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Abstract 

This thesis explores the complexities of evaluating treatment sequence effectiveness in health 

technology assessments (HTA), focusing on challenges posed by limited evidence. Clinical trials 

typically assess individual lines of treatment (LOTs) rather than entire treatment sequences. Existing 

research recommends merging LOT-specific evidence from different sources to estimate overall 

treatment sequence effectiveness. However, this relies on a strong assumption about exchangeability 

between LOT-specific populations, which may not always hold. 

Real-world data (RWD) provide a valuable alternative for assessing the comparative 

effectiveness of treatment sequences. However, generating reliable real-world evidence (RWE) 

presents significant challenges, notably confounding, which is exacerbated by the longitudinal nature 

of treatment sequences, leading to time-varying confounding. Conventional statistical methods (e.g. 

simple outcome regressions) may yield biased estimates, whereas advanced methods grounded in 

causal inference principles could offer more reliable estimates, provided their assumptions hold and 

data sources are of sufficient quality and breadth.  

This thesis reviews advanced statistical methods and proposes a series of innovative, 

interconnected proof-of-concept studies to assess the feasibility of deriving unbiased RWE for 

comparing treatment sequences. It evaluates suitable RWD sources pertinent to English HTA that 

support these methods. Further, it leverages the Target Trial Emulation framework, a methodology 

endorsed by the National Institute for Health and Care Excellence (NICE) RWE framework, to 

mitigate biases in real-world study designs. 

This thesis contributes to the field by delineating the challenges associated with treatment 

sequences and the landscape of English HTA practices. It complements existing treatment-sequencing 

modelling frameworks by proposing ways to leverage RWD to inform treatment sequence 

effectiveness and summarising challenges. Additionally, it extends the NICE RWE framework, 

particularly regarding practical applications and necessary adaptations for treatment sequence 

comparisons. A case study employing advanced inverse probability weighting methods demonstrates 

the feasibility of deriving unbiased treatment effectiveness estimates from Flatiron data, benchmarked 

against an existing trial. 
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NHS National Health Service 

NHSD National Health Service Digital 

NICE National Institute for Health and Care Excellence 

NLCA National Lung Cancer Audit 

NMA Network meta-analysis 

NMB Net monetary benefit 

nmCRPC Non-metastatic castration-resistant prostate cancer 

nmHRPC Non-metastatic hormone-relapse prostate cancer 

NPBC Non-platinum-based chemotherapy 

NSCLC Non-small-cell lung cancer 

ODR Office for Data Release 

OP Outpatient (dataset) 

OPERAND 
The Observational Patient Evidence for Regulatory Approval Science and Understanding 

Disease project 

OS Overall survival 

PartSM Partitioned survival models 

PAS Patient Access Scheme 

PBC Platinum-based chemotherapy 

PBS (Australian) Pharmaceutical Benefits Scheme 

PC Prostate cancer 

PC1 Prostate cancer case study 1 

PC2 Prostate cancer case study 2 

PC3 Prostate cancer case study 3 

PCP Pneumocystis pneumonia 

PD-1 Programmed Cell Death Protein 1 

PD-L1 Programmed Cell Death Ligand 1 

PFS Progression-free survival 

PGR Postgraduate research 

PHE Public Health England 

PLD Pegylated liposomal doxorubicin 

PREVAIL 
A Safety and Efficacy Study of Oral MDV3100 (Enzalutamide) in Chemotherapy-Naive 

Patients With Progressive Metastatic Prostate Cancer (PREVAIL) 

PP Per-protocol 

PPcen Per-protocol censoring—censoring switchers 

PPexc Per-protocol censoring—excluding switchers 

PPI Patient and Public Involvement 

PROSPERO The International Prospective Register of Systematic Reviews 

PSA Prostate-sensitive antigen 

PSMA Prostate-specific membrane antigen 

PTE Privacy, Transparency and Ethics  

RA Rheumatoid arthritis 

RCC Renal cell carcinoma 

R-CHOP Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone 

RCT Randomised controlled trial 

RECORD 
Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes 

(trial) 

RECORD-3 

Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes 

(trial)Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis 

of prognostic factors 

RHUMADATA Canadian clinical database of rheumatoid arthritis including patients from Quebec 

RMST Restricted mean survival time 

RPSFTM Rank Preserving Structural Failure Time Model 

RR Risk ratio 

RRMS Relapsing-remitting multiple sclerosis 

RTDS National Radiotherapy Dataset 

RWD Real-world data 

RWE Real-world evidence 
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Abbreviation  Full name 

SACT Systemic Anticancer Therapy (dataset) 

SCHARR 
Sheffield Centre for Health and Related Research (previously known as School of Health and 

Related Research), University of Sheffield 

SLA Service-Level Agreement 

SMART Sequential multiple assignment randomised trial 

SNFTM Structural nested failure time models 

SNM Structural nested models 

SOSA Simulation optimisation via simulated annealing 

SPIFD Structured Process to Identify Fit-For-Purpose Data 

STA Single technology appraisals 

STC Simulated treatment comparisons 

STROBE The Strengthening the Reporting of Observational Studies in Epidemiology (guideline) 

TA Technology appraisal(s) 

THIN The Health Improvement Network 

TKI Tyrosine kinase inhibitor 

TMLE Targeted maximum likelihood estimation 

TNFi Tumour necrosis factor inhibitor 

TRE Trusted Research Environment 

TSD Technical support document 

TSEsimp Simple two-stage estimation 

TSEgest Two-stage estimation with g-estimation 

TTE Target Trial Emulation 

UCB Union Chimique Belge 

UK United Kingdom 

UKALL2003 
A Randomised Trial Investigating Treatment Intensification for Children and Young Adults 

with Minimal Residual Disease Defined High Risk Acute Lymphoblastic Leukaema 

UKALL2014 A Randomized Trial for Adults with Newly Diagnosed Acute Lymphoblastic Leukaemia 

UMiT University for Health Sciences, Medical Informatics and Technology Tirol, Austria 

UoS University of Sheffield 

US United States 

V5FU2-CDDP 5-FU + folinic acid + cisplatin 

VARA Veterans' Affairs Rheumatoid Arthritis (Registry) 

VEGFis Vascular endothelial growth factor inhibitor(s) 

YMRS Young Mania Rating Scale 
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Chapter 1 Thesis introduction and background 

1.1 Chapter overview  

This opening chapter lays out the structure of the thesis, spotlighting the main theme—

addressing the challenges of evaluating treatment sequences in Health Technology Assessment 

(HTA)—and research motivation, inspired by a gap in the field and personal interest. This thesis 

investigates alternative methods for addressing the scarcity of clinical data evidence in HTA treatment 

sequence evaluations. It begins by defining what constitutes treatment sequences (Section 1.2), 

proceeds to discuss the significance and implications of evaluating treatment sequences in HTA and 

the associated challenges (Section 1.3.1 & 1.3.2), and explains the critical issue of clinical 

effectiveness data scarcity (Section 1.3.3).  I then highlight the potential of real-world data (RWD) as 

an alternative solution for providing unbiased estimates of the comparative effectiveness of treatment 

sequences, while emphasising the need to investigate the application of causal inference methods to 

navigate the inherent biases in RWD analysis, especially confounding bias (Section 1.3.4). 

Section 1.4 outlines foundational concepts, such as causal inference, confounding, and the 

distinction between estimand, estimators and estimates. Importantly, I introduce the Target Trial 

Emulation (TTE) framework3, a causal inference methodology gaining increasingly widespread 

recognition, developed by notable figures in the field, Jamie Robins and Miguel Hernán. This 

framework provides a systematic approach to structuring RWD studies in a way that aids in bias 

mitigation, which I adopted as the backbone of my proof-of-concept case studies in Chapters 7 & 8. 

Section 1.5 outlines the research questions and specific aims designed to address data scarcity 

challenges by leveraging RWD and causal inference methods. Finally, Section 1.6 presents the thesis 

structure, with each part arranged to systematically address the posed research questions. 

1.2 Definition of treatment sequences 

With the increasing variety of treatment options, it is common for patients to undergo multiple 

treatments in managing a single condition. Treatment sequences refer to the ordered series of medical 

interventions patients receive. The criteria for initiating a subsequent treatment often include, but are 

not limited to, signs of disease progression and the occurrence of toxicity, which vary widely 

depending on the disease, such as exceeding certain lab test thresholds, changes in disease severity 

scores, imaging results, clinical assessments, or after completing a set duration of first-line treatment. 

Treatment sequences typically embody a form of dynamic treatment regimen (DTR)4 (e.g. 

transitioning to a next-line drug depending on patient response) as opposed to time-related static 

strategies (e.g. two COVID vaccines six months apart) and static strategies (e.g. a single flu shot).5 I 

further defined the subtle differences between different types of treatment sequences and their 

implications for HTA in Chapters 2 and 4. 
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Treatment sequences may also include non-medical patient-level interventions, such as lifestyle 

changes to modify behaviours6,7 (e.g., using nicotine replacement or switching to vaping for smoking 

cessation), or sequential population-level policies (e.g. progressively implemented alcohol levies), 

especially within a broader public health context. However, my thesis narrows its scope to medical 

treatment sequences in HTA, focusing on patient-level interventions to manage the complexity in the 

methodological exploration of treatment sequence evaluation in HTA, as outlined in Sections 1.3-1.5. 

Nonetheless, I will discuss the potential broader implications of my research at the end of the thesis 

(Chapter 9).  

1.3 Research motivations: treatment sequences in HTA and their challenges 

1.3.1 Why are treatment sequences important? 

Incorporating treatment sequences into decision-making becomes increasingly relevant in HTA 

to ensure effective health resource allocation as altering the order of treatments may impact their 

overall effectiveness and costs of managing a disease.1,2,8-10 Health economic evaluations play a key 

role in supporting reimbursement decisions11-17 by assessing the cost-effectiveness of introducing a 

new treatment to the market.18,19 It is generally accepted that when an intervention can impact long-

term outcomes or survival, an economic evaluation should consider a lifetime horizon to evaluate the 

appraised treatment’s cost-effectiveness against specific comparators and for target populations in a 

given decision problem.20 Consequently, such an evaluation should account for, whether implicitly or 

explicitly, the care pathway along with the associated costs and outcomes that follow the intervention 

being appraised. This often leads to the development of treatment-sequencing decision-analytic 

models and identification of pertinent effectiveness, costs, and utility evidence for these models to 

project long-term impacts of integrating the assessed treatment into existing treatment pathways.1  

Increased attention to treatment sequences in HTA8,21,22 prompted the National Institute for 

Health and Care Excellence (NICE) to update their guidelines with generic recommendations for 

integrating subsequent treatments into technology appraisals (TA) in England and Wales since 

2013.23,24 This shift encourages assessments beyond isolated treatments at discrete times. Similarly, 

guidelines from the Canadian Agency for Drugs and Technologies in Health (CADTH) adopted 

comparable recommendations.25 NICE and CADTH stand at the forefront of global HTA, with 

NICE's recommendations notably impacting clinical practice in England and Wales due to their legal 

mandate for implementation, distinguishing it from other nations' HTA bodies.26 The adoption of the 

aforementioned forward-thinking guidelines reflects their pragmatic approach to meeting HTA's 

changing demands, which, in turn, may also drive the changing demands. For example, NICE is 

piloting the Pathway Approach to streamline the appraisal of new treatments by evaluating treatments 

in a single disease area with one economic model, aiming to improve efficiency beyond the 
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conventional single (STA) and multiple technology appraisals (MTA).27 STA and MTA assess single 

and multiple technologies at specific treatment positions, respectively. The Pathway Approach 

expands this by assessing various treatments across different positions within the same pathway in a 

single review, seeking to address the growing number of new treatments and the limited capacity to 

evaluate them, thereby facilitating quicker access to new medicines while ensuring they are cost-

effective. NICE plans to integrate lessons learned from the pilots, including renal cell carcinoma 

(RCC) and non-small-cell lung cancer (NSCLC) studies, into the STA process, with further updates 

expected later in 202427-29, possibly shaping future HTA treatment sequence evaluations.  

1.3.2 What are the challenges of evaluating treatment sequences? 

Evaluating treatment sequences adds complexity to the health economic evaluation process 

compared to assessing isolated treatments.1 The core of such complexity lies in the requirement for 

economic models to accommodate an expanded number of states to represent multiple lines of 

treatments (LOTs) and real treatment pathways/sequences. Conceptually, this not only demands 

additional parameters to better reflect the model but also requires extra data to inform these 

parameters and accurately capture key interactions between effects within the modelled evaluation. 

While models that better reflect real treatment pathways may reduce some uncertainties, the increase 

in model parameters can, paradoxically, introduce new uncertainties. Moreover, the increased 

complexity can lead to a higher computational load.30,31 Decision-makers, therefore, may encounter 

challenges in choosing the most pertinent sequences for consideration from all theoretically possible 

sequences.  

The scarcity of pertinent clinical evidence, especially randomised controlled trials (RCTs) that 

compare treatment sequences, stood out as a prominent challenge among others in treatment sequence 

evaluation at the outset of my doctoral studies. This challenge was highlighted through my experience 

of utilising multiple sources of evidence to populate the effectiveness of treatment sequences in a 

lung cancer treatment economic model, which led to concerns from the HTA body about potential 

double-counting of death rates due to evidence merging. Despite established methods for integrating 

treatment sequences into the structure of various types of health economic models1,2, such as Markov 

models, discrete event simulations (DES), partitioned survival models (PartSM), and the development 

of others (e.g., microsimulations, multi-state models)32,33, obtaining unbiased clinical effectiveness 

estimates of treatment sequences for these models proves challenging.34,35 The full scope of this issue, 

its resolutions, and its connection to other treatment sequencing challenges were underexplored. Thus, 

my doctoral research began by mapping out the array of challenges in evaluating treatment sequences 

within HTA, identifying how the challenge of scarce clinical evidence fits into this broader picture 

(Chapter 2), and examining strategies and extent to which they have been employed to derive 
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unbiased clinical effectiveness of treatment sequences in English HTA (Chapter 3).  

1.3.3 Scarcity of clinical effectiveness evidence for treatment sequences 

Several studies have sought to establish a conceptual framework for modelling treatment 

sequences (see Chapter 2’s review for details).1,34-36 Zheng et al. proposed a generic treatment-

sequencing economic modelling framework1, while Lewis et al. and Huang et al. focused on the 

challenges of scant clinical effectiveness evidence for treatment sequences in HTA and suggested 

room for future research.34-36 The latter two studies were published in parallel to my thesis work, 

underscoring the progressive advancements in this area and aligning with the central theme my thesis. 

They recommended leveraging statistical methods for mitigating biases when collating evidence from 

multiple sources to obtain LOT-specific effectiveness. This includes employing statistical adjustment 

techniques that account for line-specific effects and indirect comparisons, such as meta-regression 

and matched-adjusted indirect comparisons (MAIC).34,35 These strategies provide a pragmatic 

approach to harness existing evidence, especially in situations where clinical trials, which typically 

focus on comparing treatment effects for a specific line, are the primary source of evidence, as RWD 

for the technology under review might not be readily available. Nonetheless, such an approach often 

relies on critical assumptions that evidence across different LOTs are for comparable populations. 

For example, in evaluating treatment sequences A→B versus C→D, consider a situation where 

first-line treatment effectiveness comes from an RCT comparing A versus C in a first-line setting, 

while second-line effectiveness is sourced from another RCT comparing B versus D in a later-line 

setting. Biases can emerge if the second trial's patient population does not accurately represent those 

progressed in the first trial to receive subsequent treatments, specifically if participants in the second 

trial have undergone inconsistent lines of previous treatments or received a mixture of different 

primary treatments before the trial. Attempting to isolate and analyse a subgroup from the second 

trial—those who only received one prior line of specific treatment (i.e., first-line A (before receiving 

B) versus first-line C (before receiving D))—risks compromising the trial's original randomisation, 

leading to biased results without proper statistical adjustments. This simplified example highlights 

the inherent uncertainties of using LOT-specific evidence and underscores the necessity of cautious 

assumption-making, such as the impact of any other previous treatments on the effectiveness of B 

and D being comparable to A and C, or that the effects of B and D remain stable regardless of the 

number of previous treatment lines. This approach is pragmatic when the assumptions are valid, but 

these assumptions may not always hold, particularly for survival outcomes. Using confidence 

intervals from the second trial's estimates as the basis for probabilistic sensitivity analysis will not 

fully account for the aforementioned uncertainties, given their unknown directions and magnitudes.  
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1.3.4 Opportunities for real-world data and causal inference methods 

Studies have highlighted the capability of RWD to capture treatment sequencing information for 

HTA, particularly its potential for deriving estimates of the effects of entire treatment sequences rather 

than LOT-specific effects.1,34,35 Additionally, RWD offers further benefits such as larger sample sizes 

and greater generalisability than limited trial populations. However, these studies did not explore 

specific (statistical) methodologies capable of generating unbiased comparative effectiveness 

estimates from RWD for treatment sequence comparisons. A notable hurdle in utilising RWD is its 

susceptibility to confounding37,38, a challenge that is exacerbated by treatment sequences due to time-

varying confounding. Put simply, the lack of random treatment assignment in real-world practice and 

the tendency for sicker patients to receive particular first-line and subsequent treatments (i.e., 

treatment sequences) over other treatments suggest directly comparing patients receiving different 

treatment sequences in RWD can introduce bias, as the groups compared may not be comparable. The 

presence of time-varying confounding introduces bias in treatment comparisons and cannot be 

adequately addressed by simple statistical methods, such as multivariate regression models for 

outcome analysis that simply incorporate time-varying confounders into the regression model, which 

may in fact introduce additional biases. The need for advanced statistical approaches to tackle this 

issue is explained in detail in Section 1.4. The use of RWD in health economic evaluations has been 

explored in various contexts but not specifically for treatment sequences.39,40 Chapter 3's review of 

NICE TAs, hence, reveals RWD's use in treatment sequencing HTA and underscores a gap in methods 

for addressing biases in effectiveness estimates. My research, therefore, centres on developing 

methodologies to leverage RWD for generating unbiased estimates in treatment sequence 

comparisons for HTA, covering strategies for assessing fit-for-purpose data sources (Chapter 5), 

minimising biases in RWD study design (Chapter 6 & 7), employing relevant statistical methods 

(Chapter 4), and the testing and validation of these approaches (Chapter 8). This focus intends to offer 

an alternative approach, addressing the lack of clinical evidence on treatment sequences in treatment-

sequencing models, where relying solely on LOT-specific evidence may fall short.  

In this thesis, “effectiveness”—the real-world effect of treatments—is consistently used to 

discuss the effects of treatments for simplicity, contrasting with “efficacy”, which denotes effects 

measured under highly controlled-trial conditions.41 This choice reflects HTA's focus on assessing 

how new treatments affects real-world clinical practice. Further, although clinical trial data are 

frequently used to inform treatment effects in economic evaluations, but a single trial is typically not 

the only evidence source for evaluating treatment sequences. My exploration of RWD led to adopting 

“effectiveness” and “comparative effectiveness”. These terms are associated with comparative 

effectiveness research (CER), aimed at understanding treatments' relative effects in real-world studies, 

while sometimes also broadly cover assessments from both RWD and efficacy trials.42  
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Early in my PhD, a course on treatment switching in clinical trials, co-taught by my supervisor 

Professor Nick Latimer with colleagues at the University for Health Sciences, Medical Informatics 

and Technology Tirol (UMiT) introduced me to the critical role of causal inference methods in 

addressing time-varying confounding, shaping my research interests towards the integration of these 

methodologies within the aforementioned context. Firstly, the shared foundation of causal inference 

and HTA in assessing counterfactual scenarios to understand the impact of different interventions 

renders leveraging this method intuitively sensible. Specifically, HTA looks at the effects of 

introducing a new treatment into the health system and comparing it with not doing so. Further, the 

parallels between clinical trials with non-randomised unintended treatment switching and treatment 

sequences sparked my interest in the potential for transferring similarly rooted statistical methods 

from the former to the latter. In particular, a clinical trial comparing an active drug against a placebo 

can be seen as evaluating the sequences of active drug → active drug versus placebo → placebo. 

Thus, undesired switching to the active drug within the placebo group can “contaminate” the intended 

comparison by unintentionally partially including the effect of a treatment sequence of placebo → 

active drug. In HTA, statistical methods grounded in causal inference have been adapted and well-

established to address unwanted treatment switching in clinical trials, enabling estimation of the 

placebo arm's effect as if no switching had occurred.43 A recent NICE Decision Support Unit (DSU) 

review identified in Chapter 2 also notes the similarities between unwanted treatment switching and 

the economic modelling of treatment sequences, and therefore suggests the potential for co-

developing methods to tackle both issues.44  

Despite HTA guidelines for analysing patient-level RWD with causal inference methods to 

derive unbiased treatment effects40, they have not been accommodated in assessing the effects of 

treatment sequences (see Chapter 2). Informally, identifying the effect of a specific treatment 

sequence in real-world settings can be viewed as estimating its effect as though no other sequences 

or switching had occurred. This concept underpins my research in identifying and adapting relevant 

causal inference methods to assess treatment sequence effects using RWD. This task brings added 

complexity compared to handling unwanted treatment switching in clinical trials: Firstly, the diversity 

of RWD sources poses significant challenges in identifying data sources that can accurately capture 

the targeted treatment sequences, markedly diverging from the data collection in population-specific 

clinical trials. Further, the lack of randomisation in RWD may theoretically necessitate additional 

steps in deploying advanced statistical methods to obtain unbiased estimates. This contrasts with 

approaches for addressing unwanted treatment sequences in trials, where operations may sometimes 

hinge on existing randomisation, such as the Rank Preserving Structural Failure Time Model 

(RPSFTM).43 Finally, the comparison of two treatment sequences in RWD necessitates adjustments 

in both arms, contrasting with the singular arm adjustment for tackling unwanted treatment switching 
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in the placebo arm of clinical trials.43 

Hence, my doctoral journey has been dedicated to navigating these complexities, assessing the 

feasibility of using RWD to derive reliable treatment sequence effect estimates (i.e. reliable real-

world evidence (RWE)), and suggesting pathways forward. In the upcoming section (Section 1.4), I 

describe the concept of causal inference in the context of treatment sequencing, highlighting how 

statistical methods guided by causal inference are crucial in tackling confounding, particularly the 

need for advanced methods adept at tackling time-varying confounding. Besides exploring statistical 

methods suitable for treatment sequence effect estimation, I describe how I came to recognise the 

relevance of the Target Trial Emulation (TTE) framework in RWD study design, subsequently 

adopting it as the backbone of my case studies. The causal inference-based Target Trial Emulation 

(TTE) framework3 is gaining recognition in epidemiology in recent years for its role in minimising 

biases in RWD study design and execution through structured planning and explicit reporting, 

recently endorsed by NICE in its real-world evidence (RWE) guideline for HTA.37 

1.4 Harnessing causal inference for analysing RWD to derive unbiased treatment sequence 

effect estimates: key concepts 

1.4.1 Causal inference and confounding in treatment sequencing 

Causal inference seeks to ascertain cause-and-effect relationships between variables beyond 

associations. The development of causal inference spans various disciplines45-49, yet my research, 

with its emphasis on HTA, primarily adopts terminology from epidemiology and statistics for its 

relevance5,50-54. While unadjusted RWD analyses can shed light on local real-world treatment patterns 

and outcomes55-57, they cannot answer “what-if” (i.e., causal) questions involving counterfactuals, 

such as whether a patient group would have experienced better outcomes had they been offered an 

alternative treatment (sequence) due to confounding. However, answering these counterfactual 

queries is crucial for TAs that compare different treatment (sequences). Figure 1.1's directed acyclic 

graph (DAG) illustrates the confounding issue, showing how treatment A's independent (i.e., causal) 

effect on outcome Y(A  Y) is confounded by a set of variables (L) due to non-randomisation. For 

example, sicker patients (Lintensive care unit stay = 1) are more likely to receive treatment A (A = 1) and 

also more prone to developing an outcome (Y = 1). Hence, comparing patients who underwent 

treatment A (A = 1) to those who did not (A = 0) without adjustments would be “unfair” as these two 

patient groups are not comparable. Adjusting for confounders L allows for the identification of 

treatment A's causal effect on outcome Y, assuming there are no unmeasured confounders.  
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Figure 1.1 Directed acyclic graph (DAG) of an observational study involving a single-time 

exposure and confounders 

The black box around L signifies the conventional method of adjusting for confounding by controlling for confounder L 

through blocking the backdoor path from Y to A (i.e., Y←L→A). 

 

The equation Y = β0 + β1A + β2L + ε represents a conventional method to adjust for confounding 

in Figure 1.1’s scenario, known as outcome regression, which can be either univariate or more often 

multivariate depending on the number of confounders. Here, β0 is the intercept, β1 and β2 are 

coefficients for the effect of treatment and confounders L, respectively, and ε is the error term. This 

approach assesses the independent effect of treatment A on outcome Y, conditioned on a specific level 

of L, separating A's impact on Y from L's influence. However, this approach falls short in assessing 

treatments strategies that may change over time, due to its inability to handle time-varying 

confounders.38,58 

Figure 1.2's DAG highlights the complexity of addressing time-varying confounders, 

specifically in evaluating the causal effects of treatment sequences, where the sequence involves in 

an initial treatment At=0 ∈ (0, 1) at time zero (t = 0) and a subsequent treatment At=1 ∈ (0, 1) upon 

disease progression (i.e., t = 1). The aim of evaluating the impact of a specific sequence is to estimate 

the joint effect of A0 and A1 on outcome Y. An example of this is to estimate the effect of the treatment 

strategy where patients move from an active first-line treatment A0 = 1 to palliative care A1 = 0. 

Time-varying confounders, such as L1 (e.g. performance status upon disease progression), can 

influence both subsequent treatment choices A1 (i.e., second-line treatment) and outcomes Y, while 

also being influenced by previous treatments A0 (i.e., first-line treatment). Including time-varying 

confounders and treatments in an outcome regression model (i.e., Y = β0 + β1A0 + β2L0 + β3A1 + β4L1 

+ ε) complicates isolating the causal effect of a specific treatment sequence. Specifically, the inclusion 

of L1, an intermediate outcome influenced by A0, introduces bias by adjusting for A0’s indirect effect 

(mediated through L1) on Y, conditioning on a specific level of L1. However, including only L0 would 

neglect the time-varying confounding of L1, which is crucial for understanding the relationship 

between A1 and Y. Further, the equation overlooks A0 and A1’s joint effect. This complicates 

interpreting the model's results and discerning the true causal impact of a treatment sequence, 

A Y 

L 

A: Single-time treatment  

(e.g. antibiotic treatments) 

 

L: Confounders  

(e.g. age, sex, intensive care unit stay) 
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underscoring the limitations of conventional methods in handling time-varying confounding and 

exposures. Hence, advanced statistical methods are required. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 A simple DAG of time-varying confounders and exposures in observational studies 

The black box around time-varying confounder L1 illustrates the conventional method of adjusting for confounding, 

specifically the backdoor path between A1 and Y, by controlling for confounder L1. This conceptually blocks the pathway 

through which A0’s effect on Y is mediated by L1, since as L1 is an intermediate outcome that follows A0. 

 

Historically in epidemiology and medicine, there was skepticism towards deriving causal 

inferences from observational data.59 Robins's g-methods for dealing with time-varying confounding 

revolutionised this perspective in the past 40 years.54 These methods were rooted in the Neyman-

Rubin potential (i.e. counterfactual) outcomes framework.60 This framework, initially conceptualised 

by Neyman in the 1920s for randomised experiments61,62 and later expanded by Rubin in 1970s for 

observational studies  to address confounding63-65, distinguishes between the outcome that we observe 

and what could have potentially occurred to determine the causal effect of interventions. The 

terminology of the “(Neyman-)Rubin causal model” was solidified by Holland in 1986.50 Building 

upon the aforementioned principles, Robins introduced the initial version of g-methods for tackling 

time-varying confounding in his 1986 paper.54 When introduced, the depth and implications of these 

methods were not fully grasped by the community. However, many contemporary causal inference 

methods in epidemiology may trace their origins and relevance to the principles in this paper. Robins 

and his collaborators have since expanded upon these principles, developing variants of g-methods 

to address time-dependent confounding with measured variables (e.g., g-formula54, g-estimation of 

structural nested models66,67, marginal structural models (MSMs) with inverse probability weighting 

(IPW)58,68,69). Chapter 4's systematic review aimed to identify relevant causal inference guided 

statistical methods or their extensions used to address time-varying confounding in the context of 
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estimating treatment sequence effects. In fact, it revealed that most advanced statistical methods are 

rooted in or relevant to g-methods. Robins noted that g-methods are not independent of one another, 

but interconnected across different subsets.60 He highlighted the pivotal use of g-methods within the 

increasingly popular TTE framework, which he co-developed with Miguel Hernán, for discerning 

causal effects in observational studies. The significance of TTE is further discussed in the following 

sections. 

1.4.2 Target Trial Emulation (TTE) 

The TTE framework is a methodological framework for using “big data” (i.e., RWD, also known 

as observational data) to evaluate comparative effectiveness.3 Specifically, the structure of the TTE 

seeks to mimic the design of a hypothetical RCT using observational data. This approach is 

particularly relevant to derive reliable RWE when RCTs are not feasible, ethical, or practical. The 

emulation of a hypothetical Target Trial (as if an identical actual RCT were possible) helps reduce 

biases from RWD study design and improve causal inference, making it an important tool in CER.  

A standard Target Trial protocol consists of seven key components to resemble a RCT setting: 

eligibility criteria, intervention strategies being compared, intervention assignment, follow-up period, 

outcomes of interest, causal contrasts of interest, and analysis plan. The analysis plan outlines the 

statistical methods, such as those for addressing time-varying confounding, to derive the estimands 

of interest (what constitutes an estimand is further explained in Section 1.4.3). Briefly, an estimand 

is the precise description of the parameter aimed to be estimated (e.g. treatment effect) in a statistical 

analysis.  

I became aware of the TTE framework's relevance to my research from an Issue Panel at the 

Professional Society for Health Economics and Outcomes Research (ISPOR) 2020 virtual 

conference.70 Hernán, the author of the TTE framework, discussed its capability to facilitate the 

derivation of “regulatory-grade RWE”, enabling reliable direct comparisons of treatments through 

TTE with RWD, and contrasted with network meta-analysis (NMA), which relies on indirect 

comparisons by aggregating evidence from multiple trials. Concurrently, my supervisor, Professor 

Nick Latimer, was developing TTE protocols for pancreatic cancer research, reinforcing its relevance 

and providing a valuable reference for my research to harness the TTE framework. This led me to 

anchor the design and validation strategy of my RWD case studies in the TTE framework (Chapters 

6 & 7), and to assess the compatibility of candidate advanced statistical methods with Target Trial 

emulation in my statistical methods review (Chapter 4). Subsequently, I had the opportunity to attend 

summer courses on Target Trial Emulation (2022) and Advanced Confounding Adjustment (2023) at 

the Harvard University. These provided me with hands-on knowledge from methods’ developers, 

aiding in the practical implementation of my case studies (Chapter 8).  
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Technically, well-designed and executed epidemiological cohort studies predating the TTE 

framework’s publication may also be seen as TTE, even without explicit labelling.71 The TTE 

framework, however, adds value by systematically defining the research question, thereby 

standardising the structure of RWD studies and improving their transparency and rigor.72 Moreover, 

while Target Trials are typically well-specified cohort studies, a study by Dickerman et al. has shown 

that the TTE framework can also be useful in reducing bias in case-control study designs.73 

The explicit specification and precise implementation of TTE help prevent biases inherent in 

RWD designs, beyond what statistical methods alone can address, such as immortal time and selection 

biases.74,75 These biases are well-known in observational studies involving a control group not 

receiving active treatment, such as surgery versus non-surgery scenarios.75 Selecting surgical patients 

from RWD and following them up since surgery inherently carries selection bias, as these patients 

survived long enough to undergo surgery, thereby introducing an “immortal time” period. This bias 

challenges the identification of comparable control groups and the accurate timing of their start of 

follow-ups. Similarly, selecting patients based on treatment sequences received post-initial treatment 

contradicts the TTE's principles of mimicking RCT procedures, where enrolment should hinge on 

pre-treatment characteristics. This underscores the need to carefully define “Time Zero”3,76,77 for 

assessing eligibility and initiating follow-up in a consistent manner across treatment groups when 

leveraging TTE to comparing treatment sequences.  

A crucial element in employing TTE for comparing treatment sequences is the precise definition 

of the treatment strategy and causal contrast of interest. A precise treatment strategy defines the 

treatment or regimen a patient receives and the conditions under which they are still considered to be 

adhering to the assigned strategy, even when switching or discontinuing treatment (e.g., switching 

treatment due to intolerance or adverse events which would not be considered as a protocol violation). 

Imagine emulating a hypothetical RCT that randomises patients to receive different treatment 

sequences at the outset. One potential causal contrast is the hypothetical per-protocol (PP) effect had 

all patients fully adhered to their assigned treatment sequences. This differs from the PP effect in a 

scenario where some patients violate their assigned treatment sequences. In a conventional simple PP 

analysis, patients who deviate from the protocol are simply censored, and the effects of full adherence 

are not estimated. However, the hypothetical PP effect—where all patients fully adhered to their 

assigned treatment sequences—extrapolates to estimate the effects under full adherence. If an actual 

RCT exist comping the same treatment sequences without protocol violations existed, the 

hypothetical PP effect in the aforementioned emulated Target Trial would coincide with the intention-

to-treat (ITT) effect observed in the real RCT. 

Clearly defining what counts as a protocol deviation is crucial in comparing treatment sequences. 

For example, patients not completing the assigned treatment sequence due to a lack of progression 
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during the first-line treatment should not be seen as a deviation. Rather, it suggests that the initial 

treatment within the sequence effectively delayed the time to first-line progression, which is part of 

the effect of the assigned sequence. What is considered a protocol deviation largely depends on 

subject knowledge and the specific topic of interest. The detailed considerations of each TTE 

elements for comparing treatment sequences are outlined in my case study protocol and 

implementation (Chapters 7 & 8). 

During the development of my thesis, NICE endorsed the TTE framework for deriving RWE for 

HTA in their recently published RWE framework.37 Although the NICE RWE framework briefly 

acknowledged TTE’s potential to inform the assessment of the effect of treatment sequences, it did 

not provide specific practical solutions, further highlighting the significance of my investigation. A 

recent UK health economists' publication highlights TTE's emerging role in HTA, suggesting 

prioritising RWD quality improvement and developing better analytical methods and guidance, 

starting with RWD calibration against RCTs (i.e., benchmarking).78 Their recommendations reflect 

the investigative approach undertaken in my thesis (Chapter 4-8) and reinforce the rationale behind 

my proof-of-concept case study design in Chapter 7. The significance of exploring the TTE approach 

for comparing treatment sequences in relation to other existing TTE studies is further detailed in my 

scoping review (Chapter 2) and case study protocol (Chapter 7). 

1.4.3 Estimands, estimators, and estimates 

An estimand precisely outlines the parameter one seeks to estimate in an analysis.79 It represents 

the target of inference that one wants to make about a population using a sample from that population. 

This contrasts with an estimator, which refers to the mathematical method used to approximate the 

value of the estimand, such as maximum-likelihood estimator (MLE) and Bayes estimators. An 

estimate is the numerical output derived from applying an estimator to a given dataset. The 

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human 

Use (ICH) provides definitions of these three terms in the context of clinical trials (Table 1.1).  

 

Table 1.1 Glossary of the ICH-E9(R1) addendum79 on estimands, estimator and estimates  

Term Definition 

Estimand “A precise description of the treatment effect reflecting the clinical question posed by the trial 

objective. It summarises at a population-level what the outcomes would be in the same 

patients under different treatment conditions being compared.” 

Estimate “A numerical value computed by an estimator” 

Estimator “A method of analysis to compute an estimate of the estimand using clinical trial data” 

 

In November 2019, the ICH updated their E9 guidance on statistical principles for clinical trials, 

introducing the addendum, ICH E9(R1).79,80 This update brought forth specific guidelines on defining 
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estimands and sensitivity analyses, aimed at establishing a clear strategy for determining the treatment 

effect to be estimated in clinical trials. An estimand is detailed through five attributes: treatment, 

population, variable, intercurrent events, and a summary measure for the population. Emulating a 

Target Trial similarly requires the implicit definition of these attributes, reflecting the process of 

establishing (hypothetical) estimands. The process of specifying an estimand aligns the causal 

contrast with necessary statistical methods in the analysis to correctly obtain the estimand. Drawing 

a parallel, the NICE RWE framework signposts to ICH E9(R1)'s approach for handling intercurrent 

events post-treatment commencement in analysing treatment effect. Strategies for managing 

intercurrent events informally echo the management of the aforementioned “protocol violations” in 

TTE (Section 1.4.2), contrasting with ITT analyses that overlook these events.37 A well-defined 

estimand is essential for mapping pertinent analytical methods to capture the causal contrast of 

interest, with its relevance in RWD studies also highlighted in recent research.81 Hence, I leveraged 

the concept of estimands in Chapter 4 to assess statistical methods for managing time-varying 

confounding, examining the estimands generated by each studied method. 

1.5 Research questions and specific aims 

The scarcity of clinical evidence presents a significant challenge in modelling treatment 

sequences within HTA. Typically, clinical trials do not involve direct comparisons of treatment 

sequences. Existing literature that explores the synthesis of clinical evidence for treatment sequences 

recommends populating treatment-sequencing models with LOT-specific effectiveness evidence, 

achieved by pooling data from various trials across different therapy lines.34,35 While pragmatic, this 

method frequently assumes a comparable patient population across evidence from different therapy 

lines, an assumption that may not always hold true, particularly when treatments influence survival 

outcomes. In that context, using statistical methods to adjust indirect comparisons (for evidence 

collation) or meta-analytic methods, such as meta-regression and subgroup meta-analysis (to account 

for patient treatment histories in approximating a LOT's effect), can aid in understanding each LOT’s 

impacts, but may not guarantee unbiased estimates for the entire treatment sequence.  

In contrast, RWD is adept at capturing entire treatment sequences but is susceptible to 

confounding biases. Although RWD has been used within HTA40, its capacity to provide unbiased 

direct comparisons of treatment sequences has yet to be fully explored. Causal inference 

methodologies hold significant promise for providing valuable insights in this area, given their 

relevance to the counterfactual questions that are fundamental to HTA. Even though causal inference 

methods have been applied in HTA40,43,44, its potential to facilitate the assessment of treatment 

sequence effectiveness remains largely untapped. The TTE framework3, recently endorsed by the 

NICE RWE framework37, emerges as a crucial tool for mitigating biases in RWD study designs. Yet, 
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its utilisation for comparing treatment sequences within HTA contexts has not been extensively 

investigated. Further, if unbiased direct comparisons of entire treatment sequences were feasible, the 

need for a separate sequencing model might be bypassed, opting instead for direct summary estimates 

and thus reducing structural uncertainties. Nonetheless, the extent to which similar approaches have 

been considered or applied within HTA remains unclear.  

Therefore, my research aims to explore the potential and feasibility of using RWD in conjunction 

with causal inference methods to derive reliable (comparative) effectiveness estimates for treatment 

sequence comparisons, aiming to provide an alternative solution to the challenges posed by the 

scarcity of clinical evidence in decision-making for treatment sequences. The investigation is 

structured around the following guiding questions, with specific study aims designed to address each 

of these research questions: 

(1) What does the landscape look like for evaluating treatment sequences in HTA, and how does the 

challenge of clinical evidence scarcity fit within the wider array of related challenges?  

- Aim 1: Review methodological literature on evaluating treatment sequences in HTA, 

summarising challenges and trends in the topic's evolution. 

(2) How have treatment sequences been evaluated in English HTA practices, particularly the 

prevalence of evaluations involving treatment sequences and approaches used for economic 

evaluation? How have RWD been utilised to support the evaluation of treatment sequences 

compared to other data sources, and to what extent? 

- Aim 2: Review the prevalence and nature of discussions about treatment sequences in NICE 

TAs, including modelling approaches, selection and derivation of clinical effectiveness 

evidence, and the challenges associated with different evidence sources, particularly 

comparing RWD with other data sources. 

(3) How can we leverage RWD and causal inference methods to obtain reliable comparative 

effectiveness estimates for treatment sequence comparisons in HTA? 

- Aim 3: Review of causal inference methods from broader literature (e.g. statistics, 

epidemiology) that have been used or could be applied to analyse RWD for treatment sequence 

comparisons 

- Aim 4: Evaluate RWD sources suitable for treatment sequence comparisons for HTA, 

assessing their suitability for implementing the identified causal inference methods in Aim 3 

- Aim 5: Design and conduct proof-of-concept case studies using Target Trial Emulation as a 

backbone, applying the statistical methods and RWD sources identified in Aim 3 & 4 for 

comparing treatment sequences, and then compare these results against existing RCTs that 

compared treatment sequences. 

- Aim 6: Summarise findings and limitations in the case studies in Aim 5, and develop a 
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framework or tutorial on how to use RWD for evaluating the effectiveness of treatment 

sequences in HTA, incorporating relevant examples as applicable. 

1.6 Thesis structure 

The thesis is organised into five parts, encompassing nine chapters, with their interconnections 

depicted in Figure 1.3. This figure employs arrows to demonstrate how insights from each part 

informs the ones that follow. I briefly explain the purpose of each chapter and highlight their relevance 

to my research questions and objectives in Section 1.5. 

In Part I, I set the stage for the thesis by introducing the concept of treatment sequencing and its 

evaluation challenges within HTA. Earlier in this chapter, I outlined the thesis's motivation and the 

recurring theme: the challenges posed by the scarcity of clinical evidence in treatment sequence 

evaluation. I have briefly discussed how RWD could serve as a promising alternative, despite its 

inherent challenges, underscoring the potential of leveraging causal inference methods, including 

TTE and relevant statistical methods, in informing unbiased estimates for treatment sequence 

comparisons. To guide this investigation, a set of research questions and specific aims were previously 

detailed in Section 1.5 in the current Chapter. Following this, Chapter 2 examines methodological 

advances in HTA treatment sequencing literature (Aim 1), exploring how the aforementioned issue 

intersects with a broader array of challenges, thereby addressing my research question (1). 

Part II aims to gauge the significance of the clinical evidence scarcity challenge in treatment 

sequence evaluation and how it has been approached in English practice. To address my research 

question (2), Chapter 3 features a systematic review of NICE TAs (Aim 2), focusing on exploring the 

frequency of treatment sequencing discussions and the manner and extent to which RWD has been 

used to inform relevant decisions in comparison with other data sources, and its interaction with other 

challenges.  

Parts III to IV collectively tackle the final research question: How can we utilise RWD to obtain 

reliable effectiveness estimates for treatment sequence comparisons in HTA? In Part III, the thesis 

investigates solutions, focusing on how biases inherent in RWD may be mitigated through causal 

inference methods. Hence, Chapter 4 undertakes a systematic review of causal inference-guided 

statistical methods from other disciplines, primarily statistics and epidemiology, to explore methods 

potentially capable of deriving unbiased estimates in comparing treatment sequences using RWD, 

and which can work under the TTE framework (Aim 3). Chapter 5 then explores suitable RWD 

sources for treatment sequence comparisons, identifying candidate databases for case studies to 

showcase RWD application (Aim 4). These databases are evaluated for their potential to inform 

treatment sequencing decisions in English HTA and to accommodate advanced statistical methods 

identified in Chapter 4. This chapter also addresses the challenges of accessing these databases, 
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especially from the perspective of an early career researcher. To design case studies using RWD for 

unbiased treatment sequence comparisons in a manner that allows them to be validated, Chapter 6 

reviews RCTs that compare treatment sequences, so they can be used as benchmarks to inform the 

design of my case studies (Aim 5).  
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Figure 1.3 Schematic representation of the thesis structure 
HTA: health technology assessment; NCRAS: National Cancer Registration and Analysis Service; NICE: The National Institute for Health and Care Excellence; PC: prostate cancer; RCC; 

renal cell carcinoma; RCT: randomised controlled trial; RWD: real-world data; TA: technology appraisal 

The arrows between chapters indicate that one chapter's content leads to the next, with mediation through intermediate sections. 

Part I: What is the treatment-sequencing 

problem in health economic evaluation? 

 

 

 

 

Chapter 1:  
Background and motivations for the thesis 

Chapter 2:  
Scoping review on the multifaceted 

treatment-sequencing challenges  

Part II: How important is the problem of 

scarce effectiveness evidence on treatment 

sequences? 

 

 

 

 

Chapter 3:  
Systematic review of NICE TAs — current 

practice and challenges in populating the 

effectiveness of treatment sequences in 

economic evaluations 

Part III: What are the potential solutions leveraging 

real-world data and causal inference methods?  

 

 

 

 

 

 

 

Chapter 4:  
Systematic review of causal inference guided statistical 
methods for treatment sequence comparison using RWD  

Chapter 5:  
Investigating potential RWD sources for treatment 
sequence comparison 

Chapter 6:  
Improving the use of RWD through benchmarking — 

systematic review of benchmark RCTs for case studies 

 

Part IV: How do the causal inference methods for 

comparing treatment sequences perform? 

 

 

 

 

 

Chapter 7: 
Case study protocol 
- Prostate cancer studies using Flatiron data: PC1 & PC2 
- Prostate cancer studies using NCRAS data: PC1 & PC3 
- RCC studies using NCRAS data: RCC 
 

Chapter 8:  
- Preliminary data checks of all case studies 
- PC1 case study implementation, results, and discussion 

Part V: What should be done 

in the future? 

 

 

 

 

 

Chapter 9:  
Recommendations and 

conclusions on populating 

effectiveness of treatment 

sequences using RWD in HTA, 

and areas for future research 
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Chapters 5 and 6 are closely linked, starting with Chapter 5's search for pertinent English 

databases, which discovered the National Cancer Registration and Analysis Service (NCRAS) in 

England as a pivotal resource.82 This discovery informed Chapter 6’s initial focus of identifying 

benchmarks suitable for conducting proof-of-concept case studies with NCRAS. However, the 

absence of suitable benchmarks leads back to Chapter 5's exploration of alternative data sources, 

extending to international databases akin to the English context. This led to the identification of 

Flatiron Health database83 in the United States (US) for direct proof-of-concept studies, which also 

enables an indirect proof-of-concept study with NCRAS to be conducted. Further, NICE's recent 

partnership with Flatiron Health to explore the potential of using early access data from the US to 

inform NICE HTA in oncology highlights its relevance.83 The interweaving process of selecting 

candidate databases and benchmark RCTs are detailed in Chapters 5 and 6. 

Part IV assesses the performance of causal inference methods for comparing treatment 

sequences using RWD, importantly addressing not only the methods' applicability but also the 

adequacy of common RWD datasets (i.e. whether data are of sufficient quality for methods to be 

successfully applied). It features Chapter 7, which introduces the protocol for a series of TTE case 

studies (Aim 5), building on insights from Chapters 4, 5, and 6. The first prostate cancer TTE case 

study (PC1) serves as a direct proof-of-concept study aimed at replicating the GUTG-001 trial84 (i.e. 

the benchmark) to compare two treatment sequences in prostate cancer using Flatiron Health data85, 

with validation against the benchmark. The execution of PC2 hinges on PC1's success, which expands 

to compare two alternative treatment sequences that are common in both US and English practice, 

using Flatiron data. PC2 functions as an exploration of the method's performance in a broader 

population (i.e., generalisability) and acts as a “bridge” to PC3. PC3 aims to use English NCRAS 

data to replicate the comparison made in PC2, serving as an indirect proof-of-concept study for the 

English population. Finally, s separate renal cell carcinoma (RCC) case study was designed to use 

NCRAS data to replicate a specific treatment sequence from one arm of the RECORD-3 trial86, 

serving as a direct, single-arm proof-of-concept study for the English population. Chapter 8 details 

the implementation and findings of the first case study (PC1) in Chapter 7’s protocol. Due to time 

constraints and the scope of the project, the impact of the COVID-19 pandemic, and delays in data 

access (explained in Chapter 5)—a significant challenge in using RWD—the remaining case studies 

are intended to continue under a Wellcome Trust transition fund at the University of Sheffield post-

PhD. Despite this, to fully convey the scope and intertwined significance of the case studies, 

illustrating their collective importance, Chapter 7 retained a comprehensive overview of all studies. 

Part V concludes the thesis and outlines future directions. Chapter 9 summarises the 

contributions from each chapter, addresses the study's limitations, and provides recommendations for 

using RWD in HTA treatment sequence effectiveness evaluations, drawing from case study insights 
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(Aim 6).  It proposes a preliminary framework, essentially a tutorial, for applying RWD in evaluating 

treatment sequence effectiveness in HTA. This framework covers initial evaluations of a specific 

source of RWD's capabilities, approaches to designing RWD studies, analytic approaches to estimate 

sequence effectiveness, and identifies potential areas for enhancements in data collection. This fulfils 

the thesis's main objective: exploring whether and how RWD in conjunction with causal inference 

methods can serve as an alternative means for producing unbiased treatment sequence comparisons, 

thus supporting HTA decisions in the face of data scarcity. Finally, the chapter offers directions for 

future research to build upon and address the limitations of my work.
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Chapter 2 Treatment sequences in health technology assessments: a scoping 

review 

2.1 Chapter overview (Chang et al. (2024) in PharmacoEconomics) 

This chapter presents a scoping review aimed at identifying pivotal publications that investigate 

treatment sequences in health technology assessments (HTA). It focuses on consolidating literature 

that addresses methodological and conceptual advancements in comparing treatment sequences, 

setting the stage for the broader scope of the thesis. 

Despite recognising the scarcity of clinical evidence as a major challenge in evaluating treatment 

sequences and the potential for leveraging real-world data (RWD) in this context (Chapter 1), 

formulating specific strategies to develop relevant methodologies to aid decision-making necessitates 

a comprehensive insight into the current state of research. This entails a systematic examination of 

how this issue has been addressed, identifying limitations of current approaches, the overall 

importance of this issue and its interplay with other related challenges. This chapter's review was 

therefore designed for such exploration to refine my research objectives at the early stage of my PhD, 

thereby sharpening the research focus and shaping the strategic direction for my subsequent PhD 

work, including determining whether it was necessary to undertake further reviews, and informing 

the design of my case studies, to ensure I could achieve my research goals (i.e., developing strategies 

for unbiased treatment sequence effect estimation) (Chapter 1).  

This chapter was published as an article in PharmacoEconomics on 1st April 2024 [Epub ahead 

of print] by Springer Nature.87 The publication terms grant the author the right to include the article 

in a thesis they have authored. This article is reproduced with permission of Springer Nature. The 

following sections present the version accepted for publication (Section 2.2 to 2.6), which includes 

background on evaluating treatment sequences in HTA, partially overlapping with Chapter 1's content. 

The review’s structure is detailed in the introduction (Section 2.2). Article numbering has been 

adapted to align with the thesis format and the article's bibliography is integrated into the thesis 

bibliography. A summary at the end of the chapter highlights the review’s role within the thesis 

(Section 2.7). Details on publication declarations can be found in the online article.87 
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Abstract 

With an ever-increasing number of treatment options, the assessment of treatment sequences has 

become crucial in health technology assessment (HTA). This review systematically explores the 

multifaceted challenges inherent in evaluating sequences, delving into their interplay and nuances 

that go beyond economic model structures. We synthesised a “roadmap” of literature from key 

methodological studies, highlighting the evolution of recent advances and emerging research themes. 

These insights were compared against HTA guidelines to identify potential avenues for future 

research.  

Our findings reveal a spectrum of challenges in sequence evaluation, encompassing selecting 

appropriate decision-analytic modelling approaches and comparators, deriving appropriate clinical 

effectiveness evidence in the face of data scarcity, scrutinising effectiveness assumptions and 

statistical adjustments, considering treatment displacement, and optimising model computations. 

Integrating methodologies from diverse disciplines—statistics, epidemiology, causal inference, 

operational research and computer science—has demonstrated promise in addressing these challenges. 

An updated review of application studies is warranted to provide detailed insights into the extent and 

manner in which these methodologies have been implemented. 

Data scarcity on the effectiveness of treatment sequences emerged as a dominant concern, 

especially because treatment sequences are rarely compared in clinical trials. Real-world data (RWD) 

provide an alternative means for capturing evidence on effectiveness and future research should 

prioritise harnessing causal inference methods, particularly Target Trial Emulation, to evaluate 

treatment sequence effectiveness using RWD. This approach is also adaptable for analysing trials 

harbouring sequencing information and adjusting indirect comparisons when collating evidence from 

heterogeneous sources. Such investigative efforts could lend support to reviews of HTA 

recommendations and contribute to synthesising external control arms involving treatment sequences.
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Key points for decision makers 

 There has been a surge in health technology assessment (HTA) research into treatment sequence 

evaluation. Despite advancements in modelling frameworks, the field faces multifaceted 

challenges that go beyond economic model structures, including selecting appropriate sequencing 

comparators, scarcity of clinical effectiveness evidence necessitating simplifying assumptions 

and statistical adjustments, considering treatment displacement effects, and computational 

optimisation. 

 Cross-disciplinary methodologies, such as statistics, epidemiology, causal inference, operational 

research and computer science, show promise in addressing these challenges. For instance, real-

world data (RWD) have substantial potential for informing estimates of treatment sequence 

effectiveness but demands analysis with appropriate statistical methods—often adapted from 

epidemiological and statistical research—to effectively mitigate biases. 

 Future research should emphasise harnessing causal inference methods in evaluating the 

effectiveness of sequences, especially leveraging the Target Trial Emulation approach for 

sequencing analysis using RWD or clinical trials, and adjusting indirect comparisons. These 

investigative efforts can better inform reviews of HTA recommendations and the synthesis of 

external control arms involving sequences. 
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2.2 Introduction 

Over the last decade, there has been a growing interest in health technology assessments (HTA) 

in considering treatment sequences alongside the existing focus on evaluating treatments at discrete 

points in a treatment pathway.8-10,88,89 Given the increasing treatment options90-94, most diseases 

involve a pathway of care, wherein the effectiveness and cost-effectiveness of a treatment can be 

affected by treatments administered before or after it. That is, alternating the order of treatments can 

affect the overall effectiveness, such as overall survival (OS). These variations can, in turn, lead to 

changes in the overall costs of managing a disease. Therefore, to make optimal resource allocation 

decisions, it is imperative to consider the entire sequences, rather than individual treatments in 

isolation. Appraising treatment sequences requires the development of economic models that compare 

sequences. While defining the structure of treatment-sequencing models is recognised as challenging, 

other aspects, such as selecting an appropriate baseline sequencing-comparator and evidence of 

treatment effectiveness, are equally critical.1,2  

To date, only the English23,24 and Canadian25 HTA guidelines explicitly acknowledge the 

potential need to consider the sequencing of technologies95, albeit without detailed decision-analytic 

modelling instructions.23-25 For instance, the 2022 guideline from the National Institute for Health 

and Care Excellence (NICE)24 suggests considering the “care pathway” for the appraised technology 

and its comparator when appropriate, such as the sequences of treatments and diagnostic tests. While 

the provided guidance is rather generic, two NICE Decision Support Unit (DSU) briefing papers21,22 

that informed the 2013 NICE guideline23 underscore the ongoing challenges HTA agencies face in 

numerous appraisals involving treatment sequences, especially regarding the selection of treatment 

sequences and their associated costs. Furthermore, NICE is currently piloting the Pathway Approach 

for technology appraisals (TAs) in two disease (i.e., renal cell carcinoma and non-small cell lung 

cancer)27, which seeks to streamline the process of economic model development and review for 

treatments within the same disease, potentially influencing future evaluations of treatment sequences 

in HTA. 

Despite existing reviews highlighting challenges in treatment-sequencing evaluation1,2, a gap 

remains in primary research and innovation addressing these challenges. Additionally, the interplay 

between various challenges and nuances beyond economic model structures is underexplored. 

Therefore, we aimed to update and consolidate existing literature on methodological and conceptual 

advancements. We curate a “roadmap” of the relevant literature to provide a holistic view on the 

current state of treatment-sequencing in HTA, highlighting key challenges and ongoing research areas, 

laying a foundation for commissioning and developing new initiatives to address the challenges and 

develop new methods.  

Clinical trials are typically the primary source of evidence used in HTA, but these rarely focus 
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on comparing treatment sequences, or on the effectiveness of a treatment conditional on a specific 

treatment sequence used prior.  Real-world data (RWD) may be more adept at capturing treatment 

sequences, and there is a trend towards the enhanced use of RWD in HTA—particularly evident in 

organisations such as NICE for England and Wales.37 Hence, a key focus of our review investigates 

whether literature exists that discusses the integration of RWD into HTA in the context of treatment 

sequencing. We explored the potential and related challenges of this integration and how it fits within 

the broader literature roadmap. NICE published a framework on the use of real-world evidence (RWE) 

in 202237, which postdates most of the included papers in our study. Consequently, our review aims 

to contribute fresh perspectives that may enhance the findings of existing studies, by relating their 

findings to the implications of NICE's RWE framework.  

Our paper is structured as follows: we first describe the methods of our review (2. Methods), 

followed by an overview of the included papers and a narrative synthesis of our findings (3 Results). 

Finally, we discuss the implications of our findings for HTA and recommend avenues for future 

research (4 Discussion and 5 Conclusions). 

2.3 Methods  

2.3.1 The pearl-growing approach 

In light of the limitations of conventional systematic review methods for methodological 

literature, our research employed the pearl-growing approach.96,97 In particular: (1) a literature search 

for “treatment sequences” in the absence of established Medical Subject Headings (MeSH) and 

Embase Subject Headings (Emtree) could lead to biased results. (2) Our objective was to explore 

methodological advancements that are relevant across diverse diseases. However, during a pilot 

systematic search (Section 2.3.1.1), we noted a large number of studies that discussed treatment-

sequences in a particular disease area (often multiple sclerosis or rheumatoid arthritis (RA)98,99), 

without describing relevant methodology beyond sequencing-model structures. This made the 

conventional systematic review approach highly inefficient. (3) Furthermore, relying exclusively on 

searching electronic databases, such as PubMed and EMBASE, could result in overlooking crucial 

ongoing studies and doctoral theses in this emerging topic area. Given these considerations, the pearl-

growing approach appeared to be the best suited strategy. 

The pearl-growing approach applied here begins with an initial key paper (i.e., the initial “grit”) 

and expands by reviewing its reference list and studies that cited it (i.e., growing the “pearl”).100 This 

process is iteratively repeated for each added relevant paper, eventually leading to the identification 

of a core set of pertinent studies. This approach has proved more efficient for reviewing complex 

evidence.96 Variations of this technique exist, including using more than one initial paper97 or utilising 

the approach to identify a set of comprehensive search terms rather than studies.101 For transparency, 
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we detailed our review procedures in the following sections.  

2.3.1.1 Identification of the initial key paper 

In October 2019, a pilot review was conducted on PubMed to identify an initial key paper, using 

search terms: (“economic model(s)” OR “economic evaluation(s)”) AND (“treatment sequence(s)” 

OR “sequence(s)”). The study by Viola et al.2, focusing on the selection of sequencing comparators, 

was selected as the initial “grit” for its alignment with the inclusion and exclusion criteria in Table 

1.1, and for being the latest relevant publication with treatment sequence in its title. 

 

Table 1.1 Inclusion and exclusion criteria 

Definition of 

treatment 

sequences 

Treatment sequences refer to changes in treatment involving sequential treatments, such as 

subsequent treatment following disease progression, adverse events (e.g. treatment toxicity), 

or those part of a planned regimen. 

Inclusion criteria 

 Studies exploring the development or issues of modelling treatment sequences in health 

economic evaluations, and/or  

 Studies reviewing or investigating methodological approaches of treatment sequence 

comparisons in health economic evaluations 

Exclusion criteria 

 Studies solely focusing on treatment sequences in a specific disease area without 

exploring methodology advances in health economic evaluations*.  

 Full-text unavailable 

Type of studies Reviews, meta-analyses, and conceptual papers 

*Studies that discuss methodological approaches and validate or demonstrate their approach in a certain disease area 

are not limited by this exclusion criterion. 

 

2.3.1.2 Reference and citation tracking 

The first round of reference and citation tracking began by screening the reference and citation 

list of the initial key paper using their titles and abstracts based on the same criteria from the pilot 

review (Table 1.1). The reference list was extracted from the full-text of Viola et al.’s study.2 The 

citations were identified through Google Scholar Search, as it provides a wider range of results 

compared with conventional electronic databases. Following screening, we evaluated the eligibility 

of shortlisted records up to December 2019 by reviewing their full-text.  

Upon completing the first round of reference and citation tracking, a new set of key papers for 

the next round was identified. The same procedure was then performed repeatedly for each new set 

of literature identified in each round. The process concluded when the literature searches saturated, 

namely when no more relevant articles could be identified. Any pertinent articles that the iterative 

process overlooked, but were brought to the authors attention, were manually included. 
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2.3.2 Review update 

To ensure the review remained up to date towards publication, an update of citation tracking was 

performed in February 2023 for the studies included in the initial review to include additional relevant 

articles.  

2.4 Results 

2.4.1 Overview of the included studies 

The review included a total of 11 studies, with 6 identified during the initial phase and 5 

discovered in the subsequent update. Figure 1.1 illustrates the inclusion process, and Table 1.2 details 

the objectives of each study. In the initial review, besides Viola et al.’s study2, three studies were 

included via reference and citation tracking1,36,102, and two doctoral theses from Tosh and Kim were 

added post-hoc.30,31 Tosh’s thesis, focusing on model optimisation methods, led to a derivative 

publication about economic models in RA.30 Although this subsequent work was cited by Viola et 

al.2, we had excluded it due to its disease-centric focus. Kim's doctoral thesis, which neither 

referenced nor was cited by other identified papers, was included because of its parallels to Tosh's 

doctoral work. In the third round (not shown in Figure 1.1 for simplicity), we assessed the references 

and citations of studies included in the second round as well as those that were manually included. 

Although we found further studies tangentially related to our review's objective, they had overly broad 

scopes. Some did not specifically investigate the methodological issues of treatment sequences, but 

rather broader issues of evaluating chronic diseases involving time-dependent transitions and 

sequential procedures.103-115 Others predominantly comprised clinical studies, researching the clinical 

impacts of sequential treatment strategies and treatment switching, without an emphasis on HTA.116-

123 Further, one study is a conference abstract lacking full-text.124 Consequently, we excluded these 

studies, indicating that our literature search had reached saturation. In the updated review, five new 

studies were included34,35,44,95,125, all of which cited at least one of the aforementioned six papers. One 

of the five was a derivative publication34 of Lewis's doctoral thesis identified in the initial review.36 

Table 1.3 summarises the characteristics of the included studies. The majority of them (55%) 

were published between 2020 and 20222,34,35,44,95,125, with the remainder from 2015 to 2019.1,30,31,36,102 

Only slightly more than half of the studies (55%) were published in peer-reviewed 

platforms.1,2,34,35,95,125 The remaining studies included four PhD theses (36%)30,31,36,102 and a report 

from the NICE DSU.44 Among all non-thesis articles (64%, n = 7), three undertook systematic reviews 

on methods that can be leveraged to shape the methodological framework for economic evaluation 

of treatment sequences1,34,35, one paired a systematic review with a case study on the selection of 

baseline sequencing-comparators2, while the remaining three are non-systematic reviews addressing 

various issues around treatment sequence evaluation.44,95,125   
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Figure 1.1 The Preferred Reporting Items for Systematic Reviews (PRISMA) diagram 

Procedures within the green frame indicate the initial review phase conducted in December 2019, while those within the blue 

frame denote the updated citation tracking performed in February 2023 
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Table 1.2 Summary of included studies 

Literature  Sources  Main objectives  

Initial key paper 

Viola 20202 Identified through the 

pilot review 

To demonstrate that the choice of baseline comparator sequence can 

significantly impact the cost-effectiveness of treatment sequences and should 

be carefully considered in health economic evaluations. 

Reference and citation tracking – Round 1 

Zheng 20171 Cited by Viola 20202 To provide a conceptual framework for modelling treatment sequences, 

including recommendations on problem scoping, model selection, and data 

source considerations. 

Reference and citation tracking – Round 2 

Haywood 

2018102 

PhD thesis citing 

Zheng 20171 

To explore the impact of displaced treatments on the cost-effectiveness, 

equity of cancer care, and to propose strategies to improve the allocation and 

sequencing of cancer treatments in a way that optimises patient outcomes 

and resource utilisation. 

Lewis 201936 PhD thesis citing 

Zheng 20171 

To develop and evaluate quantitative evidence synthesis methods for 

assessing the effectiveness of treatment sequences in clinical and economic 

decision-making. 

Other ad-hoc relevant studies 

Tosh 201530 Additional PhD thesis 

manually added to the 

literature pool 

To develop and apply simulation computational optimisation methods for 

modelling complex sequential treatments in chronic conditions, using 

rheumatoid arthritis as a case study. 

Kim 201531 Additional PhD thesis 

manually added to the 

literature pool 

To develop decision models for evaluating the optimal sequencing and 

timing of different drug treatments in long-term medical conditions, focusing 

on computational optimisation and using parameterisation sequential drug 

decisions in primary hypertension as a case study. 

Update citation tracking of the above articles (February 2023) 

Welton 202044 Cited Zheng 20171 To critically review and provide recommendations for existing and emerging 

methods for synthesising evidence on clinical effectiveness in health 

technology appraisals, including a section specifically about treatment 

sequences. 

Lewis 202134 Subsequent 

publication of the PhD 

thesis of Lewis 201936 

To review and categorise simplifying assumptions used in quantitative 

evidence synthesis methods for assessing the effectiveness of treatment 

sequences, and to provide a taxonomy of these assumptions.  

Faria 202195 Cited Zheng 20171 To highlight the importance of problem structuring in economic evaluation, 

such as how to specify decision options, including selecting relevant 

comparators for standard of care and sequences of tests and treatments. 

Huang 202235 Cited Zheng 20171 To provide a conceptual framework and address methodological challenges 

for modelling the effectiveness of treatment sequences in oncology. 

Simpson 2022125  Cited Zheng 20171 To discuss the importance and recent advances in methodologies of using 

real-world evidence in health technology assessments, including an approach 

to evaluate treatment sequences. 

 



46 

 

Table 1.3 Characteristics of the included studies 

 Number of publications (%) 

Publication date  

2015-2019 5 (45%) 

2020-2022 6 (55%) 

Peer-reviewed publication  

Yes 6 (55%) 

No 5 (45%) 

Article type  

Systematic review + framework for modelling treatment-sequencing 3 (27%) 

Systematic review + case study 1 (9%) 

Review 3 (27%) 

PhD theses 4 (36%) 

Location of the treatment-sequencing discussion in the article  

Full article 8 (73%) 

A designated section in the review 3 (27%) 

Areas of interests (each topic area is non-exclusive)  

Sequencing-model structures and problem structuring in economic evaluation 9 (82%) 

Shaping the conceptual framework for treatment-sequencing modelling 4 (36%) 

Methods to address the effectiveness of treatment sequence, especially in handling 

evidence from non-randomised data and indirect comparisons 

5 (45%) 

Potential of real-world evidence 5 (45%) 

Potential of model optimisation methods 2 (18%) 

Potential of causal inference methods 2 (18%) 

Selection of treatment-sequence comparators 1 (9%)  

Treatment displacement on resource allocation efficiency and equity 1 (9%) 

 

2.4.2 Key research themes and their development roadmap 

We identified several research themes (Table 1.3), including sequencing-model structures and 

problem structuring (82%, n = 9)1,2,30,31,34-36,95,102; developing conceptual frameworks for treatment-

sequencing modelling (36%, n = 4)1,34-36; methods to tackle the effectiveness of treatment sequences, 

especially in handling evidence from non-randomised data and indirect comparisons (45%, n = 5)1,34-

36,125; and the potential for using RWE to inform sequencing analyses (45%, n = 5).34-36,102,125 Further 

developing themes included the potential of model optimisation methods (18%, n = 2)30,31 and causal 

inference methods (18%, n = 2)44,125, selection of treatment-sequence comparators (9%, n = 1)2, and 

the impact of treatment displacement on resource allocation efficiency and equity (9%, n = 1).102 

Figure 1.2 presents a “roadmap” detailing the evolution of treatment-sequencing research. It 

highlights the intersections and shifts among various research topics, revealing an increasing trend 

towards discussing statistical methodology in the context of treatment sequences. This led to our focus 

on statistical methods for estimating treatment sequence effectiveness in subsequent sections. We 



47 

 

encourage readers to refer to Figure 1.2 for a visual representation of our narrative synthesis results 

(Section 2.4.3) and the subsequent Discussion (Section 2.5). 

2.4.3 Present landscape and challenges of treatment-sequencing evaluation in HTA 

In this section, we provide a narrative overview of the current practice and primary challenges 

associated with treatment-sequencing in HTA across research themes, drawing from the selected 

studies.  

2.4.3.1 HTA guidance for evaluating treatment sequences 

Zheng et al. introduced a framework for treatment-sequencing modelling in 2017, providing 

step-by-step recommendations.1 Derived from a systematic review of NICE TAs up to TA321 (2014), 

Zheng et al.’s framework comprises four steps: (1) model conceptualisation, (2) selecting a suitable 

modelling approach, (3) considering appropriate data sources for model inputs, and (4) determining 

computation tools. Zheng et al. indicated that treatment sequences have mainly been incorporated to 

reflect clinical practice or trial design, determine where to place new treatments in a sequence, or 

evaluate the impact of placing an additional treatment into existing treatment sequences. They noted 

an uptrend in TAs involving treatment sequences across various disease areas, including oncology, 

autoimmune, cardiovascular, neurology/mental health, infectious disease, and diabetes, with 

oncology featuring the highest number of treatment-sequencing models. A similar pattern was 

observed in an updated review by Viola et al. extending to TA527 (2018).2 

Lewis et al.34,36 and Huang et al.35 advanced Zheng et al.’s framework by further unpacking the 

complexities in determining the effectiveness of treatment sequences and suggesting potential 

solutions. Lewis et al. underscored the importance of leveraging quantitative evidence synthesis 

methods and scrutinising simplifying assumptions.34,36 Meanwhile, Huang et al. identified specific 

challenges inherent to oncology treatment-sequencing and proposed solutions to improve the 

estimation of treatment sequence effectiveness.35 

Faria's review offered guidance on problem structuring for economic evaluation95, with a section 

highlighting the importance of incorporating relevant sequences in the identification of pertinent 

decision options. Faria noted challenges in parameterising sequences in economic evaluation due to 

limited direct evidence on the effectiveness of treatments across all positions of sequences.  
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Figure 1.2 “Roadmap” of the treatment-sequencing literature in health technology assessments 

Solid lines represent citations; dash lines represent citations of derivative publications; dotted lines indicate derivative publications of PhD thesis.  

DSU: The Decision Support Unit, NICE; HTA: health technology assessment; NICE: The National Institute for Health and Care Excellence, United Kingdom for England and Wales; RCT: 

randomised controlled trial; RWE: real-world evidence
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2.4.3.2 Scarce clinical evidence for treatment sequences and necessary statistical adjustments in 

evidence synthesis 

Several studies highlighted the challenges of data scarcity in evaluating the effectiveness of 

treatment sequences.34-36,95 Such limitations largely stem from the lack of randomised controlled trials 

(RCTs) comparing treatment sequences, frequently necessitating the coalescence of evidence of 

discrete treatment effects (i.e., LOT-specific effect) from different sources.  

Lewis et al. identified that while network meta-analysis/meta-analysis (NMA/MA) is frequently 

utilised in HTA for synthesising treatment effectiveness evidence, there existed a gap in HTA 

guidance when it comes to adapting these methods for evaluating treatment sequences.34 They 

highlighted that the feasibility of conducting a NMA/MA with RCTs comparing treatment sequences 

was hindered due to the lack of such trials. Furthermore, while it might be feasible to conduct a 

NMA/MA using observational studies that compare treatment sequences, this approach's viability 

could be considerably influenced by the inherent biases of observational studies.34 Driven by these 

observations, Lewis et al. underscored the potential of adapting meta-analytic methods to reflect the 

“position effect” in deriving LOT-specific treatment effectiveness, including using meta-regression, 

stratification, or subgroup analyses in NMA/MA to account for the impact of patient treatment history. 

Although Lewis et al.'s review of meta-analytic methods was non-disease-specific, only 5 out of 23 

studies were cancer-related, while over half (n = 13) focused on RA.  

Huang et al., conversely, outlined issues related to data scarcity in modelling oncology treatment 

sequences.35 Key challenges include (1) strategies to adapt the effectiveness of a LOT based on its 

position within a sequence; (2) examining the interplay between the timing of progression, 

discontinuation of a LOT, and initiation of the subsequent LOT, and their impact on the modelling 

results; and (3) the availability of head-to-head comparisons evidence for a specific LOT or the entire 

treatment sequence.  Huang et al. reviewed 46 oncology treatment-sequencing models from NICE 

TAs and PubMed to determine how the aforementioned challenges have been tackled. They stressed 

the need to include both the time to treatment discontinuation and disease progression for LOT-effect 

in a treatment-sequencing model, or provide justification for any exceptions. Furthermore, Huang et 

al. believed treatment-free gaps should be included unless inapplicable, such as in late-stage cancers 

with minimal treatment gaps. 

Huang et al. noted the prevalent practice of combining data from multiple clinical trials across 

different LOTs to model the effectiveness of a treatment sequence (41 models (89%)), such as 

merging progression-free survival (PFS) from an earlier LOT trial (e.g. PFS of treatment A in a first-

line setting) and OS from a later LOT trial (e.g. OS of treatment B at in second-line setting) to model 

the OS for an entire treatment sequence (e.g. OS of treatment sequence A → B). However, none of 
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these “mergers of evidence” adjusted the estimated effectiveness based on the characteristics of 

patients from different data sources (i.e., the misalignment of patient characteristics between LOTs), 

primarily due to the absence of individual patient-level data. In contrast, they identified that three 

models estimated the OS of an entire treatment sequence using information from a single trial126-128, 

and two models used RWD to estimate the OS of an entire treatment sequence.129,130 Given that RWE 

and single-trial evidence for treatment sequences are often unavailable by the time of the HTA 

submissions, Huang et al. recommended combining trial evidence from different LOTs with necessary 

adjustments as a more pragmatic approach.35  

Huang et al. found that no models applied head-to-head effectiveness evidence for comparing 

the entire treatment sequences, consistent with findings from Lewis et al.34 Merely 24% of models 

applied methods to adjust for indirect treatment comparisons (ITC), which is exclusively limited to 

comparisons within a single LOT instead of the whole sequence. Huang et al. recommended making 

ITC adjustments for each LOT in the sequence and further adjusting for patient characteristics at the 

initiation of subsequent treatments, whenever possible. Overall, Huang et al. concluded that that there 

is substantial room for improvement in estimating treatment sequence effectiveness.  

2.4.3.3 Simplifying assumptions in response to data scarcity 

Despite Lewis et al. highlighting the use of advanced meta-analytic methods for generating LOT-

specific evidence, many NMA/MA did not employ these methods.34 Lewis et al. found that such 

omissions often led to the need for additional simplifying assumptions when integrating such 

evidence into treatment-sequencing models34, potentially causing biases and uncertainties. They 

summarised a taxonomy of these assumptions, such as whether a treatment’s effect is dependent on 

its position or previous treatments and whether any modifications to the treatment effect should be 

made depending on its position or disease duration. Lewis et al. underscored the importance of 

carefully assessing the simplifying assumptions in sequencing models. We encourage readers to refer 

to Lewis et al.'s study for details. 

2.4.3.4 Modelling approaches  

Decision-analytic modelling approaches for treatment sequencing are well-established.1 Among 

the 63 treatment-sequencing models Zheng et al. analysed, cohort state-transition models (e.g. 

Markov models, Semi-Markov models) were most prevalent, followed by discrete event simulation 

(DES), individual state-transition models (e.g. microsimulations), and decision trees. Several crucial 

factors can influence the choice of modelling approach and the construction of health states, such as 

patient heterogeneity, number of LOTs, and type of clinical outcomes.1 Lewis et al. further detailed 

the advantages and disadvantages of each approach with a comparison table in their paper.34 

Although partitioned survival models are prevalent in oncology131, Zheng et al. suggested that 
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such models were not utilised for treatment sequences due to their inherent methodology and 

limitations.1 Contrasting this, an updated review by Viola et al. highlighted several oncology NICE 

TAs employing partitioned survival models for treatment sequences.2 Lewis et al. also identified 

comparable applications.34 

2.4.3.5 Selection of treatment sequences in a decision problem 

Zheng et al. noted that most NICE TAs predominately compared treatment sequences that reflect 

clinical practice, rather than optimal placement or excluding suboptimal treatment sequences.1 Viola 

et al. investigated the impact of baseline sequence-comparator selection on the incremental cost-

effectiveness results by conducting a cost-effectiveness case study with a treatment-sequencing 

Markov model featuring four hypothetical treatments.2 Their findings revealed that non-cost-effective 

treatments were never part of an optimal (i.e., most cost-effective) sequence. Viola et al. proposed 

excluding non-cost-effective treatments from the baseline comparator or placing them later in the 

sequence to improve health resource allocation efficiency. However, they also acknowledged the 

limited generalisability of their case study due to the number of treatments and length of the sequences 

included. Furthermore, their focus was on maximising resource allocation efficiency without posing 

any constraints on the positions of treatments in a sequence, which could occur in real-world practice 

due to marketing authorisations. Nevertheless, Viola et al. underscored the need for judiciously 

selecting baseline sequencing comparators. They cautioned that overlooking the cost-effectiveness of 

individual treatments when defining the baseline sequencing-comparator could lead to misleading 

results.2  

2.4.3.6 Impact of treatment displacement on resource allocation efficiency and equity 

Haywood’s doctoral thesis delved into the issue of treatment displacement. He defined treatment 

displacement as where new treatments cause existing treatments to be shifted to later LOTs.102 If not 

properly addressed in economic evaluations, Haywood argues that this can result in biased decision-

making. Specifically, Haywood argued that continuing to pay the previously agreed-upon price for 

displaced treatments is unlikely to prove cost-effective. This is primarily due to the uncertainty 

surrounding the effectiveness of these treatments once they are displaced and used at a later line of 

therapy, with a high likelihood that effectiveness will be reduced. Consequently, paying the previously 

agreed-upon price of displaced treatments when they are used at a later LOT can lead to allocative 

inefficiency. Given the lack of clarity on reduced effectiveness, Haywood proposed adjusting the 

price of displaced treatments downwards to better reflect their anticipated diminished effectiveness 

and restore their cost-effectiveness.  

To support his argument, Haywood conducted modelling studies to assess the impact of 

treatment displacement in several cancers102, including breast, colorectal, and non-small cell lung 
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cancer. The scarcity of clinical evidence on sequencing led him to undertake a de novo RWD analysis 

using Australian Pharmaceutical Benefits Scheme (PBS) data to understand local treatment patterns, 

subsequently guiding what treatments and the number of LOTs to be incorporated into his economic 

models and their associated costs. However, for LOT-specific effectiveness estimates (i.e., PFS), 

Haywood chose to apply estimates from literature and perform meta-analysis instead of conducting 

RWD analysis. Haywood’s systematic review and meta-analyses of existing evidence revealed that 

the displacement of a treatment may lead to decreased effectiveness, treatment duration, and increased 

toxicity per unit time. Haywood's economic modelling results showed that displacement of an existing 

treatment resulted in an increased incremental cost-effectiveness ratio (ICER), with a reduction in the 

price of these treatments being necessary to restore the cost-effectiveness. Overall, he recommended 

carefully considering the impact of displacement on currently subsidised treatments in cancer 

treatment funding to ensure equity and cost-effectiveness to avoid underestimating the total costs and 

overestimating the total benefits of a new treatment being introduced to clinical practice.102 

2.4.3.7 Model computation and tools 

Tosh and Kim's theses were among the earliest works on innovative treatment-sequencing 

methodologies.30,31 Both emphasised the significance of computational optimisation methods for 

sequencing-models, particularly in scenarios where the decision problem involves a large number of 

sequencing-comparators (n > 1000). Tosh investigated the use of simulation optimisation methods to 

identify optimal or near-optimal RA treatment sequences30, driven by the inconsistencies in existing 

economic models for comparing RA treatment sequences8, which may lead to potentially inaccurate 

cost-effectiveness estimates. He approached the issue as a combinatorial discrete simulation 

optimisation problem, experimenting with methods such as simulated annealing and genetic 

algorithms. While Tosh found the simulation optimisation via simulated annealing (SOSA) promising, 

its time-consuming nature prompted calls for further research on its generalisability. Concurrently, 

Kim studied similar methods for treatment sequences in primary hypertension.31 The nuance in Kim's 

model lay in its emphasis on individualised treatment sequences, where each patient in the model 

could potentially receive the same “treatment strategy” but with different treatment sequences.  For 

instance, patients exceeding a certain threshold for a particular characteristic would follow one 

sequence, while those who fell below the threshold would follow a different one. This contrasted with 

Tosh’s approach, which examined the average effect of each treatment sequence on the entire 

population. 

Zheng et al.’s review1 summarised software that have been used in modelling treatment 

sequences, including those in Excel VBA, R, Arena and C. While both Tosh and Kim identified VBA 

and TreeAge as options for modelling treatment sequences, they opted for Simul8 and Matlab in their 



53 

 

respective doctoral these.30,31 

2.4.3.8 Potential of RWE in informing sequencing analyses 

RWD has emerged as a valuable tool in supporting treatment-sequencing decisions.1,2,34,35,102 

Evidence derived from RWD (i.e., RWE) may be used to inform local treatment patterns, sequence 

selection, and shape model structures.1,2,34,35,102 RWE can also be leveraged to capture the 

effectiveness of the entire treatment sequences or LOT-specific effectiveness.34,35 There are, however, 

significant challenges that undermine the potential of such application. One primary limitation is the 

delay in RWD’s availability.1,34,35 Typically, data collection commences only after a new drug is 

introduced to the market, leading to delays in its inclusion in RWD to be used for HTA submissions. 

Additionally, studies warned of the inherent issues in RWD that could result in biased findings (e.g. 

selection bias, confounding) and underscored the importance of applying statistical methods to 

mitigate biases in RWD analyses.3,34,102 Despite these challenges, studies advocated for a further 

understanding of the pros and cons of RWE in treatment sequencing decisions in HTA.34,35  

A recent review by Simpson et al.125 highlighted the latest advances in using RWE to evaluate 

sequencing in HTA. They spotlighted Spelman et al.’s approach of harnessing RWD from multiple 

countries to tackle the issue of the unmeasured confounding in treatment-sequencing comparative 

effectiveness studies.132 Spelman et al.’s study focused on evaluating different treatment schedules 

for relapsing-remitting multiple sclerosis (RRMS). It is highlighted that, even when earlier 

observational studies compare “similar” patients based on their measured characteristics133-135, 

unmeasured confounders may still exist between patients receiving different treatment patterns in a 

single health care setting. Spelman et al., conversely, compared patients from Sweden and Denmark, 

where the treatment options of RRMS patients were comparable but the primary recommended 

treatment strategy diverged (starting with highly effective disease-modifying therapies versus 

treatment escalation, respectively).132 By controlling for various patient characteristics and comparing 

the clinical outcomes between the two countries, they proxied the impact of different treatment 

strategies. This method resembles using geography as an instrumental variable, which has faced 

criticism in oncology.136 Spelman et al., nonetheless, introduced an innovative approach to 

comparative effectiveness research132, which could prove valuable for future HTA submissions 

involving treatment sequences. Spelman et al.’s study was not directly included in our review because 

it focused solely on clinical findings, while Simpson et al.’s review125 shed light on its relevance to 

HTA. 
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2.4.3.9 Relevance of causal inference methods in sequencing 

A recent NICE DSU report44 critically reviewed methods for evidence synthesis on clinical 

effectiveness in HTA, updating methodologies developed since the 2013 NICE guidance.23 The report 

by Welton et al. features a section underscoring the potential of causal inference methods, especially 

in addressing the issue of unwanted treatment-switching in clinical trials, referencing a prior NICE 

DSU technical support document (TSD) (i.e., TSD 16).43 Welton et al. highlight the significance of 

applying causal inference tools in HTA to delineate the disease-treatment pathway, facilitating 

covariate selection within statistical methods for synthesising evidence of treatment effectiveness.  

We included Welton et al.’s report for its insight into the parallels between treatment-switching 

in trials and treatment sequences, suggesting a new research direction. Welton et al. proposed that 

statistical methods capable of handling the dynamic treatment changes in RCTs (regardless of whether 

unintended or permitted) could potentially offer insights into treatment-sequencing. Thus, they 

recommend joint research to co-develop these methods in tandem with treatment-sequencing 

modelling. We interpreted this as an opportunity to leverage causal inference principles in developing 

statistical methods to estimate sequencing effects using RCT data containing treatment-switching, in 

line with the heavy reliance on these principles in the NICE DSU TSD 16 guidance.43 While 

recognising the value of causal inference methods, our review excluded several epidemiological and 

statistical studies on dynamic or sequential treatment strategies due to their non-HTA focus.116,117,123 

However, these studies may provide further insights into evaluating sequencing effects using causal 

inference methods, warranting the need for a separate, in-depth review. To highlight this point, we 

retain Welton et al.’s paper in our roadmap.  

2.5 Discussion 

Our review underscores the escalating interest in evaluating treatment sequences in HTA and 

summarises the emerging research themes (Table 1.3, Figure 1.2). These themes have arisen in 

response to the multifaceted challenges of treatment sequences, encompassing conceptualising the 

decision problem, choosing suitable approaches for constructing treatment-sequencing decision 

models, identifying and deriving appropriate clinical effectiveness evidence for treatment sequences 

in the face of data scarcity, scrutinising effectiveness assumptions and statistical methods for 

adjustments, and optimising model computations. We found that interdisciplinary research offers 

promising solutions to these challenges. For example, methods from statistical and epidemiological 

research were utilised to handle evidence from non-randomised data and perform adjusted indirect 

comparisons34,35; and methods from operational research and computer science were applied for 

model optimisation.30,31  
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2.5.1 Implications of existing treatment-sequencing research for HTA 

Early interest in treatment sequencing effects in specific diseases21,22,137-139 led to NICE 

including advice on integrating sequential treatments into comparators in their 2013 methods guide.21-

23 Before Zheng et al. introduced the non-disease specific treatment-sequencing modelling 

framework1, modelling guidance provided only general considerations about incorporating 

subsequent treatments.20,23,25,140,141 Earlier sequencing-modelling frameworks were either only 

presented as conference abstracts124 or had a broader focus on event sequencing beyond treatments, 

such as the sequencing of diagnostic procedures or whole disease modelling.108,109 The recently 

updated 2022 NICE manual highlights the importance of “care pathways”24, covering the sequence 

of treatments, tests, and other relevant technologies. In this revision, NICE explicitly requires 

including all diagnostic technologies in a sequence, but does not stipulate the same for “treatment” 

sequences. Further, NICE is piloting the Pathway Approach to streamline the review of treatments 

for the same diseases, potentially impacting future HTA involving treatment sequences.27 

In estimating the effectiveness of treatment sequences, existing studies primarily recommend 

refining the derivation of LOT-specific effects and collating evidence from various LOTs, given the 

difficulties in acquiring data for entire sequences during the appraisal process.34,35 Such approach 

hinges on leveraging statistical methods to make adjustments for position effects, and to approximate 

head-to-head comparisons when collating evidence. Lewis et al.'s findings on adapting meta-analytic 

methods to account for position effects34 seem relevant to NICE’s guidance for meta-analytic methods 

(e.g. NICE DSU TSDs 1, 3, and 4)142-144, while Huang et al.'s recommendations35 seem to relate 

closely to NICE DSU TSD 18145, focusing on population-adjusted indirect comparisons (i.e., 

matching-adjusted indirect comparison (MAIC) and simulated treatment comparisons (STC)). 

However, none of these guidelines discuss these similarly rooted methods in the context of treatment 

sequence evaluation. Furthermore, Huang et al.'s work seems to be anchored to state-transition 

models, raising questions about the applicability of their insights to partitioned survival models146, 

which are prevalent in oncology. Importantly, it remains unclear whether there are other challenges 

unique to partitioned survival models yet to be identified. For example, “shoehorning” a sequence 

into a partitioned survival model might require alternative methods to collate evidence from multiple 

LOTs. For instance, combining survival curves from varied sources for different LOTs into a single 

OS curve for a sequence can lead to problems, such as unrealistic crossing of cumulative treatment 

durations and OS curves. 

While none of the studies we examined focused on specific methods for generating RWE on 

treatment sequence effectiveness, several emphasised the importance of applying statistical methods 

to mitigate biases in RWD analyses.34,102 These insights mirror those in NICE DSU TSD 17 about 

using observational data to estimate treatment effectiveness.40 However, TSD 17 does not touch on 
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the relevance of these techniques in the context of treatment sequences. Zheng et al. underscored 

RWE’s role beyond deriving effectiveness model inputs — also in corroborating model predictions 

and assessing uncertainties through sensitivity and scenario analyses. This aligns with the concept of 

evidence triangulation, prevalent in fields like epidemiology.147,148 While evidence triangulation has 

its merits, its utility as a validation tool might be constrained without clear acceptability criteria. 

Further, it is ambiguous whether Zheng et al. also implied using RWE as targets for model 

calibration.149 Should this be the case, the uncertainty inherent in sequencing models could be 

exacerbated, especially when RWE—known for its susceptibility to confounding bias—is not 

validated. Specifically, a recent study highlights that the use of calibration targets that are not well-

matched between models and data can result in biased outcomes.150  

In summary, for sequencing effect estimation, we believe it is crucial to incorporate relevant 

statistical methods for indirect comparisons, evaluating position or sequence effects, and adjusting 

for potential confounding and selection biases. Further reviews and research are needed to understand 

the strengths and weaknesses of available statistical methods in the context of treatment-sequencing. 

Moreover, understanding how these methods should be tailored for varying data sources, model types 

and outcomes requires further exploration. We therefore provide actionable directions for future 

research in Sections 2.5.2.1 to 2.5.2.5.  

Determining which sequences to incorporate into a decision problem necessitates striking a 

balance among several factors2, including conducting an exhaustive review of treatment sequencing 

clinical evidence36, considering local clinical guidelines1, taking into account real-world practice and 

marketing authorisations1,95,102, optimising resource allocation efficiency2,102, and computational 

feasibility.30,31 While Viola et al. recommend removing non-cost-effective treatments from a baseline 

sequencing-comparator to maximise resource allocation efficiency2, it is noteworthy that NICE 

typically defines its comparator of interest as the most commonly prescribed treatment sequence 

rather than the “most cost-effective standard treatment”. Lewis raised concerns about the NICE 

Committee's approach, noting that the their decisions frequently stem from deliberations without 

comprehensive review of clinical evidence on sequencing.36 Furthermore, while the majority of 

appraisals assess fewer than 10 treatment sequences, Tosh and Kim examined exceptions with 

significantly more sequences.30,31 The impact of computational feasibility on sequence inclusion 

remains unknown. To date, there are no explicit guidelines prioritising any specific factor for 

sequence inclusion.   

Regarding the impact of displaced treatments, Haywood's proposal to adjust their costs may be 

contentious.102 Displaced treatments typically have shorter durations and reduced effectiveness102, 

leading to inherent cost reduction. Hence, implementing additional price cuts could potentially over-

penalise. Secondly, reducing the price of displaced treatments in fast-evolving disease areas may raise 
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fairness concerns and discourage new treatment development, especially for late-stage treatments. In 

particular, new treatments may emerge quickly, so that the “less new ones” are displaced within a 

short time. Such dynamic might become apparent through initiatives like NICE’s Pathway Project.27 

Thirdly, having treatments with varying prices at different LOTs presents complexities. A potential 

approach for addressing this issue is to implement mandatory pre-planned re-evaluation when 

displacement occurs and treatments begin to be used at a later LOT. This could lead to price 

adjustments where necessary. The potential role of prospective RWE in monitoring the treatment 

effectiveness and displacement has not been explicitly discussed. These normative issues extend 

greatly beyond economic evaluation and warrant further discussion. 

2.5.2 Future research recommendation 

2.5.2.1 Exploring consideration of treatment sequences in HTA beyond sequencing-models 

The extent to which treatment-sequencing comparisons that do not necessitate explicit 

sequencing model structures remains uncertain, as most existing reviews are geared towards 

treatment-sequencing economic models.1,2,34,35 For example, the manufacturer in NICE TA387127 

used the OS of abiraterone from the COU-AA-302 trial151 (abiraterone as a first-line treatment in 

metastatic castration-resistant prostate cancer) to represent the OS of an entire treatment sequence 

(abiraterone → docetaxel → best supportive care) in the model, while an underlying three-line model 

was maintained for the purpose of calculating the costs of subsequent treatments. Therefore, 

technically, no conventional sequencing structure was required to model the OS. This approach 

heavily relies on the assumption that the subsequent treatments received by patients in the COU-AA-

302 trial are representative of those in England’s clinical practice.  

Conversely, some HTAs may unintentionally compare the effects of treatment sequences without 

a sequencing model because of utilising effectiveness data that inherently include sequencing details. 

For example, when the aim is to compare treatments as if no patients had undergone any unintended 

subsequent treatment, it becomes problematic to use RCT data with unintended treatment-switching 

without making appropriate adjustments.43,152 Exploring the prevalence of these approaches in HTA 

across disease types is warranted, as they can affect the necessary assumptions required in populating 

the treatment effectiveness in economic models. While biases in the unadjusted unintended treatment-

switching scenario are well-recognised43, uncertainties in the first scenario—where the effect of a 

first-line treatment is assumed to represent the effect of the entire treatment sequence (e.g. 

TA387127)—may have been overlooked, warranting further investigation. 
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2.5.2.2 Further research on the derivation of clinical effectiveness for treatment sequences  

Data scarcity remains a significant challenge when evaluating treatment sequences in 

HTA.1,34,35,125 Despite existing studies outlining potential methods for deriving treatment sequence 

effectiveness34,35, there may be a need for an updated overview of the current practice. The meta-

analytic methods summarised by Lewis et al. appear to be a viable approach for deriving LOT-specific 

effectiveness.34 However, their recommendation primarily stems from RA studies before 2013 and 

may not be as applicable in oncology due to the complexities of survival meta-analysis.153,154 Huang 

et al., conversely, exclusively focused on oncology studies and recommended applying ITC 

adjustment methods when combining data from various trials.35  

Both Lewis et al. and Huang et al. focus on methods for deriving LOT-specific effectiveness34,35, 

but these approaches rely heavily on simplifying assumptions about effectiveness and population 

alignment between LOTs. Exploring advanced statistical methods to refine the “degradation effect” 

parameter (a prevalent strategy in autoimmune disease TAs155-158) could potentially mitigate 

uncertainties stemming from oversimplified assumptions. This approach could be particularly useful 

for sequences with a significantly higher number of LOTs, where determining LOT-specific effects 

for each LOT is challenging (e.g. autoimmune HTAs). This approach is suitable where a degradation 

effect assumption can be made, but less applicable in situations where subsequent treatments may be 

more effective due to specific prior events, such as treatment-induced mutations that enhance the 

effectiveness of later therapies. Furthermore, exploring alternative data sources and statistical 

methodologies to assess the comparative effectiveness of complete treatment sequences remains an 

underexplored area, and could prove valuable. Reviewing statistical methods originally developed 

for other purposes but that are potentially applicable to treatment sequence evaluation (e.g. those 

adapted for tackling treatment-switching in RCTs43,44) from both HTA and non-HTA domains, could 

inspire new strategies to address sequencing challenges in HTA. 

2.5.2.3 The role of RWE and causal inference in assessing treatment sequence effectiveness 

Despite the limited RWD availability for new treatments during appraisals, considerable 

research emphasises the significance of exploring RWE’s potential in informing treatment-

sequencing effectiveness.1,34,35,102,125 RWD holds importance because of its ability to capture patient 

treatment trajectories over time. By leveraging causal inference principles, biases in RWD analysis 

could be mitigated.5,40,50 While existing HTA guidelines provide methods suitable for non-sequencing 

scenarios40,44, tailored modifications may be required for treatment-sequencing. For instance, 

assessing the comparative effectiveness of two complete treatment sequences is complex due to time-

varying confounding, potentially necessitating advanced adjustment techniques, such as g-

methods.54,159 Statistical methods highlighted by Lewis et al. and Huang et al. implicitly tap into the 
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importance of causal inference34,35—for instance, adjusted ITC is used to ensure fair comparisons 

between two groups. This aligns with HTA’s goal to compare the counterfactual outcomes of 

alternative interventions: one without the new treatment and one with it in the healthcare system. 

Given that the concept of counterfactual outcomes resonate with causal inference principles, we 

advocate for their explicit integration into treatment-sequencing HTA, especially when utilising RWE. 

This perspective largely mirrors the views in the recently released NICE RWE framework.37 

We identified several niches where RWE can support treatment-sequencing HTA. Each 

necessitates tailored study designs and statistical approaches to address biases arising from non-

randomised treatments. These areas include: (1) deriving the effectiveness of a specific LOT or a 

segment of the treatment sequence, whether in the control or treatment arm; (2) deriving the overall 

effectiveness of the treatment sequence in the control arm; and (3) deriving the comparative 

effectiveness between two (or more) complete treatment sequences. 

Application (1) is commonly used to populate the effectiveness of later-line treatments in the 

model when trial evidence is constrained by short follow-up durations. Conceptually, methodologies 

described by Lewis et al. and Huang et al. can be considered to address indirect comparisons and 

ensure population alignment across LOTs.34,35 However, further nuances and challenges of “plugging-

in” RWE into a treatment sequence assessment warrant further exploration. Further, this form of RWE 

has also been employed as calibration targets for modelling early detection interventions where 

evidence from long-term follow-up is scarce.160 Biases can, however, arise if a mismatch between the 

model and data exists.150 Additionally, this type of RWE can aid in evidence triangulation in oncology, 

particularly when scrutinising the plausibility of the extrapolated survival curve of the appraised 

treatment beyond trial periods. Comparing the late-stage survival curve from RWE against trial 

extrapolations can reveal any unrealistic extrapolations, given that such extrapolations are greatly 

influenced by the choice of parametric models.161,162 However, a caveat is that estimates derived from 

RWE on late-stage survival might underestimate the effects of the appraised treatment, since this 

evidence often comes from data gathered before the introduction of newer frontline treatments. 

Recent studies have explored integrating RWE into trial-based survival extrapolations.163 Future work 

in this field may benefit from delving deeper into the nuances of treatment sequencing for such 

applications. 

Application (2) represents a unique case of an external (synthetic) control arm, which received 

considerable attention in HTA and regulatory bodies164,165, including the NICE RWE framework37, 

even though none of these have specifically addressed the treatment-sequencing scenario. This 

application's complexity arises from the need to blend data from multiple sources (typically RWD 

with a trial arm) and employing statistical methods to enable direct comparisons of complete 

treatment sequences. While the statistical methods may conceptually resemble those used for RWD 
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analysis, adaptions for extending inferences may be necessary.166,167 Predictable challenges include 

unmeasured confounding, the absence of time-varying covariates, and missing information on 

subsequent treatments in trials. While it seems conceptually viable, a renewed review may be needed 

to identify existing applications and associated challenges, and further application studies are 

imperative to assess such application’s feasibility.  

Application (3) is specifically pertinent in the re-evaluation of appraisals or reimbursement 

decisions for treatments previously funded through alternative funds (e.g. NICE Cancer Drugs Fund 

(CDF)).88,168,169 In such instances, data on previously appraised treatments might become available, 

presenting an opportunity to harness RWE for direct comparisons of treatment sequences. This is 

especially relevant in determining the optimal sequencing or positioning of treatments. Notably, 

clinical trials rarely assess the effectiveness of a new treatment across various treatment lines (e.g., 

standard of care → new treatment versus new treatment → standard of care), whereas such sequences 

can co-exist in real-world settings and may serve as relevant comparators in an appraisal.  

The Target Trial emulation (TTE) approach in epidemiology3 seems to be a promising tool for 

comparing two complete treatment sequences in RWD170. The TTE framework3, rooted in the 

principle of causal inference, has garnered substantial attention for its potential in explicitly designing 

observational studies to estimates causal effects and mitigate issues such as confounding, selection 

bias, and immortal time bias. The U.S. Food and Drug Administration (FDA) has funded projects 

aimed at examining the Target Trial emulation’s feasibility to answer clinical questions for regulatory 

purposes171,172, and the NICE RWE framework endorsed the TTE framework and recommends 

application in HTA wherever relevant.37  

NICE’s RWE framework briefly mentioned the viability of using emulated Target Trial to 

compare dynamic treatment strategies, such as treatment sequences, without specifying operational 

details. In our view, treatment sequences can be categorised into different types of treatment 

strategies5: (1) time-related static treatment strategies (where patients transition to the next-line of 

treatment at fixed intervals)173; (2) dynamic treatment strategies (where the timing of patients 

transitioning to the next-line of treatment is based on specific events (e.g. disease progression)174,175, 

with each patient assigned to a specific type of treatment sequence within each treatment arm); and 

(3) dynamic treatment strategies with individualised treatment sequences (where the timing of 

patients transitioning to the next-line of treatment is based on patient characteristics, with the 

possibility of each patient being assigned to different a treatment sequence based on specific events 

and additional patient characteristics (e.g. biomarker status)).176 Each of these strategies may require 

overlapping but distinct analytical approaches. Additionally, instead of emulating Target Trials for the 

comparison of dynamic treatment strategies, which are more relevant to Applications 2 and 3, a recent 

clinical epidemiology study by Bujkiewicz et al. performed a bivariate NMA on line-specific 
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emulated Target Trials from the British RA Register.177 This approach aimed to bridge the 

disconnected networks in NMAs when assessing the effectiveness of first and second-line RA 

therapies, contributing to improving insights for Application 1. 

Given the complexities mentioned above, further studies are, therefore, needed to assess the 

feasibility and validity of utilising Target Trial emulation to compare treatment sequences suitable for 

HTA purposes under different scenarios.170 This also echoes a recent review that underscores the need 

for future research on the application of RWE with Target Trial emulation in HTA re-evaluation.78 

2.5.2.4 Role of other sources of data harbouring treatment sequencing information 

Apart from RWD, other data sources may also harbour comprehensive sequencing information 

but remain underexplored in prior research. These include (1) trials (RCTs or single-arm trials) with 

extended-follow up, collecting information on non-randomised subsequent treatments; (2) RCTs that 

randomise patients to receive different treatment sequences; and (3) sequential multiple assignment 

randomised trials (SMARTs)123,176, which involve multiple stages of randomisation at points when 

treatment changes are indicated, unlike conventional trials where patient randomisation occurs only 

at baseline. Applying estimates from source (2) is relatively straightforward and requires no 

adjustment if the treatment sequences being compared align with those in a specific decision problem, 

although such alignment is uncommon. Utilising estimates from source (3), however, necessitates the 

use of specialised analytical techniques specific to SMARTs.116,178 Jamie Robins, known for his 

contribution in causal inference methods, noted that the key difference between dynamic treatments 

in real-world settings and SMARTs lies in the randomisation probabilities—unknown in the former 

while predetermined in the latter.60 Statistical methods developed for SMARTs share similarities with 

causal inference methods for real-world dynamic treatments (e.g. g-methods, not limited to sequential 

treatments), and could be relevant for both assessing treatment sequences in RWD and trials that 

include sequencing data. Utilising data from source (1) may also require causal inference-guided 

statistical methods to mitigate confounding bias44, and facilitate adjustments for indirect comparisons 

when integrating it with other data sources. Given its prevalence over sources (2) and (3), source (1) 

holds substantial promise for offering timely insights into treatment sequencing involving the 

appraised treatment during an appraisal, setting it apart from RWD’s role. Thus, methods for utilising 

data from source (1) for HTA should be investigated. 

On a separate note, recent advancements in adaptive trial designs could also potentially be 

adapted to improve the evaluation of treatment sequence effectiveness.179-182 While SMARTs focus 

on developing pre-defined multi-stage adaptive interventions, the design of adaptive trials modify 

trials over time based on interim data. With the design of dynamic protocols, advancements in 

adaptive trials may provide transferable statistical methods for assessing sequencing effectiveness. 
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Specifically, adaptive trials differ from traditional ones by continuously adjusting randomisation 

probabilities over time. Informally, these (time-varying) adapted randomisation probabilities sit 

between the known probabilities of receiving treatments in SMARTs and the unknown probabilities 

in RWD analysis. Thus, statistical methods for analysing adaptive trials theoretically share similarities 

with those previously mentioned for SMARTs and may offer additional insights in addressing 

challenges related to sequence analysis.  

2.5.2.5 Model computation, utility, costs and equity 

While the potential of computational optimisation methods for treatment sequencing decisions 

attracted early attention30,31, no further developments have been seen in recent years. This may be 

associated with a tendency for HTA to focus on individual treatment effects as opposed to optimising 

treatment sequences. Further, these early studies were hampered by inadequate evidence on LOT-

specific effects30,31, necessitating the use of crude simplifying assumptions that undermined the value 

of these methods. Nonetheless, advancements in statistical methods to better identify these effects 

(Section 2.5.2.2) may improve the potential value of these computational methods. A thorough review 

of recent appraisals might shed light on the recent use of these methods. Although not widely 

incorporated into routine HTA processes, relevant codes developed by Tosh and Kim are available 

online for adaption.30,31 Notably, methods developed in Tosh and Kim’s theses were highlighted by 

the Professional Society for Health Economics and Outcomes Research (ISPOR) Task Force as 

exemplars when a decision problem is framed as a constrained optimisation problem that accounts 

for a set of decisions over time.183 

Finally, several other areas have received limited research attention but may be crucial for further 

exploration, including equity, utility, and costs within treatment sequence evaluation. Utility, in 

particular, may encounter similar data scarcity issues as treatment sequences since patient data at 

specific time points while on a certain treatment is often lacking.  

2.5.3 Strengths and limitations of the review 

Our study has several strengths. Firstly, our review provides a comprehensive summary of 

studies focusing on treatment sequencing within HTA, highlighting both challenges and 

advancements, including early-stage developments from doctoral theses. The compilation reveals 

emerging research areas and underscores the value of interdisciplinary research. Secondly, our 

roadmap elucidates how these studies interrelate, enabling researchers with specific interests to 

swiftly locate pertinent papers and associated references. Thirdly, we bridged the gap between the 

insights drawn from the selected studies and their relevance to existing HTA guidance40,142-145 as well 

as the newly issued NICE RWE framework.37 This highlights the current gaps in HTA guidelines 

pertaining to tailored methods for treatment-sequencing and offers actionable research areas for 
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enhancement, aiming to complement the existing guidelines. 

Despite its strengths, our study also comes with limitations. First, by focusing on reviews, 

methodological, and conceptual papers, the scope of our review may be deemed limited. However, 

given the frequent citations to Zheng et al.'s work1 across the majority of the identified literature, we 

are confident that we have captured the field’s pivotal paper and its associated literature. Secondly, 

with our non-disease-specific and HTA-oriented focus, we might have missed other relevant 

methodological papers that bring additional insights. However, for readers interested in specific 

modelling studies or innovative methods from other fields, these can likely be found in the references 

of the papers we included. Thirdly, we may not fully capture all disease-specific nuances of their 

interplay with each of the research topics. Readers are encouraged to further explore the implications 

of subject knowledge. Lastly, we may have missed articles discussing treatment sequences if they did 

not directly mention such concepts in their titles or abstracts.  

2.6 Conclusions 

Our research highlights the multifaceted challenges in evaluating treatment sequences in HTA, 

including problem structuring, modelling approaches, selection of treatment-sequencing comparators, 

model optimisation and data scarcity in evaluating the effectiveness of treatment sequences. Each of 

these aspects presents complex, interrelated issues that warrant further investigation.  This field is 

rapidly evolving, with the issue of data scarcity in treatment sequences being particularly salient, 

causing decision uncertainties, arising from inherent biases in data sources, effectiveness simplifying 

assumptions, and the appropriateness of the adjustment methods utilised. We found that 

interdisciplinary research offers promising solutions to these challenges. This includes applying 

causal inference principles from epidemiology and statistical research to manage evidence from non-

randomised data and perform adjusted indirect comparisons. Additionally, insights from operational 

research and computer science contribute to model optimisation.  

Several avenues for future research are identified. Firstly, given the remarkable potential of 

RWD in capturing treatment sequences, it is imperative to investigate appropriate strategies for 

leveraging RWE in treatment sequence evaluation. In particular, it is prudent to explore how emerging 

causal inference methods, such as Target Trial emulation, can be employed to harness RWD for 

generating comparative effectiveness of treatment sequences. This is especially pertinent in the 

context of re-evaluating treatment appraisals or synthesising an external treatment-sequencing control 

arm. Secondly, it is equally crucial to delve into the application of causal inference methods in 

analysing clinical trials that harbour sequencing information. This approach holds promise for 

providing timely estimations of the appraised treatment’s effectiveness within a sequence, offering 

valuable insights during the appraisal process. Thirdly, under-researched areas should be explored, 



64 

 

including the generalisability of model optimisation methods, equity, utility, and costs in treatment 

sequence evaluation. Finally, an updated review of treatment-sequencing economic evaluation 

applications may provide valuable insights into the evolving field.
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2.7 Chapter summary 

My review reveals an expanding literature on synthesising clinical evidence for treatment 

sequences, with existing studies suggesting the use of meta-analytical methods and ITC adjustments 

to collate trial evidence from diverse sources to derive line-of-therapy (LOT)-specific treatment 

effects.1,34-36 Yet, these methods significantly rely on an assumption that patient populations align 

consistently across different data sources. The review explored the perception of RWD in current 

treatment sequencing studies: RWD was valued for its ability to capture treatment sequencing details 

but necessitates further investigation to better understand its utility and to tackle inherent challenges. 

This leads to an in-depth review in Chapter 3 on the use of different data sources for assessing 

treatment sequencing effectiveness within English HTA, with a focus on the existing practice of 

employing RWD.
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Chapter 3 Comparative effectiveness of treatment sequences in health 

economic evaluations—a systematic review of NICE TAs 

3.1 Overview 

In this chapter, I systematically reviewed NICE technology appraisals (TAs) to delineate the 

current practice and challenges of comparing treatment sequences in health economic evaluations. 

The aim was to investigate how frequently sequencing questions were raised in NICE TAs, how they 

are addressed, and specifically, how effectiveness estimates for treatment sequences were derived in 

economic models. This investigation builds on the findings from Chapter 2, where deriving 

effectiveness estimates was highlighted as a key challenge in HTA involving treatment sequences. 

The initial review in Chapter 2, which informed the required subsequent reviews, shows that the 

methodological literature on treatment sequences initially focused on the structure and computational 

optimisation of treatment-sequencing models.1,2,30,31 Most did not discuss in detail the challenge of 

deriving unbiased comparative effectiveness estimates for treatment sequences, despite this being 

highlighted as a key aspect requiring further exploration.1,36,102 One exception was a PhD thesis by 

Lewis highlighting the importance of making necessary simplifying assumptions in combination with 

meta-analysis approaches to derive LOT-specific effectiveness estimates.34,36 Randomised controlled 

trials (RCTs) are often considered as the most reliable source to reflect comparative treatment 

effectiveness in cost-effectiveness models (CEMs). However, it is self-explanatory that a RCT 

comparing all possible treatment sequences in a decision problem is often non-existent due to the 

requirement of a larger sample size, longer follow-up, and ethical considerations.  

In view of the clinical evidence scarcity issue, I became aware that non-RCT data sources, such 

as real-world data (RWD), can be useful in informing treatment-sequencing models, especially in 

reflecting local treatment patterns (Chapter 1 & 2).184,185 However, the use of alternative data sources 

to inform economic evaluations in treatment-sequencing models—especially with data from non-

randomised patients—remains unclear. It is important to understand what alternative data sources of 

effectiveness evidence have been used in treatment-sequencing models, and what assumptions and 

adjustments methods have been used in conjunction with them. 

In this chapter, I conducted a systematic review to address my research questions, with two main 

objectives: (1) To investigate how prevalent treatment sequences have been discussed within NICE 

TAs regardless of whether a treatment-sequencing model was used, and their primary intentions; (2) 

To identify challenges and common sources of data for selecting appropriate effectiveness estimates 

to compare treatment sequences. I considered a systematic review of NICE TAs to be sufficient and 

appropriate to address my research questions as they are representative HTA examples with national 

resource allocation implications in England. Moreover, the rigorous and well-established NICE 
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appraisal process often leads to reports involving innovative methods to learn from.  

The specifics of review objectives are detailed in Section 3.2. Section 3.3 outlines the review 

design.  Section 3.4 presents the review results, Section 3.5 discusses and compares these findings 

with the literature, and Section 3.6 summarises with the review’s key insights and their implication 

for the rest of my thesis. 

3.2 Objectives and review questions 

In this section, I outline two main objectives for the review, aimed at expanding both the breadth 

and depth of previous NICE TA reviews on treatment sequences.1,2 Hence, the review is split into two 

parts, Part A and Part B, respectively. First, previous reviews focused on TAs that explicitly 

incorporated treatment sequences as part of the decision-analytic model structure, overlooking 

instances where treatment sequences are relevant but not explicitly modelled. An example is the use 

of partitioned survival models (PartSM) that reply on effectiveness evidence of front-line treatment 

with subsequent treatments reflective of those used in the NHS without necessitating an explicit 

economic model structure for multi-line treatments. These nuances were not captured in previous 

NICE TA reviews by Zheng et al. and Viola et al.1,2 Therefore, Part A of this review aims to provide 

an overarching understanding about the prevalence of TAs involving treatment-sequencing 

considerations, not just those with a sequencing model. Specific review questions about this are listed 

in Table 3.1, Part A. 

 

Table 3.1 Review questions of the NICE TA treatment-sequencing review 

Part A: What is the prevalence of treatment-sequencing considerations in NICE TAs? 

 What is the prevalence of treatment-sequencing considerations in all NICE TAs? 

 In what context have treatment sequences been considered in NICE TAs? 

 What is the prevalence of economic models with a treatment-sequencing structure? 

 What are the key disease areas involving treatment-sequencing issues? 

Part B: What is the current practice of deriving treatment-sequencing comparative effectiveness? What are 

the characteristics of models (i.e. structure), effectiveness estimates (i.e. model assumptions, adjustments, data 

sources), challenges and justifications? 

*This part of the review only includes TAs that has a purpose of comparing alternative treatment sequences 

General characteristics and treatment-sequencing models 

 In what position (i.e. line) was the treatment being appraised? 

 Has a de-novo treatment sequencing model been used? If yes, what are the details? 

Characteristics of treatment-sequencing effectiveness estimates 

 If treatment sequences were considered, has the effectiveness of a whole treatment sequence been estimated? 

[Yes/No]  

 If not, has it stated why not?  

 If yes, how was this done? Document data sources, assumptions, adjustments methods, and challenges if 

applicable.  

TA: technology appraisal 
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Next, to extend the depth of previous reviews, Part B of the review focuses on describing current 

practice in generating effectiveness inputs when comparing treatment sequences. This topic has only 

been touched on as data scarcity issue in previous reviews.1,2 Several techniques have been used to 

combat the scarcity of line-specific treatment effect, such as applying an effect modifier to reflect the 

potential effect degradation of subsequent treatments. However, applying these methods may rely on 

strong assumptions about the interaction of previous and subsequent treatments, which are often 

without any data to validate. As such, I formulated detailed review questions in Table 3.1, Part B, 

aiming to document the current practice and challenges in populating effectiveness estimates for 

comparing treatment sequences in HTA, aiming to identify common assumptions, adjustment 

methods, and data sources in supporting decisions making. Due to the complex nature of NICE TA 

documents for practicality, Part B was restricted to TAs that explicitly compare two or more treatment 

sequences. The rationale behind this choice is detailed in Sections 3.3.2 and 3.3.3. Figure 3.1 

illustrates the scope of Parts A and B in relation to earlier reviews.1,2 

 

 

 

Figure 3.1 Schematic expression of the scope of NICE TA treatment-sequencing review 

TA: technology appraisal 

 

3.3 Methods 

3.3.1 Methods overview 

In the methods section, I begin by detailing NICE TAs I selected for the review (Section 3.3.2), 

and how I defined the subsets of TAs for each part of the review (Section 3.3.3). Given the complex 

nature of TAs compared to journal articles, Section 3.3.4 details the specific documents reviewed 

within each TA. Section 3.3.5 presents the screening strategies developed to identify relevant TAs, 

while Section 3.3.6 addresses the review's challenges and details the tailored process for screening, 

eligibility assessment, and data extraction. Section 3.3.7 introduces synthesis strategies for 

summarising the extracted information. Finally, Section 3.3.8 describes how I automated the process 
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to systematically retrieve full-text TA documents (i.e. a type of grey literature) to minimise bias.  

3.3.2 Searches 

I included all NICE TAs updated before November 30, 2019, in my screening, compiling the 

final list of TAs from NICE's website on December 1, 2019, to ensure transparency in light of possible 

redactions to some TAs later.186 This review was registered at The International Prospective Register 

of Systematic Reviews (PROSPERO) prior to kick-off.187  

3.3.3 Review subsets 

Part A covers all TAs that mentioned considerations around treatment sequences, while Part B 

narrows its focus to only TAs that listed at least two treatment sequences as comparators. This 

approach, chosen for its practicality due to the extensive number of appraisal, fits well with Part B's 

in-depth review of how effectiveness for treatment sequences is derived. Specifically, it is likely to 

be more relevant for appraisals that clearly defined comparisons between treatment sequences. 

3.3.4 Types of TA documents to be reviewed 

Reviewing NICE TAs presents unique challenges compared to reviewing journal articles due to 

the NICE HTA process's complexity, necessitating clear definitions of which documents within each 

TA to review. Basic NICE TAs include single TAs (STA), multiple TAs (MTA) and fast track TAs 

(FTA). Here, I outline the publicly available documents for each TA subtype and specify which ones 

were selected for inclusion in this review. 

For single STAs, each TA includes a company submission (CS) and a comprehensive evidence 

review from an independent academic centre (i.e. the evidence review group (ERG)) that scrutinises 

the CS report. The CS and ERG reports together with other expert opinions (e.g. clinicians and patient 

groups) will then be considered by the NICE Appraisal Committee to assist drug reimbursement 

decision making. For MTAs, there are CS from each manufacturer followed by an Assessment Group 

(AG) report that reviews each of the CS reports. Unlike ERGs, the AG not only critiques what the 

companies have done, but also undertakes a systematic review of efficacy and safety, and builds their 

own model to address the decision problem. That is, the role of the independent group is expanded 

from reviewing CS reports, to actually doing the modelling itself and undertaking a full systematic 

literature review on the topic. In summary, each TA is comprised of at least an original CS report at 

the consultation stage, an ERG or AG report that scrutinises the CS report, and a final appraisal 

document (FAD) that summarises the decision of NICE’s Appraisal Committee. FADs capture most 

of the important discussions related to the final recommendations of a TA, while CS and ERG/AG 

reports offer additional details to an appraisal, including a full report of clinical- and cost-

effectiveness analysis (CEA). 
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I focused on three main publicly available documents per TA: (1) CS, (2) ERG or AG report, 

and (3) FAD. When a full CS was unavailable, I reviewed the executive summary of the CS report 

instead (if available), often the case for MTAs. I primarily reviewed the initial ERG/AG report for 

comprehensive details. If the TA process included up to 2 consultations, I also reviewed addenda and 

company responses wherever relevant. In instances of multiple FADs due to appeals, I reviewed all 

FADs. Other documents like matrices of consultees/commentators were not reviewed. 

3.3.5 Pilot review and screening strategies 

From January to February 2020, I undertook a pilot TA review to develop a list of “sequence 

terms” for TA screening. Prior to my pilot review, I compiled an initial set of sequence terms from 

studies included in Chapter 2's initial review.1,2,8,105 I then reviewed 35 randomly chosen TAs to 

expand these strategies, finalising the list with my supervisors. Both the initial and final screening 

strategies are outlined in Table 3.2. 

 

Table 3.2 Development of the screening strategy for treatment sequences  

 Sequence terms 

Initial 

set  

 optimal sequence, treatment sequence, discrete treatment options, optimal position, subsequent therapies, 

subsequent treatments, sequential therapy, trends of multimodality, pathways, changing points, switching 

 excluding “consequence”, “sequencing” (if referring to gene sequencing or randomization sequencing) 

Final 

set 

Terms Potential equivalent variations 

treatment sequenc*    sequence of treatments, sequence of lines of treatments 

therapy sequenc* 

optimal sequenc* 

optimum sequenc* 

sequential treatment* sequential strategy 

sequential therap* 

subsequent treatment* 

subsequent therap* 

treatment switching switching therapy, switching treatment 

therapy switching 

clinical pathway 

treatment pathway 

care pathway 

Look-alike but should-be-excluded terms: 

 Sequencing referring to gene sequencing or randomization sequence generation.  

 Sequence that is a part of words like “consequence”. 

 Clinical pathway that refers to biochemical pathway e.g. inflammatory, or receptor signaling pathway. 

 Treatment pathway or care pathway that only serve as a subtitle in the report (often seen in company 

submission template).  

 Describing the position of intervention in the care pathway of a disease without discussing the 

impact to the whole treatment sequence pathway 

 Only to encourage incorporating TA guidance into local care pathway 
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3.3.6 Screening, eligibility assessment and data extraction process 

The pilot review highlighted significant challenges in conducting a broad, non-disease-specific 

review of NICE TAs (Section 3.3.5). Firstly, there was a significant rise in the number of published 

TAs since the treatment-sequencing reviews by Zheng et al. and Lewis's thesis.1,36 Before 2015, the 

annual publication of TAs ranged from 1 to 30; from 2015 to 2019, it increased to an average of 50 

to 60, the major period of record retrieval for this review. Secondly, the document volume for each 

TA greatly exceeded that of standard journal articles. For example, TA375 involved seven CS 

reports—six above 200 pages and one over 1100 pages, an AG report exceeding 700 pages, and a 

FAD over 90 pages.188  Reviewing just TA375 thoroughly was a challenging task, let alone all 

published TAs, which number over 600. Third, TA documents lack structured abstracts for screening, 

necessitating full-text screening. Fourth, no systematic review platforms or citation managers 

currently support NICE TA formats. 

Hence, to enhance the efficiency and effectiveness of this review in addressing my research 

questions, I developed a set of strategies to navigate its complexity. Given the limitations of traditional 

review methodologies, a conventional two-stage abstract screening and full-text eligibility 

assessment were unsuitable for this context. As a result, I developed a tailored four-stage screening 

and assessment process, outlined below and visually represented in Figure 3.2: 

 Stage 1 (Screening): I began by excluding TAs that did not feature any sequence terms defined in 

Section 3.3.5 through full-text screening of CS, ERG/AG reports, and FADs via the Ctrl + F 

function. This significantly narrowed the pool of TAs needing full-text review. 

 Stage 2 (Full-text eligibility assessment—FAD Review): FADs, being the shortest documents, 

were reviewed first to filter out TAs not meeting the inclusion and exclusion criteria, further 

reducing the number of TAs requiring comprehensive review of CS and ERG/AG reports. 

 Stage 3 (Full-text eligibility assessment for Part A: reviewing CS and ERG/AG documents): I 

then assessed each TA's eligibility against inclusion and exclusion criteria via full-text review of 

CS and ERG/AG reports, identifying TAs for Part A by the end of this stage. 

 Stage 4 (Full-text eligibility assessment for Part B: reviewing CS and ERG/AG documents): an 

additional full-text review of CS and ERG/AG reports was performed to determine which TAs 

were eligible for the Part B review. 

The definitions for treatment sequence and criteria for inclusion and exclusion are outlined in 

Table 3.3. Ambiguities were resolved through discussions with my supervisors for consensus. Data 

extraction details for each stage, as illustrated in Figure 3.2, are provided in Table 3.4 for Part A and 

Tables 3.5-3.6 for Part B
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Figure 3.1 Schematic of screening and data extraction process  
AG: assessment group; CS: company submission; ERG: evidence review group; FAD: final appraisal determination; TA: technology appraisal 

Purple square: TAs entering demographic analysis; Brown square: TAs included for Part A review - to what extent has treatment sequences related issues been discussed; Green square: TAs included for 

Part B review - what techniques were used to compare treatment sequences; Text highlighted in yellow: TAs included at each stage of the screening and eligibility assessment 

* Screened full-text, FAD, CS, and ERG report. Included a TA only if any of its three main documents (i.e. CS reports, ERG report, FAD) contains any of the relevant key terms or terms that deemed to 

be relevant. Extracted TA basic information in Data Extraction Table A. 

 Reviewed full-text FAD, extracted treatment-sequencing relevant information in Data Extraction Table A. 

 Reviewed full-text CS and ERG report, added additional information of treatment-sequencing relevant information (if not extracted from FAD) in Data Extraction Table A. 

 Excluded TA that included key terms but did not discussed about treatment-sequencing in any way (based on full-text review of FAD, CS, and ERG report), or met other the exclusion criteria in 

Section 3.3.6 Eligibility Assessment. 

 Extracted detailed information from CS, or ERG model (or both). For MTA, only info of AG model will be extracted: information extracted are slightly different depending on whether a treatment-

sequencing model structure is incorporate

Stage 4

Eligibility asessment 

(CS & ERG/AG reports)

for Part B review

[Using Data Extraction Table B & C]

Stage3

Eligibility asessment

(CS & ERG/AG reports)

for Part A review

[Using Data Extraction Table A]

Stage2

Eligibility asessment

(FAD)

for Part A review

[Using Data Extraction Table A]

Stage 1

Screening

(CS, ERG/AG reports & FAD)

[Using Data Extraction Table A]

Stage 0

Downloading 

full-text TAs

All TAs 

Excludiinng TAs terminated, replaced, 
withdrawn, had no CS, ERG/AG 

reports or FAD

Excluding TAs assessed surgical 
procedure, medical devices or 

implants

Excluding TAs contain no key terms in 
CS, ERG/AG reports or FAD

Including TAs contains any of the key 
terms in CS, ERG/AG reports or FAD*

Excluding TAs that met the exclusion 
criteria in FAD 

Including TAs invovlving any 
treatment-sequencing considerations 

or equivalent in FAD

Excluding TAs that met the exclusion 
criteria in CS, ERG/AG reports

Including TAs involving any treatment 
sequence considerations or 

equivalent in FAD, CS or ERG/AG 
reports

Excludeing TAs without listing at 
least two treatment sequences as 

comparators in either the CS or 
ERG/AG reports

Including TAs with at least two 
treatment sequences as 

comparators in either the CS or 
ERG/AG reports
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Table 3.3 Inclusion exclusion criteria of the systematic review  

Definition of 

treatment sequence 

The definition was applied from a previous review of Zheng et al 20171, namely if there is 

any treatment switching due to clinical reasons, such as disease progression, adverse 

events, non-compliance or others. A sequence will not be considered if it is only assessing 

a single drug used in different clinical condition (e.g. the timing of initiating a drug). 

Part A review: 

Inclusion criteria  

All TA that contain any of the stakeholders’ (company, ERG/AG, the NICE committee) 

discussion or opinions about treatment sequences (i.e. order of treatments). 

Part A review: 

Exclusion criteria  

 

 Exclude TAs if the only mention of a treatment sequence in any of the appraisal 

documents does not relate directly to the appraisal in question.  

e.g. treatment switching mentioned when describing one source of evidence included 

in the clinical-effectiveness assessment, but was not used to justify any sequence of 

the assessed new technology. 

 Exclude sequences referring to fixed treatment regimen bundle (e.g. dose escalation) 

or established chemotherapy regimen to be given as a single line of treatment 

Exclude a TA if sequence is only mentioned in the reference list. 

Excluded TAs assessing medical devices, implants, or surgical interventions as they 

were less comparable to other TAs in the context of this review. 

Additional exclusion 

criteria for the subset 

of Part B review 

Part B of the review is a subset of part A: TAs without any specification of at least two 

specific treatment sequences (not treatment mix) as comparators in either the CS, ERG/AG 

report were excluded in Part B of the review. 

AG: assessment group; CS: company submission; ERG: evidence review group; FAD: final appraisal determination; TA: technology 

appraisal 

 

Table 3.4 Data Extraction Table A: basic TA information and treatment-sequencing 

discussion extraction for TA screening and Part A review 

 Items for data extraction 

Documents For all TAs Additional questions for TAs included in the Part A review 

General 

questions  

 TA number [number] 

 TA name [free-text] 

 Disease [free-text] 

 Disease area [free-text] 

 Last published date [year] 

 Primary reasons for mentioning treatment sequences in 

TAs [free-text, up to three reasons] * 

CS  File name [free-text] 

 Page number [number] 

 Included key terms? [Yes/No] 

 Page number/key term 

 Has a treatment-sequencing model? [Yes/No] 

 At least two treatment sequences as comparators? 

[Yes/No] 

ERG/AG  File name [free-text] 

 Page number [number] 

 Included key terms? [Yes/No] 

 Page number/key term 

 Has a treatment-sequencing model? [Yes/No] 

 At least two treatment sequences as comparators? 

[Yes/No] 

FAD  File name [free-text] 

 Page number [number] 

 Included key terms? [Yes/No] 

 Page number/key term 

- 

AG: assessment group; CS: company submission; ERG: evidence review group; FAD: final appraisal determination; TA: technology 

appraisal 
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Table 3.5 Data Extraction Table B: data sources and statistical methods for comparing 

treatment sequences (Part B review) 

General Information 

 TA number [number] 

 MTA or STA [number] 

 Are there at least two treatment sequences as comparators in either or both CS or ERG/AG reports? [Yes/No] If 

Yes, then fill in the following questions. 

Company Submission and AG report: treatment-sequencing effectiveness estimates  

(information from Company Submissions in MTAs are extracted from AG report if available) 

 Completeness of the CS report? [full CS report, extracted from AG report or others] 

 How many lines of treatments are there in a treatment sequences? [number] 

 Are treatment sequences with different length (i.e. total lines of treatment) being compared? [Yes/No] 

 In what position (i.e. line) is the treatment being appraised being placed in the treatment sequence? [number] 

 Type of switching to different lines of treatment [free-text: disease relapse, others] 

 Type of effectiveness outcome? [free-text; absolute treatment effect (e.g. scores), number or proportion of 

responders, relative risk, time to event parameters: survival, time to event parameters: treatment duration, 

treatment duration), hazard ratio, transition probabilities to the next health state, others] 

 If treatment sequences are considered, is effectiveness of a whole treatment sequence for different sequences 

estimated? [yes/no] 

 If not, is it stated why not? [free-text; only considered impact on costs, unspecified, others]  

 If yes, how was this done? 

 Degradation style assumptions [yes/no] 

 If yes, for which part of the model and details? [free-text] 

 Using pivotal-trial RCT data [yes/no] 

 If yes, for which part of the model and details? [free-text] and; 

 What are the features of the pivotal trial? [free-text; RCT with two or more arms, single arm 

trials, SMART design] 

 What type of statistical methods were used and details? [free-text: subsequent treatments in trial 

matches those in the appraisal/NHS, subgroup analysis, adjustment for treatment-switching, 

sensitivity analysis, external source to guide the choice of treatment sequences as comparators, 

others] 

 Using other trial data [yes/no] 

 If yes, for which part of the model? [free-text] and; 

 What are the features of the trials? Specify separately if multiple sources were used. [free-text; 

trials comparing sequential treatments, effectiveness of a specific line, effectives of blended-line, 

SMART design] 

 What type of statistical methods were used and details? [free-text; model inputs: subsequent 

treatments in trial matches those in the appraisal/NHS, subgroup analysis or adjustment for 

treatment-switching or indirect comparisons, external source to validate model inputs or to guide 

the choice of treatment sequences as comparators, others] 

 Using NMA/MA data [yes/no] 

 If yes, for which part of the model? [free-text] and; 

 What are the features of the NMA/MA? Specify separately if multiple sources were used. [free-

text; line-specific NMA/MA, treatment-history specific NMA/MA, unspecified-line NMA/MA] 

 What type of statistical methods were used and details? [free-text; model inputs: subsequent 

treatments in trial matches those in the appraisal/NHS, subgroup analysis or estimating the effect 
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of a treatment modifier (e.g. discontinuation rate), external source to validate model inputs or to 

guide the choice of treatment sequences as comparators, others] 

 Using RWD [yes/no] 

 If yes, for which part of the model? [free-text] and; 

 What are the features of the RWD? Specify separately if multiple sources were used. [free-text; 

sequential treatment study, effectiveness of specific lines] 

 What type of statistical methods were used and details? [free-text; model inputs: subsequent 

treatments in study matches those in the appraisal/NHS, subgroup analysis or estimating the 

effect of a treatment modifier (e.g. discontinuation rate), external source to validate model 

inputs/model assumptions or to guide the choice of treatment sequences as comparators, others] 

 What are the key challenges reported for estimating the comparative effectiveness of treatment sequences? 

 Is the focus on estimating the effectiveness of sequences likely to be used in NHS clinical practice (i.e. 

adjusting for subsequent treatments), or on comparing the effectiveness of alternative sequences, or others if 

any? [free-text; effectiveness of treatment sequences is not estimated in anyway, sequences likely to be used 

in the NHS, clinical practice, to reflect the trial setting, to reflect evidence seen in registry or RWD, expert 

opinions, inconsistent with previous TAs, to assess which treatment lines new treatment belongs as the most 

cost-effective treatment, others] 

 Besides effectiveness, does treatment-sequencing impact any elements (other than costs and quality-of-life 

measures) that should be noted [free-text: scope of appraisal, others] 

ERG/AG comment on treatment-sequencing effectiveness estimates in the CS reports 

 Has ERG or AG made any criticism of the company’s submission regarding effectiveness estimates of treatment 

sequences? [yes/no] If yes, what are the comments and criticisms? [free-text] 

 Any additional analyses undertaken or requested by ERG regarding estimating comparativeness of treatment 

sequences? If yes, document the details [free-text; sensitivity analysis, scenario analysis] 

FAD 

 What issues did the Committee raise regarding treatment sequences in addition to those mentioned by the 

company and the ERG [free-text]? 

AG: assessment group; CS: company submission, ERG: evidence review group; FAD: final appraisal determination; MA: meta-

analysis; MTA: multiple TA; NHS: National Health Service; NMA: network meta-analysis; RCT: randomized control trial; RWD: 

real-world data; SMART: The Sequential Multiple Assignment Randomized Trial; STA: single TA; TA: technology appraisal 

 

Table 3.6 Data Extraction Table C: treatment-sequencing model information (Part B review) 

Model features Data extraction 

TA number [number] 

Disease  [free-text] 

Treatment-sequencing model structure  base-case [Yes/No] 

 additional analysis [Yes/No] 

Model source  [CS or ERG/AG] 

Position of the new treatment in the treatment pathway (i.e. LOT(s)) [free-text] 

Time horizon [free-text] 

Model Type [free-text; e.g. Markov model] 

Treatment sequences evaluated in the economic evaluation [free-text; list all treatment sequences if 

possible] 

Model health states/model health state transitions  

(only document the longest in the model) 

[free-text] 

AG: assessment group; CS: company submission; ERG: evidence review group; LOT: line of treatment 
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3.3.7 Strategies for data synthesis 

The section details data synthesis strategies for addressing review questions from Section 3.2, 

organised into the following categories: 

(1) Inclusion and exclusion process 

 Summarising the selection process with A PRISMA flow diagram189 

 Summarising the reasons for each excluded TA in Part A of the review. 

(2) Part A review: Prevalence of treatment sequences issues  

 Summarising the number of TAs with treatment-sequencing and stratifying them by the year 

of publication and type of diseases 

 Summarising the number of treatment-sequencing discussions and treatment-sequencing 

models among all TAs and comparing them against findings from previous literatures1,2  

 Summarising the primary reasons for mentioning treatment sequences in TAs 

 Summarising the number of TAs containing treatment-sequencing models and stratifying 

them by disease areas and the TA process (i.e. STA versus MTA) 

(3) Part B review: Comparative effectiveness estimates of treatment sequences 

 Summarising the data sources, major assumptions, relevant statistical adjustment methods and 

justifications used in each TA using tables or narration, whichever is applicable 

 Narratively describing the key challenges for deriving comparative effectiveness of treatment 

sequences and categorising them by disease areas. Further elaborating distinctive examples 

and illustrating them in graphs if applicable. 

 Summarising the features of treatment-sequencing models of each included TA, if applicable 

If possible, propose a preliminary framework that summarise the pros and cons, and potential 

hurdles in employing different data sources to derive comparative effectiveness of treatment 

sequences, drawing upon insights from the TA review and established HTA guidelines. 

3.3.8 Systematic full-text retrieval 

The review of each TA necessitates reading multiple documents (see Section 3.3.4) not 

retrievable by standard literature software, such as Endnote. To address this, an R script with web-

scraping capabilities was developed for systematic document download from the NICE website (i.e., 

web scrapping), minimising manual bias arising from manual operation. For the R script, see 

Appendix 3.1. 

3.4 Results 

3.4.1 Inclusion and exclusion 

Figure 3.3, a PRISMA diagram, outlines the inclusion and exclusion process. Initially, 460 TAs 
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(up to TA613) were identified. Title screening led to the exclusion of 49 TAs without available 

documents and 30 assessing medical devices, implants, or surgeries. Furthermore, 59 TAs were 

excluded during full-text screening, with an additional 25 during full-text assessment, resulting in 

297 TAs considered for Part A, focusing on detailing treatment sequence considerations. Appendix 

3.2 outlines the exclusion reasons for each excluded TA.  

For Part B, 262 TAs that did not explicitly a comparison of at least two treatment sequences in 

their CEA were further excluded, resulting in 35 for inclusion. Sections 3.4.2 and 3.4.3 report the 

findings for Parts A and B, respectively. Appendix 3.3 contains a summary table detailing information 

on each TA included in Part A, such as the presence of treatment sequences as comparators and the 

existence of any de novo treatment-sequencing models. 

 

 

 

Figure 3.3 The Preferred Reporting Items for Systematic Reviews (PRISMA) diagram for the 

systematic review of treatment sequences in NICE TAs 

AG: assessment group; CS: company submissions, ERG: evidence review group; FAD: final appraisal determination; TA: 

technology appraisal 
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Records after assessing the eligibility 

for Part B review 
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3.4.2 Part A review: treatment-sequencing considerations in NICE TAs 

3.4.2.1 Prevalence of treatment-sequencing considerations 

Figure 3.4 shows the trend in TA publications by year, separating those with treatment-

sequencing considerations (included in Part A) from those without. It reveals an uptrend in the topic 

over the last two decades, especially from 2015 onwards. This rise, however, might be overstated due 

to missing early documents and could also reflect the broader increase in TA outputs since 2015 (i.e. 

over 50 TAs per year). 

Over three-quarters (297 out of 381, 78.2%) of the TAs discussed treatment sequences or 

equivalent concepts, with a notable increase in the number of TAs employing treatment-sequencing 

models, listing treatment sequences as comparators, or both between 2016 and 2018 (16-18 TAs per 

year). This prevalence of treatment-sequencing discussions varies across disease areas, with oncology 

TAs leading in mentions of treatment sequences (Figure 3.4). However, few oncology TAs explicitly 

compared the cost-effectiveness of treatment sequences. For instance, non-small cell lung cancer 

(NSCLC) TAs had the highest mention of treatment sequences among all diseases, with 25 TAs 

discussing them. However, only two of these NSCLC TAs employed treatment-sequencing models, 

and none made direct comparisons of treatment sequences. This trend was consistent across various 

oncology diseases, including leukaemia, breast cancer, lymphoma, multiple myeloma, melanoma, 

renal cell carcinoma, colorectal cancer, prostate cancer and ovarian cancer. In contrast, autoimmune 

disease TAs more often made explicit sequence comparisons and employed treatment-sequencing 

models. 

To compare my findings with existing NICE TA reviews1,2, I categorised them by three themes 

and seven broad disease areas as shown in Table 3.7. These themes are: (1) including treatment-

sequencing considerations, (2) employing treatment-sequencing models, and (3) listing at least two 

treatment sequences as comparators. Theme (2) aligns closely with the scope of previous literature1,2, 

while themes (1) and (3) correspond to the focus of Parts A and B of my review. My review found a 

higher percentage of treatment-sequencing models being used across various disease areas, notably 

in oncology, autoimmune diseases, diabetes, and infectious diseases, compared to previous reviews 

by Zheng et al. and Viola et al.1,2 Autoimmune diseases featured the most frequent use of these 

treatment-sequencing models (50.8%) and treatment sequence comparators (36.1%), with diabetes 

next (44.4% and 11.1%). Oncology, despite a high discussion prevalence regarding treatment 

sequences (76.0%), showed lower rates of treatment-sequencing model usage (18.8%) and sequence 

comparisons (3.1%). However, with more than half of the TAs discussing treatment sequences (174 

out of 297) in oncology, this field had the highest count of treatment-sequencing models used (n = 

43).
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Figure 3.4 Summary of NICE TAs with treatment sequence discussions by year 

Unavailable online: TAs used to exist, but was removed from the NICE web content; Excluded in Part A: none of the three key documents (i.e. FAD, CS report, ERG report) contains discussion about 

treatment sequences; Included in Part A but not B: discussion only: TAs that contain discussions about treatment sequences, but did not have a treatment-sequencing model nor compare treatment 

sequences. Included in Part A but not B: treatment-sequencing models: TAs that contain at least a treatment-sequencing model in the CS or ERG/AG report. Included in Part B: TAs explicitly specify at 

least two treatment sequences as comparators in the description of cost-effectiveness evaluation in either or both CS and ERG/AG reports. It should be noted that not all of these TAs have a treatment-

sequencing model (but most of them). TAs published in December 2019 were not included in this review, therefore number of TAs may have been underestimated for this calendar year. 
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Figure 3.5 Summary of NICE TAs with treatment sequence discussions by diseases 

GIST: gastrointestinal stromal tumour, HCC: hepatocellular carcinoma, HF: heart failure: HNC: head and neck cancer, IPF: idiopathic pulmonary fibrosis, ITP: immune thrombocytopenia, JIA: juvenile 

arthritis, MM: multiple myeloma, MS: multiple sclerosis, NETs: neuroendocrine tumours, NSCLC: non-small cell lung cancer, RA: rheumatoid arthritis, RCC: renal cell carcinoma, TE: 

thromboembolism, UC: ulcerative colitis, WM: Waldenstrom macroglobulinemia.  

The y axis are the diseases of the TAs, while length of the bars on x axis depicts the total number of TAs within each disease. Red bars show the number of TAs excluded from the review. Green bars 

and blue bars represent TAs that were included in Part A of the review but not Part B of the review. The only difference of the green and blue bars is that TAs depicted by blue bars have treatment-

sequencing models. The purple bars depict TAs that were included in Part B of the review, namely TAs that explicitly listed at least two treatment sequences as comparators in their cost-effectiveness 

analysis. It should be noted that although most of the TAs included in Part B has a treatment-sequencing model but this is not always the case. Only TAs that were available on the NICE website by the 

time of data extraction are included in this diagram. Due to limited graphic size, only diseases with at least two TAs were plotted. Diseases in this plot are ranked from top to the bottom by their total 

number of TA
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Table 3.7 Summary of the treatment-sequencing NICE TA review in comparison with previous relevant reviews 

Source of review Zheng et al. 2017* Viola et al. 2020* The current review 

Range of TAs 
TA1 – TA326 

(until Oct 2014) 

TA1 – TA527 

(until June 2018) 

TA1 – TA613 

(until November 2019) 

Type of documents 

reviewed 

For MTAs, only the 

ERG model was 

included 

For MTAs or where the ERG 

built a de novo model different 

from manufacturers, only the 

ERG’s model was considered 

All key documents (i.e. CS, ERG, FAD) are considered, and all models in any of the key 

documents are considered. Both Zheng and Viola excluded studies without a complete CS 

report for reviewing models, I extracted the CS model information if sufficiently mentioned 

in the ERG report. 

Definition of treatment 

switching 

Treatment switches due to clinical reasons, such as loss of efficacy (disease progression), intolerability (e.g. side effects or toxicity), non-compliance 

Criteria of treatment-

sequencing models 

Explicitly having a 

treatment-sequencing 

model structure 

Explicitly having a treatment-

sequencing model structure, but 

excluded models with only two 

lines of treatment or pre-post 

progression models 

-  Same as Zheng 2017 - - 

Topic of the review Examining TAs that 

employed treatment-

treatment sequencing 

models 

 

Examining TAs that employed 

treatment-treatment sequencing 

models and explored the 

selection of an appropriate 

baseline treatment-sequencing 

strategy 

Part A of the review: 

Exploring TAs involving 

discussions about 

treatment sequences 

A subset of Part A review: 

Identifying TAs that 

employed treatment-

treatment sequencing 

models 

Part B of the review (a 

subset of Part A review): 

Exploring TAs that listed 

at least two treatment 

sequences as 

comparators 

- 

Number of TAs  

by disease areas (n/total n, %) 

Number of TAs  

by disease areas (n/total n, %) 

Number of TAs 

by disease areas (n, %) 

Total 

TAs 

Oncology 13/93  14.0% 23/206  11.2% 174 76.0% 43 18.8% 7 3.1% 229 

Autoimmune 7/33  21.2% 14/53  26.4% 52 85.2% 31 50.8% 22 36.1% 61 

Cardiovascular 6/26  23.0% 2/37  5.4% 16 43.2% 4 10.8% 1 2.7% 37 

Neurology/mental health 4/13  30.8% 5/15  33.3% 6 60.0% 3 30.0% 1 10.0% 10 

Infectious disease 2/12  16.7% 1/19  5.3% 12 60.0% 4 20.0% 2 10.0% 20 

Diabetes mellitus 2/8  25% 3/10  30.0% 8 88.9% 4 44.4% 1 11.1% 9 

Other 6/63  9.5% 2/94  2.1% 29 30.9% 7 7.4% 1 1.1% 94 

Total 40/248 16.1% 50/434 11.5% 297 64.6% 96 20.9% 35 7.6% 460 

* These statistics were drawn from those published in the Zheng et al. 1 and Viola et al.2 study 

 These observations do not always have a treatment-sequencing model structure
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3.4.2.2 Features of treatment-sequencing considerations 

I mapped the key reasons for considering treatment sequences in TAs into six categories, as 

shown in Table 3.8. Each TA was classified based on the first key term detected, adhering to a set 

priority derived from terminology variations, including “treatment sequences,” “subsequent 

treatments,” “treatment pathways,” “treatment positions,” and “treatment-switching”. I extracted 

relevant descriptions from each TA and combined them to form finer reason categories based on 

subjective qualitative judgments. Discussions with supervisors helped refine and consolidate these 

into the final categories presented. For each reason, I provided up to five TAs in Table 3.8 as examples.  

It was found that over three-quarters of TAs mentioned subsequent treatments, significantly 

more than other terms, while more than 10% mentioned the term treatment pathway/treatment 

positions. This likely stems from alignment with the terminology used NICE guidelines for TAs.23 

Hence, broad terms such as “subsequent treatments” and “treatment pathways/treatment positions” 

triggered further record for additional reasons when they were the sole focus, allowing up to three 

reasons to be noted for each TA's treatment sequence considerations.  

The most common reasons include “considering subsequent treatments available within the NHS” 

(n = 229)190-194, “assessing a new technology in different treatment sequences” (n = 28)195-199, and 

“assessing the appraised technology using separate scopes (populations) within the TA depending on 

its candidate positions in the treatment pathway” (n = 23). Additionally, a few TAs set the comparison 

of treatment sequences as their main objective (n = 5)155,200-203, with occasional discussions on the 

optimal sequence for appraised technology, including “considering the optimal treatment sequence of 

appraised technology in the treatment pathway” (n = 1)204 and pointing out “uncertain optimal 

treatment sequences” (n = 3).198,199,205 Beyond evaluating entire treatment sequences, several TAs 

focused on identifying the optimal placement for the technology under review. This involves: 

choosing a comparable position for the appraised technology in the treatment pathway relative to its 

comparators in a cost-comparison analysis (n = 1)206, “exploring the treatment position of a new 

treatment” (n = 1)207, and “assessing whether the appraised technology will change the current 

treatment pathway” (n = 1)208. 

In terms of economic modelling, a few TAs explicitly mentioned establishing de novo treatment-

sequencing models, rather than adapting non-treatment-sequencing models from previously approved 

TAs (n = 3)207,209,210. Beyond the structure of treatment-sequencing models, one TA attempted to 

model survival curves for different sequences.211 Several barriers to establishing treatment-

sequencing models were highlighted, including “treatment sequences should be modelled, but outside 

of ERG remit” (n = 1)212, “modelling treatment sequences will result in high uncertainty due to the 

lack of data” (n = 1)213, and “no data for modelling treatment sequences” (n = 1).214 
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Table 3.8 Primary reasons for mentioning treatment sequences in TAs (Part A review)  

Reasons for mentioning treatment sequences* 
Number 

of TAs 

Examples 

(listed up to 5) 

Treatment sequences – assessment  

Assessing a new drug in different treatment sequences 28  

TA197, TA409, 

TA426, TA154, 

TA171 

Compare different treatment sequences 5 

TA195, TA238, 

TA292, TA293, 

TA319 

Considering different treatment pathways/sequences based on trial evidence 4 
TA137, TA187, 

TA460, TA462 

Treatment sequences/sequential treatments should be explored in future research 4 
TA365, TA413, 

TA430, TA499 

Uncertain optimal treatment sequences 3 
TA154, TA171, 

TA178 

Uncertain trial evidence of treatment sequences 2 TA391, TA396 

Uncertain treatment sequences in NHS 1 TA359 

Assessing two or more appraised treatments in treatment sequences within a MTA 1 TA535 

Considering the optimal treatment sequence of appraised technology in the 

treatment pathway 
1 TA212 

Conducting treatment-sequence network-meta analysis 1 TA456 

Treatment sequences - modelling 

Using a treatment-sequencing model rather than using previously approved models 

within NICE TAs 
3 

TA448, TA504, 

TA533 

Modelling the survival of different treatment sequences 1 TA496 

Treatment sequences should be modelled but outside of ERG remit 1 TA164 

Modelling treatment sequences will result in high uncertainty due to the lack of data 1 TA455 

No data for modelling treatment sequences 1 TA180 

Subsequent treatments 

Considering subsequent treatments available in the NHS 229 

TA605, TA607, 

TA610, TA611, 

TA612 

Considering subsequent treatments available in the NHS based on trials 3 
TA458, TA471, 

TA498 

Considering the comparison of subsequent treatments available in the NHS and in 

trials 
2 TA496, TA572 

Considering the sequential use of treatments in clinical practice  2 TA164, TA199 

Considering subsequent treatments available in trials 1 TA183 

Treatment pathways 

Assessing whether the appraised technology will change the current treatment 

pathway 
1 TA534 

Treatment positions 

Assessing the appraised technology using separate scopes (populations) within the 

TA depending on its candidate positions in the treatment pathway 
23 

TA137, TA178, 

TA190, TA288, 

TA546 

Choosing a proposed treatment position 2 TA190, TA388 

Choosing a comparable position for the appraised technology in the treatment 

pathway relative to its comparators (cost-comparison analysis) 
1 TA497 

Exploring the treatment position of a new treatment 1 TA533 

Treatment-switching 

Taking treatment-switching in clinical practice into account 14 

TA161, TA266, 

TA298, TA345, 

TA482 

Taking treatment-switching in trial into account 5 

TA322, TA357, 

TA399, TA432, 

TA550  

Taking treatment-switching in clinical practice and in trial into account 1 TA320 

ERG: evidence review group, NICE: The National Institute for Health and Care Excellence, MTA: multiple TA, NMA: network 

meta-analysis, TA: technology appraisals, NHS: national health services. 

* Only the primary reasons (up to three) regarding treatment sequences discussions of every TA were recorded. Treatment-switching 

in trials was a common issue in oncology TAs. Therefore, treatment-switching in trial was only recorded as a primary reason in the 

current review only if no other treatment-sequence related discussions were mentioned in a TA
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With regards to clinical evidence, a subset of TAs discussed using existing evidence to ensure 

that appropriate treatment sequences have been considered, such as “considering different treatment 

pathways/sequences based on trial evidence” (n = 4)215-218, “considering subsequent treatments 

available in the NHS based on trials” (n = 3)219-221, “considering the comparison of subsequent 

treatments available in the NHS and in trials” (n = 2)211,222, “considering the sequential use of 

treatments in clinical practice” (n = 2)212,223, and “considering subsequent treatments available in trials” 

(n = 1)224. Treatment-switching associated considerations were towards utilising treatment-switching 

information from trials (n = 14)225-229, clinical practice (n = 5)230-234, or both (n = 1)235 to inform what 

treatment sequences should be included for decision making. Advanced statistical analysis on existing 

data was also found to synthesise effectiveness evidence for treatment sequences (n = 1)236 (i.e., 

treatment-sequence network-meta analysis). Despite the need of evidence, the scarcity of evidence to 

inform decisions involving treatment sequences was highlighted in a small number of TAs, including 

concerns about “uncertain trial evidence of treatment sequences” (n = 2)237,238, “uncertain treatment 

sequences in NHS” (n = 1)239, and “treatment sequences or the use of sequential treatments should be 

explored by future research” (n = 4)240-243. These coincide with the aforementioned clinical evidence 

scarcity challenges of in modelling treatment sequences. 

3.4.3 Part B review: comparative effectiveness of treatment sequences in NICE TAs 

Part B examined 35 TAs, predominantly STAs (n = 30), including a Cancer Drugs Fund (CDF) 

rapid review197 and two rapid reviews with company Patient Access Scheme (PAS) submissions.157,244  

Additionally, it comprised four MTAs155,188,245,246 and one FTA.247 The TAs covered a range of disease 

areas, including 7 in oncology, 22 in autoimmune diseases, and 6 in other diseases.  

I summarise the key findings in several tables: Table 3.9 includes essential information about 

each TA, including the disease topic, an indicator of any existing treatment-sequencing model, and 

data sources used to inform the effectiveness of treatment sequences. Details for treatment-

sequencing comparisons for each TA are presented in Appendix 3.4, including the candidate 

position(s) of the appraised technology and treatment sequences compared. For TAs employing 

treatment-sequencing models, I documented their model specifications, including time horizon, 

model type, and model states. Finally, I synthesised the current practice and challenges to populate 

the effectiveness of treatment sequences in Table 3.10. The findings from these tables are further 

discussed in the sections below, including: (1) an overview of treatment sequence compactors 

(Section 3.4.3.1), (2) features of treatment-sequencing models (Section 3.4.3.2), (3) data sources used 

to inform the comparison of treatment sequences (Section 3.4.3.3), and (4) current practice and 

challenges to populate the effectiveness of treatment sequences (Section 3.4.3.4) 
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Table 3.9 Data sources used to inform comparative effectiveness of treatment sequences in 

cost-effectiveness analyses (Part B review) 

 TA number Sequencing-

Model 

Data sources to inform the comparative effectiveness of 

treatment sequences 

Effectiveness 

simplifying 

assumption 

Pivotal 

trials 

Other 

trials 

NMA/ 

MA 

RWE 

Oncology 

Leukaemia 

 

 

408     X  

426 X (CMA)  NA NA NA NA 

 (TA251) X   X X 

Lymphoma 137    X   X  

462 X, but  in 

amendment 
X  X X  

Melanoma 319     X  

Prostate cancer 377  X   X  

580  X   X X 

Subtotal (n) 7 6 (86%) 3 (43%) 7 (100%) 6 (86%) 0 (0%) 5 (71%) 

Autoimmune 

ANCA-associated 

vasculitis  

308 
   X X  

Immune 

thrombocytopenic 

purpura 

293  
    X  

Systematic Juvenile 

Idiopathic Arthritis 

238 
    X  

Psoriasis 103* 

AG 
  X X   

419  (PAS)§   X  X 

433  (PAS)§   X  X 

442       

445*  

AG 
  X X  X 

UCB    X  X 

475       

511   X X   

521 X (FTA)# NA NA NA NA NA 

537   X X  X 

543   X X  X 

574    X  X 

575   X X  X 

Rheumatoid arthritis 195  

AG 
    X  

Abbot   NA NA NA NA 

Wyeth  NA NA NA NA NA 

S-P  NA NA NA NA NA 

Roche   NA NA NA NA 

BMS  NA NA NA NA NA 

225       

375 

AG 
  X X   

Abbvie  NA NA NA NA NA 

BMS  NA NA NA NA NA 

MSD  NA NA NA NA NA 

Pfizer  NA NA NA NA NA 

Roche  NA NA NA NA NA 

UCB  NA NA NA NA NA 

415       

466    X  X 

485   X X   

Ulcerative colitis 547   X   X 

Subtotal (n) 22 21 (96%) 21 (96%) 12 (55%)  8 (36%) 17 (77%) 12 (55%) 
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 TA number Sequencing-

Model 

Data sources to inform the comparative effectiveness of 

treatment sequences 

Effectiveness 

simplifying 

assumption 

Pivotal 

trials 

Other 

trials 

NMA/ 

MA 

RWE 

Other diseases 

Cardiovascular 

Thromboembolism 249    X   

Neurology/mental health 

Bipolar disorder  292    X  X 

Infectious disease 

Hepatitis B 154 
¶   X X X 

173 
¶      

Endocrine disorder 

Diabetes Mellitus 418    X   

Ophthalmology 

Macular oedema 409    X   

Subtotal (n) 6 6 (100%) 6 (100%) 6 (100%) 1 (17%) 5 (83%) 4 (67%) 

Total (n) 35 33 (94%) 30 (86%) 25 (71%) 15 (43%) 22 (63%) 21 (60%) 

ANCA: antineutrophil cytoplasmic antibodies, BMS: Bristol Myers Squibb, CDF: cancer drug funds, CMA: cost-minimisation 

analysis, DSU: Decision Support Unit, FTA: fast track appraisal, MA: meta-analysis, NA: not available, NMA: network meta-

analysis, PAS: Patient Access Schemes, RWD: real world data, S-P: Schering-Plough, TA: technology appraisals 

Only AG report are counted in subtotal and total.  

* Comparing two or more sequences was only considered in AG report, but not in some of the company submissions (i.e., TA445: 

secukinumab (Novartis); TA 103: efalizumab (Serono) and etanercept (Wyeth))  

 Effectiveness of full treatment sequences was not estimated in the company’s submission because it was not feasible within FTA 

cost-comparison. However, costs of different treatment sequences were calculated. 

: The NICE DSU report considers two CDF review at the same time (TA 241 and TA 251 for TA 425 and TA 426, respectively). 

However, comparing two or more sequences was only considered in the original report of Company submissions and AG in TA 251, 

and the DSU CDF review report of the TA251 part. Data sources used in TA251 were informed by summary provided in TA426 as 

TA251 was no longer available on the NICE website. A cost-comparison analysis was conducted by the company in the CDF review 

(TA426). The company assumed that health outcomes for all treatments are equivalent, including treatment durations. Effectiveness 

of full treatment sequences was not estimated. 

 : = at least one treatment-sequencing model from either company submission report, ERG report or AG report; X = There was 

economic model, but none of the models contain an explicit treatment-sequencing structure. 

§ Patient Access Schemes submission: modelling details unavailable.  

# No economic models are required for FTA submission. 

 Information unavailable due to the unavailability of full CS submission. 

 MSD prepared their submission for two drugs: golimumab and infliximab, so two CS reports (both containing comparisons of 

treatment sequences and sequencing models) were submitted.  

¶ The sequence of drug treatments was not explicitly modelled in the structure, but subsequent transplantation was. Nevertheless, 

clinical impact of subsequent treatment was incorporated as time-varying probabilities 

 

3.4.3.1  Treatment sequence comparators 

This section offers an overview of treatment sequences comparators across disease categories, 

including oncology, autoimmune, and others. For detailed information, see Appendix 3.4 and the first 

two columns of Table 3.9. 

3.4.3.1.1 Oncology treatment sequence comparators 

The majority of oncology TAs were in haematological malignancies (n = 4, 57%)197,215,218,248, 

while three (43%) were in solid tumours (Table 3.9).126,203,249 The majority of TAs examined two to 

three lines of therapy (LOTs), though a few explored up to four (Appendix 3.4). The ERG/AG 

sometimes conducted scenario analyses with alternative treatment sequences when they disagreed 

with those proposed by manufacturers.126,197 Regarding treatment positions in manufacturer’s 

analyses (Appendix 3.4), two TAs (29%) involved comparisons of treatment sequences with the 
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appraised technology only as a first-line treatment.197,218 For example, in TA462218, the 

manufacturer’s scenario analysis assessed nivolumab as a first-line treatment for refractory Hodgkin 

Lymphoma with the following treatment sequences:  

o Nivolumab → allogenic stem-cell transplantation → best supportive care (BSC)  

o Standard of care → allogenic stem-cell transplantation → BSC 

By contrast, in the remaining five oncology TAs126,203,215,248,249, the appraised technology was 

positioned at various LOTs within an incremental CEA. Despite this, most aimed to evaluate the 

appraised technology primarily as a first-line treatment for treatment-naïve or -refractory 

patients.126,203,249 For example, TA580 assessed enzalutamide for non-metastatic hormone-relapse 

prostate cancer (nmHRPC) as a first-line option, with comparisons including enzalutamide at 

different LOTs249: 

o Enzalutamide → androgen deprivation therapy (ADT) → ADT or docetaxel → BSC 

o ADT → enzalutamide → ADT or docetaxel → BSC  

Similarly, in TA377126, enzalutamide was appraised as a first-line treatment for metastatic 

hormone-resistant prostate cancers (mHRPC) and allowed as a third-line standard of care. 

Consequently, the manufacturer's base-case analysis compared the following treatment sequences: 

o Enzalutamide → docetaxel → palliative 

o BSC → docetaxel → enzalutamide → palliative 

o Abiraterone → docetaxel → palliative 

In contrast to the enzalutamide TAs (TA580249 and TA377126), TA408248 and TA137215 not only 

positioned the appraised technology at multiple points within the treatment sequences but also sought 

approval for its use at these varied positions within the same appraisal. For example, in TA408248, 

pegaspargase was considered for both first and second-line treatment in acute lymphoblastic leukemia 

(ALL), but consecutive use was prohibited. Consequently, the comparisons made were: 

o Pegaspargase → Erwinase   

o Native E.coli asparaginase → Erwinase 

o Erwinase → pegaspargase 

o Erwinase → native E.coli asparaginase 

Additionally, TA137215 assessed rituximab's cost-effectiveness for follicular non-Hodgkin’s 

lymphoma (NHL), permitting its use at various sequence positions, including consecutively. The 

manufacturer’s aimed to demonstrate rituximab’s cost-effectiveness as induction therapy (i.e., first 

treatment position), standalone maintenance therapy (i.e., second treatment position), or both, 

resulting in comparisons of the following sequences: 
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o R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) → 

rituximab maintenance 

o R-CHOP → observation 

o CHOP → rituximab maintenance 

o CHOP → observation 

3.4.3.1.2 Autoimmune treatment sequence comparators 

Autoimmune TAs were primarily in psoriatic disease157,158,244-247,250-255 (n = 12, 55%) and 

rheumatoid arthritis (RA)155,188,256-259 (n = 6, 27%). The remaining ones, with one each, covered 

antineutrophil cytoplasmic antibodies-associated vasculitis156, immune thrombocytopenic purpura202, 

systemic juvenile idiopathic arthritis200, and ulcerative colitis (Table 3.9).260 Treatment sequences in 

autoimmune diseases vary from two to ten LOTs and may result in more than eight treatment 

sequences within an incremental CEA (n = 6)155,188,202,244,251,254 due to the availability of numerous 

treatments (Appendix 3.4). All four MTAs reviewed were autoimmune TAs, for which the treatment-

sequencing comparisons from CS and AG reports were summarised separately (Table 3.9, Appendix 

3.4). In two MTAs188,245, the AG allowed treatment sequences containing appraised technologies from 

different manufactures, while in another two MTAs246,261, the AG only compared appraised 

technologies from different manufacturers at comparable positions in separate treatment sequences. 

Autoimmune treatments were often assessed for use in populations with diverse prior treatment 

histories (i.e, number of LOTs). Consequently, many TAs assessed the appraised technology among 

populations with different treatment histories (i.e., different scopes/populations) in separate CEAs 

within the same appraisal (Appendix 3.4). An example is TA543253, which assessed tofacitinib for 

psoriatic arthritis in three specific populations, each with a different number of prior treatments: 

o Patients who did not respond to at least two non-biologic-disease-modifying anti-rheumatic 

drugs (non-bDMARDs) 

 Tofacitinib → ustekinumab → BSC 

 Apremilast → ustekinumab → BSC 

 Certolizumab pegol → ustekinumab → BSC 

 Etanercept → ustekinumab → BSC 

 Golimumab → ustekinumab → BSC 

 Infliximab → ustekinumab → BSC 

 Secukinumab 188 mg → ustekinumab → BSC 

 BSC 

 

o Patients who did not respond to non-bDMARDs and at least one tumour necrosis factor 
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inhibitor (TNFi) 

 Tofacitinib → BSC 

 Secukinumab 300 mg → BSC 

 Ustekinumab → BSC 

 BSC 

o Patients who were contracted or intolerant to an TNFi 

 Tofacitinib → BSC 

 Secukinumab 188 mg → BSC 

 Ustekinumab → BSC 

 BSC 

In TA543253, tofacitinib was appraised for use at different positions within the disease pathway, 

but was specifically assessed at a certain position (i.e., first-line) within each CEA, corresponding to 

each CEA's distinct scope/population (e.g. three slightly different target populations in TA543). This 

approach was also found in six other STAs158,252,256,258-260 and several CS reports within two MTAs 

(TA445: Union Chimique Belge (UCB); TA375: Abbvie, UCB)246,252. In contrast, five 

STAs156,157,200,202,257 and a CS report in MTA188 (TA375: Pfizer) included treatment sequences with 

the appraised health technology placed at different LOTs within the same incremental- or paired- 

CEA in base-case or sensitivity analyses.  

Another five STAs247,250,251,254,255 and several CS reports in two MTAs155,188 (TA195: Wyeth, 

Schering-Plough, Bristol Myers Squibb (BMS); TA375: BMS, Merck Sharp & Dohme (MSD) 

infliximab, MSD golimumab) assessed the appraised technology only at a specific LOT in a single 

incremental CEA. Finally, TA433244, an STA, uniquely performed multiple incremental CEAs, 

consistently applying the appraised technology in the same position within the same population (i.e., 

first-line following non-biologic systematic treatment), with variations in the primary comparator at 

first-line and the number of LOTs for each CEA. 

3.4.3.1.3 Treatment sequence comparators in other diseases 

The six TAs in other diseases covered treatments for thromboembolism (n = 1)262, bipolar 

disorder (n = 1)201, hepatitis B (n = 2)198,263, diabetes (n = 1)264, and macular oedema (n = 1)196. 

Treatment sequences in these TAs had shorter LOTs, typically up to three lines, similar to oncology 

TAs (Appendix 3.4). Four of these TAs included comparisons of treatment sequences with the 

appraised technology used at different LOTs within the same incremental CEA.198,201,263,264 Similar 

to TA543 in autoimmune diseases253, TA249 also assessed the appraised technology (dabigatran) at 

different positions in the treatment pathway using separate incremental CEAs.262 In TA 418264, 

dapagliflozin was only considered as a first-line therapy for type 2 diabetes in the CS report, but the 
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ERG preferred an alternative analysis where patients remained on dapagliflozin throughout the entire 

treatment sequence as patients were more likely to receive later-line treatments as add-ons rather 

switch to a different treatment.  

3.4.3.2 Treatment-sequencing models 

In Table 3.9’s third column, I summarise whether any treatment-sequencing model was 

employed in each CS and AG report. Three TAs lacked treatment-sequencing models, despite 

identifying several treatment sequences as comparators.197,218,247 For TA462218, initially, the 

manufacturer developed a non-treatment sequencing model for two-line treatment comparisons in the 

CS report, then added a treatment-sequencing model for an alternative scenario analysis in a revised 

submission to compare three-line treatment sequences. Two FTAs, TA426197 and TA521247, lacked 

economic models because they focused solely on cost-minimisation analyses (CMA). Although 

TA426 did not employ any treatment-sequencing model, the TA it reviewed (TA251265) was likely to 

contain Markov model or PartSM involving sequencing information. This assumption is based on the 

nature of TA251 as a MTA that evaluates the use of dasatinib, nilotinib, and imatinib as first-line 

treatments for chronic myeloid leukaemia (CML). Considering that these therapies may be 

sequentially, it is logical to assume that the economic models might incorporate sequencing 

information, aligning with the typical approaches in oncology, as outlined in Section 3.4.3.1.1. 

However, model structure details were unavailable in TA251. Apart from the aforementioned TAs 

without any treatment-sequencing models, treatment-sequencing models were omitted in several CS 

reports in two autoimmune MTAs.245,246 Specifically, two manufacturers in TA103 (Serono, Wyeth) 

and one manufacturer in TA445 (Novartis) did not build a treatment-sequencing model because they 

did not list treatment sequences as comparators. Thus, information from these three CS reports were 

not reported in Table 3.9. However, TA103 and TA445 were still included in the Part B review since 

at least one document—either a CS or AG report—in each TA listed at least two treatment sequences 

as comparators. 

Appendix 3.4 shows that Markov models were predominantly used for treatment-sequencing in 

oncology (4 out of 6, 67%)126,215,218,248 and autoimmune diseases (22 out of 33, 67%)156-

158,188,200,202,244-246,250-257,259,260. Two of these models in oncology had variations: one was a semi-

Markov model218, while another was attached to a decision-tree.248 State-transition models (e.g. 

Markov model) were also the most prevalent structure for treatment-sequencing models in other 

diseases (5 out of 6, 83%)196,198,201,262,263. In oncology, PartSMs were the second most utilised model 

structure (2 out of 6, 33%)203,249, always in combination with Markov or Semi-Markov models. 

Conversely, for the remaining treatment-sequencing models in autoimmune diseases (11 out of 33, 

33%)155,188,258 and other diseases (1 out of 6, 17%)264, patient-level simulation models, such as discrete 
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event simulations (DES), were utilised. For MTAs, models from each CS and AG were counted 

individually. 

3.4.3.3 Data sources to inform the comparison of treatment sequences 

This section provides an overview of data sources used to inform the effectiveness of treatment 

sequences in CEAs. Table 3.8 shows which data sources were used in each TA, including pivotal and 

other trials, NMA/MA, RWE, and effectiveness simplifying assumptions. For simplicity, discussions 

about MTAs were based on the AG report unless otherwise specified, while discussion about other 

TAs involved a combination of CS and ERG considerations. Two TAs did not contain sufficient 

information about data sources due to conducting cost-minimisation analyses (TA426, TA521) and 

assuming non-inferiority between the appraised treatment and its comparator for being used at 

identical positions in the treatment sequences.197,247 The majority of TAs (n = 30, 86%) combined 

evidence from an array of data source types to determine the effectiveness of treatment sequences, 

with the exception of four psoriatic disease TAs246,252,253,255 using only NMA/MA evidence (noting, 

however, NMA/MA inherently pools multiple sources) and one hepatitis B TA198 using only pivotal 

trial evidence. Most TAs specified using effectiveness simplifying assumptions to some extent, with 

only four oncology TAs not explicitly specifying any.126,215,218,249 Note, the “use of data” here broadly 

refers to informing parameters or model structures that can impact treatment sequence effectiveness 

estimates in the economic model. It is not confined to inputs for LOT-specific effectiveness (though 

which it primarily is) or the effectiveness estimates of entire treatment sequences. 

For oncology TAs, pivotal trials (100%) and other trials (86%) were the most common evidence 

sources to determine effectiveness of treatment sequences. None of the oncology TAs applied 

evidence from an NMA/MA. In contrast, most of the autoimmune TAs (77%) used NMA/MA results 

to inform their decision models, while the direct use of pivotal (55%) or other trial evidence (36%), 

rather than being used as sources for NMA/MA, was relatively low. TA in other diseases tend to 

combine the direct use of pivotal trial evidence (100%) and NMA/MA evidence (83%), while one TA 

in hepatitis B263 incorporated evidence from non-pivotal trials. Non-pivotal trials and RWE were 

always used in combination with other data sources in CEAs, never alone. RWE complemented trial 

or NMA/MA evidence in over half of all TAs, most notably in oncology (71%). These include 

informing parts of the treatment sequence's effectiveness, other treatment-sequencing model 

structures, or key model assumptions. These are discussed in detail in the next section (Section 

3.4.3.4). 

3.4.3.4 Current practice and challenges to populate the effectiveness of treatment sequences 

Table 3.10 summarises current practices and challenges in determining the effectiveness of 

treatment sequences. Each row of the table represents an approach for populating the effectiveness of 
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treatment sequences, with Section (A) detailing the effectiveness simplifying assumptions that have 

been used, and Section (B)-(E) outlining approaches for adapting evidence from pivotal trials, other 

trials, NMA/MA, and RWD. I also included an additional Section (F) to address challenges related to 

treatment-sequencing comparisons that did not fit into the other categories but were described either 

by the appraisal committee, the company, or the ERG. Each column of the table lists TAs that applied 

a particular approach in different disease types. 

It is worth noting that the table covers not only approaches that directly determine the 

effectiveness of entire treatment sequences or parts of them (e.g. LOT-specific effectiveness), but also 

those that populate parameters that indirectly affect the effectiveness of treatment sequences (e.g. 

death rate) or to inform key model assumptions. Moreover, I also included approaches where data 

sources were used for external validation or to inform treatment-sequencing model structures. The 

following paragraphs describe the findings in accordance with the structure of Table 3.10. Statements 

related to specific approaches are labelled with their corresponding numbers from Table 3.10. 

