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Abstract 
 

Cryogenic electron microscopy was introduced in the 1980s as an innovative technique 

to determine protein structures and has become more popular in recent years. With almost 

7800 maps released last year, it is the second most used method after X-ray 

crystallography. The technological advancements and the constant improvements in 

automated data collection create a strong need for software tools to automatically assess 

the quality of the collected data.  

 

In this work, we identified the parts of the cryo-EM processing pipeline, from data 

collection to atomic model building and validation, that can significantly benefit from 

automated tools. The evaluation of automated particle picking tools revealed a common 

issue when the picking is less effective from micrographs with non-uniform ice 

distribution. We developed a software tool which could mitigate this problem and 

equalise the contrast locally. Additionally, we introduce a new parameter for the 

processing, which can be used to associate the particles' coordinates with the estimated 

ice thickness levels, which can also be calibrated to the measured thickness. This software 

is added to the ISpyB data collection pipeline at the Electron Bio-Imaging Centre in 

Diamond Light Source.  

 

A  software tool was developed for atomic model validation based on the False Discovery 

Rate approach which allows scoring each residue in the model by checking if they are 

placed within the cryo-EM map density or in the background noise. This tool is now 

available from the Collaborative Computer Project for Cryo-EM (CCPEM) software 

suite. 
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1  Introduction 
 

1.1 Motivation 
 

Proteins are molecules that can have a range of functions in the human body and other 

living organisms. There are tens of thousands of proteins which can have different 

roles[1], [2]. They can act as antibodies to protect the body from viruses and bacteria, 

enzymes which carry on chemical reactions in cells, or cell signalling proteins which 

transmit the messages between cells or as structural components, etc.[3] Antibodies can 

recognise an antigen (e.g. bacteria, viruses, allergen, fungi) that enters a body and can 

bind to it and mark it or the infected cell for the phagocytes to neutralise it[4], [5]. 

Enzymes are proteins specialised in controlling the chemical reactions in living 

organisms. They can speed up or slow down processes such as digestion, nerve function, 

breathing or getting rid of toxins. Enzymes have an active site which binds the substrate 

and facilitates reactions to convert it into the product[6]. For example, lipase breaks fats 

into fatty acids or amylase, which converts starch into glucose[7]. Enzymes are also used 

in various industrial applications such as biofuel production, food processing, and 

biological detergents to remove stains[8]. The function of the enzyme is defined by the 

chemistry and geometry of its active site. The active site is built of specific amino acids 

which creates a chemical environment to facilitate the reactions with substrates. It also 

determines the strength of substrate bonding. The shape of the active site should 

complement the shape of the substrate for effective binding and catalysis. Additionally, 

the spatial arrangement and orientation of the active side can reduce the activation energy 

for the reaction[9], [10]. Structural proteins are different from functional proteins, thanks 

to their three-dimensional shape, playing a key role in maintaining the shape and structure 

of cells and tissues. Usually, they have a characteristic part of a sequence that repeats and 

forms a higher-order structure. One of the examples of structural proteins and their 

functions is collagen, which is formed as a three-strand helix and is found in the body’s 

connective tissue[11]. Keratin monomers are assembled into bundles, which form 

intermediate filaments in nails, hairs, hooves or horns. Actin polymerises into long, stiff 

fibres, which form a cytoskeleton to support the shape and size of a cell[12]. Elastin 

allows tissues like lungs, blood vessels or skin to come back to their original shape after 

stretching [11]. The building blocks of proteins are called amino acids. There are a wide 

range of amino acids with specialised functions. The 20 amino acids encoded in the 

genetic code used by all living organisms to synthesise proteins are called canonical 
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amino acids.  Each of them consists of the central carbon (C-alpha) atom linked to the 

carboxyl group (COOH) and amino group (NH2). Amino acids have the side chain- a 

group of atoms attached to the C-alpha atom, unique for each amino acid, except for 

proline, whose side chain is connected back to the amino group, creating a five-membered 

pyrrolidine ring and glycine, which does not have a side chain[13]. How the amino acids 

are sequenced and organised in space determines the protein function and how it interacts 

with the environment. This can be described and interpreted at different levels[14]. The 

primary structure of proteins simply describes how the amino acids are ordered in a linear 

sequence. Amino acids are linked by the covalent bond created by the dehydration 

synthesis reaction between the carboxyl group of one amino acid and the amino group of 

the next one, also called the peptide bond. As a byproduct of this reaction, a water 

molecule is released[15]. A sequence of amino acids linked together by the peptide bonds 

is called a polypeptide chain. Each polypeptide chain has a free amino acid group at one 

end, called N-terminus and a free carboxyl group at the other end (C-terminus). This 

determines the directionality of the polypeptide chain and is important for protein 

synthesis. The interactions between hydrogens in the protein backbone result in the 

specific orientation of dipoles. Another factor that contributes to stabilising the three-

dimensional arrangement of amino acids is side-chain-backbone and side-chain-side-

chain interactions. The side chains have different chemical properties: for example, they 

can have positive or negative charges, and they can be non-polar or polar but non-charged. 

Because of this, the side chains can bond with one another by various interactions, such 

as ionic bonds between charged side chains, hydrogen bonds between the polar ones, or 

weak van der Waals interactions between hydrophobic side chains. These interactions, 

their type, and their location in the sequence define how the protein chain bends and 

folds[16]. In some cases, due to the steric effect resulting from the spatial collision of 

atoms, their interactions can be limited or impossible, which also affects the folding 

pattern of a protein. As a result of all listed conditions, the secondary structure of the 

protein is defined. The secondary structure contributes to the overall 3D shape of the 

protein in the form of alpha-helices and beta-sheets[17]. The alpha helix is shaped as a 

right-handed coil. Each turn consists of 3.6 amino acids, with the rise of 5.4 Å per turn. 

The stability of this structure is preserved by the hydrogen bonds between the carbonyl 

oxygen of one amino acid and amine hydrogen of another amino acid, located four 

residues earlier in the sequence. The side chains of the residues forming an alpha helix 

are pointing outward of the helix which makes it possible for the side chain to interact 

with other parts of the molecule or other molecules[18]. Beta strands are sections of 3-10 
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amino acids in an almost linear conformation. Thanks to this, the adjacent beta strands 

can form hydrogen bonds between them, which leads to the formation of beta sheets. B 

sheets can be formed in a parallel (adjacent beta strands run in the same direction from 

the N-terminus to the C-terminus) or anti-parallel way. The stability of the beta sheets is 

achieved by the extensive network of the hydrogen bonds between the carbon oxygen of 

an amino acid in one beta strand and the amine hydrogen of amino acid in the parallel 

beta strand. Beta sheets are involved in forming active and bonding sites of the protein 

and play a key role in the formation of higher-order protein structures and intermolecular 

interactions[19]. Additionally, beta sheets contribute to the stability and integrity of 

keratin structures. The alpha helices and beta sheets are connected with shorter (typically 

less than 10 amino acids), less regular structures of turns, which represent sharp changes 

in the directions of the polypeptide chain and loops, which are more flexible and can 

adopt different conformations[20], [21]. The tertiary structure describes how the 

polypeptide chain is arranged in space. This three-dimensional structure determines the 

function of protein, and its ability to interact with other molecules. If a protein contains 

more than one polypeptide chain (e.g., haemoglobin) or more than one subunit, then the 

quaternary structure describes their relation in space[22]. The process of a protein 

adopting its functional 3-D shape is called protein folding[23]. 

