsic identity, commonly referred to as a
‘hardware fingerprint’ for a device and was first introduced in silicon in 2002 by Gassend et al.
in [27]. A PUF generally comprises a specific electronic circuit which is measurable through
some mechanism either internally (intrinsic) or externally (extrinsic) to the containing device
and produces unique outputs dependent on sub-atomic micro-variations caused during the
manufacturing of the circuit itself. In this way, many PUFs may be built from ‘identical’
circuits, which provide different characteristics and unique outputs based on this entropy
caused during manufacturing. As the individual process variation in each component is
highly random, the distribution of variations across all components gives the circuit a unique
identity. A PUF, therefore, can fulfil a role similar to a biometric in human authentication
systems, with the PUF identity being used to verify the identity of the parent device and/or
component [31, 68, 85, 93]. PUFs can also be used as a source of secret information, such
as providing the secret key for a cryptographic algorithm without that secret needing to
be stored in a non-volatile memory, which could be vulnerable to physical, invasive or side-
channel attacks [25,54,80,83]. Unlike traditional cryptographic methods, PUFs aim to exploit
unpredictable physical variations present in the hardware itself rather than algorithmically
to extract entropy [74]. This enables PUFs to act as a strong hardware Root-of-Trust (RoT),
such that the derived secrets are very difficult to extract by an attacker, enabling strong
security to built atop of this ‘root’.

Theoretically, a PUF may be considered as the function R = PUF (C), which accepts
a set of n input values (known as Challenges) C ∈ {c0, ..., cn} from which are produced
a corresponding output value/set of values (known as Responses) R ∈ {r0, ..., rn}. Due
to the physical nature of a PUF, outputs are generally subject to noise caused by varying
environmental conditions (temperature, voltage, humidity, ageing etc.). Resultantly, char-
acterisation and/or post-processing of PUF responses is most often required to ensure the

8
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Figure 2.1: Ideal PUF properties

reliable derivation of secret keys. Where PUFs are shown to have high instability, however,
it has been shown that they can be used effectively as True Random Number Generators
(TRNGs) [11,86].

2.2 Key PUF Properties

In order to evaluate the effectiveness of a PUF design, various key properties must be demon-
strated by the PUF and its outputs as illustrated in Figure 2.1. We refer to the definitions
provided in [57]:

Uniqueness It must exhibit different challenge-response behaviour. The same challenge
issued to n number of PUFs should produce different responses for each.

Reliability/Reproducability The response generated for a given challenge to the same
PUF must be consistent through varied use, i.e. the same challenge must produce the same
response throughout the lifetime of the PUF, regardless of temporal/environmental variation.

One-Wayness It must be impossible to ‘invert’ the behaviour of the PUF mathematically,
meaning a challenge must not be able to be derived from its arbitrary response.

Tamper-Evidence Attempting to mount a physically invasive attack on a PUF must
permanently alter the challenge response behaviour to mitigate its usefulness to an attacker.
In addition, this behaviour change will dictate that future legitimate use of the PUF will
reveal tampering efforts have occurred.
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Unclonability It must be impossible for anyone (including the PUF manufacturer) to
construct a new PUF with the identical challenge/response behaviour of another, even if the
complete knowledge of another legitimate PUF instance is known.

Unpredictability Knowledge of a given challenge/CRP must not reveal any information
about the PUF’s response to said challenge. This rule is also considered broken if an adversary
can clone a PUF.

2.3 PUF Categories

The concept of a PUF can be realised physically in a variety of ways (see Section 2.4),
each resultantly with key varying characteristics which encourage further classification. Most
commonly in the literature, PUFs are mainly categorised as ‘Weak’ (section 2.3.2) or ‘Strong’
(section 2.3.1). Despite the terminology, this does not refer to the security properties of the
PUF design; rather, it reflects the size of the CRP space (the full set of possible unique
challenges and responses supported by the PUF)∗. Additionally, PUFs can be further divided
into unique categories to distinguish their features based on how the PUF itself is measured,
denoted as Extrinsic (section 2.3.3) PUFs, Intrinsic PUFs (section 2.3.4) and Software PUFs
(section 2.3.5). Strong and Weak categories are mutually exclusive, as well as Extrinsic and
Intrinsic categories, otherwise, a PUF can consist of a combination of these categories.

2.3.1 Strong (Extensive) PUFs

Strong PUFs are characterised by a very large CRP space, which ideally grows exponentially
with PUF size. A suitable Strong PUF should support sufficient unique CRPs such that a full
read-out of all possible CRPs should be highly infeasible for an adversary. Examples of Strong
PUFs include Arbiter-based PUFs such as the Arbiter PUF (APUF), XOR-Arbiter PUF
(XOR-APUF) and Feed-Forward Arbiter PUF (FF-APUF), discussed in more detail each
in the respective Sections 2.4.3, 2.4.4 and 2.4.5. Extremely large CRP spaces make Strong
PUFs particularly suited to challenge and response authentication methods as individual
CRPs can be used just once (to prevent attackers replaying responses) without concern of
the PUF running out of unique CRPs to use (discussed further in Section 2.7). This property
of Strong PUFs has been exploited widely, however, in order to perform powerful machine-
learning modelling attacks (ML-MA). Due to the significant amount of available CRP data,
machine learning models can be trained to accurately model Strong PUFs (discussed in detail
in Section 2.5).

2.3.2 Weak (Constrained) PUFs

Weak PUFs –as opposed to Strong PUFs– are characterised by supporting a small CRP
space (sometimes only a single CRP), which grows at a generally linear or polynomial rate
with hardware size. Weak PUFs are often implemented for key generation purposes as an

∗Due to the potentially misleading terminology, the naming convention has been recently updated in
the ISO standard: ISO/IEC 20897-1:2020(E) to ‘Extensive’ (Strong) and ‘Constrained’ (Weak) PUFs. We
continue to use the ‘Strong’ and ‘Weak’ terminology in this thesis in the meantime as the wider literature
adopts these new terms.
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alternative to static key storage on NVM. With the limited CRP space, Weak PUFs are
intrinsically resilient against ML-MA, resulting in more successful commercial adoption in
providing hardware RoT for IoT applications over Strong PUFs. Relevant examples of Weak
PUFs include Optical PUFs [71], Static Random Access Memory (SRAM) PUFs [39] (Section
2.4.6) and Dynamic Random Access Memory (DRAM) PUFs [41,83] (Section 2.4.7).

2.3.3 Extrinsic PUFs

Another useful way of categorising PUFs is based on the evaluation method. Extrinsic PUF(s)
measurement of the PUF response requires a method fully external to the PUF itself, for
example, the Optical PUF proposed in 2001 by Pappu in [71]. The ‘PUF’ component of
an Optical PUF can be seen as the diffuser material, where the random pattern (and thus
entropy) is derived from, and the evaluation method is the optical sensor. Extrinsic PUFs
are more challenging to measure as they require external equipment, increasing the hardware
overhead for implementation. There is, however, an inherent level of security for Extrinsic
PUFs due to the decoupling of the measurement process from the entropy source, increasing
the complexity for an attacker.

2.3.4 Intrinsic PUFs

Intrinsic PUFs are PUFs where the evaluation method is integrated into the PUF/device
itself, often through the addition of circuitry designed for this purpose. Key examples of
Intrinsic PUFs are APUFs, whereby the initial input and output measurement occur in the
same circuit [88]. Intrinsic PUFs are extremely useful as often only an interface must be
designed to initiate the PUF and read the response directly, for example in the form of a
software module. This reduces the resource requirement and complexity of measurements,
but may also provide a wider attack surface for adversaries looking to exploit the PUF at a
system level.

2.3.5 Software PUFs

Software PUFs are a further important PUF distinction, where the evaluation method is
integrated into the PUF and re-purposes existing circuitry, using software control mechanisms
to evaluate without design changes (thus naturally a subset of Intrinsic PUFs). Where most
Intrinsic PUFs at least rely on circuitry designed specifically to be a PUF, Software PUFs use
novel manipulations of existing control structures to measure commodity components. This
lowers the barrier of entry for using a PUF in a given system and has the desirable property
of making the PUF applicable to existing devices without hardware changes. Memory-based
PUFs (section 2.4.2) such as SRAM-PUFs, DRAM-PUFs and more recently, Processor-based
PUFs [58,85,97] are examples of this approach, whereby software controls such as a modified
memory controller are utilised to generate and measure PUF entropy.

2.4 PUF Implementations

Since the initial concept of a PUF was first introduced, many different physical implementa-
tions for measuring manufacturing variations in electronic devices have been proposed. We
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discuss the following PUF implementations relevant to the technical chapters of this thesis,
starting with the two relevant key PUF construction distinctions: Delay-based PUFs and
Memory PUFs.

2.4.1 Delay-based PUFs

A Delay-based PUF ultimately consists of a type of circuit specifically designed to measure
time variation in an input signal travelling through ‘identical’ circuit pathways [69]. What
distinguishes such a circuit as a PUF is that the minute manufacturing variations in these
pathways cause input signal travel times which are measurable and different from, circuit to
circuit. This grants a given delay circuit a characterisable property which cannot be pre-
planned by the manufacturer, that can in turn be exploited as a PUF. A Delay-based PUF
can be generally defined by a delay model, which is constituted of the following, as laid out
in 2009 by Morozov et al. [69]:

The delay d of a net is defined in 2.1, where dS is a static delay and dR is a random delay,
caused by manufacturing variations.

d = dS + dR (2.1)

With a Delay-based PUF, consider two nets N1 and N2 which must be compared. The
delay values for these two nets are defined as:

d(N1) = dS1 + dR1 (2.2)

d(N2) = dS2 + dR2 (2.3)

If the two nets are identical (in circuit layout) then it can be assumed that dS1 = dS2,
therefore, the overall delay ∆d between N1 and N2 can be expressed as:

∆d = d1 − d2 + dR1 − dR2 = ∆dR (2.4)

Ideally, a Delay-based PUF will have a total delay which is solely a function of the random
delay component caused by manufacturing variations. If, however, N1 and N2 are not laid
out identically on the circuit, it is more likely (as it is found in reality) that dS1 ̸= dS2.
Because of this, the total delay (skew) becomes:

∆d = dS1 − dS2 + dR1 − dR2 = ∆dS +∆dR (2.5)

Here, the output of the PUF is at the very least partially influenced by ∆d, giving the
final output a bias. If ∆dS is ever greater than ∆dR, the effect of the manufacturing is no
longer significant, rendering the PUF static, regardless of dR. For PUF designers therefore, it
is important to design a circuit whereby the routing is as identical as manufacturing tolerance
allows, formally, such that ∆dS → 0.
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2.4.2 Memory-based PUFs

Memory-based PUFs are characterised by their composition based upon computational stor-
age hardware, which can be both volatile and non-volatile. Examples include PUFs derived
by various phenomena associated with Static, Dynamic and Block Random Access Memories
(SRAM, DRAM and BRAM), NAND/NOR flash memory and Read Only Memories (ROM).
To remain within scope of the work presented in this thesis, we define PUFs derived from
SRAM (section 2.4.6) and DRAM (section 2.4.7).

2.4.3 Arbiter PUF (Strong, Intrinsic, Delay)

The first and arguably most well-documented type of Strong (and Delay-based) PUFs are
Arbiter-PUFs (APUFs) – known as a type of ‘Linear-Delay PUF’ – which exploit intrinsic
delay variation in two nominally identical electrical pathways, formalised as an additive linear
delay model were introduced by Gassend et al. in 2002 [27].

An APUF consists of k paired multiplexers chained together which determine a pathway
an input signal can take through a circuit (Figure 2.2). The output of each multiplexer
(and thus the accessible paths) in the chain can be configured by the binary value of the
corresponding (to the multiplexers) index of a k bit challenge. Finally, a latch (arbiter) detects
the signal and outputs a 0 or 1, depending on which signal was sensed first. Unpredictable
manufacturing variations (present in the multiplexers and electrical pathways) ensure that for
the same challenge bits as input, different identical APUFs exhibit different outputs, such that
each response can uniquely identify a given individual PUF. APUFs, however, are insecure
against Machine Learning (ML) based Modelling Attacks (ML-MA), where adversaries who
collect sufficient CRPs can accurately determine the final delay value for a given PUF and
thus easily output correct responses for unseen challenges [74, 76] (see Section 2.5). Various
more comprehensive PUFs based on APUF have been designed and tested in an attempt
to reduce the linearity and correlation between the initial challenge data and response data,
such as the XOR-Arbiter-PUF (XOR-APUF) (Section 2.4.4).

Figure 2.2: Arbiter-PUF
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2.4.4 XOR-Arbiter PUF (Strong, Intrinsic, Delay)

Due to the linearity (and thus learnability) of the standard APUF, in 2007 Suh et al. sug-
gested using n-APUFs in parallel with each having k-stages to provide non-linearity to the
delay model [80]. Figure 2.3 shows the structure of an XOR-APUF, where one unified chal-
lenge is applied to each APUF, and each of their different responses is XOR’ed with one
another to produce a final ’golden response’. While this XOR logic increases the difficulty
for modelling attacks, in 2010 Rührmair et al. proved that machine learning techniques are
still able to be utilised to model an XOR-APUF [74] successfully. While it was demonstrated
that increasing the number of unique APUFs in the chain increased the resilience against
ML-MA, this came at the cost of a significantly increased noise in the overall PUF outputs,
requiring more significant error correction to overcome the problem. Including more APUFs
in a given IC should also be considered to increase the hardware overhead, which is often
undesirable for scalability in the targeted IoT-based solutions.

Figure 2.3: XOR Arbiter-PUF

2.4.5 Feed-Forward Arbiter PUF (Strong, Intrinsic, Delay)

In 2004, Gassend et al. proposed the Feed-Forward Arbiter PUF (FF-APUF) as another
method to reduce the linearity of the standard APUF (Figure 2.4) [29]. In this design, k− f
challenge bits are applied to k − f of the multiplexer pairs and the outputs of f pairs are
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‘fed forward’ to multiplexer pairs further in the chain, where f is the number of feed-forward
loops included. For each feed-forward loop, the output of both paths is input to an additional
arbiter to generate the new challenge bit for the future multiplier pair. While the linearity of
the APUF is reduced with the feed-forward mechanism, similar to the XOR-APUF, Gassend
et al. raised concern regarding potential vulnerabilities due to the potential to express the
FF-APUF in the additive linear delay model [29]. As expected, the FF-APUF was broken
by ML-MA by utilising a relatively simple Multi-Layer Perceptron (MLP) by Saed et al. in
2017 [1].

Figure 2.4: Feed-Forward Arbiter-PUF

2.4.6 SRAM-PUF (Weak, Intrinsic, Software, Memory)

The SRAM-PUF was first introduced in 2009 by Holcomb et al. in [39]. It exploits unique
variations in the bit-cell states on power-up to reveal a digital fingerprint. SRAM stores bits
using cross-coupled inverters gated by access transistors (a flip-flop) [72]. A binary one or
zero is stored depending on the state of each side of the inverters, which is denoted as AB:
AB = 00 = power down state, AB = 01 = binary zero, AB = 10 = binary one, AB = 11
= unstable and unreachable state. While receiving constant power, an SRAM flip-flop will
retain the value stored for an indefinite period of time without requiring any refresh. This
property denotes this memory type as being ‘Static’ Random Access Memory. As the state of
each flip-flop is 00 when no power is supplied, when power is eventually supplied, the state of
a given cell has a specific probability of settling into one of the two stable states of binary one
or zero. This probability per cell is dictated by manufacturing variation and environmental
noise, enabling cells to exhibit cell-state behaviour on start-up, which is unique to the SRAM
chip itself and constitutes a PUF. Cells are considered stable and thus suitable for PUF use
where the probability of collapsing to one or zero on start-up is high (thus reliable) such that
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the same PUF output can be repeatedly obtained. Unstable SRAM regions, found to have a
probability of around 0.5 of collapsing to one or zero per bit, while unsuitable for PUF use,
are beneficial for use as TRNGs [39]. Figure 2.5 shows how a PUF output is derived from a
region of SRAM on start-up. SRAM-PUFs have seen significant research and have even seen
some commercial adoption [55,59].

Figure 2.5: Example of an SRAM-PUF through an SRAM cell within the
context of a 36-bit region of SRAM memory during startup, where P is the
probability of the cell-state S being a binary one. The stabilised region represents
the PUF output.

2.4.7 DRAM-PUF (Semi-Weak, Intrinsic, Software, Memory)

DRAM-PUFs are a newer form of Memory PUF, yet have certain advantages over SRAM-
PUFs which make them desirable for use in resource-constrained environments, such as access
time, density and in-runtime availability. Figure 2.6 highlights the organisation of DRAM
memory. DRAM consists of a matrix of transistor-gated capacitive cells, each storing a single
bit of data, zero or one. Which bit is stored is represented in the charge value of the capacitor
in the bit cell. Typically, a fully charged capacitor indicates binary 1, and a fully discharged
capacitor indicates binary 0. In practice, this is more complicated at the hardware level due
to the existence of what is known as ‘anti’ and ‘true’ cells, which store binary zero and one
oppositely depending on the value stored in the capacitor; however, it is not relevant for the
work carried out in this thesis. Each matrix of cells is referred to as a bank, of which many
such banks are organised onto a single DRAM chip.
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Figure 2.6: DRAM Organisation [68]

DRAM cells, unlike SRAM cells, are intrinsically volatile and thus leak charge over time
through their capacitors and, given sufficient decay time, can experience a ‘bit-flip’, whereby
the stored contents of the bit-cell changes to the stable state of that particular cell. Therefore,
to prevent memory corruption, a periodic refresh cycle must occur to retain stored memory
contents during use by reading and writing back cell contents to reset charge values. This
property denotes this type of memory as being ‘Dynamic’ Random Access Memory. This
refresh cycle is typically handled by the memory controller and the time between refresh
cycles is known as the Refresh-Pause Interval (RPI).

In 2013, Liu et al. discovered that without the refresh cycle, bit-cells do not fail at a
uniform rate. Within the cell arrays is a highly random distribution of cells prone to rapid
failure (i.e., highly leaky), a product of process variation in the cell’s physical structure
[52]. Through this phenomenon, they proposed the first DRAM-PUF, denoted a DRAM
‘Retention’ PUF, referring to the retention failure process of the bit-cells. As shown in
Figure 2.7, the general process is as follows: first, a known pattern (of zeroes and ones) is
written into the memory; next, the automatic refresh cycle is halted; the cells are allowed to
begin failing, and after a fixed time period, the refresh cycle is restored. This results in a
new bit pattern in memory - the PUF response - based on the random distribution of fast
failing cells across the memory block. This approach results in very high-quality responses
with strong security properties; however, it suffers from two major drawbacks: it cannot,
generally, be performed during system runtime, and it requires a very long time (in the order
of minutes) for enough cell failures to produce a good response. Additional researchers went
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on to further investigate the DRAM Retention PUF [40,83].

Figure 2.7: DRAM Retention PUF

The second key property of DRAM is that being fundamentally a process of charging and
discharging capacitors, there is an inherent latency (delay) in read/write DRAM operations.
To ensure correct behaviour, there are built-in delay timings for internal operations. These
timing parameters can be lowered from their factory defaults, allowing for faster operation at
the risk of causing instability. Too significant a reduction places the memory into an undefined
behaviour state in which instructions may produce erroneous results. In PUF terms, the
important factor is the process-induced variation in the sources of internal latency, such as
cell charge and discharge rate, line activation rate, the behaviour of sense amplifiers, etc.
PUFs were eventually proposed which exploit this property called DRAM ‘Latency’ PUFs,
the first of which being by Kim et al. in 2018 [41, 68, 81] and illustrated in Figure 2.8. By
reducing or removing delays in the memory controller, internal DRAM operations are given
insufficient time to execute, resulting in timing errors. For example, severely reducing the
tRCD parameter (the required delay between opening a row and being able to access columns
in it) and then attempting to perform read operations results in numerous read errors, with
the resultant pattern being a product of both the values in the memory being read and
process variations in the cell array and sense circuitry. This pattern of errors forms the PUF
response, similar to the Retention PUF, and it is likewise the highly random distribution of
process variations that makes this a strong identifier for the memory.

In DRAM Latency PUFs, unlike DRAM Retention PUFs, the errors comprising the PUF
response are not cell failures. The errors occur from failure to accurately perform operations
on the cell contents. If a read operation is used as the trigger, the cell contents remain
stable even as the read instructions return erroneous results. Due to this, PUFs of this type
can sometimes be used in runtime while maintaining system stability [68]. They also allow
response generation in much less time than Retention PUFs. A drawback of this approach is
that responses tend towards high noise and are sensitive to environmental conditions, even
when compared with other PUF designs [41,68]. This requires more expensive error correction
and post-processing to produce a high-quality response. DRAM Latency PUFs were chosen
as a key target for the work in the thesis due to the degree of noise in individual responses
and sensitivity to some environmental conditions they exhibit. They provide a good example
of a PUF with strong potential for practical application but can be limited in performance
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by the energy and computational cost of error correction. While the DRAM-PUF is gener-
ally designated as ’Weak’ (CRP space does not increase exponentially with PUF size), the
greatly increased density alongside an supporting more unique challenge patterns increases
the CRP space significantly over other Weak PUFs such as SRAM-PUF. We therefore make
the distinction of the DRAM-PUF being ‘Semi-Weak’.

While many PUF variants have seen various attacks within the literature, DRAM-PUFs
have not seen such apparent threats. Being primarily a ‘weak’ PUF, it is generally assumed
that sufficient unique CRPs cannot be extracted from any DRAM-PUF version in order to
enable an attack using machine learning (section 2.5), leaving other types of attack open to
discussion. Ultimately, the goal of an attacker would be to able to predict outputs of the
DRAM-PUF (bit-flip behaviours of cells used for PUF functionality) based on limited knowl-
edge of the challenge data. To achieve this, an attacker requires some method to access some
of this memory in order to perform memory reads and writes, which is generally out of scope
in a reasonable threat model, assuming that such access indicates root access of an attacker
regardless. What requires further experimentation is whether or not there exist correlating
factors between bit-cells which flip during PUF operation and other operations/manipulations
on the memory. An example of this is rowhammer [42] or data remanence effects (cold-boot
attacks) [34]. If, the cells which are vulnerable to these types of attack correlate with the
error prone cells during PUF operation, there conceivably exists a predictive attack. This,
however, is yet to explored by the research community.

Figure 2.8: DRAM Latency PUF

2.5 Machine Learning Modelling Attacks on PUFs

Machine Learning Modelling Attacks (ML-MA) have proven to be a significant security chal-
lenge for strong PUFs almost since their first conception [49]. Almost all Strong PUF pro-
posals to date have been demonstrated to be vulnerable to ML-MA [1, 6, 74, 76]. This is
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because in a Strong PUF, the large set of CRPs arises from a relatively small number of
actual physical variables, i.e. the PUF function is rooted in complex physical factors but is
mathematically simple. Even for a large PUF, if some sufficient subset of CRPs is known, it
takes relatively little computation to derive a function which produces the same outputs as
the actual PUF for any given challenge. The security of the PUF is successfully compromised
when an attacker can accurately predict novel responses (outputs) based on new and unseen
challenges (inputs) such that they may send the predicted outputs to verifiers, resulting in
their successful and, thus, fraudulent authentication. For these reasons, how, or if, Strong
PUF designs like the Arbiter-PUF can be reliably secured against ML-MA without introduc-
ing excessive complexity remains an open question. While there are many different examples
of varying ML algorithms to attack PUFs, we focus on those relevant to the further chapters
of this thesis.

2.5.1 Logistic Regression

The first significant attacks on Strong PUF variations was performed by Rürhmair et al. in
2010 on APUFs, XOR-APUFs, Lightweight Secure PUFs (LS-PUFs) and FF-APUFs [74]. In
their work, they collected a subset of available CRPs from each PUF type psuedorandomly
following a standard normal distribution. This set of CRPs formed the training dataset for
various machine-learning techniques in order to model the PUFs, most notably, the Logistic
Regression attack.

Logistic regression (LR) is a statistical model used for binary classification tasks which
estimates the probability that a given input belongs to a particular category. Unlike linear
regression, which predicts continuous outputs, LR predicts categorical outcomes by map-
ping inputs through a logistic function. The logistic function (also known as the ‘sigmoid
function´) is used to map predicted values to probabilities out an outcome between 0 and
1, making it ideal for probability estimation, especially for single bit output PUFs such as
APUFs. It is defined as:

σ(z) =
1

1 + e−z
(2.6)

In LR, the input features x = (x1, x2, . . . , xn) are combined linearly using weights w =
(w1, w2, . . . , wn) and a bias term b. The linear combination is given by:

z = wTx+ b (2.7)

The probability that the input x belongs to the positive class (first label) is then given
by applying the logistic function to z:

P (y = 1 | x) = σ(z) =
1

1 + e−(wTx+b)
(2.8)

The predicted class label ŷ is determined by applying a threshold (commonly 0.5) to the
probability:

ŷ =

{
1 if P (y = 1 | x) ≥ 0.5

0 if P (y = 1 | x) < 0.5
(2.9)
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Finally, the LR model is trained through minimisation of the loss function ‘binary cross-
entropy loss´ (known also as log-loss), defined as:

L(w, b) = − 1

N

N∑
i=1

[yi log(P (yi | xi)) + (1− yi) log(1− P (yi | xi))] (2.10)

where N is the number of training samples, yi is the true label, and P (yi | xi) is the
predicted probability.

The model is then iteratively trained using gradient descent in order to minimise the loss
function. Each update is given by:

w← w − η
∂L
∂w

(2.11)

b← b− η
∂L
∂b

(2.12)

where η is the rate of learning.

LR for Modelling Arbiter PUFs

Rürhmair et al. applied LR specifically to APUFs. Overall, this task requires prediction of
the binary APUF response R ∈ 0, 1 for a given challenge C ∈ 0, 1n. Each pair of C and
corresponding R (CRP) forms an individual sample for training.

Each challenge C is represented as a feature vector which forms x = (C0, C1, ..., Cn), where
Ck are the bits of the challenge (k being the number of stages of the APUF). Each challenge
is assigned the probability p(C, t|w⃗) that it generates an output (response) t ∈ −1, 1. The
vector w⃗ encodes the internal parameters of the PUF such as the specific runtime delay of
the PUF (see section 2.4.1 for details on the additive delay model). The probability of output
is then given by the logistic sigmoid acting on the function f(w⃗). Therefore, f determines
through f = 0 a decision boundary of equal output response probabilities. Given a set of
training CRPs M , the decision boundary is placed by selecting the vector w⃗ such that the
likelihood of observing M is maximal, meaning the negative log-likelihood is minimal:

w = argminw̃ l(M, w̃) = argminw̃
∑

(C,t)∈M

− ln(σ(tf(w̃, C))) (2.13)

Finally, w⃗ is optimised iteratively using gradient information, utilising Resilient Back-
propagation (RProp) [9]:

∇l(M, w̃) =
∑

(C,t)∈M

t(σ(tf(w̃, C))− 1)∇f(w̃, C) (2.14)

Using this technique, prediction rates of 99% were achievable on k=64 stage APUFs with
as few as 2,555 CRP samples. XOR-APUFs and FF-APUFs could also be modelled within
an accuracy of >95%, rising to 99% in all cases where large training set sizes were utilised.
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2.5.2 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a well-studied class of feed-forward artificial neural
network [26]. It consists of at least three layers of nodes: an input layer, one or more hidden
layers, and an output layer. MLPs are used to solve problems that require supervised learning,
where the goal is to learn a mapping from input data to output data based on example input-
output pairs. Each layer contains ‘neurons’, and each neuron in a layer is connected to every
neuron in the subsequent layer through weighted edges.