3.4.3.4.1 A. Effectiveness assumptions 

An approach to determine the effectiveness of treatment sequences is to assume that all treatment 

sequences have equal effectiveness (A1), which was seen in an oncology TA where the manufacturer 

performed a CMA for a CDF rapid review (TA426).197 The ERG, however, critiqued that such an 

assumption is only applicable when comparing strategies with the same number of LOTs. Approach 

A2 assumes equal effectiveness for all subsequent LOTs (second-line onwards), irrespective of prior 

treatments (i.e., first-line treatment). This approach was applied in a diabetes TA (TA418)264, treating 

the full sequence of subsequent treatments after any first-line treatment as equally effective in 

managing blood sugar levels. Approach A3 assumes a treatment's effectiveness remains unchanged 

when being use at any LOT, including the first-line. While common in autoimmune and other disease 

TAs, it was not observed in oncology. Although several TAs that made such an assumption 

acknowledged the possibility that a treatment may be less effective when given later in a sequence, 

no evidence was found to adjust for this.200,201,251,253,258 In TA485, despite ERG warnings in TA485 

about potential inaccuracies in comparing different LOTs, the equal effectiveness assumption was 

maintained.259 
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Table 3.10 Challenges and approaches in deriving comparative effectiveness of treatment sequences 

Challenges and justifications used for each type of data source Oncology Autoimmune Others 

A. Effectiveness assumptions 

A1. Assuming the effectiveness of different treatments sequences are equal TA426 - - 

A2. Assumes equal effectiveness for all subsequent LOTs (second-line onwards), irrespective of prior 

treatments (i.e., first-line treatment) 

- - TA418 

A3. Assuming a treatment has the same effectiveness when being used in different LOTs - TA293, TA238, TA419, TA433, 

TA445(AG, CS: UCB), TA475, 

TA511, TA543, TA574, TA575, 

TA195(AG), TA375(AG), TA415, 

TA466, TA485, TA547 

TA249, TA292, TA154, 

TA173 

A4. Assuming that a treatment's effectiveness varies when used in different LOTs, and using a treatment 

modifier to approximate the degradation effect in later lines 

TA319 TA308, TA419, TA442, TA195(AG) - 

A5. Assuming treatments that have similar treatment mechanisms have the same effectiveness or bundled-

treatment effectiveness 

- TA308, TA195(AG, CS: Abbot, 

Roche), TA225, TA415 

- 

A6. Assuming maintained long-term treatment effect after the last-line of treatment - - TA409 

A7. Assuming there is a constant non-treatment-specific disease severity progression rate - TA225 - 

A8. Assuming there is a non-treatment-specific and non-LOT-specific withdrawal rate - TA238, TA103(AG), TA419, 

TA433, TA442, TA537, TA225, 

TA415 

- 

A9. Assuming there is a treatment-specific but non-LOT-specific treatment withdrawal rate  - - TA249 

A10. Assuming there is a non-treatment-specific risk of death after x years TA319 - - 

A11. Assuming there is a non-treatment-specific increased risk of death post-treatment failure TA408   

B. Pivotal trials 

Data being used as effectiveness inputs 

B1. Using data from a two-stage randomised SMART to inform the effectiveness of treatment sequences as 

those used in the SMART 

TA137 - - 

B2. Using the OS of the first-line treatment to represent the OS of a whole treatment sequence TA251#, TA319, TA377 - - 

B3. Estimating OS based on cumulative duration of each LOT in trials TA251# (scenario 

analysis) 

- - 

B4. Informing a specific LOT-effectiveness (e.g., PFS/response rate of first-line treatment) in the model with 

effectiveness estimates from the same LOT in pivotal trials 

TA319, TA377, TA580 TA308, TA293 - 

B5. Due to lack of head-to-head comparison of the appraised technology and its comparator, the effectiveness 

of the comparator is assumed to be equivalent to that of the appraised technology in the pivotal trial (LOT-

specific, e.g. The appraised technology and the comparator are assumed to have equal effectiveness when 

used as the same LOT.) 

TA408 TA293 - 

B6. Using effectiveness estimate from patients with similar treatment history to inform the effectiveness 

estimate of a specific LOT in the model 

- TA308, TA445(CS: UCB), TA574, 

TA195(AG), TA466 

- 

B7. Using the effectiveness estimate from a specific LOT or unspecified LOT to inform a treatment’s 

effectiveness across multiple different LOTs 

- TA238 TA249, TA292, TA154, 

TA173 
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Data being used as inputs that may indirectly affect treatment effectiveness 

B8. Informing the proportion of patients moving to the next LOTSS (e.g., first-line to second-line) TA377 - TA409 

B9. Informing the treatment-specific discontinuation rate (non-LOT specific) - TA419, TA433, TA442, TA475., 

TA195(AG) 

TA292, TA418 

B10. Informing patient demographics in the model (non-LOT specific) - TA442, TA225, TA415 TA418 

Data being used as external validation 

B11. Acting as an external source to cross-validate the effectiveness of a specific LOT, which has been 
modelled using other data sources 

TA580   

Data being used to inform model structures 

B12. Informing the need of modelling treatment sequence - - TA409 

B13. Informing model assumptions - TA442 - 

C. Other trials 

Data being used as effectiveness inputs 

C1. Using the OS of the first-line treatment from a comparator’s first-line pivotal trial to represent the OS of a 

whole treatment sequence for the comparator  

TA251#, TA319, 

TA377, TA580 

- - 

C2. Using LOT-/treatment-history-specific effectiveness evidence to inform LOT-specific effectiveness TA319, TA377, TA580  - 

C3. Using effectiveness estimates from a specific LOT or unspecified LOT to inform the effectiveness of 

multiple LOTs 

TA408 TA293, TA238, TA415, 

TA195(AG), TA225, TA547 

- 

Data being used as inputs that may indirectly affect treatment effectiveness 

C4. Informing treatment-specific discontinuation/resistance rates (non-LOT specific) - TA442 TA173 

Data being used as external validation 

C5. Acting as external source to guide the choice of treatment sequences TA408 - - 

C6. Acting as an external source to validate or justify model assumptions TA408, TA319 - - 

D. NMA/MA 

Data being used as effectiveness inputs 

D1. Using effectiveness estimates from patients with similar treatment history to inform effectiveness estimate 

of a drug being used as a specific LOT or multiple LOTs  

- TA442, TA445 (CS:UCB), TA537, 

TA543, TA574, TA575, TA415, 

TA466, TA547 

- 

D2. Using the effectiveness estimates of a drug from unspecified LOTs to inform the effectiveness estimates of 

it being used in multiple LOTs 

- TA103(AG), TA419, TA433, 

TA442, TA445(AG), TA511, 

TA225, TA375(AG)  

TA249, TA173, TA409 

Data being used as inputs that can potentially have an indirect effect on treatment effectiveness 

D3. Informing the non-treatment-specific discontinuation rate - TA537 - 

E. RWE 

Data being used as effectiveness inputs 

E1. Using existing RWE to inform the effectiveness of subsequent lines as a whole (e.g. post-progression 

survival) 

TA319, TA462 - - 

E2. Using existing RWE to inform treatment effectiveness in unspecified LOTs - TA293, TA238, TA195(AG), 

TA375(AG) 

TA249 
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Data being used as inputs that may indirectly affect treatment effectiveness 

E3. Informing duration until discontinuation/discontinuation or death rates (non-LOT specific) TA319, TA408 TA308, TA293, TA238, 

TA103(AG), TA475, TA511, 

TA195(AG), TA225, TA415, 

TA466, TA485 

TA292 

E4. Informing patient demographics in the model - TA238, TA195(AG) TA249, TA418 

E5. Using RWD to estimate an effect modifier of subsequent or long-term treatment - TA511 TA409 

E6. Using RWD to calibrate for subsequent events - - TA154 

E7. Informing the proportion of different clinical events within a health state - - TA418, TA409 

E8. Mapping different response types of those in trials and models - TA308, TA433, TA475, 

TA375(AG), TA415, TA466 

- 

Data being used as external validation 

E9. Acting as external source to guide the choice of treatment sequences TA137 TA547 - 

E10. Acting as an external source to validate or justify model assumptions TA319, TA377 TA308, TA442, TA375(AG) TA249, TA292, TA173 

E11. The AG was granted access to multiple source of registry data to assess model parameters and correlations - TA375(AG) - 

F. Additional key challenges related to comparing treatment sequences (that have been explicitly mentioned in TAs) 

Challenges in modelling treatment sequences related to data 

F1. A lack of sequence-specific effectiveness data TA319 TA574, TA195(AG) TA292 

F2. A lack of access to relevant UK data to inform treatment pathways and to evaluate treatment effectiveness. TA408 TA293 TA292 

F3. Paucity of time-varying data  - TA433, TA442, TA537, TA575, 

TA415 

- 

F4. PFS and time to the next line of treatment are sometimes used to proxy each other when one of them was 

unavailable  

TA319 - - 

F5. Model structure may not be appropriate to address the decision problem with lack of evidence available on 

treatment sequences 

TA319 - - 

F6. Challenges of using evidence from real-world treatment-sequencing studies - TA195(AG) - 

F7. Awaiting results from ongoing studies exploring the comparison of treatment sequences TA319, TA377 - - 

Other data-related challenges 

F8. Lacking head-to-head evidence, using data from indirect comparison of trials may introduce bias - TA293, TA238, TA195(AG), 

TA225, TA415 

- 

F9. Longer-term data are required - TA103(AG), TA225, TA375(AG) TA292, TA154, TA173 

Challenges related to selecting treatment sequences 

F10. Challenges include all possible treatment sequences as comparators - TA442, TA511, TA537, TA574, 

TA575, TA485, TA547 

- 

F11. The rapidly evolving treatment landscape makes it difficult to model treatment pathway. TA377 - - 

F12. Potential omissions of other relevant treatment sequences as comparators  TA319, TA377 TA308, TA293, TA238, TA419, 

TA433, TA442, TA575, TA415 

TA292, TA418 

F13. Treatment sequences may depend on patient characteristics at clinical practice rather than following the 
average population pattern  

- TA293, TA103(AG) TA292 

F14. Additional administrative considerations need to be taking into account when considering what treatment 
sequences to be included in the comparison   

TA377, TA293 - TA292, TA409 

F15. Concerns of including treatment sequences with comparators that are not cost-effective - TA475, TA511, TA574, TA575 - 

F16. Cost-effectiveness results may be sensitive to the choice of what treatment sequences have been included - TA442 - 
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in comparison 

F17. Challenges in deciding the number of LOTs that should be modelled - TA238, TA537 TA249, TA292 

F18. Concerns of having different length of treatment sequences (LOTs) as comparators - TA308, TA433, TA475, TA466 - 

F19. The assumption that treatment duration equals to time to relapse do not always hold - TA308, TA238 - 

Other modelling-related challenges  
   

F20. Clinical data does not support the choice of model structure  - TA308 - 

F21. Challenges in revising models to accommodate alternative treatment sequences upon ERG request - TA433 TA249 

F22. Challenges in modelling survival and treatment duration in relation to model structure TA377 - - 

F23. Inconsistent cost and effectiveness inputs in the treatment-sequencing model structure TA377 - - 

F24. Inconsistent timing of receiving subsequent treatments in real-world practice and that modelled based on 
clinical trial outcome measurements 

- - TA292 

F25. Model results may be sensitive to the time horizon - TA475 TA249 

F26. Unmatched population between the data source and those intended to be modelled - TA442 - 

F27. Technical modelling error - TA419 - 

Decision-making concerns 
   

F28. Pair-wise comparison versus incremental analysis when comparing treatment sequences - TA442 - 

F29. Requiring disaggregated LY results of treatment sequences for decision making   - TA442 - 

F30. Considering the appraised technology as a replacement to an existing technology or an extension to the 
current treatment sequences  

- TA308, TA419, TA238 - 

F31. Difficulties in making suggestions regarding the position of the appraised treatment in the treatment 
pathway 

- TA419, TA433 TA292, TA409 

F32. Assessing the appraised technology's position in the treatment pathway through separate CEAs for 
different target populations/scopes, instead of comparing its multiple sequence positions in one CEA 

- TA225, TA375(AG) - 

F33. The danger of TA approval leading to the sequential use of clinical practice (that lacked robust clinical 
evidence) 

TA319 - - 

F34. The Committee making statements that they were only considering the scenario of placing the new 
technology in the sequence compared to another drug in the sequence rather than depicting the optimal 

treatment sequence. 

- TA415 - 

 LOT: line-of-therapy; OS: overall survival; PFS: progression free survival; SMART: sequential multiple assignment randomized trial;  

# TA251 is a part of the original submission of TA426, which is a Cancer Drug Fund review for dasatinib and other health technologies
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Approach A4 uses an effect modifier to adjust for the degradation effect of a treatment being 

used in later treatment lines, a common method. Sources to inform these modifiers include expert 

opinions, literature, or subgroup analyses of trials or NMA/MA. For instance, in TA308156, a relative 

risk ratio between the treatment-naïve subgroup and recurrent disease subgroup in the RAVE trial 

was applied to assume the remission rate of the second course of rituximab treatment. Subgroup 

analyses were useful in approximating the effectiveness of later LOTs as the RAVE trial only assessed 

the effectiveness of a single LOT, but recruited patients with different prior treatments. However, 

these analyses may compromise the randomisation of the trial and limit the strength of evidence. 

Approach A5 assumes that treatments with similar mechanisms share the same effectiveness or 

exhibit bundled-treatment effects. This assumption, often applied where treatments with theoretically 

interchangeable effects as part of the sequence, was prevalent in autoimmune TAs. For example, in 

TA485259, all TNF inhibitors were considered to have equal effectiveness across all LOTs. In one of 

the incremental CEAs of T485259, this assumption can be considered equivalent to approach A2, with 

all sequences from second-line (i.e., any TNFi) onwards assumed to have equal effectiveness, 

regardless of the first-line treatment 

o Sarilumab → TNFi bundle (i.e., representing any type of TNFi) → BSC 

o Tocilizumab intravenous injection + methotrexate → TNFi bundle → BSC 

o Tocilizumab subcutaneous injection + methotrexate → TNFi bundle → BSC 

o TNFi bundle → TNFi bundle → BSC 

Approach A6 assumes that the treatment effect was maintained in the long-term even after 

patients stopped the last-line of treatment, as seen in TA409, where the compared treatment sequences 

involved a combination of laser surgery and medication to maintain visual acuity in patients with 

visual impairment caused by macular oedema.196 This assumption is particularly relevant to this TA, 

as visual impairment may be largely irreversible.  

The rest of the assumptions were found to indirectly impact the effectiveness of treatment 

sequences, including assuming a constant disease severity progression rate (A7), a specific treatment 

withdrawal rate (A8 & A9), and risks of death (A10 & A11). Assumptions about the rate of disease 

severity progression and treatment withdrawal assumptions were frequently seen in autoimmune TAs, 

while risks of death related assumptions were more relevant in oncology TAs. Regardless of being 

treatment-specific or non-treatment specific, applying an annual risk of disease progression, treatment 

withdrawal or death in a CEM might alter the total number of LOTs that a patient can receive and 

thus affect the results of CEA. The choice of time horizon may also affect the CEA results in a similar 

fashion and thus scenario analyses were conducted in many TAs, as shown in Appendix 3.4. 

These aforementioned effectiveness assumptions share similarities with the concepts outlined in 

Lewis's doctoral thesis and its subsequent publication, which presents a taxonomy for simplifying 
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assumptions in the synthesis of quantitative evidence on treatment sequence effectiveness. 

3.4.3.4.2 B. Pivotal trials 

The approaches for using pivotal trial data to inform the effectiveness of treatment sequences 

varied depending on disease area. I categorised these approaches into four categories, including using 

information as direct effectiveness inputs (B1-B7), as inputs that may indirectly affect effectiveness 

(B8-B10), as sources for external validation (B11), and as inputs to inform model structures (B12-

13).  

Approach B1 involved using evidence from a two-stage sequential multiple assignment 

randomized trial (SMART) to directly populate the effectiveness of treatment sequences in the CEM. 

This was only observed in TA137215, where evidence from the pivotal trial of rituximab in treating 

relapsed follicular non-Hodgkin’s lymphoma (EORTC 20981) was applied. The EORTC 20981 trial 

randomised patients to receive one of the two different induction therapies (rituximab-CHOP or 

CHOP) followed by either rituximab maintenance therapy or observation, resulting in four subgroups 

of patients receiving different treatment sequences as illustrated in Figure 3.6. These four subgroups 

matched the treatment sequences compared in the CEM in TA137 as described in Section 3.4.3.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 An example of two-stage sequential multiple assignment randomized trial (SMART) from 

the EORTC 20981 trial  

CHOP: cyclophosphamide, doxorubicin, vincristine, and prednisone 

The trial assessed the use of rituximab to the standard of care at two stages, including as induction therapy (versus CHOP) and 

as maintenance therapy (versus observation).   

 

The manufacturer conducted intention-to-treat (ITT) analyses to obtain the OS and progression-

free survival (PFS) for each treatment sequence subgroup, which were then used to estimate the 

Markov transition probabilities for each subgroup in the CEM. For example, the response rate for 

patients becoming eligible for maintenance treatment was informed by the outcome of induction 

treatment. The manufacturer was criticised by the ERG for only calibrating their parametric survival 

models on within-trial data, which may not remain valid when later-line treatments are introduced. 

Although the manufacturer recommended adding more LOTs to the model, the limited data and 
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extensive assumptions deemed it unfeasible Additionally, the consulted by the appraisal committee 

raised concerns about the use of rituximab as an induction-maintenance treatment in relapsed patients, 

as it was licensed and recommended for earlier use as first-line therapy in TA110, while patients in 

the EORTC 20981 trial were rituximab-naïve.  

Approach B2 and B3 relied on pivotal trials that assessed a certain line of treatment (LOT) to 

determine the OS of entire treatment sequences, which were only seen in oncology TAs. Conversely, 

approach B4-B7 applied evidence from LOT-specific pivotal trials only to populate the effectiveness 

of certain segments of the treatment sequences. Approach B2 employed the OS of first-line treatments 

to represent the OS of complete treatment sequences populated in the CEM. This approach often 

required making the assumption that subsequent treatments after the first-line treatment in the trial 

can represent those used in the NHS. Three TAs were found to use approach B2, including TA319, 

TA377 and the original submission of dasatinib in TA426 (TA251).126,203,265 For TA319203, the 

manufacturer developed a de novo semi-Markov PartSM to compare the following treatment 

sequences that included the appraised technology ipilimumab:   

o BRAV V600 mutation-negative patients 

 Ipilimumab → BSC → BSC  

 Dacarbazine → ipilimumab → BSC 

o BRAV V600 mutation-positive patients: 

 Ipilimumab → vemurafenib → BSC  

 Vemurafenib → ipilimumab → BSC 

 Dacarbazine → ipilimumab → BSC 

To populate the OS for treatment sequences, various approaches were taken in conjunction with 

Appraoch B2 in TA319. In the case of ipilimumab and dacarbazine as first-line treatments, the 

manufacturer adopted the Kaplan-Meier (KM) curve of pooled data from chemotherapy-naïve 

patients (including the pivotal trial CA184-024) for the first 0-104 cycles of the model (Approach 

B2). For cycles 105-206, a parametric curve was fitted. The OS for treatment sequences with 

vermurafenib as first-line treatment were derived from other trials as no head-to-head comparison 

between first-line ipilimumab versus vermurafenib were available (see approach C1). These estimates 

were used for cycles up to 260. After this point, however, the OS estimates derived from registry data 

were used to approximate the OS under palliative care (see approach E1). 

Similarly, in TA580249 (see Section 3.4.3.1.1 for treatment sequence details), OS estimates for 

treatment sequences starting with enzalutamide and BSC for mHRPC were derived from the pivotal 

trial of enzalutamide, PREVAIL, where patients were randomly assigned to receive enzalutamide or 

placebo as first-line treatments (Approach B2). In contrast to TA319203, the manufacturer adjusted for 
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treatment-switching in the trial using methods such as inverse probability of censoring weighting 

(IPCW) and a two-stage estimation. Here, treatment-switching referred to patients who switched to a 

second-line treatment that was not part of the standard treatment pathway in England. Both the 

manufacturer and ERG conducted a series of sensitivity analyses using different data cut-off and 

treatment-switching adjustment methods to explore the uncertainty of OS extrapolation. Instead of 

relying on the OS estimates, Approach B3 involved using the accumulative duration of successive 

treatments in the pivotal trial to populate OS in the model. This approach was used as a scenario 

analysis in the original company submission in TA251 which was later reviewed by TA426.197,265  

Approach B4 involves using the effectiveness estimate from a LOT in the pivotal trial to inform 

the effectiveness of the same LOT in the model. For example, in TA580 (see Section 3.4.3.1.1 for 

treatment sequence details)249, parametric curves of metastasis-free survival upon receiving the first-

line treatment of enzalutamide versus androgen deprivation therapy was fitted from the pivotal 

PROSPER trial to determine transition probabilities from non-metastatic HRPC (nmHRPC) (first-

line) to mHRPC states (second-line onwards) as the solid straight arrows illustrate in Figure 3.7. 

Transitions from subsequent health states were informed by evidence from clinical trials that studied 

subsequent lines of therapy. Similarly, TA319 and TA377 applied the PFS estimates of first-line 

treatments that had head-to-head comparisons in pivotal trials to inform the PFS for them in the model 

as described in Approach B2 (ipilimumab versus dacarbazine, enzalutamide versus BSC, 

respectively), while using other evidence for post-first-line-progression-survival. It is worth nothing 

that approach B2 and B4 are not mutually exclusive. In fact, TA319 combined both approaches to 

populate the PFS and OS in a PartSM.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Model structure of TA580 (adapted from Company Submission) 
nmHRPC: non-metastatic hormone-resistant prostate cancer; mHRPC: metastatic hormone-resistant prostate cancer; PD: post-

progression states 

Boxes highlighted with colors (yellow, green, grey) represent trials that were used to derive the transition probabilities or survival 

curves in the model. The three progressive diease states (PD1, PD2, PD3) after first-line treatment were seen as a collective state as 

mHRPC. Survival from the nmHRPC state and mHRPC followed a partitiond surival approach, while transitions within the mHRPC 

were Markov models.  

 

In TA580, validation with pivotal trial evidence (Approach B11) was also undertaken. 
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Specifically, the pre-progression survival for enzalutamide versus ADT were populated using 

evidence from PROSPER, where first-line treatments in patients with nmHRPC were evaluated. The 

post-progression survival was populated by the OS of enzalutamide versus ADT from PREVAIL, a 

different trial that assessed treatments in patients with mHRPC. To illustrate, the dotted lines in Figure 

3.7 represent the (post-progression) survival in nmHRPC states (PD1, PD2, P3), which were seen as 

a collective state and populated by OS estimates in PREVAIL. Since the OS was informed by two 

data sources, the OS curves from PROSPER were used to cross-validate the post-progression survival 

informed by PREVAIL through visually comparing their overlap.  

Approach B5 is almost identical to B4 in that it involves using effectiveness estimates from a 

specific LOT to inform the effectives of the same LOT in the model. The only difference is that, for 

a treatment lacking head-to-head comparisons in the pivotal trial, its effectiveness was assumed to be 

equivalent to one of those in the pivotal trial. For instance, in TA408 (see Section 3.4.3.1.1 for 

treatment sequence details)248, the effectiveness of E. coli asparaginase as first-line treatment was 

populated with the effectiveness of the appraised technology, pegaspargase. When specific treatment 

effectiveness of a particular LOT is unavailable, an alternative approach (Approach B6) is to use the 

effectiveness estimates of patients with a similar treatment history in the trial to represent the 

effectiveness of that LOT in the model. To illustrate, in TA308, the probability of achieving remission 

for the second course of cyclophosphamide was unavailable in the pivotal trial RAVE (see approach 

A4). Therefore, a subgroup analysis was conducted in patients having relapsed disease to proxy this 

probability. This approach was frequently seen in autoimmune TAs. Approach B7 involves using 

effectiveness from pivotal trials to inform the effectiveness of multiple LOTs. This approach may be 

used with or without a degradation modifier, as described in approach A3. 

Pivotal trial evidence can also be used to inform parameters that may indirectly affect the 

effectiveness of treatment sequences, such as the proportion receiving a next-line of treatment 

(Approach B8), treatment-specific discontinuation rate (Approach B9) and patient’s baseline 

characteristics in the model (Approach B10). It is worth noting that the discontinuation rate and 

patient characteristics observed were all non-LOT-specific.  

Approach B12 involves using pivotal trial evidence to identify the need to model treatment 

sequences in the CEM. For example, in TA409196, the pivotal trial VIBRANT showed that treatment 

switching was allowed in patients who began with first-line treatment of laser versus aflibercept. 

Therefore, subsequent treatments after first-line were modelled. Approach B13 used pivotal trial 

information to inform model assumptions, as seen in TA442. In the base-case analysis, the appraised 

technology, ixekizumab, was evaluated as a first-line treatment in a treatment sequence, while in a 

scenario analysis, it was assessed as a second-line treatment following adalimumab, a biologic 

treatment. The effectiveness estimate of ixekizumab was derived from NMA results to inform its use 
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in different lines of treatment (approach D1). One of the pivotal trials, UNCOVER-2, confirmed the 

assumption that biologic treatment does not modify the effect of ixekizumab, and thus no adjustment 

to the NMA was required for ixekizumab in the scenario analysis. 

3.4.3.4.3 C. Other trials 

Approach C1 is similar to B2 in that they both used the first-line OS from trials to represent the 

OS of a whole treatment sequence. However, approach C1 leverages evidence from a comparator’s 

first-line trial when a head-to-head comparison of the appraised technology and its comparator is not 

available. For example, in TA377126, which appraised enzalutamide, the OS estimates for the 

comparator abiraterone treatment sequence was obtained from abiraterone’s pivotal trial COU-AA-

302, while the OS evidence for the enzalutamide and BSC sequences were derived from the pivotal 

trial of the appraised technology enzalutamide (PREVAIL) (see Section 3.4.3.1.1). In fact, all 

oncology TAs that applied Approach B2 also applied Approach C1 because they involve comparisons 

of more than two sequences, while most of the RCTs have only two arms. The application of both 

approaches results in an indirect comparison of OS. In TA377126, the manufacturer performed a naïve 

comparison between COU-AA-302 versus PREVAIL as well as a scenario analysis using an adjusted 

indirect comparison for abiraterone OS. Although not applied in the CEM, the ERG undertook a 

separate Bucher indirect comparison using data from PREVAIL and COU-AA-302. Similar to 

approach B2, treatment-switching adjustments may also be applied in Approach C2 where subsequent 

treatments in trials deviate from those in the NHS. Although the manufacturer in TA377 

acknowledged the treatment-switching issue in using evidence from COU-AA-302, they were unable 

to adjust for abiraterone OS due to lacking access to patient-level data.126  

Similar to Approach B4-B6, non-pivotal trial evidence can also be used to inform LOT-specific 

effectiveness (Approach C2). For instance, in TA580249, treatment durations of enzalutamide as first-

line treatment in the PREVAIL trial were used to inform the probability of progression from second-

line treatment to third-line treatment in the CEM as illustrated in Figure 3.7. This approach was taken 

as patients in PREVAIL received a first-line treatment for mHRPC, which is comparable to patients 

who progressed from nmHRPC to mHRPC and received second-line treatment. Probabilities of 

receiving a fourth-line treatment was derived from the AFFRIM trial for patients who progressed on 

third-line enzalutamide and the TAX327 trial for those who those who progressed on third-line 

docetaxel and ADT, as these patients were in comparable disease states.  

Approach C3 is comparable to Approach B7 with the difference of using estimates from non-

pivotal trials and was also frequently seen in appraisals for autoimmune diseases. Evidence from non-

pivotal trials have also been used to inform non-LOT specific treatment discontinuation rates and 

resistance rates (Approach C4). Instead of informing on the need of model treatment sequences, non-
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pivotal trial evidence was found to be used as an external source to guide the choice of treatment 

sequences (Approach C5). For example, in TA408248, the manufacturer referenced two UK studies, 

UKALL2003 and UKALL2014, suggesting that Erwinase should be the only second-line treatment 

after hypersensitivity has occurred to a first-line treatment (see Section 3.4.3.1.1). Although 

pegaspargase was historically given to patients following hypersensitivity to native E.coli 

asparaginase, this has no longer been the standard of practice due to risk of reactivity and subsequent 

hypersensitivity.  

In line with Approach B13, non-pivotal trial evidence may also be used to support model 

assumptions around the effectiveness of treatment sequences (Approach C6). For example, in 

TA319203, treatment sequences were compared in two different populations, BRAF V600 positive 

and negative, whereas the pivotal trial recruited patients with mixed BRAF V600 expressions. The 

OS of dacabazine, a key comparator as first-line treatment, was found to be similar in the BRIM-3 

and CA184-004 trial. The manufacturer stated that this finding supports the use of the same OS for 

treatment sequences starting with the same first-line treatment in patients with different BRAF V600 

expressions. In particular, the BRIM-3 trial compared vemurafenib versus dacabazine among BRAF 

V600 positive patients, while CA184-004 compared ipilimumab versus dacabazine among patients 

with mixed expressions. Additionally, the manufacturer visually compared the dacabazine arm in the 

pivotal trial CA184-024 (ipilimumab versus dacabazine) and the BRIM-3 trial to justify the direct 

application of vemurafenib OS curves from a non-pivotal trial (BRIM-3) without the need for indirect 

comparison adjustment (see Approach C1). 

3.4.3.4.4 D. NMA/MA 

The use of NMA/MA evidence was mainly limited to deriving the effectiveness of parts of the 

treatment sequences (Approach D1-D2) and parameters that indirectly affect treatment sequences 

(Approach D3). None of the TAs used NMA/MA results for external validation or to inform model 

structures. The most common application of NMA/MA results was to use effectiveness estimates 

from patients with similar treatment history to inform the effectiveness of a treatment at a specific 

LOT or multiple LOTs (Approach D1). NMA subgroup analyses were often performed to derive 

effectiveness in patients with different treatment histories. For example, in the CS submitted by UCB 

in TA445246, the NMA was restricted to studies that included treatment-naïve or treatment-

experienced patients to inform the treatment effectiveness in populations with different treatment 

histories regardless of LOTs. Conversely, in TA442.158 the manufacturer argued that subgroup NMA 

could not be used to proxy effectiveness as later-line treatments due to a lack of evidence, but a 

degradation modifier was applied in their scenario analyses.  

Subgroup analyses of NMA/MA can sometimes be problematic if inconsistent with other 
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assumptions made in the TA. For instance, in TA537252, the manufacturer performed subgroup 

NMA/MA to obtain first-line treatment effectiveness in different populations, including biologic-

naïve and biologic-experienced, for comparison of the following treatment sequences in patients with 

mild-to-moderate psoriasis:  

o Biologic-naïve: no psoriasis and mild-to-moderate psoriasis  

 Ixekizumab → ustekinumab → secukinumab → BSC 

 Adalimumab → ustekinumab → secukinumab → BSC 

 Apremilast → ustekinumab → secukinumab → BSC 

 Certolizumab pegol → ustekinumab → secukinumab → BSC 

 Etanercept → ustekinumab → secukinumab → BSC 

 Golimumab → ustekinumab → secukinumab → BSC 

 Infliximab → ustekinumab → secukinumab → BSC 

 Secukinumab → ustekinumab → adalimumab → BSC 

 

o Biologic-experienced: no psoriasis and mild-to-moderate psoriasis  

 Ixekizumab → BSC 

 Ustekinumab → BSC 

 Certolizumab pegol → BSC 

 Secukinumab → BSC 

However, the manufacturer also assumed that the effectiveness of secukinumab remains the 

same as first-line treatment when used as later-line treatment in the biologic-naïve group, which was 

pointed out by the ERG as contradictory to not using a different set of evidence to estimate the 

effectiveness of secukinumab in the biologic-experienced group. The manufacturer also conducted a 

meta-regression in their sensitivity analysis to adjust for the baseline risk of placebo response for 

within the biologic-naïve NMA subgroup. 

Approach D2 utilised NMA/MA effectiveness estimates to inform treatment effectiveness in 

multiple LOTs without explicitly examining patient history in the studies included in the NMA/MA. 

In TA375, this approach was used by the AG to conduct NMA to populate the Disease Activity Score 

(DAS)-based European League Against Rheumatism (EULAR) responses in the CEM. However, not 

all clinical trials assess EULAR responses, so the AG had to map EULAR responses from some trials 

measuring the American College of Rheumatology (ACR) responses. The relationship between 

EULAR and ACR was established using data from the Veterans' Affairs Rheumatoid Arthritis (VARA) 

Registry, which the AG received from the United States (US) (see approach E9).  

Similar to approach B9, NMA/MA results may also be used to inform treatment discontinuation 

rates (C4). However, in the example of TA537252, the discontinuation rate was derived as non-
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treatment-specific. 

3.4.3.4.5 RWE 

Approach E1 involves leveraging RWE to inform the effectiveness of subsequent lines as a 

whole, such as in TA319 and TA462.203,218 In TA319203, the duration and breakdown of BSC 

treatments after first-line treatments were determined using RWE from the MELODY study. In 

TA462218, OS estimates from a real-world study by Cheah et al.266 were used to inform the post-

progression survival after first-line treatments in a scenario analysis assessing the effectiveness of 

nivolumab as a bridging agent to receive allogeneic stem-cell transplant (alloSCT) for refractory 

Hodgkin lymphoma, which may potentially cure the disease (see Section 3.4.3.1). The Cheah 2016 

study evaluated the effectiveness of brentuximab vedotin in patients with relapsed Hodgkin 

lymphoma. In the Cheah 2016 study, a proportion of patients who responded to brentuximab vedotin 

and received alloSCT showed a non-significantly superior OS. The manufacturer made an assumption 

that patients who survived 6 months after the first-line treatment were qualified for alloSCT. 

Consequently, they used PFS from RCT Checkmate 205 for the nivolumab-sequence arm and Cheah 

2016 for the standard of care-arm to populate survival after 6 months. However, the ERG expressed 

that this setup might double count the survival benefit of nivolumab. In contrast, the Committee 

believed that the proportion of patients receiving alloSCT should be higher than those in Cheah 2016 

and Checkmate 205, based on feedback from clinical experts. 

Approach E2 utilised existing RWE to inform treatment effectiveness in unspecified LOTs where 

evidence from trials is not available. This approach was observed in autoimmune and other diseases, 

but not in oncology. In TA249262, for instance, the manufacturer used RWE from retrospective cohort 

studies to determine the relative risk of disability following ischemic stroke between the appraised 

technology (dabigatran) versus warfarin, regardless of when the event occurred. Additionally, the 

manufacturer applied RWE to inform the effectiveness of dose-adjusted warfarin due to the narrow 

therapeutic window and variability in its real-world use.  

RWE can also inform discontinuation and death rates (Approach E3), as well as patient 

demographics (Approach E4). For example, in TA511251, the British Association of Dermatologists 

Biologic and Immunomodulators Register (BADBIR) provided information on treatment 

discontinuation rates, supporting the assumption that the same discontinuation rate applies to all drugs, 

assuming that treatment effectiveness does not vary across treatment lines. In TA195155, estimates 

from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis (BSRBR-RA) 

were used by the AG to inform patient baseline characteristics in the model (i.e., LOT-effect modifier) 

(Approach E4). While many autoimmune TAs utilised evidence from UK-based studies using the 

above-mentioned data, evidence from other countries were also observed, such as studies using the 
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Danish Biological Treatment in Danish Dermatology registry (DERMBIO), the Danish 

rheumatologic database (DANBIO), the Canadian clinical database of rheumatoid arthritis including 

patients from Quebec (RHUMADATA). 

Approach E5 involved using RWD for effect modifier estimation (Approach E5) and model 

calibration (Approach E6). In TA511251, an effect modifier was derived from a Danish registry to 

account for reduced treatment effectiveness among patients with previous exposure to biologic 

treatments (Approach E5). It was noted that this effect modifier may suffer from selection bias, as 

patients who were harder to treat may have switched to another treatment earlier (i.e. had previous 

treatments) and thus more of these patients were included in the estimation of the modifier. However, 

the model may require an averaged modifier involving patients that do not necessarily switch 

treatments at an early stage. In my view, an alternative design of the RWD and longer follow-up may 

mitigate the issue. In TA154198, the risk of developing compensated cirrhosis and hepatocellular 

carcinoma (HCC) among Hepatitis B patients was calibrated to match those reported in two 

prospective cohort studies among Taiwanese population (Approach E6), as these long-term outcomes 

were not measured in the pivotal trials. 

Approach E7 involves determining the proportion of different clinical events within a health 

state. For instance, in TA418264, various clinical events may occur when receiving treatments for 

diabetes, such as myocardial infarction, stroke, hypoglycaemia, nephropathy and cardiovascular 

death. Each of these events has a different impact on a patient’s life expectancy and quality of life 

and thus, dictates the total LOTs that a patient may receive. However, these events are often measured 

as a composite event in clinical trials. Hence, the manufacturer used estimates from a Health 

Improvement Network (THIN) database analysis to inform the proportion of each sub-event. 

Approach E8 involved mapping different outcome types in trials and CEMs, such as the EULAR and 

ACR response described in Approach D2. 

Approach E9 involved RWE acting as an external source to guide the choice of treatment 

sequences. In TA137215, the manufacturer used evidence from a market research report of 50 

haematologists to justify their selection of CHOP as the only relevant comparator for induction 

therapy. In another case (TA547260), the ERG identified a published CEA study suggesting that certain 

treatment sequences may be optimal in the UK, but was not modelled by the manufacturer. Approach 

E10 acted as an external validation to support model assumptions. In TA319203, OS estimates derived 

from long-term American registry data were used to model patient survival after 5 years since the 

first-line treatment. The manufacturer considered this approach conservative because it assumed that 

the appraised technology (ipilimumab) produced no further relative survival benefit (compared to its 

comparator arm) beyond its pivotal trial (CA184-024). The manufacturer justified this assumption by 

comparing the RWE with other evidence from pooled trials. 
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Approach E11 involved the AG being granted access to registry data for assessing key model 

parameters and correlations, which differed from previous approaches in Section E that mostly relied 

on de novo RWD analysis by the manufacturer or using existing RWE. In TA375188, the AG received 

data provided by the BSRBR, the Early Rheumatoid Arthritis Study (ERAS) and the United States 

National Data Bank for Rheumatic Diseases (NDB) to gather additional information about Health 

Assessment Questionnaire (HAQ) score progression. The trajectory of the underlying HAQ score 

progression may interact with the outcome at each LOT and thus affect the total number of LOTs that 

a patient may receive. The AG acquired the data after the NICE Decision Support Unit (DSU) was 

requested to provide additional information on HAQ progression for patients treated with non-

biological therapies following the initial Committee meeting. The AG viewed the use of large 

observational databases to derive model parameters as a strength of their model and favoured this 

method over using data from small RCTs with restricted follow-up. 

3.4.3.4.6 Additional key challenges related to comparing treatment sequences 

In addition to the previously discussed challenges, several key challenges not directly related to 

any specific type of data source were identified and categorised into five types.: challenges in 

modelling treatment sequences related to data (F1-F7) and selection of treatment sequences (F10-

F19), other data-related challenges (F8-9), other modelling-related challenges (F20-27) and decision-

making concerns (F28-34). 

Challenges F1-F4 are related to data scarcity from different perspectives. Challenge F1 deals 

with the absence of sequence-specific effectiveness data, and in fact, all data scarcity-related 

challenges can be viewed as subtypes of this in comparing treatment sequences, even though they 

were not always explicitly mentioned. While this issue was explicitly mentioned in a few TAs, it was 

an implicit challenge in almost all TAs. In TA574254, the ERG found it challenging to evaluate the 

treatment sequences in the absence of data on sequence-specific effectiveness. The ERG concluded 

that the variation in outcome of different treatment sequences might primarily be due to discounting 

and mortality, rather than a genuine disparity in effectiveness. Thus, the ERG suggested that 

treatment-sequencing in the absence of real sequence-specific effectiveness data was highly 

problematic and could be used to suggest that one sequence is superior than another. F2 concerns the 

lack of UK-specific data for informing local treatment pathways and evaluating treatment 

effectiveness. In TA292201, for instance, there was no UK-specific data available to inform the 

treatment pathway for treating paediatric bipolar disorder. Challenge F3 is comparable to F1 but 

differs in the sense that lacking time-varying data on other parameters, such as time-varying 

discontinuation rates, can also make it difficult to model treatment sequences. Challenge F4 notes 

that PFS and time-to-the-next-line of treatment may need to be used as a substitute for one another 
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when one of them is unavailable. This substitution may introduce additional uncertainties to a 

treatment-sequencing model.  

Challenge F5 highlighted the inadequacy of using a treatment-sequencing model in addressing 

a decision-problem when there is a lack of evidence on the effectiveness of sequences. This limitation 

was noted in TA319 where the ERG found the model structure to be inappropriate.203 However, it 

was possible to deactivate the treatment-sequencing part of the model, resulting in a direct comparison 

of first-line treatments (ipilimumab versus darcabazine versus vemurafenib) in previously untreated 

malignant melanoma patients. Challenge F6 refers to the challenge of applying RWE from treatment-

sequencing studies to the decision problem. The Committee in TA195 discussed the Behandel 

Strategieën (Treatment Strategies for Rheumatoid Arthritis) (BeSt) study261, which investigated the 

effectiveness of various treatment sequences of biological and conventional DMARDs in patients 

with early rheumatoid arthritis. Nonetheless, the AG argued that the evidence from the BeSt study 

was not applicable to the current MTA as it did not account for the clinical effectiveness of individual 

DMARDs and the study population did not represent those with established rheumatoid arthritis. 

Challenge F7 involves the uncertainty surrounding ongoing studies exploring treatment-

sequencing comparisons, which can be relevant to decision making. For example, in TA319203, the 

Committee was aware of ongoing trials exploring treatment sequences involving vemurafenib and 

ipilimumab, including a randomized phase III trial of ipilimumab followed by vemurafenib versus 

vemurafenib followed by ipilimumab planned for BRAF V600 positive patients (ECOG E1612 trial). 

The Committee addressed the need of future research to better understand the position of ipilimumab 

within the treatment pathway for patients with malignant melanoma. Similarly, in TA377203, the 

Committee also took note of several ongoing trials investigating treatment sequences in prostate 

cancer, though no specific reference was given. 

In multiple TAs, the lack of head-to-head evidence was identified as a significant challenge 

(Challenge F8). The use of indirect comparison data from trials was seen as potentially biased. 

Challenge F9 refers to the necessity for longer-term data. For example, in TA375188, the AG analysed 

large observational databases to obtain parameters for HAQ progression on conventional DMARDs, 

but the need for longer-term evaluation was still emphasized. In TA292201, additional long-term data 

were required to assess the prevention of recurrent acute manic episodes in bipolar disorder in 

children and adolescents with aripiprazole and its comparators, due to the younger population. 

Selecting all possible treatment sequences as comparators can be challenging in autoimmune 

TAs (Challenge F10). TA511 highlighted the difficulty, as it involves the ordering of treatments and 

the varying number of LOTs.251 Some TAs added more treatment sequences in scenario analyses. The 

rapidly evolving treatment landscape in prostate cancer was identified as a challenge in TA377 

(Challenge F11).126 A few years ago, there were only limited treatment options available for mHRPC 
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patients, but many new treatments became available by the time of TA377. This rapid evolution makes 

it difficult to determine how a new treatment will affect the use of existing treatments in the new 

pathway and what proportion of patients will receive a specific subsequent treatment. 

In Challenge F12, potential omissions of relevant treatment sequence comparators were noted 

in TAs across various diseases. In TA433244, although the manufacturer used ordering rules 

summarised from previous TAs to determine the treatment sequences to be modelled, the ERG 

identified missing relevant treatment sequences. Challenge F13 discusses the challenge of 

determining the cost-effectiveness of specific treatment sequences due to the variation of patient 

characteristics in clinical practice. In TA103245, individual characteristics, such as treatment history, 

renal and hepatic function, and associated response, may influence the optimal treatment sequence. 

Therefore, providing cost-effectiveness estimates for specific treatment sequences may not be 

relevant to an individual patient.  

F14 pertains to challenges in comparing suitable treatment sequences due to administrative 

restrictions. TA377126, for example, faced this issue with enzalutamide and abiraterone, both of which 

were available through the Cancer Drugs Fund (CDF) for mHRPC patients. However, using one 

treatment was not recommended for patients who had already received the other. The Committee 

determined that using both treatments was not common practice and recommended against using 

abiraterone after enzalutamide, except in cases experiencing toxicity without disease progression. 

Despite ongoing appraisal of abiraterone for a similar indication as the appraised technology 

enzalutamide (i.e. first-line treatment in mHRPC), it has not been incorporated into the NHS. Thus, 

even though both the manufacturer and the ERG considered abiraterone a relevant comparator, it was 

not included in the treatment sequences considered in the FAD. This exclusion was because primarily 

because the sequential use of abiraterone and enzalutamide was not permitted in the NHS, given their 

similar mechanisms. Additionally, the support for abiraterone by the CDF made its inclusion 

unnecessary. 

F15 concerns that including treatment sequences with comparators that are not cost-effective 

may be problematic. For example, the ERG in TA575 stated that modelling selective treatment 

sequences could result in misleading cost-effectiveness results, particularly when including 

treatments that are not cost-effective in a sequence. The ERG conducted exploratory analysis to 

address this issue, which involved comparing individual treatments with best supportive care (BSC) 

using pairwise incremental CEA and net monetary benefit analysis (NMB) as well as changing the 

order of treatments based on efficacy and efficiency (NMB ranking). 

Challenge F16 highlights that cost-effectiveness results may be sensitive to the selection of 

treatment sequences included in the CEA (Challenge F16). Determining the appropriate number of 

LOTs of treatment sequences (Challenge F17) and whether all treatment sequences should have the 
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same number of LOTs (Challenge F18) can be particularly difficult in autoimmune diseases where 

numerous treatment options were available. Additionally, the assumption that the duration of 

treatment equates to the duration of time to relapse is not always valid (Challenge F19). For instance, 

the ERG in TA308 criticized the manufacturer's assumption that all relapses result in immediate 

treatment with the next-line therapy, whereas patients who experience minor relapses may not require 

major relapse treatments.156 

The choice of model structure may not always be supported by available clinical data, which can 

create challenges (Challenge F20). In the case of TA308156, the ERG found that the KM curves for 

relapse outcomes in the RAVE pivotal trial crossed for the two first-line comparators, indicating that 

an alternative parametric model might be a better fit. However, this type of model may not be 

compatible with a standard Markov model structure, so the ERG suggested that the manufacturer's 

use of a Markov model might not be appropriate. The ERG but was unable to assess the impact of 

this limitation. In addition, F21 highlighted that manufacturers may face difficulties in modifying 

their CEMs to incorporate alternative treatment sequences as per ERG's request. 

It can be difficult to model survival and treatment duration with respect to model structure (F22). 

In TA377126, the ERG found that the extrapolated time-to-treatment-discontinuation curve crossed 

the OS curve for both abiraterone and enzalutamide, indicating that patients died before experiencing 

disease progression. The company assumed that patients stopped treatment at the point of crossing 

curves, which may be problematic as subsequent treatments after that point cannot be modelled, 

potentially leading to biased results. In the same TA, the costs and effectiveness were inconsistent 

between different treatment-sequencing arms (F23). The manufacturer did not include the costs of 

post-docetaxel treatment (i.e. BSC costs) in the enzalutamide-sequence and abiraterone-sequence arm, 

but included the post-docetaxel treatment costs in the BSC arm. According to the ERG, this 

inconsistency tended to improve the cost-effectiveness estimates for enzalutamide. Challenge F24 

refers to the inconsistency between the timing of subsequent treatment in real-world practice and 

those modelled using clinical trial data. In TA292201, the Young Mania Rating Scale (YMRS) response 

was the only suitable tool to model the decision of switching to subsequent treatments based on 

clinical trial data. However, in real-world practice, receiving a next-line treatment may not depend 

solely on the YMRS response. 

Challenge F25 refers to the issue of modelling results being sensitive to the time horizon, which 

is a straightforward concept as the duration of time taken into account can influence the total number 

of treatments patients can receive in a treatment-sequencing model. Challenge F26 refers to the issue 

of having a population in clinical evidence that does not match the population intended to be modelled. 

In TA442158, the manufacturer identified the population in their base-case analysis as biologic-naïve, 

but this was inconsistent with the patients included in the pivotal trial, UNCOVER, and other studies 
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used in the NMA. F27 concerns the issue of technical errors in the model, which is a frequently 

encountered challenge that is not limited to comparisons involving treatment sequencing. 

There are various methods to modify the CEA that can provide different viewpoints to decision-

making in a treatment-sequencing context. Challenge F28 involves evaluating pair-wise comparisons 

in addition to incremental CEA when assessing treatment sequences. Although the exclusion of 

relevant treatment sequences could result in misleading outcomes, in the case of TA442158, the 

Committee examined pair-wise comparisons of relevant treatment sequences. This comparison was 

conducted to demonstrate that the sequences containing the appraised technology ixekizumab were 

superior to all other treatment sequences, rather than identifying the most cost-effective treatment 

sequence. In the same TA, the ERG requested that the manufacturer provide disaggregated life-year 

(LY) gained for each treatment sequence (Challenge F29). The ERG believed that although the total 

LYs across different treatment sequences may not vary, the disaggregated LYs are more likely to 

differ and are important in interpreting the QALY gains. In several autoimmune TAs, the ERG 

discussed whether the appraised technology should be considered as a replacement for an existing 

technology or as an extension of the current treatment sequences (Challenge F30). This consideration 

may influence the options and length of treatment sequences that should be compared. 

In several TAs, the Committee faced challenges in providing concrete recommendations on the 

position of the appraised technology in the treatment pathway despite having evaluated a complete 

incremental CEA (Challenge F31). This was due to uncertainties in the model, for which more 

evidence is required for further evaluation. When a new technology was appraised for use at various 

LOTs, it may be appropriate to evaluate the technology's use for different positions by examining 

them in different populations (e.g. treatment naïve versus experienced), rather than comparing the 

same technology used at different positions within the same incremental CEA (F32). However, the 

arrangement should depend on the decision problem. 

In TA319203, the Committee expressed reservations about approving the assessed technology for 

use in treatment sequences, as there was a risk that it could lead to the sequential use of treatments 

that lacked robust clinical evidence (Challenge F33). In particular, there was no clinical trial data 

available to compare the sequential use and relative effectiveness of treatments used in sequence for 

previously treated advanced melanoma, despite ongoing studies mentioned in Challenge F7. 

Additionally, the company's submission oversimplified the treatment sequencing process by making 

arbitrary decisions regarding the choice of OS at different LOTs, both within and between treatment 

sequences. This raised concerns from the ERG that the results obtained for different treatment-

sequencing groups may not be comparable, as there appeared to be no clinical rationale underpinning 

the choice of curves at LOT. As with Challenge F33, the last Challenge F34 also pertained to the 

Committee's caution. The Committee in TA415 made statements indicating that they were only 
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considering the scenario of placing the appraised technology in the treatment sequence compared to 

another drug, rather than attempting to depict the optimal treatment sequence.257 

3.5 Discussion 

This review aimed to complement prior reviews by offering a detailed analysis of the challenges 

and data sources utilised in determining the effectiveness estimates of treatment sequences in English 

HTA. It aligned with previous literature by highlighting a growing trend in the adoption of treatment-

sequencing models, particularly in oncology, autoimmune diseases, and diabetes.1,2 Furthermore, the 

review emphasised that nearly all TAs consider treatment sequences to some extent, regardless of 

whether they explicitly employ a treatment-sequencing economic model. This is conceptually fitting 

for managing chronic diseases where a variety of treatment options exist, often necessitating lifetime 

economic models to evaluate long-term outcomes and costs. 

Although treatment sequences are relevant for nearly all TAs, each appraisal identifies 

challenges, either directly or tangentially, related to the lack of evidence on the effectiveness of 

treatment sequences. Only one TA in my in-depth review utilised effectiveness evidence from a 

SMART that randomised patients to different sequences (TA137).215 This SMART technically might 

require advanced statistical analysis because not all participants received a second-line treatment (see 

Section 4.5.1 of Chapter 4). However, the manufacturer did not conduct such analysis, which 

complicates applicability in the economic model, but was not addressed in the TA. Furthermore, 

several TAs referenced ongoing trials that randomised patients to different treatment sequences; 

however, their evidence was not available at the time of appraisal. This scarcity of head-to-head trial 

evidence comparing treatment sequences often led to merging different LOT-specific evidence to 

estimate the overall effectiveness of treatment sequences in most TAs. Such an approach raises several 

concerns, including biases stemming from indirect comparisons and inconsistent patient populations 

across LOTs within the same treatment sequences. These insights broadly align with findings from a 

review published by Huang et al. during my PhD, which was included in the updated review in 

Chapter 2.35 

Each appraisal utilised a variety of evidence sources to some extent, including clinical trials, 

NMA/MA, RWE, and effectiveness simplifying assumptions, to evaluate the effectiveness of 

treatment sequences. Notably, 77% of autoimmune TAs primarily depended on NMA/MA for their 

decision models, typically assuming constant treatment effectiveness across different LOT. Some 

even added modifiers for effect degradation or employed subgroup NMA/MA to account for effects 

in later treatment lines. In oncology, the most common method (43%) involved using data on PFS or 

time to treatment failure from LOT-specific trials to determine the cumulative treatment duration 

across LOTs. Typically, estimates of OS for an entire treatment sequence were based predominately 
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on results from trials that assess the effectiveness of first-line treatments, with adjustments for 

treatment switching when subsequent treatments in the trial did not align with local clinical practices.  

LOT-specific treatment effect simplifying assumptions were predominantly used in autoimmune 

disease appraisals, likely because these treatments do not directly affect patients’ survival. The reflects 

the fact that the simplifying taxonomy summarised by Lewis et al., along with their recommendations 

on employing NMA/MA techniques to better estimate LOT-specific effects, were primarily derived 

from the autoimmune disease literature. Therefore, these approaches may not be entirely applicable 

to oncology. Specifically, my review highlighted that merging LOT-specific survival evidence was 

considered problematic in the majority of oncology TAs, highlighting the need for distinct strategies 

in populating effectiveness of treatment sequences between the two topics. 

Although RWE has been used to support the effectiveness of treatments in later lines, estimate 

modifiers for subsequent treatments, or as an external guide for selecting treatment sequences, or to 

inform death or treatment discontinuation rates that may indirectly affect later line treatment 

effectiveness, it has not been used to directly compare different treatment sequences. Given its 

retrospective nature, RWE holds potential for this, as discussed in Chapter 2. However, no TAs have 

delved into the statistical methods needed for such analyses. Therefore, this review reinforces the 

approach that is planned to be taken in this thesis: to explore how the strengths of RWD can be 

harnessed to deliver reliable RWE that informs the effectiveness of treatment sequences. This 

approach would provide an alternative way to overcome the challenges of merging evidence, but it 

would necessitate exploring pertinent advanced analytical methods, identifying relevant RWD 

sources, and designing RWD studies specifically tailored for this purpose. In one MTA188, the AG 

were granted access to registry data to inform parameters in their treatment-sequencing model for 

rheumatoid arthritis, although not specifically for comparing treatment sequences. However, it is 

unclear what other RWD sources, especially in other disease areas, might be relevant for English HTA 

in the context of informing the effectiveness of treatment sequences. This includes considerations 

such as accommodating advanced statistical adjustment methods and whether the data are sufficiently 

longitudinal, suggesting that further exploration is needed. 

3.6 Chapter summary 

This chapter re-emphasised the growing importance of evaluating treatment sequences in HTA 

and dissected the clinical evidence scarcity problem across multiple facets by reviewing English HTA 

practices in this area. Specifically, it highlighted the distinct primary evidence sources utilised in 

autoimmune diseases and oncology, the major diseases where considerations of treatment sequencing 

are most prevalent. A major challenge is the lack of head-to-head trial evidence comparing treatment 

sequences. In oncology, the challenge is further compounded by the fact that survival is often a critical 
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outcome measure, which complicates the common approach of merging of evidence from LOT-

specific sources to populate the effect of treatment sequences. Despite the potential of RWE, no TAs 

have yet utilised it to compare entire treatment sequences. This gap directs the focus of the thesis 

towards further investigating the use of RWD to inform the effectiveness of treatment sequences. This 

investigation begins with exploring advanced statistical adjustment methods suitable for analysing 

RWD to compare treatment sequences (Chapter 4). This focus arises because the review did not 

identify any directly applicable statistical methods currently in use. 



115 

  

Chapter 4 A systematic review of statistical methods for evaluating the 

effectiveness of treatment sequences with real-world data 

4.1. Overview 

This chapter presents a systematic review focused on identifying statistical methods for 

assessing time-to-event outcomes of treatment sequences using real-world data (RWD). It delves into 

methods that may be compatible with the Target Trial Emulation (TTE) framework3,267, designed for 

mitigating biases in observational studies by explicitly defining the study population and estimands 

in a structured manner, as introduced in Chapters 1 and 2.  

Chapters 2 and 3 highlighted the challenge of scarce effectiveness evidence for treatment 

sequences in health technology assessments (HTA) involving sequences, suggesting RWD as a 

potential alternative for estimates (i.e., real-world evidence (RWE)). However, despite the potential 

of RWD, its application has largely been limited to supporting evidence for the effectiveness of 

specific lines of therapy (LOTs) rather than directly comparing the effectiveness of different treatment 

sequences (Chapter 3). This approach implicitly assumes that the populations across different LOTs 

from distinct data sources are consistent, whether it involves merging RWE or evidence from LOT-

specific trials. This assumption, however, may not always hold true. On the other hand, comparing 

treatment sequences using RWD faces concerns about potential biases inherent in analysing RWD, a 

concern not yet tackled in existing English technology appraisals (TAs) (Chapter 3). Hence, this 

chapter aims to review which advanced statistical methods are compatible with the TTE and are adept 

at generating unbiased estimates for comparing the effectiveness of treatment sequences. 

Section 4.2 further details the review's rationale (Section 4.2.1), highlighting the issues 

conventional statistical methods encounter in adjusting for confounding, a significant challenge in 

establishing causal effects from RWD, —in the context of comparing treatment sequences. It then 

sets forth the detailed review questions (Section 4.2.2). Section 4.3 elaborates on the review's methods 

and procedures, including key search terms selection, literature identification, eligibility assessment, 

and data extraction and synthesis strategies.  

Section 4.4 reports the literature search results and characterises the included studies, leading to 

the introduction of a taxonomy in Section 4.5. This taxonomy addresses the types of studies including 

treatment sequences (Section 4.5.1, briefly introduced in Chapter 2), the variations of treatment 

sequences (Section 4.5.2), and the categories of statistical methods found in the included studies 

(Section 4.5.3). Section 4.6 presents a narrative synthesis of the identified statistical methods, while 

Section 4.7 moves into a discussion, comparing these methods and discussing their applicability in a 

HTA context. The section concludes by outlining the methods chosen for the case studies in Chapter 

7, which are implemented in Chapter 8. 
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4.2. Rationale and key questions the review 

4.2.1. Rationale 

This review aims to address the lack of clinical trials comparing the effectiveness of treatment 

sequences, an issue that poses significant uncertainties in health economic evaluations (Chapters 2-

3). Real-world evidence holds promise as sequencing information can often be captured in RWD, yet 

analysing RWD presents challenges, primarily the need for statistical methods to address confounding 

and selection bias due to its non-randomised nature (Chapter 2). Therefore, this review aims to 

identify statistical methods for reliably estimating the effectiveness of treatment sequences using 

RWD. This review focused exclusively on methods applicable to time-to-event outcomes due to the 

emphasis on survival outcomes in my case studies (see Chapters 7-8). 

Section 1.4.1 of Chapter 1 briefly introduced the concept of causal inference and the challenges 

of confounding, especially time-varying confounding, in comparing the effectiveness of treatment 

sequences. Despite studies attempting to compare treatment sequence using observational data, they 

often fail to consistently account for time-varying confounding, rendering them inadequate for 

addressing counterfactual questions (i.e., causal inference).268-270  

This leads to a core question: “what statistical methods are available to derive appropriate 

effectiveness estimates of treatment sequences using observational data?”. Here, “appropriate” refers 

to methods capable of counterfactual comparisons—thereby offering unbiased estimates similar to 

those from a RCT that randomises patients to different treatment sequences—and suitable for HTA. 

Expected methods might overlap with those correcting for unwanted treatment-switching and non-

adherence in clinical trials, such as marginal structural models (MSMs) with inverse probability 

censoring weighting (IPCW) and structural nested failure time models (SNFTMs). However, a 

comprehensive review of their application in the context of treatment-sequencing remains lacking. 

To address this, I conducted a literature review to identify and assess methods suitable for HTA, with 

Section 4.2.2 delving into the detailed aspects of this core question. 

In addition to time-varying confounding, my review also aimed to explore the functionality of 

each method within a Target Trial framework3, which is endorsed by the NICE RWE framework37 to 

further mitigate biases in RWD study design, such as immortal time bias and selection bias.74,75 

Further rationale for using RWD within a TTE framework to mitigate these biases has been detailed 

in Section 1.4.2 of Chapter 1. The compatibility of each method identified in this chapter with the 

TTE framework will be explored in the methods discussion (Section 4.7) and further in the 

implementation chapter (Chapter 8). 

The field of causal inference continues to expand across various disciplines (e.g., statistics50,51, 

epidemiology5,52-54, sociology45, psychology46, computer science47, political science48 and 
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economics49), each employing unique approaches and terminologies. This review primarily 

concentrates on methodologies developed in epidemiology and (bio)statistics, given their relevance 

to HTA. This includes approaches that, while originating in other fields, have found application within 

epidemiology and (bio)statistics. Theoretically, these fields provide methodologies that may be 

particularly suited for analysing medical interventions, promising that the findings of this review are 

likely to be more readily adaptable for HTA. 

4.2.2. Review sub-questions 

In this section, I break down the core question from Section 4.2 into a series of sub-questions. 

To expand the range of methods considered, I incorporated the terms “dynamic treatment regimens 

(DTR)”, “adaptive treatment strategies (ATS)”and treatment pathways in my literature search (i.e., 

sub-question (2)), given their relevance to treatment sequences. Section 4.3.2 elaborates on how I 

became aware of these terms. These terms facilitate the identification of relevant statistical methods, 

with their link to treatment sequences further elaborated Section 4.5’s taxonomy of treatment 

sequences, where treatment sequences are described as a specific type of DTR (this concept was also 

briefly touched on in Section 2.5.2.3 of Chapter 2). My goal is to assess the “appropriateness” (as 

defined in Section 4.2.1) of each method based on principles of causal inference5,63,271-273, aiming to 

understand their applicability within HTA. The investigation is guided by the following sub-questions: 

(1) What statistical methods have been proposed to estimate the (comparative) effectiveness of 

treatment sequences using observational data?  

(2) Alternatively, what statistical methods have been used to estimate the effect of DTR, ATS, or any 

similar types of sequential treatment pathways in observational data, and may potentially be used 

to derive the (comparative) effectiveness of treatment sequences?  

(3) If the statistical method was not originally applied in the presence of treatment sequences, what 

issue did it originally address (e.g., adherence, treatment cross-over)? 

(4) What types of estimates were derived (e.g. time-to-event, hazard ratios (HRs), risk ratios)?  

(5) How were the results interpreted? What were the estimands (see Section 1.4.3 of Chapter 1 for 

the relevance of estimands)? 

(6) Can each method potentially be applied within the framework of Target Trial Emulation?  

(7) What is the performance of each method, and what are the key issues encountered when applying 

them?  

(8) Are they suitable for use in an HTA context? For example, can the method be used to determine 

the effect of a specific treatment sequence for the entire population, rather than the effect of a 

broader dynamic treatment strategy including various sequences (See Section 4.3.2 and 4.5.1 for 

taxonomy)? 
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4.3. Review methods 

In Section 4.3.1, I outline the overarching approach of this review, encompassing a systematic 

search combined with citation-reference tracking. The systematic search strategy and eligibility 

criteria for evaluation are specified in Sections 4.3.2 to 4.3.4, while the approaches for data extraction 

and synthesis are explained in Sections 4.3.5 to 4.3.7. 

4.3.1. Overarching approach 

The primary objective of this review was to identify and evaluate statistical methods for 

comparing the causal effects of different treatment sequences and understand the challenges 

encountered in their application. Furthermore, I sought to assess the evidence on the performance and 

relevance of these methods for HTA and determine which methods can be applied to analyse RWD 

in my case studies. As per Section 4.3.1, I was interested in two types of literature: (1) methods 

proposed in the methodological research or reviews for estimating the causal clinical effects of 

treatment sequences, and (2) those related to broader DTR, ATS, or treatment pathways with potential 

applicability to derive effects of static treatment sequences.  

The evolving terminology in methodological research complicates reliance on fixed-term 

systematic searches, risking either overly narrow or overly broad results. To address this, I adopted a 

two-step literature search strategy, starting with a systematic search to establish a foundational set of 

papers, followed by pearl-growing to expand this pool through citation and reference tracking. The 

latter mirrors the strategy employed in Chapter 2. Reference checking could efficiently lead to 

upstream methodological papers, while citation checking may identify downstream papers describing 

method extensions or applications. Given that my ultimate goal was to identify most relevant and 

promising methods (expected to be primarily found through systematic searches, with pearl-growing 

likely revealing method extensions and origins) for testing their applicability in my cases studies 

(Chapter 7-8) that serve as initial examples on this subject in HTA, I considered one round of citation-

reference checking adequate for this exploration. 

To ensure the review’s robustness, a second reviewer, Saleema Rex (a peer PhD student), 

independently screened 100 random papers against the eligibility criteria. Disagreements were 

resolved through consensus, and any outstanding disagreements were discussed with my supervisors, 

Professor Nick Latimer and Professor Jim Chilcott. The final pool of included papers was reviewed 

with my supervisors to ensure no major relevant papers were overlooked. 

4.3.2. Golden bullets 

“Golden bullets” refer to papers that should undoubtedly be included in a literature review, 

serving to validate the search strategy and ensuring that relevant studies are identified.101 In this 

section, I describe how I identified the golden bullets for this methods review.  
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Before starting the review, I was not aware of any literature providing a comprehensive summary 

of methods for estimating sequencing effect. However, I came across several ongoing research topics 

that shared similar concepts related to changing treatments, such as DTR (also known as ATS and 

treatment policies)274-276, treatment-switching43,277 and treatment non-adherence278. A DTR involves 

sequential decision rules for individual patients, where their characteristics are considered at each 

decision point throughout the disease course to optimise individual treatment trajectories. Notable 

examples of DTR include personalised strategies in treating human immunodeficiency virus (HIV) 

infection279,280 and diabetes mellitus 275. For HIV, decisions to change a treatment for an individual 

are contingent on their response to previous treatment (e.g. viral load). Optimising HIV treatment 

strategies does not always involve switching to an alternative medication. Instead, it could involve 

determining whether to continue or intensify the current treatment, as well as the optimal timing to 

initiate treatment in patients who receive active monitoring. In diabetes management, treatment 

typically begins with metformin and may be supplemented with additional drugs (e.g. sulfonylurea, 

DPP-4 inhibitors, SGLT2 inhibitors, insulin) based on the individual's response (e.g., HbA1c levels). 

Such DTR takes into account the sequential arrangement of treatments, allowing personalised 

sequences within a specific strategy to meet individual needs. In theory, methods used to assess the 

effect of individualised DTR could potentially be adapted to estimate the effect of (static) treatment 

sequences, commonly seen in HTA, where a single sequence is applied across the population. 

With this prior knowledge, I came across Mahar et al.’s review (2021), which provides an 

overview of statistical methods used to estimate the effect of DTRs using observational data.274 Their 

study identified commonly used methods for determining optimal DTRs, including inverse-

probability weighting (IPW), parametric G-formula, G-estimation, and Q-learning for conditions 

such as HIV, diabetes and beyond. To some extent, Mahar et al.'s review has a wider scope than my 

intended review as it presents methods for optimising DTR beyond those related to switching 

treatments, such as methods concerning the timing of treatment initiation and dose adjustments. 

Additionally, a recent study by Simoneau et al. introduced dynamic weighted survival modelling 

(DWSurv)275, a method that estimates optimal DTR for survival outcomes, demonstrated through a 

diabetes case study with UK Clinical Practice Research Datalink (CPRD) data. Consequently, both 

studies274,275 are considered as golden bullets for my review. 

It is crucial to distinguish between the effect of a (static) treatment sequence and a personalised 

DTR. An optimised DTR may involve tailoring different treatment sequences to each patient to 

achieve the optimal population effect. In HTA, comparing treatment sequences at a population level 

is common, with less focus on individualised treatment sequences (Chapter 2 & 3).201,202,245 While 

my thesis does not specifically target the varied treatment effects based on patient characteristics, 

exploring DTR methods may still be beneficial because of the overlapping concept of sequential 
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treatments. 

On the other hand, statistical methods addressing treatment-switching in clinical trials43 and 

adherence-dependent effectiveness43 may also share common ground with those in treatment 

sequencing and personalised DTR, given the time-varying nature of exposures. However, methods 

used in adherence studies often focus on understanding the effectiveness under specific levels of 

adherence, which may not be directly transferable to the treatment-sequencing context. Methods used 

to adjust for treatment-switching in trials typically aim to understand the effectiveness of a single 

LOT rather than sequential treatments.43 Latimer et al. recently proposed an improved two-stage 

estimation method for adjusting for treatment-switching, factoring in different waiting times before 

moving to an active drug post-initial treatment failure (i.e., immediately after progression or 

delayed).152 This method bears similarities to Huang et al.'s consideration of treatment-free periods 

between LOTs oncology treatment-sequencing economic modelling (Chapter 2).35 However, in 

specific contexts like advanced cancers, which are the focus of my case studies (Chapters 7 and 8), 

these nuances might be less relevant due to the likely brief gaps between LOTs. Hence, I did not 

consider any treatment-switching and non-adherence studies as golden bullets. Nonetheless, two 

statistical method reviews in these areas by my supervisor, Professor Nicholas Latimer, and his co-

supervised student, Dr. Abualbishr Alshreef, provided valuable structural insights for my methods 

review.278,281 

In summary, examining whether the literature search includes the two golden bullets—the DTR 

review by Marhar et al.274 and the study by Simoneau et al.275, which estimate optimal DTR for 

survival outcomes—helps validate the effectiveness of the literature search. 

4.3.3. Search strategy 

To enhance the search results’ breadth while maintaining specificity, I refined my core search 

strategy of “treatment sequence” and “statistical methods” by incorporating variations of “treatment 

sequence” (Chapter 3, Table 3.2) and adding terms from Mahar et al.’s search strategy274, including 

DTR, ATS and their variations. While Mahar et al.'s review focused only on clinical application 

studies using observational data (i.e. excluding pure methodological papers, simulation studies, and 

reviews), my goal was to identify relevant methods across all study types, so I did not fully follow 

their strategy. Furthermore, I assumed that statistical methods intended for causal inference would 

rely on constructing a statistical “model” and likely to mention “time-varying” or “causal 

relationship(s)”. Hence, I refined my search by replacing “statistical methods” with (“causal + model” 

OR “time-varying + model”).   

Following a pilot search and discussions with supervisors, the final search terms were 

established. A thorough PubMed search on March 13, 2022, identified the two “golden bullets” 
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specified in Section 4.3.2. Equivalent strategies were then replicated for EMBASE/MEDLINE. 

Specific search terms are outlined in Appendix 4.1 and Appendix 4.2 (PubMed and 

EMBASE/MEDLINE, respectively). 

4.3.4. Screening and eligibility assessment 

The screening and eligibility assessment process involved comparing records from database 

searches and reference-citation tracking with the criteria outlined in Table 4.1. Initially, titles and 

abstracts were screened, followed by a full-text review for final inclusion. To optimise the pool of 

papers via citation and reference tracking, I included all papers describing relevant methods in the 

initial systematic search, whether they presented the method in reviews, simple examples, or full 

application studies. This included theoretical papers lacking practical case studies, as they may be 

cited by application studies that demonstrate their utility.  

This review did not aim to include upstream methodology papers that did not attempt to estimate 

the clinical effect of treatment sequences, DTR, or similar. However, foundational methods cited in 

eligible studies were discussed in the context of their theoretical principles and origins in the narrative 

synthesis (Section 4.6). Further, the review focused on individual patient-level data methods, 

excluding aggregated data techniques such as meta-analysis and meta-regression. The review 

extended beyond health economic literature to encompass all pertinent statistical methods across 

various fields, particularly biostatistics and epidemiology, mirroring insights from Chapter 2.  

 

Table 4.1 Inclusion and exclusion criteria for eligibility assessment 

Inclusion 

criteria 

 Methodological papers* that describe statistical methods to estimate the (comparative) effectiveness of 

different treatment sequences 

 Methodological papers* that describe statistical methods to evaluate decisions involving the effect of 

dynamic treatment, adaptive treatment strategies, or similar may be included if the paper provided 

explanations for calculating outcomes of a particular treatment sequence.  

 Application studies (either practical example using real data, or simulation studies) that applied statistical 

methods to estimate the (comparative) effectiveness of different treatment sequences. 

 Application studies that applied statistical methods to evaluate decisions involving the effect of dynamic 

treatment regimens, adaptive treatment or similar may be included if the paper provided methods for 

calculating outcomes of a particular treatment sequence.   

 Methods reviews that summarise statistical methods that can be used in the context of treatment sequences 

or estimating the effectiveness of dynamic treatment regimens adaptive treatment strategy or similar. 

 Paper published from databases inception to date 

Exclusion 

criteria 

 Full-text unavailable 

 Non-English papers 

 Conference abstracts or paper with insufficient description of the statistical methods 

 Book Chapters and Thesis 

 Methods based on aggregated data such as meta-analysis or meta regression 

 Papers that apply a statistical method but without description and justification of the method (Papers of 

methods application with detailed justification will be included) 

 Original** or upstream papers that did not contain any application of the methods in a treatment-

sequencing, dynamic treatment regimen, adaptive treatment strategy or similar context 

* Theoretical papers with no application (regardless of using actual data or simulated data) will be included; however, papers 

without an application need to at least offer practical exposition. 

** The first paper of a statistical method or the first paper using an existing method in a new context (e.g. treatment-

sequencing) will be considered as “original”. 
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4.3.5. Data extraction 

The data extraction process, detailed in Table 4.2, was adapted from previous reviews on 

methods for DTR, treatment-switching, and non-adherence.274,278,281 It started by gathering key details 

from each study, focusing on basic information and methodological origins. Papers employing similar 

methodologies were grouped together and classified as “original,” “method extension,” or 

“application only.” Papers introducing a new statistical method or applying an existing one in a new 

context, such as treatment sequencing, were labelled “original”. Theoretical suitability for each study 

was assessed, followed by the extraction of application study details where applicable. 

4.3.6. Data synthesis 

Quantitative results from multiple choice or binary questions in Table 4.2 were first summarised. 

Then, a qualitative narrative synthesis was performed for each methodological group—comprising 

original, method extension, and application only papers. Each group of papers were collectively 

assessed and discussed using the methods appraisal framework in Table 4.3, adapted from Latimer’s 

doctoral thesis and Alshreef et al.’s research.281,282 

In the synthesis, I first noted the complexity arising from the variations of data sources and 

treatment sequences, each adding nuances to the statistical methodologies applicable in different 

contexts. For clarity, I summarised several taxonomies before moving into the narrative synthesis of 

results in Section 4.5. These taxonomies include: the types of studies involving treatment sequences 

(Section 4.5.1, and as briefly outlined in Sections 2.5.2.3-2.5.2.4 of Chapter 2); the variants of 

treatment sequences (Section4.5.2, and as briefly outlined in Section 2.5.2.3 of Chapter 2); and the 

categorisation of simple versus non-simple methods (Section 4.5.3).  

Here, simple methods broadly refer to (1) statistical analyses that do not adjust for confounding 

bias, potentially suitable in scenarios where randomisation eliminates such bias, yet biased where 

confounding exists, notably in (but not limited to) RWD analysis; (2) conventional approaches such 

as simple outcome regression that include both baseline and time-varying confounders, aiming to 

adjust for confounding bias but may inadvertently introduce additional bias. Additional bias 

introduced by such techniques was clarified with directed acyclic graphs (DAG) in Section 1.4.1, 

Chapter 1. Additionally, (3) RWD analyses may attempt to restrict to certain patient groups or 

observation periods, whether incorporating the conventional adjustment approach (2) or not, to 

mitigate bias from treatment-sequencing strategy deviations. However, this risks introducing 

immortal time or selection bias by selecting patients based on characteristics observed after enrolment, 

as briefly explored in Section 1.4.2, Chapter 1. Contrary to simple methods, non-simple methods here 

refer to advanced statistical techniques that are capable of comparing the counterfactual outcomes of 

different treatment sequences. Section 4.5.3 presents a more detailed taxonomy of non-simple 
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methods, preparing readers for the narrative synthesis in Section 4.6. 

 

Table 4.2 Data extraction table: basic information and methodological origin 

Dimension Items Info extraction 

Article 

information 

(all papers) 

 Title  [Free-text] 

 Author [Free-text] 

 Journal [Free-text] 

 Year of publication [Number] 

 Has an application study? [Yes/No] 

Methodological 

origin 

(all papers) 

 Method (Which statistical methods have been used?) [Free-text] 

 Method acronym [Free-text] 

 Methods group e.g. parametric G-formula, G-estimation and Q-learning, others 

[free-text] 

[Multiple choice/ 

Free-text] 

 Type of methodological contribution. e.g. original, methodology extension, or 

application only (informing clinical practice)] 

[Multiple choice] 

 Was the method originally developed to estimate the effectiveness of treatment 

sequences?  

[Yes/No] 

 If not (i.e. an application or extension of another method), what is the original 

method and in what context?  

[Free-text] 

 Following the last question, how has the method been adapted? [Free-text] 

Theoretical 

suitability 

(only “original” 

or “method 

extension”  

papers*) 

 How does the method work? [Free-text] 

 What key assumptions does the method make? [Free-text] 

 What are the potential biases? [Free-text] 

 Why might the method not be appropriate? [Free-text] 

 What are the advantage or disadvantages of the method? [Free-text] 

Application 

(all papers with 

applications) 

 Has the method been applied to estimate the (comparative) effectiveness of 

different treatment sequences or to evaluate decisions involving the effect of 

dynamic treatment regimens, adaptive treatment or similar in a case study? If 

yes, then answer the question below: 

[Yes/No] 

 Has the method been applied to estimate the (comparative) effectiveness of 

different treatment sequences or to evaluate decisions involving the effect of 

dynamic treatment regimens, adaptive treatment or similar in a simulation 

study? If yes, then answer the question below: 

[Yes/No] 

 In what diseases/conditions has the method been applied in the case/simulation 

study? E.g. Oncology, HIV/AIDS.  

[Multiple 

choice/free-text] 

 What is/are the intervention(s) assessed in the case/simulation study? [Free-text] 

 Outcome(s) assessed? E.g. Time-to-event, Binary, Continuous [Multiple choice] 

 Used within a Target Trial emulation framework? [Yes/No] 

 Are there multiple analysis approaches [Yes/No] 

 Following the last question: If multiple model/analysis were compared how do 

they differ?  

[Free-text] 

 What were the results compared to traditional approaches (ITT, AT) if available? [Free-text] 

 What are the possible estimands in the application? How were they interpreted?  [Free-text] 

 Has model performance been evaluated? [Yes/No] 

 Following the last question: If yes, how? E.g. cross-validation, AIC/BIC [Free-text] 

 Have the authors specified methods used for covariate selection? [Yes/No] 

 How are the covariates selected? DAG, expert opinion, statistical significance? [Free-text] 

 Have the authors mentioned any violations of the key assumptions of the 

methods?  

[Yes/No] 

 Following the last question: If yes, what are they? [Free-text] 

 Have any methods been used to tackle missing data issue? [Yes/No] 

 Following the last question: How was missing data tackled? E.g. complete case 

analysis, multiple imputation. 

[Free-text] 

 Any sensitivity analysis?  [Yes/No] 

 Following the last question: If yes, what were those? E.g. truncated inverse 

probability weights? 

 

 Data type. E.g. registry, electronic health records, claims [Free-text] 

 Software. E.g. SAS, STATA, R, Unavailable [Free-text] 

 Key challenges identified by the authors [Free-text] 

AIC: Akaike Information Criterion; AIDS: Acquired Immunodeficiency Syndrome; BIC: Bayesian Information Criterion; DAG: 

directed acyclic graph; AT: as-treated; HIV: Human Immunodeficiency Virus; ITT: intention-to-treat 

* Papers within the same method group were labelled as “original”, “method extension” or “application only”. The first paper of a 

statistical method or the first paper using an existing method in a new context (e.g. treatment-sequencing) was be considered as 

“original”. 
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Table 4.3 Methods appraisal framework     

Dimension Considerations  

Origin   Has the method been used to estimate the effect of treatment sequences? 

 If not, in what context has the method been applied and what is the similarity of its use compared 

to its potential use in analysing the effect of treatment sequences? 

 In what disease area has the method been frequently used? 

 Does the method represent an extension to another method used to estimate the effect of 

treatment sequences? 

Theoretical 

Suitability  

 How does the method work? 

 What are the key assumptions of the method?  

 What major concerns may invalidate the use of the method, causing bias? 

 What are the advantages and disadvantages of the method? And are these in relation to data 

quality, data type or methodological assumptions? 

 Can the method be used in combination with other methods wherever relevant? 

 What are the similarities and differences of the method compared to other methods identified? 

Application   Has the method been applied to estimate the (comparative) effect of treatment sequences or to 

evaluate decisions involving the effect of dynamic treatment regimens, adaptive treatment or 

similar in a case study or simulation study? If yes, summarise the case/simulation study 

 What were the results compared to simple methods (e.g. ITT/AT), if compared? 

 Was any evidence presented to allow an evaluation of the “successful use” of the method? If yes, 

how? E.g. Compared to a benchmark trial or estimates from clinical expert opinions 

 If there was any “successful” example, was it in a treatment sequence setting? And in what data 

type has it been applied to? Can it potentially be applied to other types of data? 

 What are the key challenges associated with the application of the method and how could these 

be addressed? These may include key assumptions, covariate selection and missing data 

problem. 

 What are the possible estimands for each method? How were they interpreted? What were the 

differences between each possible estimand? 

 Are there open source statistical programmes or packages operationalising the method? 

 Is the method suitable to be applied in a HTA context? Why and Why not? 

Others  Any other relevant characteristics of the method that need to be considered? 

AT: as treated; ITT: intention to treat 

4.3.7. Data management 

I utilised Covidence, an online systematic review platform, to collaborate with my peer reviewer, 

Ms. Rex, on screening and evaluating full texts, as well as eliminating duplicate entries. All included 

studies were managed using EndNote (version X8) for data synthesis and referencing. 

4.4. Results 

4.4.1. Search results  

The review identified 2,208 records. Figure 4.1's PRISMA diagram shows the eligibility 

assessment, citation-reference tracking, and a post-hoc paper addition process. Reasons for excluding 

papers are categorised. Sections 4.4.1.1 to 4.4.1.3 provide further insights on the inclusion process, 

while Section 4.4.2 summarises characteristics of the included papers.
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Figure 4.1 PRISMA flow diagram 

The solid lines illustrate the inclusion and exclusion process through duplicate removal, title/abstract screening, and full-text 

assessments. The dashed line represents the one-time citation and reference tracking process, while the dotted line indicates the papers 

added based on expert suggestions.  
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4.4.1.1. Papers included through systematic database search 

The database searches resulted in 784 records: 363 from PubMed, 249 from EMBASE, and 172 

from MEDLINE (Figure 4.1), including the two “golden bullets” referred to in Section 4.3.2.274,275 

After deduplication (n = 305), 479 records were screened by title and abstract, leading to 299 records 

being excluded. Following a full-text review, another 160 did not meet eligibility criteria, resulting in 

20 papers being included for data extraction. Ms. Rex, my peer reviewer, independently reviewed 

100 random records out of the 479 non-duplicated ones for quality assurance. We resolved any 

disagreements through thorough discussion, as mentioned in Section 4.3.1. The same evaluative logic 

was then consistently applied to assess the eligibility of the remaining papers. 

The 20 papers included at this stage served as the “grit” for citation-reference tracking in the 

next stage of the review (i.e., pearl growing). Among these were 16 methodology papers and 4 

methodological reviews. These include the “golden bullet” papers by Simoneau et al. and Mahar et 

al., as outlined in Section 4.3.2.274,275 The four methodological reviews cover diverse topics: causal 

methods enabling predictions under hypothetical interventions283, causal inference in RCT analysis284, 

Bayesian nonparametric statistics in cancer research with an example of DTR285, and DTR methods 

in observational studies.274 I selected these review papers not only for their potential in leading to 

additional relevant methodological studies through citation/reference tracking but also because they 

may provide clearer explanations and comparisons of different methods. 

The second column from the left in Table 4.4 shows the number of papers included in Stage 1, 

with parentheses indicating those using non-simple methods (as defined in Section 4.3.6). Five studies 

explored non-simple methods in analysing RCTs involving sequencing information, including two 

reviews.284-288 Six studies discussed non-simple methods for analysing RWD, including two 

reviews.274,275,283,289-291 Another two studies investigated non-simple methods for analysing sequential 

multiple assignments randomised trials (SMARTs)292,293, while the remaining seven studies were 

application studies comparing sequences using simple methods across various data types.173,294-299  

4.4.1.2. Papers included through citation and reference tracking 

In stage 2, 1,424 records were identified through citation/reference tracking (June 9, 2022), as 

shown in Figure 4.1. While Google Scholar yielded a higher number of citations, the excess mostly 

came from non-peer-reviewed or non-English publications. Consequently, I exclusively utilised Web 

of Science for tracking citations. After de-duplicating 227 records, 1,197 underwent abstract and title 

screening, leading to the exclusion of 919 and leaving 278 for full-text review. Many papers (919 out 

of 1,197) were excluded during the abstract and title screening for their sole therapeutic focus, which 

lacked relevance to statistical methodology. These papers primarily consisted of references or 

citations from Stage 1's method application only studies, which employed simple methods in specific 
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therapeutic areas, or were merely cited to provide disease backgrounds. Hence, it was deemed 

unlikely that further insights into advanced statistical methods could be gleaned from these papers. 

After full-text review, 242 records were excluded, leaving 36 for data extraction, including a review 

by Chakraborty and Murphy on DTRs for its comprehensive overview on the topic.4   

The third column from the left in Table 4.4 presents the count of studies included in Stage 2. 

Most non-review studies included at this stage focused on non-simple methods in analysing SMARTs 

(n = 16)123,178,300-313, alongside application-only studies that utilised simple methods for sequence 

comparison across various data types (n = 17) 314-330, and two studies that employed non-simple 

methods to analyse RWD or RCT with sequencing information.331,332 

 

Table 4.4 Characteristics of included papers    

 Publication count 

(Publication count excluding those using simple methods) 

Characteristics Stage 1: 

systematic 

search 

Stage2: 

reference-citation 

tracking 

Ad-hoc Total 

Year of publication     

1996-2000 1 (0) 1 (0) - 2 (0) 

2001-2005 2 (0) 3 (3) - 5 (3) 

2006-2010 3 (3) 5 (3) - 8 (6) 

2011-2015 6 (3) 17 (8) - 23 (11) 

2016-2020 4 (4) 7 (4) 1 (1) 12 (9) 

2021 3 (2) 2 (1) - 5 (3) 

2022 1 (1) 1 (0) - 2 (1) 

Type     

Methods paper with application study, including 

those with or without simulation studies 

8 (8) 15 (15) 1 (1) 23 (23) 

Methods paper with only simulation studies - 2 (2) - 2 (2) 

Application only 8 (1) 18 (1) - 26 (2) 

Review of methods 4 (4) 1 (1) - 5 (5) 

Disease area*,  

excluding review publications 

    

Cancer (blood) 5 (5) 8 (8) - 13 (13) 

Cancer (solid tumour) 7 (3) 25 (8) - 32 (11) 

Diabetes 1 (1) - - 1 (1) 

Glaucoma 1 (0) - - 1 (0) 

Hepatitis B 1 (0) - - 1 (0) 

HIV infection 1 (0)  - - 1 (0)  

Cardiovascular disease - - 1 (1) 1 (1) 

None (simulation only) - 2 (2) - 2 (2) 

Type of data used,  

excluding review publications 

    

RCT 2 (2) - - 2 (2) 

Sequential treatment RCT 2 (0)  5 (0) - 7 (0) 

Pooled sequential treatment RCTs 1 (0) 1 (0) - 2 (0) 

Simulation studies + RCT 1 (1) 1 (1) - 2 (2) 

RWD 6 (2) 12 (1) - 18 (3) 

Simulation studies + RWD 2 (2) - - 2 (2) 

RWD toy example 0 (0) 0 (0) 1 (1) 1 (1) 

SMART - 5 (5) - 5 (5) 

Simulated SMART - 4 (4) - 4 (4) 

Simulation studies + SMART 2 (2) 7 (7) - 9 (9) 

Total  20 (13) 36 (19) 1 (1) 57 (33) 

DTR: dynamic treatment regimen; HIV: human immunodeficiency virus; RCT: randomised controlled trial; RWD: real-world 

data; SMART: Sequential Multiple Assignment Randomized Trial 
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4.4.1.3. Paper included ad-hoc 

During the ad-hoc phase, I added a briefing paper by Hernán on the use of the clone-censor-

weight method on survival outcomes, featuring a RWD toy example.333 Despite this method 

increasingly being used in various scenarios over the past five years75,333-335, Hernán’s paper was 

selected for its practical illustration of comparing aspirin treatment durations (e.g., none, 1 year, 2 

years), which subtly mirrors the comparison of several treatment sequences (e.g., no-aspirin → no-

aspirin, 1 year aspirin → 1 year no aspirin, 1 year aspirin → 1 year aspirin). This paper was not 

identified in the systematic search and reference/citation tracking as it technically did not compare 

different treatment sequences (Table 4.1 eligibility criteria). The relevance and conceptual parallels 

of such type of time-related static treatments, which, to an extreme extent, could arguably be 

considered a type of DTR, only became clear to me after attending CAUSALab courses at Harvard 

University on Target Trial Emulation in June 2022 and Advanced Confounding Adjustment in June 

2023, which was beyond the timeframe of my initial review. Among the materials and references 

reviewed in those courses, this paper stood out as one of the most analogous and conceptually 

approachable ones for comparison. In fact, methods in the majority of studies included in my review 

share similar roots with those discussed in the CAUSALab courses. This indicated I have likely 

identified the most relevant advanced statistical methods for comparing treatment sequences, 

including those utilised in broader contexts of DTR. Hernán paper’s briefing paper is distinguished 

by its use of the recently increasingly recognised “cloning” technique and practical example in data 

organisation333, proves to be a valuable and fitting addition to my review (see Section 4.6.1.2.2). With 

this paper's inclusion, the total number of studies in the final review reached 57 (n = 20 + 36 + 1). 

4.4.2. Characteristics of the included papers 

Table 4.4 highlights that over half of the studies published in the last 15 years. There has been a 

growth of non-simple methods in comparing treatment sequences in the last decade compared to the 

previous one. Among non-review articles, non-simple methods (n = 28) are predominantly linked to 

oncology studies (n = 24, solid tumour n = 11, haematological malignancy n = 13), with exceptions 

including a diabetes-focused study (i.e., the golden bullet by Simoneau et al.275) and the 

cardiovascular disease ad-hoc paper by Hernán.333 Simple methods have been broadly applied across 

studies in oncology, glaucoma, hepatitis B, HIV, and cardiovascular disease, with the majority them 

being application-only studies. 

All methods used to analyse sequential treatment RCTs—where patients were randomised to 

different treatment sequences—employed ITT analyses without any adjustments (n = 9), regardless 

of whether the sequential treatment RCTs were pooled from multiple sources. For RWD studies, the 

majority used simple methods for analysis, with only 6 out of 21 (29%) employing non-simple 
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methods. All studies analysing SMARTs (n = 18) utilised non-simple methods. 

4.5. Taxonomies 

4.5.1. Types of studies involving treatment sequences 

Figure 4.2 highlights the parallels across different data sources harbouring sequencing 

information, as briefly introduced in Section 2.5.2.3-2.5.2.4 in Chapter 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Illustration of parallels among various data sources containing treatment sequences 

RCT: randomised controlled trial; RWD: real-world data; SMART: Sequential Multiple Assignment Randomized Trial 
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In the series of figures in Figure 4.2, arrows numbered with values indicate the probability of 

randomization to a specific group, while a question mark “?” next to an arrow signifies a non-

randomized process. Figure 4.2A depicts a SMART with two-stage randomisation, assigning 

participants with a 0.5 probability at each stage to one of two treatments. This results in each 25% of 

participants (a quarter of the circle) experiencing one of four sequences: green → blue, green → 

orange, blue → green, or blue → orange. For causal effect comparisons among these sequences, 

theoretically, no adjustment is needed since all patients had equal chances of receiving one of the 

treatment sequences due to all participants undergoing the second-stage randomisation (i.e., each 

group is comparable).4,336 

However, more advanced analysis may become essential if not every participant undergo each 

stage of randomisation, as shown in Figure 4.2B. This complexity arises because these deviations can 

affect the probability of receiving a specific treatment sequence (i.e., not equal circle sizes for each 

one of the four treatment sequence group), leading to biased conclusions if direct comparisons are 

made between patients receiving different sequences. For example, the SMART design may only 

proceed to a second randomisation for participants meeting specific criteria, such as survival upon 

disease progression (Figure 4.2B). Despite an initial 50/50 randomisation ensuring baseline 

comparability, varying survival rates to the second randomisation (first-line treatment: green versus 

blue) necessitate advanced analytical adjustments to accurately compare the effects of different 

sequential treatment strategies. When assessing the effect of the green → blue strategy by following 

all patients who start with green and either excluding, or censoring those who initiated second-line 

orange treatment at second-line initiation, it may seem to eliminate the “contaminated effect” from 

the orange second-line treatment. However, this approach will disproportionately represent those 

unable to proceed to second-line treatment (due to death or unfitness), resulting from the “artificial 

removal” of a significant proportion of data post-second-line. Hence adjustment with advanced 

statistical methods is needed.336 

Conceptually, one solution is to apply weights to patients. For example, to estimate the marginal 

effect (i.e., average treatment effect (ATE)) of the green → blue strategy, patients who completed this 

sequence could be weighted by the inverse probability of receiving the second-line blue treatment 

(e.g., 1 over 0.75) to simulate a scenario where all patients eligible for a second-line treatment 

received blue. Meanwhile, patients who only received the first-line green treatment and did not 

progress to the second line would receive a weight of 1, as they were still considered as adhered to 

the green → blue strategy. Note, this is a conceptual example, and while analyses using different 

estimators may vary slightly, this captures the essence. This weighted group then represents what the 

outcomes would have been had all patients initially been randomised to the green → blue treatment 

path. Given the initial 50/50 randomisation between the first-line green and blue treatments, this 
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estimation also represents the counterfactual effect where all participants in the SMART would have 

received the green → blue strategy. This example is applicable for analysing restricted mean survival 

time, whereas other survival analysis might censor patients at the point they deviate from the 

treatment strategy of interest and upweight those who did not deviate to represent those who did, only 

from the point where someone else in the group deviated (See Sections 4.6.2.1.1-4.6.2.2.2 for details). 

As mentioned earlier in Chapter 3, only one TA were found to leveraged evidence from a SMART 

(Section 3.4.3.4.2, Chapter 3).215 Specifically, the SMART utilised in TA 137 followed a structure 

similar to that shown in Figure 1.2B.215 However, the manufacturer relied solely on a simple statistical 

method, intention-to-treat (ITT) (see Section 4.6.1.1), to assess the overall survival (OS) and 

progression-free survival (PFS) across different treatment strategies. This approach may not 

effectively derive the counterfactual outcomes of varying treatment sequences. Nonetheless, the 

evidence review group (ERG) did not explicitly raise any specific concerns about this. 

Figure 4.2C represents a two-arm sequential treatment RCT, where patients were randomised to 

two distinct treatment sequences (green → blue versus blue → green), and only those who survived 

upon disease progression were eligible for subsequent treatments. This setup reflects two of the four 

groups in the SMART in Figure 4.2B that have been adjusted with the aforementioned method to 

estimate treatment sequence strategy's ATE for the entire trial population. Participants in Figure 4.2C 

underwent a 50/50 randomisation to a fixed treatment sequence without a second randomisation point, 

so no adjustment is needed to assess the causal effect of the two sequential treatment strategies. This 

highlights the efficiency of the SMART design in comparing sequential strategies with fewer 

participants (though more advanced analytical techniques may be required).337 Contrarily, to compare 

four sequences using a traditional RCT approach, a four-arm design would be necessary, requiring a 

larger participant pool, such as the BIG 1-98 breast cancer trial.321 

Figure 4.2D shows the parallels between a SMART (Figure 4.2B) and a RWD study. The key 

distinction lies in the known randomisation probabilities in a SMART versus the unknown 

probabilities of receiving treatments in RWD studies.60 Despite these differences, RWD may allow 

for the estimation of treatment probabilities with assumptions (i.e., in a sense, probabilities that can 

be leveraged to emulate randomisation), such as treatment decisions being determined by a patient's 

performance status, weight, age, and comorbidities. This means the approaches to estimating 

treatment sequence effects from RWD may theoretically mirror those in SMART analysis, but 

depending on the complexity of SMART (simpler ones like in Figure 4.2A, may not require advanced 

analytical techniques). With its typically larger sample sizes, RWD may be leveraged to perform 

counterfactual comparisons between any paired treatment sequences, similar to those in the two-arm 

sequential treatment RCTs in Figure 4.2C. 
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4.5.2. Variants of treatment sequences and their relevance for HTA 

Table 4.5 classifies different types of effect of treatment sequences: uniform sequence for the 

entire population, optimal uniform sequence for the entire population, and optimal individualised 

sequences. Each of these can involve either time-related static treatment strategy or dynamic 

treatment strategy (i.e., DTR). In the context of treatment sequences, a time-related static strategy 

involves switching treatments based on a predefined duration, whereas a DTR entails switching 

treatments in response to events that may occur at varying times for each patient.   

Based on the TA review in Chapter 3, the most relevant and commonly used estimand of 

treatment sequence effectiveness for HTA is the average treatment effect of a uniform treatment 

sequence within a population (bottom of the second column in Table 4.5). This estimand does not 

necessarily yield an optimal population effect (i.e., maximum total quality-life adjusted life years). 

This is because, when treatment sequences exist in HTA, the appraised treatment is often placed in a 

sequence and compared against one or several pre-defined reference treatment sequences. However, 

none of these sequences may necessarily lead to an optimal overall population effect but instead 

represent the most commonly used treatment sequences in clinical practice.  

On the other hand, research focusing on computation optimisation of treatment-sequencing 

models, such as Tosh's doctoral thesis, aimed to identify the optimal uniform treatment sequence for 

the entire population (see Section 2.4.3.7, Chapter 2), aligning with the concept of optimal 

sequences.30 Further, Kim’s doctoral thesis focused optimising decision-making models for 

sequential treatments given patient characteristics, reflecting the concept of optimal individualised 

treatment sequences, where each patient receives a specific treatment sequence based on their unique 

characteristics.31 While both cases focus on optimisation of cost-effectiveness rather than 

effectiveness, their concepts are analogous to optimal treatment sequences (i.e., the right two columns 

in Table 4.5). Identifying the most cost-effective or most effective treatment sequence is currently not 

the primary focus of HTA. Some TAs model a mix of subsequent treatments, but these usually 

designed to reflect market share rather than being optimised for individual patients.  

All simple methods identified compared the effects of two or more uniform treatment sequences 

for the entire population. Conversely, non-simple methods not only addressed these comparisons—

most relevant to HTA—but also identified the optimal uniform sequence and explored treatment 

strategies with optimised individual sequences (see the right two columns in Table 4.5). Although not 

directly relevant, insights from these studies were valuable and retained in the review (see Section 

4.6.2), though they received less focus in my narrative synthesis. Most included studies focused on 

comparing sequences that are dynamic rather than time-related static strategies (see the bottom two 

rows of Table 4.5). This aligns with Chapter 3’s findings, where most treatment sequences compared 

in TAs are dynamic treatment strategies. However, insights from both types of studies are transferable.
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Table 4.5 Types of treatment sequences    

Type of 

treatment 

strategy   

Type of treatment sequence 

 

Uniform treatment sequence for the entire population 

 

Optimal uniform treatment sequence 

for the entire population 

Optimising treatment sequences for each individual in the 

population 

These are sometimes referred to a subtype of “static treatment sequence” in the literature (see the cell 

below), as all patients within the same population receive the same treatment sequence. 

This is often referred to as “individualised treatment strategy” or 

“individualised DTR” in the literature or “dynamic treatment 

sequence” 

 

Static 

strategies 

Not applicable in the treatment sequence context; typically refers to one-time treatment or sustained single treatment.  

Example:  

o One-time flu vaccine 

o Always treated with treatment A versus treatment B. 

Time-

related 

static 

strategies 

Switching to a subsequent treatment in a sequence depends only on the pre-defined duration of the previous treatment. 

 

Example: In the BIG 1-98 breast cancer trial321, four treatment 

sequences compared were: 

o Letrozole for 2 years → letrozole for 3 years 

o Tamoxifen for 2 years → tamoxifen for 3 years 

o Letrozole for 2 years → tamoxifen for 3 years 

o Tamoxifen for 2 years → letrozole for 3 years 

Theoretical example: Identifying a 

uniform optimal sequence for the entire 

population from the left cell’s example, 

such as letrozole for 2 years → 

letrozole for 3 years, which leads to 

longer overall survival. 

Theoretical example: Identifying an optimal treatment sequence 

tailored to individual patient characteristics at initiation and 

predefined switching points. For example: 

o Letrozole for 2 years → letrozole for 3 years could be 

optimal for patients who are at high risk of early recurrence 

o Letrozole for 2 years → tamoxifen for 3 years could be 

optimal for patients who cannot tolerate long-term letrozole 

and might benefit from different mechanisms of treatment 

The optimal individualised treatment strategy then involves 

starting on letrozole, with a subsequent switch to a treatment 

suited to each patients’ needs at a predefined point. 

 

Note: Individualised treatments require considering patient 

characteristics, making them technically DTR, although the 

timing of treatment switches is only static and time-related 

rather than event-dependent. 

Dynamic 

treatment 

strategies 

Switching to a subsequent treatment in a sequence based on an event that may occur at variable times for each patient 

 

Theoretical example: Comparing the population causal effect of 

treatment sequences A→ A, A→ B, B→ B, B→A. This 

strategy is dynamic, as subsequent treatments are administered 

based on time-varying criteria such as disease progression (e.g., 

patients receiving only A without disease progression are 

considered to have followed the dynamic strategy of A→B). 

 

For simplicity, a dynamic treatment strategy involving a  

uniform treatment sequence for the entire population is referred 

as the average treatment effect of a uniform treatment sequence 

within a population. 

Theoretical example: Identifying a 

uniform optimal sequence for the entire 

population from the left cell’s example, 

such as A→ B and estimating its 

population effect. 

Theoretical example: Estimating the population effect of a DTR 

where each individual's treatment sequence is optimised based 

on specific triggers. For instance, the treatment sequence A → B 

might be optimal for patients achieving complete remission after 

first-line treatment A, while A → C could suit those showing 

disease progression. Thus, the optimal DTR involves 

individualised treatment, with A followed by either B or C, 

depending on patient characteristics before initiating the second-

line treatment. 

DTR: dynamic treatment regimen
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4.5.3. Methods identified to compare treatment sequences 

Table 4.6 and Table 4.7 provides a taxonomy of methods with the potential to evaluate the 

effectiveness of treatment sequences from RWD, specifically within the context of time-to-event 

outcomes. This review focused exclusively on methods applicable to time-to-event outcomes due to 

the emphasis on survival outcomes in my case studies (see Chapters 7-8). This categorisation aims to 

improve the understanding of each method's theoretical principles and their relationship with other 

methods. Additionally, these tables specify the types of data and instances (e.g., specific RCT or RWD 

studies) where the methods have been applied. Feedback from supervisors was applied to refine this 

taxonomy. It is important to acknowledge that although this taxonomy primarily adapts terminology 

from reviewed papers and studies citing them, it also reflects my interpretation of how each study 

relates. The proposed taxonomy broadly categorises methods into five groups.  

(1) Simple methods (Table 4.6): Some of these may provide unbiased estimates for analysing RCTs 

that randomise patients to different treatment sequences (i.e., ITT analysis when patients 

minimally deviate from their assigned treatment sequences). However, they often fail to adjust 

for time-varying confounding in RWD settings (and in RCTs that involve non-randomised 

subsequent treatments) and may introduce additional biases such as immortal time bias by only 

including patients who survive to receive subsequent treatment. While not the main focus of this 

review, understanding the applicability of simple methods in specific RCT settings is crucial.  

(2) Generalised methods (g-methods) (Table 4.6): Originating from Robins’s 1986 paper54, these 

methods were developed to adjust for time-varying confounders and treatments when analysing 

RWD to answer causal questions. These methods harnessed the Neyman-Rubin’s counterfactual 

outcomes framework50, which was originally developed to assess causal effects of time-fixed 

treatments in RCT and RWD scenarios, respectively (see Section 1.4.1, Chapter 1 for introduction 

of causal inference). Not surprisingly, all methods identified in this review were either adaptations 

of g-methods, or closely related to them. These include adaption of marginal structural models 

(which is frequently used with inverse probability weighting)58,68,69 and g-estimation of structural 

nested failure time models (SNFTMs).66,67 While most studies in this category examined the effect 

of a uniform treatment sequence across the entire population, one study utilised adaptations of 

SNFTM to identify an optimal uniform sequence for the population.290 

(3) G-methods for identifying optimal individualised DTR (Table 4.6): These are an extended 

application of g-methods incorporating individual characteristics into identifying optimal 

treatment strategies, allowing for tailored decisions during treatment switches rather than a fixed 

subsequent treatment for the entire population. Methods in this category were used to identify 

optimal treatment strategies that could involve different treatment sequences for each individual 
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in the population. In addition to the g-methods mentioned in (2), adaption of g-formula (also 

known as, parametric g-formula, g-computation, or (g-)standardisation))54 were also identified in 

this category. 

(4) Q-learning (Table 4.6): This is a distinct category featuring methodology originating from 

reinforcement learning. However, the model structures in all identified Q-learning studies 

borrowed concepts from, or paralleled, SNFTM. All identified Q-learning studies were used to 

determine optimal individualized DTRs. 

(5) Methods for analysing SMARTs (Table 4.7):  According to Robins, there are parallels between 

SMART designs and RWD. The review confirmed that all methods for analysing SMARTs are 

derived to some extent from g-methods, yet they exhibit more variation in terms of estimations 

compared to other identified methods, including g-formula, IPW, and Q-learning. 

 

Table 4.6 Methods used in analysing RCT and RWD 

Method 

Groups 

Method 

subcategory 

Method/Extension References Case study data 

details 

Data used for 

demonstration 

RCT RWD 

Methods for comparing uniform treatment sequences for the entire population 

Simple 

methods  

Simple methods 

for analysing 

sequential RCTs   

ITT Recht 1996316 

AGIS Investigators 

2002295 

Derks 2017324 

Each study 

conducted its 

own sequential 

treatment RCT 

 

 
(appl. 

only) 

- 

The BIG 1-98 

Collaborative Group 

2009321 

Regan 2011173 

Chirgwin 2016328 

 

The BIG 1-98 

breast cancer 

sequential 

treatment RCT 

EBCTCG 2015314 

Benchalal 2005296 

 

Pooled data of 

breast cancer 

sequential 

treatment RCTs 

 

ITT, with adjustment of 

variables at randomisation 

due to pooling data from 

various sequential treatment 

RCTs 

Rabaglio 2021317 The BIG 1-98 

breast cancer 

sequential 

treatment RCT 

 
(appl. 

only) 

- 

PP (None) 

 

- - - 

Simple methods 

for analysing 

RWD 

AT, limited to patients who 

received all treatment lines 

Lu 2022315 

Jonasch 2014318 

Stenner 2012322 

Herrmann 2011323 

Dudek 2009326 

Ishihara 2018327 

Li 2014329 

Paglino 2013330 

Each study 

conducted its 

own RWD study, 

restricted to 

patients who 

underwent the 

entire sequence 

of treatment lines 

-  
(appl. 

only) 

AT with multivariate 

adjustment, limited to 

patients who received all 

treatment lines 

Busch 2011297 

Busch 2013298 

Iacovelli 2013319 

Giuliani 2012320 

Buchler 2012325 

-  
(appl. 

only) 

AT with time-dependent 

model with multivariate 

adjustment, limited to 

patients who received all 

treatment lines 

Van Leeuwen 1997294 

Kumada 2021299 

-  
(appl. 

only) 
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Method 

Groups 

Method 

subcategory 

Method/Extension References Case study data 

details 

Data used for 

demonstration 

RCT RWD 

 

G-methods Inverse 

probability  

weighting (IPW) 

IPTW*, or IPCW Huang 2006289 Simulation +  

Soft tissue 

sarcoma RCT: 

Cormier 2004 

cohort analysis338 

-  
 

Nishino 2013332 RWD study of 

335 Japanese 

lung cancer 

patients332 

-  
(applic

ation 

only) 

The BIG 1-98 

Collaborative Group 

2009321 

The BIG 1-98 

sequential 

treatment RCT173 

 
(appl. 

only) 

- 

(Clone)-censor-weighting Hernán 2018333  A toy example 

comparing the 

effect of aspirin 

treatment 

durations 

-   
 

Adaption of 

SNFTMs without 

g-estimation 

Joint AFT models with 

backward induction with 

adaption to Q-learning* 

Huang & Ning 2012290 Simulation +  

Soft tissue 

sarcoma: 

Cormier 2004 

RWD study338 

-  
 

Methods for identifying optimal DTR involving multiple treatment sequences within a population 

G-methods Inverse 

probability  

weighting 

Inverse probability of a 

treatment regimen  

Wahed & Thall 2013287: 

reference method 

Xu 2016331: reference 

method (IPTW & 

augmented IPTW) 

Simulation +  

Leukaemia: 

Estey 1999 4-

arm RCT339 

(non-randomised 

salvage 

treatment) 

 - 

G-formula 

adaption 

Likelihood-based 

(parametric) approach with 

AFT models 

Wahed &Thall 2013287: 

main investigated method 

Simulation +  

Leukaemia Estey 

1999 4-arm 

RCT339 (non-

randomised 

salvage 

treatment) 

 

 - 

Bayesian nonparametric 

models: dependent Derichilet 

process prior and a Gaussian 

process base measure (DDP-

GP model) 

Xu 2016331: main 

investigated method 

 

 

 
 

- 

G-estimation G-estimation under optimal 

structural nested models for 

optimal sequential decisions 

London 2010286 (Robins 

2004340, Murphy 2003341, 

Brumback 2008342) 

Children 

neuroblastoma: 

P9462 phase II 

RCT286 

 
(applic

ation 

only) 

- 

Backward 

induction 

methods 

Q-learning Q-learning adaption in a 

singly robust framework 

Huang 2014288 Leukemia: Estey 

1999 RCT339 

(non-randomised 

subsequent 

treatments) 

 
 

- 

Q-learning  Krakow 2017291 

 

GVHD treatment 

in Leukemia 

RWD study 

using  US 

CIBMTR 

registry291 

-  

Q-learning: dynamic 

weighted survival modelling 

(DWSurv) with doubly robust  

Simoneau 2020275 

(borrows from Huang 

2014288 singly robust 

framework) 

Diabetes RWD 

study using UK 

CPRD275  

-  

AFT: accelerated failure time; AGIS: The Advanced Glaucoma Intervention Study; AT: as-treated; appl. only: application study only; CIBMTR: 
Center for International Blood and Marrow Transplant Research; CPRD: Clinical Practice Research Datalink; DTR: dynamic treatment regimens; 

SSEBCTCG: The Early Breast Cancer Trialists' Collaborative Group; GVHD: Graft-versus-Host Disease; IPCW: inverse probability of censoring 

weighting; IPTW: inverse probability of treatment weighting; ITT: intention-to-treat; PP: per-protocol; RCT: randomised controlled trial; RWD: real-
world data; SNFTM: structural nested failure time model; UK: United Kingdom; US: Untied States 

*  Inverse probability of censoring weight was used in addition to tackle with right-censoring due to lost-to-follow-up 

 Examples are all in RCTs, so the method only seem to adjust for non-randomised subsequent treatments in RCT 
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Table 4.7. Methods used in analysing SMART 
Method 

Groups 

Method 

subcategory 

Method Papers Case study data 

details 

G-methods Inverse 

probability 

weighting based 
methods 

Marginal mean model-based (MM) estimator 

(Lunceford, Davidian and Tsiatis (LDT) 

estimator) 
 

Lunceford 2002178 (based on 

Robins 1994343) 

Leukemia: GALGB 

8923 data344 

Ruppert 2009309 (only method 

application study) 

Simulated SMART 

Vilakati 2021305 (only method 

application study) 

Leukemia: GALGB 

19808345 

Wahed & Tsiatis (WT) estimator Wahed & Tsiatis 2004311 (based 
on semiparametric therapy of 

Robins 1994340) 

Simulation & 
Leukemia: GALGB 

8923 data344 

Weighted risk set estimator (WRSE) (weighted 

log-rank test) 

Guo & Tsiatis 2005301 (variation 

of Lunceford 2002 178 with time-
dependent IPW) 

Leukemia: GALGB 

8923 data344 

Vilakati 2021305 (only method 

application study) 

Leukemia: GALGB 

19808345 

Supremum weighted log-rank test Feng & Wahed 2008300 (an 
extension of Guo & Tsiatis 

2005301) 

Leukemia: GALGB 
8923 data344 

Weighted log-rank statistic to compare 

strategies with shared-path that have same 

initial treatment 

Kidwell 2013312 (an extension of 

Guo & Tsiatis 2005301) 

 

Simulated SMART 

Weighted KM estimators (WKM), Weighted 

KM with dynamic weights (WKM with time-
dependent weights) 

Miyahara & Wahed 2010292 (an 

extension of Lunceford 2002178)  
Vilakati 2021305 (only method 

application study) 

Leukemia: GALGB 

8923 data344 

Stratified proportional Cox hazards model to 
estimate the cumulative hazard ratio estimation 

for treatment regimes in SMART 

 

Tang & Wahed 2015304 Neuroblastoma 
study 1991-1996 

(Matthay 2009346) 

Cumulative incidence function of DTR for 
comparing risks 

Yavuz 2018303 Neuroblastoma 
study 1991-1996 

(Matthay 2009346) 

Cumulative incidence regression for DTR Chen 2020302 (compute CIF using 
different models than Yavuz 

2018303) 

Neuroblastoma 
study 1991-1996 

(Matthay 2009346) 

IPW for viable DTRs in SMART: IPW is used 
to evaluate DTR effects while dropouts due to 

adverse drug events such as toxicities occur. It 

refines viable drug switch rules, allowing for 
patients who develop toxicity or progressive 

disease to switch to non-pre-specified 

subsequent treatments 

Wang 2012123 Prostate cancer 
1998-2006 (those 

who randomised 

poorly were re-
randomised) 

G-formula 
adaption 

Joint modelling and multiple comparison with 
the best of data from SMART survival data 

(MLE method) 

Chao 2022293 (an adaption of 
Wahed & Thall 2013 analysing 

RCT data287) 

Simulation & 
Leukemia: GALGB 

8923 data344 

Backward 
induction 

method 

Q-learning Clinical reinforcement trial with Q-learning Zhao 2011308 Simulated SMART 
in NSCLC 

(a virtual clinical 

reinforcement trial) 

Q-learning with censored data Goldberg 2012306 Simulated three-
stage SMART  

Others with 

ambiguous 
category 

Others Bayesian framework for selecting best 

strategies 

Thall 2007313 Metastatic renal 

cancer trial 

Maximum-likelihood based method: 
parametric models using a mixture of known 

probability distributions to model the survival 

distributions under a specific treatment strategy 

Wahed 2010310 (MLE equations 
are similar to Wahed & Tsiatis 

2004311, but used with a 

completely different perspective 

of IPW) 

Leukemia: GALGB 
8923 data344 

Generalised Cox proportional hazards model 

that not only applies to comparisons of any 
combination, of any number of treatment 

regimes, but also allows the intermediate 

response to appear as a time-varying covariate 

Tang 2011307 Neuroblastoma 

study 1991-1996 
(Matthay 2009346) 

DTR: dynamic treatment regimen; IPW: inverse probability weighting; MLE: maximum likelihood estimation; SMART: Sequential Multiple 

Assignment Randomised Trial 
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4.6. Narrative synthesis of identified methods 

4.6.1. Methods for comparing uniform treatment sequences using sequential treatment RCT and 

RWD 

The methods discussed in the current section (Section 4.6.1) are more readily applicable for HTA 

compared to those in Section 4.6.2, as they aim to estimate the effects of uniform treatment sequences 

rather than individualised treatment sequences, as described in the taxonomy Section 4.5.2. This 

section not only summarises the mechanisms of advanced methods but also outlines those of simpler 

methods to highlight their common pitfalls. I detail the origins and theoretical characteristics of each 

method, as well as their applications in the studies reviewed. 

4.6.1.1. Simple methods  

4.6.1.1.1. ITT in sequential treatment RCTs     

 Origin of the method 

ITT analysis in sequential treatment randomised controlled trials (RCTs) extends the 

conventional ITT, which involves analysing RCTs that randomise individuals to single-time 

treatments347,348, to analyse RCTs that randomise patients across different treatment sequences. This 

method does not have a single origin but rather extends ITT principles to analyse RCTs with more 

complex trial designs. 

 Theoretical characteristics   

ITT analysis directly compares active treatments and their comparators across all randomised 

patients in RCTs based on patients’ initial group assignments, disregarding the actual treatments 

received or any post-randomisation events, such as withdrawal from the study or protocol violation. 

ITT provides an unbiased estimate of the causal effects of treatment strategies followed by each 

randomised treatment group (as defined in the study protocol), given proper randomisation (i.e., no 

unmeasured confounders). However, in cases of protocol non-adherence, the estimand addressed by 

the ITT may not necessarily correspond to the one specified in the study protocol, due to confounding 

that occurs post-randomisation 

In sequential treatment RCTs, ITT analysis assesses the average causal effect of pre-defined 

treatment sequences, also given perfect adherence to the protocol. To assess the comparative effects 

of different pairs of treatment sequences, one would theoretically need to conduct a separate RCT for 

each pair and apply ITT analysis to each, or conduct a single RCT with three or more sequences and 

analyse them taking into account multi-arm comparisons.  
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ITT analysis can be compromised by (unintended) post-randomisation treatment switches43,349, 

for example in oncology trials where the placebo group may switch to active drugs following disease 

progression.43 Conceptually, this introduces an unintended treatment sequence (placebo  active 

drug), undermining the ability of ITT analysis to accurately estimate the effects of active drugs versus 

placebo (i.e., a sequence of active drug  active drug versus placebo  placebo). Similarly, in 

sequential treatment RCTs, non-adherence to the allocated treatment sequence can distort the ITT 

analysis, leading to inaccuracies in comparing the causal effects of predefined treatment sequences. 

ITT principles may be applied to RWD analysis to create an ITT Analogue, which requires advanced 

statistical methods, as specified in Sections 4.6.1.2 and 4.6.2. Theoretically, such an analogue can 

reflect the causal effects of treatment sequences when emulating a sequential treatment RCT without 

protocol violations. 

 Application in treatment sequences 

I identified nine application studies that carried out sequential RCTs, randomising patients to 

different treatment sequences and employing ITT analysis to determine their causal 

effects.173,296,314,316,317,321,324,328 While one study examined advanced glaucoma treatment sequences295, 

the rest focused on survival outcomes of early-stage breast cancer treatments.173,296,314,316,317,321,324,328 

The majority of these studies (n = 5) concentrated on the BIG 1-98 study173,314,317,321,328, which 

included 8,010 women across a two-arm RCT (comparing letrozole (n = 917) to tamoxifen (n = 911)) 

and a 4-arm RCT (comparing letrozole (n = 1546), letrozole  tamoxifen (n = 1540), tamoxifen (n 

= 1548), and tamoxifen  letrozole (n = 1548)). Among these, three employed the ITT Cox 

regression model to compare HRs for different treatment sequences173,321,328, drawing on data from 

the 4-arm RCT in BIG 1-98, assessing the effect of letrozole alone against treatment sequences 

involving both letrozole and tamoxifen. In their 2009 publication, the BIG 1-98 Collaborative Group 

reported adjusting their ITT analyses for multiple comparisons (4-arm).321 Rabaglio et al. furthered 

this research by combining data from both the two-arm and four-arm RCTs of BIG 1-98, thus 

enlarging the cohort for the letrozole and tamoxifen alone groups.317 This integration necessitated 

adjustments in the ITT Cox model for patient characteristics at randomisation due to data merging. 

Additionally, the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) aggregated data 

from nine sequential treatment RCTs, including those in BIG 1-98, for a patient-level meta-analysis 

on similar treatment sequences. They made adjustments to prevent double-counting events across 

RCTs but did not specify the methodology.314  
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4.6.1.1.2. PP in sequential treatment RCTs     

 Origin of the method 

The per-protocol (PP) analysis, similar to ITT, does not have a single origin. This mirrors the 

“PP censoring—censoring switchers (PPcen)” method described in Latimer et al.'s 2017 study for 

addressing treatment-switching in RCTs.350 It diverges from ITT by utilising data only from patient-

periods that comply with the study protocol, excluding periods after protocol deviation. In cases of 

complete protocol compliance, PP analyses should be equal to those of ITT.  

 Theoretical characteristics   

In RCTs, PPcen (hereafter: PP) analysis benefits from the initial randomisation, and thus does 

not require any adjustments based on baseline patient characteristics. It operates by censoring patient 

records following any protocol deviation in the outcome model. It aims to reflect the effects of the 

intervention unaffected by protocol deviations or non-adherence, which is crucial when protocol 

violations might significantly affect results inferred from ITT analyses. Nonetheless, PP analysis also 

carries the risk of introducing bias, especially if the censoring reflects underlying characteristics that 

are not randomly distributed (i.e., informative censoring) and adjustments are not made accordingly 

(e.g., using advanced statistical methods, such as inverse probability of censoring weighting (IPCW) 

in Section 4.6.1.2.1).43,349  

In the context of sequential treatment RCTs, PP involves censoring patients once they deviate 

from their assigned treatment sequence, such as receiving an unplanned subsequent treatment, 

potentially introducing bias without proper adjustments. Applying PP principles to RWD analysis 

creates PP Analogues. These require the support of statistical methods, such as inverse probability 

treatment weighting (IPTW) (Section 4.6.1.2.1) to correct biases due to non-randomised baseline 

treatments in RWD (i.e., baseline confounding). To address remaining biases caused by informative 

censoring in PP Analogues, advanced methods such as inverse probability of censoring weighting 

(IPCW) are necessary. These techniques facilitate the accurate estimation of the hypothetical PP effect 

without treatment deviations, as detailed in Section 4.6.1.2.1.  

 Application in treatment sequences 

No PPcen analysis cases were identified in my review. Regan et al.173, however, applied the 

“hypothetical perfect PP effect” technique in their Cox model analysis of the four-arm sequential 

treatment RCT survival outcomes in BIG 1-98173, with IPCW to correct for selective crossover to 

letrozole in the tamoxifen-only arm estimating the hypothetical PP effect as if no crossover occurred. 

More details of IPCW can be found in section 4.6.1.2.1. 
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4.6.1.1.3. AT in RWD sequential treatment studies 

 Origin of the method 

As-treated (AT) analysis, lacking a specific origin, have been applied in both RCT and RWD 

analyses.351-354  In RCTs, it involves comparing patients based on the treatments they actually receive, 

rather than the treatments to which they were initially assigned. This method excludes or reclassifies 

patients who deviate from the protocol, potentially introducing bias in estimating the causal effect of 

treatments by compromising the randomisation—especially if deviations are not randomly distributed 

across groups.353-355 This resembles the simple “PP—excluding switchers (PPexc)” method for 

addressing treatment-switching in RCTs.350 In real-world studies, the AT analysis involves selecting 

patients based on the specific treatments they have actually received and comparing their outcomes 

without adjusting for confounding variables. This is inherently biased in assessing causal comparative 

effects because treatments in the real world are not randomly assigned.352 In the context of assessing 

treatment sequences using RWD, AT analysis is defined as comparing patients who have undergone 

the entire treatment sequences of interest.  

 Theoretical characteristics   

In evaluating treatment sequences (e.g., A→B vs. B→A) using RWD, AT analysis is prone to 

confounding bias due to non-randomised treatments and, more critically, selection bias and immortal 

time bias.38,76,356 The latter emerges because AT analysis only considers patients who survive to 

receive specific subsequent therapies, likely overestimating the absolute effectiveness of any 

sequence (i.e., the effect of treatment sequences on the “immortal” patients). Specifically, it overlooks 

those who might not survive after the initial treatment. 

Furthermore, including patients who received treatment A but did not survive to receive 

subsequent treatment in the A→B group cannot resolve estimation inaccuracies of the A→B 

sequence’s effect. Specifically, this approach fails to account for patients who might proceed to 

treatments other than B after A (e.g., A→C, A→D, A→E) in real world contexts, leading to an 

overrepresentation of patients not surviving to further treatments. This introduces a selection bias by 

enrolling patient based on post-treatment eligibility357, contravening the TTE framework's core 

principle of adhering to baseline eligibility for patient inclusion.3 Traditional outcome modelling 

approaches (Section 4.2.1), which adjust for baseline confounders alone or alongside time-varying 

confounders in a regression model cannot address the issues inherent in AT analysis. This limitation 

stems not only from the inadequacy of conventional adjustment methods to handle time-varying 

confounding, but also largely due to their inability to rectify immortal time bias through mere 

adjustment. Importantly, even advanced methods discussed later may not fully resolve this issue, 
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which can only be effectively countered together with careful RWD study design, supplemented by 

necessary advanced statistical methods. Carefully considering the risks of such biases in RWD study 

is crucial, particularly in cases where analyses limited to patients receiving second-line treatments 

omit those who died naturally, failing to reflect the joint effect of the initial treatment within the 

treatment sequence strategy. As advanced statistical methods cannot rectify this issue; naturally, 

neither can simple outcome regressions that simply incorporate time-varying confounders, which are 

inherently flawed in answering causal questions (see the example of simple outcome regression with 

linear model involving time-varying covariates in Section 1.4.1, Chapter 1, which also extend to 

explain the flaws in simple time-varying Cox models that simply incorporate time-varying covariates 

in the model). 

 Application in treatment sequences 

A significant proportion of retrospective RWD application studies (27%, n = 15) focusing on 

treatment sequence comparisons, exclusively including patients who completed the specified 

sequences were identified. Eight of these studies performed AT analyses without any adjustments, 

including a study comparing letrozole alone to letrozole in sequence with tamoxifen for breast 

cancer315, and others exploring various sequences involving vascular endothelial growth factor 

inhibitors (VEGFis) and mammalian target of rapamycin inhibitors (mTORis) in advanced/metastatic 

renal cell carcinoma (mRCC), including the following comparisons: 

o VEGFi → mTORi, VEGFi → VEGFi, mTORi → VEGFi, and mTORi → mTORi318 

o Sunitinib → sorafenib versus sorafenib → sunitinib322,323,326 

o Sunitinib → everolimus versus sunitinib → axitinib329 

o Sunitinib → mTORi → sorafenib versus sorafenib → mTORi → sunitinib330 

o Treatment sequences with and without third-line therapy327 

These studies, while insightful regarding real-world treatment patterns, are limited by their non-

randomised design and immortal-time bias for causal interpretation. Although these studies suggest 

an association between longer treatment durations, improved survival outcomes (e.g., OS), and 

specific sequences, they do not assert strong causal relationships. Notably, Ishihara et al.327 compared 

sequences with and without third-line therapy, inherently favouring better survival in the third-line 

group as these patients survived long enough to receive it. This mirrors the fairness issues in 

comparing sequences with different number of LOTs in health economic evaluation discussed in 

Chapter 3 (Table 3.10, Challenge F18).  

The remaining seven studies employed multivariate-adjusted Cox models to estimate OS across 

different treatment sequences,294,297-299,319,320,325 with two explicitly incorporating time-dependent 

covariates (i.e., additive or sequential nucleoside analogue therapy versus continued zidovudine 
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monotherapy in HIV294; and continuous entecavir monotherapy versus entecavir → tenofovir299). 

While the remaining five studies comparing sequences in mRCC did not specify the inclusion of time-

dependent variables297,298,319,320, some of the variables they included suggest otherwise (e.g., primary 

resistance to first-line treatment297,298,319). Despite these efforts to address confounding, challenges 

such as immortal time bias, and the bias from including time-varying covariates that may act as 

intermediate outcomes in the outcome model remain (i.e., Figure 1.2 in Chapter 1, where conditioning 

on time-varying covariate L1 closes a front door path, but failing to adjust for it does not properly 

account for time-varying confounding).  

4.6.1.2. Generalised methods (g-methods) 

4.6.1.2.1. Inverse probability weighting and marginal structural models (MSMs) 

 Origin of the method 

To tackle missing data from non-random loss to follow-up in HIV clinical trials, Robins and 

Rotnitzky introduced the IPCW method.358 Inspired by Jamie Robins' 1986 paper54, the IPCW method 

interpreted censoring as a time-varying treatment. Robins acknowledged that adjusting for censoring, 

in reality, can be interpreted as an estimation of survival under the hypothetical (i.e., counterfactual) 

scenario where all subjects remain uncensored.60 Hence, informally, IPCW simulates this scenario by 

upweighting the remaining uncensored participants based on their inverse probability of staying in 

the study, at each point when others were censored, compensating the missing records of those who 

were censored due to lost to follow-up (Figure 4.3).  

 

 

  

 

 

 

 

 

 

Figure 4.3 Directed acyclic graph (DAG) in RCTs with time-varying treatments and confounders 

A0: treatment at baseline (time 0); A1, A2, ..., An: treatments at times 1, 2, ..., n; L1, L2, ..., Ln: confounders at the start of times 1, 2, ..., n (e.g., 

performance status, weight, progression); Y: outcome (e.g., death). Dotted lines indicate the effect of time-varying covariates (Lx, where x > 0) on 
subsequent treatment decisions (Ax, where x > 0). In RCTs, time-varying treatments may result from protocol violations (e.g. receiving non-

randomised subsequent treatment) or loss to follow-up, with censoring being considered a type of treatment change.  
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Robins highlighted IPCW's capability to assess the effect of any “treatment regimen” g by 

marking the moment a participant diverges from their treatment regimen as their censoring time, and 

termed it “inverse probability of treatment weighting (IPTW) “ for such cases.359,360 In its simplest 

application, IPTW can be used to compare the causal effects of two single-time treatments—A versus 

B (e.g., receiving or not receiving a flu shot)—in observational studies (Figure 1.1 in Chapter 1). The 

method begins by treating patients who received the opposite treatment as “censored” due to 

treatment deviation from the start, as though they deviated from the treatment in question. For 

example, to assess the marginal effectiveness of treatment A, patients who received B are treated as 

censored from the start (i.e., deviating from treatment A). Then, patients who received treatment A 

(i.e., the remaining uncensored ones) are weighted based on their inverse probability of receiving A 

(e.g., inverse probability of receiving a flu shot), given their baseline covariates L. Similarly, to assess 

the marginal effectiveness of treatment B, those who received A were treated as censored from the 

start, and recipients of B (i.e., the remaining uncensored ones) were weighted based on their inverse 

probability of receiving B (e.g., inverse probability of not receiving a flu shot), given their baseline 

covariates L. Informally, this approach removes the association between baseline confounders and 

treatment (the arrow of confounders to treatment in Figure 1.1 in Chapter 1), thereby creating a 

balanced pseudo-population for assessing the marginal (i.e., unconditioned on a specific patient 

subset) causal effect of treatments (A versus B) on outcome.  

However, treatment regimens may vary widely, from sustained treatment strategies, such as 

“always treat” or “never treat”, to more dynamic strategies (i.e., DTR) like “treat if below a certain 

lab threshold” or “continue treatment A until adverse events occur” (see Section 4.3.2 and Section 

4.5.2 for terminology).5,279 Treatment status in real-world longitudinal studies, measured at multiple 

discrete points Ak (Figures Figure 1.2 in Chapter 1 & Figure 4.4), often shows limited adherence to a 

single regimen among participants.360 Robins, therefore, introduced Marginal Structural Models 

(MSM) to tackle the challenge of estimating effects from complex regimens and variable treatment 

regimen adherence.58,68,69,361 Informally, patients continuing to adhere to a treatment regimen are 

assigned weights based on the inverse probability of remaining uncensored between one time interval 

(k) to the next (k+1), given covariates at the beginning of each interval k (e.g., secondary, thirdly, 

baselines L1, L2), treatment status in the previous interval (Ak-1 for time > 0), and initial baseline 

covariates (L0) (i.e., removing arrows from Lk to Ak, Ak-1 to Ak, and L0 to Ak in Figure 4.4). A patient's 

weight at time k is conditioned on their status of being uncensored at time k-1. Consequently, a 

patient's final weight in the study is the product of all inverse probabilities of remaining uncensored 

from time 0 to time k. This weighting method can be seen as either IPCW (uncensored vs. censored) 

or IPTW (adherence to treatment protocol vs. non-adherence), collectively referred to as IPW. 

Informally, IPW at the outset emulates the random assignment of treatment regimens, and for 
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subsequent periods, it emulates a hypothetical scenario where all patients in each treatment group 

consistently follow their assigned treatment regimens. In HTA, this technique has been broadly 

adopted to tackle unwanted treatment-switching in oncology RCTs, producing hypothetical scenarios 

where no control group members switch to the active treatment (i.e., commonly referred to as IPCW 

in HTA).43,277 Patients in the control group are censored as soon as they diverge from their initial 

treatment plan, with the remaining uncensored members subsequently upweighted to adjust for the 

informative censoring. 

 

 

  

 

 

 

 

 

 

Figure 4.4 Directed acyclic graph (DAG) in observational studies with time-varying treatments and 

confounders 

A0: treatment at baseline (time 0); A1, A2, ..., An: treatments at times 1, 2, ..., n; L1, L2, ..., Ln: confounders at the start of times 1, 2, ..., n (e.g., 
performance status, weight, progression); Y: outcome (e.g., death). Dash lines represent the effect of baseline covariates (L0) on baseline treatment 

(A0) and subsequent treatments (Ax, where x > 0), while dotted lines indicate the effect of time-varying covariates (Lx, where x > 0) on subsequent 
treatments (Ax, where x > 0). 

 

In practice, the IPW method can follow a k-stage framework with fixed intervals (e.g., daily, 

monthly), or be simplified to k-stage decision points for switching treatments within a regimen, such 

as decision to modify treatments upon disease progression.289 The simplification assumes no time-

varying confounding within each interval, but acknowledges the potential confounding between 

decision points and considering time spent in previous intervals as a possible confounding factor. This 

approach is reflective of the structure found in k-stage SMARTs. In Chapter 2, I discussed Robins' 

views on the similarities and differences between real-world treatments and SMARTs, noting that 

SMARTs feature pre-determined randomisation probabilities, whereas real-world scenarios deal with 

unknown probabilities that could potentially be estimated with sufficient data.60 For illustration, 

consider a simple 2-stage SMART trial where patients are initially randomised to receive treatment 

A or B (1:1), followed by re-randomisation to either treatment (1:1) upon disease progression (i.e., a 

structure resembling the one in Figure 4.2B or a more complex SMART). The IPW technique can be 

employed to calculate the marginal effect of each treatment regimen (A→A, A→B, B→B, B→A) 
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(Note: a simple SMART, as shown in Figure 4.2A, may not require weighting). For instance, for the 

A→B sequence, patients receiving A→A are considered as diverging from A→B and are censored at 

progression, then weighted by the inverse probability of receiving B as a second-line treatment given 

covariates measured at the secondary baseline (i.e. disease progression), including the duration spent 

in the first-line treatment. Simply censoring without weighting, or limiting the analysis to a specific 

subset of patients (i.e., observed receiving A→B or who died without a second-line treatment) can 

introduce biases. Specifically, the first approach lead to informative censoring bias as seen in the PP 

approach (Section 4.6.1.1.2), while the second approach result in selection bias as noted in the AT 

analysis (Section 4.6.1.1.3). Informally, both biases result from inaccurately accounting for the 

proportion of patients/patient-record who survive long enough to receive a second-line treatment after 

starting with A. In real-world studies that mirror such setup, IPW adjustments—or methods that 

achieve the same effect—naturally become necessary at every decision point k, including the initial 

one, for estimating the marginal effects of a specific regimen as discussed earlier in this section 

(Section 4.6.1.2.1). 

 Theoretical characteristics  

The IPW method is used to evaluate the marginal effect of a (dynamic) treatment regimen (A) 

and an outcome (Y) as if confounding (i.e., back door) paths through measured variables (Lk) did not 

exist (Figure 4.4). It generates a pseudo-population where treatment at each time is independent of 

confounders by “removing” the influence of confounders on treatment (Lk → Ak). In the context of 

adapting the method to estimate the marginal effect of treatment sequences on time-to-event outcomes 

using RWD, the method involves the following steps: 

(1) Censoring observations at time k for individuals not adhering to the treatment sequence under 

study at time k and before time k+1; 

(2) Developing a model to estimate each individual’s probability of receiving the initial treatment of 

the treatment sequence under study (e.g., logistic model) at time 0, factoring in baseline covariates; 

(3) Developing a model to estimate the probability of an individual patient being censored (i.e., not 

adhering to the treatment sequence under study) at each time interval k, accounting for both time-

varying covariates and baseline covariates. Though not explicitly mentioned in literature, the 

censoring probability model can be specific to each treatment sequence, recognising that reasons 

for non-adherence may vary282; 

(4) Computing the cumulative probability of adhering to a specific treatment sequence up to a certain 

time t, which involves multiplying the probability of receiving the initial treatment, as calculated 

in step (2), by the product of the probabilities of remaining uncensored (one minus the probability 

of being censored) at each subsequent time interval, as calculated in step (3), for each individual. 
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(5) Conducting a weighted analysis for time-to-event outcomes (e.g., survival analysis using Cox 

model or pooled logistic regression) using the inverse probabilities of treatment sequence 

adherence up to each time t for each individual, derived from step (4), to estimate the treatment 

sequence's marginal effect. 

Within this approach, two essential types of weights can be employed: non-stabilised (W) and 

stabilised weights (SW). Non-stabilised weights adjust for confounding by inversely weighting 

individuals according to their probability of receiving treatment (estimated in Step (2): WT, where the 

superscript T denotes weights for treatment) or remaining uncensored owing to no treatment strategy 

deviation (estimated in Step (3): WD, where the superscript D denotes weights for treatment deviation, 

or more precisely, weights for remaining non-deviated from the assigned treatment) given covariates 

(i.e., Formula 4.1 and 4.3 for IPTW and IPCW, respectively). To refine these weights, both Step 2 

and Step 3 weights have stabilised counter parts: SWT and SWD, respectively. SWT  is calculated by 

multiplying the WT by the marginal probability of receiving treatment (i.e., the numerator in Formula 

4.2). SWD is calculated by multiplying the WD by the marginal probability of remaining uncensored 

due to no treatment strategy deviation (i.e., the numerator in Formula 4.4). The stabilised weights 

reduce the risk of extreme weights and thereby decreasing the variance of weighted estimates.  

The general formula for weights derived from probabilities estimated in Step (2) are as shown 

in Formulas 4.1 and 4.2. These weights apply to balance the initial baseline treatment allocation:  

 

𝑊𝑇 =  {

1

Pr[𝐴0 = 1 |𝐿0]
        𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴

0
= 1

1

1− Pr [𝐴0 = 1|𝐿0]
   𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴

0
= 0

}, where A ∈ {0, 1}   (4.1) 

𝑆𝑊𝑇 =  {

Pr[𝐴0= 1]

Pr[𝐴0= 1|𝐿0]
     𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴

0
= 1

1 −  Pr[𝐴0= 1]

1 − Pr[𝐴0 = 1|𝐿0]
   𝑓𝑜𝑟 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴

0
= 0

}, where A ∈ {0, 1}     (4.2) 

For individuals initially receiving treatment A0 = 1, the non-stabilised weight W
T is derived from 

the inverse probability of receiving A0 = 1 given baseline covariates. For those initially treated with 

A0 = 0, W
T is based on the inverse probability of not receiving treatment, calculated as one minus the 

probability of receiving treatment A0 = 1, given baseline characteristics. The numerator of SW
T is the 

baseline probability of receiving treatment, regardless of baseline covariates. In more complex 

scenarios, treatment regimens may involve repeated on-and-off treatment A based on lab results. This 

differs from simpler cases where treatment is consistently applied or withheld until an irreversible 

event, such as disease progression (which is more likely to be the case of treatment-sequencing). In 

those more complex scenarios, the calculation of WT and SWT at time t may be extended to the 

cumulative inverse probability of receiving A = 0 or 1 at each time k from 0 to t. To evaluate (treatment) 

effect modification (in the context of baseline treatment allocation weights), stabilised weights can 
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use the probability of receiving treatment A based on baseline characteristics as the numerator, instead 

of the marginal probability.5 In this case, the outcome model should include both the treatment and 

baseline covariates, where baseline covariates can be seen as effect modifiers. 

The general formula for weights derived from probabilities estimated in Step (3) are as Formula 

4.3 and Formula 4.4. These weights are used to address informative censoring resulting from 

treatment strategy deviation, hence are designated with a “D” to signify deviation (as opposed to 

administrative censoring due to loss to follow-up). The notation Dk indicates whether patients 

deviated from a treatment strategy during a specific interval k. For example, when D1 = 1, it indicates 

that patients deviated from the treatment strategy during interval 1. In these formulas, t refers to the 

non-stabilised (𝑊𝑡
𝐷) and stabilised weights (𝑆𝑊𝑡

𝐷) for a patient at a specific interval t. To calculate 

these weights, the cumulative probabilities up to time t in the numerator and denominator of the 

formula need to be computed, with k denoting a vector for each time point from 0 to t. 

 

𝑊𝑡
𝐷 =  {

∏
1

Pr[𝐷𝑘= 0 |𝐴𝑘−1,𝐿𝑘]
= ∏

1

1 −Pr[𝐷𝑘= 1 |𝐴𝑘−1,𝐿𝑘 ]
  𝑓𝑜𝑟 𝐷𝑘 = 0 𝑡

𝑘=0
𝑡
𝑘=0

0                                                                                         𝑓𝑜𝑟 𝐷𝑘 = 1
}  (4.3) 

𝑆𝑊𝑡
𝐷 =  {

∏
Pr[𝐷𝑘=0|𝐴𝑘−1]

Pr[𝐷𝑘= 0 |𝐴𝑘−1,𝐿𝑘]
=𝑡

𝑘=0 ∏
1−Pr[𝐷𝑘 = 1|𝐴𝑘−1]

1 −Pr[𝐷𝑘= 1 |𝐴𝑘−1,𝐿𝑘 ]
 𝑡

𝑘=0  𝑓𝑜𝑟 𝐷𝑘 = 0

0                                                                                          𝑓𝑜𝑟 𝐷𝑘 = 1
}  (4.4) 

For individuals who remain uncensored (not artificially censored due to remaining not deviating 

from the treatment regimen, Dk = 0) up until time t, their non-stabilised weight 𝑊𝑡
𝐷 is the product of 

the inverse probabilities of not being censored across each time point k from 0 to t. This calculation 

follows Formula 4.3, where Pr[Dk = 0∣Ak-1,Lk] represents the probability of staying uncensored, given 

prior treatment and covariates at the beginning of time k. Essentially, it is the complement of the 

probability of being censored (Dk = 1), given prior treatment and covariates at the beginning of time 

k (i.e., 1 - Pr[Dk = 1∣Ak-1,Lk]). If an individual becomes censored in the interval from k to k + 1, their 

weight for the interval starting at k is set to 0. However, their information up to the point of censoring 

still contributes to estimating the relevant probabilities. The stabilised censoring weight SWt
D follows 

similar logic to that of the stabilised initial treatment weight 𝑆𝑊𝑇. 

Unlike Step (2), which typically uses the entire population to calculate probabilities, the model 

for deriving the probability of censoring in Step (3) might utilise subsets of the population if the 

treatment regimen violation mechanism varies among different groups. For instance, in comparing 

the effects of receiving no COVID vaccine versus a consecutive 3-dose COVID vaccine regimen, the 

reason for deviating from the first strategy (e.g., a patient in the no-vaccine group suddenly opting 

for the vaccine due to risk factors) may differ from the reason for deviating from the second strategy 

(e.g., stopping further vaccine doses after two, due to severe adverse events). In such cases, models 

for deriving 𝑊𝑡
𝐷 and 𝑆𝑊𝑡

𝐷can be built separately for each treatment group, rather than using a single 
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deviation model for the entire population. Furthermore, the mechanism may also depend on the 

specific treatment administered in the previous interval. In such cases, censoring probabilities can be 

tailored for subgroups based on the treatment received in the prior period (Ak−1) rather than their 

initial treatment assignment at baseline.  

Formulas 5 and 6 outline the computation of the final overall weights for each time t, for non-

stabilised (𝑊𝑡
𝑇,𝐷

) and stabilised (𝑆𝑊𝑡
𝑇,𝐷

) weights in Step (4), which are then used in the outcome 

model in Step (5), respectively.  

𝑊𝑡
𝑇,𝐷 = 𝑊𝑇 ×  𝑊𝑡

𝐷  (4.5) 

𝑆𝑊𝑡
𝑇,𝐷 = 𝑆𝑊𝑇 ×  𝑆𝑊𝑡

𝐷 (4.6) 

An optional step involves multiply the final weight by the censoring weight due to lost-to-

follow-up (𝑊𝑡
𝐶 , 𝑆𝑊𝑡

𝐶 , where the superscript C denotes administrative censoring) if deemed 

informative. Given the variations in deriving weights, the adaptation of such method to treatment 

sequencing is detailed in my case study implementation in Chapter 8, with adapted steps outlined in 

Figure 8.4. For clarity, I explain how the steps from this section (Steps (1)-(5) in Section 4.6.1.2.1) 

correspond to those in Chapter 8 (Steps I.1-4 and II.1-3 in Figure 8.4, as explained in Sections 8.3.1 

and 8.3.3-8.3.4), despite being arranged slightly differently. 

In practice, implementing the method begins with data cleaning, which is divided into two parts 

in Figure 8.4 of Chapter 8: Part I (Steps I.1-4) focuses on cleaning the data to derive the necessary 

variables for building the weight models, while Part II (Steps II.1-3) covers building the weight 

models, calculating the weights, and applying them in outcome analysis. Step (1) in this section 

corresponds to part of the data cleaning tasks outlined in Steps I.3 and I.4 of Figure 8.4 in Chapter 8. 

In real-world studies, data cleaning involves more than just determining the timing of censoring due 

to treatment deviation (hence the additional data cleaning steps in Part I of Figure 8.4 in Chapter 8). 

However, for the purpose of method demonstration and simplicity, Step (1) in this section focuses 

specifically on determining censoring timing related to treatment deviation. After data cleaning, the 

remaining steps of Figure 8.4 in Chapter 8 (Steps II.1-3) correspond to Steps (2)-(5) in this section. 

Specifically, Step II.1 of Figure 8.4 in Chapter 8 aligns with Steps (2) and (3) in this section (i.e., 

building weight derivation models), Step (4) maps to Step II.2 (i.e., calculating weights), and Step (5) 

aligns with Step II.3 (i.e., final outcome analysis using weights). 

In the context of sequential treatments (a type of DTR), employing IPW to estimate the marginal 

effect of a specific treatment regimen requires making the following four fundamental assumptions 

as shown below5:  

(1) Positivity (patient overlap): At every decision point throughout the treatment regimen, each 

individual must have a non-zero probability of receiving any of the potential treatments, given 
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their past treatment history and covariates. This ensures that both patients who continue 

following the treatment protocol (uncensored) and those who deviate from it (censored) share 

similar attributes, allowing uncensored patients to be effectively used as proxies for their 

censored counterparts in the analysis through weighting. 

(2) No unmeasured confounders (sequential ignorability/conditional exchangeability): There should 

be no unmeasured confounders that affect both the treatment assignment at each decision point 

and the potential outcomes, given past treatment history and covariates. This assumption 

ensures the comparability of between treatment regimen groups after implementing IPW. 

(3) Consistency: The potential outcomes for each individual are aligned with the observed 

outcomes along the actual treatment regimen followed. This implies that if an individual's 

observed treatment regimen coincides with a specific treatment regimen, then the observed 

outcome should match the outcome that would have been expected had they, hypothetically, 

been assigned to follow that treatment regimen from the start. 

(4) Correct model specification: The models estimating treatment assignment probabilities at each 

decision point should reflect the actual mechanisms of treatment allocation, including relevant 

covariates, past treatment history, and their interactions. Given the high-dimensional nature of 

real-world data (due to sample size constraints, a saturated model that includes all covariates 

and their interactions is often impractical, thus necessitating an “unsaturated model”), subject 

knowledge is integral for developing valid models for estimating the probabilities of treatment 

assignments at each decision time point. 

 Application in treatment sequences  

In the sequential RCT BIG 1-98173, researchers supplemented the ITT analysis with an IPCW-

adjusted analysis to simulate a hypothetical perfect PP effect. This adjustment reweighted patients in 

the letrozole alone group who switched to tamoxifen, creating a scenario as if no switch had occurred. 

Viewed through the lens of treatment sequencing, the ITT analysis captures the combined effect of 

letrozole → letrozole and letrozole → tamoxifen sequences, whereas the IPCW analysis isolates the 

marginal effect of the letrozole → letrozole sequence. The randomisation of initial treatments 

eliminated the need for initial treatment weighting in this study. 

Huang et al. revisited the Cormier 2004 observational study338 with the IPW method with a 

simplified approach two-stage weighting to estimate counterfactual mean restricted lifetime over 10 

years for each treatment sequences289, instead of incorporating the weights into a Cox model. The 

Cormier 2004 study followed a group of soft tissue sarcoma patients who underwent different 

sequences of treatment: initially receiving chemotherapy (A) and then either continuing (AA) or 

stopping (AB), or initially not receiving chemotherapy (B) and then either starting (BA) or not starting 
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later (BB). They approached the analysis by simplifying the treatment decisions into a binary choice 

(receiving chemotherapy versus not receiving chemotherapy) at two points in time (initial treatment 

and salvage treatment), with the recognition that each patient could have different time intervals 

between these points. This method contrasts with uniform interval weighting (cumulative weight of 

each interval k form 0 to t) across all participants as previously described. These methods are 

fundamentally alike, with Huang et al.'s simplified approach distinguished by having additional 

implied assumptions that there are no time-varying confounders within each time interval and that 

treatment decisions coincide with the measurement of covariates at both baseline and at the point of 

treatment-switching (secondary baseline). It also assumes no gap between measuring covariates and 

initiating subsequent treatment. 

 

 
 

 

Figure 4.5 Structure of the Cormier 2004338 observational study 
 

The study by Huang et al. employed the product of two key weights, 𝑊1
𝐴𝐴  and 𝑊2

𝐴𝐴  for 

estimating the effect of a specific sequence on patient outcomes (e.g. the weight for the AA sequence 

is 𝑊𝐴𝐴, as shown in Formula 4.7).289 

𝑊𝐴𝐴 = 𝑊1
𝐴𝐴 ×  𝑊2

𝐴𝐴 (4.7) 

 𝑊1
𝐴𝐴, is the inverse probability of receiving the initial treatment A given baseline covariates. 

The second, 𝑊2
𝐴𝐴, assesses the inverse probability of receiving the salvage treatment A, incorporating 

all covariates up to that juncture. While the exact covariates are not specified, it is suggested that they 

include both baseline characteristics and factors pertinent to the second-line treatment. Besides 

prognostic factors specified, Huang et al. included three additional variables for estimating the 

probability of receiving salvage chemotherapy: the time until first recurrence, the type of first 

recurrence (local or distant metastasis), and whether surgical resection was part of the salvage therapy. 

This approach suggests an underlying assumption by the authors that the probability of receiving a 

specific salvage treatment depends on timing of the salvage treatment initiation (i.e., a prognostic 

factor), which is also hypothesised to have a linear relationship (or another specified functional form) 
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with the outcome. This, informally, addresses the issue of uneven length intervals in calculating 

weights within the simplified approach. 

Weights 𝑊𝐴𝐴 and 𝑊𝐴𝐵 are applied to patients receiving an initial treatment A to estimate the 

marginal effects of sequences AA and AB, respectively, Similarly, weights 𝑊𝐵𝐵 and 𝑊𝐵𝐴 are used 

for patients starting with treatment B to determine the marginal effects of sequences BB and BA, 

respectively. To implement their methods, Huang et al. used logistic regression models to estimate 

the probabilities of patients receiving chemotherapy as initial and salvage treatments.  To some extent, 

Huang et al. implicitly used the “clone-censor-approach” approach, a recent variation of the IPW 

method detailed in the next Section 4.6.1.2.2, to estimate the marginal effects of AA and AB 

sequences using data from all patients initially treated with A. Huang et al.'s approach employs the 

concept of IPTW, treating the decision to receive salvage treatment as a binary choice, rather than 

focusing on regimen adherence.  

In contexts with multiple treatment options at each stage, their approach can be adapted to 

evaluate specific treatment regimen using the concept of IPCW (e.g. multiple treatment options such 

as A, B, C, and D can be viewed as binary decisions—either adhering to treatment A or not adhering 

to treatment A, for example). It is crucial not to confuse the fact that Huang et al. further applied 

IPCW specifically to address issues of censoring due to administrative loss to follow-up, rather than 

censoring resulting from deviations from the treatment regimen. Huang et al. conducted a simulation 

study using Structural Nested Failure Time Models (SNFTM) to generate data for simulating the 

effects of different treatment sequences.289 Their findings revealed that the mean estimated standard 

errors for the treatment effect parameters aligned with their empirical counterparts. However, their 

simulation implicitly involved an assumption that patients immediately transition to salvage treatment 

following their secondary baseline (i.e., disease progression) without any gap. The timing of salvage 

treatment was identified as a prognostic factor influencing both the outcome and the choice of salvage 

treatment. 

In another real-world study by Nishino et al., Huang et al.'s methodology was referenced to 

compare different DTRs in treating 335 Japanese patients with non-small cell lung cancer 

(NSCLC).289,332 They analysed the effects of two treatment sequences starting with gefitinib, 

including: 

o Gefitinib → chemotherapy → gefitinib 

o Gefitinib → chemotherapy → ghemotherapy 

However, Nishino et al. did not detail how the method was practically implemented, leaving 

uncertainties about potential selection biases and immortal time biases, as discussed in Section 

4.6.1.1.3.332 Unlike Huang et al.’s paper, where all treatment sequences are binary (treated or 

untreated with chemotherapy), it was unclear how Nishino et al.'s model accounted for multiple 
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treatment choices at each decision point (e.g. the initiation of each LOT), making it difficult to assess 

its accuracy. Specifically, at each LOT, several others treatments may also be used interchangeably, 

including platinum combination chemotherapy, erlotinib, and single-agent chemotherapy. A valuable 

aspect of Nishino et al.’s study was the inclusion of a swimmer plot that visually displayed staggered 

cumulative treatment durations and untreated periods until the end of each patient’s last LOT, 

providing a way to present treatment sequence patterns and durations across the population in 

RWD.sss332 

4.6.1.2.2. Clone-censor-weight 

 Origin of the method 

The clone-censor-weight method333 is recent advancement variation of the IPW method (Section 

4.6.1.2.1), particularly useful in comparing DTRs (not limited to treatment sequences) starting from 

an identical baseline. In the context of comparing treatment sequences, it is particularly useful in 

comparing treatment sequences that begin with the same initial treatment without adjusting for 

baseline characteristics (e.g., A→B vs. A→C) by “cloning” patients starting with A.  

In the “What If” book, Robins5 and Hernan direct readers to Robins et al. (2008)362 and Cain et 

al. (2010)363 for further insights into the clone-censor-weight method, particularly in the 

supplementary material of Cain et al.’s study, where the procedure of “cloning” and weight derivation 

practical aspects and data structure was detailed. Although concepts resembling cloning appeared in 

earlier studies over a decade ago279,289,362,363, the specific term and its methodology have only been 

formally coined and gained significant traction in the last five years, possibly primarily through the 

advocacy of the Harvard CAUSALab group’s training courses. 

 Theoretical characteristics  

The theoretical properties of this method mirror those discussed in Section 4.6.1.2.1, but 

incorporate a preliminary step known as cloning. This addition eliminates the need of the initial IPTW 

(Step 2) in scenarios where the cloning results in all treatment strategy groups beginning with the 

exact same set of patients75, thereby reducing potential bias from baseline unmeasured confounders. 

However, when treatment groups have only partially overlapping patients (clones), baseline 

weighting with IPW remains necessary to correct for confounding at the start of follow-up. 

Beyond comparing of DTR involving treatment sequences. The clone-censor-weight method can 

also address challenges in other DTR observational studies, such as comparing treatment strategies 

factoring in the grace period of treatment initiation periods (e.g., starting treatment within 6 months 

of diagnosis represents compliance in the treatment group, while failure to do so leads to censoring 

at the end of 6 months), and avoiding and mitigating immortal time bias by avoiding patient selection 
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based on post enrolment assessment period characteristics.75,334  

It is important to differentiate the cloning process from the concept of reusing patients in 

sequential trial emulation. Sequential trial emulation involves simulating a series of emulated target 

trials364,365, each with a distinct follow-up start time (i.e., time zero), using the same patient data. Here, 

a patient's start of follow-up time varies, leading to different categorisations across trials (e.g., a 

patient not vaccinated in June but vaccinated in July might be classified as unvaccinated in an 

emulated target trial starting in June and as vaccinated in an emulated trial starting in July. In contrast 

to reusing patients in sequential trial emulations, the cloning procedure within the clone-censor-

weight approach involves duplicating the same patients for different treatment strategy groups at the 

same starting point in a single trial emulation. This method can be used in conjunction with sequential 

trial emulation when necessary. 

 Application in treatment sequences 

The adoption of the clone-censor-weight technique for investigating DTRs has seen significant 

growth in recent years, mostly studies beyond DTR involving sequential treatments.75,334,335 An 

illustrative example is provided in Hernan's 2018 study333, which involves a toy RWD study that 

evaluates the effects of different durations of aspirin treatment on mortality. The study examined three 

treatment durations: 0, 1, and 2 years. Initially, patients who had not taken aspirin during the first year 

were categorised into the 0-year group (patient 1-4). For patients who started aspirin in the first year, 

the study cloned them into two additional groups, 1-year (patient 5a-12a) and 2-years (patient 5b-12b) 

of treatment. Any treatment initiated in the second year led to censoring in the 0 and 1-year groups, 

while discontinuation in the second year led to censoring in the 2-year group. Following the 

methodology described in Section 4.6.1.2.1, weights were then derived for analysing the weighted 

outcomes (i.e. marginal effect of receiving different duration of aspirin treatment). While framed as 

comparing treatment durations, this approach technically evaluates time-related strategies within 

treatment sequences, namely 1-year of aspirin → 1-year of aspirin, 1-year of aspirin → no aspirin, no 

aspirin → no aspirin. While the sequence of no aspirin → 1-year of aspirin could technically be also 

viewed as a 1-year aspirin treatment duration, it may be less clinically relevant (as aspirin is typically 

started without delay when indicated). Therefore, patients not taking aspirin in the first year were not 

cloned for estimating the marginal effect of this unlikely treatment sequence.  

4.6.1.2.3. Adaption of structural nested failure time models (SNFTM) without g-estimation 

 Origin of the method 

Initially introduced by Robins and colleagues, Structural Nested Failure Time Models (SNFTMs) 

are a subset of Structural Nested Models (SNMs) developed for assessing treatment effects through 
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comparing counterfactual outcomes, factoring in time-varying factors.67,366,367 Robins and 

Greenland's 1994 study investigated the survival of acquired immunodeficiency syndrome (AIDS) 

patients in a RCT comparing high-dose versus low-dose zidovudine treatment.367 They found better 

survival in the low-dose group, attributing this to lower treatment toxicity and possibly increased 

prophylactic measures against pneumocystis pneumonia (PCP), a common co-infection in AIDS 

patients. To address non-random PCP-prophylaxis rates between groups, they used SNFTMs to 

estimate survival under a hypothetical scenario where both groups had similar PCP prophylaxis rates. 

For instance, in their most basic model, a subject's theoretical time to death is when they would have 

died had prophylaxis therapy been withheld. Their analysis demonstrated that the survival benefit for 

the low-dose group remained, even if the prophylaxis rates had been equalised between the groups. 

I included a study by Huang and Ning, in which they adapted the SNFTM method to compare 

treatment sequences by re-analysing Cormier et al.’s study on chemotherapy’s effects in soft tissue 

sarcoma (See Figure 4.5 in Section 4.6.1.2.1 IPW method).290,338 Huang and Ning highlighted the 

importance to assess the joint effect of initial and subsequent treatments on patient survival in 

oncology.290 They pointed out that solely measuring PFS from initial treatment might fail to capture 

its benefits in extending OS. However, evaluating initial treatment's impact on OS is complex as it 

can be compounded by the variability in salvage treatments, which could influence outcomes. Huang 

and Ning highlighted challenges in using conventional Cox proportional hazards models or 

Accelerated Failure Time (AFT) models for modelling time-to-event outcomes when disease 

recurrence and salvage treatments are incorporated as time-dependent covariates. This approach 

complicates the interpretation of the impact of baseline covariates, including initial treatment 

indicators, on OS, since the estimated effect of initial treatment is not marginal. The problem mainly 

originates from treating disease recurrence, an intermediate outcome of initial treatments, as an 

exploratory variable (predictor), which leads to a misrepresentation of the actual influence of initial 

treatments on OS (as briefly introduced in Chapter 1, see Figure 1.2). Thus, Huang and Ning 

investigated the joint impact of initial and salvage treatments on patient survival through hypothetical 

scenarios where salvage treatments were “optimised”, assessing the initial treatment's impact in this 

setup. The definition of “optimisation” and theoretical characteristics of their method are outlined in 

the following section (Section 4.6.2). This approach differs from another publication introduced by 

Huang and other colleagues in 2006, who also revisited the Cormier study using the IPW method289,338, 

as introduced in Section 4.6.2.1. In Huang et al.’s 2006 paper338, they used the IPW method to analyse 

the average effects of specific induction and salvage treatment sequences (A→A, B→B, A→B, 

B→A). This estimand contrasts with approach detailed in the current section, Section 4.6.1.2.3, which 

compares the effect of induction treatments with optimised salvage strategies (i.e., A → optimal 

salvage treatment versus B → optimal salvage treatment). These differences relate to the terminology 
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introduced in Section 4.5.2: Essentially, Section 4.6.1.2.1 presents a method for understanding an 

uniform treatment sequence’s effect within a population, whereas Section 4.6.1.2.3 discusses a 

method to identify an optimal version of that effect, one which maximises the population's overall 

survival. 

Although Huang and Ning adapted the SNFTM structure, their practical approach in estimating 

treatment effect coefficients technically aligns more closely with the simple two-stage estimation 

(TSEsimple) described in Latimer et al.’s paper that discussed improved two-stage methods for 

tackling unwanted treatment-switching in RCT for HTA.152 Specifically, Huang and Ning did not 

apply g-estimation. In contrast, the improved two-stage estimation with g-estimation (TSEgest) in 

Latimer et al.’s work accounts for potential gaps between disease progression and the receipt of 

second-line treatment. This approach utilises g-estimation to estimate the parameters, thereby adding 

complexity to the statistical model. Although SNFTM is often used with g-estimation, subsequent 

sections reveal that most methods for identifying optimal individualised treatment sequences have 

either adapted or paralleled the structure of SNFTM without employing g-estimation (Section 4.6.2). 

Instead, alternative estimation methods are utilised, leading to a divergence in methodological 

extensions. Examples include IPW applied in conjunction with the SNFTM structure and Q-learning, 

illustrating the variety of approaches in this area. The SNFTM structure facilitates backward 

induction to identify the “optimal strategy”, whether individualised or not, with further details 

provided in the following paragraphs. 

 Theoretical characteristics   

Huang and Ning addressed leveraged SNFTM along with the ideas of the backward induction 

method—a method for mathematical dynamic programming optimisation368—to identify the optimal 

treatment sequence for maximising average OS of the population.290 Their method hinges on three 

key time intervals: the time from initial treatment to disease recurrence (R), from salvage treatment 

to death (S), and from initial treatment to death (T), where the observed T equals the sum of R and S 

(as shown below in Formula 4.8), assuming salvage treatment starts immediately after recurrence.  

T = R + S (4.8) 

Their backward induction method “jointly” models the effects of initial and salvage treatments 

through two sequential AFT models, starting with the last(-line-of) treatment. It first uses an AFT 

model to evaluate the impact of salvage treatments on survival after recurrence (S), assuming no 

unmeasured confounders at salvage treatment initiation, as shown in the below Formula 4.9: 

S𝑖(P𝑖, Q𝑖) = exp(𝑁𝑖
′𝜆 + 𝑄𝑖

′𝜃 + 𝜖𝑖) ≜ exp(𝑀𝑖
′𝛽 + 𝜖𝑖)  (4.9) 

For each subject i, P and Q denote the binary initial and salvage treatments. N represents the 

covariate values at the time of disease recurrence, including initial treatment P). An apostrophe 
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denotes the transpose of a vector or matrix, facilitating the appropriate algebraic operations. In the 

model (Formula 4.9), λ quantifies the effect of covariates N, while θ assesses the impact of salvage 

treatment Q. M is a combination of N and Q as 𝑀𝑖 = (𝑁𝑖
′, 𝑄𝑖

′)′ . β is a combined vector that 

incorporates both λ and θ (i.e., 𝛽 = (𝜆′, 𝜃)′), and 𝜖𝑖 is assumed to be independent of 𝑀𝑖. 

From the above AFT model on S, for each subject i with initial treatment Pi = pi and salvage 

treatment Qi = qi, the potential survival time after recurrence under optimal salvage treatment Qi = b  

(S𝑖
∗) can be estimated . When the optimal salvage treatment was administered, the actual survival time 

𝑆𝑖 aligns with the hypothetical optimised 𝑆𝑖
∗. If the given salvage treatment was suboptimal, the actual 

survival time 𝑆𝑖 would be less than the ideal 𝑆𝑖
∗. Then the (potential) optimal 𝑆𝑖

∗ can be calculated as 

follows: 

S𝑖
∗ ≜ 𝑆(𝑝𝑖, 𝑏) = exp(𝑁𝑖

′𝜆 + 𝑏𝑖
′𝜃 + 𝜖𝑖) 

= exp(𝑁𝑖
′𝜆 + 𝑞𝑖

′𝜃 + 𝜖𝑖 −  𝑞𝑖
′𝜃 + (𝜃)+) 

= S𝑖exp(− 𝑞𝑖
′𝜃 + (𝜃)+),                               (4.10) 

where (θ)+ equals ∣θ∣ when θ is positive, and 0 when θ is non-positive. If qi ≠ b, indicating a 

non-optimal salvage treatment was given, the equation modifies the actual survival time 𝑆𝑖 to estimate 

potential survival 𝑆𝑖
∗ under optimal salvage treatment by multiplying the 𝑆𝑖 to an adjustment factor 

exp(− 𝑞𝑖
′𝜃 + (𝜃)+)). Huang and Ning simplified the model by assuming a uniform optimal salvage 

treatment (Qi = b) across all patient groups but mentioned that, for instance, incorporating interaction 

terms between initial and salvage treatments can address more complex scenarios.290 They suggested 

the above formulation of AFT model was adopted from Robins and Greenland's SNFTM367, but with 

an adapted formulation that avoids the issue of negative values encountered in Robins and 

Greedland’s equation (1b)367. Huang and Ning acknowledged the complexity of estimating S in the 

presence of censored observations290,369 and further employed the IPCW method358 to accommodate 

these, leveraging approaches similar to those in Section 4.6.2.1.2, a detail I do not delve into here. 

Hence, informally and conceptually, it represents adding an additional step to the TSEsimp method 

in Latimer et al.'s paper, mentioned earlier in the current section, with IPCW.152 

Upon determining the optimal salvage treatment, Huang and Ning built the second AFT model 

to assess the effect of initial treatment on OS by “plugging-in” the hypothetical optimised 𝑆𝑖
∗ (i.e., an 

“expanded” 𝑆𝑖). Specifically, for an individual treated with Pi=pi, their potential OS time T𝑖
∗ under 

optimal salvage treatment can be calculated as follows:  

T𝑖
∗ ≜ (p𝑖, b) = 𝛿𝑅𝑖 (𝑅𝑖 + 𝑆𝑖

∗) + (1 −  𝛿𝑅𝑖)𝑇𝑖,   (4.11) 

where 𝛿𝑅𝑖  indicates if a patient experienced disease recurrence (i.e., 𝛿𝑅𝑖  = I(𝛿𝑅𝑖   𝑇𝑖 )). If a patient 

experienced recurrence (𝛿𝑅𝑖 = 1), their T𝑖
∗ would be the sum of the observed time to recurrence with 

the optimised post-recurrence survival:(𝑅𝑖 + 𝑆𝑖
∗). For those without recurrence (𝛿𝑅𝑖 = 0), T𝑖

∗ equals 
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to their observed Ti. This setup leads to the application of a second AFT model expressed as follows: 

T𝑖
∗ = exp (Z𝑖

′γ + ξ𝑖) (4.12) 

The parameter γ represents the effect of baseline covariates, including the initial treatment, on 

OS when optimal salvage treatment is given. The vector Z𝑖  includes covariates observed prior to 

initial treatment and the initial treatment itself, thus 𝑍𝑖 = (𝑉𝑖
′, 𝑃𝑖

′)′, where V represents the vector of 

all covariates observed prior to the initial treatment P. The component of γ related to P identifies the 

optimal initial treatment that can maximises T𝑖
∗. 

In summary, Huang and Ning’s approach leveraged two AFT models to evaluate the joint effect 

of two-line sequential treatment on survival, specifically in cases where a subsequent treatment is 

administered upon disease recurrence. The first model evaluates the salvage treatment's effect on 

post-progression survival (S), identifying the optimal salvage treatment (Qi = b) that maximises the 

potential post-progression survival (S*). The second model then identifies the optimal first-line 

treatment based on S*. In-depth explanation of the models' estimation processes and the estimators 

applied can be found in the Huang and Ning’s study.290  

Huang and Ning et al. did not employ g-estimation, and it is unclear how and whether they have 

addressed potential time-varying confounding biases that could arise between treatment initiation and 

disease progression—the critical juncture where SNFTM delineates “sections of survival times”— in 

estimating the coefficients for treatment effect as shown in Formula 4.10. This issue, theoretically 

may be less of an issue the IPW method described in Sections 4.6.1.2.1 and 4.6.1.2.2, where patients’ 

time-varying characteristics are considered at the point of deviation from the treatment strategy. 

Notably, treatment deviation in the IPW method does not necessarily have to coincide with the timing 

of disease progression, although this remains an underlying assumption in Huang et al.’s 2006 study, 

as introduced in Section 4.6.2.1.1.289  

Their approach can be extended to identify optimal sequence of multi-line treatments by dividing 

S into intervals between further salvage treatments and recurrences, using k number of AFT models 

in reverse order to identify optimal treatments from the last line to the first (i..e, k, k-1, …1). Huang 

and Ning noted the methodology relies on several assumptions: 

(1) No unmeasured confounders: the allocation of treatment, conditioned on observed history 

(covariates), is independent of potential outcomes (sequential ignorability370). 

(2) Consistency: The potential outcome of a specific treatment or treatment sequence aligns with the 

actual outcome observed when that treatment or treatment sequence is given. 

(3) The AFT models are correctly specified. 

(4) Independence between subjects: each subject’s treatment and outcomes do not affect or predict 

another's. 
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 Application in treatment sequences 

Huang and Ning conducted a simulation study to assess the aforementioned methodology, 

exploring the impact of both covariate-independent and covariate-dependent censoring.290 Their 

simulation results revealed that their estimators performed consistently well across varying levels of 

censoring, demonstrating low empirical bias. Although their simulation appeared to operate under 

ideal scenarios with critical assumptions—e.g., no treatment gaps and no unmeasured confounders. 

As mentioned earlier, Huang and Ning re-analysed the Cormier study data338, specifically on the 

effect of chemotherapy on survival in 674 soft tissue sarcoma patients (Figure 4.5). They first adjusted 

the observed survival times (T) for 350 patients who had recurrences by applying the estimated effect 

of salvage chemotherapy on post-recurrence survival from the first AFT model, generating 

hypothetical survival times (T*) as though all progressed patients received optimal salvage treatment. 

Salvage chemotherapy's impact on survival was found to be negligible (post-progression survival was 

0.99 times the length for those not receiving it, p = 0.95).  For the 324 patients without recurrence, 

original survival times were retained.  

Utilising data from all 674 patients, Huang and Ning’s second AFT model assessed the effect of 

initial chemotherapy on OS with the premise that all patients who progressed received optimal 

salvage treatment (i.e., no salvage chemotherapy) and accounted for censored survival times using 

IPCW and truncated at 15 years.290 They found that initial chemotherapy increased the average OS 

times by 32% (p = 0.04). Conversely, Cormier et al.'s study338, using Cox models, reported HRs of 

0.37 (favouring chemotherapy) in the first year and 1.36 (favouring no chemotherapy) separately due 

to survival curves crossing between groups. The study did not separate initial and salvage treatment 

effects and advised caution in interpreting HRs, as these were based solely on the 591 patients who 

survived more than one year. 