The three-dimensional shape of the protein can be described using the Ramachandran 

angles[24]. The angle between nitrogen and C-alpha atoms is described by the torsion 

angle Phi 𝜙, and the angle between C-alpha and carbon atoms Psi 𝜓. The use of only two 

angles is sufficient due to some structural restraints. The peptide bonds between nitrogen 

and carbonyl group are planar which limits rotations about this bond, The possible values 

of 𝜙 and 𝜓 angles are further limited by the potential clashes between atoms[25]. The 

Ramachandran plot is an important tool used to visualise how the angles in the amino 

acid fit into the energetically allowed and possible conformational regions. It helps to 

identify clashes between amino acids as Ramachandran outliers are placed in disallowed 

regions. They are usually the result of poor data quality or model building errors in protein 

structure determination[26].  

Understanding the protein folding phenomenon has been a vital task for structural biology 

since the 1950s. Through the years, different techniques have been used to determine 

protein structures. X-ray crystallography helped solve many of them. It requires 

crystallising the protein and then, with the use of X-rays, obtaining the electron-density 

map, which describes how the atoms are organised in the three-dimensional space[27]. 

Cryogenic electron microscopy (cryo-EM), began with the first reported implementation 
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in 1981 by A.W. McDowall and J. Dubochet when pure water was vitrified to obtain ice 

with glass-like state without crystallisation. Vitreous ice preserves the natural state of 

proteins[28]. Cryo-EM method flourished after the resolution revolution in the 2010s, 

when the improvements in electron detector technology and data processing algorithms 

opened the doors to routinely obtaining high-resolution structures[29]. The cryo-EM 

resolution record was broken again in 2022 with the 1.22Å apoferritin map. In 2023, 

almost 75% of over 7000 deposited cryo-EM maps had resolutions of 4Å or better[30]. 

Cryo-EM can provide information about the structure and functions of large proteins and 

protein systems. The understanding of cellular processes makes it possible to identify 

proper therapeutic interventions for many diseases. Automated tools that would allow 

quick and reliable processing of the cryo-EM data to obtain a high-resolution structure 

would be extremely useful for modern structure-based drug design.  

After a protein candidate is determined to play a role in a metabolic or signalling process 

associated with a certain disease, it can become a drug target. Some of the desired features 

of a good drug target would be efficacy and safety that, apart from therapeutical effects, 

it would not cause side effects, druggability, which describes the possibility to modify the 

drug with small molecules or antibodies based on size, shape, and ability to form stable 

complexes with ligands, and finally the availability to be bio-marked to help monitor the 

therapy[31]. Knowledge of the three-dimensional structure of the biological target makes 

it easier to design a molecule complementary to the target’s binding site and achieve the 

desired outcome. It can be to activate or inhibit an enzyme, open or close an ion channel, 

or activate or deactivate a receptor. If the structure is known, ligands that can potentially 

bind with the target can be selected from the database of 3D structures or be newly 

designed[32].  

Another important factor considered in modern drug design is ligand affinity, which 

describes the strength of binding of the ligand to the receptor at any drug concentration, 

so the ligands with high affinity would require a lower dose. The selection or development 

of the new drug is an iterative process and often requires multiple optimisation steps[33]. 

Automating this process would require a reliable technique that could produce high-

resolution protein-ligand structures in a short time. Modern cryo-EM, with its future 

development directions, seems to be a perfect candidate for this task.  

One of the challenges for modern cryo-EM is the need for robust automated tools at 

different stages of the pipeline. Despite development of new methods and protocols, the 

sample preparation process often lacks reproducibility. It is hard to routinely ensure that 

parameters like optimal ice thickness, particle distribution, and high coverage of angular 
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views would be sufficient to obtain high-quality 3D reconstruction[34].  There are 

procedures which allow assessing the quality of the prepared samples before data 

collection to identify damaged areas of the grid or to measure the ice thickness by tilting 

the stage[35] or with the aperture limited scattering method (ALS)[36], but they are not 

fully automated, introduce additional steps in the data collection pipeline or cannot be 

performed on some of the microscopes because of the technological limitations (e.g. 

methods which require a microscope with energy filter). The development of better 

electron detectors and software tools for automated high-throughput data collection, 

resulting in up to 500 movies per hour and hundreds of thousands of particles from each 

data collection session, creates the need for additional tools for data processing to 

prioritise particle quality over quantity[37]. 

The final step of the data analysis pipeline is the atomic model validation. With the range 

of tools for automated model building, robust and reliable validation tools are required to 

check the parameters like local and global fit to map, protein backbone geometry, local 

secondary structure correctness and sequence tracing. Combining multiple tools for the 

final model validation would provide a comprehensive evaluation and spot issues which 

could be overseen while using only a single tool. 

The cryo-EM field is constantly improved with the new algorithms developed to target 

the potential issues at different data processing pipeline stages to help the users make the 

most of their data, or identify the problems or suggest the correct experiment optimization 

route. 

 

1.2 Overview  
 
In this thesis, I will focus on different stages of cryo-EM data processing, from how the 

sample preparation can affect data collection and image processing up to atomic model 

building and validation to identify the steps which can benefit from the automated tools 

for data processing. We observed that the ice and protein distribution can significantly 

differ between the samples, as the sample preparation procedures still lack 

reproducibility. This can affect the data processing as the particles from different ice 

thicknesses have different signal-to-noise ratios. Thin ice provides a higher signal-to-

noise ratio as it reduces the electron scattering more than thicker ice. Additionally, 

individual particles are less likely to overlap in the thinner ice regions. Unfortunately, 

some ice conditions may introduce preferred orientations resulting in missing views in 

the final map. As the cryo-EM density map is reconstructed from 2D projections of the 
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specimen, the most complete set of angular views is essential to obtain a high-resolution 

final map. 

We developed a software that estimates the ice thickness and distribution based on the 

pixel intensity recorded by the detector, which can be run at any stage of data processing 

and eliminates the need for an extra step of ice measurement by tilting the stage. We 

propose a procedure, which can be used to calibrate the estimated ice thickness to the 

values obtained by using the energy filter during data collection. 

A validation tool based on the False Discovery Rate approach was developed. It can be 

used to identify the parts of the atomic models which are misplaced or fitted into the 

background noise. We compare the performance of this method with other validation 

software. 

These contributions of the thesis are summarised below: 

1. Development of a software tool for processing the cryo-EM data with non-

uniform ice  

This thesis presents the IceBreaker software, which can be used to estimate the ice 

gradient in the cryo-EM micrographs, improve the contrast by automated removal of 

the gradient and annotate the particles based on a parameter referring to the ice 

conditions from where the particles were picked. The particles from similar ice 

conditions can be grouped and processed together to identify the optimal ice 

conditions for the data collection for a given specimen. 