An MLP can be defined from the following components (in order of input to output):

1. Input Layer:

Let X represent the input vector, where X = [x1, x2, ..., xn], with n being the number
of input features.

The input to each node in the first hidden layer is a weighted sum of the input features,

denoted as z
(1)
j , where j is the index of the node in the first hidden layer.

2. Hidden Layers:

Let L represent the total number of layers in the MLP, including the input and output
layers.

For each hidden layer l, let W (l) represent the weight matrix connecting layer l to layer
l + 1.

Let b(l) represent the bias vector for layer l.

The output of each node in hidden layer l before applying the activation function is
computed as:

z(l) = W (l) · a(l−1) + b(l) (2.15)

where a(l−1) is the output vector of the previous layer and z(l) is the input vector to
the activation function in layer l.

3. Activation Function:

Typically, an activation function σ is applied element-wise to the output of each node
in the hidden layers:

a(l) = σ(z(l)) (2.16)

4. Output Layer:
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Let y represent the output vector of the MLP.

The output layer applies its own set of weights W (L) and biases b(L) to the output of
the last hidden layer:

y = W (L) · a(L−1) + b(L)

MLP in the Context of a PUF

In the context of a PUF, an MLP is used to model the challenge/response relationship of
the PUF, which was first applied in 2017 by Alkatheiri et al to model more complicated FF-
APUFs (section 2.4.5) [1]. The PUF’s response R to a challenge C can be considered as the
input X to the MLP, where the MLP learns to map challenges to responses. The MLP may
have multiple hidden layers to capture complex mappings between challenges and responses.

Consider a specific MLP with one hidden layer and a sigmoid activation function. The
output of the MLP can be computed as follows:

z(1) = W (1) ·X + b(1) (2.17)

a(1) = σ(z(1)) (2.18)

ŷ = W (2) · a(1) + b(2) (2.19)

Where:

• X is the input vector representing the PUF challenge.

• W (1) and b(1) are the weights and biases of the first hidden layer.

• σ is the sigmoid activation function.

• W (2) and b(2) are the weights and biases of the output layer.

• ŷ is the output vector representing the predicted PUF response.

Inb 2017, the authors of [1] were able to achieve prediction rates of up to 96% for FF-
APUFs with large numbers of feed-forward loops using relatively few CRPs (max. 200k).

2.5.3 Attacks Exploiting Helper Data

In 2014, Delvaux et al. performed a helper data attack on Pattern Matching Key Generators,
exploiting their helper data [17]. They demonstrate a significant risk to full key recovery in
an experiment on 4-XOR Arbiter PUFs. More recently, helper data attacks utilising ML have
been proposed to exploit the publicly known helper data used for error correction to predict
PUF responses. Streider et al. demonstrated in 2021 that public challenge data and helper
data alone is sufficient to mount a successful modelling attack on a PUF, even with as few
as 800 helper data bits [79].
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2.6 PUF Obfuscation

In response to the developing threats posed by ML-MA, schemes were proposed that aimed
to ‘obfuscate’ the linear relationship between the PUF challenges and responses to weaken
the effectiveness of ML models to learn relationships between them. By including additional
logic surrounding the input and output interfaces of a vulnerable PUF design, it is possible
to reduce the potency of ML-MA, where attackers can access initial obfuscated PUF inputs
and final outputs. Figure 2.9 demonstrates the assumed threat scenario when designing PUF
obfuscation schemes. In this case, attackers are given free access to the initial challenge C

′

and can measure the final response R
′
. The interface to the PUF underlying the design is

assumed to be inaccessible, and the PUF could be modelled using C and R. The security
game is satisfied if, given a non-linear relation between C

′
and R

′
, the adversary gains a

negligible advantage in modelling both the underlying PUF and the obfuscated PUF, such
that novel responses cannot be predicted for new challenges.

Figure 2.9: Example of PUF obfuscation concept

The first type of obfuscated PUF was the Controlled PUF, designed by Gassend et al.
in [28] in 2008. This design utilised hash functions and xor logic to control the output
of the PUF. While capable of diminishing the effectiveness of ML-MA, this design has a
high hardware resource cost, which is a significant issue when considering deployment on
particularly resource constrained systems. Additional schemes have since been proposed
using various methods in hardware, which will be discussed in more detail in Chapter 4.

2.7 PUF-based Authentication

While PUFs have been proposed to be suitable for many security applications, one of the
most significant and researched is for authentication purposes. As PUFs can be used to prove
the presence of a device, they are useful when measuring their unique outputs to prove the
authenticity of a device, allowing the creation of secure sessions at a relatively low cost for
embedded security applications.
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Authentication protocols that utilise PUF are deployed in two phases: an enrollment phase
and an authentication phase. The enrollment phase, demonstrated in Figure 2.10, occurs
within a secure server environment where it is assumed that device-to-server communication
remains secure for the duration. Here, a large set of CRPs is generated by monitoring the
responses for given challenges to a device’s PUF and storing them in a CRP database on the
server. Once a sufficient dataset has been collected, the devices can be deployed into their ‘real
world’ roles. From now on, when a device wishes to communicate with the secure server, the
Authentication phase begins. Practically, all PUF responses to be used for authentication
must be captured in the initial enrolment phase. Once all enrolled CRPs are expended,
the PUF device must either be discarded or recalled for retrofitting with a new PUF (or,
measurement of new unique CRPs). It is feasible to design a protocol whereby once an
authenticated session is established with the device, a new set of CRPs can be transmitted to
the server without the need to recall the device, however, this assumption can only be made
if the protocol is supported by a form of symmetric encryption.

Figure 2.10: CRP-based PUF Enrollment Phase

Within this phase, shown in Figure 2.11, the device communicates openly with the secure
server. The secure server selects a challenge from its database for the device wishing to
communicate and sends it to the device. Once the device receives the challenge from the
server, it issues it to its PUF, records the response, and sends it to the server. The server
finally checks the response sent by the PUF to the response stored in the dataset. If they
match, authentication is passed, and a secure channel is opened. If they do not match, the
authentication attempt is rejected.
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Figure 2.11: CRP-based PUF Authentication Phase

2.8 Cryptographic Functions

We define particular cryptographic functions which are relevant for the technical chapters of
this thesis.

2.8.1 One-Way Function (OWF)

A OWF is an important cryptographic primitive and has been widely used in modern asym-
metric cryptography, which is easy to compute but difficult to invert. In mathematical terms,
a OWF(·) is a function from a set of data objects to a set of values having the following prop-
erties [87]:

• Given any value v, it is computationally infeasible to find a data object d such that
OWF(d) = v.

• Given any data object d, it is computationally infeasible to find a different data object
d
′
such that OWF(d

′
) = OWF(d).

2.8.2 Key Derivation Functions (KDF)

KDFs are essential primitives in cryptographic systems which transfer a source of randomness
into cryptographically strong secret keys, and sometimes the initial materials do not have
to be distributed uniformly. According to the extract-then-expand approach, a KDF has
two components: extractors, which extract a fixed-length key K from entropy sources, and
random functions, which expand K into several additional pseudorandom cryptographic keys.
KDFs take four inputs: a random seed r, a length L, salt s and context c, and return an L-bit
key k. The salt value is essential to obtain generic extractors and KDFs that can extract
randomness from arbitrary sources with sufficiently high entropy in the case where inputs
are non-uniform. Psuedo-random functions (PRFs) are similar to KDFs and can be used as
such. They are often less computationally complex; however, require highly uniform secret
keys to guarantee security.



Chapter 3

PUF-Phenotype: A Robust and
Noise Resilient Approach to Aid
Group-Based Authentication With
DRAM-PUFs Using Machine
Learning

As the demand for highly secure and dependable lightweight systems increases in the modern
world, Physically Unclonable Functions (PUFs) continue to promise a lightweight alterna-
tive to high-cost encryption techniques and secure key storage. While the security features
promised by PUFs are highly attractive for secure system designers, ML-MA continues to
pose a significant threat against PUF authentication schemes. More recent ML-MA have
even exploited publicly known helper data required for PUF error correction in order to pre-
dict PUF responses without requiring knowledge of response data. In response, research is
beginning to emerge regarding the authentication of PUF devices with the assistance of ML
as opposed to traditional PUF storage techniques and comparison of pre-known Challenge-
Response pairs (CRPs). In this Chapter, we introduce a classification system using ML-based
computer vision techniques based on a novel ‘PUF-Phenotype’ concept to accurately identify
the origin and determine the validity of noisy memory-derived (DRAM) PUF responses as an
alternative to helper data-reliant denoising techniques. As opposed to previous work in this
field, we perform classification over multiple devices per model to enable a group-based PUF
authentication scheme. We achieve high classification accuracy using a modified VGG16 deep
convolutional neural network (CNN) for feature extraction in conjunction with several well-
established classifiers. Our results demonstrate that our system can effectively distinguish
the authenticity of even highly noisy DRAM-PUF responses for authentication purposes.

3.1 Introduction

IoT devices are an unavoidable and growing presence in modern life and have been adapted for
various applications, ranging from domestic use to healthcare, autonomous vehicles, and even

27
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military systems [46]. Many of these applications have high security and privacy requirements
due to the sensitivity of the information they transmit or store. Providing adequate security to
such systems is more challenging due to heavy restrictions in the availability of computational,
storage and network resources, making traditional security methods often inaccessible due to
their high complexity. As a result, there is a requirement for robust, lightweight solutions to
address security concerns. PUF identities can be used for memory-less secure key generation
or directly to generate single-use authentication tokens for device verification in a challenge-
response protocol. This type of authentication can be particularly useful for IoT scenarios,
such as home IoT, where devices are often communicating directly with one another (device-
to-device). As PUF entropy is extracted from small physical variations in the circuitry,
environmental effects such as temperature, voltage variation, and temporal effects (ageing)
can introduce noise in the PUF response. To overcome this, a degree of error correction
is required in most PUF designs. A common approach is to use Helper Data Algorithms
(HDAs), which map PUF responses to code words of an Error Correction Code (ECC) scheme.
Helper Data (HD) is required during this process, which must be assumed to be publicly
known. Using the HD alongside a given HDA enables useful data to be extracted from the
noisy PUF data, such that an expected value is retrieved.

3.1.1 Related Work

While error correction methods are effective for reducing noise from measured PUF responses,
in some implementations, this can lead to the introduction of new vulnerabilities which target
the error correction mechanisms themselves. Recently, a new problem has emerged from this
issue, namely privacy leakage through HD [79]. In a standard PUF threat model, challenges
and HD are assumed to be public and, therefore, accessible to an attacker. An HD attack is
mounted by an attacker who only requires access to challenge data and HD and allows them
to predict response data and thus compromise the PUF secret. This is in contrast to more
well-studied modelling attacks, where knowledge of the input challenge and matching PUF
response is required for some large number of challenges to comprise other unseen response
secrets [16,74]. PUF authentication schemes are often accompanied by an extensive security
analysis against a common PUF adversary model (which typically includes modelling and/or
side-channel attacks); however, these schemes often also integrate a requirement for HDA
and/or ECC to deal with noisy PUF responses [31,33,47]. An issue with such systems is that
they cannot sufficiently provide a defence against this new type of HD attacker, who only
requires publicly available data to model the PUF successfully. It is, therefore, essential for
techniques to be developed that can counter such an attacker while simultaneously ensuring
security and resource requirements are met. While it is common practice for PUF security
systems to employ HDA and ECC, it is not a strict necessity but rather an established
industry-accepted approach for denoising PUF responses.

To achieve sufficient noise reduction by different means, it is intuitive to look to fields
of study where noise reduction is a key focus, such as computer vision. In computer vision,
denoising and classifying noisy data are a well-studied topic. Machine Learning (ML) is a
powerful tool used both for extracting noise from images, such as feature extraction through
Deep Denoising Autoencoders [50, 51] and image classification of already noisy images [73].
The problems solved through these techniques in computer vision are almost directly repre-
sented by the noisy PUF problem, namely the requirement to either actively remove noise
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from PUF measurements or classify the PUF measurement regardless of the noise. One type
of PUF where this is particularly relevant is DRAM-based PUFs, which produce very large
amounts of PUF data but with a high degree of noise. With large response sizes, it is intuitive
to represent responses as images to test the effectiveness of computer vision techniques to
solve such problems.

In [70], Deep Convolutional Neural Networks (CNNs) are utilised to classify noisy DRAM-
PUF responses using image data of the PUF measurements. Their solution uses a custom
memory controller to precisely measure PUF responses and map the physical bit-cell layout
directly to a grayscale image, which directly represents the real DRAM properties and struc-
ture. In this approach, a very large dataset of DRAM-PUF responses are used in training, as
input patterns are based on many arbitrary bit string inputs to the memory. In practice, such
responses are unsuitable for security purposes, as with the DRAM-PUF, only three types of
unique input value exhibit suitable entropy on anlysis of the final response (discussed in detail
in Section 3.2.2). Yue et al. proposed a similar approach, using very large raw responses from
DRAM start-up values to authenticate PUFs without an explicitly stored CRP database [94].
In this approach, various CNNs are tested to classify three DRAM PUFs and extract features
to be compared with features known by a trusted entity.

These works have focused on the learnability of raw memory-based PUF data, where
CNNs extract features from image data that directly represent the physical organisation
of the bit-cell matrices on the chip. However, achieving accurate image representations of
measuring responses from DRAM is a difficult task, especially during the run-time of a device.
In addition, potentially useful information could be stored unknowingly in such images - for
example, charge leakage paths for capacitive cells - which could in theory, provide an attacker
with information with which to predict cell-failure behaviour of the PUF.

It is important to note that one overlooked advantage of ML-based authentication is
the removal of CRP database storage requirement, which has some useful implications. As
an attacker can read CRPs, it must be assumed in traditional PUF protocols, the CRP
database is stored on a system in a trusted environment (Section 2.7), limiting device-to-
device authentication as devices must be assumed to be publicly accessible (and therefore
vulnerable to attackers accessing the CRP database). By offloading the task of response
scrutiny to an ML model, storing responses on the prover system for comparison with received
responses is no longer required. This can expand current limitations dictated by non-ML
PUF-based authentication schemes. This property also provides a potentially significant
advantage over many current schemes, where key data must be stored on devices.

3.1.2 Motivation

While the previously mentioned schemes are proposed as an alternative to error correction
algorithms, this is not without trade-offs. While the HDA and HD computation and storage
requirement is removed, a new computation and storage requirement is introduced through
the requirement to train and distribute an ML model. The resource-intensive training of the
models is performed just once during enrolment; however, on-device verification still requires
potentially costly model storage and execution. If a device is required to have relatively
high computational performance to be compatible with such schemes, the question stands as
to whether a PUF-based solution has any advantage over traditional handshaking protocols.
Furthermore, the previously mentioned schemes do not fully exploit the benefit of the removed
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Figure 3.1: Intra-Group Communication Environment

CRP database requirement.
Each scheme proposes single-device authentication with a verifier, which must be in a

trusted environment. These aspects reduce the application of such systems to more traditional
device-to-server authentication as opposed to device-to-device. This restriction limits the
PUF-based authentication from wider IoT scenarios, for example, where a group of devices
require inter-node communications (such as Home IoT) within the group without explicit
contact with an entity in a trusted environment (Figure 3.1). Finally, current ML-based
PUF authentication only considers a single device per trained model; therefore, considering
a group of n provers, a given verifier is required to store n − 1 models in order to handle
authentication requests from each other group member. This is an unrealistic requirement
for on-device authentication, given the resource constraints of an IoT device.

Each of these points raises the question: is it possible to apply a single ML-based PUF
authentication model that is appropriate for multiple grouped devices, that can run on
lightweight devices and without a third-party trusted verifier?

3.1.3 Contribution

In this Chapter, we present a method for authenticating a group of PUF-enabled devices using
a modified CNN and standard ML classifier in combination. This method is more lightweight
than existing comparable schemes. The scheme operates on images formed directly from
noisy PUF responses without helper data, knowledge of the physical properties of the PUF,
or its design. This allows for the use of a single classifier with low storage requirements, which
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can run on relatively low resource devices, and which can natively perform both group-based
authentication (is device X part of group Y? ) and device-specific authentication (is device X
itself authentic? ).

The proposed classification architecture also avoids using data physically representative
of the internal PUF structure but rather an image derived from a non-design-specific response
data stream. As it relies only on externally observable characteristics and not knowledge of
the underlying structures, treating the PUF as a black box, we call this approach a PUF
Phenotype. Section 3.2.1 will introduce this concept in more depth. The major contributions
of this chapter are as follows:

• The concept of PUF Phenotype, a new classification approach, where PUF identity is
the full externally observable PUF behaviour, including noise, without supplementary
knowledge of PUF structure, physical properties, or environment.

• DRAM Phenotype-based Authentication Network (DPAN), an ML-based group classi-
fication model, uses model confidence to accurately identify and authenticate devices
without needing Helper Data Algorithms, Error Correcting Code or pre-filtering algo-
rithms. To the best of our knowledge, this work is the first to consider a single ML
model for multi-device PUF authentication.

• Verification and analysis of the proposed scheme on our own experimental dataset,
using noisy DRAM-PUF responses collected under a broad range of environmental
conditions. We provide this dataset as an open resource for the research community.

• Evaluation of classifier accuracy of DPAN for varying classifiers and group sizes up
to 5 devices, demonstrating that good performance can be achieved without needing
device-specific classifiers.

• Performance analysis of a DPAN implementation on a resource-constrained system with
power consumption analysis, storage requirements, and execution time.

3.1.4 Chapter Organisation

In Section 3.2 we introduce our proposed scheme, with our novel PUF Phenotype concept,
dataset and classification methodology. Section 3.3 provides the results and a discussion of our
experiments using various classifiers and numbers of devices. We also provide a performance
analysis of our model executed on a lightweight Raspberry Pi system in section 3.3.4. Finally,
Section 3.5 concludes the work and identifies areas for further research.

3.2 Proposed Scheme

This section presents our proposed scheme, which consists of three key parts: The PUF
Phenotype concept, the group-based authentication setting for our work, and our DRAM
Phenotype Authentication Network: DPAN.
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3.2.1 PUF Phenotype

Biometric-based identity is a field adjacent to and highly relevant to electronic PUFs. In a
biological context, there are two sets of connected identifying characteristics: Genotype and
Phenotype. The genotype consists of a person’s actual set of genetic instructions. At the
same time, their phenotype is the set of externally observable traits which arise from the
interaction between their genotype and the environment [82]. A specific example of genotype
vs. phenotype would be as follows:

Genotype: The unique sequence of DNA instructions that exist to determine face shape.

Phenotype: The resulting detectable expression (appearance) of the face, effected by en-
vironment.

While the phenotype is primarily derived from the genotype, the phenotype is not syn-
onymous with the genotype, as the genotype cannot influence the effect the environment
has on the emergent properties of the phenotype. In biometric authentication, knowledge
of the genotype is not required. If we consider the case of facial recognition, the computer
vision system only has access to the externally observable characteristics - the phenotype,
plus environmental noise (incident light, angle, etc.). This distinction is described in Figure
3.2. Despite this, such systems can perform authentication with high accuracy. Considering
that a biometric is a form of Extrinsic PUF, this raises the question of whether, in the area
of electronic PUFs, the costly on-device error correction and helper data (which may leak
information about the PUF) which we often rely on is universally necessary for accurate
authentication?

Figure 3.2: Phenotype/Genotype distinction for human biometric authentication



CHAPTER 3. PUF-PHENOTYPE 33

Shown in Figure 3.3, drawing inspiration from the field of biometrics, we propose that an
analogous distinction for electronic PUFs should be considered as an aspect of protocol design.
That is, whether to consider the underlying structure of the PUF and try to remove noise
so that only this underlying structure contributes to the identity or whether to use a PUF
‘Phenotype’ where both the PUF behaviour and the PUF response to environmental changes
(i.e. noise) are treated as one set of identifying characteristics. The former is the default
assumption in most PUF research, but both approaches have advantages and disadvantages.
This is not to say that error correction-based approaches should be discarded, but rather that
more significant consideration should perhaps be given as to whether this default approach
is always optimal.

We express the idea of phenotype concerning PUF in the generated images of our DRAM-
PUF measurements. The physical organisation of the bit-cell matrix on the DRAM module
and the transistor level behaviour is analogous to the genotype, while the PUF response image
generated from that structure, including noise, is the expressed phenotype. The phenotype
is not a visual representation of the PUF’s physical structure (as was used in [70,94], for ex-
ample) but rather a structure-agnostic visualisation of the PUF identity. So long as the same
method of image formation is used consistently, the phenotype can be generated from PUF
data from any source, meaning knowledge of the PUF structure or even the type of PUF in
use is irrelevant. Multiple PUF designs can be used in one system, with a unified enrolment
procedure, authentication database, and verifier. In addition, the phenotype includes envi-
ronmental and inherent noise, reducing or negating the need for on-device error correction or
the use of helper data. It is demonstrated in Section 3.3 that using this approach, devices can
be authenticated with a high degree of confidence, even under highly variable environmental
conditions and without any error correction mechanism.

Figure 3.3: Phenotype/Genotype distinction for PUF-based authentication
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Figure 3.4: Experimental Setup for Dataset Generation

3.2.2 Phenotype Dataset

For the demonstration of this work, we collected our own dataset of DRAM Latency PUF
responses gathered from a test bed based on a Commodity Off-The-Shelf (COTS) AMD A
series processor, controlling COTS DDR3 DRAM modules in DIMM form factor, using only
software methods to acquire the PUF response∗. Specifically, the Latency PUF method used
was lowering the tRCD timing to 0 and attempting sequential reads of the target memory,
using the method described in [68] (functionally described in Section 2.4.7). The test bed
is effectively a small form factor desktop computer and runs a live version of Ubuntu Linux
during experimentation. It should, therefore, closely reflect the performance and behaviour
of the DRAM Latency PUF in a real-world scenario. Four QUMOX-branded DDR3 DIMMs
were tested, each comprising eight individual DRAM chips. For PUFs of this type, differ-
ences in the PUF response between manufacturers have previously been noted [68]; when
using appropriate post-processing or mixed input patterns, the difference is relatively minor,
meaning this dataset should be reasonably representative of DRAM Latency PUFs in general.
The chips under test were characterised by targeting a representative physically contiguous
section of 4Kb from each chip’s starting point. The DRAM Latency PUF is data-dependent,
so three input patterns were used in each experiment: 0xFF, 0x00, and 0x55.

DRAM-PUF Data Dependence Writing an 0xFF, 0x00 and 0x55 input pattern to the
DRAM translates to an area of DRAM memory which (before lowering the tRCD timing

∗The dataset used in this work is provided as an open resource for the research community,
accessible at [60]: https://doi.org/10.15131/shef.data.26977528.v1. Additionally, all dataset ma-
nipulation code can be found at: https://github.com/owenmillwood/DRAM_PUF_Analysis. Finally,
source codes for experiments carried out can be found at [61]: https://doi.org/10.15131/shef.

data.27094222.v1.

https://doi.org/10.15131/shef.data.26977528.v1
https://github.com/owenmillwood/DRAM_PUF_Analysis
https://doi.org/10.15131/shef.data.27094222.v1
https://doi.org/10.15131/shef.data.27094222.v1
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parameter) contains all ones, zeroes and a mixed zero and one checkerboard pattern, respec-
tively. This provides three distinct challenge patterns that can be used per physical DRAM
location for PUF operation. While it would intuitively appear highly useful to apply random
challenge patterns to the memory to increase the unique CRP space, it is important to note
that such patterns would not be suitable to generate PUF responses due to the various en-
tropy sources of the DRAM-PUF and, consequently, the influence each source has on overall
entropy. There are three sources to consider (in order of most to least influence on entropy):

• The value stored in a cell, i.e. whether the cell is charging from the bit line (0 held in
cell) or draining into it (1 held in cell).

• The values in surrounding cells, due to charge leakage; Whether they are leaking charge
out or drawing a small amount in influences the value of a given cell. The 0x55 checker-
board pattern is distinct from 0xFF and 0x00 because it alternates these influences
instead of all of one type.

• External influences such as gate transistor leakage, line variation, sense amplifier vari-
ation, and variation in the memory controller are difficult to distinguish from environ-
mental noise.

The influence that the surrounding cells have on the entropy (likelihood to flip) of a given
cell is far smaller than the original value in the cell itself for most cells, meaning randomly
sequenced challenge patterns do not behave dissimilarly to the 0xFF, 0x00 and 0x55 patterns
[68]. Given an attacker obtaining knowledge of the cell’s 0xFF, 0x00 and 0x55 behaviour,
correctly predicting most of the output to a given complex input pattern would be a trivial
task. The observable high-level patterns (features) that emerge from the physical variations
is a probability of failure for each cell in the memory, influenced by the input pattern due to
the complex interaction of leakages in neighbouring cells. Cells with a probability of failure
less than or greater than 50% are reliable, while cells close to 50% probability of failure
are noisy and unreliable. These factors have been captured in the generated dataset, which
emerge as features, meaning computer vision models do not require underlying knowledge of
the physical PUF features (charge decay rate, etc.) in order to perform classification. For
this reason, it is reasonable to apply the technique demonstrated in this work on other types
of PUF with similar size responses.

3.2.3 Image Processing

Each of these chip measurements were preprocessed into grayscale images to produce the
dataset for training our model. Initially, we convert each pair of two hexadecimal digits (four
pairs per DWORD line) into an integer ranging between 0-255. This integer denotes the
intensity value (black to white) for a single pixel in the image, which is used to represent
the response data visually. The size of each response measurement provides enough data
to produce a grayscale image of size 220x200 pixels. Each image was labelled with a class
name corresponding to the device it was generated from. Rather than a numerical label, we
chose the arbitrary labels Alpha, Beta, Delta, Gamma and Epsilon for readability. These
final DRAM-PUF response images are what we refer to as PUF Phenotype. We name this
process IMGEN, described in part B of Figure 3.5.



CHAPTER 3. PUF-PHENOTYPE 36

Figure 3.5: DRAM-PUF Phenotype Data Generation

3.2.4 Measuring Noise

To measure the impact of environmentally-induced noise, the response for each input pattern
was characterised at increasing temperatures, starting at a baseline of 20°C and increasing in
10°C intervals up to a maximum of 50°C (20°C, 30°C, 40°C, 50°C). This process was repeated
at a nominal DRAM voltage of 1.5v and a reduced 1.27v. The corner case of reduced voltage
and high temperature produces the most noisy responses expected from a PUF of this type
and configuration in practice. This provides a robust test for a noise-tolerant authentication
system such as the one presented in this work. It should be noted that highly reduced tem-
peratures (0°C and below) would also introduce increasing instability to the DRAM [84]. Due
to equipment constraints, generating data at lowered temperatures is out of scope, however,
the noise generated via lowered temperatures would manifest similarly across the responses
as when higher temperatures are used (randomly distributed noise). The experimental setup
for collecting our dataset is shown in Figure 3.4. The original measurements are formatted
as a list of 32-bit DWORDs in hex format (eight characters, e.g. FFFA3F6C) as read from
memory itself. This first process is described in part A of Figure 3.5 and forms the scheme’s
Enrollment phase as described in Algorithm 1.