Huang and Ning conducted sensitivity analyses to examine the impact of unmeasured 

confounders using methods developed by Lin et al.371 , and found unmeasured confounders can result 

in both underestimation or over estimation benefits of the initial chemotherapy, provided that the 

salvage treatment has been optimised. Furthermore, while their method focused on identifying the 

optimal strategy, by adjusting the definition of “optimised”, it could technically compare other 

treatment sequences (e.g., setting “optimised” to mean the shortest population survival). However, 

significant adjustments might be necessary to avoid logical inconsistencies.  

4.6.2. Methods for identifying optimal individualised DTR involving multiple treatment 

sequences using RWD or RCTs 

As mentioned earlier, the methods discussed in the current section (Section 4.6.2) are deemed 

less readily applicable in HTA and may need significant modification for adaptation. This is because 
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these methods aim to identify the optimal individualised treatment sequences and assess the effect 

treatment strategies that involved multiple treatment sequences, as outlined in Section 4.5.2. This 

approach contrasts with HTA's focus on evaluating uniform treatment sequences (see Chapter 3). 

Therefore, I offer a more concise overview of each method in this section, primarily emphasising 

their conceptual relevance to other methods. Here, I first outline the overarching relevance of the 

methods in this section, which underpins its layout. 

Importantly, as briefly mentioned in Section 4.6.1.2.3, most methods in the current section 

(Section 4.6.2) were recognised to have either adapted or paralleled the structure of SNFTM and 

leveraged the backward induction approach (see Section 4.6.1.2.3) to identify the optimal effects of 

strategies at each LOT.275,287,288,291,331 The backward induction approach was utilised to optimise 

strategies, moving from the last section back to the first LOT, while the SNFTM structure established 

distinct junctions (with model assumptions) to segment the optimisation process. In my view, these 

methods can be seen, informally and very broadly, as variations and extensions of the TSEsimp 

method described in Latimer et al.’s paper, although optimising treatment strategy was not Latimer 

et al.'s primary focus.152 The similarity lies in how they simplify the question of real-world treatment 

sequences into multiple stages, analogous to how TSEsimp in Latimer et al.’s paper simplifies the 

issue of unwanted treatment-switching issue into two stages.152 However, these methods generally 

extend beyond two stages in the optimisation along the complex and individualised treatment 

pathways. Furthermore, these methods employ a variety of parameter estimation techniques instead 

of relying solely on g-estimation, which is commonly linked with SNFTM. This includes IPW 

(Section 4.6.2.1.1), adaptation of the g-formula (Section 4.6.2.1.2), and Q-learning (Section 4.6.2.2.1). 

Notably, the TSEsimp method in Latimer et al.'s paper did not use g-estimation, positioning it as a 

simpler version of TSE compared to TSEgest, which incorporates g-estimation to account for time-

varying biases occurring between disease progression and the initiation of subsequent treatment.152 

Conceptually, Wahed and Thall’s approach models counterfactual outcomes at each junction of the 

SNFTM structure for each patient based on their characteristics (i.e., outcome models).287 In contrast, 

IPW weights patients who adhere to a treatment strategy based on their inverse probability of 

continuing adhered to a specific treatment strategy to represent those who deviated (i.e., treatment 

models).287 Given that Latimer et al.'s TSEsimp also modeled outcomes, I view it as having the 

flavour of the g-formula.152  
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4.6.2.1. G-methods 

4.6.2.1.1. Inverse probability weighting 

 Origin of the method 

The IPW method’s origin is the same as in the description in Section 4.6.1.2.1. However, in my 

review, two studies—by Wahed and Thall, and Xu et al.— further leveraged IPW in identifying 

optimal DTR involving multiple treatment sequences across a population.287,331 Both studies adapted 

IPW for use in conjunction with the SNFTM model. This application of SNFTM highlights the 

decision points where IPW is used to weight each segment of LOT. Both papers utilised IPW as their 

reference method for investigation alongside their main investigated method—adaption of g-

formula—which is detailed in the following section (Section 4.6.2.1.2).287,331 In addition to the 

standard IPW method, Xu et al. also computed augmented IPW (i.e., a version of IPW with doubly 

robust feature) in their study. 

 Theoretical characteristics 

The theoretical characteristics of the methods investigated by Wahed and Thall, and Xu et al., 

generally follow the same principles as those described for the IPW method in Section 4.6.1.2.1. 

Additionally, their use of the SNFTM structure introduces further assumptions that need to be 

considered, as those outlined in Section 4.6.1.2.3. 

 Application 

Both Wahed and Thall, and Xu et al., reanalysed the 4-arm RCT with non-randomised salvage 

treatments in leukaemia by Estey et al., to demonstrate their methodologies. Figure 4.6 illustrates the 

trial setting where patients were randomised to receive one of four different induction treatments 

(decision point A). Following this, patients might either die before receiving further treatment or 

achieve complete remission and subsequently receive salvage therapy (decision point: B1) or, upon 

progression, receive an alternative salvage therapy (decision point: B2). These salvage therapies were 

not randomised.  

Figure 4.6 illustrates all possible transitions in the Estey 1999 trial, simplified into a SNFTM 

format, where each transition represents a segment within the SNFTM (denoted as T with different 

superscripts). Notably, the model setup makes the decision points for Salvage treatments B1 and B2 

mutually exclusive, reflecting patients with different characteristics post first-line treatment (i.e., 

resistance versus complete remission) might have different theoretically optimal salvage strategies 

and are thus modelled separately. In the previously introduced method that adapted the SNFTM to 

identify optimal uniform treatment sequences by Huang and Ning, patients with progression were not 
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differentiated based on whether the progression followed resistance or a period of complete 

remission.290 Consequently, Huang and Ning’s study did not identify “individualised” optimal 

treatment sequences. In contrast, the approaches used by Wahed and Thall, and Xu et al., incorporate 

more stages in the SNFTM, including all 9 transition times T shown in Figure 4.6, as opposed to the 

simple two transition times in Huang et al.’s SNFTM outlined in Formula 4.6). This expanded 

SNFTM enables the identification of optimal, individualised treatment sequences. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Possible patient flow of the Estey 1999 study339 (reproduced from Wahed and Thall 2013287) 

AML: acute myeloid leukaemia; CR: complete remission; MDS: myelodysplastic syndrome 

 

The equations for deriving IPW weights used by Wahed and Thall, and Xu et al., were relatively 

complex and are not reproduced here. Conceptually, in Figure 4.6, for a given segment of T, each 

patient’s T is weighted if the treatment received at that junction prior to segment T was not optimised. 

This weighting reflects the counterfactual T* in which the patient had received the optimised 

treatment at the beginning of the junction. The same backward rollback technique in Section 4.6.1.2.3 

was applied to identify optimal treatment strategies, which were individually optimised in this 

instance due to the setup of the SNFTM as explained in the previous paragraph. Essentially, in this 

context, IPW serves as an alternative strategy for computing counterfactual outcomes, contrasting 

with the methods used by Huang et al. described in Section 4.6.1.2.3. Although both studies by Wahed 

and Thall, and Xu et al. have used the aforementioned methods in the context of analysing a RCT 

with non-randomised subsequent treatment, these techniques can theoretically be adapted to identify 

optimal individualised treatment sequences in RWD. This adaptation theraitlcaly would include an 

additional IPW weighting at the last stage of the rollback technique to address non-randomised first-
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line treatments. 

4.6.2.1.2. G-formula 

 Origin of the method 

The g-formula, also known as g-computation or (g-)standardisation54, has been used to estimate 

the causal effect of a treatment in the presence of time-varying confounders that themselves may be 

affected by prior treatment (e.g. intermediate outcome). The g-formula was first introduced by Robins 

in his 1986 paper54,372, predating other g-methods such as g-estimation of SNM366 (Section 4.6.1.2.3) 

and IPW of marginal structural models58,68,69 (Section 4.6.2.1). 

The g-formula has been applied in both RWD and RCT analyses, where outcomes may be 

confounded by subsequent treatment/events.66,373 The g-formula can be implemented using either 

non-parametric or parametric approaches based on data complexity. The non-parametric approach 

does not assume relationships between covariates and outcomes374, resembling a saturated (outcome) 

model, incorporating all covariates and interactions in the estimation. Conversely, the parametric 

approach, more commonly seen in research due to its applicability to high-dimensional data, assumes 

specific forms (e.g., linear, quadratic) for the relationships between covariates and outcomes, as well 

as about the interactions among specific covariates, and is thus known as the parametric g-

formula.373,375 In its most basic application, the g-formula can be used to estimate the causal effect of 

a time-fixed treatment376, such as the effectiveness of a single-dose of vaccine. It can also be 

employed in comparing sustained treatment strategies376, such as “always treat” versus “never treat,” 

or to tackle time-varying treatments can alter based on specific characteristics.373 

My review included two studies that adapted and extended the g-formula to identify optimal 

individualised DTR in acute leukaemia that maximise patients’ OS in conjunction with SNFTM.287,331 

Specifically, the same two studies that previously used IPW to identify individualised treatment 

sequences from the Estey 1999 trial (see Section 4.6.2.1.2) also re-analysed same trial using g-

formula adaptations with the same objectives.287,331,339 Specifically, Wahed and Thall applied a 

likelihood-based frequentist approach, while Xu et al. adopted a Bayesian nonparametric (BNP) 

approach for the g-computation. Both studies tailored the g-formula equation to estimate 

counterfactual outcomes under the same adapted SNFTM framework described in Section 4.6.2.1.1 

and Figure 4.6. 

 Theoretical characteristics & application 

The g-formula estimates the average causal effect of a treatment (regimen) by modelling the 

outcome as a function of both (time-varying) treatment and confounders.5 It predicts the outcome that 

would have resulted from different treatment (regimens) by adjusting for confounders at each time 
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point. This involves estimating the expected outcome for each individual under a hypothetical 

scenario, then contrasting the outcomes under an alternative scenario (for instance, comparing the 

outcomes if all individuals received a particular treatment versus if none received it). By aggregating 

and averaging the expected outcomes across these scenarios, it effectively estimates “standardised 

outcome distributions for specific patient covariate profiles”. The difference in these average 

outcomes then provide an estimation of the average causal effect of the treatment.  Similar to IPW, 

the g-formula also relies on assumptions regarding unmeasured confounders. However, unlike IPW, 

which requires a correctly specified model to predict the propensity of receiving treatments or 

censoring (for IPTW and IPCW, respectively), the g-formula necessitates correctly specified outcome 

models. 

Technically speaking, the g-formula is theoretically more computationally intensive compared 

to IPW due to its requirement for multiple iterations and simulations of counterfactual outcomes. 

However, in the studies by Wahed and Thall, and Xu et al., the computational demand may be reduced 

because they simplified the continuity of time into 9 transition times rather than using uniform time 

intervals for computing counterfactual outcomes. Further, they incorporate a backward induction 

technique, which contrasts with the typical implementation of the g-formula that is carried out in a 

forward fashion. Wahed and Thall, and Xu et al.’s approach simplifies this by focusing on key 

transition points and applying backward induction. Their adaption, therefore, may not be as 

computationally demanding as the standard g-formula applications. This clarifies why Latimer et al.'s 

TSEsimp, although sharing similarities with the g-formula152, does not exactly follow it due to its 

SNFTM-like structure. Conversely, the typical application of IPW, does not involve iterative 

simulations but rather models that predict the probability of treatments or censoring, depending on 

the context, as discussed in Section 4.6.1.2.1. These models directly factor in time and previous 

treatments, allowing for calculation of weights for each interval in a single step (or few steps), given 

patient time-varying characteristics. Thus, this approach is theoretically less computationally 

demanding than typical g-formula. However, IPW may face challenges with extreme weights, 

particularly when there is inadequate overlap between groups, such as between different treatment 

groups or among patients who are censored versus uncensored, especially if the rate of censoring is 

high. 

 Application 

Wahed and Thall, and Xu et al., applied their respective adapted g-formula approaches 

(likelihood-based versus Bayesian) in conjunction with the SNFTM as depicted in Figure 4.6, to 

identify the optimal individualised treatment sequences from the Estey 1999 study.287,331,339 

Conceptually, this follows the same procedure as outlined in Section 4.6.2.1.1, with the sole difference 
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being the derivation of counterfactual outcomes for each transition time T using a different method, 

replacing IPW with their respective adapted g-formula. The authors evaluated their findings with 

adapted g-formula against those obtained using IPW from Section 4.6.2.1.1. Both the adapted g-

formula and IPW methods yielded similar conclusions regarding the efficacy of 16 different treatment 

strategies (i.e., all possible combinations of A, B1, and B2 in Figure 4.6). Although IPW and g-

formula adaptions produced different mean survival estimates, they both identified the same treatment 

strategies as most effective and the least effective. The 90% confidence intervals of mean survival 

estimates from two different techniques overlap to some degree, even though their point estimates are 

notably different. Furthermore, despite aiming to identify the optimal individualised strategy, both 

studies assessed the marginal effectiveness of each of the 16 possible strategies. 

4.6.2.2. Reinforcement learning 

4.6.2.2.1. Q-learning 

 Origin of the method 

Q-learning originated from the fields of dynamic programming and reinforcement learning.291 It 

is a model-free algorithm that seeks to find an optimal action-selection policy for any given finite 

Markov decision process. The approach operates by estimating the value of action-state pairs (i.e., Q-

values), and iteratively updates these values based on received rewards and the maximum anticipated 

future rewards.377,378 In the context of DTR, Q-learning is used to sequentially optimise decisions, 

aiming to determine the most effective actions (treatments) based on various patient conditions.  

My review identified three studies that leveraged the principles of Q-learning, similar to IPW 

and adapted g-formula in Section 4.6.2.1.1-4.6.2.1.2, these studies employed a backward induction 

method to identify the optimal individualised treatment sequences. This includes research by Huang 

et al., who re-analysed the Estey 1999 study as shown in Figure 4.6.288 The other two studies are real-

world studies: one aimed at understanding treatment strategies for Graft-versus-Host Disease (GVHD) 

in leukaemia using the Centre for International Blood and Marrow Transplant Research (CIBMTR) 

registry in the United States (US), and another aim to understand diabetes treatment strategies using 

the UK Clinical Practice Research Datalink (CPRD) data.275,291  

 Theoretical characteristics   

The actual parameter estimation process of Q-functions and how these relate to the 

counterfactual outcome estimation were not immediately clear from the reviewed papers. However, 

if they were applied following the principles of the original version of Q-learning, this could prove 

problematic as Q-learning does not necessarily adjust for confounding per se. Rather, it focuses more 
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on predicting and maximising the outcomes for patients with certain characteristics and deciding the 

appropriate actions for patients carrying specific traits at various stages. For example, in the diabetes 

study by Simoneau, patients' Hemoglobin A1c (HbA1c) levels and body mass index (BMI) were used 

as tailoring variables to identify the best add-on treatments at different stages that maximises patient’s 

outcomes.275 That is, decision rules learned from Q-learning appear to be better tailored to evolving 

patients' characteristics (in a sense that it maximises predicted outcome). The approach exhibits 

counterfactual characteristics; however, it remains uncertain whether it aligns fully with the 

previously discussed methods for estimating causal effects. 

 Application 

Huang et al. revisited the Estey 1999 study, offering a distinct approach compared to Wahed and 

Thall who also re-analysed the same RCT as described in Section 4.6.2.1.1 and 4.6.2.1.2.287,288  

Utilising all available longitudinal patient data, Huang et al. identified optimal treatment 

strategies for individuals, offering a range of possibilities beyond predefined transition times. In 

contrast to Wahed and Thall, who estimated discrete treatment strategies from a set of predetermined 

options (e.g. 16 strategies from all possible combinations of treatment A, B1, and B2 in Figure 4.6), 

Huang et al.'s method facilitates the creation of non-pre-defined, more detailed treatment strategies 

that were learned from the process of Q-learning, such as “beginning with treatment A1, and if disease 

recurrence occurs within six months, switching to treatment B1 for salvage treatment; if not, 

proceeding with treatment B2 for salvage treatment”.287,288 His approach not only personalises 

treatments at each “stage” but also integrates additional patient characteristics into decision-making 

(e.g. time of disease recurrence). According to Huang et al., the selection of individual characteristics 

for treatment decisions is determined through model selection, with cut-off values for key variables, 

like the six-month cut-off for disease recurrence, derived from solving statistical models with 

estimated parameters in Q-learning. This highlights the previously mentioned characteristic of Q-

learning, which theoretically does not require a model. However, in practice, it still involves some 

degree of statistical modelling, although some values can be learned without pre-specification (e.g. 

the cut-off value of patient characteristics). The other included two real-world studies leveraging Q-

learning conceptually followed a similar approach to that presented by Huang et al. Specifically, 

Simoneau et al. dynamic weighted survival modeling (DWSurv) expanded on Huang's single robust 

framework with doubly robust features.275 

4.6.2.3. Other methods 

In Table 4.6, I classify the paper by London et al. under the category of g-estimation as it 

referenced Robins' 2004 paper on optimal structural nested models for optimal sequential decisions, 

and the optimal DTR paper by Murphy.286,340,341 The specifics of their method application were not 
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detailed beyond these references. However, to illustrate its relevance, a brief description of their study 

is provided. 

London et al. analysed a neuroblastoma trial where patients were randomized to begin treatment 

with either topotecan alone or topotecan plus cyclophosphamide. Using the DTR concept, they 

explored optimal subsequent treatment decisions based on whether to proceed with autologous stem-

cell transplantation, contingent upon the patient's remission status (complete remission versus no 

remission) or to undergo transplantation irrespective of remission status. This approach parallels the 

treatment strategy evaluation seen in Robins and Greenland’s 1994 study on PCP prevention in HIV 

(see Section 4.6.1.2.1), where each treatment option (high-dose versus low-dose treatment) 

potentially influences the likelihood of receiving further interventions across different treatment arms 

(i.e., PCP prevention) and, consequently, could impact survival outcomes. Similarly, London et al. 

aimed to evaluate topotecan versus topotecan plus cyclophosphamide, but the comparison was 

complicated by the fact that these two randomised groups had different probabilities of receiving 

transplantation, which could potentially affect outcomes. Thus, they explored the DTR embedded 

within the trial to determine the optimal subsequent treatment for each initial treatment group. 

4.6.3. Methods for analysing SMART 

For analysing SMART, most methodologies identified (Table 4.6) share foundational elements 

with those utilised in RCT and RWD that address time-varying confounding (Table 4.7).  

This aligns with the taxonomy of study types and their parallels discussed in Section 4.5.1. 

IPW stands out as the predominant method origin, followed by the adaption of Q-learning and 

g-formula. Despite these shared roots, SMART analysis has spurred the development of unique 

extensions that introduce a broader range of estimators, such as the cumulative incidence function 

(CIF), which are less common in other study types. While these alternative estimators enrich the 

analytical toolkit available, they play a less role in the context of this review, which aimed to identify 

methods suitable not only for comparing treatment sequences but also for facilitating proof-of-

concept case studies that can be compared against established benchmarks in RCTs for HTA, as 

detailed in Chapters 6 and 7. This section, therefore, does not detail each specific methodology used 

in analysing SMART. Instead, it highlights the relevance between different methods in Table 4.7, 

offering insight (a “map”) for future extensions for future research extensions. 

4.7. Discussion 

According to Mahar et al.'s review on methods used for analysing DTR in observational studies, 

IPW and g-formula are the most prevalent methods, followed by Q-learning.274 My review observed 

similar findings, but extends to cover the examination of RCT featuring non-randomised subsequent 

treatments and SMART, yielding broader insights. Specifically, IPW have been utilised in real-world 
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studies to compare uniform treatment sequences, making these insights particularly readily applicable 

in an HTA context.289,332,333 While one study did adapt SNFTM (with a “flavour” of g-formula) to 

compare uniform treatment sequences, it was aiming to identify an optimal uniform treatment 

sequence.290 Furthermore, although Q-learning was also observed to estimate the effects of DTR, its 

use was confined to studies aiming to identify individualised treatment sequences. The causal 

inference justification for this approach proves questionable, as the counterfactual outcomes 

calculated by Q-learning are largely informed by the learned Q-function from the data, which focuses 

on maximising outcomes, including variable cut-offs, to inform treatment strategies.275,288,291 IPW 

and the g-formula have also been adapted in conjunction with SNFTM to identify the optimal 

individualised DTR.287,331 In contrast to Q-learning, these methods require predefined strategies and 

cannot “search” for cut-off values to inform new treatment decision rules (i.e., strategies) that were 

not previously defined. All of these methods share similar roots with those used to analyse SMARTs, 

with methodological studies on SMARTs being several steps ahead in applying these techniques 

across a wider range of estimators.302,303  

Interestingly, regardless of the data types used, the majority of studies reviewed focus on 

oncology applications. However, this may be due to the fact that my review specifically only includes 

studies reporting time-to-event related outcomes. Nevertheless, this focus is particularly beneficial 

because oncology has been identified as one of the fields with the most prevalent discussions around 

treatment sequences HTA, as well as facing substantial challenges due to data scarcity on treatment 

sequences (Chapter 2 and Chapter 3). Therefore, it is logical to narrow the focus to designing proof-

of-concept case studies that assess the feasibility of using RWD to derive unbiased estimates for 

comparing treatment sequences (Thesis Aim 5 & 6, Section 1.5, Chapter 1) in oncology. This 

approach was later further affirmed by the richness of benchmark trials in oncology identified in 

Chapter 6. 

The IPW methods (Table 4.6), particularly the combination of IPTW and IPCW, emerge as the 

most promising for use in my case studies for a variety of compelling reasons. Firstly, only IPW has 

been used for comparing uniform treatment sequences without the aim of identifying optimal 

treatment sequences. This approach aligns closely with what is typically required in HTA, making 

IPW particularly relevant and readily applicable without substantial adaption. Secondly, studies based 

on the SNFTM framework typically need extra IPCW to manage survival right censoring.287,290 In 

contrast, IPW allows for a more straightforward combination of various IPW types (e.g., 

IPTW*IPCW) making it more attractive. Thirdly, IPW’s extension with the “cloning” strategy further 

highlights IPW's versatility, especially when combined with the TTE framework as cloning helps 

mitigate immortal time bias. Although cloning is not a “statistical” method per se, it is powerful in 

mitigating bias and comparing treatment sequences sharing the same initial path (that bypass any 
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unmeasured confounding), a capability that other methods do not exhibit. Furthermore, there is 

considerable experience of IPCW within HTA, particularly for addressing unwanted treatment-

switching in trials.43 If IPCW proves to be effective in providing unbiased estimates when comparing 

treatment sequences using RWD, this familiarity from broader applications will likely facilitate its 

wider adoption. Importantly, the conceptual simplicity of IPCW makes it easier to explain, which is 

particularly beneficial when collaborating with clinicians to identify relevant prognostic factors in 

establishing IPW weight models. Finally, the availability of IPW code from my attendance in the 

CAUSALab courses at Harvard University for adaption enhances its practicality within my thesis.   

These factors together make IPW a compelling option of advanced statistical method for tackling 

time-varying confounding in comparing treatment sequences for HTA and a logical first step for 

exploration under time constraints within the PhD, where other methods might necessitate extensive 

adaptations. 

The g-formula could be considered for the next step due to its conceptual parallels to the IPW 

method (Table 4.6). However, it may require further adaptation since the available examples do not 

pertain to comparing uniform treatment sequences. Additionally, the g-formula may be 

computationally substantially more expensive compared to IPW. The implementation of Q-learning 

could also be explored; however, it should be undertaken with caution due to its ambiguous causal 

interpretations, and because it has mainly been utilised in studies seeking to determine the best 

personalised treatment strategies, which are not the central concern of HTA. 

The review has several limitations. Firstly, it has only one stage of pearl-growing. However, the 

pearl-growing procedure primarily identified SMART studies that used similar methodologies to 

those found in a systematic search using the term “treatment sequences”, so it likely covered the most 

relevant methods. Further, the targeted maximum likelihood estimation (TMLE) method could be a 

valuable addition, as indicated in Mahar et al.'s review, but it has not been as widely adopted as other 

methods for DTR and may therefore require substantial effort to adapt to the context of my 

focus.274,379,380 Specifically, no research using TMLE has been seen in explicitly comparing uniform 

treatment sequences. Despite its limitations, the review supports the exploration of IPW as a logical 

first step forward, based on the justifications provided earlier. 

4.8. Chapter summary 

This chapter provided a detailed review of advanced statistical methods that could potentially be 

useful in providing unbiased estimates of treatment sequences from RWD. It also closely examined 

the caveats of simple statistical methods. The chapter summarised several key taxonomies essential 

for understanding the advanced methods identified, including types of clinical studies, variants of 

treatment sequences, and method categories. IPW was identified as a logical first step forward for 



170 

  

exploration, followed by the g-formula. This groundwork was later applied in designing the case 

studies and establishing benchmarks for design (Chapters 7 & 6, respectively), and in evaluating 

suitable RWD for a proof-of-concept study (Chapter 5), particularly in assessing whether a database 

has the quality and breadth necessary to accommodate these methods. Most importantly, it provides 

insights for practically implementing these methods to my case studies in Chapter 8.
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Chapter 5 Real-world data sources for proof-of-concept benchmarking case 

studies 

5.1. Chapter overview 

In Chapters 2 and 3, I highlight the potential of real-world data (RWD) as an alternative source 

for quantifying the effectiveness of treatment sequences. Chapter 4 then explores causal inference 

statistical methods for minimising biases in estimating the comparative effectiveness of treatment 

sequences from RWD. To effectively leverage these methods, it is crucial to have data that contain 

detailed information regarding treatment decisions and patient characteristics over time. Patient-level 

data are needed, and ideally the data should be collected over a substantial time period to ensure a 

sufficient number of outcomes occur within the follow-up timeframe.  

Assessing the performance of statistical methods in a given data source against established 

standards is crucial before these methods and datasets can be reliably used to inform decision-making 

(the use of benchmarking as a tool for assessing performance is further detailed in Chapter 6, Section 

6.2).381,382 This chapter, in conjunction with Chapter 6, collaboratively identifies suitable clinical trials 

as benchmarks for treatment sequence comparisons (Chapter 6), and evaluates which RWD sources 

show promise in providing the basis for replicating these trials' results (Chapter 5). This synergy sets 

the stage for the development of my proof-of-concept benchmarking case studies in Chapter 7. 

Successful benchmarking in these case studies would demonstrate that the same statistical approaches 

can be used to explore similar research questions in comparable contexts, within a specific database. 

In this chapter, I first detail the reciprocal refinement process in identifying the benchmark trials 

and candidate databases for my PhD project. This involves an iterative critical assessment of clinical 

trials comparing treatment sequences and suitable RWD sources for replicating them. Section 5.3 then 

provides an overview and comparison of the two data sources chosen for my benchmarking case 

studies (Chapter 7), highlighting their unique attributes and relevance. Finally, Section 5.4 reflects on 

the challenges and learning experiences I encountered as an early career researcher dealing with data 

access complexities, particularly focusing on the de novo independent applications for patient-level 

health data. This chapter does not cover the process of transforming data from the chosen databases 

into “research-ready” datasets383,384 tailored for Chapter 7's case studies, a topic addressed in Chapter 

8's discussion on data curation pipelines. 

5.2. Reciprocal refinement: identifying benchmark trials and fit-for-purpose data 

Figure 5.1 outlines the reciprocal refinement process for identifying candidate benchmark trials 

(Chapter 6) and fit-for-purpose data databases (Chapter 5) for my proof-of-concept case studies 

(Chapter 7). This process highlights the tandem considerations in identifying suitable RWD sources 



172 

 

to test the applicability of methods identified in Chapter 4 to inform the English health technology 

assessment (HTA) decision-making process when treatment sequences are involved, aiming to 

pinpoint pertinent (ideally English) nationwide databases or disease registries. Although extended 

trial data containing sequencing information, such as non-randomised subsequent treatments, could 

be viewed as a form of RWD (see Chapter 2, Section 2.5.2.4), it is beyond the remit of my thesis.  

My database selection broadly aligns with the principles set out in the recently published 

Structured Process to Identify Fit-For-Purpose Data (SPIFD) framework385, the NICE real-world 

evidence (RWE) framework37, and guidelines for good database selection in pharmacoepidemiology 

studies386. These include checking if the database offers variables for selecting relevant patients, 

defining covariates for statistical analysis, and capturing specific treatment patterns with sufficient 

sample size (details in Section 5.3, and Chapter 6, Section 6.6). Furthermore, budget constraints 

(£15,000-£25,000), my PhD timeline, and available connections for database access also influenced 

the decision. 

A pilot search of candidate benchmark trials (Chapter 6, Section 6.4.1.) highlighted a 

predominance of oncology studies (over 50% of the 20 identified), steering my focus towards 

oncology-specific databases. This choice also reflects the prevalence of sequencing in oncology HTA 

and the frequent use of RWD in oncology technology appraisals (TA) (Chapter 3). Additionally, many 

methods outlined in Chapter 4 were originally applied in oncology studies.291,338,339 Consequently, the 

English National Cancer Registration and Analysis Service (NCRAS) database387,388, particularly its 

SystemicAnti-Cancer Therapy (SACT) dataset389,390, stands out for my study due to its recognised 

role in monitoring the use of drugs placed in the Cancer Drug Fund (CDF) and as a source of data 

used to address uncertainties in National Institute for Health and Care Excellence (NICE) appraisals 

of CDF drugs.391-399 Furthermore, my supervisor Professor Latimer’s experience in navigating the 

application process via the Office for Data Release (ODR) at Public Health England (PHE), custodian 

of English NCRAS data before the COVID-19 pandemic, strengthened its practicality for my study. 

As of November 2020, I identified two routes to access NCRAS data: via the ODR400 or Clinical 

Practice Research Datalink (CPRD)401-403. However, CPRD's estimated cost of over £25,000 made it 

unfeasible for my PhD (approx. £7,000 via ODR).404 Consequently, I concentrated on identifying 

benchmarks that are replicable using NCRAS data via ODR (Chapter 6, Section 6.4.3), which cover 

the entire NHS population nationwide. This led to the identification of 12 potential oncology 

benchmark studies, of which only a single-arm from the RECORD-3 renal cell carcinoma (RCC) trial 

(sunitinib to everolimus)86,405,406 were deemed potentially replicable with sufficient sample size using 

NCRAS data (Chapter 6, Section 6.6.7 includes details on sample size estimation). This shaped the 

design of a direct benchmarking RCC case study for a single-arm trial with NCRAS data, detailed in 

Section 7.5.4, Chapter 7.  
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Figure 5.1 Tandem consideration of proof-of-concept benchmarks and fit-for-purpose data  
CPRD: Clinical Practice Research Datalink; NCRAS: The National Cancer Registration and Analysis Service; RWD: real-world data; ODR: Office for 

Data Release 

The blue-highlighted section represents considerations of candidate databases, while the green-highlighted section pertains to considerations of 
candidate benchmark trials. Boxes highlighted in yellow represent the initial broad considerations encompassing both candidate databases and 

benchmark trials. Boxed highlighted in orange outlines challenges in data access. Arrows in the figure indicate the flow of decision-making processes. 

Decision timing is outlined on the left of the graph.
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Ideal RWD sources for testing methods in 

Chapter 4 for HTA decision-making in 

England 

 English nationwide data 

 Non-nationwide disease 

registry/hospital data 

A pilot review in Chapter 6 identified 20 potential 

benchmarks, predominantly in oncology, echoing the 

prevalent diseases in treatment sequencing 

(autoimmune diseases and cancer) as outlined in 

Chapters 2 and 3. Consequently, the review focus 

was later narrowed exclusively to oncology studies. 

Following the refined scope of candidate 

benchmark trials, I narrowed my critical 

assessment on suitable candidates for 

replication using English NCRAS data. 

Two access routes were identified: 

 ODR, Public Health England 

 CPRD (but insufficient budget) 

The systematic review in Chapter 6 found 12 

candidate benchmark studies, among which only a 

single-arm from the following RCC trial was deemed 

likely to be replicable using English NCRAS data.  

 Sunitinib  everolimus arm in the RECORD-3 

trial 

 

Exploring the implications of utilising 

additional sources for replicating the 

candidate benchmarks for English HTA: 

 English NCRAS via ODR 

 US Flatiron data 

The final selection of benchmark trials identified for 

potential replication using various data sources 

includes: 

1. GUTG-001 prostate cancer trial (abiraterone  

enzalutamide vs. reverse sequence) : 

replication using US Flatiron data to directly 

benchmark Flatiron data 

2. Extended prostate cancer analysis: utilising 

both US Flatiron and English NCRAS data to 

compare identical prostate cancer treatment 

sequences, indirectly benchmarking English 

NCRAS data. 

3. Sunitinib to everolimus arm in the RECORD-3 

RCC trial: replication using English NCRAS data 

for direct benchmarking of a single-arm trial 

Challenges in data access 

 English NCRAS Data 

- via ODR: original application halted 

due to PHE's dissolution during COVID 

pandemic; re-initiation via NHS 

Digital delayed until June 2022, 

resulting in data receipt in July 2023. 

- via DATA-CAN: new application for 

NCRAS data in January 2022 in 

response to difficulties through ODR, 

requiring a COVID-related work 

package. Aborted later due to 

contracting and TRE barriers. 

 US Flatiron: Approval in June 2021, 

faced international contract hurdles 

during COVID pandemic, leading to 

data receipt in July 2022. 
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Unfortunately, the sudden dissolution of PHE during the COVID-19 pandemic following my 

submission of the NCRAS data application to the ODR led to severe delays and belated redirection 

of my application to its new data custodian, National Health Service (NHS) Digital. During the 

transition period, I investigated emerging post-COVID data sources, specifically the Health Data 

Research Hub for Cancer (DATA-CAN)407,408, a newly established NHS affiliated Trusted Research 

Environment (TRE) (i.e., safe haven) that houses extracts of NCRAS and other NHS Digital datasets. 

This exploration prompted me to revise the protocol, incorporating additional COVID-19-related 

study objectives (not covered in this thesis) to align with the consortium's requirement for studies that 

utilised their data access. As DATA-CAN was a newly formed consortium with internal uncertainties 

and prioritised projects, I also concurrently reapplied for NCRAS data through NHS Digital as soon 

as it became feasible. Hurdles of exploring these alternative avenues for accessing NCRAS data are 

detailed in Sections 5.3.1 and 5.4. 

Several disease audits also hold extracts of NCRAS data, tailored to patients with specific 

cancers and enriched with additional information. For example, the United Kingdom (UK) National 

Prostate Cancer Audit (NPCA)409-413 comprises standard NCRAS datasets and enriched with 

additional laboratory results from the Cancer Outcomes and Services Data (COSD)414, such as the 

prostate-sensitive antigen (PSA) test results. The NPCA database has been a key resource in the 

NPCA's annual reports, tracking treatments and outcomes of prostate cancer, but is inaccessible to 

the public. The Lung Cancer Data Audit (LUCADA)415,416 and the National Lung Cancer Audit 

(NLCA)416 are the only publicly accessible, disease-specific audits, offering detailed lung cancer 

patient data that can be linked with standard NCRAS datasets. Nonetheless, they are restricted to 

particular cohorts of patients and may not provide enough longitudinal information for complex 

sequencing analysis when used alone. 

Apart from NCRAS data, three major UK-based primary health care databases, CPRD401,402, 

QResearch417-419, and The Health Improvement Network (THIN)420-422, also show potential for 

oncology research and have been used to generate RWE for NICE TAs.423 They share common 

features but vary in coverage of practice groups and external data linkages.423 Their greatest 

advantage lies in providing additional information on clinical test data419,424 and prescription records 

beyond SACT, such as hormone therapy in treating cancers.425 The linkage between these databases 

and registries are growing, notably CPRD and QResearch's links to the English Cancer Registry.417,426  

However, using them in my study poses several limitations. CPRD is publicly accessible but exceeds 

my budget.404 QResearch, its use once restricted to certain affiliates, is now open to all UK researchers 

but unfortunately did not align with my PhD timeline.427 Moreover, its linked cancer datasets only 

seem to be available on University of Oxford servers.417,418 Regarding THIN, although it shows 

comparable standardised cancer incidence ratios to those in the UK registry for England and Wales421, 
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there is no clear documentation on its direct linkage to the English Cancer Registry. Furthermore, 

these databases only cover a subset of patients in the UK (e.g. CPRD contains   10% of the English 

population403,426), which reduces the likelihood of achieving an adequate sample size for my research. 

Therefore, I did not explore these databases further. 

Meanwhile, challenges in obtaining timely access to NCRAS data and the absence of a suitable 

RCT for directly benchmarking using NCRAS data prompted me to explore alternative data source 

from another country — the US-based Flatiron Health database85 (hereinafter “Flatiron database”). 

Consequently, I reassessed the 12 candidate benchmark trials, focusing on their potential replication 

using Flatiron data (Chapter 6, Section 6.4.3). This led to the identification of an additional prostate 

cancer trial, GUTG-00184, as a suitable candidate for direct benchmarking with Flatiron data. This 

also enabled me to develop case studies jointly using both NCRAS and Flatiron data to indirectly 

benchmark RWD analyses. Additionally, the recent partnership between NICE and Flatiron Health, 

focused on investigating the potential of US data (which frequently offers earlier access to 

medications) to enhance NICE's TAs in oncology, highlights the relevance of Flatiron data.83 Chapter 

7 details the tandem analysis design for my prostate cancer case studies.  

In the following section, I provide an overview and comparison of the two chosen databases, the 

NCRAS and Flatiron databases. Despite potential shortcomings of each selected database, such as 

the absence of lab results in NCRAS data via NHS Digital and insufficient history of health records 

prior to patient’s initial cancer diagnosis in the Flatiron data, it remains crucial to test the feasibility 

of these databases. Testing them, rather than dismissing them for their known limitations, can 

highlight important areas for improvement.428 This is particularly relevant in English HTA, where 

NCRAS data is instrumental in informing local drug reimbursements and CDF drug re-appraisals, yet 

its capability in producing reliable comparative effectiveness estimates of treatment sequences 

remains largely unexplored. In the next section and further in Chapter 8, I discuss the trade-offs of 

using these databases for deriving estimates of the treatment sequence effectiveness  

5.3. Candidate data sources 

5.3.1. English NCRAS database 

NCRAS, a part of England’s National Disease Registration Service (NDRS), coordinates the 

publication of aggregated information from cancer registries across England, Northern Ireland, and 

Scotland at the UK level387, while regional authorities facilitate access to patient-level data within 

each country. NCRAS oversees the patient-level cancer registry data in England.387 Researchers can 

now access the English Cancer Registry with linkage to a selection of non-cancer specific National 

Health Service (NHS) England datasets through NHS England's DARS (Data Access Request 

Service). The application was previously managed by the ODR, PHE.  



176 

 

Within the NCRAS database, the English Cancer Registry82,387,388 and its linkage to the SACT 

dataset389,390 are pivotal for my treatment sequencing case studies (Chapter 7). The English Cancer 

Registry provides audited data on patients' initial cancer diagnoses, covering primary cancers (i.e., 

excluding secondary malignancies like metastasis), along with details of basic patient characteristics 

(age, sex, date of diagnosis, cancer stage, performance status) and tumour prognostic factors 

(histology, morphology, tumour size, co-morbidities). Each patient may have multiple primary cancer 

records, where tumours develop at different locations, including bilateral tumours in cases such as 

kidney, breast, and lung cancer. While the English Cancer Registry itself includes the death date of 

patients (i.e., for estimating overall survival) and lost-to-follow-up due to relocation, additional 

information may be needed for other outcomes, such as indicators of disease relapse or treatment 

discontinuation. 

The SACT dataset offers information on patients' anti-cancer treatments389, detailing specific 

treatments, combinations, durations, and the prognostic characteristics (i.e., performance status) and 

outcome at the end of each treatment regimen. Additional datasets such as the National Radiotherapy 

Dataset (RTDS)429, NCRAS-linked Hospital Episode Statistics (HES)430,431 for admitted care (APC), 

outpatient (OP), and accident & emergency datasets (A&E), and the Cancer Waiting Time (CWT) 

dataset432,433 can be linked to the English Cancer Registry82,387,434, providing further time-varying 

details on patient cancer treatment journeys. NCRAS data also has the capability to link community-

dispensed prescriptions435 and COSD lab results414, yet such linkage is not a routine feature of 

standard applications through the NDRS.387,434  

The English Cancer Registry typically has a 2- to 3-year delay in data availability; for example, 

in 2023, data available only cover up to the 2021 cohorts. By the time that data are made available, 

the English Cancer Registry includes death records from the Office for National Statistics (ONS) and 

can be linked with the latest updates of SACT, RTDS, HES, and CWT datasets.388 Consequently, the 

2021 cancer registry cohort's records may contain associated treatment, hospital visit, and death data 

post-2021. 

Figure 5.1 illustrates that I applied for NCRAS data using the same case study protocol via three 

distinct routes. Applications to ODR and NHS Digital, despite targeting the same range of datasets 

linkable to the English Cancer Registry, differed in their procedures. The latter required refilling 

submission forms with revised wording, adhering to varied privacy and data protection standards. 

Both offered one-off extracts of specified datasets (e.g., for particular cancer types as per protocol) 

and variables, downloadable to the data controller’s (university's) secure local virtual machine. 

Conversely, DATA-CAN, adopting a new data-sharing model, confines all parent data within a TRE, 

preventing transfer to local machines. Analysis costs are tied to Data Bricks usage, and Structured 

Query Language (SQL) is necessary for self-extracting specific study samples from the national 
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NCRAS data. During the analysis phase, only dummy data is available for visual preview, whereas 

the actual data analysis proceeds in the background and is not accessible for visual inspection. Initially 

tailored for COVID-19 research, DATA-CAN applications necessitate additional study aims aligning 

with the consortium’s work packages, which are COVID-19 related. The primary advantage of 

DATA-CAN is that it includes a blend of audited and more recent data, thus providing updates fresher 

than traditional data-sharing models with linkages to potential extra datasets, such as community 

prescriptions. However, some dataset linkages necessitate additional cleaning. Importantly, its cost 

predictability and computational power flexibility are less clear compared to conventional data-

sharing models. Additionally, the University of Sheffield (UoS) was less accustomed to this type of 

contract review as opposed to standard agreements. Considering these factors and the parallel 

advancement of different application routes (Section 5.4), I ultimately obtained NCRAS data through 

NHS Digital. 

A full list of NCRAS datasets linkable with the English Cancer Registry and available for 

application is accessible online.434 Researchers are required to specify the details of each dataset and 

variable needed for their study, which undergoes review by NHSD during the data application process. 

In my case study protocol (Chapter 7), I provide a detailed account of the variables and NCRAS 

datasets that I applied for in my research. 

5.3.2. US-based Flatiron database 

The Flatiron database comprises de-identified oncology-focused electronic health records (EHR) 

from over 1.6 million patients in the US.85 It includes structured data such as patient demographics, 

diagnosis, lab results, treatment prescriptions/administration, vital signs, and cancer staging. 

Additionally, it features enriched data abstracted manually by trained abstractors from unstructured 

medical notes, making it a comprehensive resource for oncological research. Numerous recent studies 

have utilised Flatiron data to examine real-world treatment patterns and survival outcomes across 

various cancers, particularly aiding in the post-marketing surveillance of pharmaceuticals for the US 

Food and Drug Administration (FDA).436,437Moreover, the recent collaboration between NICE and 

Flatiron Health, aiming to examine how US data could contribute to NICE's HTA processes in 

oncology, underscores its significance.83 

Accessing Flatiron's data is more straightforward than NCRAS data due to its established secure 

data-sharing process. Flatiron data scientists assessed and advised on the feasibility and limitations 

of using their data based on the protocol submitted, advising applicants on potential limitations and 

suggesting proxies for certain variables, wherever relevant. This is vital since Flatiron's data 

dictionaries are not publicly accessible, meaning available variables can only be inferred from 

previously published studies utilising Flatiron data at the protocol drafting stage. 
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Contrary to NHS Digital, which only delivers requested NCRAS variables at data transfer, 

Flatiron provides an entire disease dataset relevant to one’s research. For example, the standard 

Flatiron metastatic prostate cancer (mPC) dataset includes all relevant variables needed for my study. 

This includes longitudinal data for all mPC diagnosed patients during their follow-up within the 

Flatiron Health Network of health care providers (community/academic), up to the most recent data 

cut. I did not request additional manual extractions from unstructured data beyond the standard 

Flatiron mPC dataset, such as detailed comorbidity data linked to claims information or manual 

abstraction of comprehensive progression data.438 Significantly, Flatiron updates its data cut more 

frequently and with a much shorter lag (i.e., 30-day lag), offering nearly immediate access to current 

information. For instance, I received an updated data cut at the end of September 2023 with patient 

records up to the end of August 2023. 

5.3.3. Comparison of selected databases  

Table 5.1 provides a side-by-side comparison of the contents of the Flatiron mPC dataset (a 

disease-specific subset of the larger Flatiron database) and the NCRAS database. NCRAS datasets 

comprise the English Cancer Registry, SACT, RTDS, HES (A&E, APC, and OP), and CWT. Flatiron 

data features variables that largely overlap with those in NCRAS data, but they are structured 

differently across datasets and vary in specific details. Table 5.1 outlines the specific locations of each 

variable within these databases and their notable differences. 

Details about the cohort definitions and items requested for my NCRAS data extraction are in 

my case study protocol (Chapter 7, Section 7.6). The following discussion mainly revolves around 

the differences between the two databases in prostate cancer research. This is because both databases 

are used in my prostate cancer case studies, while my RCC case studies rely solely on NCRAS 

(Chapter 7, Figure 7.1). Nevertheless, most of these insights are applicable to other types of cancer 

research. See Table 5.1 for details for the following discussions. 
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Table 5.1 Comparison table: Flatiron metastatic prostate cancer dataset vs. NCRAS database 

Content Item Location in the 

Flatiron mPC 

dataset 

Location in 

NCRAS 

database 

Comparison 

Patient 

demographics 

Cohort Identifier Cohort indicator table Cancer Registry  The Flatiron dataset I obtained only includes metastatic prostate cancer patients. 

Conversely, the NCRAS dataset I obtained contains data on both kidney and prostate 

cancer patients. These groups can be distinguished using SITE_ICD10_O2 codes in the 

English Cancer Registry. 

The Flatiron mPC dataset exclusively includes patients diagnosed with metastasis, either 

initially or through progression. In contrast, the English dataset I obtained encompasses 

patients at various stages, including those with early diagnoses not yet progressed to 

metastasis. 

Patient ID In all tables In all datasets Key identifier of individual patients: Patient IDs are pseudonymised in both Flatiron and 

NCRAS datasets enabling linking of patient-level data across all tables/datasets. 

Tumour ID N/A Cancer 

Registry, SACT 

Key identifier of individual primary tumours: Available only in NCRAS data, this 

identifier distinguishes primary tumour diagnosis records from secondary ones, such as 

metastatic tumours originating elsewhere, and from bilateral tumours of the same organ. In 

the Flatiron prostate cancer dataset, Patient ID is equivalent to Tumour ID since prostate is 

not a bilateral organ. 

In NCRAS, Tumour ID can be utilised to link with tumour-specific SACT data. This is 

theoretically beneficial for distinguishing treatments for concurrent cancers occurring 

simultaneously. However, due to quality concerns, linking SACT  with Tumour ID should 

be done in conjunction with quality variables (that flag whether precise matches between a 

patient and specific treatment records exist) and with an understanding of its limited 

availability.439-441 

Practice ID Visits table Cancer 

Registry, SACT 

For Flatiron data, practice IDs are attached to records that have encounter or prescription 

records. In NCRAS, information on practices that initiate a patient's primary treatment for 

a particular primary tumour is available in the Cancer Registry. Additionally, practice 

information is available for each SACT treatment record. Practice IDs in Flatiron can be 

directly linked to a table indicating practice types (e.g. medical centre versus community), 

while NCRAS provide practice ID at varied levels, such as hospitals or trusts.  

Practice Type Available for each 

Practice ID in the 

practice information 

table 

Cancer Registry Practice IDs can be linked to the Flatiron data's practice information table to deduce the 

practice type. Information on GP practice that made the referrals (route to diagnosis) for 

primary tumours is accessible in NCRAS, but I did not request this variable.  
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Practitioner/Consult

ant ID  

Patient demographic 

table 

Cancer 

Registry, SACT 

Practitioner/consultant IDs are pseudonymised in both Flatiron and NCRAS data. While 

only the primary practitioner's ID is available in Flatiron, NCRAS separates practitioners 

for each treatment record and patient’s initial cancer diagnosis. 

Age at diagnosis Patient demographic 

table 

Cancer Registry Both Flatiron and NCRAS data mask detailed age information. Age at diagnosis can be 

approximated in Flatiron data by subtracting the birth year from the diagnosis year, 

whereas NCRAS provides age at diagnosis for each primary tumour record. 

Gender Patient demographic 

table 

Cancer Registry No significant difference. 

Race/Ethnicity  Patient demographic 

table 

Cancer 

Registry, SACT 

Ethnicity information in the Flatiron mPC dataset is provided as race (While, Asian and 

African American, and Others) and ethnicity (Hispanic versus non-Hispanic). In contrast, 

race/ethnicity in the NCRAS database is a single variable, but offers more nuanced levels 

compared to the Flatiron dataset (e.g. different subcategories of Asians/Asian British). 

Although several datasets in NCRAS contain the ethnicity variable, NDRS advises using 

the ethnicity information from the Cancer Registry (as it is has been audited based on 

information from a range of datasets). 

Geographical 

region 

Patient demographic 

table 

Cancer Registry Geographical region information is available as states in Flatiron data and as CCG codes, 

county codes, government office region, and country codes in NCRAS data. More granular 

details in NCRAS data like postcodes may be available upon special request. CCG codes 

are typically considered the most relevant indicator for regional health care differences in 

England. 

Socioeconomic 

status 

Socioeconomic status 

table 

Cancer Registry Both NCRAS and Flatiron datasets provide socioeconomic status/indices of multiple 

deprivation based on the place of residency/health care facility, categorised into quantiles. 

Insurance coverage Insurance 

information table 

N/A Flatiron's dataset details patients' insurance coverage, including the start and end dates and 

the payer category, while all patients in the NCRAS data are under NHS coverage. 

Despite having various insurance providers, patients in the Flatiron database often 

continue receiving care from health care providers (community/academic) within the 

Flatiron Health Network, even if they relocate, for instance, to a different state. 

Embarkation flag N/A Cancer Registry NCRAS data includes a marker indicating if and when patients left the UK. 

Co-morbidity score N/A, though it may 

have been available 

through Flatiron’s 

add-on service438 

Cancer Registry The standard Flatiron mPC dataset I applied for does not include comorbidity scores, but 

Flatiron's add-on service can provide manual abstraction of comorbidity information, 

along with additional claims data.438 Charlson co-morbidity scores for 2-year and 6-year 

periods are available in the English Cancer Registry, derived using the NCRAS default 

algorithm and HES data. Each score is accompanied with an indicator noting the 

availability of HES record linkage used in its derivation.  
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Cancer 

Diagnosis 

Date of initial 

cancer diagnosis  

Metastatic prostate 

cancer cohort table 

Cancer Registry In the Flatiron mPC cohort table, the date of patients initial prostate cancer diagnosis is 

recorded for prostate patients who had metastasis. However, not all patients were followed 

up at healthcare providers (community/academic) within the Flatiron Health network from 

the start of their initial diagnosis, and thus some patient’s initial date of diagnosis might be 

unavailable. The English Cancer Registry offers multiple possible initial cancer diagnosis 

dates for each patient, along with an indicator specifying the best source for diagnosis 

date. 

Date of metastasis 

diagnosis 

Metastatic prostate 

cancer cohort table 

N/A (CWT) In the Flatiron mPC dataset, each patient's metastasis date is confirmed using multiple 

methods (see Appendix 8.1), unlike in NCRAS datasets where these dates are not 

recorded. However, NCRAS's CWT dataset offers metastasis site data for specific 

treatment periods, potentially serving as a proxy for the date of progression to metastatic 

diagnosis in patients initially without metastasis. The reliability of this proxy variable 

remains uncertain. 

Group and TNM 

stages at initial 

diagnosis 

Metastatic prostate 

cancer cohort table 

Cancer 

Registry, SACT 

Both NCRAS and Flatiron datasets provide patients' group stage (i.e., the summary of 

separate TNM stage) and each component of their TNM stages at initial diagnosis. The 

NCRAS dataset additionally distinguishes between imaging-based and pathology-based 

staging, specifying which method perform better for each patient, along with the reporting 

system. Additionally, each SACT record has staging information, though it is uncertain 

whether the staging is updated or the same as in the English Cancer Registry data. 

Histology at initial 

diagnosis 

Metastatic prostate 

cancer cohort table 

Cancer Registry Both NCRAS and Flatiron datasets offer histology data for patients, each with varying 

levels of coding detail. 

Morphology and 

behaviour at initial 

diagnosis 

N/A Cancer 

Registry, SACT 

The English Cancer Registry data includes morphology and behaviour codes for tumours 

using the ICD-O-2 system. Every SACT entry contains a morphology code, but it remains 

uncertain whether the staging details are updated or match those in the cancer registry 

data. 

Gleason score at 

initial diagnosis 

(prostate cancer) 

Metastatic prostate 

cancer cohort table 

Cancer Registry Both NCRAS and Flatiron datasets provide Gleason score data.  

Additional tumour 

details at initial 

diagnosis 

N/A Cancer Registry In NCRAS data, there are records of the number of tumours, indicator of large tumour, 

number of lymph nodes excised, size of the lesion at the time of primary treatment, 

whether the cancer is present in multiple locations, the margin of tissue excised around the 

tumour, and the grade or aggressiveness of the cancer. These are not available in the 

standard Flatiron dataset. 

PSA at initial 

diagnosis and 

metastatic diagnosis 

(prostate cancer 

Metastatic prostate 

cancer cohort table 

N/A Flatiron data details PSA levels at initial and metastatic diagnoses when available. These 

testing results are not available in NCRAS datasets. 
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CRPC status, date 

of castration 

resistance (prostate 

cancer) 

Metastatic prostate 

cancer cohort table 

N/A Flatiron data includes a marker indicating whether mPC patients have developed castration 

resistance, along with the date of castration resistance if applicable. There is no such 

variable in the NCRAS database. 

Cancer 

treatments  

Cancer treatment 

details 

Medication order 

table, medication 

administration table, 

specific treatment 

tables 

SACT, CWT The standard Flatiron mPC dataset include cancer treatment details from multiple sources, 

encompassing medication orders, medication administration, and treatment duration 

abstraction from unstructured data for specific treatments (e.g. abiraterone, enzalutamide). 

The medication order data contains the date of prescription, expected start date, dosage, 

planned cycles, and information on any cancellations. Medication administration records 

the actual date and dosage of received treatments, which is especially pertinent for non-

oral treatments administered in healthcare facilities. Flatiron has pre-defined a range of 

anti-cancer treatments for a specific tumour (e.g. mPC) and maintains detailed records of 

those specified therapies.  

SACT documents all anti-cancer treatments, but poor Tumour ID linkage may hinder 

identifying treatments for specific tumours, especially in concurrent cancers. Diagnosis 

codes in SACT can aid differentiation. Unlike Flatiron, which draws from multiple 

sources, SACT's details originate solely from registration. Nevertheless, similar treatment 

details are provided, such as the decision date to treat, regimen drug/regimen groups, 

dosage, actual administration date, modifications, treatment intent, treatment cycle and 

OPCS treatment delivery code. It does not have planned cycle information but has 

numbered the cycle prescribed/administered. SACT records include the end date (version 

2) and outcome of treatments (version 3), as well as information on whether patients 

experienced toxicity (version 3). However, the completeness of this data is unknown. 

SACT data can be enhanced with CWT information, which provides cancer treatment 

waiting times and reasons for delays. 

Each Flatiron medication administration record is flagged to indicate whether it is 

considered a maintenance treatment, while each SACT record includes an indicator of the 

treatment's intent, whether it is adjuvant or palliative. 

 

Drug episodes Drug episode table N/A Flatiron uses a default algorithm to compile a drug episode table, tracking the start and end 

date of chemotherapy cycles or consecutive oral prescriptions by cross-referencing various 

data sources. For instance, the start and end dates of a chemotherapy cycle, initially 

captured in the medication order, may be augmented with administration data. 

It is unclear whether each SACT record represents an entire “drug episode” or if the data 

necessitates further refinement, such as merging records from similar times to construct 

episodes of combination therapy.   
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Line of therapy Line of therapy table N/A Flatiron's default algorithm compiles consecutive drug episodes, such as chemotherapy 

cycles, into a treatment line table. This table includes the start and end date of each 

treatment line and their sequence. While this provides a ready-to-use summary of 

treatment lines, researchers also have the option to use raw data from medication orders, 

administrations, or drug episodes to create custom definitions of lines of therapy. This 

flexibility is particularly beneficial when clinicians have varying opinions on what 

constitutes a line of treatment.  

There are no default line of therapy table in NCRAS data. 

Androgen 

deprivation therapy 

(prostate cancer) 

Androgen deprivation 

therapy table 

N/A The Flatiron androgen deprivation therapy table includes details on whether patients 

receive androgen deprivation therapy, covering aspects such as the treatment setting 

(advanced versus curative), start and end dates, with some data retrospectively traced 

through data abstraction. However, the comprehensiveness of this data table is uncertain, 

primarily because not every patient received follow-up at health care providers 

(community/academic) within the Flatiron Health Network before undergoing metastatic 

treatment, while androgen deprivation therapy often started prior to metastasis.  

In contrast, the extent to which androgen deprivation therapy is captured in SACT data is 

uncertain. This therapy might be administered in a primary care setting and not 

consistently recorded in SACT, with practices potentially varying 

Primary treatment Primary treatment 

table 

Cancer Registry 

(treatment 

details) 

In the NCRAS database, a treatment flag indicates whether patients receive radiotherapy, 

systemic treatment, or surgery, and is accompanied by OPC4 codes, codes for radiotherapy 

and imaging. Although an event date is provided, it is unclear whether this date represents 

the primary treatment following a cancer diagnosis. Additionally, this information is not 

available for all patients. 

The Flatiron dataset includes information on the primary treatment patients received 

following their initial diagnosis, detailing types such as radiotherapy and surgery. 

However, not all patients had this information as not all patients had follow-ups at health 

care providers (community/academic) within the Flatiron Health Network from the 

beginning of their initial diagnosis. 

Radiotherapy 

details 

N/A RTDS The RDTS provides details on cancer patients' radiotherapy, including primary procedure 

OPCS and dates. It can only be linked to Cancer Registry data via Patient ID, but includes 

diagnosis ICD codes, aiding in identifying records for specific cancer treatments.  

Flatiron data lacks detailed radiotherapy information, except for a singular “primary 

treatment” table that notes if patients received radiotherapy as their primary treatment 

upon initial diagnosis of early-stage prostate cancer. 
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Cancer waiting time N/A CWT NCRAS includes the CWT dataset, detailing waiting times and possible reasons for delays 

during cancer treatment periods. Conversely, Flatiron does not provide comparable 

information on cancer waiting times. 

Mortality Date of death Patient demographic 

table 

Cancer Registry Both NCRAS and Flatiron datasets include patients' death dates. Flatiron's dates are 

verified through multiple sources and may include confirmed deaths after lost follow-up, 

while NCRAS's death records are audited with ONS data. NCRAS also contain an 

indicator of whether a patient remain alive by the time of snapshot and provides detailed 

coding for causes of death. 

Health care 

facility visits 

(longitudinal 

data) 

Records for medical 

encounters 

Visits table HES A&E, HES 

APC, HES OP 

Flatiron dataset capture all encounters (including tele visits) at cancer-focused facilities. 

This means that visit records from other facilities might not be included. Typically, 

patients begin visits to these specialised facilities following a cancer diagnosis, often 

resulting in incomplete records of comorbidities prior to their initial cancer diagnosis.  

NCRAS-linked HES, however, records all non-primary care NHS hospital visits, including 

A&E, hospitalisations, and outpatient visits, including those prior to their initial cancer 

diagnosis. Validation studies indicate that HES record completeness has improved in 

recent years, though completeness of outpatient records still presents challenges.431,442 

In Flatiron data, each visit can be linked to diagnoses, lab results, vital signs, or 

prescription records depending on the visit type, but lacks information on procedure codes. 

Conversely, NCRAS-linked HES provides codes of diagnoses and procedures for each 

visit/hospitalisation, but does not include detailed prescriptions, vital signs, or lab results. 

Diagnosis 

(longitudinal 

data) 

Diagnoses, 

diagnosis date, 

diagnosis system 

Diagnosis table Cancer 

Registry, HES 

A&E, HES 

APC, HES OP 

See comments in “health care facility visits”.  Additionally, in both NCRAS and Flatiron 

datasets, each encounter may result in multiple diagnoses, each accompanied by a 

diagnosis date and a code indicating the diagnostic system (e.g., ICD-9 versus ICD-10). 

NCRAS includes an indicator of whether a tumour’s registration is based only on a death 

certificate. 

Lab results 

(longitudinal 

data) 

Test, test date, test 

results 

Lab table, NGS table N/A Lab and NGS test results in Flatiron dataset are exclusive to tests conducted at health care 

providers (community/academic) within the Flatiron Health Network. Test results from 

other facilities may occasionally transfer to the system, but this is not consistent for all 

patients. Each test record includes the test name, LOINC code, lab components, lab 

source, normal range, test dates, test results, and test units. The table contains both raw test 

results and those cleaned by Flatiron analysts. 

NCRAS datasets do not include lab test results. Access to PSA information through 

specialised linkage necessitates a customised request, typically not available to the public, 

as outlined in Section 5.2. 
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Vital signs 

(longitudinal 

data) 

Test, test date, test 

results 

Vitals table SACT (only 

height and 

weight) 

Flatiron data contains height and weight details, and a broad range of vital sign 

measurements, such as blood pressure, whereas SACT records only has weight and height 

at the start of each treatment cycle/regimen. Vital sign measurements in Flatiron are 

limited to health care providers (community/academic) within the Flatiron Health 

Network, with occasional transfers from other facilities, though not consistent for all 

patients. The Flatiron data includes both raw and analyst-cleaned results. 

Performance 

status 

(longitudinal 

data) 

ECOG 

value/performance 

status 

Structured ECOG 

table, machine-

learning augmented 

enhanced ECOG 

table 

SACT Flatiron data offers two unique sets of ECOG values. The first set consists of all 

longitudinal ECOG values derived from structured data (not necessarily on the same date 

of treatment initiation). The second set combines these structured data values with 

additional ECOG information abstracted from unstructured data sources (e.g. medical 

notes). However, this second set specifically includes ECOG values recorded from 30 days 

before the start of a treatment line to 7 days after the initiation of therapy. The definition of 

a treatment line is based on Flatiron's standard line-of-therapy algorithm. See the section 

on cancer treatments for further details. 

SACT reports patient performance status at the beginning of each regimen/cycle. 

However, there are discrepancies in how performance status levels are recorded across 

different versions of SACT, specifically between version 2 and version 3.434 

Biomarker Date of biomarker 

test and results 

Biomarker table N/A Currently, the Flatiron dataset only contains information on BRCA mutations. This data 

collection has only started recently, driven by the emergence of new drug targets. 

BRCA: The Beast Cancer Gene; CCG: Clinical Commissioning Group ; CWT: Cancer Waiting Time; ECOG The Eastern Cooperative Oncology Group; GP: General Practitioner; HES: 

Hospital Episode Statistics; HES A&E: Urgent and Emergency Care Activities; HES APC: HES Admitted Patient Care; HES OP: HES Outpatient Attendances; ICD: International 

Classification of Diseases; mPC: metastatic prostate cancer; N/A: not available; NCRAS: National Cancer Registration and Analysis Service; NGS: Next-generation sequencing; ONS: Office 

for National Statistics; OPCS: The OPCS Classification of Interventions and Procedures; SACT: Systemic Anti-Cancer Therapy Dataset;  
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5.3.3.1. Comparing Flatiron and English NCRAS databases for cancer research 

Flatiron collects EHR data from health care providers (community/academic) within the Flatiron 

Health Network, while NCRAS captures nationwide cancer data across in England. Both databases 

record patient demographics (age, gender, race/ethnicity, geographical region, practice, practitioner, 

socioeconomic status), initial cancer diagnosis date, staging, tumour characteristics (e.g. histology), 

risk scores (e.g. Gleason scores), and anti-cancer treatment histories. Flatiron excels in providing 

detailed post-diagnosis data, including lab results and vital signs, not available in NCRAS. NCRAS, 

however, offers comprehensive tumour-specific details at diagnosis, including tumour 

morphology/behaviour, size, lymph node count, lesion size, and excised tissue margins.434  

Flatiron's unique feature is its ability to transform unstructured medical data into standardised, 

usable information through validated manual abstraction and/or machine-learning.443 A key example 

is its provision of specific data like metastasis and castration-resistance dates — typically unavailable 

in traditional cancer registries— for an extensive patient cohort.437 Moreover, Flatiron's method of 

standardising data curation by pooling EHRs from various facilities is likely effective in reducing 

biases frequently encountered in RWE from EHRs444, especially those that are single-facility-based. 

While crucial dates for identifying metastatic castration-resistant prostate cancer (mCRPC) patients 

(i.e., the target population in my prostate cancer case studies, see Chapter 7, Figure 7.1) are readily 

accessible in the Flatiron database, locating similar dates in the NCRAS data may rely on proxy 

algorithms. For instance, NCRAS's CWT data offers indicators for metastatic sites and treatment wait 

times, but the precision of these dates aligning with actual metastasis events and their consistent 

availability across different patient populations remains unclear. 

5.3.3.2. Pre-diagnosis information 

A limitation of the standard Flatiron database that I applied for is its potential 

underrepresentation of non-cancer-related patient visit records; such as details of comorbidities or 

information from before the cancer follow-up at associated facilities. It may be necessary for 

researchers to assume that if a patient's comorbidity significantly affects treatment decisions and 

outcomes, the relevant diagnosis codes would be captured during cancer-related visits, or appropriate 

laboratory tests would be conducted prior to treatment initiation. However, Flatiron's add-on service 

can provide customised manual abstraction of additional comorbidity information through linkage to 

claims data, offering a more comprehensive view of the patient's comorbidities—information not 

included in the standard Flatiron mPC dataset.438 

In contrast, NCRAS data can be linked with HES data, allowing a retrospective examination of 

a patient's comorbidities at least six years before their cancer diagnosis (extendable with special data 

requests). This approach, however, is confined to structured diagnosis and procedural codes and only 
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accounts for visits within NHS facilities, thereby excluding private healthcare visits. The English 

Cancer Registry also calculates a Charlson comorbidity score using either 2-year or 6-year HES data, 

timed in relation to the cancer diagnosis. This score includes an indicator to denote the availability of 

the necessary HES data for these calculations. 

5.3.3.3. Longitudinal treatment details 

Both the Flatiron and NCRAS databases provide extensive longitudinal data on anti-cancer 

treatments with nuanced differences in terms of data sources and details recorded. Flatiron's treatment 

details include multiple sources, primarily drawn encompassing records of medication orders and 

administration. This includes prescription dates, expected start dates, dosages, planned cycles, and 

cancellation details. It also contains data from unstructured sources, mainly for specific treatments 

lacking administration records, detailing their durations, such as oral treatment abiraterone and 

enzalutamide. Each of Flatiron's disease-focused database are set up to maintain records of pre-

defined anti-cancer treatments relevant to a specific cancer (e.g. mPC). They also provide basic 

information on primary treatment histories (e.g. types), including surgery and radiotherapy, though 

availability varies among patients.  

Contrasting with Flatiron, the NCRAS database primarily sources its treatment details from 

registrations, yet it includes similar information. For example, the SACT dataset provide details on 

systemic treatments, encompassing details like the decision date for treatment, drug regimens, 

dosages, actual administration dates, modifications, treatment intent, treatment cycles, and OPCS 

delivery codes. The SACT dataset tracks prescribed or administered cycles but lacks planned cycle 

information. Its more recent versions further include treatment end dates (version 2), outcomes 

(version 3), and toxicity details (version 3), though the completeness and consistency of these 

variables remain uncertain. SACT data is further enriched by information in the CWT dataset, 

offering insights into cancer treatment waiting times and delay reasons. Additionally, the RTDS offers 

comprehensive radiotherapy information, a feature not included in the Flatiron mPC database, 

possibly because radiotherapy is less commonly used in the treatment of metastatic cancer. 

Furthermore, linked HES data within NCRAS allows for investigations into the dates and techniques 

of surgical procedures, with the specificity varying by surgery type. 

Besides the “raw” treatment data, the Flatiron mPC dataset also features a “drug episode” table. 

This table integrates data from multiple sources of raw treatment data to better define the start and 

end dates of treatment episodes, such as augmenting prescription dates with the actual administration 

dates. Building upon the “drug episode” table, Flatiron further provides a standardised “line of 

therapy (LOT)” table. This table consolidates consecutive drug episodes, using rules confirmed with 

clinicians to differentiate treatment lines. For example, treatment changes without a gap may be 
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considered a new line, while re-initiating the same treatment after a discontinuation of more than 90 

days is also classified as a new line. While Flatiron's LOT table comes standard and ready to use, it 

also provides the flexibility for customisation based on specific research requirements. Researchers 

can utilise either raw treatment data or the drug episode table to modify definitions of treatment gaps 

and establish their criteria for what treatments constitute a “line” of treatment. Due to potential 

incompleteness in Flatiron's pre-diagnosis data as mentioned in section 5.3.3.2, Flatiron analysts 

recommend that researchers could conduct sensitivity analyses limited to patients with less than a 90-

day gap between their advanced diagnosis date (like metastatic diagnosis) and their first structured 

activity date (e.g. visits, prescription records). This specific sensitivity analysis addresses scenarios 

where a patient's LOT numbers in the Flatiron LOT table might be inaccurately marked, owing to 

missing immediate post-diagnosis treatment information (e.g. medication administrations or orders).  

In contrast, the NCRAS database lacks a default algorithm for defining LOTs. Researchers are 

required to develop their own methods to consolidate independent treatment records into LOTs using 

the SACT dataset. PHE offers guidance for determining the duration of several oral and IV treatments 

for certain prevalent cancers, as specified in their CDF analytical methods guide.445,446 Additionally, 

these working documents highlight the limitations and considerations of utilising SACT data for 

cancer treatment studies. 

The Flatiron database and NCRAS SACT may not consistently provide information on non-anti-

cancer treatments, such as therapies for bone metastasis relief (e.g., for hypercalcemia) or treatments 

for other conditions. This limitation can affect research focused on drug-drug interactions, 

combinations or employing particular drug use as an indicator of adverse events. For example, while 

abiraterone is approved and intended to be used in combination with prednisolone127,447,448, these two 

databases may lack records of steroids like prednisolone. Furthermore, it is uncertain to what extent 

both databases cover anti-cancer therapies provided at primary care levels, such as androgen 

deprivation therapy for prostate cancer patients. While the Flatiron mPC dataset does contain a 

specific table for androgen deprivation therapy, the extent of its completeness can vary among patients. 

5.3.3.4. Treatment outcomes 

Both Flatiron and NCRAS datasets validate their death records with Flatiron using three different 

sources and NCRAS relying chiefly on the ONS records. Neither datasets, however, offers detailed 

data relating to precise disease progression dates for specific treatments/LOTs. Consequently, an 

estimated progression date may be proxied using the start date of a subsequent LOT or discontinuation 

of a LOT. This limitation could likely be improved by opting for add-on variables from Flatiron's 

service, such as comprehensive manually abstracted information on progression dates.438 However, 

these are not included in the standard Flatiron mPC dataset. 
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The English Cancer Registry records the patient's death date precisely when available. In 

contrast, owing to confidentiality concerns, patient death dates in the Flatiron database are 

approximated to the month. In their previous research, Flatiron analysts have carried out sensitivity 

analyses on the effects of assigning a consistent imputation date (such as the 15th of each month) to 

all death records, finding that this approach typically does not present significant problems. However, 

this lack of granularity could potentially still pose challenges in accurately comparing outcomes 

between groups with very similar, or very short, survival times (e.g., 2 to 3 months).  

5.3.3.5. Time-varying covariates 

The diagnosis tables from the Flatiron mPC dataset and NCRA-linked HES records both provide 

structured diagnostic data, enabling the identification of comorbidities and condition-specific 

covariates through ICD-9/10 codes. Additionally, the Flatiron database provides further time-varying 

patient information, such as laboratory results (e.g. PSA levels), vital signs (e.g. blood pressure), and 

biomarker data, including BRCA in metastatic prostate cancer (mPC).  

An oncology expert who provided clinical advice to inform my case study analyses, Dr. Carmel 

Pezaro, highlights the significance of ECOG (Eastern Cooperative Oncology Group) status as a key 

prognostic factor in patient treatment decisions and outcomes. The Flatiron ECOG tables and the 

NCRAS SACT dataset both contain time-varying ECOG performance status values. Performance 

status values in the SACT dataset are associated with the commencement of each anti-cancer 

treatment record. Notably, there are discrepancies in performance status coding systems across 

different SACT versions, particularly between versions 2 and 3.434 

Flatiron, in contrast, offers two unique ECOG tables. The first includes all longitudinal ECOG 

values from structured data, not necessarily linked to the initiation of a treatment prescription or LOT. 

The second merges structured data with ECOG information from unstructured sources, such as 

medical notes, specifically focusing on the period from 30 days before to 7 days after the initiation 

of a LOT, following the default LOT algorithm in the Flatiron mPC dataset (see section 5.3.3.3 for 

more details). The incomplete ECOG data for certain patients in the otherwise comprehensive 

Flatiron ECOG table can present challenges in defining study cohorts. Flatiron analysts suggest that 

instead of limiting the selection to patients with ECOG scores of 0 and 1, researchers could consider 

excluding those with documented ECOG scores above 1. This approach operates under the 

assumption that patients without an ECOG value possess an adequate ECOG score for treatment. 

5.3.3.6. Lost-to-follow up  

Flatiron data analysts recommend using the patient’s last structural activity, such as visits or 

prescription records, with or without a grace period, as the standard approach for determining the 

lost-to-follow-up date. This is because Flatiron, as an EHR database, collects data from medical 
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records, independent of the patient’s insurance coverage or billing information. Flatiron Health 

possesses a broad network of connections. If patients remain with healthcare providers within the 

Flatiron Health Network, their records are transferable across different US states, regardless of their 

insurance status, ensuring continuity in their medical documentation. 

This contrasts with the NCRAS database, where patient follow-up is maintained as long as they 

continue receiving care within the English NHS system, which has nationwide coverage. The 

embarkation (i.e., emigration) date in English Cancer Registry can be utilised to identify patients who 

are lost-to-follow-up when they leave the country. Yet, a key shortcoming of NCRAS is that it cannot 

monitor patients who seek treatment at private healthcare facilities. In 2012, 10.9% of patients held 

some form of private health insurance in England.449 Data linkage to hospital databases could offer 

additional insights in to the impact.450  

5.4. Data access: timeline and challenges 

Figure 5.2, a two-page Gantt chart, illustrates the data application process for my PhD from late 

2020 to September 2023. It outlines applications to four key data sources, represented by color-coded 

bars: blue for NCRAS data via ODR, turquoise for NCRAS via NHS Digital (replacing the ODR 

application), green for Flatiron data, and yellow for NCRAS via DATA-CAN. Bar lengths indicate 

task durations, and pink bars mark significant obstacles. 

Despite having identified suitable databases and developed proof-of-concept benchmarking case 

studies, my PhD journey was marked by unexpected delays in data acquisition. My original 

application for NCRAS data via ODR400 in 2021 was put on hold for over a year and then redirected 

to NHS Digital in June 2022 following PHE's dissolution (August 2021) during the COVID-19 

pandemic. During this period, I initiated alternative NCRAS data access through DATA-CAN407,408 

facilitated through connections established with the University of Leeds by my primary supervisor 

Professor Latimer. However, this route later proved unfeasible due to technical and contracting 

barriers and was aborted at the end of 2022. Eventually, I gained NCRAS data access through NHS 

Digital in July 2023.  

The application for the Flatiron mPC dataset was significantly more straightforward. However, 

access to the actual data extract was delayed by the prolonged review of international contracts by 

the UoS during the COVID-19 pandemic, leading to the receipt of an initial data-cut in July 2022. In 

the following sections I detail the major challenges encountered in accessing data, especially with de 

novo application as an early career researcher and outlines the strategies taken to surmount these 

issues. 
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Calendar Year, Month/ 

Tasks  

2020 2021 2022 

11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 

Re-designing case studies based on feedback from 

confirmation reviews – benchmark review (Chapter 6) 

                    

NCRAS data application (via ODR)                     

Consulted ODR/HRA on application and ethics review 

requirements, ODR preliminary feedback 

                    

Finalising the case study protocol with NCRAS data                     

Establishing UoS research governance sponsor details                     

Submitted NCRAS data application to ODR                     

Awaiting application approval, actively following up                     

Ethics approval by NHS REC                     

ODR paused data application approvals, hinting a potential NHS 

Digital takeover at an unspecified time 

                    

ODR announced resuming processing applications submitted 

before PHE dissolution 

                    

Received analytical feedback from NDRS analysts                     

ODR announced ceasing application reviews; NCRAS application 

transitioned fully to NHS Digital 

                    

Established contact with NHS Digital to resume processing of 

my data application 

                    

Flatiron data application                     

Designed case study protocol with Flatiron data                     

Submitted application and discussed with Flatiron scientists                     

Data application approval                     

Applying for a restricted VM and a project folder                     

ScHARR Ethics Approval                     

Received DSA                     

Resolved data security prerequisites for data receipt                     

DSA underwent review by the university, facing significant 

international contract hurdles 

                    

NCRAS data application (via DATA-CAN)                     

Exploring alternative data sources                     

DATA-CAN announced accepting application                     

Adapted and submitted a revised case study protocol                      

DATA-CAN reviewed the study protocol & discussion with 

DATA-CAN analysts 

                    

Received DATA-CAN project approval                     

Figure 5.2 Gantt chart - timeline of efforts and hurdles to acquire data 
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Calendar Year, Month 

Tasks/Months  

2022 2023 

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 

NCRAS data application (via NHS Digital)                

Prepared and resubmitted NCRAS application to NHS Digital; iterative discussions followed                

Discussion with NDRS analysts post data table review                

Requested an honorary contract from the university as per NDRS's requirement, facing 

challenges with standard contract wording not accepted by NDRS 

               

Obtaining a Purchase Order number from the University for DSA generation                

Submitted privacy notice per NDRS request                

Applying for PhD funding extension from the Wellcome Trust                

Passed IGARD review and received DSA approval                

Revised data specifications based on NDRS analysts' requests during data extraction                

University set to sign off DSA; NDRS withheld approval due to email-related hurdles                

Awaiting data receipt, actively following up                

Obtaining a new Purchase Order from the University due to NHSD's changing vendor details 

and requesting an NHSD invoice 

               

Received data extract, errors found                

Obtained corrected data extract                

Received an additional corrected data extract following data destruction certificate hurdles                

Flatiron data application                

DSA approved issues escalated                

Received data extract                

Received an updated data-cut                

NCRAS data application (via DATA-CAN)                

DATA-CAN patient involvement meeting                 

Received DATA-CAN service level agreement                

Faced University/DATA-CAN contract review hurdles and internal data hub shifting 

issues within DATA-CAN 

               

Aborted this line of data application                

Figure 5.2 Gantt chart - timeline of efforts and hurdles to acquire data (continued) 
DSA, data sharing agreement; HRA, Health Research Authority; NCRAS, The National Cancer Registration and Analysis Service; NDRS: National Disease Registration Service; NHS, National Health Service; NDRS: National 

Disease Registry; ODR: Office for Data Release; REC: Research Ethics Committee; VM: virtual machine 

Each row in the chart represents tasks required for obtaining data access, and each column corresponds to calendar months. Blue marks the progress in NCRAS data application through ODR, while turquoise shows progress 

with the same application, re-initiated with NHS Digital, the successor custodian. Green bars represent progress in Flatiron data application, and yellow denotes progress of NCRAS data application via DATA-CAN. Peachy 
pink marks significant hurdles encountered, and grey indicates the benchmark trial review (Chapter 6) for formulating the study protocol prior to data application.   
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5.4.1. Impact of the COVID-19 pandemic on data access  

The decision to pursue the aforementioned datasets, confirmed upon my confirmation review, 

remained valid despite the challenges presented by the COVID-19 pandemic. Overall, the resources 

of ODR, DATA-CAN, and NHS Digital were severely constrained during the COVID-19 pandemic 

as public sector services. Understandably, research associated with the COVID-19 pandemic has been 

prioritised in the last few years. Specifically, the redirection of PHE and NHS resources towards 

addressing COVID-19 resulted in slower communications and unexpected pauses in NCRAS data 

application approvals, including a notable hold by the ODR in August 2021. Additionally, COVID-

related staff absences in various departments led to further staggered delays, notably in processes 

requiring sequential steps (e.g. securing hierarchical approvals, waiting for regular meetings to 

schedule decisions, and engaging in iterative discussions between organisations).  

Throughout the process, my supervisors and I actively worked to counter the delays in data 

access by rearranging study orders, adjusting thesis content, and exploring alternative data sources. 

However, we often encountered unreliable information and unexpected changes from external entities 

and the University, making planning and adjustments challenging. I took the initiative to escalate the 

issue and engage in higher-level communication, such as directing discussions to decision-makers 

within NHSD, particularly after my application shifted from NCRAS to NHS Digital. As an early 

career researcher, I found that involving my supervisors in email communications was sometimes 

crucial. Their direct involvement in correspondence often proved to be a decisive factor in receiving 

responses, particularly with new contacts. Despite these delays, the COVID-19 pandemic also 

encouraged data sharing within research consortiums, such as COVID-CVD451, DATA-CAN408, 

accelerating COVID-related studies and benefiting related research projects within scope (e.g. studies 

that are both oncology and COVID related). 

5.4.2. Complex data application process 

The data application process can be lengthy and complex particular for applications through 

ODR/NHSD, as highlighted by a recent study by Macnair et al.452 and my own experience. My 

NCRAS data application was particularly delayed by the switch from ODR to NCRAS, obstacles in 

contract signings, the need for additional honorary contracts, and issues with incorrect data 

extractions. These challenges led to longer durations than the estimates provided in the Macnair et al. 

study. 

Gaining a deeper insight into ODR/NHS internal processes and organisation structures may 

enable more accurate forecasting of data application timelines. For instance, with NHS Digital 

applications, while individual steps like the Privacy, Transparency and Ethics (PTE) review453 and 

Independent Group Advising on the Release of Data (IGARD) review454 are outlined online, fully 
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grasping their actual sequence often demands prior experience or specific inquiries with the 

application staff. The timeline outlined in Macnair et al.'s study offers a useful framework, yet real-

world applications may show significant variation. During my NHSD application, I was informed 

about the standard NHS application stages: pre-application consultation, application preparation and 

submission (duration depending on the application), PTE team review (about 2 weeks) with pre-PTE 

check, IGARD review (2-4 weeks) with a pre-IGARD check, one’s organisation (i.e., UoS) reviewing 

IGARD feedback (1-4 weeks), data sharing agreement (DSA) sign-off (1-2 weeks, varies on the 

availability of NHSD signatories), and NDRS data release post-DSA (1-4 weeks, depending on the 

data release team). My application's extended timeline was due to several key factors: (1) Adapting 

the original application from ODR to NHSD format required preparing additional information, 

notably publishing an additional layman's privacy notice online; (2) intricate requirements for student 

applications, even with supervisors as designated information asset owners (See Section 5.4.3.1 for 

details); (3) a prolonged DSA sign-off period (3 months), resulting from NHSD's unexpected rejection 

of a previously accepted UoS email address for performing the sign-off (See Section 5.4.3.2 for 

details); and (4) complications stemming from incorrect data extraction (See Section 5.4.4 for details). 

As a result, data is received about a year after initiating a new application with NHS Digital, rather 

than the suggested 4 months. 

Repeat applicants, familiar with case-specific timelines from prior references in the application 

system, generally have an enhanced understanding. This knowledge is beneficial in drafting protocols 

that meet initial requirements and in identifying effective ways to expedite applications. Any small 

details in the application process can have substantial impacts on timelines, as these processes are 

composed of staggered tasks. This is especially relevant for early-career researchers who may be less 

familiar with university-specific procedures and contacts, impacting their ability to gather details 

efficiently. From personal experience, I benefitted from extensive support from my supervisors, 

NHSD application staff, and our Information Governance (IG) Manager, Dr. Amanda Loban, in 

formulating my application. Yet, increasing transparency in the application process and the 

application pack, both from the data provider and the applicant's organisation, could expedite data 

application for early career researchers and facilitate more efficient communication for both data 

applicants and providers, reducing the trial-and-error in developing applications with specific 

requirements, like legal compliance with the General Data Protection Regulation (GDPR).  

5.4.3. Administrative challenges in contracting 

In addition to the benefits of repeated personal or research team experience in data applications, 

an organisation's expertise in facilitating these applications, particularly contracting, is exceedingly 

vital. A recent study shows that some organisations access NHS data far more frequently, presumably 
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benefiting from their collective experience in this area.455 This section explores my own experience 

of how the spectrum of an organisation's experience in this domain can markedly affect timely 

research data access.   

5.4.3.1. Honorary contract challenges for student applications 

During the pre-PTE check for my NCRAS data application, NHSD requested that I have an 

honorary contract from the university, providing templates from other universities for reference. This 

was a first-time request for UoS, which could only provide a standard honorary contract, leading to a 

pause in our application. To resolve this, our department's IG team suggested revising the application 

to include wording regarding UoS's data protection policies, demonstrating that these policies apply 

to regular and honorary staff, as well as research students. NHSD accepted the revision, recognising 

students using their data are explicitly required to adhere to UoS’s universal data protection policies. 

This was achieved without the need for the University to create a new honorary contract. However, 

NHSD required an additional “signature block” on my honorary contract, which initially only 

featured the University's signature, despite including all my details. These additional steps 

underscored the complexity of the process, and it ultimately took five months to fulfil NHSD's 

expectations, which were somewhat vague and were not extensively publicly documented online. The 

substantial time spent navigating these regulations and coordinating with relevant parties significantly 

limited the time available for my actual research. This experience highlights the need for a University 

to develop a standard procedure for future student applications involving NHSD data or projects that 

require student data analysis.  

5.4.3.2. Administrative challenges in NHSD DSA sign-off  

NHSD rejected the official email address of the UoS research contracts team upon final DSA 

sign-off, demanding a personal official university email in line with their privacy requirements. This 

was despite UoS's longstanding practice of using this email address for previous NHSD applications. 

The UoS’s team email system was used to facilitate job coverage within the team. As a result of this 

impasse, with both parties firmly upholding their positions, the DSA sign-off was put on hold for 

three months. In my particular instance, UoS eventually agreed to provide an individual's email 

address for the DSA sign-off, which could potentially indicate a shift in how the UoS might approach 

similar NHSD requests in the future. 

5.4.3.3. Challenges of international contracting for Flatiron data 

The Flatiron data application process, in contrast to the ODR/NHSD data application, was 

initially more straightforward due to fewer procedural steps, leading to quick progress at the outset. 

However, it soon faced a year-long delay post-approval. The complexity of signing international 
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contracts for sharing de-identified patient-level data across countries and COVID-related contracting 

staff absences significantly hindered the progress. The situation reached a resolution only after 

escalation to the Postgraduate Research (PGR) Committee and intervention by the Dean of ScHARR 

(now Dean of the School of Medicine and Population Health), Mark Strong.  

This experience highlights the intricate challenges researchers face in navigating administrative 

processes, especially in the context of international collaborations and legal considerations regarding 

data sharing. The situation underscores the critical importance of robust administrative support within 

academic institutions to enable timely research.  

5.4.3.4. Challenges in Trusted Research Environment data contracts 

Much like the Flatiron case, the initial phase of the DATA-CAN application was straightforward, 

despite a justifiable three-month delay owing to DATA-CAN prioritising other urgent COVID-19 

projects. Once our data request passed the DATA-CAN’s Patient and Public Involvement (PPI) 

meeting, we promptly received the data usage contract template. However, DATA-CAN's innovative 

data sharing approach, deviating from traditional models, required a direct Service-Level Agreement 

(SLA) with individuals, contrasting with the UoS's more familiar general data-sharing contracts. The 

UoS contract team noted that this variance required additional time for further investigation. Given 

my concurrent NHSD NCRAS data application at that time, and the unpredictability of DATA-CAN's 

contracting process, I chose not to further pursue the DATA-CAN NCRAS data application in Autumn 

2022. Meanwhile, my fellow PhD student Saleema Rex chose an alternate approach by navigating 

the contracting process and successfully signing a SLA with the University of Leeds, which hosts 

DATA-CAN, for her project. This route was particularly advantageous for her as she did not have a 

pending NCRAS data application when the ODR was closed, meaning she would not benefit from 

the prioritisation given to NCRAS data applicants when NHSD resumed operations. This scenario 

clearly demonstrates the complex and varied nature of data contract negotiations. 

5.4.4. Incorrect NCRAS data extraction  

Despite an expected 4-6-week timeline for receiving NCRAS data following DSA sign-off, it 

took over three months to obtain the extraction from NHSD. On receipt, a thorough examination — 

including comparing calendar years of data, creating Venn diagrams of PatientID overlaps between 

datasets, and contrasting cancer incidence rates with publicly available ONS statistics — revealed 

that NHSD had provided an incorrect extract (detailed in the preliminary data checks for the 

implementation of my case studies in Chapter 8, Section 8.2). NHSD promptly addressed this, citing 

a system change error during their transition from ODR to NHSD (Oracle to R), which led to the 

initial release of an incomplete data extract. 

However, the revised extract still omitted the TUMOURID variable from the SACT data, a detail 
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explicitly mentioned in the DSA (see Chapter 7, Appendix 7.1). This omission, attributed to data 

quality concerns by NHSD analysts, was unexpected, as it had never been raised during the extensive 

two-year application process and iterative discussions. After detailed discussions and presenting 

references to acknowledge my understanding of the limitations of using this variable, NHSD agreed 

to include TUMOURID with appropriate quality indicators in a subsequent data update. The 

acquisition of an updated extract was further complicated by the need to produce a data destruction 

certificate, despite the old data essentially being a subset of the newly provided data. 

Colleagues at the UoS suggest that this instance of incorrect NHSD data provision is not an 

isolated event. Consequently, it is imperative to perform an immediate and thorough examination of 

any data received (regardless of its source). Having a thorough prior knowledge of the data, 

particularly through comparisons with published statistics using similar datasets, can be helpful. 

Importantly, prompt communication with both the data provider and the IG Officer upon discovering 

discrepancies can expedite the resolution of any resulting impact. 

5.5. Chapter summary 

This chapter, in conjunction with the next Chapter (Chapter 6), investigated suitable RWD 

sources for conducting proof-of-concept studies aimed at generating unbiased comparative 

effectiveness estimates of treatment sequences for English HTA. It highlighted the English NCRAS 

and US Flatiron databases as key data sources, setting the groundwork for the design of direct and 

indirect benchmarking case studies in Chapter 7. Despite the limitations of each database, notably the 

absence of lab results and disease progression dates in NCRAS data, and the potential inconsistencies 

in the availability of health histories among patients within Flatiron data, the utility of these 

databases—especially the richness of their patient-level oncology longitudinal data—underscores 

their significance for treatment sequence studies. Case studies are necessary to verify if these 

databases, combined with the advanced statistical methods from Chapter 4, can be leveraged to 

provide reliable effectiveness estimates for treatment sequences and identify areas for improvement. 

Hence, along with Chapters 4 and 6, this chapter set the stage for Chapters 7 and 8, which delve into 

case studies and their implementation. 

Additionally, this chapter outlined the potential challenges in database access from an early 

career researcher's perspective. It proposed that more transparent, publicly accessible timelines and 

concise flowchart guides from both data custodians and academic institutions could streamline the 

approval process and reduce excessive revisions. However, even in cases where publicly accessible 

timelines are not provided, as with the application to Flatiron Health, the process can be 

straightforward if all expectations are clearly communicated at the outset. This highlighted the 

importance of clear, early communication of requirements among all parties, addressing potential 



198 

 

nuances to avoid any hidden or ad-hoc requirements.  

I recommend having a tailored data application starter pack, building upon existing procedures, 

to accommodate customised checklists for different applicant types (substantive staff versus student 

and others) and data scenarios (e.g., NHSD, domestic vs. international). This would simplify the 

process for both applicants and contract reviewers. Engaging senior legal experts early in reviewing 

contracts, especially for complex tasks such as international data transfers or updating Terms and 

Conditions for standard honorary contracts to incorporate data protection clauses required by 

custodians like NHSD could minimise delays. Specially, these tasks often require senior approval. 

Updating the UoS’s honorary contract terms is currently not feasible, yet could aid sustainable 

research, especially if the lead data applicant leaves the university but needs data access for 

publication rebuttals.  

 Despite challenges, these experiences have contributed to the collective knowledge, such as the 

university's experience in handling international contracts for sharing patient-level data, proving 

advantageous for future similar scenarios. Sharing these collective insights in structured, yet informal 

settings within the community, could prove beneficial, fostering collective capacity, sustainability, 

and gains for research within similar contexts.
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Chapter 6 Selecting benchmark trials for designing proof-of-concept Target 

Trial emulation case studies in treatment sequence comparison: A 

systematic review and feasibility assessment 

6.1. Chapter overview 

This chapter presents the rationale and methods underpinning the selection of suitable 

benchmarks for my proof-of-concept Target Trial emulation case studies (Chapter 7). These case 

studies are an integral part my PhD research, aiming to assess the feasibility of using real-world data 

(RWD) to determine the comparative effectiveness of treatment sequences. 

The chapter begins by reiterating the significance of the Target Trial Emulation (TTE) 

Framework3, previously introduced in Section 1.4.2, Chapter 1. This framework, forming the 

backbone of my case studies, aids in systematically designing real-world studies to reduce biases 

while tackling causal questions. Despite this, verifying the validity of results from RWD analysis can 

still prove challenging. Thus, this chapter delves further into how I design my case studies to enable 

methodological validation via benchmarking against well-established standards (i.e., randomised 

controlled trials (RCTs)).  

Section 6.2 reiterates the importance of TTE in heath technology assessment (HTA) and expands 

on the development of benchmarking within the research sphere.381,456,457 Section 6.3 underscores the 

value of benchmarking in my research and outlines the overarching strategies to best actualise it in 

my case studies. The process begins by selecting benchmark RCTs that exhibit a high(er) possibility 

to replicate (Chapter 6). Then, Target Trials are designed to mimic these chosen RCTs (Chapter 7). 

Given the proof-of-concept nature of my case studies, this pre-emptive selection is favoured over a 

post-hoc search for benchmarks after selecting topics for emulation, due to the uncertainty 

surrounding the availability of suitable benchmarks. At the end of Section 6.3, I clarify what 

constitutes “suitable benchmarks” for my research. Put simply, these should be existing trials that 

compare two or more treatment sequences which are likely to be replicable using the data sources 

outlined in Chapter 5 (Section 5.3) and the statistical methods identified in Chapter 4.  

To identify the ideal benchmarks, I undertook a systematic review and an exhaustive feasibility 

assessment (Section 6.4 to 6.7). Section 6.4 elaborates the strategies employed to locate the most 

suitable benchmarks, starting with search methods used and how an oncology focus was determined 

from these searches (Section 6.4.1). This is followed by an evaluation based on the inclusion and 

exclusion criteria in Section 6.4.2. Post the initial evaluation, I proceeded to extract key features from 

the candidate trials for an in-depth assessment. Section 6.4.3 provides a comprehensive account of 

these feature, focusing on aspects related to the proposed databases from Chapter 5 (Section 5.3) and 
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local (e.g. within each country) treatment patterns (known as fit-for-purpose data feasibility 

assessment385). In Section 6.5, I present a brief overview of all studies included, while Section 6.6 

details my in-depth assessment for each included study. Section 6.7 wraps up with my final choice of 

benchmark trials, and Section 6.8 delineates the disease demographics of them. Section 6.9 

summarises this chapter and its connection to the rest of the thesis. 

6.2. Benchmarking of Target Trials 

6.2.1. Emulating Target Trials in HTA  

Briefly, introduced in Chapter 1 (Section 1.4.2), the TTE Framework is a pragmatic guide 

enabling researchers to design real-world studies to answer causal questions while minimising biases 

stemming from study design and analysis.3 This framework is gaining recognition among HTA 

agencies and regulatory authorities for its ability to increase the transparency and robustness of using 

real-world evidence (RWE).37,78,172 Therefore, I adopted it as the foundation structure of my case 

study protocol (Chapter 7), aiming to assess the applicability of statistical methods from Chapter 4 in 

addressing treatment-sequencing questions using RWD.  

Alongside the development of this thesis, a recent review by Gomes et al. explored the prospects 

of implementing the TTE framework in HTA78, revealing parallels with my investigation. Despite the 

Target Trial concept being implicitly leveraged in fields such as epidemiology for over a decade, its 

application has been predominantly confined to the analysis of treatment effects to tackle confounding 

and improve result reporting in observational studies (e.g., The Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) guideline458). Only recently has a greater 

emphasis been laid on systematically structuring study designs from the outset to explicitly address 

causal questions using RWD (i.e., TTE), which is an emerging concept in HTA. Within this context, 

the design of my TTE case studies (Chapter 7) serve as valuable showcases for this approach in HTA. 

Gomes et al. also highlighted additional hurdles in implementing TTE in HTA, including 

integrating causal inference methods, identifying appropriate data sources and their accessibility, and 

understanding the mechanism of data curation to address inherent limitations.78 They further 

promoted the idea of “calibrating” TTE results against established RCTs—a version of 

“benchmarking” in epidemiology457—, to assess the capacity of using a specific RWD source to 

reproduce trial-mimicking results in pertinent populations. These facets align closely with the 

methodology investigation in my thesis. Precisely, in preceding chapters (Chapters 4 and 5), I 

explored relevant statistical methods and issues concerning data sources in the context of comparing 

treatment sequences in observational research. Moving forward, I will elaborate the significance of 

benchmarking in validating findings from observational studies, by presenting its background and 

relevant research (Sections 6.2.2), as well as its relevance to my PhD project (Section 6.2.3). 
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6.2.2. Benchmarking—assessing validity through comparisons 

Benchmarking, a long-established method in epidemiology, involves comparing observational 

research findings with large, well-executed randomised trials to evaluate the reliability of the 

observational studies, given both types of evidence are available for a specific clinical question.459-

462 An example is the evaluation of myocardial ischemia risk associated with the diabetes drug, 

rosiglitazone. The manufacturer initiated the Rosiglitazone Evaluated for Cardiac Outcomes and 

Regulation of Glycaemia in Diabetes (RECORD) trial in 2000 to investigate if rosiglitazone increased 

cardiovascular events.463-466 Before the RECORD trial concluded, numerous studies leveraged RWD 

to explore the same issue, results were, however, inconclusive.467 The final RECORD results 

published in 2009, indicated that rosiglitazone did not significantly increase cardiovascular event 

risks. This finding aligned with those from two large US-based observational studies.467,468 This 

suggests that properly conducted RWD studies could provide early safety signals in the absence of 

trials. Comparing the RECORD trial results with earlier RWD studies serves as a form of 

benchmarking, where the real-world studies precede trial results. However, the RECORD trial's open-

label design, despite randomisation, led to doubts about data quality, potential sponsor bias, and data 

integrity.467-469 Consequently, the European Medicines Agency (EMA) still decided to suspend 

rosiglitazone’s market authorisation, while the United States (US) Food and Drug Administration 

(FDA) only restricted its use.469 This highlights the importance of discussing the limitations of RCTs 

benchmarks. 

Typically, researchers cross-check findings from completed observational studies through 

retrospective identification of existing RCTs when available (rather than creating one).470 When 

results from observational studies using similar methods align with those of randomised trials across 

various medical topics, it not only builds additional trust in the methods themselves but also in the 

datasets we might want to use  for addressing other clinical questions. The methods mentioned here 

broadly refer to strategies to mimic the trial procedure, such as defining the starting point of the study 

cohort (known as “time-zero”)356 and statistical methods to emulate the randomisation procedure (e.g., 

propensity score methods).382 That is, before applying specific methods to unexplored areas, 

databases, or for generating novel hypotheses382, it is crucial to confirm their ability to yield trial-like 

results. This validation process, primarily achieved through benchmarking, is particularly significant 

when intending to extend the methods’ use in observational studies where randomised trials are not  

feasible.382 This necessity stems from the fact that post-hoc searches are unlikely to yield available 

benchmarks in those areas. A recent review examining propensity score methods highlighted that 

explicitly attempting to emulate Target Trials could improve the benchmarking of observational 

studies.382 In other words, by explicitly emulating the conditions of RCTs, observational studies can 

produce estimates that more closely align with RCT outcomes, thereby determining the ability to 
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generate unbiased estimates of treatment effectiveness from observational data by using validated 

statistical methods within a given database. 

The RCT-DUPLICATE Initiative in the US is a leading entity focusing on benchmarking Target 

Trials.471 They leveraged TTE benchmarking to assess the concordance between real-world 

effectiveness of medical products and regulatory RCT assessments. In their evaluations, they created 

multiple trial-mimicking populations by emulating a series of pre-selected RCTs.171,472 Their findings 

indicate that RCT and RWE results might not always consistently align, which could be partly 

attributed to “unavoidably imperfect” emulation process, such as the absence of crucial variables in 

the database. Another article suggests that a pitfall of benchmarking RCT-mimicking RWE is the 

existence of an efficacy-effectiveness gap.473 This gap refers to the difference between a treatment's 

effect in ideal trial conditions (efficacy) and its effect in a real-world setting (effectiveness). The term 

“effectiveness” is consistently used throughout the thesis, with the rationale, which is related to the 

scope of HTA, explained in Section 1.3.4, Chapter 1. In light of these challenges, a recent commentary 

underscored the merits of understanding and interpreting factors that might contribute to the 

discrepancies in estimates between RCT and RWD when similar findings cannot be replicated.474  

It is not necessary for every RWE study to replicate a RCT as the utmost value of RWE lies in 

its capacity to address inquiries that cannot be sufficiently answered through trials alone.475 

Nevertheless, benchmarking RCT-mimicking RWE serves as a valuable means to validate methods 

and understand their limitation in relation to the data used before applying them in subsequent studies, 

especially in cases where there are no existing RCTs to validate the results. Specifically, this approach 

enables an explicit examination of potential caveats when validated methods are extrapolated to other 

generalised scenarios (e.g. in a different disease), thereby easing further adaptation. 

6.2.3. The significance of benchmarking in my research 

Chapters 4 and 5 respectively identified potential statistical methods for using RWD to compare 

treatment sequences and outlined potential RWD sources. Now, the fundamental question arises—

can these methods be feasibly implemented within the identified databases, and can they be validated? 

This inspired me to have the idea of creating proof-of-concept case studies, employing the promising 

TTE benchmarking method (see Section 6.2.2). Such studies serve as a powerful tool for evaluating 

and scrutinising the applicability of these methods within specific databases, conditions and treatment 

types. At the same time, they provide a structured approach for an examination of the potential 

limitations. Specifically, the Target Trial design enables a comprehensive comparison that covers not 

only the results but also the procedures, thereby providing deeper insights into potential causes if the 

emulation significantly diverges from the benchmark trials—a critical facet of my intended 

investigation. Further, such efforts may also lead to identifying potential challenges when adapting 
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validated methodologies to more generalised scenarios, such as different diseases and databases. 

In trials, the recorded variables are often crucial predictors of outcomes, with randomisation and 

blinding used to address the balance of potentially crucial unrecorded predictors. However, these 

variables may not always be present in RWD, depending on the purpose of the database. For example, 

the performance status of a patient is often not documented in claims databases as it may not be 

relevant for reimbursement purposes. However, it is vital in predicting a patient’s outcome and thus 

may be necessary for the implementation of causal inference methods in RWD. In short, it is important 

to explore whether the existing variables within a chosen observational database are sufficient enough 

for generating trial-mimicking results. If significant differences arise between an RCT and its 

emulation, it suggests that additional information might be necessary to enhance the quality of RWE 

derived from the targeted observational database. By utilising the TTE benchmark design, I can delve 

deeper into these discrepancies and offer suggestions for potential improvements. 

Despite the existence of ongoing large-scale initiatives like RCT DUPLICATE and OPERAND 

that aim to benchmark their findings with RCTs using a highly structured trial-patient-mimicking-

design (i.e. TTE)172,476, these studies have primarily focused on using US-based databases. 

Furthermore, as far as I know, these studies have not attempted to assess the feasibility and reliability 

of estimating the comparative effectiveness of treatment sequences using RWD. Therefore, creating 

proof-of-concept Target Trial case studies that replicate existing RCTs using UK observational 

databases could enhance insights from the aforementioned initiatives in two in two key aspects. First, 

conducting proof-of-concept Target Trial case studies with UK-based observational databases would 

provide valuable confirmation of their reliability in generating trustworthy RWE. Any significant 

discrepancies between RCT and RWE could help identify limitations and caveats associated with the 

databases, especially because there has been limited exploration of UK databases for such purposes. 

Second, these proof-of-concept studies would expand the knowledge of generating RWE specifically 

for treatment sequences. Theoretically, if validated, the methodology used in these studies could be 

adapted to assess the effectiveness of sequential treatments in populations not previously studied in 

clinical trials. This is particularly relevant when trial evidence is insufficient to compare treatment 

sequences, a major challenge of the HTA (Chapter 2 and 3). Findings could lead to refind 

methodology framework for obtaining comparative effectiveness estimates of sequential treatments 

using UK-based RWD to support health economic decisions. 

In summary, there is significant value in designing proof-of-concept studies using the TTE 

benchmark technique—evaluating the viability of using RWE to inform comparisons of treatment 

sequences and determining the practicality of utilising UK databases for this purpose. The subsequent 

section, Section 6.3, will delve into how the benchmarks for my proof-of-concept case studies are 

identified and how they are employed in the design of the case studies. 
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6.3. Identifying benchmark sequential treatment trials for proof-of-concept studies 

Section 6.2.3 highlights the importance of using existing RCTs as a benchmark assess the 

feasibility generating reliable effectiveness estimates of treatment sequences from RWD (i.e. proof-

of-concept). This requires identifying suitable benchmark trials. Using multiple benchmarks has 

advantages in methodological development, as different diseases and stages might require different 

sets of variables for effective emulation. That is, having more benchmarks, when possible, can 

enhance the generalisability of the methods under investigation. 

Hence, I carried out a systematic review in this chapter to identify possible benchmark trials that 

compared treatment sequences. The key requirement was exhibiting potentiality to be emulated using 

databases identified in Chapter 5—the English National Cancer Registration and Analysis Service 

(NCRAS) data and the US Flatiron. Additionally, patients in each trial arm should be randomly 

assigned to receive a specific treatment sequence, rather than just a single treatment. Despite some 

trials containing treatment sequence information, they may not suitably serve as benchmarks for 

proof-of-concept studies due to interruptions in randomisation caused by unplanned treatment 

switching. This can introduce a post-randomisation confounding bias, which often require additional 

adjustments to effect estimates when applied for health economics purposes.43 

The following section, Section 6.4, describes the process and criteria of selecting potential 

benchmarks for designing the Target Trial emulation case studies for my project, focusing on the use 

of NCRAS and Flatiron databases. The reasons for this selection are detailed in Chapter 5 and Section 

6.4.3. It is worth noting that NCRAS data can be accessed via multiple channels, as noted in Chapter 

5. During my assessment, all NCRAS sources, specifically Office for Data Release (ODR), Public 

Health England (PHE) and Clinical Practice Research Datalink (CPRD), were considered. The 

feasibility of using NCRAS data from newly emerged post-COVID sources, including NHS Digital 

and DATA-CAN, which involve different administrative procedures, was evaluated ad hoc and 

separately in Chapter 5. 

My review strategy partially aligns with an emerging concept of fit-for-purpose data 

identification, as advocated in the Structured Process to Identify Fit-For-Purpose Data (SPIFD) 

framework in 2022.385 This framework provides clear strategies on how to determine the most suitable 

data sources for adequately addressing a clinical question for decision-making. While there are 

procedural similarities, the motivation behind my assessment diverges from the SPIFD framework. 

Specifically, I did not aim to identify the most optimal databases for a specific clinical question. 

Instead, I pre-selected a number of databases to assess their applicability for implementing advanced 

statistical methods identified in Chapter 4 to address treatment-sequencing questions.  

 It might seem atypical to identify data sources prior to defining a decision question. However, 

within the confines of my project, it is fitting, because none of the data sources have been tested to 
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answer causal treatment sequencing questions. Therefore, the ultimate aim was to explore whether 

any of the RWD sources can be used to produce rigorous evidence for treatment-sequencing in the 

future, which was identified as a knowledge gap in the technology appraisal (TA) review in Chapter 

3. Therefore, I identify the trials that are mostly likely to be replicated under the selected databases 

rather than identifying the most suitable databases for emulating all identified trials (however I do 

compare the fit-for-purpose between the two databases for the same benchmark in my assessment.) 

 The benchmark RCTs serve as a methodology and database validation tool in this evaluation. 

Crucially, my aim was not to identify benchmarks that could definitely be replicated, but those with 

a good chance of replication. That is, I focused on finding benchmark RCTs that are likely replicable 

with the chosen databases, rather those that seem clearly unfeasible to replicate. If findings suggest 

that even those RCTs deemed highly replicable cannot be emulated, several implications may arise. 

These include the potential need for methodological adjustments, issues within the databases that 

require improvement (such as missing data, unavailable data variables or insufficient data time frame), 

or a disconnect between efficacy and effectiveness (see Section 6.2.2 efficacy-effectiveness gap). All 

these scenarios merit further investigation. On the other hand, if findings suggest that methods 

identified in Chapter 4 coupled with databases identified in Chapter 5 can be used to successfully 

mimic results of existing trials comparing treatment sequences, it underscores the reliability of RWE 

derived from the proposed methods. These considerations somewhat mirror a recent commentary by 

Morris and van Smeden477, suggesting that as analysable data continue to grow, instead of deciding 

whether or not to conduct an analysis in a database, one should consider if enough data have been 

collected before launching an analysis. 

6.4. Methods for identifying ideal benchmark sequential treatment trials 

6.4.1. Searches and defining therapeutic focus 

In November 2020, I conducted a preliminary PubMed search using the following strategy: 

(“sequential therap*” OR “sequential treatment*” OR “treatment sequenc*” OR “therapy sequenc*” 

Filters: Randomised Controlled Trial). The pilot review identified about 20 trials from the past five 

years that involved treatment sequences. Over half of these were oncology trials84,86,174,175,478-483, with 

the remaining scattering across other therapeutic areas, including rheumatoid arthritis484, hepatitis 

B485, osteoporosis486,487, weight loss488, attention-deficit/hyperactivity disorder (ADHD)489, 

psychosis490 and H. pylori infection491. These areas broadly align with those identified in my in-depth 

NICE TA review in Chapter 3. Hence, I made a decision to focus exclusively on oncology examples 

for the remainder of the review, due to budget constraints and the intricate, time-consuming nature of 

the data application process as described in Chapter 5. This decision subsequently shaped the scope 

of my database evaluation within oncology (Chapter 5). 
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Lastly, the term “reverse sequence” emerged as salient during my pilot review. Therefore, the 

following search strategy was supplemented to the original one in January 2021, with the goal to 

capture additional relevant studies for a full systematic review: (“reverse”[Title/Abstract] AND 

“sequence”[Title/Abstract] Filters: Randomized Controlled Trial).  

6.4.2. Eligibility assessment 

To select suitable benchmarks, I focused on selecting RCTs where patients were randomised to 

receive two or more sequential treatment strategies (i.e. sequential treatment RCTs). The initial 

eligibility assessment began with a screening of titles and abstracts of the identified records against 

the criteria outlined in Table 1, where justifications for each criterion are also provided. This was 

followed by an assessment of full texts of the remaining articles using the same criteria. This process 

aimed to shortlist candidates for the next in-depth feasibility assessment, as outlined in Section 6.4.3. 

 

Table 6.1. Inclusion and exclusion criteria of sequential treatment RCTs  
 Justification  

Inclusion criteria 

Randomised control trials (RCTs) designed to 

compare two or more sequential treatment 

strategies 

This is the principal criterion for selecting appropriate candidates as 

benchmarks for designing my Target Trial case studies (details 

explained in Section 6.3) 

Exclusion criteria 

(1) Studies published before 2010 Studies conducted before 2010 may not accurately represent recent 

NHS treatment patterns, particularly data on English cancer 

treatments only became accessible for research in the 2010s.389 

(2) Non-randomised trials The focus of my study lies in emulating RCTs. 

(3) Non-oncology studies I aim to employ oncology databases for my case studies, as 

explained in Section 6.4.1. In brief, a large proportion of RCTs 

comparing treatment sequences fall under oncology, and it emerged 

as a notable theme in my review of NICE TAs in Chapter 3. 

(4) Studies not available in English Unable to retrieve results for comparison with the simulated Target 

Trials. (5) Results of the trial are unavailable 

(6) Trials with fewer than 45 patients in any 
of the sequential treatment arms 

A trial with a small sample size may yield inconclusive results, 

whereas a Target Trial emulated under comparable conditions might 

reveal statistical significance due to the larger sample size inherent 

in observational data. This complexity can make benchmarking 

more challenging. Thus, trials with small sample sizes are not 

deemed suitable for my case studies. 

(7) Studies that do not contain any sequential 
treatments 

My study plans to focus on comparing two different treatment 

sequences. 

(8) Trials that focus solely on variations of 
the same treatments across treatment 

arms, such as two treatments being used 

in the same order in two trial arms, but 

with different duration or dosage of each 

treatment.  

(9) Trials comparing identical or similar 
treatment combinations in a sequential 

versus concomitant manner (e.g. 

Treatment A > Treatment B versus 

concomitant use of Treatment A + 

Treatment B, or Treatment A > Treatment 

B versus concomitant use of Treatment A 

+ Treatment C)  



207 

 

(10) “Traditional crossover trials” In these 
trials, patients typically receive two 

different treatments in reversed 

sequences. The second treatment is 

administered with or without a washout 

period following the first, a design 

commonly applied to drugs with short-

term effects.  

These trials are designed such that each patient serves as their own 

control, thereby reducing residual confounding between two 

randomisation groups and to achieve statistical efficiency (i.e. 

fewer subjects are needed in this type of trial setting). These trials 

aim to assess the efficacy of two individual therapies rather than 

comparing different sequential treatment strategies, working under 

the assumption that there are no carry-over effects between 

sequentially administered treatments.492 In other words, they do not 

effectively capture the sequence or carry-over effects between 

different treatments.  

(11) Trials evaluating second, third, or 
subsequent lines of therapy, where the 

randomisation occurred in earlier lines of 

therapy 

It is uncertain whether patients may have very different 

characteristics at the time of receiving a second- and third-, line 

therapy in an observational database compared to those included in 

the trials. Particularly if the only reference point provided in a trial 

is the time of receiving a first-line therapy. Thus, to simplify my 

methodological study, I have restricted my selection to studies 

examining newly diagnosed patients or those whose early lines of 

treatments can be traced (that is, being able to capture all treatments 

dating back to the point of randomisation). 

 

(12) Trials that compare two different sets 
(bundles) of regimens, which contains 

“sequential therapies within each 

treatment cycle/course”, such as bundled 

chemotherapy regimen or antibiotics that 

had fixed dosing schedule within a short 

period (e.g. cycles). 

Patient characteristics are generally expected to remain relatively 

stable within the same cycle of a treatment regimen, and therefore, 

the switching of treatments within a cycle is not considered as 

changing lines of treatments. However, it is important to note that 

this criterion does not exclude trials with sequential regimens that 

have a fixed duration for each treatment that span over a long 

period, which could be several years. 

(13) Trials without available time-to-event 
effectiveness estimates 

Given the oncology focus of my case studies (section 6.4.1), I have 

chosen to prioritise outcomes commonly used in oncology trials 

and NICE TAs, namely time-to-event estimates like progression-

free survival and overall survival. Moreover, Chapter 4 of the 

statistical methods review is specifically tailored to time-to-event 

outcomes, making it important to identify replicable estimates using 

the methods outlined therein. Additionally, quality of life measures 

may not always be available in national registry data. 

(14) Trials that exclusively use quality of life 
measures as study endpoints or trials that 

do not evaluate treatment effectiveness as 

study endpoints 

(15) Trials assessing medical devices, 
surgeries, dental procedures, behavioral 

therapies, physiotherapies, biological 

mechanisms, or 

pharmacokinetics/pharmacodynamics 

The main emphasis of this study is not on these interventions. This 

is primarily due to the uncertainty surrounding their feasibility for 

capture within the existing databases. For example, trials involving 

biosimilars typically investigate whether transitioning from a 

branded drug to a generic result in comparable efficacy. In real-life 

scenarios, biosimilars often substitute the original patented drug 

once it goes off-patent and practitioners usually do not use them 

sequentially with the patented drug unless there is a deliberate 

switch to a more cost-effective option when available. 

(16) Studies of biosimilars and generic drugs, 
or drugs in different pharmaceutical 

forms 

(17) Trials incorporate treatments that have not 
been available within the NHS or through 

CDF 

Trial emulation can only be effectively performed on treatments 

that can be captured and recorded within the existing databases. 

(18) Trials that evaluate outcomes that occur 
within a day (e.g., hypoglycemia attack 

after insulin usage) 

Assessing extremely short-term outcomes through claims databases 

or registries can be relatively challenging. 

CDF: Cancer Drugs Fund; NHS: National Health Service; NICE: National Institute for Health and Care Excellence; RCT: randomised 

controlled trial: TA: technology appraisal 

6.4.3. Data extraction and in-depth feasibility assessment  

After shortlisting a set of trials, I conducted a comprehensive review to evaluate their suitability 

as benchmarks for my research. This involved extracting their key features, including the trial's 

objective, disease focus, patient characteristics, treatment sequences, timing of treatment-switching, 

and the percentage of patients receiving subsequent treatments. Any salient information from studies 
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cited in these articles, and trial registration details from ClinicalTrials.gov were also extracted 

wherever applicable, such as details from the same trials with different data cut-off points. These 

features were compared against local treatment patterns, available data variables, and the operational 

period of the two selected oncology-centric databases—English NCRAS and US Flatiron databases.  

Originally, my objective was to identify benchmarks within the context of English data (i.e. 

NCRAS data). For this, I appraised each trial's potential by comparing their attributes with relevant 

NICE clinical guidelines493-495, TAs, and the NCRAS data dictionary434 in January 2021. This 

assessment involved verifying the availability of trial treatments within the NHS, the capacity of the 

NCRAS data to capture a sufficient sample size of the identical patient population, the presence of 

sufficient overlaps in patient characteristics between patients who received different treatment 

sequences (i.e. a principle to apply causal inference methods in Chapter 4), and the sufficiency of trial 

information to enable a comprehensive emulation. These assessments were primarily conducted 

through reviewing NICE TAs, clinical guidelines (current and historical ones, wherever relevant), 

published statistics, and NCRAS data dictionaries. 

However, challenges related to data access (Chapter 5) and a lack of trials featuring more than 

one frequently used treatment sequence in England made it impractical to depend exclusively on 

English data for emulating “a pair of treatment sequences in an existing trial”. This necessitated a 

shift towards non-English data. Thus, the same assessment was applied to the US-based Flatiron data, 

leveraging the US National Comprehensive Cancer Network (NCCN) guidelines (current and 

historical ones, wherever relevant)496-499 and published studies utilising Flatiron data85 as of February 

2021. Since Flatiron's data dictionary was not accessible prior to the approval of the data application, 

the availability of data variables was inferred from published studies. 

While initial eligibility (Section 6.4.2) did not exclude studies with long follow-up periods (e.g., 

median follow-up > 5 years), this was scrutinised during the in-depth assessment. This was necessary 

because certain key variables, such as biomarkers, might not have been included in the databases until 

recently. The limited timeframe of these variables could pose challenges in replicating longer-term 

trials accurately, especially if the missing variables are crucial prognostic factors for the disease. I 

evaluated these factors on a case-by-case basis, acknowledging that each disease has unique 

prognostic factors and that there may be circumstances where certain variables can act as proxies for 

others that are unavailable. 

Lastly, I consulted with clinical oncologists—Professor Derek Rosario, Dr. Carmel Pezaro, and 

Professor Janet Brown—to interpret the findings from the most promising examples. They offered 

insights on how the treatment patterns and survival or other treatment response measures (such as 

radiology reports and biomarker levels) from these trials compared with their clinical experience. 
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After these consultations and further discussions with my supervisors, we made the final decision on 

which sequential treatment trials to use as benchmarks for my case studies. 

6.5. Results 

Among the 1,213 studies identified, 590 were excluded for being published before 2010. After 

applying the inclusion/exclusion criteria (Table 6.1), 12 studies were selected for in-depth assessment. 

Figure 6.1 displays the PRISMA diagram of the literature selection process. The shortlisted studies 

covered breast (n = 2), colorectal (n = 2), lung (n = 1), ovarian (n = 1), pancreatic (n = 2), prostate 

cancers (n =1) and renal cell carcinoma (n = 3). Only the breast cancer studies involved early-stage 

patients, while others focused on advanced or metastatic cancers. Table 6.2 summarises the extacted 

features from each study, including treatment sequences, patient characteristics, time of switching 

and cross-over rates (or rate of receiving a second treatment in a treatment sequence). Of these, only 

the two breast cancer studies and the AIO-PK0104 pancreatic cancer trial did not involve comparing 

a treatment sequence with its reverse (n = 3). Further analysis of each trial’s benchmark potential is 

discussed in the subsequent section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 PRISMA diagram 

Studies identified (n = 1,213) 

Original search strategy (n = 1,002) 

Additional search strategy (n = 211) 

Studies for eligibility assessment (n = 623)   

Studies for in-depth review (n = 12) 

Breast cancer (n = 2) 

Colorectal cancer (n = 2) 

Non-small cell lung cancer (n = 1) 

Ovarian cancer (n = 1) 

Pancreatic cancer (n = 2) 

Prostate cancer (n = 1) 

Renal cell carcinoma (n = 3) 

Studies published before 2010 (n = 590) 

Original search strategy (n = 475) 

Additional search strategy (n = 115) 

 

Studies that met the exclusion criteria (n = 611) 
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Table 6.2 RCTs comparing treatment sequences 

RCT identifier Purpose Patients  Treatment  

sequence 1 

Treatment 

sequence 2 

Time of treatment 

switching 

Crossover rates*  

Breast cancer 

BIG 1-98173,328 Compare the efficacy of 

tamoxifen and letrozole 

monotherapies or in sequence 

Early-stage hormone  

receptor-positive breast  

cancer 

Sequence 1: Tamoxifen (5 years) (n=6182) 

Sequence 2: Letrozole (5 years) (n=1546) 

Sequence 3: Letrozole (2 year) → Tamoxifen 

(3 years) (n=1540) 

Sequence4: Tamoxifen (2 year) → Letrozole (3 

years) (n=1548) 

 

Fixed time-line 25.2% patients 

receiving tamoxifen 

monotherapy selectively 

crossed over to receive 

letrozole prior to a 

disease-free survival 

event 

TEAM 

Trial324,500 

 

Compare the efficacy of 

exemestrane monotherapy or 

tamoxifen followed by 

exemestrane 

Early-stage hormone  

receptor-positive breast cancer 
Exemestane (5 years) 

(n = 6120) 

Tamoxifen (2-3 

years) 

→exmestane 

(n = 9776) 

 

Fixed time-line (but with 

grace period?) 

Not available 

 

 

Colorectal cancer (CRC) 

REVERCE479 Compare the treatment sequence 

of regorafenib → cetuximab +/-

irinotecan versus cetuximab +/-

irinotecan → regorafenib 

mCRC, KRAS exon 2 wild-

type patients after failure of 

fluoropyrimidine, oxaliplatin 

and irinotecan 

 

Regorafenib → 

cetuximab +/- irinotecan 

(n = 68) 

 

 

Reverse sequence  

(n = 65) 

Time of progression after 

the first treatment in the 

treatment sequences 

68% versus 65%  

 

 

 

 

COMETS480 Explore two different treatment 

sequences in order to define an 

optimal therapeutic strategy in 

KRAS wild-type colorectal 

cancer patients 

Wild-type mCRC patients 

progressed after 

FOLFIRI/bevacizumab first-

line treatment 

Irinotecan/cetuximab > 

FOLFOX-4  

(as second and third 

line) 

(n = 54) 

 

Reverse sequence 

(n = 56) 

Time of progression after 

the first treatment in the 

treatment sequences 

54% versus 56% 

 

 

 

 

Non-small cell lung cancer (NSCLC) 

GFPC 0504501 Evaluate two different treatment 

sequences in elderly NSCLC 

patients 

Stage IIIB/IV NSCLC elderly 

patients 

(EGFR non-selected) 

(treatment naïve) 

 

Docetaxel/gemcitabine 

→ erlotinib 

(n = 48) 

Reverse sequence  

(n = 51) 

Disease progression 

during the first-line 

treatment (treatment 

failure) 

 

54.2% versus 47.1% 

 

 

 

Ovarian Cancer  

MITO-8502 Compare the efficacy PBC and 

NPBCc in two different treatment 

sequences in a second-line and 

third-line setting 

Ovarian cancer patients who 

experienced disease 

recurrence or disease 

progression in 6-12 months 

after the last PBC 

PBC → NPBC 

(n = 108) 

Reverse sequence 

(n = 107) 

Time of progression after 

the first treatment of the 

sequences compared 

76.9% versus 69.2% 

PBC: carboplatin + paclitaxel, or carboplatin + 

gemcitabine  

NPBC: PLD, topotecan, topotecan + PLD 
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RCT identifier Purpose Patients  Treatment  

sequence 1 

Treatment 

sequence 2 

Time of treatment 

switching 

Crossover rates*  

Pancreatic cancer  

FFCD 0301503 Compare the efficacy of two 

different treatment sequences 

Metastatic pancreatic 

adenocarcinoma 

(treatment naïve)  

LV5FU2-CDDP → 

gemcitabine 

(n = 102) 

Reverse sequence 

(n = 100)  

Disease progression 

during the first-line 

treatment (treatment 

failure) 

 

67.6% versus 55.0% 

AIO-PK0104504 Compare the efficacy of two 

different treatment sequences  

Advanced pancreatic cancer  

(treatment naïve) 
Gemcitabine + erlotinib 

→ capecitabine 

(n = 148) 

Capecitabine + 

erlotinib → 

gemcitabine  

(n = 133) 

 

Disease progression 

during the first-line 

treatment (treatment 

failure) 

 

42.6% versus 57.8% 

Prostate cancer 

GUTG-00184 

(Khalaf 2019) 

1. Decide an optimal treatment 

sequence in prostate cancer 

2. Evaluate the efficacy of 

second-line treatments 

Metastatic castration-resistant 

prostate cancer without 

neuroendocrine differentiation 

(treatment naïve) 

 

Abiraterone + 

prednisolone → 

enzalutamide 

(n = 101) 

Reverse sequence 

(n = 101) 

 

PSA progression 72% versus 74% 

Renal cell carcinoma (RCC) 

RECORD-386,406 Compare the efficacy everolimus 

> sunitinib 

and the reverse sequence 

mRCC  

(treatment naïve) 
Everolimus → sunitinib 

(n = 238) 

Reverse sequence 

(standard sequence) 

(n = 233) 

Disease progression 

during the first-line 

treatment (treatment 

failure) 

 

55% versus 51% 

SWITCH I174 Compare the efficacy of sorafenib 

> sunitinib and the reverse 

sequence 

mRCC  

(treatment naïve) 
Sorafenib → sunitinib  

(n = 182) 

Reverse sequence 

(n = 183) 

Disease progression 

during the first-line 

treatment (treatment 

failure) 

 

57% versus 42% 

SWITCH II175 Compare the efficacy of sorafenib 

> pazopanib and the reverse 

sequence 

mRCC  

(treatment naïve) 
Sorafenib → pazopanib 

(n = 189) 

Reverse sequence 

(n = 188) 

Disease progression 

during the first-line 

treatment (treatment 

failure) 

 

56% versus 46% 

CRC: Colorectal cancer; EGFR: Epidermal Growth Factor Receptor; FOLFIRI: folinic acid, fluorouracil, and irinotecan; FOLFOX-4: oxaliplatin plus leucovorin and 5-fluorouracil; -KRAS: Kirsten rat 

sarcoma viral oncogene homolog; LV5FU2-CDDP: 5-fluorouracil (5FU), folinic acid and cisplatin combination (V5FU2-CDDP); mCRC: metastatic colorectal cancer; mRCC: metastatic renal cell 

carcinoma; NSCLC: non-small cell lung cancer; NPBC non-platinum-based chemotherapy; PBC: Platinum-based chemotherapy; PLD: pegylated liposomal doxorubicin; PSA: Prostate-specific antigen ; 

RCC: Renal cell carcinoma; RCT: randomised controlled trial 

* For comparisons that do not involve a reverse sequence as a comparator, it refers to the percentage of patients receiving a second treatment within each sequential treatment arm.
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6.6. In-depth feasibility assessment  

This section critically appraises the feasibility of each shortlisted trial as a benchmark, organised 

by cancer types. Within each cancer type, I first detail the specifics of the trials, then discuss their 

benefits and potential issues as benchmarks according to local treatment guidelines. Additionally, I 

discuss the practicability of replicating these trials using the chosen databases. Since the suitability 

of a trial as a benchmark can vary depending on the context (see Section 6.2), assessments are 

conducted separately for each database.  

Pragmatically, the primary consideration is whether the treatment sequences of a trial are present 

in the specified database; absence of these sequences immediately rules out a trial. Subsequently, the 

focus shifts to assessing the adequacy of the sample size and the capability to capture the same 

outcome measures in the databases. Additionally, I evaluated the benchmark's quality by examining 

the detail in the reporting of findings and checking for any severe non-adherence or violations of post-

randomisation treatment assignments. These issues may compromise its suitability as a benchmark 

and complicate the emulation of the trial. These factors do not necessarily disqualify a trial but are 

crucial in determining its relative suitability. 

6.6.1. Breast cancer 

Two large RCTs were identified with an aim of comparing multiple treatment sequences in 

managing early-stage hormone receptor-positive breast cancer patients.173,500 The BIG 1-98 trial173,328 

compared the survival outcomes of the following four treatment sequences. Noted that the treatment 

arms with a single treatment, such as using Tamoxifen for 5 years, can be conceptualised as a sequence 

of Tamoxifen for 2 years followed by Tamoxifen for 3 years (see Section 4.4.1.3, Chapter 4). 

o Sequence 1: Tamoxifen (5 years) (n = 6182) 

o Sequence 2: Letrozole (5 years) (n = 1546) 

o Sequence 3: Letrozole (2 year) → Tamoxifen (3 years) (n = 1540) 

o Sequence 4: Tamoxifen (2 year) → Letrozole (3 years) (n = 1548) 

The TEAM trial324,500 compared the survival outcomes of two treatment sequences:  

o Exemestane (5 years) (n = 4,868 (5-year analysis), n =3,045 (10-year analysis)) 

o Tamoxifen (2-3 years) → exemestane (2-3 years) (n = 4,898 (5-year analysis), n = 3,075 (10-

year analysis)) 

Assessment based on NCRAS data 

All treatment sequences included in the BIG 1-98 and TEAM trials appeared to be available 

within the NHS, as confirmed with UK clinical guidelines and clinical experts.505 Moreover, the 

substantial sample sizes of both trials make them excellent candidates as benchmarks, as larger 
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samples typically result in smaller uncertainties in effect estimates. Nevertheless, additional input 

from clinical oncologists was needed to determine whether there were any significant differences 

among patients who received different sequences in English clinical practice. This is crucial since the 

application of causal inference methods relies on a certain degree of overlap between patient groups.  

Despite their merits, using these two trials in my project presents unique challenges and 

limitations due to their focus on early-stage cancers. Specifically, methods validated through 

emulating these trials have limited generalisability to other cancers or diseases for the following 

reasons: Firstly, the discrepancy in results between an early-stage benchmark trial and its emulation 

inherently involve more uncertainties compared to those of late-stage benchmark trial and its 

emulation. This is because patients diagnosed at early-stage have a longer lifespan, allowing for more 

treatment lines. However, most treatment-sequencing trials typically compare only two treatment 

lines. That is, if real-world treatment patterns substantially deviate from those in the benchmark trial 

beyond the second-line, it could contribute to the discrepancy between the benchmark and its 

emulation. This obscures other crucial causes of discrepancy and their magnitude, which are vital for 

my investigation.  

Secondly, the longer survival of early-stage cancer patients introduces competing risks from 

other diseases, such as cardiovascular outcomes, which can complicate the estimation of survival 

outcomes.506 This factor is generally less prominent in late-stage cancers. Thirdly, unlike late-stage 

cancer treatments where the duration of each line of therapy (LOT) is often related to the progression-

free time, the treatment duration in both trials is fixed (e.g., 2-3 years). In real-world practice, there 

may be other factors that influence treatment switching between tamoxifen and aromatase inhibitors 

(e.g., letrozole/exemestane) rather than switching after a fixed duration, but these require additional 

confirmation from oncologists. Additionally, the average duration of these treatments in England may 

differ from the design in the two trials. These factors make it challenging to replicate fixed-duration 

treatments using RWD, thus necessitating the establishment of a grace period for treatment duration 

discussed with oncologists.  

Fourthly, the varying level of adherence to long-term treatments, as examined in the BIG 1-98 

trial, can pose challenges for emulation.328 In particular, the varied adherence behaviour of routine 

care patients and trial participants may also contribute to the discrepancies of effect estimates between 

a benchmark and its emulation, thus introducing additional uncertainties. Furthermore, a significant 

number of ad-hoc analyses have been carried out for these trials, such as adjustments to account for 

non-randomised sequential treatment. To ensure a thorough comparison between the benchmark and 

its emulation, it may be necessary to replicate these ad-hoc analyses as well. This further adds to the 

complexity and challenge of replicating the findings.  

Lastly, considerable concerns arose regarding data availability due to the long duration of these 



214 

 

trials, which have published findings with follow-up ranging from 5 to 15 years. Data from NCRAS, 

accessible through the ODR, may offer a quality four-year follow-up (2014-2018, the latest available 

at the time of the assessment) for the patient cohort diagnosed in 2014, given that the SACT dataset 

for tracking cancer treatments was only established in 2014. On the other hand, the CPRD coupled 

with NCRAS linkage provides a longer follow-up for patients that are likely to be managed by 

primary care, starting from 2002. This includes early-stage breast cancer patients and can yield a 

sample size of  approximately 750 patients per year.506 Moreover, a recent study confirmed that breast 

cancer patients who received either aromatase inhibitors or tamoxifen from 2002 to 2015 can be 

identified via CPRD with NCRAS linkage. Specifically, these treatments are recorded in primary care 

prescription dataset, which, however, is not included in the NCRAS data accessible through the ODR. 

To summarise, there are substantial challenges and potential issues with generalisability when 

attempting to replicate these two breast cancer trials. However, it is important not to dismiss their 

value as benchmarks in situations where better options are not available. For example, if restricted by 

the limited available period of data, earlier data cuts of these trials (if available) or earlier segments 

of Kaplan-Meier curves from these trials could be utilised for comparison. Hence, while emulation 

may be feasible, it could be compromised, making the aforementioned trials not the “first choice”. 

Assessment based on Flatiron data 

No early-stage breast cancer studies by Flatiron were discovered during assessment. However, 

the NCCN guideline suggest tamoxifen and aromatase inhibitors (letrozole/exemestane/ anastrozole) 

have been used as adjuvant theory for early-stage breast cancer in the US.496 These treatments 

typically span 5 to10 years, depending on the patient's menopausal status at diagnosis and the duration 

of the first treatment (i.e., tamoxifen or an aromatase inhibitor). The treatment guideline indicated 

that treatment patterns observed in the BIG 1-98 and TEAM trials may potentially be observed in 

Flatiron data. Nevertheless, apart from treatment availability, other concerns in conducting a target 

trial emulation for early breast cancers using NCRAS data are likely to apply when using Flatiron 

data. Moreover, drawing from other Flatiron publications85, it appears that Flatiron data is only 

accessible starting from 2013, which may not offer a sufficient timeframe for emulating these trials. 

6.6.2. Colorectal cancer (CRC) 

Two trials examining different treatment sequences in metastatic CRC (mCRC) were identified 

as potential benchmarks.479,480 The first trial, REVERCE, enrolled Japanese patients who had Kirsten-

rat sarcoma virus (K-RAS) exon 2 wild type mCRC and had experienced treatment failure with 

fluoropyrimidine, oxaliplatin and irinotican (FOLFIRINOX).479 The patients were randomly assigned 

to receive either the specified treatment sequence or its reverse, with second-line treatment given 

upon disease progression. 
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o Regorafenib → cetuximab +/- irinotican (n = 68) 

o Cetuximab +/- irinotican → regorafenib (n = 65) 

The other trial, COMETS, is a phase-3 trial conducted to investigate the optimal treatment 

pathway for K-RAS wild-type mCRC patients.480 A group of Italian patients who experienced 

progression after receiving a first-line treatment of folinic acid, fluorouracil (5-FU), and irinotecan 

(FOLFIRI) + bevacizumab were randomly assigned to two different treatment sequences for their 

second- and third-line treatments: 

o Irinotecan + cetuximab → oxaliplatin plus leucovorin and 5-FU (FOLFOX-4) (n = 54) 

o FOLFOX-4 → irinotecan + cetuximab (n = 51) 

Assessment based on NCRAS data 

The REVERSE and COMETS trials do not appear to be suitable benchmarks within NCRAS 

data. Firstly, bevacizumab has not been commonly used in the NHS, while cetuximab has been 

recommended alongside FOLFIRI/FOLFOX instead of irinotecan. Furthermore, regorafenib has not 

been recommended for use as the TA of regorafenib was terminated without any company submission. 

Finally, the potentially limited sample size and the inclusion of non-treatment naïve patients in these 

two trials present further challenges for conducting trial emulations within the scope of my PhD. 

Assessment based on Flatiron data 

A recent study analysed the treatment patterns of 14,315 CRC patients from 2013 to 2018 using 

Flatiron data.507 Patients included in the analysis were identified based on receiving at least one line 

of systematic anti-cancer treatment. The study indicates that FOLFIRINOX was not used as first-line 

therapy in the US, making it impossible to emulate the REVERCE trial where patients received 

FOLFIRINOX as their first-line treatment prior to randomisation. Alternatively, according to the 

same publication, it is possible to observe treatment sequences from the COMETS trial in the US 

setting. Among the first-line regimens, FOLFIRI + bevacizumab was the fourth most commonly used 

(10.9%, n = 1554). Irinotecan + cetuximab (2L, n = 220; 3L, n = 144) and FOLFOX (2L, n = 338, 

3L, n = 103) can both be utilised as both second-line and third-line therapies. However, it remains 

uncertain how many patients experienced failure with FOLFIRI + bevacizumab as a first-line therapy 

before these treatments. Therefore, there may be a small number of patients who follow the targeted 

treatment sequences of FOLFIRI + bevacizumab → irinotecan + cetuximab → FOLFOX or FOLFIRI 

+ bevacizumab → FOLFOX → irinotecan + cetuximab. 

In summary, emulating the REVERCE trial is impossible using Flatiron data since 

FOLFIRINOX was not a standard treatment regimen in the US. While it may be possible to replicate 

the COMETS trial, the diverse range of regimen choices for CRC is likely to result in an insufficient 
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sample size for the comparison of targeted treatment sequences. Consequently, it is also not an ideal 

choice as benchmark. 

6.6.3. Non-small cell lung cancer (NSCLC) 

The GFPC 0504 trial501, which is a phase-2 trial in elderly patients (aged 65-89) diagnosed with 

stage IIIB/IV NSCLC, was identified as a potential benchmark. The trial aimed to compare the 

effectiveness of the following two treatment sequences in treatment naïve patients: 

o Docetaxel or gemcitabine → erlotinib (n = 48)  

o Erlotinib → docetaxel or gemcitabine (n = 51) 

Assessment based on NCRAS data 

The GFPC 0504 trial has a relatively small sample size and it is unclear whether 

docetaxel/gemcitabine (chemo-monotherapy) and erlotinib (an epidermal growth factor 

receptor (EGFR) tyrosine kinase inhibitor (TKI)) have been used interchangeably as first- and 

second-line treatments for NSCLC elderly patients in England. This uncertainty stems from the fact 

that the standard front-line chemotherapy regimen for NSCLC in the NHS previously consisted of 

platinum doublets (a combination of platinum drugs and other chemotherapy drugs) for wild-type 

patients, irrespective of age, before the introduction of cancer immunotherapies (e.g. 

pembrolizumab).508 Additionally, the study was conducted in the mid-2000s when the treatment 

paradigm differed from today's standards. As such, the trial did not differentiate between patients with 

positive and negative EGFR mutations, which is in contrary to the current practice of using EGFR 

mutation testing to determine the use of an EGFR TKI.509 As a result, it may be challenging to identify 

patients who were given erlotinib as a first-line therapy without an EGFR mutation from recently 

collected data (i.e., after 2015).  This limitation makes GFPC 0504 an inappropriate candidate for 

benchmarking. 

Assessment based on Flatiron data 

A recent study conducted by Li et al used Flatiron data to investigate how NSCLC patients with 

EGFR mutations (n = 1,564) were managed in real-world settings.510 The study revealed that erlotinib 

(n = 593) and chemotherapy (n = 169) have been used as first-line and second-line treatments for 

patients with EGFR mutations in the US. Of those who initially received erlotinib, 91 individuals 

subsequently underwent chemotherapy as a second-line therapy. In contrast, among patients who 

initially received chemotherapy, 74 individuals later received erlotinib as a second-line therapy. 

However, it remains uncertain whether the specific chemotherapy regimen utilised in the GFPC 0504 

trial (i.e., docetaxel or gemcitabine) was commonly used in the US, as Li et al's analysis combined 

different chemotherapy regimens for their evaluation. Furthermore, the challenges associated with 



217 

 

non-EGFR stratified patients in the GFPC 0504 trial are likely to persist regardless of the data source 

used. Furthermore, the GFPC 0504 trial participants were predominantly elderly patients, indicating 

a highly selective cohort. Consequently, it is unlikely to replicate the conditions of the GFPC 0504 

trial using Flatiron data due to the limited sample size, which is expected to be fewer than 91 and 74 

patients in each treatment group.  

6.6.4. Ovarian cancer 

The MITO-8 trial, which was carried out among ovarian cancer patients, was identified as a 

potential benchmark.502 The MITO-8 included patients who had experienced a recurrence or 

progression of the disease within 6-12 months after their last treatment with platinum-based 

chemotherapy (PBC). These patients were then randomly assigned to two different treatment 

sequences for their subsequent therapies: 

o PBC → non-PBC (NPBC) (n = 108)  

o NPBC → PBC (n =107) 

Assessment based on NCRAS data 

In the MITO-8 trial, the majority of patients were initially given carboplatin + paclitaxel as the 

PBC, and pegylated liposomal doxorubicin (PLD) as NPBC. However, due to drug shortages, the trial 

design was amended to include carboplatin + gemcitabine as an additional PBC option, and topotecan 

or topotecan + PLD as alternative NPBC options. Although NICE did not endorse the use of the 

following regimen: carboplatin + gemcitabine, topotecan + PLD, and topotecan alone, for treating the 

initial recurrence of platinum-sensitive ovarian cancer59, these alternative treatments accounted for a 

relatively smaller portion (0-25%) within each treatment line in the MITO-8 trial compared to the 

originally intended treatments (carboplatin + paclitaxel, and PLD alone). Considering the number of 

treatment-naïve stage III/IV ovarian cancer cases in England (less than 3000 per year) and the specific 

eligibility criteria of the MITO-8 trial (restricted to platinum-sensitive patients who have failed at 

least one PBC agent), which further narrows down the sample size, it may not be the most suitable 

benchmark unless there are no alternative options. Obtaining input from clinical oncologists was 

crucial to better understand the landscape of ovarian treatment in England, enabling a conclusive 

decision. However, no further consultations were pursued on this topic, as more suitable benchmarks 

were identified by the end of the assessment. 

Assessment based on Flatiron data 

No ovarian cancer studies using Flatiron data were found. The NCCN guideline recommends 

carboplatin + paclitaxel as first-line therapy, which matches the inclusion criteria of the MITO-8 

trial.497,502 For platinum-sensitive disease upon recurrence, carboplatin + gemcitabine with or without 
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bevacizumab is recommended, while liposomal doxorubicin (e.g., PLD) or topotecan can be used as 

monotherapy for platinum-resistant patients, but not in combination. In short, it seems feasible to 

capture treatment sequences from the MITO-8 trial using Flatiron data. However, there might be 

limited overlap between patients receiving different second-line treatments (the first treatment 

position in MITO-8) in the US, as PBC is typically indicated for platinum-sensitive disease and NPBC 

for platinum-resistant disease. This lack of overlap poses challenges for implementing causal 

inference methods that rely on sufficient overlap (Chapter 4). Thus, the MITO-8 trial might not be an 

ideal benchmark within the Flatiron data. Further confirmation from oncologists was not sought, as 

more suitable benchmarks were identified by the end of the assessment. 

6.6.5. Pancreatic cancer 

Two pancreatic trials comparing the efficacy of sequential treatments were identified.503,504 In 

both trials, patients received a second-line treatment when they experienced disease progression 

during the first-line treatment. The FFCD 0301 trial assessed the following treatment sequence and 

its reverse counterpart in treatment naïve patients with metastatic pancreatic adnenocarcinoma503:  

o 5-FU + folinic acid + cisplatin (V5FU2-CDDP) → gemcitabine (n = 102) 

o Gemcitabine → V5FU2-CDDP (n = 100) 

The AIO-PK0104 trial investigated the efficacy of the following two treatment sequences for 

patients with treatment-naïve advanced pancreatic cancer504:  

o Gemcitabine + erlotinib → capecitabine (n = 148) 

o Capecitabin + erlotinib → gemcitabine (n = 133) 

Patients in both trials received a second-line treatment at disease progression during the first-

line treatment. 

Assessment based on NCRAS data 

It is unclear whether the chemotherapy regimen LV5FU-CDDP (containing cisplatin) has been 

used for pancreatic cancer within NHS. Furthermore, the NICE pathway for pancreatic cancer does 

not include cisplatin-based therapy511, suggesting that the treatments administered in the FFCD 0301 

trial503 may not be reflected in the NCRAS data. It is also unknown whether erlotinib can be 

administered in combination with chemotherapy in an English healthcare setting. Considering the 

evolving treatment landscape in pancreatic cancer and the potential to capture a promising sample 

size from the AIO-PK0104 population through NCRAS data504, saw it as a potential option as a 

benchmark. However, further consultation with clinical oncologists is needed, if preferred alternatives 

are not identified.  
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Assessment based on Flatiron data 

A recent abstract presented at the American Society of Clinical Oncology (ASCO) conference 

investigated the management of pancreatic cancer using Flatiron data.512 O'Reilly et al.'s abstract 

revealed that the treatment regimens employed in the FFCD0301 and AIO-PK0104s trials were not 

commonly utilised.503,504 Additionally, the V5FU2-CDDP regimen used in the FFCD0301 trial is not 

included in the NCCN pancreatic cancer guideline, rendering it impractical to replicate this trial using 

Flatiron data.499 Although all treatments in the AIO-PK0104 trial504 (i.e., gemcitabine + erlotinib, 

capecitabine) can be used as both first-line or second-line therapies according to the NCCN 

guideline499, their use was restricted to specific patient subsets and were not routinely used. For 

instance, capecitabine monotherapy was reserved for patients with poor performance status, while 

gemcitabine + erlotinib was used as a second-line therapy only for patients who had previously 

undergone a fluoropyrimidine-based therapy. In summary, emulating the AIO-PK0104 trial using 

Flatiron data is challenging due to potential limitations associated with small sample sizes and limited 

overlap among patients receiving different treatment sequences. 

6.6.6. Prostate cancer 

Khalaf et al. conducted a phase-2 RCT, GUTG-001, to compare two different treatment 

sequences in managing treatment-naïve metastatic castration-resistant prostate cancer (mCRPC) 

patients.84 They compared the survival outcomes of the following treatment sequences: 

o Aabiraterone (+ prednisolone) → enzalutamide (n=101) 

o Enzalutamide → abiraterone (+ prednisolone) (n=101). 

Assessment based on NCRAS data 

Prostate cancer had limited treatment options compared to other types of cancer within the 

available timeframe of NCRAS data up until 2018 (only 6 TAs available: TA 101, TA259, TA316, 

TA377, TA391, TA387).126,127,237,448,513,514 Since 2014-2016, both abiraterone and enzalutamide have 

become available in the NHS for treating mCRPC, alongside the standard chemotherapy option of 

docetaxel. Additionally, carbizitaxel has been introduced as a second-line therapy in the treatment 

pathway since 2016. Despite the ongoing debate about the efficacy of different treatment sequences 

in the GUTG-001 trial, the NHS explicitly advised against administering abiraterone and 

enzalutamide in a sequential manner. Even though a recent commentary indicate that these treatment 

sequences could still be given in specific situations in an English setting.515 Consultation with 

oncologists confirmed that these sequences are not standard practice in England. The only likely 

scenarios for using these treatment sequences are when patients cannot tolerate either abiraterone or 

enzalutamide, typically resulting in a switch within the first few months of initiating first-line 

treatment. Although such type of treatment switching was also permitted in the GUTG-001 trial, 
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receiving subsequent treatments primarily occurred upon disease progression. This suggests that such 

treatment sequences rare in NCRAS data and unlikely to yield a sufficient sample size for emulation. 

The GUTG-001 trial holds considerable merit as a benchmark due to several factors. Firstly, the 

study presents a comprehensive range of results, including the two primary endpoints: time-to-

second-prostate-specific-antigen-(PSA)-progression and PSA response on the second-line therapy. 

Additionally, it examined secondary outcomes, such as the time-to-progression on the first-line 

therapy, time-to-progression on the second-line therapy, as well as the composite progression-free-

survival (PFS) — time-to-progression through a sequence of treatments. Also, the trial conducted 

sensitivity analyses on these endpoints, notably, the time-to-second-PSA-progression excluding 

patients with delayed crossovers. Furthermore, both study arms had crossover rates surpassing 70%, 

suggesting that more than 70% of patients in both groups received second-line treatment before their 

death. Thirdly, this study summarises details regarding patient characteristics, including not only 

those observed at the time of randomisation but also at the point when they transitioned from first-

line to second-line treatment. This aspect makes GUTG-001 a compelling benchmark because it 

offers extra reference points for the emulation process and aids in understanding any potential 

differences in outcome measures between the benchmark and its emulation.  

Fourthly, it is important to highlight that among all the cancer types in the shortlisted trials, only 

prostate cancer is linked with TAs that explicitly compared treatment sequences (Chapter 3). Beyond 

proof-of-concept studies, the scope of Target Trial emulations could potentially expand to include 

comparisons of treatment sequences evaluated in those prostate cancer TAs, given data focused on 

prostate cancer patients is available and the methodologies have been evaluated and validated as 

effective. Finally, a recent systematic review suggests that a series of observational studies have been 

conducted to compare the treatment sequences in GUTG-001, reflecting the ongoing clinical interest 

and debate.516 This implies that the results obtained in a Target Trial emulating GUTG-001 can also 

be contrasted with the findings from these observational studies that may not have explicitly 

attempted to replicate any trial results. Such a comparison can help provide insights into the strengths 

and challenges associated with the proposed methods in my thesis. 

While adopting GUTG-001 as a benchmark presents compelling advantages, there are also 

several issues to consider. The main concern is the availability of PSA values, which are crucial as 

prognostic factors and for assessing the trial's primary outcomes. Although these values seemed to be 

collected in English primary care records and the Cancer Outcomes and Services Dataset (COSD), 

there are concerns around accessing them.414,424 According to a 10-year study of PSA levels in UK 

men424, CPRD provides comprehensive PSA screening results for patients in primary healthcare 

settings. However, it is unclear if it also includes PSA tests conducted in hospitals. Moreover, CPRD 

records only cover a small percentage (6-13%) of the English population403,426, which may not provide 
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a sufficient sample size of prostate cancer patients. Additionally, the budget constraints of my PhD 

make it challenging to apply for access to CPRD. On the other hand, the COSD dataset, which is part 

of the National Cancer Registration and Analysis Service (NCRAS) data collection, is not typically 

accessible through standard data application routes. In theory, one can obtain it by applying for 

NCRAS linked primary care data through CPRD and requesting a special linkage to COSD, as 

demonstrated in a recent study by Strongman et al.517 Accessing combined PSA data from both 

primary healthcare records and COSD would be beneficial, but it possesses the limitation of accessing 

CPRD data as mentioned earlier. 

Alternatively, the National Prostate Cancer Audit (NPCA) dataset for England contains PSA 

records.411 This dataset combines data of prostate cancer patients from various sources, including the 

standard NCRAS datasets (Cancer Registry, National Radiotherapy Dataset (RTDS), and the 

Systemic Anti-Cancer Dataset (SACT)), the Office for National Statistics (ONS) dataset, and the 

NPCA Minimum dataset. The NPCA Minimum dataset comprises the subset of COSD variables that 

are specific to prostate cancer, which have been collected as part of NCRAS routine data collection 

process since April 2018.411,413 Unfortunately, the NPCA data is not accessible for public use. Despite 

the challenges in accessing PSA data, there are ways to reduce bias in emulation when it is unavailable. 

One approach is to emulate other outcomes in the GUTG-001 trial, such as time-to-progression. 

Another option is to use surrogate measures, such as treatment discontinuation, as an alternative way 

to gauge PSA progression.  

Finally, the 3-year follow-up duration of the GUTG-001 trial might pose a problem for emulation, 

given that neither enzalutamide nor abiratearone were endorsed by NICE as first-line treatments until 

2016. To ensure a minimum 3-year follow-up for patients diagnosed in 2016, it would be ideal to 

utilise NCRAS data from 2016-2019. However, the available data only limited up to 2018 at the time 

of this assessment. Abiraterone and enzalutamide might have been used as first-line treatments 

through the Cancer Drugs Fund (CDF) before being used in the NHS. Including patients diagnosed 

in 2014 and 2015 would ensure a minimum 3-year follow-up, but it is difficult to determine the 

percentage of those patients who received the targeted treatment sequences. Therefore, estimating the 

sample size becomes challenging. 

To summarise, the GUTG-001 trial may not be the best option for benchmarking in an English 

context due to uncertainties regarding sample size and limited access to PSA data, and crucially these 

treatment sequences are not recommended by NHS. However, it is highly valued as a benchmark for 

developing methodologies, due to its comprehensive reports and well-structured sequential trial 

design without any unexpected protocol amendments. 
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Assessment based on Flatiron data 

A recent study by George et al., utilising Flatiron data from 2013-2017, examined treatment 

patterns in managing mCRPC patients in the US.437 The NCCN guidelines suggest enzalutamide and 

abiraterone as interchangeable for first- or second-line therapy. Moreover, George et al.'s research 

indicates the two treatment sequences in GUTG-001 can be captured within the Flatiron database, 

with a sample size of approximately 500 patients. PSA values should theoretically be present in 

Flatiron database as it is EHR-based and have been confirmed with the Flatiron specialists upon data 

application. In conclusion, employing Flatiron data to emulate the GUTG-001 trial can potentially 

bypass the major issues associated NCRAS data, making GUTG-001 a compelling candidate for 

benchmark, provided that Flatiron data is accessible. 

6.6.7. Renal cell carcinoma (RCC) 

Three trials were identified that assessed the efficacy of different treatment sequences in patients 

with untreated metastatic renal cell carcinoma (mRCC). RECORD-3, an international phase-2b trial, 

compared the efficacy of starting treatment with a mechanistic target of rapamycin (mTOR) inhibitor, 

everolimus, followed by a TKI, sunitinib, and the reverse sequence86,406: 

o Everolimus → sunitinib (n = 238)  

o Sunitinib → everolimus (n = 233) 

The SWITCH-I174 and SWITCH-II175, both phase-3 RCTs conducted in Germany, each 

investigated the efficacy of a treatment sequence involving two different TKIs as compared to its 

reverse sequence, as detailed below.  

SWITCH-I:  

o Sorafenib → sunitinib (n = 182)  

o Sunitinib → sorafenib (n = 183) 

SWITCH-II:  

o Sorafenib → pazopanib (n = 189)  

o Pazopanib → sorafenib (n = 188) 

Assessment based on NCRAS data 

 Sorafenib has not been endorsed for either first- or second-line treatment by NICE205, unlike 

everolimus and sunitinib, which have been available within the NHS pre-2011.233,518,519 Despite their 

availability in the NHS, everolimus was not recommended as a first-line treatment and sunitinib was 

not suggested for second-line treatment.520 Findings of a recent observational study by Hawkins et al. 

involving mRCC patients in two UK hospitals confirmed this.521 It revealed that among 652 mRCC 

patients given any first-line treatment between 2008-2015, only 0.6% were administered everolimus. 
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Moreover, only 0.5% of the patients who received a second-line therapy received sunitinib. That is, 

most likely, only the treatment sequence of sunitinib followed by everolimus from RECORD-3 can 

be captured using NCRAS data, while the other treatment sequences from RECORD-3, SWITCH-I, 

and SWITCH-II are unlikely to be captured. 

In conclusion, these three mRCC trials are not optimal choices as benchmarks if one aims to 

emulate multi-arm sequential treatment trials. Despite their inadequacy in an English setting, akin to 

the GUTG-001 prostate cancer trial, their structured design and detailed reports render them relatively 

more appealing examples. 

Assessment based on Flatiron data 

No studies employing Flatiron data for RCC research were discovered. The latest NCCN 

guideline does not support everolimus and sorafenib as first-line treatments in the US.522 While both 

can be given as subsequent treatments, everolimus is not a preferred regimen and sorafenib is 

recommended only in certain situations. Pazopanib and sunitinib are both favoured as first-line 

treatments for patients with a better prognosis and clear cell histology, with sunitinib also suitable for 

patients with non-clear cell histology. While both can also be considered as subsequent therapies, the 

NCCN guideline does not specify their optimal sequence in relation to each other and other 

therapeutic drugs. 

The prior NCCN guideline's stance on everolimus, sorafenib, sunitinib, and pazopanib generally 

aligns with the most recent version.522,523 In 2015, everolimus was also not endorsed as a first-line 

treatment, while sorafenib could be a first-line treatment exclusively for a selected patient group. 

Furthermore, sunitinib and pazopanib could be applied both as first and second-line treatments. 

Contrary to the clinical practice in England, everolimus was never recommended as a first-line 

treatment in the US and was not a preferred option as subsequent treatments, making it likely to be 

unfeasible to emulate the RECORD-3 study using Flatiron data. Despite sorafenib's short-lived 

endorsement as a first-line treatment in previous NCCN guidelines, it is no longer recommended. 

Consequently, emulating the SWITCH I and SWITCH II trials using Flatiron data may not be feasible 

because of potentially limited sample size, given that sorafenib is a part of both trials' treatment 

sequences. Additionally, the NCCN guidelines confined the use of sorafenib to certain patient groups, 

irrespective of the treatment lines. This might result in a smaller overlap of patient characteristics 

between those who had a treatment sequence involving sorafenib and those who received sequences 

with sunitinib or pazopanib in real-world settings. This situation could pose challenges in employing 

causal inference methods for Target Trial emulation, as outlined in Chapter 4. 

In conclusion, while the three mRCC trials have appealing qualities, emulating their treatment 

sequences may be challenging due to the limited sample sizes available in Flatiron data. 
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6.7. Summary of final decision on benchmark trials 

For both databases, I concluded that the breast cancer trials (i.e. BIG 1-98173,328, TEAM324,500), 

CRC trials (i.e. REVERCE479, COMETS480), the NSCLC trial GFPC 0504501, and the ovarian cancer 

trial MITO-8502, are not appropriate benchmarks for my case studies aimed at methodology 

development. To begin with, the two breast cancer trials are suboptimal because they primarily 

involve patients with early-stage cancer, necessitating the emulation of an extended follow-up period 

of exceeding five years. However, the evaluated data sources are unlikely to offer adequate follow-

up durations. Utilising data with limited follow-up times can lead to insufficient number of events for 

survival estimates, resulting in immature estimates during the emulation process. Additionally, these 

trials had significant issues regarding non-adherence and violations of post-randomisation treatment 

assignment. These issues further complicated the statistical analysis and rendered them unsuitable as 

a benchmark for assessing methodologies.  

The CRC trials479,480 are unsuitable as they specifically enrolled patients who had previous 

treatment experience prior to receiving the treatment sequences in the trials. Establishing consistent 

definitions for non-treatment-naïve patients in both the benchmark and its emulation is challenging, 

the pre-treatment regimens in these trials may not match those used in the NHS. This situation creates 

unresolvable disparities between the benchmark and its intended emulation, which should ideally be 

minimised when selecting a benchmark. Even if the earlier treatments were available within the NHS, 

emulating trials focusing on non-treatment-naïve patients requires additional considerations such as 

incorporating prevalent new-user design524, which may further complicate the emulation process.  

The NSCLC trial GFPC 0504501, which took place in the mid-2000s, did not stratify patients 

based on their EGFR mutation status, which diverges from the established norm over the last decade, 

where NSCLC treatments are tailored to align with patients’ EGFR status. Consequently, 

characteristics of patients subjected to the same treatment sequence in the GFPC 0504 trial and recent 

clinical practice are anticipated to exhibit considerable differences. Therefore, attempting to replicate 

the GFPC 0504 trial may unavoidably yield incomparable results, rendering it less ideal as a 

benchmark. Emulating MITO-8 trial502 in ovarian cancer has unique challenges due to the interim 

trial-design amendments made to address drug shortages. The impact of these amendments remains 

uncertain, making MITO-8 unsuitable as a benchmark. 

Of the remaining studies, the emulation of the pancreatic cancer trials (i.e., FFCD 0301503, AIO-

PK0104504) and two mRCC trials (i.e., SWITCH-I174 and SWITC-II175) were expected to have very 

small sample sizes, regardless of the database used , as the corresponding treatment patterns are absent 

in real-world clinical practice. Conversely, GUTG-001 trial84 for prostate cancer and the RECORD-

3 trial86,406 for mRCC stoodd out as appealing benchmarks as they feature treatment sequences that 

align with those utilised in real-world clinical practice. Additionally, they provided extensive reports, 
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well-defined sequential treatment design, and did not encounter any unexpected protocol amendments. 

Emulating the GUTG-001 trial in a US context was deemed highly feasible, but not in England 

due to the NHS’s restriction on the sequential use of abiraterone and enzalutamide. In the case of 

RECORD-3, emulating both study arms is unattainable, regardless of data sources, as everolimus has 

not been recommended as a first-line treatment in either England or the US (i.e. impossible to emulate 

the sequence of everolimus  sunitinib). Nonetheless, it might be feasible to capture the alternate 

treatment sequence in RECORD-3, where everolimus was used as a second-line treatment (i.e., 

sunitinib  everolimus), through the use of the NCRAS database. The Flatiron database, on the other 

hand, may have limited sample size for the same sequence due to everolimus not being a preferred 

treatment in the US.  

Given the English emphasis of my PhD, even though the original goal of this review was to 

pinpoint potential benchmarks that allow both arms of the trials to be emulated, I also ended up 

considering the prospect of single-arm trial emulation case studies. This shift was prompted by the 

likelihood that the sequence of sunitinib  everolimus in RECORD-3 might be the sole sequence 

among all potential benchmarks that can be emulated using English data and still generate a 

sufficiently large sample size. The implications of emulating single-arm trials, specifically regarding 

TTE approaches and statistical methods, are detailed in my study protocol (Chapter 7). 

In conclusion, the GUTG-001 and RECORD-3 trial have proven to be pertinent benchmarks for 

my case studies.84,86 Even though the emulation of the GUTG-001 trial through Flatiron data 

disqualifies it as a “direct benchmark” in an English context (but it does qualify in an US context), it 

nonetheless retains value as an “indirect benchmark”. This is made possible by exploiting shared 

treatment sequences for mCRPC in both the US and England, leading to the innovative design of a 

series of correlated Target Trial emulations. For details of this design, see Section 7.5.3, Chapters 7. 

On the other hand, the RECORD-3 trial has proven to be a valuable “direct benchmark” in the English 

context, despite the limitation of only being able to emulate a single-arm of the trial using NCRAS. 

For a comprehensive understanding of how the single-arm emulation study was conceptualised, 

please refer to Section 7.5.4, Chapter 7. The subsequent concluding section of this chapter provides 

a concise overview of the disease demographics in the two chosen benchmark trials, as well as the 

clinical insights provided by the oncologists. 

6.8. Summary of disease demographics of the chosen benchmark trials 

This section provides a concise review of the disease demographics for the benchmarks 

identified in Section 6.7. Specifically, Section 6.8.1 details the characteristics of mCRPC in both 

England and the US (Flatiron population). In Section 6.8.2, I outline the disease demographics for 

mRCC in England. Additionally, I have included valuable insights from clinical experts. 
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6.8.1. mCRPC 

England   

Every year in England, there is an estimated annual incidence of approximately 6,000 newly 

diagnosed cases of metastatic prostate cancer.525 According to Dr. Carmel Pezaro, prostate cancer 

patients commonly undergo castration therapy upon diagnosis, which can be achieved through 

surgical castration (i.e., bilateral orchiectomy) or medical castration (i.e., lifelong androgen 

deprivation therapy (ADT)). Professor Derek Rosario further suggested that surgical castration 

represents a very small fraction of patients who require castration therapy. Life-long androgen ADT 

involves the use of luteinising hormone-releasing hormone (LHRH) agonists or antagonists, also 

known as gonadotrophin-releasing hormone (GnRH) agonists or antagonists, such as padeliporfin. In 

the event that a patient's prostate cancer continues to grow despite undergoing castration therapy, they 

will be categorised as having CRPC. The duration it takes for the transition from castration-sensitive 

(hormone-sensitive) to castration-resistant (hormone-relapse) status varies among individuals. 

Around 28% of prostate cancer patients may develop castration-resistant prostate cancer (CRPC), as 

suggested by an English epidemiology study.526 Prostate cancer patients are predominantly under the 

care of oncologists. Nevertheless, patients who exclusively undergo ADT may primarily receive 

management from GPs following their initial treatment. 

Appendix 6.1 presents a summary of all the published TAs associated with the management of 

mCRPC between 2006-2020. Since 2006, Docetaxel has been accessible as a first-line treatment for 

treatment-naïve patients with mCRPC within the NHS, whereas abiraterone and enzalutamide, two 

androgen receptor-targeted agents (ARTA), have been available for the same indication since 

2016.126,127,513 Since 2012 and 2014, respectively, abiraterone and enzalutamide have been introduced 

as second-line therapy options in the NHS for the treatment of patients with mCRPC who have 

previously undergone docetaxel treatment.448,514,527 Prior to the introduction of abiraterone and 

enzalutamide, docetaxel therapy served as the sole standard treatment for patients with mCRPC. Since 

2016, Cabazitaxel has been included as an alternative second-line treatment option in the treatment 

pathway, exclusively for patients who have previously received docetaxel therapy.237 Additional 

treatment options for patients at a later phase of mCRPC are available. Radium-223 has been 

approved since 2016 for patients with bone metastases528, while olaparib remained under review by 

NICE as of June 2021. 

Importantly, the English standard practice does not allow for the sequential use of abiraterone 

and enzalutamide, as mentioned earlier.527 However, Dr. Carmel Pezaro confirms that if patients 

experience severe adverse events (such as toxicity) with either drug, they can switch to the other agent 

without it being considered as disease progression at that time. Such switching typically occurs within 
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three months of treatment initiation, while switching after three months may indicate disease 

progression. 

Additionally, the prostate cancer treatment landscape has evolved, integrating additional 

systematic treatments alongside ADT at earlier stages before developing metastasis or castration-

resistance. Treatments beyond the scope of mCRPC now include enzalutamide, daralutamide, and 

apalutamide in combination with ADT for non-metastatic castration-resistant prostate cancer 

(nmCRPC) (approved in 2019, 2020, and 2021, respectively).249,529-531 For newly diagnosed 

metastatic hormone-sensitive prostate cancer (mHSPC), treatment options have expanded to include 

docetaxel495,532, enzalutamide (available through CDF since 2021)533, apalutamide (available through 

CDF since 2022)534, and darolutamide (available through CDF since 2023 for patients ineligible for 

chemotherapy with docetaxel).531,535 Key clinical trials comparing ADT alone to ADT combined with 

docetaxel in treating mHSPC were conducted from 2004 to 2013, including the GETUG-AFU15 

(France)536,537, the CHAARTED (US)538, and the STAMPEDE (UK).539,540 The results of these studies, 

published between 2013 and 2019, were inconsistent regarding the benefits of upfront docetaxel and 

the specific mHSPC patient subgroups that might benefit from it, leading to varied adoption timelines 

across different medical practices for the use of docetaxel in treating mHSPC.   

Reflecting on these recent treatment advancements, our oncologist Dr. Pezaro noted that patients 

now receiving abiraterone or enzalutamide as first-line treatments for mCRPC might have previously 

undergone other treatments like docetaxel when their cancer was castration-sensitive. Dr. Pezaro 

suggested that this trend in treatment strategy likely became more apparent after 2016-2017, 

following publication of UK-based STAMPEDE trial results.539,540 The widespread use of 

medications in England depends not only on the UK Medicines and Healthcare Products Regulatory 

Agency (MHRA) approval but also on recommendations from NICE. Consequently, treatments other 

than docetaxel as upfront treatment prior to the development of mCRPC did not become widely 

adopted until after 2021. In rare cases, docetaxel may be re-administered upon disease relapse while 

receiving abiraterone or enzalutamide for mCRPC (i.e., docetaxel for hormone-sensitive prostate 

cancer  abiraterone/enzalutamide for mCRPC   re-administration of docetaxel for mCRPC). 

Identifying castration-resistant patients in NCRAS data can be challenging due to the absence 

of a variable documenting the date of patients becoming castration-resistant. Dr. Pezaro suggested 

that the emergency use of certain drugs in England upon the onset of castration resistance could serve 

as a potential proxy indicator, although it is uncommon. These drugs include non-standard treatment 

options like maximal ADT541, which involves adding an additional androgen receptor (e.g., 

bicalutamide) to the standard ADT (e.g., leuprorelin, cetrorelix). Another option is adding low-dose 

dexamethasone. Professor Derek Rosario seconded these statements but highlighted the potential 

uncertainty surrounding the full documentation of emergency drug usage in NCRAS data. Inclusion 
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of such information, even if available, may result in the identification of a distinct group of patients, 

given the variability in treatment preferences among different physicians without a defined standard 

practice. 

Given that my case study designs were formulated during the COVID-19 pandemic; it is 

important to acknowledge certain limitations associated with utilising retrospective data. Professor 

Rosario noted that docetaxel was not recommended for prostate cancer patients since the COVID-19 

outbreak around mid-2020, while abiraterone emerged as a preferred treatment option. Hence, my 

case studies designed to utilise NCRAS data from 2012-2018/2019 may not accurately depict the 

current or future treatment patterns, specifically those influenced by the COVID-19 situation. 

However, this does not hinder the trial emulation for benchmarking, as once methodologies are 

validated, they can be applied to answer questions in a more generalised population, such as those 

involving post-COVID clinical practice. 

US (Flatiron population) 

In the US, the treatment options for prostate cancer are generally similar to those in England, 

with one significant difference being the ability to use abiraterone and enzalutamide in a sequential 

manner. A publication based on Flatiron data indicated that the primary treatment sequences for 

prostate cancer in the US during 2013-2017 were abiraterone followed by enzalutamide or the reverse 

sequence.437  

Additionally, while abiraterone and enzalutamide have been approved by the US FDA for 

hormone-sensitive prostate cancer447,542, NICE was still evaluating this indication when I submitted 

my case study protocol to ODR for applying NCRAS data in June 2021. As mentioned earlier, NICE 

later approved enzalutamide for mHSPC in 2021, but not abiraterone. 

Flatiron data experts were consulted during the data application process. Their preliminary 

analysis, indicated that their database could capture approximately 600 mCRPC patients who were 

treated with abiraterone followed by enzalutamide, as well as around 400 mCRPC patients who 

received enzalutamide followed by abiraterone. As of the data cut-off on March 31, 2019, a total of 

4,000 metastatic prostate cancer patients were identified as having received a first-line treatment, and 

among them, 1,700 patients had undergone a second-line therapy. Based on this information, I 

concluded that the sample size for my case study using Flatiron data is likely to be sufficient. In 

particular, one aspect of my emulation involves a scenario analysis that would increase the number 

of participants in each group, which involves including patients who were initially treated with either 

abiraterone or enzalutamide as their first-line therapy, but unfortunately, they passed away without 

undergoing any further treatments. For further insight into the rationale behind this particular design, 

please refer to Chapter 7. Consequently, I proceeded with the data application process. 
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6.8.2. mRCC 

Each year in the UK, an estimated 13,000 new instances of kidney cancer are reported based on 

data from 2015 to 2017.543 The majority of these patients (exceeding 80-90%) are diagnosed as 

RCC.525  In England, approximately one out of every four RCC patients is initially diagnosed at an 

advanced stage, and at the time of diagnosis, 25-34% of RCC patients already have metastases (i.e. 

mRCC).543,544 Approximately 75% of advanced-stage RCC patients are considered eligible to 

commence a first-line systematic cancer treatment. 545  

Appendix 6.2 presents a summary of all the published TAs associated with the management of 

mRCC between 2009-2020. Currently, the primary treatment options for patients with mRCC are 

targeted therapy, such as TKIs (drugs ending with –nib), and immunotherapy (drugs ending with –

mab), including Programmed Cell Death Protein 1 (PD-1) inhibitors and Programmed Cell Death 

Ligand 1 (PD-L1) inhibitors. Since 2009 and 2011, Sunitinib and pazopanib have been recommended 

as the first-line treatment options for patients with mRCC in the NHS, respectively.498 Tivozanib and 

cabozantinib were introduced as additional first-line treatment options for mRCC starting in 2018. In 

contrast, the regimens of nivolumab plus ipilimumab (since 2019), and avelumab coupled with 

axitinib (since 2020), have been exclusively accessible as first-line treatments via the CDF. 520 The 

NHS has adopted the following treatments for mRCC patients who are in need of second-line or later-

line therapies: axitinib (from 2015), nivolumab (from 2016), everolimus (from 2017, previously only 

available through CDF), cabozantinib (from 2017), and the levatinib-everolimus combination (from 

2018).520   

Professor Janet Brown stated that in England, before targeted therapy and immunotherapy 

became widespread, approximately 10-15% of patients with less advanced cancer were treated with 

interferon-alpha before receiving any other systemic anti-cancer therapies. Additionally, everolimus 

has been shifted from second-line treatment to later stages of treatment (third or fourth-line treatment) 

in recent years for patients with an Eastern Cooperative Oncology Group (ECOG) score below 2. 