2. Implementation of the model validation tool based on the False Discovery Rate 

approach 

This thesis presents software for model validation based on the False Discovery Rate 

approach which allows users to rank the residues in the atomic models based on how 

they fit into the cryo-electron density map. Residues with low scores can be 

automatically removed from the model. The tool is implemented in the CCPEM 

software suite. 

 
1.3 Thesis structure  
 

• Chapter 2 provides an overview of basic principles of cryogenic-electron 

microscopy, electron sources, image formation and detectors used for data 

collection. The methods and techniques used in cryo-electron microscopy for 

sample preparation, data collection, map reconstruction, atomic model building 

and validation are presented.  
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• Chapter 3 presents further developments on the IceBreaker software tool for 

cryo-EM data processing with a non-uniform background. It allows image 

segmentation based on local background features connected with estimated ice 

thickness. Particles picked from micrographs can be associated with the ice 

condition and grouped later based on this parameter. Ice thickness can also be 

calibrated to an actual measured value.  

• Chapter 4 presents additional analysis of how parameters like sharpening factors, 

or number of particles used for refinement affects the software tool for atomic 

model validation based on the False Discovery Rate algorithm. Each residue in 

the atomic model is ranked based on how it fits into the density or background 

noise. The tool was compared with the Atom Inclusion score commonly used for 

cryo-EM data.  

• Chapter 5 summarises the research presented in this thesis and provides an 

outline of possible future work.  
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2 Background 
 
 
Knowledge of the three-dimensional structure of a biological macromolecule is the key 

to understanding its function and how the structural alterations can change it. Structural 

biology focuses on how atoms are organised in space, the interactions between them and 

how they form three-dimensional structures that make a molecule.  

Over the years, a range of different imaging techniques and instruments were developed 

and used to view and analyse objects invisible to the human eye. Techniques like X-ray 

crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy and cryogenic 

electron microscopy were developed to push the resolution limits achieved with light 

microscopy. Each method has advantages and disadvantages based on the radiation 

source, wavelength, characteristics, and size of the specimen[38]. Every method has a 

theoretical limit of the minimal distance between two points that can be distinguished, 

called the resolution. Resolution is related to the wavelength of the light used for imaging. 

The shorter length makes it possible to achieve higher resolution and investigate finer 

details[39]. In practice, the achievable resolution is usually smaller than the theoretical 

one, as it is also affected by imperfections of the imaging system, interaction of the waves 

with the sample, image processing procedures and other factors specific to each method. 

Optical microscopy uses visible light with wavelengths in the range of 390-760nm, which 

results in a theoretical resolution of 200nm, which limits the users to analyse the sample 

at most at the cellular level. Typically, the view can be magnified 1000-2000 times, and 

the human eyes can be used as the detector[40]. The visible light does not damage the 

sample, so samples require minimal preparation, which is as simple as applying the 

droplet of solution with the sample on the slide and placing a coverslip on top[41]. 

Additionally, this method allows users to observe specimen movement in real-time. Light 

microscopy is an easy-to-use and affordable technique as the optical lens system does not 

require sophisticated maintenance compared to electron microscopes. Because of the 

limitations in resolution and magnification, the specimen cannot be analysed at the atomic 

level. 

X-ray crystallography measures the angles and intensities of beams diffracted in a crystal. 

X-rays have small wavelengths from 10 pico- to 10 nanometres, with the wavelength 

around 1 Å used in synchrotron facilities. The short wavelengths, which correspond to 

inter-atomic distance, make it possible to analyse the sample at the atomic level. Among 

the main limitations of this method is that the protein sample must be purified and then 

crystallised[42]. The protein crystal is an ordered 3D array of uniformly spaced molecules 
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of the same protein. The areas around the proteins are filled with water which can make 

up to 30-70% of the crystal. The crystallisation process parameters might differ for 

different samples and often involve trial and error procedures to find the right protein 

concentration, temperature and pH conditions. Additionally, membrane proteins would 

require additional stabilisation during the purification process. This can be done by 

adding a detergent to the sample that would create a protective layer around hydrophobic 

areas and conserve it in a near-native state, but this can later affect the crystal formation 

by introducing micelle areas between the proteins in the crystal array[43].  The crystal is 

exposed to the X-ray beam to produce a diffraction pattern, which is a 2D representation 

of how the X-rays interfered with the crystal's proteins. The diffracted X-rays also 

interfere with each other in a constructive or destructive way, resulting in changes in 

recorded intensity. The diffraction pattern carries information about the intensity of the 

diffracted X-rays as a function of the diffraction angle. Another challenge is the ‘phase 

problem’ arising from the fact that only the intensity of diffraction spots can be measured. 

The phase information can be reproduced using some computational methods. Initially, 

for the high-resolution datasets (<1.2 Å), a set of theoretical set of initial phases can be 

used based on the relationship between the spot intensities[44]. Molecular Replacement 

can be used to reproduce the phases based on a similar, already-known structure, but this 

can introduce bias[45]. Another approach includes the introduction of a heavy atom into 

the crystal structure and comparing the diffraction pattern with the original one. The 

differences in intensities help to identify the heavy atom position and calculate the initial 

phases. The information about amplitude and the phases is used to calculate the structure 

factors which represent the Fourier transform of the electron density in the crystal. This 

information can be used to reproduce the 3D map of the position of electrons in the 

structure and to fit an atomic model according to the protein sequence.  The X-rays used 

for imaging damage the protein of interest by breaking the atomic bonds but also 

deteriorate the crystal itself, lowering its diffraction abilities over exposure time[46].  

Another method used to analyse the structure of proteins is Nuclear Magnetic Resonance 

is used to analyse resonance frequencies of nuclei in a magnetic field, which provides 

structural information at the atomic level. The method is considered as not damaging the 

sample as long as the specimen is not sensitive to radiofrequency radiation. The radiation 

power, pulse intensities and sequences should be optimised to avoid magnetic field drift 

and artefacts in the spectrum. The sample is prepared as a solution of specimen in a 

deuterated solvent, which helps to maintain a constant magnetic field, and then placed in 

special high-quality NMR tubes[47]. The best results are achieved for small molecules, 
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up to 30 kDa, as with the larger molecules, the number of resonance signals increases and 

starts to overlap, which makes it challenging to identify single peaks. The quality of a 

reconstruction depends on the sensitivity of a spectrometer[48], [49].  

Cryo-EM uses electrons accelerated by the difference in electric potential for imaging. 