Figure 3.6 compares the hamming distance (noise) between a baseline measurement, a
second measurement at ideal conditions (20°C, normal voltage), and a third measurement at
worst case conditions (50°C, low voltage)† As these measurements were taken with the same
challenge, the images would be identical if the noise were not a factor. On comparison, the
repeated measurement in ideal conditions showed a similarity of 94.05%, demonstrating an
intrinsic noise of around 5.95%. For the worst case, the noise effect is much more significant,
with a similarity of 63.09%, i.e. 36.91% noise, an increase of >40% from ideal conditions.
If we similarly compare the ideal response of each chip in the dataset with measurements
over the full temperature range (ideal +10-30°C) and for both high and low voltage, we can
observe actual noise values in the range 6.5-93.5% and with a mean value of 24.8%. In the
subsequent sections, we will demonstrate that, even with this high degree of noise, a properly
trained model can still recognise the unique features of each PUF in a set to distinguish them
both from each other and PUFs outside the set or faked responses.

†Both temperature and voltage effect noise in DRAM-PUF measurements. Measuring a
response at a high temperature and lowered voltage represents the most extreme case of a
noise-inducing environment achievable by our dataset.
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Figure 3.6: Side-by-side Comparison of DRAM-PUF Measurements (noise
highlighted in pink) Left: Response Measured in Ideal Environmental Conditions
(5.95% Noise) Right: Response Measured in Extreme Environmental Conditions
(63.09% Noise)

Table 3.1: Maximum, minimum and average hamming distance (HD) between
baseline and repeated measurements (noise) across the entire latency PUF
dataset.

Mean HD Minimum HD Maximum HD
0.248 0.065 0.935

Figure 3.7: DPAN Architecture
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Algorithm 1: DPAN Enrollment Phases

Dataset Generation
Input: C ∈ {c0, c1, ..., cn}: Challenge Data
Output: X: Phenotype Dataset
Data: P : Environmental parameters (Temp, Voltage)
m: Number of devices
n: Number of challenges

1 for i← 0 to P do
2 for j ← 0 to m do
3 for k ← 0 to n do
4 Write Challenge Pattern from Start Location
5 Set tRCD to 0
6 Rijk ← Perform Read operation on DRAM block
7 x ← IMGEN(Rijk)

/* x: PUF Phenotype */

8 Assign device label to T
9 Store x in X

10 Return X
11

Model Training
Input: X: PUF Phenotype Dataset
Output: DPAN : Trained model
t̃: Confidence threshold

12 Split X into train/test sets: o & p
13 Fa ← Fine-tune VGG16 using o

/* Fa: Training features */

14 Fb ← Fine tune VGG16 using p
/* Fb: Testing features */

15 Train Classifier using Fa

16 Test Classifier using Fb

17 DPAN ← Combined trained VGG16 & Classifier
18 t̃← Tune confidence threshold to zero false positives return DPAN, t̃

3.2.5 Intra-Group-Based Authentication Setting

PUF-based authentication typically operates on a per-device basis. However, in some use
cases, it is desirable to confirm device identity and determine whether that device is a group
member, for example, whether a given device is part of a group with elevated access privileges.
This can be done in existing PUF schemes layered atop individual device authentication. This
works well in scenarios with a highly resourced central verifier because it can be assumed the
verifier can safely handle large amounts of data which must be kept secure from adversaries
(e.g. CRP databases, group membership lists) and has substantial computational resources.
However, when authenticating directly between IoT devices, this poses significant challenges.
In such a scenario, storage space and computational resources are minimal. Further, they
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operate in a less secure environment, which limits what data can be safely stored on the device,
given that an insecure device could provide an entry point to a secure server for an attacker.
Based on these observations, we determined that a computer vision-based ML classification
scheme operating on the PUF Phenotype data described above can train a model to perform
both individual device and group authentication. When presented with a PUF response, the
model can determine first whether it is a group member and if so, which group member in
particular without any additional computational or storage requirements and furthermore,
that this model is small and lightweight enough to allow direct device-to-device (intra-group)
authentication in this manner. Using this, a single model may enable the identification of
multiple devices in a single model, saving the device from requiring an individual trained
model to be stored for authentication of each other individual device within its group.

To test this concept, we assume the following scenario:

• There is a network of low-resource IoT devices deployed in groups of up to 5 devices.
The limitations of this method in regards to group size are discussed in section 3.2.7.3

• Each device has a PUF, which has been characterised before deployment as described
in section 3.2.1.

• For each group, a model has been trained prior to deployment using this data. This
training is described in section 3.2.7.

• The model for each group is stored on each device in the network. This feasibility in
terms of storage requirements is analysed in Section 3.3.4.

• Devices perform both individual and group authentication directly with no central
verifier system. The computational and power costs of this are examined in Section
3.3.4.

3.2.6 Confidence Decision Threshold

When considering solutions for authentication, false positives and false negatives have dif-
ferent implications for the system. False negatives, where a legitimate entity is incorrectly
denied authentication, impact system performance as a new handshake must be attempted.
False positives, however, where a malicious user is granted authentication, are far more im-
portant to consider. As an attacker would be free to query our system, nothing prevents
them from sending a fabricated image to our model to force it to classify it as one of the
legitimate classes. In order to combat this type of attack, we utilise the model confidence
to filter to authentication attempts. By applying a confidence threshold, received Phenotype
images input to the model must reach a minimum level of confidence that the model must
achieve to allow authentication. A threshold may be set to enable authentication if a given
classifier demonstrates high confidence on average and low confidence on incorrect classifica-
tions. This is to say, when a model outputs low confidence, it is indicated that the model
is unsure whether the classification was correct. This provides two possible situations: the
received image is from a legitimate device and the received image is fraudulent. In the first
case, a low confidence score at worst causes a false negative (a legitimate device is denied
authentication). In the infrequent event that a legitimate device is rejected, they may initiate
authentication again and succeed with a high probability. In the second case, an adversary
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would ideally be unable to produce their own responses, allowing for low model confidence
on classification and enabling a higher true negative rate (fraudulent attempts correctly de-
nied authentication). Considering this, a suitable confidence threshold can be obtained from
the average confidence score for both incorrect classifications of legitimate images and the
arbitrary classification of fraudulent images. Such a threshold value would have to be ob-
tained by PUF Phenotype images sent by the prover in order to be granted authentication.
Increasing the confidence threshold has the effect of lowering false positives while potentially
increasing false negatives. An ideal confidence threshold (minimum false negative rate) can
be determined during enrollment, eliminating false positives when testing fraudulent data.
This process (during authentication) is described in line 9 of the Authentication Phase shown
in Algorithm 2. The ID check function applied in Algorithm 2 is shown in Algorithm 3. We
experimentally verify the confidence value property for each classifier with our results in
Section 3.3.3.

Algorithm 2: DPAN Authentication Phase

Authentication
Input: x: PUF Phenotype Image
Data: t̃: Confidence threshold

1 {UID|x} ← Current device receives authentication request
/* UID: Unique device identifier */

/* x: PUF Phenotype image */

2 Q← Check(UID)
3 if Q == 0 then
4 Abort authentication
5 else
6 {ŷ, S} ← DPAN(x)

/* ŷ: Classification prediction */

/* S: Confidence score */

7 if not ŷ == UID then
8 Abort authentication
9 else if S < t̃ then

10 Abort authentication

11 else
12 Phenotype authenticity passed

3.2.7 DRAM Phenotype-based Authentication Network (DPAN)

We use a Convolutional Neural Network (CNN) in a popular model architecture consisting of
a feature extractor, whose output is fed into a classifier as input. The feature extractor unit
is a VGG16 CNN, which uses pooling layers to output lower-dimensional representations of
the PUF response Phenotype images. This stage is effective as it enables the classifier to be
trained on more appropriate PUF Phenotype image data features.
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Algorithm 3: UID Check Function

Check
Input: ID: Recieved Device Identifier
Output: δ ∈ {0, 1}: ID found decision
Data: DBUID: UID List
q: Size(DBUID)

1 foreach DBUID ∈ {UID0, ..., UIDq} do
2 if UID == ID then
3 δ ← 1;
4 return δ;

5 else if not EOF then
/* EOF: End Of File */

6 continue

7 else
8 δ ← 0;
9 return δ;

3.2.7.1 Feature Extraction - Modified VGG16

We utilised a modified VGG16 CNN framework as our feature extractor unit due to its
combined simplicity, efficiency and powerful capability as an image feature extractor in com-
parison to other well-known CNNs (AlexNet, ResNet) [78]. The architecture of the VGG16
used is shown in Figure 3.7. The network consists of 5 blocks of convolutional layers, which
aggregate local information, each followed by a pooling layer performing dimensionality re-
duction, with 13 convolutional layers and 5 pooling layers. Each convolutional layer has
3×3 filters, and the pooling size is 2×2. In a standard (unmodified) VGG16 model, three
dense (fully connected) layers perform the final classification of the features extracted from
the initial convolutional and pooling layers. As the name suggests, fully connected layers
consist of nodes, each with its connection to every node in the following layer. These lay-
ers enable extremely powerful function approximation, provided sufficient training data is
available to fine-tune the layers. Naturally, these layers are the most data-intensive and ac-
count for the majority of storage requirements for a neural network, leaving the network at
around 0.5GB. In our proposed scheme, however, we propose to replace these dense layers
with lighter standard ML classifiers. As a result, we replace the three fully connected layers
with a 1×1 average pooling layer to convert the original VGG16 from classification to only
feature extraction. The original 200x220x3 input image is, therefore, output by the feature
extractor as a 6x6x512 feature vector. Consequently, the lightweight VGG16 utilised by our
scheme is only 57MB, reducing the storage and memory requirement by almost a magnitude
of 10. This broadens the available applications of DPAN, enabling storage on many restricted
devices, which is further discussed in Section 3.3.4. To compare the performance of the mod-
ified VGG16 with a standard VGG16, we provide benchmark classification results from an
unmodified full VGG16 model with the dense layers intact as a feature extractor, which is
discussed further in Section 3.3.
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3.2.7.2 Tested Classifiers

The features output from the VGG16 model is utilised to train a standard ML classifier [12].
To determine the best-performing classifier for our application, we tested multiple popular
classifiers on our data, each having passed through the same modified VGG16 CNN. As our
data is labelled, we chose six supervised learning techniques to experiment with:

• Decision Tree: A Decision Tree is a simple supervised learning algorithm than can
be used for regression and classification problems. As the name suggests, decision trees
build tree-like structures based on rules formed given observations on features used dur-
ing training. In the tree, leaves represent class labels and branches represent variations
of features that lead to given class labels. Decision trees are extremely lightweight and
easy to interpret as the tree can be formed visually to determine each rule based on
any given input. It should be noted that it is not (reasonably) possible to determine a
prediction confidence using a decision tree, which would be required for authentication.
This is because multiple passes are required to determine class probability such as is
possible with the random forest classifier. We included this classifier to benchmark the
pure classification performance against the other chosen classifiers.

• XGBoost: XGBoost is an ensemble learning method and an implementation of gra-
dient boosted decision trees, widely spread in applied ML. It is the most efficient and
commonly used implementation of gradient boosting algorithms to date. XGBoost com-
bines software and hardware effectively to produce superior results based on function
approximation by optimizing specific loss functions and applying several regularization
techniques. This has the effect of reducing the required computing resources and execu-
tion time. Key advantages include the handling of missing data automatically, parallel
tree construction and continuation of training to further boost a trained model on new
training data.

• K-Nearest Neighbours: The K-Nearest Neighbors algorithm (KNN) is a simple yet
efficient classification method. The input data is classified to the most common class
among its k nearest neighbors when plotted (k is a positive and typically small integer).
The neighbors are taken from data belonging to the same class. The optimal choice
of the value k is highly data-dependent: in general a larger k suppresses the effects of
noise, but makes the classification boundaries less distinct.

• Support Vector Machines: Support vector machines (SVMs) are a set of super-
vised learning methods which can be applied to classification, regression and outlier
detection problems. SVMs are one of the most robust prediction methods based on
statistical learning frameworks, mapping training examples to points in space and op-
timising a plane based on the maximum distance between distance points of differing
classes (known as the support vectors). New examples are then mapped into that same
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space and are labelled with a class based on which side of the plane they appear. It is
also effective in high-dimensional spaces and in cases where the number of dimensions
is greater than the number of samples.

• Random Forest: Random Forest is a yet another ensemble method, more specifically
bagging, which combines basic decision trees to become a robust classifier. As the ran-
dom forest results are the average of the decision trees, it can significantly reduce the
variance of the classification/regression.

• Logistic Regression: Logistic regression is a generalised linear model that can be
used for classification and is also known as logit regression, maximum-entropy classifi-
cation (MaxEnt) or the log-linear classifier. The probabilities representing the possible
outcomes of an instance are classified via the logistic function.

This distribution of techniques represents a broad spectrum of standard classification tech-
niques, including faster, simpler approaches such as K-nearest neighbours, alongside state-
of-the-art ensemble methods such as XGBoost.

3.2.7.3 Training and Evaluation

We tested the modified VGG16 with each classifier on the test data and reported Accuracy
and F1-score as our performance metrics. For the ablation study, we also compare our ap-
proach based on the lightweight modified VGG16 against a full VGG16 model trained with
the dense layers present to classify groups of 3, 4 and 5 devices, respectively. This choice for
the number of devices was limited by the number of unique DRAM DIMMs available when
generating the dataset. Intuitions for the effects of increasing this number are discussed fur-
ther in Section 3.3.5. Finally, during training, we performed K-fold (K = 5) cross-validation
which ensured we could test our models across the entire distribution of the dataset as op-
posed to a standard train/test split, where the model only ever sees a specific portion of the
dataset‡.

3.2.7.4 Hyperparameter Tuning

Before finding our final model results, we performed hyperparameter optimisation for each
classifier to enhance the performance of our models for our specific classification task. We
performed a randomised grid search through a predetermined list of each available hyper-
parameter per classifier. During this phase, we used K-fold (K = 5) cross-validation as
mentioned in Section 3.2.7.3 when training each model with each hyperparameter combina-
tion. Cross-validation aims to provide an estimate of model performance that balances bias
and variance. Using too few folds (e.g., 2 or 3) can lead to high variance in the prediction,

‡For the interested reader, a more detailed explanation for each evaluation metric is provided
in Appendix D of the supplementary material.



CHAPTER 3. PUF-PHENOTYPE 44

while using too many folds (e.g., 20 or more, depending on the size of the dataset) can in-
crease computational cost without a significant reduction in bias. As a result, utilising five
partitions has emerged as a highly common and effective compromise in ML practice and
thus serves as the basis for our decision. For reproducibility, we provide the hyperparameters
used for each classifier after tuning in Table 3.2. Additionally, we provide details on the grid
used for our randomised grid search based on the ranges, also presented in Table 3.2 We
performed each experiment using the Scikit Learn library in Python. For brevity, any model
hyperparameters not included in Table 3.2 were left as the default.
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Table 3.2: Hyperparameter tuning values for classifiers

Parameter Description Optimal value Grid Search
Ranges

Logistic Regression

C Type of regularization 1 0.001, 0.01, 0.1,
1, 10, 100

Max Iterations Number of iterations 100 100, 200, 300,
500, 1000

K-Nearest Neighbour

n neighbors Number of neighbours 9 1-30

Leaf Size Min points in node 1 1-50

XGBoost

Gamma Min loss reduction required to
make partition on leaf node

0 0, 0.5, 1, 1.5, 2,
5

Learning Rate Rate of model learning during
training

0.02 0.01, 0.02, 0.05,
0.1, 0.2, 0.3

Estimators Number of trees 64 50-200

Max Depth Max depth of a tree 3 3, 4, 5, 6, 7, 8, 9,
10

Min Child Weight Min sum of instance weight
needed in child

1 1, 5, 10

Subsample Ratio Training data sample ratio
prior to tree growth

0.6 0.6, 0.8, 1.0

Support Vector Machine

C Type of regularization 10 0.001, 0.01, 0.1,
1, 10, 100

Gamma Kernel coefficient 0.1 0, 0.1, 0.5, 1,
1.5, 2, 5

Decision Tree

Criterion Function used to measure the
quality of split

Gini Entropy, Gini

Max Depth Maximum tree depth 10 5, 10, 20, 50, 100

Leaf Min Samples Min number of samples re-
quired at leaf node.

5 1, 2, 5, 8, 16, 32

Random Forest

Estimators Number of trees 396 100-500

3.3 Results and Discussion

In this section we evaluate the performance of each tested classifier in its classification per-
formance using both the full VGG16 feature extractor and the modified lightweight VGG16
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feature extractor. We also evaluate the confidence scores output for each model and discuss
the ability of each classifier to identify legitimate phenotype inputs from fraudulent ones.
Each classifier was tested for each three to five devices as discussed in Section 3.2.7.3. Tables
3.3 and 3.4 display the accuracy, F1 score, cross-validated mean accuracy and cross-validated
standard deviation for each tested classifier.

3.3.1 Full VGG16 Feature Extractor Benchmark

The results in Table 3.3 demonstrate varying levels of success in the classification of each
device between each classifier. The LR classifier displayed the best performance across most
of the tests, with a classification accuracy of 95.7%, 96.8% and 91.7% for three, four and
five devices, respectively. SVM also performed very well in each test, showing slightly better
performance on five devices with an accuracy of 93.8%. While the RF and XGB classifiers
performed comparably for fewer devices, each of these classifiers suffered more significantly
for five devices, with accuracies down to 89.1% and 85.4%, respectively. The DT classifier
demonstrated a vastly worse performance than each other classifier, showing the worst per-
formance across each number of devices with classification accuracy as low as 65.1%. The
highest achieved result for each number of devices was 95.7%, 96.8% and 93.8%. Intuitively,
as the number of classes (devices) increases, the performance drops slightly on average due
to the increased complexity of the models.

Table 3.3: Classification Results with Full VGG16 Feature extractor

Classifier
Accuracy F1 Score CV µ Acc.† CV SD††

3x‡ 4x 5x 3x 4x 5x 3x 4x 5x 3x 4x 5x

SVM‡‡ 0.957 0.955 0.938 0.957 0.955 0.938 0.993 0.971 0.987 0.009 0.025 0.023
LR 0.957 0.968 0.917 0.957 0.968 0.917 0.996 0.985 0.982 0.005 0.030 0.033
DT 0.793 0.844 0.651 0.796 0.846 0.651 0.898 0.871 0.853 0.019 0.038 0.065
KNN 0.922 0.942 0.922 0.923 0.943 0.922 0.996 0.980 0.976 0.005 0.028 0.031
RF 0.948 0.955 0.891 0.949 0.955 0.890 0.996 0.984 0.978 0.005 0.029 0.035
XGB 0.957 0.948 0.854 0.957 0.948 0.854 0.996 0.984 0.978 0.005 0.029 0.035

† Cross-Validation Mean Accuracy; †† Cross-Validation Standard Deviation; ‡ Number of Devices;
‡‡ DT: Decision Tree; KNN: k-Nearest Neighbors; LR: Logistic Regression; XGB: XGBoost; RF: Random Forrest;
and SVM: Support Vector Machine

3.3.2 Proposed Lightweight VGG16 Feature Extractor

Applying the lightweight VGG16 feature extractor showed a far greater performance across
all classifiers in comparison to the full VGG16 feature extractor. The results shown in Table
3.4 indicate a strong ability for most models to accurately classify the origin of each PUF
Phenotype in the testing set. Here again, the LR and SVM models performed the most
consistently across the tests for each number of devices, correctly classifying almost all Phe-
notype images with between 97.9% to 98.3% accuracy. For the three device model, XGB
performed exceptionally well, correctly classifying 99.1% of Phenotypes correctly. The XGB
model did, however, suffer poorer results slightly with the increased number of devices. The
RF classifier performed almost identically to the LR classifier; however, it performed the best
for the higher number of devices, achieving an accuracy of 98.4% for five devices. Overall, the
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LR and RF models were the highest overall performing classifiers. The confusion matrices
for these two classifiers for each number of devices can be seen in Figure 3.8§.

Table 3.4: Classification Results with Lightweight VGG16 Feature extractor

Classifier
Accuracy F1 Score CV µ Acc. CV SD

3x 4x 5x 3x 4x 5x 3x 4x 5x 3x 4x 5x

SVM 0.983 0.974 0.979 0.983 0.975 0.979 0.983 0.975 0.959 0.035 0.049 0.075
LR 0.983 0.981 0.979 0.983 0.981 0.979 0.998 0.995 0.992 0.004 0.010 0.010
DT 0.957 0.968 0.927 0.957 0.968 0.927 0.989 0.974 0.973 0.022 0.048 0.048
KNN 0.983 0.968 0.974 0.983 0.969 0.974 0.998 0.995 0.993 0.004 0.010 0.010
RF 0.983 0.981 0.984 0.983 0.981 0.984 0.996 0.995 0.991 0.009 0.010 0.015
XGB 0.991 0.961 0.974 0.991 0.962 0.974 0.996 0.995 0.991 0.009 0.010 0.015

§The confusion matrices for all experiments are provided in Appendices A and B
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Figure 3.8: Confusion Matrices of the Best Performing Classifiers for 3, 4 and
5 Devices

3.3.3 Model Confidence

Table 3.5 shows the average confidence values for each correctly and incorrectly classified
legitimate images, the maximum confidence over a set of ten fraudulent randomly gener-
ated images and finally the False Negative and False Positive rates determined by a tuned
confidence value for each classifier. We see that both the SVM and RF classifiers perform
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strongly when identifying fraudulent images. SVM performed exceptionally well with 4 to 5
devices, with maximum confidence outputs of 0.355 and 0.390 respectively. We determined
fine-tuned confidence thresholds for each classifier determined by the maximum observed
confidence scores for each classifier on fraudulent input images, shown in Table 3.6. Each
value determines the confidence output required by images to be deemed authentic by each
classifier (lower is better). When using a tuned confidence score to authenticate each test
sample, SVM showed the best performance with no false positives for fraudulent samples and
a maximum of 3.3% false negative rate across legitimate test samples. RF also performed
strongly, however suffered from a slightly higher false negative rate of between 5.8% and
9.4%. While LR proved an excellent classifier of legitimate images, it performed poorly in
identifying fraudulent images with a minimum confidence score of 0.900 (5 devices). XGB
performed strongly in removing false positive results, however displayed a high false negative
rate, which translates to poorer overall system performance.

Table 3.5: Confidence Scores

Classifier
µ True Conf.† µ False Conf.†† Max µ Conf.‡ FN–FP (%)‡‡

3x 4x 5x 3x 4x 5x 3x 4x 5x 3x 4x 5x

SVM 0.978 0.952 0.927 0.800 0.546 0.535 0.748 0.355 0.390 2.6–0 3.3–0 2.1–0
LR 0.992 0.979 0.979 0.765 0.834 0.800 0.984 0.945 0.900 10.3–70 9.1–0 8.9–0
DT‡‡‡ - - - - - - - - - - - -
KNN 0.981 0.985 0.974 0.778 0.778 0.667 0.667 1.000 0.778 7.8–0 7.1–20 8.3–0
RF 0.975 0.959 0.936 0.746 0.783 0.621 0.793 0.548 0.664 9.5–0 5.8–0 9.4–0
XGB 0.761 0.713 0.674 0.707 0.596 0.450 0.395 0.652 0.639 3.5–0 10.4–0 17.2–0

† Average confidence when classification is correct; †† Average confidence when classification is incorrect;
‡ Maximum confidence when classifying adversarial image; ‡‡ FN: False Negative; FP: False Positive;
‡‡‡ Decision Tree not applicable due to inability to determine confidence

3.3.4 Device Overhead

We finally performed an analysis of model execution for each classifier on a Raspberry Pi 3
Model-B to simulate performance in a resource constrained system (Figure 3.9). Table 3.7
provides the power overhead and execution time for a single image classification for each
model alongside the storage requirements for each. The size of the modified VGG16 feature
extractors were 57,589KB, 57,591KB and 57,593KB for the three, four and five device models
respectively. The feature extractor size has been omitted from the table for ease of reading as
each classifier uses the same lightweight feature extraction model. To determine the maximum
power overhead, we monitored the power consumption of the Raspberry Pi in an idle state
for three hundred seconds to establish a baseline power consumption of the device. During
idle, the Raspberry Pi consumes on average 3.371 Volt Amperes, therefore we considered
any value over this during model execution to be the power requirement overhead of for each
model. In terms of maximum power consumption, no single classifier performed the best over
each of the three, four and five device models, with RF demonstrating the lowest overhead
for the three device classification, SVM for four devices and KNN for five devices. Execution
time was more consistent, with the LR model performing the best in terms of execution
times compared to the other models. RF overall had a higher required execution time for
classification than the other classifiers, however this was not significant when considering
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Table 3.6: Fine-tuned confidence thresholds for each classifier

Number of Devices Confidence Threshold

Logistic Regression

3x Devices 0.96

4x Devices 0.95

5x Devices 0.91

K-Nearest Neighbour

3x Devices 0.68

4x Devices 0.80

5x Devices 0.79

XGBoost

3x Devices 0.42

4x Devices 0.67

5x Devices 0.65

Support Vector Machine

3x Devices 0.78

4x Devices 0.40

5x Devices 0.42

Random Forest

3x Devices 0.83

4x Devices 0.65

5x Devices 0.68

its effectiveness in terms of accuracy and Phenotype authentication as discussed previously.
Furthermore, training time is a factor for general consideration. Simpler classifiers such as
LR, DT, RF and KNN have generally faster training times, wheras SVM and XGB classifiers
require more time. This can have varying impact on a utilising system based on how often
each model is required to be re-trained.
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Table 3.7: DPAN Device Overhead

Classifier
Max Pwr (VA) Size (KB) Exec. Time (Secs)

3x 4x 5x 3x 4x 5x 3x 4x 5x

SVM 5.97 4.78 5.86 359 948 1,237 5.76 6.98 6.51
LR 5.84 6.00 5.80 13 17 21 5.72 6.18 6.16
DT 5.79 4.94 5.90 2 3 3 6.61 5.96 6.28
KNN 6.04 4.86 5.72 925 1,234 1,541 5.80 6.33 6.42
RF 4.85 4.94 5.78 276 648 1,241 6.79 7.21 7.43
XGB 5.76 5.94 6.20 108 170 261 5.67 6.68 6.26

Figure 3.9: Raspberry Pi Setup for Device Overhead Analysis

3.3.5 Effect of Scaling Number of Devices

Intuitively, as the number of unique devices for authentication increases, so should the model
complexity. This is demonstrated fundamentally in the increased model footprint, shown in
table 3.7, whereby the model size in KB increases for all classifiers depending on number
of devices. Additionally, it would seem intuitive to see a decrease in model performance as
device numbers (number of unique classes) increases, unless the number of unique samples
per device scales. In our experimentation, the number of unique samples remained the same
for all training cycles per number of device, meaning the complexity of the model is scaling
more significantly than the training data supplied. This likely explains the slightly higher
performance of the three device models over the five device models. This result however
is not universal, for example the RF classifier demonstrating the highest performance in
classification accuracy for four devices and lowest for three, however only by a short margin.
Intuition would suggest that as the number of devices scales further, the performance of the
models would begin to significantly decrease unless significantly more unique samples were
provided for each device during training. In the case of DRAM-PUFs, this would introduce a
scalability ceiling whereby no more unique samples could be generated. Future work should
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further explore the relationship between number of devices and number of samples when
classifying DRAM-PUF responses.