This adjustment reflects the lack of substantial survival benefits of everolimus and instead emphasises 

its role in improving patients' quality-of-life.  

Professor Brown clarified that there is no standardised adjuvant therapy for mRCC patients, 

indicating that systematic therapy may or may not accompany surgical interventions before 

metastases appear.546 She added that patients who are suitable for operations like nephrectomy, and 

those who do not rapidly develop metastases post-nephrectomy, usually have a more favourable 

prognosis. Specifically, these patients are typically deemed healthy enough to undergo surgical 

interventions at the first place. Conversely, elevated calcium levels in patients typically indicates a 

poorer prognosis. 

Professor Brown further suggested that patients with mRCC who remain in good health 
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conditions (i.e. desirable performance status) may receive up to 5 or 6 lines of treatment with each 

subsequent relapse. However, a significant proportion (roughly 40-50%) of mRCC patients receive 

only three lines of treatment before death. This can be attributed to either their frailty preventing 

further treatment upon disease progression or mortality occurring before subsequent treatments. The 

introduction of newer treatment options, particularly cancer immunotherapies since 2016, has 

significantly improved the overall survival (OS) of mRCC patients.547 Previously, patients who 

receiving only TKIs had an OS range of 1-2 years up to 4-5 years after being diagnosed. 

6.9. Chapter overview 

This chapter systematically reviewed and assessed existing oncology trials that randomised 

patients to different treatment sequences, evaluating their potential as benchmarks for conducting 

proof-of-concept studies that aim to assess the feasibility using RWD to derive unbiased effectiveness 

estimates for comparing treatment sequences. Two trials, GUTG-00184 and RECORD-386, were 

identified as pertinent, each with its own limitations. Specifically, the treatment sequences in GUTG-

001 are not standard practice in England and thus can serve only as an indirect benchmark for 

validating in English NCRAS database, supported by proof-of-concept studies conducted with 

Flatiron data. Further, only one sequence from the RECORD-3 trial can be captured in English 

NCRAS, making it a direct benchmark only as a single-arm trial. These findings led to the design of 

a series of interconnected case studies in Chapter 7.
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Chapter 7 Leveraging real-world data to assess treatment sequences in HTA: 

A Target Trial Emulation protocol using the English Cancer 

Registry and US Flatiron Health Database 

7.1. Chapter overview (Chang et al. (2024) in SCHARR HEDS Discussion Paper Series) 

This chapter presents a protocol of a series of case studies that were designed to assess the 

feasibility of leveraging real-world data (RWD) as an alternative means for generating reliable, 

unbiased effectiveness estimates for treatment sequences. The protocol was published as a SCHARR 

HEDS Discussion Paper (24.01) under a Creative Commons Attribution-NonCommercial-

NoDerivatives (CC BY-NC-ND) 4.0 License.170 This allows the following sections (Section 7.2 to 

7.6) to present the published version, with text format and article numbering adjusted to fit the thesis 

format. Additionally, the article's bibliography has been integrated into the thesis bibliography. Minor 

changes were made to the published protocol for inclusion in the thesis chapter to improve clarity 

based on PhD examiners' comments, but no major alterations to the protocol were made.   

Section 7.2 provides an overview of the structure of the publication. For publication readiness, 

the protocol offers a concise overview of treatment sequence evaluation in health technology 

assessments (HTA) and highlights the role of the Target Trial Emulation (TTE) approach3 in 

addressing the challenge of scarce clinical evidence for comparing treatment sequences. Specifically, 

Section 7.3 serves as a concise overview of the background and significance of the evidence scarcity 

issue, revisiting themes initially introduced in Chapters 1 to 3. It also recaps the role of benchmarking 

in designing proof-of-concept case studies and the selection of candidate databases, which were 

discussed in more detail in Chapters 6 and 5, respectively. Section 7.4 further highlights the planned 

case studies’ significance, not only in tackling the evidence scarcity in comparing treatment sequences 

in HTA but also in their broader relevance to TTE research. Section 7.5 delves into the actual case 

study design, incorporating key concepts of causal inference and the TTE framework introduced in 

Chapter 1 (Section 1.4), alongside the role of advanced statistical methods from Chapter 4. Section 

7.6 discusses data acquisition considerations. Sections 7.5 and 7.6 also provide the rationale behind 

these decisions. Finally, the chapter concludes with a summary of the protocol's contribution to the 

thesis in Section 7.7. 
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Abstract 

Background 

Considering the sequence of treatments is vital for optimising healthcare resource allocation, 

especially in cancer care, where sequence changes can affect patients’ overall survival and associated 

costs. A key challenge in evaluating treatment sequences in health technology assessments (HTA) is 

the scarce evidence on effectiveness, leading to uncertainties in decision making. While randomised 

controlled trials (RCTs) and meta-analyses are viewed as the gold standards for evidence, applying 

them to determine the effectiveness of treatment sequences in economic models often necessitates 

making arbitrary assumptions due to insufficient information on patients' treatment histories and 

subsequent therapies. In contrast, real-world data (RWD) presents a promising alternative source of 

evidence, often encompassing details across treatment lines. However, due to its non-randomised 

nature, estimates of the treatment effectiveness based on RWD analyses can be susceptible to biases 

if not properly adjusted for confounding factors. 

To date, several international initiatives have been investigating methods to derive reliable 

treatment effects from RWD — by emulating Target Trials that replicate existing RCTs (i.e. 

benchmarks) and comparing the emulated results against the benchmarks. These studies primarily 

seek to determine the viability of obtaining trial-equivalent results through deploying specific 

analytical methodologies and study designs within the Target Trial emulation framework, using a 

given database. Adopting the Target Trial emulation framework facilitates the analyses to be operated 

under causal inference principles. Upon validation in a particular database, these techniques can be 

applied to address similar questions (e.g., same disease area, same outcome type), but in populations 

lacking clinical trial evidence, leveraging the same RWD source.  

Studies to date, however, have predominantly focused on the comparison of individual 

treatments rather than treatment sequences. Moreover, the majority of these investigations have been 

undertaken in non-English contexts. Consequently, the use of RWD in evaluating treatment sequences 

for HTA, especially in an English setting, remains largely unexplored. 

Objectives 

The goal of this project is to investigate the feasibility of leveraging RWD to produce reliable, 

trial-like effectiveness estimates for treatment sequences. We aim to assess the capability of two 

oncology databases: the US-based Flatiron electronic health record and the National Cancer 

Registration and Analysis Service (NCRAS) database of England. To achieve this, we plan to harness 

the Target Trial Emulation (TTE) framework for replicating two existing oncology RCTs that 

compared treatment sequences, with the intent of benchmarking our results against the original 
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studies. Further, we aim to detail the practicalities involved with implementing TTE in diverse 

databases and outline the challenges encountered. 

Methods 

1. We aim to emulate existing RCTs that compare the effect of different treatment sequences by 

constructing the study design and analysis plan following the TTE framework. Specifically, the 

following case studies are planned: 

(1) Prostate cancer case study 1 (PC1) - US direct proof-of-concept study (method direct 

validation): replicating the GUTG-001 trial using Flatiron data  

(2) Prostate cancer case study 2 (PC2) - US-England bridging study (method extension): 

emulating Target Trials that compare treatment sequences that have been common in 

England using Flatiron data 

(3) Prostate cancer case study 3 (PC3) - English indirect proof-of-concept study (method 

indirect validation): emulating the same Target Trial in PC2 using English NCRAS data 

(4) Renal cell carcinoma case study (RCC) - method direct validation in a single-arm setting: 

emulating the sunitinib followed by everolimus arm in the RECORD-3 trial using English 

NCRAS data 

2. We will compare results of the emulated Target Trials with those from the benchmark trials. 

3. We plan to compare different advanced causal inference methods (e.g. marginal structural 

models using IPW and other g-methods) in estimating the effect of treatment sequences in 

RWD.  

Expected results 

This study will provide evidence on whether it is feasible to obtain reliable estimates of the 

(comparative) effectiveness of treatment sequences using Flatiron data and English NCRAS data. If 

applicable, we intend to develop a framework that provides a systematic way of obtaining the 

(comparative) effectiveness of treatment sequences using RWD. It is possible that the data quality is 

insufficient to emulate the planned Target Trials. In this case, we will report reasons for the 

implausibility of data analysis. If applicable, we will make suggestions to whether the national health 

data collection may be enhanced to make the analyses possible. The results of this study will be 

submitted to peer-reviewed journals and international conferences.   
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7.2. Overview 

This protocol outlines a series of proof-of-concept case studies focusing on evaluating the use 

of real-world data (RWD) for making informed decisions in health technology assessment (HTA), 

particularly in the context of treatment sequences. The protocol begins in Section 7.3 by underscoring 

the importance of evaluating treatment sequences in HTA and discussing the opportunities and 

challenges in leveraging RWD. We describe the Target Trial Emulation (TTE) approach with 

benchmarking as a means to assess the feasibility of deriving reliable estimates from RWD, and 

specify RWD sources for investigation. We then lay out the primary objectives of the project.  

In Section 7.4, we elaborate on the project's significance and relevance to pertinent research. 

Section 7.5 presents a detailed Analysis Plan for the Target Trial Emulation case studies. Finally, 

Section 7.6 details the data requirements necessary for the study. 

7.3. Background  

7.3.1. Evaluating treatment sequences in health technology assessments  

With an ever-increasing number of treatment options, the significance of evaluating treatment 

sequences within HTA has become apparent. Specifically, changing the order of treatments can 

introduce variability in the overall effectiveness and costs associated with managing a disease, making 

the assessment of treatment sequences—as opposed to a single line of therapy—vital in HTA 

wherever relevant.1,2,8  

Despite established frameworks for modelling treatment sequences in health economic 

evaluations, challenges persist, particularly the scarcity of data on the effectiveness of treatment 

sequences.1,9,34,35 Although clinical trials are considered the “gold standard” in evidence, they rarely 

assess the impact of sequences, focusing instead on the efficacy/effectiveness of a single line of 

treatment (LOT). Given the scarcity of trials comparing treatment sequences, analysing RWD offers 

a promising avenue to determine the (comparative) effectiveness of sequential treatment strategies, 

thereby supporting more informed clinical and economic decision-making. 

7.3.2. Assessing the sequencing effect using rea-world data 

The use of RWD is advantageous not only for its capability to capture sequencing information, 

but also for offering larger, more generalisable sample sizes compared to clinical trials. However, the 

lack of random treatment allocation in routine practice necessitates careful study design and statistical 

analysis to avoid biased results548, notably due to confounding from factors that affect both treatment 

choices and outcomes, such as disease severity. While existing guidelines discuss RWD's utility for 

HTA and methods for estimating treatment effectiveness from RWD, none of them explored methods 

for comparing treatment sequences.39,40  
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To effectively harness RWD for evaluating the causal effects of different treatment sequences—

a form of time-related static treatment strategies or dynamic treatment strategies5—, it is crucial to 

employ advanced causal inference methods like marginal structural models with inverse probability 

weighting (IPW) and other G-methods for ensuring a “fair comparison” across patients receiving 

different treatment sequences (i.e., achieving balanced patient characteristics between treatment 

groups, and addressing time-varying confounding).5,58,279 Moreover, the successful application of 

these statistical methods often hinges on the availability of  adequate data and relevant variable 

information. 

Our project, in response to the absence of established guidelines, aims to determine the 

feasibility of applying the aforementioned methods to real-world datasets, especially local ones, to 

reliably estimate the effectiveness of treatment sequences in the context of supporting decision-

making by the National Institute for Health and Care Excellence (NICE). Specifically, The National 

Cancer Registration and Analysis Service (NCRAS) database for England82 and the US Flatiron 

Electronic Health Records (EHR)-Derived database85 were identified as promising data sources for 

our initial investigations. More detailed information and the rationale behind choosing these databases 

are provided in Section 7.3.4. 

7.3.3. Target Trial Emulation and benchmarking 

In addition to advanced statistical methods, the TTE framework, proposed by Hernan et al.3, 

emerged as valuable tool for structuring observational studies aimed at answering causal questions. 

The framework’s significance lies in facilitating adequate designs of observational studies, enhancing 

transparency, thereby further mitigating biases inherent in study designs (which may not be fully 

rectifiable through statistical methods alone), such as selection bias and immortal time bias. The 

framework is based on the idea of designing an observational study as a hypothetical Target Trial3, 

had such a trial been implementable, and then explicitly emulating this Target Trial using RWD. A 

standard Target Trial protocol consists of seven key components to resemble the setting of a 

randomised controlled trial (RCT), including eligibility criteria, intervention strategies being 

compared, intervention assignment, follow-up period, outcomes of interest, causal contrasts of 

interest, and analysis plan.  

Several initiatives have launched benchmarking studies to determine how effectively the TTE 

approach can be used within specific real-world datasets to answer causal questions, especially before 

applying it to other questions in comparable settings.172,476 These benchmarking studies attempted to 

replicate the designs and results of existing clinical trials (i.e., benchmark trials) through emulating 

Target Trials using RWD, including applying the same (or as far as possible) patient 

inclusion/exclusion criteria and analytical methods to achieve the emulation. Theoretically, if a Target 
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Trial is correctly specified, estimates derived from RWD may be comparable to those from a 

benchmark trial, providing a validated means to derive reliable real-world evidence (RWE). However, 

a review highlights that disagreements between observational studies and RCTs can arise for various 

reasons, with the specific causes often being indeterminable.382 Nevertheless, improved 

benchmarking can be achieved, had an observational study explicitly aimed to emulate a Target 

Trial.382  

Building on this concept, our study will employ a similar strategy to assess the applicability of 

advanced statistical methods in generating reliable RWE for HTA decisions involving treatment 

sequences. Specifically, in the current study protocol, we outline the design of a series of 

benchmarking case studies following the TTE framework aiming to replicate the effectiveness 

estimates from several RCTs comparing treatment sequences84,86,324,328 (Section 7.5 Analysis Plan). 

We will compare our findings with those from benchmark RCTs, assessing the potential of RWD to 

successfully mimic their results. The design of our TTE analyses (Table 7.1-7.3) references the 

published protocol structures of the RCT DUPLICATE case studies.471,472 

In developing the protocol of our study, we conducted a systematic review to identify candidate 

benchmark trials, focusing on RCTs that explicitly randomised patients to receive different 

predetermined treatment sequences. Our study settled on two oncology trials: the prostate cancer trial, 

GUTG-001, and the renal cell carcinoma (RCC) trial86,406 RECORD-384.  Due to the extensive nature 

of the review, we will provide the detailed rationale in a separate publication. 

7.3.4. The English NCRAS database and the Flatiron database 

Our study focuses on implementing the benchmarking studies using two oncology databases: 

the NCRAS database for England and the Flatiron database. NCRAS, a part of England’s National 

Disease Registration Service (NDRS), coordinates aggregated information from cancer registries 

across England, Northern Ireland, and Scotland at the UK level, with regional authorities facilitating 

access to patient-level data. Additionally, NCRAS oversees the patient-level cancer registry data in 

England.387 Researchers can access the English Cancer Registry with linkage to a selection of non-

cancer specific National Health Service (NHS) England datasets through NHS England's DARS (Data 

Access Request Service). The application was previously managed by the Office for Data Release, 

Public Heath England. The English Cancer Registry provides detailed data on NHS England’s cancer 

patients, including important prognostic factors, such as tumour stages, sizes, and patient performance 

status at the time of diagnosis. Enhancing this, the registry can be linked with other NCRAS datasets, 

such as the Systemic Anti-Cancer Therapy (SACT) dataset390, which provides extensive information 

on cancer treatments, including those under the Cancer Drugs Fund (CDF). Additionally, its viable 

linkage with NHS hospital records (i.e., Hospital Episode Statistics (HES)), allows for a thorough 
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understanding of patients' medical histories.  

The Flatiron database, a US-based EHR-derived database focused on oncology care, provides 

detailed diagnostic and treatment records of patient visits as well as laboratory results.85 It combines 

structured and (machine learning assisted) manually abstracted unstructured data, making it a 

comprehensive resource for oncological research. Despite being US-based, the Flatiron database was 

included in our study for its potential of more timely data access, diverse patient demographics (across 

the US) potentially overlapping with the English population, and its capability to capture treatment 

sequences relevant to the GUTG-001 trial, which are less common in the UK. This choice facilitates 

the design of our benchmarking study protocol, tethered to the identified benchmark trials, as detailed 

in Section 7.3.5 and Section 7.5. Furthermore, NICE has partnered with Flatiron Health to explore 

the use of RWE in improving the assessment of health technologies' clinical and cost 

effectiveness.83,549,550 An example of this is the use of Flatiron's data to supplement clinical trial 

information in a recent NICE technology appraisal (TA).551 

7.3.5. Summary of project aims 

In summary, this project aims to examine the feasibility of using the English NCRAS data and 

the Flatiron data to obtain reliable effectiveness estimates of treatment sequences in prostate cancer 

and RCC. The aim of this project will be achieved through completing the following objectives.  

1) To emulate existing RCTs that compare the effect of different treatment sequences by 

constructing the analyses plan following the Target Trial framework. 

2) To compare results of the emulated Target Trials with those from the benchmark trials. 

3) To compare different advanced causal inference methods (e.g. marginal structural models with 

IPW and other g-methods) in estimating the effect of treatment sequences in RWD. 

4) To detail the practical aspects of implementing TTE across different databases and to describe 

challenges encountered. 

Ultimately, our goal is to leverage the insights from this project to create a systematic framework 

for generating evidence on the effectiveness of treatment sequences using RWD, particularly in the 

context of health economic evaluations. In the event that benchmarking proves to be infeasible, our 

focus will shift to providing detailed insights into the practicality of implementing TTE with these 

databases. This includes an exploration of the challenges encountered, the reasons behind any 

limitations, and potential areas for improvement and future research. 

7.4. Significance of this study  

The significance of this study lies in its potential to expand upon relevant existing research 

conducted by several initiatives, including the US Food and Drug Administration (FDA) funded RCT 

DUPLICATE and the pharmaceutical industry-sponsored OPERAND.172,471,474,476,552 These 
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initiatives have been focusing on replicating clinical trial results using RWD within highly structured 

frameworks designed to mimic clinical trials.172,476 RCT DUPLICATE, initiated in 2018 under the 

21st Century Cures Act, seeks to inform the use of RWE studies in regulatory decisions. It leverages 

the Target Trial Emulation approach to assess the real-world effectiveness of medical products and 

benchmark them against a large number of RCTs.471,553 OPERAND, in contrast, explores how 

treatment effect estimates might differ when the stringent eligibility criteria of RCTs are relaxed. To 

our knowledge, these studies have primarily focused on cardiovascular diseases and utilised US 

claims databases (e.g. Medicare), without attempting to assess the feasibility of estimating the 

comparative effectiveness of treatment sequences.  

Our project stands out by seeking to replicate results from sequential treatment trials using data 

from the English Cancer Registry and the Flatiron EHR-derived database. This approach is expected 

to enhance the findings from previous large-scale initiatives in several ways. Firstly, it will evaluate 

different causal inference methods specifically for emulating sequential treatment trials using RWD 

and benchmark them against existing trials. Secondly, the project will demonstrate the utility of 

observational data as an alternative source of evidence in health economic evaluations, particularly 

for modelling treatment sequences. Specifically, it could pave the way for establishing a systematic 

framework for deriving reliable (i.e. trial-mimicking) comparative effectiveness estimates for 

sequential treatments, addressing a key challenge in sequence evaluation in HTA. Thirdly, the project 

aims to improve user experience and enhance the use of English NCRAS data in future HTA. 

Furthermore, part of the project (i.e. prostate cancer benchmarking studies) will compare the 

emulation of the same Target Trials using the US-based Flatiron database versus the English NCRAS 

database, as outlined in Section 7.5 Analysis Plan). This comparison will offer insights into the 

differing treatment patterns for prostate cancer in the US and England, and how they may affect the 

emulation. For example, sequential use of abiraterone and enzalutamide is not permitted in England527, 

but they are key first and second-line treatments in the US437, as a recently study using Flatiron data 

shows.437 The global debate over the benefits of this sequence is ongoing.105,515,516,554-557 

Based on a recent systematic review focusing on treatment sequences in prostate cancer 

conducted by the Canadian Agency for Drugs and Technologies in Health (CADTH)555, it seems that 

docetaxel-containing treatment sequences with androgen receptor-targeted agents (ATRA) (i.e. 

abiraterone, enzalutamide) may improve progression-free survival (PFS) compared to sequential 

therapy with ATRA alone in castration-resistant prostate cancer (CRPC) patients. However, none of 

the studies included evidence from England and studies included were all retrospective, and therefore, 

should be interpreted with caution. In addition, no published cost-effectiveness studies were found 

explicitly comparing different treatment sequences in prostate cancer, despite the interest of decision 

makers in this. The results of our study will supplement the understanding of these topics using the 
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English cancer registry data to provide English-based effectiveness estimates. Additionally, our 

analyses will provide insights on whether conducting similar Target Trial analyses using different 

observational data sources (i.e. English NCRAS data and US Flatiron data) may require modifications 

in defining important variables (e.g. definition of progression using retrospective data) and/or result 

in contrasting final results. We will also explore the strengths of each database in informing HTA 

treatment sequencing decisions in England, identifying potential areas for improvement, especially 

within the local database (NCRAS). 

7.5. Analysis Plan  

7.5.1. Overview 

This section is structured into four parts. Firstly, we introduce the scope of the section and 

provide a brief overview of the structure for each set of Target Trial case studies. This is followed by 

exploring considerations associated with applying causal inference methods for Target Trial analyses 

using English NCRAS and Flatiron data in Section 7.5.2. Subsequently, we present detailed plans for 

our two sets of sequential treatment Target Trial case studies in prostate cancer (Section 7.5.3: case 

studies PC1, PC2, and PC3) and RCC (Section 7.5.4: case studies RCC1 and RCC2).  

Each case study set begins with an introduction to the benchmark trials (GUTG-00184 and 

RECORD-386,406) and summarises the demographics of cancer patients in the UK/England and the 

US, assessing the treatment sequences used in NHS and US clinical practice. This is followed by a 

detailed presentation of the planned Target Trials, featuring a table summarising their seven key 

components. Primary outcomes in all case studies focus on time-to-event outcomes, particularly the 

overall survival (OS) of patients receiving specific treatment sequences. At the end of each case study 

set, we assess whether the NCRAS and Flatiron data offer a sufficient sample size for our planned 

Target Trials. We will compare the outcomes of our emulated Target Trials with their corresponding 

counterparts in the benchmark trials. Finally, Section 7.5.5 details the criteria for determining the 

agreement between our emulated Target Trials and their corresponding benchmark trials, and Section 

7.5.6 lists the software that will be used for the analyses. 

We acknowledge the scarcity of clinical trials comparing treatment sequences that have been 

conducted in the England, leading to the absence of fully suitable benchmark trials for a proof-of-

concept study with “direct benchmarking” using NCRAS data. Nevertheless, we are confident that 

our systematic review (to be detailed in a forthcoming publication) has identified the best suited 

benchmark trials for our project, despite their limitations. Specifically, PC1 will emulate an Analogue 

Target Trial of the GUTG-001 trial using Flatiron data. This serves as a direct proof-of-concept study 

for comparing treatment sequences using Flatiron data. Depending on PC1's success, PC2 will expand 

the same approach to a broader population and comparison of alternative treatment sequences in 
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prostate cancer that are prevalent in both the US and England. PC2 will continue to use Flatiron data, 

functioning as a method extension study. PC3 will then follow, replicating PC2’s design (i.e., 

Analogue Target Trial of PC2) and analysis but using NCRAS data, thus acting as an indirect proof-

of-concept study for sequence comparison analysis with NCRAS data. Additionally, the RCC case 

studies, constrained to replicating a single treatment sequence from RECORD-3 due to the 

unavailability of the other sequence in England, will nonetheless function as a direct proof-of-concept 

for single-arm studies using NCRAS data. The interconnections between each planned Target Trial 

analyses are illustrated in Figure 7.1 and further elaborated in Section 7.5.3 and 7.5.4.  

In summary, our case study designs creatively overcome the scarcity of direct benchmark trials 

for examining the feasibility of sequencing comparisons with NCRAS data. By leveraging and 

optimising existing, albeit imperfect, benchmarks, we aim to evaluate the feasibility of using NCRAS 

data to support local HTA sequencing decisions in England. 

7.5.2. Considerations of applying causal inference methods in the NCRAS and Flatiron data  

Advanced causal inference methods (i.e. marginal structural models with IPW and other g-

methods) will be applied to mimic the effect of randomisation in analysing RWD through the principle 

of “no unmeasured confounders”. Therefore, it is important to understand if all important prognostic 

factors affecting treatment decisions and outcomes can be well captured in the NCRAS and Flatiron 

data.  For selecting patients, we require basic characteristics (e.g. age, sex) and key tumour prognosis 

factors (e.g. tumour size, tumour histology, tumour stage) and any factors that might influence 

survival at diagnosis and the time of treatment switching. For outcome measures, we need the death 

date of patients (i.e. estimating OS), indication of treatment relapse (i.e. estimating progression free 

survival (PFS)), and factors influencing patients being lost to follow-up (e.g. moving out of the 

country). Details of variables required will be described for each case study. We recognise that some 

desired variables might be unavailable. Thus, a key aspect of the study involves exploring the 

possibility of extracting necessary information from a blend of other related variables, in cases where 

direct mapping is absent. The process of variable selection and operational definition, and the use of 

proxy variables, will be subject to further discussions with clinical experts. 

The principal investigator, JYAC, has experience in analysing disease registry and EHR data. 

Her PhD supervisors, NL and JBC, have extensive experience in research with cancer trial and 

registry data, oncology HTA and prostate cancer screening programs in the UK. They will help 

facilitate project collaborations with clinical experts, including Dr Carmel Pezaro, Professor Derek 

Rosario, and Professor Janet Brown, all part of the project team specialising in prostate and kidney 

cancer treatments. This project may include other statistical experts specialised in g-methods in the 

future in the research team or in post-hoc consultation, if necessary.  
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Figure 7.1 Schematic overview of interrelationships and purposes of each proposed Target Trial Emulation case study 
mPC: metastatic prostate cancer; mRCC: metastatic renal cell carcinoma, TTE: Target Trial Emulation.  

The orange arrows represent the comparison between benchmarks and their emulated counterparts, while the blue arrows indicate the application of validated emulation methods to a 

new population. 

The benchmark  
Data: GUTG-001 trial survival statistics 
Population: GUTG-001 Trial 
Treatments: Abiraterone  Enzalutamide 
                      Enzalutamide  Abiraterone 

PC1. Method validation study 
Data: US Flatiron 
Population: GUTG-001 Trial Analogue  
Treatments: Abiraterone  Enzalutamide  
                       Enzalutamide  Abiraterone 

PC2. Method extension study 
Data: US Flatiron 
Population: mCRPC/Unrestricted mPC patients  
Treatments: Abiraterone  Docetaxel  

               Enzalutamide  Docetaxel 
             Docetaxel  Abiraterone 

                Docetaxel  Enzalutamide 
 

 

PC3. Method indirect validation study 
Data: English NCRAS 
Population: mCRPC/Unrestricted mPC patients 
Treatments: Abiraterone  Docetaxel  
                       Enzalutamide  Docetaxel 
                       Docetaxel  Abiraterone 
                       Docetaxel  Enzalutamide 

Extending the methodology to a different 
population, should it be validated. 

Direct-benchmarking 

Indirect-benchmarking 

The benchmark  
Data: RECORD-3 trial survival statistics 
Population: RECORD-3 Trial 
Treatments: Sunitinib  Everolimus 

            Everolimus  Sunitinib 

Single-arm trial method validation study  
(RCC Target Trial Analysis Set 1) 

Data: English NCRAS 
Population: RECORD-3 Trial Analogue  
Treatments: Sunitinib  Everolimus 
 

(A) Prostate cancer Target Trial Emulation case studies 

(B) Renal cell carcinoma Target Trial Emulation case studies 

Method extension analysis  
(RCC Target Trial Analysis Set 2) 

Data: English NCRAS 
Population: Unrestricted mRCC patients  
Treatments: Sunitinib  Everolimus, and 
other treatment sequences 

Direct-benchmarking Extending the methodology to a different 
population, should it be validated. 
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Furthermore, the application of causal inference methods also relies on the comparison of 

counterfactual pairs. That is, a certain degree of overlap with respect to patient characteristics between 

study groups are required to create a reasonable comparison. Thus, we will assess the overlap of 

patients receiving different treatment sequences and summarise in descriptive statistics. This project 

is also designed to understand the extent to which the completeness of the data may have an impact 

on the expected study results (i.e. results deviate from the benchmark trial). It may be possible that 

we are unable to fully replicate results from the chosen benchmarks. In this case, we will document 

the potential reasons (e.g. insufficient sample size, incomplete data on time-varying prognostic factors) 

and provide discussions around how NCRAS and Flatiron data may be enhanced to enable the similar 

analyses in the future.  

7.5.3. Sequential treatment Target Trial: prostate cancer case studies 

7.5.3.1. Benchmark RCT 

In our prostate cancer case study, we identified a phase-2 RCT by Khalaf et al., the GUTG-001 

trial84, as a valuable benchmark. This trial compared the following two treatment sequences in treating 

treatment-naïve metastatic CRPC (mCRPC) patients: 

o abiraterone (plus prednisolone) followed by enzalutamide (n = 101) 

o enzalutamide followed by abiraterone (plus prednisolone) (n =101)  

Although a recent commentary from some oncologists suggest the use of these two treatment 

sequences under specific circumstances in the UK, it seems unlikely that we can obtain an adequate 

sample size (n > 100) for a TTE study involving both sequences using NCRAS data.515 The reason 

being these two drugs cannot be used directly after one another within the NHS. Had these treatment 

sequences been more prevalent in the UK, the GUTG-001 trial would have been a “perfect” 

benchmark for evaluating the feasibility of comparing treatment sequences with NCRAS data. On the 

other hand, these sequences have been more commonly used in the US437, rendering the GUTG-001 

trial an effective benchmark when using Flatiron data. 

Given the absence of an ideal benchmark trial for a direct proof-of-concept study with NCRAS 

data, it is challenging to determine if NCRAS data can be used to reliably estimate the effectiveness 

of treatment sequences (in prostate cancer). To address this, we propose a novel strategy that involves 

jointly utilising the NCRAS and US Flatiron databases to —indirectly — assess the feasibility of 

deriving reliable effectiveness estimates from English data for treatment sequence comparisons. Our 

approach hinges on leveraging analyses with Flatiron data as a benchmark or “bridge” for assessing 

the analyses performed with NCRAS data. It involves a comparison of emulating identical Target 

Trials using both NCRAS and Flatiron data. Specifics of this design are elaborated in Section 7.5.3.3. 
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7.5.3.2. Demographics of metastatic prostate cancer 

England 

In England, around 6,000 new cases of metastatic prostate cancer are diagnosed annually.525 Our 

oncology expert Dr. Carmel Pezaro noted that prostate cancer patients often start receiving castration 

therapy post-prostate cancer diagnosis, encompassing either surgical castration (i.e., bilateral 

orchiectomy) or medical castration (i.e., life-long androgen deprivation therapy, ADT). Professor 

Derek Rosario added that surgical castration accounts for only a very small fraction of these cases. 

Life-long ADT involves luteinising hormone-releasing hormone (LHRH, also known as 

gonadotrophin-releasing hormone (GnRH)) agonists or antagonists, such as padeliporfin and 

degarelix.558 If the cancer progresses despite castration, the condition is termed castration-resistant 

prostate cancer (CRPC). The time of developing castration-resistance (i.e. hormone-relapse) from 

being castration-sensitive (i.e. hormone-sensitive) varies among patients, with an English study 

indicating that about 28% of prostate cancer patients may develop castration-resistance.526 Patients 

with prostate cancer are typically managed by oncologists, while those on long-term ADT alone may 

be overseen by GPs post-initial treatment. 

   Docetaxel has been accessible as a first-line treatment for treatment-naïve patients with 

mCRPC within the NHS since 2006, whereas abiraterone and enzalutamide, two ARTAs, have been 

available for the same indication through The Cancer Drugs Fund (CDF) since 2016.126,127,513 Since 

2012 and 2014, respectively, abiraterone and enzalutamide have been introduced as second-line 

therapy options in the NHS (through CDF) for the treatment of patients with mCRPC who have 

previously undergone docetaxel treatment.448,514,527 Prior to the introduction of abiraterone and 

enzalutamide, docetaxel therapy served as the sole standard treatment for patients with mCRPC. Since 

2016, Cabazitaxel has been included as an alternative second-line treatment option in the treatment 

pathway (through CDF), exclusively for patients who have previously received docetaxel therapy.237 

Additional treatment options for patients at a later phase of mCRPC are available, including Radium-

223 being approved since 2016 for patients with bone metastases (through CDF).528 In May 2023, 

Olaparib was approved for mCRPC patients with breast cancer gene (BRCA) mutations through 

CDF559, while the use of  Lutetium-177 Vipivotide Tetraxetan for PSMA-positive patients after two 

or more prior treatments was not recommended in a recent NICE TA.560 

Importantly, the English standard practice does not allow for the sequential use of abiraterone 

and enzalutamide, as mentioned earlier.527 However, Dr. Carmel Pezaro confirms that if patients 

experience severe adverse events (such as toxicity) with either drug, they can switch to the other agent 

without it being considered as disease progression at that time. Such switching typically occurs within 

three months of treatment initiation, while switching after three months may indicate disease 
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progression. 

Prostate cancer treatment has shifted, now integrating additional systematic treatments alongside 

ADT at earlier stages before developing metastasis or castration-resistance. Notably, darolutamide529 

and apalutamide530 have been approved for high-risk non-metastatic castration-resistant prostate 

cancer (nmCRPC) patients, available through the CDF since 2021 and 2022531, respectively. For 

newly diagnosed metastatic hormone-sensitive prostate cancer (mHSPC), the treatment options have 

expanded to include docetaxel532, enzalutamide (available through CDF since 2021)533, apalutamide 

(available through CDF since 2022)534, and darolutamide (available through CDF since 2023 for 

patients ineligible for chemotherapy with docetaxel).531,535 Key clinical trials comparing ADT alone 

to ADT combined with docetaxel in treating mHSPC were conducted from 2004 to 2013, including 

the GETUG-AFU15 (France)536,537, the CHAARTED (US)538, and the STAMPEDE (UK).539,540 The 

results of these studies, published between 2013 and 2019, were inconsistent regarding the benefits 

of upfront docetaxel and the specific mHSPC patient subgroups that might benefit from it, leading to 

varied adoption timelines across different medical practices for the use of docetaxel in treating 

mHSPC.  

Reflecting on these recent treatment advancements, our oncologist Dr. Pezaro noted that patients 

now receiving abiraterone or enzalutamide as first-line treatments for mCRPC might have previously 

undergone other treatments like docetaxel when their cancer was castration-sensitive. Dr. Pezaro 

suggested that this trend in treatment strategy likely became more apparent after 2016-2017, 

following publication of UK-based STAMPEDE trial results. The widespread use of medications in 

England depends not only on the UK Medicines and Healthcare Products Regulatory Agency (MHRA) 

approval but also on recommendations from NICE. Consequently, treatments other than docetaxel as 

upfront treatment prior to the development of mCRPC did not become widely adopted until after 

2021. In rare cases, docetaxel may be re-administered upon disease relapse while receiving 

abiraterone or enzalutamide (i.e. docetaxel (castration-sensitive prostate cancer)  

abiraterone/enzalutamide (mCRPC)   docetaxel (mCRPC)).  

Identifying castration-resistant patients in NCRAS data can be challenging due to the absence 

of a variable documenting the date of patients becoming castration-resistant. Dr. Pezaro suggested 

that the emergency use of certain drugs in England upon the onset of castration resistance could serve 

as a potential proxy indicator, although it is uncommon. These drugs include non-standard treatment 

options like maximal ADT541, which involves adding an additional androgen receptor (e.g., 

bicalutamide) to the standard ADT (e.g., leuprorelin, cetrorelix). Another option is adding low-dose 

dexamethasone. Professor Derek Rosario seconded these statements but noted the uncertainty 

surrounding the complete capture of emergency drug usage in NCRAS data. Inclusion of such 

information, even if available, may result in the identification of a distinct group of patients, given 
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the variation in treatment preferences among different physicians without a defined standard practice. 

Given this protocol was developed after the onset of Covid-19 pandemic, it is important to 

acknowledge certain limitations associated with utilising retrospective data from the relevant period. 

Professor Rosario noted that docetaxel was not recommended for prostate cancer patients during the 

Covid-19 outbreak since around mid-2020, while abiraterone emerged as a preferred treatment option. 

This shift implies that treatment patterns during the pandemic might differ from other periods. 

Therefore, sensitivity analyses may be needed to investigate the adequacy of overlaps between 

patients receiving comparator treatment sequences, factoring the impact of including patients from 

different periods. This is crucial because the propensity of a patient receiving a certain treatment 

sequence may be influenced not only by their personal characteristics but also by the changing nature 

of treatment paradigms over time. 

In summary, directly replicating the benchmark trial GUTG-001 using English NCRAS data is 

unfeasible due to the specific treatment patterns of mPC patients in England. Particularly, GUTG-001 

investigated the effects of sequential treatments with abiraterone followed by enzalutamide, and the 

reverse sequence, but such sequential use is not permitted in England. 

US (Flatiron population) 

In the US, the treatment options for prostate cancer are generally similar to those in England, 

with one significant difference being the ability to use abiraterone and enzalutamide in a sequential 

manner. A publication based on Flatiron data indicated that the primary treatment sequences for 

prostate cancer in the US during 2013-2017 were abiraterone followed by enzalutamide or the reverse 

sequence.437 In contrast to England, the US FDA granted approval for abiraterone and enzalutamide 

in castration-sensitive prostate cancer treatments, in 2018 and 2019, respectively447,542, with adoption 

influenced by the US National Comprehensive Cancer Network (NCCN) guidelines561, local practices, 

and individual insurance coverage.  

Flatiron data experts were consulted during the data application process. Their preliminary 

analysis indicated that the Flatiron database could capture approximately 600 mCRPC patients who 

were treated with abiraterone followed by enzalutamide, as well as around 400 mCRPC patients who 

received enzalutamide followed by abiraterone. As of the data cut-off on March 31, 2019, a total of 

4,000 metastatic prostate cancer patients were identified as having received a first-line treatment, and 

among them, 1,700 patients had undergone a second-line therapy. These statistics suggest the 

potential feasibility of replicating the GUTG-001 trial with Flatiron data. 

7.5.3.3. Target Trial Emulation (TTE) 

Our planned TTE analyses in prostate cancer involves a series of interconnected and progressive 

components. The specifics of these steps are outlined in Figure 7.2 and further explained in the 
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following paragraphs. 

 

Figure 7.2 Flow chart of the US-England coupled sequential treatment Target Trial emulation 

studies in prostate cancer 

National Cancer Registration and Analysis Service (NCRAS); PC: prostate cancer; TTE: Target Trial Emulation; US, 

United States 

Step 4: Final evaluation

If Step 1 is successful and the findings from Step 3 are consistent with those from Step 2, this 
would suggest that both Flatiron and English NCRAS data are effective for estimating the 
effectiveness of prostate cancer treatment sequences. If there is a discrepancy, we will 
investigate the causes and areas needing improvement.

Step 3: English indirect proof-of-concept study

Prostate Cancer 

TTE Case Study 3 (PC3)

(Table 7.2, column 3)

The English study aims to closely replicate the US-England bridging 
study by estimating the effectiveness of the same treatment 
sequences using English NCRAS data.

Step 2: US-England "bridging" study

Prostate Cancer 

TTE Case Study 2 (PC2)

(Table 7.2, column 2)

The second part of the US study will be used to estimate the 
effectiveness of other treatment sequences used in the US for 
prostate cancer, some of which are also available in England.

Step 1: US direct proof-of-concept study

Prostate Cancer 

TTE Case Study 2 (PC1)

(Table 7.1)

The first part of the US study will be used to test whether it is 
possible to successfully emulate the GUTG-001 trial using US Flatiron 
data and causal inference methods.
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7.5.3.3.1. Prostate cancer TTE 1 (PC1)  

The first step involves conducting a TTE (PC1) (see Figure 7.2) to assess the feasibility of 

emulating the GUTG-001 trial (i.e., GUTG-001 Analogue) with US Flatiron data, leveraging causal 

inference methods. This serves as a direct critical proof-of-concept study to identify appropriate 

statistical methods for obtaining reliable effectiveness estimates of treatment sequences from RWD. 

Success in replicating the GUTG-001 results using US Flatiron data will imply the potential for the 

same methods to be applied in comparable scenarios, including comparisons of other treatment 

sequences across broader populations. Table 7.1 outlines the specifics of the PC1 TTE analyses. 

7.5.3.3.2. Prostate cancer TTE 2 (PC2)  

If the benchmarking in the US proof-of-concept study (PC1) prove successful, Step 2 (PC2) (see 

Figure 7.2) will expand these methods for TTE in broader populations, focusing on comparing 

alternative treatment sequences prevalent in both the US and England using Flatiron data. These first- 

and second-line treatment sequences for treating treatment-naïve mCRPC include: 

o docetaxel followed by enzalutamide upon disease progression 

o docetaxel followed by abiraterone upon disease progression 

o docetaxel followed by cabazitxel upon disease progression 

o enzalutamide followed by docetaxel upon disease progression 

o abiraterone followed by docetaxel upon disease progression 

Subsequently, results from PC2 could serve as an “emulated benchmark trial” (i.e., a bridge), 

providing a basis for comparison with the Target Trial analyses in PC3 (Section 7.5.3.3.3). Such 

comparisons aim to indirectly validate the applicability of the same methods for comparing treatment 

sequences in the NCRAS database. In addition to functioning as an emulated benchmark, PC2 also 

aims to examine how the estimates of PC1 will change when the restrictions on the patient population 

are relaxed. PC2's detailed Target Trial design is presented in Table 7.2, column 2. 

Dr. Pezaro notes that the exact date of developing castration-resistance may be unavailable in 

the database, particularly the NCRAS data, given its nature as a disease registry.  If NCRAS data 

lacks specific timing for mCRPC diagnosis an alternative could involve including all newly diagnosed 

metastatic patients, irrespective of their hormone status. In such cases, treatment sequences for 

metastatic prostate cancer (mPC) patients could be relevant, which include: 

o docetaxel (plus ADT) followed by enzalutamide upon disease progression 

o docetaxel (plus ADT) followed by abiraterone upon disease progression 

o ADT alone followed by abiraterone upon disease progression 

o ADT alone followed by enzalutamide upon disease progression 

o ADT alone followed by docetaxel upon disease progression 
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Table 7.1 Prostate cancer case study 1: Target Trial using US Flatiron Data to replicate the GUTG-001 Trial 

 Original benchmark RCT (GUTG-001)84 PC1: GUTG-001 Analogue Target Trial 

Purpose of the 

Target Trial 

N/A A direct proof-of-concept study: replicating the GUTG-001 trial using 

Flatiron data 

Eligibility 

criteria  

The eligibility criteria presented here are an abridged version from Khalat et 

al.’s 2019 publication, with further details in GUTG-001’s protocol (Version 

6.0) on ClinicalTrials.gov.562  

Patients who were aged 18 years or older and had newly diagnosed prostate 

adenocarcinoma without evidence of neuroendocrine differentiation, with 

metastatic disease on CT scan, MRI, or bone scan, and a rising PSA (PSA 

progression per PCWG2 criteria) with castrate concentrations of testosterone 

(≤ 1·7 nmol/L) with ongoing medical castration or previous bilateral 

orchiectomy.  

Patients were required to receive LHRH agonist or antagonist therapy for the 

duration of study treatment if not surgically castrated. Eligible patients were 

required to have adequate organ function, defined as absolute neutrophil 

count 1·5×10⁹ cells/L or higher, platelet count 100×10⁹/L or higher, 

haemoglobin 80 g/L or higher, creatinine clearance 30 mL/min or higher, 

serum potassium higher than lower limit of normal range, total bilirubin 1.5 

times upper limit of normal or less, and alanine aminotransferase and 

aspartate aminotransferase five times upper limit of normal or less.  

Patients who were previously treated with any CYP17A1 inhibitors (e.g. 

abiraterone, enzalutamide or experimental androgen receptor inhibitors) were 

excluded, while previous use of docetaxel for castration-sensitive disease was 

allowed. Patients who had contraindications to abiraterone and enzalutamide 

were excluded per manufacturer’s label. Other exclusion criteria were ECOG 

performance status more than 2, brain metastases, active epidural disease, 

severe concurrent illness or comorbid disease, active concurrent malignancy, 

history of seizures or cerebrovascular events, major surgery within 4 weeks 

of starting study treatment, gastrointestinal disorders affecting absorption, 

and life expectancy of less than 6 months. The presence of visceral metastasis 

and pain requiring opioid analgesia were allowed. 

Matching the eligibility criteria of the GUTG-001 trial as far as possible, 

following GUTG-001’s protocol version 6.0.562 
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Treatment 

strategies  

 Group A: patients received abiraterone 1000 mg orally once daily plus 

prednisone 5 mg orally twice daily as first study treatment until 

confirmed PSA progression, wide-field radiotherapy of symptomatic 

bone metastases, unacceptable treatment-related toxicity or withdrawal 

of consent. They then crossed over to receive enzalutamide 160 mg 

orally once daily until symptomatic or clinical progression, 

unacceptable treatment-related toxicity, or withdrawal of consent.  

 Group B: patients received enzalutamide and abiraterone plus 

prednisone in a reverse sequence until confirmed PSA progression, 

wide-field radiotherapy of symptomatic bone metastases, unacceptable 

treatment-related toxicity, or withdrawal of consent. Patients then 

crossed over to receive enzalutamide 160 mg orally once daily until 

symptomatic or clinical progression, unacceptable treatment-related 

toxicity, or withdrawal of consent. 

 

Dose modification for treatment-related adverse events was allowed.  

 Group A: patients receiving abiraterone plus prednisolone followed by 

enzalutamide 

 Group B: patients receiving enzalutamide followed by abiraterone plus 

prednisolone 

 

For all treatment sequences, patients may switch to second-line treatment in 

cases of disease relapse* or unacceptable treatment-related toxicity. 

Additionally, patients may discontinue their first-line treatment without 

proceeding to subsequent treatment, based on clinical/patient decisions. 

 

Assignment 

procedures 

Eligible patients were randomly assigned (1:1) to receive abiraterone + 

prednisolone followed by enzalutamide or the reverse. Investigators and 

participants were not masked to treatment assignment. 

Same as in GUTG-001 

 

To effectively emulate the randomisation, we need to adjust for all 

measurable confounding factors to ensure the comparability of two treatment 

arms (counterfactual) at baseline (i.e., screening visit prior to randomisation).  

To align with GUTG-001, we plan to use the initiation date of first-line 

treatment as the reference point for assessing patients’ baseline 

characteristics (i.e., time zero). This aligns with GUTG-001's tracking of 

time-to-event outcomes from first-line treatment commencement, which was 

within five days post-randomisation.  

 

The randomisation emulation will be performed using inverse probability 

weighting or other g-methods (e.g. standardisation). Important prognostic 

factors will be used to derive propensity score using a multivariable 

regression model. These important prognostic factors include age, tumour 

status, ECOG performance status, prior treatments, comorbidities, and PSA 

level. The final covariate selection will be based upon discussion with 
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clinicians, and will be based upon attempting to satisfy the “no unmeasured 

confounding” assumption. 

Follow-up 

period 

Patients were followed up since the initiation of their first-line treatment, 

which began within five days of randomisation, until either death, data-cut 

off or lost-to-follow-up, whichever occurred first. The median duration of 

follow-up in the GUTG-001 trial was 30.7 months (IQR 25.1-36.2) of the 

data cut-off (May 31, 2018). Given that the final enrolment in the GUTG-001 

trial occurred on December 13, 2016, the minimum follow-up period would 

have been approximately 17 months, had no patients been lost to follow-up. 

The follow up begins with the initiation of the first-line therapy until the 

occurrence of death, loss to follow-up, or data cut-off, whichever occurs first.  

 

Our analysis will target patients who could have a theoretical minimum 

follow-up of 17 months, matching the GUTG-001 trial's follow-up duration 

as closely as possible. For example, for a data cut-off date of May 31, 2018, 

we will include all patients who were eligible for enrolment before the end of 

2016, regardless of their actual follow-up period. Patients with less than 17 

months of actual follow-up will be marked as lost to follow-up (censored), 

ensuring alignment with the GUTG-001 trial without introducing selection 

bias. The criterion of 17 months may be relaxed if the sample size is 

insufficient.    

  

Outcomes** Primary endpoints:  

1. Time to second PSA progression: time from the start of first-line therapy 

to PSA progression on second-line therapy, or death from prostate cancer 

before crossover, whichever occurred first. 

2. The proportion of patients with PSA response on second-line therapy. 

 

Secondary endpoints:  

1. The proportion of patients with PSA response on first-line therapy. 

2. Time to PSA progression on first-line therapy: time from the start of 

first-line therapy to confirmed PSA progression on first-line therapy 

(Preliminary results of this endpoint were reported in Annala et al. 

2019563)  

3. Time to PSA progression on second-line therapy: time from crossover to 

confirmed PSA progression  

4. Overall survival: time from the start of first-line therapy to time of death 

from any cause, or last follow-up (censored); 

5. Time on treatment for second-line therapy: time from crossover to end of 

second-line treatment or death 

6. Time to clinical progression on second-line therapy: time from crossover 

Primary endpoints: 

1. OS, measured as the time from the start of first-line therapy until death 

from any cause, or last follow-up (censored). 

 

Secondary endpoints:  

1. Time to second progression, defined as time from the start of first-line 

therapy to progression* on second-line therapy, or death from prostate 

cancer before crossover, whichever occurred first.  

2. Time to progression on first-line therapy, defined as the time from the 

start of first-line therapy to any type of progression*, including death 

from prostate cancer. 

 

Exploratory endpoints (PSA-related endpoints are contingent on the 

availability and quality of PSA levels in the Flatiron database): 

1. Time to progression on second-line therapy, defined as the time from 

crossover to any type of progression*, including death from prostate 

cancer. Since both the GUTG-001 trial and the TTE are designed to 

evaluate the effectiveness of treatment sequences from the initial 

baseline (i.e., the start of first-line treatment, analyses that use the time 
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to clinical progression on second-line therapy, including death from 

prostate cancer (This endpoint was not analysed because the endpoint 

was subject to variability in individual physician decision making of 

local study investigators).  

7. Safety of second-line abiraterone and enzalutamide  

8. Change in Montreal Cognitive Assessment score on first-line and 

second-line therapy (Results of this endpoint was reported elsewhere).564 

9. Correlation of cell-free DNA biomarkers with PSA response after first-

line and second-line treatment.  

 

Post-hoc analysis: 

1. Time to progression on first-line therapy: time from treatment initiation 

to confirmed PSA progression, radiographic progression (PCWG2 

criteria), clinical progression, or prostate cancer-related death, whichever 

occurred first (preliminary results was reported in Annala et al. 2019563).  

2. Time to progression on second-line therapy: time from crossover to 

confirmed PSA progression, radiographic progression (PCWG2 criteria), 

clinical progression, or prostate cancer-related death, whichever occurred 

first. 

3. Time to second progression: time from treatment initiation to confirmed 

PSA progression, radiographic progression (PCWG2 criteria), clinical 

progression on second-line therapy, or or prostate cancer-related death, 

whichever occurred first.  

4. Comparison of second-line PSA responses between groups using 

Pearson’s chi-square test  

5. Clinical correlates of time to PSA progression and PSA response in 

patients receiving second-line enzalutamide  

6. Comparison of crossover clinical characteristics between groups  

7. Sensitivity analysis of time to second PSA progression (primary 

endpoint), excluding patients with delayed crossovers, > 2 weeks 

8. Comparison between groups of time from first progression of any kind to 

crossover  

9. Subgroup analysis to determine whether second-line enzalutamide was 

better than second-line abiraterone in all patient subgroups 

of treatment crossover as a secondary baseline are prone to bias, and 

such analyses should be adjusted for prognostic characteristics. 

Adjustments were not made in the published analyses of the GUTG-001 

trial and this is not the focus of our analysis. Therefore, we regard this as 

an exploratory endpoint and will only present naïve exploratory analyses 

for this endpoint.   

2. Time to second PSA progression: time from the start of first-line therapy 

to PSA progression on second-line therapy, or death from prostate cancer 

before crossover, whichever occurs first. 

3. Time to PSA progression on first-line therapy: time from the start of 

first-line therapy to PSA progression, including death from prostate 

cancer. 

4. Time to PSA progression on second-line therapy: time from crossover to 

PSA progression, including death from prostate cancer. 

5. The proportion of patients with a PSA response on first-line therapy. 

6. The proportion of patients with a PSA response on second-line therapy. 
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Causal 

contrasts of 

interest 

All endpoints were analysed using the intention-to-treat principle, with first-

line or combined treatment endpoints evaluated in all randomised patients, 

and second-line treatment endpoints assessed in those who switched 

treatments. 

Main analysis: 

Analogue of per-protocol effect: estimating the hypothetical effect had all 

patients adhered to the treatment strategy to which they are assigned in our 

analyses  

 

Exploratory: 

1. Analogue of intention-to-treat effect: estimating the effect according to 

the first-line therapy.  

2. Analogue of as-treated effect: estimating the effect restricted to those 

who received the specific treatments sequences outlined in our analysis. 

 

First-line or combined treatment endpoints will be evaluated in all 

randomised patients, and endpoints for second-line treatments will be 

evaluated specifically in those patients who crossover.  

Analysis 

plan**  

 Time-to-event outcomes: KM survival curves and log-rank tests were 

used. Hazard ratios and 95% CI were estimated from Cox proportional 

hazard models for PFS, OS and combined PFS, stratified by the MSKCC 

risk criteria. 

 Proportion of PSA response: compared between groups using Pearson’s 

chi-square test. 

 Comparison of crossover clinical characteristics between groups: 

Continuous-valued characteristics were compared using the rank-sum 

test, and Boolean characteristics were compared using Fisher's exact test. 

 

All Cox regression analyses, associated confidence intervals, and Kaplan-

Meier curves were calculated using R (version 3.6.0) with the survival 

package (version 2.44.1.1). Confidence intervals for PSA response, Pearson’s 

chi-square tests, rank-sum tests and Fisher’s exact tests were calculate using 

Julia (version 1.1.0) with the HypothesisTests package (version 0.8.0). 

 Descriptive analyses will be conducted to understand the overall 

treatment pattern in the data and to estimate the sample size.   

 T-tests and chi-square tests will be conducted to compare patient 

characteristics at treatment initiation and at cross-over, and compared 

with those in the GUTG-001 trial 

 KM survival curves, survival probability (e.g. median survival)/event 

incidence, and cox proportional hazard ratios (and/or risk ratios using 

pooled logistic regression), will be conducted for all time-to-event 

outcomes. 

 

Time-to-event outcome analyses will be performed for the per-(TTE)-

protocol analogue, intention-to-treat analogue, and as-treated analogue effect. 

Marginal structural models with inverse probability weighting and other G-

methods will be used to emulate the randomisation process of the Target 

Trial and account for time-varying confounders (see Section 4.7 in Chapter 4 

for the discussion of advanced methods, and Chapter 8 for the 

implementation of inverse probability weighting method in this case 

study).3,5,289 

ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI: confidence interval; CYP17A1, Cytochrome P450 Family 17 Subfamily A Member Enzyme; ECOG, Eastern Cooperative 

Oncology Group performance status; HTA: health technology assessment; KM, Kaplan-Meier; IQR, interquartile range; LHRH, maintain luteinising hormone-releasing hormone, mCRPC, metastatic 
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castration-resistant prostate cancer; MSKCC, Memorial Sloan Kettering Cancer Center; NCRAS, National Cancer Registration and Analysis Service; PCWG2, Prostate Cancer Working Group 2; PFS, 

progression-free survival; PSA, prostate-specific antigen test; OS, overall survival; RCT, randomised controlled trials; TTE: target trial emulation; US, United States 

 

* The final operational definition of disease progression can vary across databases and will be determined through discussions with clinical experts and data experts, due to the uncertainty in data 

quality. If a specific progression date is unavailable, we might use a composite of variables to obtain a proxy date of disease progression, such as treatment discontinuation. 

**Colour coding: The colour-coding scheme highlights the comparable outcomes between the GUTG-001 trial and the planned Target Trial Emulation Study PC1, with comparable outcomes marked in 

the same colour. 

- Red: OS 

- Pink: Time to second progression. 

- Purple: Time to progression on first-line therapy. 

- Blue: Time to progression on second-line therapy. 

- Green represents comparable endpoints related to PSA assessment. 

- Orange represents the comparison of patient characteristics at crossover. Although not explicitly stated as an outcome in the PC1 study, the comparison of patient characteristics is mentioned in the 

analysis plan as part of the descriptive analysis.  

- Black text indicates outcomes in the GUTG-001 trial that are not explored in the PC1 study, including safety endpoints and those unlikely to have data in both the Flatiron and English Cancer Registry 

datasets, as well as those without full results reported in the GUTG-001 publication for enabling RCT versus real-world evidence (RWE) agreement assessment in Section 7.5.5. 

The outcomes in the PC1 study are selected based on their projected feasibility to enable RCT-RWE agreement assessment (i.e., from high to low: primary endpoints > secondary endpoints > 

exploratory endpoints) as planned in Section 7.5.5. These selections also consider their potential to inform bridging studies PC2 and PC3 (Sections 7.5.3.3.2-7.5.3.3.3). The primary endpoint in the PC1 

study is OS, as mortality data is a relatively reliable endpoint available in both Flatiron data and the English Cancer Registry. In contrast, OS is a secondary endpoint in the GUTG-001 trial, potentially 

due to typically shorter follow-up periods in trials and likely immature OS data. Secondary endpoints in the PC1 study involve progression assessments, which may require proxy definitions using other 

available information in real-world data (RWD), making them secondary rather than primary. Furthermore, even if progression information is available in RWD, it could be an indicator resulting from a 

combination of assessments (progression based on clinical, PSA, or radiology; time-to-treatment-discontinuation) rather than a single measure. Hence, the comparable progression-related endpoints 

between the GUTG-001 and PC1 case studies are those that contain comprehensive assessments of progression. Finally, all PSA-related endpoints are listed as exploratory in the PC1 study, unlike in the 

GUTG-001 trial, which lists PSA assessments as primary and secondary endpoints. This classification is due to the uncertain completeness and longitudinal consistency of PSA information for each 

patient in RWD. 
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Table 7.2 Prostate cancer case study 2 & 3: US-England bridging study and English indirect proof-of-concept study 

 PC2: An emulated benchmark using Flatiron data  PC3: PC2 Analogue Target Trial using NCRAS data 

Purpose of the 

Target Trial 

analysis 

• US-England bridging study: comparing prostate cancer treatment sequences 

common in England using Flatiron data to serve as an emulated benchmark for 

PC3 

• Investigate how estimates from PC1 might differ when patient population 

restrictions are relaxed. 

An indirect proof-of concept study: replicating the “emulated 

benchmark trial(s)” in PC2 using English NCRAS data. 

Eligibility 

criteria  

Analysis Set 1: 

All patients who were aged 18 years or older with mCRPC will be included.  

 

Analysis Set 2: 

According to Dr. Pezaro, the exact date of a patient becoming castration-resistant 

prostate cancer may be unknown or only available as a proxy in the database. Should 

the data quality of NCRAS be inadequate for determining the timing of mCRPC 

diagnosis, the inclusion of all newly diagnosed metastatic patients who were aged 18 

years or older will be considered as an alternative (i.e., including mHSPC patients). For 

a detailed justification, please refer to the “patient inclusion/exclusion criteria” in 

Section 7.5.3.4. 

Matching PC2 as far as possible. 

Treatment 

strategies  

 Group A: docetaxel followed by enzalutamide if disease relapse* or unacceptable 

treatment-related toxicity. 

 Group B: enzalutamide followed by docetaxel 

 

Alternative treatment strategies may be chosen for comparison based on the sample 

size of each treatment sequence in Flatiron data and NCRAS data: 

 docetaxel followed by abiraterone 

 abieraterone followed by docetaxel 

 abieraterone followed by cabazitaxel 

 abiraterone followed by enzalutamide 

 enzalutamide followed by abiraterone 

 

For Analysis Set 2, we will consider comparison of treatment sequences that either 

start with a systematic treatment (e.g. docetaxel) or no treatment (i.e., with only 

baseline ADT). 

Same as in PC2 
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For all treatment sequences, patients may switch to second-line treatment in cases of 

disease relapse* or unacceptable treatment-related toxicity. Additionally, patients may 

discontinue their first-line treatment without proceeding to subsequent treatment, based 

on clinical/patient decisions. 

Assignment 

procedures 

Participants are randomly assigned to one of two strategies at baseline.  

 

To effectively emulate the randomisation, we need to adjust for all measurable 

confounding factors to ensure the comparability of two treatment arms (counterfactual) 

at baseline. The randomisation emulation will be performed using propensity score 

matching, inverse probability weighting or other g-methods (e.g. standardisation). 

Important prognostic factors will be used to derive propensity score using a 

multivariable regression model. These important prognostic factors include age, 

tumour status, ECOG performance status, prior treatments, comorbidities, and PSA 

level. The final covariate selection will be based upon discussion with clinicians, and 

will be based upon attempting to satisfy the “no unmeasured confounding” assumption. 

Matching PC2 as far as possible. 

Follow-up 

period 

The follow-up period starts from the time of treatment initiation (sensitivity analysis: 

starts from the time of diagnosis (mCRPC for Analysis Set 1, mPC for Analysis Set 2)) 

and continues until the event of death, loss to follow-up, or the data cut-off date, 

whichever comes first. 

 

In PC 1, follow-up begins on the date of first-line mCRPC treatment initiation 

(baseline), aligned with the GUTG-001 trial, implying that all patients included in the 

trial have survived to receive their first-line mCRPC treatment. However, this could 

potentially lead to immortal time bias in RWD analysis if the time from mCRPC 

diagnosis to first-line treatment initiation differs significantly between the two study 

groups (which might not be fully adjustable with statistical methods). While this 

concern might be less significant in PC1, as abiraterone and enzalutamide are often 

interchangeable according to our oncology experts, we would like to examine such 

design’s impact on estimating the comparative treatment effectiveness from RWD in 

the sensitivity analyses for PC2. Specifically, we will begin follow-up at diagnosis 

instead, and use techniques like cloning75,334 and/or TTE with sequential eligibility 

criteria76 to assist in assigning treatment groups, contrasting it with setting the first-line 

treatment initiation as baseline (time zero).  

Matching PC2 as far as possible. However, it is crucial to 

acknowledge that for sensitive analysis, the dates of castration-

resistance and metastasis might be unavailable in NCRAS data. 
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Outcomes Primary endpoints: 

1. Overall survival: the time from treatment initiation (for primary 

analysis)/diagnosis (for sensitivity analysis) until death from any cause, or last 

follow-up (censored). 

 

Secondary endpoints  

1. Time to second progression: time from diagnosis to progression* on second-line 

therapy, or death from prostate cancer before crossover, whichever occurred first. 

2. Time to progression on a first-line therapy, defined as the time from diagnosis to 

any type of progression*, including death from prostate cancer. 

 

Exploratory endpoints: 

1. Time to progression on second-line therapy, defined as the time from crossover to 

any type of progression*, including death from prostate cancer. Since the GUTG-

001 trial and the TTE are designed to evaluate the effectiveness of treatment 

sequences from the initial baseline (i.e., the start of first-line treatment, analyses 

that use the time of treatment crossover as a secondary baseline are prone to bias, 

and such analyses should be adjusted for prognostic characteristics. Adjustments 

were not made in the published analyses of the GUTG-001 trial and this is not the 

focus of our analysis. Therefore, we regard this as an exploratory endpoint and 

will only present naïve exploratory analyses for this endpoint.   

Matching PC2 as far as possible.  

Causal 

contrasts of 

interest 

Main analysis: 

Analogue of per-protocol effect: estimating the hypothetical effect had all patients 

adhered to the treatment strategy to which they are assigned in our analyses  

 

Exploratory: 

1. Analogue of intention-to-treat effect: estimating the effect according to the first-

line therapy.  

2. Analogue of as-treated effect: estimating the effect restricted to those who received 

the specific treatments sequences outlined in our analysis. 

 

First-line or combined treatment endpoints will be evaluated in all randomised patients, 

and endpoints for second-line treatments will be evaluated specifically in those patients 

who crossover. 

Matching PC2 as far as possible. 
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Analysis plan   Descriptive analyses will be conducted to understand the overall treatment pattern 

in the data and to estimate the sample size.   

 T-tests and chi-square tests will be conducted to compare patient characteristics at 

treatment initiation and at cross-over.  

 KM survival curves, survival probability (e.g. median survival)/event incidence, 

and cox proportional hazard ratios (and/or risk ratios using pooled logistic 

regression), will be conducted for all time-to-event outcomes. 

 

Time-to-event outcome analyses will be performed for the intention-to-treat analogue, 

as-treated analogue, and per-(TTE)-protocol analogue effect. Marginal structural 

models using inverse probability weight and other G-methods will be used to emulate 

the randomisation process of the Target Trial and account for time-varying 

confounders (see Section 4.7 in Chapter 4 for the discussion of advanced 

methods).3,5,289 

Matching PC2 as far as possible. 

ECOG, Eastern Cooperative Oncology Group performance status; HTA: health technology assessment; KM, Kaplan-Meier; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic 

hormone-sensitive prostate cancer; mPC: metastatic prostate cancer; NCRAS, National Cancer Registration and Analysis Service; PSA, prostate-specific antigen test; RCT, randomised controlled trials; 

TTE: target trial emulation; US, United States 

N/A: not applicable 

 

* The final operational definition of disease progression can vary across databases and will be determined through discussions with clinical experts and data experts, due to the uncertainty in data 

quality. If a specific progression date is unavailable, we might use a composite of variables to obtain a proxy date of disease progression, such as treatment discontinuation.  

 PSA level is unavailable in the NCRAS data, and therefore will not be included in the English NCRAS analysis. 
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7.5.3.3.3. Prostate cancer TTE 3 (PC3)  

Step 3 (PC3) (see Figure 7.2): The design of PC2 allows us to conduct an indirect proof-of-

concept study assessing if the quality of NCRAS data is adequate for reliably assessing the 

effectiveness of treatment sequences using causal inference methods. PC3 aims to emulate the same 

Target Trial as PC2, but using English NCRAS data. Differing from the PC1, PC3 will only indirectly 

reference information from the original benchmark RCT (i.e., GUTG-001 trial). PC3's detailed Target 

Trial design is presented in Table 7.2, column 3. 

Comparison between similar analyses in NCRAS data (PC3) and Flatiron data (PC2) relies on 

the existence of common treatment sequences in both datasets. There are several common treatment 

sequences in treating prostate cancer in the US and the UK as described in 4.3.3.2. Docetaxel followed 

by enzalutamide and its reverse sequence represent one of the most prevalent treatment sequences 

available in both the US and the UK,437,527 and therefore these sequences are chosen as the main 

comparators. However, alternative sequences like docetaxel-abiraterone (and vice versa) or other 

non-symmetric pairs remain viable (e.g. abiraterone-docetaxel versus enzalutamide-docetaxel, 

abiraterone-docetaxel versus abiraterone-enzalutamide, enzalutamide-docetaxel versus enzautamide-

abiraterone), subject to the sample sizes in both the Flatiron and the NCRAS data. 

Additionally, Professor Rosario highlighted the possibility of assuming no systematic difference 

between abiraterone and enzalutamide, given their similar mechanisms of action. Consequently, for 

PC2 and PC3, we can also consider including the following two sequences to increase the sample 

size if necessary: 

o docetaxel followed by abiraterone or enzalutamide upon disease progression 

o abiraterone or enzalutamide followed by docetaxel upon disease progression 

The final selection of sequence pairs for PC2 & PC3 will be based on ensuring larger sample 

sizes than in the GUTG-001 trial for both Flatiron and English NCRAS data (guided by analyses of 

treatment patterns analyses from the actual data), and finalised after discussions with clinicians 

regarding their clinical interests. In the exploratory analysis, sequence pairs with varying rates of 

crossover/treatment regimen violations may be compared. This may be used to assess the 

performance of methods potentially sensitive to a small percentage of patients adhering to the 

assigned treatment strategy.  

7.5.3.3.4. Final evaluation 

If Step 1 is successful and the findings from Step 3 are consistent with those from Step 2 (see 

Figure 7.2), this would suggest that both Flatiron and English NCRAS data are effective for 

estimating the effectiveness of prostate cancer treatment sequences. If there is a discrepancy, we will 

investigate the causes and areas needing improvement. We intend to assess the extent of discrepancy 
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using the matrix outlined in Section 7.5.5 

7.5.3.4. Patient inclusion/exclusion criteria 

The study targets patients aged 18 and over with mCRPC. Depending on the quality of Flatiron 

and NCRAS data, as well as clinical implications, this focus may broaden to include all metastatic 

prostate cancer (mPC) or all advanced prostate cancer cases. Specifically, Prof Rosario and Dr. Pezaro 

are concerned about the databases' ability to accurately identify when patients become castration-

resistant, a status typically determined by prostate-specific antigen (PSA) levels. For the English 

population, this information is unavailable in English NCRAS data and currently only accessible in 

CPRD data.403,424 Additionally, as docetaxel is increasingly used in mHSPC patients prior to 

castration-resistance, distinguishing between patients who received docetaxel post-castration 

resistance and those treated while hormone-sensitive in the databases poses a significant challenge. 

The 2020 UK National Prostate Cancer Audit Annual Report indicates an increase in the use of 

docetaxel with standard ADT for new metastatic prostate cancer cases, from 27% in 2019 to 36% in 

2020.495 This usage varied widely across different NHS providers in England, ranging from 0% to 

47%.495 Nevertheless, it may still be possible to capture mCRPC patients among all metastatic 

patients using NCRAS data if we have patients’ full treatment trajectory and time-varying prognostic 

factors not only limited to those upon the emergence of metastases. A crucial part of the study process 

is to investigate whether a proxy of patient’s disease status (i.e. castration-resistant) can be defined 

by specifying an algorithm when a direct variable is lacking. This rationale supports our requests for 

specific data periods and relevant variable information outlined in Section 7.6 Data Requirements.  

In summary, identifying mCRPC patients in RWD, especially within the English NCRAS, may 

be challenging. We aim to collaborate with clinicians to identify these patients using a combination 

of variables if necessary. If we cannot develop an ideal algorithm for this purpose, we will relax the 

restriction regarding mCRPC patients. Specifically, we will analyse newly diagnosed metastatic 

patients regardless of their castration-status. Most importantly, the same criteria will be applied to 

both PC2 & PC3 to enable a fair comparison between these “bridging-studies”. Although the study 

population may slightly differ from what was initially planned, it remains clinically relevant. Notably, 

Professor Rosario highlighted a shift in the treatment approach for metastatic prostate cancer, 

increasingly favouring the early use of systematic anti-cancer therapy alongside ADT, even before 

patients develop castration-resistance. 

7.5.3.5. Sample size estimation 

The Flatiron dataset is expected to provide a sufficient sample size for our case studies (PC1 & 

PC2), as indicated by a US treatment pattern study from 2013-2017. This study showed 227 patients 

receiving docetaxel followed by enzalutamide (including docetaxel-only patients) and 414 receiving 
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enzalutamide followed by docetaxel (including enzalutamide-only patients).437 Furthermore, 

preliminary data evaluations by Flatiron specialists have confirmed the number of prostate cancer 

patients receiving relevant treatments appears to be sufficient for our study (i.e., preferably exceeding 

the sizes in the GUTG-001 trial84 and previous observational studies of prostate cancer treatment 

sequences, aiming for at least 100-250 patients516,565). 

On the other hand, while precise estimation of patients receiving docetaxel and/or 

abiraterone/enzalutamide annually in NCRAS data is challenging, it is likely to be sufficient. This 

assessment is based on the published UK epidemiology data described Section 7.5.3.2.525 Specifically, 

according to a recent NICE TA, there are approximately 5,500-5,800 CRPC patients who may be 

eligible for a first-line treatment in England and Wales every year.126 Further, abiraterone, 

enzalutamide, and docetaxel are among the most frequently administered therapies.126,127,448,514 

7.5.4. Sequential treatment Target Trial: renal cell carcinoma case studies 

7.5.4.1. Benchmark RCT 

RECORD-3, an international phase-2b trial, has been identified as a valuable benchmark in 

evaluating treatment sequences for metastatic treatment-naïve metastatic RCC (mRCC) patients. This 

trial compares the efficacy of the two following treatment sequences in treating metastatic treatment-

naïve mRCC patients: 86,406 

o everolimus as first-line therapy followed by second-line sunitinib (n = 238)  

o sunitinib as first-line therapy followed by second-line everolimus (n = 233)  

Despite being a potential benchmark, only one of the treatment sequences in RECORD-3 has 

been available in the NHS. Everolimus was never recommended as first-line therapy and sunitinib 

was not recommended as second-line therapy in the NHS.520 This statement has been confirmed with 

our medical oncologist, Professor Janet Brown and further supported by recent observational data 

from three UK hospitals.521 Everolimus accounts for only 0.6% of all treatments among 652 mRCC 

patients in 2008-2015.521 Further, only 0.5% of all patients who ever received a second-line treatment 

received sunitinib as a second-line therapy.521 On the contrary, sunitinib accounts for 60.7% of first-

line therapies, and everolimus accounts for 41.9% of second-line therapies. However, it is likely that 

the percentage of patients using sunitinib followed by everolimus as first- and second-line therapy 

has been decreasing because other newer agents for treating mRCC have been available since 2015. 

Particularly, everolimus has gradually been shifted to be used as a later-line therapy (e.g. 3rd or 4th 

line) in recent years, while sunitinib remains as a common first-line therapy.566 Despite these changes, 

historical data from the NCRAS, especially for the RCC incident cohort in 2015 and 2016 (at the 

beginning of acquisition of newer treatments in the NHS), may still provide insights into the sequence 

of sunitinib followed by everolimus. 



268 

 

Similar to the prostate cancer study series (Section 7.5.3), there is no “perfect” benchmark trial 

for the RCC. However, at least one of the treatment sequences in RECORD-3 is likely to exist in the 

NCRAS data. Thus, RECORD-3 remains a valuable reference, enabling a direct comparison between 

the benchmark trial results and the Target Trial analysis conducted using NCRAS data. In summary, 

the primary aim of this RCC case study is to explore the feasibility and reliability of using NCRAS 

data to replicate results of a single arm in the RECORD-3 trial (i.e. sunitinib  everolimus).  

7.5.4.2. Demographics of renal cell carcinoma (RCC) in England 

In England, approximately 13,000 new kidney cancer cases are reported annually (2015-2017)543, 

with more than 80-90% being RCC.525 Approximately one-fourth of these patients present with 

advanced-stage cancer and 25-34% have metastases at diagnosis.543,544 About 75% of advanced-stage 

RCC patients are eligible for a first-line systematic therapy.545 

Current treatment for mRCC primarily includes targeted therapy (e.g., tyrosine kinase inhibitors, 

TKIs) and immunotherapy (e.g., PD-1 and PD-L1 inhibitors).521,567 In the NHS, sunitinib and 

pazopanib have been first-line therapies for mRCC since 2009 and 2011, respectively.498 Tivozanib 

and cabozantinib (both through CDF) were introduced as additional first-line treatment options for 

mRCC starting in 2018.531 Subsequently, more treatments became exclusively available as first-line 

therapies for mRCC through the CDF531, including nivolumab plus ipilimumab (since 2019 and 

further passed NICE CDF review in 2022), avelumab-axitinib combination (since 2020), lenvatinib-

pembrolizumab combination (since 2023). The NHS has adopted the following treatments for mRCC 

patients who are in need of second-line or later-line therapies: axitinib568 (from 2015), nivolumab545 

(from 2016), everolimus (from 2017 through CDF, previously through CDF for more restricted 

indication), cabozantinib (from 2017 through CDF), and the lenvatinib-everolimus combination 

(from 2018 through CDF).531  

Professor Janet Brown stated that in England, before targeted therapy and immunotherapy 

became widespread, approximately 10-15% of patients with less advanced cancer were treated with 

interferon-alpha before receiving any other systemic anti-cancer therapies. Additionally, everolimus 

has been shifted from second-line treatment to later stages of treatment (third or fourth-line treatment) 

in recent years for patients with an Eastern Cooperative Oncology Group (ECOG) score below 2. 

This adjustment reflects the lack of substantial survival benefits of everolimus and instead emphasises 

its role in improving patients' quality-of-life.  

Professor Brown clarified that there is no standardised adjuvant therapy for mRCC patients, 

indicating that systematic therapy may or may not accompany surgical interventions before 

metastases appear.546 She added that patients who are suitable for operations like nephrectomy, and 

those who do not rapidly develop metastases post-nephrectomy, usually have a more favourable 
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prognosis. Specifically, these patients are typically deemed healthy enough to undergo surgical 

interventions at the first place. Conversely, elevated calcium levels in patients typically indicates a 

poorer prognosis. 

Professor Brown further suggested that patients with mRCC who remain in good health 

conditions (i.e. desirable performance status) may receive up to 5 or 6 lines of treatment with each 

subsequent relapse. However, a significant proportion (roughly 40-50%) of mRCC patients receive 

only three lines of treatment before death. This can be attributed to either their frailty preventing 

further treatment upon disease progression or mortality occurring before subsequent treatments. The 

introduction of newer treatment options, particularly cancer immunotherapies since 2016, has 

significantly improved the overall survival (OS) of mRCC patients.547 Previously, patients who 

received solely TKIs had an OS range of 1-2 years up to 4-5 years after being diagnosed. 

7.5.4.3. Target Trial Emulation 

This section presents the design of a single-arm Target Trial to assess the viability of using 

NCRAS data to replicate the sunitinib to everolimus sequence results from the RECORD-3 trial. 

Table 7.3 specifies these details. 

In routine clinical practice, unlike controlled sequential treatment trials, patients may receive 

various second-line treatments based on the outcomes of their first-line therapy. Additionally, some 

patients might not receive any second-line treatment, and the reasons for this can differ from those 

seen in clinical trials. For instance, in the NCRAS data, patients initially treated with sunitinib might 

have different second-line treatments, though everolimus could have been an option. In our emulation 

of the RECORD-3 trial's sunitinib to everolimus arm, solely analysing NCRAS data patients who 

completed this treatment sequence could be problematic. Such an approach implies selecting patients 

based on a non-random future decision: the progression to second-line everolimus is contingent on 

the outcome of the first-line sunitinib treatment, rather than a predetermined treatment plan. Selection 

conditioning on a post-treatment variable (i.e., as-treated effect) could lead to immortal-time bias. 

Nevertheless, such an approach is not uncommon in observational studies and one should be cautious 

in interpreting the results of these analyses.569,570   

In our RCC study, we aim to highlight the strengths of causal inference in estimating treatment 

sequence effectiveness in a single-arm Target Trial by contrasting the following three effects:  

o As-treated effect: include only patients who received sunitinib as their first-line treatment 

and proceeded to everolimus as their second-line therapy for time-to-event outcome 

assessment 

o Standard per-protocol effect: include all patients who received sunitinib as their first-line 

therapy for time-to-event outcome assessment and censor those who did not proceed to 
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everolimus as their second-line therapy by the time of treatment-switching 

o Hypothetical per-protocol effect assuming complete adherence to treatment assignment: 

include all patients who received sunitinib as a first-line therapy for time-to-event outcome 

assessment and adjust for treatment-switching with causal inference methods if they did not 

receive everolimus as a second-line therapy 

While the as-treated effect clearly faces the risk of immortal time bias, the standard per-protocol 

effect could encounter issues if censoring is informative. On the other hand, the hypothetical per-

protocol effect, assuming complete adherence to the assigned treatment, somewhat mirrors the 

approach used in RCTs to address treatment-switching.277 This involves adjustments for unintended 

switches, such as when patients initially assigned to standard therapy subsequently move to a new 

drug. Implementing this approach could help mitigate biases in estimating the effects of treatment 

sequences. While there are similarities in the causal inference methods applicable, our single-arm 

Target Trial analysis, which uses RWD, presents additional complexities. Specifically, it lacks a 

randomisation baseline for reference and patients in real-world settings often switch between multiple 

drugs. Part of our study involves assessing if varying methods for the hypothetical per-protocol effect 

yield discrepancies, and how to interpret these differences. 

The challenges in replicating the RECORD-3 trial single-arm results could stem from several 

factors. A primary concern is confounding by subsequent treatments beyond second-line. About half 

of patients in the RCORD-3 trial received additional treatments after the second-line, but detailed 

information on these is unavailable. It may be possible that the options of subsequent treatments are 

different or the rate of receiving a subsequent treatment is incomparable to the clinical practice in 

England. Another potential issue is the difference in patient demographics, including age and 

adherence to treatment, despite matching the same inclusion/exclusion criteria of the trial as far as 

possible. If feasible within our project’s limited timeline, we might consider undertaking exploratory 

analyses to see whether additional causal inference methods can aid in resolving these issues. These 

methods may include adjustments for variations in treatment exposure due to non-adherence (e.g. 

delay of treatment), or methods of extending inferences and formulating external control arms using 

RWD (i.e., emulating the sunitinib  everolimus arm as an external control for the trial's everolimus 

 sunitinib arm).381,571  

7.5.4.4. Patient inclusion/exclusion criteria 

The RCC case study mainly focuses on patients with mRCC. In this study, Target Trial Analysis 

Set 1 strives to closely match the eligibility criteria of the RECORD-3 trial, essentially creating a 

RECORD-3 trial-mimicking population (Table 7.3: Eligibility criteria). Conversely, the Target Trial 

Analysis Set 2 aims to extrapolate the findings in a more generalised population, including all mRCC 
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patients aged 18 or older. 

7.5.4.5. Sample size estimation 

In the UK, it is estimated that each year, 2,500 to 3,000 new cases of mRCC are diagnosed. 

Approximately three-quarters of these patients (est.n = 1,875-2,250), might be eligible for first-line 

therapy. According to a recent UK study, prior to 2015, sunitinib may account for roughly 61% of 

first-line therapies before 2015.521 This suggests that around 500 to 600 patients in the NCRAS data 

(2012-2018) could be eligible for our study. Given these figures, pooling mRCC incident cohorts 

from 2012 to 2018 (or later) should provide us with a sufficiently large sample size for the single arm 

Target Trial analyses. 
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Table 7.3 A single-arm Target Trial replicating sunitinib-everolimus arm in the RECORD-3 trial using NCRAS data  

 Benchmark RCT: RECORD-3 trial86,406 A single-arm Target Trial: Analogue of the RECORD-3 sunitinib-everolimus 

arm using NCRAS data 

 

Eligibility 

criteria  

The eligibility criteria presented here are an abridged version from 

Knox et al.’s 2017 publication, with further details in RECORD-3’s 

protocol on ClinicalTrials.gov.405 

 

Patients aged 18 years or older with measurable mRCC as per RECIST 

v1.0 were included. Prior nephrectomy was not a prerequisite. Key 

eligibility criteria included no previous systemic therapy, a KPS score 

of 70% or higher, adequate hematologic, liver, and kidney function, 

and a normal left ventricular ejection fraction. Patients with brain 

metastases were excluded.  

Target Trial Analysis Set 1: Matching the eligibility criteria in the RECORD-3 as far 

as possible. The KPS score information is not available in the NCRAS data; 

however, it may be converted into an ECOG score.572  

 

Target Trial Analysis Set 2: All patients who were aged 18 years or older with 

mRCC will be included. 

Treatment 

strategies  

 Group A: first-line everolimus 10 mg/day until PD followed by 

sunitinib (4 weeks on, 2 weeks off as second-line therapy (n = 

238) 

 Group B: first-line sunitinib 50 mg/day (4 weeks on, 2 weeks off) 

until PD followed by everolimus as second-line therapy (n = 233) 

 

The crossover period is defined as the interval between the end of the 

first-line treatment and the start of the second. The crossover 

(initiation of the second-line treatment) should occur within 35 days of 

disease progression. Patients had a minimum 2-week period after 

discontinuation of the first-line drug because of progression before 

beginning the second-line drug. Dose modifications were permitted for 

adverse events. 

Single group: first-line sunitinib until disease progression* followed by everolimus as 

second-line therapy. Treatment crossover (the initiation of second-line therapy) 

should occur within 35 days of progression, and patients should have a minimum 2-

week period after discontinuation of the first-line drug because of progression before 

beginning the second-line drug. 

 

Dose modifications were permitted for adverse events. Professor Brown noted that 

patients switching treatments due to toxicity, rather than disease progression (thus not 

advancing in treatment lines), typically did so within 3-6 months of starting therapy. 

In such cases, patients often moved to another drug within the same class, like from 

one TKI to another TKI. For those who started with everolimus before 2015, a 

reduced dosage sequence (e.g., 50 mg/day  37.5 mg/day  25 mg/day) upon 

disease progression was common due to the lack of alternative later-line therapies at 

that time. 

Assignment 

procedures 

Eligible patients were randomly assigned (1:1) to receive either 

everolimus followed by sunitinib or the reverse sequence. The random 

assignment was stratified by MSKCC risk criteria (favorable, 

intermediate, or poor risk). Patients received the first-line drug until 

disease progression (according to RECIST v1.0), discontinuation due 

All patients will be receiving sunitinib as first-line therapy and followed with a 

second-line everolimus upon disease progression*. 

 

In this single-arm Target Trial, randomisation is not required. Our focus is on 

replicating the condition where patients were assigned a treatment sequence of 
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to unacceptable toxicity, or for any other reason. Upon disease 

progression, patients were eligible to switch to the second-line drug 

until further progression.  

sunitinib followed by everolimus.  Although the RECOTD-3 trial stratified patient 

recruitment using the MSKCC risk criteria, this information is unavailable in 

NCRAS data. Professor Brown indicated that ECOG might not be an ideal substitute 

for MSKCC criteria, and therefore, we will conduct further investigations into 

alternative variable combinations that could serve as better proxies.  

Follow-up 

period 

Patients were followed up since the initiation of their first-line 

treatment, until either death, data-cut off, lost-to-follow-up, whichever 

occurred first. Since the RECORD-3 trial's final enrolment was in June 

2011 and the data cutoff for the final analysis was in June 2014, the 

minimum follow-up period would have been approximately 3 years, 

had no patients been lost to follow-up and all remain alive. 

The follow up begins with the initiation of the first-line therapy until the occurrence 

of death, loss to follow-up, or data cut-off, whichever occurs first.  

 

Our analysis will target patients who could have a theoretical minimum follow-up of 

3 years, matching the RECORD-3 trial's follow-up duration as closely as possible. 

For example, for a data cut-off date of December 2021, we will include all patients 

who were eligible for enrolment before the end of 2018, regardless of their actual 

follow-up period. Patients with less than 3 years of actual follow-up will be marked 

as lost to follow-up (censored), ensuring alignment with the RECORD-3 trial without 

introducing selection bias. The criterion of 3 years may be relaxed if the sample size 

is insufficient.    

Outcome** Primary endpoints: 

1. PFS of first-line therapy: time from the first date of first-line 

treatment to progression during first-line treatment or death from 

any cause. Patients without progression* or death at data cut-off 

for the analysis or at the time of receiving additional anticancer 

therapy, including the second-line drug were censored at their last 

date of adequate tumour evaluation. 

 

Secondary endpoints: 

1. Combined first- and second-line PFS: the time from 

randomisation to progression after second-line treatment or death 

from any cause. Patients who did not crossover to second-line 

therapy or who did not experience progression after the start of 

second-line treatment or who were alive at data cut-off for the 

analysis or at the time of receiving an additional anticancer 

therapy, were censored at last date of tumour evaluation.  

Primary endpoints: 

1. OS: time from the first date of first-line treatment to death  

 

Secondary endpoints: 

1. Combined first- and second-line PFS: the time from the first date of first-line 

treatment to progression* after second-line treatment or death from any cause. 

Patients who did not crossover to second-line therapy or who did not 

experience progression* after the start of second-line treatment or who were 

alive at data cut-off for the analysis or at the time of receiving an additional 

anticancer therapy were censored at their last date of structural activity plus 

grace period. 

2. PFS of first-line therapy: the time from the first date of first-line treatment to 

progression* during first-line treatment or death from any cause. Patients 

without progression* or death at data cut-off for the analysis or at the time of 

receiving additional anticancer therapy, including the second-line drug, were 

censored at their last date of structural activity plus grace period. 
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2. OS: time from randomisation to death (no formal power 

calculation was made, and the expected number of deaths was 

300) 

 

Exploratory endpoints:  

1. Second-line PFS: time from the start of second-line treatment to 

progression or death  

Professor Janet Brown suggested that the judgement of disease progression in routine 

practice (i.e. a combination of clinical and radiology progression assessment) may 

vary between clinicians and may differ from clinical trials, which often involve 

independent central using RECIST. Patients remain on a treatment or radiology 

showing < 20% increase may be an indicator of disease remains stable without 

progression.      

Causal 

contrasts of 

interest 

Per-protocol effect was estimated for first-line PFS, OS and combined 

PFS. A notable proportion of patients were censored in estimating the 

combined PFS and OS in RECORD-3, owing to delayed crossover to 

second-line therapy, with 57% patients in the sunitinib-everolimus arm 

and 56% patients in the everolimus-sunitinib arm. The crossover, 

which is the start of receiving second-line treatment, should occur 

within 35 days of progression. The period between the end of first-line 

treatment and the beginning of second-line therapy is the crossover 

period.86 

Main analysis: 

1. Hypothetical per-protocol effect: estimating the hypothetical effect had all 

patients adhered to the treatment strategy to which they are assigned in our 

analyses. This approach includes all patients who received sunitinib as a first-

line therapy for time-to-event outcome assessment and adjust for treatment-

switching with causal inference methods if they did not receive everolimus as a 

second-line therapy or did not have a timely cross-over. 

 

Exploratory: 

1. Analogue of intention-to-treat effect: estimating the effect according to the first-

line therapy.  

2. As-treated effect: estimating the effect according to the actual treatment 

sequences. This approach only includes patients who received sunitinib as their 

first-line treatment and proceeded to everolimus as their second-line therapy for 

time-to-event outcome assessment. 

3. Standard per-protocol effect: This approach includes all patients who received 

sunitinib as their first-line therapy for time-to-event outcome assessment and 

censor those who did not proceed to everolimus as their second-line therapy by 

the time of treatment-switching or did not have a timely cross-over without any 

adjustment for informative censoring 

Analysis plan  Kaplan-Meier survival curves and log-rank tests. Hazard ratios and 

95% CI were estimated from a Cox proportional hazard models for 

PFS, OS and combined PFS, stratified by the MSKCC risk criteria. 

 

 Descriptive analyses will be conducted to understand the overall treatment 

pattern in the data and to estimate the sample size.   

 Patient characteristics at treatment initiation and at cross-over will be examined 

and compared with those in the RECORD-3 trial 

 KM survival curves, survival probability (e.g. median survival)/event incidence, 

and cox proportional hazard ratios (and/or risk ratios using pooled logistic 

regression), will be conducted for all time-to-event outcomes. 
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Time-to-event outcome analyses will be performed for the as-treated, and standard 

per-protocol effect, the hypothetical per-(TTE)-protocol effect assuming complete 

adherence to treatment assignment. Marginal structural models using inverse 

probability weight and other G-methods will be used to facilitate the emulation of the 

hypothetical per-protocol effect assuming complete adherence to treatment 

assignment and account for time-varying confounders (see Section 4.7 in Chapter 4 

for the discussion of advanced methods).3,5,289  

PD, progressive disease; ECOG, Eastern Cooperative Oncology Group performance status; KM: Kaplan-Meier; KPS, Karnofsky performance status; mRCC, metastatic renal cell carcinoma; MSKCC, 

Memorial Sloan-Kettering Cancer Center; NCRAS, National Cancer Registration and Analysis Service; OS: overall survival; PFS: progression-free survival; RCT, randomised controlled trials; 

RECIST, Response Evaluation Criteria in Solid Tumors; TKI, tyrosine kinase inhibitors; TTE: target trial emulation 

 

* The final operational definition of disease progression can vary across databases and will be determined through discussions with clinical experts and data experts, due to the uncertainty in data 

quality. If a specific progression date is unavailable, we might use a composite of variables to obtain a proxy date of disease progression, such as treatment discontinuation.  

 PSA level is unavailable in the NCRAS data, and therefore will not be included in the English NCRAS analysis. 

 

**Colour coding: The colour-coding scheme highlights the comparable outcomes between the RECORD-3 trial and the planned RCC case study, with comparable outcomes marked in the same colour. 

- Red: OS 

- Pink: Combined first- and second-line PFS 

- Purple: PFS of first-line therapy  

- Black text indicates outcomes in the GUTG-001 trial that are not explored in the RECORD-3 study 

The outcomes in the RCC case study are selected based on their projected feasibility to enable RCT versus real-world evidence (RWE) agreement assessment (i.e., from high to low: primary endpoints > 

secondary endpoints > exploratory endpoints) as planned in Section 7.5.5. The primary endpoint in the RCC case study is OS, as mortality data is a relatively reliable endpoint available in the English 

Cancer Registry. In contrast, OS is a secondary endpoint in the RECORD-3 trial, potentially due to typically shorter follow-up periods in trials and likely immature OS data. Secondary endpoints in the 

RCC case study involve progression assessments, which may require proxy definitions using other available information in real-world data (RWD), making them secondary rather than primary.  
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7.5.5. Benchmark trial-RWE agreement assessment 

This section delves into the methods to assess the alignment between benchmark clinical trials 

and their emulated counterparts, which are crucial for evaluating the extent of and discussing potential 

reasons for any discrepancies observed. The matrix primarily comprises three components, with the 

first three assessment criteria adapted from those used in the RCT DUPLICATE studies.471,553,573  

(1) Regulatory agreement: This component assesses whether the RWE replicates its benchmark’s 

results (such as hazard ratio (HR) and risk ratio (RR)) in terms of both direction and statistical 

significance observed in the benchmark trials. While RCT DUPLICATE established criteria for 

evaluating regulatory agreement in both superiority and non-inferiority trials553, our chosen 

benchmarks (such as GUTG-001 and RECORD-3) were not intended for regulatory use and hence 

did not specify any non-inferiority margin. Therefore, our primary focus is to compare RWE and 

RCT data and treated them as superiority trials, evaluating whether the direction and significance 

of RWE’s estimates matched those of the benchmarks. Endpoints with non-significant effects in 

RCTs should also show no significant effect in RWE. 

(2) Estimate agreement: Considering the potentially disproportionately large sample size of RWE, 

achieving statistical significance might be easier compared to the benchmarks (and thus not easier 

to meet the first criteria). Therefore, this step examines whether the point estimate of RWE’s effect 

sizes falls within the 95% confidence intervals (CIs) of the benchmark trial. Furthermore, we 

added an extra procedure to include the comparison of non-relative effect estimates for time-to-

event outcomes. For example, it examines whether the point effect of median survival estimates 

falls within the 95% confidence interval of the trial. 

(3) Exploratory - standardised differences: The third criterion is exploratory in nature. It involves 

computing the standardised difference to compare the relative effect estimates from the 

benchmark and the RWE, to determine whether there is a statistically significant difference in the 

estimated effects, as indicated in the RCT DUPLICATE study, using the formula below.553 

Z =  
θ̂𝑅𝑊𝐸 − θ̂𝑅𝐶𝑇

√𝜎2
𝑅𝑊𝐸 + 𝜎2

𝑅𝐶𝑇
, where an absolute Z-value less than 1.96 indicates no significant difference 

between the estimates from RWE and RCT. 

(4) Exploratory - survival curve comparison: This additional criterion, specific to our study, involves 

comparing RWE survival curves with those from the benchmark trial for time-to-event outcomes. 

The key aspect here is assessing whether the point estimates of the RWE survival curve for each 

treatment-sequence group fall within the 95% CI of the benchmark trial. Since RCTs typically 

present Kaplan-Meier (KM) curves, without patient-level data, we aim to reconstruct patient-level 

survival data from benchmark RCTs using Guyot et al.'s digitisation method for extracting 

information from published KM curves574, wherever possible. We introduced this extra criterion 
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beyond what was included in RCT DUPLICATE, emphasising the importance of verifying 

whether absolute outcomes (like survival times) in our emulation match those in the RCT, and 

not solely focusing on relative effect estimates. This is crucial because there is a possibility that, 

even with similar relative effect estimates, the absolute effect may significantly vary, indicating a 

less ideal emulation. This holds particular importance in scenarios where RWE is employed to 

form external control arms, notably in our RCC case study (Section 7.5.4) which focuses on the 

emulation of a single arm. 

This assessment matrix is specifically designed for comparing the benchmark-RWE pair in the 

PC1 case study (GUTG-001 versus its emulation using Flatiron data). However, its application to the 

benchmark-RWE pairs in the PC2, PC3, and RCC case studies can be limited in terms of 

interpretation. For example, PC2 utilises an emulated benchmark instead of a traditional RCT. 

Additionally, in PC3's single-arm study, only the fourth criterion and certain aspects of the second 

criterion, particularly the comparison of non-relative effects, are pertinent.  

7.5.6. Software for analysis 

The data will be analysed in R and STATA to conduct Target Trial emulations in different cancer 

types to explore the feasibility of applying causal inference methods for estimating the effectiveness 

of different treatment sequences using RWD. All analyses will be documented in R script and Stata. 

Do files.  

7.6. Data acquisition  

7.6.1. Overview 

This section offers an overview of the specification of datasets and variables we originally 

planned to request from the NCRAS and Flatiron databases for the analyses detailed in Section 7.5 

(Analysis Plan). For transparency, we reported our original specifications and included feedback 

received from analysts of both databases during the data application process. Our main objective is 

to gather detailed patient information to identify eligible patients who fit the inclusion/exclusion 

criteria of our Target Trial case studies. This includes two specific patient groups: 1) individuals with 

prostate cancer (ICD-10: C61x) in both the Flatiron and NCRAS databases, and 2) those with RCC 

(ICD-10: C64x) in the NCRAS database. Importantly, we also need longitudinal patient data for 

measuring time-varying treatments, covariates and outcomes, such as overall survival. 

Patient selection and emulation taking into account time-varying treatment exposures will be 

based on various factors including basic characteristics (age, sex, date of diagnosis, cancer stage, 

performance status), tumour prognostic factors (histology, morphology, tumour size, co-morbidities), 

and treatment details (anti-cancer treatments, pre-diagnosis treatment history, treatment duration). 
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This information is needed at diagnosis, first-line treatment, and, if available, at the time of treatment 

switching. For evaluating outcomes, we require information on the dates of patients' deaths (to 

estimate overall survival), signs of treatment relapse (for assessing progression-free survival), and 

factors leading to follow-up loss (e.g., relocating out of the country), wherever available. 

For the Flatiron data application, we submitted our study protocol and variable requirements, as 

outlined above and in Section 7.6.3, specifically for prostate cancer patients, to the Flatiron scientists 

for evaluation. This approach was necessary because Flatiron's data dictionary is not publicly 

available. In response, Flatiron informed us of potential limitations in using their database for our 

planned analysis. Contrary to NCRAS, which supplies only the variables specifically requested, 

Flatiron grants access to their entire standard disease-specific database, such as the metastatic prostate 

cancer database, upon approval of the data application. 

For the NCRAS database application, we employed the most recent ODR NCRAS data 

dictionary template (v4.4)434 available at the time when we initially applied. This helped us identify 

relevant variables and customise our data request, including justifications for each variable we 

requested. A complete list of datasets, variables, and cohort definitions for the NCRAS data 

application can be found in the Appendix 7.1. This list, along with the protocol, has been under review 

by the NHS ethics committee and the ODR/NHSD, and has been amended based on their feedback.  

The subsequent paragraphs (Section 7.6.2-7.6.5) provide specifics on the datasets and variables 

we requested from Flatiron and ODR/NHSD, including detailed original content specifications.  

7.6.2. Relevant datasets required 

7.6.2.1. Flatiron datasets/tables required 

All relevant tables in the standard Flatiron mPC dataset, containing necessary variable 

information as outlined in Sections 7.6.1 and 7.6.3, will be used wherever available. 

7.6.2.2. NCRAS datasets required 

 English Cancer Registry  

 SACT dataset 

 Radiotherapy dataset (RTDS) 

 HES admitted care 

 HES outpatient 

 HES accident and emergency 

 Cancer Waiting Time  
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7.6.3. Relevant variable information required  

Our primary analyses (Figure 7.1) only planned to include patients that match with the 

inclusion/exclusion criteria in the benchmark RCTs (case study PC1 and RCC Analysis Set 1). 

However, we will conduct further “real-world effect” analyses on a wider population compared to the 

restricted trial population (case study PC2, PC3 and RCC Analysis Set 2). Consequently, our data 

application requests records of all patients diagnosed with prostate cancer or RCC, not just a specific 

subset. We requested all available pre- and post-diagnosis patient records, wherever available. 

Comprehensive data collection is crucial for our sequential treatment Target Trial analyses, especially 

for integrating time-varying exposures in assessing treatment sequence effectiveness. Table 7.4 

presents the operational definitions of the required variable/information, with detailed justifications 

for each specific requested variable provided separately to ODR/NHS Digital using the ODR NCRAS 

data dictionary version 4.4434.  

Time-to-event outcomes like overall survival (OS) will be calculated from treatment initiation 

to the patient's death. In contrast, defining PFS requires careful consideration due to potential 

unavailability of exact progression dates. Our approach involves integrating proxy variables to 

estimate these dates, such as instances of treatment discontinuation. Patients who encounter adverse 

events or dropouts, when identifiable and pertinent to the protocol, may be censored as appropriate. 

Operational definitions defined in Table 7.4 may be refined following discussions with clinical 

experts and database analysts, and upon discovering more relevant algorithms in the literature, such 

as those for comorbidity definition.  

Table 7.4 Summary of variable requirements and operational definitions 

 Prostate cancer case studies Renal cell carcinoma case studies 

Cancer type  ICD-10: C61x ICD-10: C64x 

Basic 

characteristics 

Age, sex, date of diagnosis, date of first-line treatment, date of second-line treatment, cancer 

stage, ECOG performance status, tumour size, tumour histology, tumour morphology  

Comorbidities 

considered for 

replicating the 

inclusion and 

exclusion criteria 

of the 

benchmark trials 

in PC1 and RCC 

Analysis Set 2 

 Brain metastases (ICD-10: C79.3) 

 Contraindications of abiraterone and 

enzalutamide - pregnancy (ICD-10: 

O00x, O01x, O02x, O03x, O04x, 

O05x, O06x, O07x, O08x)575 (It is 

unlikely that men have any diagnosis of 

pregnancy, but this can be used to test 

the quality of the NCRAS/HES data) 

 Active epidural disease (G95x other 

and unspecified diseases of spinal cord) 

 Active concurrent malignancy (ICD-10: 

C00x-C43x, C45x-C96x, D00x-D05x, 

D07x-49x) 

 History of seizures or cerebrovascular 

events (ICD-10: G40x, I60x-69x) 

 Metastases (ICD-10: C79x) (of other 

cancers) 

 Brain metastasises (ICD-10: C79.3): 

Professor Janet Brown suggested that 

roughly 1 in 20 mRCC patients may have 

de novo brain metastatses. 

 End-stage renal disease (ICD-10: N18.6)  
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 Gastrointestinal disorders affecting 

absorption (ICD-10: K90x) 

 End-stage renal disease (ICD-10: 

N18.6) 

 Major surgery within 4 weeks of 

starting study treatment 

Comorbidities 

considered for 

adjusting 

prognostic 

factors 

We planned to use the Charlson Comorbidity Index (CCI) from NCRAS data as an indicator of 

disease severity for adjusting baseline characteristics. Given the CCI's nature as a summary 

score with various algorithm versions, we may perform sensitivity analyses with alternative 

algorithms for defining comorbidities. A study utilising HES data validated a CCI ICD-10 

translation (based on the Deyo and Dartmouth-Manitoba ICD-9 adaptations) for predicting in-

hospital mortality in urological cancer surgery patients.576 Although not specific to prostate 

cancer or RCC, this algorithm developed by Sundararajan et al. (outlined below) may be 

relevant as it has been validated in NHS cancer patients. Other validated tools, such as 

Elixhauser scores or individual comorbidity variables may also be considered subject to 

discussion with clinicians.577 For example, for the US population, the Combined Comorbidity 

Score developed by the Harvard group may be particularly relevant.578,579 

Condition Weights ICD-10-AM 

Acute myocardial infarction 1 I21, I22, I252 

Congestive heart failure 1 I50 

Peripheral vascular disease 1 I71, I790, I739, R02, Z958, Z959 

Cerebral vascular accident 1 I60, I61, I62, I63, I65, I66,G450, G451, G452, G458, G459, G46, I64, 

G454, I670, I671, I672, I674, I675, I676, I677 I678, I679, I681, I682, 

I688, I69 

Dementia 1 F00, F01, F02, F051 

Pulmonary disease 1 J40, J41, J42, J44, J43, J45, J46, J47, J67, J44, J60, J61, J62, J63, J66, 

J64, J65 

Connective tissue disorder 1 M32, M34, M332, M053, M058, M059, M060, M063, M069, M050, 

M052, M051, M353 

Peptic ulcer 1 K25, K26, K27, K28 

Liver disease 1 K702, K703, K73, K717, K740, K742, K746, K743, K744, K745 

Diabetes 1 E109, E119, E139, E149, E101, E111, E131, E141, E105, E115, E135, 

E145 

Diabetes complications 2 E102, E112, E132, E142 E103, E113, E133, E143 E104, E114, E134, 

E144 

Paraplegia 2 G81 G041, G820, G821, G822 

Renal disease 2 N03, N052, N053, N054, N055, N056, N072, N073, N074, N01, N18, 

N19, N25 

Cancer 2 C0, C1, C2, C3, C40, C41, C43, C45, C46, C47, C48, C49, C5, C6, C70, 

C71, C72, C73, C74, C75, C76, C80, C81, C82, C83, C84, C85, C883, 

C887, C889, C900, C901, C91, C92, C93, C940, C941, C942, C943, 

C9451, C947, C95, C96 

Metastatic cancer 3 C77, C78, C79, C80 

Severe liver disease 3 K729, K766, K767, K721 

HIV 6 B20, B21, B22, B23, B24 
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Treatments  All patients whoever received any 

systematic anti-cancer therapy for their 

prostate cancer.    

 Common treatments: abiraterone, 

enzalutamide, docetaxel, carbizitaxel, 

sipuleucel-T, radium-223 

 All patients whoever received any 

systematic anti-cancer therapy for their 

RCC.  

 Common treatments:  sunitinib, 

everolimus, pazopanib, sorafenib, 

temsirolimus, axitinib, nivolumab, 

cabozantinib, tivozanib, lenvatinib with 

everolimus, nivolumab with ipilimumab, 

avelumab with axitinib 

Outcome 

measurements 

Death date, disease status (i.e., disease progression, treatment discontinuation, metastasis (e.g. 

ICD-10: C79x), wherever available) 

 

7.6.4. Data time period 

The full duration of the Flatiron mPC dataset is not publicly available, but the data curation lag 

is typically minimal. As of the March 31, 2019 cut-off, Flatiron's analysts provided initial sample size 

estimates for our protocol population. They identified about 4,000 mCRPC patients who underwent 

first-line treatment, with 1,700 advancing to second-line therapy. This includes about 600 patients 

treated first with abiraterone then enzalutamide, and 400 with the reverse sequence, suggesting a 

sufficient sample size for the study, especially with further inclusion of patients who received 

abiraterone or enzalutamide as first-line therapy without subsequent treatments. Based on this 

confirmation, we were able to confidently proceed with the data application for Flatiron's mPC dataset. 

Patients diagnosed before April 2012 might lack comprehensive treatment data, essential for our 

treatment sequence analysis. The NDRS analysts further recommended focusing on patients treated 

from 2014 onwards due to the improved completeness of SACT data. Moreover, explicitly emulating 

the theoretical minimum follow-up periods of approximately 2 and 3 years, as observed in the GUTG-

00184 and RECORD-386 trials (i.e., from the last patient's enrolment to the data cut-off date), promises 

fairer comparisons. With data access expected to cover up to the end of 2019/2020 by the time of 

application, we aimed to include patients diagnosed or starting their first-line treatment between 

2014-2017 for prostate cancer, and 2014-2016 for RCC case studies, taking into account both the 

respective minimum follow-up periods and SACT data maturity. However, to accommodate 

sensitivity analyses assessing the impact of treatment data and the inclusion of patients not meeting 

the theoretical minimum follow-up periods, we requested data for all patients diagnosed with prostate 

cancer (C61) or renal cell carcinoma (C64) between 01/01/2011 and 31/12/2020 (See Appendix 7.1). 

For these patients, we also requested an extended period of records—six years prior to their diagnosis 

and all records post-diagnosis. This is necessary to accurately define time-varying covariates, 

treatments, and outcomes as specified in Section 7.6.3 (See Appendix 7.1).  

7.6.5. Geography criteria  

For Flatiron data, we requested records from the entire population associated with US health 
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care providers (community/academic) within the Flatiron Health Network. Our NCRAS data request 

was exclusively for patients in England. 
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7.7. Chapter summary 

This chapter revisited the significance of leveraging RWD as an alternative means to derive 

unbiased estimates of treatment sequence effectiveness in HTA, along with the associated challenges. 

It highlighted the appropriateness of designing proof-of-concept studies that borrow the strengths of 

the TTE framework and benchmarking techniques. The case studies in this chapter's protocol were 

designed to evaluate if databases identified in Chapter 5—NCRAS and Flatiron—are of sufficient 

quality to provide reliable estimates of treatment sequence effectiveness. 

This chapter set forth specific aims for the aforementioned quest and introduced an innovative 

strategy for utilising the NCRAS and Flatiron databases in tandem for a series of direct and indirect 

benchmarking studies. It highlighted the novelty, uniqueness, and potential of indirect benchmarking, 

especially because an ideal benchmark RCT for direct benchmarking was unavailable for calibrating 

the utility of NCRAS data. Specifically, assessing the feasibility of using NCRAS data to provide 

unbiased comparative effectiveness estimates of treatment sequences—requiring at least two 

sequences within one case study—can only hinge on the support from Flatiron data (see Chapter 6). 

The design of my interconnected prostate cancer studies bridged the gap caused by the lack of 

benchmark RCTs featuring treatment sequences common in English clinical practice. However, it is 

essential to acknowledge that the ability to proceed with the indirect proof-of-concept studies (PC2 

& PC3, Section 7.5.3.3.2 & 7.5.3.3.3), which aim to assess the utility of NCRAS data in comparing 

treatment sequences, is dependent upon the success of the direct proof-of-concept study utilising the 

Flatiron database (PC1, 7.5.3.3.1). Hence, the RCC case study (Section 7.5.4) was designed as a direct 

proof-of-concept study to assess the utility of NCRAS data, albeit with the limitation of being single-

arm validations. However, it lays initial steps to examine the leverage of TTE and advanced statistical 

methods for creating external control reference treatment sequence arms.  

The significance of this study goes beyond assessing the use of RWD in informing the 

effectiveness of treatment sequences for HTA. It also holds importance in the broader context of TTE 

studies. To date, this project serves as the first attempt within TTE research to compare treatment 

sequences, making it an initial foray into applying these methods in this specific area. While similarly 

rooted statistical techniques have been employed to compare other types of dynamic treatment 

regimen (e.g., determining the timing for initiating treatments based on lab test thresholds), they have 

not been adopted to compare treatment sequences for HTA. 

Furthermore, in evaluating the agreement between RCT and RWE, my protocol has advanced 

beyond and complemented the status quo established by the RCT DUPLICATE research initiative553: 

The predefined assessment matrix introduced an additional criterion to assess the visual concordance 

in survival curves between the emulated Target Trial and the benchmark trial (Section 7.5.5). This 
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addition addressed a caveat in the established criteria that focus on examining the agreement of the 

relative risk between treatment groups. For instance, even when HRs in the emulated Target Trial 

appear similar to those of the benchmark RCT, the absolute outcomes (e.g., survival times) across 

groups may still be biased. It is, however, important to evaluate the absolute outcomes in HTA as they 

have implications for extrapolating patients' quality-adjusted life years and the cost of treatments in 

economic evaluations. Thus, the extra criterion aimed to ensures a more comprehensive assessment. 

The protocol has been published online for transparency.170 Chapter 8 dives into the complexities 

of adapting these outlined TTE into practical operations. It touches upon data quality concerns and 

provides a tutorial-style breakdown of the protocol's implementation process. Due to constraints on 

time and data access described in Chapter 5, the thesis presents only the implementation of the first 

prostate cancer case study (PC1) as a representative example. More information can be found in 

Chapter 8.
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Chapter 8 Implementing Target Trial Emulation for Comparing Treatment 

Sequences Using the Flatiron database and NCRAS database 

8.1. Chapter overview 

This chapter dives into the execution of the Target Trial Emulation (TTE) case studies outlined 

in Chapter 7. Given the constrains of time, scale of the project, and challenges of data access (Chapter 

5), my focus narrowed to implementing the first prostate cancer study (PC1) using Flatiron data 

(Chapter 7, Section 7.5.3.3.1). This chapter details the TTE implementation for comparing treatment 

sequences using RWD in a step-by-step manner, detailing the challenges encountered and the 

necessary compromises. It establishes the groundwork for further exploration of subsequent case 

studies in a Wellcome Trust transition fund-funded research position that I plan to undertake post-

PhD, and aims to serve as a tutorial for similar future research. 

Despite the primary focus on the PC1 case study, the initial part of this chapter (Section 8.2) 

gives a thorough overview of the importance of preliminary data checks for sequencing analysis, 

relevant across all case studies, including both prostate cancer (PC1 to PC3) and renal cell carcinoma 

(RCC) case studies. These were performed upon receipt of data from all candidate databases specified 

in my case study protocol (Chapter 7)—the Flatiron and the English National Cancer Registration 

and Analysis Service (NCRAS) databases. I explain how to validate received data against published 

data, perform consistency checks, and preliminary treatment pattern checks to refine sample size 

estimation prior to initiating TTE. I conclude by discussing the implications of these preliminary 

checks. 

Section 8.3 transitions into the execution of the PC1 TTE case study, beginning with a 15-person 

toy example, illustrating the key elements of an analysis-ready dataset (Section 8.3.2). This toy 

example sets the stage for implementing the advanced inverse probability weighting (IPW) method, 

an advanced statistical technique identified in the methods review in Chapter 4, for comparing 

treatment sequences. It demonstrates how to operationalise the method at a conceptual level. The 

section then moves on to methods for identifying the target cohort and preparing fit-for-purpose 

analytic datasets using RWD of my case study (Section 8.3.3). I then outline the practical application 

of the IPW method to adjust for baseline and time-varying confounding factors. This theoretically 

enables the derivation of unbiased estimates for comparing two treatment sequences using RWD. I 

explain how I adapted the IPW method specifically for the context of PC1's research and the data 

available in the Flatiron database (Section 8.3.4). I then report the study findings, compare the results 

obtained with the IPW method with those using simple methods, and assess how well the real-world 

evidence (RWE) from the emulated TTE aligns with the benchmark RCT (Section 8.4). The 

assessment follows the predefined criteria set out in my study protocol (Chapter 7, Section 7.5.5). 
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Finally, in Section 8.5, I delve into the implications of these findings and steps to advance this line of 

research further. 

8.2. Preliminary data checks for sequencing analyses 

Upon receiving the Flatiron and English NCRAS data extracts, I conducted preliminary checks 

to assess the practicality of implementing the planned TTE analyses in Chapter 7. These checks were 

vital to ensure that the sample size was sufficient, either comparable to or exceeding the patient  

populations specified in the benchmark trials (GUTG-00184 and RECORD-386). No specific 

minimum sample size for TTE aimed at benchmarking is recommended in the literature.3,37,77 Less 

strict inclusion and exclusion criteria can increase sample sizes, while matching the strict criteria of 

benchmark RCTs theoretically tends to result in smaller sample sizes.580 A review indicates that 

sample sizes for TTE studies can greatly vary, depending on the research topic and data source.581 

Although clinical trial sample size estimation methods, designed to detect a specific level of treatment 

efficacy, may be applied37,582, their relevance become less clear where assessing real-world impacts 

or safety signals in a generalised population where effect magnitude and direction are uncertain. 

Nonetheless, this highlights the reasoning for match or exceeding benchmark trial sample sizes in my 

analysis to enhance likelihood of identifying comparable differences between treatment groups and 

thus facilitating effective benchmarking. 

The data checking process begins with logic checks to ensure that the received data matched 

what I had requested and aligned with the data dictionaries. This includes comparing the cancer 

incidence in my data with published statistics, checking the received data variables against the 

requested parameters, and ensuring all datasets within each database could be linked through key 

parameters. Then, I analysed all patients in each database to understand the treatment patterns, 

assessing the potential sample size for the planned TTE analyses. In the following sections, I describe 

the implications of these checks in detail. 

8.2.1. Cancer incidence, variable completeness, and dataset linkage 

The annual incidence of metastatic castration-resistant prostate cancer (mCRPC) patients in the 

Flatiron metastatic prostate cancer (mPC) dataset aligned with recent publications using the same 

database.437 Moreover, all tables within this mPC dataset could be linked using patient unique ID 

without logical inconsistencies. 

For the English NCRAS data, metastatic dates are only available for patients initially diagnosed 

with metastatic cancer, unlike the Flatiron database where the progression date to metastatic cancer 

can be determined even for those initially diagnosed at an early stage (see Section 5.3.3, Chapter 5). 

Consequently, I focused on comparing the incidence of all prostate and kidney cancer cases in 

England with published statistics for logic checks. The initial data extract provided by the NHS 
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Digital fell short of expectations, showing only about 4000 patients in total, markedly below the 

expected 30,000-45,000 new cases of prostate and kidney cancer annually according to published 

NHS statistics.583,584 This shortfall was particularly notable since I requested data for patient cohorts 

from 2011 to 2020, but found that most patients in the dataset were diagnosed in 2011. Additionally, 

a Venn diagram analysis of unique patient IDs in the received NCRAS datasets, revealed patient ID 

mismatches, indicating issues with data linkage. This prompted me to request a data re-extraction, 

which resolved these inconsistencies upon receipt of the revised data.  

Lastly, minor discrepancies between requested and provided variables were found in both 

databases and resolved in the updated data-cut for both Flatiron and NCRAS data.  

8.2.2. Treatment pattern and sample size check 

In evaluating the sample size, I analysed treatment patterns for mCRPC patients from the 

Flatiron database for the PC1/PC2 case studies (Chapter 7, Section 7.5.3.3.1 and 7.5.3.3.2), and 

prostate and kidney cancer patients from the English NCRAS database for the PC3 and RCC case 

studies (Chapter 7, Section 7.5.3.3.3 and 7.5.4.3). In analysing the Flatiron database, I used its default 

line-of-therapy (LOT) table to define the duration, start, and end dates of each LOT (Chapter 5, 

Section 5.3.3.3, with raw prescription data also available for creating user-defined LOT). In contrast, 

user-defined LOT was necessary for analysing the English NCRAS Systemic Anti-Cancer Treatment 

(SACT) dataset. For comparative purposes, I applied similar criteria across both datasets. In all cancer 

treatments, the introduction of any new treatment marks the beginning of the next LOT, except when 

the new treatment is part of a combination regimen. Table 8.1 defines the treatments that qualify as a 

LOT for advanced prostate cancer, and Table 8.2 outlines common treatments for mRCC. In the 

preliminary check of treatment patterns across two databases, a subtle difference should be noted: in 

the Flatiron mPC dataset, by default, restarting the same treatment more than an extended period (i.e., 

90 days, is also classified as a new line of therapy. Nevertheless, our clinical expert, Dr. Carmel 

Pezaro, highlights that it is rare for the same medication to be used again in subsequent treatment 

lines. For example, the consecutive use of abiraterone or enzalutamide as first and second lines is rare 

(i.e. abiretarone → abiretarone, enzalutamide → enzalutamide), as shown in Figure 8.1. This 

underscores the negligible effect of the default LOT definition in Flatiron data (i.e., one of the criteria 

being that re-initiating the same treatment after a discontinuation of more than 90 days is considered 

a new line of therapy, whether it was a pause or a true re-challenge) on my treatment pattern checks 

for sample size estimation. That is, merging LOTs involving repeats of the same treatment—such as 

categorising the sequence abiretarone → abiretarone → docetaxel as abiretarone → docetaxel—

would not significantly change the landscape of treatment sequence patterns. 
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Table 8.1 Criteria for defining line-of-therapy in advanced prostate cancer 

Treatment types Examples of specific treatments (non-exhaustive) 

Typical therapies included in LOT duration calculations 

Androgen receptor-targeted 

agents (ARTAs) 

Abiraterone, Enzalutamide, Apalutamide, Darolutamide 

Taxanes (chemotherapy)  Docetaxel, Cabazitaxel 

Internal radiotherapy Radium-223 

Cellular immunotherapy Sipuleucel-T 

Atypical therapies included in LOT duration calculations 

Combinations of any typical 

therapies with other agents 

- 

Other chemotherapies Cisplatin, Carboplatin, Vinorelbine 

Immunotherapies  Durvalumab 

Antifungal agents being used as 

treatment for prostate cancer 

Ketoconazole 

Hormone Medroxyprogesterone, Diethylstilbestrol 

Drugs being used in clinical trials In all Flatiron tables, medications used in clinical trials are labelled as 

“clinical trial agents” instead of the specific treatment received. Some records 

specify the trial name, such as the “STAMPEDE trial”, but due to blinded 

randomisation, it is generally unclear if a specific treatment, such as docetaxel, 

was administered. 

Therapies excluded in LOT duration calculations 

Radiation and surgery - 

GnRH, LHRH 

agonists/antagonists 

Cyproterone, Goserelin, Triptorelin, Leuprorelin, Degarelix 

 

Note: These agents are not counted as a LOT for treatmenting advanced 

prostate cancer as they are androgen deprivation therapy, often initiated in 

earlier stages of prostate cancer to reduce testosterone levels and may continue 

alongside advanced therapies for metastatic prostate cancer. 

Nonsteroidal antiandrogen Bicalutamide, Nilutamide, Flutamide 

 

Note: According to Dr. Pezaro, these agents should not be counted as a LOT 

for treating advanced prostate cancer as they do not offer a survival benefit in 

treating mCRPC. Instead, they are sometimes used emergently to alleviate 

symptoms related to metastasis. 

Treatments for cancer-related 

hypercalcemia (e.g. 

bisphosphonates) 

Denosumab, Zoledronic Acid 

 

Note: These agents are not classified as a LOT because they primarily serve to 

manage symptoms of bone metastasis, supplementing the main treatment. 

Appetite-stimulating agents used 

as atypical treatment for prostate 

cancer 

Megestrol, Megestrol Acetate 

 

Note: These agents are not counted as a LOT because they are considered 

atypical hormone therapies. 

Combinations of the above Bicalutamide + Goserelin, Bicalutamide + Leuprorelin, Cyproterone + 

Goserelin, Cyproterone + Leuprorelin 

 

Note: These combinations are not classified as a LOT since these 

combinations solely consist of agents that should not be counted as a LOT. 
GnRH: Gonadotropin hormone-releasing hormone; LHRH: Luteinizing hormone-releasing hormone; LOT: line-of-therapy 
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Table 8.2 Common treatments in metastatic kidney cancer 

Treatment types Examples of specific treatments (non-exhaustive) 

Targeted therapies Pazopanib, Sunitinib, Cabozantinib, Axitinib, Levatinib 

Immunotherapies Nivolumab, Ipilimumab + nivolumab, Ipilimumab 

mTOR Inhibitors Everolimus, Tesirolimus 

Combinations Everolimus + Levatinib, Avelumab + Axitinib 

mTOR: mammalian target of rapamycin 

 

When evaluating NCRAS data sample sizes, I focused on general prostate and kidney cancer 

cases, diverging from the specific target populations of mCRPC and metastatic RCC (mRCC) 

outlined in the PC3 and RCC studies, respectively. These simplifications are solely for obtaining an 

indicative sample size estimates. For the actual TTE analysis in Section 8.3, I followed the pre-defined 

eligibility criteria in my study protocol (Chapter 7) only relevant patients were included. I deemed 

this approach reasonable as RCC accounts for most kidney cancer cases.585 Additionally, the systemic 

treatments of interest are primarily only used for metastatic diseases (Tables 8.1 and 8.2). Hence, 

including early-stage patients in the analysis is unlikely to lead to misinterpretation of the treatment 

sequences for patients in their mCRPC and mRCC phases, since these treatments are typically 

initiated upon progression to metastatic disease. This method is preferable for sample size estimation 

because it does not exclude early-stage diagnosed patients who later develop metastasis, a detail that 

is not included in the English NCRAS data (Section 8.2.1). Acknowledging recent treatment trends 

is vital in interpreting treatment sequences for mCRPC and mRCC, especially the increasing early 

use of docetaxel and enzalutamide in non-metastatic prostate cancer249,540, and the potential overlap 

of systemic treatments as adjuvant or neoadjuvant therapy in early-stage RCC586. 

Figures 8.1 to 8.3 present Sankey diagrams showing treatment patterns for three groups: 

treatment-naïve mCRPC patients in Flatiron data, prostate cancer patients in English NCRAS data, 

and kidney cancer patients in English NCRAS data, respectively. The patterns broadly align with the 

disease demographics outlined in Chapter 6, Section 6.8, and correspond with sample size estimates 

from Chapter 7, Sections 7.5.3.5 and 7.5.4.5. 

In the US, the primary treatment sequences for mCRPC patients include abiraterone followed 

by enzalutamide, enzalutamide followed by abiraterone, abiraterone or enzalutamide followed by 

docetaxel, and no further treatment after the initial therapy (Figure 8.1). Conversely, in England, the 

prevalent treatments for mCRPC starts with docetaxel, followed by abiraterone or enzalutamide, or 

in the reverse order (Figure 8.2). Both countries often use sequences involving docetaxel, 

enzalutamide or abiraterone. Dr. Pezaro highlighted that in England, using abiraterone and 

enzalutamide sequentially is uncommon, generally limited to those who develop intolerable toxicity 

to one of these agents.  
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Figure 8.1 Sankey diagram of treatment patterns in treatment-naïve mCRPC patients in Flatiron data (data-cut: April, 2022) 

Patients were diagnosed with metastatic castration-resistant prostate cancer (mCRPC) between 2013 and 2022. 
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Figure 8.2 Sankey diagram of treatment patterns in treatment-naïve prostate cancer patients in English NCRAS data (data-cut: Dec 2021) 

Patients were diagnosed with prostates cancer between 2011 and 2021. 
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Figure 8.3 Sankey diagram of treatment patterns in treatment-naïve kidney cancer patients in English NCRAS data (data-cut: Dec 2021) 

Patients were diagnosed with kidney cancer between 2011 and 2021. 

Kidney cancer treatments 
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These findings indicate a sufficient sample size for PC1 analyses with Flatiron data (Chapter 7, 

Table 1), with over 1,000 patients in each group (abiraterone → enzalutamide versus its reverse 

sequence), and over 2,000 when factoring in those who did not receive any second-line treatment. 

Common treatment sequences in Figure 8.1 & 8.2 also help identify common sequences for PC2 and 

PC3 case studies (Chapter 7, Table 2), such as docetaxel → enzalutamide and its reverse sequence. 

However, it is crucial to consider refining the sequences for prostate cancer analyses using English 

NCRAS data, factoring in proxies for progression dates and sequences starting from non-metastatic 

stages. Accurately differentiating certain scenarios—such as docetaxel for non-metastatic phases 

followed by enzalutamide for metastasis versus both used following metastases —is key to avoid 

immortal time bias when comparing treatments potentially across different disease phases. 

For patients with kidney cancers in England, the most common treatment sequences begin with 

either pazopanib or sunitinib (Figure 8.3). In my RCC Analysis Set 1 (Chapter 7, Table 7.3), the target 

sequence of interest is sunitinib followed by everolimus. This particular sequence was observed in 

only 109 patients, representing a smaller subset than anticipated. Despite the small number, the 

analysis may remain feasible, especially factoring in 1517 patients who were treated exclusively with 

first-line sunitinib and did not receive any further treatment. It is also clear, and unsurprising, that 

replicating other treatment sequences from the RECORD-3 study86 (everolimus → sunitinib) is 

impossible due to the scarce use of everolimus as a first-line treatment in England. 

8.2.3. Implications of preliminary data checks 

The Sankey diagrams (Figure 8.1-8.3) align well with the disease demographics identified for 

selecting benchmark trials and databases, indicating that sample size is likely be sufficient for the 

planned TTE analyses. This reinforces the need for a thorough fit-for-purpose assessment in the 

design phase, particularly for estimating potential sample sizes in targeted treatment sequences and 

factoring in treatment patterns based on published data and clinical expert insights. A key question 

remains: Can smaller sample sizes in certain treatment sequences (e.g. suinitinib → everolimus for 

RCC Analysis Set 1) be offset by including all patients who started with the same first-line treatment 

(i.e., sunitinib), as required for the advanced IPW method (see Section 8.3.4)?  

Since only a small proportion of patients follow the sunitinib → everolimus sequence among 

those starting with sunitinib, applying the advanced IPW method requires censoring patients who 

deviate from this sequence when they receive a non-everolimus second-line treatment (see Section 

8.3.4). This would result in a censoring rate of over 50% among patients who received a second-line 

treatment, unlike in the PC1 case study, where the rate would be below 50% due to the prevalence of 

the abiraterone → enzalutamide sequence and its reverse. Consequently, the challenge of smaller 

sizes is closely tied to the performance of the advanced IPW method under high levels of censoring 
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due to treatment deviations, an issue not covered in the thesis (i.e., not applicable to the PC1 case 

study). This aspect, however, is especially relevant in the PC2/PC3 and RCC analyses and should be 

investigated in the respective actual TTE analyses to assess its impact in the future.  

Additional research, as suggested in Section 9.5(4) in Chapter 9, could use simulation studies to 

explore this in more detail. Two key aspects need further examination: the small proportion of patients 

following a specific treatment sequence (resulting in a high censoring rate among those receiving the 

same first-line treatment) and the varying levels of patients receiving only the first-line treatment (still 

considered as adhering to the treatment sequence strategy). These factors could impact the 

performance of the advanced IPW method and affect the feasibility of the analysis. A high censoring 

rate can lead to extreme IPW weights, causing analysis instability and potentially violating the 

positivity assumption (i.e., too few patients with similar characteristics remain adherent to the 

treatment strategy to represent those censored due to treatment deviation; see Section 4.6.1.2.1 in 

Chapter 4 and Section 8.3.2). This issue is notable, for example, in the use of inverse probability of 

censoring weights (IPCW) to adjust for unwanted treatment switching in health technology 

assessments (HTA), where the method becomes error-prone when over 90% of control patients in a 

sample of 500 switch to the experimental treatment.43 

Finally, ensuring data consistency with published summary statistics is key to confirming the 

extracted data meets the study's needs and enables prompt communication with data providers for 

corrections in case of any errors. 

8.3. Implementation of sequential treatment Target Trial Emulation: the GUTG-001 

Analogue case study using Flatiron data (PC1) 

8.3.1. Overview 

Due to COVID-19-related delays and challenges in data access highlighted in Chapter 5 (Section 

5.4), this thesis solely focuses on the implementation of the PC1 case study (Chapter 7, Section 

7.5.3.3.1).  

This section offers a step-by-step tutorial on executing the PC1 case study using Flatiron data, 

harnessing the inverse probability weighting (IPW) method, as illustrated in Figure 8.4. This begins 

with curating (survival-)analysis-ready datasets for the patient cohort of PC1’s Target Trial (i.e., 

GUTG-001 Analogue), along with defining their baseline and time-varying characteristics, and 

outcomes, as detailed in Section 8.3.3.  
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Figure 8.4 Emulating a Target Trial comparing treatment sequences 

IPW: inverse probability weighting; Time Zero: the start of follow-up  

I. Fit-for-purpose (survival-)analysis-ready data curation 
 
 
 
 
 
 
 

Creating long dataset for implementing advanced statistical methods 
 
 
 
 
 
 

Creating wide dataset for implementing simple statistical methods 
 
 
 
 
 
 

II. Implementing statistical analyses with a focus on IPW adjustments 
 
 
 
 
 
 
 
 
 
 

1. Cohort identification and defining Time Zero 
- Identifying Target Trial patients using predefined enrolment 

criteria 
- Necessary criteria adaptions and quality control 

 
 
 
 

2. Defining baseline/time-fixed characteristics 
 
 
 
 
 
 
 
 

4. Defining time-varying characteristics 
 
 
 
 
 
 

3. Defining outcomes, censoring, and dates 
- Defining maximum follow-up time 
- Defining date administrative censoring (i.e., lost-to-follow-up) 
- Defining date of censoring due to treatment strategy deviation 
- Defining date of primary outcome (e.g. death) 

 
 
 
 
 
 

1. Preparing statistical models for weight calculations in analyses involving 
adjustments 
- Treatment propensity models for baseline adjustment analyses 
- Propensity of censoring due to treatment strategy deviation models for 

time-varying confounding adjustment analyses 

3. Final analyses with statistical outcome models (intention-to-treat, per-
protocol, and as-treated analyses, each with or without adjustments) 
- Unweighted: for simple methods without baseline adjustment 
- Weighted: for simple analysis with baseline adjustment and advanced 

analyses with baseline and time-varying confounding adjustment 
 
 

2. Deriving weights for analyses involving adjustments 
- Baseline treatment weights for baseline adjustment analyses 
- Time-varying weights for remaining uncensored in treatment deviation 

for time-varying confounding adjustment analyses 
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Following dataset preparation, statistical models are applied to analyse the data, as outlined in 

Section 8.3.4. The analyses cover both simple and advanced methods identified in Chapter 4. The 

simple methods include intention to treat (ITT), per-protocol (PP), and as-treated (AT) analyses 

(Section 4.6.1.1, Chapter 4), both with and without baseline covariate adjustments using inverse 

probability treatment weighting (IPTW) (Sections 8.3.4.2 and 8.3.4.4). The advanced method covered 

in the thesis to adjust for both baseline and time-varying confounding is inverse probability weighting 

(IPW) incorporates IPTW and inverse probability of censoring weighting due to treatment deviation 

(IPCWtxdev) (see Section 4.6.1.2.1 in Chapter 4, and Section 8.3.4.5). 

A total of nine analyses were conducted to compare the survival outcomes between the treatment 

sequences abiraterone → enzalutamide and its reverse sequence, including eight simple and one 

advanced analyses: 

 1. Simple analyses 

1a. ITT analysis 

1b. PP analysis  

1c. AT analysis 

1d. AT analysis, limited to patients receiving at least two lines of treatment 

 2. Simple analyses with baseline confounding adjustment using IPTW 

2a. ITT analysis with IPTW 

2b. PP analysis with IPTW 

2c. AT analysis with IPTW 

2d. AT analysis, limited to patients receiving at least two lines of treatment, with IPTW 

 3. Advanced analysis with baseline and time-varying confounding adjustment: PP analysis using 

IPTW*IPCWtxdev 

The series of analyses was set up to contrast simple methods, frequently found in existing 

literature comparing the effectiveness of treatment sequences (Section 4.6.1.1, Chapter 4), with the 

chosen advanced method IPTW*IPCWtxdev (Section 4.6.1.2.1, Chapter 4), showcasing the potential 

bias that may arise from not using a theoretically more appropriate advanced technique. 

While Chapter 4 identified several candidate advanced methods, this thesis prioritised the 

advanced IPW method due to time constraints and considerations discussed in Chapter 4, Section 4.7. 

This approach also acknowledged the challenges and time required to curate RWD analytical datasets 

for a single method's implementation, discussed further in Section 8.5. PhD transition funding will 

be utilised to further advance this line of research, such as exploration of alternative advanced 

methods (e.g. g-formula).The methods implementation steps in Figure 8.4 were tailored to 

accommodate the advanced IPW method (i.e., IPTW*IPCWtxdev) described in Section 4.6.1.2.1 of 

Chapter 4. However, the steps described in Chapter 4's methods review (Steps (1)-(5) in Section 
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4.6.1.2.1) simplified these steps by omitting the detailed data curation procedures outlined in Part I, 

Steps I.1-4 of Figure 8.4. Additionally, Figure 8.4 also covers procedures for simple analyses, either 

without weights or using only baseline weights.  

For clarity, I outline below how the steps in Figure 8.4 align with those in Chapter 4, despite 

their slightly different arrangement. For further details, please refer to the last few paragraphs in 

Section 4.6.1.2.1 in Chapter 4.  

 Determining censoring timing related to treatment deviation: Step (1) in Section 4.6.1.2.1 of 

Chapter 4 corresponds to part of the data cleaning tasks in Steps I.3 and I.4 in Figure 8.4. 

 Building weight derivation models: Steps (2) and (3) in Section 4.6.1.2.1 of Chapter 4 align with 

Step II.1 in Figure 8.4. 

 Calculating weights: Step (4) in Section 4.6.1.2.1 of Chapter 4 maps to Step II.2 in Figure 8.4. 

 Final outcome analysis using weights: Step (5) in Section 4.6.1.2.1 of Chapter 4 aligns with the 

advanced analysis using both baseline and time-varying weights in Step II.3 of Figure 8.4. 

8.3.2. A toy example of an analysis-ready dataset for implementing inverse probability weighting 

Before moving on to fit-for-purpose data curation (Section 8.3.3) and the application of 

advanced IPW methods (Section 8.3.4) using real datasets in my case study (illustrated in Figure 8.4), 

this section provides a toy example. The toy example aims to demonstrate the structure and 

components of an analysis-ready dataset for implementing the advanced IPW method to compare two 

treatment sequences with IPTW and IPCWtxdev weights. It outlines the essential elements required in 

the dataset before the final stage of statistical outcome modelling (Step II.3 in Figure 8.4) and explains 

the underlying principles of the advanced IPW method (IPTW*IPCWtxdev) conceptually. 

The toy dataset, shown in in Table 8.3, is constructed to evaluate the effectiveness of two 

treatment sequences: A → B and B → A (as denoted in the second column from the left). It includes 

15 patients: 10 patients (Patients 1-10) received treatment A as their initial therapy (hypothetically 

assigned to the A → B strategy), while the remaining 5 patients (Patients 11-15) began with treatment 

B (hypothetically assigned to the B → A strategy). Table 8.3 outlines the key components for each 

patient required to apply the IPTW*IPCWtxdev method, including: 

 Patient ID 

 (Hypothetically) assigned treatment sequences 

 Baseline characteristics at the start of the first-line treatment 

 Time-varying (dependent) characteristics at the start of the second-line treatment 

 Observed first-line treatment 

 Observed second-line treatment 

 Day of starting second-line treatment 
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 Original observed day of outcome (e.g. death) 

 Censoring date/status due to treatment deviation 

 IPTW 

 IPCWtxdev 

 Total weight (IPTW * IPCWtxdev) 

This toy example provides a simplified overview of variables typically found in both “wide” 

datasets (variable with fixed values, such as baseline characteristics and IPTW, see Section 8.3.3.2 

and Section 8.3.4.3.2) and “long” datasets (variable with time-varying values, such as time-varying 

(dependent) characteristics and IPCWtxdev, see Section 8.3.3.3, and Section 8.3.4.3.3). In this 

simplified example, all patients were observed for the entire period (Day 0 to Day 8) without any loss 

to follow-up. However, in real-world scenarios, patients may have varying follow-up durations, and 

additional information regarding administrative censoring should be considered (see Section 8.3.3.3 

for details).   

Among these components, IPTW, IPCWtxdev, and the total weight (IPTW*IPCWtxdev) (i.e., the 

last three columns on the right in Table 8.3) are derived from the other components, while the rest 

should be directly cleaned from the raw patient-level data. To clean RWD for analysis in my case 

study to the extent shown in the toy example, Steps I.1-4 in Figure 8.4 should be followed to generate 

both wide and long datasets (Section 8.3.3). These datasets can then be used to derive weights (IPTW 

and IPCWtxdev) following Steps II.1-2 in Figure 8.4 (Section 8.3.4.3). Below, I explain how IPTW 

and IPCWtxdev weights are derived for each patient using baseline and time-varying characteristics in 

the toy example, and how they conceptually help address confounding in comparing treatment 

sequences. 

The aim of IPTW is to address potential confounding due to non-random allocation of first line 

treatments in the real world. IPTW weights ensure comparability between patients receiving first-line 

treatments A and B by effectively removing the influence of baseline confounders on baseline 

treatment assignment (i.e., eliminating the association between baseline confounders and baseline 

treatment, equivalent to removing the arrow from L0 to A0 in Figure 1.2 in Chapter 1). 
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Table 8.3 A toy example of an analysis-ready dataset for implementing inverse probability weighting for comparing treatment sequences  

Patient 

ID 

Assigned 

treatment 

sequences 

Baseline 

characteristics 

when starting 

1st-line 

treatment 

 

(L0 in Figure 

1.2, Chapter 1) 

Time-varying 

(dependent) 

characteristics 

when starting 

2nd-line 

treatment 

 

(L1 in Figure 

1.2, Chapter 1) 

Observed  

1st-line 

treatment 

(T1) 

 

(A0 in 

Figure 

1.2, 

Chapter 
1) 

Observed  

2nd-line 

treatment 

(T2) 

 

(A1 in 

Figure 

1.2, 

Chapter 
1)   

Day of 

starting 

2nd-line 

treatment 

Original 

observed 

day of 

death 

Censored due 

to treatment 

deviation 

(C) 

IPTW for each time 

interval 
 

For A-first group, : 

1/P(A|) 

For A-first group, O: 

1/P(A|O) 

For B-first group, : 

1/P(B|) 
For B-first group, O: 

1/P(B| O) 

IPCWtxdev for each time 

interval 
 

For A-first group: 1/P(2nd-line 

B|) 

For B-first group: 1/P(2nd-line 

A|) 

Total weight for each time 

interval (IPTW*IPCWtxdev) 

1 A   B  - A - - - No 1/(4/5) = 1.25 1 1.25*1 = 1.25 

2 A   B  - A - - 8 No 1/(4/5) = 1.25 1 1.25*1 = 1.25 

3 A   B   A B 2 - No 1/(4/5) = 1.25 1 1.25*1 = 1.25 

4 A   B   A B 3 8 No 1/(4/5) = 1.25 1 1.25*1 = 1.25 

5 A   B O  A B 4 8 No 1/(6/10) = 1.67 Day 1 to day 3: 1 
From day 4 onwards: 1/(1/2) = 2 

Day 1 to day 3: 1.67*1 = 1.67 
From day 4 onwards:  

1.67*2 = 3.34 

6 A   B O  A C 4 6 Yes, on day 4 1/(6/10) = 1.67 Day 1 to day 3: 1 

From day 4 onwards: 0 

Day 1 to day 3: 1.67*1 = 1.67 

From day 4 onwards:  

1.67*0 = 0 

7 A   B O  A B 6 - No 1/(6/10) = 1.67 Day 1 to day 5: 1 

From day 6 onwards: 1/(1/2) = 2 

Day 1 to day 5: 1.67*1 = 1.67 

From day 6 onwards:  

1.67*2 = 3.34 

8 A   B O  A B 6 - No 1/(6/10) = 1.67 Day 1 to day 5: 1 

From day 6 onwards: 1/(1/2) = 2 

Day 1 to day 5: 1.67*1 = 1.67 

From day 6 onwards:  

1.67*2 = 3.34 

9 A   B O  A D 6 7 Yes, on day 6 1/(6/10) = 1.67 Day 1 to day 5: 1 
From day 6 onwards: 1/(1/2) = 0 

Day 1 to day 5: 1.67*1 = 1.67 
From day 6 onwards:  

1.67*0 = 0 

10 A   B O  A E 6 8 Yes, on day 6 1/(6/10) = 1.67 Day 1 to day 5: 1 

From day 6 onwards: 1/(1/2) = 0 

Day 1 to day 5: 1.67*1 = 1.67 

From day 6 onwards:  

1.67*0 = 0 

11 B  A  - B - - 5 No 1/(1/5) = 5 1 5*1 = 5 

12 B  A O  B A 4 6 No 1/(4/10) = 2.5 Day 1 to day 3: 1 

From day 4 onwards: 1/(1/4) = 4 

Day 1 to day 3: 2.5*1 = 2.5 

From day 4 onwards: 

2.5*4 = 10 

13 B  A O  B C 4 - Yes, on day 4 1/(4/10) = 2.5 Day 1 to day 3: 1 

From day 4 onwards: 0 

Day 1 to day 3: 2.5*1 = 2.5 

From day 4 onwards:  

2.5*0 = 0 

14 B  A O  B D 4 - Yes, on day 4 1/(4/10) = 2.5 Day 1 to day 3: 1 

From day 4 onwards: 0 
Day 1 to day 3: 2.5*1 = 2.5 

From day 4 onwards:  

2.5*0 = 0 

15 B  A O  B E 4 5 Yes, on day 4 1/(4/10) = 2.5 Day 1 to day 3: 1 

From day 4 onwards: 0 

Day 1 to day 3: 2.5*1 = 2.5 

From day 4 onwards: 

2.5*0 = 0 
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In addition to IPTW, IPCWtxdev weights are necessary because, although patients were initially 

(hypothetically) assigned specific treatment sequences based on their first-line treatment (as shown 

in the second column in Table 8.3), some did not adhere to their assigned second-line treatments. For 

example, Patients 6, 9, 10, 13, 14, and 15 received different second-line treatments (C, D, E, C, D, 

and E, respectively) instead of following the A → B or B → A sequences. These patients are censored 

at the point when they deviated from their assigned treatment sequences to remove the effect of 

subsequent treatments that are not of interest. Since second-line treatments are also not randomised, 

this type of censoring is also potentially informative. Hence, IPCWtxdev is needed to estimate the 

effectiveness of A → B versus B → A in a scenario where all patients adhered to their assigned 

treatments sequences without any deviations (i.e., addressing time-varying confounding). Finally, in 

the final survival outcome analysis, each patient receives a total weight (IPTW*IPCWtxdev) at each 

time interval, calculated as the product of (fixed) IPTW and (time-varying) IPCWtxdev (Step II.3 in 

Figure 8.4). 

In this toy example (Table 8.3), the probability of receiving a specific first-line treatment is 

associated with a baseline characteristic (denoted by △ or O in the third column in Table 8.3). This 

baseline characteristic also affects the outcome (i.e., a prognostic characteristic), making it a baseline 

confounder. The probability of receiving a second-line treatment is associated with another factor, 

denoted by the colour of a smiley face at the initiation of second-line treatment (blue, green, yellow, 

red, purple, or pink), as shown in the fourth column in Table 8.3. This factor also affects the outcome, 

making it a time-varying (dependent) confounder. This toy example is built in such a way that patients 

with the same time-varying characteristics (i.e., denoted by having the same colour of smileys at the 

initiation of the second-line treatment) share the same baseline characteristic (denoted by △ or O). 

This simplification allows baseline characteristics to be ignored when considering the prognostic 

factors influencing the choice of second-line treatment in this example. In real-world scenarios, these 

relationships are likely more complex, with multiple factors influencing treatment choices cross and 

outcomes across different lines of therapy. Specifically, IPCWtxdev weights are typically calculated 

based on the history of variables, including both their baseline and time-varying values. For simplicity, 

this toy example uses only a single variable for each calculation: a baseline characteristic for IPTW 

(denoted by △ or O) and a time-varying characteristic for IPCWtxdev (denoted by the colour of smileys) 

at the start of each line of therapy. 

To account for baseline confounding, the IPTW calculation incorporates the baseline 

characteristic, as shown in the third column from the right in Table 8.3. For example, in the A-first 

group, patients with characteristic  (Patients 1-4) are assigned a weight based on their inverse 

probability of receiving treatment A given their baseline characteristic (i.e., 1/P(A|)), which is 1.25. 

Here, P(A|) is calculated as the proportion of patients receiving treatment A among all patients with 
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the characteristic  (Patients 1-4 and 11), resulting in 4 out of 5, or 0.8. Therefore, the inverse of  

P(A|) is 1.25. Similarly, patients with characteristic O (Patients 5-10) in the same group are given 

a weight of 1/P(A|O), which is 1.67. In the B-first group, the only patient with characteristic  

(Patient 11) receives a weight of 1/P(B|), which is 5, while four patients with characteristic O 

(Patients 12-15) receive a weight of 1/P(B|O), which is 2.5. It is important to note that, for illustrative 

purposes in this toy example, the probabilities of receiving first-line treatments A and B are directly 

calculated by finding the proportion of patients receiving each treatment given their baseline 

characteristic (i.e., a non-parametric approach), under the assumption of only one baseline confounder. 

However, in most real-world cases, a parametric multivariate logistic model (with treatment as the 

dependent variable and relevant baseline confounders as independent variables) is required to 

estimate these probabilities due to the presence of multiple baseline confounders (see Section 

8.3.4.3.2 for details). 

IPCWtxdev calculations are provided in the second column from the right in Table 8.3. For 

IPCWtxdev, all patients receive a weight of 1 until they receive a second-line treatment (i.e., each 

patient represents only themselves until that point), provided they adhere to their assigned treatment 

strategy. Patients who received only one line of treatment were considered to be adhering to the 

treatment strategy for the entire duration of the study. As a result, they were assigned an IPCWtxdev 

weight of 1 for all time intervals in the study (e.g., Patients 1, 2, and 11). To address time-varying 

confounding caused by the artificial censoring of patients who deviate from their assigned treatment 

sequences, the remaining patients who adhere to the correct second-line treatment, start it at the same 

time, and have similar time-varying characteristics (i.e., the same colour of smileys) are upweighted 

to compensate for those who were censored. For example, Patient 6 received second-line treatment 

C on Day 4, deviating from the assigned treatment strategy, and was therefore censored from Day 4 

onward (resulting in an IPCWtxdev weight of 0 for all intervals from Day 4 onward). In contrast, Patient 

5 also started a second-line treatment on Day 4 but received treatment B, which adhered to the 

assigned strategy. Patient 5 is the only individual in A-first group who began a second-line treatment 

on Day 4 and had the same characteristic at the initiation of second-line treatment—a yellow smiley 

face—as Patient 6. Consequently, Patient 5 is upweighted to represent both themselves and Patient 6, 

receiving an IPCWtxdev weight of 2 for all intervals from Day 4 onwards. The upweighting is based 

on the inverse probability of receiving the appropriate second-line treatment B on Day 4, given their 

at the initiation of second-line treatment (i.e., 1/P(2nd-line B|)), which is 2. This is because the 

probability of receiving a second-line treatment B among all patients with a yellow smiley at the 

initiation of second-line treatment on Day 4 (Patient 5 and 6) is 1 out of 2 (P(2nd-line B|) = 0.5). 

Conceptually, Patient 5 counts for double to maintain the overall effective sample size, representing 

both themselves and the censored Patient 6 from Day 4 onwards. If Patient 5 did not exist, there would 
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be no one to compensate for Patient 6’s absence from Day 4, reducing the effective sample size. This 

relates to a positivity assumption violation (see Section 4.6.1.2.1 in Chapter 4), which can result in 

analysis instability.  

Similarly, Patient 7 is upweighted (IPCWtxdev weight of 2 for each interval from Day 6 onwards) 

to represent both themselves and Patient 9, as both started a second-line treatment on Day 6 with a 

red smiley face. Patient 8 is upweighted (IPCWtxdev weight of 2 for each interval from Day 6 onwards) 

to represent both themselves and Patient 10, as both began a second-line treatment on Day 6 with a 

purple smiley face. Patient 12 is upweighted by a IPCWtxdev weight of 4 from Day 4 onwards to 

represent themselves and Patients 13-15, who all received a non-A second-line treatment on Day 4 

and had a pink smiley face on that day. While both Patients 3 and 4 received second-line treatment 

and adhered to their assigned treatment sequence, they were not upweighted with a IPCWtxdev weight 

throughout the study. This was because no other patients who deviated to the assigned second-line 

treatment had similar characteristics at the time they started (i.e., blue and green smileys, respectively). 

As a result, they did not share comparable characteristics with others at the start of second-line 

treatment and were not upweighted. It is important to note that, similar to IPTW, in this simplified 

toy example, IPCWtxdev are derived from the proportion of patients receiving a specific second-line 

treatment given their characteristics at the initiation of second-line treatment. In a more realistic 

setting, however, estimating IPCWtxdev would often require a parametric multivariate logistic 

regression model that accounts for multiple time-varying confounders and time as a continuous 

variable, especially since patients are unlikely to switch treatments on the exact same days but rather 

within similar timeframes. 

Finally, the total weight of each patient at each interval can be calculated by multiplying the 

fixed IPTW by the time-varying IPCWtxdev (IPTW* IPCWtxdev) weight, as shown in the rightmost 

column of Table 8.3. For example, for Patient 5, the weight is 1.67 for each interval from Day 1 to 

Day 3 (1.67*1 = 1.67) and 3.34 for each interval from Day 4 onward (1.67*2 = 3.34). The total weight 

can then be used in the survival outcome analysis to estimate the effectiveness of the A → B versus 

B → A treatment sequences, as if all patients had been randomised to receive one of these two 

sequences at the start of the study. 

In summary, the toy example in Table 8.3 provides an overview of the data structure needed for 

implementing advanced IPTW* IPCWtxdev method to compare treatment sequences. The dataset 

curation steps (Steps I.1-4 of Figure 8.4) are crucial for identifying baseline and time-varying 

prognostic factors related to patients' treatment probabilities, outcome date and status, and censoring 

dates (due to treatment deviation and administrative censoring). While the toy example does not detail 

the dataset curation process from raw data, this is covered in the following section (Section 8.3.3). 

Once cleaned, the dataset can be used to derive IPTW and IPCWtxdev weights, as outlined in the toy 
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example (corresponding to Steps II.2-3 of Figure 8.4). These weights are then applied to the final 

survival outcome model (corresponding to Step II.3 in Figure 8.4) for comparing treatment sequences. 

The following sections detail how I completed these steps (i.e., all steps in Figure 8.4) using real-

world data in my case study (Sections 8.3.3–8.3.4). 

8.3.3. Preparing fit-for-purpose analysis-ready datasets: cohort selection & data curation pipeline 

My approach for preparing the final analytical datasets broadly aligns with insights from a 

British Health Foundation Data Science Centre webinar on constructing research-ready datasets from 

NHS health records.383 A key simplification was the utilisation of a pre-curated metastatic prostate 

cancer cohort dataset from the Flatiron database (see Chapter 5, Table 5.1). This dataset conveniently 

records critical dates, such as the initial prostate cancer diagnosis, metastasis, and castration resistance, 

for each patient who developed metastasis. This markedly simplified the identification of the Time 

Zero (i.e., the start of patient follow-up) in my PC1 study—the initiation of first-line metastatic 

castration resistant prostate cancer (mCRPC) treatment, minimising the need to sift through 

longitudinal patient records to pinpoint critical dates and distinguish metastatic cases from the broader 

prostate cancer patient population.  

Section 8.3.3.1 explains how I finalised the identification of the target cohort by meeting 

predefined eligibility criteria. Section 8.3.3.2 describe how I created a final “wide” dataset for the 

analysis, capturing baseline characteristic, outcomes, and censoring for each included patient, with 

each row summarising each patient's information. Subsequently, Section 8.3.3.3 outlines how I 

curated an additional “long” dataset for tackling time-varying confounding, capturing daily updates 

on each patient's characteristics and outcomes in a row-wise manner. These procedures have adapted 

and extended insights from the CAUSALab courses at Harvard University, particularly in Advanced 

Confounding Adjustment, where the structure of analytical datasets for implementing advanced 

confounding adjustments was introduced.  

8.3.3.1. Cohort identification and defining Time Zero 

The procedure for identifying the cohort and defining Time Zero is depicted as Step I.1 in the 

implementation process shown in Figure 8.4. Table 8.4’s first two columns detail the original 

inclusion and exclusion criteria from the benchmark GUTG-001 trial562 and the adapted criteria for 

identifying the Target Trial cohort intended to replicate it (i.e., GUTG-001 Analogue). The adaption 

represents a refined version of the idealised Target Trial protocol specified in Chapter 7’s Table 1, 

addressing the practicability of executing the TTE given constraints imposed by data limitations. 

Constraints, such as imperfectly recorded variables, could emerge during data cleaning, leading to 

necessary iterative protocol reformulation to align as closely as possible with the original ideal 

protocol while accounting for data limitations.587 Consulting clinicians is crucial for assessing the 
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clinical relevance and to determine appropriate modifications, alongside considering potential 

sensitivity analyses for assessing the impact. Hence, the middle column of Table 8.4 outlines the 

reasons for each adaption for transparency, incorporating clinician insights. 

I adopted the color-coded scheme from the RCT DUPLICATE study protocols171,588 to classify 

the match level between the benchmark trial's eligibility criteria and the adapted ones in Table 8.4: 

green for adequate, yellow/amber for intermediate, orange/coral for poor, grey for unmeasurable but 

non-critical criteria for the analysis, and white for additional criteria in the PC1 case study that were 

not in the GUTG-001 trial. The eligibility assessment comprises 12 steps, detailed in Table 8.4’s 

second right column: Steps 1-2 & 7-12 align with the GUTG-001 trial562 and Steps 3-6 are extra 

criteria for quality assurance and to better mimic the GUTG-001 trial. The step order does not follow 

the protocol's criteria numbering, with explanations detailed in the adjacent right column. Figure 8.5 

outlines the relevant data timeframe used to identify the study population and covariates assessment 

in the PC1 study. The timeframe for each criterion in Table 8.4 is explained in detail in the following 

paragraphs.  
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Table 8.4 Identification procedures for the PC1 Case Study’s Target Trial patient cohort using Flatiron Data: GUTG-001 Analogue 

Colour coding scheme for 

inclusion and exclusion 

criteria mapping  

Original criteria in 

the GUTG-001 trial 

Adequate mapping in 

RWD 

Intermediate 

mapping in RWD 

Poor mapping or 

cannot be measured 

in RWD 

Cannot be measured 

in RWD assessed as 

not critical for the 

analysis 

Additional criteria in 

the PC1 case study 

that were not in the 

GUTG-001 trial 

Cohort identification procedures 

Original criteria:  

Inclusion and exclusion criteria 

from GUTG-001 trial 

Adapted Criteria:  

Modified criteria for identifying 

targeted patients in Flatiron’s 

metastatic prostate cancer 

database*,  with operational 

definition  

Rationale behind adapted criteria and caveats, 

incorporating clinical insights 

Cohort 

identification 

steps 

Cohort identification step 

justification:  

Logic underpinning the order 

of cohort identification steps 

Inclusion 1. Willing and able to 

provide informed consent 

NA  Patients treated in real-world practice presumably all 

gave their consent.  

 

Major caveat: While GUTG-001 trial participants were 

informed of receiving either the abiraterone 

→enzalutamide sequence or the reverse, those in the 

real-world might have received a specific first-line and 

subsequent treatments influenced by time-varying 

patient preferences, disease condition, and physician 

preference. 

NA NA 

Inclusion 5. Evidence of 

metastatic disease on bone scan 

or CT scan 

Include all patients in the Flatiron 

metastatic prostate cancer 

database as they all experienced 

metastasis. Further eligibility 

assessments for enrolment follow 

only after this confirmation, in 

line with GUTG-001 trial criteria. 

 

The “MetDiagnosisDate” from 

the “MetProstate” table was used 

to confirm patients having 

metastasis and to determine their 

metastatic diagnosis date. No 

patients lacked a metastatic 

diagnosis date in the database, as 

it was carefully reviewed and 

determined by trained medical 

record abstractors. 

Patients with a metastatic diagnosis date should largely 

resemble those with evidence of metastasis in the 

GUTG-001 trial.  

 

Major caveats: The hierarchy for defining metastatic 

disease in the Flatiron data followed a sequence of 

biopsy date, radiology report date, and physician-

reported date (See Appendix 8.1). This may not 

necessarily align with the trial's criteria, which seem to 

primarily rely on radiology reports for establishing 

evidence of metastasis. Additionally, the “screening 

date” for GUTG-001 trial eligibility may not always 

coincide with the date of metastatic prostate cancer 

diagnosis (see Figure 8.5). Nonetheless, it serves as a 

valuable reference point for applying further inclusion 

and exclusion criteria for identifying the Target Trial 

population in the database. 

Step 1  The GUTG-001 trial required 

a “screening date” to assess 

patient eligibility, with all the 

inclusion and exclusion 

criteria being applied 

simultaneously. Eligible 

patients were randomised 

into two study groups within 

28 days, proceeding to 

treatment initiation within 5 

days of randomisation. To 

best replicate this process 

using RWD, it is vital to 

establish a “hypothetical 

screening date” for each 

patient (Figure 8.5) in the 

Target Trial cohort, ensuring 

a uniform assessment of all 
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Inclusion 6. Evidence of 

biochemical or imaging 

progression in the setting of 

surgical or medical castration. 

Progressive disease for study 

entry is defined by one of the 

following three criteria: 

A. PSA progression: minimum 

of two rising PSA values 

from a baseline 

measurement with an 

interval of ≥ 1 week 

between each measurement. 

Minimum PSA at screening 

visit is > 2.0 ug/L 

B. Soft tissue or visceral 

disease progression (see the 

GUTG-001 protocol’s 

Appendix B for definition 

of measurable disease as 

per RECIST 1.1 criteria) 

C. Bone progression: ≥ 2 new 

lesions on bone scan 

Include patients in the Flatiron 

database that has “IsCRPC” (in 

the “MetProstate” table) = “Yes”. 

Among these patients, exclude 

any patient who does not have a 

defined “CRPCDate” (in the 

“MetProstate” table). 

 

The dataset's CRPC date is derived from a combination 

of PSA levels and clinical judgment (see Appendix 8.2), 

which resembles the multifaceted criteria used for 

defining CRPC in the GUTG-001 trial. Patients without 

a CRPC date will be excluded from the Target Trial 

emulation, since they could potentially compromise the 

accuracy of establishing “Time Zero” (the starting point 

for follow-up) in the Target Trial designed to replicate 

the GUTG-001 trial. Particularly, in the GUTG-001 trial, 

treatments were specifically given as the initial treatment 

for mCRPC. As a result, it is crucial to identify the 

mCRPC date (i.e. the metastasis date or the CRPC date, 

whichever is later) in the GUTG-001 Analogue Target 

Trial. 

 

Caveats:  

 It's assumed that all patients have undergone either 

surgical or medical castration, which was deemed 

reasonable by our oncology specialist, Dr. Pezaro. 

 Although a physician’s clinical assessment of CRPC 

(Appendix 8.2) in real-world practice is expected to 

correspond with the GUTG-001 trial’s specified 

criteria (I6.A, I6.B, I6.C), slight variations may 

exist. However, Dr. Pezaro indicated that such 

discrepancies are expected to be negligible.  

 Excluding patients without a CRPC date, despite 

their documentation confirming CRPC, may limit 

the generalisability of the study (and resulting in 

potential selection bias). 

Step 2 eligibility criteria, such as 

age assessment at 

comparable points in the 

disease timeline. The 

mCRPC diagnosis date 

serves as a pragmatic 

reference for defining a 

“hypothetical screening 

date”, aligning with the 

trial’s requirement for the 

eligibility to be determined 

post-mCRPC diagnosis. That 

is, the hypothetical screening 

date is likely to be after the 

mCRPC diagnosis for 

eligible patients, leading to 

the application of Inclusion 

Criteria 5 & 6 at the outset of 

cohort identification using 

RWD. Specifically, cohort 

identification Steps 1 & 2 are 

key to establishing the 

mCRPC diagnosis date (see 

“Adapted criteria” and 

rationale in Steps 1 & 2). 

None (the corresponding 

adapted criterion in this step 

serves as a quality control 

measure, i.e., eligibility criteria 

enforced by RWD analysis) 

Exclude any patient whose line-

of-therapy involves “LineName” 

(in the “LineofTherapy” table) = 

“Line Zero” 

In the Flatiron database, patients' “structured” electronic 

health records begin when they start prostate cancer 

follow-up at oncology health care providers 

(community/academic) within the Flatiron Health 

Network, potentially leading to incomplete medical 

history prior to that time. Flatiron addresses this by 

abstracting from the unstructured records, such as 

medical notes, to identify any relevant treatments that 

began prior to a patient’s structured records. These 

identified treatments were then labelled as “Line Zero,” 

a label that serves as an acknowledgment of the potential 

uncertainties in the completeness of the patient’s 

Step 3 Steps 3 to 6, while not 

directly correspond to any of 

the inclusion or exclusion 

criteria in the original 

GUTG-001 trial, are crucial 

in identifying “Time Zero” 

(i.e., the initiation of first-

line mCRPC treatment) and 

the “hypothetical screening 

date” (i.e., occurring within 

28 days prior to Time Zero) 

for quality control.  
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treatment details. The “Line Zero” label is applied to any 

treatment histories for advanced prostate cancer 

(specifically nmCRPC or mCRPC, excluding mHSPC or 

nmHSPC) initiated post-CRPC date but absent from the 

patient’s structured records.  

Excluding patients with a “Line Zero” record aligns with 

Flatiron’s established data analysis procedures using 

their database. Crucially, in replicating the GUTG-001 

trial, the presence of incomplete data suggests that a 

patient’s treatment history prior to mCRPC may not be 

thorough enough for proper assessment against the trial’s 

inclusion and exclusion criteria, particularly E2, E3, E6, 

and E7. 

 

 

Major caveat: Excluding patients lacking complete 

treatment data could constrain the study's 

generalisability.  Nevertheless, including patients with 

incomplete treatment histories prevents a full replication 

of the GUTG-001 criteria and hinders proper benchmark 

comparisons. To assess the impact of potential selection 

bias, this criterion could be relaxed in the Target Trial 

Emulation for unrestricted mCRPC patients (i.e., PC2 

case study). 

This is indispensable for 

establishing an emulated 

randomisation in the GUTG-

001 Analogue Target Trial, 

ensuring precise 

correspondence with the 

randomisation in the GUTG-

001 trial (i.e. first-line 

mCRPC treatment began 

within 5 days following 

randomisation). For example, 

including patients flagged for 

potentially incomplete pre-

mCRPC treatment data could 

mistakenly identify some as 

eligible for first-line mCRPC 

treatment without prior 

therapies, when in fact they 

may have received 

treatments not captured in the 

data. Therefore, this step is to 

ensure the inclusion of 

patients whose records are 

complete for fair assessment 

of the following eligibility 

criteria (e.g. previous 

treatments). 

 

For practicality, both “Time 

Zero” and the emulated 

randomisation in the GUTG-

001 Analogue Target Trial 

are defined as the 

commencement of first-line 

mCRPC treatment. Caveats 

of such approach will be 

discussed in 8..4 Discussion) 

None (the corresponding 

adapted criterion in this step 

serves as a quality control 

measure, i.e., eligibility criteria 

Exclude patients who did not 

initiate treatment after being 

diagnosed with mCRPC 

The GUTG-001 trial exclusively focuses on patients 

capable of surviving until they can commence first-line 

mCRPC treatment, which occurs within five days after 

randomisation. Therefore, this criterion aims to identify 

Step 4 Same as Step 3. Importantly, 

the initiation of the first 

treatment post-mCRPC is 

defined as “Time Zero” for 
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enforced by RWD analysis) those who have survived up to the “emulated 

randomisation” point. For practical purposes, I have 

defined this point to be the same date of the initiation of 

first-line mCRPC treatment. 

 

Major caveat:  

 This approach aims to closely mimic the GUTG-001 

trial but may be susceptible to potential immortal 

time bias (i.e. patients surviving long enough to 

begin the first-line mCRPC treatment). Specifically, 

there is uncertainty regarding whether the duration 

between patients mCRPC diagnosis and the 

initiation of their first mCRPC treatment aligns 

closely between RWD and the GUTG-001 trial. If 

patients typically commence their mCRPC treatment 

later in a real-world setting than in the trial, the 

survival duration in the emulated Target Trial might 

appear artificially extended when compared to the 

benchmark GUTG-001 trial. Nevertheless, if the 

interval from patients’ mCRPC diagnosis to the 

commencement of their first-line treatment remains 

consistent across both groups in the emulated trial, 

the influence of immortal time bias might be less 

pronounced on comparative effectiveness, though it 

could still affect each group's absolute effectiveness.      
This criterion may be relaxed in an unrestricted 

mCRPC Target Trial emulation (i.e., PC2 case 

study) to test the impact of immortal time bias, 

wherein patients could be monitored from the point 

of, for example, their mCRPC diagnosis, rather than 

from the initiation of first-line treatment. The 

“cloning” method from Chapter 4, Section 4.6.1.2.2, 

can be applied to accommodate the grace period of 

mCRPC treatment initiation. Specifically, for 

assessing the treatment sequence from abiraterone 

→ enzalutamide, this approach deems all patients 

with mCRPC diagnosis eligible to begin follow-up. 

Patients starting with treatments other than 

abiraterone are censored on the date of such 

initiation. Then, patients not starting treatment 

within the specified grace period, for instance, 30 

emulating randomisation in 

the Target Trial and sets the 

potential timeframe for the 

“hypothetical screening visit” 

for assessing the rest of the 

inclusion and exclusion 

criteria. (see Figure 8.5). 
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days after mCRPC diagnosis, are censored on the 

30th day following their mCRPC diagnosis. The 

implications of this approach are discussed in 

Section 8.5. 

 In practice, some patients may begin mCRPC 

treatment slightly before their documented mCRPC 

date and continue past their diagnosis. This can be 

attributed to Flatiron’s mCRPC definition (see 

Appendix 8.1 and 8.2) (i.e. the real mCRPC 

definition can be earlier) or emergency procedures 

necessitating an early start to mCRPC treatment 

prior to mCRPC diagnosis. This situation is further 

complicated in scenarios where pre-mCRPC 

treatments initiated pre-diagnosis are halted only 

after a progressive diagnosis is confirmed (i.e. 

concludes after mCRPC diagnosis). Consequently, 

“mCRPC treatment lines” can become ambiguous 

when involving treatments starting before and 

concluding after mCRPC diagnosis, due to the 

aforementioned various scenarios. Flatiron defaults 

these as first-line mCRPC treatments. However, in 

my GUTG-001 Analogue Target Trial analysis, these 

are classified as pre-mCRPC treatments and 

evaluated as previous treatments in Step 12 for 

consistency. Despite this caveat, this ensures the 

defined treatment lines are consistent with the 

GUTG-001 trial, where patients were randomised 

into different treatment groups only after a 

confirmed mCRPC diagnosis. To assess the impact 

of potentially incorrectly defined treatment line on 

survival, sensitivity analyses considering treatments 

initiated within a specific timeframe (e.g., a week) 

of the mCRPC diagnosis as part of the mCRPC 

treatment and redefine the Time Zero for patients 

with these treatments could be considered if deemed 

necessary.   

None (the corresponding 

adapted criterion in this step 

serves as a quality control 

measure, i.e., eligibility criteria 

enforced by RWD analysis) 

Exclude patients whose first 

treatment after mCRPC diagnosis 

was neither abiraterone nor 

enzalutamide. Treatment lines 

initiated prior to the mCRPC 

The GUTG-001 trial only had two arms, one started with 

abiraterone, and the other with enzalutamide. However, 

in the unrestricted mCRPC Target Trial (i.e., PC2 case 

study), this can be relaxed, depending on what treatment 

sequences are compared.  

Step 5 same as Step 4 
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diagnosis, which continued 

through and concluded after 

mCRPC, are not considered as the 

first treatment post-mCRPC, but 

pre-mCRPC treatments. 

None (the corresponding 

adapted criterion in this step 

serves as a quality control 

measure, i.e., eligibility criteria 

enforced by RWD analysis) 

Excluded patients who initiated 

mCRPC treatment (referred to as 

“Time Zero”) after March 31, 

2022.  

The GUTG-001 trial enrolled participants from October 

21, 2014, to December 13, 2016, and the results 

published in Khalaf 2019 had a data cutoff on May 31, 

2013, ensuring a minimum 17-month follow-up. As this 

study’s Flatiron database has a data cutoff on August 31, 

2023, patients whose Time Zero fell after March 31, 

2022 were excluded, to maintain a comparable follow-up 

period. To prevent post-randomisation selection bias, our 

patient selection was not based on the availability of 

structured data of individual patients. This implies that 

patients might be lost to follow-up within a shorter 

timeframe, aligning with the circumstances in the 

GUTG-001 trial. 