With their dual nature, the electrons can act both as particles and as waves. The 

wavelength depends on the accelerating voltage. In cryo-EM, the commonly used 

voltages and corresponding wavelengths are 100 keV for four pico-meters wavelength 

and 300 keV for two pico-meters[50]. This range of wavelengths should theoretically 

allow for a resolution well below 1A. However, in practical applications, several other 

factors, such as sample quality and radiation damage, limit the final resolution of a 

reconstructed 3D map. The sample preparation includes applying the solution with 

protein on a metal mesh grid. After the excessive amount of solution is blotted from the 

grid, the sample is rapidly frozen in liquid ethane to maintain the near-native biological 

state of the specimen and avoid the formation of crystalline ice. Ideally, a single layer of 

the protein particles with many different angular orientations would be suspended in thin 

vitreous ice. High angular coverage allows users to obtain as many 2D projections of the 

molecule as possible and perform 3D map reconstruction. The vitreous ice provides a 

uniform background and improves contrast. Unfortunately, the process of sample 

preparation is still highly random and non-reproducible. Users do not have much control 

over the final particle distribution and ice thickness[51]. Recent developments in cryo-

EM sample preparation procedures and devices are presented in the next sections of this 

thesis. The data is collected as a series of 2D images of grid sections with a sample on it. 

From these images, 2D views of the protein are extracted and combined to obtain a 3D 

specimen reconstruction. With the new data processing methods developed in recent 

years, especially with the rise of Artificial Intelligence, a lot of stages of the processing 

pipeline are still not fully automated and often depend on the user's decision i.e. about 

discarding low-quality particle views or selecting reference models for 2D and 3D 

analysis[52]. Table 2.1 shows a comparison of different methods used in structural 

biology. 
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Table 2.1 Comparison of different methods for imaging biological samples. 

Method 
Light 

microscopy 

X-ray 

crystallography 

Nuclear Magnetic 

Resonance 

Cryogenic 

Electron 

Microscopy 

Radiation 

source 
Visible light X-ray 

Radiofrequency 

waves 
Electron beam 

Resolution 

range 
200 nm 0.5-2 Å 0.5-1 Å 1.9-3 Å 

Sample Living sample 

Purified and 

crystallized 

protein 

Protein in deuterated 

solvent placed in a 

specialised  NMR 

tube 

Protein in the 

solution, applied 

to the metal grid 

and rapidly 

frozen 

Collected 

data 

Magnified 

image visible 

to the human 

eye or a 

camera 

X-ray 

diffraction 

pattern 

NMR spectra 

representing 

absorption of 

radiation by atomic 

nuclei 

2D micrographs 

of the sample 

showing 

projections of 

the specimen 

 

This section of the thesis introduces the details of cryogenic-electron microscopy, 

including the sources of the electron beam, the process of image formation and the types 

of detectors used for data collection. The stages of Single-Particle Analysis (SPA) are 

described, starting with sample preparation and data collection.  Then, the major steps in 

the data processing pipeline are described, including methods which allow users to 

process 2D images to obtain a three-dimensional map that can be used to fit the atomic 

model. 

  



 21 

2.1 Cryogenic Electron Microscopy 
 
Cryo-EM became one of the major techniques, alongside X-ray crystallography and 

Nuclear Magnetic Resonance spectroscopy, for determining protein structures. 

Accelerated electrons in the microscope column pass through the sample and interact with 

it to create the final image on the detector. 

 
2.1.1 Electron sources 

Typically, in electron microscopy, the source of the electrons is called an electron gun. 

The electrons are released from the solid surface in the vacuum as the energy is applied 

to overcome the work function. The work function determines the minimal energy 

required to release the electron from the surface in a vacuum, and it depends on the 

materials used. Preferably, materials with lower work function should be used as they 

require less energy to release the electrons[53], [54]. The electron beam should be 

spatially and temporally coherent. Temporal coherence means all emitted electrons have 

the same energy and, therefore, the same speed and wavelength. This way, all of them 

can be focused by the lens system on the same imaging plane along the optical axis of the 

microscope column. Spatial coherence means that all emitted electrons come from the 

same direction and go through the sample at the same angle to produce a sharp image[55].  

Two main types of electron guns used in cryo-EM are thermionic and field-emission gun 

(FEG). The thermionic gun usually consists of a hairpin-shaped tungsten that emits 

electrons when heated up to 2800K with current applied to it, with the required vacuum 

of 10-3 Pa. It is the least expensive and easy to replace compared to other types of electron 

guns[56]. Another electron source used for thermionic emission is a crystal of lanthanum 

hexaboride (LaB6). The sharp tip of the crystal helps to improve the spatial coherence 

compared to the Tungsten wire. It can operate at a lower temperature of 1700K. Low 

coherence is one of the disadvantages of thermionic guns, as the electrons can be emitted 

in different directions from the tip of the gun. To alleviate that issue, an additional element 

called the Wehnelt cylinder is located below the gun and acts as an anode, bringing the 

emitted electrons into the convergence point. Another type of electron source commonly 

used in microscopy is Field Emission Gun (FEG). Instead of heating up the gun material 

to high temperatures, electrons are pulled out from the tip by the electric field located 

below the gun. The very sharp tip of the FEG helps to achieve better coherence. FEG can 

also be assisted by heating the gun material. The approach that uses only an electric field 

is called cold FEG, operating in as low temperatures as 300K but requires a high vacuum 

of the order of 10-8 Pa[57]. A major disadvantage of this solution is the costs of operation 
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and complicated replacement procedure resulting in microscope downtime. The operating 

parameters of different electron guns are summarised in Table 2.2. 

 
Table 2.2 Comparison of the parameters of different electron guns. 
 

Tungsten filament LaB6 crystal Field Emission Gun 

Operating temperature [K] 2700 1700 300 

Beam crossover size [um] 50 10 0.01 

Beam stability [%/h] 1 1 5 

Required vacuum [Pa] 10-2 10-4 10-8 

Lifetime [h] 100 500 >1000 
 
There are also other parameters of the electron beam that must be set for the data 

collection, which affect the quality of the reconstructed 3D map. Flux is the number of 

electrons per unit area in a unit of time. The dose describes how much energy is deposited 

in the specimen measured in units of energy per unit volume. The total dose is calculated 

as a product of flux and exposure time. If the flux of 5 e/A2/s is applied for 5 seconds, the 

total dose would be 25e/A2. Higher flux used over a shorter time can provide better 

contrast but also leads to increased radiation damage compared to lower flux over a longer 

exposure time, even if the total dose is the same. Typically, in cryo-EM data collection 

total doses between 15-60 e-/A2 are used. The total dose can be fractioned during the data 

collection by splitting it into multiple frames. The radiation damages high-resolution 

features first as the dose accumulates over collected frames. The early frames of the 

collected movie have low contrast but contain high-resolution information. As the 

contrast improves in the next frames, the high-frequency information is lost[58]. To 

improve the signal-to-noise ratio and compensate for increasing radiation damage, the 

frames are dose-weighted. This approach gives weights to different frequency bands of 

the signal. The weight of the high-frequency information, which is high in the early 

frames, decreases in the later frames as the high-frequency features are damaged. The 

algorithms for dose-weighting are routinely used in the cryo-EM data processing 

pipelines at the stage when the frames are averaged and combined[59]. Some studies also 

reported that the first few of the collected frames have significantly lowered high-

resolution information. As the exact reasons of this phenomenon are not yet fully 

explored, the high-frequency information from those frames is also down-weighted[60].  
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2.1.2 Image formation 

Cryogenic-electron microscopy is a field of transmission electron microscopy. This 

means that the image is created as a result of the interference between the unscattered and 

scattered electrons that go through the sample. Additionally, the whole area of interest is 

illuminated at the same time by a spread electron beam, as opposed to scanning 

transmission electron microscopy, where the focused electron beam is rastered over the 

sample. The image is then recorded by a detector with a sensor made of a 2D array of 

pixels.  