3.4 DPAN Security Considerations

We address a set of possible security threats/concerns for the proposed system. We assume an
adversary has physical access to the DRAM-PUF device, and is able to access and inspect the
trained classification model stored on the device. As a formal protocol is out of the scope of the
work in this chapter, we initially assume protocol-level security to be provided supplementary
to the classification system to regard attacks such as replay, message tampering, denial of
service, desynchronisation etc (as considered in Chapter 5).

Inference of PUF Behaviour An adversary may attempt to gain learn the PUF response
data/entropy at some stage of the authentication phase. Usually, it would be necessary to
consider an adversary looking to collect some helper data used for error correction in order
to learn about the PUF CRP behaviour; in the proposed scheme, however, no helper data
is required at any point to actively correct errors in the responses themselves, negating this
security threat entirely. This leaves one threat to consider, being that of an adversary at-
tempting to learn some information about the DRAM-PUF behaviour from the classification
model itself. Due to the black-box nature of trained neural networks and the fact that the
input and output are already publicly known, an inspection of the trained VGG16 or clas-
sifier would reveal no useful information to allow an adversary to infer the PUF behaviour.
It should however be noted that knowledge of environmental conditions could provide an
attacker with an amount of advantage when attempting to predict the PUF response bits.
This is due to the fact that while the distribution of noise (location of randomly occurring bit
flips) at varying conditions is random, the amount of noise is not. This phenomenon has been
exploited in recent literature to detect the change in location of end devices via DRAM-PUF
measurements, noting changes in amounts of noise [91]. While on a per-bit level this does not
provide an attacker with assistance in guessing bits of the final response, it could potentially
lead an attacker to generating a closer representation of the noise distribution of the final
response if they gain knowledge of the operating conditions of the PUF, leading to an output
which can fool the DPAN model. Future research should investigate the advantage gained
from this attacker knowledge.

Response Guessing An adversary may attempt to brute force query the classification
model to try to discover which images produce an acceptable confidence score to allow au-
thentication. This would require a random guess of a response close enough to the hamming
distance threshold, producing an acceptable confidence value when input to the model. This
attack is extremely difficult as an attacker must guess the correct integer from 0-255 for each
of 44,000 pixels in the image data, in addition to the guessed pixel value being correct enough
for the model to extract comparable features to the legitimate images. We also experimen-
tally verify this security property in Section 3.3.3, as when utilising an appropriate confidence
threshold, DPAN is able to distinguish fraudulent responses to mitigate false authentication
from adversarial images entirely. Finally, an attacker who knows the algorithms and class
labels used in DPAN may attempt to collect some device responses to train their own new
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classification models and learn some information to compromise the PUF and/or authenti-
cation system. This attack is also not economical for an attacker as training a new model
is also a black-box process and does not enable an adversary to learn particular new inputs
that could be used to deceive a legitimate model. An extremely similar, if not identical,
classification model would need to be trained (which is difficult to confirm by the attacker)
and brute force queried with fraudulent images to identify patterns that could potentially
fool the real DPAN model.

PUF Modelling In a strong PUF-based system, noisy responses could theoretically be
used to train a predictive model. Unlike other solutions, however, this model would need to
produce not just the correct response but also noise in a distribution which is recognised as
authentic by the DPAN classifier. The inclusion of noise in the transmitted responses is also
an impediment to the construction of a predictive model for the PUF, though the degree to
which this offers protection is an open question. Simple falsification is shown to be non-viable
as experimentally verified in Section 3.3.3, where the CNN (with SVM, RF and XGBoost
classifier) shows 0% false positives when authenticating responses consisting of real and fake
responses. A sufficiently large set of acquired responses from the device set would potentially
allow an adversary to duplicate the authentication model. This in itself does not allow for an
attack, but it may be possible to use that model when training a predictive one which would
allow for a direct attack.

Effects Poor PUF Uniqueness In our experiments, we utilise DRAM-PUF samples with
a high uniqueness property. High uniqueness is an essential property of PUFs, such that
individual PUFs can be uniquely distinguished from one another. When utilising CNN-based
approaches for PUF authentication, PUFs with poor uniqueness may cause increased false-
negative rates, whereby one individual PUF is misidentified as another, causing a rejection
even when the originating device is legitimate. This emphasises the importance of utilising
PUFs with a high uniqueness property for CNN-based authentication. Experimentation
which investigates this effect is an interesting area for future research.

Replay Attacks As the scheme transmits responses over an open channel there is the
risk of a replay attack, where an attacker transmits a previously recorded response when a
challenge is re-used and thus passes authentication. In PUF schemes this is generally handled
at the protocol by avoiding the re-use of previously issued challenges. There is a particular
challenge in doing so in the proposed scheme as the noisy responses can’t be matched to a
‘correct’ value, so the challenge used by any two devices must be communicated to every
other device each time an authentication takes place and retained for comparison to future
challenges. The suitability of existing protocol-level mitigations to schemes like the one
proposed in this chapter is an interesting possibility for future work.

Poisoning Attack An adversary may attempt to send multiple noisy data to a device to
impact the future performance of the model. This type of attack is not possible as poisoning
attacks only effect online models which are continuously trained after deployment to remain
up to date with continuous data and avoid concept drift. As training only occurs during
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secure enrollment, DPAN will only output predictions to any input data and not retrain on
it.

3.5 Summary

In this chapter, we have proposed an approach to strongly indicate the authenticity of noisy
PUF identities based on a computer vision inspired ML classifier. By applying advanced noise
tolerant classification schemes and the concept of a PUF Phenotype, it has been shown that
PUF IDs can be classified and shown to be authentic with a high degree of confidence without
the need for any knowledge of the underlying PUF structure, properties, noise characteristics,
or environmental conditions. This allows for robust authentication without on-device error
correction and without the need for privacy leaking helper data. The proposed approach has
been verified on real DRAM Latency PUF data collected from commodity devices under a
broad range of environmental conditions covering temperature and voltage fluctuation. In
addition, six different classification methods were tested: XGBoost, RF, KNN, DT, LR, and
SVM. Using this data classification accuracy and F1 scores of between 94% and 98% were
achieved for varying number of supported devices respectively. We demonstrated that most
tested classifiers can perform well with a tuned confidence threshold when identifying fraud-
ulent and legitimate images, with the SVM and RF classifiers performing particularly well.
It has been shown that using an appropriate confidence threshold, the risk of determining a
high confidence for false responses can be eliminated while still detecting true responses on
the first try in most cases. The need for occasional retries due to this is still significantly
less PUF usage than would be required for high quality on-device error correction. As in
this chapter we tackle a PUF-level authentication methodology for purely DRAM-PUFs, we
encounter restrictions regarding the amount of unique CRPs supported by DRAM-PUFs. To
prevent replay attacks, unique CRPs would need to be single-use only, which impacts the
scalability of the scheme as devices would need to be recalled after all CRPs are exhausted.
It is therefore necessary to investigate how DRAM-PUFs can be deployed with the strengths
of Strong PUFs through CRP space to enable authentication.



Chapter 4

A Generic Obfuscation Framework
for Preventing ML-Attacks on
Strong PUFs through Exploitation
of DRAM-PUFs

In this Chapter, we propose a generic framework for securing Strong-PUFs against ML-MA
through obfuscation of challenge and response data by exploiting a DRAM-PUF to supple-
ment a One-Way Function (OWF) which can be implemented using the available resources
on an FPGA platform. Our proposed scheme enables reconfigurability, strong security and
one-wayness. We conduct ML-MA using various classifiers to thoroughly evaluate the per-
formance of our scheme across multiple 16-bit and 32-bit Arbiter-PUF (APUF) variants,
showing our scheme reduces model accuracy to around 50% for each PUF (random guessing)
and evaluate the properties of the final responses, demonstrating that ideal uniformity and
uniqueness are maintained. Even though we demonstrate our proposal through a DRAM-
PUF, our scheme can be extended to work with memory-based PUFs in general.

4.1 Introduction and Related Work

Several schemes have been proposed that aim to fortify the security properties of Strong
PUFs. The fundamental core of all ML-MA is that the relationship between a PUF chal-
lenge and the matching response is the PUF function itself. Given a training set of known
CRPs, it is possible to infer a model that predicts the PUF function’s behaviour for all chal-
lenges, including those not in the training set. Therefore, anti-modelling countermeasures
aim to obfuscate this relationship and, by extension, the PUF function. Ideally, this would
render ML-MA impossible, but in practice, many methods aim to raise the modelling com-
plexity enough to make attacks impractical in the field. Obfuscation methods can mainly
be categorised in two ways with subtle differences: structural non-linearisation and CRP
obfuscation. Structural non-linearisation involves designing PUFs where the actual PUF
function and challenge-response relationship are less linear in structure, thus increasing the
modelling complexity [29,45]. CRP obfuscation aims to obscure the challenge and responses

55
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via masking, hash functions, etc., so CRPs cannot be used to infer the PUF function unless
the adversary can also reverse the obfuscation function [24,28,80].

In 2004, Gassend et al. introduced the FF-APUF, whereby the results of early PUF
stages are fed-forward to several challenge inputs further along, reducing the linearity of
the PUF [29]. While in practice, this PUF showed strong resistance to Linear Regression
(LR) based ML-MA, Alkatheiri et al. demonstrated a successful attack using a Multi-Layer
Perceptron (MLP) to model the FF-APUF [1]. In 2007, Suh et al. proposed the first PUF
to include CRP obfuscation in the XOR-APUF, where the output of several unique APUFs
is XOR’ed together to obscure the mapping of each APUFs responses against the same
challenge [80]. This additional logic (and added resistance to ML-MA) came at the expense
of reduced PUF reliability and increased hardware overhead. Ma et al., Miskelly et al., and
Cui et al. proposed the use of lightweight single-cell Weak PUFs as an alternative method of
CRP obfuscation [56] [67] [14], where each CRP bit is XOR’ed with the response of a single
bit Weak PUF. The hardware overhead of this approach is minimal, but in practice only
reduces the prediction rate of advanced attacks with large CRP training sets to around 80%.
This gives the adversary a significantly increased chance of achieving a collision, even if it
prevents fully reliable prediction.

Gassend et al. proposed a Controlled PUF, whereby hash functions are utilised to re-
strict access to CRPs [28]. The combination of multiple hash functions and error-correction
code (ECC) incurs a substantial hardware requirement, making it difficult to justify the PUF
over traditional cryptographic methods. Ye et al proposed an RPUF in [92], whereby each
challenge is randomized before input to the PUF. This scheme, however showed insufficient
resilience against ML-MA with most attacks providing above 70% prediction accuracy. Sub-
sequent attacks increased this to above 90% [16]. In [24], Gao et al presented PUF-FSM,
where ECC is replaced with a finite-state machine. However, the hash logic still required
by the scheme ensured the hardware overhead was not sufficiently low and the selection for
reliable responses in the CRP set provides enough information leakage to mount a successful
attack as in [16]. Dubrova et al proposed the CRC-PUF, utilising a circuit based on Cyclic
Redundancy Checking to perform a transformation of the PUF input to increase the difficulty
of ML-MA [20]. While compact and generically applicable, this solution’s efficacy is unclear.
Only one ML-MA method was tested experimentally, LR, and even then a prediction rate
of 75% per bit was achieved. It is also not a complete scheme as it relies on the generation
of a polynomial to configure an LFSR each time the PUF is used, but no specific method
for generation or handling at the protocol level is proposed and this is not considered in the
resource usage.

Recently, Zhang et al proposed an obfuscation scheme for Strong PUFs that utilises pre-
stored stable PUF responses for obfuscation after enrollment [95]. A TRNG is used to select
randomly from a set of keys to obscure CRPs using XOR operations, and when a number
of CRPs can be collected by an adversary, the set is updated. While this scheme enabled
strong resilience against ML-MA and lower hardware overhead than similar schemes, it relies
on storing key data in NVM, enabling adversaries with physical access to gain access to
the secret data, which would ultimately compromise the security of the PUF. Zhang et al.
also proposed a scheme which uses a structure that can operate as three different kinds of
PUF (arbiter, ring oscillator and bi-stable ring), called CT-PUF [96]. In order to reduce
the linearity between challenges and responses, the CT-PUF acts as only one of these PUFs
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to any given challenge, but the challenge itself is also obscured by being fed through an
arbiter PUF. The CT-PUF structure is more area-efficient than other proposals as the single
circuit provides all three PUF functionalities. It achieves very good, but not perfect, ML-MA
resistance with prediction rates of just over 60%. However, it is not a generalised scheme
that can apply to any strong PUF. Additionally, while it is impressively compact, it will
be shown in this work that even greater area reductions can be achieved through re-use of
existing components.

4.1.1 Comparison

Ideally, there are several desirable properties (DP) for a PUF obfuscation scheme to exhibit
such that the additional device overhead can be justified over simply adopting a PUF. When
considering the threat model (described in detail in Section 4.2.3) of an attacker with physical
access to a device and modelling capabilities, we outline a set of five key requirements which
cover this assumption:

• DP1: Minimal Area Requirement:- PUF obfuscation requires additional logic
and/or operations on top of the PUF circuit itself. Thus, to keep the obfuscated PUF
lightweight and applicable to constrained systems, the obfuscation mechanism must use
the lowest amount of system resources possible. Additional circuitry should be min-
imised for power and area, computation should be kept to a minimum, and existing
system resources should be repurposed as much as possible.

• DP2: ML-MA Secure:- The scheme must provide sufficient non-linearity between
PUF inputs and outputs (CRPs) such that an attacker with knowledge of part of the
CRP set cannot mount a modelling attack using machine learning that results in a
prediction rate significantly above 50% for CRPs not in the known set.

• DP3: No NVM Requirement:- A common requirement in authentication systems
and in previously proposed PUF obfuscation schemes (such as [95]) is an NVM to store
secrets or helper data on the device. Having a secret or data which reveals compromising
properties of the system constantly present on the device during operation is not ideal
and creates an obvious point of attack for adversaries. Further, in a PUF context it
weakens a key property of the PUF, that the PUF secrets exist only when being used.
A PUF obfuscation scheme, therefore, should try and avoid an NVM requirement and
in general avoid the need for fixed additional secrets or helper data which contains
information about the PUF properties. If supplementary data must be used, it should
not give the adversary any information about the PUF properties or behaviour.

• DP4: Reconfigurable:- Ideally, in addition to passively preventing ML-MA by rais-
ing the difficulty of modelling, an obfuscation system should contain a mechanism for
reconfiguration. i.e. changing the system behaviour such that using the same challenge
twice between different configurations exhibits different final outputs. This provides an
element of active countermeasure. If an attack is suspected, the PUF can be reconfig-
ured, and a model trained to predict the previous configuration must be retrained.

• DP5: Generic:- The scheme should be designed separately from any given PUF de-
sign, such that designers can use any arbitrary PUF in the scheme and produce the
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same enhanced security. This modularity ensures that the obfuscation scheme can be
tested on future-developed PUFs and implemented to secure any strong PUF which
a given manufacturer desires. This enables the use of previously designed PUFs with
specific desirable properties, such as high reliability in the case of shorter length Ar-
biter PUFs, which are vulnerable to ML-MA without additional obfuscation logic [36].
A truly general scheme gives the designer the freedom to tailor the properties to the
application’s needs.

Table 4.1 compares the relevant works presented against the identified desirable proper-
ties. Each related work was chosen as relevant by the following criteria:

1. Utilises a form of Strong PUF.

2. Includes logically obfuscating steps both before and after Strong PUF input/output
interfaces.

3. Primarily built in hardware - software level obfuscation is not included.

Factors in Table 4.1 listed as ‘Inconclusive’ are due to implementation details having not
been provided by the original authors. The key distinguishing factors are DP1 and DP5. The
proposed scheme is generic and enables the use of any strong PUF in a modular way, while
other schemes are limited in this regard. The proposed scheme achieves DP5 by completely
separating the chosen PUF from the rest of the obfuscation logic, such that any strong PUF
output is fully obfuscated with the lightweight proposed one-way function (described in detail
in Section 4.2.1). While some other schemes do achieve this generic quality, they end up using
more resources than the design proposed in this work. The proposed scheme achieves this
reduction (DP1 ) by utilising existing resources on the device in the form of memory PUFs,
which enable entropy generation in runtime without additional logic of use of permanently
storing data in NVMs. To the best of our knowledge, the schemes included for comparison
include all strong PUF-based schemes available in the literature at the time of writing which
provide results from real implementation on FPGA. Comparison with PUF-simulation based
work in this area, e.g. [98], would not be appropriate.

Table 4.1: Comparison of the Proposed Scheme Against Similar Schemes

Scheme DP1 DP2 DP3 DP4 DP5

Controlled PUF [28] X ∼ X ∗
PUF-FSM [24] X X ∗
Set-based [95] X X X

CRC-PUF [20] ∼ ∼
CT-PUF [96] X X

Proposed Scheme

: Yes; X: No; ∼: Inconclusive/Not Explicitly Evaluated
∗ If hash function used is reconfigurable
DP1: Minimal Area DP2: ML Secure DP3: No NVM Required DP4: Reconfig-
urable DP5: Generic Framework
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4.1.2 Motivation

The major issue with Strong PUF obfuscation schemes is not in devising the obfuscation
methods - any number of known hard problems can be applied to increase the modelling
complexity to an infeasible degree. The key problem is: how to increase complexity such that
the lightweight nature of the PUF concept is retained? If the obfuscated system requires
many aspects of traditional cryptography, most of the benefits of a Strong PUF over purely
cryptographic functions are lost. There is still the fact that it is rooted in hardware, however
this benefit is not unique to Strong PUFs. The key goal, then, is to find the method(s) which
add the most complexity for the lowest cost. For most schemes, there are three inescapable
overheads in addition to the PUF itself:

(a) Some non-reversible function or mask to de-correlate challenges from responses.

(b) A fixed matrix or secret can be used in that function and an NVM to keep it in. This
can sometimes be avoided depending on the nature of (a), but for very lightweight
functions, this is generally a requirement.

(c) Strict error correction is necessary due to the error-amplifying nature of most applicable
functions and inherent PUF noise.

As error management is always going to be necessary in PUF-based systems (be it explicit
or ML-based as demonstrated in the previous chapter), the two targets for overhead reduction
are the masking function (a) and the fixed secret/NVM (b), however schemes which avoid
these have less than ideal results. Schemes which rely on more complex PUF structures alone,
avoiding (a) and (b), have thus far largely proven vulnerable to more sophisticated ML-MA.
Schemes which rely on very lightweight masking instead of a hash or one-way function,
avoiding (b), only partially impede attacks. Steady progress has been made in reducing the
footprint of masking functions, yet the overall footprint remains higher than is desirable,
especially in systems using NVMs (which are relatively expensive, bit-for-bit). NVMs also
present an obvious target for hardware-level attacks as they typically present a single point
of failure for the obfuscation system.

Something less explored in this context is that PUFs are a type of ‘memoryless’ key storage
mechanism, often used in place of NVM. For most PUFs, this results in no net gain in cost,
as the PUF would need as much hardware as an NVM while being less stable. However,
considering a Software PUF based on a volatile memory becomes a much more interesting
proposition. It is safe to assume most systems will have at least one volatile memory. If this
memory may also be exploited as a PUF, a concept which has been demonstrated on both
SRAM [39] and DRAM [40,41, 68], then it can be used as a matrix generator to remove the
need for NVM entirely. If such a Memory PUF can be operated during system runtime as
is the case for [41] and [68], it also provides the advantage of the fixed secret only existing
when needed, rather than being constantly present on the device. Further, a system’s main
memory will naturally be much larger than what could be justified for NVM in a single sub-
system, allowing for a larger fixed secret than would otherwise be feasible. In addition to the
issue of resource use, there is a practical consideration around the diversity of PUF designs
proposed to date. An obfuscation scheme based around a particular Strong PUF is helpful
but not as useful as a generic scheme into which any existing Strong PUF IP can be inserted.
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However, a generic scheme requires more rigorous testing because the modelling complexity
of the PUF function is not fixed. Scheme resistance to one ML attack for one PUF type does
not necessarily extrapolate to equal resistance to any given ML attack for any given PUF
type. This is less of a concern for rudimentary attacks but more crucial when considering
adversarial learning, deep neural nets, evolutionary strategies, and similar advanced ML
techniques, which are well suited to fitting for highly complex functions. Ideally, a scheme
should be both generic and tested experimentally against a broad range of ML techniques for
various complex PUFs.

4.1.3 Contributions

To provide a solution to the limitations identified in the current literature, we propose in
this chapter a generic DRAM-PUF-based obfuscation scheme for Strong PUFs. The main
contributions of this chapter are as follows:

• A generic PUF-based obfuscation scheme for any Strong PUF, experimentally verified
using multiple 16-stage and 32-stage Arbiter-based PUF variants simulated in software.
To the best of our knowledge, we are the first to consider a modular scheme with regard
to Strong PUF where an adversary is considered to have full knowledge of the utilised
underlying scheme.

• A novel modified One-Way Function (OWF) to enable strong resilience to ML-MA
and enhanced one-wayness to our scheme, without impacting ideal Uniqueness and
Hamming Distance properties. In this regard, we utilise DRAM-PUFs for OWF con-
figuration, having the effect of improved security with reduced hardware footprint.

• An evaluation of our scheme against well-known Machine Learning Modelling Attacks
against strong PUFs, including a novel set of supervised and unsupervised classifiers
tailored for our scheme, showing a strong capability to resist ML-MA.

• Synthesis of our OWF on a Zynq-7000 FPGA and provide a comparison of our proposed
scheme for hardware overhead and power consumption against comparable schemes.

• We provide all source code and data used for our experiments, open access for the
research community (Section 4.6).

4.1.4 Chapter Organisation

The remainder of this chapter is organised as follows. Section 4.2 introduces preliminary
information regarding Memory-PUFs, One-Way Functions and notation/technical concepts
used throughout the chapter. Section 4.3 provides a detailed description of the operation
of the proposed scheme. Section 4.4 explains the experimental methodology undertaken to
evaluate the proposed scheme. Section 4.5 then provides a breakdown and analysis of our
experimental results, including a comparison against similar schemes, and finally, in Section
4.6, we provide a conclusion of this work.
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4.2 Preliminaries

In this section, we outline some preliminary concepts pertinent to the proposed scheme and
evaluation methods.

4.2.1 Custom Lightweight One-Way Function

In this work, we modify the compression function given in [22] (it is the improved variant of
the function proposed in [3]) to design our One-Way Function (OWF). Here, we use our own
truly random generated H matrices by using DRAM-PUF data instead of a random quasi-
cyclic matrix in order to ensure optimal security. In [22], it is reported that this construction is
not suitable for memory-constrained environments due to the storage requirements for the H
matrices. When utilising the DRAM-PUF for storage and generation of H, this constraint is
removed (discussed further in Section 4.2.1.1). In the original construction of the compression
function, as described in [3], denoted F , takes s bits of input data, and uses a random r × n
binary matrix to obtain r bits of output data. F consists of XOR operations and simply
computes the syndrome of the split parts (i.e., s bits of data are split into blocks of w, and
then w columns of H are XORed). The inverting the F is a Syndrome Decoding problem
that is NP-complete [7]. It proves that when you choose the appropriate parameters, this
compression function can be used as an OWF.

In [22], the authors improved the previous original construction [3] by using a quasi-cyclic
matrix H instead of the generic random matrix to increase the overall efficiency. But still,
this improved compression function does have its limitations, for example, the size of H is still
a limiting factor for the efficiency of the compression function. Furthermore, the quasi-cyclic
codes cannot guarantee complete randomness [22]. Therefore in this work we focus on how
we can generate a truly random small binary matrix H of 8,192 bytes (note that here the
parameters r = 64, and n = 1024) with appropriate w parameters, without any security loss
for designing our OWF.

4.2.1.1 H-Matrix Entropy and Resourcefulness

A basic approach to the theH matrix requirement in hardware would be to generate a crypto-
graphically significant matrix (through an arbitrary PRNG/TRNG) during device enrollment
and permanently store it in a form of NVM to be accessed when required. This, as mentioned
previously, creates a significant weakness for a PUF device, where it is assumed an adversary
has physical access and could read H in this scenario which would entirely undermine the se-
curity of the PUF scheme, not to mention the significant hardware overhead incurred for each
bit of required NVM. For these reasons, we focus on the benefits of exploiting Memory-PUFs
which are already suitable to utilise available device resources to generate large amounts of
high entropy data (discussed further in Section 4.4.4).

By modifying the idea given in [22], the steps for the proposed OWF can be written as
follows:

1. Select number of blocks w,

2. Split m bits of input data into w blocks - if padding is required, pad now
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Algorithm 4: One-Way Function (OWF)

Input: M : ROrigin

Data: w: Block number
Output: CFinal

1 M ′ ←M∥pad(M,w)
2 m1∥ · · · ∥mw ← parse (M ′)
/* where |mi| = b-bit for all 1 ≤ i ≤ w and parse () is a function that

splits M ′ into w blocks */

3 xi ← ⟨mi⟩b
/* where xi is the integer representation of b-bit bit stream mi */

4 for i← 1 to w do
5 Hxi ← pick(H,xi)

/* where pick () is a function that picks the corresponding column

in the H matrix at position xi */

6 CFinal ← (CFinal ⊕Hxi)

7 return CFinal

3. Convert each of the blocks from binary to integer (x1, x2 · · · , xw),

4. Pick the corresponding column in the H matrix at position x,

5. Return CFinal = Hx1 ⊕Hx2 ⊕ · · · ⊕Hxw

In our OWF, according to the chosen value of w, m needs to be padded. We check whether m
is divisible by w, if it has no remainder the padding is not necessary, otherwise it is required.
For the padding, it is inspired by PKCS#7 [43], however we made some modifications: the
number of required padding bits is to be calculated with the following formula:

Npadding = ([(q1 + 1)× w]−m) (4.1)

where q1 is the quotient of m and w. Then, the result is converted to a 4-bit binary number,
and we repeat it y times. Let q2 be the quotient of Npadding and 4, if Npadding is divisible by
4 without remainder, y is equal to q2, otherwise, will be equal to (q2 + 1). As a final step,
we drop the last (4 ∗ y − Npadding) bits to get the padded input data. For example, let w
be 7, in here we need 6 (= [(9 + 1)× 7]− 64) bits padding, the 4-bit binary representation
of 6 is “0110”, then we repeat “0110” 2(= 1 + 1) times as “01100110”. We only need 6-bit
padding so we remove the last 2(= (4× 2)− 6) bits, finally, the pad will be “011001”. When
evaluating the hardware cost of the OWF function, in theory, splitting m has no cost. Here,
the last step costs only [(w − 1)×m] binary XORs.

According to Algorithm 4, the concatenation of bit stringsM and pad(M,w) is denoted by
M∥pad(M,w) where M ∈ {0, 1}64 is an 64-bit string and pad() is a padding function. When
x is an integer, we write ⟨mi⟩b to represent its corresponding b-bit binary representation.
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4.2.2 Notation

Uniformity

Uniformity ensures that every possible output of a cryptographic process is equally likely,
which is an essential property for secure systems. In the context of PUFs, under the different
challenges, the uniformity metric gives the distribution of ‘0’s and ‘1’s in PUF responses.
Uniformity is formally defined as the following:

To define the necessary components when determining uniformity, we provide the follow-
ing index:

1. Random Variable (X): A variable that can take on various values, each with a certain
probability.

2. Finite Set (S): A set with a limited number of elements. For example, the set of all
possible outputs of a cryptographic function.