Step 6 same as Step 4 

Inclusion 2. Adult males ≥ 18 

years age 

Exclude patients who were   18 

at Time Zero 

Same as the original criterion.   Step 7 

 

 

Having defined Time Zero in 

Step 2, records from the 

potential “hypothetical 

screening visit” period (see 

Figure 8.5) for each patient 

can now be used to evaluate 

their eligibility against the  

remaining inclusion and 

exclusion criteria. 

Inclusion 3. History of 

adenocarcinoma of the prostate 

diagnosed histologically without 

evidence of neuroendocrine or 

small cell differentiation, or if 

patient does not have pathology 

of adenocarcinoma of the 

prostate, patient has metastatic 

disease typical of prostate 

cancer (i.e., involving bone or 

pelvic lymph nodes or para-

aortic lymph nodes) AND a 

serum concentration of PSA that 

is rising and > 20ng/mL at the 

Include all patients regardless of 

their histology 

In the Flatiron database, patients' histology is categorised 

solely as “Adenocarcinoma” or “Prostate cancer, not 

otherwise specified”. Furthermore, the database does not 

include information to ascertain the type of metastatic 

disease (e.g., bone metastasis, lymph node metastasis, 

and brain metastasis). Dr. Pezaro recommended 

including patients irrespective of their histology, as it is 

not expected to substantially impact the choice of 

treatment at the defined “Time Zero” (Step 4, Figure 1). 

Furthermore, PSA levels at the time of initial prostate 

cancer diagnosis may have become irrelevant since PSA 

levels are subject to change and can vary significantly 

during the time around the diagnosis. 

 

Step 8 

 

Same as Step 7 
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time of when the patient was 

clinically diagnosed with 

prostate cancer. 

Caveat: We assume that the selected patients’ histology 

profiles are comparable to those in the GUTG-001 trial. 

Many patients lack detailed histology and PSA levels at 

initial diagnosis, leading to challenges in accurate 

mapping to the original criteria. 

Inclusion 7. ECOG performance 

status 0-2 (see the GUTG-001 

protocol’s Appendix C) 

Exclude patients with a most 

recent ECOG score exceeding 2 

recorded within 30 days prior to 

their Time Zero 

Maintain the original criterion but make an exception to 

assume that patients who did not undergo any ECOG 

assessment within the 30 days prior to Time Zero have 

an ECOG score of 2 or lower. A 30-day timeframe prior 

to or at Time Zero was utilised for assessment to reflect 

potential timeframe of the hypothetical screening visit 

(Figure 1). 

 

Major caveat: There is a possibility that patients lacking 

an explicitly documented ECOG assessment may have 

an ECOG score greater than 2. However, Dr. Pezaro 

indicated that this is theoretically less likely to occur 

among patients initiating treatments (Step 4). 

Nevertheless, the adapted criteria are colour-coded as 

amber to indicate intermediate mapping to the original 

GUTG-001 trial criteria, as there may be a possibility 

that the undocumented ECOG values are not missing at 

random. Furthermore, some patients with an ECOG 

score greater than two from more than 30 days before 

Time Zero (e.g., 35 days prior) were not excluded 

despite the proximity.  

Step 9 Same as Step 7 

Inclusion 4. Prior surgical 

orchiectomy or if on LHRH 

agonist/antagonist then 

testosterone   1.7 nmol/L at 

screening visit (patients must 

maintain LHRH 

agonist/antagonist therapy for 

duration of study treatment if 

not surgically castrated) 

Exclude patients with a most 

recent testosterone level > 49.03 

ng/dL (1.7 nmol/L) within 30 

days preceding their Time Zero 

 

Dr. Pezaro highlighted that in standard clinical practice 

all patients diagnosed with prostate cancer are typically 

subjected to surgical or chemical castration. However, 

due to insufficient information in the database, it is 

unclear if and when patients received surgical, chemical 

interventions or both. Therefore, our focus became 

verifying the effectiveness of the castration prior to Time 

Zero. Therefore, patients with testosterone level 

exceeding the threshold should be excluded. The 

threshold 1.7 nmol/L was converted to 49.03 ng/dL to 

align with the test units used in the Flatiron database. 

Additionally, it is assumed that patients who did not have 

any testosterone tests within the 30 days prior to Time 

Zero have remained within a reasonable range. A 30-day 

timeframe prior to or at Time Zero was utilised for 

Step 10 Same as Step 7 
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assessment to reflect the potential timeframe of the 

hypothetical screening visit (Figure 1). 

 

Major caveat: There is a risk of not excluding patients 

with extremely high testosterone levels if they were not 

tested; however, this scenario should theoretically be 

relatively rare given the rarity of such extreme levels per 

Dr. Pezaro. Nevertheless, the adapted criteria are colour-

coded as amber to indicate intermediate mapping to the 

original GUTG-001 trial criteria, as there may be a 

possibility that the undocumented testosterone values are 

not missing at random. 

Inclusion 9. Adequate organ 

function defined as: 

A. Absolute neutrophil count ≥ 

1.5 x 109/L, platelet count ≥ 

100 x 109/L and 

hemoglobin ≥ 80 g/L 

B. Creatinine clearance ≥ 30 

ml/min (calculated by 

Cockcroft-Gault formula, 

see the GUTG-001 

protocol’s Appendix D) 

C. Serum potassium > than 

lower limit of normal range 

D. Total bilirubin ≤ 1.5 x ULN 

except for patients with 

known Gilbert’s syndrome 

(direct bilirubin ≤ 1.5 x 

ULN) 

E. ALT and AST ≤ 5 x ULN 

 Exclude patients if their most 

recent lab test results within 

the 30 days prior to their 

Time Zero meet any of the 

following criteria: 

o Absolute neutrophil 

count   1.5 x 109/L 

o Platelet count   100 x 

109/L 

o Hemoglobin   8 g/dL 

o Serum potassium   3.5 

mmol/L 

o Total bilirubin > 1.8 

mg/dL. For patients with 

Gilbert’s syndrome 

diagnosis within the 30 

days prior to their Time 

Zero, direct bilirubin > 

0.45 mg/dL 

o ALT > 275 IU/L 

o AST > 240 IU/L 

 Exclude patients who had a 

diagnosis of chronic kidney 

disease with a creatinine 

clearance of  30 ml/min 

(Appendix x.3) within 182 

days prior to Time Zero.  

A 30-day window before or at Time Zero was mainly 

used to conduct organ function assessment based on lab 

tests, in line with the timing of the hypothetical 

screening visit (Figure 1). Relevant reference normal 

levels for each test were obtained from U.S. guidance, 

and the test units were converted to match those used in 

the Flatiron data. For kidney function assessment, I 

replaced the trial's original criteria, which relied on the 

assessment of age, weight, and creatinine clearance at 

similar timing (calculating using Cockcroft-Gault 

formula), as such data alignment was not always 

available. Therefore, I adopted a criterion of excluding 

patients with a diagnosis of chronic kidney disease 

indicating a creatinine clearance of  30 ml/min within 

half-year before Time Zero. I used a half-year window to 

assess kidney conditions, as I interpreted the criteria to 

exclude patient with severe chronic kidney disease 

(creatinine clearance  30 ml/min). I assumed that 

patients typically have at least two annual follow-up 

visits for chronic conditions, and a shorter timeframe 

may not capture their long-term health status adequately. 

 

Major caveat: There is a risk of not excluding patients 

with insufficient organ function if they were not tested or 

given relevant diagnosis within the assessment 

timeframe. The adapted criteria are colour-coded as 

amber to indicate intermediate mapping to the original 

GUTG-001 trial criteria, as there may be a possibility 

Step 11 Same as Step 7 
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that the undocumented lab values are not missing at 

random. 

Inclusion 8. Eligible for 

treatment with either 

abiraterone acetate or 

enzalutamide as per standard of 

care guidelines 

NA I only included patients who initiated abiraterone or 

enzalutamide as first-line treatment at Time Zero (Step 

5). Therefore, it is assumed that these patients were all 

considered “eligible” for these treatments. Moreover, 

since the GUTG-001 trial was conducted post approval 

of these drugs, it is reasonable to anticipate that the 

physicians' considerations in the trial closely mirrored 

those in real-world clinical practice. 

NA NA 

Inclusion 10. Able to swallow 

study drug and comply with 

study requirements including 

provision of peripheral blood 

samples at specified time points 

for correlative studies 

NA It is assumed that all patients are capable of swallowing 

abiraterone and prednisolone or enzalutamide. 

Particularly, only patients who initiated either 

abiraterone or enzalutamide after their mCRPC diagnosis 

were included (Step 4 and Step 5). 

NA NA 

Inclusion 11. Recovery from all 

prior treatment-related toxicity 

to grade ≤ 2 (as per CTCAE 

4.0) 

NA There were no diagnosis codes specific enough to 

identify extreme treatment-related toxicity event. It is 

assumed that all patients have recovered from any 

extreme prior treatment-related toxicity. Dr. Pezaro 

suggested this assumption is reasonable, given that 

patients with an ECOG score greater than 2 were 

excluded from this study (Step 9). 

NA NA 

Exclusion 1. Severe concurrent 

illness or co-morbid disease that 

would make the subject 

unsuitable for enrolment 

Exclude patients with any 

diagnosis of non-prostate primary 

malignancies (except non-

melanomatous skin cancer) or 

brain metastasis (see Appendix 

8.3) within 182 days prior to Time 

Zero. 

 

 

It is assumed that patients with comorbid diseases, 

except concurrent malignancies, are acceptable if their 

most recent ECOG score is   2 (Step 9). This stems from 

the original criteria for severe concurrent illness and 

comorbid diseases being unclearly defined. 

Dr. Pezaro suggested that excluding only patients with 

concurrent primary malignancies (other than prostate 

cancer) and brain or spinal metastasis is a reasonable 

approach and should closely align with exclusion criteria 

E1, E5, and E7. Diagnoses within half-year prior to Time 

Zero were considered for assessment, for the same 

reasons as described in I9.  

 

Caveat: Patients having ICD codes for brain metastasis 

and spinal/nerve diseases (Appendix 8.3) may not 

accurately reflect all cases specified in the GUTG-001 

trial due to limited detail. Treatment status of patients 

having epidural disease is also unknown. Since it is 

Step 12  Same as Step 7 

Exclusion 5. Active concurrent 

malignancy (with the exception 

of non-melanomatous skin 

cancer) 

Exclusion 7. Brain metastases 

or active epidural disease 

(treated epidural disease is 

permitted) 

Excluded patients with a 

diagnosis of secondary 

malignancy of the brain or spinal 

cord (Appendix x.3) within 182 

days prior to Time Zero. 
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unclear whether a diagnosis indicates concurrent active 

cancer or a historical one, the adapted criteria for 

excluding patients with active concurrent malignancy are 

colour-coded as amber, indicating intermediate mapping 

to the original GUTG-001 trial criteria. In contrast, the 

adapted criteria for excluding patients with brain 

metastasis are colour-coded green, as it is generally a 

late-stage condition that persists. 

Exclusion 2. Prior therapy with 

CYP17 inhibitors (including 

abiraterone acetate, TAK-700, 

TOK-001 and ketoconazole), 

enzalutamide or other 

experimental antiandrogens 

(e.g. ARN-509, TOK-001) 

Excluded patients if they had 

previously received treatments, 

starting before mCRPC diagnosis, 

as monotherapy or in combination 

with the therapies listed in the 

exclusion criteria, clinical study 

drug, or treatments that became 

available to the market after the 

initiation of GUTG-001 trial (see 

Appendix 8.4). Patients receiving 

any other systemic therapy not 

listed prior to the diagnosis of 

mCRPC are not excluded. 

The adapted definition closely aligns with the original 

exclusion criteria, with the exception of additionally 

excluding patients having therapies that became 

available only after the initiation of the GUTG-001 trial. 

It is anticipated that these treatments would have been 

prohibited as previous therapies had they been accessible 

to patients at the enrolment period of GUTG-001 trial. 

 

Caveat: It is assumed that all systemic therapy initiated 

prior to the mCRPC diagnosis was not intended for 

mCRPC treatment. This may lead to potential incorrect 

specification of mCRPC treatment lines as described in 

Step 4. 

Furthermore, prior systemic therapies for non-mCRPC 

conditions in real-world practice is assumed to closely 

resemble those in the GUTG-001 trial. 

Exclusion 6. Wide-field 

radiotherapy or radioisotopes 

such as Strontium-89 or 

Radium-223 ≤ 28 days prior to 

starting study drug (limited-

field palliative radiotherapy for 

1-5 fractions is permitted) 

Exclusion 3. Prior systemic 

chemotherapy for mCRPC 

Exclusion 10. History of seizure 

or seizure disorder, or history of 

any cerebrovascular event 

within 6 months of study entry. 

Excluded patients with a 

diagnosis of seizure or cerebral 

event (other than transient 

ischemic attack) (Appendix 8.3) 

within 182 days prior to Time 

Zero. 

The adapted definition closely aligns with the original 

exclusion criteria.  

 

Caveat: Patients having diagnosis of a seizure or 

cerebrovascular event within 6 months prior to Time 

Zero does not conclusively indicate that the event 

occurred within this timeframe. Nevertheless, for 

practicality, all such patients were excluded. Dr. Pezaro 

pointed out that not all diagnoses of seizures or 

cerebrovascular events imply a clinically significant 

event necessitating exclusion; the decision should also 

take into account the severity of the condition. 

Nevertheless, given the lack of detailed information on 

the severity of the patients' conditions, all patients 

having diagnoses with these conditions were excluded 

for simplicity. 
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Exclusion 4.  Life expectancy   

6 months 

NA Choosing patients based on “observed survival” post 

Time Zero is inappropriate and would undoubtedly lead 

to selection bias. Similarly, in the GUTG-001 trial, 

patients were evaluated based on their “expected 

survival” during the screening visit, rather than their 

actual survival times. Dr. Pezaro suggests that assuming 

patients with an ECOG performance status of 2 or below 

are in a satisfactory condition is a reasonable approach to 

resemble this criterion. 

NA NA 

Exclusion 8. Use of herbal 

products that may lower PSA 

level (e.g. saw palmetto) 

NA Consumption of herbal products that can interfere with 

PSA levels cannot be identified from the information in 

the database. 

 

Caveat: It is uncertain whether patients who consume 

herbal products in actual practice might experience drug-

drug interactions and variations in PSA results. Survival 

outcomes could potentially be confounded by this 

unmeasured confounder. 

NA NA 

Exclusion 9. Contraindication to 

prednisone therapy including 

poorly controlled diabetes 

mellitus 

NA It is challenging to precisely define “poorly controlled” 

diabetes as the trial did not provide any specific criteria. 

Dr. Pezaro suggested that, clinically, when patients 

exhibit poorly controlled diabetes, clinicians tend to 

prefer enzalutamide as it does not require concurrent use 

with prednisolone. Therefore, rather than arbitrarily 

including patients diagnosed with diabetes, diabetes is 

addressed as a potential confounding variable in the 

analysis. 

NA NA 

Exclusion 11. Gastrointestinal 

disorder affecting absorption 

NA Defining the extent of a patient's gastrointestinal disorder 

solely based on diagnosis codes is challenging. Dr. 

Pezaro points out that if patients had absorption issues, 

they likely would not have been prescribed oral 

medications initially. Consequently, it can be assumed 

that all patients who commenced treatment with 

abiraterone and enzalutamide have adequate absorption 

function. 

 

Caveat: patients who develop significant gastrointestinal 

disorders that affect absorption post Time Zero may be a 

potential unmeasured time-varying confounder, possibly 

influencing the selection of subsequent treatments. 

NA NA 
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Exclusion 5. Major surgery 

within 4 weeks of starting study 

treatment 

NA The Flatiron metastatic prostate cancer database 

metastatic prostate cancer is an electronic health record 

database curated for research purpose (see Sections 5.3.2 

and 5.3.3.1 in Chapter 5). Hence, procedure codes are 

not available, while diagnosis codes of surgeries might 

not necessarily reflect a recent surgical procedure but 

history of surgery. Information on treatment before 

metastasis is limited, as described in Section 5.3.3.3; no 

raw surgery codes are available in the curated database. 

Early-stage cancer treatments are recorded as primary 

treatments with a simple indicator flag showing whether 

patients received radiotherapy, systemic treatment, or 

surgery (see Table 5.1 in Chapter 5). Dr. Pezaro posited 

that patients fit to initiate treatment (Step 4) and with an 

ECOG score of 2 or lower (Step 9) are unlikely to have 

undergone any major surgery within the four weeks 

preceding treatment initiation. Therefore, it is assumed 

that none of the included patients received major surgery 

within the four weeks prior to the initiation of the study 

treatment. 

NA NA 

* In the adaptive operational definition, variables used from the Flatiron data were labelled in italics, and data tables were labeled in italics and underlined. 

ALT: Alanine aminotransferase; AST: aspartate aminotransferase; CTCAE: Common Terminology Criteria for Adverse Events; mCRPC: metastatic castrate-resistant prostate cancer; NA: not 

applicable; PSA: prostate-specific antigen; Time Zero: the initiation of the first treatment post-CRPC (i.e., the first-line mCRPC treatment); ULN: upper limit of normal
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Steps 1-2 in Table 8.4 identify individuals with mCRPC and the date of their mCRPC diagnosis, 

as patients undergo further eligibility assessment (i.e., baseline characteristics assessment) only after 

a confirmed mCRPC diagnosis. The data period for Steps 1-2 in Table 8.4 (i.e., enrolment assessment 

for mCRPC) is shown by the large dark blue arrow in Figure 8.5. After identifying mCRPC patients 

in Steps 1-2 of Table 8.4, the date of first-line treatment initiation (i.e., Time Zero) was determined 

for each patient (i.e., the solid vertical line in the middle of Figure 8.5)). Baseline assessments were 

then conducted using the relevant data period (i.e., the three light grey horizontal bars in Figure 8.5) 

to assess patient eligibility in PC1 based on baseline characteristics from Step 3 onwards in Table 8.4. 

Here, I describe the baseline eligibility assessment period in the GUTG-001 trial and how I 

replicated it in the PC1 case study as closely as possible. In the GUTG-001 trial, all eligibility criteria 

were assessed on a specific screening date prior to randomisation. Eligible patients were randomised 

into two study groups (abiraterone → enzalutamide versus enzalutamide versus abiaraterone) within 

28 days of screening, with treatment initiation within 5 days after randomisation. Hence, in GUTG-

001, the maximum possible timeframe between the screening date and the start of first-line treatment 

ranges from 28 (if randomisation and treatment initiation occur on the same day) to 33 days (if 

treatment starts 5 days after randomisation). The dark grey area to the left of treatment initiation (i.e., 

Time Zero) in Figure 8.5 highlights this 28-33 day maximum timeframe between screening and 

treatment initiation. Since there is no predefined screening or randomisation date in the RWD, a 30-

day period before treatment initiation (Time Zero) was defined for baseline assessments in the PC1 

study, including assessing patients’ latest lab results and ECOG scores (i.e., represented by the bottom 

grey horizontal bar in Figure 8.5). This 30-day baseline assessment period is designed to replicate the 

timeframe in which a hypothetical screening visit may occur for each patient in RWD (i.e., 28 to 33 

days between screening and treatment initiation, as shown by the dark grey shaded area to the left of 

Time Zero in Figure 8.5). Records from this period were to define patients' baseline characteristics, 

ensuring eligibility assessment at a comparable disease stage. 

It is important to note that this approach (i.e., first identifying the time of first-line treatment 

initiation and then defining the baseline assessment period accordingly) relies on the premise that 

patients are equally likely to initiate first-line treatments in both study groups, namely abiraterone 

and enzalutamide, at comparable times following mCRPC diagnosis. If this assumption does not hold, 

there may be a risk of immortal time bias when comparing survival times between the two treatment 

groups. However, clinicians confirmed that patients are starting abiraterone versus enzalutamide at 

relatively similar stages of the disease. Despite nuanced differences in how metastasis and castration 

resistance are defined between the GUTG-001 trial and the Flatiron database (Steps 1 & 2 in Table 

8.4), the adapted criteria for mCRPC patient identification are considered to adequately match the 

original criteria, following consultation with clinicians.  
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Figure 8.5 Schematic timeframe for data utilised in the Flatiron GUTG-001 Analogue Target Trial population identification and covariate assessment 

Possible timeframe for mCRPC diagnosis date# 

Time Zero (t0) 
Date of patient 

identification* Data cut-off t1 tn 

Covariate Lt1 

assessment 

……………… ……… 

Follow-up assessment of time-varying treatments, covariates and outcomes 
Start: t0 
End: data-cut-off, patient drop-off, death, whichever occurs first 

 

(t. 
Treatment assessment: 
Second-line and subsequent 
treatments 

Covariate Ltn 
assessment 

28-33 days 

days 

Possible timeframe of the 

“hypothetical screening visit” 

Cross-over 
characteristic 
assessment 

Outcome Ytn-1 
assessment 

Outcome Yt0 

assessment 

Outcome Ytm 

assessment 
……………… ……… 

Baseline assessment: chronic condition 
diagnosis 
Start: t0 -182 day 
End: t0 

Prior prostate cancer treatments non-mCRPC assessment 
Start: All available patient systematic treatment records 
End: t0 

 

Enrolment assessment for mCRPC and Time 
Zero identification 
Start: Date of metastatic or castration-resistant 
diagnosis, whichever is earlier 

Treatment assessment:  
First-line mCRPC treatment 
 

Baseline assessment: 
latest lab results and 
ECOG score 
Start: t0 -30 day 
End: t0 
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The x-axis represents the span of time, while each coloured square signifies the start and end date of each assessment, either for target population identification or covariate assessment.  

t0, t1, …tx: represent times of covariate and outcome assessment. The interval between tx and tx-1 spans one day; for example, t1 is t0 + 1 day, and t2 is t1 + 1 day. 

Lt0: represents the covariate assessment for patient characteristics at the Time Zero (i.e. baseline).   

Ltx: represents the covariate assessment for patient characteristics on day x, where x is greater than 0. For each covariate assessment at time tx, if no new records (lab results, vital sign records and 

diagnosis) exists for day tx, the covariate at tx assumes the last value from tx-1 (i.e., last observation carried forward). Ltn is a special type of Ltx, specified as follows: 

Ltn: represents the covariate assessment for patient characteristics on the day the nth-line treatment is initiated.  

Crossover characteristics assessment (i.e., secondary baseline): represents the assessment of patient characteristics at the initiation of the second-line treatment and is equal to the assessment at tsecond-line. 

Ytx: represents outcome assessment for patient characteristics in the interval starting on day tx, where x is greater than 0. For each tx, outcome assessments record status from events on happened on day 

tx+1. 

Ytm: represents the final date of outcome assessment, determined by either administrative censoring rom loss to follow-up, data cut-off, or the maximum observation period as defined in Section 8.3.3.3.  

* Date of patient identification: defined as the either date of either metastatic diagnosis or castration-resistant diagnosis, whichever is earlier. 

# mCRPC Diagnosis Date: defined as either the date of metastatic diagnosis or castration-resistant diagnosis, whichever comes later. 

 Time Zero: defined as the date of the initiation date of the first line-of-treatment following an mCRPC diagnosis. Patients with a Time Zero after March 31, 2022 are excluded from the analysis. 

 In the GUTG-001 trial, patients were randomised to one of the study groups within 28 days following their “screening date”, and began first-line mCRPC treatment within 5 days of randomisation. 

Consequently, for the Target Trials in this study, the “theoretical screening visit” might fall between 28 to 33 days prior to the start of the first-line mCRPC treatment (Time Zero). Therefore, baseline 

assessments relying on indicators that might change over a brief period (such as lab results and ECOG scores) were drawn from the most recent record within 30 days of Time Zero. Importantly, while 

trials typically use the date of randomisation for assessing patient's baseline characteristics, the GUTG-001 trial defined the time-to-event outcome from the treatment initiation date due to its proximity 

to the date of randomisation (difference ≤ 5 days). For practicality in this study, the date of first-line mCRPC treatment initiation (Time Zero) captured in the data was set as both the baseline and the 

emulated randomisation date. That is, this date served as the point for assessing patient baseline characteristics and performing statistical analyses for emulating the randomisation procedure at baseline. 
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For the subsequent steps in Table 8.4, patient baseline records up to 30 days prior to and on Time 

Zero were evaluated for eligibility, using the records closest to Time Zero for each indicator 

(represented by the bottom light grey horizontal bar in Figure 8.5). For chronic conditions, especially 

comorbidities defined using diagnosis records, records up to 180 days before Time Zero were 

reviewed (represented by the second light grey horizontal bar from the bottom in Figure 8.5). This 

longer period for capturing chronic conditions reflects the nature of RWD collection, specifically the 

Flatiron database’s focus on oncology clinic records, which might not fully cover non-oncology 

diagnoses. Significant comorbidities affecting treatment decisions were assumed to be documented, 

though updates may be infrequent, such as semi-annual check-ups (hence the 180-day period). 

Due to Flatiron’s data collection limitations, which begins with a patient's first visit to an 

oncology healthcare providers (community or academic) within the Flatiron Health network. (see 

Chapter 5, Table 5.1, “Cancer Diagnosis”), patients flagged with potentially incomplete prior 

treatment records were excluded for quality assurance (Step 3, Table 8.4). This step ensured that the 

criteria for excluding prior disallowed treatments (Step 12, Table 8.4) can be applied without bias, 

which relies on the assumption that the distribution of patients with incomplete records of prior 

treatment is randomly distributed. Furthermore, patients who did not initiate treatment with either 

abiraterone or enzalutamide following their mCRPC diagnosis were excluded (Steps 4 & 5, Table 8.4) 

as patients could only start with either of these treatments in the GUTG-001 trial. Treatments starting 

before but with a duration ending after mCRPC diagnosis were classified as pre-mCRPC treatments, 

with justifications detailed in Steps 5 & 6, Table 8.4. To maintain a follow-up duration comparable to 

the GUTG-001 trial, patients initiating first-line mCRPC treatment post-March 31, 2022, were 

excluded (Step 6, Table 8.4). 

Steps 7-12 in Table 8.4 present varying degrees of criteria matching. Criteria such as age (Step 

7, Table 8.4) and the exclusion of patients receiving disallowed pre-mCRPC treatments or those with 

brain metastasis (parts of Step 12, Table 8.4) can be adequately matched. Most criteria exhibit an 

intermediate match due to vague original criteria in the GUTG-001 trial or inconsistent RWD 

collection for assessments. For example, including patients based on lab tests that confirm sufficient 

organ function proves challenging (Step 11, Table 8.4), as not all patients undergo consistent testing 

in real-world settings—often, patients deemed healthy may not necessarily be tested before staring 

new treatments. Therefore, the adapted criteria exclude patients with inadequate lab test results 

instead. This assumes those without any test results had acceptable organ function. However, there 

are likely patients with borderline organ function (per trial definition) not identified due to missing 

tests in the real-world setting.  

Examples of poor matching include histology details, which, while available in the Flatiron 

database, are not detailed enough for applying relevant eligibility criterion (Step 8, Table 8.4). Further, 
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the absence of surgery codes and over-the-counter medication records, such as herbal products, 

complicates the application of several criteria (original GUTG-001 exclusion criteria 5 & 8), 

potentially leading to the inclusion of patients with poorer prognosis than those in the GUTG-001 

trial. The GUTG-001 trial excluded patients with poorly controlled diabetes, a criterion difficult to 

apply in RWD analysis due to varying definitions. Dr. Pezaro notes that in practice, patients with this 

condition often receive enzalutamide (or other treatments) instead of abiraterone, which is combined 

with prednisolone and could worsen diabetes control. This differs from the GUTG-001 trial, which 

excluded these patients. However, Dr. Pezaro highlighted that unless diabetes control is extremely 

poor, it typically would not prevent patients from trial enrolment, as the benefits of receiving cancer 

treatments often outweigh concerns over blood sugar management. Consequently, few patients are 

likely to have been excluded from the GUTG-001 trial for this reason (original exclusion criteria 9). 

The R codes for identifying the GUTG-001 Analogue Target Trial cohort are detailed in 

Appendix 8.5, ordered by Steps listed in Table 8.4 

8.3.3.2. Defining baseline covariates, censoring, and outcomes within the “wide” dataset 

After identifying the target cohort and establishing Time Zero for each patient, the first step in 

forming the final analytical dataset is to define baseline characteristics (Step I.2 and I.3 in Figure 8.4). 

This involves linking patients to their longitudinal health records up to Time Zero to determine 

patients’ characteristics, using the nearest available value measured before or on the date of Time 

Zero. Figure 8.5’s light grey bars denote the baseline assessment period for different types of 

characteristics. For this procedure's R code, see Appendix 8.6 (which identifies cohort baseline 

characteristics) and Appendix 8.8 (which summarises the final “wide” dataset for TTE). Table 8.5 

outlines the variables in the final “wide” dataset, which includes patient baseline characteristics, with 

each row providing information for an individual patient.  

 

Table 8.5 GUTG-001 Analogue Target Trial data codebook – final cleaned “wide” baselined 

dataset (TTE_GUTG001_base) 

Each row in the dataset represents records for one patient (wide format) 

Variable Variable Name Variable Type  Content/Coding 

1. Participant identifier 

Patient ID PatientID Character Unique identifier for each patient. 

2. Treatment at baseline 

Type of first-line treatment FirstLine Character Abiraterone, Enzalutamide 

First-line treatment coding FirstLine_num Binary 0: Enzalutamide 

1: Abiraterone 

3. Patient characteristics at baseline 

Time Zero TimeZero Date The initiation date of the first-line treatment for 

mCRPC 

Calendar year of first-line 

treatment initiation 

cal_time Numerical Year extracted from the Time Zero date 

Year of birth BirthYear Numerical Patient's birth year, ranging from 1928 to 1975 
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Age at first-line treatment 

Initiation 

Age_TimeZero Numerical Calculated by subtracting the birth year from the 

year of first-line treatment initiation 

Group stage at initial 

prostate cancer diagnosis 

GroupStage Categorical  I, II, III, IV, or Unknown/Not documented 

Tumour stage at initial 

prostate cancer diagnosis 

TStage Categorical T0/T1, T2, T3, T4, or Unknown/Not documented 

Lymph node involvement 

at initial prostate cancer 

diagnosis 

NStage Categorical N0, N1, NX (not evaluable), or Unknown/Not 

documented 

Metastasis presence at 

initial prostate cancer 

diagnosis 

MStage Categorical M0, M1, or Unknown/Not documented 

Gleason score at initial 

prostate cancer diagnosis 

GleasonScore Categorical Low/Very low risk: ≤ 6, Intermediate risk: 7, 

High/Very high risk: 8-10, Unknown/Not 

documented 

Previously treated with 

docetaxel 

f_pretreat_treat_

allowed_doceta

xel 

Binary Indicates if the patient was treated with docetaxel 

before Time Zero: Yes or No 

Previously treated with 

other systematic treatments  

f_pretreat_treat_

other_systemic 

 

Binary Indicates if the patient was treated with any non-

docetaxel systematic treatment before Time Zero: 

Yes or No 

Number of previous 

treatment lines before 

Time Zero 

f_pretreat_lines 

 

Categorical 0, 1, or >1 

 

Race Race Categorical Asian, Black or African American, White, Other 

Race, Unknown/Not documented 

Days since mCRPC 

diagnosis to Time Zero 

Gap_TimeZero_

mCRPC 

Numerical Time span from mCRPC diagnosis to first-line 

mCRPC treatment initiation, measured in days 

Days since mCRPC 

diagnosis to Time Zero 

(Categorical) 

Gap_TimeZero_

mCRPC_cat 

Categorical   30 days, 31-90 days, 91-182 days, 182-365 

days, > 365 days 

Days since mPC diagnosis 

to Time Zero 

Gap_TimeZero_

mPC 

Numerical Time span from mPC diagnosis to first-line 

mCRPC treatment initiation, measured in days 

Days since mPC diagnosis 

to Time Zero  

(Categorical) 

Gap_TimeZero_

mPC_cat 

Categorical ≤ 30 days, 31-90 days, 91-182 days, 182-365 

days, 366-730 days, > 730 days 

Days since initial prostate 

cancer diagnosis to 

TimeZero 

Gap_TimeZero_

PC 

Numerical Time span from initial prostate cancer diagnosis 

to first-line mCRPC treatment initiation, 

measured in days. Some patients have unknown 

values due to unknown date of initial prostate 

cancer diagnosis. 

PSA at Time Zero (ng/mL) PSA_TimeZero Numerical The latest PSA lab test value within 30 days prior 

to or on the date of Time Zero, some patients may 

have unknown values 

PSA at Time Zero  

(ng/mL, Categorical) 

PSA_TimeZero

_cat 

 

Categorical   4, 4 ≤ PSA   10, 10 ≤ PSA   20,  

20 ≤ PSA   100, > 100, Unknown 

Haemoglobin at Time Zero 

(g/L) 

Hb_TimeZero Numerical  The latest Haemoglobin lab test value within 30 

days prior to or on the date of Time Zero, some 

patients may have unknown values 

Haemoglobin at Time Zero 

(g/L, Categorical) 

Hb_TimeZero_c

at 

 

Categorical Hb   120, 120 ≤ Hb   140, Hb ≥ 140, Unknown 

ALP, relative to ULN ALP_RULN_Ti

meZero 

Numerical The latest ALP lab test value, measured within 30 

days before or on the date of Time Zero, 

expressed as a ratio relative to the ULN of 130 

IU/L. Some patients may have missing or 

unknown values. 

LDH, relative to ULN LDH_RULN_Ti

meZero 

 

Numerical The latest LDH lab test value, measured within 30 

days before or on the date of Time Zero, 

expressed as a ratio relative to the ULN of 225 
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IU/L. Some patients may have missing or 

unknown values.  

ECOG performance status 

at time Time Zero 

ECOG_TimeZer

o 

 

Categorical 0, 1, 2, Unknown 

Diabetes at Time Zero DM_TimeZero 

 

Binary Whether patients have any diabetes diagnosis 

within half year prior to Time Zero or on the date 

of Time Zero 

0: No 

1: Yes 

SES  f_SES 

 

Categorical Flatiron Health SES data, assumed to represent 

patient's SES at Time Zero. 1 represents the 

lowest SES, while 5 is the highest. Categories: 1, 

2, 3, 4, 5, Unknown/Not documented 

Patient's combined 

comorbidity score at Time 

Zero 

Comorbid_Scor

e_TimeZero 

 

Numerical Calculated using the Harvard algorithm of 

Combined comorbidity score for claims 

data578,579,589 (i.e. a weighted score based on 20 

groups of comorbidities) with adapted R codes 

specified in the Appendix 8.6. Any relevant 

diagnoses within half a year prior to Time Zero or 

on the date of Time Zero were used to classify 

each specific category of comorbidity as defined 

in the algorithm. 

4. Outcome 

Date of death DateOfDeath Date Date when the patient was recorded as deceased 

in the Flatiron database. NA if there is no death 

record by the data cut-off (August 31st, 2023). 

Date of data cut-off DateAdminCen

_dcutoff 

Date Fixed date for all patients: August 31st, 2023 

Date of the patient's last 

recorded structural activity 

in the Flatiron database 

DateAdminCen

_lastactive 

Date The maximum date of the patient's last recorded 

activity in the Flatiron database, including date of 

diagnosis, clinic/telemedicine visits, lab tests, 

vital sign measurements, medication 

orders/administrations, ECOG performance status 

records, treatment dates, NGS test dates, and 

biomarker test dates. This reflects the most recent 

structural activity for each patient (i.e., date of 

last follow-up). 

Date of the patient's last 

recorded structural activity 

in the Flatiron database 

plus a grace period 

DateAdminCen

_lastactive_grac

e182 

Date Extends the last structural activity date by 182 

days (grace period) as the date of administrative 

censoring due to lost to follow-up.  

Date used for outcome 

valuation relative to Time 

Zero 

 

DateAdminCen

_maxK 

Date  K days after Time Zero (default K=1440) serves 

as a maximum unified last follow-up date for all 

patients.  

Date of treatment strategy 

deviation 

DateCen_DTRd

ev2 

Date This variable represents the date on which 

patients started second-line mCRPC treatment if 

they deviated from their initially assigned 

treatment strategy. In the context of comparing 

abiraterone → enzalutamide versus enzalutamide 

→ abiraterone, it specifically notes when patients, 

starting on abiraterone, switch to a second-line 

treatment other than enzalutamide, and similarly, 

those starting on enzalutamide but switching to 

treatments other than abiraterone. NA if the 

second-line treatment follows the expected 

sequence or is not initiated. 

For patients who resumed or re-challenged 

abiraterone or enzalutamide after more than 90 

days (detailed in Section 8.2.2), their treatment re-
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initiation date is marked as the start of second-line 

treatment, indicating as the date of treatment. 

Date of outcome for ITT 

analysis 

DateY_FirstLin

e 

 

Date For ITT analysis, the outcome date is the earliest 

among DateOfDeath, DateAdminCen_maxK, 

DateAdminCen_dcutoff, and 

DateAdminCen_lastactive_grace182, prioritised 

by this order in case of a tie. 

Type of outcome for ITT 

analysis 

TypeY_FirstLin

e 

Categorical For ITT analysis, type of outcome on the outcome 

date depends on what defines DateY_FirstLine: 

- DateOfDeath  

- DateofAdminCensor (if DateY_FirstLine 

comes from DateAdminCen_dcutoff, 

DateAdminCen_lastactive_grace182, or 

DateAdminCen_maxK) 

Death status on ITT 

analysis outcome date 

Y_FirstLine 

 

Binary 1: Death (if TypeY_FirstLine equals 

DateOfDeath) 

0: Alive 

Status of administrative 

censoring for ITT analysis 

C_Admin_First

Line 

Binary 1: Censored due to lost to follow up (if 

TypeY_FirstLine equals DateofAdminCensor) 

0: Not censored 

Overall survival time in 

ITT analysis 

SurvTime_First

Line 

Numerical  Calculated as the difference between 

DateY_FirstLine and Time Zero 

Date of outcome for PP 

analysis 

DateY_DTR Date For PP analysis, the outcome date is the earliest 

among DateOfDeath, DateCen_DTRdev2, 

DateAdminCen_maxK, DateAdminCen_dcutoff, 

and DateAdminCen_lastactive_grace182, 

prioritised by this order in case of a tie. 

Type of outcome for PP 

analysis 

TypeY_DTR Categorical For PP analysis, type of outcome on the outcome 

date depends on what defines DateY_DTR: 

- DateOfDeath  

- DateofAdminCensor (if DateY_DTR comes 

from DateAdminCen_dcutoff, 

DateAdminCen_lastactive_grace182, or 

DateAdminCen_maxK) 

- DateOf2LTreatDeviation (if DateY_DTR 

comes from DateCen_DTRdev2) 

Outcome status for PP 

analysis 

Y_DTR 

 

Binary 1: Death (if TypeY_DTR equals DateOfDeath) 

0: Alive 

Status of administrative 

censoring for PP analysis 

C_Admin_DTR 

 

Binary 1: Censored due to lost to follow up (if Y_DTR 

equals DateofAdminCensor) 

0: Not censored 

Status of censoring due to 

treatment strategy 

deviation for PP analysis 

C_DTRdevL2 

 

Binary 1: Censored due to treatment strategy deviation (if 

Y_DTR equals DateOf2LTreatDeviation) 

0: Not censored 

Overall survival time in PP 

analysis 

SurvTime_DTR 

 

Numerical Calculated as the difference between DateY_DTR 

and Time Zero 
ALP: alkaline phosphatase; Diabetes mellitus; ECOG: Eastern Cooperative Oncology Group; Hb: haemoglobin; ITT: intention to 

treat; LDH: lactate dehydrogenase; mCRPC: metastatic castration-resistant prostate cancer; mPC: metastatic prostate cancer; NA: not 

available; PP: per-protocol; PSA: prostate-specific antigen; ULN: the upper limit of normal; SES: socioeconomic status 

 

To facilitate the comparison with Khalaf et al.'s GUTG-001 trial findings84, I derived all listed 

characteristics from their publication wherever possible. This includes age, prostate specific antigen 

(PSA), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), haemoglobin (Hb), Eastern 

Cooperative Oncology Group (ECOG) performance score, and history of docetaxel treatment for 

castration-sensitive conditions at Time Zero. I adjusted the reporting units of these variables to align 

with those used in Khalaf et al.'s publication for consistency.84 Further, patients' ALP and LDH levels 
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were categorised relative to their respective upper normal limits (130 IU/L590 and 225 IU/L591, 

respectively) for the same reason. Mapping the locations of metastases (bone, lung, liver) was found 

to be inadequate due to the non-differential ICD diagnosis and inconsistent coding practices, which 

did not provide enough detail to clearly distinguish each location. Consequently, this information was 

not included. However, Dr. Pezaro believes that, at this disease stage, the location of metastases is 

not as an influential prognostic factor for treatment decisions when compared to others, such as the 

ECOG score. Following discussions with clinical experts, Professor Rosario and Dr. Pezaro, I also 

recorded additional patient characteristics, including the number of prior treatment lines for non-

mCRPC status, indicator of prior non-docetaxel systematic treatments, Gleason score, TNM staging 

(both overall and specific subcategories), a combined comorbidity score, diabetes status, race, 

socioeconomic status (SES), duration since mCRPC diagnosis, confirmation of metastasis, and initial 

prostate diagnosis, and the calendar year of initiation for first-line mCRPC treatment.  

Most characteristics were derived from records close to Time Zero, as shown in Figure 8.5. 

However, the Gleason score and TNM staging were only available from the initial prostate cancer 

diagnosis—not necessarily at the mCRPC stage. In clinical practice, updating patient stages at 

progression is uncommon, it is simply noted that progression has occurred. Nevertheless, according 

to Dr. Pezaro, the ECOG score at Time Zero, time since mCRPC diagnosis, and whether the patient 

had metastasis at initial diagnosis or progressed to develop metastases, are considered more critical 

factors in guiding treatment decisions. Race and socioeconomic status, recorded once per patient in 

the database, are expected to remain unchanged at treatment time. Patients for whom no records for 

specific indicators were available during the baseline assessment period were marked as having 

“Missing” or “Unknown/Not Documented” characteristics. Patients missing an ECOG score at 

baseline were assumed to have a score of less than 3, as justified in Table 8.4, Step 9, during cohort 

identification. Not all listed patient characteristics influence treatment decisions were considered to 

be confounders and so not all were included in statistical models for adjustment. These determinations, 

made in consultation with clinicians, are elaborated in Section 8.3.4.3. 

The combined comorbidity scores were calculated using an algorithm published by the Harvard 

group589, which includes 20 comorbidities with specific weights assigned to each. For a comorbidity 

to be considered present in my study, patients need to have relevant ICD-9-CM or ICD-10-CM 

diagnosis codes recorded within six months leading up to Time Zero. Originally coded in SAS589, I 

converted the algorithm to R, with the details provided in Appendix 8.6. The development of this 

algorithm leveraged data from the Clinformatics Data Mart (OptumInsight) claims (including a subset 

of 10% of patients with a Medicare Supplement Plan) and Pennsylvania Medicare enrollees.578,579 Its 

weights were established through correlation with 30-day hospital readmission and 1-year mortality, 

respectively. The algorithm's population theoretically overlaps with the Flatiron population, as both 
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are based on American healthcare data and likely include Medicare beneficiaries.592 This is because 

individuals with prostate cancer are often aged 65 or older. Further, the algorithm accommodates 

comorbidity definitions through both ICD-9 and ICD-10 diagnosis codes, making it ideal for 

analysing Flatiron data that spans the transition between these coding systems. 

Subsequently, the “wide” dataset in Table 8.5 was enriched by linking it to patients’ mortality 

records, second-line treatment information, and dates related to administrative censoring, such as the 

last structural activity, database cut-off, and the maximum observational period (set at 1440 days). 

This facilitated the determination of date of death, administrative censoring, and treatment deviation. 

The date of administrative censoring is defined as the earliest date among the following: the last 

structured activity plus a grace period of 182 days, the database cut-off (August 31st, 2023), and the 

maximum follow-up time (by default as each patient's Time Zero plus 1440 days, aligning with the 

follow-up period in Khalaf et al.'s publication84). The date of the last structured activity is defined as 

the latest date when patients have records (e.g., diagnosis, testing dates, see R code in Appendix 8.8 

for details) in the database, aligning with standard censoring practices in Flatiron's publications. In 

my analysis, I applied an additional 182-day grace period beyond the last structural activity date to 

define the date of administrative censoring, based on the assumption that patients generally may have 

at least check-ups twice a year. This modification aimed to capture any death records that may occur 

shortly after the last structured activity, thereby avoiding a substantial underestimation of mortality 

that would result from censoring precisely on that last structural activity date. Date of treatment 

deviations are defined as receiving second-line treatment that deviates from the assigned protocol, 

specifically, transitions to second-line therapies other than enzalutamide following first-line 

abiraterone, and transitions to second-line therapies other than abiraterone following first-line 

enzalutamide. Patients receiving second-line treatments as per protocol were not assigned a non-

deviating treatment date. 

For determining the outcome date and type (death vs. administrative censoring) in both ITT and 

AT analyses (see Section 8.3.4 for all analyses undertaken), only the death date and administrative 

censoring date were considered. If a patient's administrative censoring date precedes their death date, 

they are censored at the administrative censoring date (i.e. last structural activity date + 182-day grace 

period), and their death outcome is marked as 0. If not, death is marked as 1, with their death date as 

the outcome date. This approach is adopted because Flatiron's death data, which comes from various 

sources including hospital death records, obituaries, and others, may feature patients who are lost to 

clinic follow-ups (e.g., potentially missing subsequent treatment information) but are later reported 

deceased after a period of no follow-up. Consequently, setting a uniform administrative censoring 

date as the data cut-off (August 31, 2023) could introduce bias. This is particularly pertinent in 

treatment sequence analyses, where patients lost to follow-up could theoretically deviate from their 
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assigned treatment strategy only after transferring to be managed at a healthcare provider (community 

or academic) outside the Flatiron Health Network. Implicitly including a period of lost follow-up in 

patient outcome calculations can lead to incorrect patient classification, especially in AT and PP 

analyses. 

For PP analyses, outcomes and their dates are separately defined by incorporating an additional 

date: the date of treatment deviation. If a patient's treatment deviation date is earlier than either their 

death or administrative censoring date (as previously defined for ITT and AT analyses), they are 

censored on the treatment deviation date, with their death outcome marked as 0.  

8.3.3.3. Defining time-varying covariates and finalising the “long” dataset 

To accommodate the use of advanced statistical methods for adjusting for time-varying 

confounding (Section 8.3.4.5), the “wide” dataset capturing only patients' baseline characteristics and 

outcomes needs to be expanded into a “long” format that can incorporate patients' time-varying 

characteristics. In my case study, I expanded the wide dataset from Table 8.5 into the long dataset of 

Table 8.6 (Step I.4 in Figure 8.4). In this long format, each row represents a patient’s status at a 

specific interval k (each interval k spans from day k to day k+1).  

 

Table 8.6 GUTG-001 Analogue Target Trial data codebook – final cleaned “long” time-varying 

dataset (TTE_GUTG001_DTR_IPW) 

Each row in the dataset represents a patient’s status at interval k (between day k and k+1)   

Variable Variable Name Variable Type  Content/Coding 

1. Time interval 

Start time of an interval time Numerical The dataset captures time-varying covariate 

information, starting from Time Zero (time = 0) 

and tracking each patient through daily intervals 

until an outcome is recorded (death, censoring 

due to treatment strategy deviation, or 

administrative censoring). Outcomes at the end of 

each day, or interval k, are marked: y = 1 

indicates a death on the subsequent day (k+1). 

Observation for each patient continues up to a 

maximum of K days after Time Zero (with a 

default K = 1440), unless they developed an 

outcome before this time. Patients with 

TypeY_DTR equal to DateOfDeath have number 

of observations matching their SurvTime_DTR 

(as death on day k+1 are captured within interval 

k). Those censored due to any reasons receive an 

extra observation (SurvTime_DTR + 1), with 

censoring noted at an interval's start—censoring 

on day k (i.e., last follow-up date, or the date of 

receiving a non-protocol treatment) falls within 

interval k. The only exception applies to patients 

remaining alive at day 1440, whose observation 

concludes at interval k = SurvTime_DTR. 

Start day of the an interval tstart Numerical Indicates the beginning of an interval, equals to 

the “time” variable in this study. 
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Stop day of an interval tstop Numerical Indicates the end of an interval, equals to the tstart 

+ 1. 

Second-line treatment 

initiation indicator 

TimeCrossover Binary 0: No initiation of second-line treatment within an 

interval k (i.e., on day k) 

1: Second-line treatment was initiated within an 

interval k (i.e., on day k) 

2. Participant identifier 

Patient ID PatientID Character Unique identifier for each patient. 

3. Treatments 

First-line treatment coding FirstLine_num Binary 0: Enzalutamide 

1: Abiraterone 

4. Patient characteristics at baseline 

Age at first-line treatment 

Initiation 

Age_TimeZero Numerical Calculated by subtracting the birth year from the 

year of first-line treatment initiation 

Calendar year of first-line 

treatment initiation 

cal_time Numerical Year extracted from the Time Zero date 

Group stage at initial 

prostate cancer diagnosis 

GroupStage Categorical  I, II, III, IV, or Unknown/Not documented 

Metastasis presence at 

initial prostate cancer 

diagnosis 

MStage Categorical M0, M1, or Unknown/Not documented 

Gleason score at initial 

prostate cancer diagnosis 

GleasonScore Categorical Low/Very low risk: ≤ 6, Intermediate risk: 7, 

High/Very high risk: 8-10, Unknown/Not 

documented 

Previously treated with 

docetaxel 

f_pretreat_treat_

allowed_doceta

xel 

Binary Indicates if the patient was treated with docetaxel 

before Time Zero: Yes or No 

Previously treated with 

other systematic treatments  

f_pretreat_treat_

other_systemic 

 

Binary Indicates if the patient was treated with any non-

docetaxel systematic treatment before Time Zero: 

Yes or No 

Race Race Categorical Asian, Black or African American, White, Other 

Race, Unknown/Not documented 

SES  f_SES 

 

Categorical Flatiron Health SES data, assumed to represent 

patient's SES at Time Zero. 1 represents the 

lowest SES, while 5 is the highest. Categories: 1, 

2, 3, 4, 5, Unknown/Not documented 

Days since mCRPC 

diagnosis to Time Zero 

(Categorical) 

Gap_TimeZero_

mCRPC_cat 

Categorical   30 days, 31-90 days, 91-182 days, 182-365 

days, > 365 days 

Days since mPC diagnosis 

to Time Zero  

(Categorical) 

Gap_TimeZero_

mPC_cat 

Categorical ≤ 30 days, 31-90 days, 91-182 days, 182-365 

days, 366-730 days, > 730 days 

PSA at Time Zero (ng/mL) PSA_TimeZero Numerical The latest PSA lab test value within 30 days prior 

to or on the date of Time Zero, some patients may 

have unknown values 

PSA at Time Zero  

(ng/mL, Categorical) 

PSA_TimeZero

_cat 

 

Categorical Categories based on the PSA_TimeZero value: 

  4, 4 ≤ PSA   10, 10 ≤ PSA   20, 20 ≤ PSA   

100, > 100, Unknown 

Haemoglobin at Time Zero 

(g/L) 

Hb_TimeZero Numerical  The latest Hemoglobin lab test value within 30 

days prior to or on the date of Time Zero, some 

patients may have unknown values 

Haemoglobin at Time Zero 

(g/L, Categorical) 

Hb_TimeZero_c

at 

 

Categorical Categories based on the Hb_TimeZero value: 

Hb   120, 120 ≤ Hb   140, Hb ≥ 140, Unknown 

ECOG performance status 

at time Time Zero 

ECOG_TimeZer

o 

 

Categorical 0, 1, 2, Unknown 

Diabetes at Time Zero DM_TimeZero 

 

Binary Whether patients have any diabetes diagnosis 

within half year prior to Time Zero or on the date 

of Time Zero 

0: No 

1: Yes 
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Patient's combined 

comorbidity score at Time 

Zero 

Comorbid_Scor

e_TimeZero 

 

Numerical Calculated using the Harvard Group’s algorithm 

of Combined comorbidity score for claims 

data578,579,589 with adapted R codes specified in the 

Appendix 8.6. Any relevant diagnoses within half 

a year prior to Time Zero or on the date of Time 

Zero were used to classify each specific category 

of comorbidity as defined in the algorithm. 

5. Time-varying patient characteristics 

PSA (ng/mL) PSA_tvary Numerical Latest PSA level at the start of a given interval k 

(i.e., day k); carry over the value of a patient's last 

interval if no new test; carry over unknown status 

if no baseline PSA until any updated test 

PSA (ng/mL, Categorical) PSA_tvary_cat 

 

Categorical Categories based on the PSA_tvary value:  

  4, 4 ≤ PSA   10, 10 ≤ PSA   20, 20 ≤ PSA   

100, > 100, Unknown 

Haemoglobin (g/L) Hb_tvary Numerical Latest haemoglobin level at the start of a given 

interval k (i.e., day k); carry over the value of a 

patient's last interval if no new test; carry over 

unknown status if no baseline haemoglobin until 

any updated test 

Haemoglobin (g/L, 

Categorical) 

Hb_tvary_cat 

 

Categorical Categories based on the Hb_tvary value:  

Hb   120, 120 ≤ Hb   140, Hb ≥ 140, Unknown 

ECOG performance status ECOG_tvary 

 

Categorical Latest ECOG performance status record at the 

start of a given interval k (i.e., day k); carry over 

the value of a patient's last interval if no new test; 

carry over unknown status if no baseline ECOG 

performance status until any updated record: 0, 1, 

2, 3, 4, Unknown 

Diabetes status DM_tvary Binary For each interval k (starting at day k), if a patient 

has a recorded diabetes diagnosis at any point 

prior or on day k, they are labelled as having 

diabetes (DM_tvary = 1) for that interval and all 

subsequent intervals. Before any diabetes 

diagnosis, they are labelled as not having diabetes 

(DM_tvary = 0). 

Patient's combined 

comorbidity score 

Comorbid_Scor

e_tvary 

 

Numerical The same algorithm for calculating the patient’s 

combined comorbidity score at Time Zero were 

applied, with each comorbidity subgroup 

separately assessed for each interval before 

calculating the combined comorbidity score per 

interval. For example, in each interval k (starting 

on day k), a patient with a documented 

hypertension diagnosis at any time up to day k is 

marked as having hypertension 

(Comorbid_HTN_tvary= 1) for that interval and 

all subsequent ones. Prior to a hypertension 

diagnosis, the patient is considered to have no 

hypertension (Comorbid_HTN_tvary = 0). This 

procedure is applied to all 20 comorbidity 

subgroups, with the combined comorbidity score 

for each interval calculated subsequently based on 

the validated algorithm from the Harvard 

group.589 

6. Outcome 

Death status at the end of 

an interval 

y  1: patient died at the end of the interval k (i.e. on 

day k +1) 

0: patient remaining alive at the interval k (i.e. on 

day k +1) 

NA: patient censored for any reasons at the 

beginning of the interval 
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Status of administrative 

censoring at the end of an 

interval for PP analysis 

c_admin  1: patient administrative censored at the 

beginning of the interval k (i.e. on day k) 

0: patient remaining alive and non-administrative 

censored at the beginning of the interval k (i.e. on 

day k) 

NA: patient censored due to treatment strategy 

deviation at the beginning of the interval (i.e. on 

day k) 

Status of censoring due to 

treatment strategy 

deviation at the end of an 

interval for PP analysis 

c_treatdevL2  1: patient censored due to treatment strategy 

deviation at the beginning of the interval k (i.e. on 

day k) 

0: patient remaining alive and non-censored due 

to treatment strategy deviation at the beginning of 

the interval k (i.e. on day k) 

NA: Patients administrative censored at the 

beginning of the interval k (i.e. on day k) 

 

The transformation of the dataset into a long format here was specifically tailored for the 

application of the IPW (censor-weight) method, as detailed in Section 8.3.4.5. This approach 

necessitated the exclusion of any patient data beyond the point of censoring due to treatment deviation. 

That is, the number of rows for each patient in the long dataset was determined by the outcome types 

and dates outlined for the PP analysis in Table 8.5.  

More precisely, Table 8.7’s simplified example showcases various possible scenarios of the 

transformation: Patient 1 & 2, who deviated from their assigned treatment strategy on day 3, have 

their data retained up to the interval beginning on day 3—the date when they initiated a non-protocol 

second-line treatment. Both patients had an administrative censoring date on day 5 (i.e., after day 3). 

The key difference is that Patient 1 has a death date recorded on day 5, unlike Patient 2 who has no 

death record in the database. Nonetheless, both are treated similarly in the PP analysis —whether 

adjusted for time-varying confounding not— by discarding their data post-deviation. That is, the final 

interval for these patients is flagged as treatment deviation censoring = 1, with death records marked 

as unavailable. Retaining the interval of treatment deviation is crucial for constructing the IPW 

models in analyses adjusted for advanced time-varying confounding, as detailed in Section 8.3.4.3.2. 

However, this specific interval will receive weight of 0 in the survival analysis adjusted for time-

varying confounding, as noted in Section 8.3.4.5. 

Patient 3, who died on day 2 without starting any second-line treatment, has records retained up 

to the interval starting on day 1 (ending on day 2), and this interval is marked with death = 1. Patient 

3's administrative censoring date appears (artificially) after the death date because, in my analysis, 

the administrative censoring date includes a 182-day grace period following the patient's last 

structural activity date (see Sections 8.3.3.2-8.3.3.3 for details). While this may occur to some patients, 

it is not universally the case. Patient 4, who died on day 3 without deviating from his assigned 

treatment strategy, has records retained up to the interval starting on day 2, and this interval is marked 

with death = 1. The distinction between Patients 3 and 4, is that Patient 4 initiated second-line 
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treatment before their death (on day 1), yet both complied with their assigned treatment strategies 

throughout the study.  

Patients 5 and 6 were administratively censored before experiencing any death outcome and 

have their records retained up to the interval that started on the date of administrative censoring (day 

8 & day 4, respectively) and flagged as administrative censoring = 1. In the final survival analysis, 

however, records flagged with administrative censoring = 1 were excluded (detail in Section 8.3.4.5). 

This is because their survival status at the end of the administrative censoring interval is unknown; it 

is only known that they were alive at the end of the preceding interval. In this simplified example, 

patient 5, with a death record on day 12, was administratively censored earlier (i.e., on day 4). In the 

actual data, this scenario occurs when a patient exceeds the default maximum follow-up time 

(i.e.,1440 days) or reaches the end of a 182-day grace period following their last structural activity 

date before their death record, as detailed in Sections 8.3.3.2 and 8.3.4.3. However, a shorter period 

is used in the simplified example for demonstration purposes. Both Patients 5 and 6 started a second-

line treatment, in accordance with their assigned treatment strategies, before being administratively 

censored. However, it is also possible for patients to be administratively censored before initiating 

any second-line treatment.  

In Table 8.7’s simplified example, each patient has only a small number of rows (representing 

daily observations), while in the actual long dataset I created for the PC1 case study, each patient may 

have at most 1441 rows, covering intervals up to the one starting on day 1440 and ending on day 

1441, provided the patient was alive on day 1440 and remained non-deviating from their assigned 

treatment strategy. The default maximum follow-up period of 1440 days was set to align with the 

maximum possible follow-time reported in Khalaf et al.'s Kaplan-Meier (KM) survival curves.84 

For defining time-varying patient characteristics in Table 8.6, the same covariates recorded in 

Table 8.5’s baseline dataset were used, where applicable (i.e., where characteristics could change over 

time and where data were available). These include PSA, ALP, LDH, Hb, ECOG score, diabetes status, 

and combined comorbidity score. Longitudinal data post Time Zero was linked to provide daily 

updates of these characteristics. The time since first-line treatment initiation and patients' age at 

second-line treatment start (i.e., calculated as the age at first-line treatment initiation plus the elapsed 

time) were inferred from the number of time intervals noted in each corresponding observation row, 

and thus were not separately recorded.  

Table 8.6 offers detailed definitions for each time-varying variable. In the absence of new lab 

results, values were carried forward from the last observed interval. If a patient's records contained 

only unknown values up to a certain point, those intervals were marked with unknown/missing values 

(i.e., retaining the unknown status). Certain variables, such as race, SES, and prostate cancer status at 

initial diagnosis, were only available at baseline (Time Zero), with no subsequent variations over time. 
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Table 8.7 Simplified examples of outcome and censoring flags in the long dataset 

Scenarios ID Tstart: start 

date of the 

interval  

Tstop: end 

date of the 

interval 

Initiation 

of second-

line 

treatment 

Administrative 

censor date 

Tx strategy 

deviation date 

Death 

date 

 

Administrative 

censor flag 

Tx strategy 

deviation 

flag 

Death flag 

Patient 1 deviated from the 

assigned treatment strategy 

before death and 

administrative censoring  

1 0 1 0 5 3 5 0 0 0 

1 1 2 0 5 3 5 0 0 0 

1 2 3 0 5 3 5 0 0 0 

1 3 4 1 5 3 5 NA 1 NA 

Patient 2 deviated from the 

assigned treatment strategy 

before death and 

administrative censoring 

2 0 1 0 5 3 NA 0 0 0 

2 1 2 0 5 3 NA 0 0 0 

2 2 3 0 5 3 NA 0 0 0 

2 3 4 1 5 3 NA NA 1 NA 

Patient 3 experienced death 

without treatment deviation  

3 0 1 0 6 NA 2 0 0 0 

3 1 2 0 6 NA 2 NA NA 1 

Patient 4 experienced death 

without treatment deviation 

4 0 1 0 6 NA 3 0 0 0 

4 1 2 1 6 NA 3 0 0 0 

4 2 3 0 6 NA 3 NA NA 1 

Patient 5 was 

administratively censored 

without treatment deviation 

5 0 1 0 8 NA NA 0 0 0 

5 1 2 0 8 NA NA 0 0 0 

5 2 3 0 8 NA NA 0 0 0 

5 3 4 0 8 NA NA 0 0 0 

5 4 5 1 8 NA NA 0 0 0 

5 5 6 0 8 NA NA 0 0 0 

5 6 7 0 8 NA NA 0 0 0 

5 7 8 0 8 NA NA 0 0 0 

5 8 9 0 8 NA NA 1 NA NA 

Patient 6 was 

administratively censored 

before their death record  

6 0 1 0 4 NA 12 0 0 0 

6 1 2 0 4 NA 12 0 0 0 

6 2 3 0 4 NA 12 0 0 0 

6 3 4 1 4 NA 12 0 0 0 

6 4 5 0 4 NA 12 1 NA NA 

NA: not available; Tx: treatment 
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8.3.4. Implementation of statistical analysis 

8.3.4.1. Baseline characteristics, treatment patterns, overview of survival analyses and RCT-RWE 

agreement assessment 

To facilitate comparisons with the Khalaf et al. study84, I analysed patient characteristics between 

groups at two key points: the initiation of first-line treatment and the crossover to second-line therapy. 

This involved extracting patients’ baseline characteristics from the wide dataset (Table 8.5) and the 

intervals marked as the start of second-line treatment from the long dataset (TimeCrossover =1, Table 

8.6). Utilising the table1 package in R, chi-square tests and t-tests were performed to compare 

characteristics between the study groups for categorical and continuous variables, respectively (see 

the end of Appendix 8.6 for details). Additionally, a Sankey diagram was utilised to visually examine 

treatment patterns within the PC1 study population. Outcome labels from the ITT analysis in the wide 

dataset (Table 8.5) was integrated to the LOT dataset to enrich the diagram's detail. This helped 

distinguish patient who passed away before receiving any second- or third-line treatments from those 

remained alive at the study's 1440-day follow-up cut-off, providing more comprehensive insights than 

the preliminary checks in Section 8.2.2. 

In Section 8.3.4.2, I detail survival outcome analyses without confounding adjustment using 

simple methods, including ITT, PP, AT. The AT analysis is divided into two parts: one including 

patients who did not receive any second-line treatment, and another limited to those who received 

second-line treatment. In Sections 8.3.4.4 to 8.3.4.5, I describe survival analysis with confounding 

adjustments. Section 8.3.4.3 precedes this by introducing covariate selections and models used to 

derive the weights for these adjustments. It details collaboration with clinical experts to identify key 

confounding variables for adjustment and the use of directed acyclic graph (DAG) to guide these 

discussions. 

In Section 8.3.4.4, I describe adjusting Section 8.3.4.2’s analyses for baseline confounding using 

the IPW method. Section 8.3.4.5 outlines detailed steps for implementing the IPW method to adjust 

for both baseline and time-varying confounding in the context of comparing treatment sequences, 

effectively refining the PP analysis in Section 8.3.4.4 by addressing bias from informative censoring. 

These procedures correspond to Steps II.1 to II.3 in Figure 8.4. 

I assessed the findings of the emulated trial against those of Khalaf et al.84, using the predefined 

RCT-RWE agreement criteria from the study protocol (Chapter 7, Section 7.5.5). The assessment 

aimed at evaluating the performance of the adjusted analysis in replicating the findings of the 

benchmark trial it aimed to emulate. The specified formulas in the protocol were followed. For 

criterion 4, the survival curve digitisation method by Guyot et al.574 and survHE R package593 were 

used to extract and overall survival (OS) KM curve reported in the Khalaf et al. trial for comparison. 
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The R code for reproducing Khalaf et al.'s survival curves and findings is detailed in Appendix 8.9. 

8.3.4.2. Survival analysis with simple methods without confounding adjustments 

To compare findings with those reported by Khalaf et al.84, OS KM curves were derived for 

visual inspection, and Cox proportional hazards models were employed to calculate hazard ratios (HR) 

between two treatment groups using outcome information in the wide dataset (Table 8.5). The 

following four analyses comprise the set of unadjusted analyses:  

 1a. ITT analysis: This analysis included all patients starting with either abiraterone or 

enzalutamide, following them regardless of adherence to the assigned sequence for second-line 

treatment (abiraterone → enzalutamide versus enzalutamide → abiraterone, respectively). 

Patients were not censored for deviations due to treatment sequence strategy deviation and were 

followed until death or administrative censoring 

 1b. PP analysis: Using the same patient group as the 1a. ITT analysis, this approach censored 

patients who deviated from their assigned treatment sequence, specifically at the time when they 

received a non-protocol second-line treatment (non-enzalutamide or non-abiraterone, 

respectively). 

 1c. AT analysis: This analysis began with a subset of patients who were observed to adhere their 

assigned treatment sequence (abiraterone → enzalutamide versus enzalutamide → abiraterone). 

Any patient observed receiving an unapproved second-line treatment was fully removed from the 

dataset (non-enzalutamide or non-abiraterone, respectively). Those who received only one line of 

treatment were considered adherent.  

 1d. AT analysis, limited to patients receiving at least two lines of treatment): This analysis, a more 

selective subset of the 1c AT analysis, is restricted to patients who received at least two lines of 

treatment and strictly adhered to their assigned treatment sequence. Only those who survived long 

enough to start the assigned second-line treatment were included. 

Analyses 1a, 1c, and 1d used death status and OS time defined for ITT analysis, while Analysis 

1b used the same metrics for PP analysis (Table 8.5). These comparisons provide descriptive statistics 

that show differences in outcomes between two groups under possibly different conditions, thus not 

establishing counterfactual causality. Specifically, the 1a ITT analysis compares outcomes between 

first-line abiraterone versus enzalutamide groups, irrespective of subsequent treatments received. 

This could also be seen as outcome differences between treatment sequences (abiraterone → 

enzalutamide, enzalutamide → abiraterone), but these are “contaminated” by significant protocol 

deviations. The 1b PP analysis contrasts outcomes between groups based on periods when each 

patient adhered to their assigned treatment sequences, excluding data periods affected by deviations 

from the treatment protocol. Although it seems that effects from non-protocol treatments were 
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eliminated, the non-random censoring is informative and thus introduces bias, as discussed in Section 

4.6.1.2.1 of Chapter 4. 

Analyses 1c and 1d aimed to completely exclude patients who deviated from their assigned 

treatment sequences. While this approach seemingly eliminates contamination from non-protocol 

treatments, it introduces selection bias as the elimination was based on information observed after the 

initiation of first-line treatment (Time Zero). In AT Analysis 1c, excluding patients who deviated but 

survived long enough to receive a second-line treatment from the analysis could over represent those 

who did not survive to receive second-line treatment, potentially underestimating the effect of a 

treatment sequence strategy. In contrast, AT analysis 1d, which only includes patients surviving long 

enough to receive second-line treatments, likely introduces immortal time bias and could overestimate 

the survival benefits of a treatment sequence strategy. These revisited the simple methods discussed 

in Chapter 4 and were observed being used in quite a few RWD studies, primarily that resembled the 

1d Analysis.297,298,319,320,325  

These methods were set up to contrast with findings from the remaining analyses with 

confounding adjustments. They reflect simple methods discussed in Section 4.6.1.1 in Chapter 4, 

particularly those resembling Analysis 1d, which were frequently observed.315,318,322,323,326,327,329,330  

The R code for these analyses is detailed in corresponding numbered sections in Appendix 8.10. The 

R code for each analysis is detailed in the corresponding sections of Appendix 8.10. 

8.3.4.3. Deriving IPW weights for analyses with confounding adjustments 

Two types of IPW weights were derived for confounding adjustments. Baseline inverse 

probability of treatment weights (IPTW) were derived to emulate randomisation at Time Zero, 

making patients across study groups comparable at the start of first-line treatments. Additionally, 

inverse probability of censoring weights (IPCW) were derived to address time-varying confounding 

(post-Time Zero) resulting from patients deviating from their assigned treatment sequences in the 

study protocol (IPCWtxdev). In real-world, patients may receive a variety of second-line treatments, 

complicating the estimation of the effectiveness of a specific treatment sequence.  

Baseline IPTW was used to refine the survival analysis of simple methods described in Section 

8.3.4.2, with adjustments for baseline confounding (Section 8.3.4.4). Furthermore, baseline IPTW in 

conjunction with time-varying IPCWtxdev were applied to refine the PP analysis in Section 8.3.4.2, 

adjusting for both baseline end time-varying confounding (Section 8.3.4.5). This is an adaptation of 

the advanced IPW method (i.e., IPTW*IPCWtxdev) for adjusting time-varying confounding in 

comparing treatment sequences in Sections 4.6.1.2.1-4.6.1.2.2 of Chapter 4. Immortality time biases 

and selection biases in the AT analyses (Section 8.3.4.2) cannot be mitigated using advanced statistical 

methods. Meanwhile, implementing the advanced IPW method requires starting with the PP analysis, 
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instead of the ITT analysis due to its reliance on artificial censoring (Sections 4.6.1.2.1-4.6.1.2.2, 

Chapter 4). Therefore, survival analysis with advanced statistical methods focuses solely on refining 

the PP analysis in Section 8.3.4.2.  

Details of weight derivations for these IPW sets, including covariate selections, are detailed in 

Sections 9.1.1.1 to 9.1.1.3. The R code for weight derivation are included in Appendix 8.10. This 

code has adapted and extended insights from the CAUSALab courses at Harvard University as well 

as the causal inference course at the Private University for Health Sciences and Health Technology 

in Hall in Tirol (UMiT). 

8.3.4.3.1. Covariates selection 

A simple DAG, shown in Figure 8.6, facilitated discussions with clinicians to identify important 

baseline (L0) and time-varying confounders (L1) that may influence clinicians' choices of first-line 

and second-line mCRPC treatments, as well as patients’ survival outcomes. An initial list of these 

covariates was created during the protocol design (Section 7.6.3 of Chapter 7). Further discussions 

with clinicians upon data checking (Section 8.2 and Section 8.3.3) refined this list by incorporating 

additional relevant variables available in the data and noting those that may be relevant but were 

unavailable. Table 8.8 outlines the importance of each variable being considered and whether they 

have been incorporated in the final IPW derivation model in Section 8.3.4.3.2 and Section 8.3.4.3.3. 

In the selection process, the methodological aspects in Sections 8.3.4.3.2 and 8.3.4.3.3 were also 

explained to clinicians at a conceptual level to enhance the accuracy of the selection. 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 A simple DAG of time-varying confounders in the GUTG-001 Analogue Target 

Trial 

mCRPC: metastatic castration‐resistant prostate cancer 
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(e.g. performance status) 
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time of progression/treatment intolerability 

 

L1: Confounders at the time of treatment-
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intolerability 

(e.g. performance status) 

 

Y: Outcome 
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Table 8.8 Categorisation of baseline and time-varying covariates for case study PC 1 

Level of importance Baseline covariates (L0) Time-varying covariates (L1) Included in the 

final model for 

IPW derivation 

Most important factors Age 

Previous treatment of docetaxel  

Previous treatment of other 

systematic agents 

Days since mCRPC diagnosis 

Days since mPC diagnosis 

TNM Group Stage (initial 

diagnosis) 

ECOG performance status 

Diabetes 

Age (i.e., time since the 

initiation of first-line 

treatment) 

ECOG performance status 

Diabetes 

Yes 

Likely important but less 

critical than the most 

important factors 

Gleason Score (initial diagnosis) 

M Stage (initial diagnosis) 

PSA 

Haemoglobin 

PSA 

Haemoglobin 

Likely important but with 

uncertain data quality 

Socialeconomic status 

Comorbidity score 

Comorbidity score 

Ambiguous factors Race 

Calendar year of first-line 

treatment initiation  

- 

Likely important but 

embedded in other factors 

N Stage (initial diagnosis) 

M Stage (initial diagnosis) 

Line of previous treatments 

- No 

Information unavailable 

but potentially relevant  

- Progression status 

Information unavailable 

and not as relevant 

Histology 

Morphology 

- 

Unimportant factors Days since CRPC diagnosis 

Alkaline phosphatase 

lactate dehydrogenase 

Alkaline phosphatase 

lactate dehydrogenase 

ECOG: Eastern Cooperative Oncology Group; IPW: inverse probability weight; mCRPC: metastatic castration‐resistant 

prostate cancer; mPC: metastatic prostate cancer; PSA: Prostate-Specific Antigen  

 

According to Dr. Pezaro, the most important key factors influencing clinicians' decisions for 

both first and second-line mCRPC treatments include patients’ age, performance status, diabetes 

status, TNM stage at initial prostate cancer diagnosis, and previous treatments. If patients have severe 

diabetes, abiraterone may be avoided since it requires concurrent use with prednisolone—a steroid—

that can disrupt diabetes management. Consequently, diabetes was included as a significant, separate 

factor, despite potentially being accounted for in the comorbidity score. The days since mCRPC and 

mPC diagnoses are crucial as they indicate whether patients first experienced metastasis or castration 

resistance before receiving their first-line mCRPC treatment.  

The TNM Group stage is crucial as it reflects patients’ status at their initial prostate cancer 

diagnosis. Since the subcategories of the TNM stage at the initial diagnosis offer similar information, 

Dr. Pezaro suggested excluding them to avoid redundancy. The Gleason Score, while carrying similar 

information, provides nuanced risk categorisation and was therefore included. The M Stage was also 

retained because its specificity is vital for determining whether patients had metastasis at initial 
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diagnosis or if it was a case of disease progression. Lines of treatment received by patients were 

considered relevant but are generally captured by the types of previous treatments, as in most cases, 

treatment lines do not exceed one or two. PSA and Haemoglobin levels are also important but 

considered less critical than the ECOG score. Information on patient’s socioeconomic status and 

derived comorbidity scores (Section 8.3.3.2-8.3.3.3) are relevant, yet their reliability is questioned 

due to potential inaccuracies in community-level socioeconomic status data and pre-diagnosis data 

availability in the Flatiron database, respectively. 

Dr. Pezaro considered race and the calendar year of first-line treatment initiation as ambiguous 

factors. Specifically, she noted that the management of prostate cancer might have evolved over time, 

and while these elements could serve as proxy indicators of potential impacts on treatment outcomes, 

their actual influence or the degree of impact remains uncertain. However, she acknowledged that 

variations in available treatments across different periods could influence treatment choices. This is 

particularly true regarding the impact of the COVID-19 pandemic, which led to reduced use of 

docetaxel. The period of the pandemic itself may have led to varied outcomes for patients receiving 

cancer care, though the extent of this impact remains uncertain due to limited evidence. Several 

unimportant factors were identified and not included, such as days since CRPC diagnosis, alkaline 

phosphatase, and lactate dehydrogenase, despite the latter two characteristics being reported in the 

GUTG-001 trial. 

The lack of a clear progression date in Flatiron data complicates determining whether patients 

switched treatments due to intolerance or disease progression. Dr. Pezaro highlighted that even if this 

information was available, recording practices could introduce significant ambiguity. Clinicians 

generally rely on ECOG scores and imaging/lab findings to make treatment decisions, and 

progression dates are may be reported inconsistently across practices, due to its retrospective nature. 

Dr. Pezaro noted that the time elapsed since first-line treatment initiation, by the point of treatment 

switching, typically indicates whether the switch was due to intolerance (early, within 1-2 months) or 

disease progression (later), with few exceptions. Histology and morphology at the patient’s initial 

prostate cancer diagnosis were originally considered relevant in the study protocol but were later 

deemed less significant due to other available information that captured most decisions made closer 

to their mCRPC status.  

8.3.4.3.2. Baseline inverse probability of treatment weights (IPTW) 

Conceptually, baseline IPTW is used to emulate patient randomisation at the initiation of first-

line treatment, refining the survival analyses with simple methods in Section 8.3.4.2. This adapted 

methods and formula described in Section 4.6.1.2.1, Chapter 4.  
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𝑊𝑇 =  {

1

Pr[𝐺0 = 1 |𝐿0]
        𝑖𝑓 𝐺0 = 1

1

1− Pr [𝐺0 = 1|𝐿0]
   𝑖𝑓 𝐺0 = 0

}   (8.1) 

𝑆𝑊𝑇 =  {

Pr[𝐺0= 1]

Pr[𝐺0= 1|𝐿0]
     𝑖𝑓 𝐺0 = 1

1 −  Pr[𝐺0= 1]

1 − Pr[𝐺0 = 1|𝐿0]
   𝑖𝑓 𝐺0 = 0

}   (8.2) 

Specifically, Formula 8.1 specifies that patients who initially receive abiraterone (i.e., with the 

treatment strategy G = abiraterone → enzalutamide, where G0 = 1 and G1 = 0) are weighted by the 

inverse probability of receiving that specific strategy at treatment initiation (i.e., G0 = 1), conditioned 

on all baseline covariates L0. Similarly, patients following the treatment strategy G = enzalutamide 

→ abiraterone (G0 = 0 and G1 = 1) at their initiation of first-line treatment (G0 = 0) are assigned 

weights based on the inverse probability of receiving that specific strategy at treatment initiation (G0 

= 0), also conditioned on L0. Informally, these weights create a pseudopopulation that emulates 

randomisation, effectively removing the influence of baseline covariates L0 on treatment assignment 

A0 (i.e., G0 in Formula 8.1), as illustrated in Figure 8.6. Formula 8.2 represents the stabilized weights, 

with the numerator reflecting the overall probability of receiving treatment G0 = 1 versus G0 = 0. 

These weights are derived using logistic models, which model the log-odds of receiving 

treatment as a linear function of the predictors. Specifically, two models are required for weight 

derivation: one for the numerator and another for the denominator. Since the probability of receiving 

initial treatment G0 = 0 is simply 1 minus G0 = 1, no separate models for the two treatment groups 

are necessary. Covariates L0 included in the denominator model are those labelled “yes” for inclusion 

as baseline covariates in Table 8.8. From these models, each patient’s probability of receiving the 

first-line treatment, with or without conditioning on L0, can be estimated. Then, weights for each 

patient can be assigned using the formulas in Formula 8.1 and 8.2 (See Appendix 8.10 for R code). 

8.3.4.3.3. Time-varying inverse probability of censoring weights for treatment strategy deviations 

(IPCWtxdev) 

Conceptually, time-varying IPCWtxdev is used to emulate a scenario where all patients had 

adhered to their specific treatment sequence strategy (G = abiraterone → enzalutamide versus 

enzalutamide → abiraterone) throughout the follow-up period. Informally, it does this by upweighting 

those who did not deviate from their assigned treatment strategy whenever someone else in the same 

treatment sequence group did, based on the probability of the non-deviated individuals remaining 

non-deviated from their assigned treatment sequence strategy (i.e., those non-artificially-censored in 

the PP analysis). The time-varying IPCWtxdev weights at each time interval are calculated based on 

the cumulative probability of remaining non-deviated up until each time interval k (default k = 0 to 
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1440). Here is the formula for IPCWtxdev calculation: 

𝑊𝑡
𝐷 =  {

∏
1

Pr[𝐷𝑘= 0 |𝐺𝑘−1,𝐿0,𝐿𝑘,𝐶𝑘=0,𝐷𝑘−1=0,𝑌𝑘−1=0 ]
= ∏

1

1 −Pr[𝐷𝑘= 1 |𝐺𝑘−1,𝐿0,𝐿𝑘,𝐶𝑘=0,𝐷𝑘−1=0,𝑌𝑘−1=0 ]
  𝑖𝑓 𝐷𝑘 = 0 𝑡

𝑘=0
𝑡
𝑘=0

0                                                                                                                                                                    𝑖𝑓 𝐷𝑘 = 1
} (8.3) 

𝑆𝑊𝑡
𝐷 =  {

∏
Pr[𝐷𝑘=0|𝐺𝑘−1]

Pr[𝐷𝑘=0 |𝐺𝑘−1,𝐿0,𝐿𝑘,𝐶𝑘=0,𝐷𝑘−1=0,𝑌𝑘−1=0 ]
=𝑡

𝑘=0 ∏
1−Pr[𝐷𝑘= 1|𝐺𝑘−1]

1−Pr[𝐷𝑘= 1 |𝐺𝑘−1,𝐿0,𝐿𝑘,𝐶𝑘=0,𝐷𝑘−1=0,𝑌𝑘−1=0 ]
 𝑡

𝑘=0 𝑖𝑓 𝐷𝑘 = 0

0                                                                                                                                                                  𝑖𝑓 𝐷𝑘 = 1
} (8.4) 

Specifically, Formula 8.3 represents the cumulative weight for patients remaining non-deviated 

from their treatment sequence strategy (𝑊𝑡
𝐷) up to each time interval t = k. It is the inverse probability 

of remaining cumulatively non-deviated (𝐷𝑘 =  0), and can therefore also be viewed as the cumulative 

inverse probability of one minus the deviation probability. These probabilities are conditioned on the 

treatment strategy group the patient was in, along with their baseline and time-varying covariates. 

Specifically, since reasons for patients to deviate from a treatment sequence strategy might differ 

across two groups, it is conceptually logical to have separate statistical models that model the 

probability of deviating from the treatment strategy for different treatment sequence groups. A simple 

example is that patients with diabetes may be more likely to deviate from the treatment sequence of 

enzalutamide → abiraterone when receiving second-line treatment (see Section 8.3.4.3.1 for details) 

to avoid the use of abiraterone. Conversely, for patients in the abiraterone → enzalutamide group, 

diabetes may not be a significant factor, or it may influence treatment deviation in a different direction 

compared to the enzalutamide → abiraterone group.   

Formula 8.4 represents the stabilised version of the weights from Formula 8.3 by having a 

numerator that reflects the cumulative probability of remaining non-deviated, dependent solely on 

the treatment group the patient belongs to. Similar to the baseline IPTW weights in Section 8.3.4.3.2, 

these weights are derived using logistic models. These models calculate the log-odds of treatment 

deviation as a function of the predictors, where time is modelled using a cubic spline function. Data 

rows where TimeCrossover = 1 in the long dataset in Table 8.6 were utilised for model derivation. 

Specifically, four models are necessary for deriving these weights: two for the denominator and two 

for the numerator. That is, each treatment sequence group (i.e., G = Gk-1 enzalutamide → abiraterone 

versus abiraterone → enzalutamide) requires separate models for the numerator and denominator, for 

reasons described above. Baseline and time-varying covariates (L0 and L1) included in the 

denominator model are those labelled “yes” for inclusion in Table 8.8. From these models, each 

patient’s probability of treatment deviation—often referred to as the probability of treatment-

switching in literature addressing unwanted treatment-switching—with or without conditioning on 

L0 and L1, can be estimated. Subsequently, weights and cumulative weights (both unestablished and 

stabilised) for each patient at each time interval k can be assigned to append the long dataset in Table 

8.6 using Formulas 8.3 and 8.4. Although the interval where a patient deviated from their treatment 
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sequence strategy is included for weight derivation, these rows will receive a weight of 0 in survival 

analyses in Section 8.3.4.5, as shown in Formulas 8.3 and 8.4. Informally, this is because other 

patients that do not deviate from their treatment strategy are weighted to represent them from this 

time point onwards. Appendix 8.10 provides detailed R code procedures for these models and weight 

estimations. 

8.3.4.4. Survival analysis with simple methods with baseline adjustments using IPTW 

All four survival analyses in Section 8.3.4.2 were refined using baseline adjustments with IPTW 

weights derived in Section 8.3.4.3.2. These weights, based solely on baseline characteristics, were 

appended to the wide dataset (Table 8.5). The same survival outcome information in the wide dataset 

from was used for the four baseline confounding adjusted analyses (2a-2d). The only practical 

difference compared to analyses without adjustments lies in the specification of a weight function in 

the KM and Cox model analyses in R. This adjustment creates the baseline-adjusted ITT (Analysis 

2a), PP (Analysis 2b), AT (Analysis 2c), and AT limited only to patients receiving second-line 

treatments (Analysis 2d). The same statistics as those described in Section 8.3.4.2 were derived for 

inspection. These analyses primarily reflect common approaches used in the literature for adjusting 

for confounding. However, they do not account for time-varying confounding in the comparison of 

treatment sequences. This theoretical limitation likely introduces bias, prompting the exploration of 

advanced adjustments in the following section (Section 8.3.4.5) 

For practicality, I opted to present the 95% confidence curve of the weighted KM curve and 

median survival estimates directly using those reported by the survfit function in R (i.e., naïve 

(unadjusted) 95% CI), while acknowledging that the weighted procedure might increase uncertainty. 

Bootstrap methods were employed with parametric pooled logistic modelling as an alternative 

approach for modelling survival curves. This technique produced narrower 95% confidence intervals 

(CIs) and smoother survival curves, and it can accommodate non-proportional hazards. However, 

these were not reported in the thesis as the results were closely aligned with those from the KM 

analysis, albeit narrower likely due to sample sizes and additional assumptions applied. Similarly, for 

simplicity, the conservative robust sandwich estimator was used to calculate the 95% CIs of the HRs 

to account for uncertainties related to the weighting procedures. The R packages sandwich and lmtest 

were used to derive these variances. Despite its conservative nature, the robust sandwich estimator 

does not directly address uncertainties arising from the weight derivation models. Bootstrap methods 

with 500-1000 replications were attempted, showing marginal differences of HRs limited to ≤ 0.03 

(narrower 95% CI compared to those from the robust sandwich estimator); thus, they were not 

separately reported in the thesis. Other methods for deriving CIs associated with IPCW have recently 

been developed in the literature.594 However, I did not apply them in the thesis due to the marginal 
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differences observed in my case study, which obscured the practicality of for the purposes of methods 

exploration of this thesis. Appendix 8.10 provides detailed R code procedures for these analyses. 

8.3.4.5. Survival analysis with advanced method using IPTW*IPCWtxdev 

The PP analysis in Section 8.3.4.4 was further advanced by additional adjustment for time-

varying confounding with IPCWtxdev weights derived in Section 8.3.4.3.3 (i.e., Analysis 3). 

Conceptually, this aims to derive a hypothetical PP estimand as if all patients had received either 

abiraterone → enzalutamide versus enzalutamide → abiraterone, and all patients in each group had 

adhered to their assigned treatment sequence strategy (see study protocol Table 7.1 in Chapter 7). The 

procedures in Section 8.3.4.4 emulated the randomisation at the initiation of first-line treatment, while 

the next step involves adjusting for confounding due to artificially censoring patients who deviate 

from their treatment strategy. Practically, this involves inserting the baseline IPTW weights for each 

patient from Section 8.3.4.3 into the long dataset in Table 8.6. These baseline weights are then 

multiplied by the IPCWtxdev derived in Section 8.3.4.4, which already exists in the long dataset after 

weight derivations in Section 8.3.4.3.3. The formulas 8.5 and 8.6 below illustrate how the overall 

weights (𝑊𝑡
𝑇,𝐷) and the stabilised weights (𝑆𝑊𝑡

𝑇,𝐷) are computed, respectively.  

𝑊𝑡
𝑇,𝐷 = 𝑊𝑇 ×  𝑊𝑡

𝐷   (8.5) 

𝑆𝑊𝑡
𝑇,𝐷 = 𝑆𝑊𝑇 ×  𝑆𝑊𝑡

𝐷 (8.6) 

While each patient’s baseline IPTW weight (𝑊𝑡
𝑇,𝐷

) remains consistent, their IPCWtxdev (𝑊𝑡
𝐷) is 

updated at each interval, suggesting that each patient’s overall weights also vary across intervals. 

The same approach in Section 8.3.4.4 was employed to report the HRs and KM results from the 

advanced confounding adjustment using the IPTW*IPCWtxdev method. Appendix 8.10 provides 

detailed R code procedures for these analyses. 

8.4. Results 

8.4.1. Patient selection, characteristics, and treatment patterns 

In Section 8.4.1, the Consolidated Standards of Reporting Trials (CONSORT) diagram shows 

the patient selection procedures for the PC1 study (i.e., GUTG-001 Analogue Target Trial), 

corresponding to the cohort selection processes detailed in Section 8.3.3.1. This resulted in the 

inclusion of a total of 4,144 patients, with 2,172 starting abiraterone as their first-line mCRPC 

treatment and 1,972 receiving enzalutamide. Figure 8.7 outlines the inclusion and exclusion 

procedures, showing the number of patients at each step.
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Figure 8.7 Consolidated Standards of Reporting Trials (CONSORT) diagram for the GUTG-001 

Analogue Target Trial using Flatiron data 

Solid Lines represent cohort selection procedures that align with the inclusion and exclusion criteria of the GUTG-001 trial. Dashed Lines represent 
additional cohort selection procedures not stated in the GUTG-001 trial's inclusion and exclusion criteria. However, these procedures were considered 
to ensure the Target Trial Population aligns more closely with the analogue of the GUTG-001 trial. 
* Treatments initiated before mCRPC diagnosis and that continued through and concluded after the mCRPC diagnosis are considered as treatments 
prior to mCRPC.  
 Time Zero: This refers to the initiation of the first line-of treatment (LOT) post-mCRPC diagnosis. Treatments initiated before mCRPC diagnosis 
and that continued through and concluded after the mCRPC diagnosis are considered as LOT prior to the mCRPC diagnosis (i.e. non-mCRPC LOTs) 
(For a detailed justification, please refer Section 8.3.3.1) 
# This procedure may potentially result in including patients diagnosed with mCRPC in 2022 who had a more severe prognosis (or fit enough) and 
thus commenced treatment immediately upon mCRPC diagnosis or shortly after. This procedure also precludes patients diagnosed with mCRPC after 
August 31st, 2022 

Patients diagnosed with metastatic prostate cancer 
and with a date of metastatic diagnosis between 

2013-2023 

N = 21,711 

Patients with a confirmed mCRPC diagnosis and an 
identifiable mCRPC date 

N = 13,016 

 Patients who did not develop castration resistance 

(N = 8,478) 

 Patients who experienced documented castration resistance, 
but the date of onset is unidentifiable from medical records 
(N = 217) 

Patients who did not or have not initiated treatment following 
their mCRPC diagnosis and before data cut-off  
(N = 2,392) 

GUTG-001 Analogue Target Trial Population 

N = 4,144 

(First-line mCRPC treatment:  

Abiraterone = 2,172; Enzalutamide = 1,972) 

 

The first treatment patients began after mCRPC diagnosis (i.e. first-
line mCRPC treatment) was neither abiraterone nor enzalutamide* 
(N = 3,273) 

Patients with incomplete treatment history before mCRPC  

(N = 1, 400) 

Patients not meeting the remaining inclusion and exclusion 
criteria of GUTG-001 at Time Zero, with the following details 
(each item is non-exclusive) (N = 1,000): 

 Patients with a testosterone level ≥ 49.03 ng/dL  

(N = 37) 

 Patients with inadequate organ function (N = 249) 

 Patients with concurrent malignancies (N = 132) 

 Patients with a history of prior treatments for non-mCRPC 
that were not permitted (N = 633) 

 Patients having seizure or seizure disorder, or history of any 
cerebrovascular event within 182 days prior to Time Zero 

(N = 38) 

Patients with confirmed mCRPC diagnoses, 
identifiable mCRPC dates, and who initiated either 

abiraterone or enzalutamide following their mCRPC 
diagnosis, with treatment initiation date on no later 

than March 31, 2022 

N = 5,288  
 

 

Patients who initiated the first-line mCRPC treatment (referred to 
as "Time Zero") after March 31, 2022#  
(N = 663) 

N = 11,616 

N = 9,224 

N = 5,951 

N = 5,144 

Patients with an ECOG score > 2 at Time Zero  
(N = 144) 
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Table 8.9 outlines the characteristics of the included patients at baseline and at the time of 

receiving second-line treatment, comparing them with those observed in the GUTG-001 findings.84 I 

reproduced the statistics reported in Khalaf et al. and displayed them at the top of the table, while the 

results from my emulated Target Trial are shown at the lower part of the table.  

The p-values in Table 8.9 evaluate whether the characteristics of Group A (first-line abiraterone) 

and Group B (first-line enzalutamide) are comparable at each time point: baseline (p-values in the 

middle column) and the initiation of second-line treatment (p-values in the rightmost column). Chi-

square tests were used for categorical variables, and t-tests for continuous variables, as outlined in 

the study protocol (Table 7.1, Chapter 7). While p-values for the GUTG-001 trial were not provided 

in Khalaf et al.'s publication84, my PC1 case study (GUTG-001 Analogue) includes p-values for both 

time points. A p-value below 0.05 indicates a statistically significant difference in a specific patient 

characteristic between the groups (A versus B) at either baseline or the initiation of second-line 

treatment. 

The baseline characteristics in my study are generally similar to those observed in the GUTG-

001 trial, both at the time when patients received first-line treatment and when they started second-

line treatment. However, there is a slightly lower percentage of patients proceed to receive second-

line treatment at the 4-year cut-off (i.e., 1440 days) in my study—61% in the abiraterone first group 

and 56% in the enzalutamide group—compared to those in the GUTG-001 trial (72% and 74%, 

respectively). Dr. Pezaro suggested that this discrepancy is reasonable, as patients in trials are more 

likely to be offered additional treatments than real-world practice. 

Although patients were not randomised to receive first-line abiraterone versus enzalutamide in 

the real-world setting, the characteristics of my two study groups were mostly similar. Dr. Carmel 

noted that this similarity was expected, as clinically, abiraterone and enzalutamide are often 

considered interchangeable under most conditions. However, notable differences were observed in 

the time from metastasis to first-line mCRPC treatment (436 versus 490 days). Dr. Pezaro highlighted 

that abiraterone, frequently combined with steroids, might be administered slightly earlier to being 

helpful in mitigating symptoms from metastasis. This indicates that patients in the abiraterone first-

line group are likely to develop castration resistance before experiencing metastasis—meaning they 

are closer to their initial metastases when they begin mCRPC treatment. Conversely, the sequence 

may be reversed in the enzalutamide first-line group. For the same reasons, this likely results in the 

observed shorter intervals from metastasis to treatment in the abiraterone first-line group (343 versus 

398 days). 
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Table 8.9 GUTG-001 Analogue Cohort Characteristics in Flatiron data 

 Baseline (first-line treatment start date)  Crossover (second-line treatment start date)  

 
Group A:  

First-line Abiraterone 

Group B:  

First-line Enzalutamide 
P-value 

Group A:  

First-line Abiraterone  

Group B:  

First-line Enzalutamide 
P-value 

GUTG-001 Trial (Figures extracted from Table of Khalaf et al.84 study for comparison with the emulated Target Trial GUTG-001 Analogue) 

Sample Size  N = 101  N = 101   N = 73  N = 75  

Age (years)    

Median [Min, Max] 72.9 [51.3, 93.3] 77.6 [49.3, 94.1]  73.8 [51.5,92.7] 78.0 [49.8, 93.2]  

PSA (ng/mL)    

Median [Min, Max] 35.0 [2.2, 2817.0] 37.0 [1.7, 1060.0]  16.0 [0.8, 991.0] 12.0 [0.20, 1604.0]  

Alkaline phosphatase, relative to ULN    

Median [Min, Max] 0.82 [0.29, 12.50] 0.75 [0.30, 47.80]  0.88 [0.31, 6.87] 0.75 [0.31, 4.67]  

Lactate dehydrogenase, relative to ULN    

Median [Min, Max] 0.79 [0.37, 4.00] 0.80 [0.31, 12.90]  0.85 [0.22, 4.69] 0.74 [0.38, 2.46]  

Haemoglobin (g/L)    

Median [Min, Max] 130 [89, 155] 130 [89, 165]  132 [87, 152] 129 [79, 157]  

ECOG performance status 0-1    

N (%) 89 (88%) 79 (78%)  62 (85%) 57 (76%)  

Previous treatment of docetaxel for castration-sensitive disease    

N (%) 5 (5%) 6 (6%)  - -  

Bone metastasis    

N (%) 85 (84%) 82 (81%)  61 (84%) 65 (87%)  

Lung metastasis    

N (%) 8 (8%) 9 (9%)  6 (8%) 7 (9%)  

Lung metastasis    

N (%) 5 (5%) 7 (7%)  4 (5%) 7 (9%)  

GUTG-001 Analogue (PC1 case study) 

Sample Size  N = 2,172  N = 1,972   N = 1,317  N = 1,101  

Age (years)    

Mean (SD) 74.5 (8.35) 75.1 (8.22) 0.0124 74.0 (8.37) 74.7 (8.41) 0.042 

Median [Min, Max] 76.0 [43.0, 85.0] 77.0 [46.0, 88.0]  75.0 [44.5, 85.8] 75.8 [47.2, 87.5]  
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PSA (ng/mL)    

Median [Min, Max] 24.3 [0, 3230000] 21.4 [0.0370, 1630000] 0.8 20.9 [0.0100, 10700000] 16.9 [0.00476, 1480000] 0.323 

Missing 1207 (55.6%) 1236 (62.7%)  443 (33.6%) 494 (44.9%)  

Alkaline phosphatase, relative to ULN    

Median [Min, Max] 0.731 [0.192, 27.1] 0.708 [0.123, 29.4] 0.185 0.738 [0.131, 63.5] 0.692 [0.200, 14.7] <0.001 

Missing 701 (32.3%) 698 (35.4%)  129 (9.8%) 125 (11.4%)  

Lactate dehydrogenase, relative to ULN    

Median [Min, Max] 0.862 [0.396, 6.68] 0.853 [0.431, 15.3] 0.783 0.938 [0.396, 19.9] 0.831 [0.253, 6.73] 0.005 

Missing 1943 (89.5%) 1745 (88.5%)  1020 (77.4%) 880 (79.9%)  

Haemoglobin (g/L)    

Median [Min, Max] 125 [80.0, 176] 123 [80.0, 184] 0.0541 124 [61.0, 179] 125 [57.0, 168] 0.361 

Missing 677 (31.2%) 658 (33.4%)  111 (8.4%) 116 (10.5%)  

ECOG    

0 487 (22.4%) 459 (23.3%) 0.93 375 (28.5%) 312 (28.3%) 0.866 

1 573 (26.4%) 523 (26.5%)  511 (38.8%) 426 (38.7%)  

2 197 (9.1%) 185 (9.4%)  132 (10.0%) 125 (11.4%)  

3 - -  25 (1.9%) 25 (2.3%)  

4 - -  2 (0.2%) 2 (0.2%)  

Missing 915 (42.1%) 805 (40.8%)  272 (20.7%) 211 (19.2%)  

Previous treatment lines for mHSPC, nmCRPC and/or nmHSPC    

0 1913 (88.1%) 1725 (87.5%) 0.0421    

1 246 (11.3%) 244 (12.4%)     

> 1 13 (0.6%) 3 (0.2%)     

Previous treatment of docetaxel    

Yes 234 (10.8%) 232 (11.8%) 0.337    

No 1938 (89.2%) 1740 (88.2%)     

Previous other systematic treatments    

Yes 30 (1.4%) 16 (0.8%) 0.11    

No 2142 (98.6%) 1956 (99.2%)     
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Gleason Score (initial PC diagnosis)    

Low/very low risk: ≤6 153 (7.0%) 124 (6.3%) 0.468    

Intermediate risk: 7 391 (18.0%) 377 (19.1%)     

High/very high risk: 8-10 1050 (48.3%) 924 (46.9%)     

Unknown / Not documented 578 (26.6%) 547 (27.7%)     

Group Stage (initial PC diagnosis)    

I 16 (0.7%) 17 (0.9%) 0.993    

II 132 (6.1%) 120 (6.1%)     

III 84 (3.9%) 76 (3.9%)     

IV 969 (44.6%) 884 (44.8%)     

Unknown / Not documented 971 (44.7%) 875 (44.4%)     

T Stage (initial PC diagnosis)    

T0/T1 178 (8.2%) 181 (9.2%) 0.693    

T2 362 (16.7%) 306 (15.5%)     

T3 271 (12.5%) 257 (13.0%)     

T4 65 (3.0%) 51 (2.6%)     

TX 89 (4.1%) 86 (4.4%)     

Unknown / Not documented 1207 (55.6%) 1091 (55.3%)     

N Stage (initial PC diagnosis)    

N0 501 (23.1%) 432 (21.9%) 0.482    

N1 266 (12.2%) 239 (12.1%)     

NX 140 (6.4%) 149 (7.6%)     

Unknown / Not documented 1265 (58.2%) 1152 (58.4%)     

M Stage (initial PC diagnosis)    

M0 807 (37.2%) 718 (36.4%) 0.951    

M1 640 (29.5%) 588 (29.8%)     

M1a 15 (0.7%) 14 (0.7%)     

M1b 156 (7.2%) 157 (8.0%)     

M1c 59 (2.7%) 51 (2.6%)     

Unknown / Not documented 495 (22.8%) 444 (22.5%)     
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Combined comorbidity score    

Mean (SD) 6.14 (0.708) 6.11 (0.623) 0.149 6.35 (1.02) 6.34 (0.993) 0.946 

Median [Min, Max] 6.00 [5.00, 13.0] 6.00 [5.00, 11.0]  6.00 [5.00, 16.0] 6.00 [5.00, 14.0]  

Diabetes mellitus       

Yes 88 (4.1%) 103 (5.2%) 0.085 92 (7.0%) 87 (7.9%) 0.436 

No 2084 (95.9%) 1869 (94.8%)  1225 (93.0%) 1014 (92.1%)  

Race       

Asian 29 (1.3%) 26 (1.3%) 0.43    

Black or African American 231 (10.6%) 201 (10.2%)     

White 1391 (64.0%) 1220 (61.9%)     

Other Race 330 (15.2%) 334 (16.9%)     

Unknown / Not documented 191 (8.8%) 191 (9.7%)     

SES quantiles       

1 - Lowest SES 295 (13.6%) 266 (13.5%) 0.707    

2 379 (17.4%) 343 (17.4%)     

3 417 (19.2%) 378 (19.2%)     

4 443 (20.4%) 423 (21.5%)     

5 - Highest SES 412 (19.0%) 340 (17.2%)     

Unknown / Not documented 226 (10.4%) 222 (11.3%)     

Duration since mCRPC diagnosis (days)    

Mean (SD) 94.8 (180) 106 (217) 0.0659    

Median [Min, Max] 31.0 [0, 1780] 31.0 [0, 2380]     

Duration since confirmation of metastasis (days)    

Mean (SD) 436 (451) 490 (496) <0.001    

Median [Min, Max] 322 [0, 3320] 351 [0, 3000]     

Duration since initial prostate cancer diagnosis (days)    

Mean (SD) 2360 (2400) 2430 (2440) 0.328    

Median [Min, Max] 1350 [10.0, 13900] 1390 [36.0, 15400]     

Missing 32 (1.5%) 26 (1.3%)     
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Duration since first-line treatment start (days) (i.e., time-to-next-line-treatment)    

Mean (SD)    343 (271) 398 (305) <0.001 

Median [Min, Max]    265 [27.0, 1430] 310 [27.0, 1430]  

Calendar year of first-line mCRPC treatment initiation    

2013 105 (4.8%) 18 (0.9%) <0.001    

2014 240 (11.0%) 83 (4.2%)     

2015 233 (10.7%) 184 (9.3%)     

2016 236 (10.9%) 234 (11.9%)     

2017 341 (15.7%) 258 (13.1%)     

2018 302 (13.9%) 294 (14.9%)     

2019 254 (11.7%) 348 (17.6%)     

2020 204 (9.4%) 282 (14.3%)     

2021 195 (9.0%) 222 (11.3%)     

2022 62 (2.9%) 49 (2.5%)     

ECOG, Eastern Cooperative Oncology Group (performance status score); mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; nmCRPC, non-metastatic castration-

resistant prostate cancer; nmHSPC, non-metastatic hormone-sensitive prostate cancer; PC, prostate cancer; PSA, prostate- specific antigen; SD, standardised deviation; SES, socioeconomic status; ULN, upper limit of normal.
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The calendar years in which patients started each treatment varied significantly, as abiraterone 

was available earlier as a first-line treatment for mCRPC, capturing a higher market share in the 

earlier years. Over time, the numbers of patients beginning either treatment have levelled out. The 

level of unknown variable information was generally similar across both groups. For the most critical 

factor, ECOG performance, initial missingness was around 40% for both groups, decreasing to 20% 

at treatment crossover. For all variables included in the weighting model, missingness generally 

remained below 45%, with PSA being the exception. However, the documentation of PSA, also 

improved over the period of follow-up—from 55-63% missing at Time Zero to 33-45% missing at 

the time of treatment crossover 

8.4.2. Sankey diagram and censoring due to treatment strategy deviation 

Figure 8.8 presents the Sankey diagram for the PC1 study population, where all patients initially 

received either abiraterone or enzalutamide. The observational period in the diagram extends beyond 

the 1440-day follow-up used in the survival analyses for the purpose of matching the survival curve 

period of the GUTG-001 trial (see Section 8.4.3), including all available data up to the data cut-off.  

 

 
Figure 8.8 Sankey diagram for the GUTG-001 Analogue Target Trial using Flatiron data 

LFP: lost follow-up 
 

 

 

 4,144 
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The diagram (Figure 8.8) shows that 40.4% of patients did not proceed to second-line treatments; 

a majority of these patients died without further treatments, while roughly a third of them (14.5% of 

the entire population) was lost to follow-up or remained on first-line treatment at data cut-off. These 

patients were considered to have adhered to (non-deviated from) their assigned treatment sequence 

throughout the study. Apart from patients who did not receive subsequent treatments, the predominant 

treatment sequences for first- and second-line treatments were abiraterone → enzalutamide and 

enzalutamide →abiraterone, with or without further treatments. 

Other prevalent sequences involve transitions from first-line abiraterone or enzalutamide to 

docetaxel or various less common treatment regimens categorised as “Others” in the graph. Dr. Pezaro 

highlighted the unexpectedly high percentage of patients receiving “Others” as subsequent treatments, 

but noted that this makes sense when considering that it represents any potential combination of 

treatments or atypical treatments that varied across practices. For example, this group may include 

combinations of treatments commonly used as subsequent treatments, such as abiraterone, 

enzalutamide, or docetaxel paired with Radium-223. In the context of the PC1 case study, this 

labelling of treatment sequences was deemed sufficient for applying the intended statistical methods, 

as any deviation from predefined second-line treatments was considered a deviation. This resulted in 

the following censoring and outcome event labels in PP analyses, with or without confounding 

adjustments, over a four-year follow-up period:  

 Censoring due to treatment deviation:  

o Abiraterone first-line group: 672 patients (31%)  

o Enzalutamide first-line group: 614 patients (31%)  

 Administrative censoring:  

o Abiraterone first-line group: 615 patients (28%) 

o Enzalutamide first-line group: 612 patients (31%)  

 Deaths 

o Abiraterone first-line group: 885 (41%) 

o Enzalutamide first-line group: 746 (38%) 

Potentially, due to the similarities between abiraterone and enzalutamide, and thus the 

theoretically almost exchangeable sequences, the censoring and death outcome distribution were 

fairly similar in the two groups. However, comparisons, such as between abiraterone → enzalutamide 

versus abiraterone → docetaxel, may exhibit different censoring and outcome distributions in the 

analyses. 

 

 



352 

 

8.4.3. IPW derivation 

Figure 8.9 illustrates the distribution of the baseline inverse IPTW weights derived from the 

procedures discussed in Section 8.3.4.3.2. Figure 8.9A displays the distribution of the propensity for 

being treated within either group’s first-line treatment (abiraterone versus enzalutamide), contributing 

to the denominator in Formula 8.1 and 8.2. The x-axis displays probabilities ranging from 0 to 1, 

while the y-axis shows the count of patients with each probability value in a treatment group. There 

is a good overlap between two treatment groups, with a peak at approximately 0.5 for both groups.  

This aligns with the expectation that these treatments are similar in mechanisms and are largely 

interchangeable to some extent. Sensitivity analyses that excluded the variable calendar year from the 

weight derivation model, showed an even higher degree of overlap (i.e., a larger shaded purple area, 

with less area shaded solely in red or blue). Conceptually, this is expected, as one significant 

difference between the two treatment groups was the earlier prevalence of abiraterone use as first-

line mCRPC treatment. Figures 8.9B and 8.9C show the non-stabilised and stabilised baseline IPTW 

weights, respectively. The x-axis displays weight ranges, while the y-axis indicates the number of 

patients with each weight value in a treatment group. The non-stabilised weights generally remain 

below 2.5, with a few exceptions reaching up to approximately 11, while the stabilised weights have 

a peak at 1 exhibit a narrower range of weights. The stabilised weights in Figure 8.9 were used in the 

baseline adjusted analyses specified in Section 8.3.4.4.  

 

Figure 8.9 Baseline inverse probability of treatment weights (IPTW) 

Abi, abiraterone; Enza, enzalutamide; mCRPC, metastatic castration-resistant prostate cancer 

 

The denominator of the stabilised weight for IPTW at baseline (Section 8.3.4.3.2) represents the 

unconditional probability of receiving a treatment and was not plotted, as it reflects the proportion of 

A. Propensity score overlap (baseline treatment) 

 B. Distribution of baseline treatment weights (non-stabilised) 
 

C. Distribution of baseline treatment weights (stabilised) 
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patients receiving each treatment. Unstabilised and stabilised weights are shown at a single time point 

for IPTW (Figure 8.9B &8.9C), while both the numerator and denominator for time-varying 

IPCWtxdev weights change over time, requiring more figures to be reported (Figure 8.10–8.12). 

Figure 8.10 presents hexbin graphs of the estimated time-varying probabilities of treatment 

strategy deviation across all groups, as detailed in Section 8.3.4.3.3. Figure 8.10A presents the 

probabilities of treatment strategy deviation given both baseline and time-varying covariates for each 

treatment group, contributing to the denominators in Formulas 8.3 and 8.4. Each hexagon's colour in 

this figure represents a cluster of patients, with darker blue indicating a denser cluster. The x-axis 

represents time points spanning four years, while the y-axis shows the distribution of treatment 

deviation probabilities for all patients that remained alive at each respective time point. 

 

 

Figure 8.10 Hexbin graphs of time-varying probabilities of treatment strategy deviation 

Abi, abiraterone; Enza, enzalutamideDue to the computational intensity of plotting individual points for all patients (around 2,000 patients per group, 

each with data at 1,440 time points), hexbin graphs are used to cluster points. Each hexbin represents the x, y location of multiple points that share 

similar positions. In these graphs, x represents time points, while y represents probabilities. In Figure 8.10A, the y-axis shows the probability of 
following the assigned treatment strategy given baseline and time-varying characteristics. In Figure 8.10B, the y-axis shows the marginal probability 

of treatment strategy deviation over time. Darker hexagons indicate a higher density of points within the same hexbin.  

In Figure 8.10A, the dark line of hexbins from time 0 to 1,440 at y = 0 for both groups (abiraterone → enzalutamide and enzalutamide → abiraterone) 

indicates that most patients adhered to their assigned treatment strategy throughout, with a low probability of deviation (i.e., close to 0). Since each 

patient could only deviate from the treatment strategy at a single point (i.e., at the initiation of second-line treatment), higher probabilities of treatment 

deviation (represented by lighter hexbins above y = 0) are spread across the 1,440 days rather than occurring at the same time. These hexbins 
scattered above y > 0 over time represent patient-time points with an increased probability of deviating from the treatment strategy. 

In Figure 8.10B, a peak of hexbins in the probability of treatment deviation occurs around six months, indicating that patients starting second-line 

treatment at this time are more likely to receive a non-assigned second-line treatment (i.e., deviate from the assigned strategy). A cluster of darker 
hexbins appears around the one-year mark, corresponding to the median progression-free survival on first-line treatment for both groups, where 

patients seem to be less likely to deviate from the assigned strategy (i.e., smaller y) compared to those starting second-line treatment at six months. 

 A. Probability of treatment strategy deviation given baseline and time-varying covariates over time 
by group 

 
B. Probability of treatment strategy deviation over time by group 
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Throughout the follow-up period, most patients are likely to remain adherent to their treatment 

strategy (shown by darker clusters near zero at all-time points), as compared to those with higher 

probabilities of treatment strategy deviation (lighter blue clusters above zero). This was expected, as 

per the study design, patients were considered to have deviated from the treatment protocol only when 

they received non-protocol second-line treatment. Hence, each patient likely experienced only a brief 

period of increased likelihood of treatment strategy deviation given their time-varying characteristics, 

while most of the time, they were likely to remain adherent to their assigned treatment strategy. Most 

of the non-zero probabilities of treatment strategy deviation appeared within the first 2 years of 

follow-up for both groups. Additionally, in both groups, the count of patients decreased over time, as 

depicted by the overall fading darkness of blue on the graph, mainly due to censoring or death.  

Figure 8.10B shows the unconditioned probability of treatment strategy deviations over time, 

contributing to the numerator in Formula 8.4. As this probability was expected to be the same for all 

patient at a given time point, the graph appears to look like a single curve. The peak of this curve, 

conceptually, indicates the period when patients in each group were most likely to deviate from 

their assigned treatment sequence, with the highest probability occurring around 6 months for both 

groups. 

Figure 8.11A displays hexbin graphs of the non-stabilised time-varying inverse probability of 

censoring weights (IPCWtxdev) for treatment strategy deviations, informed by the probabilities 

shown in Figure 8.10A. The figure is similar to Figure 10A, but with the y-axis now indicating the 

weights' values. It was expected that at each time point, most patients’ weights would remain close 

to zero, indicating patients at most time points tend to stay adherent to their treatment sequence. 

However, if any patients deviated from their treatment strategy, conceptually, patients with similar 

characteristics at that time point (e.g., likely just starting second-line treatment but adhering to the 

protocol) would be weighted to represent the records of those who had been censored. Higher-value 

weights were more likely to appear in the early follow-up before 6 months, or in the later periods 

after 2 years. This was also expected because fewer patients started receiving second-line treatment 

during these times, whether they deviated from the treatment sequence strategy or not. 

Consequently, higher weights were assigned to the smaller number of patients who began second-

line treatment around the same time but remained adherent to the protocol, resulting in these 

patients receiving higher weights due to their limited numbers.  
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Figure 8.11 Hexbin graphs of time-varying inverse probability of censoring weights for treatment strategy deviations (IPCWtxdev) 

Abi, abiraterone; Enza, enzalutamide 

Due to the computational intensity of plotting individual points for all patients (around 2,000 patients per group, each with data at 1,440 time points), hexbin graphs are used to cluster points. Each hexbin represents the x, y 

location of multiple points that share similar positions. In these graphs, x represents time points, while y represents weights. Figure 8.11A shows the non-stabilised time-varying IPCWtxdev weights for patients who adhered to 

their assigned treatment sequence, essentially the inverse of one minus the values shown in Figure 8.10A (i.e., one minus the probability of deviating from the assigned treatment sequence given baseline and time-varying 
characteristics). Figure 8.11B displays the cumulative weights from Figure 8.10A over time. Figure 8.11C presents the stabilised weights for patients who remained on their assigned treatment sequence. These weights are 

calculated by multiplying the values in Figure 8.11A by a numerator, which is derived by subtracting the values in Figure 8.10B (i.e., the probability of deviating from the assigned treatment sequence given time) from one. 

Figure 8.11D shows the cumulative weights from Figure 8.11C over time. Cumulative weights (Figures 8.11B & 8.11D) are necessary for IPCWtxdev, as the probability of adhering to a treatment strategy depends on having 
adhered in the previous time intervals, requiring multiplication over time.  

B. Cumulative non-stabilised weights for patients remained adhered to  
their assigned treatment sequence by Group (0 = Enza–Abi, 1 = Abi–Enza) 

A. Non-stabilised weights for patients remained adhered to  
their assigned treatment sequence by Group (0 = Enza–Abi, 1 = Abi–Enza) 

C. Stabilised weights for patients remained adhered to  
their assigned treatment sequence by Group (0 = Enza–Abi, 1 = Abi–Enza) 

D. Cumulative stabilised weights for patients remained adhered to  
their assigned treatment sequence by Group (0 = Enza–Abi, 1 = Abi–Enza) 
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This weighting process is further explained in Figure 8.11B, which shows the cumulative non-

stabilised IPCWtxdev weights. Each horizontal line roughly represents one patient or a cluster of 

patients. That is, those that had been upweighted were likely to maintain similar weights in subsequent 

follow-up times, representing the forgone subsequent records of others with similar characteristics 

who had been censored. The rationale for these weights not likely increasing further per patient was 

that those who had been weighted were typically those who had already started their second-line 

treatment. Conceptually, their subsequent records should not have been weighted to represent those 

about to be censored or newly starting second-line treatment. Each line in Figure 11.B stops at the 

point where the corresponding patient likely either died or was censored. These conceptual 

explanations of the graphs helped examine the theoretical correctness of the weight derivation models. 

Figures 8.11C & 11D display the stabilised version of IPCWtxdev weights (Formula 8.4.) of those 

in Figures 8.11A & 8.11B (Formula 8.3). The major visual difference is that each patient who has 

been upweighted shows a decrease in cumulative stabilised IPCWtxdev weights over time (Figure 11D). 

This was expected because the numerator in the stabilised weights accounted for the gradually 

decreasing unconditional probability of treatment deviation over time (Figure 8.10B). Overall, the 

stabilised weights exhibit a less extreme weight distribution. 

Figure 8.12 shows the hexbin graphs of the overall time-varying IPW for advanced confounding 

adjustment, as required for the analyses in Section 8.3.4.5. Figure 8.12A shows the non-stabilised 

weights and Figure 8.12B the stabilised weights, calculated using Formulas 8.5 and 8.6, respectively. 

Specifically, Figure 8.12A is the result of multiplying the weights from Figure 8.9B with those from 

Figure 8.11C, while Figure 8.12B was created by multiplying the weights in Figure 8.9C with those 

from Figure 8.11D. The baseline IPTW stays consistent over time, and consequently, the overall 

pattern of the weights in Figure 8.12 reflects the trends seen in the cumulative IPCWtxdev weights 

from Figures 8.11B and 8.11D. In Figure 8.12, I configured each hexagon to represent a smaller group 

of patients, resulting in finer and more distinct separation per smaller groups of patients compared to 

previous graphs (Figure 10-11), whereas earlier settings were designed to highlight clusters of weights 

with distinct colour shading. The previous settings were necessary because each timepoint should 

contain, at most, the same number of sample size dots as the study population (n = 4,144). With up 

to 1440 time points on the graph, presenting individual dots would be computationally exhaustive 

and provide less information, such as not being able to distinctly identify where the extreme weights 

lie due to small clusters.  



357 

 

 

Figure 8.12 Hexbin graphs of time-varying overall inverse probabilities weights for advanced 

confounding adjustment 

Abi, abiraterone; Enza, enzalutamide 

Figure 8.12A represents the non-stabilised weight of IPTW*IPCWtxdev, which is the product of the non-stabilised IPTW weight (Figure 8.9B) and 

the cumulative non-stabilised time-varying IPCWtxdev weight at each time point in Figure 8.11B. Figure 8.12B represents the stabilised weight of 

IPTW*IPCWtxdev, which is the product of the stabilised IPTW weight (Figure 8.9C) and the cumulative stabilised time-varying IPCWtxdev weight 
at each time point in Figure 8.11D. 

 

 

8.4.4. Survival analyses 

Table 8.10 presents the results of all survival analyses, including: 

 Four analyses using simple methods without adjustment for confounding (Analysis 1a-1d) 

 Four analyses using simple methods whilst adjusted for baseline confounding with IPTW 

(Analysis 2a-2d) 

 The final analysis (Analysis 3), aiming to closely emulate the GUTG-001 trial results by adjusting 

for baseline and time-varying confounding with IPTW*IPCWtxdev.

A. Cumulative overall non-stabilised weights for patients remained adhered to  
their assigned treatment sequence by Group (0 = Enza–Abi, 1 = Abi–Enza) 

B. Cumulative overall stabilised weights for patients remained adhered to  
their assigned treatment sequence by Group (0 = Enza–Abi, 1 = Abi–Enza) 
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 Table 8.10 GUTG-001 Analogue Target Trial Emulation results comparison table                                       

Models (population) Sources of bias Median  

follow-up time 

(months, IQR)  

Median OS (months, 95 CI%),  

using Kaplan-Meier estimator 

Hazard ratio  

(95 CI%), using 

Cox models 

Cox model performance 

ABI-ENZA 

(n = 2,172) 

ENZA-ABI 

(n = 1,972) 

AIC BIC Log 

likelihood 

Cox model summary statistics from 

Khalaf 2019 Study (ITT, Khalaf 

201984) 

- 30.7 (25.1-36.2) 28.8 (25.4, not reached) 

 

24.7 (18.8, 34.0) 0.79 (0.54, 1.16)  - - - 

0. Cox model with digitally 

reconstructed survival data from  

Khakaf 2019 (ITT, Khalaf 201984) 

- 22.2 (14.5-31.1) 29.0 (25.5, not reached) 24.8 (19.9, 32.5) 0.78 (0.54, 1.15)  1034.59 1037.26 -516.29 

1a. Unadjusted ITT Confounded by baseline and time-

varying covariates (treatment 

regimen protocol violation) 

21.4 (11.6-35.4) 25.4 (24.0, 26.9) 28.8 (27.4, 30.7) 1.14 (1.05, 1.23)  

 

37887.01 37892.81 -19824.54 

(df=1) 

1b. Unadjusted PP Confounded by baseline and time-

varying covariates (informative 

censoring) 

15.4 (7.1-28.9) 31.0 (29.5, 33.1) 35.3 (32.5, 38.6) 1.17 (1.06, 1.29) 24672.21 24677.61 -12335.11 

(df=1) 

1c. Unadjusted AT Confounded by baseline and time-

varying covariates (due to 

conditioning on post-treatment 

covariates) 

19.8 (9.5-34.2) 25.2 (23.7, 28.0) 

(n = 1, 500) 

28.5 (26.9, 31.2) 

(n = 1, 358) 

1.14 (1.03, 1.25) 24011.29 24016.68 -12004.61 

(df=1) 

1d. Unadjusted AT, limited to 

second-line treatment recipients 

Confounded by baseline and time-

varying covariates (due to 

conditioning on post-treatment 

covariates), and immortal time bias 

27.1 (17.6-39.1) 31.9 (30.7, 34.7) 

(n = 645) 

29.9 (27.7, 32.9) 

(n = 487) 

0.92 (0.80, 1.07) 9062.31 9066.87 -4530.156 

(df=1) 

2a. Baseline IPTW weighted ITT Confounded by time-varying 

covariates (treatment regimen 

protocol violation) 

20.6 (10.8-33.8) 25.9 (24.3, 27.8) 28.5 (27.0, 30.6) 1.11 (1.02, 1.20) 37929.09 37934.89 -18963.54 

(df=1) 

2b. Baseline IPTW weighted PP Confounded by time-varying 

covariates (informative censoring) 

14.8 (6.8-28.0) 31.7 (29.9, 33.9) 35.0 (32.5, 38.6) 1.16 (1.04, 1.28) 

 

24505.77 24511.17 -12251.89 

(df=1) 

2c. Baseline IPTW weighted AT Confounded by time-varying 

covariates (due to conditioning on 

post-treatment covariates) 

19.0 (9.0-32.4) 25.4 (23.7, 28.4) 

(n = 1, 500) 

28.9 (27.4, 32.3)  

(n = 1,358) 

1.14 (1.03, 1.27) 23907.89 23913.29 -11952.94 

(df=1) 

2d. Baseline IPTW weighted AT, 

limited to second-line treatment 

recipients 

Confounded by time-varying 

covariates (due to conditioning on 

post-treatment covariates), and 

immortal time bias 

25.4 (15.6-36.6) 31.9 (30.4, 34.8) 

(n = 645) 

30.6 (28.0, 34.5) 

(n = 487) 

0.97 (0.82, 1.14) 8951.784 8956.341 -4474.892 

(df=1) 

3. Baseline IPTW and time-varying 

IPCWtxdev weighted PP 

(hypothetical PP effect with perfect 
compliance to the treatment 

sequence assignment) 

Possible residual confounding due 

to unmeasured confounders 

- 28.7 (25.6, 31.2) 28.9 (27.5, 32.4) 1.07 (0.96, 1.20) 26697.83 26703.23 -13347.92 

(df=1) 

ABI: abiraterone; AIC: Akaike Information Criterion; CI: confidence interval; ENZA: enzalutamide; AT: as-treated, BIC: Bayesian Information Criterion; IPCW: inverse probability of censoring weighting; IPTW: inverse probability of 
treatment weighting; IQR: interquartile Range; ITT: intention-to-treat; KM: Kaplan-Meier; OS: overall survival; PP: per-protocol, 4-year is defining as 1440 post Time Zero 
* cubic spline for time   
 All 95% CIs for median overall survival presented were directly obtained from the survfit function in R (i.e., naïve (unadjusted) 95% CI), including those for weighted analyses. 

 95% CIs for HRs from unadjusted analyses (Analysis 0 to 1d) were directly obtained using the coxph function in R. For weighted analyses (Analysis 2a to 3), 95% CIs were derived from the robust sandwich estimator
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The table details HRs and median OS for each group (i.e., starting with first-line abiraterone 

versus enzalutamide) after a four-year follow-up period. It also summarises sources of bias for each 

analysis as explained in Sections 8.3.4.2 to 8.3.4.5. Additionally, the table reproduced the GUTG-001 

trial findings from the Khalaf et al. study at the top.84 While unnumbered entries were directly taken 

from their reported figures, Analysis 0 presents results from reanalysing the digitised, reconstructed 

patient-level data from the reported OS graphs. Analysis 0 demonstrates high concordance with the 

original findings reported in the Khalaf et al. paper, despite minimal variations potentially due to 

digitisation variance where a high number of censoring events occured in later follow-up periods. The 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and the log-likelihood of 

each Cox model were also reported in Table 8.10. 

Figure 8.13 illustrates the HR comparisons of all methods (in black) against the benchmark 

GUTG-001 estimates (in red) in a forest plot84, while Figure 8.14 visualises the comparison of 

absolute median OS for the abiraterone-first (Figure 8.14A) and enzalutamide-first groups (Figure 

8.14B) against the benchmark. These plots not only visualise the point estimate comparisons, but also 

the 95% CIs. Additionally, the size of each point estimate indicates the sample size of each analysis. 

AT analyses (Analyses 1c-1d and 2c-2d) feature smaller sample sizes due to the exclusion of patients 

who deviated from their assigned treatment sequences. In contrast, all ITT (Analyses 1a and 2a) and 

PP analyses (Analyses 1b, 2b, and 3) maintained the same population as at enrolment, with no patient 

exclusions, although record censoring may have been involved. 

For the HRs (Figure 8.13), only the AT analyses—specifically Analyses 1d and 2d, which were 

restricted to patients who survived to receive second-line treatment—, and the final adjusted analyses 

using the advanced IPTW*IPCWtxdev method (Analysis 3), showed a non-significant difference 

between the two treatment sequence groups as seen in the benchmark GUTG-001 trial.84 All other 

analyses, regardless of whether they adjusted for baseline confounding, significantly favoured the 

sequence of enzalutamide → abiraterone. Although the HR from the IPTW*IPCWtxdev adjusted 

analysis (1.07, 95% CI 0.96-1.20) was closer to those observed in the GUTG-001 trial (compared 

with ITT and PP analyses), the HR point estimate still did favour the sequence of abiraterone → 

enzalutamide as seen in the GUTG-001 trial (0.79, 95% CI 0.54-1.16). Meanwhile, AT Analyses 1d 

and 2d not only reflected the non-significant HR observed in the GUTG-001 trial, but their HR point 

estimates also favoured the sequence of abiraterone followed by enzalutamide. However, these AT 

analyses are inherently flawed due to immortal time biases (Table 8.10), and this is evident from the 

comparison of absolute outcomes, specifically median OS comparisons in Figure 8.14. 

For the median OS of the abiraterone → enzalutamide group, the IPTW*IPCWtxdev adjusted 

analysis (Figure 8.14A: 28.7 months, 95% CI 25.6-31.2) yielded a point estimate closest to those 

from the GUTG-001 trial, compared to all other methods. Although all methods showed 95% CIs that 



360 

 

partially overlap with those from the Khalaf trial, their point estimates were consistently more distant. 

Only Analysis 3's 95% CI completely fell within the 95% CI of the Khalaf trial (28.8 months, 95%CI 

25.4-not reached). While the 95% CI for the OS median of the abiraterone → enzalutamide group 

was wide due to immature OS data, the CIs from all the other analyses did not completely fall within 

with this range. For the median OS of the enzalutamide → abiraterone group, the IPTW*IPCWtxdev 

adjusted analyses also yielded 95% CIs (Figure 8.14A: 28.9 months, 95% CI 27.5-32.4) that 

completely fell within those in the GUTG-001 trial (24.7 months, 95%CI 18.8-34.0). However, its 

point estimate was roughly 4 months higher than that of the GUTG-001 trial. Several other analyses 

demonstrated overlapping 95% CIs for the median OS of the enzalutamide → abiraterone group. 

However, none of them fully fell within the 95% CI of the GUTG001 study. 

Since abiraterone and enzalutamide are very similar, all paired analyses—whether unadjusted or 

baseline-only adjusted (e.g., Analyses 1a & 2a, 1b & 2b, 1c & 2c, 1d & 2d)—consistently showed 

very similar results (Table 8.10). PP analyses, which artificially excluded death information for some 

patients, tend to inflate median OS estimates (Figure 8.14). AT analyses that only excluded patients 

who received non-protocol subsequent treatments (Analyses 1c-2c) tend to over-represent those who 

died early without further treatment, consequently resulting in a shorter OS in all groups (Figure 8.14). 

This results from selection bias based on post-enrolment information, as detailed in Section 8.3.4.2. 

On the other hand, AT analyses limited to patients who survived long enough to receive second-line 

treatment (Analyses 1d-2d) likely underrepresent those unable to receive further treatment, resulting 

in an overestimation of OS (Figure 8.13) due to immortal time bias, as noted in in Section 8.3.4.2. 

The advanced IPTW*IPCWtxdev method theoretically corrects the baseline confounding and 

informative censoring bias in the PP analysis (Analysis 1b). It showed improved alignment of both 

the comparative effectiveness (i.e., HRs) and absolute outcome estimates (i.e., median OS) for 

comparing treatment sequences when benchmarked against the GUTG-001 trial, compared to all 

other analyses using simpler methods. 
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Figure 8.13 Comparison of hazard ratios against the GUTG-001 trial 

2L, second-line; Abi, abiraterone; AT, as-treated; Enza, enzalutamide; HR, hazard ratio; IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; ITT: intention to treat; mCRPC, metastatic 

castration-resistant; PP, per-protocol 
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Figure 8.14 Comparison of median overall survival against the GUTG-001 trial 

2L, second-line; Abi, abiraterone; AT, as-treated; Enza, enzalutamide; HR, hazard ratio; IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; ITT: intention to treat; mCRPC, metastatic 

castration-resistant prostate cancer; PP, per-protocol 

A. Absolute median overall survival for the abiraterone-enzalutamide group (Figure 8.14A) 

B. Absolute median overall survival for the enzalutamide-abiraterone group (Figure 8.14B) 
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Figures 8.15 to 8.18 demonstrate the “evolution” of KM curves from an unadjusted RWD 

analysis to the final adjusted analysis incorporating advanced confounding adjustment using 

IPTW*IPCWtxdev. This series includes analyses for ITT (Analysis 1a), PP (Analysis 2a), PP adjusted 

for baseline (Analysis 2b), and PP adjusted for both baseline and time-varying confounding (Analysis 

3). Initially, the ITT analysis shown in Figure 8.15 illustrates a scenario in RWD studies comparing 

first-line treatments, where two groups of patients may not be comparable, and the impact of different 

subsequent treatments on OS is not factored in. The median OS for both groups in unadjusted ITT 

ranges between 720-900 days. Then, the unadjusted PP analysis aimed to eliminate the contaminated 

effects of non-protocol treatments for assessing the impact of treatment sequences (Figure 8.16). This 

results in a higher median OS seen compared to the ITT analysis (Figure 8.15). Compared to the 

unadjusted ITT analysis, the unadjusted PP analysis resulted in KM curves becoming closer together 

before 900 days but beginning to diverge more after 1080 days. In the unadjusted PP analysis, the OS 

for both groups is extended to over 900 days. The baseline-adjusted PP analysis led to KM curves of 

both groups becoming closer (Figure 8.17) than those without baseline adjustments (Figure 8.16), 

showing greater overlap between the 95% CIs of KM curves of both groups. The median OS of both 

groups remained over 900 days in this analysis. 

Finally, the PP analysis adjusted with the advanced IPTW*IPCWtxdev method, as shown in Figure 

8.18, reduced the median OS of both groups to just below 900 days. Importantly, the gap in median 

OS between the groups narrowed significantly, and the 95% CI curves show much greater overlap. 

Notably, the point estimate where the abiraterone → enzalutamide sequence surpasses that of the 

enzalutamide → abiraterone occurred around 900 days. While earlier analyses using simpler methods 

also displayed tangled survival curves between the two groups before 180 days (Figures 8.15-8.17), 

it was only with the adjustments using advanced methods that further potential tangled survival curve 

point estimates emerged after 800 days (Figure 8.18). 

Figure 8.19 displays how the KM curves from my survival analysis using the IPTW*IPCWtxdev 

method compared with those from the benchmark GUTG-001 trial. Figures 8.20 and 8.21 separate 

the graphs into two treatment groups: abiraterone → enzalutamide and enzalutamide → abiraterone, 

respectively. The survival point estimates from my analysis mostly fell within the 95% CIs of the 

GUTG-001 trial, with an exception of those within the first 3 months of follow-up in the abiraterone 

→ enzalutamide group. The 95% CI curves in my analysis are narrower, likely due to larger sample 

sizes, and mostly fell within those of the GUTG-001 trial. For both groups, the point estimates tangled 

with those from the GUTG-001 trial before 540 days. After 540 days, the survival point estimate for 

the abiraterone → enzalutamide group is slightly lower but still close to that of the GUTG-001 trial. 

In contrast, the enzalutamide → abiraterone group shows higher point estimates after 540 days 

compared to the GUTG-001 trial, resulting in the median OS about 4 months longer (Table 8.10).
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Figure 8.15 Kaplan-Meier curve of intention-to-treat analysis 

mCRPC, metastatic castration-resistant prostate cancer 

 

 

Figure 8.16 Kaplan-Meier curve of per-protocol analysis 

mCRPC, metastatic castration-resistant prostate cancer 
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Figure 8.17 Kaplan-Meier curve of per-protocol analysis, adjusted for baseline confounding 

with inverse probability of treatment weights 

KM, Kaplan-Meier; mCRPC, metastatic castration-resistant prostate cancer 

 

 

 

Figure 8.18 Kaplan-Meier curve of per-protocol analysis, adjusted for baseline and time-

varying confounding with inverse probability weights 

IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; mCRPC, metastatic castration-resistant prostate 

cancer 
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Figure 8.19 Comparison of Kaplan-Meier curves: per-protocol analysis with IPTW*IPCWtxdev versus benchmark GUTG-001 trial  

Abi, abiraterone; Enza, enzalutamide; IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; KM, Kaplan-Meier; mCRPC, metastatic castration-resistant prostate cancer 

 

 

 



367 

 

 

Figure 8.20 Comparison of Kaplan-Meier curves: per-protocol analysis with 

IPTW*IPCWtxdev versus benchmark GUTG-001 trial: abiraterone → enzalutamide group 

Abi, abiraterone; Enza, enzalutamide; IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; KM, Kaplan-

Meier; mCRPC, metastatic castration-resistant prostate cancer 

 

 

Figure 8.21 Comparison of Kaplan-Meier curves: per-protocol analysis with 

IPTW*IPCWtxdev versus benchmark GUTG-001 trial: enzalutamide → abiraterone group 

Abi, abiraterone; Enza, enzalutamide; IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; KM, Kaplan-

Meier; mCRPC, metastatic castration-resistant prostate cancer 
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Table 8.11 shows the ad-hoc analyses conducted to compare the restricted mean survival time 

(RMST) between my analyses and those of the GUTG-001 trial at 12, 24, and 36 months of follow-

up. This includes deriving the RMST for both the abiraterone → enzalutamide and enzalutamide → 

abiraterone groups, as well as point estimates for RMST differences in each analysis (Analysis 1a-1d, 

2a-2d, and 3 in Table 8.11). The RMST values for both groups and the difference between them were 

then compared with the results from the GUTG-001 trial across all analyses.84 Since Khalaf et al. did 

not report the RMST for OS in the GUTG-001 trial84, the RMST results from my analyses were 

compared to estimates derived from the digitised survival curve (i.e., Analysis 0 in Table 8.11).  

The RMST for the unweighted KM analyses (Analysis 0 and 1a-1d) was derived using the rmst2 

package in R. However, no R packages support the calculation of RMST for weighted KM. Therefore, 

I wrote a function “perform_rmst_trapezoids_wKM” in R to calculate the RMST for each group by 

determining the area under the weighted KM curve for the remaining five weighted analyses: baseline 

IPTW adjusted (Analysis 2a-2d) and IPTW*IPCWtexdev adjusted (Analysis 3). Detailed steps of the 

function and the R code for deriving RMST for each group and RMST differences between groups 

for each analysis (1a-1d, 2a-2d, and 3) are provided in Appendix 8.11. 

RMST is used in health economic evaluations to estimate the area under the survival curve and 

indicate the time patients spend in each health state. For example, in a 3-state partitioned survival 

model (progression-free, post-progression, and death), the RMST for progression-free survival (PFS) 

reflects time spent in the PFS state, while the difference between RMST for OS and PFS represents 

time spent in the post-progression state. The RMST ad-hoc analyses in Table 8.11 provide additional 

insights into assessing the agreement between RCT and RWE in this context. 

For the RMST differences between the two treatment sequence groups (shown in the right 

column for RMST intervals in Table 8.11), Analysis 1d (AT, limited to second-line treatment 

recipients), 2d (baseline IPTW weighted AT, limited to second-line treatment recipients) and Analysis 

3 (advanced IPTW*IPCWtxdev) produced some of the closest numerical results compared to the 

GUTG-001 trial (Analysis 0). Howver, most RMST point estimates for the two treatment groups in 

Analysis 1d and Analysis 2d at 12-month, 24-month, and 36-month did not fall within the 95% CIs 

of the GUTG-001 trial. For example, the 12-month RMST for abiraterone → enzalutamide and 

enzalutamide → abiraterone in GUTG-001 was 10.99 (10.52, 11.46) and 11.01 (10.53, 11.50) months, 

respectively, while the point estimates for both groups in Analysis 2d were 11.61 and 11.59 months. 

In contrast, the RMST point estimates for all groups in Analysis 3 fell within the 95% CI of GUTG-

001, with 12-month RMST estimates of 10.77 and 10.85 months, respectively. This pattern also holds 

true for RMST estimates from Analysis 3 at other time intervals.
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Table 8.11: GUTG-001 Analogue Target Trial Emulation results comparison table - restricted mean survi-val time (RMST) ad-hoc analyses 

Models (population) Restricted mean survival time (months, 95% CI) 

12-month 24-month 36-month 

ABI-ENZA 

(n = 2,172) 
ENZA-ABI 

(n = 1,972) 
Differences ABI-ENZA 

(n = 2,172) 
ENZA-ABI 

(n = 1,972) 
Differences ABI-ENZA 

(n = 2,172) 
ENZA-ABI 

(n = 1,972) 
Differences 

Summary statistics from Khalaf 2019 

Study (ITT, Khalaf 2019) 

NA NA NA NA NA NA NA NA NA 

0. Summary statistics using digitally 

reconstructed survival data from  

Khakaf 2019 (ITT, Khalaf 2019) 

10.99 

(10.52, 11.46) 

11.01 

(10.53, 11.50) 

-0.03 19.30 

(17.93, 20.67) 

18.93 

(17.60, 20.25) 

0.38 25.55 

(23.20, 27.90) 

24.02 

(21.76, 26.28) 

1.53  

1a. Unadjusted ITT 10.73  

(10.61, 10.84) 

10.85 

(10.73, 10.96) 

-0.12 18.41 

(18.09,18.72) 

19.04 

(18.72, 19.36) 

-0.63 23.73 

(23.20, 24.25) 

24.91 

(24.37, 25.45) 

-1.18 

1b. Unadjusted PP 10.80 

(10.68, 10.91) 

10.90 

(10.78, 11.02) 

-0.10 19.04 

(18.71, 19.38) 

19.57 

(19.23, 19.91) 

-0.53 25.20 

(24.61, 25.78) 

26.30 

(25.70, 26.89) 

-1.10 

1c. Unadjusted AT 10.41 

(10.25, 10.56) 

(n = 1, 500) 

10.51 

(10.34, 10.67) 

(n = 1, 358) 

-0.10 17.88 

(17.48, 18.28) 

(n = 1, 500) 

18.35 

(17.93, 18.77) 

(n = 1, 358) 

-0.47 23.24 

(22.58, 23.91) 

(n = 1, 500) 

24.19 

(23.49, 24.88) 

(n = 1, 358) 

-0.94 

1d. Unadjusted AT, limited to second-

line treatment recipients 

11.66 

(11.57, 11.76) 

(n = 645) 

11.59 

(11.47, 11.72) 

(n = 487) 

0.07  20.91  

(20.51, 21.31) 

(n = 645) 

20.80 

(20.32, 21.29) 

(n = 487) 

0.11 27.35 

(26.57, 28.12) 

(n = 645) 

26.89 

(25.99, 27.79) 

(n = 487) 

0.46 

2a. Baseline IPTW weighted ITT 10.71 

(10.57, 10.85) 

10.81 

(10.65, 10.97) 

-0.10 18.43 

(18.04, 18.83) 

18.97 

(18.55, 19.40) 

-0.54 23.84 

(23.18, 24.53) 

24.78 

(24.06, 25.52) 

-0.93 

2b. Baseline IPTW weighted PP 10.77 

(10.62, 10.91) 

10.89 

(10.74, 11.05) 

-0.13 19.02 

(18.61, 19.45) 

19.59 

(19.16, 20.02) 

-0.56 25.26 

(24.52, 26.03) 

 

26.29 

(25.52, 27.08) 

 

-1.03 

2c. Baseline IPTW weighted AT 10.36 

(10.17, 10.56) 

(n = 1, 500) 

10.5 

(10.29, 10.71) 

(n = 1, 358) 

-0.13 17.81 

(17.31, 18.32) 

(n = 1, 500) 

18.39 

(17.85, 18.94) 

(n = 1, 358) 

-0.58 23.23 

(22.4, 24.09) 

(n = 1, 500) 

24.26 

(23.37, 25.20) 

(n = 1, 358) 

-1.03 

2d. Baseline IPTW weighted AT, 

limited to second-line treatment 

recipients 

11.61 

(11.47, 11.73) 

(n = 645) 

11.59 

(11.41, 11.76) 

(n = 487) 

0.02 20.77 

(20.24, 21.32) 

(n = 645) 

20.87 

(20.24, 21.52) 

(n = 487) 

-0.10 27.20 

(26.19, 28.27) 

(n = 645) 

27.03 

(25.84, 28.30) 

(n = 487) 

0.17 

3. Baseline IPTW and time-varying 

IPCWtxdev* weighted PP 

(hypothetical per-protocol effect with 
perfect compliance to the treatment 

sequence assignment) 

10.77 

(10.61, 10.93) 

 

10.85 

(10.68, 11.02) 

 

-0.08 18.68 

(18.19, 19.19) 

 

19.11 

(18.59, 19.66) 

-0.43 24.42 

(23.55, 25.34) 

 

25.03 

(24.08, 26.04) 

 

-0.61 

ABI: abiraterone; AT: as-treated, CI: confidence interval; ENZA: enzalutamide; IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; ITT: intention-to-treat; KM: Kaplan-Meier; PP: per-

protocol; RMST: restricted mean survival times 

* cubic spline for time 

 12-month, 24-month, and 36-month are defined as 360 days, 720 days, and 1080 days days post Time Zero 
Due to the R function rmst2 not supporting the calculation of RMST for weighted survival objects, RMST of the weighted Kaplan-Meier curves are calculated using the trapezoid rule with all available data points for each 
survival curves. The 95% CI for RMST are reported from the naïve (i.e., unadjusted) 95% CI curve. The difference in RMST between the two arms was calculated using the point estimates of RMST from each arm. 
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In summary, the ad-hoc RMST results (Table 8.11) aligned with the median OS and HR findings 

(Table 8.10), showing that the advanced IPTW*IPCWtxdev method (Analysis 3) provided a better 

assessment of treatment sequence effectiveness compared to simpler methods (Analysis 1a-1d and 

2a-2d). While the RMST results from Analysis 1d seemed to offer the best estimates of RMST 

differences at 24 and 36 months (i.e., closest to those in GUTG-001), the RMST point estimates for 

both treatment groups (abiraterone → enzalutamide and enzalutamide → abiraterone) mostly fell 

outside the 95% CIs of the GUTG-001 trial estimates, likely due to the inherent immortal time bias 

of the AT methods.  

The direction of the RMST differences at 24 and 36 months in the GUTG-001 trial (positive at 

0.38 and 1.53, respectively) contrasted with those in Analysis 3 (negative at -0.43 and -0.61), even 

though they were aligned at 12 months. This discrepancy may be due to the median time from 

treatment initiation to second-line progression in GUTG-001 being around 16-20 months (see Figure 

2 in Khalat et al.’s GUTG-001 trial publication84), with second-line treatment discontinuation and 

third-line treatment initiation likely occurring around this time. That is, smaller sample sizes in the 

GUTG-001 trial and unadjusted third-line treatments in my GUTG-001 Analogue may have 

contributed to the discrepancy, as third-line treatments might differ between the GUTG-001 trial and 

those in RWD. Since no third-line treatment data were provided in the GUTG-001 trial, further 

adjustments were not possible. Additionally, without an existing method to calculate RMST 95% CIs 

for weighted KM (other than bootstrapping), it is unclear if the differences are statistically significant.    

Further research is needed to develop methods for assessing the agreement of RMST differences 

between treatment groups in RCTs and RWE. 

8.4.5. RCT-RWE agreement assessment 

Table 8.12 summarises the RCT-RWE agreement assessment metrics, which are pre-defined in 

my study protocol (Section 7.5.5 of Chapter 7). For the first three criteria, adapted from the RCT 

DUPLICATE studies172, my emulation of the GUTG-001 Analogue Target Trial using the 

IPTW*IPCWtxdev method showed full agreement. Specifically, the HR from my emulation indicated 

a no significant difference between the two treatment sequence strategies (1.07, 95%CI 0.96-1.20), 

which is consistent with findings from the GUTG-001 trial (0.79, 95%CI 0.54-1.16).84 Although the 

point estimate in my emulation seemed to favour the enzalutamide → abiraterone sequence instead, 

this still represents a full agreement. Additionally, the second criterion also demonstrates full 

agreement, as the point estimates of my HR fell within the 95% CI of the GUTG-001 trial. For the 

third criterion, the standardizsed difference between the HRs in my emulation and the benchmark 

shows no significant difference, indicating full agreement. 
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Table 8.12 RCT-RWE agreement assessment: GUTG-001 trial versus emulated GUTG-001 

Analogue Target Trial with the IPTW*IPCWtxdev method 

Criteria Findings 

1. Regulator agreement: assessing whether 

the direction and statistical significance are 

in alignment with the benchmark trial 

Agreed: 

The GUTG-001 trial indicates no statistical difference in HR 

between the two treatment sequences (0.79, 0.54-1.16), and the 

HR from my final emulation with the advanced confounding 

adjustment method (1.07, 0.96-1.20) concurs with this finding. 

 

 

 

2. Estimate agreement: assessing whether 

the point estimate falls within the 95% CIs 

of the benchmark trial 

Agreed: 

The point estimate of HR from my final emulation with the 

advanced confounding adjustment method (1.07) falls within the 

95% CI of the GUTG-001 trial (0.54-1.16). 

Further, the point estimates of the median OS for both treatment 

groups— abiraterone → enzalutamide: 28.7, and enzalutamide 

group → abiraterone: 28.9—also fall within the 95% respective 

CIs in the GUTG-001 trial (28.8-not reached, and 18.8-34.0, 

respectively). 

In the ad-hoc RMST analysis, the 12-, 24-, and 36-month point 

estimates for both treatment groups—abiraterone → 

enzalutamide: 10.77, 18.68, and 24.42, and enzalutamide → 

abiraterone: 10.85, 19.11, and 25.03—also fall within the 

respective 95% CIs from the GUTG-001 trial: abiraterone → 

enzalutamide (10.52-11.46), (17.93-20.67), and (23.20-27.90); 

enzalutamide → abiraterone (10.53-11.50), (17.60-20.25), and 

(21.76-26.28), respectively. 

 

 

 

3. Exploratory – standardised difference:  

𝐙 =  
�̂�𝑹𝑾𝑬 − �̂�𝑹𝑪𝑻

√𝝈𝟐
𝑹𝑾𝑬 + 𝝈𝟐

𝑹𝑪𝑻
, where the absolute 

value of Z-value less than 1.96 indicates no 

significant difference between the estimates 

from RWE and RCT 

Agreed:  

Z = -1.48 (for HR from my final emulation versus GUTG-001), 

indicating no significant difference between the estimates from 

RWE and RCT 

 

 

 

4. Exploratory - survival curve 

comparison: assessing whether the point 

estimate of the RWE survival curve for 

each treatment-sequence group fall within 

the 95% CI of the benchmark trial.  

Largely aligned:  

The survival point estimate of my final emulation with the 

advanced confounding adjustment method mostly fell within the 

95% CIs of the GUTG-001 trial, with an exception of those 

within the first 3 months of follow-up in the abiraterone → 

enzalutamide group.  

 

 

 
CI: confidence interval; HR: hazard ratio; OS: overall survival; RCT: randomised controlled trial; RMST: restricted mean survival time; RWE: real-world 

evidence 

 

Additionally, leveraging the same logic as criterion two, I assessed the concordance of absolute 

outcomes in addition to the relative outcomes between groups, which were not specified in the RCT 

DUPLICATE's criteria (i.e., exploratory assessment in criterion 2, Table 8.12).172 The point estimate 

of the median OS for both groups in my emulated Target Trial—abiraterone → enzalutamide: 28.7, 

and enzalutamide → abiraterone: 28.9—fell within the respective 95% CIs in the GUTG-001 trial 
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(28.8-not reached, and 18.8-34.0, respectively). Further, in the ad-hoc RMST analysis, the 12-, 24-, 

and 36-month point estimates for both treatment groups—abiraterone → enzalutamide: 10.77, 18.68, 

and 24.42, and enzalutamide → abiraterone: 10.85, 19.11, and 25.03—also fell within the respective 

95% CIs from the GUTG-001 trial: abiraterone → enzalutamide (10.52-11.46), (17.93-20.67), and 

(23.20-27.90); enzalutamide → abiraterone (10.53-11.50), (17.60-20.25), and (21.76-26.28), 

respectively. 

For the added fourth exploratory criterion, I visually examined the concordance of the emulated 

survival curves with those of the GUTG-001 trial. The survival point estimates from my emulation 

mostly fell within the 95% CIs of the GUTG-001 trial, with the exception of the initial three-month 

follow-up period in the abiraterone → enzalutamide group, where they were marginally lower.  

8.4.6. Sensitivity analysis  

Table 8.13 summarises the results of several sensitivity analyses, all of which modified 

operational procedures in implementing of the final emulation using the advanced IPTW*IPCWtxdev 

method to evaluate its robustness. Sensitivity analyses (1) and (2) investigated the impact of excluding 

ambiguous factors, as listed in Table 8.8, on the emulated outcomes. The results show that even 

without these factors, the HR between the two treatment groups remained non-significant, aligning 

with the findings of the original model. However, the HR point estimates increased after excluding 

the “calendar year” covariate, or when it was excluded alongside the “M Stage” factor. This suggests 

that the original model may have more effectively accounted for unmeasured confounding 

represented by these covariates. 

Sensitivity analyses (3) and (4) addressed challenges related to defining the administrative 

censoring date in analysing the Flatiron data, an electronic health record (EHR) database. Specifically, 

beyond the default follow-up period (1,440 days) and data cutoff date (August 31st, 2023), an 

additional date was defined for administrative censoring, the last recorded structural activity of 

patients in the database plus a 182-day period, whichever comes first (Section 8.3.3.2). This accounts 

for the fact that patient records in this EHR database were often affirmed from diverse sources. Unless 

patients died during treatment or were hospitalised, their deaths might only be captured during periods 

following their last structural activities at the clinics/hospitals. There are exceptions, such as cases 

where treatment was prescribed with a pre-existing refill order that lasts beyond the patient's death, 

or instances where patients were discovered deceased during a tele-visit to their home, resulting in a 

structural activity occurring after death. Though these exceptions are likely to be rare. Hence, 

administratively censoring patients at their last structural activity date likely misses many death 

events, especially those occurring shortly after. Sensitivity analyses (4) demonstrated this by showing 

the median OS could not be calculated for both treatment groups due to immature survival endpoints. 
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Table 8.13 Sensitivity analyses 

Models (population) Sensitivity analysis Median OS (months, 95 CI%),  

using Kaplan-Meier estimator 

Hazard ratio  

(95 CI%), using 

Cox models ABI-ENZA 

(n = 2,172) 

ENZA-ABI 

(n = 1,972) 

Cox model summary statistics 

from Khalaf 2019 Study (ITT, 

Khalaf 201984) 

- 28.8 (25.4, not 

reached) 

 

24.7 (18.8, 34.0) 0.79 (0.54, 1.16)  

0. Cox model with digitally 

reconstructed survival data from  

Khakaf 2019 (ITT, Khalaf 

201984) 

- 29.0 (25.5, not 

reached) 

24.8 (19.9, 32.5) 0.78 (0.54, 1.15)  

3. Baseline IPTW and time-

varying IPCWtxdev weighted PP 

(hypothetical PP effect with 
perfect compliance to the 

treatment sequence assignment) 

Original model  

 

28.7 (25.6, 31.2) 28.9 (27.5, 32.4) 1.07 (0.96, 1.20) 

(1) Variations in weight derivation 

models: Excluding the covariate 

“calendar year” from the weight 

derivation models" 

27.3 (24.6-30.4) 

 

28.9 (27.6-32.4) 

 

1.11 (0.99-1.24) 

 

(2) Variations in weight derivation 

models: Excluding the covariate 

“calendar year” and “M Stage” 

from the weight derivation 

models 

27.7 (24.7-30.4) 28.9 (27.6-32.4) 1.10 (0.99-1.23) 

 

(3) Alternative administrative 

censoring criteria: Patients are 

administratively censored on 

their last structural activity date 

in the database without any 

grace period, at the maximum 

follow-up period in the survival 

analysis, or up to the data-cutoff 

date (August 31st, 2023), 

whichever comes first. 

cannot be 

calculated 

cannot be 

calculated 

0.93 (0.72-1.21) 

 

(4) Alternative administrative 

censoring criteria: Patients are 

administratively censored at the 

maximum follow-up period in 

the survival analysis or up to the 

data-cutoff date (August 31st, 

2023), whichever comes first. 

29.7 (26.2-31.7) 30.6 (27.9-33.5) 1.07 (0.96-1.19) 

ABI: abiraterone; AIC: Akaike Information Criterion; CI: confidence interval; ENZA: enzalutamide; AT: as-treated, BIC: Bayesian Information Criterion; 

IPCW: inverse probability of censoring weighting; IPTW: inverse probability of treatment weighting; IQR: interquartile Range; ITT: intention-to-treat; KM: 

Kaplan-Meier; OS: overall survival; PP: per-protocol, 4-year is defining as 1440 post Time Zero 

* cubic spline for time 
 All 95% confidence intervals for median overall survival presented were directly obtained from the survfit function in R, including those for weighted 

analyses. 

 95% CI for HR from the unadjusted analysis (Analysis 0) was directly obtained using the coxph function in R. For weighted analyses, 95% CIs were derived 

from the robust sandwich estimator 

 

 

On the other hand, counting all confirmed deaths in the database without administratively 

censoring patients their last structural activity date would provide comprehensive death records. 

However, it might overlook critical information on subsequent treatments for patients lost to follow-

up for extended periods (e.g., deaths inferred from an obituary without recent clinical follow-up). 

This could obscure relevant data on deviations from treatment strategies during the periods lost to 

follow-up, potentially biasing comparisons of treatment sequences. 

Ideally, using each patient’s prescription refill dates, date of pre-planned treatment cycles, or 

scheduled follow-up dates as customised individual grace periods would better track follow-up loss. 

However, since such information was unavailable, I opted for a six-month grace period following the 

last known activity date. This approach aimed to balance the challenges of missing information on 

subsequent treatments during periods of lost follow-up and the risk of failing to capture deaths if 
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administratively censored at the last hospital/clinic visit date. This approach is based on the 

assumption that patients are likely to visit their physicians every 3 to 12 months for treating prostate 

cancer, depending on their condition's stability. 

Sensitivity analysis (4) tested a different extreme scenario where patients were not 

administratively censored based on their last structural activity date. The results showed HR almost 

identical to those in the original model, while the median OS lengths increased by 1 to 1.5 months 

for both groups. This suggests that although incorporating the last structural period with a grace period 

in the original model was theoretically rational, the sensitivity analyses further confirmed that not 

considering the last structural activity date does not significantly alter the relative outcomes. 

8.5. Discussion 

The PC1 case study findings underscore the feasibility of using advanced statistical methods to 

obtain reliable effectiveness estimates for treatment sequences from RWD, specifically Flatiron 

database. These methods should be adopted as the preferred approach when aiming to assess the 

effectiveness of a specific treatment sequence strategy or the comparative effectiveness of different 

treatment sequences. Conceptually, the IPTW*IPCWtxdev approach conceptually eliminated the 

effects contaminated by non-protocol subsequent treatments without introducing additional biases. 

This effectively resolves major issues present in simpler methods, including ITT, PP, and AT (with or 

without baseline baseline confounding adjustments), which either do not address or incorrectly 

account for time-varying confounding. The complexities of time-varying confounding in treatment 

sequences were effectively managed using causal inference-guided methods, including TTE, DAGs, 

and advanced statistical methods. These tools were instrumental in planning the RWD analyses and 

facilitating discussions with clinicians to identify relevant covariates. The IPTW*IPCWtxdev approach 

stands out as a pragmatic initial step due to its straightforward explanations, which significantly 

facilitate communication with clinicians. 

The TTE using the advanced IPTW*IPCWtxdev method demonstrated good agreement in the 

RCT-RWE concordance assessment, validating this approach as a robust proof of concept. 

Importantly, I expanded the criteria for RCT-RWE agreement assessment beyond those initially 

developed by RCT DUPLICATE172, pioneers in TTE benchmarking studies. Specifically, Criterion 2 

was expanded to evaluate both absolute and relative outcomes. This expansion proved crucial, as the 

HR from AT analyses (Analysis 1d and 2d in Table 8.10) would have met all RCT-RWE agreement 

Criteria (1) to (3) in Table 8.12. However, these analyses were significantly flawed due to evident 

selection or immortal time bias. By examining absolute outcomes, such as the accordance of median 

OS, the additional criteria helped identify these underlying issues. Additionally, an extra Criterion 4 

was developed to evaluate the agreement of survival curves between the benchmark and the emulated 



375 

 

Target Trial. The reliability of the emulated survival curves is particularly relevant in HTA, where 

they are often used to perform parametric survival modelling for extrapolating longer-term outcomes, 

making their credibility essential. Overall, this expansion extends insights in both the comparison of 

treatment sequences and the broader scope of RWE generation with benchmarking. This is 

particularly vital in the use of RWE in HTA, where absolute outcomes like treatment duration or 

progression survival time are crucial for calculating treatment costs and quality-adjusted life years, 

highlighting the importance of benchmarking more than just relative effect estimates. 

The value of employing a TTE approach lies in the necessity to critically assess whether any 

aspect of the Target Trial design and its emulation—including protocol implementation and necessary 

adaptations—introduces biases in analysing RWD. This is crucial for addressing biases that cannot 

be mitigated by advanced statistical methods, such as selection or immortal time bias. Properly 

addressing these biases through carefully defining “Time Zero” is key in mitigating these biases by 

preventing selecting patients based on post-enrolment factors (i.e., AT analyses in Table 8.10). Section 

8.3 actualised these concepts, offering detailed procedures and coding examples, with a focus on 

comparing treatment sequences. Further, it also extends the general insights of NICE’s RWE 

framework by demonstrating the practical considerations necessary for preparing fit-for-purpose, 

analysis-ready datasets to accommodate advanced IPW methods. It also highlights considerations 

specific to the use of the Flatiron databases and ensuring transparent documentation. 

The study findings do not only offer insights into comparing the effectiveness of treatment 

sequences, but also into comparisons that may not explicitly assess sequences while still involving 

them, potentially leading to biased decisions. Dr. Pezaro noted that the baseline-adjusted ITT analysis 

(Analysis 2a in Table 8.10) was conceptually intended to compare the effectiveness of abiraterone 

versus enzalutamide as first-line treatments for mCRPC. Although the analysis significantly favoured 

enzalutamide as first-line, Dr. Pezaro cautioned against this interpretation in clinical decision making. 

Particularly, the Sankey diagram in Figure 8.8 revealed that patients receiving either first-line 

treatment had very different choices of subsequent treatments, making them incomparable unless the 

effects of these subsequent treatments were factored in. For instance, the final emulated results of 

abiraterone → enzalutamide versus enzalutamide → abiraterone showed no significant difference with 

advanced adjusted analyses. Hence, Dr. Pezaro highlighted the value of Sankey diagram in presenting 

how imbalances in subsequent treatments can affect OS outcomes. For instance, one might want to 

investigate the effects of abiraterone versus enzalutamide as first-line treatments, with docetaxel as 

the primary subsequent treatment in both arms. However, obtaining this information from the data 

requires advanced adjustments, as it is not readily available. 

In fact, as identified in Chapter 2, TA 377 included a comparison of two treatment sequences: 

abiraterone → docetaxel versus enzalutamide → docetaxel.126 Here, the OS of first-line treatments 
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from trials was used to represent the OS for the entire treatment sequences. This approach implicitly 

assumes subsequent treatments of these first-line treatments were reflective of those in the NHS and 

were comparable between study groups. This assumption was likely valid at the time of TA 377 when 

subsequent treatment choices in mCRPC were relatively limited. However, for example, sufficient 

comparative evidence does not exist and an external control arm is needed, which is increasingly 

common in oncology TA. In this case, the Sankey diagram proves indispensable in illustrating the 

variations in subsequent treatments across different arms in HTA, whether using RWD or trial data. 

Specifically, it visually emphasises the potential pitfalls of excluding selected patients based on post-

enrolment criteria (i.e., subsequent treatments), as noted in the AT analyses in Table 8.10 and 

commonly seen in RWD studies comparing treatment sequences with simple methods, as noted in 

Chapter 4. 

Several challenges and limitations should be acknowledged. First, the benchmarking process is 

constrained by the relatively small sample size of the benchmark GUTG-001 trial, increasing the 

likelihood that point estimates from the emulate Target Trial will fall within the 95% CIs of the 

benchmark trial. Despite this, advanced analyses have significantly improved the findings by 

directing point estimates toward more accurate directions, both in terms of both absolute and relative 

effect estimates. Specifically, the 95% CIs of median OS for both treatment groups fully fell within 

the 95% CI of the benchmark, which was not the case in analyses with simple methods. This 

represents a crucial improvement over simpler analyses in comparing treatment sequences, which 

were conceptually and practically flawed and have not previously been examined in HTA. The 

divergence of survival curves after a 1.5-year follow-up between the emulated Target Trial and the 

benchmark, particularly in the enzalutamide-first group (Figure 8.20-8.21), may result from the small 

sample size of the GUTG-001 trial and more prevalent use of enzalutamide in later calendar years. 

These factors suggest that a potentially proportionally higher use of novel treatments from the third 

line onwards in the enzalutamide-first group could contribute to seemingly better survival outcomes 

in real-world compared to the benchmark (Figure 8.21). However, without details on subsequent 

treatments in the GUTG-001 trial, these observations cannot be fully verified. 

Furthermore, the lack of precise progression date information and incomplete patient data, 

notably missing values in key prognostic factors like ECOG scores, may lead to residual confounding. 

Inconsistencies in historical records could potentially result in a biased definition of comorbidities 

across patients. These limitations could likely be improved by using customised add-on variables 

from Flatiron's service, which provide comprehensive manually abstracted information on 

comorbidities and progression dates.438 However, these add-on variables are not included in the 

standard mPC dataset. Additionally, the absence of comprehensive progression information in the 

standard Flatiron mPC dataset and variably recorded PSA levels among patients hinder the ability to 
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conduct alternative outcome analyses specified in the protocol in Chapter 7, such as progression-free 

survival defined by PSA progression. Given these data constraints, employing sensitivity analyses 

such as time-to-next-line treatment initiation and time-to-treatment discontinuation could be practical 

approaches in this research context. Additionally, E-values may be used to demonstrate the impact of 

unmeasured confounding.595 While multiple imputation could be considered to mitigate the impact 

of missing data, caution is advised in its use for causal inference questions, with ongoing investigation 

in the field.596,597 

Despite its limitations, this study has several notable strengths. It is the first to design and 

benchmark TTE analyses against an existing RCT that compares treatment sequences. The study 

extends the status quo in RCT-RWE agreement assessment by introducing additional criteria essential 

for evaluating absolute outcome estimates and visualising survival curve agreements, critical for HTA. 

It offers a detailed, step-by-step tutorial on implementing TTE implementation in comparing 

treatment sequences, hereby complementing and extending the insights of the NICE RWE framework. 

Moreover, the research highlights the indispensable role of the Sankey diagram and preliminary data 

checks in the design phase, upon data receipt, and during the TTE implementation. These checks 

guide necessary and appropriate adaptations to the designed Target Trial protocol. Overall, the study 

demonstrates a logical step forward in using RWD as an alternative means to inform the effectiveness 

of treatment sequences, offering novel insights into tackling the challenges of evidence scarcity in 

HTA involving the evaluation of treatment sequences. 

Although several sensitivity analyses have been prioritised for investigation within the 

constrained analysis timeframe of this thesis (Section 8.4.6), several additional sensitivity analyses, 

as mentioned in the implementation and protocol, could further be planned in the same line of future 

research to test the robustness of the results. These include restricting the study to pre-COVID patient 

cohorts, varying the period for identifying baseline characteristics based on diagnosis (i.e., default = 

6 months), and merging treatment sequences, such as abiraterone → abiraterone into one LOT (see 

Section 8.2.2).  

Additionally, a critical exploration would be conducting a sequential emulation of a set of Target 

Trials with varying Time Zeros instead of using the initiation of first-line treatment as Time Zero. 

Specifically, the variability in the time from metastatic diagnosis to first-line treatment in mCRPC 

across groups (Table 8.9) could lead to potential immortal time bias in patient enrolment. However, 

it was considered acceptable in the current emulation because the time from mCRPC to first-line 

treatment initiation was not significantly different between groups. Specifically, the shorter interval 

from mCRPC to first-line treatment initiation, compared to the time from metastasis to treatment 

initiation in both groups, mitigates these concerns. Nonetheless, conducting sensitivity analyses with 

different Time Zeros could provide valuable insights, although this would deviate from the GUTG-
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001 trial's design, where follow-up and randomisation align with treatment initiation, and making 

RCT-RWE benchmarking impossible. Essentially, this variation could be deemed a generalisability 

study, falling within the scope of the second prostate cancer case study (PC2) as specified in the 

original study protocol (Chapter 7). Implementing sequential emulation would require a significant 

reconfiguration of the analysis and expansion of the dataset, potentially increasing the computational 

load. In the same line of research regarding generalisability, the cloning technique outlined in Chapter 

4 could be explored to compare alternative treatment sequences that start with the same first-line 

treatment. Additionally, alternative advanced methods like, such as g-formula (Chapter 4) may be 

investigated to assess their performance in emulating the same trial. Then, the IPTW*IPCWtxdev 

method, along with the same set of covariates and implementation procedures, could be explored to 

evaluate its feasibility in emulating the same Target Trial in alternative databases. 

8.6. Chapter summary 

This study represents a pioneering effort to benchmark TTE analyses against an existing RCT 

that compare treatment sequences. It contributes to evaluating treatment sequences in HTA by 

demonstrating the utility of RWD as an alternative method for providing unbiased estimates that could 

inform the effectiveness of treatment sequences. This chapter builds on insights from previous 

chapters, including reviews of advanced statistical methods guided by causal inference (Chapter 4), 

evaluation of appropriate oncology databases suitable for implementing these methodologies and 

pertinent for English HTA (Chapter 5), and identification of RCT benchmarks for establishing proof-

of-concept studies (Chapter 6). Importantly, it followed the predefined protocol from Chapter 7 with 

necessary adaptions being transparently documented. Hence, this chapter is the realisation of a 

combination of efforts from all previous chapters. In addition to offering fresh insights into treatment 

sequence comparisons in HTA, this chapter also provided a step-by-step tutorial on implementing 

TTE analyses and introduced additional criteria to the existing RCT-RWE agreement assessment 

metrics, extending the practical aspects of the NICE RWE framework.
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Chapter 9 Research summary and recommendations 

9.1. Overview 

This chapter provides a comprehensive summary and conclusion of the thesis. It begins by 

revisiting the key findings from each chapter, highlighting the new insights they have contributed to 

the topic of evaluating treatment sequences in HTA (Section 9.2). Section 9.3 then spotlights the 

thesis's key contributions to the field, emphasising the main advances. Section 9.4 discusses the 

strengths and limitations of my research. Section 9.5 outlines potential areas for future research. The 

chapter concludes with recommendations and final remarks in Section 9.6 and 9.7, emphasising the 

thesis's implications to the field. 

9.2. Summary of chapter findings 

 Chapter 2 

Chapter 2’s scoping review fulfilled my Research Aim 1 (Section 1.5, Chapter 1), contributing 

to the field by laying out a roadmap of key literature on evaluating treatment sequences in HTA. The 

review was recently published in a peer-reviewed journal.87 It traces the evolution of this field's 

literature, highlighting the multifaceted challenges and their interplay. Methods for structuring 

treatment-sequencing economic models have been established1,2, yet the scarcity of clinical evidence 

for populating these models introduces structural and parametric considerable uncertainties. Recent 

publications have increasingly focused on addressing this issue.34-36,125 Specifically, clinical trials 

typically do not compare treatment sequences but treatments at specific lines, necessitating merging 

clinical evidence from different sources to populate models across different treatment lines. Lewis et 

al. and Huang et al. proposed applying adjustment methods to refine the derivation of line-of-

treatment (LOT) effect (e.g. meta-regression, subgroup meta-analysis for adjusting patient’s 

treatment history) and to account for indirect treatment comparisons (ITC) when merging evidence 

from different sources, respectively.34,35 However, NICE HTA guidelines have yet to adopt these 

approaches for evaluations involving treatment sequences.142-145 Further, while pragmatic, these 

methods may fall short in certain contexts as they often rely on the assumption that patient 

characteristics align across evidence sources for different LOTs, an assumption that is unlikely to 

hold where the primary outcome is survival. 

These findings solidified the scope of my doctoral research, which aimed to address the scarcity 

of clinical evidence on the unbiased comparative effectiveness of treatment sequences by leveraging 

real-world data (RWD). RWD is particularly adept at capturing entire treatment sequences, an area 

that previously unexplored due to its susceptibility to confounding biases. My review offers new 

perspectives by discussing how Target Trial Emulation (TTE)76—a methodological framework 
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recently endorsed by the National Institute for Health and Care Excellence (NICE) real-world 

evidence (RWE) framework37— may shed light on the evaluations involving treatment sequences. It 

spotlights the niche of innovative efforts to employ TTE3 and advanced causal inference guided 

statistical methods to mitigate biases in analysing non-randomised patient-level data. Subsequently, 

my review identified several research directions, including applying causal inference methods in 

analysing RWD and/or trial data harbouring sequences to derive unbiased estimates of effectiveness, 

whether as a standalone evidence source or combined with others (e.g. synthesising an external 

control arm involving sequences). My thesis then focused on exploring the first scenario (i.e., 

comparing treatment sequences using RWD as a standalone source) in depth, as the second scenario 

would require accessing two distinct data sources, and comparing sequences within a single dataset 

represents a logical first step in this area of research. 