The image in cryo-EM is created as the electron beam travels through the sample and 

interacts with it. In principle, there are three possible outcomes of these interactions as 

represented in Figure 2.1. The electron beam can be unchanged, scattered elastically or 

inelastically. The electrons with unchanged direction and energy make up to 80% of total 

events and would serve as a reference in contrast formation. For the thin biological 

samples imaged with a 300 keV electron beam, the probability of inelastic and elastic 

scattering events is 3:1, which means for each scattering event useful for image formation 

there are three damaging events[61]. 

 

 
 
Figure 2.1 Electron beam interactions with the atoms in the sample A) unscattered beam, B) elastically 
scattering with no energy deposition into the sample, C) inelastically scattering, the energy deposited into 
the sample can result in the release of secondary electrons or orbital jumps with X-ray emission from the 
specimen atoms, based on[62] 

The amplitude contrast is a result of the inelastic scattering events. As the electrons hit 

the sample, they lose some of their energy, which can be emitted in different forms of 

radiation or deposited to the sample, resulting in radiation damage. With lower energy, 
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inelastically scattered electrons would be focused by the lens system on a different plane 

than the original beam. Additionally, some of the electrons scattered with larger angles 

can be moved further from the optical axis of the microscope and be lost from the lens 

system or stopped by the aperture. The inelastically scattered electrons contribute to the 

formation of amplitude contrast but, in general, are considered damaging events. They 

can be removed during the data collection process with energy filters[51].  

Elastically scattered electrons do not lose any of their energy. As a result of the scattering 

events, their path is changed, which results in a shift of their phases compared to the 

original beam, and they contribute to the phase contrast. The phase contrast is a result of 

electrons acting as a plane wave. As the wave propagates with specific amplitudes and 

phases, atoms of the specimen and solvent in the sample act as scattering centres. The 

elastically scattered waves would have different phases compared to the original 

unscatterred beam. As a consequence, the interference between the signals can be 

constructive or destructive, which can increase or decrease the contrast of the final image 

or even cancel out the information at certain frequencies. With the objective lens system 

located below the sample in the microscope column, the scattered waves can be focused 

on the detector[63]. All of the electrons scattered at specific angles converge at the same 

point on what is called the backfocal plane. Effectively, the back-focal plane contains the 

Fourier Transform of the sample image, informing how much of the given Fourier 

components is present in the sample. As the electrons travel further down the microscope 

column, they create a real-space image (on what is called the image plane) as a result of 

the interference between the scattered and unscattered beam[64], [65]. Figure 2.2. 

presents the pathways of scattered electron beams focused by the objective lens to create 

a magnified image and how they interact at the backfocal plane to produce a diffraction 

pattern.  
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Figure 2.2 Electron beam scattered through the sample. Beams scattered with the same angle 
overlap at the same spots on the backfocal plane producing a diffraction pattern (Fourier transform 
of the image). As the electrons travel down the microscope column they recreate the real-space 
image on the image plane which can be magnified, based on [63] 

The final image is then magnified and recorded by the detector. This is not the ideal 

representation of the information in the sample as it is affected by multiple imperfections 

of the imaging system, such as lens aberrations and defocus. The combination of all of 

these factors can be described by what is called a Contrast Transfer Function (CTF). It 

describes the changes in contrast as a function of spatial frequency. The changes in 

contrast result from how much of specific waves scattered at given angles contribute to 

the final image collected in the detector. The higher scattering angles correspond to the 

high-frequency information. The CTF values oscillate between -1 and 1 in a cosine-like 

manner, starting from 0. The places where the CTF have a value of 0 are called zero-

crossings, and that frequency information is lost from the image[66], [67]. The defocus 

parameter is used to modulate the CTF during the data collection to get the most complete 

frequency coverage. The defocus value is a measure of how far from the sample the 

electron beam is focused. Typically the values range between 0.5-3.5 microns. Lower 

defocus values result in the first zero crossing at higher spatial frequency, which means 

that some low-resolution features, such as the general shape and positions of the proteins 

or virus shells, would be lost due to lack of contrast. Higher defocus results with first zero 

crossing at a lower frequency, providing stronger contrast of low-frequency features but 

introducing faster signal oscillations in high-frequency regions. As a result, the contrast 
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value and sign at neighbouring high frequencies start to cancel itself instead of 

contributing to the final image. This leads to signal delocalisation and loss of high-

frequency details of the specimen. In summary, the defocus modulation of CTF leads to 

balancing the contrast and resolution in the recorded dataset, shifting the first zero-

crossing position towards lower or higher frequencies. High defocus emphasises the low-

frequency features at the expense of damping high-frequency information. Low defocus 

values make it easier to record high-frequency information but lose the low-frequency 

features[68]. The effect of different defocus values on the recorded images is presented 

in Figure 2.3. 

 
 

   

 
Figure 2.3 Effect of different defocus values on the collected images, and the CTF plots A) image 
recorded with low defocus (0.95nm) results in information loss in the low-resolution area with 
the first zero-crossing of the CTF is moved to higher spatial frequencies  B) image with high 
defocus (2.7nm) reveals more low-resolution features of the specimen, as the first zero-crossing 
of the CTF is shifted to lower spatial frequency. Reproduced from [68] Copyright © 2000 Elsevier 
Science Ltd. All rights reserved. Permission to reuse obtained via RightsLink order 
5856460032962 
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Additionally, the CTF is also affected by the envelope function, as the signal is dampened 

in the high-frequency ranges due to the electron beam's lack of spatial and temporal 

coherence. The high-frequency information is also lost to the blur introduced by the 

beam-induced motion of the specimen and radiation damage[69, p. 8].  

Spherical aberration, commonly denoted as Cs, is one of the inherent properties of the 

objective lens, which results in stronger focusing of electrons passing further from the 

optical axis. This can be partially reduced by using the spherical aberration corrector, an 

additional lens system that introduces the aberration in opposite directions or by the 

objective aperture, which blocks the electrons with high scattering angles or with 

computational methods[70].  Another type of aberration is chromatic aberration, the 

electrons with different energies are focused at different positions on the optical axis. This 

is caused by the focal length of a specific lens depending on the electron energy. Electrons 

with higher energy will be focused behind the imaging plane and lead to amplitude 

contrast changes and blurring. The effect of the chromatic aberration can be reduced by 

using the energy filters to remove electrons with different energy[71].  

Coma is an aberration caused by misalignment of the objective lens and the optical axis. 

It introduces directional, asymmetric blurring in the images and can be removed by 

carefully shifting and tilting the electron beam in the microscope or later during the image 

processing stage[72].  