3. Uniform Distribution: A type of probability distribution where every outcome in the
finite set S has an equal chance of occurring.

4. Probability (Pr): A measure of the likelihood that a given event will occur. In this
context, it refers to the likelihood that X takes on a specific value.

5. Cardinality (|S|): The number of elements in the set S.

Therefore, a random variable X taking values in a finite set S is said to be uniformly
distributed if each element in S has an equal probability of being selected. This can be
mathematically expressed as:

Pr(X = x) =
1

|S|
∀x ∈ S (4.2)

where Pr denotes the probability, X is the random variable, and |S| represents the cardi-
nality (number of elements) of the set S.

Uniformity can thus be defined using the following notation:

Pr(X = x) =
1

|S|
(4.3)

Now we consider a PUF that produces an output from a set S = {0, 1}. If the function
is uniformly distributed, the probability of getting a 0 or a 1 is equal, i.e.,

Pr(X = 0) = Pr(X = 1) =
1

2
(4.4)

4.2.3 Threat Model

This work is based on a threat model which assumes a remote adversary with the technical
ability and resources to carry out advanced ML-MA. Specifically, the following assumptions
are made:
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1. The adversary is remote, or has limited physical access to the target device. While phys-
ical level attacks against PUFs are a factor of consideration they are not the primary
motivator of this work.

2. The adversary has a goal of being able to predict the final output, RFinal, for any given
challenge, COrigin.

3. Any initial challenge, COrigin, and corresponding RFinal used by a device are available
to the adversary via eavesdropping. It is assumed the attacker can always acquire a
moderately sized subset of the possible CRPs for any given device.

4. The internal feedback challenge and response, CFinal and ROrigin, are not available to
the adversary and cannot be directly measured. The adversary may attempt to predict
them as a step in the ML-MA process but has no way to verify this except through
changes to the predicted RFinal.

5. The adversary has full knowledge of the scheme structure.

6. The adversary has full knowledge of the OWF structure and can execute a copy of it
at will.

7. The adversary has full knowledge of which PUF designs have been used and the mech-
anisms they employ.

8. The adversary can send falsified challenges to the scheme as a whole but cannot bypass
the scheme to query either the internal SPUF or Memory-PUF individually.

It is important to note that the assumption of restricted internal access to the Strong PUF
(maintaining secrecy of ROrigin) is key to the security of the scheme and is worth particular
consideration. An attacker gaining access to ROrigin would enable a modelling attack on the
underlying Strong PUF, meaning with knowledge of COrigin, H and the OWF, an attacker
could relatively simply calculate the stages of the obfuscation scheme and predict RFinal bits.
This would require an extremely accurate model of the PUF however, as a single bit predicted
incorrectly would avalanche through the function, causing incorrectly predicted RFinal bits.
Regardless, the attacker would have a strongly increased overall predictive advantage.

Accessing the response interface of the PUF lends arguments to be made for the inclusion
of side channel analysis, hardware tampering, and/or fault injection as would be possible for a
sufficiently advanced adversary with physical access. While not to be dismissed, experimental
analysis of these attacks is beyond the scope of this work which is focused on the ML-MA
threat. Some preliminary discussion of the implication of these other attacks for the proposed
scheme is given in Section 4.5.2 with further exploration likely to form the basis of future
work.

4.3 Proposed Scheme

For an adversary to collect a subset of possible CRPs and accurately model the PUF be-
haviour, there must exist a reasonably strong correlative relationship between the initial
challenge and final response data. Based on this assumption, we aim to complicate the
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mapping between initial challenges and final responses collected by an adversary such that
resilience against ML-MA is sufficiently enhanced. Additionally, we consider the requirement
to maintain a small enough hardware footprint to enable a scheme that can be reasonably
deployed on edge devices.

We, therefore, present a generic obfuscation scheme where the Strong PUF element is con-
sidered modular, such that various Strong PUF implementations may be used interchangeably
to generate hardware-centric tokens for further processing. To limit the overall footprint of
a PUF obfuscation scheme it is desirable to enhance entropy using existing resources where
possible. We achieve this in two ways: Firstly, while Strong PUFs on their own are suscepti-
ble to ML-MA, there is still an amount of entropy which is generated from the manufacturing
variation of the PUF for each CRP. We exploit this by introducing a self-feedback feature
where initial Strong PUF responses are used to create a new obfuscated challenge for the
same Strong PUF. This contributes a baseline increase in modeling complexity for a remote
adversary, as they will not have access to the internal feedback challenge. It adds very little
hardware and is a generic solution which can be applied to any strong PUF. Further, it pro-
vides some flexibility in that depending on the stability of the PUF and acceptable level of
resource consumption the number of feedback rounds can be increased or decreased.

In itself this increase in complexity is not sufficient to prevent ML-MA, however. There-
fore, we also propose to use a low-cost OWF (as described in Section 4.2.1) in the feedback
loop, such that the relationship between the origin challenge and the internal challenge be-
comes non-reversible and extremely difficult to predict without knowledge of a matrix, H,
and the internal PUF response, ROrigin. In addition, we propose to exploit a second PUF - a
Memory-PUF - as a matrix generator to supply the OWF with cryptographically significant
matrices for configuration.

Generating matrix data in this way has key benefits. The OWF requires H to be a
large random matrix, which would typically require permanent storage on-device. This both
increases the scheme footprint and provides an obvious target for hardware level attacks. By
offloading the synthesis and storage of H data to a Memory-PUF, both limitations can be
mitigated. In terms of cost, the Memory-PUF can generate very large matrices with the
necessary properties from its own hardware. In the case of the exemplary DRAM-PUF used
in this work a significant proportion of the memory tested was usable for matrix generation,
giving a total matrix space in the order of 100s of MB per GB of total DRAM (see section
4.4.4 for further details). An equivalently sized fixed matrix with NVM storage would incur
a substantial hardware and processing cost.

In combination these measures provide a very significant increase to the modeling com-
plexity while using minimal additional circuitry. The specifics of the scheme are given in the
following section, with tests of attack resiliency, resource consumption, and security analysis
provided in Sections 4.4 and 4.5.

4.3.1 Generic PUF Obfuscation

We present our proposed generic obfuscation scheme, the entire process of which is depicted
in Figure 4.1 and is described with the following numbered steps:

Response format: A binary vector of length i.
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Challenge format: The SPUF is assumed to generate 1 bit responses to x bit challenges,
where x is typically the number of SPUF stages. The OWF requires a fixed 64-bit input,
meaning 64x challenge bits are required for one execution of the OWF. This will produce a 64-
bit output, which can be split into 64/x feedback challenges to produce 64/x bits of the final
response. This must be repeated until the desired response size, i, is reached. Therefore the
expected challenge C will consist of the full set of required SPUF challenges, COrigin, concate-
nated with the Memory-PUF challenge CMem. COrigin will be of length (64x)∗(i/(64/x)) bits.

1 First, the challenge data C is received by the device and split into the SPUF challenge
COrigin and Memory-PUF challenge CMem. The first 64x bits of COrigin are taken as
Ci
Origin.

2 Ci
Origin is passed to the SPUF to generate the internal response, Ri

Origin.

3 Error correction is performed on Ri
Origin to remove noise. PUFs contain an inherent

degree of random noise largely influenced by environmental condition variation. There-
fore, error correction is performed on the PUF output to remove this noise and generate
a stable output. The scheme does not specify a correction method as the optimal ap-
proach will vary depending on the particular properties of the chosen PUF (an example
however is provided in Section 4.5.3 to demonstrate hardware overhead).

4 If i <= 64 (i.e., the scheme is in the internal feedback stage) Ri
Origin is appended to a

secure 64-bit register where the full ROrigin is assembled.

5 The secure register waits for a full 64 bit ROrigin. This register must be carefully
secured as whole or partial leakage of ROrigin invalidates the ML-MA countermeasures.

6 The completed ROrigin is passed to the OWF, which now requires the configuration
matrix, H.

7 The Memory-PUF challenge CMem is passed to the Memory PUF controller, which
prepares the memory segments indicated in CMem for PUF use.

8 The Memory-PUF generates a preliminary (noisy) response matrix.

9 Error correction is performed on the Memory-PUF output to produce the final de-noised
matrix, H. Provided there is sufficient memory space available, this is carried out also
within the memory (to store a copy for majority voting over repeated measurements).

10 H is used to configure the OWF, which has already been passed ROrigin. The 64 bit
output of the OWF is the internal challenge, CFinal.

11 CFinal is divided into 64/x vectors of length x, which are fed sequentially as challenges
into the SPUF.

12 The output bits are again error corrected to remove noise, then the RFinal bits are
appended to the final response R.
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13 Finally, i is re-initialised to 0 and the process is repeated, using the next 64x bits of

COrigin as Ci+1
Origin. This continues until the required size of R is reached, after which

R is returned to the verifier.
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Figure 4.1: Generic PUF Obfuscation Scheme
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4.4 Experimental Methodology and Discussion

In this section, we first provide details of the setup/methodology used to validate the pro-
posed obfuscation scheme, including details on the PUF datasets and quality of DRAM-PUF
measurements.

4.4.1 Strong PUF Datasets

As with most hardware cryptographic primitives, adjusting PUF parameters can enable a
designer to tailor the PUF design around the properties most desired for a given security
scheme. With Arbiter-based PUFs, one such parameter which can be varied is length of
the PUF (referred to as ‘stages’) which is adjusted through variation of the number of mul-
tiplexers used in the delay chain (see Figure 2.2). Increasing the size of the PUF has an
exponential effect on increasing or decreasing the available CRP space, in theory enhancing
the security of the PUF at the cost of decreased reliability. As shown in [74], while longer
APUFs require more resources to model with ML-MA, APUFs of even 128-bits in length can
be broken fairly trivially with sufficient CRP training data. While some may argue these
render such PUFs redundant, we propose it as a reason to utilise the PUF for its strength in
the ability to generate many unique CRPs on-the-fly without any kind of additional process-
ing, while security against ML is offloaded to other mechanisms in the overall scheme. For
this reason, we propose the use of smaller APUFs, and thus verify our proposed scheme on
16-stage and 32-stage APUF variants, where the 16-stage APUFs support 216 unique CRPs
and the 32-stage APUFs support 232 CRPs. This design choice intrinsically reduces hard-
ware overhead simply due to the smaller PUF size, but also inevitably reduces further error
correction overheads as PUF reliability is not worsened with a larger PUF. For a 16-stage
PUF, while it may seem only to support a relatively low number of possible unique CRPs
(65,536), our scheme resolves this issue through intrinsic support for reconfigurability. As the
challenge/response behaviour of the entire scheme is dependent on both the Strong-PUF chal-
lenge and the unique matrix, H from the Memory-PUF, the number of possible Strong-PUF
CRPs scales directly with the number of unique responses supported by the Memory-PUF.
In this way, just 10 unique Memory-PUF responses brings the total supported CRPs of the
proposed scheme to 655,360 CRPs, providing an enhancement for scalability. Additionally,
this has the effect of improved resistance to ML-MA as when the scheme is reconfigured, an
adversary must attempt to train a new ML model to capture the new CRP behaviour of the
scheme (discussed further in Section 4.5.5).
We utilised the PyPuf Python framework to generate a set of Strong PUF datasets, through
simulating the linear delay models of each PUF tested [89]. To cover a variety of APUF
variants, we tested both 16-stage and 32-stage APUF, XOR-APUF and FF-APUF. These
PUFs have well-defined mathematical models which describe their behaviour and can there-
fore be accurately simulated in this context. These simulations may not precisely emulate
the behaviour of specific hardware implementations of these PUFs, but they do accurately
represent the general behaviour and, crucially, their modelling complexity. As this work aims
to evaluate a counter-modelling scheme and the simulated PUFs are an accurate represen-
tation of the work needed to perform a modelling attack they are entirely suitable for use
here.
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4.4.2 Memory PUF Dataset

To generate the H-matrices for our OWF, we opted to use a Latency DRAM-PUF due
to the size of available responses, ideal PUF properties, high measurement speed and the
ubiquity of DRAM in commodity devices. It should be noted that this is only a test case
using a particularly well-suited PUF design. In theory, any weak PUF which can quickly
generate large responses could perform the same function. Unlike the strong PUF designs
used, DRAM-based PUF behaviour has only been observed experimentally. There is no
defined mathematical model by which the physical level behaviour can be simulated. It
would be possible to simply assign each simulated cell a probability of failure, but this misses
many nuances such as the influence of surrounding cell contents, line variation, sense amplifier
variation, etc. Developing and verifying the accuracy of such a model is beyond the scope
of this work, therefore we chose to source DRAM PUF data generated experimentally from
hardware. The experimental setup for this used the same setup described in [63], targeting
Commodity Off-The-Shelf (COTS) DIMM form factor desktop DRAM modules. In each
experiment a data pattern was written to memory, then the timing parameter tRCD was
lowered to 0 clock cycles. Sequential attempts were made to read the data pattern with the
results of these attempted read operations forming the PUF response. No error correction or
filtering was applied. Data was generated for test patterns 0x00 (all ‘0’), 0xFF (all ‘1’) and
0x55 (checkerboard pattern). For use in the proposed scheme, each DRAM PUF response was
transposed to match the required size of our H-matrices. Error correction was not necessary
as only a single execution of the obfuscation scheme was required for each given DRAM-PUF
measurement, meaning we can assume the DRAM-PUF measurement used is the final ‘golden
response’.

4.4.3 Equipment Used

Finally, we performed each of our ML attacks using Python 3.8.12, PyPuf and ScikitLearn
on an Intel i9-11980Hk CPU @ 2.60GHz and DDR4 3200MHz 64GB memory. Also, in order
to observe the total hardware overhead, we implemented our proposed scheme on a Xilinx
Zynq-7000 FPGA device using Xilinx Vivado.

4.4.4 DRAM-PUF Characterisation

As discussed in Section 4.2.1, it is imperative for the security of the OWF that the supplied
H-matrices are cryptographically significant, such that they exhibit ideal uniformity on the
final output. The strong security properties of DRAM-PUFs have been demonstrated exper-
imentally in previous works [41, 68]. In order to verify that the properties seen in previous
works held true for the data generated for use in this work, we configured the OWF with
DRAM-PUF-generated H-matrices to test the uniformity of outputs for arbitrarily generated
OWF inputs. As discussed in Section 3.2.2 (Chapter 3), the challenge for the DRAM-PUF
can be configured by two means: memory location and input pattern, each combination of
which (ideally) produces a unique response output pattern. Further, the OWF output may be
configured through incrementing or decrementing the OWF w value, therefore we include this
parameter to enable an increased challenge space, which enables unique OWF configurations
totalling: unique memory locations * input patterns (3) * w. We refer to a combination of
H-matrix and w value from now on as the COWF . We configured the OWF with each unique
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COWF and tested the outputs over 10,000, 20,000 and 30,000 (separately) unique samples for
uniformity. Practically, this process would occur during the enrollment phase of the scheme,
where specific combinations of memory location, input pattern and OWF w value are tested
for knowledge in advance of which unique challenges should be used during authentication.
We found that the DRAM-Latency PUF exhibits a very strong ability to generate crypto-
graphically significant H-matrices. Across our tests, we found that uniformity was ideal (50
+/- 0.5) in more than 80% of cases, with 81.3% of available unique challenge space (memory
locations * w) demonstrating ideal uniformity for challenge pattern 0x00, 88.4% for pattern
0xFF and 100% for pattern 0x55. The observed trend of solid pattern (0x00, 0xFF) inputs
resulting in reduced uniformity in some memory regions while mixed pattern inputs produce
near-ideal uniformity is consistent with the results reported in [41] [68]. The plots shown
in figures 4.2, 4.3 and 4.4 highlight the distributions of uniformity measurement for 0x00
(Pat 0), 0xFF (Pat 1) and 0x55 (Pat M) measurements respectively. The observed results
demonstrate w = 12 to be the most effective across each H-matrix in ensuring ideal unifor-
mity of the OWF outputs. Generally across the 0x00 and 0xFF configurations, the outputs
trend towards the lower bound of uniformity (49.5) than the upper bound (50.5). The 0xFF
H-matrices demonstrated extremely ideal uniformity across all w configurations, with even
outliers falling well within the ideal upper and lower bounds. Interestingly, using w = 7
for both Pat 1 and Pat 0 display abnormally worse uniformity than the other values tested,
bringing the uniformity above 50.5 for Pat 0 and below 49.5 for Pat 1. An intuition for the
cause of this observation is that there is a reduced complexity when splitting the message
into fewer sets as overall fewer operations will be carried out over the entire message.

Figure 4.2: Uniformity results for All Zeros pattern DRAM-PUF H-Matrices
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Figure 4.3: Uniformity results for All Ones Pattern DRAM-PUF H-Matrices

Figure 4.4: Uniformity results for Checkerboard pattern DRAM-PUF
H-Matrices
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4.5 Results and Analysis

In this section, we present the obtained results and discuss our observations.

Table 4.2: ML-MA using Classic Methods

PUF Type Attack Training/Testing CRPs Accuracy 

APUF 

16 
LR 720000 0.53 

MLP 720000 0.531 

32 
LR 360000 0.496 

MLP 360000 0.477 

XOR-APUF 

16 
LR 720000 0.525 

MLP 720000 0.529 

32 
LR 360000 0.509 

MLP 360000 0.517 

FF-APUF 

16 
LR 720000 0.484 

MLP 720000 0.521 

32 
LR 360000 0.498 

MLP 360000 0.478 

PUF Type Attack Training/Testing CRPs Accuracy 

APUF 

16 
LR 5000 0.944 

MLP 5000 0.988 

32 
LR 10000 0.977 

MLP 10000 0.987 

XOR-APUF 

16 
LR 50000 0.974 

MLP 50000 0.989 

32 
LR 100000 0.944 

MLP 100000 0.984 

FF-APUF 

16 
LR 50000 0.603 

MLP 50000 0.97 

32 
LR 100000 0.645 

MLP 100000 0.981 

(a) Experiment 1: ML-MA without proposed obfuscation scheme (COrigin -> ROrigin) (b) Experiment 2: ML-MA with proposed obfuscation scheme (COrigin -> RFinal)

Num StageNum Stage
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Table 4.3: Custom ML-MA Results

Model PUF Num. 
Stages 

Accuracy AUC Recall Prec. F1 Kappa MCC 

Logistic 
Regression 

APUF 16 0.0630 0.5021 0.0629 0.0630 0.0629 0.0005 0.0005 
32 0.2485 0.4979 0.2483 0.2483 0.2482 -0.0023 -0.0023 

XOR-
APUF 

16 0.0640 0.4991 0.0638 0.0638 0.0638 0.0014 0.0014 
32 0.2485 0.4979 0.2483 0.2483 0.2482 -0.0023 -0.0023 

FF-
APUF 

16 0.0621 0.5002 0.0621 0.0621 0.0620 -0.0005 -0.0005 
32 0.2524 0.5014 0.2524 0.2524 0.2524 0.0031 0.0031 

Linear 
Discriminant 

Analysis 

APUF 16 0.0629 0.5021 0.0628 0.0629 0.0628 0.0003 0.0003 
32 0.2484 0.4979 0.2481 0.2481 0.2480 -0.0025 -0.0025 

XOR-
APUF 

16 0.0638 0.4992 0.0636 0.0636 0.0635 0.0012 0.0012 
32 0.2484 0.4979 0.2481 0.2481 0.2480 -0.0025 -0.0025 

FF-
APUF 

16 0.0556 0.4505 0.0556 0.0555 0.0555 -0.0007 -0.0007 
32 0.2522 0.5014 0.2522 0.2522 0.2522 0.0029 0.0029 

Quadratic 
Discriminant 

Analysis 

APUF 16 0.0627 0.5000 0.0626 0.0624 0.0513 0.0000 0.0001 
32 0.2480 0.4970 0.2477 0.2478 0.2476 -0.0030 -0.0030 

XOR-
APUF 

16 0.0622 0.4987 0.0617 0.0617 0.0612 -0.0008 -0.0008 
32 0.2480 0.4970 0.2477 0.2478 0.2476 -0.0030 -0.0030 

FF-
APUF 

16 0.0620 0.4997 0.0620 0.0615 0.0452 -0.0006 -0.0005 
32 0.2506 0.5005 0.2506 0.2506 0.2506 0.0008 0.0008 

Ridge 
Classifier 

APUF 16 0.0627 0.0000 0.0627 0.0627 0.0625 0.0002 0.0002 
32 0.2484 0.0000 0.2481 0.2481 0.2480 -0.0025 -0.0025 

XOR-
APUF 

16 0.0637 0.0000 0.0635 0.0635 0.0633 0.0011 0.0011 
32 0.2484 0.0000 0.2481 0.2481 0.2480 -0.0025 -0.0025 

FF-
APUF 

16 0.0619 0.0000 0.0618 0.0618 0.0617 -0.0007 -0.0007 
32 0.2522 0.0000 0.2522 0.2522 0.2522 0.0029 0.0029 

Naïve Bayes 

APUF 16 0.0629 0.5023 0.0628 0.0629 0.0628 0.0004 0.0004 
32 0.2494 0.4982 0.2492 0.2492 0.2491 -0.0011 -0.0011 

XOR-
APUF 

16 0.0634 0.4994 0.0632 0.0633 0.0632 0.0008 0.0008 
32 0.2494 0.4982 0.2492 0.2492 0.2491 -0.0011 -0.0011 

FF-
APUF 

16 0.0619 0.5004 0.0619 0.0619 0.0618 -0.0006 -0.0006 
32 0.2527 0.5013 0.2527 0.2528 0.2527 0.0037 0.0037 

Decision 
Tree 

APUF 16 0.0626 0.5001 0.0626 0.0626 0.0626 0.0001 0.0001 
32 0.2482 0.4988 0.2482 0.2482 0.2482 -0.0024 -0.0024 

XOR-
APUF 

16 0.0632 0.5003 0.0631 0.0631 0.0631 0.0007 0.0007 
32 0.2482 0.4988 0.2482 0.2482 0.2482 -0.0024 -0.0024 

FF-
APUF 

16 0.0639 0.5007 0.0638 0.0639 0.0639 0.0014 0.0014 
32 0.2495 0.4997 0.2495 0.2495 0.2495 -0.0007 -0.0007 

Random 
Forrest 

APUF 16 0.0623 0.4997 0.0622 0.0622 0.0617 -0.0003 -0.0003 
32 0.2509 0.4983 0.2509 0.2510 0.2509 0.0012 0.0012 

XOR-
APUF 

16 0.0626 0.4998 0.0627 0.0626 0.0624 0.0002 0.0002 
32 0.2509 0.4983 0.2509 0.2510 0.2509 0.0012 0.0012 

FF-
APUF 

16 0.0630 0.5013 0.0630 0.0629 0.0624 0.0005 0.0005 
32 0.2500 0.5002 0.2500 0.2499 0.2495 -0.0001 -0.0001 

Extra Trees 
Classifier 

APUF 16 0.0615 0.4988 0.0614 0.0614 0.0609 -0.0011 -0.0011 
32 0.2499 0.4990 0.2499 0.2499 0.2499 -0.0002 -0.0002 

XOR-
APUF 

16 0.0624 0.4998 0.0625 0.0625 0.0623 0.0000 0.0000 
32 0.2499 0.4990 0.2499 0.2499 0.2499 -0.0002 -0.0002 

FF-
APUF 

16 0.0625 0.4988 0.0624 0.0623 0.0617 -0.0001 -0.0001 
32 0.2510 0.5021 0.2509 0.2510 0.2505 0.0012 0.0012 

(a) Custom supervised ML-MA results

Model PUF Num. 
Stages Accuracy AUC Recall Prec. F1 Kappa MCC 

DQN 

APUF 16 0.0637 0.0000 0.0636 0.0635 0.0634 0.0012 0.0012 
32 0.2523 0.5000 0.2522 0.2523 0.2523 0.0030 0.0030 

XOR-
APUF 

16 0.0639 0.0000 0.0635 0.0634 0.0633 0.0012 0.0012 
32 0.2532 0.5021 0.2532 0.2533 0.2532 0.0042 0.0042 

FF-
APUF 

16 0.0636 0.5012 0.0635 0.0634 0.0632 0.0011 0.0011 
32 0.2540 0.5026 0.2539 0.2539 0.2538 0.0052 0.0052 

HDBSCAN 

APUF 16 0.0635 0.4995 0.0635 0.0634 0.0634 0.0010 0.0010 
32 0.2517 0.5002 0.2511 0.2511 0.2505 0.0015 0.0015 

XOR-
APUF 

16 0.0639 0.5012 0.0637 0.0637 0.0637 0.0014 0.0014 
32 0.2511 0.5006 0.2509 0.2510 0.2509 0.0012 0.0012 

FF-
APUF 

16 0.0628 0.5006 0.0627 0.0629 0.0622 0.0003 0.0003 
32 0.2531 0.0000 0.2531 0.2531 0.2531 0.0041 0.0041 

DBSCAN 

APUF 16 0.0632 0.4996 0.0632 0.0631 0.0631 0.0007 0.0007 
32 0.2510 0.5001 0.2509 0.2510 0.2509 0.0012 0.0012 

XOR-
APUF 

16 0.0637 0.4993 0.0630 0.0629 0.0616 0.0005 0.0005 
32 0.2494 0.4982 0.2486 0.2484 0.2476 -0.0019 -0.0019 

FF-
APUF 

16 0.0621 0.5003 0.0621 0.0621 0.0620 -0.0004 -0.0004 
32 0.2531 0.5026 0.2530 0.2531 0.2530 0.0041 0.0041 

BIRCH 

APUF 16 0.0632 0.4993 0.0632 0.0631 0.0631 0.0007 0.0007 
32 0.2491 0.4990 0.2488 0.2489 0.2488 -0.0016 -0.0016 

XOR-
APUF 

16 0.0636 0.5011 0.0634 0.0633 0.0633 0.0010 0.0010 
32 0.2490 0.5012 0.2488 0.2489 0.2489 -0.0016 -0.0016 

FF-
APUF 

16 0.0620 0.0000 0.0619 0.0619 0.0618 -0.0006 -0.0006 
32 0.2530 0.5025 0.2530 0.2530 0.2529 0.0040 0.0040 

K-
Means++ 

APUF 16 0.0631 0.5008 0.0630 0.0633 0.0627 0.0006 0.0006 
32 0.2491 0.0000 0.2488 0.2489 0.2488 -0.0016 -0.0016 

XOR-
APUF 

16 0.0636 0.5013 0.0634 0.0634 0.0634 0.0010 0.0010 
32 0.2483 0.4985 0.2479 0.2480 0.2478 -0.0029 -0.0029 

FF-
APUF 

16 0.0618 0.4996 0.0618 0.0619 0.0618 -0.0008 -0.0008 
32 0.2524 0.5023 0.2524 0.2524 0.2524 0.0032 0.0032 

K-Means 

APUF 16 0.0625 0.5015 0.0622 0.0622 0.0617 -0.0003 -0.0003 
32 0.2490 0.4987 0.2487 0.2488 0.2487 -0.0017 -0.0017 

XOR-
APUF 

16 0.0635 0.5005 0.0635 0.0635 0.0635 0.0010 0.0010 
32 0.2474 0.0000 0.2470 0.2471 0.2469 -0.0040 -0.0040 

FF-
APUF 

16 0.0617 0.5000 0.0617 0.0617 0.0616 -0.0009 -0.0009 
32 0.2504 0.5016 0.2503 0.2506 0.2499 0.0004 0.0005 

K-
Medoids 

APUF 16 0.0614 0.4986 0.0613 0.0611 0.0607 -0.0012 -0.0012 
32 0.2486 0.4987 0.2484 0.2485 0.2484 -0.0022 -0.0022 

XOR-
APUF 

16 0.0630 0.5008 0.0630 0.0630 0.0627 0.0005 0.0005 
32 0.2474 0.4978 0.2470 0.2471 0.2470 -0.0040 -0.0040 

FF-
APUF 

16 0.0617 0.4996 0.0617 0.0617 0.0611 -0.0009 -0.0009 
32 0.2502 0.5009 0.2502 0.2502 0.2497 0.0002 0.0002 

Gaussian 

APUF 16 0.0612 0.4993 0.0612 0.0612 0.0611 -0.0014 -0.0014 
32 0.2479 0.4985 0.2478 0.2479 0.2478 -0.0029 -0.0029 

XOR-
APUF 

16 0.0625 0.4997 0.0625 0.0626 0.0623 0.0000 0.0000 
32 0.2473 0.4976 0.2469 0.2470 0.2469 -0.0041 -0.0041 

FF-
APUF 

16 0.0617 0.5002 0.0617 0.0616 0.0616 -0.0009 -0.0009 
32 0.2488 0.4992 0.2488 0.2488 0.2487 -0.0017 -0.0017 

(b) Custom unsupervised ML-MA results

4.5.1 Resilience to ML-MA

Here, we first report the findings of classic PUF ML-MA methods on the Strong-PUFs both
with and without the proposed scheme. After, we report the findings of our custom ML
attack on the scheme. In order to test a variety of PUF types, we performed all tests on
both 16-stage and 32-stage variants of an APUF, XOR-APUF and FF-APUF (described in
Sections 2.4.3 2.4.4 and 2.4.5 respectively).