 Chapter 3 

Chapter 3 fulfilled my Research Aim 2 (Section 1.5, Chapter 1). It systematically reviewed NICE 

technology appraisals (TAs) to understand the current practices and challenges in comparing 

treatment sequences within health economic evaluations. The review specifically sought to (1) 

explore how frequently treatment sequence discussions occurred in English HTA, and (2) examine 

how effectiveness estimates for these sequences were selected and derived. This aims to shed light 

on the significance of clinical evidence scarcity in treatment sequencing HTA and explore how it has 

been tackled with distinct types of data sources, particularly the utilisation of RWD. 

Previous reviews on this topic has focused on TAs that explicitly employed a treatment 

sequencing economic model.1,2 My review contributes to the field by revealing that nearly all TAs 

address treatment sequences to some degree, which arises as a natural consequence of the      lifetime 

horizon required in many decision scenarios. However, explicit estimation of effects from different 

treatment sequences was not commonly performed. Effectiveness simplifying assumptions were 

commonly made, assuming treatment effects stay consistent across different LOTs and calculating 

costs of subsequent treatments without adjusting for potential changes in treatment effectiveness. 

The in-depth review of 35 TAs that explicitly compared treatment sequences highlighted 

autoimmune diseases (n = 22) and oncology (n = 7) as the most prevalent disease areas, with notable 

differences in how clinical evidence was utilised in these fields. Most TAs leveraged a mix of clinical 

evidence sources, including clinical trials, (network) meta-analyses (NMA/MA), RWE, and 

simplifying assumptions to either directly or indirectly inform the effectiveness of treatment 

sequences. Specifically, autoimmune TAs predominantly relied on NMA/MA often assumed that a 

given treatment's effectiveness remains constant or decreases with a fixed modifier across different 

LOT. In contrast, oncology TAs commonly used progression-free survival (PFS) from LOT-specific 
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trials to calculate the cumulative treatment duration across LOTs for costs calculation, rather than 

applying a one-size-fits-all effectiveness assumption for all positions. However, estimates of overall 

survival (OS) for the entire treatment sequences were typically based solely on first-line trial results.  

RWE has been used in many TAs to address gaps left by trial data, particularly in estimating the 

duration of later-line treatments for cost calculations and informing structures. However, there were 

no cases where RWD was used solely to evaluate the effectiveness of an entire treatment sequence or 

to conduct comparisons between two sequences. Similarly, trials that directly compared two entire 

treatment sequences was absent. Arguably, the studies using first-line treatment OS from trials as a 

proxy for the OS of an entire sequence are an exception, however, this method relies on assumptions 

that may be difficult to verify (i.e. subsequent treatments received in the trial are relevant to those 

used in clinical practices), especially when details on subsequent treatments might not be consistently 

documented in trials.126,203,249,265 These instances were primarily seen in oncology TAs.  

Key challenges identified involve integrating LOT-specific evidence from various sources, 

particularly biases from indirect comparisons and inconsistent patient populations across LOTs. 

Solutions such as matching-adjusted indirect comparisons or subgroup analysis of trials, including 

within NMA/MA (to account for “position” effect), emerged as common strategies to tackle these 

issues. However, the implementation of these methods has been inconsistent, aligning with findings 

from parallel reviews by Lewis et al. and Huang et al.34,35 Moreover, these fall short in addressing 

challenges like crossing cumulative treatment duration and OS curves, particularly in oncology—a 

challenge which has not yet been explicitly addressed in the existing literature.126 This challenge 

arises when cumulative treatment duration appears to be longer than OS, and stems largely from 

collating evidence from different treatment lines to proxy the survival outcome of an entire treatment 

sequence. The current solution of arbitrarily truncating one of the crossing curves is suboptimal. 

Further, there has been little effort to adjust for time-varying confounding in analysing trial or RWD 

involving sequences; only one oncology TA attempted to adjust for subsequent treatments in trials 

that did not reflect the sequence intended for comparison203, while another declared that it was not 

possible to perform adjustments despite recognising the issue.126  

In summary, the scarcity of RCTs directly comparing treatment sequences and the limitations of 

existing methods to combine survival evidence across LOTs highlighted a gap in evidence. This 

suggests that when treatment sequences have been compared in HTA, they might have been done 

sub-optimally. My review adds new insights to the field by examining treatment sequence evidence 

derivation methods separately for different diseases and evidence types, areas that were previously 

overlooked. It underscores the challenges of current statistical approaches and data sources in 

providing unbiased sequence estimates, emphasising the potential of RWD, capable of capturing the 

longitudinal detail of entire treatment sequences. However, harnessing RWD's promise requires 
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investigating strategies to address its inherent confounding bias effectively, especially time-varying 

confounding in comparing treatment sequences, as this has been largely under explored.  

 Chapter 4 

Chapter 4 builds on the previous two chapters, fulfilling Research Aim 3 (Section 1.5, Chapter 

1) by systematically exploring causal inference-guided statistical methods that may be used for 

estimating treatment sequence effectiveness using RWD and their applicability in HTA. This 

exploration particularly drew on disciplines rich in relevant methodologies, including statistics and 

epidemiology. This review not only identified key statistical methods for designing my proof-of-

concept studies using RWD to inform treatment sequence effectiveness in HTA (Chapter 7), but also 

summarised taxonomies that integrate knowledge from other disciplines into the context of treatment 

sequences in HTA. 

Although the concept of dynamic treatment regimens (DTR) from epidemiology seemed 

relevant to HTA treatment sequences, the specifics, nuances, and their applicability to HTA 

comparisons were not well-defined. For example, the comparison of treatment sequences in HTA 

typically involves examining the effect of a uniform treatment sequence for the entire population 

(Chapter 3). This approach represents a specific type of DTR, which focuses on comparing the effects 

of all patients in the population receiving the same treatment sequence against another. The dynamic 

aspect of this is that each patient's timing of receiving a subsequent treatment may vary, depending 

on specific triggering events, such as disease progression.  

The review revealed that statistical methods for deriving the most common type of estimands 

for treatment sequences in HTA (i.e., uniform treatment sequence for the entire population) exist, but 

methods for other types of treatment sequences are also available. These include methods for 

estimating the effect of an optimal uniform treatment sequence for the entire population or optimal 

individualised treatment sequences. However, these are not typically the focus of HTA, which 

generally compared a given treatment sequence with the appraised technology against the most 

prevalent sequence in clinical practice, rather than comparing two optimal, or personalised, treatment 

sequences (Chapter 3). My review, therefore, summarised a taxonomy of different treatment sequence 

strategies (time-related static versus dynamic) and estimand types of treatment sequences (uniform, 

optimal uniform, or optimal individualised), and connected these to a discussion of the statistical 

methods identified, highlighting the most readily applicable ones in the context of HTA. 

Additionally, the review contributes to knowledge by summarising parallels between various 

data sources, especially RCTs that randomise patients to receive treatment sequences, sequential 

multiple assignment randomized trial (SMARTs), and RWD. It provided conceptual links that 

demonstrate how causal inference methods used in different studies are relevant to analysing RWD. 
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This supports the perspective from a recent NICE DSU review identified in Chapter 2, which 

highlights the relevance of causal inference methods developed for correcting unwanted treatment-

switching in HTA to the context of treatment sequencing.43,44 In fact, all methods identified in the 

review can trace their relevance back to the contemporary causal inference methods established by 

Robins (i.e., g-methods).54 

Most importantly, the review also contributed a taxonomy of the identified methods and 

provided comprehensive explanations, including the origin of each method, their theoretical 

properties, and application studies. These encompass simple methods, including intention-to-treat 

(ITT), per-protocol (PP), and as-treated (AT) and their caveats, along with advanced methods, 

primarily including inverse probability weighting (IPW), structural nested failure time models 

(SNFTM), g-formula, and Q-learning. IPW was selected for my proof-of-concept studies due to its 

straightforward nature and ease of communication with clinicians, as well as fitting well into the TTE 

framework3,37, which, as introduced in Chapters 1 and 2, plays a crucial role in mitigating biases in 

RWD study designs. Most importantly, only IPW methods have been utilised in the context of 

comparing uniform treatment sequences, making them more readily applicable compared to other 

methods that focus on identifying optimal individualised treatment sequences. Notably, its variation, 

inverse probability of censoring weighting (IPCW), has been extensively applied in tackling 

unwanted treatment switching in HTA and is well understood. Contrastingly, g-formula and Q-

learning have not been as widely adopted in HTA as IPW and have been primarily employed to 

identify optimal personalised treatment sequences in the reviewed studies. Meanwhile, SNFTM 

methods have been used exclusively to determine the optimal uniform treatment sequences for the 

population. While all of these other approaches require further adaptation to be suitable for comparing 

two predefined uniform treatment sequences, PW stands out as more readily applicable due to its 

matching estimand in the reviewed studies and theoretically lower computational expense." Hence, 

these make the use of IPW as a logical first step for investigation, while the research line may be 

continued with the support of PhD transition funding. 

 Chapter 5 & 6 

Chapters 5 and 6 collaboratively investigated suitable RWD sources and benchmarks for 

conducting proof-of-concept studies aimed at generating unbiased comparative effectiveness 

estimates of treatment sequences for English HTA. This effort fulfilled my Research Aim 4 and partly 

met Aim 5 (Section 1.5, Chapter 1). 

Chapter 5 highlighted the English National Cancer Registration and Analysis Service (NCRAS) 

and US Flatiron databases as key oncology RWD sources relevant for informing English HTA.82,83,391 

It detailed the procedures to identify these databases and compared their similarities, strengths, and 
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limitations, particularly focusing on their ability to accommodate the statistical methods identified in 

Chapter 4 for comparing treatment sequences. These insights shaped the design of the case study 

(Chapter 7) and facilitated data application. The exploration of data specifications also informed the 

necessary adaptation of criteria for implementing Target Trial case studies in Chapter 8, ensuring the 

studies accurately reflect the planned objectives and take into account data limitations.  

Chapter 6 systematically reviewed RCTs comparing treatment sequences and identified the 

GUTG-001 prostate cancer trial and RECORD-3 trial as relevant benchmarks for designing proof-of-

concept case studies.84,86 The limitations of these trials inspired the innovative design of my 

interconnected case studies in Chapter 7. While no direct benchmark RCT exists for NCRAS data, 

the treatment sequences in GUTG-001 can serve as an indirect benchmark for validation against the 

English NCRAS database, supported by proof-of-concept studies using Flatiron data.  

These efforts collectively contributed to the knowledge base by providing a detailed and 

transparent account of how pertinent oncology databases and relevant benchmark trials were 

identified, contrasting with TTE studies that do not have a benchmarking purpose to assess the 

feasibly and reliability of methods in a given database before applying them to other research 

questions. Specifically, this extended the NICE RWE framework by adding insights into assessing 

the suitability of databases37, particularly for comparing treatment sequences. It highlighted the 

importance of considering treatment patterns within database population, which can be achieved by 

examining published statistics, as well as local treatment guidelines, and engaging with clinicians. 

These steps are essential for estimating sample sizes and assessing the feasibility of designing a study 

using RWD. 

The approach of how I selected the benchmark trials also differs from the United States (US) 

Food and Drug Administration (FDA)-funded pioneering RCT DUPLICATE initiative, which assess 

the feasibility of using RWD for drug repurposing with regulatory implications at the outset, and 

therefore have focused on benchmarking trials in pertinent diseases, such as hypertension, diabetes, 

and cardiovascular diseases.172 It is important to acknowledge that Chapters 2 and 3 identified 

oncology as a field with significant treatment sequencing considerations in HTA and challenges in 

using LOT evidence for survival outcomes, areas that may benefit from RWE support. Further, 

methods identified in Chapter 4 predominantly support oncology applications. The pilot review of 

benchmarks in Chapter 6 further underscored the relevance of focusing on oncology by revealing a 

disproportionately high number of RCTs in oncology that compare treatment sequences. These 

together led to a focus of searching oncology databases for my case studies. 

At the end of Chapter 5, I highlighted the critical challenge of database access, which is, needless 

to say, the first and most crucial step in assessing the feasibility of using RWD to derive unbiased 

estimates of treatment sequences. It details the nuances and procedural hurdles encountered, 
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exacerbated by COVID-related delays and complex administrative processes. To improve this, the 

chapter proposed the critical use of more transparent, publicly accessible timelines, concise flowchart 

guides from both data custodians and academic institutions, and clear communication to eliminate 

any hidden expectations to streamline the approval process and minimise unnecessary revisions. 

Further, proactively engaging senior legal experts early in the process in reviewing complex 

agreements, such as international agreements or those that an intuition is unfamiliar with can navigate 

potential legal complexities more effectively and efficiently. 

 Chapter 7 & 8 

Building on the insights established in the previous chapters, Chapters 7 and 8 addressed 

Research Aims 5 and 6, respectively. Chapter 7 detailed a proof-of-concept case study protocol for 

comparing treatment sequences using NCRAS and Flatiron data, and has been published online.170 

Chapter 8 offered a detailed, step-by-step tutorial on executing a TTE using advanced statistical 

methods for deriving unbiased estimates of treatment sequence comparisons from RWD, with 

Prostate Cancer Study 1 (PC1) serving as an example. 

Chapter 7 contributes to the field by detailing the rationale and design of a set of interconnected 

proof-of-concept TTE case studies, specifically designed for examining the feasibility of deriving 

unbiased estimates for comparing treatment sequences using the NCRAS and Flatiron data. My case 

study design is innovative because, while the TTE framework and advanced statistical methods have 

been previously used to compare various types of DTR, they have not been specifically applied to 

comparing treatment sequences with implications for HTA. Furthermore, the aforementioned 

oncology databases have not been calibrated with benchmark studies for English HTA, especially for 

comparing treatment sequences. As mentioned in Chapter 6, this protocol introduced a novel 

approach—indirect benchmarking—to assess the feasibility of using NCRAS for comparing 

treatment sequences, with support from direct benchmarking with Flatiron data (Case Study PC2-3). 

Given the recent partnership between NICE and Flatiron, Flatiron data has gained relevance for 

English HTA.83 Hence, direct benchmarking with Flatiron data itself also presents its own distinct 

value (Case Study PC1). These efforts contribute to the field by offering practical approaches to 

explore alternative means of addressing the challenge of evidence scarcity in evaluating treatment 

sequences, as highlighted in Chapters 2 and 3. 

The study protocol also contributed to the NICE RWE framework by highlighting the need for 

benchmarking/calibration, which has been mentioned in a recent publication by Gomes et al. as an 

area that should be prioritised but was not explicitly instructed in the framework.78 The significance 

of benchmarking has been highlighted—for example, it has been adopted by the US FDA-funded 

research to assess the feasibility of using real-world data (RWD) to inform evidence in drug 
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repurposing from a regulatory perspective.471  

Chapter 8 presents the outcomes of Chapter 7's PC1 case study (abiraterone → enzalutamide 

versus enzalutamide → abiraterone) with a tutorial-style implementation guide. This work 

complements and extends the NICE RWE framework in several ways: First, it underscored the 

necessity of preliminary data checks, highlighting essential protocol adaptations when data 

limitations are encountered, and ensuring transparent documentation throughout. These steps are 

crucial to ensure that the analysis accurately aligns with the original objectives but were, however, 

not explicitly emphasised in the framework. Preliminary treatment pattern assessments with Sankey 

diagrams were identified as particularly crucial for treatment sequence analysis. These checks are 

essential to assess the viability of the study, even with previous sample size estimations made at the 

design stage. Further, Sankey diagrams also proved to be valuable in reporting the outcomes of 

treatment sequence analyses and in facilitating communication with clinicians. Moreover, I detailed 

the preparation of analysis-ready datasets and the implementation of advanced statistical methods, 

especially the development of statistical models for weighting and outcome assessment. This 

highlights a crucial, yet commonly underestimated aspect of framework, especially relevant in the 

analysis with time-varying confounders. Notably, methodological papers typically lack 

accompanying implementation codes, making this a noteworthy addition. 

My case studies mark a valuable addition to the field of TTE and RWE for HTA by being the 

first attempt to benchmark TTE analyses comparing static treatment sequences. It demonstrates the 

versatility of the TTE framework in designing studies and applying advanced statistical methods in 

the context of comparing treatment sequences. Most notably, the PC1 study has demonstrated the 

ability to derive unbiased estimates of treatment sequence effectiveness using Flatiron data. This was 

benchmarked against RCT findings that PC1 aimed to replicate. The methodologies developed in this 

study offer a solid foundation for exploring similar questions across alternative databases, such as 

NCRAS, and those used internationally. 

The findings from my PC1 case study demonstrated that simple methods (ITT, PP, AT) were 

insufficient for accurately estimating the causal effects of different treatment sequences with RWD, 

even with adjustments for baseline confounders. In contrast, the advanced IPW method not only 

improved the estimates of hazard ratios (HR) but also median OS estimates and survival curves, 

aligning these estimates more closely with those observed in the benchmark GUTG-001 trial.84 These 

results were evaluated against the predefined RCT-RWE agreement criteria outlined in Chapter 7, 

where analyses using the IPW method met all quantitative criteria and showed good agreement with 

the survival curves of the GUTG-001. In contrast, ITT analysis yielded biased estimates due to not 

accounting for effects influenced by subsequent treatments. PP analysis, aimed at eliminating these 

contaminated effects through censoring, introduced bias due to informative censoring. The AT 
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analyses attempted to eliminate bias by excluding patients who deviated from the assigned treatment 

sequence, but this introduced immortal time and selection bias by selecting patients based on post-

enrolment observations. This led to an incorrect representation of the percentage of patients who did 

not survive to receive second-line treatments. Despite HRs from the AT analyses aligning with 

benchmarks, the absolute outcomes are biased. 

Equally importantly, my study contributed to the field of TTE benchmarking by introducing 

additional RTW-RWE agreement criteria, beyond those adopted from the RCT DUPLICATE 

studies.172 Specifically, my study went beyond the assessment of relative estimates between emulation 

and the benchmark. It also investigated whether the emulated absolute outcomes (e.g. median OS) in 

both treatment groups aligned with those of the benchmark trial and evaluated the visual concordance 

of survival curves. This comprehensive approach aimed to address potential biases in estimating 

absolute outcomes, which might not have been identified using standard criteria, such as the 

consistent immortal bias across groups in AT analyses. This is especially crucial for HTA, given the 

implications of survival curve extrapolation.598 

Challenges and limitations in the PC1 study include the lack of exact progression date 

information, complicating differentiation between treatment switches due to intolerance or disease 

progression. Nevertheless, Dr. Carmel suggests that early switches typically indicate intolerance, 

while later switches often suggest disease progression, with few exceptions. Thus, accounting for the 

timing of treatment switches should theoretically partially address unmeasured confounding due to 

this lack of information, especially when Eastern Cooperative Oncology Group (ECOG) scores and 

other lab results highly correlated with disease progression were included in the IPW model. 

Nevertheless, the analysis was potentially compromised by incomplete and inconsistent covariate 

information for each patient. Missing variable information was categorised “unknown”, based on the 

assumption that the reasons for being unknown were similar between the two comparison groups due 

to their similarities. Nevertheless, future analyses using other methods for dealing with missing data 

should be sought to test the robustness of the results. 

9.3. Key contributions to the field 

The key contributions of the thesis are outlined in bullet points, highlighted in bold and italic, 

with a few explanations provided. These cover various areas, including informing the assessment of 

treatment sequences in HTA, generating RWE for HTA, and advancing broader insights in TTE study 

design and benchmarking. 

 Curated a roadmap of treatment sequence research in HTA 

A significant contribution of my work to the field was organising scattered references about 

methodological advancements in evaluating treatment sequences in HTA into a structured format 
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(Chapter 2). This summarised key research themes and highlighted their relationships. This enables 

researchers with specific interests to easily locate relevant references. The roadmap also visualises 

the prominent and growing research demands to address the scarcity of effectiveness data and 

summarises actionable approaches to move forward, with my thesis being one of them.  

 Summarised the landscape of English HTA involving treatment sequences 

Another contribution of my work was updating the status quo of English HTA involving 

treatment sequences by offering additional insights beyond previous reviews on treatment-sequencing 

economic models. Chapter 3 summarised the current landscape, showing that treatment sequences 

were implicitly mentioned in almost all TAs, even those without an explicit treatment-sequencing 

model. Importantly, the chapter highlighted substantial disparities in modelling practices and data 

sources between the two primary disease areas: oncology and autoimmune diseases. Notably, 

treatment sequence considerations are prevalent in both areas; however, the approaches vary 

significantly. Pervious research primarily recommended using NMA/MA to derive LOT-specific 

effectiveness for treatment-sequencing economic models, mainly based on insights from autoimmune 

disease models34, and thus may not be fully applicable to the complexities in oncology. Further 

research suggested using indirect treatment comparison adjustments when merging LOT-specific 

evidence, but this still did not properly account for the assumption of exchangeability of populations 

from different LOTs and can be problematic when merging survival evidence.35  

The chapter therefore reinforced the potential of exploring RWD as an alternative evidences 

source as RWD are adept at capturing treatment sequences. My review identified a lack of previous 

TAs utilising advanced causal inference statistical techniques to address the challenges of using RWD 

in the context of comparing treatment sequences. This highlighted the need for further exploration of 

this topic, which formed an integral part of my thesis. 

 Proposed benchmarked methodologies to inform unbiased estimates of comparative treatment 

effectiveness with RWD for HTA, complementing treatment-sequencing modelling frameworks 

The PC1 Case Study 1 has demonstrated good RCT-RWE agreement with the benchmark it 

aimed to emulate using Flatiron data, showing consistency in both relative and absolute effectiveness 

estimates of treatment sequences.84 The study closely followed the principles of the TTE framework 

to mitigate biases from RWD study design and employed the advanced IPTW*IPTWtxdev method to 

handle time-varying confounding. Extensive clinical inputs were incorporated to mitigate biases from 

unmeasured confounding by including pertinent covariates in the statistical model. Additionally, 

several sensitivity analyses were conducted to examine the robustness of the study findings. 

My approach represents a significant step forward in using an alternative approach (i.e., RWD) 

to inform the effectiveness of treatment sequences in HTA, as population exchangeability 
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assumptions for existing methods that rely on merging LOT-specific evidence may not always hold.  

This field was previously underexplored. Hence, my research serves as a valuable starting point for 

further research in the same line, not only for comparative treatment sequence effects using RWD as 

a standalone source but also for exploring the utility of deriving an external synthesis controlled arm 

with relevant treatment sequences. Specifically, insights regarding mitigating biases in real-world 

study design and advanced statistical methods in comparing treatment sequences are transferable. 

 Extended the NICE RWE framework for treatment sequence comparisons with a tutorial-style 

guide for implementation, especially on analytical dataset derivation, advanced IPW 

implementation, and data check adaptions 

This thesis not only provided insights into using RWD to inform treatment sequence 

effectiveness in HTA but also extends the NICE RWE framework. Specifically, it offers a tutorial-

style guide for implementing TTE studies to compare treatment sequences, including analytical 

dataset derivation and advanced IPW implementation, along with relevant R code for each step and 

transparent documentation. The practical aspects, such as the analytical dataset and statistical model 

for advanced methods, were not detailed in the RWE framework but are crucial in actualising the 

TTE study planned to match the objectives set. To accommodate specific advanced statistical methods, 

accuracy in labelling outcome and censoring rows is paramount, as mislabelling could lead to 

significant errors. This aspect is not often emphasised but is indispensable, especially considering 

that not all methodological papers provide code and example datasets for verification.  

Furthermore, while the framework mentioned that the TTE approach and advanced statistical 

methods can be used in understanding DTR, the recommendation was very generic. My research 

sheds light on the nuances and provides a practical example, especially regarding adaptations 

necessary for comparing treatment sequences. For instance, when assessing the suitability of a RWD 

source, considerations should be made for treatment patterns in the database population and changes 

over the years. In preliminary data checks, the use of Sankey diagrams and counts of treatment 

sequences, as well as the relative proportions of the prevalence of the interested sequences, are crucial 

for estimating the viable sample size before initiating the treatment sequence analysis. Sankey 

diagrams were also found to be a valuable visual tool for communicating with clinicians and in finding 

reporting. 

 Improved the status quo of RCT-RWE agreement assessment metrics in TTE benchmarking 

My study introduced additional criteria for assessing absolute outcomes in TTE benchmarking, 

beyond the standard criteria from RCT DUPLICATE studies.172 Specifically, it evaluated whether the 

emulated absolute outcomes (e.g., median OS) in both treatment groups aligned with those of the 

benchmark trial and assessed the visual concordance of survival curves. This approach aimed to 
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address potential biases in estimating absolute outcomes, especially crucial for HTA due to survival 

curve implications for extrapolation. This was proven indispensable, especially when biases such as 

immortal time bias are consistent across study groups, as evident in my AT analyses. Standard criteria 

on relative outcomes could overlook biased absolute outcome findings, yet still consider the 

emulation adequate due to acceptance of agreement in relative outcomes. This not only contributes 

to insights in HTA but also more broadly in the field of benchmarking TTE studies. 

 Innovative proof-of-concept TTE study design leveraging a mix of direct and indirect 

benchmarking in the face of scarcity of benchmark trials 

The design of my interconnected case studies uniquely contributed to the field of TTE and 

benchmarking by leveraging the strengths of two databases to complement their respective 

weaknesses. Specifically, I introduced a novel approach—indirect benchmarking—to assess the 

feasibility of using NCRAS for comparing treatment sequences, supported by direct benchmarking 

with Flatiron data (Case Study PC2-3). Additionally, given the recent partnership between NICE and 

Flatiron, Flatiron data has gained relevance for English HTA. Hence, direct benchmarking with 

Flatiron data itself also presents its own distinct value (Case Study PC1). Although this thesis did not 

delve into the PC2-PC3 case studies due to time constrains, it provides a foundational step forward, 

as the methodologies have been validated in the PC1 study with Flatiron and can be carried forward 

for examining the use of NCRAS data for the same purpose. Additionally, another direct planned 

benchmarking study on renal cell carcinoma (RCC) single-arm with NCRAS data can further 

complement insights learned from indirect benchmarking. Importantly, these proof-of-concept 

studies were designed to compare treatment sequences. To my knowledge, no TTE study has 

attempted to assess uniform treatment sequences for HTA, let alone benchmarking. Therefore, it 

marks the first benchmark TTE for this purpose, adding valuable insights to the TTE study sphere. 

 Uncovered further pertinent elements deserving of inclusion in the NICE RWE framework: 

benchmarking, data checks and necessary protocol adaptions 

One crucial step, not necessarily related to treatment sequences, is benchmarking (or calibration) 

a given database with relevant benchmark studies before using it to answer further questions. While 

advocated by a recent study by Gomes et al., this step was not explicitly mentioned in the NICE RWE 

framework.78 My Chapters 5 and 6 collectively presented an example of systematic search approach 

to identifying pertinent benchmark trials. My Chapters 5 and 6 collectively presented a systematic 

approach to identifying pertinent benchmark trials, providing an example for such searches. 

Furthermore, understanding the data prior to TTE design are important, as necessary adaptations 

may be required to better align with study objectives encountering unexpected data idiosyncrasies. 

These adjustments may become evident during data checks upon data reception. Transparent 
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documentation of protocol adaptations is essential. These were highlighted as crucial steps that would 

affect the emulation in the implementation of my study but were not thoroughly elaborated upon 

within the NICE RWE framework. This point was underscored in a recent publication by researchers 

from the RCT DUPLICATE group, stressing the importance of thorough pre-study data checks, 

carefully considering necessary adaptations at study initiation to avoid biases, and transparent 

documentation.599 While some research groups may possess extensive collective experience with 

similar databases, ensuring better study design, this is not universally the case. Access to databases 

typically requires a pre-defined protocol approved by ethics committees before data application, 

posing a dilemma in thorough pre-study data checks. Thus, in my view, it is prudent to plan as much 

as possible using available published studies and data dictionaries, while transparent documentation 

of any adaptations along with their justifications, is crucial for upholding research integrity and 

navigating a pragmatic path forward. My case study provides an example of this, although not as 

extensively as those in the RCT DUPLICATE group, where each step was registered on clinical.gov. 

However, it is as transparent as possible. 

 Systematically identified advanced statistical methods for comparing treatment sequences  

My review systematically identified key advanced statistical methods for comparing treatment 

sequences. It revealed various advanced statistical methods and provided insights into DTR 

terminology, relevance to HTA treatment sequences, and different types of treatment sequence 

estimands. Common methods include the advanced IPW method used in my case study, along with 

g-formula, SNFTM, and Q-learning. Furthermore, the review reveals the potential adaptation of these 

methods for analysing trial data involving both randomised and non-randomised subsequent 

treatments, thereby opening avenues for further exploration in the same line of research. 

9.4. Strength and limitations 

Several limitations of the study should be acknowledged. Firstly, the restricted sample size in 

the benchmark GUTG-001 trial may have reduced the challenge of attaining RCT-RWE agreement. 

However, it was evident that advanced methods produced results closer to theoretical correctness 

compared to those of simple methods, which were flawed. Thus, it highlights the appropriate use of 

IPW methods. Secondly, time constraints hindered a systematic review of covariates from the 

literature and restricted the exploration of a full spectrum of sensitivity analyses to test the robustness 

of the statistical methods applied. However, considerable effort was invested in reviewing literature 

to identify pertinent covariates, as well as iterative discussions with clinicians to facilitate the 

elicitation of pertinent covariates for statistical models. Additionally, several critical sensitivity 

analyses were conducted, demonstrating robust results. Thirdly, the study faced challenges with 

inconsistent missing data across patients, underscoring the necessity for further investigation to tackle 
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this. However, due to time constraints and the complexity of employing techniques such as multiple 

imputation in causal research (an evolving area in the literature itself), addressing this issue was 

deemed beyond the scope of the thesis. Fourthly, only one advanced statistical method was examined. 

Nevertheless, its prioritisation was supported by a strong justification as a logical first step in this line 

of research due to its relevance in HTA. However, efforts should certainly be made to compare the 

IPW with other available methods, notably the g-formula and Q-learning. 

There are several strengths of my research. Its greatest strength lies in being the first attempt to 

conduct a TTE benchmark study for comparing uniform treatment sequences for HTA. Specifically, 

the design of the case study was supported by a series of systematic reviews, guiding the selection of 

suitable databases, advanced analytical methods, and benchmarks. Secondly, the innovative design 

of interconnected case studies enabled benchmarking with both Flatiron and NCRAS data. 

Specifically, the utilisation of Flatiron was benchmarked for its ability to inform unbiased estimates 

of treatment sequences, assessed with pre-defined RCT-RWE agreement assessment metrics. The 

emulated PC1 study demonstrates good agreement with the benchmark trial GUTG-001. Significantly, 

I adopted improved assessment metrics, which went beyond the status quo by also examining absolute 

outcome agreement, including survival curves concordance, which has implications in HTA for 

survival extrapolation. Furthermore, these investigations were guided by a set of systematic reviews, 

with oncology being identified as the most pertinent disease area in treatment sequencing that 

research should prioritise due to caveats in merging evidence for survival outcomes. The literature 

roadmap of treatment sequence methodology studies in HTA revealed a growing body of literature 

highlighting the scarcity of evidence. It was also identified that research on unbiased RWE to inform 

the effectiveness of treatment sequences was severely underexplored but holds significant value. 

Finally, my research provides a tutorial-style guide for TTE implementation, complementing and 

extending the practical aspects of NICE RWE and related research in this area. 

9.5. Areas for future research  

(1) Examine alternative advanced statistical methods: Additional advanced statistical methods, 

particularly g-formula and Q-learning, may be further explored in comparison with the 

IPTW*IPCWtexdev approach. 

(2) Survival curve extrapolation with parametric models for HTA: Investigating the use of parametric 

models, such as Weibull, for extrapolation of the survival curves in the current emulation is a 

crucial step forward to demonstrate the practicality of estimates derived from RWD to be used in 

HTA. Specifically, an initial step forward could be using validated methodologies to emulate 

survival curves for treatment sequences in TA377 (prostate cancer TA: abiraterone → docetaxel 

versus enzalutamide → docetaxel) using Flatiron data with parametric model extrapolation and 
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comparing them with those originally used in company submission models.126  

Pooled logistic models were tested for their capability to account for non-proportional hazards 

but not reported in the thesis. The survival curves with bootstrap generally showed narrower 95% 

CI, potentially due to the large sample size and additional assumptions of the parametric model. 

Hence, further investigation into this area with parametric model extrapolation with RWE for 

treatment sequences is warranted. 

(3) Sensitivity analysis: Further exploration of sensitivity analyses is warranted to examine the 

robustness of the methods. Key sensitivity analysis include examining the impact of unmeasured 

confounders using E-values595, implementing varying Time Zero with sequential Target Trial 

emulation to assess potential immortal time bias, and multiple imputation for missing data. Each 

of these avenues requires substantial planning and merits separate research efforts. 

(4) Simulation study: Given the limited sample sizes and specific settings of the benchmark trials, 

simulation studies offer a complementary alternative to RCT-RWE agreement assessments for 

examining the performance of statistical methods for comparing treatment sequences. The 

advantage of simulation studies lies in their ability to provide an understanding of the behaviour 

of statistical methods. This is achieved by analysing the simulated data with the statistical methods 

of interest and comparing the results they provide to the empirical “true answers”, which are 

known due to the pre-specified data generation mechanism. Additionally, simulation studies can 

be conducted across diverse scenarios, allowing researchers to test method performance by 

varying one or more study conditions to assess their sensitivity and limitations. 

While Huang et al. have conducted a simulation study on comparing treatment sequences with 

advanced IPW methods and demonstrated good agreement between results they obtained using 

advanced IPW methods and the empirical outcomes of the simulated data289 (Section 4.6.1.2.1, 

Chapter 4), further simulation studies with varying assumptions could examine the robustness of 

the results. For instance, exploring varying proportions of patients censored due to treatment 

deviation could result in different weights and potentially influence the performance of the IPW 

method.  

Here, I describe several potential applications of simulation studies in evaluating statistical 

methods for comparing treatment sequences. To assess the performance of statistical methods for 

comparing treatment sequences in RWD, pseudo-RWD datasets that mimic real-world treatment 

sequences first need to be simulated. These datasets would be generated with known relationships 

between baseline confounders, time-varying confounders, treatments, and outcomes (i.e., no 

unmeasured confounders). Specific treatment changes would be determined by functions of 

baseline and time-dependent characteristics, which are themselves influenced by treatment. These 

characteristics, along with the treatments, would affect survival times, thereby making the time-



394 

 

dependent characteristics serve as time-dependent confounders. One can then analyse these 

datasets using the statistical methods of interest and evaluate them with performance metrics, such 

as percentage bias in estimating specific estimands (e.g. restricted mean survival times if all 

patients had received the same treatment sequence). This helps us determine how close the results 

from the tested methods are to the true answers. This approach can be used to test the relative 

performance of a range of statistical methods across a range of scenarios 

A key assumption of causal inference methods used to analyse observational data is that there is 

no unmeasured confounding. Simulation studies could be used to examine how sensitive these 

methods are to the impact of unmeasured confounders. For example, one could test how a method 

performs when all known confounders are included in the analysis versus omitting one or two. 

One can also generate multiple simulated datasets with varying confounder relationships and 

strengths to test the method's behaviour under different conditions of unmeasured confounders. 

Simulation studies may also be used to explore how a method performs under different levels of 

censoring due to treatment deviation. For example, IPCW-related methods are known to be 

sensitive to high censoring levels in other scenarios.43 This evaluation is particularly relevant for 

assessing method performance when only small sample sizes have followed a complete treatment 

sequence of interest (e.g., sunitinib → everolimus in the RCC study mentioned in Section 8.2.3), 

compared to the total number of patients who received the same first-line treatment. That is, 

estimating the marginal effect of that treatment sequence will result in high censoring rates due to 

deviations at the second-line. Testing the impact on method performance of varying censoring 

levels is unlikely to be possible when using RCT-RWE benchmark agreement assessments, as this 

would require the existence of multiple benchmark RCTs with varying censoring levels. The same 

is true for other dataset characteristics— in a benchmark RCT setting, only a limited number of 

RCTs may be available, but in a simulation study, an analyst can investigate any scenario of 

interest. 

Furthermore, simulation studies may also be used to evaluate how different methods (e.g., g-

formula, Q-learning) perform under the same and varying conditions (e.g., different censoring 

rates) and determine which methods may produce less biases in specific scenarios. 

To operationalise a simulation study for evaluating statistical methods, here are the key steps to 

consider in designing and reporting, adhering to the ADEMP framework (aims; data-generation; 

estimands; methods; performance measures), as summarised by Morris et al.600 

- Aim: Establish a specific objective, such as evaluating the performance of methods for 

estimating the relative effectiveness of different treatment sequences in a real-world setting. 

- Data-generating mechanisms: Determine the relationships to be simulated between 

confounders, treatments, and outcomes. Outline scenarios for investigation and report the 
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parameters and assumptions used in the simulation process. For example, one option for creating 

pseudo-RWD with treatment sequences is using the SNFTM, as used by Huang et al. in their 

simulation study.289 

- Methods: Select the statistical method(s) to be evaluated. 

- Estimands: Clearly define measures to be estimated in the study.  

- Performance measures: Determine how to assess the performance of each method by 

comparing simulated results with known empirical outcomes. 

Although simulation studies have advantages in assessing the performance of statistical methods, 

there are also caveats that need to be acknowledged. One major limitation of simulation studies is 

that the data are constructed in a way that the relationships between confounders, treatments, and 

outcomes without loss-to-follow-up (or mechanisms of loss-to-follow-up) are known. In RWD, 

the performance of methods may vary due to additional complexities and variations. Furthermore, 

simulating pseudo-RWD with treatment sequences presents particular challenges. Defining all the 

relationships between prognostic factors, patients' likelihood of receiving each line of treatment, 

and timing of treatment switching can be complex. Starting with simulation studies that have 

limited treatment options and specific time points for patient switching may provide a foundation, 

though these scenarios are not entirely realistic.  

Despite these challenges, simulation studies are valuable for understanding the nuanced 

properties of methods. They are particularly useful for testing method performance that would 

be difficult to assess with a single source of RWD (e.g., varying censoring rates). Thus, 

simulation studies, when coupled with validation studies using RWD, provide a comprehensive 

approach to statistical method evaluation. 

(5) Single-arm treatment sequencing evidence: Exploring the same methodology in emulating single-

arm treatment sequences holds significance. For example, my direct benchmarking RCC case 

study with NCRAS can be taken forward. Furthermore, investigating the feasibility of an external 

control arm to compare with those in TA377 (prostate cancer TA: abiraterone → docetaxel versus 

enzalutamide → docetaxel) could be a step even further (using steps planned in generalisbility 

PC2). However, additional methods such as indirect treatment comparisons or transportability 

methods merit separate study. 

(6) Methodology application in other diseases and public health: The developed methodologies have 

the potential to be extrapolated for investigating treatment sequencing effects in other contexts. 

Given the complexities of interventions and outcome measurement in alternative areas, these 

investigations merit separate research, including autoimmune diseases (e.g., comparing sequences 

with numerous LOTs), rare diseases (e.g., dealing with small sample sizes even with RWD), or 
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public health interventions (e.g., navigating intricate smoking cessation strategies), where 

evidence on sequential interventions is also likely scarce but relevant. 

9.6. Recommendations  

Insights gleaned from the thesis give rise to following recommendations: 

 Research aiming to use RWD in assessing the comparative effectiveness of treatment sequences 

for HTA would benefit from adopting the implementation tutorial developed within the thesis 

(Chapter 8). This tutorial leveraged the TEE framework and the IPTW*IPTWtxdev method to 

mitigate biases arising from RWD study designs and time-varying confounding. 

 Benchmarking is considered a valuable approach before utilising a given RWD database to 

inform HTA decisions, particularly in cases involving advanced statistical methods that have not 

been previously examined. 

 When benchmarking RCT-RWE comparisons, it is essential to consider additional criteria for 

assessing absolute outcome results against the RCT benchmark, in addition to evaluating the 

standard criteria for relative effect estimates. Survival curves should also be examined where 

applicable 

 Sankey diagrams should be integrated into data checks, study result reports, and communications 

with clinicians for evaluating treatment sequences.  

 Merely designing TTE and registering a pre-defined protocol does not guarantee unbiased real-

world study results. It is crucial to conduct thorough fit-for-purpose data assessment during pre-

study design, perform data checks upon receipt of data, implement necessary adaptations, and 

ensure transparent documentation.  

9.7. Conclusions 

In summary, this thesis has consolidated methodological literature on treatment sequences in 

HTA and highlights the significant issue of data scarcity. While consideration of treatment sequences 

is nearly ubiquitous in HTA and often pertinent in the development of clinical guidelines, explicit 

comparisons of treatment sequences remain relatively uncommon despite the prevalence of treatment-

sequencing models. The standard approach of merging effectiveness evidence from different LOTs 

often relies on exchangeability assumptions across populations, which can be particularly problematic 

in oncology when merging survival evidence. RWE emerges as a valuable alternative to address these 

challenges, but often suffers from confounding bias. 

This thesis demonstrates how RWE can enrich the existing health economic treatment-

sequencing modelling framework. Specifically, through carefully designed and implemented TTE 

case studies, it illustrates how RWD, combined with causal inference methods, can be leveraged to 

provide unbiased effectiveness estimates for comparing treatment sequences. It extends the NICE's 
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RWE framework by providing specific insights into comparing treatment sequences, a detail not 

extensively outlined in the framework. Notably, my benchmark study comparing the sequence of 

abiraterone → enzalutamide versus enzalutamide → abiraterone in prostate cancer has shown good 

agreement with the benchmark RCT it aimed to replicate (i.e., the GUTG-001 trial).84 In addition to 

the standard criteria for assessing RCT-RWE agreement in TTE benchmarking studies, this study 

went beyond the status quo by not only evaluating the agreement of relative effect estimates between 

the emulation and the benchmark, but also scrutinised the concordance of absolute estimates and 

survival curves. These bear significant implications in HTA, ensuring accurate survival extrapolations 

and treatment duration estimates for cost calculations. 

Crucially, my thesis offers a tutorial-style guide for designing and implementing the 

aforementioned benchmarked methodology. Importantly, success in TTE does no solely hinge on 

study designs and its execution fully adhered to the pre-defined protocol. It requires careful, necessary, 

and reasonable adaption of study protocols based on data checks, and specific data features pertinent 

to a given database. My case study implementations provide examples of such adaptations using 

Flatiron data. In light of NICE's piloting of the Pathway project27, the importance of evidence 

regarding treatment sequences is expected to increase. My studies offer a comprehensive exploration 

of how RWE can be utilised to address evidence scarcity in evaluating treatment sequences and 

provide a practical way forward.
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Appendix 3.1 R code for systematic full-text retrieval of NICE TA documents 
############################################################# 
# Project: Review NICE TA regarding sequencing problem 
#          automation of downloading TA document 
#          manually downloading 60 files can take 2 hours and there  
#          might be mistake due to manual incorrect entry 
# Create: JY Amy Chang 
# Date: 02Mar2020 
############################################################# 
 
library(bitops) 
library(RCurl) 
library(XML) 
library(httr) 
library(xml2) 
library(rvest) 
library(stringr) 
library(pagedown) 
library(truncnorm) 
 
# import active TA list for review 
TA_list <- read.csv(file = "raw/TA_list_20191201.csv", header = FALSE) 
TA_vector <- as.vector(TA_list[,"V1"]) 
 
# transform TA list into vectors for creating ulr and file name for bulk download 
# sort vector to download from lastest to the oldest 
TA_vector <- sort(TA_vector, decreasing = T) 
 
# create a function for downloading files, return data frame error_vec that indicates which files are not downloaded 
file_download <- function(TA_number, url, file_name) [ 
error_vec <- rep("NA", times = length(TA_number)) # 460 
download_status <- data.frame (TA = TA_number, 
                                 Status = error_vec) 
download_status$Status <- as.character(download_status$Status) 
for (n in 1:length(TA_number)) [ 
    tryCatch([ 
    download.file(url[n], destfile = file_name[n], mode="wb") 
    download_status$Status[n] <- "downloaded" 
    ] 
, error = function(e)[ 
         cat("ERROR :",conditionMessage(e), "\n") 
         ]) 
] 
download_status[download_status$Status != "downloaded", "Status"] <- "NA" 
return(download_status) 
] 
 
############################# 
# FAD 
############################# 
 
# download FAD #not all file use the same logic of url 
url <- paste("https://www.nice.org.uk/guidance/ta",TA_vector,"/documents/final-appraisal-determination-document", sep = "") 
file_name <- paste("TA", TA_vector, "_FAD.pdf", sep = "") 
Fulltext_FAD <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
length(Fulltext_FAD[Fulltext_FAD$Status == "NA","TA"]) # 259 undownloaded 
write.csv(Fulltext_FAD, "Fulltext_FAD.csv") 
 
# download FAD #not all file use the same logic of url 
# url <- paste("https://www.nice.org.uk/guidance/ta", 
#             Fulltext_FAD[Fulltext_FAD$Status == "NA", "TA"], 
#             "/documents/final-appraisal-determination-document-2", sep = "") 
# file_name <- paste("TA", Fulltext_FAD[Fulltext_FAD$Status == "NA", "TA"], "_FAD.pdf", sep = "") 
# Fulltext_FAD_temp <- file_download(TA_number = Fulltext_FAD[Fulltext_FAD$Status == "NA", "TA"],  
#                               url = url, file_name = file_name) 
#???Fulltext_FAD_temp <- Fulltext_FADtemp[Fulltext_FAD_temp$Status != "NA", ] #8 [1] 606 557 527 515 510 421 405 374 
# update original Fulltext_FAD 
# Fulltext_FAD[Fulltext_FAD$TA %in% Fulltext_FAD_temp$TA, "Status"] <- "downloaded" 
# length(Fulltext_FAD[Fulltext_FAD$Status == "NA","TA"]) #259 downloaded (251 missing)  
# write.csv(Fulltext_FAD, "Fulltext_FAD.csv") 
 
# url with document 2 
url <- paste("https://www.nice.org.uk/guidance/ta",TA_vector,"/documents/final-appraisal-determination-document-2", sep = "") 
file_name <- paste("TA", TA_vector, "_FAD2.pdf", sep = "") 
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Fulltext_FAD2 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_FAD2[Fulltext_FAD2$Status == "downloaded", "TA"] # 42 downloaded 
Fulltext_FAD$Status2 <- Fulltext_FAD2$Status 
 
# test if there is document 1 
# url <- paste("https://www.nice.org.uk/guidance/ta",TA_vector,"/documents/final-appraisal-determination-document-1", sep = "") 
# file_name <- paste("TA", TA_vector, "_FAD1.pdf", sep = "") 
# Fulltext_FAD1 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
# Fulltext_FAD1[Fulltext_FAD1$Status == "downloaded", "TA"] # 0 downloaded 
 
# url with document 3 
url <- paste("https://www.nice.org.uk/guidance/ta",TA_vector,"/documents/final-appraisal-determination-document-3", sep = "") 
file_name <- paste("TA", TA_vector, "_FAD3.pdf", sep = "") 
Fulltext_FAD3 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_FAD3[Fulltext_FAD3$Status == "downloaded", "TA"] # 9 downloaded 
Fulltext_FAD$Status3 <- Fulltext_FAD3$Status 
 
# url with document 4 
url <- paste("https://www.nice.org.uk/guidance/ta",TA_vector,"/documents/final-appraisal-determination-document-4", sep = "") 
file_name <- paste("TA", TA_vector, "_FAD4.pdf", sep = "") 
Fulltext_FAD4 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_FAD4[Fulltext_FAD4$Status == "downloaded", "TA"] # 2 downloaded 
Fulltext_FAD$Status4 <- Fulltext_FAD4$Status #[1] 491 487 these two has more documents due to CDF and managed access 
 
 
############################# 
# CP 
############################# 
 
# Committee paper is more complicated than FAD as the first committee paper is usually consultation document  
 
# CP document 1 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers", sep = "") 
file_name <- paste("TA", TA_vector, "_CP.pdf", sep = "") 
Fulltext_CP <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
length(Fulltext_CP[Fulltext_CP$Status == "downloaded","TA"]) # 204 undownloaded 
#write.csv(Fulltext_FAD, "Fulltext_CP.csv") 
 
# CP document 2 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-2", sep = "") 
file_name <- paste("TA", TA_vector, "_CP2.pdf", sep = "") 
Fulltext_CP2 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
length(Fulltext_CP2[Fulltext_CP2$Status == "downloaded","TA"]) # 136 undownloaded 
Fulltext_CP$Status2 <- Fulltext_CP2$Status  
 
# CP document 3 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-3", sep = "") 
file_name <- paste("TA", TA_vector, "_CP3.pdf", sep = "") 
Fulltext_CP3 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
length(Fulltext_CP3[Fulltext_CP3$Status == "downloaded","TA"]) # 63 undownloaded 
Fulltext_CP$Status3 <- Fulltext_CP3$Status  
 
# CP document 4 (sometimes it can be just slides) 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-4", sep = "") 
file_name <- paste("TA", TA_vector, "_CP4.pdf", sep = "") 
Fulltext_CP4 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
length(Fulltext_CP4[Fulltext_CP4$Status == "downloaded","TA"]) # 32 downloaded 
Fulltext_CP$Status4 <- Fulltext_CP4$Status  
 
# CP document 5 (can be managing access agreement) 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-5", sep = "") 
file_name <- paste("TA", TA_vector, "_CP5.pdf", sep = "") 
Fulltext_CP5 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_CP5[Fulltext_CP5$Status == "downloaded","TA"] # 17 downloaded 
# [1] 588 541 510 502 495 491 484 483 479 474 473 472 445 432 423 417 402 
Fulltext_CP$Status5 <- Fulltext_CP5$Status  
 
# CP document 6 (can be CDF glossary) 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-6", sep = "") 
file_name <- paste("TA", TA_vector, "_CP6.pdf", sep = "") 
Fulltext_CP6 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_CP6[Fulltext_CP6$Status == "downloaded","TA"] # 7 downloaded 
# [1] 510 484 483 479 474 473 402 
Fulltext_CP$Status6 <- Fulltext_CP6$Status 
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# CP document 7 (can be CDF glossary) (for those who had 2 times consultation: seems like the maximum) 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-7", sep = "") 
file_name <- paste("TA", TA_vector, "_CP7.pdf", sep = "") 
Fulltext_CP7 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_CP7[Fulltext_CP7$Status == "downloaded","TA"] # 3 downloaded 
# [1] 484 474 473 
Fulltext_CP$Status7 <- Fulltext_CP7$Status 
 
# CP document 8 sorabenib, email 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-8", sep = "") 
file_name <- paste("TA", TA_vector, "_CP8.pdf", sep = "") 
Fulltext_CP8 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_CP8[Fulltext_CP8$Status == "downloaded","TA"] # 2 downloaded 
# [1] 474 473  
Fulltext_CP$Status8 <- Fulltext_CP8$Status 
 
# CP document 9 sorabenib, email 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-9", sep = "") 
file_name <- paste("TA", TA_vector, "_CP9.pdf", sep = "") 
Fulltext_CP9 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_CP9[Fulltext_CP9$Status == "downloaded","TA"] # 2 downloaded 
# [1] 474 473 
Fulltext_CP$Status9 <- Fulltext_CP9$Status 
 
# CP document 10 sorabenib, email 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/documents/committee-papers-10", sep = "") 
file_name <- paste("TA", TA_vector, "_CP10.pdf", sep = "") 
Fulltext_CP10 <- file_download(TA_number = TA_vector, url = url, file_name = file_name) 
Fulltext_CP10[Fulltext_CP10$Status == "downloaded","TA"] # 2 downloaded 
# [1] 473 
Fulltext_CP$Status10 <- Fulltext_CP10$Status 
 
# There are further documents of TA 473 up to document 12 (but will not download it due to irrelavence) 
 
#################################################################### 
# FIND TERMINATED appraisals 
#################################################################### 
 
# create url 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/history", sep = "") 
 
# create dataframe for storage 
title <- data.frame(TA = TA_vector, 
                    title = rep(NA, times = length(TA_vector))) 
for(n in 1:length(TA_vector))[ 
    tryCatch([ 
    # read html 
    webpage <- read_html(url[n]) 
    # Using CSS selectors to scrape the rankings section 
    title_data_html <- html_nodes(webpage,'#content-start') 
    title$title[n]  <- html_text(title_data_html) 
    ], error = function(e)[ 
    cat("ERROR :",conditionMessage(e), "\n") 
    ]) 
   
  # random sleeping time 
  sleepy = sample(c(0.5:2.5), 1) 
  cat("\n let's just wait for",sleepy,"seconds...") 
  Sys.sleep(sleepy) # website will ban IP when too many queries are sent too quickly... 
]   
 
title[title$title == "NA","TA"] # none (all titles are downloaded) 
 
# update FAD & CP document 
 
Fulltext_CP[grep("terminated", title$title), 2:10] <- "terminated" 
write.csv(Fulltext_CP, "Fulltext_CP_20200305.csv") 
 
Fulltext_FAD[grep("terminated", title$title), 2:5 ] <- "terminated" 
write.csv(Fulltext_FAD, "Fulltext_FAD_20200302.csv") 
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############################################## 
# Create a file to store TA titles 
############################################## 
 
# create url 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/history", sep = "") 
 
# create dataframe for storage 
documents <- data.frame(TA = TA_vector, 
                    title = rep(NA, times = length(TA_vector))) 
for(n in 1:length(TA_vector))[ 
  tryCatch([ 
    # read html 
    webpage <- read_html(url[n]) 
    # Using CSS selectors to scrape the rankings section 
    title_data_html <- html_nodes(webpage,'#content-start') 
    title$title[n]  <- html_text(title_data_html) 
  ], error = function(e)[ 
    cat("ERROR :",conditionMessage(e), "\n") 
  ]) 
   
  # random sleeping time 
  sleepy = sample(c(0.5:2.5), 1) 
  cat("\n let's just wait for",sleepy,"seconds...") 
  Sys.sleep(sleepy) # website will ban IP when too many queries are sent too quickly... 
]   
 
write.csv(documents, "Title_20200302.csv") 
 
 
############################################## 
# trying to download earlier FAD & CP 
# less regularly named 
############################################## 
# the key point is to find everything is under the big trunk of <ul class="media-list"> 
base <- 'https://www.nice.org.uk' 
url  <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/history", sep = "") 
# not using the following code because it produces only the relative link 
# links <- read_html(url) %>% html_nodes(., ".media-list a") %>% html_attr(., "href")  
 
# default to download committee-papers (".media-list a" need to be changed in the function if it is not stored there) 
link_download <- function(TA_number = 1:length(TA_vector), url = url, search_term = "committee-papers") [ 
  # create vacant table for storing links 
  links_df <- data.frame(TA = TA_vector, 
                         link   = rep(NA, times = length(TA_vector)), 
                         link2  = rep(NA, times = length(TA_vector)), 
                         link3  = rep(NA, times = length(TA_vector)), 
                         link4  = rep(NA, times = length(TA_vector)), 
                         link5  = rep(NA, times = length(TA_vector)), 
                         link6  = rep(NA, times = length(TA_vector)), 
                         link7  = rep(NA, times = length(TA_vector)), 
                         link8  = rep(NA, times = length(TA_vector)), 
                         link9  = rep(NA, times = length(TA_vector)), 
                         link10 = rep(NA, times = length(TA_vector))) 
   
for(n in c(TA_number))[ 
    tryCatch([ 
      # output links of  
      links <- url_absolute(read_html(url[n]) %>% html_nodes(., ".media-list a") %>% html_attr(., "href"), base) 
      links_df_temp <- links[grep(search_term, links)] 
      links_df[n, 2:(length(links_df_temp)+1)] <- t(links_df_temp) 
    ], error = function(e)[ 
      cat("ERROR :",conditionMessage(e), "\n") 
    ]) 
     
    # random sleeping time 
    sleepy = rtruncnorm(n = 1, a = 0.000001, mean = 0.8, sd = 0.3) 
    cat("\n let's just wait for",sleepy,"seconds...") 
    Sys.sleep(sleepy) # website will ban IP when too many queries are sent too quickly... 
  ]   
  return(links_df) 
] 
 
title <- read.csv(file = "output/Title_20200302.csv", header = TRUE) 
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title$X <- NULL  
TA_vector_index <- grep("terminated", title$title) 
 
# download FAD links (FAD links normall will link to pdf document, html FAD overview will not have "final-appraisal-determination" as link ) 
FAD_links <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "final-appraisal-determination") 
summary(as.factor(rowSums(!is.na(FAD_links[ , 2:22])))) # 61 TAs that has no links (less than TA that terminated) 
# 0   1   2   3   4   5   9  12  21  
# 61 184 185  11  11   4   2   1   1  
# reduced link up to 5 and manual download those more than 5 links of not corretly downloaded 
FAD_links[ , 7:22] <- NULL 
 
#download function with links matrix 
file_download2 <- function(TA_number = c(1:length(TA_vector)), url = FAD_links, file_name)[ 
  for (n in c(TA_number)) [ 
  url_vector <- na.omit(unlist(url[n, 2:length(url[1,])])) 
    if (length(url_vector) != 0) [ 
      for (k in 1:length(url_vector)) [ 
        tryCatch([ 
          download.file(url_vector[k], destfile = file_name[n, k], mode="wb") 
          download_status[n, k + 1] <- "downloaded" 
        ], error = function(e)[ 
          cat("ERROR :",conditionMessage(e), "\n")]) 
      ] 
    ] 
  # random sleeping time 
  sleepy = round(rtruncnorm(n = 1, a = 0.000001, mean = 0.8, sd = 0.3), 1) 
  cat("\n let's just wait for",round(sleepy, 1),"seconds...") 
  Sys.sleep(sleepy) # website will ban IP when too many queries are sent too quickly... 
  ] 
  download_status <- data.frame(TA = download_status[ , 1], 
                                Status = download_status[ , 2:length(url[1,])]) 
  return(download_status) 
] 
 
# find where files need to be re-downloaded (where there is no TA at all) 
FAD <- read.csv(file = "output/Fulltext_FAD_20200302.csv", header = TRUE) 
FAD$X <- NULL  
 
# initial file download of FAD 
# use FAD as base case and add one more column 
FAD_temp <- FAD 
FAD_temp$Status5 <- NA 
download_status <- as.matrix(FAD_temp) 
 
file_name       <- matrix (c(paste("TA", TA_vector, "_FAD1.pdf", sep = ""), 
                             paste("TA", TA_vector, "_FAD2.pdf", sep = ""), 
                             paste("TA", TA_vector, "_FAD3.pdf", sep = ""), 
                             paste("TA", TA_vector, "_FAD4.pdf", sep = ""), 
                             paste("TA", TA_vector, "_FAD5.pdf", sep = "")),  
                             ncol = 5, byrow = F) 
 
 
# Download FAD file with links # starting from TA404 there is no FAD (index 204) 
TA_vector_index <- 1:length(TA_vector) 
Fulltext_FAD_amend <- file_download2(TA_number = TA_vector_index[rowSums(!is.na(FAD[ , 2:5])) == 0],  
                                      url = FAD_links, file_name) 
 
 
        ####################################################### 
        # create exclusion dataframe  
        # (based on fetch FAD link result) 
        ####################################################### 
         
        # output TAnumber where there is no FAD and not terminated 
        `%notin%` <- Negate(`%in%`) 
        No_FAD_link <- FAD_links$TA[rowSums(!is.na(FAD_links[ , 2:22])) == 0]  
        No_FAD_link[No_FAD_link %notin% TA_vector[TA_vector_terminated]] 
         
        length(FAD_links$TA[rowSums(!is.na(FAD_links[ , 2:11])) == 0]) #18 
        # [1] *532(withdrawn no longer on market)  
        #     *493(replaced by NG616)  
        #     *459(withdrawn)  
        #     404(outlier "fad-document, suggest maual download)  
        #     *394(review: no FAD, no ERG)  
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        #     *381(replaced by TA620 in Jan2020)  
        #     366(wrongly named, "appraisal-consultation-document", suggest manual download)  
        #     292(wrongly named, "final-appraisal-determintation-document2", manual download) 
        #     266(wrongly named, "final-appraisal-determinaton")  
        #     264(wrongly named, "final-appriasal-determination", manual download)   
        #     55(no FAD, but assessment report)   
        #     38(no FAD, but HTA report)   
        #     34(no FAD, but Assessmen report)   
        #     29(no FAD, but Assessmen report)   
        #     23(no FAD, but Assessmen report)   
        #     20(no FAD, but Assessmen report)  
        #     10(no FAD, but Assessmen report) 
        #     *1(review: no FAD, no ERG) 
         
         
        TA_withdrawn  <- c(532, 459) 
        TA_replaced   <- c(493, 381) 
        TA_noCSFADERG <- c(394, 1) 
        #43 (43 terminated + 6) 
         
test <- Fulltext_FAD_amend 
test[2:6] <- sapply(test[2:6], as.character) 
test[TA_vector_terminated, 2:6] <- "terminated" 
test[TA_vector %in% TA_withdrawn, 2:6] <- "withdrawn" 
test[TA_vector %in% TA_replaced, 2:6] <- "replaced" 
test[TA_vector %in% TA_noCSFADERG, 2:6] <- "no_CS_FAD_ERG" 
Fulltext_FAD_amend <- test 
 
Fulltext_FAD_amend$TA[rowSums(!is.na(Fulltext_FAD_amend[ , 2:6])) == 0] #12 
#  [1] 404 366 292 266 264  55  38  34  29  23  20  10 (TAs without FAD) see explanation above 
 
# output UPDATED FAD 
write.csv(Fulltext_FAD_amend, "Fulltext_FAD_20200305.csv") 
write.csv(FAD_links, "Links_FAD_20200305.csv") 
 
 
### download CP links (some CP link can be linked to html website but not pdf) 
CP_links  <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "committee-papers") 
TA_vector[rowSums(!is.na(CP_links[ , 12:13])) != 0] # TA 473 will have some undownloaded documents but it is too long 
 
# e.g. TA 209evaluation report (seems like CP changed names) 
ER_links     <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "evaluation-report") 
rowSums(!is.na(ER_links[ , 2:10])) 
# e.g. TA 192 
ERGR_links   <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "erg-report") 
rowSums(!is.na(ERGR_links[ , 2:10]))  
# e.g. TA 123 
ERGR_links2  <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "evidence-review-group-report") 
rowSums(!is.na(ERGR_links2[ , 2:10]))  
# TA191 
ERGR_links3  <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "evidence-review-groups-report") 
rowSums(!is.na(ERGR_links3[ , 2:10]))  
# e.g. TA38 
HTA_links    <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "hta-report") 
rowSums(!is.na(HTA_link[ , 2:10]))  
# e.g. TA75 
HTA_links2   <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "health-technology-assessment") 
rowSums(!is.na(HTA_link2[ , 2:10]))  
# e.g. TA278, TA61, TA 59 
AR_links     <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "assessment-report") 
rowSums(!is.na(AR_links[ , 2:10])) 
# TA195 really long 
# e.g. TA188 
AR_links2    <- link_download(TA_number = 1:length(TA_vector), url = url, search_term = "assessment-group-report") 
rowSums(!is.na(AR_links2[ , 2:10]))  
# 
 
 
# check how many links (including CP) won't exceed 8 download spacces (can use the data frame of CP_amend to update) 
summary(as.factor(rowSums(!is.na(CP_links[ , 2:11]))     + 
                  rowSums(!is.na(ER_links[ , 2:11]))     + 
                  rowSums(!is.na(ERGR_links[ , 2:11]))   + 
                  rowSums(!is.na(ERGR_links2[ , 2:11]))  + 
                  rowSums(!is.na(ERGR_links3[ , 2:11]))  + 
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                  rowSums(!is.na(HTA_links[ , 2:11]))    + 
                  rowSums(!is.na(HTA_links2[ , 2:11]))   + 
                  rowSums(!is.na(AR_links[ , 2:11]))     +   
                  rowSums(!is.na(AR_links2[ , 2:11])))) 
# 0   1   2   3   4   5   6   7   8   9  10  11  13  
# 50  98 139  67  44  21  15  12   5   3   4   1   1  
# links can be stored together 
 
summary(as.factor(  rowSums(!is.na(ER_links[ , 2:10]))     + 
                    rowSums(!is.na(ERGR_links[ , 2:10]))   + 
                    rowSums(!is.na(ERGR_links2[ , 2:10]))  + 
                    rowSums(!is.na(ERGR_links3[ , 2:10]))  + 
                    rowSums(!is.na(HTA_links[ , 2:10]))    + 
                    rowSums(!is.na(HTA_links2[ , 2:10]))   + 
                    rowSums(!is.na(AR_links[ , 2:10]))     +   
                    rowSums(!is.na(AR_links2[ , 2:10])))) 
#   0   1   2   3   4   5   6   7   8   9  10  
# 252  58  65  27  24   9   9   7   4   4   1  
 
# still no files for CP at all #50 
no_CP <- TA_vector_index [(as.factor(rowSums(!is.na(CP_links[ , 2:11]))     + 
            rowSums(!is.na(ER_links[ , 2:11]))     + 
            rowSums(!is.na(ERGR_links[ , 2:11]))   + 
            rowSums(!is.na(ERGR_links2[ , 2:11]))  + 
            rowSums(!is.na(ERGR_links3[ , 2:11]))  + 
            rowSums(!is.na(HTA_links[ , 2:11]))    + 
            rowSums(!is.na(HTA_links2[ , 2:11]))   + 
            rowSums(!is.na(AR_links[ , 2:11]))     +   
            rowSums(!is.na(AR_links2[ , 2:11])))) == 0] 
length(no_CP) 
no_CP 
no_CP <- no_CP[no_CP %notin% TA_vector_terminated] # delete those terminated   
no_CP <- no_CP[no_CP %notin% TA_vector_index[TA_vector %in% TA_noCSFADERG]] # NO CSFADERG 
no_CP <- no_CP[no_CP %notin% TA_vector_index[TA_vector %in% TA_replaced]] # NO replaced 
no_CP <- no_CP[no_CP %notin% TA_vector_index[TA_vector %in% TA_withdrawn]] # NO wthdrawn # 65 
no_CP 
# [1] 440 447 
TA_vector[no_CP]  
# [1] 77 (protocol-newer-hypnotic-drugs-for-shortterm-pharmacotherapy-for-insomnia2)   
#     64 (report-by-a-consortium) 
 
 
no_CP <- TA_vector_index [(as.factor(rowSums(!is.na(CP_links[ , 2:11]))     + 
                                       rowSums(!is.na(ER_links[ , 2:11]))     + 
                                       rowSums(!is.na(ERGR_links[ , 2:11]))   + 
                                       rowSums(!is.na(ERGR_links2[ , 2:11]))  + 
                                       rowSums(!is.na(ERGR_links3[ , 2:11]))  + 
                                       rowSums(!is.na(HTA_links[ , 2:11]))    + 
                                       rowSums(!is.na(HTA_links2[ , 2:11]))   + 
                                       rowSums(!is.na(AR_links[ , 2:11]))     +   
                                       rowSums(!is.na(AR_links2[ , 2:11])))) == 0] 
 
# find where files need to be re-downloaded (where there is no TA at all) 
CP <- read.csv(file = "output/Fulltext_CP_20200305.csv", header = TRUE) 
CP$X <- NULL  
CP[TA_vector_terminated , 2:11] <- NA 
 
summary(as.factor(rowSums(!is.na(CP_links[ , 2:13])))) # 204 TAs that has no links in original CP download 
# 0   1   2   3   4   5   6   7   9  12  
# 229  60  86  41  26   9   4   3   1   1  
rowSums(!is.na(CP_links[ , 2:11])) 
# reduced link up to 5 and manual download those more than 5 links of not corretly downloaded 
CP_links[ , 12:13] <- NULL # manual download those who had 9 and & links 
 
# initial file download of FAD 
# use FAD as base case and add one more column 
CP_temp <- CP 
download_status <- as.matrix(CP_temp) 
 
file_name       <- matrix (c(paste("TA", TA_vector, "_CP1.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP2.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP3.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP4.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP5.pdf", sep = ""),  
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                             paste("TA", TA_vector, "_CP6.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP7.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP8.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP9.pdf", sep = ""), 
                             paste("TA", TA_vector, "_CP10.pdf", sep = "")), 
                             ncol = 10, byrow = F) 
 
 
# Download CP file with links  
TA_vector_index <- 1:length(TA_vector) 
length(TA_vector_index[rowSums(!is.na(CP[ , 2:11])) == 0]) # 247 index need to be download use link (including termination) 
Fulltext_CP_amend <- file_download2(TA_number = TA_vector_index[rowSums(!is.na(CP[ , 2:11])) == 0],  
                                   url = CP_links, file_name) 
length(TA_vector_index[rowSums(!is.na(Fulltext_CP_amend[ , 2:11])) == 0]) # 225 index still need to be download use link 
TA_vector_terminated <- grep("terminated", title$title) 
test <- Fulltext_CP_amend 
test[2:11] <- sapply(test[2:11], as.character) 
test[TA_vector_terminated, 2:11] <- "terminated" 
test[TA_vector %in% TA_withdrawn, 2:11] <- "withdrawn" 
test[TA_vector %in% TA_replaced, 2:11] <- "replaced" 
test[TA_vector %in% TA_noCSFADERG, 2:11] <- "no_CS_FAD_ERG" 
Fulltext_CP_amend <- test 
 
length(TA_vector_index[rowSums(!is.na(Fulltext_CP_amend[ , 2:11])) == 0]) # 180 index still need to be download use link 
 
# output UPDATED CP 
write.csv(Fulltext_CP_amend, "Fulltext_CP_20200305.csv") 
write.csv(CP_links, "Links_CP_20200305.csv") 
 
##################################################################### 
# download the rest of ERG 
###################################################################### 
# create url matrix for download 
url_ERG <- matrix (rep(NA, 11*length(TA_vector)), byrow = T, ncol = 11) 
url_ERG[ , 1] <- TA_vector 
for (n in c(TA_vector_index))[ 
  x <- c(unname(unlist(ER_links[n, 2:11])[!is.na(unlist(ER_links[n, 2:11]))]), 
         unname(unlist(ERGR_links[n, 2:11])[!is.na(unlist(ERGR_links[n, 2:11]))]), 
         unname(unlist(ERGR_links2[n, 2:11])[!is.na(unlist(ERGR_links2[n, 2:11]))]), 
         unname(unlist(ERGR_links3[n, 2:11])[!is.na(unlist(ERGR_links3[n, 2:11]))]), 
         unname(unlist(HTA_links[n, 2:11])[!is.na(unlist(HTA_links[n, 2:11]))]), 
         unname(unlist(HTA_links2[n, 2:11])[!is.na(unlist(HTA_links2[n, 2:11]))]), 
         unname(unlist(AR_links[n, 2:11])[!is.na(unlist(AR_links[n, 2:11]))]), 
         unname(unlist(AR_links2[n, 2:11])[!is.na(unlist(AR_links2[n, 2:11]))]) 
  ) 
  x <- x[0:min(10, length(x))] 
   
  if (length(x) != 0)[ 
    url_ERG[n, 2:(length(x)+1)] <- x 
  ] 
] 
 
url_ERG <- as.data.frame(url_ERG) 
 
file_name       <- matrix (c(paste("TA", TA_vector, "_ERG1.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG2.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG3.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG4.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG5.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG6.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG7.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG8.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG9.pdf", sep = ""), 
                             paste("TA", TA_vector, "_ERG10.pdf", sep = "") 
                             ), ncol = 10, byrow = F) 
# Download ERG file with links  
download_status[ , 2:11] <- NA 
url_ERG[2:11] <- sapply(url_ERG[2:11], as.character) 
Fulltext_ERG <- file_download2(TA_number = TA_vector_index,  
                               url = url_ERG, file_name) 
 
 
 
length(TA_vector_index[rowSums(!is.na(Fulltext_ERG[ , 2:11])) == 0]) # 252 index still need to be download use link 
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TA_vector_terminated <- grep("terminated", title$title) 
test <- Fulltext_ERG 
test[2:11] <- sapply(test[2:11], as.character) 
test[TA_vector_terminated, 2:11] <- "terminated" 
test[TA_vector %in% TA_withdrawn, 2:11] <- "withdrawn" 
test[TA_vector %in% TA_replaced, 2:11] <- "replaced" 
test[TA_vector %in% TA_noCSFADERG, 2:11] <- "no_CS_FAD_ERG" 
Fulltext_ERG <- test 
 
# output UPDATED CP 
write.csv(Fulltext_ERG, "Fulltext_ERG_20200305.csv") 
write.csv(url_ERG, "Links_ERG_20200305.csv") 
 
 
################################### 
# Download TA history file 
# convert html to pdf 
################################### 
# ref: https://rdrr.io/cran/pagedown/man/chrome_print.html 
# install.packages("pagedown") 
 
# create url 
url <- paste("https://www.nice.org.uk/guidance/ta", TA_vector, "/history", sep = "") 
file_name <- paste("TA", TA_vector, "_history.pdf", sep = "") 
history <- data.frame (TA = TA_vector, 
                       Status = rep(NA, length(TA_vector))) 
indices <- 1:length(TA_vector) 
 
download_history <- function(url, file_name, indices)[ 
  for(n in c(indices))[ 
    tryCatch([ 
      # read html 
      chrome_print(url[n], output = file_name[n]) 
      history$Status[n]  <- "downloaded" 
    ], error = function(e)[ 
      cat("ERROR :",conditionMessage(e), "\n") 
    ]) 
    # random sleeping time 
    sleepy = sample(c(0.5:3), 1) 
    cat("\n let's just wait for",sleepy,"seconds...") 
    Sys.sleep(sleepy) # website will ban IP when too many queries are sent too quickly... 
  ] 
return(history) 
] 
 
# download all history 
download_history(url = url, file_name = file_name, indices = indices) 
history[is.na(history$Status), "Status"] <- "NA" 
history[history$Status == "NA", "TA"] 
# [1] 556 550 547 507 435 434 431 362 359 353 351 350 169 167 161  34  20  10   1 
 
# output the indicies where files are not downloaded and try again 
indices <- which(grepl("NA", history$Status)) 
download_history(url = url, file_name = file_name, indices = indices) 
history[history$Status == "NA", "TA"] 
# [1] 556 434 431 167 161 
# manual download these files! 
history[history$Status == "NA", "Status"] <- "downloaded" 
 
# save file 
write.csv(history, "History_20200303.csv") 
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Appendix 3.2 Excluded studies in the systematic review of NICE Technology Appraisals (Chapter 3) 

This appendix table lists basic demographics for all technology appraisals (TAs) excluded from the NICE TA systematic review in Chapter 3, detailing 

the title, disease, disease area, and exclusion reason for each TA. An abbreviation list for table contents is provided at the end of the table 

TA TA Title Disease Area Disease Reason of Exclusion 

613 Fluocinolone acetonide intravitreal implant for treating chronic diabetic macular oedema in phakic eyes after an 

inadequate response to previous therapy 

Other DMO implant 

609 Ramucirumab for treating unresectable hepatocellular carcinoma after sorafenib (terminated appraisal) Oncology HCC terminated  

608 Ibrutinib with rituximab for treating Waldenstrom’s macroglobulinaemia (terminated appraisal) Oncology WM terminated  

603 Lenalidomide with bortezomib and dexamethasone for untreated multiple myeloma (terminated appraisal) Oncology MM terminated  

602 Pomalidomide with bortezomib and dexamethasone for treating relapsed or refractory multiple myeloma 

(terminated appraisal) 

Oncology MM terminated  

601 Bezlotoxumab for preventing recurrent Clostridium difficile infection (terminated appraisal) Infectious disease C. diff infection terminated  

594 Brentuximab vedotin for untreated advanced Hodgkin lymphoma (terminated appraisal) Oncology lymphoma terminated  

582 Cabozantinib for previously treated advanced hepatocellular carcinoma (terminated appraisal) Oncology HCC terminated  

576 Bosutinib for untreated chronic myeloid leukaemia (terminated appraisal) Oncology leukaemia terminated  

570 Pembrolizumab for treating recurrent or metastatic squamous cell carcinoma of the head and neck after platinum-

based chemotherapy (terminated appraisal) 

Oncology HNC terminated  

568 Abatacept for treating psoriatic arthritis after DMARDs (terminated appraisal) Autoimmune psoriasis terminated  

566 Cochlear implants for children and adults with severe to profound deafness Other deafness medical device 

565 Benralizumab for treating severe eosinophilic asthma Other asthma Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

564 Dabrafenib with trametinib for treating advanced metastatic BRAF V600E mutation-positive non-small-cell lung 

cancer (terminated appraisal) 

Oncology NSCLC terminated  

560 Bevacizumab with carboplatin, gemcitabine and paclitaxel for treating the first recurrence of platinum-sensitive 

advanced ovarian cancer (terminated appraisal) 

Oncology ovarian cancer terminated  

555 Regorafenib for previously treated advanced hepatocellular carcinoma Oncology HCC Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

549 Denosumab for preventing skeletal-related events in multiple myeloma (terminated appraisal) Oncology MM terminated  

548 Decitabine for untreated acute myeloid leukaemia (terminated appraisal) Oncology leukaemia terminated  

532 Cenegermin for treating neurotrophic keratitis Other neurotrophic keratitis withdrawn 

508 Autologous chondrocyte implantation using chondrosphere for treating symptomatic articular cartilage defects of 

the knee 

 

Other articular cartilage defects procedure 
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TA TA Title Disease Area Disease Reason of Exclusion 

501 Intrabeam radiotherapy system for adjuvant treatment of early breast cancer Oncology breast cancer  Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

494 Naltrexone–bupropion for managing overweight and obesity Other obesity Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 
sequences 

493 Cladribine tablets for treating relapsing–remitting multiple sclerosis Autoimmune MS replaced by TA616 

486 Aflibercept for treating choroidal neovascularisation Other CNV Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

480 Tofacitinib for moderate to severe rheumatoid arthritis Autoimmune RA No key terms in CS, ERG/AG or FAD 

479 Reslizumab for treating severe eosinophilic asthma Other asthma Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

477 Autologous chondrocyte implantation for treating symptomatic articular cartilage defects of the knee Other articular cartilage defects procedure 

474 Sorafenib for treating advanced hepatocellular carcinoma Oncology HCC No key terms in CS, ERG/AG or FAD 

473 Cetuximab for treating recurrent or metastatic squamous cell cancer of the head and neck Oncology HNC No key terms in CS, ERG/AG or FAD 

469 Idelalisib with ofatumumab for treating chronic lymphocytic leukaemia (terminated appraisal) Oncology leukaemia terminated  

468 Methylnaltrexone bromide for treating opioid-induced constipation (terminated appraisal) Other constipation terminated  

467 Holoclar for treating limbal stem cell deficiency after eye burns Other LSCD stemp cell therapy 

464 Bisphosphonates for treating osteoporosis Other osteoporosis No key terms in CS, ERG/AG or FAD 

461 Roflumilast for treating chronic obstructive pulmonary disease Other COPD No key terms in CS, ERG/AG or FAD 

459 Collagenase clostridium histolyticum for treating Dupuytren's contracture Other Dupuytren's Contracture withdrawn 

454 Daratumumab with lenalidomide and dexamethasone for treating relapsed or refractory multiple myeloma 

(terminated appraisal) 

Oncology MM terminated  

453 Bortezomib for treating multiple myeloma after second or subsequent relapse (terminated appraisal) Oncology MM terminated  

452 Ibrutinib for untreated chronic lymphocytic leukaemia without a 17p deletion or TP53 mutation (terminated 

appraisal) 

Oncology leukaemia terminated  

444 Afatinib for treating advanced squamous non-small-cell lung cancer after platinum-based chemotherapy 

(terminated appraisal) 

Oncology NSCLC terminated  

443 Obeticholic acid for treating primary biliary cholangitis Other PBC No key terms in CS, ERG/AG or FAD 

438 Alectinib for previously treated anaplastic lymphoma kinase-positive advanced non-small-cell lung cancer 

(terminated appraisal) 

Oncology NSCLC terminated  

437 Ibrutinib with bendamustine and rituximab for treating relapsed or refractory chronic lymphocytic leukaemia 
after systemic therapy (terminated appraisal) 

Oncology leukaemia terminated  

436 Bevacizumab for treating EGFR mutation-positive non-small-cell lung cancer (terminated appraisal) Oncology NSCLC terminated  

435 Tenofovir alafenamide for treating chronic hepatitis B (terminated appraisal) Infectious disease hepatitis B terminated  

434 Elotuzumab for previously treated multiple myeloma (terminated appraisal) Oncology MM terminated  
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TA TA Title Disease Area Disease Reason of Exclusion 

431 Mepolizumab for treating severe refractory eosinophilic asthma Other asthma No key terms in CS, ERG/AG or FAD 

398 Lumacaftor–ivacaftor for treating cystic fibrosis homozygous for the F508del mutation Other cystic fibrosis No key terms in CS, ERG/AG or FAD 

397 Belimumab for treating active autoantibody-positive systemic lupus erythematosus Autoimmune lupus erythematosus No key terms in CS, ERG/AG or FAD 

394 Evolocumab for treating primary hypercholesterolaemia and mixed dyslipidaemia Cardiovascular disease dyslipidaemia No reports available 

392 Adalimumab for treating moderate to severe hidradenitis suppurativa Other hidradenitis suppurativa No key terms in CS, ERG/AG or FAD 

385 Ezetimibe for treating primary heterozygous-familial and non-familial hypercholesterolaemia Cardiovascular disease dyslipidaemia No key terms in CS, ERG/AG or FAD 

382 Eltrombopag for treating severe aplastic anaemia refractory to immunosuppressive therapy (terminated appraisal) Other anaemia terminated  

381 Olaparib for maintenance treatment of relapsed, platinum-sensitive, BRCA mutation-positive ovarian, fallopian 

tube and peritoneal cancer after response to second-line or subsequent platinum-based chemotherapy 

Oncology ovarian cancer replaced by TA620 

379 Nintedanib for treating idiopathic pulmonary fibrosis Autoimmune IPF No key terms in CS, ERG/AG or FAD 

369 Ciclosporin for treating dry eye disease that has not improved despite treatment with artificial tears Other dry eye implant 

362 Paclitaxel as albumin-bound nanoparticles with carboplatin for untreated non-small-cell lung cancer (terminated 
appraisal) 

Oncology NSCLC terminated  

358 Tolvaptan for treating autosomal dominant polycystic kidney disease Other ADPKD No key terms in CS, ERG/AG or FAD 

356 Ruxolitinib for treating polycythaemia vera (terminated appraisal) Oncology polycythaemia vera terminated  

353 Bevacizumab for treating relapsed, platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal 
cancer (terminated appraisal) 

Oncology ovarian cancer terminated  

351 Cangrelor for reducing atherothrombotic events in people undergoing percutaneous coronary intervention or 

awaiting surgery requiring interruption of anti-platelet therapy (terminated appraisal) 

Cardiovascular disease TE terminated  

349 Dexamethasone intravitreal implant for treating diabetic macular oedema Other DMO implant 

348 Everolimus for preventing organ rejection in liver transplantation Other immunosuppressive 
therapy  

No key terms in CS, ERG/AG or FAD 

339 Omalizumab for previously treated chronic spontaneous urticaria Other urticaria No key terms in CS, ERG/AG or FAD 

337 Rifaximin for preventing episodes of overt hepatic encephalopathy Other hepatic encephalopathy No key terms in CS, ERG/AG or FAD 

334 Regorafenib for metastatic colorectal cancer after treatment for metastatic disease (terminated appraisal) Oncology colorectal cancer terminated  

330 Sofosbuvir for treating chronic hepatitis C Infectious disease hepatitis C No key terms in CS, ERG/AG or FAD 

324 Dual-chamber pacemakers for symptomatic bradycardia due to sick sinus syndrome without atrioventricular 

block 

Cardiovascular disease arrhythmia medical device 

323 Erythropoiesis-stimulating agents (epoetin and darbepoetin) for treating anaemia in people with cancer having 

chemotherapy 

Other anaemia No key terms in CS, ERG/AG or FAD 

317 Prasugrel with percutaneous coronary intervention for treating acute coronary syndromes Cardiovascular disease ACS No key terms in CS, ERG/AG or FAD 

314 Implantable cardioverter defibrillators and cardiac resynchronisation therapy for arrhythmias and heart failure Cardiovascular disease arrhythmia medical device 

304 Total hip replacement and resurfacing arthroplasty for end-stage arthritis of the hip Other arthritis procedure 

302 Canakinumab for treating systemic juvenile idiopathic arthritis (terminated appraisal) Autoimmune JIA terminated  
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TA TA Title Disease Area Disease Reason of Exclusion 

301 Fluocinolone acetonide intravitreal implant for treating chronic diabetic macular oedema after an inadequate 
response to prior therapy 

Other DMO implant 

287 Rivaroxaban for treating pulmonary embolism and preventing recurrent venous thromboembolism Cardiovascular disease TE No key terms in CS, ERG/AG or FAD 

286 Loxapine inhalation for treating acute agitation and disturbed behaviours associated with schizophrenia and 

bipolar disorder (terminated appraisal) 

Neurology/mental health bipolar disorder terminated  

283 Ranibizumab for treating visual impairment caused by macular oedema secondary to retinal vein occlusion Other visual impairment No key terms in CS, ERG/AG or FAD 

281 Canakinumab for treating gouty arthritis attacks and reducing the frequency of subsequent attacks (terminated 

appraisal) 

Other gout terminated  

279 Percutaneous vertebroplasty and percutaneous balloon kyphoplasty for treating osteoporotic vertebral 
compression fractures 

Other osteoporotic vertebral 
compression fractures 

procedure 

278 Omalizumab for treating severe persistent allergic asthma Other asthma No key terms in CS, ERG/AG or FAD 

277 Methylnaltrexone for treating opioid-induced bowel dysfunction in people with advanced illness receiving 

palliative care (terminated appraisal) 

Other opioid-induced bowel 

dysfunction 

terminated  

273 Tadalafil for the treatment of symptoms associated with benign prostatic hyperplasia (terminated appraisal) Other benign prostatic 
hyperplasia 

terminated  

272 Vinflunine for the treatment of advanced or metastatic transitional cell carcinoma of the urothelial tract Oncology urothelial cancer Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

270 Decitabine for the treatment of acute myeloid leukaemia (terminated appraisal) Oncology leukaemia terminated  

267 Ivabradine for treating chronic heart failure Cardiovascular disease HF No key terms in CS, ERG/AG or FAD 

265 Denosumab for the prevention of skeletal-related events in adults with bone metastases from solid tumours Oncology skeletal-related events in 

cancer 

No key terms in CS, ERG/AG or FAD 

264 Alteplase for treating acute ischaemic stroke Cardiovascular disease TE No key terms in CS, ERG/AG or FAD 

261 Rivaroxaban for the treatment of deep vein thrombosis and prevention of recurrent deep vein thrombosis and 
pulmonary embolism 

Cardiovascular disease TE No key terms in CS, ERG/AG or FAD 

258 Erlotinib for the first-line treatment of locally advanced or metastatic EGFR-TK mutation-positive non-small-cell 

lung cancer 

Oncology NSCLC Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

246 Pharmalgen for the treatment of bee and wasp venom allergy Other venom allergy No key terms in CS, ERG/AG or FAD 

245 Apixaban for the prevention of venous thromboembolism after total hip or knee replacement in adults Cardiovascular disease TE No key terms in CS, ERG/AG or FAD 

240 Panitumumab in combination with chemotherapy for the treatment of metastatic colorectal cancer (terminated 
appraisal) 

Oncology colorectal cancer terminated  

236 Ticagrelor for the treatment of acute coronary syndromes Cardiovascular disease ACS Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

235 Mifamurtide for the treatment of osteosarcoma Oncology osteosarcoma No key terms in CS, ERG/AG or FAD 

231 Agomelatine for the treatment of major depressive episodes (terminated appraisal) Neurology/mental health depression terminated  

230 Bivalirudin for the treatment of ST-segment-elevation myocardial infarction Cardiovascular disease ACS Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

229 Dexamethasone intravitreal implant for the treatment of macular oedema secondary to retinal vein occlusion Other DMO implant 
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TA TA Title Disease Area Disease Reason of Exclusion 

221 Romiplostim for the treatment of chronic immune (idiopathic) thrombocytopenic purpura Autoimmune ITP Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

218 Azacitidine for the treatment of myelodysplastic syndromes, chronic myelomonocytic leukaemia and acute 

myeloid leukaemia 

Oncology leukaemia Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 
sequences 

211 Prucalopride for the treatment of chronic constipation in women Other constipation No key terms in CS, ERG/AG or FAD 

208 Trastuzumab for the treatment of HER2-positive metastatic gastric cancer Oncology gastric cancer Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

207 Temsirolimus for the treatment of relapsed or refractory mantle cell lymphoma (terminated appraisal) Oncology lymphoma terminated  

206 Bendamustine for the treatment of indolent (low grade) non-Hodgkin's lymphoma that is refractory to rituximab 
(terminated appraisal) 

Oncology lymphoma terminated  

204 Denosumab for the prevention of osteoporotic fractures in postmenopausal women Other osteoporosis No key terms in CS, ERG/AG or FAD 

200 Peginterferon alfa and ribavirin for the treatment of chronic hepatitis C Infectious disease hepatitis C No key terms in CS, ERG/AG or FAD 

192 Gefitinib for the first-line treatment of locally advanced or metastatic non-small-cell lung cancer Oncology NSCLC Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

191 Capecitabine for the treatment of advanced gastric cancer Oncology gastric cancer Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

188 Human growth hormone (somatropin) for the treatment of growth failure in children Other growth failure No key terms in CS, ERG/AG or FAD 

185 Trabectedin for the treatment of advanced soft tissue sarcoma Oncology soft tissue sarcoma Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 
sequences 

184 Topotecan for the treatment of relapsed small-cell lung cancer Oncology SCLC Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 
sequences 

179 Sunitinib for the treatment of gastrointestinal stromal tumours Oncology GIST No key terms in CS, ERG/AG or FAD 

177 Alitretinoin for the treatment of severe chronic hand eczema Other eczema No key terms in CS, ERG/AG or FAD 

170 Rivaroxaban for the prevention of venous thromboembolism after total hip or total knee replacement in adults Cardiovascular disease TE No key terms in CS, ERG/AG or FAD 

168 Amantadine, oseltamivir and zanamivir for the treatment of influenza Infectious disease influenza Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

167 Endovascular stent–grafts for the treatment of abdominal aortic aneurysms Cardiovascular disease abdominal aortic 
aneurysms 

medical device 

165 Machine perfusion systems and cold static storage of kidneys from deceased donors Other transplant medical device 

163 Infliximab for acute exacerbations of ulcerative colitis Autoimmune UC Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

160 Raloxifene for the primary prevention of osteoporotic fragility fractures in postmenopausal women Other osteoporosis No key terms in CS, ERG/AG or FAD 
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TA TA Title Disease Area Disease Reason of Exclusion 

159 Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin Other chronic pain medical device 

158 Oseltamivir, amantadine (review) and zanamivir for the prophylaxis of influenza Infectious disease influenza No key terms in CS, ERG/AG or FAD 

157 Dabigatran etexilate for the prevention of venous thromboembolism after hip or knee replacement surgery in 

adults 

Cardiovascular disease TE Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 
sequences 

156 Routine antenatal anti-D prophylaxis for women who are rhesus D negative Other anti-D prophylaxis No key terms in CS, ERG/AG or FAD 

155 Ranibizumab and pegaptanib for the treatment of age-related macular degeneration Other AMD Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

152 Drug-eluting stents for the treatment of coronary artery disease Cardiovascular disease ACS medical device 

151 Continuous subcutaneous insulin infusion for the treatment of diabetes mellitus Diabetes mellitus DM No key terms in CS, ERG/AG or FAD 

149 Carmustine implants for the treatment of recurrent glioblastoma multiforme (terminated appraisal) Oncology glioblastoma terminated  

148 Bevacizumab for the treatment of non-small-cell lung cancer (terminated appraisal) Oncology NSCLC terminated  

145 Cetuximab for the treatment of locally advanced squamous cell cancer of the head and neck Oncology HNC No key terms in CS, ERG/AG or FAD 

139 Continuous positive airway pressure for the treatment of obstructive sleep apnoea/hypopnoea syndrome Other apnoea procedure 

136 Structural neuroimaging in first-episode psychosis Neurology/mental health psychosis procedure 

135 Pemetrexed for the treatment of malignant pleural mesothelioma Oncology mesothelioma Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

131 Inhaled corticosteroids for the treatment of chronic asthma in children under the age of 12 years Other asthma No key terms in CS, ERG/AG or FAD 

129 Bortezomib monotherapy for relapsed multiple myeloma Oncology MM Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 
sequences 

128 Stapled haemorrhoidopexy for the treatment of haemorrhoids Other haemorrhoids procedure 

127 Natalizumab for the treatment of adults with highly active relapsing–remitting multiple sclerosis Autoimmune MS Key terms in CS, ERG/AG or FAD not 

referring to consideration of treatment 

sequences 

124 Pemetrexed for the treatment of non-small-cell lung cancer Oncology NSCLC No key terms in CS, ERG/AG or FAD 

123 Varenicline for smoking cessation Other smoking cessation No key terms in CS, ERG/AG or FAD 

117 Cinacalcet for the treatment of secondary hyperparathyroidism in patients with end-stage renal disease on 

maintenance dialysis therapy 

Other hyperparathyroidism No key terms in CS, ERG/AG or FAD 

115 Naltrexone for the management of opioid dependence Other opioid dependence No key terms in CS, ERG/AG or FAD 

114 Methadone and buprenorphine for the management of opioid dependence Other opioid dependence No key terms in CS, ERG/AG or FAD 

106 Peginterferon alfa and ribavirin for the treatment of mild chronic hepatitis C Infectious disease hepatitis C Key terms in CS, ERG/AG or FAD not 
referring to consideration of treatment 

sequences 

105 Laparoscopic surgery for colorectal cancer Oncology colorectal cancer procedure 
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92 HealOzone for the treatment of tooth decay (occlusal pit and fissure caries and root caries) Other tooth problem procedure 

88 Dual-chamber pacemakers for symptomatic bradycardia due to sick sinus syndrome and/or atrioventricular block Cardiovascular disease arrhythmia medical device 

86 Imatinib for the treatment of unresectable and/or metastatic gastro-intestinal stromal tumours Oncology GIST No key terms in CS, ERG/AG or FAD 

83 Laparoscopic surgery for inguinal hernia repair Other inguinal hernia procedure 

81 Frequency of application of topical corticosteroids for atopic eczema Other eczema No key terms in CS, ERG/AG or FAD 

78 Fluid-filled thermal balloon and microwave endometrial ablation techniques for heavy menstrual bleeding Other menstrual bleeding procedure 

77 Guidance on the use of zaleplon, zolpidem and zopiclone for the short-term management of insomnia Other insomnia No key terms in CS, ERG/AG or FAD 

75 Interferon alfa (pegylated and non-pegylated) and ribavirin for the treatment of chronic hepatitis C Infectious disease hepatitis C No key terms in CS, ERG/AG or FAD 

74 Pre-hospital initiation of fluid replacement therapy in trauma Other trauma No key terms in CS, ERG/AG or FAD 

73 Myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction Cardiovascular disease ACS procedure 

71 Guidance on the use of coronary artery stents Cardiovascular disease ACS medical device 

69 Guidance on the use of liquid-based cytology for cervical screening Other cervical screening procedure 

64 Human growth hormone (somatropin) in adults with growth hormone deficiency Other growth failure No key terms in CS, ERG/AG or FAD 

61 Guidance on the use of capecitabine and tegafur with uracil for metastatic colorectal cancer Oncology colorectal cancer No key terms in CS, ERG/AG or FAD 

59 Guidance on the use of electroconvulsive therapy Other electroconvulsive 

therapy 

procedure 

49 Guidance on the use of ultrasound locating devices for placing central venous catheters Other central venous catheters medical device 

47 Guidance on the use of glycoprotein IIb/IIIa inhibitors in the treatment of acute coronary syndromes Cardiovascular disease ACS No key terms in CS, ERG/AG or FAD 

38 Inhaler devices for routine treatment of chronic asthma in older children (aged 5–15 years) Other asthma No key terms in CS, ERG/AG or FAD 

29 Guidance on the use of fludarabine for B-cell chronic lymphocytic leukaemia Oncology leukaemia No key terms in CS, ERG/AG or FAD 

20 Guidance on the use of Riluzole (Rilutek) for the treatment of Motor Neurone Disease Neurology/mental health Motor Neurone Disease No key terms in CS, ERG/AG or FAD 

10 Guidance on the use of inhaler systems (devices) in children under the age of 5 years with chronic asthma Other asthma No key terms in CS, ERG/AG or FAD 

1 Guidance on the Extraction of Wisdom Teeth Other tooth problem No reports available 

ACS: acute coronary syndrome (including myocardial infarction), ADPKD: autosomal dominant polycystic kidney disease, AG: Assessment Group reports, AMD: age-related macular 

degeneration, C. diff : Clostridium difficile, CNV: choroidal neovascularisation, COPD: chronic obstructive pulmonary disease, CS: company submissions, DM: diabetes mellitus, DMO: 

diabetic macular oedema, ERG: Evidence Review Group reports, FAD: Final Appraisal Determination document, GIST: gastrointestinal stromal tumour, HCC: hepatocellular carcinoma, HF: 

heart failure: HNC: head and neck cancer, IPF: idiopathic pulmonary fibrosis, ITP: immune thrombocytopenia, JIA: juvenile arthritis, LSCD: limbal stem cell deficiency, MM: multiple 

myeloma, MS: multiple sclerosis, NETs: neuroendocrine tumours, NSCLC: non-small cell lung cancer, RA: rheumatoid arthritis, RCC: renal cell carcinoma, SCLC: small cell lung cancer, 

TE: thromboembolism, UC: ulcerative colitis, WM: Waldenstrom macroglobulinemia.  
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Appendix 3.3 Included studies in Part A of the systematic review of NICE TAs 

This appendix table outlines basic demographics for all technology appraisals (TAs) included in the NICE TA systematic review from Chapter, 

covering the title, disease, disease area, and indicators of key documents' presence (i.e., Company Submissions (CS), Evidence Review Group 

(ERG)/Assessment Group (AG) reports, and Final Appraisal Determination (FAD) documents), an indicator of whether a document listed at least two 

treatment sequences for comparison, and an indicator of whether a de novo treatment-sequencing model was employed. Each row represents 

information for a single TA. 

The symbols in each column are defined as follows: 

 for the second-to-right column: "-" signifies the document is not applicable or unavailable for the TA. "Y" and "N" indicate if the report lists at least 

two treatment sequences for comparison, yes or no, respectively. For multiple TAs, each company's submission is detailed in brackets. "Details 

unavailable" is noted for unassessable detailed reports. Sepcial conditions, such as a TA acts as a review of previous TAs are also bracketed.   

 for the rightmost column: "-" again means the document is not applicable or unavailable. "Y" and "N" show if a de novo treatment-sequencing 

model was employed, yes or no, respectively, with "na" indicating no model was built, typically in ERG reports that review rather than create models. 

Information is separated by brackets for multiple TAs, and "details unavailable" is used where further details of the report could not be assessed. 

Brackets indicate special conditions, such as supplemental models in amendments.  

TA Title Disease Area Disease Listed at least two treatment sequences for 

comparison 

Employ a de novo model with treatment-

sequencing structure 

CS ERG 

reports 

AG 

reports 

CS ERG* 

reports 

AG 

reports 

612 Neratinib for extended adjuvant treatment of hormone 
receptor-positive, HER2-positive early stage breast cancer 

after adjuvant trastuzumab 

Oncology breast cancer  N N - N na - 

611 Rucaparib for maintenance treatment of relapsed platinum-

sensitive ovarian, fallopian tube or peritoneal cancer 

Oncology ovarian cancer N N - N na - 

610 Pentosan polysulfate sodium for treating bladder pain 

syndrome 

Other bladder pain 

syndrome 

N N - Y na - 

607 Rivaroxaban for preventing atherothrombotic events in 

people with coronary or peripheral artery disease 

Cardiovascular 

disease 

TE N N - N na - 

606 Lanadelumab for preventing recurrent attacks of hereditary 

angioedema 

Other hereditary 

angioedema 

N N - N na - 

605 Xeomin (botulinum neurotoxin type A) for treating chronic 
sialorrhoea 

Neurology/mental 
health 

sialorrhoea N N - N na - 

604 Idelalisib for treating refractory follicular lymphoma Oncology lymphoma N N - N na - 

600 Pembrolizumab with carboplatin and paclitaxel for untreated 

metastatic squamous non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

599 Sodium zirconium cyclosilicate for treating hyperkalaemia Other hyperkalaemia N N - N na - 
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TA Title Disease Area Disease Listed at least two treatment sequences for 

comparison 

Employ a de novo model with treatment-

sequencing structure 

CS ERG 

reports 

AG 

reports 

CS ERG* 

reports 

AG 

reports 

598 Olaparib for maintenance treatment of BRCA mutation-
positive advanced ovarian, fallopian tube or peritoneal 

cancer after response to first-line platinum-based 

chemotherapy 

Oncology ovarian cancer N N - N na - 

597 Dapagliflozin with insulin for treating type 1 diabetes Diabetes mellitus DM N N - N na - 

596 Risankizumab for treating moderate to severe plaque 

psoriasis 

Autoimmune psoriasis N N - N na - 

595 Dacomitinib for untreated EGFR mutation-positive non-
small-cell lung cancer 

Oncology NSCLC N N - N na - 

593 Ribociclib with fulvestrant for treating hormone receptor-

positive, HER2-negative, advanced breast cancer 

Oncology breast cancer  N N - Y na - 

592 Cemiplimab for treating metastatic or locally advanced 
cutaneous squamous cell carcinoma 

Oncology skin cancer N N - N na - 

591 Letermovir for preventing cytomegalovirus disease after a 

stem cell transplant 

Infectious disease CMV N N - N na - 

590 Fluocinolone acetonide intravitreal implant for treating 
recurrent non-infectious uveitis 

Other uveitis N N - Y na - 

589 Blinatumomab for treating acute lymphoblastic leukaemia in 

remission with minimal residual disease activity 

Oncology leukaemia N N - N na - 

588 Nusinersen for treating spinal muscular atrophy Other spinal muscular 
atrophy 

N N - N na - 

587 Lenalidomide plus dexamethasone for previously untreated 

multiple myeloma 

Oncology MM N N - N na - 

586 Lenalidomide plus dexamethasone for multiple myeloma 
after 1 treatment with bortezomib 

Oncology MM N N - N na - 

585 Ocrelizumab for treating primary progressive multiple 

sclerosis 

Autoimmune MS N N - N na - 

584 Atezolizumab in combination for treating metastatic non-
squamous non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

583 Ertugliflozin with metformin and a dipeptidyl peptidase-4 

inhibitor for treating type 2 diabetes 

Diabetes mellitus DM N N - na na - 

581 Nivolumab with ipilimumab for untreated advanced renal 
cell carcinoma 

Oncology RCC N N - N na - 

580 Enzalutamide for hormone-relapsed non-metastatic prostate 

cancer 

Oncology prostate cancer Y N - Y na - 

579 Abemaciclib with fulvestrant for treating hormone receptor-

positive, HER2-negative advanced breast cancer after 

endocrine therapy 

Oncology breast cancer  N N - N na - 

578 Durvalumab for treating locally advanced unresectable non-
small-cell lung cancer after platinum-based chemoradiation 

Oncology NSCLC N N - N na - 

577 Brentuximab vedotin for treating CD30-positive cutaneous 

T-cell lymphoma 

Oncology lymphoma N N - N na - 

575 Tildrakizumab for treating moderate to severe plaque 
psoriasis 

Autoimmune psoriasis Y Y - Y na - 

574 Certolizumab pegol for treating moderate to severe plaque 

psoriasis 

Autoimmune psoriasis Y Y - Y na - 
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573 Daratumumab with bortezomib and dexamethasone for 
previously treated multiple myeloma 

Oncology MM N N - Y na - 

572 Ertugliflozin as monotherapy or with metformin for treating 

type 2 diabetes 

Diabetes mellitus DM N N - N na - 

571 Brigatinib for treating ALK-positive advanced non-small-
cell lung cancer after crizotinib 

Oncology NSCLC N N - N na - 

569 Pertuzumab for adjuvant treatment of HER2-positive early 

stage breast cancer 

Oncology breast cancer  N N - Y na - 

567 Tisagenlecleucel for treating relapsed or refractory diffuse 

large B-cell lymphoma after 2 or more systemic therapies 

Oncology lymphoma N N - N na - 

563 Abemaciclib with an aromatase inhibitor for previously 

untreated, hormone receptor-positive, HER2-negative, 
locally advanced or metastatic breast cancer 

Oncology breast cancer  N N - Y na - 

562 Encorafenib with binimetinib for unresectable or metastatic 

BRAF V600 mutation-positive melanoma 

Oncology melanoma N N - Y na - 

561 Venetoclax with rituximab for previously treated chronic 
lymphocytic leukaemia 

Oncology leukaemia N N - N na - 

559 Axicabtagene ciloleucel for treating diffuse large B-cell 

lymphoma and primary mediastinal large B-cell lymphoma 

after 2 or more systemic therapies 

Oncology lymphoma N N - N na - 

558 Nivolumab for adjuvant treatment of completely resected 

melanoma with lymph node involvement or metastatic 

disease 

Oncology melanoma N N - N na - 

557 Pembrolizumab with pemetrexed and platinum 

chemotherapy for untreated, metastatic, non-squamous non-

small-cell lung cancer 

Oncology NSCLC N N - N na - 

556 Darvadstrocel for treating complex perianal fistulas in 
Crohn’s disease 

Autoimmune Crohn's disease N N - Y na - 

554 Tisagenlecleucel for treating relapsed or refractory B-cell 

acute lymphoblastic leukaemia in people aged up to 25 years 

Oncology leukaemia N N - N na - 

553 Pembrolizumab for adjuvant treatment of resected 
melanoma with high risk of recurrence 

Oncology melanoma N N - N na - 

552 Liposomal cytarabine–daunorubicin for untreated acute 

myeloid leukaemia 

Oncology leukaemia N N - Y na - 

551 Lenvatinib for untreated advanced hepatocellular carcinoma Oncology HCC N N - N na - 

550 Vandetanib for treating medullary thyroid cancer Oncology thyroid cancer N N - N na - 

547 Tofacitinib for moderately to severely active ulcerative 

colitis 

Autoimmune UC Y Y - Y na - 

546 Padeliporfin for untreated localised prostate cancer Oncology prostate cancer N N - Y na - 

545 Gemtuzumab ozogamicin for untreated acute myeloid 
leukaemia 

Oncology leukaemia N N - N na - 

544 Dabrafenib with trametinib for adjuvant treatment of 

resected BRAF V600 mutation-positive melanoma 

Oncology melanoma N N - Y na - 

543 Tofacitinib for treating active psoriatic arthritis after 
inadequate response to DMARDs 

Autoimmune psoriasis Y Y - Y na - 

542 Cabozantinib for untreated advanced renal cell carcinoma Oncology RCC N N - N na - 
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541 Inotuzumab ozogamicin for treating relapsed or refractory 
B-cell acute lymphoblastic leukaemia 

Oncology leukaemia N N - Y na - 

540 Pembrolizumab for treating relapsed or refractory classical 

Hodgkin lymphoma 

Oncology lymphoma N N - Y na - 

539 Lutetium (177Lu) oxodotreotide for treating unresectable or 
metastatic neuroendocrine tumours 

Oncology NETs N (Novartis, AAA) - N N (Novartis, AAA) - N 

538 Dinutuximab beta for treating neuroblastoma Oncology neuroblastoma N N - N na - 

537 Ixekizumab for treating active psoriatic arthritis after 

inadequate response to DMARDs 

Autoimmune psoriasis Y Y - Y na - 

536 Alectinib for untreated ALK-positive advanced non-small-

cell lung cancer 

Oncology NSCLC N N - Y na - 

535 Lenvatinib and sorafenib for treating differentiated thyroid 

cancer after radioactive iodine 

Oncology thyroid cancer N (Bayer, Eisai) - N N (Bayer, Eisai) - N 

534 Dupilumab for treating moderate to severe atopic dermatitis Other atopic dermatitis N N - N na - 

533 Ocrelizumab for treating relapsing–remitting multiple 

sclerosis 

Autoimmune MS N N - N na - 

531 Pembrolizumab for untreated PD-L1-positive metastatic 
non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

530 Nivolumab for treating locally advanced unresectable or 

metastatic urothelial cancer after platinum-containing 

chemotherapy 

Oncology urothelial cancer N N - N na - 

529 Crizotinib for treating ROS1-positive advanced non-small-

cell lung cancer 

Oncology NSCLC N N - N na - 

528 Niraparib for maintenance treatment of relapsed, platinum-
sensitive ovarian, fallopian tube and peritoneal cancer 

Oncology ovarian cancer N N - N na - 

527 Beta interferons and glatiramer acetate for treating multiple 

sclerosis 

Autoimmune MS N - N N (Biogen, Teva, Merck)  - N 

526 Arsenic trioxide for treating acute promyelocytic leukaemia Oncology leukaemia N N - Y na - 

525 Atezolizumab for treating locally advanced or metastatic 
urothelial carcinoma after platinum-containing 

chemotherapy 

Oncology urothelial cancer N N - N na - 

524 Brentuximab vedotin for treating CD30-positive Hodgkin 
lymphoma 

Oncology lymphoma N N - N na - 

523 Midostaurin for untreated acute myeloid leukaemia Oncology leukaemia N N - N na - 

522 Pembrolizumab for untreated PD-L1-positive locally 

advanced or metastatic urothelial cancer when cisplatin is 

unsuitable 

Oncology urothelial cancer N N - N na - 

521 Guselkumab for treating moderate to severe plaque psoriasis Autoimmune psoriasis N Y - N na - 

520 Atezolizumab for treating locally advanced or metastatic 

non-small-cell lung cancer after chemotherapy 

Oncology NSCLC N N - N na - 

519 Pembrolizumab for treating locally advanced or metastatic 
urothelial carcinoma after platinum-containing 

chemotherapy 

Oncology urothelial cancer N N - N na - 

518 Tocilizumab for treating giant cell arteritis Autoimmune GCA N N - Y na - 

517 Avelumab for treating metastatic Merkel cell carcinoma Oncology MCC N N - N na - 
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516 Cabozantinib for treating medullary thyroid cancer Oncology thyroid cancer N (Sanofi), details 
unavailable (Ipsen) 

- N N (Sanofi), na (Ipsen) - N 

515 Eribulin for treating locally advanced or metastatic breast 

cancer after 1 chemotherapy regimen 

Oncology breast cancer  N N - N na - 

513 Obinutuzumab for untreated advanced follicular lymphoma Oncology lymphoma N N - N na - 

512 Tivozanib for treating advanced renal cell carcinoma Oncology RCC N N - N na - 

511 Brodalumab for treating moderate to severe plaque psoriasis Autoimmune psoriasis Y Y - Y na - 

510 Daratumumab monotherapy for treating relapsed and 

refractory multiple myeloma 

Oncology MM N N - N na - 

509 Pertuzumab with trastuzumab and docetaxel for treating 
HER2-positive breast cancer 

Oncology breast cancer  N N - N na - 

507 Sofosbuvir–velpatasvir–voxilaprevir for treating chronic 

hepatitis C 

Infectious disease hepatitis C N N - Y na - 

506 Lesinurad for treating chronic hyperuricaemia in people with 
gout 

Other gout N N - Y na - 

505 Ixazomib with lenalidomide and dexamethasone for treating 

relapsed or refractory multiple myeloma 

Oncology MM N N - N na - 

504 Pirfenidone for treating idiopathic pulmonary fibrosis Autoimmune IPF N N - N na - 

503 Fulvestrant for untreated locally advanced or metastatic 

oestrogen-receptor positive breast cancer 

Oncology breast cancer  N N - N na - 

502 Ibrutinib for treating relapsed or refractory mantle cell 

lymphoma 

Oncology lymphoma N N - Y (scenario analysis) na - 

500 Ceritinib for untreated ALK-positive non-small-cell lung 

cancer 

Oncology NSCLC N N - N na - 

499 Glecaprevir–pibrentasvir for treating chronic hepatitis C Infectious disease hepatitis C N N - Y - - 

498 Lenvatinib with everolimus for previously treated advanced 
renal cell carcinoma 

Oncology RCC N N - N na - 

497 Golimumab for treating non-radiographic axial 

spondyloarthritis 

Autoimmune spondyloarthritis N N - na na - 

496 Ribociclib with an aromatase inhibitor for previously 
untreated, hormone receptor-positive, HER2-negative, 

locally advanced or metastatic breast cancer 

Oncology breast cancer  N N - Y na na (DSU 
report) 

495 Palbociclib with an aromatase inhibitor for previously 
untreated, hormone receptor-positive, HER2-negative, 

locally advanced or metastatic breast cancer 

Oncology breast cancer  N N - Y na - 

492 Atezolizumab for untreated PD-L1-positive locally 

advanced or metastatic urothelial cancer when cisplatin is 
unsuitable 

Oncology urothelial cancer N N - N na - 

491 Ibrutinib for treating Waldenstrom’s macroglobulinaemia Oncology WM N N - Y na - 

490 Nivolumab for treating squamous cell carcinoma of the head 

and neck after platinum-based chemotherapy 

Oncology skin cancer N N - N na - 

489 Vismodegib for treating basal cell carcinoma Oncology basal cell 

carcinoma 

N N - N na - 

488 Regorafenib for previously treated unresectable or 

metastatic gastrointestinal stromal tumours 

Oncology GIST N N - N na - 

487 Venetoclax for treating chronic lymphocytic leukaemia Oncology leukaemia N N - N na - 
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485 Sarilumab for moderate to severe rheumatoid arthritis Autoimmune RA Y Y - Y na - 

484 Nivolumab for previously treated non-squamous non-small-

cell lung cancer 

Oncology NSCLC N N - N na - 

483 Nivolumab for previously treated squamous non-small-cell 

lung cancer 

Oncology NSCLC N N - N na - 

482 Immunosuppressive therapy for kidney transplant in 

children and young people 

Other immunosuppressiv

e therapy  

N - N na - N 

481 Immunosuppressive therapy for kidney transplant in adults Other immunosuppressiv

e therapy  

N - N na - N 

478 Brentuximab vedotin for treating relapsed or refractory 

systemic anaplastic large cell lymphoma 

Oncology lymphoma N N - N na - 

476 Paclitaxel as albumin-bound nanoparticles with gemcitabine 

for untreated metastatic pancreatic cancer 

Oncology pancreatic cancer N N - N na - 

475 Dimethyl fumarate for treating moderate to severe plaque 

psoriasis 

Autoimmune psoriasis Y Y - Y na - 

472 Obinutuzumab with bendamustine for treating follicular 

lymphoma refractory to rituximab 

Oncology lymphoma N N - Y na - 

471 Eluxadoline for treating irritable bowel syndrome with 

diarrhoea 

Autoimmune irritable bowel 

syndrome 

N N - N na - 

466 Baricitinib for moderate to severe rheumatoid arthritis Autoimmune RA Y Y - Y na - 

463 Cabozantinib for previously treated advanced renal cell 
carcinoma 

Oncology RCC N N - N na - 

462 Nivolumab for treating relapsed or refractory classical 

Hodgkin lymphoma 

Oncology lymphoma Y Y - N (original report)  -> Y 

(amendment) 

na - 

460 Adalimumab and dexamethasone for treating non-infectious 
uveitis 

Other uveitis N (AbbVie, Allergan) - N na (AbbVie, Allergan) - N 

458 Trastuzumab emtansine for treating HER2-positive 

advanced breast cancer after trastuzumab and a taxane 

Oncology breast cancer  N N - N na - 

457 Carfilzomib for previously treated multiple myeloma Oncology MM - - - - - - 

456 Ustekinumab for moderately to severely active Crohn’s 

disease after previous treatment 

Autoimmune Crohn's disease N N - Y na - 

455 Adalimumab, etanercept and ustekinumab for treating 

plaque psoriasis in children and young people 

Autoimmune psoriasis N - N N - N 

451 Ponatinib for treating chronic myeloid leukaemia and acute 

lymphoblastic leukaemia 

Oncology leukaemia N N - N na - 

450 Blinatumomab for previously treated Philadelphia-

chromosome-negative acute lymphoblastic leukaemia 

Oncology leukaemia N N - N na - 

449 Everolimus and sunitinib for treating unresectable or 

metastatic neuroendocrine tumours in people with 

progressive disease 

Oncology NETs N (Novartis, AAA, 

Pfizer) 

- N N (Novartis, AAA, 

Pfizer), na (Pfizer) 

- N 

448 Etelcalcetide for treating secondary hyperparathyroidism Other hyperparathyroidis
m 

N N - N Y  

445 Certolizumab pegol and secukinumab for treating active 

psoriatic arthritis after inadequate response to DMARDs 

Autoimmune psoriasis Y(UCB), N(Novartis) - Y Y (UCB), N(Novartis) - Y 

442 Ixekizumab for treating moderate to severe plaque psoriasis Autoimmune psoriasis Y Y - Y na - 
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440 Pegylated liposomal irinotecan for treating pancreatic cancer 
after gemcitabine 

Oncology pancreatic cancer N N - Y na - 

439 Cetuximab and panitumumab for previously untreated 

metastatic colorectal cancer 

Oncology colorectal cancer N (Merck), details 

unavailable (Amgen) 

- N Y (Merck), na (Amgen), - Y 

433 Apremilast for treating active psoriatic arthritis Autoimmune psoriasis Y - Y Y Y - 

432 Everolimus for advanced renal cell carcinoma after previous 

treatment 

Oncology RCC N N - N na - 

430 Sofosbuvir–velpatasvir for treating chronic hepatitis C Infectious disease hepatitis C N N - N na - 

429 Ibrutinib for previously treated chronic lymphocytic 

leukaemia and untreated chronic lymphocytic leukaemia 

with 17p deletion or TP53 mutation 

Oncology leukaemia N N - Y na - 

428 Pembrolizumab for treating PD-L1-positive non-small-cell 

lung cancer after chemotherapy 

Oncology NSCLC N N - N na - 

427 Pomalidomide for multiple myeloma previously treated with 

lenalidomide and bortezomib 

Oncology MM N N - N na - 

426 Dasatinib, nilotinib and imatinib for untreated chronic 

myeloid leukaemia 

Oncology leukaemia Y (partial: in first-line 

setting, a of review 
TA251) 

Y 

(partial: 
in first-

line 

setting: a 
review  

of 
TA251) 

- N (cost-minimisation 

analysis), Y (TA 251: 
Novartis, BMS and AG) 

na (DSU 

report) 

- 

425 Dasatinib, nilotinib and high-dose imatinib for treating 

imatinib-resistant or intolerant chronic myeloid leukaemia 

Oncology leukaemia N N - N na (DSU 

report) 

- 

424 Pertuzumab for the neoadjuvant treatment of HER2-positive 
breast cancer 

Oncology breast cancer  N N - N na - 

423 Eribulin for treating locally advanced or metastatic breast 

cancer after 2 or more chemotherapy regimens 

Oncology breast cancer  N N - N na - 

422 Crizotinib for previously treated anaplastic lymphoma 
kinase-positive advanced non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

421 Everolimus with exemestane for treating advanced breast 

cancer after endocrine therapy 

Oncology breast cancer  N N - N na - 

420 Ticagrelor for preventing atherothrombotic events after 
myocardial infarction 

Cardiovascular 
disease 

TE N N - N na - 

419 Apremilast for treating moderate to severe plaque psoriasis Autoimmune psoriasis Y Y - Y na - 

418 Dapagliflozin in triple therapy for treating type 2 diabetes Diabetes mellitus DM Y Y - Y na - 

417 Nivolumab for previously treated advanced renal cell 

carcinoma 

Oncology RCC N N - Y na - 

416 Osimertinib for treating locally advanced or metastatic 

EGFR T790M mutation-positive non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

415 Certolizumab pegol for treating rheumatoid arthritis after 

inadequate response to a TNF-alpha inhibitor 

Autoimmune RA Y Y - Y na - 

414 Cobimetinib in combination with vemurafenib for treating 

unresectable or metastatic BRAF V600 mutation-positive 

melanoma 

Oncology melanoma N N - N na - 
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413 Elbasvir–grazoprevir for treating chronic hepatitis C Infectious disease hepatitis C N N - N na - 

412 Radium-223 dichloride for treating hormone-relapsed 

prostate cancer with bone metastases 

Oncology prostate cancer N N - N na - 

411 Necitumumab for untreated advanced or metastatic 

squamous non-small-cell lung cancer 

Oncology NSCLC N N - Y na - 

410 Talimogene laherparepvec for treating unresectable 

metastatic melanoma 

Oncology melanoma N N - Y na - 

409 Aflibercept for treating visual impairment caused by 

macular oedema after branch retinal vein occlusion 

Other visual impairment Y Y - Y na - 

408 Pegaspargase for treating acute lymphoblastic leukaemia Oncology leukaemia Y Y - Y na - 

407 Secukinumab for active ankylosing spondylitis after 

treatment with non-steroidal anti-inflammatory drugs or 

TNF-alpha inhibitors 

Autoimmune spondyloarthritis N N - N na - 

406 Crizotinib for untreated anaplastic lymphoma kinase-

positive advanced non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

405 Trifluridine–tipiracil for previously treated metastatic 

colorectal cancer 

Oncology colorectal cancer N N - N na - 

404 Degarelix for treating advanced hormone-dependent prostate 

cancer 

Oncology prostate cancer N N - Y na - 

403 Ramucirumab for previously treated locally advanced or 

metastatic non-small-cell lung cancer 

Oncology NSCLC N N - Y na - 

402 Pemetrexed maintenance treatment for non-squamous non-

small-cell lung cancer after pemetrexed and cisplatin 

Oncology NSCLC N N - N na - 

401 Bosutinib for previously treated chronic myeloid leukaemia Oncology leukaemia N N - Y na - 

400 Nivolumab in combination with ipilimumab for treating 
advanced melanoma 

Oncology melanoma N N - N na - 

399 Azacitidine for treating acute myeloid leukaemia with more 

than 30% bone marrow blasts 

Oncology leukaemia N N - N na - 

396 Trametinib in combination with dabrafenib for treating 
unresectable or metastatic melanoma 

Oncology melanoma N N - N na - 

395 Ceritinib for previously treated anaplastic lymphoma kinase 

positive non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

393 Alirocumab for treating primary hypercholesterolaemia and 
mixed dyslipidaemia 

Cardiovascular 
disease 

dyslipidaemia N N - N na - 

391 Cabazitaxel for hormone-relapsed metastatic prostate cancer 

treated with docetaxel 

Oncology prostate cancer N N - N na - 

390 Canagliflozin, dapagliflozin and empagliflozin as 
monotherapies for treating type 2 diabetes 

Diabetes mellitus DM N N - Y (Janssen, AZ, 
Boehringer Ingelheim) 

- Y 

389 Topotecan, pegylated liposomal doxorubicin hydrochloride, 

paclitaxel, trabectedin and gemcitabine for treating recurrent 
ovarian cancer 

Oncology ovarian cancer N N - N (Eli Lilly, PharmaMar) - N 

388 Sacubitril valsartan for treating symptomatic chronic heart 

failure with reduced ejection fraction 

Cardiovascular 

disease 

HF N N - N na - 

387 Abiraterone for treating metastatic hormone-relapsed 
prostate cancer before chemotherapy is indicated 

Oncology prostate cancer N N - Y na - 
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386 Ruxolitinib for treating disease-related splenomegaly or 
symptoms in adults with myelofibrosis 

Oncology myelofibrosis N N - Y na - 

384 Nivolumab for treating advanced (unresectable or 

metastatic) melanoma 

Oncology melanoma N N - N na - 

383 TNF-alpha inhibitors for ankylosing spondylitis and non-
radiographic axial spondyloarthritis 

Autoimmune spondyloarthritis N (Pfizer, AbbVie, 
UCB, MSD) 

- N Y (Pfizer), N (AbbVie, 
UCB, MSD) 

- Y 

380 Panobinostat for treating multiple myeloma after at least 2 

previous treatments 

Oncology MM N N - Y na - 

378 Ramucirumab for treating advanced gastric cancer or 

gastro–oesophageal junction adenocarcinoma previously 

treated with chemotherapy 

Oncology gastric cancer N N - N na - 

377 Enzalutamide for treating metastatic hormone-relapsed 
prostate cancer before chemotherapy is indicated 

Oncology prostate cancer Y Y - Y na - 

375 Adalimumab, etanercept, infliximab, certolizumab pegol, 

golimumab, tocilizumab and abatacept for rheumatoid 

arthritis not previously treated with DMARDs or after 
conventional DMARDs only have failed 

Autoimmune RA Y (AbbVie, BMS, 

MSD*2, Pfizer, 

Roche, UCB) 

- Y Y (AbbVie, BMS, MSD, 

Pfizer, Roche, UCB) 

-  

374 Erlotinib and gefitinib for treating non-small-cell lung 

cancer that has progressed after prior chemotherapy 

Oncology NSCLC N - N na - N 

373 Abatacept, adalimumab, etanercept and tocilizumab for 
treating juvenile idiopathic arthritis 

Autoimmune JIA N (Roche, BMS, 
Pfizer, AbbVie) 

- N N (Roche), na (BMS, 
Pfizer, AbbVie) 

- N 

370 Bortezomib for previously untreated mantle cell lymphoma Oncology lymphoma N N - Y na - 

367 Vortioxetine for treating major depressive episodes Neurology/mental 

health 

depression N N - Y na - 

366 Pembrolizumab for advanced melanoma not previously 

treated with ipilimumab 

Oncology melanoma N N - N na - 

365 Ombitasvir–paritaprevir–ritonavir with or without dasabuvir 
for treating chronic hepatitis C 

Infectious disease hepatitis C N N - N na - 

363 Ledipasvir–sofosbuvir for treating chronic hepatitis C Infectious disease hepatitis C N N - N na - 

359 Idelalisib for treating chronic lymphocytic leukaemia Oncology leukaemia N N - N na - 

357 Pembrolizumab for treating advanced melanoma after 

disease progression with ipilimumab 

Oncology melanoma N N - N na - 

355 Edoxaban for preventing stroke and systemic embolism in 

people with non-valvular atrial fibrillation 

Cardiovascular 

disease 

TE N N - N na - 

354 Edoxaban for treating and for preventing deep vein 

thrombosis and pulmonary embolism 

Cardiovascular 

disease 

TE N N - N na - 

352 Vedolizumab for treating moderately to severely active 

Crohn's disease after prior therapy 

Autoimmune Crohn's disease N N - N na - 

350 Secukinumab for treating moderate to severe plaque 

psoriasis 

Autoimmune psoriasis N N - N na - 

347 Nintedanib for previously treated locally advanced, 

metastatic, or locally recurrent non-small-cell lung cancer 

Oncology NSCLC N N - N na - 

346 Aflibercept for treating diabetic macular oedema Other DMO N N - N na - 

345 Naloxegol for treating opioid-induced constipation Other constipation N N - N na - 

343 Obinutuzumab in combination with chlorambucil for 
untreated chronic lymphocytic leukaemia 

Oncology leukaemia N N - N na - 
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342 Vedolizumab for treating moderately to severely active 
ulcerative colitis 

Autoimmune UC N N - N na - 

341 Apixaban for the treatment and secondary prevention of 

deep vein thrombosis and/or pulmonary embolism 

Cardiovascular 

disease 

TE N N - N na - 

340 Ustekinumab for treating active psoriatic arthritis Autoimmune psoriasis N N - Y na - 

336 Empagliflozin in combination therapy for treating 

type 2 diabetes 

Diabetes mellitus DM N N - N na - 

335 Rivaroxaban for preventing adverse outcomes after acute 

management of acute coronary syndrome 

Cardiovascular 

disease 

ACS N N - N na - 

333 Axitinib for treating advanced renal cell carcinoma after 

failure of prior systemic treatment 

Oncology RCC N N - N na - 

329 Infliximab, adalimumab and golimumab for treating 

moderately to severely active ulcerative colitis after the 
failure of conventional therapy 

Autoimmune UC N - N N (AbbVie, MSD) - Y 

327 Dabigatran etexilate for the treatment and secondary 

prevention of deep vein thrombosis and/or pulmonary 
embolism 

Cardiovascular 

disease 

TE N N N Y na - 

326 Imatinib for the adjuvant treatment of gastrointestinal 

stromal tumours 

Oncology GIST N N - Y na - 

325 Nalmefene for reducing alcohol consumption in people with 
alcohol dependence 

Other alcohol 
dependence 

N N - N na - 

322 Lenalidomide for treating myelodysplastic syndromes 

associated with an isolated deletion 5q cytogenetic 

abnormality 

Oncology MDS N N - N na - 

321 Dabrafenib for treating unresectable or metastatic 

BRAF V600 mutation-positive melanoma 

Oncology melanoma N N - N na - 

320 Dimethyl fumarate for treating relapsing-remitting multiple 
sclerosis 

Autoimmune MS N N - N na - 

319 Ipilimumab for previously untreated advanced (unresectable 

or metastatic) melanoma 

Oncology melanoma Y Y - Y na - 

316 Enzalutamide for metastatic hormone-relapsed prostate 
cancer previously treated with a docetaxel-containing 

regimen 

Oncology prostate cancer N N - N na - 

315 Canagliflozin in combination therapy for treating type 2 

diabetes 

Diabetes mellitus DM N N - Y na - 

312 Alemtuzumab for treating relapsing-remitting multiple 

sclerosis 

Autoimmune MS N N - N na - 

311 Bortezomib for induction therapy in multiple myeloma 

before high-dose chemotherapy and autologous stem cell 
transplantation 

Oncology MM N N - Y na - 

310 Afatinib for treating epidermal growth factor receptor 

mutation-positive locally advanced or metastatic non-small-
cell lung cancer 

Oncology NSCLC N N - N na - 

308 Rituximab in combination with glucocorticoids for treating 

anti-neutrophil cytoplasmic antibody-associated vasculitis 

Autoimmune ANCA-associated 

vasculitis 

Y Y - Y na - 

307 Aflibercept in combination with irinotecan and fluorouracil-
based therapy for treating metastatic colorectal cancer that 

Oncology colorectal cancer N N - Y na - 
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has progressed following prior oxaliplatin-based 
chemotherapy 

306 Pixantrone monotherapy for treating multiply relapsed or 

refractory aggressive non-Hodgkin's B-cell lymphoma 

Oncology lymphoma N N - Y na - 

305 Aflibercept for treating visual impairment caused by 
macular oedema secondary to central retinal vein occlusion 

Other visual impairment N N - N na - 

303 Teriflunomide for treating relapsing–remitting multiple 

sclerosis 

Autoimmune MS N N - N na - 

300 Peginterferon alfa and ribavirin for treating chronic 

hepatitis C in children and young people 

Infectious disease hepatitis C N N - N  - N 

298 Ranibizumab for treating choroidal neovascularisation 

associated with pathological myopia 

Other CNV N N - N na - 

297 Ocriplasmin for treating vitreomacular traction Other VMT N N - N na - 

294 Aflibercept solution for injection for treating wet age-related 

macular degeneration 

Other AMD N N - N na - 

293 Eltrombopag for treating chronic immune (idiopathic) 

thrombocytopenic purpura 

Autoimmune ITP Y Y - Y na - 

292 Aripiprazole for treating moderate to severe manic episodes 

in adolescents with bipolar I disorder 

Neurology/mental 

health 

bipolar disorder Y Y - Y na - 

290 Mirabegron for treating symptoms of overactive bladder Other overactive bladder N N - Y na - 

288 Dapagliflozin in combination therapy for treating type 2 
diabetes 

Diabetes mellitus DM N N - Y na - 

285 Bevacizumab in combination with gemcitabine and 

carboplatin for treating the first recurrence of platinum-
sensitive advanced ovarian cancer 

Oncology ovarian cancer N N - N na - 

284 Bevacizumab in combination with paclitaxel and carboplatin 

for first-line treatment of advanced ovarian cancer 

Oncology ovarian cancer N N - N (Eli Lilly, PharmaMar) - N 

276 Colistimethate sodium and tobramycin dry powders for 
inhalation for treating pseudomonas lung infection in cystic 

fibrosis 

Other cystic fibrosis N N - N (Novartis) - N 

275 Apixaban for preventing stroke and systemic embolism in 

people with nonvalvular atrial fibrillation 

Cardiovascular 

disease 

TE N N - N na - 

274 Ranibizumab for treating diabetic macular oedema Other DMO N N - N  na - 

269 Vemurafenib for treating locally advanced or metastatic 

BRAF V600 mutation-positive malignant melanoma 

Oncology melanoma N N - N  na - 

268 Ipilimumab for previously treated advanced (unresectable or 

metastatic) melanoma 

Oncology melanoma N N - N  na - 

266 Mannitol dry powder for inhalation for treating cystic 

fibrosis 

Other cystic fibrosis N N - N  na - 

263 Bevacizumab in combination with capecitabine for the first-
line treatment of metastatic breast cancer 

Oncology breast cancer  N N - N  na - 

260 Botulinum toxin type A for the prevention of headaches in 

adults with chronic migraine 

Neurology/mental 

health 

migraine N N - N  na - 

259 Abiraterone for castration-resistant metastatic prostate 
cancer previously treated with a docetaxel-containing 

regimen 

Oncology prostate cancer N N - N  na - 
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TA Title Disease Area Disease Listed at least two treatment sequences for 

comparison 

Employ a de novo model with treatment-

sequencing structure 

CS ERG 

reports 

AG 

reports 

CS ERG* 

reports 

AG 

reports 

257 Lapatinib or trastuzumab in combination with an aromatase 
inhibitor for the first-line treatment of metastatic hormone-

receptor-positive breast cancer that overexpresses HER2 

Oncology breast cancer  N (Roche, GSK) N - N (Roche, GSK) - N 

256 Rivaroxaban for the prevention of stroke and systemic 
embolism in people with atrial fibrillation 

Cardiovascular 
disease 

TE N N - Y na - 

254 Fingolimod for the treatment of highly active relapsing–

remitting multiple sclerosis 

Autoimmune MS N N - N na - 

249 Dabigatran etexilate for the prevention of stroke and 
systemic embolism in atrial fibrillation 

Cardiovascular 
disease 

TE Y Y - Y na - 

247 Tocilizumab for the treatment of rheumatoid arthritis Autoimmune RA N N - Y na - 

243 Rituximab for the first-line treatment of stage III-IV 

follicular lymphoma 

Oncology lymphoma N N - Y na - 

242 Cetuximab, bevacizumab and panitumumab for the 
treatment of metastatic colorectal cancer after first-line 

chemotherapy: Cetuximab (monotherapy or combination 

chemotherapy), bevacizumab (in combination with non-
oxaliplatin chemotherapy) and panitumumab (monotherapy) 

for the treatment of metastatic colorectal cancer after first-

line chemotherapy 

Oncology colorectal cancer N (Merck, Roche, 
Amgen) 

- N N (Merck, Roche, 
Amgen) 

- N 

239 Fulvestrant for the treatment of locally advanced or 

metastatic breast cancer 

Oncology breast cancer  N N - N na - 

238 Tocilizumab for the treatment of systemic juvenile 
idiopathic arthritis 

Autoimmune JIA Y Y - Y na - 

228 Bortezomib and thalidomide for the first-line treatment of 

multiple myeloma 

Oncology MM N (Janssen-Cilag, 

Celgene) 

- N N (Janssen-Cilag, 

Celgene) 

- N 

227 Erlotinib monotherapy for maintenance treatment of non-
small-cell lung cancer 

Oncology NSCLC N N - N na - 

226 Rituximab for the first-line maintenance treatment of 

follicular non-Hodgkin's lymphoma 

Oncology lymphoma N N - Y na - 

225 Golimumab for the treatment of rheumatoid arthritis after 
the failure of previous disease-modifying anti-rheumatic 

drugs 

Autoimmune RA Y Y - Y na - 

223 Cilostazol, naftidrofuryl oxalate, pentoxifylline and inositol 

nicotinate for the treatment of intermittent claudication in 
people with peripheral arterial disease 

Cardiovascular 

disease 

TE N (Otsuka) N - na (Otsuka) - N 

220 Golimumab for the treatment of psoriatic arthritis Autoimmune psoriasis N N - N N - 

217 Donepezil, galantamine, rivastigmine and memantine for the 

treatment of Alzheimer's disease 

Neurology/mental 

health 

Alzheimer's 

disease 

N (Lundbeck, Eisai-

Pfizer) 

- N N (Lundbeck, Eisai-

Pfizer) 

- N 

216 Bendamustine for the first-line treatment of chronic 

lymphocytic leukaemia 

Oncology leukaemia N N - Y na - 

215 Pazopanib for the first-line treatment of advanced renal cell 

carcinoma 

Oncology RCC N N - N na - 

214 Bevacizumab in combination with a taxane for the first-line 

treatment of metastatic breast cancer 

Oncology breast cancer  N N - N N - 

213 Aripiprazole for the treatment of schizophrenia in people 

aged 15 to 17 years 

Neurology/mental 

health 

schizophrenia N N - Y na - 
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TA Title Disease Area Disease Listed at least two treatment sequences for 

comparison 

Employ a de novo model with treatment-

sequencing structure 

CS ERG 

reports 

AG 

reports 

CS ERG* 

reports 

AG 

reports 

212 Bevacizumab in combination with oxaliplatin and either 
fluorouracil plus folinic acid or capecitabine for the 

treatment of metastatic colorectal cancer 

Oncology colorectal cancer N N - N na - 

210 Clopidogrel and modified-release dipyridamole for the 
prevention of occlusive vascular events 

Cardiovascular 
disease 

TE N(Boehringer-
Ingelheim, Sanofi-

BMS) 

- N N (Boehringer-
Ingelheim, Sanofi-BMS) 

- N 

209 Imatinib for the treatment of unresectable and/or metastatic 

gastrointestinal stromal tumours 

Oncology GIST N N - na Y - 

199 Etanercept, infliximab and adalimumab for the treatment of 

psoriatic arthritis 

Autoimmune psoriasis N (Abbot, Schering-

Plough, Wyeth) 

- N N (Abbot, Schering-

Plough, Wyeth) 

- N  Y 

(explorator

y analysis) 

197 Dronedarone for the treatment of non-permanent atrial 
fibrillation 

Cardiovascular 
disease 

AF N N  Y na - 

195 Adalimumab, etanercept, infliximab, rituximab and 

abatacept for the treatment of rheumatoid arthritis after the 
failure of a TNF inhibitor 

Autoimmune RA Y (Abbot, Wyeth, 

Schering-Plough, 
Roche, BMS) 

- Y Y (Abbot, Wyeth, 

Schering-Plough, Roche, 
BMS) 

- Y 

193 Rituximab for the treatment of relapsed or refractory chronic 

lymphocytic leukaemia 

Oncology leukaemia N N - N na - 

190 Pemetrexed for the maintenance treatment of non-small-cell 
lung cancer 

Oncology NSCLC N N - N na - 

187 Infliximab and adalimumab for the treatment of Crohn's 

disease 

Autoimmune Crohn's disease N(Schering-Plough, 

Abbot) 

- N N (Schering-Plough, 

Abbot) 

- N 

183 Topotecan for the treatment of recurrent and stage IVB 

cervical cancer 

Oncology cervical cancer N N - N na - 

181 Pemetrexed for the first-line treatment of non-small-cell 

lung cancer 

Oncology NSCLC N N - N na - 

180 Ustekinumab for the treatment of adults with moderate to 
severe psoriasis 

Autoimmune psoriasis N N - N na - 

178 Bevacizumab (first-line), sorafenib (first- and second-line), 

sunitinib (second-line) and temsirolimus (first-line) for the 
treatment of advanced and/or metastatic renal cell carcinoma 

Oncology RCC N (Pfizer, Roche, 

Wyeth, Bayer)  

N - N (Pfizer, Roche, Wyeth, 

Bayer)  

- N 

174 Rituximab for the first-line treatment of chronic lymphocytic 

leukaemia 

Oncology leukaemia N N - N na - 

173 Tenofovir disoproxil for the treatment of chronic hepatitis B Infectious disease hepatitis B Y Y - Y na - 

171 Lenalidomide for the treatment of multiple myeloma in 
people who have received at least 2 prior therapies 

Oncology MM N N - N na - 

169 Sunitinib for the first-line treatment of advanced and/or 

metastatic renal cell carcinoma 

Oncology RCC N (Pfizer, Roche, 

Wyeth, Bayer)  

N - N (Pfizer, Roche, Wyeth, 

Bayer)  

- N 

164 Febuxostat for the management of hyperuricaemia in people 
with gout 

Other gout N N - N na - 

161 Raloxifene and teriparatide for the secondary prevention of 

osteoporotic fragility fractures in postmenopausal women 

Other osteoporosis N (Servier) - N N (Servier) - N 

154 Telbivudine for the treatment of chronic hepatitis B Infectious disease hepatitis B Y Y - Y Y - 

153 Entecavir for the treatment of chronic hepatitis B Infectious disease hepatitis B N N - N na - 

146 Adalimumab for the treatment of adults with psoriasis Autoimmune psoriasis N N - Y na - 
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TA Title Disease Area Disease Listed at least two treatment sequences for 

comparison 

Employ a de novo model with treatment-

sequencing structure 

CS ERG 

reports 

AG 

reports 

CS ERG* 

reports 

AG 

reports 

138 Inhaled corticosteroids for the treatment of chronic asthma 
in adults and in children aged 12 years and over 

Other asthma N N - Y na - 

137 Rituximab for the treatment of relapsed or refractory stage 

III or IV follicular non-Hodgkin's lymphoma 

Oncology lymphoma Y Y - Y N - 

134 Infliximab for the treatment of adults with psoriasis Autoimmune psoriasis N N - Y na - 

121 Carmustine implants and temozolomide for the treatment of 

newly diagnosed high-grade glioma 

Other glioma N N - Y na - 

119 Fludarabine monotherapy for the first-line treatment of 

chronic lymphocytic leukaemia 

Oncology leukaemia N N - Y na - 

118 Bevacizumab and cetuximab for the treatment of metastatic 

colorectal cancer 

Oncology colorectal cancer N N - N na - 

116 Gemcitabine for the treatment of metastatic breast cancer Oncology breast cancer  N N - N  na - 

103 Etanercept and efalizumab for the treatment of adults with 
psoriasis 

Autoimmune psoriasis N (Wyeth, Serono) Y - Details unavailable 
(Wyeth, Serono) 

- Y 

101 Docetaxel for the treatment of hormone-refractory 

metastatic prostate cancer 

Oncology prostate cancer N N - N  na - 

100 Capecitabine and oxaliplatin in the adjuvant treatment of 
stage III (Dukes' C) colon cancer 

Oncology colorectal cancer N N - N  na - 

96 Adefovir dipivoxil and peginterferon alfa-2a for the 

treatment of chronic hepatitis B 

Infectious disease hepatitis B N N - N  na - 

82 Tacrolimus and pimecrolimus for atopic eczema Other eczema N N - N  na - 

70 Guidance on the use of imatinib for chronic myeloid 
leukaemia 

Oncology leukaemia N N - N na - 

55 Guidance on the use of paclitaxel in the treatment of ovarian 

cancer 

Oncology ovarian cancer N N - N  na - 

52 Guidance on the use of drugs for early thrombolysis in the 

treatment of acute myocardial infarction 

Cardiovascular 

disease 

ACS N N - N  na - 

34 Guidance on the use of trastuzumab for the treatment of 

advanced breast cancer 

Oncology breast cancer  N N - N  na - 

23 Guidance on the use of temozolomide for the treatment of 

recurrent malignant glioma (brain cancer) 

Other glioma N N - N  na - 

AAA: AAA Pharma, ACS: acute coronary syndrome (including myocardial infarction), ADPKD: autosomal dominant polycystic kidney disease, AG: Assessment Group reports, AMD: age-

related macular degeneration, AZ: AstraZeneca, BMS: Bristol Myers Squibb, C. diff : Clostridium difficile, CNV: choroidal neovascularisation, COPD: chronic obstructive pulmonary 

disease, CS: company submissions, DM: diabetes mellitus, DMO: diabetic macular oedema, DSU: NICE Decision Support Unit, ERG: Evidence Review Group reports, FAD: Final Appraisal 

Determination document, GIST: gastrointestinal stromal tumour, GSK: GlaxoSmithKline, HCC: hepatocellular carcinoma, HF: heart failure: HNC: head and neck cancer, IPF: idiopathic 

pulmonary fibrosis, ITP: immune thrombocytopenia, JIA: juvenile arthritis, LSCD: limbal stem cell deficiency, MM: multiple myeloma, MS: multiple sclerosis, MSD: Merck Sharp & 

Dohme, NETs: neuroendocrine tumours, NSCLC: non-small cell lung cancer, RA: rheumatoid arthritis, RCC: renal cell carcinoma, SCLC: small cell lung cancer, SHE: TA: technology 

appraisals, TE: thromboembolism, UC: ulcerative colitis, UCB: Union Chimique Belge, WM: Waldenstrom macroglobulinemia.
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Appendix 3.4 Details of treatment-sequence comparisons in Part B of the NICE Technology Appraisal (TA) systematic review in Chapter 3 

For single and fast-track TAs (STA & FTA), treatment-sequencing comparisons were primarily extracted from CS reports, with relevant alternative 

sequences from ERG's sensitivity analyses also extracted. In the case of multiple TAs (MTA), sequencing comparisons from CS and AG reports were 

detailed separately, with the source for each comparison specified in parentheses beside after the TA number. 

TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

Oncology       

408 

(CS) 

Acute 

lymphoblasti

c leukaemia 

(ALL) 

Yes First-line and second-

line in the model 

(newly diagnosed ALL) 

life time 

horizon (5-year 

in decision tree) 

Decision tree 

+ Markov 

model 

General treatment sequences in the decision tree model for adult 

(26-65 years) and paediatric patients (≤ 25 years): 

o Pegaspargase > Erwinase   

o Native E.coli asparaginase > Erwinase 

o Erwinase > pegaspargase 

o Erwinase > native E.coli asparaginase 

 

(Treatment switches occur in case of hypersensitivity to the 

first-line treatment) 

Decision tree (5-year treatment phase): 

First-line treatment > (potential SCT in adults) > 

Second-line treatment > enter Markov model 

(experiencing OS and EFS outcomes) 

 

Survival extrapolation in Markov model (paediatric):  

EFS > Survival with relapse/secondary tumour (R/ST) > 

Death (OS) 

 

Survival extrapolation in Markov model (adult):  

Alive > Death (OS) 

 

Assumption:  

(1) Only patients in the EFS state continue to receive 

asparaginase treatments 

(2) Asparaginase treatment is ceased in adult patients 

once they receive a transplant 

(3) Pegaspargase, native asparaginase and Erwinase 

are equivalent in terms of OS and EFS. That is, all 

outcomes of interest are experienced during the 

treatment phase.  

EFS and OS are equivalent in adult patients 

426 

(CS/ERG) 

(CDF review of 

MTA 251 for 

dasatinib) 

Chronic 

myeloid 

leukemia 

No (cost-comparison 

analyses in TA 426) 

 

Yes (BMS, Novartis 

and AG model in TA 

251) 

First-line setting Unspecified 

 

(likely to be 

life-time) 

Unspecified 

 

(TA 426: 

cost-

comparison 

analysis) 

 

(TA 251: 

likely to be 

Markov 

model or 

partitioned 

survival 

model) 

Treatment sequences in AG report in TA 251: 

o Dasatinib --> nilotinib --> SCT/HU 

o Imatinib --> nilotinib --> SCT/HU  

o Nilotinib --> imatinib --> SCT/HU 

o Dasatinib --> imatinib --> SCT/HU 

 

Further exploratory treatment sequences suggested by the DSU 

in TA425 (dasatinib is available as later-line treatment since TA 

241), no analysis were performed:  

o Nilotinib --> dasatinib --> SCT/HU 

o Imatinib --> dasatinib --> SCT/HU 

o Nilotinib --> dasatinib --> imatinib --> SCT/HU 

o Dasatinib --> nilotiinib --> imatinib --> SCT/HU 

o Imatinib --> nilotiinib --> dasatinib --> SCT/HU 

o Imatinib --> dasatinib --> nilotiinib --> SCT/HU 

o Nilotinib --> imatinib --> dasatinib --> SCT/HU 

o Dasatinib --> imatinib --> nilotiinib --> SCT/HU 

TA 426: X (no economic model) The company 

performed scenario cost-comparison analysis without 

treatment sequences. 

 

Original TA 251: Lacking access to the original report 

137 

(CS) 

Follicular 

non-

Hodgkin's 

lymphoma 

Yes Second-line treatment: 

Rituximab use in either 

or both induction and 

maintenance phase in 

Life-time (30 

years) 

Markov 2-arm model: assessing rituximab a maintenance treatment. 

Patients had previous complete or partial remission of at least a 

4-week duration of CHOP +/- rituximab induction treatment. 

o rituximab maintenance 

o observation 

4-arm model: 

PFS (induction phase)> PFS (maintenance phase) > PPS 

> death 

or 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

treating relapse or 

refractory disease  

 

4-arm model: assessing whether the use of rituximab as an 

induction therapy in addition to maintenance therapy is cost 

effective (i.e. induction treatment > maintenance treatment) 

o R-CHOP > rituximab maintenance 

o R-CHOP > observation 

(A proportion of patients were ineligible for 

maintenance after R-CHOP induction based on outcome 

of induction in the above two sequences) 

o CHOP > rituximab maintenance 

o CHOP > observation 

(A proportion of patients were ineligible for maintenance after 

CHOP induction based on outcome of induction in the above 

two sequences) 

PFS (induction phase)> PFS (not in 

induction/maintenance phase) > PPS > death 

 

462 

(CS) 

Hodgkin 

Lymphonma 

No  

(Yes in scenario 

analysis) 

First-line in relapsed or 

refractory HL  

(later-line in the 

treatment pathway: 

after chemotherapy and 

brentuximab with or 

without ASCT) 

Life-time (40 

years) 

 

Scenario 

analysis: 5-year, 

10-year, 20-

year 

Semi-

Markov 

model 

Base-case (using pivotal trial survival data with sequence 

representing clinical practice, so it was not seen in the model 

structure): 

o Nivolumab -> BSC (chemotherapy, PAL, clinical trials) 

o Standard of care (survival curve: Cheah 2016; costs: 

bendamustine, BTX re-treatment, chemotherapy) > BSC 

 

Scenario analysis: 

o Nivolumab -> alloSCT> BSC 

o Standard of care > alloSCT > BSC 

PFS -> PPS -> death 

(PFS and OS data implicitly include the effects of any 

subsequent treatment that may have been administered, 

the need to explicitly incorporate the effects of these 

subsequent treatments is negated) 

 

Amendment to model diagram: 

Progression free -> (scenario analysis: progression free 

with subsequent line) -> post-progression with 

subsequent line -> death 

319 

(CS) 

Malignant 

melanoma 

Yes First-line (or second-

line setting as salvage 

therapy in comparator 

arm) 

Life-time (40 

years) 

 

Scenario 

analysis: 10-, 

20-, 30-year 

Semi-

Markov 

partitioned 

survival 

model 

BRAF V600 mutation-genative pateints: 

o Ipilimumab > BSC > BSC 

o Dacarbazine > Ipilimumab > BSC 

 

BRAF V600 mutation-positive pateints: 

o Ipilimumab > vemurafenib > BSC 

o Vemurafenib > Ipilimumab > BSC 

o Dacarbazine > Ipilimumab > BSC 

Senario analysis: no active second-line treatments 

First-line treatment > second-line treatment > Third-line 

treatment (> palliative care) > death 

 

Indirect transition to palliative care before death: a 

proportion of patients may receive 3 months palliative 

care before death from any lines of treatment. 

377 

(CS) 

Prostate 

cancer 

Yes First-line treatment (for 

metastatic hormone 

resistant prostate 

cancer (mHRPC) 

Life-time (10 

years) 

Markov 

model 

Base-case: 

o Enzalutamide > docetaxel > palliative 

o BSC > docetaxel > enzalutamide > palliative 

o Abiraterone > docetaxel > palliative 

 

Company scenario analysis: 

o BSC > docetaxel > abieraterone > palliative 

 

ERG base-case: 

o Enzalutamide > docetaxel > abiraterone > palliative 

o Abiraterone > docetaxel > enzalutam ide > palliative 

o BSC > docetaxel > enzalutamide > palliative 

o BSC > docetaxel > abiraterone > palliative 

Stable disease: first-line treatment > progressed disease 

(post-progression 1: second-line treatment > post 

progression 2: third-line treatment* > palliative care) > 

Death  

 

*only exists in the BSC first-line treatment arm 

580 

(CS) 

Prostate 

cancer 

Yes First-line treatment in 

non-metastatic 

hormone-relapse 

prostate cancer 

Life-time (20 

years) 

Partitioned 

survival 

(PFS/OS) +  

Markov 

model 

(Within PPS) 

 

 

 

o Enzalutamide > ADT > ADT alone (60%), docetaxel 

(40%) > BSC 

o ADT >  Enzalutamide (scenario analysis: abiraterone) > 

ADT alone (60%), docetaxel (40%) > BSC 

nmHRPC > mHRPC (PD1(pre-chemo) > PD2(chemo) > 

PD3(post-chemo)) > Death  
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

Autoimmune 

308 

(CS) 

ANCA-

associated 

vasculitis 

Yes First-line induction 

therapy (later-line in 

sensitivity analysis) 

Life-time Markov Company’s base-case of “all-patient”, “treatment-naïve” and 

“recurrent disease” subgroups: 

o Rituximab 1 (> rituximab 2*) > cyclophosphamide (> 

AZA maintenance treatment) 

o Cyclophosphamide 1 > cyclophosphamide 2 (> AZA 

maintenance treatment) 

 

* The second course of RTX is only offered to patients who did  

not respond at all to the first course. Moreover, its efficacy is 

assumed  

to be lower. In this model, patients moved on to 

cyclophosphamide as the second-line induction therapy (in all 

treatment sequence comparators), if they did not achieve 

remission or relapse. Patients who achieve remission after a 

first-line rituximab induction received no further treatment until 

relapse, while patients achieved remission after first-line 

cyclophosphamide received azathioprine as maintenance 

therapy. 

 

ERG’s proposed analysis of “all patient” & “treatment-naïve” 

subgroups:  

o cyclophosphamide > cyclophosphamide > supportive 

care 

o cyclophosphamide > RTX > cyclophosphamide > 

supportive care 

o cyclophosphamide > cyclophosphamide > RTX > 

supportive care 

o RTX > cyclophosphamide > cyclophosphamide > 

supportive care 

 

ERG’s proposed analysis of the “recurrent disease” subgroup:  

o cyclophosphamide > supportive care 

o supportive care 

o cyclophosphamide > RTX > supportive care 

o RTX > cyclophosphamide > supportive care 

o RTX > supportive care 

Non-remission (induction treatment first (+ second 

second) course)> complete remission > uncontrolled 

disease  (treatment after release +/- maintenance 

treatment) > death 

293 

(CS) 

Chronic 

Immune 

thrombocyto

penic purpura 

Yes First-line (second- or 

later-line treatment in 

sensitivity analysis) 

Life-time Markov Base-case (assumed patients receiving RTX prior to TPO-RA): 

o Eltrombopag > non TPO-RA pathway 

o Romiplostim > non TPO-RA pathway  

o Non TPO-RA pathway (azathioprine > mycophenolate  

mofetil > CYC > danazol > dapasone > 

cyclophosphamide > vincristine o> vinblastine > rescue 

as required)  

 

Alternative treatment sequences in sensitivity analyses: 

o RTX > non TPO-RA pathway 

o Eltrombopag > RTX > non TPO-RA pathway (in line 

with TA221) 

o Romiplostim > RTX > TPO-RA pathway (in line with 

TA221) 

o Eltrombopag 

o Romiplostim 

o RTX > non TPO-RA pathway 

o Eltrombopag > non TPO-RA pathway 

(start a new treatment) Non-responder (cycle 1) > non-

responder week (cycle 2) > non-responder week (cycle 

3)  > non-responder week (cycle 4) > responder > long-

term non-responder > (go to a new treatment) 

 

 

 

A patient can go to the “responder” from any short-term 

non-responder state. Patients can die from general 

causes or from ITP-related death in any health state. 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

o Romiplostim > non TPO-RA pathway  

o Non TPO-RA pathway > Eltrombopag (before rescue 

treatment) 

o Non TPO-RA pathway > Romiplostim   (before rescue 

treatment) 

238 

(CS) 

Juvenile 

Idiopathic 

Arthritis 

Yes First-line (after IR of 

NSAIDs/corticosteroid

s) 

Life-time Markov Base-case 1 (MTX scenario): 

o TCZ > anakinra > ETN > ADA 

o MTX > anakinra > ETN > ADA 

 

Base-case 2 (anakinra scenario): 

o TCZ > ETN > ADA > ABA 

o anakinra > ETN > ADA > ABA 

 

Sensitivity analysis (entercept scenario): 

o TCZ > anakinra > ADA > ABA 

o ETN > anakinra > ADA > ABA 

 

Scenario analysis: 

o Use one treatment only 

o Use two treatments only 

o Use three treatments only 

 

Company’s revised analysis 1: 

TCZ > INF 

INF > TCZ 

Infliximab anlone 

 

Company’s revised analysis 2: 

TCZ > anakinra 

Anakinra > TCZ 

Anakinra alone 

 

ERG’s scenario analysis including infliximab in the sequence: 

o TCZ > anakinra > INF > ABA 

o anakinra > INF > ADA > ABA 

o INF > ETN > ADA > ABA 

First-line treatment (ACR response 30, 50, 70, 90, no 

response) > second-line treatment (ACR response 30, 

50, 70, 90, no response) > third-line treatment (ACR 

response 30, 50, 70, 90, no response) > fourth-line 

treatment (ACR response 30, 50, 70, 90, no response) > 

death 

103 

(AG)  

 

(Two CS from 

Wyeth and 

Serono did not 

compare 

treatment 

sequences, but 

only the AG 

report.) 

Psoriatic 

arthritis  

Yes First-line (after non-

biologic systemic 

treatment) 

Life-time Markov Base-case*: 

o ETN 25 mg  

o ETN 25 mg continuous 

o ETN 50 mg 

o Efalizumab 

o Supportive care 

 

Each treatment was compared to supportive care separately, and 

a threshold analysis testing at whether a treatment sequence 

including any other agent may be cost-effective at different 

level of willingness to pay (WTP) threshold. The AG claimed 

that their test provide potential ordering that patients trying 

different agents, but not strictly specify what treatment 

sequence is optimal. For example, in the base-case a single-line 

of supportive care was deemed to be the most cost-effective 

option when WTP threshold at 65000. However, the sequence 

including ETN 25 mg > supportive care becomes the most cost-

effective option when the WTP threshold is above 70000. 

Below are treatment sequences identified to be the most cost-

effective option at least once under different scenarios  

First-line treatment  > (yes/no response) > Second-line 

treatment > (yes/no response) > third-line treatment > 

(yes/no response)  >  fourth-line treatment > (yes/no 

response)  > fifth-line treatment > (yes/no response)  >  

sixth-line treatment > (yes/no response)  >  seventh-line 

treatment > (yes/no response)  > eighth treatment > 

(yes/no response)  > death 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

 

Alternative scenario 1 (4th-quartile DLQI at baseline): 

o ETN 25 mg > ETN 25 mg continuous > efalizumab > 

ETN 50 mg > Supportive care 

o ETN 25 mg > ETN 25 mg continuous > efalizumab > 

Supportive care 

o ETN 25 mg > Supportive care 

o Supportive care 

 

Alternative scenario 2 (any DLQI at baseline, annual in-patient 

hospitalisation when not responding to therapy): 

o ETN 25 mg > ETN 25 mg continuous > efalizumab > 

Supportive care 

o ETN 25 mg > Supportive care 

o Supportive care 

 

Alternative scenario 3 (4th-quartile DLQI at baseline, annual in-

patient hospitalisation when not responding to therapy): 

o ETN 25 mg > ETN 25 mg continuous > efalizumab > 

ETN 50 mg > Supportive care 

o ETN 25 mg > ETN 25 mg continuous > efalizumab > 

Supportive care 

o ETN 25 mg > Supportive care 

o Supportive care 

 

Alternative scenario 4 (comparison of biologics with other 

systemic therapies (patients with any baseline DLQI and 

assumption that non-responding patients are hospitalised for 21 

days per year): 

o MTX > CYC > Funaderm > SC 

o MTX > CYC > Funaderm > ETN 25 mg > SC 

o MTX > CYC > Funadem > ETN 25 mg > ETN 25 mg 

continuous > efalizumab > SC 

o MTX > CYC > Funadem > ETN 25 mg > ETN 25 mg 

continuous > efalizumab > IFX > SC 

419 

(CS, this 

submission 

was for a PAS 

review of 

TA368) 

Psoriatic 

arthritis  

Yes First-line (after non-

biologic systemic 

treatment) 

10-year  

 scenario 

analysis: 1-year, 

5-year, 40-year 

Markov Base-case:  

o APR > ADA > ETN > BSC 

o ADA > ETN > BSC 

 

Scenario analysis 1 (alternative biologic treatment sequence):  

o APR > ADA > UST> BSC 

o ADA > UST > BSC 

 

Scenario analysis 2 (alternative biologic treatment sequence 

length, 1 biologic in the sequence): 

o APR > ADA > BSC 

o ADA > BSC 

 

Scenario analysis 3 (alternative biologic treatment sequence 

length, 3 biologics in the sequence): 

o APR > ADA > ETN > UST > BSC 

o ADA > ETN > UST > BSC 

 

Scenario analysis 4 (changing the position of apremilast, pre-

biologic versus post-biologic): 

o APR > ADA > ETN > BSC 

Model details unavailable (original TA 368 is no longer 

available) 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

o ADA > ETN > APR > BSC 

 

ERG’s scenario analyses (each treatment versus BSC): 

o APR > BSC versus BSC 

o ADA > BSC versus BSC 

o ETN > BSC versus BSC 

o UST > BSC versus BSC 

433 

(CS, PAS 

review of TA 

372) 

Psoriatic 

arthritis  

Yes First-line (after non-

biologic systemic 

treatment) 

40-year  

 scenario 

analysis: 1-year, 

5-year, 10-year 

Markov Base-case (APR strategy versus ADA strategy):  

o APR > ADA > ETN > BSC 

o ADA > ETN > GOL > BSC 

 

Scenario analysis 1 (APR versus ADA):  

o APR > BSC 

o ADA > BSC 

 

Scenario analysis 2 (comparison of 4-treatment strategies):  

o APR > ADA > ETN > GOL > BSC 

o ADA > ETN > GOL > IFX > BSC 

 

Scenario analysis 3 (Pair-wise comparisons of single-treatment 

strategy):  

o APR > BSC versus ADA > BSC 

o APR > BSC versus ETN > BSC 

o APR > BSC versus GOL > BSC 

o APR > BSC versus IFX > BSC 

 

Scenario analysis 4 (fully incremental analysis of single-

treatment strategies): 

o APR 

o ADA 

o ETN 

o GOL 

o IFX 

o BSC 

 

Scenario analysis 5 (fully incremental analysis of 3-treatment 

strategies) (not an exhaustive list due to too many plausible 

treatment sequences:  

o APR > ADA > UST 

o ADA > UST > ETN 

o APR > ADA > ETN 

o ADA > UST > GOL 

o APR > ADA > GOL 

o APR > ETN > UST 

o ADA > ETN > UST 

o APR > ETN > ADA 

o APR > GOL > UST 

o ADA > GOL > UST 

o ETN > UST > ADA 

o ETN > ADA > UST 

o GOL > UST > ADA 

o GOL > ADA > UST 

o ADA > ETN > GOL  

o ADA > GOL > ETN  

o APR > ETN > GOL  

o ETN > UST > GOL  

Model details unavailable (original TA 372 is no longer 

available) 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

o APR > GOL > ETN 

o GOL > UST > ETN 

o ETN > ADA > GOL 

o GOL > ADA > ETN 

o ETN > GOL > UST 

o GOL > ETN > UST 

o ETN > GOL > ADA 

o GOL > ETN > ADA 

o ADA > UST > IFX 

442 

(CS) 

Psoriatic 

arthritis  

Yes First-line (after non-

biologic systemic 

treatment) 

Life-time (45 

year) 

 scenario 

analysis: 10-

year 

Markov Base-case: 

o IXE > UST 90 mg > IFX > BSC 

o ADA > UST 90 mg > IFX > BSC 

o ETN 50 mg > UST 90 mg > IFX > BSC 

o IFX > UST 90 mg > ADA > BSC 

o SEC > UST 90 mg > IFX > BSC 

o UST 90 mg > ADA > IFX > BSC 

o UST 45 mg > ADA > IFX > BSC 

 

Scenario analysis 1:  

o ADA > IXE > IFX > BSC 

o ADA > SEC > IFX > BSC 

o ADA > UST 45 mg > IFX > BSC 

o ADA > UST 90 mg > IFX > BSC 

 

Scenario analysis 2  

o ETN 50 mg 

o ADA 

o UST 45 mg 

o IXE Q2W 

o UST 90 mg 

o IFX 

o SEC 300 mg 

 

Scenario analysis 3 

o MTX 

o CYC 

o BSC 

o IXE Q2W 

[First-line treatment (trial period month 1 > trial period 

month 2 > trial period month 3 > maintenance)]x > 

[Second-line treatment (trial period month 1 > trial 

period month 2 > trial period month 3 > maintenance)] > 

[Third-line treatment (trial period month 1 > trial period 

month 2 > trial period month 3 > maintenance)] > BSC 

> death  

 

Adapted from York model 

445 

(AG) 

 

(The AG 

summary of 

CS were only 

extracted for 

UCB 

submission, 

but not 

Novartis 

(because 

Novartis 

submission did 

not comparing 

treatment 

sequences)) 

Psoriatic 

arthritis  

Yes First-line in the model Life-time (40 

years) 

Markov 

(York model: 

TA199) 

Biologics-naïve (one prior cDMARD) 

o SEC > ETN > UST > BSC 

o CZP > ETN > UST > BSC 

o BSC 

 

Biologics-naïve (≥ 2 prior DMARDs) 

o SEC > UST > BSC 

o CZP > UST > BSC 

o ADA > UST > BSC 

o ETN > UST > BSC 

o IFX  > UST > BSC 

o GOL > UST > BSC 

o BSC 

 

Biologic experienced or contraindicated 

o SEC 300 mg > BSC 

o UST > BSC 

BSC 

[First-line treatment  > (yes/no PASI 75 response)] > 

[Second-line treatment > (yes/no PSI 75 response)] > 

[Third-line treatment > (yes/no PSI 75 response)]  > 

death 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

445 

(Extracted 

from AG 

summary of 

CS, UCB) 

Psoriatic 

arthritis  

Yes First-line in the model Life-time (50 

years) 

Markov 

model  

Biologics-naïve (one prior cDMARD) 

o CZP >TNF> UST > Mix treatments 

o cDMARD >TNF> UST > Mix treatments 

 

Biologics-naïve (≥ 2 prior DMARDs) 

o CZP >UST>Mix treatments 

o ETN > UST > Mix treatments 

o IFX > UST > Mix treatments 

o ADA > UST > Mix treatments 

o GOL > UST > Mix treatments 

o SEC 150 mg 

 

Biologic-experienced 

o CZP > Mix treatments 

o SEC 300 mg > Mix treatments 

o UST > Mix treatments 

o Mixed treatments* 

 

*Mixed treatments: MTX, other cDMARDs, PAL 

[First-line treatment  > (yes/no PASI 75 response)] > 

[Second-line treatment > (yes/no PSI 75 response)] > 

[Third-line treatment > (yes/no PSI 75 response)]  > 

death 

475 

(CS) 

Plaque 

psoriasis 

Yes First-line treatment of 

patients who are 

eligible for systematic 

biologic interventions 

(later line in the whole 

treatment pathway) 

10-year 

 

Scenario 

analysis: 20-

year, life-time 

 

Markov 

model  

 

o DMF → ADA → UST → BSC 

o ADA → UST → BSC 

Induction period (1st treatment) > maintenance period 

(1st treatment) >  Induction period (2nd  treatment) > 

maintenance period (2nd treatment) > Induction period 

(3rd 

 treatment) > maintenance period (3rd treatment) > BSC 

> death 

511 

(CS) 

Plaque 

psoriasis 

Yes First-line treatment of 

patients who are 

eligible for systematic 

biologic interventions 

(later line in the whole 

treatment pathway) 

Life-time (40 

years) 

 

Scenario 

analysis: 10-

year 

Markov 

model  

o Brodalumab > UST > SEC > BSC 

o ADA > UST > SEC > BSC 

o APR > UST > SEC > BSC 

o DMF > UST > SEC > BSC 

o ETN > UST > SEC > BSC  

o lnfliximab > UST > SEC > BSC 

o IXE > UST > SEC > BSC 

o SEC > UST > ADA > BSC 

o UST > ADA > SEC > BSC 

Induction period (1st treatment) > maintenance period 

(1st treatment) > Induction period (2nd treatment) > 

maintenance period (2nd treatment) > Induction period 

(3rd 

 treatment) > maintenance period (3rd treatment) > BSC 

> death 

521 

(CS) 

Plaque 

psoriasis 

No (cost-comparison 

analysis) 

o Unspecified 

earlier lines of 

plaque psoriasis 

treatment 

o First-line in the 

cost-comparison 

analysis with 

treatment 

sequences 

5-year 

 

Sensitivity 

analysis: 1-10 

year  

X o GUS>ADA>ADA(50%)/UST(50%)>IFX 

o ADA>UST>IFX 

o UST>ADA>IFX 

X (no economic model) The company performed 

scenario cost-comparison analysis with in different 

treatment sequences. 

537 

(CS) 

Plaque 

psoriasis 

Yes o First-line 

treatment for 

patients who 

have experienced 

more than two 

lines of 

dDMARD 

treatments 

o Second-line 

TNFi in patient 

who are TNFi 

experienced  

Life-time (40 

years) 

Markov 

model 

Biologic-naïve: no psoriasis and mild-to-moderate psoriasis  

o IXE Q4W > UST > SEC > BSC 

o ADA > UST > SEC > BSC 

o APR > UST > SEC > BSC 

o CZP > UST > SEC > BSC 

o ETN > UST > SEC > BSC  

o Golimumab > UST > SEC > BSC 

o IFX > UST > SEC > BSC 

o SEC > UST > ADA > BSC 

 

Biologic-naïve: moderate to severe psoriasis 

o Same treatment sequences as those in “biologic-naïve: no 

psoriasis and moderate to severe” population. Changing 

Induction period* (1st treatment) > maintenance period 

(1st treatment) > Induction period (2nd treatment) > 

maintenance period (2nd treatment) > Induction period 

(3rd 

 treatment) > maintenance period (3rd treatment) > BSC 

> death 

 

Trial period* 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

sequence containing IXE Q4W to IXE Q2W+Q4W, and 

SEC 300 150 mg to 300 mg 

 

bMARD-experienced: no psoriasis and mild-to-moderate 

psoriasis  

o IXE > BSC 

o UST > BSC 

o CZP > BSC 

o SEC 150 mg> BSC 

 

bMARD-experienced: moderate to severe psoriasis 

o IXE > BSC 

o UST > BSC 

o CZP > BSC 

o SEC 300 mg > BSC 

543 

(CS) 

Psoriatic 

arthritis 

Yes o First-line 

treatment for 

patients who 

have experienced 

more than two 

lines of 

cDMARD 

treatments 

o Second-line 

TNFi in patient 

who are TNFi 

experienced  

Life-time (40 

years) 

Markov 

model 

Disease has not responded to at least 2 non-bDMARDs 

o TOF > UST > BSC 

o APR > UST > BSC 

o CZP > UST > BSC 

o ETN > UST > BSC 

o GOL > UST > BSC 

o IFX > UST > BSC 

o SEC 188 mg > UST > BSC 

o BSC 

 

Disease has not responded to non-bDMARDs and at least 1 

TNFi 

o TOF > BSC 

o SEC 300 mg > BSC 

o UST > BSC 

o BSC 

 

1 TNFi contraindicated or not tolerated 

o TOF > BSC 

o SEC 188 mg > BSC 

o UST > BSC 

o BSC 

Induction period (1st treatment) > maintenance period 

(1st treatment) > Induction period (2nd treatment) > 

maintenance period (2nd treatment) > Induction period 

(3rd 

 treatment) > maintenance period (3rd treatment) > BSC 

> death 

574 

(CS) 

Plaque 

psoriasis 

Yes First-line treatment of 

patients who are 

eligible for systematic 

biologic interventions 

(later line in the whole 

treatment pathway) 

Life-time 

 

Scenario 

analysis: 10-

year, 20-year, 1-

year (trial) 

Markov 

model 

Non-biologic therapy IR 

o CZP > UST 90 mg > IFX > BSC > BSC 

o ADA > UST 90 mg > IFX > BSC > BSC 

o BROD > UST 90 mg > IFX > BSC > BSC 

o ETN > UST 90 mg > IFX > BSC > BSC 

o GUS > UST 90 mg > IFX > BSC > BSC 

o IXE > UST 90 mg > IFX > BSC > BSC 

o SEC > UST 90 mg > IFX > BSC > BSC 

o UST 45 mg > ADA > IFX > BSC > BSC 

o UST 90 mg > ADA > IFX > BSC > BSC 

Induction period (1st treatment) > maintenance period 

(1st treatment) > Induction period (2nd treatment) > 

maintenance period (2nd treatment) > Induction period 

(3rd 

 treatment) > maintenance period (3rd treatment) > BSC 

> death 

575 

(CS) 

Plaque 

psoriasis 

Yes First-line treatment of 

patients who are 

eligible for systematic 

biologic interventions 

(later line in the whole 

treatment pathway) 

Life-time Markov  o Tildrakizumab > UST > SEC > BSC 

o ADA> UST > SEC > BSC 

o UST > ADA > SEC > BSC 

o SEC> UST > ADA > BSC 

o ENT> UST > SEC > BSC 

o IXE> UST > SEC > BSC 

o BROD> UST > SEC > BSC 

o GUS> UST > SEC > BSC 

Induction period (1st treatment) > maintenance period 

(1st treatment) > Induction period (2nd treatment) > 

maintenance period (2nd treatment) > Induction period 

(3rd 

 treatment) > maintenance period (3rd treatment) > BSC 

> death 



479 

 

TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

195 

(AG) 

Rheumatoid 

arthritis 

Yes First-line treatment of 

patients who had an IR 

at least one TNFi 

Life-time Individual 

sampling 

model 

(BRAM) 

Base-case: 

o ADA > LEF > gold > CYC > AZA > PAL 

o ETN > LEF > gold > CYC > AZA > PAL 

o IFX > LEF > gold > CYC > AZA > PAL 

o RTX > LEF > gold > CYC > AZA > PAL 

o ABA > LEF > gold > CYC > AZA > PAL 

o LEF > gold > CYC > AZA > PAL 

 

Scenario analysis:  

o ADA 

o ETN 

o INX 

o RTX 

o ABA 

o DMARDs 

 

Pair-wise comparisons: 

o The AG conducted a series of pair-wise comparison of 

ICER between paired two treatment sequences. An 

exhaustive list is provided in the AG report. 