One of the other important parameters for the cryo-EM data collection is astigmatism. It 

generates directional changes in defocus in the image. As a result, the Contrast Transfer 

Function visualised in the Fourier space is represented as ellipses instead of circles, as it 

would be with no astigmatism. The astigmatism is determined by three parameters: 

defocus in the first direction ∆𝑓, second direction ∆𝑓 and the angle 𝛽 between the long 

axis of the ellipse and the X axis[73] as shown in Figure 2.4 A) Astigmatism can be 

corrected during the microscope alignment and calibration before the data collection. A 

common technique to identify the issues with astigmatism is to assess the circularity of 

the Thon rings in the Fourier transform of an image. The Thon rings represent how the 

CTF of the microscope modulate the signal. The interchanging bright and dark rings 

represent frequencies where the contrast is either maximised or the contrast is lost. As 

some of the features in the Thon rings patterns also depend on other factors such as 

defocus, all of them should be symmetrical and circular. In the presence of astigmatism, 

the Thon rings become elliptical which limits the final resolution, affecting especially the 

high-frequency features[74]. Figure 2.4 B) presents the Thon rings with the estimated 

Contrast Transfer Function. 
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Figure 2.4 A) Parameters used for astigmatism correction, B) Thon rings from a cryo-EM 
micrograph overlaid with estimated Contrast Transfer Function (lower-left quartile), reproduced 
from [75] Copyright © 2015 Elsevier Inc. All rights reserved. Reuse permission obtained from 
RightsLink order 5856541467989 
 
 
2.1.3 Electron detectors 

Finally, the resulting image is recorded by the detector. Over the years different types of 

detectors were used, starting with photographic film, charged-coupled device cameras 

and direct electron detectors based on the complementary metal-oxide semiconductors 

(CMOS) technology. The commonly used parameters which can be used to evaluate the 

performance of the detectors are data collection speed and pixel size, but also Modulation 

Transfer Function (MTF) and Detective Quantum Efficiency (DQE). The Modulation 

Transfer Function describes the response of the detector to the input signal as a function 

in the frequency domain. This information can be used to check how contrast is preserved 

in different frequency ranges.  It has a value of 1 at zero spatial frequency and decreases 

to 0 at the diffraction limit, but it is not monotonic. Due to this behaviour, high-resolution 

details of the specimen might not be able to resolve as the contrast is lost. Some factors 

that affect the MTF are the type of electron detector used (electron backscattering events 

occurring in detectors with thicker sensor layers), overall quality of the lenses and 

microscope alignment and electron beam coherence. Well-preserved MTF would make it 

possible to achieve the final resolution of ⅔ Nyquist. With better MTF, the signal-to-

noise ratio in the images is also higher, which makes it possible to achieve high-resolution 

reconstruction with a smaller number of particles or make it easier to identify 

heterogeneity in the sample. Some MTF information can be preserved by collecting the 

data with an energy filter, limiting the spread of electron energies. To recover information 
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lost due to the MTF decline, the signal can be weighted in specific frequency bands, or 

some sensor-specific MTF compensation can be applied based on the references provided 

for commonly used sensors at a given accelerating voltage[76]. 

The DQE is defined as a ratio of the detector's squared input signal-to-noise ratio and 

squared output signal-to-noise ratio. As a perfect detector would have a DQE of 1, this 

value is always lower as the signal from the electrons is affected by different noise 

associated with each pixel. The DQE is also represented as a spatial frequency function 

that allows the evaluation of detector performance in different resolution bands up to 

Nyquist. A detector with higher DQE can preserve the SNR better. For radiation-sensitive 

biological samples, it is more important to have the DQE as high as possible, even at the 

cost of lower MTF, as the MTF can be corrected during the processing pipeline with an 

additional filtration step. To maintain high DQE and minimise radiation damage, the 

images are collected with low dose and high framerate data collection speed[77].   

Photographic film was commonly used in the early years of cryo-EM before digital 

detectors were introduced. The canister with a set of films is located at the bottom of the 

microscope column. After all films are exposed to record the data, the canister is taken 

out to develop the images from the films. Then, the developed images have to be digitised 

with a scanner for further processing. As the photographic film requires manual handling 

for processing, it brings the risk of damaging it or introducing artefacts to the images, but 

also introducing contaminations into the microscope as the film container is replaced. 

Additionally, there is no live feedback, and the data can be accessed and analysed only 

after the data collection is finished, which makes it impossible to easily optimize data 

collection parameters. The typical photographic film used in electron microscopy is a 

square piece of 8x10 cm, but thanks to the very localised interaction between the electrons 

and the film material, it can produce a high-resolution image up to 10,000 by 12,000 

pixels after digitisation. The scanner step has to be set according to the microscope 

magnification to result in half of the Nyquist frequency. Photographic film has better 

DQE at high frequencies compared to other types of detectors but performs worse in the 

low-frequency range, which requires higher defocus during data collection[78]. 

One of the major advantages of digital detectors is that the images can be analysed almost 

immediately after the data is collected, which is a cornerstone for automated data 

collection and analysis pipelines. The CCD detectors have a scintillator layer made of 

phosphor, which produces photons in the places where electrons are scattered. Photons 

are then transferred via fibre optics to the CCD camera layer, where the image is recorded. 

The scattered electrons can highlight larger areas or even get backscattered and produce 
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photons multiple times which would lead to blurry images and artifacts. The CCD-based 

detectors have better DQE in the low frequency compared to the film but perform worse 

in the high-frequency bands. To mitigate this, a higher magnification is used to analyse 

the high-resolution details of the specimen in low-frequency regions. This approach, 

however, limits the number of particles in the field of view[79]. 

The development of direct electron detectors (DED or DDD) significantly contributed to 

the ‘resolution revolution’. The electrons are recorded directly on the silicon surface of 

the detector instead of being converted to photons. This brought improvement compared 

to the CCD cameras in terms of signal-to-noise ratio and signal localization. Additionally, 

with the 35𝜇m thickness of the silicon layer, the scattering events are further reduced. 

The DQE of the direct electron detectors is higher in all frequency ranges compared to 

CCD devices. The CMOS technology used in this type of detector offers higher readout 

speed, which also changed the principles of data collection. With the high-speed sensors, 

the data can be recorded in the ‘movie mode’, which means that a series of micrographs 

is collected during a single exposure. Thanks to this, the beam-induced motion of the 

specimen can be corrected in the data processing pipelines. Direct detectors are also more 

sensitive than CCD systems, so the images can be recorded with lower electron dose 

resulting in more data before the sample is damaged by the radiation. Figure 2.5 shows 

the comparison Modulation Transfer Function and Detective Quantum Efficiency of three 

direct electron detectors: Gatan K2 summit, FEI Falcon II, and Direct Electron DE-20, 

used for 300 keV cryo-EM data collection[80]. 
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B 

  

 
Figure 2.5 Characteristics of the detectors commonly used in cryo-EM A) Modulation Transfer 
Functions, B) Detective Quantum Efficiency. Reproduced from [80] Copyright © 2014 The 
Authors. Published by Elsevier B.V. This work is licensed under a Creative Commons CC-
BY license. 
 