4.5.1.1 Classical ML-MA

In order to benchmark our proposed scheme against the classic ML-MA methods on PUFs,
we first performed both the Logistic Regression (LR) attack proposed in [74] (Section 2.5.1)
and the Multi-Layer Perceptron (MLP) attack proposed in [1] (Section 2.5.2) on both the
PUFs with and without the proposed scheme. For a fair comparison, we conducted two
experiments. In this first experiment, we perform both the LR and MLP attacks on the
Strong-PUFs without the obfuscation scheme, such that we assume an adversary has access to
the Strong-PUF challenges and responses, COrigin and ROrigin, and aims to predict direct new
ROrigin responses from the same PUF. In the second experiment, we consider the threat model
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described in 4.2.3, where an attacker gains access to the initial challenges and final responses
of the obfuscation scheme, COrigin and RFinal, and aims to predict new final response bits. We
trained each model for the 16-stage APUF on 5000 CRPs and 10,000 CRPs for the 32-stage
APUF. Due to the increased complexity of the XOR-APUF and FF-APUF, for consistency
we trained each model on 10x the number of CRPs as the APUF variants, though it is possible
to successfully model these PUFs with fewer CRPs as demonstrated in [74] and [1], especially
considering they have few stages. Finally, the training CRPs were split into sets of 99% for
training and 1% for validation. We utilised this large 99% training set due to the very large
set of samples available, allowing maximal attacker knowledge, supported with the fact that
statistical significance in predictive capability can be captured with 3,200 and 7,200 CRPs
(1% of total set). Table 4.2(a) provides the details and prediction accuracies of the classical
ML-MA attacks. Our benchmark showed expected results, where prediction accuracies for
each PUF remained above 94% for each attack, except the FF-APUF for the LR attack with
around 60% accuracy due to the enhanced resilience against linear classifiers. When faced
with the MLP attack, the prediction accuracy matched that of the other PUFs at above
97%. However, when the obfuscation scheme is implemented, the modelling results show a
significantly reduced performance. Each PUF was attacked using the maximum available
CRPs that were generated in the dataset, 720,000 CRPs for the 16-stage APUF (chosen
arbitrarily based on practical storage limitations of 1024-bit challenges) and 320,000 CRPs
for the 32-bit APUF, determined as 720,000 divided by two due to twice as many challenge
bits being required by the 32-stage APUF than the 16-stage APUF. As larger challenges are
required per final response bit, more possible CRPs are available for an attacker to train
the model. Table 4.2(b) shows the results of the classical ML attacks when integrating
the proposed scheme. Each attack performed for each PUF showed an average prediction
average of 50%. Even when using the most vulnerable 16-bit APUF, the maximum prediction
accuracy was extremely low at 53.1%, which is almost the equivalent of a random coin flip.
This result demonstrates the potent ability of the scheme to obscure any linearity between
the original challenge and final response, such that an attacker is provided with no advantage
when attempting an ML attack.

4.5.1.2 Custom ML-MA

As the proposed scheme deviates from the simple additive linear delay model of the Strong-
PUFs on their own and the number of final output bits available to an attacker, it is also
necessary to test a wider variety of classifiers against our proposed scheme. We first bench-
mark the performance of a set of supervised classification algorithms consisting of Decision
Tree, Random Forest, Extra Trees, Logistic Regression, Quadratic Discriminant Analysis,
Naive Bayes, Ridge, Light Gradient Boosting Machine, and Linear Discriminant Analysis,
the results of which are depicted in Table 4.3a. We optimise the performance of each ML
classifier by performing a random grid search using a predefined internal grid used within
the Pycaret Python framework , the ranges of which are provided in Table 4.4. Each model
is evaluated using raw accuracy, AUC, recall, precision, F1, Kappa and MCC [10, 32]. For
brevity, the details of each metric have been provided in Appendix 1 for the interested reader.

We also benchmark the performance of our proposed scheme against a set of unsuper-
vised algorithms, namely Deep Q-Network, HDBSCAN, DBSCAN, BIRCH, K-Means++,
K-Means, K-Medoids and Gaussian. Unsupervised classifiers, where obscure connections in
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an unlabeled dataset are discovered by grouping data into clusters or by association. Most
importantly, we evaluate our proposed scheme against a reinforcement learning (RL) based
attacker using Deep Q-Networks (DQN). DQN is an approximation-based RL where an agent
interacts with the environment by sensing its state and learns to take action to maximise long-
term reward. As the agent takes action, it needs to maintain a balance between exploration
and exploitation by performing a variety of actions using trial and error in an uncertain
environment to favour the actions that yield the maximum reward in the future. This type
of exploratory attack is well suited for learning highly non-linear relationships/correlations
within a complex feature space, such as is required for modelling PUF obfuscation schemes,
similar to the CMA-ES attack performed in [6]. The results of the unsupervised classifiers
are shown in Table 4.3b

In order to ensure the generalisation and verify results, we perform 10-fold-cross valida-
tions on each experiment experiment. The challenges (training features) consisted of 1024
and 2048 features (for each bit) for the 16-stage and 32-stage PUF, respectively. As the
scheme outputs 4 bits for the 16-stage Strong PUFs and 2 bits for the 32-stage Strong PUFs,
the classification labels were 4 and 2 bits, respectively (15 and 4 labels).

Our results showed each classifier faced extreme difficulty in detecting a relationship
between the challenge and response data for both the supervised and unsupervised classifiers,
with the accuracy of each classifier for each PUF type not exceeding 6.3% for the 16-bit
PUFs and 20% for the 32-bit PUFs. Overall, the unsupervised classifiers performed slightly
better overall than the supervised methods, which is intuitive given the suitability of many
unsupervised classification methods to non-linear predictive tasks such as those required for
PUF obfuscation modelling.
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Table 4.4: Hyperparameter tuning ranges for custom supervised classifiers

Parameter Description Grid Search Ranges

Logistic Regression

C Type of regularisation 0.01, 0.1, 1, 10, 100

Max Iterations Number of iterations 100, 200, 300, 500, 1000

Linear Discriminant Analysis

Solver Algorithm used svd, lsqr, eigen

Quadratic Discriminant Analysis

Reg param Regularisation parameter 0.0, 1.0

Ridge Classifier

Alpha Regularisation strength 0.1, 1, 10, 100, 1000

Solver Algorithm used auto, svd, cholesky, lsqr,
sparse cg, sag, saga

Fit intercept Whether to calculate the inter-
cept for the model

True, False

Normalise Whether to normalise features
before training

True, False

Naive Bayes

Var Smoothing Controls portion of the largest
variance of all features for cal-
culation stability

1e-9, 1e-8, 1e-7, 1e-6, 1e-5

Decision Tree

Criterion Function used to measure the
quality of split

Entropy, Gini

Max Depth Maximum tree depth 5, 10, 20, 50, 100

Leaf Min Samples Min number of samples re-
quired at leaf node.

1, 2, 5, 8, 16, 32

Random Forest

Estimators Number of trees 10, 50, 100, 200

Max Features Set as function of number of
features

sqrt, log2

Max Depth Maximum tree depth None, 3, 5, 10, 20

Min Samples Split Minimum samples needed to
split a node

2, 5, 10

Min Samples Leaf Minimum samples needed to
split a leaf

1, 2, 4

Extra Trees Classifier

Estimators Number of trees 100-500



CHAPTER 4. GENERIC OBFUSCATION EXPLOITING DRAM-PUFS 78

4.5.2 Security Analysis

In this section, we will briefly discuss various potential threats to the proposed system and the
implications of those threats. It should be noted that the claims being made in this chapter
relate to security against remote ML-MA only, as defined in the threat model in Section 4.2.3.
Resistance to attacks requiring physical access is left for future work. Nonetheless, we will
discuss some such attacks in order to provide the reader with a clear picture of where this
countermeasure fits into the overall threat landscape.

4.5.2.1 ML-MA Remote Attacks

As shown in Section 4.5.1, the countermeasures in the scheme render modeling the system
as a whole infeasible if only the overall inputs and outputs are known and not the internal
states. These inputs and outputs are the only items of information transmitted over open
channels; therefore, this strongly impedes remote modeling attacks.

4.5.2.2 Replay Attacks

As the challenges and responses are being transmitted openly, and it is explicitly assumed the
adversary can listen in on this channel, there is a requirement at the protocol level to invalidate
CRPs once they have been used. Otherwise, there is a risk that if a previously used challenge
is issued for which the adversary recorded the response, they would be able to provide the
correct response despite no knowledge of the PUF. There is a similar need to prevent an
adversary from issuing rapid false challenges to gather the full CRP set through rate-limiting
challenges at the device side, removing CRPs if a response is received unexpectedly or both.

4.5.2.3 Cold Boot Attacks

As the scheme uses a memory PUF to generate matrices for the OWF, attacks which aim
to capture data from volatile memories such as cold boot attacks have the potential to
compromise the matrices. How dangerous is this in practice? Consider a scenario where
the adversary knows the n column matrix, H, the OWF padding method, the OWF block
number, w, and the output of the OWF, RFinal. They want to learn the OWF input (i.e.
the raw PUF output). To reverse the OWF with this information requires them to guess
which columns are XORed, which will require nw trials. e.g. using the value of n = 1024
in our example scheme and w = 16 would require in the order of 2160 trials. Thus, H being
known to the adversary does reduce the complexity of OWF reversal, but not enough to
meaningfully compromise the system.

4.5.2.4 Memory Snooping Attacks

Attacks which allow snooping of system memory or manipulation of the memory controller
(e.g. malicious software) could conceivably leak the matrix set, which is generated from
memory and resides temporarily in it. The same analysis as the previous point applies here,
where knowing the matrices isn’t enough in itself to compromise the system. The only other
aspects which ever reside in system memory are the challenges and final responses which we
assume the adversary can acquire over the transmission channel anyway.
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4.5.2.5 Timing Side-Channel Attacks

While the OWF itself is time-invariant, this is not necessarily true for the PUF, or for
the PUF error correction. In fact, because the OWF is fixed time the timing of the whole
scheme reveals information about the timing of the PUF+ECC block. This information could
conceivably be used to assist model construction and make the scheme easier to compromise,
although the exact efficacy of such an attack is uncertain. Ideally, the PUF block and ECC
should be made time-invariant, which removes this channel of information leakage. This is
especially relevant to this work as timing can be analysed remotely to a degree, unlike other
side channels, which require physical access.

4.5.2.6 EM Side Channel Attacks

If the adversary has physical access to the target device, there may be attacks which could
be employed using EM side-channel analysis. As with the other side-channel attacks, there
are two separate risks. First, direct measurement of the PUF as it operates. Second, the
measurement of OWF internal states breaks the security properties of the function. The
actual degree of leakage through EM emission and how to mask it if necessary are outside
the scope of this work, but it should be noted as a factor for consideration in future work.

4.5.2.7 Voltage Side Channel Attacks

As with the EM emissions, there may be some information which can be derived about the
internal states through monitoring of power consumption during operation. Again, explo-
ration of this, and how to level out power use in the scheme if necessary, is outside the scope
of this work but may be explored in future works.

4.5.2.8 Fault Injection Attacks

The points above assume correct operation, but there may be additional risks if the adversary
intentionally causes faults in parts of the system. For example, it may be possible to partially
bypass the complexity of the attack mentioned in Section 4.5.2.3 by selectively faulting one
column of H at a time while repeatedly issuing the same challenge. Or issuing falsified
challenges and selectively faulting the responses such that the protocol does not invalidate
the collected CRP. Such attacks unequivocally require prolonged physical access and are
outside the scope of this work, but they provide interesting possibilities for future work and
are worth noting.

4.5.3 Hardware Overhead

Strengths and weaknesses based on certain included features tend to map linearly to required
hardware overhead, as demonstrated by similar obfuscation schemes. The hardware over-
head of our scheme includes the Strong-PUF utilised, PUF error correction, 64-bit buffer
and the OWF. Different types and/or sizes of Strong PUFs will incur varying hardware over-
head; however, in our scheme, some overhead is mitigated through the use of smaller-length
PUFs. Comparable schemes such as [95] employ 64 to 128-bit Arbiter PUFs, whereas our
scheme demonstrated protection for even 32-stage PUFs. Due to the suitability of our scheme
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with APUFs, we benchmark our scheme using the hardware overhead of 16-bit and 32-bit
APUFs. As we propose a generic obfuscation scheme, the required ECC will vary as dif-
ferent Strong-PUFs are used for a token generation as different PUF types incur different
reliability properties [37] which can have varying effects on the overall hardware overhead
of the scheme. PUFs tend to exhibit a higher error rate as the size and complexity of the
circuitry grow; for example, the more individual APUFs used to construct an XOR-APUF,
the higher the error rate tends to be. The APUF implementation in [36] can achieve a Bit
Error Rate (BER) of as low as 10−9, meaning lower cost ECC schemes that rely on high PUF
reliability such as provided by Hiller et al. in [38] may be implemented. Therefore, given
our proposed benchmark, it is possible to utilise a highly reliable APUF and thus employ far
less resource-consuming ECC methods. For a more comprehensive ECC implementation, we
separately performed majority voting [15] and the Golay (23,12,7) code [48] for both 16-stage
and 32-stage variants of an APUF. We performed a synthesis on the programmable logic of
a Xilinx Zynq-7000 FPGA to determine the hardware overhead. Figure 4.5 shows the chip
layout for the synthesised generic PUF obfuscation scheme. The total resource requirements
of our scheme are listed in Table 4.5.

Table 4.5: Comparison of the Hardware and Power Overhead of the Proposed
Scheme Against the State-of-the-art

Scheme LUTs DFFs Power (W )

Controlled PUF [28] 1830 3020 ∼
PUF-FSM [24] 960 1500 ∼
Set-based [95] 395 1400 ∼
CT-PUF [96] 741 486 0.107

Proposed Scheme
APUF: † ECC: ‡‡ 306 298 0.177
APUF: † ECC: †† 291 330 0.178
APUF: ‡ ECC: ‡‡ 341 312 0.180
APUF: ‡ ECC: †† 327 345 0.179

† 16-Bit ‡ 32-Bit †† Golay Code ‡‡ Majority Voting ∼Data not available
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Figure 4.5: Layout of the Proposed Generic PUF Obfuscation Scheme (16-bit
APUF and Majority Vote ECC) on a Xilinx Zynq-7000 FPGA Device

4.5.4 Power Consumption

As the memory PUF operates on existing components, namely the ARM Cortex A9 processor
cores of the Zynq and an external DDR3 DRAM chip, power consumption for it is a function
of how much additional load the required instructions add to the Processor System (PS). Each
matrix generation requires a number of memory accesses that scales proportionally with the
number of rounds of majority vote ECC. For matrices of the size used in our experiments,
this requires 2048 writes and 2048m reads to the DDR memory, where m is the number of
rounds. This uses negligible power even for fairly large m (e.g. at m = 100 memory access
load is increased by 0.034%, with a power consumption of < 1mW ). Error correction also
requires (258n)×m processor instructions, where n is the bit length of the matrix. For the
example matrices and 10 round ECC, this equates to 26% of maximum processor load for one
core, which consumes 0.065W . For the FPGA implementation, we utilised the Xilinx power
estimator to determine the power consumption of the part of the scheme which operates
on the programmable logic. We found the total power consumption to be very low, using
only 0.112W at minimum (16-bit APUF and Majority Vote ECC) and 0.115W at maximum
(32-bit APUF and Majority Vote ECC). From this, we can simply calculate the total power
consumption of one full cycle of the scheme by adding the DRAM-PUF power consumption
(0.065W ) to the FPGA power consumption, which gives a total (maximum) of 0.180W. Table
4.5 shows the combined total power cost for different configurations of the overall proposed
scheme (FPGA logic and DRAM-PUF).
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4.5.5 Implications of Varying Hardware

It should be noted that in addition to the costs listed, there is a variable degree of (D)RAM
usage. The footprint of this depends on the memory configuration of the system. When using
the Latency DRAM-PUF as in our experiments, an amount of memory is used during matrix
generation at least ten times the size of the desired matrix. This is due to the fact that when
using the Latency DRAM-PUF, the actual stored data is unaffected by the PUF process;
rather, when the memory is read, the controller misreads what is actually stored, and that
error pattern is the PUF response. Therefore, when using majority vote error correction,
you need an area the size of H to perform the PUF operation on, another equally sized area
to store the temporary result and at least one byte per bit of that for per-bit majority vote
counting. This is fine so long as there is sufficient DRAM free to allow a region of that size to
be available whenever the PUF needs to be queried. If, however, there is no DRAM available
or this overhead is not practical, BRAMs on the FPGA logic can be utilised to store matrices
instead, at the cost of increasing the overall FPGA hardware footprint of the scheme. Other
Memory-PUFs that cause changes directly in the stored data, such as Start-up SRAM-PUF
(Section 2.4.6) and Retention DRAM-PUF, can also be used and would have a smaller foot-
print as the matrix is generated directly in the region of memory being used as the PUF,
though there may be some overhead required for error correction. However, these PUFs are
not as easy to use in runtime due to their query processes being destructive to data held in
the same memory. Given these factors, a trade-off is available to system designers based on
which features are most desirable for the given application:
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Latency DRAM-PUF :

+ Very fast measurement speed

+ Large space available for many supported unique responses

+ Non-destructive to memory contents

– Additional memory space required to store the response

Retention DRAM-PUF :

+ No additional memory is required to store the response

+ Large space available for many supported unique responses

– Very slow measurement speed

– Destructive to memory contents

Start-up SRAM-PUF :

+ Fast measurement speed

+ No additional memory space is required to store the response

– Lower density, therefore fewer unique responses supported

– Requires power cycle to query

– Destructive to memory contents

4.6 Summary

Physical Unclonable Functions (PUFs) offer a promising solution for the lightweight au-
thentication of IoT devices as they provide unique fingerprints for the underlying devices
through their challenge-response pairs. However, PUFs have been shown to be vulnerable
to Machine-Learning Modelling-Attacks (ML-MA). In this chapter, we proposed a novel ob-
fuscation scheme for preventing ML-MA on Strong PUFs by exploiting DRAM-PUF and a
One-Way Function to obfuscate PUF challenges and responses. We demonstrated our scheme
has a significant effect on reducing the accuracy of ML-MA to almost the same probability
as a random coin flip per bit when tested against various established attacks from the litera-
ture and against our own additionally tested classifiers. Our experimental results also show
our scheme has the potential to be very cost-effective with regards to hardware overhead
on FPGA-enabled devices. While we have considered an initial hardware-level solution for
integrating DRAM-PUFs for authentication, it remains an important

Data Availability

For reproducibility of this work and engagement with the wider research community, all
source code (HDL designs and ML attacks) can be found at [65]: https://doi.org/10.
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Chapter 5

A Privacy-Preserving Protocol
Level Approach to Prevent
Machine Learning Modelling
Attacks on PUFs in the Presence of
Semi-Honest Verifiers

Effective protocol design is essential for ensuring the security of interconnected devices, where
adversaries are known to operate on publicly accessible networks. While this type of eaves-
dropping attacker is commonly considered, more knowledgeable attackers such as insiders are
less often targeted as potential adversaries for protocol designs. In this Chapter we propose
a protocol-level approach for integrating DRAM-PUF based obfuscation hardware design to
prevent ML-MA not only to classical eavesdropping adversaries, but also to a novel ’semi-
honest’ verifier threat. We provide an amended version of the hardware obfuscation scheme
proposed in the previous chapter and tightly integrate it into the functioning of the protocol.
Our security analysis demonstrates the effectiveness of the proposed scheme for preventing
ML-MA at both the hardware and protocol level against a highly knowledgeable adversary.

5.1 Introduction and Related Work

Secure hardware design is an integral component for ensuring effective RoT in any com-
puterised system. Once hardware-level approaches are successfully considered, it becomes
imperative to design communication methodologies which synchronise with specific hardware
design in order to maximise the effectiveness when applied to networked systems. With PUFs
in mind, it remains vital for parties (and intruders) to be unable to gain sufficient informa-
tion from communication processes as to gain advantage in compromising a given PUF. As
previously introduced, PUFs are often vulnerable to ML-MA, which can be supplemented by
additional knowledge learned by adversaries who may gain information from eavesdropping
näıve protocols.

Multiple hardware and protocol-level techniques have been proposed that attempt to

84
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mitigate the ML-based attack surface of PUFs for resource-constrained security systems. In
2015, Aysu et al. proposed an end-to-end protocol to enable privacy-preserving PUF-based
authentication [4]. However, Gope et al. noted in their work that the protocol was not
scalable and could not ensure the untraceability property [30]. Furthermore, this was an
early example of PUF protocol which did not consider ML-MA capable adversaries. Later,
Yu et al. proposed a lockdown protocol specifically designed to reduce the possible number
of CRPs accessible to adversaries by permanently fusing closed the input/output interface
of the PUF, preventing access to sufficient data to perform ML-MA [93]. Restricting CRP
access to adversaries comes at the cost of restricting CRP access to genuine users, causing
significant issues with the protocol’s scalability. In 2021, Gu et al. proposed a deception
protocol whereby a fake PUF is utilised to increase the difficulty for an attacker in probing
and modelling the genuine PUF [33]. While this scheme successfully considers mechanisms
at the hardware and software level to prevent ML-MA, Non-Volatile Memory (NVM) is re-
quired to store secret data, which, if exposed, can enable ML-MA. Gope et al. proposed a
protocol-level approach to prevent ML-MA using a One-Time PUF (OTP) concept, whereby
PUF reconfiguration is exploited to allow scalability through many CRPs being supported
without statistical significance being shared across each small set of CRPs [31]. While issues
surrounding the scalability of PUF protocols are successfully considered, the requirement for
NVM (as in [33]) means a weaker adversary model must be assumed. Ebrahimabadi et al.
recently proposed an authentication protocol whereby PUF challenges are split across mul-
tiple messages in order to restrain adversaries from collecting entire challenges in their CRP
database to prevent ML-MA [21]. However, this scheme requires a third party in the protocol
as a helper node to enable the challenge-splitting mechanism, which is restrictive for many
IoT use cases and increases the attack surface for denial-of-service and desynchronisation
attacks.

5.1.1 Problem Statement and Motivation

Traditionally, PUF-based protocols are designed for the resource-restricted end node devices
to interact with a fully trusted server that has significant storage and computational capabil-
ities and is assumed to be inaccessible to an adversary. This assumption enables the classical
CRP authentication scheme, where a server collects a large subset of all possible PUF CRPs
during a secure enrollment phase, and then stores a look-up table to query the PUF and
check for correct responses during normal authentication. The weakness of this assumption
is highlighted by Chatterjee et al. [13], where also a PUF authentication and key exchange
protocol is proposed, which does not require a CRP database to be stored on the verifier. By
relieving the requirement to maintain a CRP database, the overall scheme is strengthened
in the case that the verifying server is compromised. This work, however, requires a third,
independent and fully trusted security association provider, which increases the complexity
of the overall scheme. With IoT, there are many scenarios where the initial provider of an
end device may not match that of a verifier at some later stage of the device’s life cycle. In
many IoT applications, devices are installed and run at the consumer’s/user’s end, where a
consumer/user may attempt to manipulate the settings of a specific device, such as a smart
meter, in the case of smart grid infrastructure. Here, smart meter devices are installed in
a consumer’s household and supply energy usage information to a server controlled by the
energy provider (which we use as a case study in this chapter for illustrative purposes). This
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could be for their own benefit, such as by stealing electricity from the grid. On the other
hand, a malicious service provider may wish to clone/mimic a given device’s behaviour to
impersonate a legitimate user. Such a type of insider attack on the verifier side can be dan-
gerous if the user moves to a different service provider and uses the same device∗, which has
already been modelled by his/her previous service provider. As a result, it is possible that
any one energy provider that was previously enrolled may be compromised, subjecting end-
users previously enrolled with the provider to attacks. In this situation – with PUF-based
authentication in mind – it is desirable to not require an explicit look-up database of CRPs
to perform authentication. Firstly, this type of scheme would maintain forward secrecy, such
that if a given verifier is compromised, old messages intercepted by adversaries cannot be
decrypted through the derivation of keys as a result of PUF modelling. Second, this scheme
would prevent insider attacks (and thus backward secrecy), where a member with access
rights at the verifier attempts to build a PUF model using the CRP database in order to
compromise a PUF device after it has switched to a new verifier. Both of these situations
necessitate the definition of what we refer to in this work as a ‘semi-honest verifier ’. With
this in mind, we propose a PUF-based authentication scheme where a semi-honest verifier is
considered, such that the authenticating server performs a rolling round-based authentication
on the device, and, if removed as the authenticating body, is unable to determine future keys
required for authentication, thus establishing backward secrecy.

5.1.2 Contributions

The key contributions of this Chapter are as follows:

• We present a novel PUF-based authentication protocol to ensure forward secrecy in
the presence of a new potential threat known as a ‘semi-honest verifier’. To the best
of our knowledge, we are the first to consider the concept of a semi-honest verifier for
PUF-based authentication schemes and the first to apply PUF hardware obfuscation
comprehensively at the protocol level.