[Start first-line treatment: on treatment (HAQ increase) 

> Quit treatment > Select next treatment] > [Start 

second-line treatment: on treatment (HAQ increase) > 

Quit treatment > Select next treatment] > [Start nth-line 

treatment: on treatment (HAQ increase) > Quit 

treatment > Select next treatment] > death 

 

Adapted from Birmingham Rheumatoid Arthritis Model 

(BRAM). 

195 

(Extracted 

from AG 

summary of 

CS: Abbot) 

Rheumatoid 

arthritis 

Yes First-line treatment of 

patients who had an IR 

to MTX, SSZ, HU and 

one TNFi 

Life-time DES o Gold > LEF > CYC > rescue 

o ADA/ETN > LEF > CYC > rescue 

o IFX > Gold > LEF > CYC > IFX > Gold > LEF > CYC > 

rescue 

o ABA > Gold > LEF > CYC > IFX > Gold > LEF > CYC 

> rescue 

o ADA/ETN > RTX > gold > LEF > CYC > rescue 

Model details unavailable 

195 

(Extracted 

from AG 

summary of 

CS: Wyeth) 

Rheumatoid 

arthritis 

Yes First-line treatment of 

patients who had an IR 

to ETN 

Life-time Markov o ETN/IFX/ADA > DMARDs > salvage therapy 

o DMARDs > DMARDs > salvage therapy 

o RTX > DMARDs > salvage therapy 

Model details unavailable 

195 

(Extracted 

from AG 

summary of 

CS: Schering-

Plough) 

Rheumatoid 

arthritis 

Yes First-line treatment of 

patients who had an IR 

to two non-bDMARDs 

and one TNFi 

Life-time Patient-

simulation 

o ADA > DMARDs 

o ETN > DMARDs 

o IFX > DMARDs 

o ABA > DMARDs 

o RTX > DMARDs 

o ADA > RTX > DMARDs 

o ETN > RTX > DMARDs 

o IFX > RTX > DMARDs 

o DMARDs 

Model details unavailable 

195 

(Extracted 

from AG 

summary of 

CS: Roche) 

Rheumatoid 

arthritis 

Yes First-line treatment of 

patients who had an IR 

a TNFi 

Life-time Patient-level 

simulation 

o RTX > LEF > gold > CYC > PAL 

o ETN > LEF > gold > CYC > PAL 

o ADA > LEF > gold > CYC > PAL 

o IFX > LEF > gold > CYC > PAL 

o ABT > LEF > gold > CYC > PAL 

o LEF > gold > CYC > PAL 

Model details unavailable 

195 

(AG summary 

of CS: BMS) 

Rheumatoid 

arthritis 

Yes First-line treatment of 

patients who had an IR 

at least one TNFi 

Life-time Patient-level 

simulation 

o ABA > IFX > LEF > gold > AZA > CYC > penicillamine 

> PAL 

o RTX > IFX > LEF > gold > AZA > CYC penicillamine > 

PAL 

o ABA > TNFi > LEF > gold > AZA > CYC > 

penicillamine > PAL 

o TNFi > TNFi > LEF > gold > AZA > CYC > 

penicillamine > PAL 

Model details unavailable 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

225 

(CS) 

Rheumatoid 

arthritis 

Yes First-line treatment of 

patients who had 

progressed after 

cDMARDs 

Life-time (45 

years) 

Markov DMARD experienced 

o (MTX > SSZ + MTX >)*  GOL + MTX > LEF > gold > 

AZA > CYC > PAL > PAL 

o (MTX > SSZ + MTX >)* TNFi + MTX > LEF > gold > 

AZA > CYC > PAL > PAL 

o (MTX > SSZ + MTX >)* MTX > LEF > gold > AZA > 

CYC > PAL > PAL 

 

TNFi experienced 

o (MTX > SSZ + MTX > TNFi)* > GOL + MTX > LEF > 

gold > AZA > CYC > PAL > PAL 

o (MTX > SSZ + MTX > TNFi)* > RTX + MTX > LEF > 

gold > AZA > CYC > PAL > PAL 

o (MTX > SSZ + MTX > TNFi)* > MTX > LEF > gold > 

AZA > CYC > PAL > PAL 

 

TNFi experienced – company sensitivity analysis 

o (MTX > SSZ + MTX > TNFi)* > GOL > RTX >  LEF > 

gold > AZA > CYC > PAL > PAL 

o  (MTX > SSZ + MTX > TNFi)* > MTX > RTX > LEF > 

gold > AZA > CYC > PAL > PAL 

 

* Previous treatment lines were only listed to demonstrate 

treatment history but not included as part of the treatment 

sequences in the model.  

Reference TNFis included in the model: ADA, IFX, ETN, RTX, 

CTZ 

[Start first-line treatment: on treatment (baseline HAQ > 

ACR 20/50/no response > ACR 20/50/no response 

reassign)] > [Start second-line treatment: on treatment 

(baseline HAQ > ACR 20/50/no response > ACR 

20/50/no response reassign)] > [Start nth-line treatment: 

on treatment (baseline HAQ > ACR 20/50/no response > 

ACR 20/50/no response reassign)] > death  

 

Adapted reference treatment sequence from the BRAM 

model. 

375 

(AG summary 

of CS, Abbvie) 

Rheumatoid 

arthritis 

Yes o Population 1: 

adults with 

severe active RA 

not previously 

treated with 

cDMARDs 

o Population 2: 

adults with 

severe active RA 

that have been 

previously 

treated with 

cDMARDs but 

not bDMARDs; 

 

o Population 3: 

adults with 

moderate to 

severe active  RA  

that  have  been  

previously  

treated  with  

cDMARDs  only,  

including  MTX. 

Life-time Individual 

patient 

simulation 

(DES)  

Analysis 1 & 2: Population 3 & 2 in combination with MTX  

o LEF > SSZ > CYC > rescue 

o ADA + MTX > RTX + MTX > TCZ + MTX > LEF > 

SSZ > CYC > rescue 

o ETN + MTX > RTX + MTX > TCZ + MTX > LEF > 

SSZ > CYC > rescue 

o IFX + MTX > RTX + MTX > TCZ + MTX > LEF > SSZ 

> CYC > rescue 

o CZP + MTX > RTX + MTX > TCZ + MTX > LEF > SSZ 

> CYC > rescue 

o GOL + MTX > RTX + MTX > TCZ + MTX > LEF > 

SSZ > CYC > rescue 

o ABA + MTX > RTX + MTX > TCZ + MTX > LEF > 

SSZ > CYC > rescue 

o TCZ + MTX > > RTX + MTX  > LEF > SSZ > CYC > 

rescue 

 

Analysis 3: Population 1 in combination with MTX  

o MTX > LEF > SSZ > CYC > rescue 

o ADA + MTX > RTX + MTX > TCZ + MTX > LEF > 

SSZ > CYC > rescue 

o ETN + MTX > RTX + MTX > TCZ + MTX > LEF > 

SSZ > CYC > rescue 

o IFX + MTX > RTX + MTX > TCZ + MTX > LEF > SSZ 

> CYC > rescue 

o GOL + MTX > RTX + MTX > TCZ + MTX > LEF > 

SSZ > CYC > rescue 

o MTX + HCQ > ADA + MTX > RTX + MTX > TCZ + 

MTX > LEF > SSZ > CYC > rescue 

Start sequence > initial response to treatment (ACR 50) 

> Time with treatment response & stay on treatment > 

switch to next treatment sequence 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

 

Analysis 4 & 5: Population 3 & 2, monotherapy  

o SSZ + HCQ > LEF > SSZ > CYC > rescue 

o ADA > LEF > SSZ > CYC > rescue 

o ETN > LEF > SSZ > CYC > rescue 

o CZP > LEF > SSZ > CYC > rescue 

o TCZ > LEF > SSZ > CYC > rescue 

 

Analysis 6: Population 1, monotherapy  

o SSZ + HCQ > LEF > SSZ > CYC > rescue 

o ADA > LEF > SSZ > CYC > rescue 

o ETN > LEF > SSZ > CYC > rescue 

o SSZ + HCQ > ADA > LEF > SSZ > CYC > rescue 

375 

(AG summary 

of CS, BMS) 

Rheumatoid 

arthritis 

Yes o Population 3: 

adults with 

moderate to 

severe active  RA  

that  have  been  

previously  

treated  with  

cDMARDs  only,  

including  MTX. 

o General RA 

population who 

can receive MTX 

Life-time Individual 

patient model 

Population 3 in combination with MTX and General RA 

Population who can receive MTX 

o LEF > gold > CYC > AZA > PAL 

o ABA SC + MTX> RTX + MTX > TCZ + MTX* > LEF 

> gold > CYC > AZA > PAL 

o ADA + MTX> RTX + MTX > TCZ + MTX* > LEF > 

gold > CYC > AZA > PAL 

o CZP + MTX> RTX + MTX > TCZ + MTX* > LEF > 

gold > CYC > AZA > PAL 

o ETN + MTX> RTX + MTX > TCZ + MTX* > LEF > 

gold > CYC > AZA > PAL 

o GOL + MTX> RTX + MTX > TCZ + MTX* > LEF > 

gold > CYC > AZA > PAL 

o IFX + MTX> RTX + MTX > TCZ + MTX* > LEF > 

gold > CYC > AZA > PAL 

o TCZ + MTX > RTX + MTX > LEF > gold > CYC > 

AZA > PAL 

 

* TCZ + MTX would not be used if there was a DAS28 

improvement of 1.2 or greater at six months 

[Start first-line biologics (discontinue due to AE> 

DAS28 improves by at least 1.2?)] > [Start nth-line 

therapy (discontinue due to AE? > DAS28 improves by 

at least 1.2?)] > death  

 

 

The model was adapted from BRAM. 

375 

(AG summary 

of CS, MSD; 

MSD prepared 

their 

submission for 

two drugs: 

GOL, IFX) 

Rheumatoid 

arthritis 

Yes o Population 3: 

adults with 

moderate to 

severe active RA  

that  have  been  

previously  

treated  with  

cDMARDs  only,  

including  MTX 

o General RA 

population who 

can receive MTX 

Life-time (45 

years) 

 

Sensitivity 

analysis: shorter 

timeframes 

Markov Population 3 in combination with MTX and General RA 

Population who can receive MTX 

o MTX > SSZ + MTX > IFX + MTX > RTX > LEF > gold 

> AZA > CYC > PAL 

o MTX > SSZ + MTX > GOL + MTX > RTX > LEF > 

gold > AZA > CYC > PAL 

o MTX > SSZ + MTX > other bDMARDs + MTX > RTX 

> LEF > gold > AZA > CYC > PAL 

o MTX > SSZ + MTX > MTX > RTX > LEF > gold > 

AZA > CYC > PAL 

[Start first-line treatment: on treatment (baseline HAQ > 

ACR 20/50/70/no response > ACR 20/50/70/no 

response reassign)] > [Start second-line treatment: on 

treatment (baseline HAQ > ACR 20/50/70/no response 

> ACR 20/50/no response reassign)] > [Start nth-line 

treatment: on treatment (baseline HAQ > ACR 

20/50/70/no response > ACR 20/50/70/no response 

reassign)] > death 

375 

(AG summary 

of CS, Pfizer) 

Rheumatoid 

arthritis 

Yes o Population 1: 

adults with 

severe active RA 

not previously 

treated with 

cDMARDs 

 

o Population 2: 

adults with 

severe active RA 

that have been 

Life-time  

 

Sensitivity 

analysis: shorter 

timeframes 

DES Population 1 & 2 & 3 in combination with MTX 

o ETN > RTX > TCZ > SSZ > LEF > PAL 

o ABA IV > RTX > TCZ > SSZ > LEF > PAL 

o ABA SC > RTX > TCZ > SSZ > LEF > PAL 

o CZP > RTX > TCZ > SSZ > LEF > PAL 

o ADA > RTX > TCZ > SSZ > LEF > PAL 

o IFX > RTX > TCZ > SSZ > LEF > PAL 

o TCZ > RTX > ABA IV> SSZ > LEF > PAL 

o GOL> RTX > TCZ > SSZ > LEF > PAL 

o cDMARD> RTX > TCZ > SSZ > LEF > PAL 

o Combo DMARD> RTX > TCZ > SSZ > LEF > PAL 

[Start first-line treatment: on treatment (baseline in 

HAQ/no response)] > [Start second-line treatment: on 

treatment (baseline in HAQ/no response)] > [Start nth-

line treatment: on treatment (baseline in HAQ/no 

response)]> death 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

previously 

treated with 

cDMARDs but 

not bDMARDs 

 

o Population 3: 

adults with 

moderate to 

severe active  RA  

that  have  been  

previously  

treated  with  

cDMARDs  only,  

including  MT 

 

Population 3 monotherapy 

o ETN > ADA > SSZ > LEF > PAL 

o ADA > ETN > SSZ > LEF > PAL 

o TCZ > ETN > SSZ > LEF > PAL 

o TCZ > ADA > SSZ > LEF > PAL 

o cDMARD > ETN > SSZ > LEF > PAL 

375 

(AG summary 

of CS, Roche) 

Rheumatoid 

arthritis 

Yes MTX intolerant or 

contraindicated RA 

population 

Life-time  Individual 

patient model 

o TCZ > CZP > ETN > ADA > PAL  

o CZP > ETN > ADA >PAL 

Details unavailable 

375 

(AG summary 

of CS, UCB) 

Rheumatoid 

arthritis 

Yes o Population 2: 

adults with 

severe active RA 

that have been 

previously 

treated with 

cDMARDs but 

not bDMARDs 

o Population 3: 

adults with 

moderate to 

severe active  RA  

that  have  been  

previously  

treated  with  

cDMARDs  only,  

including  MTX. 

Life-time (45 

years) 

 

Sensitivity 

analysis: shorter 

timeframes 

Markov Population 3 in combination with MTX 

o CZP + MTX > follow-up intervention 1 

o ADA + MTX > follow-up intervention 1 

o ETN + MTX > follow-up intervention 1 

o GOL + MTX > follow-up intervention 1 

o TOZ + MTX > follow-up intervention 1 

o IFX+ MTX > follow-up intervention 1 

o ABA + MTX > follow-up intervention 1 

 

Population 3 monotherapy 

o CZP > follow-up intervention 1 

o ADA > follow-up intervention 1 

o ETN > follow-up intervention 1 

o TOZ > follow-up intervention 1 

 

Population 2 in combination with MTX 

o CZP + MTX > follow-up intervention 1 

o Placebo + MTX > follow-up intervention 1 

 

Population 2 monotherapy 

o CZP + cDMARDs > follow-up intervention 1 

o Placebo + cDMARDs > follow-up intervention 1 

 

Follow-up intervention 1: RTX+MTX > (AZA, CYC, gold, 

HCQ, LEF, penicillamine, PAL) 

Follow-up intervention 2: MTX + SSZ, MTX + SSZ + HCQ, 

MTX + HCQ, MTX + LEF, SSZ + HCQ + CYC, penicillamine, 

PAL) 

[Start first-line treatment: on treatment (ACR 20/50/70 

change or no response) > follow-up treatment] > [Start 

second-line treatment: on treatment (ACR 20/50/70 

change or no response) > follow-up treatment] > [Start 

nth-line treatment: on treatment (ACR 20/50/70 change 

or no response) > follow-up treatment] > death 

375 

(AG) 

Rheumatoid 

arthritis 

Yes o Population 1: 

adults with 

severe active RA 

not previously 

treated with 

cDMARDs 

o Population 2: 

adults with 

severe active RA 

that have been 

previously 

Life-time Individual-

patient DES 

Population 1 (for patients who could receive MTX) 

o MTX > intensive cDMARDs > MTX > non-biologic 

therapy 

o MTX > intensive cDMARDs > bDMARDs*(excluding 

TCZ) +MTX > RTX+MTX > TCZ + MTX > MTX > 

non-biologic therapy 

o MTX > intensive cDMARDs > TCZ +MTX > 

RTX+MTX > TCZ + MTX > MTX > non-biologic 

therapy 

[Start first-line treatment: on treatment 

(good/moderate/no HAQ response) > continue 

treatment] >[Start second-line treatment: on treatment 

(good/moderate/no HAQ response) > continue 

treatment] > [Start nth-line treatment: on treatment 

(good/moderate/no HAQ response) > continue 

treatment] > death 

 

The ScHARR model. 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

treated with 

cDMARDs but 

not bDMARDs 

o Population 3: 

adults with 

moderate to 

severe active  RA  

that  have  been  

previously  

treated  with  

cDMARDs  only,  

including  MTX 

o bDMARDs* (excluding ABA, CZP and TCZ) + MTX 

> RTX + MTX > TCZ +MTX > MTX > non-biologic 

therapy 

 

Population 1 (for patients who could not receive MTX) 

o intensive cDMARDs > cDMARDs > intensive 

cDMARDs 

o intensive cDMARDs > bDMARDs > bDMARDs 

(excluding TCZ) > non-biologic therapy  

o bDMARDs (excluding ABA, CZP and TCZ) > 

bDMARDs (excluding TCZ) > non-biologic therapy  

 

Population 2 & 3 (for patients who could receive MTX) 

o MTX > non-biologic therapy 

o ABA IV + MTX > RTX + MTX > TCZ + MTX > MTX 

> non-biologic therapy 

o ABA SC + MTX > RTX + MTX > TCZ + MTX > MTX 

> non-biologic therapy 

o ADA + MTX > RTX + MTX > TCZ + MTX > MTX > 

non-biologic therapy 

o CZP + MTX > RTX + MTX > TCZ + MTX > MTX > 

non-biologic therapy 

o ETN + MTX > RTX + MTX > TCZ + MTX > MTX > 

non-biologic therapy 

o GOL + MTX > RTX + MTX > TCZ + MTX > MTX > 

non-biologic therapy 

o IFX + MTX > RTX + MTX > TCZ + MTX > MTX > 

non-biologic therapy 

o TCZ + MTX > RTX + MTX > MTX > non-biologic 

therapy 

 

Population 2 & 3 (for patients who could not receive MTX) 

o cDMARDs > non-biologic therapy  

o bDMARDs > bDMARDs (excluding TCZ) > 

cDMARDs > non-biologic therapy  

 

* bDMARDs: ABA, ADA, CZP, ETN, GOL, IFX, TCZ. The 

AG tested a series of treatment sequences combination for the 

broad sequence of bDMARDs > bDMARDs. This MTA did not 

have the intension to identify the most cost-effective treatment 

sequence. 

415  

(CS) 

Rheumatoid 

arthritis 

Yes First-line of second-

line in TNFi-IR 

population 

45 years 

 

Scenario 

analysis: 5 and 

10 years 

Markov Main comparator: RTX + MTX:  

o CZP + MTX > RTX + MTX > TCZ SC + MTX > ABA + 

MTX > MTX  + HCQ + SSC > non-biologic therapy > 

PAL 

o RTX + MTX > TCZ SC + MTX > ABA + MTX > MTX  

+ HCQ + SSC > non-biologic therapy > PAL 

 

Main comparator: other biologics in combination with MTX, 

for whom RTX is contraindicated or withdrawn 

o CZP + MTX > MTX + HCQ + SSZ > LEF > gold > 

CYC > AZA > PAL 

o ABA + MTX > MTX + HCQ + SSZ > LEF > gold > 

CYC > AZA > PAL 

o ADA + MTX > MTX + HCQ + SSZ > LEF > gold > 

CYC > AZA > PAL 

[Start first-line treatment: on treatment (ACR 20/50/70 

change or no response) > follow-up treatment] > [Start 

second-line treatment: on treatment (ACR 20/50/70 

change or no response) > follow-up treatment] > [Start 

nth-line treatment: on treatment (ACR 20/50/70 change 

or no response) > follow-up treatment] > death 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

o ETN + MTX > MTX + HCQ + SSZ > LEF > gold > 

CYC > AZA > PAL 

o GOL + MTX > MTX + HCQ + SSZ > LEF > gold > 

CYC > AZA > PAL 

o IFX + MTX > MTX + HCQ + SSZ > LEF > gold > CYC 

> AZA > PAL 

o TCZ + MTX > MTX + HCQ + SSZ > LEF > gold > CYC 

> AZA > PAL 

 

Main comparator: other biologics monotherapy, for whom RTX 

is contraindicated or withdrawn 

o CZP > LEF > gold > CYC > AZA > PAL 

o ADA > LEF > gold > CYC > AZA > PAL 

o ETN > LEF > gold > CYC > AZA > PAL 

o TCZ > LEF > gold > CYC > AZA > PAL 

 

ERG exploratory analysis (main comparator: RTX + MTX): 

o CZP + MTX > RTX + MTX > TCZ SC + MTX > MTX  

+ HCQ + SSC > non-biologic therapy > PAL 

o RTX + MTX > CZP + MTX > TCZ SC + MTX > MTX  

+ HCQ + SSC > non-biologic therapy > PAL 

o CZP + MTX > TCZ + MTX > MTX  + HCQ + SSC > 

non-biologic therapy > PAL 

o RTX + MTX > TCZ + MTX > MTX  + HCQ + SSC > 

non-biologic therapy > PAL 

466 

(CS) 

Rheumatoid 

arthritis 

Yes First-line treatment in 

each treatment 

sequence among 

patients with different 

treatment histories (i.e. 

had different lines of 

cDMARD and 

bDMARDs) 

Life-time (45 

years) 

 

Scenario 

analysis: 15-

year, life-time 

DES (based 

on AG model 

in TA375) 

cDMARD-IR moderate population 

o Baricitinib > combination of cDMARDs > MTX > PAL 

o combination of cDMARDs > MTX > palliative care > 

None 

 

cDMARD-IR severe population 

o Baricitinib > RTX+MTX > TCZ+MTX > MTX > PAL 

o BDMARDs+MTX > RTX+MTX> TCZ+MTX > MTX > 

PAL 

o TCZ+MTX > RTX+MTX > ADA+MTX > MTX > PAL 

 

bDMARD-IR severe population (RTX eligible) 

o Baricitinib > TCZ+MTX > MTX > PAL 

o RTX+MTX > TCZ+MTX > MTX > PAL 

 

bDMARD-IR severe population (RTX ineligible) 

o Baricitinib > TCZ+MTX > MTX > PAL 

o bDMARD+MTX> TCZ+MTX > MTX > PAL 

o TCZ+MTX > ADA+MTX > MTX > PAL 

Initial line treatment > Subsequent line treatment > 3rd 

line treatment > 4th line treatment > 5th line treatment > 

dead 

 

Total lines of treatment in the treatment sequence is 

depending on the subgroup specified in the TA (different 

scope of decision problem). Palliative can be a line of 

treatment 

485 

(CS) 

Rheumatoid 

arthritis 

Yes First-line treatment in 

each treatment 

sequence among 

patients with different 

treatment histories (i.e. 

had different lines of 

cDMARD and 

bDMARDs) 

Life-time (100 

years) 

 

Scenario 

analysis: 10-

year 

Markov 

model 

cDMARD+MTX IR: severe RA 

o Sarilumab+MTX > RTX+MTX > ABA IV + MTX > 

BSC 

o TCZ IV+MTX > RTX+MTX > ABA IV + MTX > BSC 

o TCZ SC+MTX > RTX+MTX > ABA IV + MTX > BSC 

o TNFi bundle> RTX+MTX > ABA IV + MTX > BSC 

o ABA IV+MTX > RTX+MTX > TCZ IV+MTX > BSC 

 

cDMARD+MTX IR: moderate RA or intoleratant of 

cDMARD+MTX 

o Sarilumab + MTX > BSC 

o BSC 

Initial line treatment > Subsequent line treatment > 3rd 

line treatment > 4th line treatment > 5th line treatment > 

palliative care > dead 

 

Total lines of treatment in the treatment sequence is 

depending on the subgroup specified in the TA (different 

scope of decision problem)   
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

 

cDMARD monotherapy-IR severe RA 

o Sarilumab > TNFi bundle > BSC 

o TCZ IV+MTX > TNFi bundle > BSC 

o TCZ SC+MTX > TNFi bundle > BSC 

o TNFi bundle > TNFi bundle > BSC 

 

cDMARD+MTX-IR (at least one TNFi, RTX+MTX intolerant): 

severe RA 

o Sarilumab+MTX > ABA IV + MTX > BSC 

o TCZ IV+MTX > ABA IV + MTX > BSC 

o TCZ SC+MTX > ABA IV + MTX > BSC 

o TNFi bundle > ABA IV + MTX > BSC 

o ABA IV+MTX > TCZ IV+MTX > BSC 

cDMARD+MTX-IR (at least one TNFi, RTX+MTX tolerant): 

severe RA 

o Sarilumab + MTX > ABA IV > BSC 

o RTX+MTX> ABA IV > BSC 

 

Severe RA: despite treatment with bMARDs 

o Sarilumab > BSC 

o TCZ IV+MTX > BSC 

o TCZ SC+MTX > BSC 

o TNFi bundle > BSC 

547 

(CS) 

Ulcerative 

colitis 

Yes o First-line 

treatment of 

patients who are 

eligible for 

systematic 

biologic 

interventions 

(later line in the 

whole treatment 

pathway) 

 

o Second-line 

treatment in 

those who had 

prior biologic 

exposure  

Life-time Markov 

model 

Biologic-naïve 

o ADA > GOL > IFX > TOF > VED > ConT  

o ConT > ConT > ConT > ConT > ConT 

Biologic-prior-exposure 

o TOF > VED > ConT 

o ConT > ConT 

Active UC (1st treatment) > remission (responder only, 

1st treatment) > active UC (2nd treatment) > remission 

(responder only, 2nd 

treatment)> post-surgery (with our without 

complication) > dead 

Cardiovascular 

249 

(CS) 

Prevention of 

stroke and 

systemic  

embolism in 

AF 

Yes o First-line or 

second-line 

treatment 

Life-time 

 

Scenario 

analysis: 2, 10 

and 15 years 

Markov Dabigatran as first-line setting: 

o Dabigatran* > aspirin plus clopidogrel, aspirin, or no 

treatment 

o Warfarin > aspirin plus clopidogrel, aspirin, or no 

treatment 

o Aspirin plus clopidogrel > aspirin or no treatment  

o Aspirin > no treatment 

 

Dabigatran as second-line setting  

o Warfarin > dabigatran* 

o Warfarin > aspirin 

o Warfarin > no treatment 

 

* Three different dosing regimen of dabigatran:  

[On first-line treatment: Disability level: independent > 

disability level: moderate > disability level: dependent] 

> [On second-line treatment: Disability level: 

independent > disability level: moderate > disability 

level: dependent] > [Events: ischemic stroke/intracranial 

hemorrhage/other bleeds/other thrombotic events/non-

clinical discontinuation] > [Off treatment: Disability 

level: independent > disability level: moderate > 

disability level: dependent] 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

o dabigatran 150 mg BID for all eligible patients 

o dabigatran 110 mg BID for all eligible patients 

o dabigatran sequence: for patients less than 80 years old, 

started at 150 mg and switched to 110 mg at age 80; for 

patients at least 80 years old, started at 110 mg at baseline 

Neurology/mental health 

292 

(CS) 

Bipolar 

disorder 

Yes o First-, second-, 

or third-line 

treatment 

3 years whereby 

patient enter the 

model at aged 

15 until 

adulthood  

Markov 

 

 

Base-case: 

o Strategy 1 (base-case): risperidone > quetiapine > 

olanzapine 

o Strategy 2: Risperidone > aripiprazole > quetiapine 

o Strategy 3: Aripiprazole > risperidone > quetiapine 

o Strategy 4: Risperidone > quetiapine > aripiprazole 

 

Scenario analysis: 

o Strategy 1 (base-case): risperidone > olanzapine > 

quetiapine 

o Strategy 2: Risperidone > aripiprazole > olanzapine 

o Strategy 3: Aripiprazole > risperidone > olanzapine 

o Strategy 4: Risperidone > olanzapine > aripiprazole 

 

[First-line treatment : Acute phase week 1 > Acute phase 

week 2 > Acute phase week 3 > Sub-acute phase 

responder observation (5 cycles) > Maintenance phase: 

euthymic treated (4 cycles on average) > Maintenance 

phase: euthymic not treated)] > [(Second-line treatment : 

Acute phase week 1 > Acute phase week 2 > Acute 

phase week 3 > Sub-acute phase responder observation 

(5 cycles) > Maintenance phase: euthymic treated (4 

cycles on average) > Maintenance phase: euthymic not 

treated)] > [(Third-line treatment : Acute phase week 1 

> Acute phase week 2 > Acute phase week 3 > Sub-

acute phase responder observation (5 cycles) > 

Maintenance phase: euthymic treated (4 cycles on 

average) > Maintenance phase: euthymic not treated)] > 

[Therapy resistance phase: Therapy resistance 

hospitalisation (5 cycles) > therapy resistance outpatient 

> euthymic treated > euthymic not treated] > death 

Infectious disease 

154 

(CS) 

Chronic 

hepatitis B 

Yes (sequence of drug 

treatments was not 

explicitly modelled, but 

subsequent 

transplantation) 

o First-line or 

salvage therapy 

in patients who 

are indicated for 

anti-viral therapy 

Life-time (100 

years) 

 

Scenario 

analysis: 70 

years, 47 years 

Transition 

state model 

Seroconversion model (HBeAg-positive patients), in in with 

previous NICE assessment (patients who lost the e antigen were 

given further 6 months of treatment): 

o BSC > BSC > BSC 

o Lamivudine > BSC > BSC 

o Telbivudine > BSC > BSC 

o Adefovir > BSC > BSC 

o Lamivudine > Adefovir > BSC 

o Telbivudine > Adefovir > BSC 

o Adefovir > Telbivudine > BSC 

o Adefovir > Lamivudine > BSC 

o BSC (base-case) 

 

Viral load model (HBeAg positive and negative patients) 

(patients remain on treatment indefinitely unless they 

seroconvert or move to a different health state): 

o Telbivudine 

o Lamivudine 

Seroconversion model  

Inactive carrier > cured or chronic hepatitis B > 

compensated cirrhosis > decompensated cirrhosis > 

hepatocellular carcinoma or [liver transplant year 1 > 

liver transplant year 2+] > chronic hepatitis B related 

death 

 

Viral load model, e antigen (HBeAg)-positive 

Compensated cirrhosis > chronic hepatitis 

decompensated cirrhosis > hepatocellular carcinoma or 

post liver transplant > death 

(patients may have positive or negative surface antigen 

in chronic hepatitis and compensated cirrhosis states) 

 

Viral load model, e antigen (HBeAg)-negative* 

Initial state > decompensated cirrhosis > hepatocellular 

carcinoma > death 

 

*Within each state, patients are subdivided into their 

viral load levels, serological marker status (both HBsAg 

and HBeAg positive or negative, or positive and 

negative HBsAg), and whether they have liver 

transplant or whether they are resistant to the drug.  

173 

(CS) 

Chronic 

hepatitis B 

Yes (sequence of drug 

treatments was not 

explicitly modelled, but 

subsequent 

transplantation) 

o First-line or 

salvage therapy 

in patients who 

are indicated for 

anti-viral therapy 

Life-time Markov 

model (time-

dependent 

transition 

probabilities) 

 

A total of 211 treatment sequences were compared. Twenty of 

them are listed: 

o BSC 

o Lamivudine > tenofovir 

o Tenofovir > lamivudine 

o Tenofovir > tenofovir + lamivudine  

o Tenofovir > tenofovir + lamivudine > entacavir 

Half part of the model: Patients started with HBeAg+ 

HBeAg+ viral suppression (viral load   300c/ml) >  

[[HBeAg seroconverted > HBsAg seroconverted] or 

HBeAg+ CHB (viral load > 300c/ml) >  [HBeAg+ 

compensated cirrhosis (viral load > 300c/ml) or 

HBeAg+ compensated cirrhosis with detectable HBV 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

Scenario 

analysis: 5-

60 years 

o Lamivudine > BSC 

o Lamivudine > entacavir 

o Lamivudine > adefovir 

o Adefovir > lamivudine 

o Lamivudine > tenofovir + lamivudine 

o Tenofovir > BSC 

o Tenofovir > entacavir 

o Lamivudine > adenovir + lamivudine 

o Adefovir > tenofovir 

o Adefovir > tenofovir + lamivudine 

o Adefovir > adefovir + lamivudine 

o Entacavir > lamivudine 

o Entacavir > tenofovir  

o Adefovir + lamivudube > tenofovir + lamivudine  

DNA] >  HBeAg+ liver transplant > HBeAg+ post-liver 

transplant 

 

Half part of the model: Patients started with HBeAg- 

HBeAg- viral suppression (viral load   300c/ml) >  

[[HBeAg seroconverted > HBsAg seroconverted] or 

HBeAg- CHB (viral load > 300c/ml) >  [HBeAg+ 

compensated cirrhosis (viral load > 300c/ml) or HBeAg- 

compensated cirrhosis with detectable HBV DNA] >  

HBeAg- liver transplant > HBeAg- post-liver transplant 

 

 

Death can happen at any time while HBeAg+ HCC can 

happen in patients with positive HBeAg. Patients with 

HBeAg+ HCC can be eligible for liver transplant. It was 

assumed that patients can only develop HBeAg-negative 

chronic hepatitis B from HBeAg seroconverted disease 

state.  

 

 

A decision-tree model was used to model treatment 

resistance on an annual basis at the background of the 

Markov model. Within the first year, x proportion of 

patients might develop drug resistance to a treatment. Of 

those who did not develop drug resistance (1-x%), 

transition probability of the first-line treatment t will 

apply for the whole year. On the other hand, x% of 

patients will spend 1.5 months on the first-line treatment 

with transition probabilities of untreated patients (due to 

drug resistance), and are assumed to receive th a second-

line treatment with corresponding transition 

probabilities for the rest of the year. Treatment strategies 

in the following years follows the same strategy. 

Patients receive the same treatment until they develop 

drug resistance and switch to the next-line of treatment.  

 

 

Diabetes Mellitus 

418 

(CS) 

Diabetes 

Mellitus 

Yes o First-line as a 

part of add-on 

therapy (patients 

that are 

inadequately 

controlled on 

dual therapy with 

either MET and a 

SU or MET 

and a DPP-4 

inhibitor 

Life-time (40 

years) 

 

Scenario 

analysis: 5 

years 

DES 

(CARDIFF 

model: 

replicating 

UKPDS 

model of 

UKPDS 68 

and UKPDS 

82) 

Company base-case: 

o Dapagliflozin + MET + SU > Insulin + MET > intensive 

insulin +MET 

o DPP-4 inhibitors* + MET + SU > Insulin + MET > 

intensive insulin +MET 

o Empagliflozin 10 mg + MET + SU > Insulin + MET > 

intensive insulin +MET 

o Empagliflozin 25 mg + MET + SU > Insulin + MET > 

intensive insulin +MET 

o Canagliflozin 100 mg + MET + SU > Insulin + MET > 

intensive insulin +MET 

o Canagliflozin 300 mg + MET + SU > Insulin + MET > 

intensive insulin +MET 

 

ERG base-case: 

Initialize patient (set baseline demographics and risk 

factor profiles, such as HbA1c, SBP and weight) >  

[Treatment 1 > Treatment 2 > Treatment 3]*: determined 

by discontinuation rate > Events**including  

MI/stroke/CHF/IHD/Blindness/nephropathy/amputation

/hypoglycemic event (symptomatic, severe, 

nocturnal)/CV death/Non-CV death 

 

* Treatment is intensified (moving onto next-line 

treatment) when patient’s HbA1c is evolved n breaches 

the NICE intensification threshold of 7.5%. 

**Patients might experience Events when receiving 

treatments. The evolution of risk factors and patient 

baseline characteristics (e.g. age, gender, smoking), 

diabetic related complications and death can be 

modelled. 
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TA number 

(model source) 

Disease  Treatment-sequencing 

model structure  

Position of the new 

treatment in the  

treatment pathway 

Time horizon Model Type Treatment sequences in the (base-case treatment sequences 

are listed or otherwise specified, new technology are labelled 

in bold) 

Model health states/ model health state transitions 

(the longest in the model) 

o Dapagliflozin + MET + SU > Dapagliflozin + MET + 

SU + insulin > Dapagliflozin + MET + SU + insulin + 

intensified insulin  

o DPP-4 inhibitors + MET + SU > DPP-4 inhibitors + MET 

+ SU + insulin > DPP-4 inhibitors + MET + SU + insulin 

+ intensified insulin  

o Empagliflozin 10 mg + MET + SU > Empagliflozin 10 

mg + MET + SU + insulin > Empagliflozin 10 mg + 

MET + SU + insulin + intensified insulin  

o Empagliflozin 25 mg + MET + SU > Empagliflozin 25 

mg + MET + SU + insulin > Empagliflozin 25 mg + 

MET + SU + insulin + intensified insulin  

o Canagliflozin 100 mg + MET + SU > Canagliflozin 100 

mg + MET + SU + insulin > Canagliflozin 100 mg + 

MET + SU + insulin + intensified insulin  

o Canagliflozin 300 mg + MET + SU > Canagliflozin 300 

mg + MET + SU + insulin > Canagliflozin 300 mg + 

MET + SU + insulin + intensified insulin  

 

*A basket of DPP-4 inhibitors comprising sitagliptin (71%), 

saxagliptin (10%), vildagliptin (3%), linagliptin (12%) and 

alogliptin (3%) 

Ophthalmology 

409 

(CS) 

Visual 

impairment 

caused by 

macular 

oedema after 

branch retinal 

vein 

occlusion 

Yes o First-line or 

second-line 

Life-time (35 

years) 

 

Scenario 

analysis: 10 

years 

Markov First-line setting: comparison 1a 

o Aflibercept > laser 

o Laser > ranibizumab  

 

First-line setting: comparison 1b 

o Aflibercept > laser 

o Laser > dexamethasone 

 

First-line setting: comparison 1c 

o Aflibercept > laser 

o Laser > aflibercept 

 

Second-line setting: comparison 2a 

o Laser > aflibercept  

o Laser > ranibizumab  

 

Second-line setting: comparison 2b 

o Laser > aflibercept  

o Laser > dexamethasone 

 

Patients will switch to a second-line treatment if treatment 

failure occurred within 0-6 of the first-lin treatment 

[Efficacy phase Year 1: Initial first-line treatment (0-6 

months) > continue first-line treatment or switch to 

second-line treatment (6-12 months)] > Maintenance 

phase Year 2-5: continue treatment that was used in the 

6-12 months > Rest-of-life phase: off- treatment > death 

(can occur at any state) 

 

Maintenance phase and off-treatment phase can be 

divided into the following sub-states: visual acuity 1 > 

visual acuity 2 > visual acuity 3 > visual acuity 4 > 

visual acuity 5. Patients are only allowed to move to the 

next poorer level annually within the off-treatment 

phase. 

ABA: abatacept, ADA: adalimumab, ADT: androgen deprivation therapy, AF: prevention of stroke and systemic, embolism in atrial fibrillation, AG: assessment group, alloSCT: allogeneic 

stem cell transplantation, APR: apremilast, ASCT: autologous stem cell transplant, AZA: azathioprine, BASDAI: Bath Ankylosing Spondylitis Disease Activity Index, BASFI: Bath 

Ankylosing Spondylitis Functional Index, BRAM: Birmingham Rheumatoid Arthritis Model, bDARMD: biologic DMARD, BID: twice a day, BMS: Bristol-Myers Squibb. BRAM: 

Birmingham Rheumatoid Arthritis Model, BROD: brodalumab, BSC: best supportive care, cDMARD: conventional DMARD, CHF: congestive heart failure, CHOP: cyclophosphamide, 

doxorubicin, vincristine, and prednisone, ConT : conventional therapy, CS: company submission, CZP: certolizumab pegol, CYC: cyclosporin, DAS28: disease activity score by 28 joints, 

DES: discrete event simulation, DLQI: Dermatology Life Quality Index, DMARD: disease-modifying antirheumatic drug, DMF: dimethyl fumarate, DPP-4: dipeptidyl peptidase 4, DSU: 

decision support unit, EFS: event-free survival, ERG: evidence review group, ETN: etanercept, GOL: golimumab, GUS: guselkumab, HbA1c: haemoglobin A1c, HBeAg : hepatitis B e-
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antigen, HBsAg: hepatitis B surface antigen, HCQ: hydrixychlorine, HRPC: hormone-resistant prostate cancer, HU: hydroxyurea, IFX: infliximab, IHD: ischemic heart disease, IR: 

inadequate response, IV: intravenous injection, IXE: ixekizumab, LEF: leflunomide, MET: metformin, mHRPC: metastatic HRPC, MI: myocardial infarction, MTX: methotrexate, nmHRPC: 

non-metastatic HRPC, NSAIDs: nonsteroidal anti-inflammatory drugs, OS: overall survival, PAL: palliative care, PD: progressed disease, PFS: progression free survival, PPS: post-

progression survival, Q2W: every two weeks, Q4W: every four weeks, RA: rheumatoid arthritis, R-CHOP: rituximab plus CHOP regimen, RTX: rituximab, SBP: systolic blood pressure, SC: 

subcutaneous injection, SCT: stem cell transplantation, SEC:  

secukinumab, SSZ: sulfasalazine, SU: sulfonylurea TCZ: tocilizumab, TNF = tumour necrosis factor, TNFi = TNF inhibitor, TOF: tofacitinib, TPO-RAs: thrombopoeitin receptor agonists, 

UST: Ustekinumab, VED: vedolizumab 

  

https://pubmed.ncbi.nlm.nih.gov/35428722/
https://pubmed.ncbi.nlm.nih.gov/35428722/
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Appendix 4.1 PubMed search terms for Chapter 4 statistical methods review (March 13, 

2022) 
 PubMed search terms Records 

1 "treatment sequen*"[Title/Abstract] OR "therapy sequen*"[Title/Abstract] OR "optimal 

sequen*"[Title/Abstract] OR "optimum sequen*" [Title/Abstract] OR "sequential 

treatment*"[Title/Abstract] OR "sequential therap*"[Title/Abstract] OR "subsequent 

treatment*"[Title/Abstract] OR "subsequent therap*"[Title/Abstract] OR "treatment-

switching" [Title/Abstract] OR "treatment-switching"[Title/Abstract] OR "therapy 

switching"[Title/Abstract] OR "therapy switching"[Title/Abstract] OR "clinical 

pathway*"[Title/Abstract] OR "treatment pathway*"[Title/Abstract] OR "treatment 

order*"[Title/Abstract] OR "optimal position*"[Title/Abstract] OR "optimal treatment 

position*"[Title/Abstract] 

26,304 

2 "dynamic treatment*"[Title/Abstract] OR "dynamic intervention*"[Title/Abstract] 476 

3 "adaptive treatment*"[Title/Abstract] OR "adaptive intervention*"[Title/Abstract] 708 

4 "treatment policy"[Title/Abstract] OR "treatment policies"[Title/Abstract] 2,390 

5 "adapt*"[Title/Abstract] OR "dynamic*"[Title/Abstract] OR "regime*"[Title/Abstract] 1,779,500 

6 #2 OR #3 OR (#4 AND #5) 1,386 

7 "time-varying"[All Fields] OR "time-varying"[All Fields] OR "time-dependent"[All 

Fields] OR "time-dependent"[All Fields] 

113,590 

8 "causal*"[All Fields] OR "causality"[MeSH Terms] OR "causalit*"[All Fields] 1,047,710 

9 "model*"[All Fields] 4,372,864 

10 (#7 OR #8) AND #9 279,972 

11 (#1 OR #6) AND #10 363 
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Appendix 4.2 EMBASE and MEDLINE search terms for Chapter 4 statistical methods review 

(March 13, 2022) 
 

Through Ovid®  EMBASE 1974 to 2022 March 1; and Ovid®  MEDLINE and Epub Ahead of Print, In-Process, 

In-Data-Review & Other Non-Indexed Citations, Daily and Versions 1946 to March 11, 2022 

 EMBASE/MEDLINE search terms Records 

EMBASE MEDLINE 

1 

(treatment sequen* or therapy sequen* or optimal sequen* or optimum sequen* 

or sequential treatment* or sequential therap* or subsequent treatment* or 

subsequent therap* or treatment-switching or treatment-switching or therapy 

switching or therapy switching or clinical pathway* or treatment pathway* or 

treatment order* or optimal position* or optimal treatment position*).ti,ab,kw. 

43,925 26,522 

2 (dynamic treatment* or dynamic intervention*).ti,ab,kw. 588 478 

3 (adaptive treatment* or adaptive intervention*).ti,ab,kw. 1,034 695 

4 (treatment policy or treatment policies).ti,ab,kw. 3,148 2,381 

5 (adapt* or dynamic* or regime*).ti,ab,kw. 2,093,948 1,747,204 

6 2 or 3 or (4 and 5) 1,903 1,373 

7 (time-varying or time-varying or time-dependent or time-dependent).af. 132,921 113,580 

8 causal*.af. 173,643 144,445 

9 causality.de. 4,438 18,083 

10 causalit*.af. 30,520 37,505 

11 8 or 9 or 10 173,643 144,445 

12 model*.af. 5,541,489 4,371,055 

13 (7 or 11) and 12 99,120 77,704 

14 (1 or 6) and 13 249 172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://causality.de/


492 

 

Appendix 6.1 NICE technology appraisals of metastatic castration-resistant prostate cancer (mCRPC) treatments 

between 2006-2020 
2006 2012 2014 2016 2018-2020 

First-line therapy 

Docetaxel (TA 101)     

     

   Enzalutamide (TA377, Jan)  

   Abiratarone (TA387, Apr)  

     

     

     

     

     

     

Second- and subsequent-line therapy 

Docetaxel (TA 101)     

 Abiratarone (TA259, Jun, 

previously docetaxel-treated 

patients) 

   

  Enzalutaide (TA316, July, 

previously docetaxel-treated 

patients) 

  

   Carbazitaxel (TA391, May, 

docetaxel-treated) 

 

     

     

     

     
* The drugs appearing in the design of my Target Trial emulation studies in Chapter 7-8 are indicated by the yellow-highlighted cells in this table. 
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Appendix 6.2 NICE technology appraisals of metastatic renal cell carcinoma treatments between 2009-2020 
2009-2012 2015 2016 2017 2018 2019 2020 

First-line therapy  

Pazopanib (TA215 2011 Feb)       

Sunitinib (TA169 2009 March)       

Bevacizumab (not 
recommended, TA 178 2009 

Aug) 

      

Sorafenib (not recommended, 

TA 178 2009 Aug) 

      

Temsirolimus (not 

recommended, TA 178 2009 

Aug) 

      

    Tivozanib (TA512 2018 
March) 

  

    Cabozantinib (TA 542 2018 

Oct) 

  

     Nivolumab with ipilimumab 
(CDF, TA581 2019 May, 

intermediate- or poor-risk) 

 

      Avelumab with axitinib 
(CDF, TA645 2020 Sep) 

      Pembrolizumab with 

axitinib (not recommended, 

TA 650 2020 Sep) 

Second- and subsequent-line therapy 

Sorafenib (TA 178 2009 Aug, 

not recommended) 

      

Sunitinib (TA 178 2009 Aug, 
not recommended) 

      

Everolimus (TA219 not 

recommended, replaced by 

TA432 2017 Feb) 

      

 Axitinib (TA333 

2015Feb, originally only 

after sunitinib) 

     

  Nivolumab (TA417 
2016 Nov) 

    

   Everolimus (TA432 2017 Feb)    

   Cabozantinib (TA463 2017 Aug)    

    Lenvatinib with everolimus 
(TA498 2018 Jan) 

  

* The drugs appearing in the design of my Target Trial emulation studies in Chapter 7-8 are indicated by the yellow-highlighted cells in this table. 

** The TAs (Treatment Arms) that have been crossed, meaning they have been terminated or replaced by the time of creating this table (January 2021). 
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Appendix 7.1 Specification for NCRAS data extraction 

1. Cohort definition 

 All patients who have been diagnosed with prostate cancer (C61) or renal cell carcinoma (C64) 

between 01/01/2011 and 31/12/2020. 

 Limited to England. 

 Prostate cancer: males. Kidney cancer: males and females. 

 Dataset extraction: 

(1) Cancer Registration data, linked via tumourid for prostate cancer and renal cell carcinoma 

diagnoses as above. 

(2) Data extraction for the cohort from 2005 (6 years prior) for the above patients to the latest 

available data, from the following datasets:  SACT, CWT, HES (APC), HES (OP), HES 

(A&E) and RTDS records, all linked at patient level (therefore comprising treatment data 

for the concurrent tumours below too). For the selected fields within each of the selected 

tables, as shown in the table below. Data is released in separate tables for each dataset. 

(3) A customized separate data table for concurrent tumour records: For the patients in the 

aforementioned cohort, the following fields from the Cancer Registry are required for all 

other cancer diagnoses (all ICD-10 C and D codes) diagnosed from 2009 to 2020: 

pseudonymised patientid, pseudonymised tumourid (ensure different pseudo tumourids 

to those used for cohort above), DIAGNOSISDATE1, DIAGNOSISDATE2, 

DIAGNOSISDATEBEST, DIAGNOSISDATEFLAG, SITE_ICD10_O2, 

SITE_ICD10_O2_3CHAR, MORPH_ICD10_O2, STAGE_BEST, T_BEST, N_BEST, 

M_BEST, GLEASON_PRIMARY, GLEASON_SECONDARY, 

GLEASON_TERTIARY, GLEASON_COMBINED. 

2. Selected data tables (datasets) and fields (variables)  

Data table (datasets within NCRAS) Requested fields 

Cancer Registry Data PATIENTID (project specific pseudonymised) 

TUMOURID (project specific pseudonymised) 

SEX 

ETHNICITY 

ETHNICITYNAME 

AGE 

DIAGNOSISDATE1 

DIAGNOSISDATE2 

DIAGNOSISDATEBEST 

DIAGNOSISDATEFLAG 

BASISOFDIAGNOSIS 

SITE_ICD10_O2 

SITE_ICD10_O2_3CHAR 

MORPH_ICD10_O2 

BEHAVIOUR_ICD10_O2 

SITE_CODED 

SITE_CODED_DESC 

SITE_CODED_3CHAR  

CODING_SYSTEM 
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CODING_SYSTEM_DESC 

MORPH_CODED 

BEHAVIOUR_CODED 

BEHAVIOUR_CODED_DESC 

HISTOLOGY_CODED 

HISTOLOGY_CODED_DESC 

GRADE 

TUMOURSIZE 

NODESEXCISED 

NODESINVOLVED 

TUMOURCOUNT 

BIGTUMOURCOUNT 

ROUTE_CODE 

FINAL_ROUTE 

STAGE_BEST 

T_BEST 

N_BEST 

M_BEST 

STAGE_BEST_SYSTEM 

T_IMG 

N_IMG 

M_IMG 

STAGE_IMG 

STAGE_IMG_SYSTEM 

T_PATH 

N_PATH 

M_PATH 

STAGE_PATH 

STAGE_PATH_SYSTEM 

STAGE_PATH_PRETREATED 

CHRL_TOT_27_03 

CHRL_TOT_78_06 

HES_LINKED 

GLEASON_PRIMARY 

GLEASON_SECONDARY 

GLEASON_TERTIARY 

GLEASON_COMBINED 

LATERALITY 

DCO 

VITALSTATUS 

VITALSTATUSDATE 

DEATHDATEBEST 

DEATHDATEFLAG 

EMBARKATION 

EMBARKATIONDATE 

DEATHCAUSECODE_1A 

DEATHCAUSECODE_1B 

DEATHCAUSECODE_1C 

DEATHCAUSECODE_2 

DEATHCAUSECODE_UNDERLYING 

DIAG_HOSP 

DIAG_HOSP_NAME 

FIRST_HOSP 

FIRST_HOSP_NAME 

FIRST_HOSP_DATE 

DIAG_TRUST 

DIAG_TRUST_NAME 

FIRST_TRUST 

FIRST_TRUST_NAME 

CCG_CODE 

CCG_NAME 

COUNTY_CODE 

COUNTY_NAME 

GOR_CODE 

GOR_NAME 

CTRY_CODE 

CTRY_NAME 

INCOME_QUINTILE (Income domain, based on version most appropriate for timing of tumour 

diagnosis) 

IMD_QUINTILE (Full IMD, based on version most appropriate for timing of tumour diagnosis) 

RT_FLAG 

CT_FLAG 

SG_FLAG 

EVENTID (project specific pseudonymised) 

NUMBER_OF_TUMOURS 
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EVENTCODE 

EVENTDESC 

EVENTDATE 

PROVIDERCODE 

PROVIDERDESC 

TRUST_CODE 

TRUST_NAME 

PRACTITIONERCODE (Pseudonymised) 

WITHIN_SIX_MONTHS_FLAG 

SIX_MONTHS_AFTER_FLAG 

OPCS4_CODE 

OPCS4_NAME 

RADIOCODE 

RADIODESC 

IMAGINGCODE 

IMAGINGDESC 

LESIONSIZE 

CHEMO_ALL_DRUGS 

CHEMO_DRUG_GROUP 

MULTIFOCAL 

EXCISIONMARGIN 

Systemic Anti-Cancer Therapy 

Dataset (SACT) 

PATIENTID 

TUMOURID 

NHS_Number_Status 

Ethnicity 

Consultant_GMC_Code (pseudonymised) 

Consultant_Speciality_Code 

Organisation_Code_of_Provider 

Primary_Diagnosis 

Morphology_clean 

Stage_at_Start 

Programme_Number 

Regimen_Number 

Intent_of_Treatment 

Adjunctive therapy                    

Analysis_Group 

Benchmark_Group 

Height_At_Start_of_Regimen 

Weight_At_Start_of_Regimen 

Performance_Status_at_Start_of_Regimen_Clean 

Comorbidity_Adjustment 

Date_Decision_To_Treat 

Start_Date_of_Regimen 

Clinical_Trial 

Chemo_Radiation 

Number_of_Cycles_Planned 

Cycle_Number 

Start_Date_of_Cycle 

Weight_At_Start_Of_Cycle 

Performance_Status_At_Start_Of_Cycle_Clean 

OPCS_Procurement_Code 

Drug_Group 

Actual_Dose_Per_Administration 

Administration_Route 

Administration_Date 

OPCS_Delivery_Code 

Date_of_Final_Treatment 

Regimen_Modification_Dose_Reduction 

Regimen_Modification_Time_Delay 

Regimen_Modification_Stopped_Early 

Regimen_Outcome_Summary 

regoutsum_cur_not_com_plan 

regoutsum_non_curat 

regoutsum_toxic 

regoutsum_cur_com_plan 

Radiotherapy Dataset (RTDS) PATIENTID (project specific pseudonymised) 

RADIOTHERAPYEPISODEID (project specific pseudonymised) 

APPTDATE 

DECISIONTOTREATDATE 

EARLIESTCLINAPPROPRIATEDATE 

RADIOTHERAPYPRIORITY 

TREATMENTSTARTDATE 

RADIOTHERAPYDIAGNOSISICD 

RADIOTHERAPYINTENT 

RTTREATMENTREGION 
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RTTREATMENTANATOMICALSITE 

PRIMARYPROCEDUREOPCS 

PROCEDUREDATE 

NDRS Linked HES A&E PATIENTID (project specific pseudonymised) 

ethnos 

aeattendcat 

aeattenddisp 

arrivaldate (date YYYY-MM-DD) 

diag_n 

diag2_n 

diaga_n 

diags_n 

treat_n 

treat2_n 

NDRS Linked HES APC PATIENTID (project specific pseudonymised) 

startage 

ethnos 

admidate (date YYYY-MM-DD) 

elecdate (date YYYY-MM-DD) 

admimeth 

firstreg 

elecdur 

disdate  (date YYYY-MM-DD) 

bedyear 

spelbgin 

epiend (date YYYY-MM-DD) 

epistart (date YYYY-MM-DD) 

speldur 

spelend 

epidur 

epiorder 

epitype 

diag_4n 

diag3_3n  

opertn_nn 

opdate_nn 

operstat 

intmanig 

mainspef 

tretspef 

NDRS Linked HES OP PATIENTID 

ethnos 

apptdate 

attended 

outcome 

priority 

diag_nn 

diag_4 

diag3 

opertn_nn 

opertn_01 

opertn3 

operstat 

mainspef 

tretspef 

Cancer Waiting Times (Treatments 

Only) 

PATIENTID (project specific pseudonymised) 

TUMOURID (project specific pseudonymised) 

TREAT_PERIOD_START 

SITE_ICD10 

METS_SITE 

LATERALITY 

TREAT_START 

WTA_TREAT 

WTA_TREAT_REASON 

CTE_TYPE 

MODALITY 

CLIN_TRIAL 

RADIO_PRIORITY 
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Appendix 8.1 Definition of the metastatic diagnosis date in the Flatiron metastatic prostate 

cancer database 
 

"MetDiagnosisDate" in the Flatrion data was defined as the earliest confirmed date a patient developed distant 

metastatic prostate cancer, determined through manual abstraction by trained abstractors using the subsequent 

hierarchy: 

(1) If a patient had distant metastases (M1) at initial prostate cancer diagnosis, the "MetDiagnosisDate" aligns with the 

initial prostate cancer diagnosis date “DiagnosisDate”. 

(2) For patients diagnosed with Stage IV but with M0 or without initial distant metastases, the date they later 

developed metastasis is recorded as their "MetDiagnosisDate". 

(3) Abstractors follow a hierarchy to determine the most accurate early date for metastatic confirmation by the treating 

physician: 

a. Biopsy specimen collection date from the pathology report 

b. Date reported by the physician for the biopsy  

c. Radiology scan date showing metastasis, later validated by a physician. 

d. Physician-stated metastatic diagnosis date. 
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Appendix 8.2 Definition of castration-resistant prostate cancer and the date of castration 

resistance in the Flatiron metastatic prostate cancer database 
 

In the Flatiron data, the determination of CRPC diagnosis and the date of CRPC are as follows: 

 Primary: Direct physician documentation (with the CRPC diagnosis date referred to by the clinician). 

 Secondary: A documented PSA increase of at least 2.0 ng/ml during initial hormonal therapy, followed by another 

increase within 3 months (CRPC date is the second PSA rise's date). 

 Tertiary: Physician documentation of rising PSA or PSA progression during the first hormonal therapy line 

accompanied by a treatment shift (CRPC date as specified by the physician). 
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Appendix 8.3 Details of diagnosis codes used in the study 
Coding 

System 

Codes* Diagnosis Description 

Chronic kidney disease with a creatinine clearance of < 30 ml/min 

ICD-9-CM 585.4x Chronic kidney disease, Stage IV (severe) 

585.5x Chronic kidney disease, Stage V 

585.6x End stage renal disease 

585.9x Chronic kidney disease, unspecified 

ICD-10-CM N18.4x Chronic kidney disease, stage 4 (severe) 

N18.5x Chronic kidney disease, stage 5 

N18.6x End stage renal disease 

N18.9x Chronic kidney disease, unspecified 

Diagnosis of non-prostate primary malignancies (except non-melanomatous skin cancer) 

ICD-9-CM 140.x Malignant neoplasm of lip 

141.x Malignant neoplasm of tongue 

142.x Malignant neoplasm of major salivary glands 

143.x Malignant neoplasm of gum 

144.x Malignant neoplasm of floor of mouth 

145.x Malignant neoplasm of other and unspecified parts of mouth 

146.x Malignant neoplasm of oropharynx 

147.x Malignant neoplasm of nasopharynx 

148.x Malignant neoplasm of hypopharynx 

149.x Malignant neoplasm of other and ill-defined sites within the lip oral cavity and pharynx 

150.x Malignant neoplasm of esophagus 

151.x Malignant neoplasm of stomach 

152.x Malignant neoplasm of small intestine including duodenum 

153.x Malignant neoplasm of colon 

 

154.x Malignant neoplasm of rectum rectosigmoid junction and anus 

155.x Malignant neoplasm of liver and intrahepatic bile ducts 

156.x Malignant neoplasm of gallbladder and extrahepatic bile ducts 

157.x Malignant neoplasm of pancreas 

158.x Malignant neoplasm of retroperitoneum and peritoneum 

159.x Malignant neoplasm of other and ill-defined sites within the digestive organs and 

peritoneum 

160.x Malignant neoplasm of nasal cavities middle ear and accessory sinuses 

161.x Malignant neoplasm of larynx 

162.x Malignant neoplasm of trachea bronchus and lung 

163.x Malignant neoplasm of pleura 

164.x Malignant neoplasm of thymus heart and mediastinum 

165.x Malignant neoplasm of other and ill-defined sites within the respiratory system and 

intrathoracic organs 

170.x Malignant neoplasm of bone and articular cartilage 

171.x Malignant neoplasm of connective and other soft tissue 

172.x Malignant melanoma of skin 

174.x Malignant neoplasm of female breast 

175.x Malignant neoplasm of male breast 

176.x Kaposi's sarcoma 

179.x Malignant neoplasm of uterus, part unspecified 

180.x Malignant neoplasm of cervix uteri 

181.x Malignant neoplasm of placenta 

182.x Malignant neoplasm of body of uterus 

183.x Malignant neoplasm of ovary and other uterine adnexa 
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184.x Malignant neoplasm of other and unspecified female genital organs 

186.x Malignant neoplasm of testis 

187.x Malignant neoplasm of penis and other male genital organs 

188.x Malignant neoplasm of bladder 

189.x Malignant neoplasm of kidney and other and unspecified urinary organs 

190.x Malignant neoplasm of eye 

191.x Malignant neoplasm of brain 

192.x Malignant neoplasm of other and unspecified parts of nervous system 

193.x Malignant neoplasm of thyroid gland 

194.x Malignant neoplasm of other endocrine glands and related structures 

195.x Malignant neoplasm of other and ill-defined sites 

199.x Malignant neoplasm without specification of site 

200.x Lymphosarcoma and reticulosarcoma and other specified malignant tumors of lymphatic 

tissue 

201.x Hodgkin's disease 

202.x Other malignant neoplasms of lymphoid and histiocytic tissue 

203.x Multiple myeloma and immunoproliferative neoplasms 

204.x Lymphoid leukemia 

205.x 2Myeloid leukemia 

206.x Monocytic leukemia 

207.x Other specified leukemia 

208.x Leukemia of unspecified cell type 

209.0x Malignant carcinoid tumors of the small intestine 

209.1x Malignant carcinoid tumors of the appendix, large intestine, and rectum 

209.2x Malignant carcinoid tumors of other and unspecified sites 

209.3x Malignant poorly differentiated neuroendocrine tumors 

ICD-10-CM C00.x Malignant neoplasm of lip 

C01.x Malignant neoplasm of base of tongue 

C02.x Malignant neoplasm of other and unspecified parts of tongue 

C03.x Malignant neoplasm of gum 

C04.x Malignant neoplasm of floor of mouth 

C05.x Malignant neoplasm of palate 

C06.x Malignant neoplasm of other and unspecified parts of mouth 

C07.x Malignant neoplasm of parotid gland 

C08.x Malignant neoplasm of other and unspecified major salivary glands 

C09.x Malignant neoplasm of tonsil 

C10.x Malignant neoplasm of oropharynx 

C11.x Malignant neoplasm of nasopharynx 

C12.x Malignant neoplasm of pyriform sinus 

C13.x Malignant neoplasm of hypopharynx 

C14.x Malignant neoplasm of other and ill-defined sites in the lip, oral cavity and pharynx 

C15.x Malignant neoplasm of esophagus 

C16.x Malignant neoplasm of stomach 

C17.x Malignant neoplasm of small intestine 

C18.x Malignant neoplasm of colon 

C19.x Malignant neoplasm of rectosigmoid junction 

C20.x Malignant neoplasm of rectum 

C21.x Malignant neoplasm of anus and anal canal 

C22.x Malignant neoplasm of liver and intrahepatic bile ducts 

C23.x Malignant neoplasm of gallbladder 

C24.x Malignant neoplasm of other and unspecified parts of biliary tract 

C25.x Malignant neoplasm of pancreas 
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C26.x Malignant neoplasm of other and ill-defined digestive organs 

C30.x Malignant neoplasm of nasal cavity and middle ear 

C31.x Malignant neoplasm of accessory sinuses 

C32.x Malignant neoplasm of larynx 

C33.x Malignant neoplasm of trachea 

C34.x Malignant neoplasm of bronchus and lung 

C37.x Malignant neoplasm of thymus 

C38.x Malignant neoplasm of heart, mediastinum and pleura 

C39.x 

Malignant neoplasm of other and ill-defined sites in the respiratory system and 

intrathoracic organs 

C40.x Malignant neoplasm of bone and articular cartilage of limbs  

C41.x Malignant neoplasm of bone and articular cartilage of other and unspecified sites 

C43.x Malignant melanoma of skin 

C4A.x Merkel cell carcinoma 

C45.x Mesothelioma 

C46.x Kaposi's sarcoma 

C47.x Malignant neoplasm of peripheral nerves and autonomic nervous system 

C48.x Malignant neoplasm of retroperitoneum and peritoneum 

C49.x Malignant neoplasm of other connective and soft tissue 

C50.x Malignant neoplasm of breast 

C51.x Malignant neoplasm of vulva 

C52.x Malignant neoplasm of vagina 

C53.x Malignant neoplasm of cervix uteri 

C54.x Malignant neoplasm of corpus uteri 

C55.x Malignant neoplasm of uterus, part unspecified 

C56.x Malignant neoplasm of ovary 

C57.x Malignant neoplasm of other and unspecified female genital organs  

C58.x Malignant neoplasm of placenta 

C60.x Malignant neoplasm of penis 

C62.x Malignant neoplasm of testis 

C63.x Malignant neoplasm of other and unspecified male genital organs 

C64.x Malignant neoplasm of kidney, except renal pelvis 

C65.x Malignant neoplasm of renal pelvis 

C66.x Malignant neoplasm of ureter 

C67.x Malignant neoplasm of bladder 

C68.x Malignant neoplasm of other and unspecified urinary organs 

C69.x Malignant neoplasm of eye and adnexa  

C70.x Malignant neoplasm of meninges  

C71.x Malignant neoplasm of brain  

C72.x 

Malignant neoplasm of spinal cord, cranial nerves and other parts of central nervous 

system 

C73.x Malignant neoplasm of thyroid gland  

C74.x Malignant neoplasm of adrenal gland  

C75.x Malignant neoplasm of other endocrine glands and related structures 

C76.x Malignant neoplasm of other and ill-defined sites 

C7A.x Malignant neuroendocrine tumors 

C80.x Malignant neoplasm without specification of site 

C81.x Hodgkin lymphoma 

C82.x Follicular lymphoma 

C83.x Non-follicular lymphoma 

C84.x Mature T/NK-cell lymphomas 

C85.x Other specified and unspecified types of non-Hodgkin lymphoma 

C86.x Other specified types of T/NK-cell lymphoma 
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C88.x Malignant immunoproliferative diseases and certain other B-cell lymphomas 

C90.x Multiple myeloma and malignant plasma cell neoplasms 

C91.x Lymphoid leukemia 

C92.x Myeloid leukemia 

C93.x Monocytic leukemia 

C94.x Other leukemias of specified cell type 

C95.x Leukemia of unspecified cell type 

C96.x Other and unspecified malignant neoplasms of lymphoid, hematopoietic and related tissue 

Diagnosis of brain metastasis 

ICD-9-CM 198.3x Secondary malignant neoplasm of brain and spinal cord 

198.4x Secondary malignant neoplasm of other parts of nervous 

ICD-10-CM C79.3x Secondary malignant neoplasm of brain and cerebral meninges 

Diagnosis of seizure and cerebrovascular events 

ICD-9-CM 345.x Epilepsy and recurrent seizures 

430.x Subarachnoid hemorrhage 

431.x Intracerebral hemorrhage  

432.x Other and unspecified intracranial hemorrhage  

433.x Occlusion and stenosis of precerebral arteries  

434.x Occlusion of cerebral arteries 

463.x Acute, but ill-defined, cerebrovascular disease  

437.x Other and ill-defined cerebrovascular disease  

438.x Late effects of cerebrovascular disease 

ICD-10-CM G40.x Epilepsy and recurrent seizures 

I60.x Nontraumatic subarachnoid hemorrhage 

I61.x Nontraumatic intracerebral hemorrhage 

I62.x Other and unspecified nontraumatic intracranial hemorrhage 

I63.x Cerebral infarction 

I65.x Occlusion and stenosis of precerebral arteries, not resulting in cerebral infarction 

I66.x Occlusion and stenosis of cerebral arteries, not resulting in cerebral infarction 

I67.x Other cerebrovascular diseases 

I68.x Cerebrovascular disorders in diseases classified elsewhere 

I69.x Sequelae of cerebrovascular disease 

*The letter "x" signifies that all codes with a prefix preceding "x" are eligible. 
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Appendix 8.4 Prior treatments that were not allowed in the GUTG-001 Analogue Target Trial 
abiraterone, enzalutamide, ketoconazole, apalutamide (ARN-509), galeterone (TOK-001), orteronel (TAK-700), 

samarium Sm 153 lexidronam, radium-223, sipuleucel-T,  strontium-89, vipivotide, any other radiopharmaceutical 

drug, darolutamide, larotrectinib, olaparib, relugolix, rucaparib, talazoparib, clinical study drug 
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Appendix 8.5 R code for identifying the Target Trial cohort in Prostate Cancer Case Study 1 

(PC1) 
################################################################################# 
###    Cohort Identification                                                                                                                           ###  
###    Amy Chang's PhD Thesis - Treatment Sequence project                                             ###  
###    Data: Flatiron prostate cancer datasets                                                                                           ### 
###                                                                                                                                                                    ### 
###    University of Sheffield                                                                                                                        ### 
###    Date created: Dec 20, 2022                                                                                                               ###  
###    Created Git & renv project: Aug 01, 2023                                                                                       ### 
###    Applied GUTG-001 criteria: Sep 18, 2023                                                                                       ### 
###    Applied unrestricted full mCRPC naive cohort: Sep 20, 2023                                                     ###  
###    Re-do all analysis using updated Flatiron data (Sep 2023): Oct 3, 2023                                   ### 
################################################################################# 
 
## House keeping 
 
# Load packages and functions 
renv::status() 
`%notin%` <- Negate(`%in%`) 
 
if (!require(dplyr)) install.packages("dplyr") 
library(dplyr) 
library(lubridate) 
library(stringr) 
 
 
# load raw data using "00_Data Inspection" 
 
 
######################################################################################## 
### 
###  Inclusion criteria  
###  (The number of criteria were taken from the original GUTG-001 protocol) 
###  https://classic.clinicaltrials.gov/ProvidedDocs/57/NCT02125357/Prot_SAP_000.pdf 
### 
######################################################################################## 
 
##***** 1.  Willing and able to provide informed consent --> all patients gave consent to be treated 
 
##***** 5.  Evidence of metastatic disease on bone scan or CT scan  
#**** ==> See Flatiron: Knowledge centre how meta-diagnosis were defined in d_diag_metPC (i.e., the Met PC dataset) 
 
# All 21711 patients in the Met PC dataset has a metastatic date 
test <- rd_diag_metPC[rd_diag_metPC$MetDiagnosisDate %in% ""] # 0 rows (all patients in the dataset developed metastatic prostate cancer at 
some time point) 
 
# Check diagnosis year of metastasis 
test <- merge(rd_diag_metPC[ , c("DiagnosisDate", "MetDiagnosisDate", "PatientID")], rd_LOT, by = "PatientID", all.y = TRUE) %>% 
  mutate_at(vars(DiagnosisDate, MetDiagnosisDate, StartDate, EndDate), as.Date, format="%Y-%m-%d") # 36350 (all raw LOT data) 
summary(as.factor(year(test$MetDiagnosisDate))) 
# year 2013-20233 each year approx. 3000-4000 pts with less patients in year 2022-2023 (closer to data cut-off) 
 
# Select all patients from the Met prostate cancer dataset (their met diagnosis is either their first PC diagnosis or later) 
# Create an initial dataset to store patient records for the Unrestricted full mCRPC cohort (each row = records for one patient) 
d_TT_cohort_full_mCRPC <- rd_diag_metPC # 21711 (the GUTG-001 cohort will be a subset of full_mCRPC) 
# Create an initial dataset to store patient records for the GUTG-001 Analogue cohort (each row = records for one patient) 
d_TT_cohort_GUTG001 <- rd_diag_metPC # 21711 
 
 
##***** 6.  Evidence of biochemical or imaging progression in the setting of surgical or  
#   medical castration. Progressive disease for study entry is defined by one of  
#   the following three criteria:   
#    a. PSA progression: minimum of two rising PSA values from a baseline  
#         measurement with an interval of ≥ 1 week between each  
#         measurement. Minimum PSA at screening visit is > 2.0 ug/L   
#     b. Soft tissue or visceral disease progression (see Appendix B for  
#          definition of measurable disease as per RECIST 1.1 criteria)  
#     c. Bone progression: ≥ 2 new lesions on bone scan  
 
#**** Limit Cohort Met Patients to those who ever developed CPRC and a CPRC date  
#**** Assign a mCPRC date to each mCRPC patient based on the later date among MetaDiagnosisDate and CRPCDate  
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# Unrestricted full mCRPC cohort 
d_TT_cohort_full_mCRPC <- subset(d_TT_cohort_full_mCRPC, IsCRPC == "Yes") # 13233 
d_TT_cohort_full_mCRPC <- d_TT_cohort_full_mCRPC[d_TT_cohort_full_mCRPC$CRPCDate %notin% "", ] %>% 
  mutate_at(vars(DiagnosisDate, MetDiagnosisDate, CRPCDate), as.Date, format="%Y-%m-%d")  
# 13233 --> 13016 rows, roughly 1.6% (dropping 217 rows) 
d_TT_cohort_full_mCRPC$MCRPCDate <- apply(d_TT_cohort_full_mCRPC[ , c("MetDiagnosisDate", "CRPCDate")], 1, max) 
d_TT_cohort_full_mCRPC$MCRPCDate <- as.Date(d_TT_cohort_full_mCRPC$MCRPCDate, format="%Y-%m-%d") 
# Relocate the column of MCRPC date so it is easier to read 
d_TT_cohort_full_mCRPC <- d_TT_cohort_full_mCRPC %>% 
  relocate(CRPCDate, MCRPCDate, .after = MetDiagnosisDate)  
sum(is.na(d_TT_cohort_full_mCRPC$MCRPCDate)) # no missing MCRPCdate 
summary(as.factor(year(d_TT_cohort_full_mCRPC$MCRPCDate))) # Check MCRPC year 2013-2023 
 
# GUTG-001 cohort: The same as the unrestricted mCRPC cohort at this stage 
d_TT_cohort_GUTG001 <- d_TT_cohort_full_mCRPC # 13016 
 
# For patients who had CRPC in Flatiron, some may have progressed from other stage e.g. nmCRPC or HSPC, nmHSPC 
# Some patients in the data may have mHSPC, but did not progress to CRPC 
 
 
#******************************************************************************** 
#****** The selection process for unrestricted full mCRPC patients is complete.  
#****** The following procedure is focusing on aligning patients with  
#****** the remaining criteria specified in GUTG-001. 
#******************************************************************************** 
 
####******ADDITIONAL CRITERIA from Flatiron: deleting patients having "Line Zero"  
####***** Rationale: Line info from these patients are incomplete  
 
# See how many met patients have received treatment from the cohort 
test <- rd_LOT %>% # 16248 (74.84% patients (out of 21711) have received treatments for prostate cancer) 
  select(PatientID) %>%  
    distinct(PatientID) 
 
# Delete patients who have Line Zero in the LOT table  
# --> hope this will solve the problem of patients having mCRPC treatment after their mCRPC date (CRPCDate or metDiagDate, whichever is the 
latest) 
v_ID_LineZero <- dplyr::filter(rd_LOT, LineName %in% "Line Zero") %>%  
  select(PatientID) %>%  
  distinct(PatientID) 
# 1400 rows (1400 patients had Line Zero, in full met dataset (met be less in mCRPC dataset)) 
test <- merge(rd_LOT, v_ID_LineZero, by = "PatientID", all.y = TRUE) 
 
# Testing whether any treatment interval of patients having LineZero is less than zero 
test <- test %>% 
  arrange(PatientID, LineNumber) %>% 
  group_by(PatientID) %>% 
  mutate(StartDate_lag = dplyr::lag(StartDate, n = 1, default = NA)) %>% 
  mutate_at(vars(StartDate, StartDate_lag, EndDate), as.Date, format="%Y-%m-%d") %>% 
  mutate(Gap_treat_interval = StartDate - StartDate_lag) 
summary(as.numeric(test$Gap_treat_interval)) 
# All treatment intervals of patients having Line Zero (n = 1400) are above zero (28~3571) 
# Line Zero are always before labelled treatments --> representing unknown previous treatment 
 
 
### For the purpose of mimicking GUTG-001 trial --> deleting Patients having Line Zero  
### We are uncertain whether these patients had abiraterone or enzalutamide as prior treatment (should be excluded) 
### Also, it's harder to define time zero for these patients 
 
# For GUTOG-001 cohort 
d_TT_cohort_GUTG001 <- anti_join(d_TT_cohort_GUTG001, v_ID_LineZero, by = "PatientID")  
# 11616 (remove 1400 patients that have LineZero) 
 
# Note Dr. Philani's (Flatiron) replication code on 20231012 also deleted patients who doesn't have any LOT data (on top of those who had 
incomplete treatment history) 
# so his cohort came to a number of 10166 (this will be executed as part of in my next step: excluding patients who haven’t initiated any treatment 
since mCRPC as I can assure I am not completely deleting patients based on future events) 
 
# Check if all Line zero have been deleted in the GUTG001 cohort  
test <- merge(rd_LOT, d_TT_cohort_GUTG001, by = "PatientID") %>% 
  arrange(PatientID, LineNumber) # 25798 LOTs (inner join) 
summary(as.factor(test$LineNumber)) # no Line zero, but 1932 NA (potentially mHSPC) 
summary(as.factor(test$LineSetting)) # HSPC 7, mCPRC 23141, mHSPC 1925, nmCRPC 725 (no LineSetting = NA) ### NOTE PATIENTS WITH mHSPC 
can be used to study mHSPC treatments 
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sum(is.na(test$LineName)) # 0 unknown LineName 
 
 
####******ADDITIONAL CRITERIA: Exclude Patients who did not initiate treatment following their mCRPC diagnosis. 
####***** Rationale: These patients did not survive until "randomisation" (which is similar to the timing of receiving first-line treatment) 
 
#**** Logic check  
#**** Check how many patient's StartDtae for the first-line mCRPC treatment is before mCRPC date 
 
# Check how many patients out of the cohort full_mCRPC cohort ever had PC treatment 
test <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "DiagnosisDate", "MetDiagnosisDate", "CRPCDate", "MCRPCDate")], rd_LOT, by = 
"PatientID", all.x = TRUE) %>% 
  mutate_at(vars(DiagnosisDate, MetDiagnosisDate, CRPCDate, MCRPCDate, StartDate, EndDate), as.Date, format="%Y-%m-%d") %>% 
  group_by(PatientID) %>%  
  slice(which.min(LineNumber)) # 10007 out of 11616 patients had treatment in one of the setttings: mCRPC, mHSPC, nmCPRC, nmHSPC 
 
test <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "DiagnosisDate", "MetDiagnosisDate", "CRPCDate", "MCRPCDate")], rd_LOT, by = 
"PatientID", all.x = TRUE) %>% 
  mutate_at(vars(DiagnosisDate, MetDiagnosisDate, CRPCDate, MCRPCDate, StartDate, EndDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(LineSetting %notin% "mCRPC") %>%  
  group_by(PatientID) %>%  
  slice(which.min(LineNumber)) # 464 out of 11616 patients had treatments of non mCRPC 
 
test <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "DiagnosisDate", "MetDiagnosisDate", "CRPCDate", "MCRPCDate")], rd_LOT, by = 
"PatientID", all.x = TRUE) %>% 
  mutate_at(vars(DiagnosisDate, MetDiagnosisDate, CRPCDate, MCRPCDate, StartDate, EndDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(LineSetting %in% "mCRPC") %>%  
  group_by(PatientID) %>%  
  slice(which.min(LineNumber)) # 9938 out of 11616 patients had treatments of mCRPC  
 
 
# Check how many patient's first-line mCRPC treatment is before mCRPC date 
# Find the first mCRPC LOT for each patient 
summary(test$LineNumber) # line 1-8: median = 1, Q3 = 1, max = 8 (meaning that first-line mCRPC  = x-line of CRPC) 
summary(as.factor(test$LineNumber))   
# n = 1 (first-line mCRPC = first-line of CRPC): 9543 
# n = 2 (first-line mCPRC = second-line of CRPC), 260 
 
# Gap from diagnosis of mCRPC to the first-treatment of mCRPC 
test$gap_mCPRCDate_1stmCRPCtreatStart <- test$StartDate - test$MCRPCDate 
test$gap_mCPRCDate_1stmCRPCtreatEnd <- test$EndDate - test$MCRPCDate 
summary(as.numeric(test$gap_mCPRCDate_1stmCRPCtreatStart)) # median = 16, min = -2382~max 2598 
 
# Identify patients who had "LineSetting = mCRPC" treatment before the mCRPC date (out of 7422 who had mCRPC treatments)  
length(as.numeric(test$gap_mCPRCDate_1stmCRPCtreatStart[test$gap_mCPRCDate_1stmCRPCtreatStart < 0])) # 2313 patients 
test2 <- test[test$gap_mCPRCDate_1stmCRPCtreatStart < 0, ] 
summary(as.numeric(test2$gap_mCPRCDate_1stmCRPCtreatStart))  
# Among these 2313 patients: 
# date mCRPC date to the start date of the first mCRPC treatment: : -2382~-1: median -152.0, Q1: -341, Q3 -33 
summary(as.numeric(test2$gap_mCPRCDate_1stmCRPCtreatEnd))  
# date mCRPC date to the end date of the first mCRPC treatment: : 0~2430: Q1 32, median 89, Q3: 217 
 
 
### Among current GUTG-001 eligible patients (n = 13016, including those that had LineZero) who ever received mCRPC treatments (n = 9938), 
### 2313 (23.3%) received their "first mCRPC treatment" (LineSetting = "mCRPC" & LineNumber = the minimum number within "mCRPC") before 
their mCRPC date 
 
### Please see examples: IDs in the test2 dataset 
 
### Update: A treatment regimen (LOT) is labeled as for "mCRPC" if ANY EPISODE of this regimen commences after the mCRPC date.  
### Check: For all patients who began mCRPC treatment prior to their mCRPC date, all such treatments concluded by or on the mCRPC date, which 
is reasonable.  
#### However, I'll need to consult with the oncologist regarding classifying these treatments as "mCRPC" treatments for my study, especially since 
some concluded just a week post the mCRPC date.  
#### It's plausible that the subsequent regimen is the more appropriate treatment designated for mCRPC. 
 
# Potential Scenarios: 
#  1. Treatment regimen begins just prior to the mCRPC date and concludes much later: 
#  This suggests the mCRPC treatment might have commenced before the official mCRPC documentation. 
 
# 2. Treatment regimen starts long before the mCRPC date and finishes shortly after: 
#  non-mCPRC treamtent was halted once mCRPC was documented. 
 
# 3. Treatment regimen initiates shortly before the mCRPC date and ends shortly after: 
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#  ??? need to consult oncologists 
 
# 4. Treatment regimen begins a long time before the mCRPC date and concludes much later: 
#  ??? need to consult oncologists 
 
# Additional Considerations: 
# Establishing a grace period is essential. 
# Understanding how Drug Episodes (and LOT) were defined is crucial (e.g. longer end date due to refill dates?) 
 
 
#**** Current solution 1:  Check patient's first treatment which StartDate is on the date of mCRPC or after, label the date of first mCRPC treatment, 
and relabel the LOT 
#### (assuming that all treatments across mCRPC or before were for non-mCRPC: caveat: some start right before mCRPC date, the date of mCPRC 
could be mis-classified) 
# Create new numbering system for user-defined mCRPC treatments (only label of treatments starting after mCRPC diagnosis) 
d_LOT_treat_after_mCRPC <- merge(rd_LOT, d_TT_cohort_GUTG001, by = "PatientID") %>% 
  mutate_at(vars(StartDate, EndDate), as.Date, format="%Y-%m-%d") %>% # 20828 
  filter(StartDate >= MCRPCDate) %>% 
  arrange(PatientID, StartDate) %>% 
  group_by(PatientID) %>% 
  mutate(LineNumber_mCRPC_UserDef = seq_along(PatientID)) %>% 
  select(colnames(rd_LOT), LineNumber_mCRPC_UserDef) 
summary(as.factor(d_LOT_treat_after_mCRPC$LineName[d_LOT_treat_after_mCRPC$LineNumber_mCRPC_UserDef == 1])) # First-line 3036 
abiraterone, 2915 Enzalutamide 
length(unique(d_LOT_treat_after_mCRPC)) # 9224 patients ever had treatments starting after mCRPC diagnosis 
 
# merge the relabelled mCRPC treatment line to all LOT for GUTG-001 patients 
d_LOT_GUTG001 <- rd_LOT %>%  
  mutate_at(vars(StartDate, EndDate), as.Date, format="%Y-%m-%d") %>% 
  filter(PatientID %in% unique(d_LOT_treat_after_mCRPC$PatientID)) %>% # limited LOT to those who had treatments after mCRPC diagnosis 
  left_join(d_LOT_treat_after_mCRPC, by = colnames(rd_LOT)) %>%  
  arrange(PatientID, StartDate) # 24575 LOTs (including pre-treatment before mCRPC) for those 9224 patients 
 
# For GUTOG-001 cohort 
d_TT_cohort_GUTG001 <- d_TT_cohort_GUTG001[d_TT_cohort_GUTG001$PatientID %in% d_LOT_GUTG001$PatientID, ] # 9224 (2392/11616, 
20.1% patients did not commence treatment after mCRPC diagnosis) 
 
 
 
####******ADDITIONAL CRITERIA: Include only patients who instated abiraterone or enzalutamide following mCPRC treatment (time zero: start of 
treatment) 
# Find ID that started abi or enza after mCRPC diagnosis 
v_ID_1stmCRPCtreat_abi_enza <- d_LOT_GUTG001[d_LOT_GUTG001$LineNumber_mCRPC_UserDef %in% 1 & 
                               d_LOT_GUTG001$LineName %in% c("Abiraterone", "Enzalutamide"), ] %>% 
                               select(PatientID) 
d_TT_cohort_GUTG001 <- d_TT_cohort_GUTG001[d_TT_cohort_GUTG001$PatientID %in% v_ID_1stmCRPCtreat_abi_enza[ ,"PatientID"], ] # 5951 
 
# Limit LOT info to only patients starting with abi or enza patients as well 
d_LOT_GUTG001 <- d_LOT_GUTG001[d_LOT_GUTG001$PatientID %in% v_ID_1stmCRPCtreat_abi_enza[ ,"PatientID"], ] # 24575 --> 14490 
summary(as.factor(d_LOT_GUTG001[d_LOT_GUTG001$LineNumber_mCRPC_UserDef %in% 1, "LineName"])) # First-line mCRPC: abi: 3036; enza 
2915 
 
 
 
##### Assign the date of start of treatment for all patients (Baseline Date in the Trial: Day 1 == Time zero) 
d_TT_cohort_GUTG001 <- filter(d_LOT_GUTG001, LineNumber_mCRPC_UserDef %in% 1) %>% 
  select(PatientID, StartDate) %>% 
  rename(TimeZero = StartDate) %>% 
  inner_join(d_TT_cohort_GUTG001, by = "PatientID") # 5951 
 
# Check the date of first-line treatment in relation to other dates 
summary(as.numeric(d_TT_cohort_GUTG001$TimeZero - d_TT_cohort_GUTG001$MCRPCDate)) # Median: 32, Mean: 104, Q1: 8, Q3: 101, min: 0, 
max: 2382 
summary(as.numeric(d_TT_cohort_GUTG001$TimeZero - d_TT_cohort_GUTG001$CRPCDate)) # Median: 49, Mean: 189, Q1: 13, Q3: 173, min: 0, 
max: 6754 
summary(as.numeric(d_TT_cohort_GUTG001$TimeZero - d_TT_cohort_GUTG001$MetDiagnosisDate)) # Median: 340, Mean: 461, Q1: 105, Q3: 
635, min: 0, max: 3317 
summary(as.numeric(d_TT_cohort_GUTG001$TimeZero - d_TT_cohort_GUTG001$DiagnosisDate)) # Median: 1372, Mean: 2405, Q1: 525, Q3: 3676, 
min: 10, max: 15982: NA 74 
 
####****** Other thought: excluding patients who still have ongoing treatment at the date mCRPC (having treatment LOT spanning across the 
mCRPC date (selection bias????)) 
####****** these patients as we cannot be sure whether these are treatments prior to mCRPC or for CRPC (NEED TO DO SCENARIO ANLAYSIS) 
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####****** ADDITIONAL CRITERIA TO ENSURE similar data-cut-off point for mature survival analysis  
# GUTG-001: enrollment between 2014-10-21 and 2016-12-13 
# patients were enrolled, of whom 101 were assigned to each group.  
# The median follow-up at time of data cutoff (May 31, 2018) was  30·7  months  (IQR  25·1–36·2).   
# Last enrollment to data-cut-off is roughly 17 months (The shortest period from enrollment to data-cut-off) 
 
#**** Limit Patients to those who initiated their first treatment after MCRPC date no later than 2022-03-31 (2022-03-31~2023-08-31 is roughly 17 
months)  
# Exclude Patient's time-zero is later than 2022-03-31 
d_TT_cohort_GUTG001 <- filter(d_TT_cohort_GUTG001, d_TT_cohort_GUTG001$TimeZero <= as.Date("2022-03-31")) # 5288 
summary(as.factor(year(test$TimeZero))) 
 
# Limit LOT info to only patients starting with abi or enza patients as well 
d_LOT_GUTG001 <- d_LOT_GUTG001[d_LOT_GUTG001$PatientID %in% d_TT_cohort_GUTG001[ ,"PatientID"], ] # 13314 rows 
summary(as.factor(d_LOT_GUTG001[d_LOT_GUTG001$LineNumber_mCRPC_UserDef %in% 1, "LineName"])) # First-line mCRPC: abi: 2717; enza 
2571 
summary(as.factor(d_LOT_GUTG001[d_LOT_GUTG001$LineNumber_mCRPC_UserDef %in% 2, "LineName"])) # Second-line mCRPC enza 818, doce 
640, abi 618 
summary(as.factor(year(d_LOT_GUTG001[d_LOT_GUTG001$LineNumber_mCRPC_UserDef %in% 1, "StartDate"])))   
 
 
 
####************************************************************* 
####******Entering trial inclusion and exclusion criteria 
####************************************************************* 
# Use LOINC for lab test relevant criteria 
# https://loinc.org/2857-1 
v_LOINC_all <- data.frame(sort(unique((rd_lab$LOINC)))) # 300 LOINCs, confirmed that these LOINC table only contains numbers 
 
# Lab result norm: ref mayo clinic 
# https://www.mayoclinic.org/tests-procedures/liver-function-tests/about/pac-20394595 
 
 
### Now we know the "Time Zero" in the study, so we can assess the age 
# 2.  Adult males ≥ 18 years age  
summary(rd_demo$BirthYear) # 1936-1986 --> all above 18 years old by 2013 (no need to exclude any patient) 
 
 
# 3.  History of adenocarcinoma of the prostate diagnosed histologically without  
#     evidence of neuroendocrine or small cell differentiation, or if patient does not  
#     have pathology of adenocarcinoma of the prostate, patient has metastatic  
#     disease typical of prostate cancer (i.e., involving bone or pelvic lymph nodes  
#     or para-aortic lymph nodes) AND a serum concentration of PSA that is rising  
#     and >20ng/mL at the time of when the patient was clinically diagnosed with  
#     prostate cancer. 
 
#****** Per Dr. Pezaro: all mCRPC patients can be included. This criterion is not so clinically relevant  
 
# Check histology at original diagnosis among CRPC patients 
summary(as.factor(d_TT_cohort_GUTG001$Histology)) 
# 10757 adenocarcinoma, 2259 unspecified 
 
# N: unknown 7299, N0 3042, N1 1841, NX 834 
# M: unknown 2687, M0 5159, M1 3752, M1a 110, M1b 986, M1c 322 
# Stage info among patients with unspecified histology (see NCCN PC Guideline Ver1. 2023):  
# **** ==> Check with Flatiron: any methods to check bone or pelvic lymph nodes or para-aortic lymph nodes (updated: not using this criteria)  
summary(as.factor(d_TT_cohort_GUTG001$NStage)) 
summary(as.factor(d_TT_cohort_GUTG001$MStage)) 
 
# 7.  ECOG performance status 0-2 (see Appendix C)  
# According to Flatiron, might not be able to do it for every patients (missing data) (include 0-2) 
# Using Baseline ECOG data Exclude patients who have an ECOG > 2 within 30 days prior to TimeZero 
d_ECOG_timezero_GUTG001 <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                                 rd_baselineECOG[ , c("PatientID", "ECOGSource", "LineStartDate", "ECOGValue", "ECOGDate")],  
                                 by = "PatientID") %>% 
  mutate_at(vars(LineStartDate, ECOGDate), as.Date, format="%Y-%m-%d") %>% 
  filter(LineStartDate <= TimeZero) %>% 
  group_by(PatientID) %>%  
  slice(which.max(LineStartDate)) # 5288 
d_ECOG_timezero_GUTG001$Gap_ECOGDate_TimeZero <- d_ECOG_timezero_GUTG001$ECOGDate - d_ECOG_timezero_GUTG001$TimeZero 
summary(as.numeric(d_ECOG_timezero_GUTG001$Gap_ECOGDate_TimeZero)) # within 30 days before Time Zero or within a week afterwards 
summary(as.factor(d_ECOG_timezero_GUTG001$ECOGValue)) # 3: 154, 4: 6, others unknown 
summary(as.factor(d_ECOG_timezero_GUTG001$ECOGSource)) # extracted: 2307; strctured: 2981 



510 

 

 
v_ID_ECOG_poor <- d_ECOG_timezero_GUTG001 %>%  
  filter(Gap_ECOGDate_TimeZero <= 0) %>% # 5288 --> 3187 (delete those using ECOG value after TimeZero) 
  filter(ECOGValue %notin% "Unknown") %>% 
  filter(ECOGValue > 2) %>%  
  select(PatientID) %>%  
  ungroup() # 144 
 
 
# Exclude Patient's who has ECOG > 2 
d_TT_cohort_GUTG001 <- anti_join(d_TT_cohort_GUTG001, v_ID_ECOG_poor, by = "PatientID")  
# 5144 
 
 
######################################################################################################################## 
###########NOTE: FOR THE CRITERIA BELOW, patients are flagged and inclusion and exclusion criteria will be done at the end     ############## 
######################################################################################################################## 
 
# 4.  Prior surgical orchiectomy or if on LHRH agonist/antagonist then  
#     testosterone < 1.7 nmol/L at screening visit (patients must maintain LHRH  
#     agonist/antagonist therapy for duration of study treatment if not surgically  
#     castrated)  
 
# According to Dr. Pezaro, all patients should have undergone surgical castration or be under the effects of chemical castration. 
# Therefore, we only need to check patient's testosterone level 
 
### Exclude patients whose latest testosterone level is greater than 1.7 nmol/L (49.03 ng/dL) recorded within the 30 days preceding or on the date 
of TimeZero. 
# Assume those who didn't have extreme values (no test) have remained within reasonable level (castrated) 
 
# GUTG-001 cohort 
# Testosterone level at screening visits 
v_LabComponent_testosterone <- unique(grep("testosterone", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_testosterone)) 
 
# Create a table of all testosterone tests 
d_LONIC_testosterone <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_testosterone,  
                             c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
# Create a vecTor containing all LOINC for testosterone 
v_LOINC_testerone <- unique(d_LONIC_testosterone$LOINC) # 2986-8 
 
v_ID_ADT_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                                  rd_lab[rd_lab$LOINC %in% v_LOINC_testerone, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                                  by = "PatientID", 
                                  all.y = TRUE) %>% 
  mutate_at(vars(TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # 1139 rows for testosterone within 30 days before diagnosis,test date: Day -30~-1 & 
Day 1 
 
# Check none cleaned results 
summary(as.factor(v_ID_ADT_fail$TestResult)) # there are < none number values, e.g. < or Test not performed 
test <- v_ID_ADT_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# None numeric results: Note_Comment, Pending, Test not performed, the greatest is < 23 (which is still < 49.03, so doesn't matter ==> just have to 
look at cleaned results) 
 
v_ID_ADT_fail <- v_ID_ADT_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% # excluded those with NA results: no results or non-numeric results 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))  # 618 patients had testosterone test within 30 days of TimeZero 
summary(v_ID_ADT_fail$TestResultCleaned) 
 
# Find patients whose latest testosterone was >= 49.03 ng/dL 
v_ID_ADT_fail <- v_ID_ADT_fail %>% 
  filter(TestResultCleaned >= 49.03) %>% 
  select(PatientID) # 37 
v_ID_ADT_fail$f_timezero_ADT_fail <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_ADT_fail, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_ADT_fail = ifelse(is.na(f_timezero_ADT_fail), 0, f_timezero_ADT_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_ADT_fail)) # 37 
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# 9.  Adequate organ function defined as:  
# a.  Absolute neutrophil count ≥ 1.5 x 10 9 /L, platelet count ≥ 100 x 10 9 /L and hemoglobin ≥ 80 g/L   
# b.  Creatinine clearance ≥ 30 ml/min (calculated by Cockcroft-Gault formula, see Appendix D)  
# c.  Serum potassium > than lower limit of normal range  
# d.  Total bilirubin ≤ 1.5 x upper limit of normal (ULN) except for  
#     patients with known Gilbert’s syndrome (direct bilirubin ≤ 1.5 x ULN)  
# e.  Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) ≤ 5 x ULN  
 
 
#### Create LOINC lists for this criteria: not using patient's ICD-9 as they might not be as accurate 
 
## Absolute neutrophil count 
# Neutrophil level at screening visits: WBC x total neutrophils (segmented neutrophils% + segmented bands%) x 10 = ANC 
v_LabComponent_abs_neutrophil <- unique(grep("neutrophil", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_abs_neutrophil)) 
# The most relevant ones is neutrophil count (absolute) --> can be calculated with WBC and others though 
v_LabComponent_abs_neutrophil <- "Neutrophil count (absolute)" 
# Create a table of absolute neutrophil - all tests had units of 10^9/L 
d_LONIC_abs_neutrophil <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_abs_neutrophil,  
                                      c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
# Create a vecTor containing all LOINC for absolute neutrophil 
v_LOINC_abs_neutrophil <- unique(d_LONIC_abs_neutrophil$LOINC) # 26499-4, 751-8, 753-4 
 
 
## Platelet count 
v_LabComponent_platelet <- unique(grep("platelet", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_platelet)) 
# Create a table of platelet - all tests had units of 10^9/L 
d_LONIC_platelet <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_platelet,  
                                        c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
                    arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_platelet <- unique(d_LONIC_platelet$LOINC) # 26515-7, 49497-1, 777-3, 778-1 
 
 
## hemoglobin 
v_LabComponent_Hb <- unique(grep("hemoglobin", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_Hb)) # one of them is HbA1c 
v_LabComponent_Hb <- "Hemoglobin, whole blood" 
 
# Create a table of Hb - all tests had units of g/dL 
d_LONIC_Hb <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_Hb,  
                                  c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_Hb <- unique(d_LONIC_Hb$LOINC) # "20509-6" "718-7" 
 
 
 
## Creatinine clearance 
# Trial definition: Calculated creatinine clearance (Cockcroft-Gault formula): 
# N x (140-Age) x weight in kg ÷ Serum Creatinine in µmol/L 
# * For males N=1.23; for females N=1.04 
v_LabComponent_Scr <- unique(grep("creatinine", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_Scr))  
v_LabComponent_Scr <- "Creatinine, serum" 
# Create a table of Scr - all tests had units of mg/dL 
d_LONIC_Scr <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_Scr,  
                            c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_Scr <- unique(d_LONIC_Scr$LOINC) # "2160-0" 
 
## Potassium 
v_LabComponent_K <- unique(grep("potassium", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_K))  
v_LabComponent_K <- "Potassium [Moles/?volume] in Serum or Plasma" 
## unit nmol/L 
d_LONIC_K <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_K,  
                             c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_K <- unique(d_LONIC_K$LOINC) # "2823-3" 
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## Bilirubin 
v_LabComponent_tbil <- unique(grep("bilirubin", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_tbil))  
#*** currently using total bilirubin, but need to accomondate those with Gilbert syndrome (using direct bilirubin) 
v_LabComponent_tbil <- "Bilirubin (Total), serum" 
v_LabComponent_dbil <- "Bilirubin (Direct, Conjugated), serum" 
# unit mg/dL 
# total bilirubin 
d_LONIC_tbil <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_tbil,  
                           c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_tbil <- unique(d_LONIC_tbil$LOINC) # "1975-2"  "42719-5" 
 
# direct bilirubin 
d_LONIC_dbil <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_dbil,  
                              c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_dbil <- unique(d_LONIC_dbil$LOINC) # "15152-2" "1968-7"  
 
 
## ALT 
v_LabComponent_ALT <- unique(grep("alanine aminotransferase", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_ALT))  
## unit U/L 
d_LONIC_ALT <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_ALT,  
                           c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_ALT <- unique(d_LONIC_ALT$LOINC) # "1742-6" "1743-4" "1744-2" 
 
## AST 
v_LabComponent_AST <- unique(grep("aspartate aminotransferase", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_AST))  
## unit U/L 
d_LONIC_AST <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_AST,  
                             c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_AST <- unique(d_LONIC_AST$LOINC) # "1920-8"  "30239-8" 
 
 
 
## Finding ID of patients who have these tests  
# 9a.  Absolute neutrophil count < 1.5 x 10^9 /L, platelet count < 100 x 10 9 /L and hemoglobin < 80 g/L   
### absolute neutrophil 
v_ID_abs_neutrophil_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                            rd_lab[rd_lab$LOINC %in% v_LOINC_abs_neutrophil, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                            by = "PatientID", 
                            all.y = TRUE) %>% 
  mutate_at(vars(TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before mCPRC 
# 4237 
 
# Check none cleaned results 
summary(as.factor(v_ID_abs_neutrophil_fail$TestResult))  
test <- v_ID_abs_neutrophil_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# None numeric results: Test not performed ==> so just have to look at cleaned results) 
 
v_ID_abs_neutrophil_fail <- v_ID_abs_neutrophil_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))  # patients who had tests within 30 days of TimeZero 
# 2816 
 
# Find patients whose max absolute neutrophil count < 1.5 x 10^9 /L and exclude them 
v_ID_abs_neutrophil_fail <- v_ID_abs_neutrophil_fail %>% 
  filter(TestResultCleaned < 1.5) %>% # unit count*10^9/L 
  select(PatientID) # 25 
v_ID_abs_neutrophil_fail$f_timezero_abs_neutrophil_fail <- 1  
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_abs_neutrophil_fail, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_abs_neutrophil_fail = ifelse(is.na(f_timezero_abs_neutrophil_fail), 0, f_timezero_abs_neutrophil_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_abs_neutrophil_fail)) # 25 
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### Plt 
v_ID_platelet_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                                  rd_lab[rd_lab$LOINC %in% v_LOINC_platelet, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                                  by = "PatientID", 
                                  all.y = TRUE) %>% 
  mutate_at(vars(TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before TimeZero 
# 5166 
 
# Check none cleaned results 
summary(as.factor(v_ID_platelet_fail$TestResult))  
test <- v_ID_platelet_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# None numeric results: Acceptable, Decreased, Not reportable, Note_Comment, Test not performed ==> so just have to look at cleaned results) 
 
v_ID_platelet_fail <- v_ID_platelet_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 3164 
 
# Find patients whose max Platelet count < 100 x 10^9 /L and exclude them 
v_ID_platelet_fail <- v_ID_platelet_fail %>% 
  filter(TestResultCleaned < 100) %>% # unit count*10^9/L 
  select(PatientID) # 58 
v_ID_platelet_fail$f_timezero_platelet_fail <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_platelet_fail, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_platelet_fail  = ifelse(is.na(f_timezero_platelet_fail ), 0, f_timezero_platelet_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_platelet_fail)) # 58 
 
 
### Hb 
v_ID_Hb_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                            rd_lab[rd_lab$LOINC %in% v_LOINC_Hb, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                            by = "PatientID", 
                            all.y = TRUE) %>% 
  mutate_at(vars(TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before TimeZero 
# 5090 
 
# Check none cleaned results 
summary(as.factor(v_ID_Hb_fail$TestResult))  
test <- v_ID_Hb_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# None numeric results: Test not performed ==> so just have to look at cleaned results) 
 
v_ID_Hb_fail <- v_ID_Hb_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 3571 
 
# Find patients whose max Hb < 80 g/L (8 g/dL) and exclude them 
v_ID_Hb_fail <- v_ID_Hb_fail %>% 
  filter(TestResultCleaned < 8) %>% # unit count*10^9/dL 
  select(PatientID) # 46 
v_ID_Hb_fail$f_timezero_Hb_fail <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_Hb_fail, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_Hb_fail  = ifelse(is.na(f_timezero_Hb_fail), 0, f_timezero_Hb_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_Hb_fail)) # 46 
 
# Combined factors for neutropenia 
v_ID_neutropenia <- rbind(v_ID_abs_neutrophil_fail, v_ID_platelet_fail, v_ID_Hb_fail) %>% 
  select(PatientID) %>% 
  distinct() 
# 116 
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# Flag these combined factor in the GUTG cohort 
d_TT_cohort_GUTG001 <- d_TT_cohort_GUTG001 %>% 
  mutate(f_timezero_neutropenia = pmax(f_timezero_abs_neutrophil_fail, f_timezero_platelet_fail, f_timezero_Hb_fail))  
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_neutropenia)) # 116 
 
 
 
# 9b.  Creatinine clearance ≥ 30 ml/min (calculated by Cockcroft-Gault formula, see Appendix D)  
# Find patients whose max CrCl < 30 ml/min and exclude them 
# # Trial definition: Calculated creatinine clearance (Cockcroft-Gault formula): 
# N x (140-Age) x weight in kg ÷ Serum Creatinine in µmol/L 
# * For males N=1.23; for females N=1.04 
# need weight ==> use CKD diagnosis for this 
 
# Use diagnosis instead: CKD diagnosis within half-year before mCRPC (chronic disease assessment --> using a year)   
# (assume patient come to hospital at least very half year ==> in line with other chronic disease survey in the trial) 
# diagnosis table 
v_ID_CKD_diag <- filter(rd_diag, substr(DiagnosisCode, 1, 5) %in% c("N18.4", "N18.5", "N18.6", "N18.9")| # icd-10 (checked, no overlap icd-9 codes) 
                        substr(DiagnosisCode, 1, 5) %in% c("585.4", "585.5", "585.6", "585.9")) # icd-9 # 1537 rows 
summary(as.factor(v_ID_CKD_diag$DiagnosisCode)) 
# v_ID_AKI_diag <- filter(rd_diag, substr(DiagnosisCode, 1, 3) %in% c("N17")| # icd-10 (checked, no overlap icd-9 codes 
#                          substr(DiagnosisCode, 1, 5) %in% c("585.5", "585.7", "585.9")) # icd-9 # 1431 rows 
# summary(as.factor(v_ID_AKI_diag$DiagnosisCode)) 
v_ID_CKD_diag <-  merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], v_ID_CKD_diag) %>% 
  mutate_at(vars(DiagnosisDate), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero) %>% # active CKD within a year before TimeZero 
  distinct(PatientID) # 75 patients 
v_ID_CKD_diag$f_timezero_CKD_diag <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_CKD_diag, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_CKD_diag  = ifelse(is.na(f_timezero_CKD_diag), 0, f_timezero_CKD_diag)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_CKD_diag)) # 75 
 
# v_ID_AKI_diag <-  merge(d_TT_cohort_GUTG001[ , c("PatientID", "MCRPCDate")], v_ID_AKI_diag) %>% 
#  mutate_at(vars(DiagnosisDate, MCRPCDate), as.Date, format="%Y-%m-%d") %>% 
#  filter(DiagnosisDate >= (MCRPCDate-30) & DiagnosisDate <= MCRPCDate) %>% # active AKI within a month before MCRPDC 
#  distinct(PatientID) # 3 patients 
 
# v_ID_renal_fail <- unique(rbind(v_ID_CKD_diag, v_ID_AKI_diag)) # 37 
 
 
# 9c.  Serum potassium > than lower limit of normal range (3.5 to 5.2 mEq/L) = (3.5 to 5.2 mmol/L)  
# ==> Dr. Pezaro says these number flunctuates and likely to be retested in clinical practice ==> consider now exclude these 
### K+ 
v_ID_K_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "MCRPCDate", "TimeZero")], 
                      rd_lab[rd_lab$LOINC %in% v_LOINC_K, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                      by = "PatientID", 
                      all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before mCPRC 
# 4547 
 
# Check none cleaned results 
summary(as.factor(v_ID_K_fail$TestResult))  
test <- v_ID_K_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# None numeric results: Test not performed, Note_Comment, Pending ==> so just have to look at cleaned results) 
 
v_ID_K_fail <- v_ID_K_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 2400 
 
# Find patients whose min K < 3.5 mEq/L 
v_ID_K_fail <- v_ID_K_fail %>% 
  filter(TestResultCleaned < 3.5) %>% # unit mmol/L 
  select(PatientID) # 55 
v_ID_K_fail$f_timezero_K_fail <- 1 
 
# Flag these patients in the GUTG cohort 



515 

 

d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_K_fail, by = "PatientID", all.x = TRUE)  %>%  
  mutate(f_timezero_K_fail  = ifelse(is.na(f_timezero_K_fail), 0, f_timezero_K_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_K_fail)) # 55 
 
 
# 9d.  Total bilirubin ≤ 1.5 x upper limit of normal (ULN) except for  
#     patients with known Gilbert’s syndrome (direct bilirubin ≤ 1.5 x ULN)  
# Normal bilirubin: 0.1 to 1.2 mg/dL (1.71 to 20.5 µmol/L) 
v_ID_tbil_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                     rd_lab[rd_lab$LOINC %in% v_LOINC_tbil, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                     by = "PatientID", 
                     all.y = TRUE) %>% 
  mutate_at(vars(TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before Time Zero 
# 4574 
 
# Check none cleaned results 
summary(as.factor(v_ID_tbil_fail$TestResult))  
test <- v_ID_tbil_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# None numeric results: greatest: < 0.3, Negative, Test not performed, Note_Comment, Pending ==> so just have to look at cleaned results) 
 
v_ID_tbil_fail <- v_ID_tbil_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 3423 
 
# Find patients whose max total bilirubin > 1.8 mg/dL 
v_ID_tbil_fail <- v_ID_tbil_fail %>% 
  filter(TestResultCleaned > 1.8) %>% # unit mg/dL 
  select(PatientID) # 15 
 
# Gilbert's syndrome (chronic condition, so use half year) 
v_ID_GilbertSyndrome_diag <- filter(rd_diag, substr(DiagnosisCode, 1, 4) %in% c("E80.4")| # icd-10 (checked no overlap ICD-9 codes) 
                          substr(DiagnosisCode, 1, 5) %in% c("277.4")) # icd-9 # 5 rows 
summary(as.factor(v_ID_GilbertSyndrome_diag$DiagnosisCode)) 
 
v_ID_GilbertSyndrome_diag <-  merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], v_ID_GilbertSyndrome_diag) %>% 
  mutate_at(vars(DiagnosisDate), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero) %>%  
  distinct(PatientID) # 0 patients (no patients in the GUTG-001 cohort had Gilbert syndrome!) 
 
# Flag patients 
v_ID_tbil_fail$f_timezero_tbil_fail <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_tbil_fail, by = "PatientID", all.x = TRUE)  %>%  
  mutate(f_timezero_tbil_fail  = ifelse(is.na(f_timezero_tbil_fail), 0, f_timezero_tbil_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_tbil_fail)) # 15 
 
# 9e.  Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) ≤ 5 x ULN  
# normal range; a normal AST level for adults is: 8 to 48 IU/L. A normal ALT level for adults is 7 to 55 IU/L. 
 
## ALT 
v_ID_ALT_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                     rd_lab[rd_lab$LOINC %in% v_LOINC_ALT, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                     by = "PatientID", 
                     all.y = TRUE) %>% 
  mutate_at(vars(TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before mCPRC 
# 4617 
 
# Check none cleaned results 
summary(as.factor(v_ID_ALT_fail$TestResult))  
test <- v_ID_ALT_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# all numbered results 
 
v_ID_ALT_fail <- v_ID_ALT_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
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  slice(which.max(TestDate))   
# 3446 
 
# Find patients whose min ALT > 275 IU/L (upper limit: 55 U/L, 5 times upper limit: 275 IU/L) 
v_ID_ALT_fail <- v_ID_ALT_fail %>% 
  filter(TestResultCleaned > 275) %>% # unit U/L = IU/L (for ALT) 
  select(PatientID) # 1 
 
# Flag patients 
v_ID_ALT_fail$f_timezero_ALT_fail <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_ALT_fail, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_ALT_fail = ifelse(is.na(f_timezero_ALT_fail), 0, f_timezero_ALT_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_ALT_fail)) # 1 
 
## AST 
v_ID_AST_fail <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], 
                       rd_lab[rd_lab$LOINC %in% v_LOINC_AST, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestResult")],  
                       by = "PatientID", 
                       all.y = TRUE) %>% 
  mutate_at(vars(TestDate), as.Date, format="%Y-%m-%d") %>% 
  filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before TimeZero 
# 4634 
 
# Check none cleaned results 
summary(as.factor(v_ID_AST_fail$TestResult))  
test <- v_ID_AST_fail %>% 
  distinct(TestResult) %>% 
  arrange(TestResult) 
# None numbered results: greatest:<10, Pending, Test not performed ==> so can use cleaned results directly 
 
v_ID_AST_fail <- v_ID_AST_fail %>% 
  filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 3496 
 
# Find patients whose min AST > 240 IU/L (norm: 48 U/L, 5 times norm: 240 IU/L) 
v_ID_AST_fail <- v_ID_AST_fail %>% 
  filter(TestResultCleaned > 240) %>% # unit U/L = IU/L (for ALT) 
  select(PatientID) # 1 
# Flag patients 
v_ID_AST_fail$f_timezero_AST_fail <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_AST_fail, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_AST_fail = ifelse(is.na(f_timezero_AST_fail), 0, f_timezero_AST_fail)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_AST_fail)) # 1 
 
# Flag a summary of poor liver function patients 
v_ID_liver_fail <- rbind(v_ID_ALT_fail, v_ID_AST_fail) %>% 
  select(PatientID) %>% 
  distinct() 
# 1 obs 
 
# Flag these combined factor in the GUTG cohort 
d_TT_cohort_GUTG001 <- d_TT_cohort_GUTG001 %>% 
  mutate(f_timezero_liver_fail = pmax(f_timezero_ALT_fail, f_timezero_AST_fail))  
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_liver_fail)) # 1 
 
 
### Exclude these patients from the GUTG-001 cohort due to inadequate organ function 
 
# Flag all patients with inadequate organ function 
d_TT_cohort_GUTG001 <- d_TT_cohort_GUTG001 %>% 
  mutate(f_timezero_inadequate_oragan = pmax(f_timezero_neutropenia, f_timezero_CKD_diag,  
                                             f_timezero_K_fail, f_timezero_tbil_fail, 
                                             f_timezero_liver_fail))  
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_inadequate_oragan)) # 249 
 
 
# 8.  Eligible for treatment with either abiraterone acetate or enzalutamide as per  
# standard of care guidelines  
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# Assume all patients at time zero receiving abieraterone and enzalutamide are as eligible as in the trial 
 
 
# 10. Able to swallow study drug and comply with study requirements including  
# provision of peripheral blood samples at specified time points for correlative  
# studies 
 
# cannot be tested ==> patients receiving chemo might not be able to swallow pills 
 
# 11. Recovery from all prior treatment-related toxicity to grade ≤ 2 (as per CTCAE 4.0)  
 
# ==> assuming that patients who were eligible for treatments has recovered (Dr. Pezaro said it should highly correlate with ECOG anyways) 
 
 
######################################################################################## 
### 
### Exclusion criteria  
### (The number of criteria were taken from the original GUTG-001 protocol) 
###  https://classic.clinicaltrials.gov/ProvidedDocs/57/NCT02125357/Prot_SAP_000.pdf 
### 
######################################################################################## 
 
## 1. Severe concurrent illness or co-morbid disease that would make the subject  
## unsuitable for enrollment (excluding those inadequate organ functions) 
 
## 5.  Active concurrent malignancy (with the exception of non-melanomatous skin  
## cancer) (need to augment this) 
 
 
# Find people having active concurrent malignancy within 30 days of MCRPC (prior) other than C61 (not counting secondary and lymph ones or 
uncertain) 
# https://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14 
 
# ICD-10: concurrent cancers 
# Malignant neoplasms of lip, oral cavity and pharynx C00-C14 
# Malignant neoplasms of digestive organs C15-C26 
# Malignant neoplasms of respiratory and intrathoracic organs C30-C39 
# Malignant neoplasms of bone and articular cartilage C40-C41 
# Melanoma and other malignant neoplasms of skin C43-C44 & 4A 
# Malignant neoplasms of mesothelial and soft tissue C45-C49 
# Malignant neoplasms of breast C50-C50 
# Malignant neoplasms of female genital organs C51-C58 
# Malignant neoplasms of male genital organs C60-C63 
# Malignant neoplasms of urinary tract C64-C68 
# Malignant neoplasms of eye, brain and other parts of central nervous system C69-C72  
# (C71: Malignant of brain, C72: Malignant neoplasm of spinal cord, cranial nerves and other parts of central nervous system) 
# Malignant neoplasms of thyroid and other endocrine glands C73-C75 
# Malignant neuroendocrine tumors C7A-C7A 
# Secondary neuroendocrine tumors C7B-C7B 
# Malignant neoplasms of ill-defined, other secondary and unspecified sites C76-C80 
# Malignant neoplasms of lymphoid, hematopoietic and related tissue: C81-96 
# D ==> non-malignant tumours or unknown behavior tumour 
# In situ neoplasms: D00-D09 
# Neoplasms of uncertain behavior, polycythemia vera and myelodysplastic syndromes: D37-D48 
# Benign neuroendocrine tumors: D3A-D3A  
# Neoplasms of unspecified behavior: D49-D49 
 
 
# Originally found a lot of: ICD-10 C79.51: secondary malignant neoplasm of bone C79.51 (now not going to exclude C79) 
# Create a vector that holds all the ICD10 code for concurrent cancer 
v_concurrent_primary_cancer_ICD10_3CHR <- c("00", "01", "02", "03", "04", "05", 
                                     "06", "07", "08", "09", 
                                     seq(10, 26, by = 1),  
                                     seq(30, 34, by = 1),  
                                     seq(37, 41, by = 1), 
                                     "43", 
                                     # except C44 other and unspecified malignant neoplasm of skin (non-melanoma skin cancer) 
                                     "4A", # c4A: Merkel cell carcinoma 
                                     seq(45, 58, by = 1),  
                                     "60", 
                                     # except C61 prostate cancer 
                                     # ???? Malignant neoplasm of other and ill-defined sites: C76 (cannot rule out that they are meta due to prostate cancer) 
                                     seq(62, 76, by = 1),  
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                                     "7A", 
                                     # except: Secondary neuroendocrine tumors C7B, 
                                     # except: Secondary and unspecified malignant neoplasm of lymph nodes: C77 (cannot rule out that they are meta due to 
prostate cancer) 
                                     # except: Secondary malignant neoplasm of respiratory and digestive organs: C78 
                                     # except: Secondary malignant neoplasm of other and unspecified sites: C79 
                                     # ?????? C80.1 Malignant (primary) neoplasm, unspecified 
                                     seq(80, 86, by = 1), 
                                     "88", 
                                     seq(90, 96, by = 1)) 
                                     # D sections: neoplasm, non-malignant tumours 
v_concurrent_primary_cancer_ICD10_3CHR  <- paste("C", v_concurrent_primary_cancer_ICD10_3CHR, sep="") 
 
# ICD-9: concurrent cancers 
# https://www.aapc.com/codes/icd9-codes-range/18/ 
# http://www.icd9data.com/2015/Volume1/default.htm (2015 ver) 
 
# NEOPLASMS (140-239) 
# MALIGNANT NEOPLASM OF LIP, ORAL CAVITY, AND PHARYNX (140-149) 
# MALIGNANT NEOPLASM OF DIGESTIVE ORGANS AND PERITONEUM (150-159) 
# MALIGNANT NEOPLASM OF RESPIRATORY AND INTRATHORACIC ORGANS (160-165) 
# MALIGNANT NEOPLASM OF BONE, CONNECTIVE TISSUE, SKIN, AND BREAST (170-176) 
# MALIGNANT NEOPLASM OF GENITOURINARY ORGANS (179-189) 
# MALIGNANT NEOPLASM OF OTHER AND UNSPECIFIED SITES (190-199) 
# MALIGNANT NEOPLASM OF LYMPHATIC AND HEMATOPOIETIC TISSUE (200-208) 
# MALIGNANT NEUROENDOCRINE TUMORS (209) 
# BENIGN NEOPLASMS (210-229) 
# CARCINOMA IN SITU (230-234) 
# NEOPLASMS OF UNCERTAIN BEHAVIOR (235-238) 
# NEOPLASMS OF UNSPECIFIED NATURE (239) 
 
# Create vectors (3 character and 4 character) that holds all the ICD9 code for concurrent cancer 
v_concurrent_primary_cancer_ICD9_3CHR <- c(seq(140, 165, by = 1),  
                                          # except: 173 Other malignant neoplasm of skin (non melanoma) 
                                          seq(170, 172, by = 1),  
                                          # 185 malignant neoplasm of the prostate 
                                          seq(174, 176, by = 1), # There are no 177.x and 178.x 
                                          seq(179, 184, by = 1), 
                                          # except: Secondary and unspecified malignant neoplasm of lymph nodes: 196 
                                          # except: Secondary malignant neoplasm of respiratory and digestive systems: 197 
                                          # except: Secondary malignant neoplasm of other specified sites: 198 
                                          seq(186, 195, by = 1),  
                                          # ????: Malignant neoplasm without specification of site: 199  
                                          # There are more detailed codes within 209: MALIGNANT NEUROENDOCRINE TUMORS (209) (see 4CHR) 
                                          seq(199, 208, by = 1)  
                                          # 210-239: benign or non malignant tumours 
                                          ) 
v_concurrent_primary_cancer_ICD9_3CHR 
v_concurrent_primary_cancer_ICD9_4CHR <- c(# 209.0 Malignant carcinoid tumors of the small intestine 
                                           # 209.1 Malignant carcinoid tumors of the appendix, large intestine, and rectum 
                                           # 209.2 Malignant carcinoid tumors of other and unspecified sites 
                                           # 209.3 Malignant poorly differentiated neuroendocrine tumors 
                                          "209.0", "209.1","209.2","209.3") 
                                           # except: 
                                           # 209.4 Benign carcinoid tumors of the small intestine 
                                           # 209.5 Benign carcinoid tumors of the appendix, large intestine, and rectum 
                                           # 209.6 Benign carcinoid tumors of other and unspecified sites 
                                           # 209.7 Secondary neuroendocrine tumors 
v_concurrent_primary_cancer_ICD9_4CHR 
                                         
 
# Find concurrent cancer diags (primary cancers) 
v_ID_concurrent_cancer_diag <- filter(rd_diag, substr(DiagnosisCode, 1, 3) %in% c(v_concurrent_primary_cancer_ICD10_3CHR,  
                                                                                  v_concurrent_primary_cancer_ICD9_3CHR) | # icd-10, icd-9: 3 character concurrent cancers 
                                               substr(DiagnosisCode, 1, 5) %in% c(v_concurrent_primary_cancer_ICD9_4CHR)) 
summary(as.factor(v_ID_concurrent_cancer_diag$DiagnosisCode)) # 17653 
 
# Most common: concurrent cancer (assume they are active cuz the diag appear within half year) 
# C67.9: Malignant neoplasm of bladder, unspecified 
# C80.1: Malignant (primary) neoplasm, unspecified 
# C199.1: Other malignant neoplasm without specification of site 
# C90.00: Multiple myeloma not having achieved remission 
# C91.10: Chronic lymphocytic leukemia of B-cell type not having achieved remission 
# 188.9: Malignant neoplasm of bladder, part unspecified 
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# C18.9: Malignant neoplasm of colon, unspecified 
 
# Originally found a lot of: secondary neoplasm, that that's almost a must because of the metastatic diagnosis 
# ICD-10 C79.51: secondary malignant neoplasm of bone C79.51 
# ICD-9 198.5: diagnosis of bone metastasis 
# These are not popping out after adjusting codes 
 
 
# Find Diagnosis containing these primary cancer diagnosis within 182 days prior to Time Zero 
v_ID_concurrent_cancer_diag <-  merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], v_ID_concurrent_cancer_diag) %>% 
  mutate_at(vars(DiagnosisDate), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero) %>% # tumor concurrent cancer prior to Timezero 
  distinct(PatientID) # 132 
v_ID_concurrent_cancer_diag$f_timezero_concurrent_cancer <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_concurrent_cancer_diag , by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_concurrent_cancer = ifelse(is.na(f_timezero_concurrent_cancer), 0, f_timezero_concurrent_cancer)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_concurrent_cancer)) # 132 
 
 
 
## 7.  Brain metastases or active epidural disease  
#      (treated epidural disease is permitted) 
 
# brain meta codes: ICD-10 
v_brain_meta_ICD10_4CHR <- c("C79.3") # Dr. Pezaro: ICD-10-CM: C79.31, C79.32 (Malignant neoplasm of spinal cord C72, already included in 
primary concurrent cancer) 
 
# brain meta codes: ICD-9 
# Dr. Pezaro: ICD-9: 198.3 Secondary malignant neoplasm of brain and spinal cord  
# I found: 198.4 Secondary malignant neoplasm of other parts of nervous (not necessary spinal cord meta though) 
# (ICD-9 198 Secondary malignant neoplasm of other specified sites was not excluded) 
v_brain_meta_ICD9_4CHR <- c("198.3", "198.4")  
 
# Find concurrent cancer diags (primary cancers) 
v_ID_brain_meta_diag <- filter(rd_diag, substr(DiagnosisCode, 1, 5) %in% c(v_brain_meta_ICD10_4CHR,  
                                                                           v_brain_meta_ICD9_4CHR)) # icd-10, icd-9: 4 character meta (and a dot) 
summary(as.factor(v_ID_brain_meta_diag$DiagnosisCode)) # 1103 
 
# Find Diagnosis containing these brain/spinal meta within 182 days prior to Time Zero 
v_ID_brain_meta_diag <-  merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], v_ID_brain_meta_diag) %>% 
  mutate_at(vars(DiagnosisDate), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero) %>% # tumor concurrent cancer prior to Timezero 
  distinct(PatientID) # 11 
v_ID_brain_meta_diag$f_timezero_brain_meta <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_brain_meta_diag , by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_brain_meta = ifelse(is.na(f_timezero_brain_meta), 0, f_timezero_brain_meta)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_brain_meta)) # 11 
 
                                                 
 
## 2.  Prior therapy with CYP17 inhibitors (including abiraterone acetate, TAK- 
# 700, TOK-001 and ketoconazole), enzalutamide or other experimental anti- 
# androgens (e.g. ARN-509 (apalutamide), TOK-001)  
 
## 6.  Wide-field radiotherapy or radioisotopes such as Strontium-89 or Radium- 
# 223 ≤ 28 days prior to starting study drug (limited-field palliative  
#                                            radiotherapy for 1-5 fractions is permitted)  
 
# 3.  Prior systemic chemotherapy for mCRPC  
 
# Update the d_LOT again 
d_LOT_GUTG001 <- d_LOT_GUTG001[d_LOT_GUTG001$PatientID %in% d_TT_cohort_GUTG001[ ,"PatientID"], ] # 13085 
 
# Find treatment records to the user-defined first-line mCRPC treatment 
d_LOT_GUTG001_treat_before_TimeZero <- d_LOT_GUTG001 %>% 
        filter(is.na(LineNumber_mCRPC_UserDef)) %>% # Select rows without user-defined mCPRC treatment line 
        select(-RegimenClass, -IsMaintenanceTherapy, -EnhancedCohort) %>% 
        mutate_at(vars(StartDate, EndDate), as.Date, format="%Y-%m-%d")  
# 1350 rows 
summary(as.factor(d_LOT_GUTG001_treat_before_TimeZero$LineName))  
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# 323 rows abiraterone, the others are mostly a combination of abiraterone with other drugs 
# 49 rows Sipuleucel-T, 13 rows Radium-223, 2 rows Samarium Sm 153 Lexidronam 
# Some had Clinical Study Drug 
 
 
# There are also quite some systematic treatment for other type of cancer: check if excluding patient with the previous criteria would decrease 
these 
# Probabily need to label other systematic treatment as well (though not typical for prostate cancer) 
test <- d_TT_cohort_GUTG001 %>% 
  filter(pmax(f_timezero_ADT_fail, f_timezero_inadequate_oragan,  
              f_timezero_concurrent_cancer, f_timezero_brain_meta) == 0) # 4740 patients left 
test <- d_LOT_GUTG001_treat_before_TimeZero [d_LOT_GUTG001_treat_before_TimeZero$PatientID %in% test[ ,"PatientID"], ] # 1207 
summary(as.factor(d_LOT_GUTG001_treat_before_TimeZero$LineName))  
 
 
# There are also quite some clinical study drug  
# --> could it be possible that the regimen is just extended because it's a combination of drugs that other drugs been added on? 
# It's related to Flatiron's definition (technically some of them could actually receive abiraterone later but counted as the treatment for non-mCRPC) 
# However Time Zero is defind as the next-line of treamtent anyways 
 
# Create a list of previous treatments that need to be flagged 
summary(as.factor(rd_treat_ABemit$DrugName)) 
summary(as.factor(rd_treat_oral$DrugName)) 
v_treat_not_allowed_pre_TimeZero <- c("Abiraterone", "Enzalutamide", "Ketoconazole", "Apalutamide", 
                                      "Galeterone", "Orteronel", # these drugs don't seem to be used in the us but still included 
                                      "Clinical Study Drug",  
                                      "Samarium Sm 153 Lexidronam", "Radium-223", "Sipuleucel-T", "strontium-89", 
                                      "Vipivotide", "Radiopharmaceutical", # not listed in the protocol but was available in the US later) 
                                      "Darolutamide", "Larotrectinib", "Olaparib", "Relugolix", "Rucaparib", "Talazoparib") # approved after the trial 
v_treat_allowed_pre_TimeZero_docetaxel <- c("Docetaxel") 
 
 
# flag if regimen contain not allowed treatment, docetaxel or other systematic treatment 
d_LOT_GUTG001_treat_before_TimeZero <- d_LOT_GUTG001_treat_before_TimeZero %>%  
  rowwise() %>%  
  mutate(f_pretreat_treat_not_allowed = max(str_detect(LineName, v_treat_not_allowed_pre_TimeZero))) %>% 
  mutate(f_pretreat_treat_allowed_docetaxel = ifelse(LineName %in% v_treat_allowed_pre_TimeZero_docetaxel, 1, 0)) %>%  
  mutate(f_pretreat_treat_other_systemic = ifelse(pmax(f_pretreat_treat_not_allowed, f_pretreat_treat_allowed_docetaxel) == 0, 1, 0)) %>% 
  left_join(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero", "MCRPCDate")], by = "PatientID") 
summary(as.factor(d_LOT_GUTG001_treat_before_TimeZero$f_pretreat_treat_not_allowed)) # 0: 645; 1: 705 
summary(as.factor(d_LOT_GUTG001_treat_before_TimeZero$f_pretreat_treat_allowed_docetaxel)) # 0: 790; 1: 560 
summary(as.factor(d_LOT_GUTG001_treat_before_TimeZero$f_pretreat_treat_other_systemic))# 0: 1265; 1: 85 
summary(as.factor(d_LOT_GUTG001_treat_before_TimeZero$LineSetting))  
# pre-treatment for the setting based on Flatiron's definition: HSPC: 1, mCRPC: 451: mHSCP: 740; nmCRPC: 158 
 
# Check unflagged patients, what type of systematic treatments they have  
test <- test.data [test.data$f_pretreat_treat_not_allowed %in% 0 & test.data$f_pretreat_treat_allowed_docetaxel %in% 0, ] 
summary(as.factor(test$LineName))  
 
 
# Flag these treatment history in GUTG cohort 
v_ID_treat_pre_TimeZero <- d_LOT_GUTG001_treat_before_TimeZero %>% 
  select(PatientID, f_pretreat_treat_not_allowed, f_pretreat_treat_allowed_docetaxel, f_pretreat_treat_other_systemic) %>% 
  group_by(PatientID) %>% 
  summarise_at(c("f_pretreat_treat_not_allowed", "f_pretreat_treat_allowed_docetaxel", "f_pretreat_treat_other_systemic"), sum, na.rm = TRUE) 
%>% 
  mutate(f_pretreat_lines = f_pretreat_treat_not_allowed + f_pretreat_treat_allowed_docetaxel + f_pretreat_treat_other_systemic) 
summary(as.factor(v_ID_treat_pre_TimeZero$f_pretreat_treat_not_allowed)) # 0: 550, 1: 574; 2: 48; 3: 9; 4: 2 
summary(as.factor(v_ID_treat_pre_TimeZero$f_pretreat_treat_allowed_docetaxel)) # 0: 629; 1: 548; 2: 6 (some patients had two lines of docetaxel 
as monotherapy, perhaps because  re-initiating the same treatment more than 90 days later was considered a new line of therapy) 
summary(as.factor(v_ID_treat_pre_TimeZero$f_pretreat_treat_other_systemic)) # 0: 1116; 1: 56; 2: 7; 3: 1; 4: 3 
summary(as.factor(v_ID_treat_pre_TimeZero$f_pretreat_lines)) # 1: 1046; 2: 116; 3: 14; 4: 6; 6: 1  
# Among 1183 treatments that had pre-treatments prior to mCRPCDate: 1046 had only 1 line; others had more than one line 
# 633 patients had un-allowed treatments, the rest had only docetaxel or other systematic treatments 
 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(data.frame(PatientID = d_TT_cohort_GUTG001[ , "PatientID"]), v_ID_treat_pre_TimeZero , by = "PatientID", all.x = 
TRUE) %>%  
                       replace(is.na(.), 0) %>% 
                       inner_join(d_TT_cohort_GUTG001, by = "PatientID") %>% 
                       relocate(f_pretreat_treat_not_allowed,f_pretreat_treat_allowed_docetaxel,  
                               f_pretreat_treat_other_systemic, f_pretreat_lines, 
                               .after = last_col()) # relocate these columns to the end of the table 
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length(d_TT_cohort_GUTG001$f_pretreat_treat_not_allowed[d_TT_cohort_GUTG001$f_pretreat_treat_not_allowed >= 1]) # 633 patients had pre-
treatments that were not allowed 
 
 
 
## 10. History of seizure or seizure disorder, or history of any cerebrovascular event  
 
# ICD-10:  
# G40  Epilepsy and recurrent seizures 
# G45  Transient cerebral ischemic attacks and related syndromes (TIA is probably not significant enough?) 
# I60-I69  Cerebrovascular diseases  
 
# ICD-9 
# 345 Epilepsy and recurrent seizures 
# 430-438 Cerebrovascular Disease (435 Transient cerebral ischemia) 
 
 
# Create a vector that holds all the ICD10 code for seizure  
v_seizure_ICD10_3CHR <- c("G40") 
 
# Create a vector that holds all the ICD9 code for seizure  
v_seizure_ICD9_3CHR <- c("345") 
 
# Find seizure diags  
v_ID_seizure_diag <- filter(rd_diag, substr(DiagnosisCode, 1, 3) %in% c(v_seizure_ICD10_3CHR, v_seizure_ICD9_3CHR)) # icd-10, icd-9 
summary(as.factor(v_ID_seizure_diag$DiagnosisCode)) # 350 
 
# Find Diagnosis containing these seizure diag within 182 days prior to Time Zero 
v_ID_seizure_diag <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], v_ID_seizure_diag) %>% 
  mutate_at(vars(DiagnosisDate), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero) %>% # seizure prior to TimeZero 
  distinct(PatientID) # 4 
v_ID_seizure_diag$f_timezero_seizure <- 1 
 
 
# Create a vector that holds all the ICD10 code for cerebrovascular event (not including G45 as TIA is not specific) 
v_cerebrovasc_event_ICD10_3CHR <- c(seq(60, 63, by = 1), 
                                    seq(65, 69, by = 1)) 
v_cerebrovasc_event_ICD10_3CHR <- paste("I", v_cerebrovasc_event_ICD10_3CHR, sep="") 
 
# Create a vector that holds all the ICD9 code for cerebrovascular event (not including 435 TIA is not specific) 
v_cerebrovasc_event_ICD9_3CHR <- c(seq(430, 434, by = 1),  
                                    seq(436, 438, by = 1)) 
 
# Find cerebral event diag 
v_ID_cerebrovas_event_diag <- filter(rd_diag, substr(DiagnosisCode, 1, 3) %in% c(v_cerebrovasc_event_ICD10_3CHR, 
v_cerebrovasc_event_ICD9_3CHR)) # icd-10, icd-9 
summary(as.factor(v_ID_cerebrovas_event_diag$DiagnosisCode)) # 2619 
 
# Find Diagnosis containing these seizure diag within 182 days prior to Time Zero 
v_ID_cerebrovas_event_diag <- merge(d_TT_cohort_GUTG001[ , c("PatientID", "TimeZero")], v_ID_cerebrovas_event_diag) %>% 
  mutate_at(vars(DiagnosisDate), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero) %>% # Active recent cerebroevent prior to Timezero 
  distinct(PatientID) # 35 
v_ID_cerebrovas_event_diag$f_timezero_cerebrovas_event <- 1 
 
# Flag these patients in the GUTG cohort 
d_TT_cohort_GUTG001 <- merge(d_TT_cohort_GUTG001, v_ID_seizure_diag, by = "PatientID", all.x = TRUE) %>%  
  mutate(f_timezero_seizure = ifelse(is.na(f_timezero_seizure), 0, f_timezero_seizure)) %>%  
  left_join(v_ID_cerebrovas_event_diag, by = "PatientID") %>%  
  mutate(f_timezero_cerebrovas_event = ifelse(is.na(f_timezero_cerebrovas_event), 0, f_timezero_cerebrovas_event)) %>%  
  mutate(f_timezero_seizure_cerebrovas = pmax(f_timezero_seizure, f_timezero_cerebrovas_event)) 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_seizure)) # 4 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_cerebrovas_event)) # 35 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_seizure_cerebrovas)) #38 
 
 
 
## 11. Gastrointestinal disorder affecting absorption  
 
# ==> Assume that patients having gastrointestinal disorder won't be prescribed with abiraterone and enzalutamide 
# ==> not using ICD-9/10 diangosis as these are not particular enough to indicate severe GI disorder interfering absorption 
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## 12. Major surgery within 4 weeks of starting study treatment  
 
# ==> There are no procedure codes in Flatiron 
# ==> Using ICD-9-10 surgery diagnosis might detected non-active surgery record 
# ==> Therefore, we assume all patients did not have major surgery if their ECOG > 2 
 
 
## 4.  Life expectancy < 6 months   
# ==> assume all patients had life expectancy > 6 because we cannot select patient based on their actual survival, which will create selection bias 
# ==> Importantly, patients having ECOG > 2 are likely to be healthier with better expectancy 
 
## 8.  Use of herbal products that may lower PSA level (e.g. saw palmetto)  
# ==> Limitation: unknown in the database 
 
## 9.  Contraindication to prednisone therapy including poorly controlled DM  
# ambiguous criteria 
 
# ==> unknown whether patient's DM is poorly controlled (HbA1C > 10?) 
# Assume that patients who were contradicted to prednisolone won't take abiraterone anyways  
# but because those that have contradiction to prednisone are often prescribed enzalutamide (per Dr. Pezaro)  
# Dr. Pezaro suggested isolated DM as a confounder and adjust it at baseline  
# Still, naturally there could be some unmeasured confounders (patients that were prescribed enzalutamide due to other contradiction to 
prednisone) 
 
 
########################################################################################################## 
####################EXECUTING EXCLUSION CRITERIA USING FLAGS############################################## 
########################################################################################################## 
 
# Select patients that did not meet any exclusion criteria 
d_TT_cohort_GUTG001_final <- d_TT_cohort_GUTG001 %>% 
  filter(pmax(f_timezero_ADT_fail, f_timezero_inadequate_oragan, 
              f_timezero_concurrent_cancer, f_timezero_brain_meta, 
              f_pretreat_treat_not_allowed, f_timezero_seizure_cerebrovas) == 0) 
# 4144 patients 
 
# Check the detail numbers of excluded patients from each detailed criteria 
# ADT fail  
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_ADT_fail)) # 37 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_inadequate_oragan)) # 249 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_concurrent_cancer)) # 132 
summary(as.factor(d_TT_cohort_GUTG001$f_pretreat_treat_not_allowed)) # 633 
summary(as.factor(d_TT_cohort_GUTG001$f_timezero_seizure_cerebrovas)) # 38 
 
 
# Test the updated d_LOT and see the first-line treatment 
d_LOT_GUTG001_final <- d_LOT_GUTG001[d_LOT_GUTG001$PatientID %in% d_TT_cohort_GUTG001_final[ ,"PatientID"], ] # 10007 
summary(as.factor(d_LOT_GUTG001_final[d_LOT_GUTG001_final$LineNumber_mCRPC_UserDef %in% 1, "LineName"])) # First-line mCRPC: abi: 
2172; enza 1972 
summary(as.factor(d_LOT_GUTG001_final[d_LOT_GUTG001_final$LineNumber_mCRPC_UserDef %in% 2, "LineName"])) # Second-line mCRPC: 
enza: 716; abi: 537: doce: 447 
 
 
# Save these cohorts: manually move them to "derived_data" 
# write.csv(d_TT_cohort_GUTG001_final, "out\\d_TT_cohort_GUTG001_final_20231102.csv", row.names=FALSE) # patients excluded with the most 
strict criteria 
# write.csv(d_LOT_GUTG001_final, "out\\d_LOT_GUTG001_final_20231102.csv", row.names=FALSE)# LOTs for patients excluded with the most 
strict criteria 
 
# save identified cohort data 
# save(d_TT_cohort_GUTG001_final, file = "derived_data\\d_TT_cohort_GUTG001_final.RData") # final use  
# save(d_LOT_GUTG001_final, file = "derived_data\\d_LOT_GUTG001_final.RData") # final use 
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Appendix 8.6 R code for defining patient baseline characteristics in Prostate Cancer Case 

Study 1 (PC1) 
################################################################################# 
###    Cohort Characteristics                                                                                                                         ###  
###    Amy Chang's PhD Thesis - Treatment Sequence project                                             ###  
###    Data: Flatiron prostate cancer datasets                                                                                          ### 
###                                                                                                                                                                   ### 
###    University of Sheffield                                                                                                                       ### 
###    Date created: Nov 2, 2023                                                                                                                ###  
###    Created Git & renv project: Aug 01, 2023                                                                                       ### 
################################################################################# 
 
## House keeping 
 
# Load packages and functions 
renv::status() 
renv::snapshot() 
`%notin%` <- Negate(`%in%`) 
 
library(dplyr) 
library(lubridate) 
library(table1) 
 
############################################# 
# 
# GUTG-001 Analogue 
# 
############################################# 
 
##### Read files (from cohort identification) 
 
# d_TT_cohort_GUTG001_final <- read.csv("derived_data\\d_TT_cohort_GUTG001_final_20231102.csv") # patients excluded with the strictest 
criteria 
# d_LOT_GUTG001_final <- read.csv("derived_data\\d_LOT_GUTG001_final_20231102.csv")# LOTs for patients excluded with the strictest criteria 
 
##### Baseline characteristics 
 
# Merge with demographic and first-line therapy info 
d_TT_cohort_GUTG001_final <- merge(d_TT_cohort_GUTG001_final, rd_demo, by = "PatientID", all.x = TRUE) %>%  
  select(-f_timezero_ADT_fail, -f_timezero_abs_neutrophil_fail,  
         -f_timezero_platelet_fail, -f_timezero_Hb_fail, 
         -f_timezero_neutropenia, -f_timezero_K_fail, 
         -f_timezero_tbil_fail, -f_timezero_ALT_fail, 
         -f_timezero_AST_fail, -f_timezero_liver_fail, 
         -f_timezero_concurrent_cancer, -f_timezero_brain_meta, 
         -f_timezero_seizure, -f_timezero_cerebrovas_event, 
         -f_timezero_seizure_cerebrovas, -f_timezero_CKD_diag, 
         -f_timezero_inadequate_oragan, -f_pretreat_treat_not_allowed,  
         -Gender) %>%  
     inner_join(d_LOT_GUTG001_final[d_LOT_GUTG001_final$LineNumber_mCRPC_UserDef %in% 1,  
                                 c("PatientID", "LineName")], by = "PatientID")  %>% 
     rename(FirstLine = LineName) %>% 
     mutate(Age_TimeZero = as.numeric(year(TimeZero)) - BirthYear) 
 
# Age by Group 
tapply(d_TT_cohort_GUTG001_final$Age, d_TT_cohort_GUTG001_final$FirstLine, summary)  
summary(d_TT_cohort_GUTG001_final$Age) 
# Ethnicity by Group 
tapply(as.factor(d_TT_cohort_GUTG001_final$Race), d_TT_cohort_GUTG001_final$FirstLine, summary)  
 
# State by Group 
tapply(as.factor(d_TT_cohort_GUTG001_final$MStage), d_TT_cohort_GUTG001_final$FirstLine, summary)  
 
 
 
### Hb 
d_demo_GUTG001_Hb <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                                   rd_lab[rd_lab$LOINC %in% v_LOINC_Hb, c("PatientID", "TestDate", "LOINC", "TestResultCleaned")],  
                                   by = "PatientID", 
                                   all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before Time Zero 
# 3851 
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d_demo_GUTG001_Hb <- d_demo_GUTG001_Hb %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 2809 
summary(as.factor(d_demo_GUTG001_Hb$FirstLine)) # only 1495 (abi) and 1314 patient had records (enza) 
tapply(d_demo_GUTG001_Hb$TestResultCleaned, d_demo_GUTG001_Hb$FirstLine, 
       function(x) format(summary(x))) 
 
### ECOG 
d_demo_GUTG001_ECOG <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                                 rd_baselineECOG[ , c("PatientID", "ECOGSource", "LineStartDate", "ECOGValue", "ECOGDate")],  
                                 by = "PatientID") %>% 
  mutate_at(vars(LineStartDate, ECOGDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  filter(LineStartDate <= TimeZero) %>% 
  group_by(PatientID) %>%  
  slice(which.max(LineStartDate)) %>% 
  ungroup() %>% 
  mutate(Gap_ECOGDate_TimeZero = ECOGDate - TimeZero) %>% 
  filter(Gap_ECOGDate_TimeZero <= 0)  
# 2424 
summary(as.factor(d_demo_GUTG001_ECOG$FirstLine)) 
tapply(as.factor(d_demo_GUTG001_ECOG$ECOGValue), d_demo_GUTG001_ECOG$FirstLine, 
       function(x) format(summary(x))) 
 
### Previous treatment 
tapply(as.factor(d_TT_cohort_GUTG001_final$f_pretreat_treat_allowed_docetaxel), d_TT_cohort_GUTG001_final$FirstLine, 
       function(x) format(summary(x))) # 234 (abi), 232 (enza) 
tapply(as.factor(d_TT_cohort_GUTG001_final$f_pretreat_treat_other_systemic), d_TT_cohort_GUTG001_final$FirstLine, 
       function(x) format(summary(x))) # 30 (abi), 16 (enza) 
tapply(as.factor(d_TT_cohort_GUTG001_final$f_pretreat_lines), d_TT_cohort_GUTG001_final$FirstLine, 
       function(x) format(summary(x))) # 259 (abi), 247 (enza) 
 
### PSA 
# Check Labs for self-defined PSA: 300 unique labs (based on data inspection) 
# Use LOINC to find those PSA ones 
# https://loinc.org/2857-1 
v_LOINC_all <- data.frame(sort(unique((rd_lab$LOINC)))) # confirmed that these LOINC table only contains numbers 
 
# check the LOINC number of prostate sensitive antigen 
# Create a vector of all LabComponent that can be mapped to prostate  
v_LabComponent_PSA <- unique(grep("prostate", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE)) 
summary(as.factor(v_LabComponent_PSA)) 
# Therefore a different test name for the same LOINC, and there are LOINC for total PSA (2857-1, 35741-8), free PSA(10886-0), and ratio of free PSA 
(12841-3) 
# Create a table of all PSA tests 
d_LONIC_PSA <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_PSA,  
                             c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
# Create a vecor containing all LOINC for total PSA 
v_LOINC_PSA_all <- unique(d_LONIC_PSA$LOINC) 
v_LOINC_PSA_t <- c("2857-1", "35741-8") 
 
d_demo_GUTG001_PSA_t <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                           rd_lab[rd_lab$LOINC %in% v_LOINC_PSA_t, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestUnitsCleaned")],  
                           by = "PatientID", 
                           all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before Time Zero 
# 2098 
d_demo_GUTG001_PSA_t <- d_demo_GUTG001_PSA_t %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 1701 
summary(as.factor(d_demo_GUTG001_PSA_t$FirstLine)) # only 965 (abi) and 736 patient had records (enza) 
tapply(d_demo_GUTG001_PSA_t$TestResultCleaned, d_demo_GUTG001_PSA_t$FirstLine, 
       function(x) format(summary(x))) 
 
# Check very extreme values 
test <- d_demo_GUTG001_PSA_t %>% 
  filter(TestResultCleaned > 2800) # only 10 pts, and have the same test units 
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head(d_demo_GUTG001_PSA_t) 
 
 
### ALP 
# check the LOINC number of ALP 
# Create a vector of all LabComponent that can be mapped to prostate  
v_LabComponent_ALP <- unique(grep("alkaline", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE))  
summary(as.factor(v_LabComponent_ALP)) # only Alkaline phosphatase (ALP) 
#-  Create a table of all ALP tests: only 6768-6 (one has unit U/L, the other doesn't) 
d_LONIC_ALP <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_ALP,  
                             c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_ALP <- unique(d_LONIC_ALP$LOINC) 
 
d_demo_GUTG001_ALP <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                              rd_lab[rd_lab$LOINC %in% v_LOINC_ALP, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestUnitsCleaned")],  
                              by = "PatientID", 
                              all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before Time Zero 
# 3572 
 
d_demo_GUTG001_ALP <- d_demo_GUTG001_ALP %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 2745 
summary(as.factor(d_demo_GUTG001_ALP$FirstLine)) # only 1471 (abi) and 1274 patient had records (enza) 
tapply(d_demo_GUTG001_ALP$TestResultCleaned, d_demo_GUTG001_ALP$FirstLine, 
       function(x) format(summary(x))) 
 
# Check very extreme values: normal value 30-130 IU/L 
# https://www.nbt.nhs.uk/severn-pathology/requesting/test-information/alp 
test <- d_demo_GUTG001_ALP %>% 
  filter(TestResultCleaned > 195) # 503 pts, over 1.5 times of normal value 
head(d_demo_GUTG001_ALP) 
 
 
### LDH 
# check the LOINC number of LDH 
# Create a vector of all LabComponent that can be mapped to prostate  
v_LabComponent_LDH <- unique(grep("lactate", rd_lab$LabComponent, ignore.case = TRUE, value=TRUE))  
summary(as.factor(v_LabComponent_LDH)) # only Lactate dehydrogenase (LDH), serum 
#-  Create a table of all LDH tests: 14804-9, 2532-0 
d_LONIC_LDH <- unique(rd_lab[rd_lab$LabComponent %in% v_LabComponent_LDH,  
                             c("LOINC", "Test", "LabComponent", "TestBaseName", "LabSource", "TestUnitsCleaned")]) %>% 
  arrange(LOINC, LabComponent, TestBaseName, Test) 
v_LOINC_LDH <- unique(d_LONIC_LDH$LOINC) 
 
d_demo_GUTG001_LDH <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                            rd_lab[rd_lab$LOINC %in% v_LOINC_LDH, c("PatientID", "TestDate", "LOINC", "TestResultCleaned", "TestUnitsCleaned")],  
                            by = "PatientID", 
                            all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate >= (TimeZero-30) & TestDate <= TimeZero) # records within 30 days before Time Zero 
# 558 
 
d_demo_GUTG001_LDH <- d_demo_GUTG001_LDH %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  group_by(PatientID) %>%  
  slice(which.max(TestDate))   
# 456 
summary(as.factor(d_demo_GUTG001_LDH$FirstLine)) # only 229 (abi) and 227 patient had records (enza) 
tapply(d_demo_GUTG001_LDH$TestResultCleaned, d_demo_GUTG001_LDH$FirstLine, 
       function(x) format(summary(x))) 
 
# Check very extreme values: normal value 135-225 IU/L 
# https://www.yorkhospitals.nhs.uk/our-services/a-z-of-services/lab-med/test-directory/clinical-biochemistry/lactate-dehydrogenase/ 
test <- d_demo_GUTG001_LDH %>% 
  filter(TestResultCleaned > 450) # 30 pts, over 2 times of normal value 
head(d_demo_GUTG001_LDH) 
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# DM 
# brain meta codes: ICD-10 
# E10  Type 1 diabetes mellitus 
# E11  Type 2 diabetes mellitus 
# E13  Other specified diabetes mellitus 
v_DM_ICD10_3CHR <- c("E10", "E11", "E13")  
 
# brain meta codes: ICD-9 
# 250 Diabetes mellitus 
v_DM_ICD9_3CHR <- c("250")  
 
# Find concurrent cancer diags (primary cancers) 
d_demo_GUTG001_DM <- filter(rd_diag, substr(DiagnosisCode, 1, 3) %in% c(v_DM_ICD10_3CHR,  
                                                                   v_DM_ICD9_3CHR)) # icd-10, icd-9: 4 character meta (and a dot) 
summary(as.factor(d_demo_GUTG001_DM$DiagnosisCode)) # 16770 
 
# Find Diagnosis containing these brain/spinal meta within 182 days prior to Time Zero 
d_demo_GUTG001_DM <-  merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "TimeZero")], d_demo_GUTG001_DM) %>% 
  mutate_at(vars(DiagnosisDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero) %>% # DM within 182 days prior to Timezero 
  distinct(PatientID) # 191 
d_demo_GUTG001_DM$f_timezero_DM <- 1 
 
 
### Gleason score (at initial diagnosis) 
 
 
### SES: social economic status: each pt has one record (is it measured before they started treatment? can they change?) 
d_demo_GUTG001_SES <-  d_TT_cohort_GUTG001_final %>% 
  select(PatientID) %>% 
  left_join(rd_socialdeterm, by = "PatientID") %>% 
  mutate(f_SES = case_when(SESIndex2015_2019 == "" ~ "Unknown / Not documented", 
                           TRUE ~ SESIndex2015_2019)) %>% 
  select(PatientID, f_SES) 
# 4144 
summary(as.factor(d_demo_GUTG001_SES$f_SES)) # 4144: 448 missing, others from 1~5 
 
 
### Comorbidity Score 
# Adapted from Comorbidity Score for claims data from the  
# Division of Pharmacoepidemiology and Pharmacoeconomics Department of Medicine, Harvard Medical School 
# https://www.drugepi.org/dope/software#Combined1 
# ref: https://pubmed.ncbi.nlm.nih.gov/21208778/ 
# ref: https://pubmed.ncbi.nlm.nih.gov/29087983/ 
 
## Create a list of ICD codes to identify comorbidities 
#- Alcohol Abuse 
v_Comorbid_Alcohol_abuse_ICD9_4CHR <- c("291.1", "291.2", "291.5", "291.8", "291.9", "303.9", "305.0", "V11.3")  
 
v_Comorbid_Alcohol_abuse_ICD10_3CHR <- c("E52", "F10", "T51")  
v_Comorbid_Alcohol_abuse_ICD10_4CHR <- c("G62.1", "I42.6", "K29.2", "K70.0", "K70.3", "K70.9", "Z65.8", "Z71.4")  
   
#- Any Tumour 
# No need to examine "Any Tumour" (prostate cancer is already tumour) 
 
#- Cardiac arrythmia 
v_Comorbid_Cardiac_arrhythmias_ICD9_4CHR <- c("426.2", "426.3", "426.4", 
                                     "426.6", "426.7", "426.8", 
                                     "427.0", "427.2", "427.6", "427.9", 
                                     "785.0", "V45.0", "V53.3") 
v_Comorbid_Cardiac_arrhythmias_ICD9_5CHR <- c("426.10", "426.11", "426.13",  
                                     "426.50", "426.51", "426.52", "426.53", 
                                     "427.31")  
 
v_Comorbid_Cardiac_arrhythmias_ICD10_3CHR <- c("I44", "I47", "I48", "I49") 
v_Comorbid_Cardiac_arrhythmias_ICD10_4CHR <- c("I44.0", "I44.1",  
                                      "I44.3", "I44.5", "I44.6", "I44.7",  
                                      "I45.0", "I45.1", "I45.2", 
                                      "I45.4", "I45.5", "I45.6", "I45.7", "I45.8", "I45.9", 
                                      "R00.0", "R00.1", "R00.8",  
                                      "T82.1", "Z45.0", "Z95.0", "Z95.9") 
v_Comorbid_Cardiac_arrhythmias_ICD10_6CHR <- c("Z95.810", "Z95.818") 
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#- Chronic pulmonary disease 
v_Comorbid_Chronic_pulmonary_disease_ICD9_3CHR <- c("491", "492", "493", "494", "496")  
v_Comorbid_Chronic_pulmonary_disease_ICD9_4CHR <- c("415.0", "416.8", "416.9") 
 
v_Comorbid_Chronic_pulmonary_disease_ICD10_3CHR <- c("J40", "J41", "J42", "J43", "J44", "J45", "J47", 
                                                     "J60", "J61", "J62", "J63", "J64", "J65", "J66", "J67")  
v_Comorbid_Chronic_pulmonary_disease_ICD10_4CHR <- c("I26.0", "I27.2", "I27.8", "I27.9", 
                                                      "J68.4", "J70.1", "J70.3") 
 
# Coagulopathy 
v_Comorbid_Coagulopathy_ICD9_3CHR <- c("286") 
v_Comorbid_Coagulopathy_ICD9_4CHR <- c("287.1", "287.3", "287.4", "287.5") 
 
v_Comorbid_Coagulopathy_ICD10_3CHR <- c("D65", "D66", "D67", "D68") 
v_Comorbid_Coagulopathy_ICD10_4CHR <- c("D69.1", "D69.3", "D69.4", "D69.5", "D69.6") 
 
# Complicated_diabetes 
v_Comorbid_Complicated_DM_ICD9_4CHR <- c("250.4", "250.5", "250.6", "250.7")  
v_Comorbid_Complicated_DM_ICD9_5CHR <- c("250.90", "250.91", "250.92", "250.93") 
 
v_Comorbid_Complicated_DM_ICD10_4CHR <- c("E10.2", "E10.3", "E10.4", "E10.5", 
                                 "E10.6", "E10.7", "E10.8", 
                                 "E12.2", "E12.3", "E12.4", "E12.5", 
                                 "E12.6", "E12.7", "E12.8", 
                                 "E13.2", "E13.3", "E13.4", "E13.5", 
                                 "E13.6", "E13.7", "E13.8") 
 
# CHF 
v_Comorbid_CHF_ICD9_3CHR <- c("425", "428")  
v_Comorbid_CHF_ICD9_4CHR <- c("429.3")  
v_Comorbid_CHF_ICD9_5CHR <- c("402.01", "402.11", "402.91")  
 
v_Comorbid_CHF_ICD10_3CHR <- c("I42", "I43", "I50") 
v_Comorbid_CHF_ICD10_4CHR <- c("I09.9", "I11.0","I13.0", "I13.2", "I25.5", 
                               "I51.7", "P29.0")  
v_Comorbid_CHF_ICD10_5CHR <- c("A18.84")  
 
# Deficiency_anemia 
v_Comorbid_Deficiency_anemia_ICD9_4CHR <- c("280.1", "280.8", "280.9", "285.9") 
 
v_Comorbid_Deficiency_anemia_ICD10_3CHR <- c("D51", "D52", "D53")  
v_Comorbid_Deficiency_anemia_ICD10_4CHR <- c("D50.1", "D50.8", "D50.9", "D64.9")  
 
# Dementia 
v_Comorbid_Dementia_ICD9_3CHR <- c("290") 
v_Comorbid_Dementia_ICD9_4CHR <- c("331.0", "331.1", "331.2") 
 
v_Comorbid_Dementia_ICD10_3CHR <- c("F01", "F02", "F03", "F05", 
                                    "G30") 
v_Comorbid_Dementia_ICD10_4CHR <- c("G31.1") 
v_Comorbid_Dementia_ICD10_5CHR <- c("G31.01", "G31.09") 
 
# Fluid and electrolyte disorders 
v_Comorbid_Fluid_Electro_ICD9_3CHR <- c("276") 
 
v_Comorbid_Fluid_Electro_ICD10_3CHR <- c("E86", "E87") 
v_Comorbid_Fluid_Electro_ICD10_4CHR <- c("E22.2") 
 
# HIV 
v_Comorbid_HIV_ICD9_3CHR <- c("042", "043", "044") 
 
v_Comorbid_HIV_ICD10_3CHR <- c("B20") 
 
# Hemiplegia 
v_Comorbid_Hemiplegia_ICD9_3CHR <- c("342", "344") 
 
v_Comorbid_Hemiplegia_ICD10_3CHR <- c("G81", "G82", "G83") 
v_Comorbid_Hemiplegia_ICD10_4CHR <- c("G04.1", "G04.1", "G11.4", 
                                      "G80.1", "G80.2") 
 
# HTN 
v_Comorbid_HTN_ICD9_4CHR <- c("401.1", "401.9") 
v_Comorbid_HTN_ICD9_5CHR <- c("402.10", "402.90", "404.10", "404.9", 
                              "405.11", "405.19", "405.91", "405.99") 
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v_Comorbid_HTN_ICD10_3CHR <- c("I10", "I11", "I12", "I13", "I15") 
v_Comorbid_HTN_ICD10_4CHR <- c("N26.2") 
 
# Liver disease 
v_Comorbid_LiverD_ICD9_4CHR <- c("456.0", "456.1",  
                                  "571.0", "571.2", "571.3", "571.4",  
                                  "571.5", "571.6", "571.8", "571.9", 
                                  "572.3", "572.8", "V42.7") 
v_Comorbid_LiverD_ICD9_5CHR <- c("070.32", "070.33", "070.54", 
                                  "456.20", "456.21") 
 
v_Comorbid_LiverD_ICD10_3CHR <- c("B18", "I85", "K70", "K73", "K74") 
v_Comorbid_LiverD_ICD10_4CHR <- c("I86.4",  
                                  "K71.1", "K71.3", "K71.4", "K71.5", "K71.7", 
                                  "K72.1", "K72.9", "K75.4",  
                                  "K76.0", "K76.2", "K76.3", "K76.4", "K76.5", "K76.6", 
                                  "K76.7", "K76.8", "K76.9", "Z94.4") 
v_Comorbid_LiverD_ICD10_5CHR <- c("K75.81", "Z48.23") 
 
# Metastatic Cancer (all pts = 1) 
 
# Peripheral vascular disease 
v_Comorbid_PeripheralVasc_ICD9_3CHR <- c("440") 
v_Comorbid_PeripheralVasc_ICD9_4CHR <- c("441.2", "441.4", "441.7", "441.9", 
                                         "443.1", "443.2", "443.8", "443.9", 
                                         "447.1", "557.1", "557.9", "V43.4") 
 
v_Comorbid_PeripheralVasc_ICD10_3CHR <- c("I70", "I71", "I79") 
v_Comorbid_PeripheralVasc_ICD10_4CHR <- c("I67.0", "I73.1", "I73.8", "I73.9", 
                                          "I77.1",  
                                          "K55.1", "K55.8", "K55.9", 
                                          "Z95.9") 
v_Comorbid_PeripheralVasc_ICD10_5CHR <- c("E08.51", "E08.52", "E09.51", "E09.52", 
                                          "E10.51", "E10.52", "E11.51",  
                                          "E13.51", "E11.52", 
                                          "I77.71", "I77.72", "I77.73", "I77.74", 
                                          "I77.79", 
                                          "Z95.82") 
 
# Psychosis 
v_Comorbid_Psychosis_ICD9_3CHR <- c("295", "296", "297", "298") 
v_Comorbid_Psychosis_ICD9_4CHR <- c("299.1") # original Harvard code has 299.11 but this was not found in ICD-9 dictionary 
 
v_Comorbid_Psychosis_ICD10_3CHR <- c("F20", "F22", "F23", "F24", "F25",  
                                     "F28", "F29",  
                                     "F30", "F31", "F32", "F33", "F39") 
v_Comorbid_Psychosis_ICD10_4CHR <- c("F34.8", "F34.9", "F84.3")  
v_Comorbid_Psychosis_ICD10_5CHR <- c("F44.89")  
 
# Pulmonary circulation disorders 
v_Comorbid_PulmonaryCirc_ICD9_3CHR <- c("416") 
v_Comorbid_PulmonaryCirc_ICD9_4CHR <- c("417.9") 
 
v_Comorbid_PulmonaryCirc_ICD10_3CHR <- c("I26", "I27") 
v_Comorbid_PulmonaryCirc_ICD10_4CHR <- c("I28.0", "I28.8", "I28.9") 
 
# Renal Failure 
v_Comorbid_RenalFail_ICD9_3CHR <- c("585", "586") 
v_Comorbid_RenalFail_ICD9_4CHR <- c("V42.0", "45.1", "V56.0", "V56.8") 
v_Comorbid_RenalFail_ICD9_5CHR <- c("03.11", "403.91", "404.12", "404.92") 
 
v_Comorbid_RenalFail_ICD10_3CHR <- c("I13", "N18", "N19") 
v_Comorbid_RenalFail_ICD10_4CHR <- c("I12.0",  
                                     "N03.2", "N03.3", "N03.4", "N03.5", 
                                     "N03.6", "N03.7", 
                                     "N05.2", "N05.3", "N05.4", "N05.5", 
                                     "N05.6", "N05.7", 
                                     "N25.0", 
                                     "Z49.0", "Z94.0", "Z99.2") 
v_Comorbid_RenalFail_ICD10_5CHR <- c(# Harvard code has Z39.32 - there doesn't seem to be Z39.32? 
                                     "Z48.22", "Z49.31", 
                                     "Z91.15") 
# Weight loss 
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v_Comorbid_WeightLoss_ICD9_3CHR <- c("260", "261", "262", "263") 
 
v_Comorbid_WeightLoss_ICD10_3CHR <- c("E40", "E41", "E42", "E43", 
                                      "E44", "E45", "E46", 
                                      "R64") 
v_Comorbid_WeightLoss_ICD10_4CHR <- c("E64.0", "R63.4") 
 
 
# Put all Comorbid codes into a list (73 vectors) 
l_Comorbid_ICDs <- mget(ls(pattern = "^v_Comorbid_.*ICD")) 
rm(list = ls(pattern = "^v_Comorbid_.*ICD")) 
 
# Create a vector of comorbid_names  
v_comorbid_names <- sapply(names(l_Comorbid_ICDs), function(x) { 
  match <- gsub("^v_Comorbid_([A-Za-z_]+)_ICD.*$", "\\1", x) 
  if (match == x) { 
    return(NA)  # Return NA if no match is found 
  } else { 
    return(match) 
  } 
}) 
v_comorbid_names <- unique(v_comorbid_names) 
# 18 names: except any tumour and metastatsis 
 
# Create a function to label these diagnosis data with flags of comorbidities 
label_comorbid <- function(data){ 
  for(comorbid in v_comorbid_names){ 
     
    f_comorbidities_name <- paste("Comorbid_", comorbid, sep = "") 
     
    data <- data %>% 
      mutate(!!sym(f_comorbidities_name) :=   
               case_when( 
                 # ICD-9: 3 character (check if such ICD code exist first) 
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD9_3CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-9-CM" & substr(DiagnosisCode, 1, 3) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
                 # ICD-9: 4 character, including comma 
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD9_4CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-9-CM" & substr(DiagnosisCode, 1, 5) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
                 # ICD-9: 5 character, including comma 
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD9_5CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-9-CM" & substr(DiagnosisCode, 1, 6) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
                 # ICD-9: 6 character, including comma 
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD9_6CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-9-CM" & substr(DiagnosisCode, 1, 7) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
                  
                 # ICD-10: 3 character  
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD10_3CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-10-CM" & substr(DiagnosisCode, 1, 3) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
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                 # ICD-10: 4 character, including comma 
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD10_4CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-10-CM" & substr(DiagnosisCode, 1, 5) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
                 # ICD-10: 5 character, including comma 
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD10_5CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-10-CM" & substr(DiagnosisCode, 1, 6) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
                 # ICD-10: 6 character, including comma 
                 { 
                   icd_index <- grep(paste("^v_Comorbid_", comorbid, "_ICD10_6CHR$", sep = ""), names(l_Comorbid_ICDs)) 
                   if (length(icd_index) > 0) { 
                     icd_list <- l_Comorbid_ICDs[[icd_index]] 
                     DiagnosisCodeSystem == "ICD-10-CM" & substr(DiagnosisCode, 1, 7) %in% icd_list 
                   } else FALSE 
                 } ~ 1, 
                 TRUE ~ 0 
               ) 
      ) 
  } 
  return(data) 
} 
 
 
# Find co-morbid Diagnosis within 182 days prior to Time Zero 
d_demo_GUTG001_CoMorbid <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "TimeZero")], rd_diag, by = "PatientID") %>% 
  select(-PracticeID) %>% 
  mutate_at(vars(DiagnosisDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate >= (TimeZero-182) & DiagnosisDate <= TimeZero)  
 
# Summaries each patient's morbidity flag using the function created 
d_demo_GUTG001_CoMorbid <- label_comorbid(d_demo_GUTG001_CoMorbid) %>% 
  select(-TimeZero, -DiagnosisDate, -DiagnosisCode,  
         -DiagnosisDescription, -DiagnosisCodeSystem) %>% 
  group_by(PatientID) %>% 
  summarise_all(max, na.rm = TRUE) %>% 
  rename_with(~ paste0(., "_TimeZero"), -PatientID)  
 
# Label every patient's cormorbidity score, adding any tumour and metastatsis = 1 
d_demo_GUTG001_CoMorbid <- d_TT_cohort_GUTG001_final[ , "PatientID", drop = FALSE] %>% 
  left_join(d_demo_GUTG001_CoMorbid, by = "PatientID") %>% 
  mutate(across(everything(), ~ ifelse(is.na(.), 0, .))) %>% 
  mutate(Comorbid_AnyTumour_TimeZero = 1, 
         Comorbid_Metastatic_cancer_TimeZero = 1) %>%  
  # Combined comorbidity score conditions and weights for a Medicare population (Gagne 2011) 
  # Not necessarily suitable for other population 
  mutate(Comorbid_Score_TimeZero =  
         5*Comorbid_Metastatic_cancer_TimeZero + 
         2*Comorbid_CHF_TimeZero + 
         2*Comorbid_Dementia_TimeZero + 
         2*Comorbid_RenalFail_TimeZero + 
         2*Comorbid_WeightLoss_TimeZero + 
           Comorbid_AnyTumour_TimeZero + 
           Comorbid_Alcohol_abuse_TimeZero + 
           Comorbid_Cardiac_arrhythmias_TimeZero + 
           Comorbid_Chronic_pulmonary_disease_TimeZero + 
           Comorbid_Coagulopathy_TimeZero + 
           Comorbid_Complicated_DM_TimeZero + 
           Comorbid_Deficiency_anemia_TimeZero + 
           Comorbid_Fluid_Electro_TimeZero + 
           Comorbid_Hemiplegia_TimeZero + 
           Comorbid_LiverD_TimeZero + 
           Comorbid_PeripheralVasc_TimeZero + 
           Comorbid_Psychosis_TimeZero + 
           Comorbid_PulmonaryCirc_TimeZero + 
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           (-1 * Comorbid_HIV_TimeZero) + # There is are patients having HIV but without other non-any tumour, non-meta comorbid diagnosis within 
182 days 
           (-1 * Comorbid_HTN_TimeZero) # not sure why HTN os -1 
         ) 
 
summary(as.factor(d_demo_GUTG001_CoMorbid$Comorbid_Score_TimeZero)) # ranging from 5~13 
 
#################################### 
# Prepare Table 1 
#################################### 
 
# Factor the basic variables that 
# we're interested in 
table1_TimeZero <- d_TT_cohort_GUTG001_final %>% 
  mutate_at(vars(TimeZero, MCRPCDate,  
                 MetDiagnosisDate, DiagnosisDate, CRPCDate), as.Date, format="%Y-%m-%d") %>% 
  mutate(Gap_TimeZero_mCRPC = as.numeric(TimeZero - MCRPCDate), 
         Gap_TimeZero_mPC = as.numeric(TimeZero - MetDiagnosisDate), 
         Gap_TimeZero_PC = as.numeric(TimeZero - DiagnosisDate), 
         Gap_TimeZero_CRPC = as.numeric(TimeZero - CRPCDate)) %>% 
  left_join(d_demo_GUTG001_PSA_t[ , c("PatientID", "TestResultCleaned")], by = "PatientID") %>% 
  rename(PSA_TimeZero = TestResultCleaned)  %>%  
  left_join(d_demo_GUTG001_Hb[ , c("PatientID", "TestResultCleaned")], by = "PatientID") %>% 
  rename(Hb_TimeZero = TestResultCleaned) %>%  
  mutate(Hb_TimeZero = Hb_TimeZero*10) %>% # Change unit to be in line with Khalaf 2019 %>% 
  left_join(d_demo_GUTG001_ALP[ , c("PatientID", "TestResultCleaned")], by = "PatientID") %>%  
  rename(ALP_RULN_TimeZero = TestResultCleaned)  %>%  
  mutate(ALP_RULN_TimeZero = ALP_RULN_TimeZero/130) %>% # relative to ULN 
  left_join(d_demo_GUTG001_LDH[ , c("PatientID", "TestResultCleaned")], by = "PatientID") %>% 
  rename(LDH_RULN_TimeZero = TestResultCleaned)  %>% # relative to ULN 
  mutate(LDH_RULN_TimeZero = LDH_RULN_TimeZero/225) %>% # relative to ULN 
    left_join(d_demo_GUTG001_ECOG[ , c("PatientID", "ECOGValue")], by = "PatientID") %>% 
  rename(ECOG_TimeZero = ECOGValue) %>%  
  left_join(d_demo_GUTG001_DM[ , c("PatientID", "f_timezero_DM")], by = "PatientID") %>% 
  mutate(f_timezero_DM = ifelse(is.na(f_timezero_DM), 0, f_timezero_DM)) %>% 
  rename(DM_TimeZero = f_timezero_DM) %>% 
  left_join(d_demo_GUTG001_SES[ , c("PatientID", "f_SES")], by = "PatientID") %>% 
  left_join(d_demo_GUTG001_CoMorbid[ , c("PatientID", "Comorbid_Score_TimeZero")], by = "PatientID")  
 
# Race relabel 
table1_TimeZero <- table1_TimeZero %>% 
  mutate(Race = case_when( 
    Race == "" ~ "Unknown / Not documented", 
    Race == "Hispanic or Latino" ~ "Other Race", 
    TRUE ~ Race)) %>% 
  mutate(Race = factor(Race, levels = c("Asian", "Black or African American", "White", "Other Race", "Unknown / Not documented"))) 
 
# Previous treatment relabel 
table1_TimeZero <- table1_TimeZero %>% 
  mutate(f_pretreat_lines = case_when( 
    f_pretreat_lines > 1 ~ "> 1", 
    TRUE ~ as.character(f_pretreat_lines))) %>% 
  mutate(f_pretreat_lines = factor(f_pretreat_lines, levels = c("0", "1", "> 1"))) 
 
table1_TimeZero$f_pretreat_treat_allowed_docetaxel <- factor( 
  ifelse(table1_TimeZero$f_pretreat_treat_allowed_docetaxel > 0, "Yes", "No"), 
  levels = c("Yes", "No")) 
 
table1_TimeZero$f_pretreat_treat_other_systemic <- factor( 
  ifelse(table1_TimeZero$f_pretreat_treat_other_systemic > 0, "Yes", "No"), 
  levels = c("Yes", "No")) 
 
# DM relabel 
table1_TimeZero$DM_TimeZero <-  
  factor(table1_TimeZero$DM_TimeZero, levels=c(1,0), 
         labels=c("Yes", "No")) 
 
# Relabel Group stage 
table1_TimeZero <- table1_TimeZero %>% 
  mutate(GroupStage = case_when( 
    GroupStage %in% c("IIA", "IIB", "IIC") ~ "II", 
    GroupStage %in% c("IIIA", "IIIB", "IIIC") ~ "III", 
    GroupStage %in% c("IVA", "IVB") ~ "IV", 
    TRUE ~ GroupStage)) 
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# Relabel T stage 
table1_TimeZero <- table1_TimeZero %>% 
  mutate(TStage = case_when( 
    TStage %in% c("T0", "T1", "T1a", "T1b", "T1c") ~ "T0/T1", 
    TStage %in% c("T2a", "T2b", "T2c") ~ "T2", 
    TStage %in% c("T3a", "T3b", "T3c") ~ "T3", 
    TRUE ~ TStage)) 
 
# Relabel Gleason score 
table1_TimeZero$GleasonScore <-  
  factor(table1_TimeZero$GleasonScore ,  
         levels=c("Less than or equal to 6", 
                  "3 + 4 = 7", 
                  "4 + 3 = 7", 
                  "7 (when breakdown not available)", 
                  "8",  
                  "9",  
                  "10", 
                  "Unknown / Not documented"),  
         labels=c("Low/very low risk: ≤6", 
                  "Intermediate risk: 7", 
                  "Intermediate risk: 7", 
                  "Intermediate risk: 7", 
                  "High/very high risk: 8-10", 
                  "High/very high risk: 8-10", 
                  "High/very high risk: 8-10", 
                  "Unknown / Not documented")) 
 
# Add calender time of treatment initation 
table1_TimeZero <- table1_TimeZero %>% 
   mutate(cal_time = as.factor(as.numeric(year(TimeZero)))) 
 
 
### Checking the relationship between diagnosis dates (a bit confusing --> decide not to include in table 1) 
# table1_TimeZero$Gap_MetDiag_CRPC <- as.numeric(table1_TimeZero$MetDiagnosisDate - table1_TimeZero$CRPCDate) 
# summary(table1_TimeZero$Gap_MetDiag_CRPC) 
# table1_TimeZero$Gap_MCRPC_PCDiag <- as.numeric(table1_TimeZero$MCRPCDate - table1_TimeZero$DiagnosisDate) 
# summary(table1_TimeZero$Gap_MCRPC_PCDiag) 
# table1_TimeZero$Gap_MCRPC_MetDiag <- as.numeric(table1_TimeZero$MCRPCDate - table1_TimeZero$MetDiagnosisDate) 
# summary(table1_TimeZero$Gap_MCRPC_MetDiag) 
# table1_TimeZero$Gap_MCRPC_CRPC <- as.numeric(table1_TimeZero$MCRPCDate - table1_TimeZero$CRPCDate) 
# summary(table1_TimeZero$Gap_MCRPC_CRPC) 
 
 
label(table1_TimeZero$Age_TimeZero) <- "Age" 
label(table1_TimeZero$PSA_TimeZero) <- "PSA (ng/mL)" 
label(table1_TimeZero$ALP_RULN_TimeZero) <- "Alkaline phosphatase, relative to ULN" 
label(table1_TimeZero$LDH_RULN_TimeZero) <- "Lactate dehydrogenase, relative to ULN" 
label(table1_TimeZero$Hb_TimeZero) <- "Hb (g/L)" 
label(table1_TimeZero$ECOG_TimeZero) <- "ECOG" 
label(table1_TimeZero$f_pretreat_lines) <- "Previous treatment lines for mHSPC, nmCPRC and/or nmHSPC" 
label(table1_TimeZero$f_pretreat_treat_allowed_docetaxel) <- "Previous treatment of docetaxel" 
label(table1_TimeZero$f_pretreat_treat_other_systemic) <- "Previous other systematic treamtents" 
label(table1_TimeZero$GroupStage) <- "Group Stage (initial PC diagnosis)" 
label(table1_TimeZero$TStage) <- "T Stage (initial PC diagnosis)" 
label(table1_TimeZero$NStage) <- "N Stage (initial PC diagnosis)" 
label(table1_TimeZero$MStage) <- "M Stage (initial PC diagnosis)" 
label(table1_TimeZero$GleasonScore) <- "Gleason Score (initial PC diagnosis)" 
label(table1_TimeZero$DM_TimeZero) <- "Diabetes mellitus" 
label(table1_TimeZero$f_SES) <- "SES quantiles" 
label(table1_TimeZero$Gap_TimeZero_mCRPC) <- "Days since mCRPC diagnosis" 
label(table1_TimeZero$Gap_TimeZero_CRPC) <- "Days since castration resistance" 
label(table1_TimeZero$Gap_TimeZero_mPC) <- "Days since confirmation of metastasis" 
label(table1_TimeZero$Gap_TimeZero_PC) <- "Days since initial PC diagnosis" 
label(table1_TimeZero$Comorbid_Score_TimeZero) <- "Combined comorbidity score" 
label(table1_TimeZero$cal_time) <- "Year of initial first-Line mCRPC Treatment" 
 
 
table1(~ Age_TimeZero + PSA_TimeZero + 
         ALP_RULN_TimeZero + LDH_RULN_TimeZero + 
         Hb_TimeZero +  
         ECOG_TimeZero +  
         f_pretreat_lines + 
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         f_pretreat_treat_allowed_docetaxel +  
         f_pretreat_treat_other_systemic +  
         GleasonScore + GroupStage + 
         TStage + NStage + MStage +  
         Comorbid_Score_TimeZero + 
         DM_TimeZero + Race +  
         f_SES + 
         Gap_TimeZero_mCRPC + Gap_TimeZero_mPC + Gap_TimeZero_CRPC +  
         Gap_TimeZero_PC +  
         cal_time  
         | FirstLine, data = table1_TimeZero) 
 
pvalue <- function(x, ...) { 
  # Construct vectors of data y, and groups (strata) g 
  y <- unlist(x) 
  g <- factor(rep(1:length(x), times=sapply(x, length))) 
  if (is.numeric(y)) { 
    # For numeric variables, perform a standard 2-sample t-test 
    p <- t.test(y ~ g)$p.value 
  } else { 
    # For categorical variables, perform a chi-squared test of independence 
    p <- chisq.test(table(y, g))$p.value 
  } 
  # Format the p-value, using an HTML entity for the less-than sign. 
  # The initial empty string places the output on the line below the variable label. 
  c("", sub("<", "&lt;", format.pval(p, digits=3, eps=0.001))) 
} 
 
# Create a function to compute p-value for continuous (t-test) and categorical vars (chi-square) 
# add p-value 
table1(~ Age_TimeZero + PSA_TimeZero + 
         ALP_RULN_TimeZero + LDH_RULN_TimeZero + 
         Hb_TimeZero +  
         ECOG_TimeZero +  
         f_pretreat_lines + 
         f_pretreat_treat_allowed_docetaxel +  
         f_pretreat_treat_other_systemic +  
         GleasonScore + GroupStage + 
         TStage + NStage + MStage +  
         Comorbid_Score_TimeZero + 
         DM_TimeZero + Race +  
         f_SES + 
         Gap_TimeZero_mCRPC + Gap_TimeZero_mPC + Gap_TimeZero_CRPC +  
         Gap_TimeZero_PC + 
         cal_time 
       | FirstLine, data = table1_TimeZero, overall = F, extra.col = list(`P-value`=pvalue)) 
 
 
#################################### 
# Prepare Table 1 for crossover 
#################################### 
 
# Use data from (already time-varying covaraites labelled long dataset 04_Target Trial Emulation_GUTG001) 
 
# Find patient characteristics at crossover (use the the characteristics a day before starting second-line treatment) 
table1_Crossover <- d_tvary_GUTG001_PD %>% 
  dplyr::filter(LineNumber_mCRPC_UserDef == 2) %>% 
  dplyr::select(PatientID, Gap_PD_TimeZero) %>% 
  rename(time = Gap_PD_TimeZero) %>% 
  mutate(time = as.numeric(time)-1) %>% 
  inner_join(TTE_GUTG001_DTR_IPW, by = c("PatientID", "time")) # 2418  
 
#- relabel table1 at cross-over 
table1_Crossover$DM_tvary <-  
  factor(table1_Crossover$DM_tvary, levels=c(1,0), 
         labels=c("Yes", "No")) 
 
# Update Age 
table1_Crossover <- table1_Crossover %>% 
  mutate(Age_Crossover = Age_TimeZero + (time/365))  
 
# Change unknown labels PSA, ALP, LDH, Hb to NA, and as numeric variables for characteristic table 
table1_Crossover <- table1_Crossover %>% 
  mutate(across(c(PSA_tvary, ALP_RULN_tvary, LDH_RULN_tvary, Hb_tvary), 
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                ~ as.numeric(replace(., . == "Unknown", NA)))) %>% 
  mutate(across(c(ECOG_tvary), 
                ~ replace(., . == "Unknown", NA))) 
 
table1::label(table1_Crossover$Age_Crossover) <- "Age" 
table1::label(table1_Crossover$PSA_tvary) <- "PSA (ng/mL)" 
table1::label(table1_Crossover$ALP_RULN_tvary) <- "Alkaline phosphatase, relative to ULN" 
table1::label(table1_Crossover$LDH_RULN_tvary) <- "Lactate dehydrogenase, relative to ULN" 
table1::label(table1_Crossover$Hb_tvary) <- "Hb (g/L)" 
table1::label(table1_Crossover$ECOG_tvary) <- "ECOG" 
table1::label(table1_Crossover$Comorbid_Score_tvary) <- "Combined comorbidity score" 
table1::label(table1_Crossover$DM_tvary) <- "Diabetes mellitus" 
table1::label(table1_Crossover$time) <- "Time since the treatment initiation" 
 
gc() 
# table 1 at crossover (n = 2418) 
table1(~ Age_Crossover +  
         PSA_tvary + 
         ALP_RULN_tvary + LDH_RULN_tvary + 
         Hb_tvary +  
         ECOG_tvary +  
         Comorbid_Score_tvary + 
         DM_tvary +  
         time 
       | FirstLine, data = table1_Crossover) 
 
# table 1 at crossover with p-value 
table1(~ Age_Crossover +  
         PSA_tvary + 
         ALP_RULN_tvary + LDH_RULN_tvary + 
         Hb_tvary +  
         ECOG_tvary +  
         Comorbid_Score_tvary + 
         DM_tvary +  
         time 
       | FirstLine, data = table1_Crossover, overall = F, extra.col = list(`P-value`=pvalue)) 
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Appendix 8.7 R code for extracting time-varying characteristics during patient follow-up in 

Prostate Cancer Case Study 1 (PC1) 
################################################################################# 
###    Defining time-varying covariates                                                                                                       ###  
###    Amy Chang's PhD Thesis - Treatment Sequence project                                              ###  
###    Data: Flatiron prostate cancer datasets                                                                                           ### 
###                                                                                                                                                                     ### 
###    University of Sheffield                                                                                                                         ### 
###    Date created: Nov 2, 2023                                                                                                                  ###  
###    Created Git & renv project: Aug 01, 2023                                                                                        ### 
################################################################################# 
 
## House keeping 
 
# Load packages and functions 
renv::status() 
`%notin%` <- Negate(`%in%`) 
 
library(dplyr) 
library(lubridate) 
library(tidyverse) 
 
 
############################################# 
# 
# GUTG-001 Analogue: Time-varying covariates 
# 
############################################# 
 
 
##### Read files  
# use d_TT_cohort_GUTG001_final, d_LOT_GUTG001_final clearned from 02_02_Cohort Characteristics  
# use table1_TimeZero 
 
# Baseline covariate (confirmed with Carmel):  
# age, ECOG performance status, Hb,  
# diabetes, prior treatments,  
# whether patient was initially diagnosed with metastatic disease,  
# stage at original diagnosis,  
# (comorbidity score), (PSA prior to treatment), (Gleason score), (ethnicity) 
# Others: institution, calender year? 
 