 
Modern direct electron detectors can operate in different modes during the data collection 

depending on the requirements to prioritise either the data collection speed or the quality 

of the final reconstruction.  

In the integrating mode, the total charge generated as the electrons hit the detector over 

the exposure time is recorded. This means that as the electron interacts with the sensor 

layer, the signal can be spread across the group of pixels (Fig. 2.6.A). The exposure time 

is shorter, and a higher dose can be used. As a result, the overall data collection speed is 

faster, but the noise from the electron interactions with the detector lowers the DQE. The 

counting mode offers better signal localisation, as the individual electron events are 

detected and counted over the exposure time (Fig. 2.6.B). This is achieved thanks to the 

high frame rate. Recorded events are reduced to the pixels with the highest charge instead 

of being spread across a group of pixels. Lower input noise and limited electron scattering 

events on the detector surface result in higher DQE in all frequency ranges. With longer 

exposure time lower dose has to be used to avoid rapid radiation damage. The data 

collection speed is also lower compared to the integrating mode, but improvements in 

DQE and superior image quality usually make it possible to achieve a higher final 

resolution of the reconstruction[81]. The super-resolution mode is the approach which 

makes it possible to record data beyond the physical limit of the pixel size. As the 

distribution of energy deposited during the electron event is analysed over a small cluster 
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of pixels, it can be estimated how electrons interacted with the detector in sub-pixel areas, 

effectively doubling the original pixel resolution (Fig. 2.6.C)[82]. 

   
A 

 

B 

 

C 

  
 
Figure 2.6 Different operating modes of electron sensors in cryo-EM A) integrating mode: 
recorded electrons are spread across the group of pixels, faster data collection but also a higher 
noise from electron interactions B) counting mode: higher frame rate leads to better signal 
localisation, events reduced to a single pixel with highest value C) super-resolution mode: 
analysis of the electron distributions in a small cluster of pixels allow estimation of the signal 
location at sub-pixel level, based on [82]. 
 
 
The advancements in the detector technology allowed for routinely obtaining a near-

atomic resolution of the 3D electron density maps calculated from a series of 2D images. 

Recent advancements in both hardware and software tools opened the doors to the true 

atomic resolution with a 1.2 A map of apoferritin [22], which made it possible to resolve 

individual atoms in a protein. Despite the constant improvements and efforts from 

engineers and scientists, the cryo-EM data collection and processing procedures still need 

techniques to improve the reproducibility and quality of the reconstructions. Figure 2.7 

shows the main stages of the Single Particle Analysis workflow with the cryo-EM, from 

sample preparation to final atomic model validation.  

 
 

 
Figure 2.7 An overview general workflow of Single Particle Analysis with cryo-EM. 

 



 33 

2.1.4 Fourier space operations in cryo-EM data processing 

Since the very beginning of electron imaging the Fourier transform and operations in the 

Fourier space played a crucial role for the signal processing. In 1960s it was commonly 

used for amplification of the signal with Fourier filtering, determination of the particle’s 

orientation by the projection matching and even 3D reconstruction[83]. This section 

briefly introduces basic ideas and operations used at various stages of the cryo-EM 

processing pipeline, with an outline of how they can be applied to specific tasks. 

The Fourier transform decomposes the image into its sine and cosine components. This 

way the image can be represented in the frequency domain, where each point corresponds 

to a specific frequency.  For the image processing after the Fourier transform is done, the 

image is represented as a series of 2D signals. The 2D Fourier transform is defined with 

Equation 2.1, where u and v are spatial frequencies, 

     

𝐹(𝑢, 𝑣) = 	∫ ∫ 𝑓(𝑥, 𝑦)𝑒!"#$	('()*+)𝑑𝑥𝑑𝑦,-
!-

-
!-   Eq.2.1 

 

and the inverse transform with Equation 2.2: 

 

𝑓(𝑥, 𝑦) = 	∫ ∫ 𝐹(𝑢, 𝑣)𝑒"#$	('()*+)𝑑𝑢𝑑𝑣,-
!-

-
!-  Eq.2.2 

 

The Fourier transform can be fully inverted without losing information. An example of 

an cryo-EM micrograph and the amplitude spectrum from its Fourier transform is shown 

in Figure 2.8. The low frequencies are represented in the centre of the image and increase 

towards the edges. 

 

                    
Figure 2.8 Cryo-EM micrograph and it's power spectrum 
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The convolution theorem states that the convolution of two signals in the real space is 

equal to the inverse Fourier transform of the multiplication of their Fourier transforms 

(Eq. 2.3) 

 

𝑓(𝑥) ⊗ 𝑔(𝑥) = 𝐹!.	(𝐹(𝑥)𝐺(𝑥)),   Eq.2.3 

 

This relationship can be useful for filtering of the images, as instead of convoluting the 

image with the filtering kernel, a mask in the Fourier space can be applied to mask out 

the low or high frequencies and after the inverse transform obtain the filtered image in 

real space. It is important to avoid sharp edges on the filtering mask as it can introduce 

Fourier ripples to the reconstructed image. 

 

The cross-correlation can be used to identify similarities between two functions as one of 

them is shifted over the other. In the Fourier space, it is represented as a multiplication of 

one of the functions by the complex conjugate of the other (Eq. 2.4). 

 

∫𝑓(𝑥)𝑔(𝑥 − 𝑡)𝑑𝑥 = 	𝐹!.	(𝐹(𝑥)𝐺(𝑥)999999)   Eq.2.4. 

 

This property can be applied for the template matching for particle picking. As one of the 

functions can represent the template moving along the micrograph. The high correlation 

values would be reported for the locations representing the template in the image. It can 

also be applied for projection matching during the 2D classification or for the alignment 

of images. 

 
Finally, the 3D reconstruction is based on the central slice theorem, as the Fourier 

transform of a 2D projection of a 3D volume is also a central slice through the 3D Fourier 

transform of that object. The direction of the projection can be characterised by the vector 

normal to the slice. 

 
2.1.5 Sample preparation 

The first step of the cryo-EM experiment is sample preparation. The quality of the sample 

is crucial for successful data collection and high-quality reconstruction. One of the 

parameters to optimise at this stage is protein concentration, typically in the range of 0.5-