• We include considerations at the hardware level by utilising both a Strong PUF and
DRAM-PUF to provide strong security against ML-MA while maintaining low hardware
overhead for the end device. Our scheme is synthesised on a Xilinx Artix-7 FPGA to
estimate the required resources and power consumption of an example implementation.

• We perform ML-MA on PUF data simulated with our scheme while considering the
presence of the semi-honest verifier, demonstrating the proposed scheme enables secu-
rity against PUF modelling attacks.

• We provide a formal verification of our protocol, proving its security against a set of
realistic adversaries.

• For reproducibility of our results, we provide all code, datasets and proofs from this
work in supplementary material as an open resource for the research community (linked
in the relevant sections).

∗While one given provider (verifier) may supply the smart meter, a consumer may opt to change to a
different provider whilst maintaining the same smart meter.
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5.1.3 Chapter Organisation

The rest of the chapter is organised as follows. First, Section 5.2 then introduces the proposed
scheme. Section 5.3 provides a security analysis of our scheme. Section 5.4 provides a
comparison against similar schemes and a discussion of the estimated hardware cost, then
finally, the chapter is concluded in Section 5.5. Table 5.1 provides list of notation used
throughout the remainder of the chapter.

Table 5.1: Symbols and Cryptographic Functions

Symbol Description

Notation:
ML-
MA

Machine Learning Modelling Attack

PUF Physically Unclonable Function
CRP Challenge/Response Pair
Data:
i Current (ith) authentication session
Count Counter value
TID Temporary device identifier
CS Strong PUF Challenge
CM Memory PUF Challenge
RS Strong PUF Response
rM Memory PUF Response
RFinal OWF output
K Key derived from KDF
∆ Final PUF output for authentication
Cryptographic Functions:
KDF Key Derivation Function
SKE.Enc Symmetric Encryption
SKE.Dec Symmetric Decryption
OWF One-Way Function
PRNG Pseudo Random Number Generator
PUFS Strong PUF
PUFM Memory PUF

5.2 Proposed Scheme

This section describes our proposed PUF-based privacy-preserving mutual authentication
protocol for ensuring security against ML-MA. Before describing our protocol, we describe
the on-device PUF requirements, a brief overview of the adversary model and some underlying
assumptions for the proposed scheme.
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Figure 5.1: Example of obfuscated PUF processor architecture for the proposed
scheme

5.2.1 PUF Requirements on Device

To support the PUF function of the device for our proposed scheme, we specify the re-
quirement for a strong PUF (Arbiter-PUF), DRAM-PUF and OWF (described in Sections
2.8.1 and 4.2.1) to derive a large number of unique CRPs for use in device authentication.
The entire combination of these units contributes to a whole ‘PUF’-like function, as it takes
an original input challenge (including a DRAM-PUF challenge for OWF configuration) and
outputs a final response message. Figure 5.1 demonstrates the interaction of the PUF for
our proposed scheme. Firstly, a strong PUF (in our case, an Arbiter PUF) PUFS receives
a randomly generated and unique k-bit input challenge to output a 1-bit response, which
is repeated j times (j denoting the required final response length) to generate a response
message of j length, RS , and is stored in a temporary buffer. RS is used as an input message
to the OWF, which outputs deterministically dependent on a configuration value, rM . rM is
generated by the DRAM-PUF, PUFM, which is synthesised from a raw DRAM response, H†.
The final response RFinal is generated as the output of the OWF, providing a strong crypto-
graphic value for deriving a unique and unpredictable rolling key to be used at the protocol
level. Using a key derivation function, KDF, the key K can be generated from RFinal to
produce the final cryptographic value ∆ using symmetric encryption algorithm SKE.Enc for
authentication purposes. In this work, we utilise a PRF as a KDF given the assumption of
a highly-uniform OWF output, which is portrayed in Figure 5.1 and discussed practically in
Section 5.4.

†PUFM here is a (DRAM) memory controller configured for PUF use, where CM is translated into an input
signal to the actual memory and reads back the raw response, H.
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5.2.2 Adversary Model

We specify a threat model which includes a typical protocol-level adversary, PUF-level ad-
versary and a new adversary with the new semi-honest verifier in mind. For this, we separate
each adversary into one of three types and define our threat model as follows:

• The Type 1 adversary consists of the typical Dolev-Yao model, which is capable of
eavesdropping on the network between the smart meter and the energy service provider.
This type of adversary can change messages and block messages from device to server
or server to device [19].

• The Type 2 adversary consists of an ML-MA capable PUF adversary. This adversary
is stronger than the type 1 adversary as they can perform the same actions while also
being capable of collecting arbitrary numbers of PUF CRPs and performing ML-based
modelling attacks on the PUF in an attempt to clone a PUF. Given enough CRP data
for a single APUF, they can successfully model the PUF regarding the work in [74].

• Finally, we consider a Type 3 adversary, which we denote as our ‘semi-honest adversary’.
This attacker is assumed to operate with elevated privileges at the server-side (service
provider) and has complete access to device-to-server messages and data stored within
the server database. This adversary is also ML-MA capable and may attempt to model
the PUF using CRP information gained. This adversary may also operate as a PUF
manufacturer, who has access to the individual PUF during manufacturing in order to
model the PUF on its own.

5.2.3 Assumptions

We make the following assumptions regarding the operating environment of our proposed
scheme:

• Any adversary may have physical access to the PUF device and, therefore, may access
the input and output interface of the overall PUF. This is to say, they may apply
arbitrary challenges (combinations of PUFS and PUFM challenges) and read the final
output responses of the overall PUF scheme to collect a dataset of CRPs.

• Any adversary knows the architecture of the device hardware (including the obfuscation
scheme).

• A semi-honest adversary at the manufacturing level may collect individual PUF CRPs;
for example, a manufacturer of the strong PUF may collect a set of CRPs from the
individual PUFS. Likewise, the device manufacturer may collect a set of PUFM CRPs.

• A semi-honest adversary at the server level (during enrollment/authentication) may
collect all data sent to and from the device during use with them as a given provider. If
the service provider changes, they can no longer access future data sent between devices
and the new service provider.
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5.2.4 Proposed Authentication Protocol

As with most PUF-based authentication protocols, our proposed scheme consists of two key
processes: an Enrollment Phase, where a given device is synchronised with the verifier for the
first time, and an Authentication Phase, where a deployed device initiates an authentication
attempt with a verifier.

5.2.4.1 Enrollment Phase

Figure 5.2 shows the enrollment procedure for the proposed scheme. All actions taken during
enrollment are deemed to be performed honestly in a secure location. A verifier requires a
unique identifier (UID) in order to track up-to-date authentication information for multiple
different devices; therefore, a device first sends UID to the verifier. The verifier then generates
and sends two counters Countx and County to the Device for the ith (in this case, the first)
authentication round, which will be utilised to maintain synchronisation between the Device
and Verifier across multiple sessions. For the number of final response bits required, n, as
Strong PUF challenges are binary numbers, the Device first generates a challenge CS for the
Strong PUF PUFS using its Pseudo Random Number Generator (PRNG) with Countx as the
seed value. cS is then input to PUFS to generate response bit/s rS . rS is then appended
to the main response Ri

S (or forms the first value if it is the first iteration). After each j
iteration up to n, Countx is incremented to provide a fresh cS . Next, a DRAM-PUF (PUFM)
challenge Ci

M is selected pseudo-randomly based on County .
Due to the non-numerical nature and relatively finite set of possible memory PUF challenges
(e.g., 0xFF000000, Zero pattern), we define a Select algorithm to generate suitable challenges
without the need to store explicit possible challenges (Algorithm 5). Unique DRAM-PUF
challenges consider two variables, the first being base address, denoting the area of memory
to generate the response from, and challenge pattern, denoting the bit pattern to write to
the chosen location, where there are three possible patterns: all zeroes, all ones and a mixed
checkerboard pattern of zeroes and ones. Therefore – similar to the challenge selection process
for the strong PUF – County is used to seed PRNG to provide the random value q. The
modulus of q for the A number of available base addresses, a, is generated to provide a
base address value between 0 and a. The same is computed for the modulus of q for the P
(three), a number of possible challenge patterns. Both integers a and p are then concatenated
and returned, enabling the corresponding challenge to be applied to the DRAM-PUF by the
memory controller to generate riM . Now, the OWF is configured with riM , and the final
output Ri

F inal is generated from the input message Ri
S . Finally, the Device stores both

Countx and County to establish synchronisation with the verifier before sending Ri
F inal and

riM to the Verifier. The Verifier then finally stores Countx , County for synchronisation, UID
for device identification, Ri

F inal and riM to enable authentication during the first round of the
authentication phase.

5.2.4.2 Authentication Phase

Figure 5.3 shows the authentication procedure of the proposed scheme, which has been broken
down into a series of sequential steps.

• Step 1: First, a device initiates an authentication request with a given verifier by
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Figure 5.2: Enrollment phase

sending a unique Temporary Identification Number, TIDi, where i denotes the current
authentication round.

• Step 2: After checking that TIDi matches one stored, the verifier then generates
the unique key Ki with a Key Derivation Function, KDF, using the final response
established in the previous authentication round, Ri

F inal, as input. Then, the nonce
NV is generated using a True Random Number Generator (TRNG) to enable the device
to detect the presence of a replay attack later. Next, using the DRAM-PUF response
stored from the enrollment phase/previous round rim to configure OWF, the verifier
generates a verification value ResV consisting of a concatenation ofKi, Countx , County

and NV , which is then sent alongside Countx , County and NV to the device.

• Step 3: Upon receiving the message M2, the device first assigns a temporary value
Tempx to Countx for use verifying ResV later as Countx will be updated prior to
verification. Then, for each j bit required in the final response bit length up to n
bits, the strong PUF CRPs are generated. Specifically, the strong PUF challenge cijS
is generated using PRNG using Countx as the seed, followed by the response value rijS
being output from PUFS with cijS as input. The response bit rijS is then appended to
the larger response Ri

S , where finally Countx is incremented before repeating for the
jth iteration. After n iterations, a full response message Ri

S of size n will have been
generated. Now, following Algorithm 5, the DRAM-PUF challenge Ci

m is generated

and applied to the DRAM-PUF via the PUF controller to synthesise the response ˜riM .
˜riM is then used to configure the OWF, where Ri

S is used as the input message to output
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Algorithm 5: PUFM Challenge Selection Algorithm

Select
Input: Countx: Integer
Output: CM : PUFM Challenge
Data: A: Num Base Addresses
P = 3: Challenge Patterns (Zero, One, Checkered)

1 q ← PRNG(Count2)
2 a← q mod A
3 p← q mod P
4 CM ← {a||p}
5 return CM

˜Ri
F inal. Next, the device generates the key Ki from KDF configured with ˜Ri

F inal. Now,

the device generates its own verification value ˜Resv through concatenating Ki, Tempx,

County and NV using ˜riM for configuration. Providing the verifier is legitimate and
was knowledgeable of the correct RFinal value for the current session and thus able to
generate the correct key Ki, and the counter values Countx and County and nonce
NV are correct, the device can authenticate the verifier. The device will abort the
authentication attempt if any one value is incorrect. County is then incremented for
generating the next DRAM-PUF response. The process of strong PUF and DRAM-
PUF response generation is repeated to produce a new RFinal and rM pair for use in
the next (the i + 1th) authentication round. The device then symmetrically encrypts
the secrets Ri+1

Final and ri+1
M to produce ∆. Now, the device computes the verification

value ResD using its OWF, with the concatenation of ∆, Countx and County as the
input, configured with the DRAM-PUF response for the i + 1th round, ri+1

M . A new
temporary identifier TIDi+1 is generated using OWF configured with ri+1

M using the
concatenation of Ki and TIDi. Finally, the device stores TIDi+1, Countx and County

before sending ∆ and ResD in message M3 to the verifier.

• Step 4: Now, the verifier decrypts ∆ using the shared key Ki to obtain Ri+1
Final and

ri+1. The device computes its own verification value ˜ResD with the OWF taking ∆,
Countx and County as input, configured with the now known ri+1

M . If ˜ResD and ResD
do not match, authentication is aborted by the verifier. Upon successfully matching,
the verifier increments Countx and County the generates the new temporary identifier
TIDi+1 with OWF, configured with ri+1

M with Kii concatenated with the previous tem-
porary identifier TIDi as the input message. Finally, the verifier updates Ri

F inal and riM
values with Ri+1

Final and ri+1 respectively before storing TIDi+1,Countx ,County , Ri+1
Final

and ri+1 in the database ready for the next authentication round with the device.

5.3 Security Evaluation

In this section, we perform system-level evaluations to assess the proposed scheme’s secu-
rity properties when considering the assumptions and adversary model presented in Section
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Figure 5.3: Proposed authentication protocol
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5.2.2. We provide the full proof at the following link: https://drive.google.com/drive/
folders/1ICWO-wYQy72x0VPYrtQwYpz02ZLug4Sj?usp=drive_link. Additionally the all code
can be accessed at [66]: https://doi.org/10.15131/shef.data.27095617.v1. Finally, the
dataset generated and used can be accessed at [62]: https://doi.org/10.15131/shef.

data.26977237.v1 .

5.3.1 System-Level Security Evaluation

Modelling Methodology

Due to the assumption that an adversary knows the architecture of the device hardware
and thus can perform their own computations of the scheme and to align the validation
more closely with the established ML-MA PUF literature, we determine the input features
of the attack to be a combination of both strong PUF challenge and unique memory PUF
challenge, with the one-bit strong PUF output being the binary prediction value (CS , CM and
rS respectively as described in Table 5.1). We, therefore, perform the binary classification of
strong PUF output using both the logistic regression (LR) and multi-layer perceptron (MLP)
attacks as described in both [74] and [1], respectively. We use raw accuracy as an evaluation
metric because the dataset is balanced (low bias to either 0 or 1 output) and because, unlike
common binary classifiers where output may be considered ‘positive’ or ‘negative’, in the case
of single bit PUFs, either observed output is desirable. Therefore, precision and recall are
not required as evaluation metrics for determining the performance of the attacks.

PUF Dataset

We generated a set of CRPs by simulating a strong PUF and a lightweight OWF configured
using real memory PUF data, which is adapted from the work proposed by Augot et al. [3].
We tested a 16-bit and a 32-bit Arbiter PUF using the Pypuf Python library [89] to simulate
the strong PUF of our scheme, generating the challenges CS and responses rS . The OWF was
also developed in Python, and the memory PUF responses used to configure the OWF were
obtained from a real DRAM Latency PUF test bed as described by Miskelly et al. [68]. We
assume that an attacker is unable to predict or gain knowledge regarding the memory PUF;
however, due to the relatively low number of novel memory PUF configurations (and thus
responses), we allow our attacker to determine the category of the memory PUF challenge in
the case that County is intercepted and determined using the PRNG. The attacker, therefore,
gains the categorical data of the memory PUF challenge, i.e., memory location a, pattern
0. In our DRAM-PUF dataset, we utilised twelve unique DRAM-PUF responses for OWF
configuration by using four unique locations: a, b, c, d and three unique input patterns: all
zeroes, all ones and checkerboard. Due to the categorical nature of this feature, we performed
one-hot encoding to transform each DRAM-PUF category into a set of twelve-digit binary
features to denote each category separately to normalise the data for training. Therefore, the
dataset used for training consisted of a set of strong PUF challenges combined with a one-
hot encoded value denoting the DRAM-PUF response used to configure the OWF, providing
unique challenge samples, even if an exact individual strong PUF challenge is repeated. Each
challenge sample was paired with a corresponding binary value of 1 or -1 ‡ response as

‡-1 is used instead of 0 for normalisation of data for model training.

https://drive.google.com/drive/folders/1ICWO-wYQy72x0VPYrtQwYpz02ZLug4Sj?usp=drive_link
https://drive.google.com/drive/folders/1ICWO-wYQy72x0VPYrtQwYpz02ZLug4Sj?usp=drive_link
https://doi.org/10.15131/shef.data.27095617.v1
https://doi.org/10.15131/shef.data.26977237.v1
https://doi.org/10.15131/shef.data.26977237.v1
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measured from our simulation. Both the datasets and code is provided in Appendix D in the
supplementary material.

Effect of scheme on ML-MA

Figure 5.4 outlines the performance of both the LR and MLP attacks on both the 16 and
32-bit Arbiter PUFs when utilised with the proposed scheme. We performed each attack
using 5000, 20,000, 50,000, 75,000, 100,000, 250,000 and 500,000 CRPs – denoted NCRP –
for training for each PUF type. It was found that the prediction accuracy did not scale
with NCRP as is often seen in related works when directly attacking a PUF [74]. While the
highest observed prediction accuracy was 59.1% for the LR attack on the 16-stage APUF
with NCRP = 75, 000, the prediction accuracy for the same attack with NCRP = 500, 000 was
only 52.5%. The results indicate that there is no correlation between NCRP and prediction
rate, which is likely caused by a degradation in the generalisation ability of the model when
combined with the strong non-linearity provided by the OWF when split across the random
sub-samples of the entire dataset. The most ideal prediction rate is 50%, which is comparable
to a random coin flip. A PUF is considered vulnerable to ML-MA if a prediction rate of 70%
or above is achievable, demonstrating the proposed scheme is sufficient to prevent ML-MA.

Figure 5.4: Prediction accuracies for each LR and MLP modelling experiment
against the k=16 stage and k=32 stage APUFs when obfuscated with the proposed
scheme

5.3.2 Protocol-Level Security Evaluation

In this section, we discuss the security of our proposed protocol against the Type 1 and Type
2 adversaries defined in Section 5.2.2. For brevity, we only present the details of the proof of



CHAPTER 5. A PRIVACY-PRESERVING PROTOCOL AGAINST ML-MA 96

MA-security and security against the Re-Use Model. The full version of each proof is available
at https://drive.google.com/drive/folders/1ICWO-wYQy72x0VPYrtQwYpz02ZLug4Sj?usp=
drive_link under ’Chapter 5/Supplementary Material’.

5.3.2.1 Mutual Authentication Security

To resist the man-in-the-middle attack, we must guarantee that both parties accept the au-
thentication only if the communication message is honestly transferred. The security model
captures the security of the authentication protocol as a pair of games ExpMA

Π,A(λ) played
between a probabilistic polynomial-time adversary A and a challenger C, where Π denotes
the protocol and λ denotes security parameters. In the experiment, the adversary wins the
game if it causes a clean session to accept ResD, then ExpMA

Π,A(λ) outputs 1.

Adversary Queries: Here, a Type 1 adversary A can control and eavesdrop the com-
munication channel between the device D and verifier V , and compromise the shared secrets
with the following queries:

1. Create(i, s): allows A to initialize new session πs
i , where i is the session index and s is

session owner.

2. Send(m, i, s): allows A to send arbitrarily message m to C in session πs
i .

3. Corrupt(i)→ Ki: allows A to reveal session key Ki.

4. StateReveal(i, s, c)→ πs
i : allows A to reveal the internal state of πs

i when challenge is
c
′
.

Definition 1 (Cleanness predicate): A session πs
i in the modeling experiment described above

is clean if Corrupt(i) was not issued, and StateReveal(i, s, c) was not issued, and for all
j, s

′
such that c

′
= c, StateReveal(j, s

′
, c

′
) was not issued.

Definition 2 (Mutual Authentication Security) An authentication protocol Π holds the
mutual authentication security against man-in-the-middle attack if for any PPT type 1 ad-
versary A, ExpMA

Π,A(λ) is negligible.

Theorem 1 Let PUF be a (NCRP , ϵpuf )-secure PUF, OWF be a secure one-way function
with ϵrevsOWF and ϵOWF

OWF. Then our protocol Π holds mutual authentication security that for any
PPT A, AdvMA

Π (A) is negligible.

Proof : The goal of A is to win the mutual authentication game, in which C accepts
the session without matching session. We can divide the proof into two cases: for device
impersonation and verifier impersonation. In case 1, A′s advantage is AdvMA,clean, C1

Π,A . In

case 2, the advantage is AdvMA,clean, C2
Π,A . It is clear that AdvMA,clean

Π,A ≤ AdvMA,clean, C1
Π,A +

AdvMA,clean,C2
Π,A .

Case 1: Verifier Impersonation

https://drive.google.com/drive/folders/1ICWO-wYQy72x0VPYrtQwYpz02ZLug4Sj?usp=drive_link
https://drive.google.com/drive/folders/1ICWO-wYQy72x0VPYrtQwYpz02ZLug4Sj?usp=drive_link
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Game A1.0: The original mutual authentication game explained above, we know
AdvMA,clean, C1

Π,A ≤ AdvGA1.0
.

Game A1.1: Here we introduce an abort event, where C aborts when A successfully gen-
erates a valid verification value Res

′
V which equals ResV . The advantage of breaking the

collision avoidance of OWF is Advrevs
OWF. Thus the probability that A wins is bounded by the

collision security of OWF, therefore AdvGA1.0
≤ Advrevs

OWF +AdvGA1.1
.

Game A1.2: In this game, we replace Ki by interacting with a KDF challenger. Any A
that can distinguish Game 1.1 and Game 1.2 can be used to break KDF-security. Thus

AdvGA1.1
≤ AdvGA1.2

+AdvInd
KDF.

Game A1.3: In this game, A obtains the right response Ri+1
Final and ri+1

M with advan-

tage of Advunpredict
PUF . Thus A can add advantage bounded PUF : AdvGA1.2

≤ AdvGA1.3
+

Advunpredict
PUF .

Game A1.4: In the game, πs
i will only accepts RevD from an honest verifier. From

Game A1.2, we know that A cannot produce valid Ki, neither ResV from Game 1.1 with
non-negligible advantage. Thus we know AdvGA1.4

= 0.

Case 2: Device Impersonation
Game A2.0: The original mutual authentication game explained above, we know that

AdvMA,clean, C2
Π,A ≤ AdvGA1.0

.

Game A2.1: Here we introduce an abort event, where C aborts when A successfully
generates a valid verification value ∆||ResD corresponding to the session. The advan-
tage of breaking the collision avoidance of OWF and SKE is Advrevs

OWF and AdvSKE. Thus
the probability that A wins is bounded by the security of OWF and SKE, AdvGA2.0

≤
Advrevs

OWF +AdvSKE +AdvGA2.1
.

Game A2.2: In this game, A obtains the Ki similar to Game A1.2 and the right response
similar to Game A1.3, adding advantage bounded by the security of KDF and unpredictabil-
ity of PUF: AdvGA2.1

≤ AdvInd
KDF +Advunpredict

PUF +AdvGA2.2
.

Game A2.3 In the game, πs
i will only accepts ∆||RevD from an honest device. From

Game 2.2, we know that A cannot produce valid ∆, neither ResV from Game A1.1 with
non-negligible advantage. Thus we know: AdvGA2.3

= 0.

5.3.2.2 Security Against Type 3 Attacker

In [75], Rührmair et al. give an extension setting of the “PUF re-use model”, which allows
adversaries multiple access to PUFs, for example, before, after or between protocol execu-
tions. As we know, it is the strongest model because the adversary is allowed physical or
evaluation access to the PUF instance. In our attack scenario, as defined in Type 2 adversary,
A has the CRP access to the PUF, and the number of CRPs the adversaries can read out is
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arbitrary. Here we present the security analysis against the Type 3 attacker. In many sce-
narios, the server or verifier may also be untrustworthy. In this case, we also must guarantee
the unavailability of the whole PUF model for adversaries. In other words, in our protocol,
the server may only invoke the authentication functionality of the device rather than access
the real CRPs of certain PUFs. As defined in the Type 3 adversary at the server level, A
has every permission we give to the verifier, including obtaining the registration information
from the enrollment phase. At the manufacturing level, A has collected sufficient CRPs of
PUFS (not PUFM ). The goal of A is to give the session key K(i+1) for next round i+ 1.

5.3.2.3 Security Against Semi-honest Adversary

In many scenarios, the server or verifier can also be untrustworthy. In this case, we also need
to guarantee the unavailability of the whole PUF model for adversaries. In other words, in
our protocol, the server can only invoke the authentication functionality of the device rather
than access the real CRPs of certain PUF. As defined in Type 3 adversary at the server level,
A has every permission we give the verifier, including obtaining the registration information
from the enrollment phase. At the manufacturing level, A has collected sufficient CRPs of
PUFS or PUFM . The goal of A is to give the session key K(i+ 1) for the next round i+ 1.

Similar to Definition4, the definition of modeling security provides:

Definition 3 (Modeling Security Against Semi-honest Adversary) Let Π be an authentication
protocol. For a clean predicate, and a PPT algorithm A, we define the advantage of A in the
Semi-Honest Modeling game to be: AdvSH

Π,A,clean(λ) = |Pr[ExpSH
Π,A(λ)− 1

2 ]|. We say that Π is

Modeling-secure against re-use model if for all PPT A, AdvRU
Π,A(λ) is negligible in parameter

λ.

Proof We separate the security proof in two phases. In the first phase, A tries to
obtain the real final response, and it can reverse the OWF and obtain Ri and riM with the
advantage of AdvrevsOWF (A). In the second phase, with NCRP CRPs, A can model the PUF

with AdvNCRP
PUF . Therefore A has two goals: reverse the OWF and model the PUF, described

as follows.

Definition 4 (Modeling Security) Let Π be an authentication protocol. For a clean predicate,
and a PPT algorithm A, we define the advantage of A in the Re-Use Modeling game to be:
AdvRU

Π,A,clean(λ) = |Pr[ExpRU
Π,A(λ) − 1

2 ]|. We say that Π is Modeling-secure against re-use

model if for all PPT A, AdvRU
Π,A(λ) is negligible in parameter λ.

Proof We separate the security proof in two phases. In the first phase, A tries to obtain
the real final response and it can reverse the OWF and obtain Ri and riM with the advan-
tage of AdvrevsOWF (A). In the second phase, with NCRP CRPs, A can model the PUF with

AdvNCRP
PUF . Therefore A has two goals: reverse the OWF and model the PUF, described as

follows.

Phase 1: A generates NCRP pairs of random number Countx
′

idx, County
′

idx and queries
Send(Countx, County, i, s), then A will the final response Ri

F inal. Then A invokes PRNG(·)
and Select(·) to generate corresponding challenges cs and cM following the exactly same
steps in the authentication phase. In the end, A tries to reverse the OWF to obtain the
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Table 5.2: Comparison of PUF Protocols

P1 P2 P3 P4 P5 P6 P7

Yu et al. [93] X X
Gu et al. [33] X X X
Gope et al. [31] X
Ebrahimabadi et al. [21] X X X X X
Chatterjee et al. [13] X X X X
Modarres et al. [2] X
Proposed Scheme

: Yes; X: No; P1: Privacy P2: Mutual Authentication P3: ML-
MA Resilience P4: Scalability P5: No CRP Database Required P6: No
Third Party Required P7: No NVM Required (On device)

true responses of PUFs and PUFM , namely rs and rM . As discussed above, the advantage
of reversing OWF for one time can be obtained: Advrevs

OWF = |ϵrevsOWF −
1
2 |. Advantage of

reversing OWF for NCRP time is Adv
revsNCRP
OWF = |ϵrevsOWF

NCRP − 1
2

NCRP |.