# Time-varying covariates 
# age (expressed as time with daily interval), ECOG performance status,  
# Hb, diabetes,  
# progression status (whether patient switched treatment),  
# prior treatments,  
# (comorbidity score), (PSA prior to treatment), (Gleason score) 
 
## ECOG from the ECOG baseline table, keep only those after TimeZero and delte line ECOG value unknown 
# Delete LineStart Date info from the Baseline Ecog table (redefine in my own analysis) 
d_tvary_GUTG001_ECOG <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                             rd_baselineECOG[ , c("PatientID", "ECOGSource", "LineStartDate", "ECOGValue", "ECOGDate")],  
                             by = "PatientID") %>% 
  mutate_at(vars(LineStartDate, ECOGDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  filter(ECOGDate > TimeZero) %>% 
  mutate(Gap_ECOGDate_TimeZero = ECOGDate - TimeZero) %>% 
  filter(ECOGValue %notin% "Unknown") %>% 
  select(-LineStartDate) # 4478 
 
 
temp <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                              rd_ECOG[ , c("PatientID", "EcogValue", "EcogDate")],  
                              by = "PatientID") %>% 
  mutate_at(vars(EcogDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  group_by(PatientID, FirstLine, TimeZero, EcogDate) %>% 
  slice(which.min(EcogValue)) %>% # if there are multiple Ecog on the same date, then select the smallest 
  filter(EcogDate > TimeZero) %>% 
  mutate(Gap_ECOGDate_TimeZero = EcogDate - TimeZero) %>% 
  rename(ECOGValue = EcogValue) %>% 
  rename(ECOGDate = EcogDate) %>% 
  mutate(ECOGSource = "Structured") # 58272 
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# merge unstructured and structured data 
# delete complete duplicates, and pick extracted data over structured data if any on the same date 
d_tvary_GUTG001_ECOG <- rbind (d_tvary_GUTG001_ECOG, temp) %>% # 62750 
  distinct() %>% # 58906  
  group_by(PatientID, ECOGDate) %>% 
  arrange(PatientID, ECOGDate, ECOGSource) %>% 
  slice(1) %>% 
  ungroup() # 58896  
 
 
## Lab results 
 
#- Hb 
# keep source rather than derived, and then within the remaining, keep the highest if multiple tests per day 
d_tvary_GUTG001_Hb <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                           rd_lab[rd_lab$LOINC %in% v_LOINC_Hb, c("PatientID", "TestDate",  
                                                                  "TestResultCleaned", "LabSource")],  
                           by = "PatientID", 
                           all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate > TimeZero) %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  mutate(Gap_LabDate_TimeZero = TestDate - TimeZero) %>% 
  arrange(PatientID, TestDate, desc(LabSource), desc(TestResultCleaned)) %>% 
  group_by(PatientID, TestDate) %>% 
  slice(1) %>%   
  ungroup() # 31470  
 
#- PSA 
# keep source over derived, and the smallest if multiple tests per day 
d_tvary_GUTG001_PSA <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                            rd_lab[rd_lab$LOINC %in% v_LOINC_PSA_t, c("PatientID", "TestDate", "TestResultCleaned", "LabSource")],  
                            by = "PatientID", 
                            all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate > TimeZero) %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  mutate(Gap_LabDate_TimeZero = TestDate - TimeZero) %>% 
  arrange(PatientID, TestDate, desc(LabSource), TestResultCleaned) %>% 
  group_by(PatientID, TestDate) %>% 
  slice(1) %>%   
  ungroup() # 31470  
 
 
#- ALP 
# keep source over derived, and the smallest if multiple tests per day 
d_tvary_GUTG001_ALP <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                             rd_lab[rd_lab$LOINC %in% v_LOINC_ALP, c("PatientID", "TestDate", "TestResultCleaned", "LabSource")],  
                             by = "PatientID", 
                             all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate > TimeZero) %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  mutate(Gap_LabDate_TimeZero = TestDate - TimeZero) %>% 
  arrange(PatientID, TestDate, desc(LabSource), TestResultCleaned) %>% 
  group_by(PatientID, TestDate) %>% 
  slice(1) %>%   
  ungroup() # 71456 
 
#- LDH 
# keep source over derived, and the smallest if multiple tests per day 
d_tvary_GUTG001_LDH <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "FirstLine", "TimeZero")], 
                             rd_lab[rd_lab$LOINC %in% v_LOINC_LDH, c("PatientID", "TestDate", "TestResultCleaned", "LabSource")],  
                             by = "PatientID", 
                             all.y = TRUE) %>% 
  mutate_at(vars(TimeZero, TestDate), as.Date, format="%Y-%m-%d") %>% 
  dplyr::filter(TestDate > TimeZero) %>% 
  dplyr::filter(!is.na(TestDate)) %>% 
  dplyr::filter(!is.na(TestResultCleaned)) %>% 
  mutate(Gap_LabDate_TimeZero = TestDate - TimeZero) %>% 
  arrange(PatientID, TestDate, desc(LabSource), TestResultCleaned) %>% 
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  group_by(PatientID, TestDate) %>% 
  slice(1) %>%   
  ungroup() # 9683 (not suprising, Carmel said it is not a specific indicator) 
 
  
# Diagnosis 
 
#- DM  
# find diagnosis after Time Zero 
d_tvary_GUTG001_DM <- filter(rd_diag, substr(DiagnosisCode, 1, 3)  
                             %in% c(v_DM_ICD10_3CHR,v_DM_ICD9_3CHR)) %>%  
  select(PatientID, DiagnosisDate) %>%  
  inner_join(d_TT_cohort_GUTG001_final[ , c("PatientID", "TimeZero")],  
             by = "PatientID") %>% 
  mutate_at(vars(DiagnosisDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate > TimeZero) %>%  
  group_by(PatientID) %>% 
  slice(which.min(DiagnosisDate)) %>% 
  ungroup() # 245 (more than baseline, (1) patient develop DM later, or (2) 182 is not long enough to capture) 
 
 
#- Progression date (start receiving subsequent treatment) 
# Define the date of treatment-switching as the date of progression disease 
# (indicating following dynamic strategy but progressed) 
d_tvary_GUTG001_PD <- d_LOT_GUTG001_final %>% 
  filter(!is.na(LineNumber_mCRPC_UserDef), 
         LineNumber_mCRPC_UserDef > 1) %>% 
  left_join(d_TT_cohort_GUTG001_final[ , c("PatientID", "TimeZero")]) %>% 
  mutate(PDDate = StartDate) %>% 
  mutate_at(vars(PDDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  mutate(Gap_PD_TimeZero = PDDate - TimeZero) %>% 
  select(PatientID, PDDate, LineNumber_mCRPC_UserDef, Gap_PD_TimeZero) 
# 5336 
 
 
# Co-morbidity 
 
# Find co-morbid Diagnosis within 182 days prior to Time Zero 
d_tvary_GUTG001_CoMorbid <- merge(d_TT_cohort_GUTG001_final[ , c("PatientID", "TimeZero")], rd_diag, by = "PatientID") %>% 
  select(-PracticeID) %>% 
  mutate_at(vars(DiagnosisDate, TimeZero), as.Date, format="%Y-%m-%d") %>% 
  filter(DiagnosisDate > TimeZero)  
# 81935 
 
# Summaries each patient's morbidity flag using the function created  
# label time-varying diagnosis with 0 as ., so they can be replace with base line co-morbidity later  
# (as each row represent only one type of co-morbidity update) 
# Only update when there are additional 1 
d_tvary_GUTG001_CoMorbid <- label_comorbid(d_tvary_GUTG001_CoMorbid) %>% 
  select(-DiagnosisCode, -DiagnosisDescription, -DiagnosisCodeSystem) %>% 
  filter(rowSums(select(., -PatientID, -DiagnosisDate, -TimeZero)) != 0) %>% # Only keep rows where row sum does not equal to 0 
  mutate(Gap_Comorbid_TimeZero = as.numeric(DiagnosisDate -TimeZero)) %>% # calculate gap to TimeZero 
  select(-DiagnosisDate, -TimeZero) %>% 
  mutate(across(everything(), ~ifelse(. == 0, NA, .))) %>% 
  arrange(PatientID, Gap_Comorbid_TimeZero) %>% 
  rename_with(~ifelse(. %in% c("PatientID", "Gap_Comorbid_TimeZero"), ., paste0(., "_tvary"))) # rename comorbidity columns with _tvary (time 
updated comorbid) 
# 9430: some patients had multiple records on the same date for different diagnosis Gap_Comorbid_TimeZero 
 
 
# Summerise records to per patient, per day (e.g. combining records of any updated comorbid on the same day) 
# Summarise_at is faster tham summary(across()) 
# Custom max function that returns NA for all NA values  
# (otherwise for some comorbid it would return -InF), and take long > 3 mins 
safe_max <- function(x, na.rm = TRUE) { 
  if (all(is.na(x))) NA else max(x, na.rm = na.rm) 
}  
variable_names <- paste("Comorbid_", unique(v_comorbid_names), "_tvary", sep = "") 
d_tvary_GUTG001_CoMorbid <- d_tvary_GUTG001_CoMorbid %>% 
  group_by(PatientID, Gap_Comorbid_TimeZero) %>% 
  summarise_at(vars(all_of(variable_names)), safe_max, na.rm = TRUE) %>% 
  ungroup() %>% 
  mutate(across(everything(), ~ ifelse(. == -Inf, NA, .))) 
# 6724 
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# Add baseline detailed comorbidities for all patients 
# Noted that AnyTumour and Metastaitc_cancer are only in baseline and both are labelled as 1 for every patient 
d_tvary_GUTG001_CoMorbid <- d_demo_GUTG001_CoMorbid %>% 
  select(-Comorbid_Score_TimeZero) %>% 
  rename_with(~str_replace(., "_TimeZero$", "_tvary")) %>% 
  mutate(Gap_Comorbid_TimeZero = 0) %>% 
  bind_rows(d_tvary_GUTG001_CoMorbid) %>% 
  arrange(PatientID, Gap_Comorbid_TimeZero) 
# 10868 
 
# In summary, the d_tvary_GUTG001_CoMorbid table contains each detailed comorbidity flag at baseline and any updated new comorbidity 
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Appendix 8.8 R code for finalising the final cleaned "wide" baselined (TTE_GUTG001_base) 

and "long" time-varying datasets (TTE_GUTG001_DTR_IPW) for Prostate Cancer Case 

Study 1 (PC1) 
 
###Project Info #################################################################### 
###    Target Trial Emulation – Final TTE dataset derivation                                                                   ###  
###    Amy Chang's PhD Thesis - Treatment Sequence project                                             ###  
###    Data: Flatiron prostate cancer datasets                                                                                          ### 
###                                                                                                                                                                     ### 
###    University of Sheffield                                                                                                                         ### 
###    Date created: Nov 16, 2023                                                                                                               ###  
################################################################################# 
 
## House keeping 
# Load packages and functions 
renv::status() 
# renv::snapshot() 
 
`%notin%` <- Negate(`%in%`) 
 
# install backports when there are conflicts of tidyr 
library(backports) 
library(tidyr) 
library(remotes) 
# install.packages("tidyr") 
library(tidyr) 
library(dplyr) 
library(lubridate) 
library(ggpubr) 
library(survival) 
library(zoo) 
library(data.table) # faster than data.frame 
library(speedglm) 
library(dplyr) # too avoid conflict, read dplyr again 
library(boot) 
library(scales) 
library(date) 
library(survminer) # use tidy R 1.3.0 
library(splines) 
library(sandwich) 
library(lmtest) 
# library(broom) # use tidy R 1.2.0 
# library(haven) 
# library(psych) 
# library(flexsurv) 
# library(cowplot) 
# library(geepack) 
# library(Hmisc) 
# library(eha) 
# library(rpsftm) 
# library(rms) 
 
 
# Disable printing results in scientific notation 
options(scipen=100) 
 
# Check data 
head(table1_TimeZero) 
 
# Set time point for estimation of risks (1440 days, 48 months) 
K <- 1440 # 4 years 
K_minus_1 = K-1 # time interval K-1~K 
Time <- data.frame(time = seq(0, K, by = 1)) %>% 
  mutate(tstart = time) %>% # label time interval for survival analysis 
  mutate(tstop = time + 1) # 1440 (intervals): from  tstart = 0, tstop 1, to tstart = 1339, tstop = 1440  
 
# Check size and number of objects 
# sizes <- sapply(ls(), function(x) object.size(get(x))) 
# length(sizes) 
# sizes <- sort(sizes, decreasing = TRUE) 
# sizes 
gc() 
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######################################################################################################### 
#   I. Clean dataset, add outcome, censoring indicator, and follow-up time to cohort characterstics                                               #### 
######################################################################################################### 
 
#***Define Administrative Censoring Date based on "Structural Activity + Grace period" #### 
# This part is adapted from Dr. Philani Mpofu's Aug 31, 2023 code (Flatiron's standard way of finding last structural activity) 
 
# Craete a function to identify the last date for each patient from a dataset 
f_LastDate <- function(ids = d_TT_cohort_GUTG001_final$PatientID, 
                       file = rd_diag, 
                       DateName = DiagnosisDate) { 
   
  DateName <- enquo(DateName) # Create quosure (column in dplyr can be problematic in R) 
 
  last_date <- file %>% 
    dplyr::filter(PatientID %in% ids) %>% 
    dplyr::select(PatientID, !!DateName) %>% # Use !! to unquote the quosure 
    dplyr::mutate_at(vars(!!DateName), as.Date, format="%Y-%m-%d") %>% 
    dplyr::filter(!is.na(!!DateName)) %>% 
    group_by(PatientID) %>% 
    slice(which.max(!!DateName)) %>% 
    rename(max_date = !!DateName) %>% 
    ungroup() 
   
  return(last_date) 
} 
 
# define the subset of ids to extract the last dates 
ids <- d_TT_cohort_GUTG001_final$PatientID 
 
#- last diagnosis date 
last_diag <- f_LastDate(ids, rd_diag, DiagnosisDate) 
# 4143 patients have a last diagnosis date 
 
#- last visit date 
last_visit <- f_LastDate(ids, rd_visit, VisitDate) 
# 4144 patients have a last visit date 
 
# crate a list to store these dates 
last_dates <- list(last_diag = last_diag, last_visit = last_visit)  
rm(last_diag, last_visit) 
 
#- last lab date 
last_lab <- f_LastDate(ids, rd_lab, TestDate) # 4074 
last_dates[["last_lab"]] <- last_lab 
rm(last_lab) 
 
#- last lab result date 
last_labresult <- f_LastDate(ids, rd_lab, ResultDate) # 4024 
last_dates[["last_labresult"]] <- last_labresult 
rm(last_labresult) 
 
#- last vital date 
last_vital <- f_LastDate(ids, rd_vital, TestDate) # 4142 
last_dates[["last_vital"]] <- last_vital 
rm(last_vital) 
 
#- last vital result date 
last_vitalresult <- f_LastDate(ids, rd_vital, ResultDate) # 493 
last_dates[["last_vitalresult"]] <- last_vitalresult 
rm(last_vitalresult) 
 
#- last med order date 
last_medorder <- f_LastDate(ids, rd_med_order, OrderedDate) # 4042 
last_dates[["last_medorder"]] <- last_medorder 
rm(last_medorder) 
 
#- last medication administration date 
last_medadmin <- f_LastDate(ids, rd_med_admin, AdministeredDate) # 3720 
last_dates[["last_medadmin"]] <- last_medadmin 
rm(last_medadmin) 
 
#- last ecog date 
last_ecog <- f_LastDate(ids, rd_ECOG, EcogDate) # 3404 
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last_dates[["last_ecog"]] <- last_ecog 
rm(last_ecog) 
 
#- last baseline ecog date (including ML abstraction) 
last_baseecog <- f_LastDate(ids, rd_baselineECOG, ECOGDate) # 3270 
last_dates[["last_baseecog"]] <- last_baseecog 
rm(last_baseecog) 
 
 
#- last tele med date 
last_visit_tele <- f_LastDate(ids, rd_visit_tele, VisitDate) # 825 
last_dates[["last_visit_tele"]] <- last_visit_tele 
rm(last_visit_tele) 
 
#- last enhanced oral date (LOT was from med order, administration and enhanced oral) 
last_enchenced_oral <- f_LastDate(ids, rd_treat_oral, EndDate) # 4144 
last_dates[["last_enchenced_oral"]] <- last_enchenced_oral 
rm(last_enchenced_oral) 
 
 
#- last enhanced AB emitters date (LOT was from med order, administration and enhanced oral) 
last_enchenced_ABemit <- f_LastDate(ids, rd_treat_ABemit, AdministrationDate) # 485 
last_dates[["last_enchenced_ABemit"]] <- last_enchenced_ABemit 
rm(last_enchenced_ABemit) 
 
#- last primary treatment date (priory treatment date prior to mPC) 
last_enchenced_primary <- f_LastDate(ids, rd_treat_primary, TreatmentDate) # 1912 
last_dates[["last_enchenced_primary"]] <- last_enchenced_primary 
rm(last_enchenced_primary) 
 
#- last NGS test date  
last_test_NGS <- f_LastDate(ids, rd_test_NGS, NGSTestDate) # 980 
last_dates[["last_test_NGS"]] <- last_test_NGS 
rm(last_test_NGS) 
 
#- last enhanced ADT date (LOT was from med order, administration and enhanced oral) 
last_enchenced_ADT <- f_LastDate(ids, rd_treat_ADT, EndDate) # 400 
last_dates[["last_enchenced_ADT"]] <- last_enchenced_ADT 
rm(last_enchenced_ADT) 
 
#- last enhanced Provenge date (LOT was from med order, administration and enhanced oral) 
last_enchenced_sipT <- f_LastDate(ids, rd_treat_sipT, StartDate) # 212 
last_dates[["last_enchenced_sipT"]] <- last_enchenced_sipT 
rm(last_enchenced_sipT) 
 
#- last biomarker specimen collection date (new dataset) 
last_biomarker_collect <- f_LastDate(ids, rd_biomarkers, SpecimenCollectedDate) # 1186 
last_dates[["last_biomarker_collect"]] <- last_biomarker_collect 
rm(last_biomarker_collect) 
 
#- last biomarker specimen received date (new dataset) 
last_biomarker_received <- f_LastDate(ids, rd_biomarkers, SpecimenReceivedDate) # 1156 
last_dates[["last_biomarker_received"]] <- last_biomarker_received 
rm(last_biomarker_received) 
 
#- last biomarker specimen result date (new dataset) 
last_biomarker_result <- f_LastDate(ids, rd_biomarkers, ResultDate) # 1227 
last_dates[["last_biomarker_result"]] <- last_biomarker_result 
rm(last_biomarker_result) 
 
#-- derive the last activity date by taking the maximum of the activity dates (from 20 different dates) 
d_last_activity <- do.call("rbind", last_dates) %>% 
  group_by(PatientID) %>% 
  slice(which.max(max_date)) %>% 
  rename(DateAdminCen_lastactive = max_date) # 4144: every one has a last activity date 
 
 
 
#***Define the censoring date due to deviating from treatment strategy #### 
# Abiraterone Group: second line not being enzalutamide 
# Enatalumide Group: second line not being abiraterone  
 
#- Label C_DTRdeviation (censoring due to treatment deviation) 
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# C_DTRdeviation = 1 (treatment-switching date), when the initiation of a non-protocol defined second-line treatment (on date k) at the interval of 
tstart = k 
d_DTRdeviation <- d_LOT_GUTG001_final %>% 
  filter(LineNumber_mCRPC_UserDef == 2) %>% 
  left_join(table1_TimeZero[ , c("PatientID", "FirstLine", "TimeZero")], by = "PatientID") %>% 
  dplyr::select(PatientID, TimeZero, StartDate, FirstLine, LineName) %>% 
  mutate_at(vars(TimeZero, StartDate), as.Date, format="%Y-%m-%d") %>% 
  mutate(time = as.numeric(StartDate - TimeZero)) %>%  
  rename(SecondLine = LineName) %>% 
  # Flagging patients who were censored due to deviation 
  mutate(Cenor_DTRdev2 = ifelse((FirstLine == "Abiraterone" & SecondLine == "Enzalutamide")|  
                                (FirstLine == "Enzalutamide" & SecondLine == "Abiraterone"), 
                                 0, 1)) %>%  
  # label the date of second-line deviation as the date of initiating a non-protocol second-line 
  rename(DateCen_DTRdev2 = StartDate)  
# 2468 patients had a second-line record  
# (some patients did not receive second-line but died before, while some were censored/lost-to-follow-up) 
tapply(as.factor(d_DTRdeviation$Cenor_DTRdev2), d_DTRdeviation$FirstLine, summary) 
# 1: 1319 (received non-protocol second-line: Abi group 693, Enza 626) 
# 0: 1149 (received protocol-based second-line: Abi 655; Enza 494  
# (more patients deviating protocol in the enza group, that's probably why the survival curve look far different from those in the trial?)) 
 
tapply(as.factor(d_DTRdeviation$SecondLine), d_DTRdeviation$FirstLine, summary) 
 
 
#***Label outcome (death), administrative censoring date and censoring due to DTR deviation #### 
TTE_GUTG001_base <- table1_TimeZero %>% 
  dplyr::select(-MCRPCDate, -DiagnosisDate, -MetDiagnosisDate, -CRPCDate, -Ethnicity, 
         -Histology, -IsCRPC, -PSADiagnosis, -PSAMetDiagnosis, -State) %>% 
  # Insert death date: data only detailed to which month, so use 15th of that month for each patient 
  left_join(rd_death) %>% 
  mutate(DateOfDeath = as.Date(paste(DateOfDeath, "-15", sep=""), format="%Y-%m-%d")) %>% 
  # Define Admin censoring Scenario 1: 2023-08-31 (data cutoff) 
  mutate(DateAdminCen_dcutoff = as.Date("2023-08-31", format="%Y-%m-%d")) %>% 
  # Define Admin censoring Scenario 2: date of the last structural activity for each patient 
  left_join(d_last_activity) %>% 
  # Define Admin censoring Scenario 3: censoring due to alive > observation timeframe K (it may vary but the default is 1440 days (4 years) to be 
align with GUTG-001) 
  mutate(DateAdminCen_maxK = TimeZero + K) %>% 
  # Define Censoring due to deviating from DTR 
  left_join(d_DTRdeviation[d_DTRdeviation$Cenor_DTRdev2 == 1, c("PatientID", "DateCen_DTRdev2")]) %>% 
  # comparison of the last structural active date to (1) death and (2) date of censoring due to treatment deviation 
  mutate(Gap_lastactive_death = as.numeric(DateOfDeath - DateAdminCen_lastactive), 
         Gap_DTRDev2_lastactive = as.numeric(DateAdminCen_lastactive - DateCen_DTRdev2)) 
 
# Check how many patients had a death date in the database 
sum(!is.na(TTE_GUTG001_base$DateOfDeath)) # 2887 
 
 
#***Label outcome (death), administrative censoring + grace period date and censoring due to DTR deviation #### 
TTE_GUTG001_base <- TTE_GUTG001_base %>% 
  mutate(DateAdminCen_lastactive_grace182 =  DateAdminCen_lastactive + 182) %>% 
  rowwise() %>% 
  # Define the Date of (Y) for the ITT analysis as the minimum date of event  
  # (death, or staying alive at the last structural activity date + grace period, or staying alive on day K) 
  mutate(DateY_FirstLine = min(DateOfDeath, DateAdminCen_lastactive_grace182,  
                           DateAdminCen_dcutoff, DateAdminCen_maxK, na.rm = T), 
         # Label the Type of Y with the order of death, date of censoring 
         TypeY_FirstLine = case_when( 
           DateY_FirstLine == DateOfDeath ~ "DateOfDeath", 
           TRUE ~ "DateOfAdminCensor" 
         )) %>% 
  # Define the Date of (Y) for the DTR analysis as the minimum date of event  
  # (death, or staying alive at the last structural activity date + grace period, or staying alive on day K. 
  # or staying alive on the date of switching to a non protocol allowed second-line treatment) 
  mutate(DateY_DTR = min(DateOfDeath, DateAdminCen_lastactive_grace182, 
                         DateAdminCen_dcutoff, DateAdminCen_maxK,  
                         DateCen_DTRdev2, na.rm = T), 
         # Label the Type of Y with the order of death, date of admin censoring, date of deviation 
         TypeY_DTR = case_when( 
           DateY_DTR == DateOfDeath ~ "DateOfDeath", 
           # Noted that structural activity should always be after deviation of treatment  
           # However structural activity + grace period might happen after or on the date of deviation of treatment 
           # Therefore label Date of Censoring due to treatment deviation first if DateCen_DTRdev = DateAdminCen_lastactive_grace182 
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           DateY_DTR == DateCen_DTRdev2 ~ "DateOf2LTreatDeviation",  
           TRUE ~ "DateOfAdminCensor" 
         )) %>% 
  # Define Y for the ITT analysis 
  mutate(Y_FirstLine =  case_when( 
          TypeY_FirstLine == "DateOfDeath" ~ 1, 
          TRUE ~ 0 )) %>% 
  # Define Y for DTR per-protocol analysis 
  mutate(Y_DTR = case_when( 
          TypeY_DTR == "DateOfDeath" ~ 1, 
          TRUE ~ 0 )) %>% 
  # Define Administrative censoring for ITT analysis  
  mutate(C_Admin_FirstLine = case_when( 
      TypeY_FirstLine == "DateOfAdminCensor" ~ 1, 
      TRUE ~ 0 )) %>% 
  # Define Administrative censoring for DTR analysis  
  mutate(C_Admin_DTR = case_when( 
    TypeY_DTR == "DateOfAdminCensor" ~ 1, 
    TRUE ~ 0 )) %>% 
  # Define Treatment deviation censoring for DTR analysis  
  mutate(C_DTRdevL2 = case_when( 
    TypeY_DTR == "DateOf2LTreatDeviation" ~ 1, 
    TRUE ~ 0 
  )) 
 
 
 
#***Label Outcome and Censoring label for ITT & DTR analysis#### 
 
 
#***Label SurvTime for ITT analysis and DTR (the earliest of death or censoring dates) #### 
# Define a function to label survival times 
label_SurvTime <- function(dataset) { 
  dataset %>% 
    mutate(SurvTime_FirstLine = case_when( 
      # For patients who had a death date, then they only survived until the date of death 
      TypeY_FirstLine  == "DateOfDeath" ~ as.numeric(DateY_FirstLine - TimeZero), 
      # For patients who had administrative censoring, we only know they remained alive on the last date of observation 
      # They technically could have survived until the censoring date + 1 day, so use censoring date + 1 for outcome calculation (which is unknown) 
      # Keep max survival time as K for now, but in the long data, create an additional row for interval K~K+1 and label death as NA (for admin 
censoring weighting?) 
      TRUE ~ as.numeric(DateY_FirstLine - TimeZero) 
    )) %>% 
    mutate(SurvTime_DTR = case_when( 
      # For patients who had a death date, then they only survived until the date of death 
      TypeY_DTR  == "DateOfDeath" ~ as.numeric(DateY_DTR - TimeZero), 
      # For patients who had a known date for initiating a second-line that is not allowed in protocol 
      # We censor them at the interval when they start receiving non-protocol second-line 
      # In the long format, that row will have a weight of 0, as we shouldn't observe the outcome at the interval when they start receiving non-
protocol treatment 
      # For patients who had administrative censoring, we only know they remained alive on the last date of observation 
      # They technically could have survived until the censoring date + 1 day, so use censoring date + 1 for outcome calculation (which is unknown) 
      # We will censoring them in the next interval after the were confirmed remaining alive 
      # Keep max survival time as K for now, but in the long data, create an additional row for interval K~K+1 (for admin censoring weighting?) 
      TypeY_DTR  == "DateOf2LTreatDeviation" ~ as.numeric(DateY_DTR - TimeZero), 
      TRUE ~ as.numeric(DateY_DTR - TimeZero) 
    # Live up until the interval of treatent switching 
    )) 
} 
 
# Apply the function to both all baseline datasets 
TTE_GUTG001_base <- label_SurvTime(TTE_GUTG001_base) 
 
#***Give the groups numeric label: Abi as active group = 1 enza = 0 (inline with Khalaf 2018) #### 
TTE_GUTG001_base <- TTE_GUTG001_base %>% 
  mutate(FirstLine_num = ifelse(FirstLine %in% "Abiraterone", 1, 0)) # label the last interval y = 1 (if death) 
 
 
#***Organising baseline variables (relabel) for analysis: cannot have NA for regression models #### 
 
# reduce the level of variables 
#- Relabel MStage 
TTE_GUTG001_base$MStage  <- ifelse(TTE_GUTG001_base$MStage %in% c("M1a", "M1b", "M1c"), "M1",  
                                   TTE_GUTG001_base$MStage) 
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# Need to transform any missing into a categorical variable:  
# therefore, all numeric variables with missing values  ==> transform them into categories 
 
# create a function to relabel PSA, creat new variable called PSA_cat 
relabel_PSA <- function(data, column) { 
  new_col_name <- paste(column, "cat", sep = "_") 
  data <- data %>% 
    mutate(!!sym(new_col_name) := case_when( 
        is.na(.data[[column]]) ~ "Unknown", 
        .data[[column]] < 4 ~ "< 4", 
        .data[[column]] < 10 ~ "4 ≤ PSA < 10", 
        .data[[column]] < 20 ~ "10 ≤ PSA < 20", 
        .data[[column]] < 100 ~ "20 ≤ PSA < 100", 
        TRUE ~ "> 100")) 
  return(data) 
} 
 
#- Relabel PSA 
TTE_GUTG001_base <- relabel_PSA(TTE_GUTG001_base, "PSA_TimeZero") 
 
# create a function to relabel Hb 
relabel_Hb <- function(data, column) { 
  new_col_name <- paste(column, "cat", sep = "_") 
  data <- data %>% 
    mutate(!!sym(new_col_name) := case_when( 
      is.na(.data[[column]]) ~ "Unknown", 
      .data[[column]] < 120 ~ "Hb < 120", 
      .data[[column]] < 140 ~ "120 ≤ Hb < 140", 
      TRUE ~ "Hb ≥ 140")) 
  return(data) 
} 
 
#- Relabel Hb 
TTE_GUTG001_base <- relabel_Hb(TTE_GUTG001_base, "Hb_TimeZero") 
 
#- Relabel ECOG 
TTE_GUTG001_base$ECOG_TimeZero <- ifelse(is.na(TTE_GUTG001_base$ECOG_TimeZero), "Unknown",  
                                          TTE_GUTG001_base$ECOG_TimeZero) 
 
#- Relabel DM 
TTE_GUTG001_base$DM_TimeZero <- ifelse(TTE_GUTG001_base$DM_TimeZero == "Yes", 1, 0) 
 
#- Relabel Gap days between diagnosis and time zero 
quantile(TTE_GUTG001_base$Gap_TimeZero_mCRPC) # quartile 0, 8, 31, 93, 2382 
quantile(TTE_GUTG001_base$Gap_TimeZero_mCRPC[TTE_GUTG001_base$FirstLine == "Abiraterone"]) # quartile 0, 8, 31, 93, 1779 
quantile(TTE_GUTG001_base$Gap_TimeZero_mCRPC[TTE_GUTG001_base$FirstLine == "Enzalutamide"]) # quartile 0, 7, 31, 96, 2382 
 
quantile(TTE_GUTG001_base$Gap_TimeZero_mPC) # quartile 0, 101, 335, 636, 3317 (signifiacnt difference between groups) 
quantile(TTE_GUTG001_base$Gap_TimeZero_mPC[TTE_GUTG001_base$FirstLine == "Abiraterone"]) # quartile 0, 94, 321, 587, 3317 
quantile(TTE_GUTG001_base$Gap_TimeZero_mPC[TTE_GUTG001_base$FirstLine == "Enzalutamide"]) # quartile 0, 108, 351, 692, 3004 
 
quantile(TTE_GUTG001_base$Gap_TimeZero_CRPC) # quartile 0, 12, 43, 147, 6754 
quantile(TTE_GUTG001_base$Gap_TimeZero_CRPC[TTE_GUTG001_base$FirstLine == "Abiraterone"]) # quartile 0, 12, 45, 150, 6754 
quantile(TTE_GUTG001_base$Gap_TimeZero_CRPC[TTE_GUTG001_base$FirstLine == "Enzalutamide"]) # quartile 0, 11, 41, 144, 5166 
 
relabel_Gap_Diag <- function(data) { 
  data <- data %>% 
    # mCRPC 
    mutate(Gap_TimeZero_mCRPC_cat = case_when( 
      Gap_TimeZero_mCRPC < 30 ~ "< 30 days", 
      Gap_TimeZero_mCRPC <= 90 ~ "31-90 days", 
      Gap_TimeZero_mCRPC <= 182 ~ "91-182 days", 
      Gap_TimeZero_mCRPC <= 365 ~ "182-365 days", 
      TRUE ~ "> 365 days")) %>% 
   
    # mPC 
    mutate(Gap_TimeZero_mPC_cat = case_when( 
      Gap_TimeZero_mPC <= 30 ~ "≤ 30 days", 
      Gap_TimeZero_mPC <= 90 ~ "31-90 days", 
      Gap_TimeZero_mPC <= 182 ~ "91-182 days", 
      Gap_TimeZero_mPC <= 365 ~ "182-365 days", 
      Gap_TimeZero_mPC <= 730 ~ "366-730 days", 
      TRUE ~ "> 730 days")) %>% 



545 

 

     
    # CRPC 
    mutate(Gap_TimeZero_CRPC_cat = case_when( 
      Gap_TimeZero_CRPC <= 7 ~ "≤ 7 days", 
      Gap_TimeZero_CRPC <= 30 ~ "8-30 days", 
      Gap_TimeZero_CRPC <= 60 ~ "31-60 days", 
      Gap_TimeZero_CRPC <= 90 ~ "61-90 days", 
      Gap_TimeZero_CRPC <= 182 ~ "91-182 days", 
      Gap_TimeZero_CRPC <= 365 ~ "182-365 days", 
      TRUE ~ "> 365 days")) 
   
  return(data) 
} 
 
#- Convert treatment number into factor 
TTE_GUTG001_base$FirstLine_num <- as.factor(TTE_GUTG001_base$FirstLine_num) 
 
 
########################################### 
#   Wide to Long survival data for TTE #### 
########################################### 
 
 
#***Create survival interval by days for the ITT analysis (only baseline covariates) #### 
TTE_GUTG001_ITT <- merge(Time, TTE_GUTG001_base) %>% 
  # Keep only records within observed time 
         # For patients who had an outcome of death, keep only rows when their survival time >= tstop (as death on date n is labelled at interval n-1~n) 
  filter((TypeY_FirstLine  == "DateOfDeath" & SurvTime_FirstLine >= tstop) |  
         # For patients who had an outcome of admin censoring, keep only rows when their survival time +1 >= tstop (as death on date n is labelled at 
interval n-1~n) 
         # This is because the admin censoring time has taken into account that they might still be alive a day after they were observed alive 
         # i.e., max tstop = K + 1 
         (TypeY_FirstLine  == "DateOfAdminCensor" & SurvTime_FirstLine + 1 >= tstop)) %>% 
  # label y = outcome for the right patient-observation interval for each patient 
  mutate(y = case_when( 
          # For death outcome, label y = 1 at the interval where tstop = survival time 
          Y_FirstLine == 1 &  
            SurvTime_FirstLine == tstop 
          ~ 1, 
         # For administrative censoring, label y = 0 at the last interval (where tstop = admin censoring survival, K-1~k), then K~K+1 as with outcome = 
NA (we have baseline of K but no outcome at K+1) 
         # Such rows (y = NA) won't be used for outcome modelling, but purely for censoring weighting models 
         Y_FirstLine == 0 &  
            SurvTime_FirstLine + 1 == tstop 
          ~ NA,  
          TRUE ~ 0) 
         ) 
# 2963088 obs-intervals 
# Check how many death labelled interval: smaller than total death (some patient only died after 1440 days, or activity censor before death)) 
summary(as.factor(TTE_GUTG001_ITT$y)) # 2452, NA: 1692; other intervals: 0 
gc() 
 
 
#***Organising time-varying censoring variable for the ITT set#### 
# label c_admin = administrative censoring for the right patient-observation interval for each patient 
TTE_GUTG001_ITT <- TTE_GUTG001_ITT %>% 
  arrange(PatientID, tstop) %>% # sort by tstop 
  # Label the censoring only at the interval of censoring 
  mutate(c_admin = case_when( 
    # For interval having death outcome, label c_admin = NA  
    y == 1 ~ NA, 
    # For interval having admin censoring, label c_admin = 1 
    is.na(y) ~ 1, 
    # For all other intervals, c_admin = 0 
    TRUE ~ 0)) %>% 
  dplyr::select(-C_Admin_DTR, -C_DTRdevL2, -Y_DTR, -SurvTime_DTR) # delete DTR set variables 
# check if the number of individual with censoring matching those in the TTE base dataset 
summary(as.factor(TTE_GUTG001_ITT$c_admin)) # 1692 intervals had admin censoring, other intervals no censoring 0 (including 2452 death 
intervals = NA) 
 
 
 
#***Create survival interval by days for the DTR_IPW analysis #### 
# Create a function to label survival time of DTR dataset from Wide to Long (W2L) 
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# Time interval sheet have already been defind at the global environment 
label_survival_W2L_DTR <- function(baseline_dataset) { 
  merge(Time, baseline_dataset) %>% 
  # Keep only records within observed time 
  # For patients who had an outcome of death, keep only rows when their survival time >= tstop (as death on date n is labelled at interval n-1~n) 
  filter((TypeY_DTR  == "DateOfDeath" & SurvTime_DTR >= tstop)|  
           # For patients who had an outcome of admin censoring, keep only rows when their survival time >= tstop (as death on date n is labelled at 
interval n-1~n) 
           # This is because the admin censoring time has taken into account that they might still be alive a day after they were observed alive 
           # i.e., max tstop = K + 1 
           (TypeY_DTR  == "DateOfAdminCensor" & SurvTime_DTR + 1 >= tstop)| 
           # For patients who had censoring due to protocol non-adherence 
           # Keep their record only until survival time >= tstart 
           # We only know that they are surviving in this interval and censoring at that interval 
           # we don't want to use outcome of that interval  
           (TypeY_DTR  == "DateOf2LTreatDeviation" & SurvTime_DTR >= tstart) 
  ) %>% 
  # label y = outcome for the right patient-observation interval for each patient 
  mutate(y = case_when( 
    # For death outcome, label y = 1 at the interval where tstop = survival time 
    Y_DTR == 1 &  
      SurvTime_DTR == tstop 
    ~ 1, 
    # For administrative censoring, label y = 0 at the last interval (where tstop = admin censoring survival, K-1~k), then K~K+1 as with outcome = NA 
(we have baseline of K but no outcome at K+1) 
    # Such rows (y = NA) won't be used for outcome modelling, but purely for censoring weighting models 
    Y_DTR == 0 & 
      TypeY_DTR  == "DateOfAdminCensor" & 
      SurvTime_DTR + 1 == tstop # max tstop for admin censoring is K + 1 
    ~ NA, 
    # For censoring due to receiving non-protocol second-line, label y = NA at the last interval (where tstart = censoring due to treatment deviation) 
    # need to change to 0 for IPCW-deviation modelling (require that line even the weight will be forced to 0 (meaning death wouldn't be counted)) 
    # Not use this line for non-adjusted PP modelling 
    Y_DTR == 0 & 
      TypeY_DTR  == "DateOf2LTreatDeviation" & 
      SurvTime_DTR == tstart 
    ~ NA, 
    # all other intervals label y = 0 
    TRUE ~ 0) 
  ) 
} 
gc() 
 
# Label all DTR datasets 
TTE_GUTG001_DTR_IPW <- label_survival_W2L_DTR(TTE_GUTG001_base)  
# 2394119 obs-intervals 
# Check how many death labelled interval: smaller than total death (some patient only died after 1440 days, or activity censor before death)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$y)) # 1631, NA: 2513; other intervals: 0 
gc() 
 
 
 
#***Organising time-varying censoring variable for the DTR set#### 
# Create a function for labeling long data set censoring  
label_censoring_long_DTR <- function(DTR_dataset) { 
   
DTR_dataset %>% 
  arrange(PatientID, tstart) %>% # sort by start 
  # Label the admin censoring only at the interval of admin censoring 
  mutate(c_admin = case_when( 
    # For interval having death outcome, label c_admin = 0 
    y == 1 ~ 0, 
    # For interval having admin censoring, label c_admin = 1 
    is.na(y) & 
      TypeY_DTR  == "DateOfAdminCensor" 
    ~ 1, 
    # For interval having treatment deviation censoring, label c_admin = NA 
    is.na(y) & 
      TypeY_DTR  == "DateOf2LTreatDeviation" 
    ~ NA, 
    TRUE ~ 0) 
    ) %>% 
  # Label the treatment deviation censoring only at the interval of treatment deviation censoring 
  mutate(c_treatdevL2 = case_when( 
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    # For interval having death outcome, label c_treatdevL2 = 0 
    y == 1 ~ 0, 
    # For interval having admin censoring, label c_treatdevL2 = NA 
    is.na(y) & 
      TypeY_DTR  == "DateOfAdminCensor" 
      ~ NA, 
    # For interval having treatment deviation censoring, label c_treatdevL2 = 1 
    is.na(y) & 
      TypeY_DTR  == "DateOf2LTreatDeviation" 
    ~ 1, 
    TRUE ~ 0) 
    ) %>% 
  dplyr::select(-C_Admin_FirstLine, -Y_FirstLine) # delete ITT set variables 
   
} 
 
# Label all DTR datasets 
TTE_GUTG001_DTR_IPW <- label_censoring_long_DTR(TTE_GUTG001_DTR_IPW) 
 
 
#***Label time-varying variables for DRT_IPW analysis set #### 
#- DM 
length(TTE_GUTG001_base$PatientID[TTE_GUTG001_base$DM_TimeZero == 1]) # baseline DM 191 pts 
length(unique(d_tvary_GUTG001_DM$PatientID)) # 245 patients have DM diagnosis after baseline 
 
# In total 379 patients ever have DM in the dataset (note baseline DM using 182 within TimeZero, could be mis-labeled) 
# Some might really developed DM later though, once having DM diagnosis, then keep having DM 
test <- unique(c(TTE_GUTG001_base$PatientID[TTE_GUTG001_base$DM_TimeZero == 1], 
          d_tvary_GUTG001_DM$PatientID)) 
 
# Find patients who developed DM later (no DM at baseline) 
temp <- d_tvary_GUTG001_DM %>% 
  mutate(tstart = as.numeric(DiagnosisDate - TimeZero)) %>% 
  mutate(DM_tvary = 1) %>% 
  dplyr::select(-DiagnosisDate, -TimeZero) %>% 
  filter(PatientID %notin% unique(TTE_GUTG001_base$PatientID[TTE_GUTG001_base$DM_TimeZero == 1]))  
# 188 
summary(temp$tstart) # some developed DM relatively late (> 1440 days, only 140 pts developed DM later but < 1440 days) 
 
# Label all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp) %>% # add info of patients who developed DM later 
  mutate(DM_tvary = ifelse(tstart == 0, DM_TimeZero, DM_tvary)) %>% # label everyone's baseline DM status 
  arrange(PatientID, time) %>% # arrange rows before fill in missing DM_tvary values 
  mutate(DM_tvary = na.locf(DM_tvary)) # label everyone's DM base on baseline DM until it changes (use zoo package) 
 
 
#- ECOG 
# Find patients who had ECOG after Time Zero 
temp <- d_tvary_GUTG001_ECOG %>% 
  mutate(tstart = as.numeric(Gap_ECOGDate_TimeZero), 
         ECOG_tvary = ECOGValue) %>% 
  dplyr::select(PatientID, tstart, ECOG_tvary) # 58896 
 
# Label for all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp) %>% # add info of patients who had updated ECOG 
  mutate(ECOG_tvary = ifelse(tstart == 0, ECOG_TimeZero, ECOG_tvary)) %>% # label everyone's baseline ECOG status 
  arrange(PatientID, time) %>% # arrange rows before fill in missing ECOG_tvary values 
  mutate(ECOG_tvary = na.locf(ECOG_tvary)) # label everyone's ECOG base on baseline ECOG until it changes (use zoo package) 
 
 
#- Hb 
# Find patients who had Hb after Time Zero 
temp <- d_tvary_GUTG001_Hb %>% 
  mutate(tstart = as.numeric(Gap_LabDate_TimeZero), 
         Hb_tvary = TestResultCleaned*10) %>% # change test unit to g/L 
  dplyr::select(PatientID, tstart, Hb_tvary) # 84466 
 
# Label for all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp) %>% # add info of patients who had updated Hb 
  mutate(Hb_tvary = ifelse(tstart == 0, Hb_TimeZero, Hb_tvary))  # label everyone's baseline  
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# relabel Hb for all DTR datasets 
TTE_GUTG001_DTR_IPW <- relabel_Hb(TTE_GUTG001_DTR_IPW, "Hb_tvary") 
 
# Change all unknown Hb_tvary_cat at tstart != in to NA, so that the zoo pakcage can be used 
TTE_GUTG001_DTR_IPW$Hb_tvary_cat[TTE_GUTG001_DTR_IPW$tstart != 0 & TTE_GUTG001_DTR_IPW$Hb_tvary_cat == "Unknown"] <- NA  
 
# Changed those with original value at time zero with NA as unknown, so that the zoo package can be used (not carrying the wrong value to the 
next patient) 
TTE_GUTG001_DTR_IPW$Hb_tvary[TTE_GUTG001_DTR_IPW$tstart == 0 & is.na(TTE_GUTG001_DTR_IPW$Hb_tvary)] <- "Unknown"  
 
# Check   
summary(as.factor(TTE_GUTG001_DTR_IPW$Hb_tvary)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$Hb_tvary_cat)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$Hb_tvary_cat[TTE_GUTG001_DTR_IPW$tstart == 0])) 
summary(as.factor(TTE_GUTG001_base$Hb_TimeZero_cat)) 
 
# label everyone's time-varying Hb_cat 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  arrange(PatientID, time) %>% # arrange rows before fill in missing tvary values 
  mutate(Hb_tvary = na.locf(Hb_tvary)) %>% # label everyone's value base on baseline value until it changes (use zoo package) 
  mutate(Hb_tvary_cat = na.locf(Hb_tvary_cat)) # label everyone's value base on baseline value until it changes (use zoo package) 
 
# Check   
summary(as.factor(TTE_GUTG001_DTR_IPW$Hb_tvary)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$Hb_tvary_cat)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$Hb_tvary_cat[TTE_GUTG001_DTR_IPW$tstart == 0])) 
 
 
#- PSA 
# Find patients who had PSA after Time Zero 
temp <- d_tvary_GUTG001_PSA %>% 
  mutate(tstart = as.numeric(Gap_LabDate_TimeZero), 
         PSA_tvary = TestResultCleaned) %>% # change test unit to g/L 
  dplyr::select(PatientID, tstart, PSA_tvary) # 31316 
 
# Label for all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp) %>% # add info of patients who had updated PSA 
  mutate(PSA_tvary = ifelse(tstart == 0, PSA_TimeZero, PSA_tvary)) 
 
# relabel PSA for all DTR datasets 
TTE_GUTG001_DTR_IPW <- relabel_PSA(TTE_GUTG001_DTR_IPW, "PSA_tvary") 
 
# Change all unknown values at tstart != in to NA, so that the zoo pakcage can be used 
TTE_GUTG001_DTR_IPW$PSA_tvary_cat[TTE_GUTG001_DTR_IPW$tstart != 0 & TTE_GUTG001_DTR_IPW$PSA_tvary_cat == "Unknown"] <- NA  
 
# Changed those with original value at time zero with NA as unknown, so that the zoo package can be used (not carrying the wrong value to the 
next patient) 
TTE_GUTG001_DTR_IPW$PSA_tvary[TTE_GUTG001_DTR_IPW$tstart == 0 & is.na(TTE_GUTG001_DTR_IPW$PSA_tvary)] <- "Unknown"  
 
# Check   
summary(as.factor(TTE_GUTG001_DTR_IPW$PSA_tvary)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$PSA_tvary_cat)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$PSA_tvary_cat[TTE_GUTG001_DTR_IPW$tstart == 0])) 
summary(as.factor(TTE_GUTG001_base$PSA_TimeZero_cat)) 
 
# label everyone's time-varying PSA_cat 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  arrange(PatientID, time) %>% # arrange rows before fill in missing tvary values 
  mutate(PSA_tvary = na.locf(PSA_tvary)) %>% 
  mutate(PSA_tvary_cat = na.locf(PSA_tvary_cat)) # label everyone's value base on baseline value until it changes (use zoo package) 
 
# Check   
summary(as.factor(TTE_GUTG001_DTR_IPW$PSA_tvary)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$PSA_tvary_cat)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$PSA_tvary_cat[TTE_GUTG001_DTR_IPW$tstart == 0])) 
 
 
 
 
#- ALP (only for the purpose of table 1 cross-over characteristics). Therefore no need to estabalisehd categorical variable 
# Find patients who had PSA after Time Zero 
temp <- d_tvary_GUTG001_ALP %>% 
  mutate(tstart = as.numeric(Gap_LabDate_TimeZero), 
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         ALP_RULN_tvary = TestResultCleaned/130) %>% # relative to ULN 
  dplyr::select(PatientID, tstart, ALP_RULN_tvary) # 71456 
summary(temp$ALP_RULN_tvary) 
 
# Label for all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp) %>% # add info of patients who had updated PSA 
  mutate(ALP_RULN_tvary = ifelse(tstart == 0, ALP_RULN_TimeZero, ALP_RULN_tvary)) 
 
# Changed those with original value at time zero with NA as unknown, so that the zoo package can be used (not carrying the wrong value to the 
next patient) 
TTE_GUTG001_DTR_IPW$ALP_RULN_tvary[TTE_GUTG001_DTR_IPW$tstart == 0 & is.na(TTE_GUTG001_DTR_IPW$ALP_RULN_tvary)] <- "Unknown"  
 
# Check   
summary(as.factor(TTE_GUTG001_DTR_IPW$ALP_RULN_tvary)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$ALP_RULN_tvary[TTE_GUTG001_DTR_IPW$tstart == 0])) 
summary(TTE_GUTG001_base$ALP_RULN_TimeZero)  # 1399 unknown at baseline 
 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  arrange(PatientID, time) %>% # arrange rows before fill in missing tvary values 
  mutate(ALP_RULN_tvary = na.locf(ALP_RULN_tvary)) # label everyone's value base on baseline value until it changes (use zoo package) 
 
# Check   
summary(as.factor(TTE_GUTG001_DTR_IPW$ALP_RULN_tvary)) 
 
 
 
#- LDH (only for the purpose of table 1 cross-over characteristics) 
# Find patients who had PSA after Time Zero 
temp <- d_tvary_GUTG001_LDH %>% 
  mutate(tstart = as.numeric(Gap_LabDate_TimeZero), 
         LDH_RULN_tvary = TestResultCleaned/225) %>% # relative to ULN 
  dplyr::select(PatientID, tstart, LDH_RULN_tvary) # 9683 
summary(temp$LDH_RULN_tvary) 
 
# Label for all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp) %>% # add info of patients who had updated PSA 
  mutate(LDH_RULN_tvary = ifelse(tstart == 0, LDH_RULN_TimeZero, LDH_RULN_tvary)) 
summary(TTE_GUTG001_DTR_IPW$LDH_RULN_TimeZero) 
 
# Changed those with original value at time zero with NA as unknown, so that the zoo package can be used (not carrying the wrong value to the 
next patient) 
TTE_GUTG001_DTR_IPW$LDH_RULN_tvary[TTE_GUTG001_DTR_IPW$tstart == 0 & is.na(TTE_GUTG001_DTR_IPW$LDH_RULN_tvary)] <- 
"Unknown"  
 
# Check   
summary(as.factor(TTE_GUTG001_DTR_IPW$LDH_RULN_tvary)) 
summary(as.factor(TTE_GUTG001_DTR_IPW$LDH_RULN_tvary[TTE_GUTG001_DTR_IPW$tstart == 0])) 
summary(TTE_GUTG001_base$LDH_RULN_TimeZero)  # 3688 unknown at baseline 
 
# relative to ULN 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  arrange(PatientID, time) %>% # arrange rows before fill in missing tvary values 
  mutate(LDH_RULN_tvary = na.locf(LDH_RULN_tvary)) # label everyone's value base on baseline value until it changes (use zoo package) 
summary(as.factor(TTE_GUTG001_DTR_IPW$LDH_RULN_tvary)) 
 
 
#- PD status (based on the initiation of next line treatment) 
# (initiation of a x-line of treatment, meaning that on day x, pt already experienced disease progression) 
summary(as.factor(d_tvary_GUTG001_PD$LineNumber_mCRPC_UserDef)) # max 10 times PD (initiation of line 2-11) 
# Record line 2-6 PD 
 
# create a function to label multiple linse of PD 
label_PD <- function(TTEdata, PDdata, init_line_number) { 
   
  pd_column_name <- paste0("PD", init_line_number - 1, "_tvary") 
   
  temp <- PDdata %>% 
    filter(LineNumber_mCRPC_UserDef == init_line_number) %>% 
    mutate(tstart = as.numeric(Gap_PD_TimeZero)) %>% 
    mutate(!!pd_column_name := 1) %>% # PDx-1 = progression after first-line (initiation of line x) 
    dplyr::select(PatientID, tstart, !!rlang::sym(pd_column_name)) 
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  TTEdata <- TTEdata %>% 
    left_join(temp) %>% # add info of patients who had PD 
    mutate(!!pd_column_name := ifelse(tstart == 0, 0, !!sym(pd_column_name))) %>%  # PD always started as 0 
    arrange(PatientID, time) %>% # arrange rows before fill in missing values 
    mutate(!!pd_column_name := na.locf(!!sym(pd_column_name))) # label pt's PD when it changes  
   
  return(TTEdata) 
} 
 
# Label lines for all DTR datasets 
# 1. TTE_GUTG001_DTR_IPW 
# initiation of x-line 
for (init_line_number in 2:11) { 
  TTE_GUTG001_DTR_IPW <- label_PD(TTE_GUTG001_DTR_IPW, d_tvary_GUTG001_PD, init_line_number) 
  summary(as.factor(TTE_GUTG001_DTR_IPW$PD2_tvary)) 
} 
 
# PD during treatment on line x (initiation date of line x+1) 
for (i in 1:10) { 
  pd_column_name <- paste0("PD", i, "_tvary") 
  print(paste("Summary for", pd_column_name, ":")) 
  print(summary(as.factor(TTE_GUTG001_DTR_IPW[[pd_column_name]]))) 
} 
# PD9 and PD10 seem to happen beyond censoring or the end of K (study timeframe, so no label 1) 
 
# add a column of PD1_now to the DTR_IPW data 
temp <- d_tvary_GUTG001_PD %>% 
  filter(LineNumber_mCRPC_UserDef == 2) %>% 
  mutate(tstart = as.numeric(Gap_PD_TimeZero)) %>% 
  dplyr::select(PatientID, tstart) %>% 
  mutate(PD1_Now_tvary = 1) # 2468 (distinct record) 
 
# add a column of PD1_Recent to the DTR_IPW data 
temp2 <- temp %>% 
  mutate(tstart = tstart + 29) %>% 
  rename(PD1_Recent30D_tvary = PD1_Now_tvary) # 2468 
 
# add a column of PD1_Recent, after 30 days (PD1 Recent = 0) (append) 
temp3 <- temp2 %>% 
  mutate(tstart = tstart + 1) %>% 
  mutate(PD1_Recent30D_tvary = 0)  
 
temp2 <- rbind(temp2, temp3) %>% 
  arrange(PatientID, tstart) # 4936 
 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp) %>% # add PD1_now info of patients who had PD1 at that interval 
  mutate(PD1_Now_tvary := case_when( 
    PD1_Now_tvary == 1 ~ 1, 
    TRUE ~ 0 
  ))  
 
# add a column of PD1_Recent30D_tvary to the DTR_IPW data 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  left_join(temp2, by = c("PatientID", "tstart"))  
 
# add PD1_now info of patients who had PD1 at that interval 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  mutate(PD1_Recent30D_tvary := case_when( 
    PD1_Now_tvary == 1 ~ 1, 
    TRUE ~ PD1_Recent30D_tvary 
  )) %>% 
  mutate(PD1_Recent30D_tvary = ifelse(tstart == 0, 0, PD1_Recent30D_tvary)) %>% 
  arrange(PatientID, tstart) %>% # arrange rows before fill in missing tvary values 
  mutate(PD1_Recent30D_tvary = na.locf(PD1_Recent30D_tvary)) # label everyone's value base on baseline value until it changes (use zoo package) 
summary(as.factor(TTE_GUTG001_DTR_IPW$PD1_Recent30D_tvary)) 
# 35123 intervals of recent PD (1.47%), 2358996 
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#- Comorbidity Score (time-varying) 
# Comorbidity score time-varying table has been cleaned, everyone has score for each seperate comorbid 0 or 1 (n = 4144), 
# with any additional comorbidity incidence (new diagnosis) for each comorbid item labeled as 1 at each time point 
# therefore the Comorbidity_tvary table can be directly merged with the long dataset 
 
# Change Gap_Comorbid_TimeZero to tstart for merging with the long TTE dataset 
temp <- d_tvary_GUTG001_CoMorbid %>% 
  mutate(tstart = as.numeric(Gap_Comorbid_TimeZero)) %>% 
  dplyr::select(-Gap_Comorbid_TimeZero) 
 
variable_names <- c(paste("Comorbid_", c(unique(v_comorbid_names), "AnyTumour", "Metastatic_cancer"), "_tvary", sep = "")) 
 
# label all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
    left_join(temp, by = c("PatientID", "tstart")) %>%  
    arrange(PatientID, time) %>% # arrange rows before fill in missing tvary values 
    mutate(across(all_of(variable_names), ~na.locf(.))) # label everyone's value base on baseline value until it changes (use zoo package) 
 
# Make a function to label every patient's time-varying cormorbidity score, adding any tumour and metastatsis = 1 
label_comorbid_tvary <- function(TTEdata) { 
TTEdata <- TTEdata %>% 
    # Combined comorbidity score conditions and weights for a Medicare population (Gagne 2011) 
    # Not necessarily suitable for other population 
    mutate(Comorbid_Score_tvary =  
             5*Comorbid_Metastatic_cancer_tvary + 
             2*Comorbid_CHF_tvary + 
             2*Comorbid_Dementia_tvary + 
             2*Comorbid_RenalFail_tvary + 
             2*Comorbid_WeightLoss_tvary + 
             Comorbid_AnyTumour_tvary + 
             Comorbid_Alcohol_abuse_tvary + 
             Comorbid_Cardiac_arrhythmias_tvary + 
             Comorbid_Chronic_pulmonary_disease_tvary + 
             Comorbid_Coagulopathy_tvary + 
             Comorbid_Complicated_DM_tvary + 
             Comorbid_Deficiency_anemia_tvary + 
             Comorbid_Fluid_Electro_tvary + 
             Comorbid_Hemiplegia_tvary + 
             Comorbid_LiverD_tvary + 
             Comorbid_PeripheralVasc_tvary + 
             Comorbid_Psychosis_tvary + 
             Comorbid_PulmonaryCirc_tvary + 
             (-1 * Comorbid_HIV_tvary) + # There is are patients having HIV but without other non-any tumour, non-meta comorbid diagnosis within 182 
days 
             (-1 * Comorbid_HTN_tvary) # not sure why HTN os -1 
    ) 
 return(TTEdata) 
} 
gc() 
 
# label all DTR datasets 
TTE_GUTG001_DTR_IPW <- label_comorbid_tvary(TTE_GUTG001_DTR_IPW) 
summary(as.factor(TTE_GUTG001_DTR_IPW$Comorbid_Score_tvary)) # ranging from 5~19 
 
# Delete individual time-varying comorbidity item for clarity for all DTR datasets 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  dplyr::select(-variable_names) 
 
 
 
#***Label "Strategy" for each DTR dataset 
TTE_GUTG001_DTR_IPW <- TTE_GUTG001_DTR_IPW %>% 
  mutate(Seq_Strategy = case_when( 
    FirstLine == "Abiraterone" ~ "Abiraterone -> Enzalutamide", # 1210088 intervals 
    TRUE ~ "Enzalutamdie -> Abiraterone" # 1184031 intervals 
  )) 
summary(as.factor(TTE_GUTG001_DTR_IPW$Seq_Strategy)) 
 
 
# save ready-to-analyse data 
# save(TTE_GUTG001_base, file = "derived_data\\TTE_GUTG001_base.RData") 
# save(TTE_GUTG001_ITT, file = "derived_data\\TTE_GUTG001_ITT.RData") 
# save(TTE_GUTG001_DTR_IPW, file = "derived_data\\TTE_GUTG001_DTR_IPW.RData")
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Appendix 8.9 Reconstructing the data and findings from published Kaplan-Meier survival 

curves in GUTG-001 
 
################################################################################# 
###    Digitisation of Published survival curves  & fundings                                                                     ###  
###    Amy Chang's PhD Thesis - Treatment Sequence project                                              ###  
###                                                                                                                                                                     ### 
###    University of Sheffield                                                                                                                         ### 
###    Date created: Nov 19, 2023                                                                                                               ###  
###    Git & renv project created on Aug 01, 2023                                                                                   ### 
################################################################################# 
 
# Install & load the library of survHE package for using the digitise function 
# survHE requires pre-installation of Rcpp, flexurv, survival pakcages 
 
install.packages("Rcpp") 
install.packages("flexsurv") 
install.packages("survival") 
install.packages("survHE")  
 
library(Rcpp) 
library(flexsurv) 
library(survival) 
library(survHE) 
 
# check the help file of survHE package 
help(survHE) 
help("fit.models") 
# check the help file of digitise function from the survHE package 
help("digitise") 
help("surv_inp") 
 
# Gianluca's reply on data format for digitise 
# https://github.com/giabaio/survHE/issues/24 
# https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-9  
 
 
# Digitising the OS of the Khalaf paper (GUTG-001) 
# https://pubmed.ncbi.nlm.nih.gov/31727538/ 
 
# pre-modification to the original data (avoid manually key-in data to prevent mistakes): max survival should be 1 not 100 
# use coarse file cuz too many points might violate the monotonicity, not compatabile with codes derived from guyot et al. 
digizeit_Abi <- read.csv("digitise/Surv_Khalaf_Digitise_OS_GroupA_Abi_coarse.csv", header = TRUE, row.names = NULL) # 93 rows, 2 vars 
 
# create a new column (indicating serial of observations) to digizeit in front of the original columns  
serial_num <- data.frame(serial = 1:length(digizeit_Abi$Time)) 
digizeit_Abi <- cbind(serial_num, digizeit_Abi) 
 
 
nrisk_Abi <- read.table("digitise/nrisk_Khalaf2019_OS_Abi_coarse.txt", header = TRUE, row.names = NULL) 
 
head(digizeit_Abi) 
head(nrisk_Abi) 
 
# save it as a new txt file  (digitise need txt) 
# https://github.com/giabaio/survHE/issues/31 
write.table(digizeit_Abi, file = "digitise/Surv_Khalaf_Digitise_OS_GroupA_Abi_coarse.txt", sep = "\t", 
            row.names = FALSE) 
 
 
# For enza arm 
 
digizeit_Enza <- read.csv("digitise/Surv_Khalaf_Digitise_OS_GroupB_Enza_coarse2.csv", header = TRUE, row.names = NULL) # 133 rows, 2 vars (use 
the second one, firsto one is a bit unprecise) 
 
# create a new column (indicating serial of observations) to digizeit in front of the original columns  
serial_num <- data.frame(serial = 1:length(digizeit_Enza$Time)) 
digizeit_Enza <- cbind(serial_num, digizeit_Enza) 
 
 
nrisk_Enza <- read.table("digitise/nrisk_Khalaf2019_OS_Enza_coarse2.txt", header = TRUE, row.names = NULL) 
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# save it as a new txt file  (digitise need txt) 
write.table(digizeit_Enza, file = "digitise/Surv_Khalaf_Digitise_OS_GroupB_Enza_coarse2.txt", sep = "\t", 
            row.names = FALSE) 
 
 
# rerun digitise analysis with the new file: no need to define output because there is default name 
digitise (surv_inp = "digitise/Surv_Khalaf_Digitise_OS_GroupB_Enza_coarse2.txt",  
          nrisk_inp = "digitise/nrisk_Khalaf2019_OS_Enza_coarse2.txt") 
# Kaplan Meier data written to file: .KMdata.txt 
# IPD data written to file: .IPDdata.txt 
 
 
Khalaf.plots <- list() 
Khalaf.plots [[1]] <- ggplot() + 
  geom_line(data = digizeit_Abi, aes(x = Time, y = Survival * 100), group = "Group A (Abi -> Enza)", color = lancet_colors[1]) + 
  geom_point(data = digizeit_Abi, aes(x = Time, y = Survival * 100), group = "Group A (Abi -> Enza)", color = lancet_colors[1]) + 
  geom_line(data = digizeit_Enza, aes(x = Time, y = Survival * 100), group = "Group B (Enza -> Abi)", color = lancet_colors[2]) + 
  geom_point(data = digizeit_Enza, aes(x = Time, y = Survival * 100), group = "Group B (Enza -> Abi)", color = lancet_colors[2]) + 
  scale_x_continuous(breaks = seq(0, 45, by = 9), name = "Time from start of first-line therapy (months)") + 
  scale_y_continuous(breaks = seq(0, 100, by = 20), name = "Overall Survival (%)", limits = c(0, 100)) + 
  theme_minimal() + 
  labs(title = "Overall survival (Khalaf et al. 2019)", subtitle = "Group A=abiraterone plus prednisone followed by enzalutamide  
  \nGroup B=enzalutamide followed by abiraterone plus prednisone.") + 
  scale_color_manual(values = lancet_colors, labels = c("Group A (Abi -> Enza)", "Group B (Enza -> Abi)")) + 
  guides(color = guide_legend(title = "Treatment Groups")) 
 
 
# Read the table of KM data:) for checking results :D 
KMdata_Khalaf_Abi <- read.table("digitise/KMdata_Khalaf_GroupA.txt", header = TRUE, row.names = NULL) # Proxy of each censor point using 
sandwich-ish strategy (my understanding) 
IPDdata_Khalaf_Abi <- read.table("digitise/IPDdata_Khalaf_GroupA.txt", header = TRUE, row.names = NULL) # proxy of the time-to-event data for 
every patients (patient number = n.risk at time 0) 
 
# Read the table of KM data:) for checking results :D 
KMdata_Khalaf_Enza <- read.table("digitise/KMdata_Khalaf_GroupB2.txt", header = TRUE, row.names = NULL) # Proxy of each censor point using 
sandwich-ish strategy (my understanding) 
IPDdata_Khalaf_Enza <- read.table("digitise/IPDdata_Khalaf_GroupB2.txt", header = TRUE, row.names = NULL) # proxy of the time-to-event data for 
every patients (patient number = n.risk at time 0) 
 
 
# Add a group variable 
IPDdata_Khalaf_Abi$Group <- 0 # numbering for for plot plotting purpose  
IPDdata_Khalaf_Enza$Group <- 1 
 
# Combine the datasets 
IPDdata_Khalaf_combined <- rbind(IPDdata_Khalaf_Abi, IPDdata_Khalaf_Enza) 
 
# Fit Kaplan-Meier model to combined data 
fit.km.Khalaf2019 <- survfit(Surv(time, event) ~ Group, data = IPDdata_Khalaf_combined) 
 
summary(fit.km.Khalaf2019)$table  
 
# Compute median follow up 
quantile(with(IPDdata_Khalaf_combined, Surv(time, event)), probs = 0.5) # 27.31 (24.26, 34.05) 
summary(IPDdata_Khalaf_combined$time) 
 
# Plot 
Khalaf.plots [[2]] <- ggsurvplot( 
     fit_Khalaf , 
     conf.int = TRUE, 
     pval = TRUE, 
     conf.int.alpha = 0.1, 
     censor = TRUE, 
     censor.shape = 3,  # Shape of censoring points (default is '+') 
     censor.size = 3,   # Increased size of censoring points 
     risk.table = "nrisk_cumcensor", 
     fontsize = 4, 
     linetype = "strata", 
     break.x.by = 9, 
     xlim = c(0, 45), 
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     xlab = "Time from start of first-line therapy (months)", 
     title = "Overall Survival - reproduction from Khalaf et al.", 
     subtitle = "Reconstruct KM curve/IPD data using Guyot et al. digitisation method \nGroup A = abiraterone followed by enzalutamide, Group B = 
enzalutamide followed by abiraterone", 
     surv.median.line = "hv", 
     ggtheme = theme_bw(), 
     palette = lancet_colors, 
     legend.title = "Randomisation Group", 
     legend.labs = c("Group A", "Group B") 
   )  
Khalaf.plots [[2]] 
 
 
# Combine and arrange the plots with custom layout 
combined_plot <- grid.arrange( 
  Khalaf.plots [[1]],  
  Khalaf.plots[[2]]$plot,  
  Khalaf.plots[[2]]$table, 
  layout_matrix = rbind( 
    c(1, 2), 
    c(1, 2), 
    c(1, 2), 
    c(1, 2), 
    c(1, 3) 
  ) 
) 
 
 
 
#### Fit a Cox model to the digitise curve#### 
TTE_KM_Khalaf2019_wide <- rbind(IPDdata_Khalaf_Enza, IPDdata_Khalaf_Abi) %>% 
  mutate(FirstLine_num = case_when( 
    Group == 0 ~ 1, 
    TRUE ~ 0 
  )) %>% 
  rename(Y_Death = event, 
         SurvTime = time) %>% 
  select(-arm, -Group) 
 
 
fit.cox.Khalaf2019 <- coxph(Surv(SurvTime, Y_Death) ~ FirstLine_num, 
                            data = TTE_KM_Khalaf2019_wide) # default method = "efron" 
summary(fit.cox.Khalaf2019) # HR: 0.783 (0.535, 1.147) 
AIC(fit.cox.Khalaf2019) # 39657.08 
BIC(fit.cox.Khalaf2019) # 39708.69 
logLik(fit.cox.Khalaf2019) # -19824.54 (df=1) 
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Appendix 8.10 R code for survival analyses in Prostate Cancer Case Study 1 (PC1)  
 
###Project Info #################################################################### 
###    Target Trial Emulation – Final survival analyses                                                                             ###  
###    Amy Chang's PhD Thesis - Treatment Sequence project                                             ###  
###    Data: Flatiron prostate cancer datasets                                                                                          ### 
###                                                                                                                                                                     ### 
###    University of Sheffield                                                                                                                         ### 
###    Date created: Nov 16, 2023                                                                                                               ###  
################################################################################# 
# Part of this code has adapted and extended insights from the CAUSALab courses at Harvard University as well as  
# the causal inference course at the Private University for Health Sciences and Health Technology in Hall in Tirol (UMiT) 
 
## House keeping 
# Load packages and functions 
renv::status() 
# renv::snapshot() 
 
`%notin%` <- Negate(`%in%`) 
 
# install backports when there are conflicts of tidyr 
library(backports) 
library(tidyr) 
library(remotes) 
# install.packages("tidyr") 
library(tidyr) 
library(dplyr) 
library(lubridate) 
library(ggpubr) 
library(survival) 
library(zoo) 
library(data.table) # faster than data.frame 
library(speedglm) 
library(dplyr) # too avoid conflict, read dplyr again 
library(boot) 
library(scales) 
library(date) 
library(survminer) # use tidy R 1.3.0 
library(splines) 
library(sandwich) 
library(lmtest) 
# library(broom) # use tidy R 1.2.0 
# library(haven) 
# library(psych) 
# library(flexsurv) 
# library(cowplot) 
# library(geepack) 
# library(Hmisc) 
# library(eha) 
# library(rpsftm) 
# library(rms) 
 
########################################### 
#   TTE ANALYSES STARTING FROM HERE            #### 
########################################### 
 
################################################################################# 
### 1a. Estimating Effect in a Target Trial (Unadjusted ITT)                            ##################### 
################################################################################# 
 
#***1a.1. Non parametric estimators for time-to-event outcome: KM for comparison of risks #### 
 
#### KM estimator stratified by study arms #### 
 
# Use the baseline wide dataset (Y_FirstLine has been trimmed based on the max observation time K) 
fit.km  <- survfit(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                   conf.type = "log-log", # maintain constant hazard ratio assumption 
                   data = TTE_GUTG001_base) 
summary(TTE_GUTG001_base$SurvTime_FirstLine) 
 
# Review KM survival estimates, and estimates at time = K (default = 1440 days) 
fit.km  
# Review median survival time 
summary(fit.km)$table  
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summary(fit.km, times = K) # slight difference when setting SurvTime at K or K + 1 for admin censoring where patients still alive at K 
 
# Out put median follow-up time 
summary(TTE_GUTG001_base$SurvTime_FirstLine, na.rm = TRUE) # 643 (346.8, 1061.5) 
 
 
####Construct KM curves #### 
kmplots <- list() 
 
kmplots[[1]] <- ggsurvplot(fit.km, 
                           conf.int = TRUE, 
                           pval = TRUE, 
                           censor = FALSE, # don't include tick marks for events/censorings 
                           # risk.table = TRUE, # Add risk table 
                           risk.table = "nrisk_cumcensor", # seem to be weird  
                           fontsize = 3, 
                           risk.table.col = "strata", # Change risk table color by groups 
                           linetype = "strata", # Change line type by groups 
                           break.x.by = 180,  
                           xlab = "Days", # label x-axis 
                           title = "Unadjusted survival of GUTG-001 Analogue mCPRC patients in Flatiron data", 
                           subtitle = "Included all patients who started with Abiraterone or Enzalutamide (max: 4-year follow-up)", 
                           legend.title = "mCRPC treatment", 
                           legend.labs = c("First-line: Enzalutamide", "First-line: Abiraterone"), 
                           surv.median.line = "hv", # Specify median survival 
                           ggtheme = theme_bw(), # Change ggplot2 theme 
                           palette = c("#E7B800", "#2E9FDF", "orchid2")) 
kmplots[[1]] 
 
 
 
#***1a.2. Cox proportional hazards model (Semi-parametric) for comparison #### 
#### Fit a Cox model #### 
fit.cox <- coxph(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num, 
                 data = TTE_GUTG001_base) # default method = "efron" 
levels(TTE_GUTG001_base$FirstLine_num) 
summary(fit.cox) 
AIC(fit.cox) # 39657.08 
BIC(fit.cox) # 39708.69 
logLik(fit.cox) # -19824.54 (df=1) 
 
#### Calculate HR#### 
results.unadj.cox.hr.K <- list( 
  Hazard_Ratio = exp(coef(fit.cox)), # Calculate the hazard ratio 
  CI95_Lower = exp(confint(fit.cox)[, 1]), # Calculate 95% confidence intervals from the model's coefficients 
  CI95_Upper = exp(confint(fit.cox)[, 2]) # Exponentiate to get the 95% confidence intervals for the hazard ratios 
) 
# Print the results 
print(results.unadj.cox.hr.K) 
 
#### Plot HR #### 
# library(rms) 
hazard.ratio.plot(as.numeric(TTE_GUTG001_base_reduced$FirstLine_num),  
                  Surv(TTE_GUTG001_base_reduced$SurvTime_FirstLine, TTE_GUTG001_base_reduced$Y_FirstLine),  
                  e=20,  
                  legendloc='ll', 
                  antilog = TRUE ) 
unadj.coxplots[["HR_plot"]] <- recordPlot() 
unadj.coxplots[["HR_plot"]] 
 
# ggplot version 
# ggplot(km_GUTG001Analogue_data, aes(x = log(time), y = cloglog_surv, color = strata)) + 
#  geom_line() +  
#  scale_x_log10() + # Apply log scale to x-axis 
#  labs(x = "Time (log scale)", y = "log(-log S(t))", color = "Strata") + 
#  theme_minimal( 
 
 
 
############################################################################################ 
### 1b. Estimating Unadjusted Effect in a Target Trial (PP)                                                                         ############ 
############################################################################################ 
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#***1b.1. Non-parametric KM estimators: unadjusted per-protocol effect #### 
#### KM estimator stratified by study arms #### 
 
 
# Use the baseline wide dataset (Y_FirstLine has been trimmed based on the max observation time K) 
fit.km.pp  <- survfit(Surv(SurvTime_DTR, Y_DTR) ~ FirstLine_num,  
                   conf.type = "log-log", 
                   data = TTE_GUTG001_base) 
 
 
# Review KM survival estimates, and estimates at time = K (default = 1440 days) 
summary(fit.km.pp) 
summary(fit.km.pp, times = K) 
 
 
summary(fit.km.pp)$table  
 summary(TTE_GUTG001_base$SurvTime_DTR)  
 
# Out put median follow-up time 
summary(TTE_GUTG001_base$SurvTime_FirstLine, na.rm = TRUE) # 643 (346.8, 1061.5) 
 
 
 
####Construct KM curves #### 
km.pp.plots <- list() 
km.pp.plots[[1]] <- ggsurvplot(fit.km.pp, 
                           conf.int = TRUE, 
                           pval = TRUE, 
                           censor = FALSE, # don't include tick marks for events/censorings 
                           # risk.table = TRUE, # Add risk table 
                           risk.table = "nrisk_cumcensor", # seem to be weird  
                           fontsize = 3, 
                           risk.table.col = "strata", # Change risk table color by groups 
                           linetype = "strata", # Change line type by groups 
                           break.x.by = 180,  
                           xlab = "Days", # label x-axis 
                           title = "Unadjusted per-protocol survival of GUTG-001 Analogue mCPRC patients in Flatiron data", 
                           subtitle = "Included all patients who initiated treatment with Abiraterone or Enzalutamide. \nPatients were censored when they 
began receiving a second-line treatment not stipulated in the protocol (max: 4-year follow-up)", 
                           legend.title = "mCRPC treatment", 
                           legend.labs = c("Group B: Enza-Abi", "Group A: Abi-Enza"), 
                           surv.median.line = "hv", # Specify median survival 
                           ggtheme = theme_bw(), # Change ggplot2 theme 
                           palette = c("#E7B800", "#2E9FDF", "orchid2")) 
km.pp.plots[[1]] 
 
 
#***1b.2. Cox estimators: Unadjusted per-protocol effect #### 
 
fit.pp.cox <- coxph(Surv(SurvTime_DTR, Y_DTR) ~ FirstLine_num,  
                        data = TTE_GUTG001_base_reduced) # default method = "efron" 
 
summary(fit.pp.cox) 
AIC(fit.pp.cox) # 24672.21 
BIC(fit.pp.cox) # 24677.61 
logLik(fit.pp.cox) # -12335.11 (df=1) 
 
 
 
############################################## 
### 1c & 1d. Unadjusted As-treated patients      ####### 
############################################## 
 
 
# 1c & 1d.1  For As-treated (limited to second-Line treatment recipients)#### 
 
# Mimicking Terada 2017 & Matsubara 2018 
 
# As-treated (limited to second-Line treatment recipients) 
# Selecting only patients being able to received second-line (immortal time bias) 
temp <- TTE_GUTG001_DTR_IPW_reduced$PatientID[TTE_GUTG001_DTR_IPW_reduced$PD1_Now_tvary == 1 & 
TTE_GUTG001_DTR_IPW_reduced$c_treatdevL2 == 0] # 1132 patients 
 
options(digits=7) 
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summary(as.factor(TTE_GUTG001_base_reduced$FirstLine_num[TTE_GUTG001_base_reduced$PatientID %in% temp])) 
fit.km.at.2L <- survfit(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                   data = TTE_GUTG001_base_reduced[TTE_GUTG001_base_reduced$PatientID %in% temp, ]) 
fit.km.at.2L 
 
# Out put median follow-up time 
summary(TTE_GUTG001_base_reduced$SurvTime_FirstLine[TTE_GUTG001_base_reduced$PatientID %in% temp], na.rm = TRUE) # 812 (528.5, 
1172.5) 
 
# n events median 0.95LCL 0.95UCL 
# FirstLine_num=0 487    312    897     836     988 
# FirstLine_num=1 645    392    957     920    1042 
 
fit.cox.at.2L <- coxph(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
              data = TTE_GUTG001_base_reduced[TTE_GUTG001_base_reduced$PatientID %in% temp, ]) # default method = "efron" 
summary(fit.cox.at.2L) 
AIC(fit.cox.at.2L) 
BIC(fit.cox.at.2L) 
logLik(fit.cox.at.2L) 
# 0.92 (0.80-1.07)  
 
# 5.2 For As-treated (including patients only received first-line)#### 
 
# As-treated 
# Selecting all patients who did not violated second-line (conditioned on post-treatment covariates) 
temp2 <- TTE_GUTG001_DTR_IPW_reduced$PatientID[TTE_GUTG001_DTR_IPW_reduced$c_treatdevL2 == 1] # 1132 patients 
 
options(digits=7) 
 
summary(as.factor(TTE_GUTG001_base_reduced$FirstLine_num[TTE_GUTG001_base_reduced$PatientID %notin% temp2])) # enza 1358, abi: 1500 
fit.km.at <- survfit(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                        data = TTE_GUTG001_base_reduced[TTE_GUTG001_base_reduced$PatientID %notin% temp2, ]) 
fit.km.at 
 
# Out put median follow-up time 
summary(TTE_GUTG001_base_reduced$SurvTime_FirstLine[TTE_GUTG001_base_reduced$PatientID %notin% temp2], na.rm = TRUE)  
# 594 (285.2, 1024.8) 
 
fit.cox.at <- coxph(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                       data = TTE_GUTG001_base_reduced[TTE_GUTG001_base_reduced$PatientID %notin% temp2, ]) # default method = "efron" 
summary(fit.cox.at) 
AIC(fit.cox.at) 
BIC(fit.cox.at) 
logLik(fit.cox.at) 
# 1.14 (1.03-1.25)  
 
 
############################################## 
### 2a. Baseline adjusted ITT patients                  ####### 
############################################## 
 
# Note: need to run the derivation of IPTW in 2b. IPTW adjusted pp analysis before running this the 2a.section 
#***2a.1. Fit weighted KM#### 
options(digits=5) 
fit.iptw.b.km.itt <- survfit(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                         data = TTE_GUTG001_base_reduced,  
                         weights = w.treat_baseline.s) 
fit.iptw.b.km.itt 
summary(fit.iptw.b.km.itt)$table  
 
# Out put median follow-up time 
weighted_followup <- TTE_GUTG001_base_reduced$SurvTime_FirstLine * TTE_GUTG001_base_reduced$w.treat_baseline.s 
summary(weighted_followup) # 618.928 (322.968-1012.514) 
 
#***2a.2. Fit weighted Cox#### 
options(digits=7) 
fit.iptw.b.cox.itt <- coxph(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                        data = TTE_GUTG001_base_reduced,  
                        weights = w.treat_baseline.s) # default method = "efron" 
 
summary(fit.iptw.b.cox.itt) # 1.11 (1.02-1.20) 
AIC(fit.iptw.b.cox.itt) # 37929.09 
BIC(fit.iptw.b.cox.itt) # 37934.89 
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logLik(fit.iptw.b.cox.itt) # -18963.54 (df=1) 
 
# HR 
exp(coefficients(fit.iptw.b.cox.itt)) 
 
# Naive 95% CI 
exp(confint(fit.iptw.b.cox.itt)) 
 
# Sandwich robust 95% CI 
coeftest(fit.iptw.b.cox.itt, vcov = sandwich) 
exp(confint(coeftest(fit.iptw.b.cox.itt, vcov = sandwich))) # 1.02-1.20 
 
 
 
################################################################################# 
### 2b. Baselin eadjusted (IPW) - PP                                                  ############################# 
################################################################################# 
 
library(speedglm) 
gc() 
 
# reduce dataset 
TTE_GUTG001_base_reduced <- TTE_GUTG001_base %>% 
  dplyr::select(PatientID, FirstLine_num, Age_TimeZero, cal_time, # keep essential variables 
           GroupStage, MStage, GleasonScore, DM_TimeZero,  
           f_pretreat_treat_allowed_docetaxel, f_pretreat_treat_other_systemic, f_SES, 
           Race, Gap_TimeZero_mCRPC_cat, Gap_TimeZero_mPC_cat, 
           PSA_TimeZero_cat, Hb_TimeZero_cat, ECOG_TimeZero, DM_TimeZero, 
           Comorbid_Score_TimeZero, 
           TypeY_FirstLine, TypeY_DTR, # keep outcome variables 
           Y_FirstLine, Y_DTR, 
           SurvTime_FirstLine, SurvTime_DTR) # 4144 rows, 23 vars 
 
 
#***2b.1: Fit a IPW (treatment) to estimate the denominator of the nonstabilised weights #### 
 
# non-saturated model, high-dimensional  
 
# IPW treatment model only considering treatment as a point intervention 
# For per-protocol population (all) 
iptw.b.pp.denom <- speedglm(FirstLine_num ~ # Propensity for Strategy 1 Abi-Enza (first-line being abiraterone) treatment 
                             
                            ## Time-fixed covariates: baseline 
                            Age_TimeZero + # Omitted quadratic age term I(Age_TimeZero^2) due to computational constraints 
                            factor(cal_time) + # Calendar year of treatment start influences treatment strategy (availability treatments change) 
                            factor(GroupStage) + factor(MStage) + # Group stage encompasses N, M stage information, but missingness in GroupStage is larger 
                            factor(GleasonScore) +  # Gleason Score 
                            factor(f_pretreat_treat_allowed_docetaxel) + factor(f_pretreat_treat_other_systemic) + # Prior docetaxel/other treatment 
                            factor(f_SES) +  
                            factor(Race) + # Race, considering potential grouping of Asians 
                            # Diagnosis to Treatment Initiation Gap 
                            factor(Gap_TimeZero_mCRPC_cat) +  
                            factor(Gap_TimeZero_mPC_cat) + 
                             
                            ## Baseline values of time-varying covariates 
                            factor(PSA_TimeZero_cat) + factor(Hb_TimeZero_cat) + factor(ECOG_TimeZero) +  
                            Comorbid_Score_TimeZero + factor(DM_TimeZero),  
 
                          data = TTE_GUTG001_base_reduced, # Use only baseline data 
                          family = binomial(link="logit"))  
# 0.094 secs 
summary(iptw.b.pp.denom) 
 
# Add IPTW_baseline propensity to TTE_GUTG001_base_reduced data 
TTE_GUTG001_base_reduced$p.treat_baseline.denom <- predict(iptw.b.pp.denom, TTE_GUTG001_base_reduced, type="response") 
 
 
#***2b.2: Fit a IPW (treatment) to estimate the numerator of the stabilised weights #### 
# Specify a logistic regression model that models treatment strategy group as a function of only an intercept  
# (use glm as speedglm might not converge for this, 4.2 MB)  
iptw.b.pp.num <- glm(FirstLine_num ~ 1, family = binomial(link="logit"), data = TTE_GUTG001_base_reduced) # error can occur with speedglm here 
summary(iptw.b.pp.num) 
 
# Add numerator to TTE_GUTG001_base_reduced data 
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TTE_GUTG001_base_reduced$p.treat_baseline.num <- predict(iptw.b.pp.num, type="response")  
 
 
#***2b.3: Calculate nonstablised IPTW (baseline) #### 
# Calculate nonstablaised weights (based on baseline treatment) 
TTE_GUTG001_base_reduced$w.treat_baseline.ns <-  
  ifelse(TTE_GUTG001_base_reduced$FirstLine_num == 1,  
      1/TTE_GUTG001_base_reduced$p.treat_baseline.denom, 
      1/(1 - TTE_GUTG001_base_reduced$p.treat_baseline.denom)) 
 
# Summary of weights 
summary(TTE_GUTG001_base_reduced$w.treat_baseline.ns) # 1.086-10.425 
sd(TTE_GUTG001_base_reduced$w.treat_baseline.ns) # SD: 0.618 
 
# Check propensity 
ipw.plots <- list() 
ipw.plots[["p.treat_baseline.denom"]] <- ggplot(TTE_GUTG001_base_reduced, aes(x = p.treat_baseline.denom,  
                                                                              fill = as.factor(FirstLine_num))) +                        
  geom_histogram(position = "identity", alpha = 0.5, bins = 100) + 
  theme_minimal() + 
  scale_fill_manual(values = c("maroon", "skyblue"), 
                    labels = c("Enza-Abi", "Abi-Enza"),  
                    name = "mCPRC treatment strategy") + 
  ggtitle("Propensity Score Overlap (baseline treatemnt)") 
ipw.plots[["p.treat_baseline.denom"]] 
 
 
# check nostabalised weights 
ipw.plots[["w.treat_baseline.ns"]]  <- ggplot(TTE_GUTG001_base_reduced, aes(x = w.treat_baseline.ns,  
  fill = as.factor(FirstLine_num))) +                        
  geom_histogram(position = "identity", alpha = 0.5, bins = 500) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red", "blue"), 
                    labels = c("Enza-Abi", "Abi-Enza"),  
                    name = "mCPRC treatment strategy") + 
  ggtitle("Distribution of baseline treatemnt weights (non-stablised)") 
ipw.plots[["w.treat_baseline.ns"]] 
 
#***2b.4: Calculate stablised IPTW (baseline) #### 
 
# Compute stablised weights 
TTE_GUTG001_base_reduced$w.treat_baseline.s <-  
  ifelse(TTE_GUTG001_base_reduced$FirstLine_num == 1,  
         TTE_GUTG001_base_reduced$p.treat_baseline.num/TTE_GUTG001_base_reduced$p.treat_baseline.denom,  
         (1 - TTE_GUTG001_base_reduced$p.treat_baseline.num)/(1 - TTE_GUTG001_base_reduced$p.treat_baseline.denom)) 
 
# Summary of weights 
summary(TTE_GUTG001_base_reduced$w.treat_baseline.s) # 0.5682~5.0164, mean = 1.0006 
sd(TTE_GUTG001_base_reduced$w.treat_baseline.s) # 0.3004998 
 
# check stabalised weights 
ipw.plots[["w.treat_baseline.s"]]  <- ggplot(TTE_GUTG001_base_reduced, aes(x = w.treat_baseline.s,  
                                                                            fill = as.factor(FirstLine_num))) +                        
  geom_histogram(position = "identity", alpha = 0.5, bins = 500) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red", "blue"), 
                    labels = c("Enza-Abi", "Abi-Enza"),  
                    name = "mCPRC treatment strategy") + 
  ggtitle("Distribution of baseline treatemnt weights (stablised)") 
 
 
ggarrange( 
  ipw.plots[["p.treat_baseline.denom"]],  # Top graph 
  ggarrange( 
    ipw.plots[["w.treat_baseline.ns"]],  
    ipw.plots[["w.treat_baseline.s"]], 
    ncol = 2, nrow = 1  # 2 bottom graphs side by side 
  ), 
  ncol = 1, nrow = 2,    # overall layout: 1 column, 2 rows 
  heights = c(1, 1)      # equal heights for top and bottom 
) 
 
gc() 
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#***2b.5: MSM with stabalised weights #### 
 
# reduce dataset: use Per-protocol (DTR dataset) 
# Add treatment base-line weight  
TTE_GUTG001_DTR_IPW_reduced <- TTE_GUTG001_DTR_IPW %>% 
  dplyr::select(PatientID, FirstLine_num, Age_TimeZero, cal_time, # keep essential variables 
                GroupStage, MStage, GleasonScore, DM_TimeZero, 
                f_pretreat_treat_allowed_docetaxel, f_pretreat_treat_other_systemic, f_SES, 
                Race, Gap_TimeZero_mCRPC_cat, Gap_TimeZero_mPC_cat, 
                PSA_TimeZero_cat, Hb_TimeZero_cat, ECOG_TimeZero, Comorbid_Score_TimeZero, DM_TimeZero, 
                PSA_tvary_cat, Hb_tvary_cat, ECOG_tvary, Comorbid_Score_tvary, DM_tvary, 
                PD1_tvary,  
                PD1_Now_tvary, PD1_Recent30D_tvary, # all patients all only remained switched on the date of first-progress/prior to progression # 
Should I add progression now indicator? 
                time,y,  
                c_admin, c_treatdevL2) %>% 
  left_join(TTE_GUTG001_base_reduced[ , c("PatientID", 
                                           "p.treat_baseline.denom", "p.treat_baseline.num", 
                                           "w.treat_baseline.ns", "w.treat_baseline.s")], 
              by = "PatientID") %>% 
  mutate(y = as.integer(y)) # need to be integer for outcome models 
 
# data.table faster 
TTE_GUTG001_DTR_IPW_reduced <- data.table(TTE_GUTG001_DTR_IPW_reduced) 
# 2394119 
gc() 
 
 
#***2b.6. Fit weighted KM#### 
library(sandwich) 
options(digits=5) 
fit.iptw.b.km <- survfit(Surv(SurvTime_DTR, Y_DTR) ~ FirstLine_num,  
                              data = TTE_GUTG001_base_reduced,  
                              weights = w.treat_baseline.s) 
fit.iptw.b.km 
 
# Review KM survival estimates, and estimates at time = K (default = 1440 days) 
summary(fit.iptw.b.km) 
summary(fit.iptw.b.km, times = K) 
 
summary(fit.iptw.b.km)$table  
 
# Estimates at K days (default = 1440 days) 
results.iptw.b.km.K <- compute_km_estimates(fit.iptw.b.km, K) 
# Print results 
results.iptw.b.km.K 
 
# Out put median follow-up time 
weighted_followup <- TTE_GUTG001_base_reduced$SurvTime_DTR * TTE_GUTG001_base_reduced$w.treat_baseline.s 
summary(weighted_followup) # 444.791 (202.917-841.439) 
 
 
####Construct KM curves #### 
options(digits=2) 
kmplots[["fit.iptw.b.km"]] <- ggsurvplot(fit.iptw.b.km, 
                           conf.int = TRUE, 
                           pval = TRUE, 
                           censor = FALSE, # don't include tick marks for events/censorings 
                           # risk.table = TRUE, # Add risk table 
                           risk.table = "nrisk_cumcensor", # seem to be weird  
                           fontsize = 3, 
                           risk.table.col = "strata", # Change risk table color by groups 
                           linetype = "strata", # Change line type by groups 
                           break.x.by = 180,  
                           xlab = "Days", # label x-axis 
                           title = "Baseline adjusted survival of GUTG-001 Analogue mCPRC patients in Flatiron data (IPTW weighted KM)", 
                           subtitle = "Included all patients who started with Abiraterone or Enzalutamide (max: 4-year follow-up)", 
                           legend.title = "mCRPC treatment", 
                           legend.labs = c("First-line: Enzalutamide", "First-line: Abiraterone"), 
                           surv.median.line = "hv", # Specify median survival 
                           ggtheme = theme_bw(), # Change ggplot2 theme 
                           palette = c("#E7B800", "#2E9FDF", "orchid2")) 
kmplots[["fit.iptw.b.km"]]  
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#***2b.7. Fit weighted Cox#### 
options(digits=7) 
fit.iptw.b.cox <- coxph(Surv(SurvTime_DTR, Y_DTR) ~ FirstLine_num,  
                         data = TTE_GUTG001_base_reduced,  
                         weights = w.treat_baseline.s) # default method = "efron" 
 
summary(fit.iptw.b.cox) 
AIC(fit.iptw.b.cox) # 24505.77 
BIC(fit.iptw.b.cox) # 24511.17 
logLik(fit.iptw.b.cox) # -12251.89 (df=1) 
 
# HR 
exp(coefficients(fit.iptw.b.cox)) 
 
# Naive 95% CI 
exp(confint(fit.iptw.b.cox)) 
 
# Sandwich robust 95% CI 
library("sandwich") 
library("lmtest") 
coeftest(fit.iptw.b.cox, vcov = sandwich) 
exp(confint(coeftest(fit.iptw.b.cox, vcov = sandwich))) 
 
# Extract absolute risks at K 
iptw.b.cox0 <- compute_risks_cox(fit.iptw.b.cox, "FirstLine_num", 0, 0:K_minus_1) 
iptw.b.cox1 <- compute_risks_cox(fit.iptw.b.cox, "FirstLine_num", 1, 0:K_minus_1) 
 
 
# Use Cox estimates to compute rd/rr estimates and 95% CI 
results.iptw.b.cox.K <- compute_cox_estimates(fit.iptw.b.cox, iptw.b.cox0, iptw.b.cox1, "FirstLine_num", K_minus_1) # outcome at K is from the 
time interval K-1~K 
results.iptw.b.cox.K 
 
 
 
################################################### 
### 2c & 2d. Baseline adjusted AT patients                    ####### 
################################################### 
 
# For As-treated (limited to second-Line treatment recipients)#### 
 
# 2d.1 Fit a IPW (treatment) to estimate the denominator of the nonstabilised weights #### 
TTE_GUTG001_base_reduced_at2L <- TTE_GUTG001_base_reduced[TTE_GUTG001_base_reduced$PatientID %in% temp, ] 
 
iptw.b.at.2L.denom <- speedglm(FirstLine_num ~ # Propensity for Strategy 1 Abi-Enza (first-line being abiraterone) treatment 
                               
                              ## Time-fixed covariates: baseline 
                              Age_TimeZero + # Omitted quadratic age term I(Age_TimeZero^2) due to computational constraints 
                              factor(cal_time) + # Calendar year of treatment start influences treatment strategy (availability treatments change) 
                              factor(GroupStage) + factor(MStage) + # Group stage encompasses N, M stage information, but missingness in GroupStage is larger 
                              factor(GleasonScore) +  # Gleason Score 
                              factor(f_pretreat_treat_allowed_docetaxel) + factor(f_pretreat_treat_other_systemic) + # Prior docetaxel/other treatment 
                              factor(f_SES) +  
                              factor(Race) + # Race, considering potential grouping of Asians 
                              # Diagnosis to Treatment Initiation Gap 
                              factor(Gap_TimeZero_mCRPC_cat) +  
                              factor(Gap_TimeZero_mPC_cat) + 
                               
                              ## Baseline values of time-varying covariates 
                              factor(PSA_TimeZero_cat) + factor(Hb_TimeZero_cat) + factor(ECOG_TimeZero) +  
                              Comorbid_Score_TimeZero + factor(DM_TimeZero),  
                             
                            data = TTE_GUTG001_base_reduced_at2L, # Use only baseline data 
                            family = binomial(link="logit"))  
# 0.094 secs 
summary(iptw.b.at.2L.denom) 
 
# Add IPTW_baseline propensity to TTE_GUTG001_base_reduced data 
TTE_GUTG001_base_reduced_at2L$p.treat_baseline.denom <- predict(iptw.b.at.2L.denom, TTE_GUTG001_base_reduced_at2L, type="response") 
 
 
#***2d. 2 Fit a IPW (treatment) to estimate the numerator of the stabilised weights #### 
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iptw.b.at.2L.num <- glm(FirstLine_num ~ 1, family = binomial(link="logit"), data = TTE_GUTG001_base_reduced_at2L) # error can occur with 
speedglm here 
summary(iptw.b.at.2L.num) 
 
# Add numerator to TTE_GUTG001_base_reduced data 
TTE_GUTG001_base_reduced_at2L$p.treat_baseline.num <- predict(iptw.b.at.2L.num, type="response")  
 
 
#***2d. 3: Calculate nonstablised IPTW (baseline) #### 
# Calculate nonstablaised weights (based on baseline treatment) 
TTE_GUTG001_base_reduced_at2L$w.treat_baseline.ns <-  
  ifelse(TTE_GUTG001_base_reduced_at2L$FirstLine_num == 1,  
         1/TTE_GUTG001_base_reduced_at2L$p.treat_baseline.denom, 
         1/(1 - TTE_GUTG001_base_reduced_at2L$p.treat_baseline.denom)) 
 
# Summary of weights 
summary(TTE_GUTG001_base_reduced_at2L$w.treat_baseline.ns) # 1.799-9.150 
sd(TTE_GUTG001_base_reduced_at2L$w.treat_baseline.ns) # SD: 0.788 
 
#***Calculate stablised IPTW (baseline) #### 
 
# Compute stablised weights 
TTE_GUTG001_base_reduced_at2L$w.treat_baseline.s <-  
  ifelse(TTE_GUTG001_base_reduced_at2L$FirstLine_num == 1,  
         TTE_GUTG001_base_reduced_at2L$p.treat_baseline.num/TTE_GUTG001_base_reduced_at2L$p.treat_baseline.denom,  
         (1 - TTE_GUTG001_base_reduced_at2L$p.treat_baseline.num)/(1 - TTE_GUTG001_base_reduced_at2L$p.treat_baseline.denom)) 
 
# Summary of weights 
summary(TTE_GUTG001_base_reduced_at2L$w.treat_baseline.s)  
sd(TTE_GUTG001_base_reduced_at2L$w.treat_baseline.s)  
 
#***2d. 4. Fit weighted KM/Cox#### 
 
# As-treated (limited to second-Line treatment recipients) 
# Selecting only patients being able to received second-line (immortal time bias) 
length(TTE_GUTG001_base_reduced_at2L$PatientID) 
options(digits=7) 
fit.iptw.b.km.at.2L <- survfit(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                        data = TTE_GUTG001_base_reduced_at2L, 
                        weights = w.treat_baseline.s) 
fit.iptw.b.km.at.2L 
 
# Out put median follow-up time 
weighted_followup <- TTE_GUTG001_base_reduced_at2L$SurvTime_FirstLine * TTE_GUTG001_base_reduced_at2L$w.treat_baseline.s 
summary(weighted_followup) 
 
fit.iptw.b.cox.at.2L <- coxph(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                        data = TTE_GUTG001_base_reduced_at2L, 
                        weights = w.treat_baseline.s) # default method = "efron" 
summary(fit.iptw.b.cox.at.2L) 
AIC(fit.iptw.b.cox.at.2L) # 8951.784 
BIC(fit.iptw.b.cox.at.2L) # 8956.341 
logLik(fit.iptw.b.cox.at.2L)  # -4474.892 (df=1) 
# 0.97 (0.82-1.14) 
 
# Sandwich robust 95% CI 
coeftest(fit.iptw.b.cox.at.2L, vcov = sandwich) 
exp(confint(coeftest(fit.iptw.b.cox.at.2L, vcov = sandwich))) # 0.82-1.14 
 
 
# 2c For As-treated (including patients only received first-line)#### 
 
# 2c.1 Fit a IPW (treatment) to estimate the denominator of the nonstabilised weights #### 
TTE_GUTG001_base_reduced_at <- TTE_GUTG001_base_reduced[TTE_GUTG001_base_reduced$PatientID %notin% temp2, ] 
summary(TTE_GUTG001_base_reduced_at$FirstLine_num) 
 
iptw.b.at.denom <- speedglm(FirstLine_num ~ # Propensity for Strategy 1 Abi-Enza (first-line being abiraterone) treatment 
                                  
                                 ## Time-fixed covariates: baseline 
                                 Age_TimeZero + # Omitted quadratic age term I(Age_TimeZero^2) due to computational constraints 
                                 factor(cal_time) + # Calendar year of treatment start influences treatment strategy (availability treatments change) 
                                 factor(GroupStage) + factor(MStage) + # Group stage encompasses N, M stage information, but missingness in GroupStage is 
larger 
                                 factor(GleasonScore) +  # Gleason Score 
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                                 factor(f_pretreat_treat_allowed_docetaxel) + factor(f_pretreat_treat_other_systemic) + # Prior docetaxel/other treatment 
                                 factor(f_SES) +  
                                 factor(Race) + # Race, considering potential grouping of Asians 
                                 # Diagnosis to Treatment Initiation Gap 
                                 factor(Gap_TimeZero_mCRPC_cat) +  
                                 factor(Gap_TimeZero_mPC_cat) + 
                                  
                                 ## Baseline values of time-varying covariates 
                                 factor(PSA_TimeZero_cat) + factor(Hb_TimeZero_cat) + factor(ECOG_TimeZero) +  
                                 Comorbid_Score_TimeZero + factor(DM_TimeZero),  
                                
                               data = TTE_GUTG001_base_reduced_at, # Use only baseline data 
                               family = binomial(link="logit"))  
# 0.094 secs 
summary(iptw.b.at.denom) 
 
# Add IPTW_baseline propensity to TTE_GUTG001_base_reduced data 
TTE_GUTG001_base_reduced_at$p.treat_baseline.denom <- predict(iptw.b.at.denom, TTE_GUTG001_base_reduced_at, type="response") 
 
 
#***2c.2 Fit a IPW (treatment) to estimate the numerator of the stabilised weights #### 
iptw.b.at.num <- glm(FirstLine_num ~ 1, family = binomial(link="logit"), data = TTE_GUTG001_base_reduced_at) # error can occur with speedglm 
here 
summary(iptw.b.at.num) 
 
# Add numerator to TTE_GUTG001_base_reduced data 
TTE_GUTG001_base_reduced_at$p.treat_baseline.num <- predict(iptw.b.at.num, type="response")  
 
 
#***2c.3: Calculate nonstablised IPTW (baseline) #### 
# Calculate nonstablaised weights (based on baseline treatment) 
TTE_GUTG001_base_reduced_at$w.treat_baseline.ns <-  
  ifelse(TTE_GUTG001_base_reduced_at$FirstLine_num == 1,  
         1/TTE_GUTG001_base_reduced_at$p.treat_baseline.denom, 
         1/(1 - TTE_GUTG001_base_reduced_at$p.treat_baseline.denom)) 
 
# Summary of weights 
summary(TTE_GUTG001_base_reduced_at$w.treat_baseline.ns) # 1.884 
sd(TTE_GUTG001_base_reduced_at$w.treat_baseline.ns) # SD: 0.679 
 
#***Calculate stablised IPTW (baseline) #### 
 
# Compute stablised weights 
TTE_GUTG001_base_reduced_at$w.treat_baseline.s <-  
  ifelse(TTE_GUTG001_base_reduced_at$FirstLine_num == 1,  
         TTE_GUTG001_base_reduced_at$p.treat_baseline.num/TTE_GUTG001_base_reduced_at$p.treat_baseline.denom,  
         (1 - TTE_GUTG001_base_reduced_at$p.treat_baseline.num)/(1 - TTE_GUTG001_base_reduced_at$p.treat_baseline.denom)) 
 
# Summary of weights  
summary(TTE_GUTG001_base_reduced_at$w.treat_baseline.s)  # 0.9399 
sd(TTE_GUTG001_base_reduced_at$w.treat_baseline.s) # 0.328 
 
#***2c.4. Fit weighted KM/Cox#### 
 
# As-treated (limited to second-Line treatment recipients) 
# Selecting only patients being able to received second-line (immortal time bias) 
length(TTE_GUTG001_base_reduced_at$PatientID) 
options(digits=7) 
fit.iptw.b.km.at <- survfit(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                               data = TTE_GUTG001_base_reduced_at, 
                               weights = w.treat_baseline.s) 
fit.iptw.b.km.at 
 
# Out put median follow-up time 
weighted_followup <- TTE_GUTG001_base_reduced_at$SurvTime_FirstLine * TTE_GUTG001_base_reduced_at$w.treat_baseline.s 
summary(weighted_followup) # 569.6 (270.0-972.6) 
 
fit.iptw.b.cox.at <- coxph(Surv(SurvTime_FirstLine, Y_FirstLine) ~ FirstLine_num,  
                              data = TTE_GUTG001_base_reduced_at, 
                              weights = w.treat_baseline.s) # default method = "efron" 
summary(fit.iptw.b.cox.at) 
AIC(fit.iptw.b.cox.at) # 23907.89 
BIC(fit.iptw.b.cox.at) # 23913.29 
logLik(fit.iptw.b.cox.at)  # -11952.94 (df=1) 
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# 1.14 (1.03-1..27) 
 
# Sandwich robust 95% CI 
coeftest(fit.iptw.b.cox.at, vcov = sandwich) 
exp(confint(coeftest(fit.iptw.b.cox.at, vcov = sandwich))) # 1.03-1.27 
 
 
 
######################################################################################################################## 
### 3. Adjusted for baseline (IPW) & censoring due to treatment deviation (IPCW) - Hypothetical perfect per-protocol effect                                 #### 
######################################################################################################################## 
 
 
 
# Create a variable called TimeCrossover (time of switching to a second-line treatment (previously called PD1_Now_tvary)) 
TTE_GUTG001_DTR_IPW_reduced$TimeCrossover <- TTE_GUTG001_DTR_IPW_reduced$PD1_Now_tvary 
 
# Spline modelss 
# Fit Treamtent censoring model for each treatment arm separately, assuming that time-varying covariate has different effect on censoring for 
different treatment arms 
# Use a new data  
TTE_GUTG001_DTR_IPW_Cross_cspline <- TTE_GUTG001_DTR_IPW_reduced 
 
columns_to_remove <- c("p.treatcen.denom", "w.treatcen.temp.ns", "w.treatcen.ns", "p.treatcen.num", 
                       "w.treatcen.temp.s", "w.treatcen.s", "w_overall_ns", "w_overall_s") 
 
# Remove the columns 
TTE_GUTG001_DTR_IPW_Cross_cspline[, (columns_to_remove) := NULL] 
TTE_GUTG001_DTR_IPW_Cross_cspline <- data.table(TTE_GUTG001_DTR_IPW_Cross_cspline) 
 
#***3.1: Fit a IPCW to estimate the denominator of the stabilised weights#####  
 
# Enza-Abi arm0 
# generate spline based on censoring time in arm 0 
library(Hmisc) 
library(rms) 
gc() 
spline_knots_TreatCen_arm0 <- rcspline.eval(TTE_GUTG001_DTR_IPW_Cross_cspline$time[TTE_GUTG001_DTR_IPW_Cross_cspline$c_treatdevL2 
== 1 &   
                                                                                     TTE_GUTG001_DTR_IPW_Cross_cspline$FirstLine_num == 0], knots.only = T,pc = T)  
spline_knots_TreatCen_arm0 # 56, 162.3, 295.5, 512.4, 1001,4 
 
 
# Set display digits 
options(digits=7) 
gc() 
start_time <- Sys.time() 
options(warn = -1)  
ipcw.tdev3.pp.CO.denom_arm0 <- glm( # speedglm might not converge 
  c_treatdevL2 == 1 ~ # modelling the probability of switching 
     
    ## Time-fixed covariates 
    Age_TimeZero + factor(cal_time) + 
    factor(GroupStage) + factor(MStage) +  
    factor(GleasonScore) +  
    factor(f_pretreat_treat_allowed_docetaxel) + factor(f_pretreat_treat_other_systemic) + 
    factor(f_SES) + factor(Race) +  
    factor(Gap_TimeZero_mCRPC_cat) + factor(Gap_TimeZero_mPC_cat) + 
     
    ## Baseline values of time-varying covariates 
    factor(PSA_TimeZero_cat) + factor(Hb_TimeZero_cat) + factor(ECOG_TimeZero) +  
    Comorbid_Score_TimeZero + factor(DM_TimeZero) +  
     
    ## Time-updated values of time-varying covariates 
    factor(PSA_tvary_cat) + factor(Hb_tvary_cat) + factor(ECOG_tvary) +   
    Comorbid_Score_tvary + factor(DM_tvary) + 
     
    # Not including an exact progression time due to no perfect timing proxy in the database.  
    # (1) Assumeing other time-varying covariates reflect prognosis related to progression at the time of switching  
    #     ==> Caveat: Possible residual confounding not captured by the identified time-varying variables. 
    # (2) Treatment switches in GUTG-0001 trial may also occur due to factors other than progression, like treatment toxicity, which should might be 
captured through ECOG/Comorbidity score. 
 
    # Time 
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    rcs(time, spline_knots_TreatCen_arm0), 
   
  data = TTE_GUTG001_DTR_IPW_Cross_cspline[TimeCrossover == 1 & FirstLine_num == 0], # Use only CrossOver baseline interval from each 
patient if any (i.e, patients who never switched to a second-line treamtent have prob of switching = 0) 
 
  family = binomial(link="logit")) 
options(warn = 0) 
Sys.time() - start_time 
summary(ipcw.tdev3.pp.CO.denom_arm0) # 3.5 sec 
 
 
# Abi-Enza arm 1 
# generate spline for arm 1 
spline_knots_TreatCen_arm1 <- rcspline.eval(TTE_GUTG001_DTR_IPW_Cross_cspline$time[TTE_GUTG001_DTR_IPW_Cross_cspline$c_treatdevL2 
== 1 &   
                                                                                     TTE_GUTG001_DTR_IPW_Cross_cspline$FirstLine_num == 1],knots.only = T,pc = T)  
spline_knots_TreatCen_arm1 # 54, 127.5, 226.5, 416.4, 919.6 
 
gc() 
start_time <- Sys.time() 
options(warn = -1)  
ipcw.tdev3.pp.CO.denom_arm1 <- glm( # speedglm might not converge 
  c_treatdevL2 == 1 ~ # modelling the probability of switching 
     
    ## Time-fixed covariates 
    Age_TimeZero + factor(cal_time) + 
    factor(GroupStage) + factor(MStage) +  
    factor(GleasonScore) +  
    factor(f_pretreat_treat_allowed_docetaxel) + factor(f_pretreat_treat_other_systemic) + 
    factor(f_SES) + factor(Race) +  
    factor(Gap_TimeZero_mCRPC_cat) + factor(Gap_TimeZero_mPC_cat) + 
     
    ## Baseline values of time-varying covariates 
    factor(PSA_TimeZero_cat) + factor(Hb_TimeZero_cat) + factor(ECOG_TimeZero) +  
    Comorbid_Score_TimeZero + factor(DM_TimeZero) +  
     
    ## Time-updated values of time-varying covariates 
    factor(PSA_tvary_cat) + factor(Hb_tvary_cat) + factor(ECOG_tvary) +   
    Comorbid_Score_tvary + factor(DM_tvary) + 
 
    # Time 
    rcs(time, spline_knots_TreatCen_arm1), 
   
  data = TTE_GUTG001_DTR_IPW_Cross_cspline[TimeCrossover == 1 & FirstLine_num == 1], # Use only the CrossOver baseline interval from each 
patient if any (i.e, patients who never switched to a second-line treatment will have prob of switching = 0) 
  family = binomial(link="logit")) 
options(warn = 0) 
Sys.time() - start_time 
summary(ipcw.tdev3.pp.CO.denom_arm1) # 0.12 sec 
 
 
#***3.2: Fit a IPCW to estimate the numerator of the stabilised weights#####  
# arm 0 
gc() 
start_time <- Sys.time() 
options(warn = -1)  
ipcw.tdev3.pp.CO.num_arm0 <- speedglm(  
  c_treatdevL2 == 1 ~  
    rcs(time, spline_knots_TreatCen_arm0), # modelling the probability of switching given time interval 
  data = TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(c_treatdevL2) & FirstLine_num == 0], # all rows except the additional row for admin 
censoring weighting 
  family = binomial(link="logit")) 
options(warn = 0) 
Sys.time() - start_time 
# 6.3 secs 
summary(ipcw.tdev3.pp.CO.num_arm0) 
 
# arm 1 
gc() 
start_time <- Sys.time() 
options(warn = -1)  
ipcw.tdev3.pp.CO.num_arm1 <- speedglm(  
  c_treatdevL2 == 1 ~  
    rcs(time, spline_knots_TreatCen_arm1), # modelling the probability of switching given time interval 
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  data = TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(c_treatdevL2) & FirstLine_num == 1], # all rows except the additional row for admin 
censoring weighting 
  family = binomial(link="logit")) 
options(warn = 0) 
Sys.time() - start_time 
# 7.2 secs 
summary(ipcw.tdev3.pp.CO.num_arm1)  
 
# Set the number of digits to display  
 
#***3.3 Calculate nonstablised deviation censoring weights #####  
gc() 
 
# Set display digits 
options(digits = 10) 
 
# Arm 0 
TTE_GUTG001_DTR_IPW_Cross_cspline[FirstLine_num == 0, p.treatcen.denom := predict(ipcw.tdev3.pp.CO.denom_arm0, .SD, type = "response")] 
TTE_GUTG001_DTR_IPW_Cross_cspline[FirstLine_num == 0 & TimeCrossover == 0, p.treatcen.denom:= 0] # Force all non-crossover baseline rows 
to have a censoring weight = 0  
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$p.treatcen.denom[TTE_GUTG001_DTR_IPW_Cross_cspline$FirstLine_num == 0 & 
TTE_GUTG001_DTR_IPW_Cross_cspline$TimeCrossover == 1]) 
# Weight at cross-over baseline: median: 0.56942330, min: 0.05741535, max: 0.99999942 
 
# Arm 1 
TTE_GUTG001_DTR_IPW_Cross_cspline[FirstLine_num == 1, p.treatcen.denom := predict(ipcw.tdev3.pp.CO.denom_arm1, .SD, type = "response")] 
TTE_GUTG001_DTR_IPW_Cross_cspline[FirstLine_num == 1 & TimeCrossover == 0, p.treatcen.denom:= 0] # Force all non-crossover baseline rows 
to have a censoring weight = 0  
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$p.treatcen.denom[TTE_GUTG001_DTR_IPW_Cross_cspline$FirstLine_num == 1 & 
TTE_GUTG001_DTR_IPW_Cross_cspline$TimeCrossover == 1])   
# Weight at cross-over baseline: median: 0.5083406504, min 0.0000011964, max: 0.9773441602 
 
 
# Set display digits 
options(digits = 20) 
 
# nonstablised weight at each interval 
TTE_GUTG001_DTR_IPW_Cross_cspline[, w.treatcen.temp.ns := 1 / (1 - p.treatcen.denom)] # weight for patients remained uncensored at the time 
of cross-over 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$w.treatcen.temp.ns[TTE_GUTG001_DTR_IPW_Cross_cspline$TimeCrossover == 1])  
# median 2.1499153065092300, min 1.0000011964258400 max 1710292.0496234854217619 (including those who censored) 
 
# Taking the cumulative product of the weights for each patient 
setorder(TTE_GUTG001_DTR_IPW_Cross_cspline, PatientID, time) # arrange data before doing cumulative product 
TTE_GUTG001_DTR_IPW_Cross_cspline[, w.treatcen.ns:=cumprod(w.treatcen.temp.ns), by = PatientID] 
 
# If censored, then that line of weight = 0 
TTE_GUTG001_DTR_IPW_Cross_cspline[c_treatdevL2 == 1, w.treatcen.ns:= 0] 
 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$w.treatcen.ns[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y)])  
# median: 1.0000000000000000; max: 10.5695611279343709  
 
 
#***3.4 Calculate stabalised deviation censoring weights #####  
 
# arm 0 
TTE_GUTG001_DTR_IPW_Cross_cspline[FirstLine_num == 0, p.treatcen.num := predict(ipcw.tdev3.pp.CO.num_arm0, .SD, type = "response")] 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$p.treatcen.num[TTE_GUTG001_DTR_IPW_Cross_cspline$FirstLine_num == 0 & 
!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y)]) # prob of switching given time for all non-admin censoring rows 
# median 0.00048114473457106747, max: 00.00089470602271352409 
 
# Arm 1 
TTE_GUTG001_DTR_IPW_Cross_cspline[FirstLine_num == 1, p.treatcen.num := predict(ipcw.tdev3.pp.CO.num_arm1, .SD, type = "response")] 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$p.treatcen.num[TTE_GUTG001_DTR_IPW_Cross_cspline$FirstLine_num == 1 & 
!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y)]) # prob of switching given time for all non-admin censoring rows 
# median 0.00048565200649136847, max 0.00119607559536391117  
 
# stabalised weight at each interval 
TTE_GUTG001_DTR_IPW_Cross_cspline[, w.treatcen.temp.s := (1 - p.treatcen.num) / (1 - p.treatcen.denom)] # weight for patients remained 
uncensored at each time interval 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$w.treatcen.temp.s[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y)])  
# median 0.99951781739044065, min 0.99880392440463606 max 10.56057687794355537  
 
# Taking the cumulative product of the weights for each id 
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TTE_GUTG001_DTR_IPW_Cross_cspline[, w.treatcen.s:=cumprod(w.treatcen.temp.s), by = PatientID] 
 
# If censored, then weight = 0 
TTE_GUTG001_DTR_IPW_Cross_cspline[c_treatdevL2 == 1, w.treatcen.s:=0] 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$w.treatcen.s[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y)])  
# median: 0.86268259967874439, max: 9.75164816080160790  
 
 
# Ref: Harvard 2023 ACA5 
#***3.5 Calculate Overall weights #####  
# Combining weights: non-stabalised  
TTE_GUTG001_DTR_IPW_Cross_cspline[, w_overall_ns:=w.treat_baseline.ns*w.treatcen.ns] 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$w_overall_ns[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y)])  
# median: 2.0402396450963853,  max 35.0769540901478010  
 
 
# Combining weights: stabalised  
TTE_GUTG001_DTR_IPW_Cross_cspline[, w_overall_s:=w.treat_baseline.s*w.treatcen.s] 
summary(TTE_GUTG001_DTR_IPW_Cross_cspline$w_overall_s[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y)])  
# median:  0.82424314227787387, max: 13.14245719335347751  
 
# Check who have extreme weights: check weights by the order and keep only records with weights over 5 (for stablised weights) 
test <- TTE_GUTG001_DTR_IPW_Cross_cspline[w_overall_s > 5][order(-w_overall_s)] # 6503 
 
# Check weights (don't use geom_point, it will crash with this size of database) 
iptw.b.ipcwCO3.plots <- list() 
iptw.b.ipcwCO3.plots[["p.treatcen.denom"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ], 
aes(x = time, y = p.treatcen.denom)) + 
  geom_hex(bins = 50) + 
  scale_fill_gradientn(colors = c("lightblue", "blue", "darkblue")) +  # Custom gradient 
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
  xlab("Time") + 
  ylab("p.treatcen.denom") + 
  ggtitle("Probability of censoring due to treatment deviation given \ngiven time-vary covariates over time by group \n0 = Enza-Abi, 1 = Abi-Enza 
(cubic spline time, Crossover baseline approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))  # X-axis labels every 90 days 
iptw.b.ipcwCO3.plots[["p.treatcen.denom"]] 
 
 
gc() 
# numerator 
iptw.b.ipcwCO3.plots[["p.treatcen.num"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ], 
aes(x = time, y = p.treatcen.num)) + 
  geom_hex(bins = 50) + 
  scale_fill_gradient(low = "lightgreen", high = "darkgreen") +   
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
  xlab("Time") + 
  ylab("p.treatcen.num") + 
  ggtitle("Probability of censoring due to treatment deviation \ngiven time \n0 = Enza-Abi, 1 = Abi-Enza (cubic spline time, Crossover baseline 
approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))   # X-axis labels every 90 days 
iptw.b.ipcwCO3.plots[["p.treatcen.num"]] 
 
ggarrange( 
  iptw.b.ipcwCO3.plots[["p.treatcen.denom"]], 
  iptw.b.ipcwCO3.plots[["p.treatcen.num"]], 
  ncol = 1, nrow = 2,    # overall layout: 1 column, 2 rows 
  heights = c(1, 1)      # equal heights for top and bottom 
) 
 
# check nostabalised weights for remaining uncernsored 
iptw.b.ipcwCO3.plots[["w.treatcen.temp.ns"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), 
], aes(x = time, y = w.treatcen.temp.ns)) + 
  geom_hex(bins = 50) + 
  scale_fill_gradient(low = "#EAA9A8", high = "#800000") +  # Light to dark color scale 
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
  xlab("Time") + 
  ylab("w.treatcen.temp.ns") + 
  ggtitle("Nonstabalised weights for patients remaind uncensored by Group\n0 = Enza-Abi, 1 = Abi-Enza (cubic spline time, Crossover baseline 
approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))   # X-axis labels every 90 days 
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iptw.b.ipcwCO3.plots[["w.treatcen.temp.ns"]] 
 
iptw.b.ipcwCO3.plots[["w.treatcen.ns"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ], aes(x 
= time, y = w.treatcen.ns)) + 
  geom_hex(bins = 50) + 
  scale_fill_gradient(low = "#EAA9A8", high = "#800000") +  # Light to dark color scale 
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
  xlab("Time") + 
  ylab("w.treatcen.ns") + 
  ggtitle("Cumulative nonstabalised weights for patients remaind uncensored by Group\n0 = Enza-Abi, 1 = Abi-Enza (cubic spline time, Crossover 
baseline approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))   # X-axis labels every 90 days 
iptw.b.ipcwCO3.plots[["w.treatcen.ns"]] 
 
# check stabalised weights 
 
iptw.b.ipcwCO3.plots[["w.treatcen.temp.s"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ], 
aes(x = time, y = w.treatcen.temp.s)) + 
  geom_hex(bins = 50) + 
  scale_fill_gradient(low = "#D7BDE2", high = "#4A235A") +  # Light to dark color scale 
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
  xlab("Time") + 
  ylab("w.treatcen.temp.s") + 
  ggtitle("Stabalised weights for patients remaind uncensored by Group \n0 = Enza-Abi, 1 = Abi-Enza (cubic spline time, Crossover baseline 
approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))   # X-axis labels every 90 days 
iptw.b.ipcwCO3.plots[["w.treatcen.temp.s"]] 
 
iptw.b.ipcwCO3.plots[["w.treatcen.s"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ], aes(x 
= time, y = w.treatcen.s)) + 
  geom_hex(bins = 75) + 
  scale_fill_gradient(low = "#D7BDE2", high = "#4A235A") +  # Light to dark color scale 
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
  xlab("Time") + 
  ylab("w.treatcen.s") + 
  ggtitle("Cumulative stabalised weights for patients remaind uncensored by Group\n0 = Enza-Abi, 1 = Abi-Enza (cubic spline time, Crossover 
baseline approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))   # X-axis labels every 90 days 
iptw.b.ipcwCO3.plots[["w.treatcen.s"]] 
 
ggarrange( 
  iptw.b.ipcwCO3.plots[["w.treatcen.temp.ns"]], 
  iptw.b.ipcwCO3.plots[["w.treatcen.ns"]], 
  iptw.b.ipcwCO3.plots[["w.treatcen.temp.s"]], 
  iptw.b.ipcwCO3.plots[["w.treatcen.s"]], 
  ncol = 2, nrow = 2,    # overall layout: 1 column, 2 rows 
  heights = c(1, 1)      # equal heights for top and bottom 
) 
 
 
# check overall weights (nonstablised) 
iptw.b.ipcwCO3.plots[["w_overall_ns"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ], aes(x 
= time, y = w_overall_ns)) + 
  geom_hex(bins = 500) +  # Reduced number of bins and added alpha for transparency 
  scale_fill_gradient(low = "#D3BDBD", high = "#5E4747") +  # Light to dark color scale 
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
  xlab("Time") + 
  ylab("w_overall_ns") + 
  ggtitle("Cumulative overall non-stabalised weights for patients remaind uncensored by Group \n0 = Enza-Abi, 1 = Abi-Enza (cubic spline time, 
Crossover baseline approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))   # X-axis labels every 90 days 
iptw.b.ipcwCO3.plots[["w_overall_ns"]] 
 
# check overall weights (stablised) 
iptw.b.ipcwCO3.plots[["w_overall_s"]] <- ggplot(TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ], aes(x = 
time, y = w_overall_s)) + 
  geom_hex(bins = 500) +  # Reduced number of bins and added alpha for transparency 
  scale_fill_gradient(low = "#808080", high = "#1A1A1A") +  # Light to dark color scale 
  facet_wrap(~ FirstLine_num) +  # Facet by the grouping variable 
  theme_minimal() + 
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  xlab("Time") + 
  ylab("w_overall_s") + 
  ggtitle("Cumulative overall stabalised weights for patients remaind uncensored by Group \n0 = Enza-Abi, 1 = Abi-Enza (cubic spline time, Crossover 
baseline approach)") + 
  scale_x_continuous(breaks = seq(0, 1440, by = 180))   # X-axis labels every 90 days 
iptw.b.ipcwCO3.plots[["w_overall_s"]] 
 
ggarrange( 
  iptw.b.ipcwCO3.plots[["w_overall_ns"]], 
  iptw.b.ipcwCO3.plots[["w_overall_s"]], 
  ncol = 1, nrow = 2,    # overall layout: 1 column, 2 rows 
  heights = c(1, 1)      # equal heights for top and bottom 
) 
gc() 
 
 
# save ipw.plots and remove from global environment (7 GB) 
# save(iptw.b.ipcwCO3.plots, file = "derived_data\\iptw.b.ipcwCO3.plots.RData") 
# rm(iptw.b.ipcwCO3.plots) 
gc() 
 
#***3.5 Outcome Model #####  
# generate spline for outcome 
spline_knots_TreatCen_y <- rcspline.eval(TTE_GUTG001_DTR_IPW_Cross_cspline$time[TTE_GUTG001_DTR_IPW_Cross_cspline$y == 1],knots.only 
= T,pc = T)  
spline_knots_TreatCen_y # 55.5, 213.25, 411, 693, 1190.5 
 
 
 
#### Fit a Cox model using stabalised weight #### 
fit.iptw.b.ipcwCO.s3.Cox <- coxph(Surv(time, time + 1, y) ~ FirstLine_num, 
                                data = TTE_GUTG001_DTR_IPW_Cross_cspline[!is.na(TTE_GUTG001_DTR_IPW_Cross_cspline$y), ],  
                                weights = w_overall_s, 
                                cluster = PatientID) # default method = "efron" 
# Set display digits 
options(digits=7) 
summary(fit.iptw.b.ipcwCO.s3.Cox) 
AIC(fit.iptw.b.ipcwCO.s3.Cox) # 26697.83 
BIC(fit.iptw.b.ipcwCO.s3.Cox) # 26703.23 
logLik(fit.iptw.b.ipcwCO.s3.Cox) # -13347.92 (df=1) 
 
# Sandwich robust variance (using this instead of the internal robust estimator robust = TRUE within the coxph function) 
# More appropriate if there are complex clustering 
coeftest(fit.iptw.b.ipcwCO.s3.Cox, vcov = sandwich, cluster = ~PatientID) 
exp(confint(coeftest(fit.iptw.b.ipcwCO.s3.Cox, vcov = sandwich, cluster = ~PatientID)))  
#     2.5 %   97.5 % 
#   [1,] 0.9551065 1.203951 
 
gc() 
# Standerdised difference 
HR1 <- 0.79 # HR1 
CI1_lower <- 0.54  
CI1_upper <- 1.16  
 
HR2 <- 1.07 # HR2 
CI2_lower <- 0.96 
CI2_upper <- 1.20 
 
# Calculate the standard errors 
SE1 <- (log(CI1_upper) - log(CI1_lower)) / (2 * 1.96) 
SE2 <- (log(CI2_upper) - log(CI2_lower)) / (2 * 1.96) 
 
# Calculate the standardised difference 
std_diff <- (log(HR1) - log(HR2)) / sqrt(SE1^2 + SE2^2) 
 
std_diff 
# -1.493095 
 
 
options(digits=20) 
 
 
 
######################################## 
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# Plot comparison with KM Khalaf 
######################################## 
 
# extract layer data from fit.Khalaf (extract from Khalaf study), and check unique strata 
km_Khalaf_data_new <- tidy(fit_Khalaf) %>% # 161 
  mutate(strata = case_when(strata == "Group=0" ~ "Abi-Enza (KM - Khalaf 2019)", # Not that for coloring convenience Group 0 = Group A 
(abiraterone in the Khalaf data) 
                            TRUE ~ "Enza-Abi (KM - Khalaf 2019)")) %>% 
  mutate(time = time*30) %>% # change time scale to days to align with my study  
  add_row(tibble( # add row at time zero for both strata as it doesn't have data at 0 
    time = rep(0, 2), n.risk = NA, n.event = 0, n.censor = NA, 
    estimate = 1, std.error = 0, conf.high = 1, conf.low = 1, 
    strata = c("Abi-Enza (KM - Khalaf 2019)", "Enza-Abi (KM - Khalaf 2019)"))) # 163 
 
 
# extract layer data from fit.Khalaf (extract from Khalaf study), and check unique strata 
km_iptw.b.ipcwCO.s3_data <- tidy(fit.iptw.b.ipcwCO.s3.km) %>%  
  mutate(strata = case_when(strata == "FirstLine_num=1" ~ "Abi-Enza (IPTW*IPCW weighted KM)",  
                            TRUE ~ "Enza-Abi (IPTW*IPCW weighted KM)")) %>% 
  add_row(tibble( # add row at time zero for both strata as it doesn't have data at 0 
    time = rep(0, 2), n.risk = NA, n.event = 0, n.censor = NA, 
    estimate = 1, std.error = 0, conf.high = 1, conf.low = 1, 
    strata = c("Abi-Enza (IPTW*IPCW weighted KM)", "Enza-Abi (IPTW*IPCW weighted KM)")))  
 
# Add Khalaf Km to IPTW*IPC weighted KM 
   
test <- ggplot() + 
  geom_line(data = km_iptw.b.ipcwCO.s3_data, aes(x = time, y = estimate, color = strata), linewidth = 1) + 
  geom_ribbon(data = km_iptw.b.ipcwCO.s3_data, aes(x = time, ymin = conf.low, ymax = conf.high, fill = strata), alpha = 0.2) + 
  geom_line(data = km_Khalaf_data_new , aes(x = time, y = estimate, color = strata), linewidth = 1) + 
  geom_ribbon(data = km_Khalaf_data_new , aes(x = time, ymin = conf.low, ymax = conf.high, fill = strata), alpha = 0.2) + 
  scale_color_manual(values = c( 
    "Abi-Enza (IPTW*IPCW weighted KM)" = "#2E9FDF",  
    "Enza-Abi (IPTW*IPCW weighted KM)" = "#E7B800", 
    "Abi-Enza (KM - Khalaf 2019)" = "#0044CC",   
    "Enza-Abi (KM - Khalaf 2019)" = "#8B0000" 
  )) +  
  scale_fill_manual(values = c( 
    "Abi-Enza (IPTW*IPCW weighted KM)" = scales::alpha("#2E9FDF", 1),  
    "Enza-Abi (IPTW*IPCW weighted KM)" = scales::alpha("#E7B800", 1), 
    "Abi-Enza (KM - Khalaf 2019)" = scales::alpha("#0044CC", 0.5), # alpha doesn't seem to work here (adjust geom_ribbon) 
    "Enza-Abi (KM - Khalaf 2019)" = scales::alpha("#8B0000", 0.5) 
  )) +  
  xlab("Days") + # label x axis 
  ylab("Survival (%)") + # label y axis 
  theme_minimal() + # set plot theme elements 
  theme(axis.text = element_text(size = 14), legend.position = c(0.7, 0.8), 
        axis.line = element_line(colour = "black")) + 
  scale_x_continuous(breaks=seq(0, 1440, by = 180)) + 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, by = 0.1), labels = label_percent(scale = 100)) + # label survival it as percentage  
  expand_limits(x = 0, y = 0) + 
  font("xlab",size = 14)+ 
  font("ylab",size = 14)+ 
  font("legend.text",size = 10)+ 
  guides(fill = "none") + # Suppress the legend for shaded area 
  guides(color = guide_legend("First-line mCRPC treatment")) +  
  ggtitle("IPTW*IPCW adjusted of GUTG-001 Analogue mCPRC patients \nin Flatiron data (Weighted KM versus reconstructed KM from Khalaf 
2019)") # replace a new title 
 
test 
 
 
test <- ggplot() + 
  geom_line(data = filter(km_iptw.b.ipcwCO.s3_data, strata == "Abi-Enza (IPTW*IPCW weighted KM)"), aes(x = time, y = estimate, color = strata), 
linewidth = 1) + 
  geom_ribbon(data = filter(km_iptw.b.ipcwCO.s3_data, strata == "Abi-Enza (IPTW*IPCW weighted KM)"), aes(x = time, ymin = conf.low, ymax = 
conf.high, fill = strata), alpha = 0.2) + 
  geom_line(data = filter(km_Khalaf_data_new, strata == "Abi-Enza (KM - Khalaf 2019)"), aes(x = time, y = estimate, color = strata), linewidth = 1) + 
  geom_ribbon(data = filter(km_Khalaf_data_new, strata == "Abi-Enza (KM - Khalaf 2019)"), aes(x = time, ymin = conf.low, ymax = conf.high, fill = 
strata), alpha = 0.2) + 
  scale_color_manual(values = c( 
    "Abi-Enza (IPTW*IPCW weighted KM)" = "#2E9FDF",  
    "Abi-Enza (KM - Khalaf 2019)" = "#0044CC"   
  )) +  
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  scale_fill_manual(values = c( 
    "Abi-Enza (IPTW*IPCW weighted KM)" = scales::alpha("#2E9FDF", 1),  
    "Abi-Enza (KM - Khalaf 2019)" = scales::alpha("#0044CC", 0.5) # alpha doesn't seem to work here (adjust geom_ribbon) 
  )) +  
  xlab("Days") + # label x axis 
  ylab("Survival (%)") + # label y axis 
  theme_minimal() + # set plot theme elements 
  theme(axis.text = element_text(size = 14), legend.position = c(0.7, 0.8), 
        axis.line = element_line(colour = "black")) + 
  scale_x_continuous(breaks=seq(0, 1440, by = 180)) + 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, by = 0.1), labels = label_percent(scale = 100)) + # label survival it as percentage  
  expand_limits(x = 0, y = 0) + 
  font("xlab",size = 14)+ 
  font("ylab",size = 14)+ 
  font("legend.text",size = 10)+ 
  guides(fill = "none") + # Suppress the legend for shaded area 
  guides(color = guide_legend("First-line mCRPC treatment")) +  
  ggtitle("IPTW*IPCW adjusted of GUTG-001 Analogue mCPRC patients \nin Flatiron data (Weighted KM versus reconstructed KM from Khalaf 
2019)") # replace a new title 
test 
 
 
test2 <- ggplot() + 
  geom_line(data = filter(km_iptw.b.ipcwCO.s3_data, strata == "Enza-Abi (IPTW*IPCW weighted KM)"), aes(x = time, y = estimate, color = strata), 
linewidth = 1) + 
  geom_ribbon(data = filter(km_iptw.b.ipcwCO.s3_data, strata == "Enza-Abi (IPTW*IPCW weighted KM)"), aes(x = time, ymin = conf.low, ymax = 
conf.high, fill = strata), alpha = 0.2) + 
  geom_line(data = filter(km_Khalaf_data_new, strata == "Enza-Abi (KM - Khalaf 2019)"), aes(x = time, y = estimate, color = strata), linewidth = 1) + 
  geom_ribbon(data = filter(km_Khalaf_data_new, strata == "Enza-Abi (KM - Khalaf 2019)"), aes(x = time, ymin = conf.low, ymax = conf.high, fill = 
strata), alpha = 0.2) + 
  scale_color_manual(values = c( 
    "Enza-Abi (IPTW*IPCW weighted KM)" = "#E7B800", 
    "Enza-Abi (KM - Khalaf 2019)" = "#8B0000" 
  )) +  
  scale_fill_manual(values = c( 
    "Enza-Abi (IPTW*IPCW weighted KM)" = scales::alpha("#E7B800", 1), 
    "Enza-Abi (KM - Khalaf 2019)" = scales::alpha("#8B0000", 0.5) 
  )) +  
  xlab("Days") + # label x axis 
  ylab("Survival (%)") + # label y axis 
  theme_minimal() + # set plot theme elements 
  theme(axis.text = element_text(size = 14), legend.position = c(0.7, 0.8), 
        axis.line = element_line(colour = "black")) + 
  scale_x_continuous(breaks=seq(0, 1440, by = 180)) + 
  scale_y_continuous(limits = c(0, 1), breaks = seq(0, 1, by = 0.1), labels = label_percent(scale = 100)) + # label survival it as percentage  
  expand_limits(x = 0, y = 0) + 
  font("xlab",size = 14)+ 
  font("ylab",size = 14)+ 
  font("legend.text",size = 10)+ 
  guides(fill = "none") + # Suppress the legend for shaded area 
  guides(color = guide_legend("First-line mCRPC treatment")) +  
  ggtitle("IPTW*IPCW adjusted of GUTG-001 Analogue mCPRC patients \nin Flatiron data (Weighted KM versus reconstructed KM from Khalaf 
2019)") # replace a new title 
test2 
 
ggarrange(test,test2, 
          ncol = 2, nrow = 1) 
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Appendix 8.11 R code for ad-hoc restricted mean survival time analyses in Prostate Cancer 

Case Study 1 (PC1) 
 

The RMST for the unweighted Kaplan-Meier (KM) analyses (Analysis 1a-1d in Section 8.3, 

Chapter 8) and the digitised curves from the GUTG-001 trial (Khalaf et al.84) was derived using the 

rmst2 package in R. However, no R packages support the calculation of RMST for weighted KM. 

Therefore, I wrote a function “perform_rmst_trapezoids_wKM” in R to calculate the RMST for each 

group by determining the area under the weighted KM curve for the remaining five weighted analyses: 

Analysis: 2a-2d baseline IPTW adjusted analysis and Analysis 3 IPTW*IPCWtexdev adjusted analysis. 

Given the daily interval data used for analysis, this is an accurate method for estimating RMST. 

The perform_rmst_trapezoids_wKM function involves the following steps:  

1. Obtaining the survival probability at each time point from the weighted KM survival object in R 

for each group’s survival curve 

2. Using the trapezoid rule, the RMST is calculated by determining the survival probability between 

consecutive time points in the weighted KM, summing the area under the curve for each interval: 

𝑅𝑀𝑆𝑇 =  ∑ (
survival probability at time point 1 + survival probability at time point 2

2
) × (𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 2 − 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 1)

𝜏

1

,  

𝜏 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑙𝑖𝑚𝑖𝑡 𝑓𝑜𝑟 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

3. To calculate the 95% CI of the RMST for each group, I used the survival probability of the naïve 

95% CI at each time point from the weighted KM (the same approach used for obtaining the 

median overall survival 95% CI in Table 8.10). For more precise CI estimates that account for 

uncertainties in the weight derivation models, bootstrapping may be necessary, as described in 

Section 8.3.4.4. However, this was not applied in the thesis due to the marginal differences 

expected given the study's sample size and the computational resources required (see Section 

8.3.4.4). 

4. The RMST differences between the two arms were assessed by measuring the point estimate 

difference in RMST between the treatment groups.   

 

The R code for ad-hoc restricted mean survival time analyses and the 

perform_rmst_trapezoids_wKM function are detailed below. 

 
 
###Project Info #################################################################### 
###    Target Trial Emulation – Final survival analyses – RMST calculation                                           ###  
###    Amy Chang's PhD Thesis - Treatment Sequence project                                              ###  
###    Data: Flatiron prostate cancer datasets                                                                                           ### 
###                                                                                                                                                                     ### 
###    University of Sheffield                                                                                                                         ### 
###    Date created: July, 2024                                                                                                                     ###  
################################################################################# 
 
# Write a function to perform RMST for multiple endpoints at the same time, and can accomondate different data & endpoints 
perform_rmst <- function(data, time_col, status_col, arm_col, taus) { 
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  # Check if columns exist 
  if (!all(c(time_col, status_col, arm_col) %in% names(data))) { 
    stop("One or more specified columns do not exist in the data frame.") 
  } 
   
  # Select and rename columns 
  data <- data %>% 
    rename(time = !!sym(time_col), status = !!sym(status_col), arm = !!sym(arm_col)) 
   
  # Initialize a list to store results 
  results <- list() 
   
  # Loop through each tau and perform RMST analysis 
  for (tau in taus) { 
    fit <- rmst2(time = data$time, status = data$status, arm = data$arm, tau = tau) 
    results[[paste0("RMST_", tau, "months")]] <- fit 
  } 
   
  return(results) 
} 
 
# RMST for weighted KM: This version solves problems where initial survival probability is not 1 compared to version 1 (add time 0) 
# Note: This function takes time input in days but outputs in months. 
perform_rmst_trapezoids_wKM <- function(surv_object, tau_vec, title) { 
  results <- list() 
   
  # Function to add initial time 0 with survival probability 1 
  add_initial_time <- function(times, surv, lower, upper) { 
    if (times[1] != 0) { 
      times <- c(0, times) 
      surv <- c(1, surv) 
      lower <- c(1, lower) 
      upper <- c(1, upper) 
    } 
    return(list(times = times, surv = surv, lower = lower, upper = upper)) 
  } 
   
  # Get the group indices: 0, number of record in arm 0, number of record in arm 0 + 1 (due to the cumulative sum of records) 
  # Need to do this as each arm may have slightly different rows 
  group_indices <- cumsum(c(0, surv_object$strata)) 
   
  for (tau in tau_vec) { 
    # Extract KM times and survival probabilities for Arm 1 based on group indices 
    km_times_1 <- surv_object$time[(group_indices[2]+1):group_indices[3]] # number of record in arm 0 + 1 to the last record (records for arm 1) 
    km_surv_1 <- surv_object$surv[(group_indices[2]+1):group_indices[3]] 
     
    # Extract KM times and survival probabilities for Arm 0 based on group indices 
    km_times_0 <- surv_object$time[(group_indices[1]+1):group_indices[2]]  # 1 to the last record in arm 0 (the number of arm 0) 
    km_surv_0 <- surv_object$surv[(group_indices[1]+1):group_indices[2]] 
     
    # Extract the survival lower and upper limits from the KM object for Arm 1 
    km_surv_ll_1 <- surv_object$lower[(group_indices[2]+1):group_indices[3]] 
    km_surv_ul_1 <- surv_object$upper[(group_indices[2]+1):group_indices[3]] 
     
    # Extract the survival lower and upper limits from the KM object for Arm 0 
    km_surv_ll_0 <- surv_object$lower[(group_indices[1]+1):group_indices[2]] 
    km_surv_ul_0 <- surv_object$upper[(group_indices[1]+1):group_indices[2]] 
     
    # Add time 0 and survival probability 1 if not already present for both arms 
    arm1_data <- add_initial_time(km_times_1, km_surv_1, km_surv_ll_1, km_surv_ul_1) 
    km_times_1 <- arm1_data$times 
    km_surv_1 <- arm1_data$surv 
    km_surv_ll_1 <- arm1_data$lower 
    km_surv_ul_1 <- arm1_data$upper 
     
    arm0_data <- add_initial_time(km_times_0, km_surv_0, km_surv_ll_0, km_surv_ul_0) 
    km_times_0 <- arm0_data$times 
    km_surv_0 <- arm0_data$surv 
    km_surv_ll_0 <- arm0_data$lower 
    km_surv_ul_0 <- arm0_data$upper 
     
    # Ensure the times and survival probabilities are in ascending order 
    km_times_1 <- sort(km_times_1) 
    km_surv_1 <- km_surv_1[order(km_times_1)] 
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    km_surv_ll_1 <- km_surv_ll_1[order(km_times_1)] 
    km_surv_ul_1 <- km_surv_ul_1[order(km_times_1)] 
     
    km_times_0 <- sort(km_times_0) 
    km_surv_0 <- km_surv_0[order(km_times_0)] 
    km_surv_ll_0 <- km_surv_ll_0[order(km_times_0)] 
    km_surv_ul_0 <- km_surv_ul_0[order(km_times_0)] 
     
    # Filter times and survival probabilities up to tau for both arms 
    km_times_1 <- km_times_1[km_times_1 <= tau] 
    km_surv_1 <- km_surv_1[1:length(km_times_1)] 
    km_surv_ll_1 <- km_surv_ll_1[1:length(km_times_1)] 
    km_surv_ul_1 <- km_surv_ul_1[1:length(km_times_1)] 
     
    km_times_0 <- km_times_0[km_times_0 <= tau] 
    km_surv_0 <- km_surv_0[1:length(km_times_0)] 
    km_surv_ll_0 <- km_surv_ll_0[1:length(km_times_0)] 
    km_surv_ul_0 <- km_surv_ul_0[1:length(km_times_0)] 
     
    # Calculate the differences between consecutive time points 
    diffs_1 <- diff(km_times_1) 
    diffs_0 <- diff(km_times_0) 
     
    # Perform numerical integration using the trapezoidal rule for both arms 
    rmst_1 <- sum((km_surv_1[-length(km_surv_1)] + km_surv_1[-1]) * diffs_1 / 2) 
    rmst_0 <- sum((km_surv_0[-length(km_surv_0)] + km_surv_0[-1]) * diffs_0 / 2) 
     
    # Calculate the difference in RMST between the two arms 
    rmst_diff <- rmst_1 - rmst_0 
     
    # Calculate RMST lower limit for both arms 
    rmst_ll_1 <- sum((km_surv_ll_1[-length(km_surv_ll_1)] + km_surv_ll_1[-1]) * diffs_1 / 2) 
    rmst_ll_0 <- sum((km_surv_ll_0[-length(km_surv_ll_0)] + km_surv_ll_0[-1]) * diffs_0 / 2) 
     
    # Calculate RMST upper limit for both arms 
    rmst_ul_1 <- sum((km_surv_ul_1[-length(km_surv_ul_1)] + km_surv_ul_1[-1]) * diffs_1 / 2) 
    rmst_ul_0 <- sum((km_surv_ul_0[-length(km_surv_ul_0)] + km_surv_ul_0[-1]) * diffs_0 / 2) 
     
    # Calculate the 95% CI for the RMST difference (most conservative, lower of arm 1 - higher of arm 2; higher of arm 1 - lower of arm 2) 
    ci_lower_diff <- rmst_ll_1 - rmst_ul_0 
    ci_upper_diff <- rmst_ul_1 - rmst_ll_0 
     
    # Round all results to 2 decimal places and in months 
    rmst_1 <- round(rmst_1 / 30, 2) 
    rmst_0 <- round(rmst_0 / 30, 2) 
    rmst_diff <- round(rmst_diff / 30, 2) 
    rmst_ll_1 <- round(rmst_ll_1 / 30, 2) 
    rmst_ll_0 <- round(rmst_ll_0 / 30, 2) 
    rmst_ul_1 <- round(rmst_ul_1 / 30, 2) 
    rmst_ul_0 <- round(rmst_ul_0 / 30, 2) 
    ci_lower_diff <- round(ci_lower_diff / 30, 2) 
    ci_upper_diff <- round(ci_upper_diff / 30, 2) 
     
    # Store results in a list 
    results[[as.character(tau)]] <- list( 
      rmst_1 = rmst_1, 
      rmst_1_ll = rmst_ll_1, 
      rmst_1_ul = rmst_ul_1, 
      rmst_0 = rmst_0, 
      rmst_0_ll = rmst_ll_0, 
      rmst_0_ul = rmst_ul_0, 
      rmst_diff = rmst_diff, 
      ci_lower_diff = ci_lower_diff, 
      ci_upper_diff = ci_upper_diff 
    ) 
     
    # Print results for clarity 
    cat(paste("\nResults for tau =", tau, "days:\n")) 
    cat(paste("RMST for Arm 1 (95% CI): ", rmst_1, " (", rmst_ll_1, ", ", rmst_ul_1, ")\n", sep = "")) 
    cat(paste("RMST for Arm 0 (95% CI): ", rmst_0, " (", rmst_ll_0, ", ", rmst_ul_0, ")\n", sep = "")) 
    cat(paste("Difference in RMST (95% CI): ", rmst_diff, " (", ci_lower_diff, ", ", ci_upper_diff, ")\n", sep = "")) 
     
    # Prepare data for plotting trapezoids for RMST calculation 
    trapezoids_1 <- data.frame( 
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      time = rep(km_times_1, each = 2)[-1], 
      surv = rep(km_surv_1, each = 2)[-1], 
      group = "Arm 1" 
    ) 
     
    trapezoids_0 <- data.frame( 
      time = rep(km_times_0, each = 2)[-1], 
      surv = rep(km_surv_0, each = 2)[-1], 
      group = "Arm 0" 
    ) 
     
    # Combine trapezoid data 
    trapezoids <- rbind(trapezoids_1, trapezoids_0) 
     
    # Prepare data for KM curves 
    km_data_1 <- data.frame(time = km_times_1, surv = km_surv_1, group = "Arm 1") 
    km_data_0 <- data.frame(time = km_times_0, surv = km_surv_0, group = "Arm 0") 
    km_data <- rbind(km_data_1, km_data_0) 
     
    # Plot the trapezoids and KM curves with different colors and add vertical lines 
    p <- ggplot() + 
      geom_step(data = km_data, aes(x = time, y = surv, color = group), size = 1) + 
      geom_ribbon(data = trapezoids_1, aes(x = time, ymin = 0, ymax = surv, fill = group), fill = "blue", alpha = 0.2) + 
      geom_ribbon(data = trapezoids_0, aes(x = time, ymin = 0, ymax = surv, fill = group), fill = "red", alpha = 0.2) + 
      geom_vline(xintercept = c(360, 720, 1080, 1440), linetype = "dashed", color = "black") + 
      annotate("text", x = c(360, 720, 1080, 1440), y = Inf, label = c("360 days", "720 days", "1080 days", "1440 days"), angle = 90, vjust = -0.5, hjust = 
1.1) + 
      scale_x_continuous(breaks = seq(0, 1440, by = 180)) + 
      labs(title = paste("RMST Trapezoids and KM Curves for tau =", tau, "days:", title), 
           x = "Time (days)", 
           y = "Survival Probability") + 
      theme_minimal() 
     
    print(p) 
  } 
   
  return(results) 
} 
 
### Output RMST for thesis correction 
tau_values <- c(360, 720, 1080, 1440) 
results <- perform_rmst_trapezoids_wKM2(fit.iptw.b.km, tau_values, "Baseline adjusted PP") 
print(results) 
 
 
 
 
################################################################################# 
### 1a. Estimating Effect in a Target Trial (Unadjusted ITT)                            ##################### 
################################################################################# 
 
# Calculated restricted mean survival time (RMST): 11 July 2024 
# Make a month variable 
TTE_GUTG001_base$SurvTime_FirstLine_month <- TTE_GUTG001_base$SurvTime_FirstLine/30 
 
fit.km_RMST <- perform_rmst(TTE_GUTG001_base, "SurvTime_FirstLine_month", "Y_FirstLine", "FirstLine_num", c(12, 24, 36, 48)) 
fit.km_RMST 
 
 
 
############################################################################################ 
### 1b. Estimating Unadjusted Effect in a Target Trial (PP)                                                                         ############ 
############################################################################################ 
 
# Calculated restricted mean survival time (RMST): 11 July 2024 
# Make a month variable 
TTE_GUTG001_base$SurvTime_DTR_month <- TTE_GUTG001_base$SurvTime_DTR/30 
 
# See above for the function 
fit.km.pp_RMST <- perform_rmst(TTE_GUTG001_base, "SurvTime_DTR_month", "Y_DTR", "FirstLine_num", c(12, 24, 36, 48)) 
fit.km.pp_RMST 
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############################################## 
### 1c & 1d. Unadjusted As-treated patients      ####### 
############################################## 
 
# 1c 
# Make a month variable 
# Use the dataset created below 
TTE_GUTG001_base_reduced_at$SurvTime_FirstLine_month <- TTE_GUTG001_base_reduced_at$SurvTime_FirstLine/30 
 
# See above for the function 
fit.km.at_RMST <- perform_rmst(TTE_GUTG001_base_reduced_at, "SurvTime_FirstLine_month", "Y_FirstLine", "FirstLine_num", c(12, 24, 36, 48)) 
fit.km.at_RMST 
 
# 1d 
# Make a month variable 
# Use the dataset created below 
TTE_GUTG001_base_reduced_at2L$SurvTime_FirstLine_month <- TTE_GUTG001_base_reduced_at2L$SurvTime_FirstLine/30 
 
# See above for the function 
fit.km.at.2L_RMST <- perform_rmst(TTE_GUTG001_base_reduced_at2L, "SurvTime_FirstLine_month", "Y_FirstLine", "FirstLine_num", c(12, 24, 36, 
48)) 
fit.km.at.2L_RMST 
 
 
 
############################################## 
### 2a. Baseline adjusted ITT patients                  ####### 
############################################## 
 
### Output RMST for thesis correction: see function created in the main TTE file 
tau_values <- c(360, 720, 1080, 1440) 
results <- perform_rmst_trapezoids_wKM(fit.iptw.b.km.itt, tau_values, "Baseline adjusted ITT") 
print(results) 
 
 
 
################################################################################# 
### 2b. Baselin eadjusted (IPW) - PP                                                  ############################# 
################################################################################# 
 
### Output RMST for thesis correction: see function created in the main TTE file 
tau_values <- c(360, 720, 1080, 1440) 
results <- perform_rmst_trapezoids_wKM(fit.iptw.b.km, tau_values, "Baseline adjusted PP") 
print(results) 
 
 
 
################################################### 
### 2c & 2d. Baseline adjusted AT patients                    ####### 
################################################### 
 
# 2c 
### Output RMST for thesis correction: see function created in the main TTE file 
tau_values <- c(360, 720, 1080, 1440) 
results <- perform_rmst_trapezoids_wKM(fit.iptw.b.km.at, tau_values, "Baseline adjusted AT") 
print(results) 
 
# 2d 
### Output RMST for thesis correction: see function created in the main TTE file 
tau_values <- c(360, 720, 1080, 1440) 
results <- perform_rmst_trapezoids_wKM(fit.iptw.b.km.at.2L, tau_values, "Baseline adjusted AT, limited to second-line treatment recipients") 
print(results) 
 
 
 
######################################################################################################################## 
### 3. Adjusted for baseline (IPW) & censoring due to treatment deviation (IPCW) - Hypothetical perfect per-protocol effect                                 #### 
######################################################################################################################## 
 
### Output RMST for thesis correction: see function created in the main TTE file 
tau_values <- c(360, 720, 1080, 1440) 
results <- perform_rmst_trapezoids_wKM(fit.iptw.b.ipcwCO.s3.km, tau_values, "IPTW*IPCW adjusted PP") 
print(results) 