Phase 2: After phase 1, A will have NCRP CRPs, which can be used as training data
to model PUFS and PUFM . The advantage of this game is determined by the number of
CRPs, which can be interpreted as the accuracy of the machine learning model, defined as
Advmodeling

PUFS
= |AccNCRP

PUFS
− 1

2 | and Advmodeling
PUFM

= |AccNCRP
PUFM

− 1
2 |. Apparently, the ad-

vantage of A depends on the number of CRPs and the modeling accuracy. Therefore the
probability that A wins is bounded by: AdvGb2

≤ Min{Advmodeling
PUFS

,Advmodeling
PUFM

}. We

know the success of , the overall advantage can be obtained by A is:AdvRU
PUF = ϵrevsOWF

NCRP ∗
Min{AdvNCRP

PUFM
,AdvNCRP

PUFS
}.

As we know, the more CRPs, the closer AdvNCRP
PUF is to 1

2 . Thus we can set it to 1
2 to get

the supremum. Since the OWF we use in the protocol is secure, thus Advrevs
OWF is negligible;

therefore, the NCRP power of it is also negligible.

5.4 Discussion

In this section, we provide a comparison of the overall features of our scheme against other
PUF-based authentication protocols and discuss the estimation of the hardware resource
requirement to deploy the required functionality on a given device. We choose protocols
for comparison based on a few factors. Primarily, we determine protocols which have given
a focus on the PUF/system-level implementation and implications (for example, discussing
amount of NVM required for key storage). We also compare protocols specifically designed
for lightweight authentication in IoT. This selection captures both the state-of-the-art as well
as some foundational protocols within this research space.
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5.4.1 Comparison Against Other Protocols

A comparison of the proposed scheme against similar PUF-based authentication protocols
is shown in Table 5.3. Against desirable properties, each protocol contains one or more
deficits which place restrictions on their application. For example, the protocol proposed by
Ebrahimabadi et al. [21] satisfies ML-MA; however, it does not support privacy or mutual
authentication, in addition to requiring a specific CRP database to be stored on the server.
Gope et al. propose a protocol in [31] which satisfies the most desirable properties; however,
it requires some NVM to store key data, making it vulnerable to probing. Modarres et
al. propose an effective and scablable protocol designed for the Internet of Medical Things
(IoMT) systems. While satisfying most key properties, there is an increased complexity in
this protocol as it requires more than two parties.

5.4.2 Estimated Cost of Implementation

In order to estimate the total hardware resource requirement for the proposed scheme, we refer
to Figure 5.1 to determine the cost of each individual component required for the function of
the PUF processor on a Xilinx Artix-7 FPGA. While the FPGA based components were fully
synthesised, we refer to this as an estimate for a few distinct reasons. Firstly, in Figure 5.1,
error correction is assumed to be included in PUFS. The overhead required for a given error
correction method can vary greatly depending on the error rate of the implemented PUF. As
Arbiter PUFs become more prone to noisy outputs as they increase in size (and if multiple
XOR’s are implemented), we make an assumption of a low error rate due to proposing the use
of small APUFs (16 or 32-bit). Highly reliable APUF implementations have been proposed
in the wider literature, such as in [37], where an error rate of < 10−9 is reported, therefore
a light error correction technique such as reported in [38] would be suitable. For each other
component, while different types of each could be used interchangeably, we synthesised an
example of our PUF processor design using Xilinx Vivado Design Suite to determine an
estimation of the required resources for each on an FPGA, the total resource requirements
in Look-Up Tables (LUTs) and D-Flip-Flops (DFFs) and Block RAMs (BRAMs). These
estimates are listed in Table 5.3. The FPGA layout for our design can be seen in Figure
5.5. For the DRAM-PUF, no significant restriction on the size of memory is required as an
increased size of available memory only provides more unique values for configuring the OWF.
To ensure a sufficient amount of novel memory PUF responses, however, we state a minimum
of 16KB of memory should be required, as the OWF used in preparing our dataset required
8KB responses for configuration. Given that three unique responses can be synthesised
from one memory location (0’s, 1’s, mixed), 16KB would enable six unique configurations
whilst leaving room for disregarding potentially unreliable sections of the available memory.
Furthermore, a DRAM-PUF implementation requires no additional FPGA resources as PUF
data and (repeated measurements for error correction) are stored in the memory itself (hence
0 BRAMs required) and only require modification of the memory controller in runtime for
PUF function. For our reference implementation on the FPGA, we included the following
configuration for each key block as follows:

• Strong PUF: We use 32-bit Arbiter PUF as a strong PUF.

• PRNG Functionality: We implemented a 32-bit LSFR as PRNG, specified by its
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feedback primitive polynomial x32 + x22 + x2 + x1 + 1 .

• One-Way Function: A light OWF with inspiration from the work in [3], with a 64-bit
input and output.

• Symmetric Encryption: Uses the hardware-efficient SIMON block cipher [5].

• KDF: For resource-efficiency reasons, we implement PRF instead of KDF thanks to our
a highly-uniform OWF output assumption (also reflected in Section 2.8.2). We use the
lightweight Keccak-f [200] hash function as PRF [8] as it can be used for pseudorandom
number generation.

Table 5.3: Estimated Total Cost of Our Proposed Scheme on FPGA

Components LUTs DFFs
BRAMs
(KB)

Power
Cons. (W)

- APUF: 32-bit
- LSFR PRNG: 32-bit
- OWF: 64-bit
- PRF: Keccak-f [200]
- SIMON Cipher:
m = 64-bit, n = 32-bit

785 898 0 0.203

5.5 Summary

In this chapter, we proposed a privacy-preserving PUF-based authentication protocol, in-
cluding hardware considerations for PUF obfuscation in order to prevent ML-MA on PUFs.
We presented the novel concept of a ‘semi-honest verifier’ for PUF-based protocol schemes,
where a verifier is assumed not always to be acting legitimately during the life cycle of an
authenticating device. Through experimental validation, both theoretically and practically,
we prove that our scheme not only prevents ML-MA on PUFs in the presence of this new
threat but that the scheme also provides desirable properties such as privacy, forward secrecy
and mutual authentication.
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Figure 5.5: Layout of proposed scheme synthesised on an Artix-7 FPGA



Chapter 6

Conclusion and Future Work

In this chapter, we summarise the contributions of this thesis, including a summary of the
experiments carried out and how they support the hypotheses presented in Chapter 1. Finally,
we discuss the open questions that lead to this research’s potential future directions.

6.1 Summary of Chapters

DRAM-PUFs are a highly promising technology for enabling strong identity and authen-
tication for low-power/resource-constrained applications. With DRAM being ubiquitous in
computer systems, it is imperative to investigate practical applications of DRAM-PUFs for
enabling security through hardware Root-of-Trust (RoT); however, there exist limitations to
the state-of-the-art approaches. Overall, we identified the following issues:

• Due to the noisy nature of DRAM-PUFs, some current approaches exist which utilise
Convolutional Neural Networks (CNNs) for classifying the responses for authentication
purposes. These approaches, however, suffer from various limitations as identified in
Section 3.1.1, such as model complexity, which reduces the applicability of the tech-
niques to resource-constrained systems. Additionally, current approaches only investi-
gate the classification of individual DRAM-PUFs per CNN model, limiting scalability
where multiple PUFs may need to be scrutinised by a given verifier.

• Due to the issue of PUF noise, error correction techniques are most often required,
necessitating the storage of publicly accessible helper data. It has been shown that
adversaries may exploit helper data to mount modelling attacks on PUFs.

• Current CNN approaches rely on physically mapped DRAM-PUF data such that phys-
ical features are encoded in the response image (to capture charge leakage behaviour,
etc.). This approach complicates enrollment and potentially leaks additional informa-
tion to attackers who may wish to model the leakage behaviour of the DRAM regions
used to generate responses.

• Strong PUFs are suitable for CRP-based authentication due to their generally expo-
nentially large CRP space; however, they are very vulnerable to Machine Learning
Modelling Attacks (ML-MA). Obfuscation methods have been proposed to counter this

103
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vulnerability; however, they have various limitations, including high resource cost and
vulnerable Non-Volatile Memory (NVM) requirements. These issues are discussed in
Section 4.1.

• Current approaches which aim to utilise DRAM-PUFs for CRP-based authentication
are currently restricted in scalability due to the limited unique CRP space available.
When discarding a CRP per use, a DRAM-PUF would need to be recalled often, which
is highly undesirable for many IoT applications. This is highlighted in Section 4.1.

• Protocol-level integration of DRAM-PUFs is largely overlooked, limiting the realis-
tic application of DRAM-PUFs which exploit their intrinsic benefits as cryptographic
primitives. We identify the current limitations in Section 5.1.

To address the key issues identified in this thesis, we presented three experimental studies
and evaluated their performance, the hypotheses of which were proposed in Section 1.1. The
overall goal of this work was to develop methods for enhancing authentication processes for
resource-constrained settings using DRAM-PUFs.

Chapter 3 considered the problems related to current CNN-based authentication using
DRAM-PUFs. This work is the first to introduce the novel concept of a PUF Phenotype,
whereby a PUF’s response is considered as the digital output, including specific features
caused by the environment, without regard for any structural information of the PUF. We
generated a novel dataset of temperature and voltage variant Latency DRAM-PUF ’Pheno-
types’, formatted as a set of images. By modifying a VGG-16 CNN, our experimentation
showed that exploiting classical classifiers was very effective at scrutinising the DRAM-PUF
Phenotypes, reducing the model’s overhead by a factor of 10. The findings in this work
demonstrated that by fine-tuning model confidence to determine a threshold, it is possible to
authenticate the origin of responses with highly effective false positive/false negative rates.
These discoveries support our ”first hypothesis: ”Computer vision-based authentication can
be employed using DRAM-PUFs for authentication in a practically lightweight fashion. A
highly acceptable false positive/false negative rate for authentication can be achieved across
multiple devices (multi-class classification) for highly noisy responses”.

Chapter 4 explored how DRAM-PUFs can be utilised to obfuscate Strong PUFs to solve
scalability issues in DRAM-PUF CRP space and high resource costs for current state-of-
the-art obfuscation schemes. Through our experiments, we demonstrated that it is possible
and effective to exploit DRAM-PUFs for securely generating cryptographically significant
matrices, which can be used to configure lightweight One-Way Functions (OWF). The ap-
proach requires fewer FPGA resources (LUTs and DFFs) than the state-of-the-art schemes
and proved to be effective at preventing ML-MA. In addition, the proposed scheme could
also support various PUF types, making it generic and, therefore not restricted to a single
PUF design. Hypothesis 2: ”DRAM-PUF entropy can be exploited to enhance the obfuscation
of Strong PUFs for authentication such that required hardware overhead is minimised while
resistance against ML-MA remains high” was therefore satisfied in this Chapter.

Finally, a protocol-level approach for integrating DRAM-PUF-based obfuscation hard-
ware was demonstrated in Chapter 5. The proposed protocol enabled security against ML-
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MA when considering a more capable, novel semi-honest verifier. An adapted (from that
proposed in Chapter 4) obfuscation approach was presented and experimentally verified on
a Xilinx Field Programmable Gate Array (FPGA). The results of ML-MA tests and security
analyses demonstrate our third hypothesis: ”A privacy-preserving authentication protocol can
be designed which tightly integrates a DRAM-PUF-enhanced Strong-PUF obfuscation design
in order to provide further resilience against ML-MA, including resilience against adversaries
with significantly elevated privileges to collect PUF data and mount attacks.”

6.2 Potential Future Works

The works presented when addressing the hypotheses introduce the following questions, an
investigation of which could effectively improve upon the contributions made in this thesis.

Extension of PUF Phenotype Classification/Authentication: In Chapter 3, our
presented approach focuses on PUF Phenotype images, which currently consist of relatively
large 8KB memory regions. It would be insightful to investigate the impact of using smaller
images during training, such as splitting them into four 2KB images or eight 1KB images.
This exploration could yield two notable advantages:

• Enhanced Authentication Space: By reducing image size, the unique CRP space for
authentication can be increased, improving the overall scalability of the scheme.

• Lower Computational Cost: Smaller images not only reduce the training and execution
computational overhead of the DPAN model but also ease the burden of processing and
generating Phenotype images on verifying devices.

However, it is crucial to acknowledge a potential weakness with this approach. Smaller
Phenotype images might simplify the expected Phenotype image’s complexity, potentially
making it easier for attackers to deceive the model. Thus, further investigation and experi-
mentation are required to strike a balance between these benefits and risks.

Furthermore, since PUF Phenotypes are ‘structure-agnostic´, it becomes feasible to ex-
plore their effectiveness in authenticating individual Phenotypes that incorporate multiple
types of PUF output and therefore is an interesting avenue for further investigation.

Finally, whilst in this work the group membership was treated as a static property for
experimental purposes, it would be entirely possible to retain the PUF characterisation data
for each device in a central and highly secure environment and use this to update group
membership actively. This approach would require retraining of the model on the new set of
group members and then pushing the new model out to all devices. A full exploration of this
kind of approach to PUF at the protocol level should form the basis of future work.

Side-channel Analysis of PUF Obfuscation Schemes In Chapters 4 and 5, two similar
hardware schemes are presented. Whilst the hardware and power costs were experimentally
verified, sophisticated hardware-level attacks such as side-channel and fault injection attacks
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are important to consider when increasing the expected capability of the adversary. Explo-
ration into the robustness of the hardware schemes presented in this thesis against these types
of attacks is a logical next step for security analysis.

ML-MA Resilience of DRAM-PUF The current literature assumes that Strong PUFs
are vulnerable to ML-MA and Weak PUFs are not primarily due to available CRP space.
While DRAM-PUFs are generally considered Weak PUFs, as noted in Section 2.4.7, it is
sensible to designate DRAM-PUFs as a type of ‘Semi Weak’ PUF due to the vastly increased
CRP space (per-bit) over ‘traditional’ Weak PUFs (such as Optical/SRAM-PUFs). Due to
the (relatively) large CRP space available and the known charge-leakage effects of contiguous
bit-cells, it remains an open question as to the difficulty of modelling DRAM-PUF outputs,
given knowledge of limited CRPs. A security evaluation at this level should be investigated
to enhance trust in DRAM-PUFs as cryptographic primitives further.
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[20] Elena Dubrova, Oscar Näslund, Bernhard Degen, Anders Gawell, and Yang Yu. CRC-
PUF: A Machine Learning Attack Resistant Lightweight PUF Construction. In 2019
IEEE European Symposium on Security and Privacy Workshops (EuroSPW), pages 264–
271, 2019.

[21] Mohammad Ebrahimabadi, Mohamed Younis, and Naghmeh Karimi. A PUF-Based
Modeling-Attack Resilient Authentication Protocol for IoT Devices. IEEE Internet of
Things Journal, 9(5):3684–3703, 2022.

[22] Matthieu Finiasz. Syndrome Based Collision Resistant Hashing. In Johannes Buch-
mann and Jintai Ding, editors, Post-Quantum Cryptography, pages 137–147, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.



BIBLIOGRAPHY 109

[23] Fatemeh Ganji, Shahin Tajik, Fabian Faessler, and Jean-Pierre Seifert. Strong Machine
Learning Attack Against PUFs with No Mathematical Model. volume 9813, 08 2016.

[24] Yansong Gao, Hua Ma, Said F. Al-Sarawi, Derek Abbott, and Damith C. Ranasinghe.
PUF-FSM: A Controlled Strong PUF. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(5):1104–1108, 2018.

[25] Yansong Gao, Yang Su, Wei Yang, Shiping Chen, Surya Nepal, and Damith C. Ranas-
inghe. Building Secure SRAM PUF Key Generators on Resource Constrained Devices.
In 2019 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pages 912–917, 2019.

[26] M.W Gardner and S.R Dorling. Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric Environment,
32(14):2627–2636, 1998.

[27] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Silicon Physical
Random Functions. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, CCS ’02, page 148–160, New York, NY, USA, 2002. Association
for Computing Machinery.

[28] Blaise Gassend, Marten Van Dijk, Dwaine Clarke, Emina Torlak, Srinivas Devadas, and
Pim Tuyls. Controlled Physical Random Functions and Applications. ACM Trans. Inf.
Syst. Secur., 10(4), jan 2008.

[29] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas.
Identification and Authentication of Integrated Circuits. Concurrency and Computation:
Practice and Experience, 16(11):1077–1098, 2004.

[30] Prosanta Gope, Jemin Lee, and Tony Q. S Quek. Lightweight and Practical Anony-
mous Authentication Protocol for RFID Systems Using Physically Unclonable Functions.
IEEE Transactions on Information Forensics and Security, 13(11):2831–2843, 2018.

[31] Prosanta Gope, Owen Millwood, and Biplab Sikdar. A Scalable Protocol Level Approach
to Prevent Machine Learning Attacks on Physically Unclonable Function Based Authen-
tication Mechanisms for Internet of Medical Things. IEEE Transactions on Industrial
Informatics, 18(3):1971–1980, 2022.

[32] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for Multi-Class Classi-
fication: an Overview, 2020.

[33] Chongyan Gu, Chip-Hong Chang, Weiqiang Liu, Shichao Yu, Yale Wang, and Maire
O’Neill. A Modeling Attack Resistant Deception Technique for Securing Lightweight-
PUF-Based Authentication. IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems, 40(6):1183–1196, 2021.

[34] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest
we remember: cold-boot attacks on encryption keys. Commun. ACM, 52(5):91–98, may
2009.



BIBLIOGRAPHY 110

[35] Chris Hawkins. A History of Signatures: From Cave Paintings to Robo-Signings. Cre-
atespace Independent Publishing Platform, 2011.

[36] Zhangqing He, Wanbo Chen, Lingchao Zhang, Gaojun Chi, Qi Gao, and Lein Harn. A
Highly Reliable Arbiter PUF with Improved Uniqueness in FPGA Implementation using
bit-self-test. IEEE access, 8:181751–181762, 2020.

[37] Matthias Hiller, Ludwig Kürzinger, and Georg Sigl. Review of Error Correction for
PUFs and Evaluation on State-of-the-art FPGAs. Journal of cryptographic engineering,
10(3):229–247, 2020.

[38] Matthias Hiller, Meng-Day (Mandel) Yu, and Michael Pehl. Systematic Low Leakage
Coding for Physical Unclonable Functions. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’15, page 155–166,
New York, NY, USA, 2015. Association for Computing Machinery.

[39] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. Power-Up SRAM State as an
Identifying Fingerprint and Source of True Random Numbers. IEEE Transactions on
Computers, 58(9):1198–1210, 2009.

[40] C. Keller, F. Gürkaynak, H. Kaeslin, and N. Felber. Dynamic Memory-based Physically
Unclonable Function for the Generation of Unique Identifiers and True Random Num-
bers. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pages
2740–2743, 2014.

[41] Jeremie S Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. The DRAM Latency
PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-
Reliability Tradeoff in Modern Commodity DRAM Devices. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA), volume 2018-, pages
194–207. IEEE, 2018.

[42] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), pages 361–372, 2014.

[43] Vlastimil Klima and Tomas Rosa. Side Channel Attacks on CBC Encrypted Messages
in the PKCS7 Format. Cryptology ePrint Archive, Paper 2003/098, 2003. https:

//eprint.iacr.org/2003/098.

[44] Raghavan Kumar and Wayne Burleson. Hybrid Modeling Attacks on Current-based
PUFs. In 2014 IEEE 32nd International Conference on Computer Design (ICCD),
pages 493–496, 2014.

[45] Raghavan Kumar and Wayne Burleson. On Design of a Highly Secure PUF based on
Non-Linear Current Mirrors. In 2014 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 38–43, 2014.

https://eprint.iacr.org/2003/098
https://eprint.iacr.org/2003/098


BIBLIOGRAPHY 111

[46] Sachin Kumar, Prayag Tiwari, and Mikhail Zymbler. Internet of Things is a Revolution-
ary Approach for Future Technology Enhancement: A Review. Journal of Big Data, 6,
12 2019.

[47] Lieneke Kusters and Frans M. J Willems. Secret-Key Capacity Regions for Multiple
Enrollments With an SRAM-PUF. IEEE Transactions on Information Forensics and
Security, 14(9):2276–2287, 2019.

[48] Hung-Peng Lee, Shao-I Chu, and Hsin-Chiu Chang. Efficient Decoding of the (23, 12,
7) Golay Code up to Five Errors. Information Sciences, 253:170–178, 2013.

[49] Jae W. Lee, Daihyun Lim, Blaise Gassend, G. Edward Suh, Marten van Dijk, and
Srinivas Devadas. A Technique to Build a Secret Key in Integrated Circuits for Identifi-
cation and Authentication Applications. In 2004 Symposium on VLSI Circuits. Digest
of Technical Papers (IEEE Cat. No.04CH37525), pages 176–179, 2004.

[50] Junhua Li, Zbigniew Struzik, Liqing Zhang, and Andrzej Cichocki. Feature Learn-
ing from Incomplete EEG with Denoising Autoencoder. Neurocomputing (Amsterdam),
165:23–31, 2015.

[51] Ruizhe Li, Xiao Li, Guanyi Chen, and Chenghua Lin. Improving Variational Autoen-
coder for Text Modelling with Timestep-Wise Regularisation. In Proceedings of the 28th
International Conference on Computational Linguistics (COLING), 2020.

[52] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu. An Experi-
mental Study of Data Retention Behavior in Modern DRAM Devices: Implications for
Retention Time Profiling Mechanisms. SIGARCH Comput. Archit. News, 41(3):60–71,
June 2013.

[53] Jiahao Liu, Yuanzhe Zhao, Yan Zhu, Chi-Hang Chan, and Rui Paulo Martins.
A Weak PUF-Assisted Strong PUF With Inherent I]mmunity to Modeling At-
tacks and Ultra-Low BER, year=2022, volume=69, number=12, pages=4898-4907,
doi=10.1109/TCSI.2022.3206214. IEEE Transactions on Circuits and Systems I: Regu-
lar Papers.

[54] Wenchao Liu, Zhenhua Zhang, Miaoxin Li, and Zhenglin Liu. A Trustworthy Key
Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks. In 2014
International Symposium on Computer, Consumer and Control, pages 706–709, 2014.

[55] Ting Lu, Ryan Kenny, and Sean Atsatt. Secure Device Manager for In-
tel ®Stratix ®10 Devices Provides FPGA and SoC Security, Intel . https:

//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/

wp-01252-secure-device-manager-for-fpga-soc-security.pdf.

[56] Qingqing Ma, Chongyan Gu, Neil Hanley, Chenghua Wang, Weiqiang Liu, and Maire
O’Neill. A Machine Learning Attack Resistant Multi-PUF Design on FPGA. In 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC), pages 97–104.
IEEE, 2018.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf


BIBLIOGRAPHY 112

[57] Roel Maes. Physically Unclonable Functions: Constructions, Properties and Applica-
tions, volume 9783642413957. 11 2013.

[58] Abhranil Maiti and Patrick Schaumont. A Novel Microprocessor-Intrinsic Physical Un-
clonable Function. In 22nd International Conference on Field Programmable Logic and
Applications (FPL), pages 380–387, 2012.

[59] Nathan Menhorn. External Secure Storage Using the PUF, Xilinx .
https://www.xilinx.com/support/documentation/application_notes/

xapp1333-external-storage-puf.pdf, Jun 2018.

[60] Owen Millwood, Prosanta Gope, Chenghua Lin, Elif Bilge Kavun, Jack Miskelly,
and Bohao Yang. DRAM Latency-PUF Responses and corresponding PUF
Phenotype conversions: Temperature and Voltage environmentally tested.
https://orda.shef.ac.uk/articles/dataset/DRAM_Latency-PUF_Responses_

and_corresponding_PUF_Phenotype_conversions_Temperature_and_Voltage_

environmentally_tested/26977528", 9 2024.

[61] Owen Millwood, Prosanta Gope, Bohao Yang, Elif Bilge Kavun, Chenghua Lin,
and Jack Miskelly. PUF Phenotype CNN-based Authentication Experimental Code
and ML Models. https://orda.shef.ac.uk/articles/software/PUF_Phenotype_

CNN-based_Authentication_Experimental_Code_and_ML_Models/27094222",doi=

"10.15131/shef.data.27094222.v1, 9 2024.

[62] Owen Millwood, Fei Hongming, Prosanta Gope, Meltem Kurt Pehlivanoglu, Elif
Kavun, and Biplab Sikdar. Semi-Honest Verifier Generic PUF Obfuscation Scheme
ML CRP Dataset. https://orda.shef.ac.uk/articles/dataset/Semi-Honest_

Verifier_Generic_PUF_Obfuscation_Scheme_ML_CRP_Dataset/26977237, 9 2024.

[63] Owen Millwood, Jack Miskelly, Bohao Yang, Prosanta Gope, Elif Bilge Kavun, and
Chenghua Lin. PUF-Phenotype: A Robust and Noise-Resilient Approach to Aid Group-
based Authentication with DRAM-PUFs Using Machine Learning. IEEE Transactions
on Information Forensics and Security, pages 1–1, 2023.

[64] Owen Millwood, Meltem Kurt Pehlivanoglu, Aryan Mohammadi Pasikhani, Prosanta
Gope, Jack Miskelly, and Elif Bilge Kavun. Simulated 16 32 stage Normal, Feed-
Forward and XOR Arbiter PUF CRPs. https://orda.shef.ac.uk/articles/

dataset/Simulated_16_32_stage_Normal_Feed-Forward_and_XOR_Arbiter_PUF_

CRPs/26977279, 9 2024.

[65] Owen Millwood, Meltem Kurt Pehlivanoğlu, Elif Bilge Kavun, Prosanta
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Appendix A

Full VGG16 Feature Extractor
Confusion Matrices

We provide the confusion matrices for the test performance of each classifier when using
the full VGG16 feature extractor. Figures A.1 and A.2 show the actual class and the class
predicted by the model for each classifier for each test sample. Each includes the number of
samples predicted for a given class alongside the percentage of predictions of each class across
all predictions. Given perfect classifier performance, a confusion matrix should show a value
of zero for all cells where the actual and predicted label rows and columns match. For the
classifiers using the full VGG16 feature extractor, while it can be seen most classifications
are correct, there are frequently classifications that are made outside of the central set of
ideal classifications. For the DT classifier for example, many of each class were predicted
incorrectly, showing green in many of the cells where actual and predicted label do not
match. Overall, there is no significant apparent correlation to be drawn between the predicted
value of certain classes and the actual value as incorrect classifications are mostly arbitrarily
distributed around the confusion matrices. In some cases, there are similarities however,
for example with the RF, SVM and XGB models, the a three images from device epsilon
were classified as one of alpha, beta and delta respectively. This result is likely caused by
the classifiers drawing similar conclusions from the features extracted from identical images
impacted by in-image noise.
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Figure A.1: Confusion Matrices for DT, KNN & LR Classifiers Using Full
VGG16 Feature Extractor
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Figure A.2: Confusion Matrices for RF, SVM & XGB Classifiers Using Full
VGG16 Feature Extractor



Appendix B

Lightweight VGG16 Feature
Extractor Confusion Matrices

Here we provide the confusion matrices for each classifier when using the modified lightweight
VGG16 feature extractor (excluding RF and SVM as these are provided in Figure 7 of Section
IV of the main paper). This lightweight feature extractor has the dense layers of the VGG16
removed, and is the basis of our proposed scheme. As can be seen in each confusion matrix,
most of the classifiers performed very strongly in their predictions for each test sample, with
only few samples displayed outside of the centre line.
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Figure B.1: Confusion Matrices for DT, KNN, SVM & XGB Classifiers Using
Lightweight VGG16 Feature Extractor
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