2mg/mL. Higher concentration can be beneficial to the formation of thin ice layers as the 
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particles are closely packed, but it can also lead to protein aggregation and reduce the 

number of particles useful for imaging. The stability of proteins is maintained by the 

buffer composition. Factors like ionic strength, pH, or addition of the detergents need to 

be optimised and typically, several different buffer conditions are tested and screened for 

optimal setup to identify the ideal setup[84]. Other factors that affect the sample quality 

are ice phase, thickness and uniformity. Crystalline ice can diffract the electrons, creating 

artifacts and leading to image degradation. The rapid freezing of the samples helps to 

achieve vitreous ice, which is a low-density amorphous ice state that preserves the near-

native state of proteins and improves contrast and image quality. After freezing, the 

sample must be handled at low temperatures (around -200oC) to avoid ice phase changes 

that can build up crystals and contaminations[51]. The preferred thickness of the ice 

ranges between 10-100nm but also depends on the size of the particles. Too thin ice might 

crack or exclude some specific views of the particles. Too thick ice can introduce inelastic 

scattering events. Recent studies indicate that the final resolution of the reconstruction 

depends on the ice thickness in the sample[85]. Ice uniformity can also help in data 

analysis and interpretation. The non-uniform ice distribution can lead to the preferred 

orientation problem, where some specific views of the particles are excluded. Also, 

varying ice thickness can result in different focus values for individual particles, which 

would be a challenge in the processing pipeline. Finally, the quality of the sample is also 

defined by the protein distribution on the grids. A sample, which has proteins well-

separated and not overlapping, evenly spread and providing many orientations is essential 

to obtain high-resolution reconstruction. The optimisation of the sample preparation 

procedures often requires a trial-and-error approach to find a proper buffer composition 

to ensure protein stability and achieve a sample with proper protein distribution in a thin, 

vitreous ice layer. This part of the thesis will describe approaches and parameters used in 

sample preparation routines to achieve high-resolution reconstruction. 

The protein and solvent solution is applied to the support grid. The support grid 

parameters to consider are material, geometry arrangement of the grid squares and 

material and geometry of the support film. The typical support for the cryo-EM sample is 

a 3mm metal, usually copper or gold, mesh grid. The size of the mesh is described by the 

number of squares per inch with typical available values of 200, 300, or 400. The density 

of the grid squares affects the data collection and can be selected based on the specificity 

of the planned experiment. For example, larger grid holes provide a better field of view 

for data collection, which can also be useful for tomography as the grid bars will not 

obstruct the view as the grid is tilted. On the other hand, smaller grid squares may provide 
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better mechanical stability for the sample and allow using higher beam intensity before 

the sample is devitrified, as the tighter packing of grid bars helps in better heat 

distribution. The mesh surface is covered with a perforated foil. The foil can be a 

perforated metal foil that creates a regular array of holes or holey and lacey carbon, which 

offers larger open areas for imaging with fine, irregular mesh. The foil hole area is where 

the sample will be placed for imaging. (Figure 2.9). Common materials used for the 

support film are amorphous carbon, gold or graphene. The typical foil parameters are hole 

size and distance between the holes, which range between 1.2/1.3 µm for diagnostic and 

0.6/1.0 µm for high-resolution cryo-EM. The notation 1.2/1.3 means that the foil hole 

size is 1.2 µm, and the spacing between the holes is 1.3 µm. As the smaller field of view 

may limit the imaging area, the smaller size of the holes helps to limit the beam-induced 

motion of the specimen. The selected size of the foil holes also depends on other factors, 

such as the size of the particle. [86].  

 

 
 
Figure 2.9 cryo-EM sample support a) 3mm metal mesh grid, b) view of the grid squares, c) close-
up of the perforated gold foil on the surface of the grid showing the pattern of the holes. 
Reproduced from [86] Copyright © 2016 Elsevier Inc. All rights reserved. Reuse permission 
obtained via RightsLink order 5856210776027 
 
The properties of the material from which the support is made also affect the quality of 

collected data. Two main features to consider when choosing the material for a cryo-EM 

grid are thermal shrinkage and charging. As the grids are exposed to the extremely low 

temperature of liquid ethane (77K), the material shrinks, which can introduce tensions on 

the surface. For example, vitreous ice has a higher thermal expansion coefficient 

compared to copper or amorphous carbon. During rapid freezing, the ice shrinks more 

than the supporting materials, leading to tensile stress in the sample. In some cases, it can 

lead to changing the geometry of the sample or even cracks in the supporting film. 

Insulating materials like amorphous carbon can be charged with electrons, and build up a 

positive charge in the vitreous ice, which would deflect the electron beam and result in 

blurry images[87]. 
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The properties of golden supports, such as high conductivity and radiation resistance, 

allow reducing the specimen motion during freezing compared to carbon supports. 

Additionally, the lower electrical stability of amorphous carbon caused by the 

manufacturing process can increase the instability of the sample and result in additional 

blurring resulting not only from specimen motion but the displacement of the support 

itself[88]. The optimization of the support grid and exploration of new materials to 

improve the sample distribution and parameters is still a point of interest for many 

researchers.  

One of the new materials used for the support film is monolayer graphene, which is a 

conductive material, only one atom thick and can be almost invisible on micrographs up 

to 300 keV. The reduced thickness of the graphene film (0.34nm compared to the typical 

20-200nm sample thickness) reduces the background noise from secondary electron 

scattering. It also shows a distinctive hexagonal diffraction pattern. A graphene 

monolayer can be applied to the grid holes made of stable gold, which allows for keeping 

all of the benefits from golden support[89]. The data obtained this way usually have better 

quality as the particles supported in the graphene monolayer have less beam-induced 

movement. The conductivity of this material can help to reduce the radiation damage, 

dissipating the build-up charge. It also could help to reduce the radiation damage thanks 

to potentially achievable thinner sample. A potential downside of this approach is that the 

graphene layer is hydrophobic and requires plasma cleaning or other chemical treatment 

to reduce this. Also, the preparation of grids with graphene monolayer support could 

result in low coverage and limited areas for effective cryo-EM data collection. The high 

quality and coverage grid preparation process itself requires expensive instruments, 

which are not yet easily accessible by most laboratories[90].  

Another direction of cryo-EM support improvements is experimenting with different 

geometry of the grid holes. Replacing the standard square grid holes with hexagonal holes 

(HexAuFoil) helps to maximize the number of the holes on the grid for more effective 

imaging compared to circular holes. It also allows the introduction of fiducial markers to 

easily identify the orientation of the grid and regions of interest for imaging at different 

magnification levels.[91].  

Before the sample is applied, the grid should be cleaned to remove any substrates that can 

be present on the grid after the manufacturing process or the storage. The grids can be 

cleaned chemically by dipping them in chloroform, acetone and ethanol, followed by 

rinsing with water. This mechanical process can be replaced by more convenient glow-

discharge of the selected grids in a plasma chamber to make sure that they are clean, not 
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too hydrophobic, and the sample will coat it[92][34].  There are many ways to apply the 

solvent with protein on the grid, Figure 2.10. shows a range of devices used for sample 

deposition A) capillary effect used in cryoChips, B) sample spraying set-up with Shake-

it-off.  

 

 A     B 
 

 

 
 

 

 

 
 

Figure 2.10 A) cryoChip sample deposition device, reproduced from [93] Copyright © 2022, 
Huber et al, This article is distributed under the terms of the Creative Commons Attribution 
License B) Shake-it-off set-up, reproduced from [94] Copyright © Rubinstein et al. 2019, This is 
an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) 
Licence 

 

Plunge freezing can be done using a device such as FEI Vitrobot or Leica GP. A single 

droplet of the solution with the specimen is applied on the grid in a temperature- and 

humidity-controlled chamber. The excessive liquid is then removed with the blotting 

paper with controlled force and time. Then, the grid with the sample is plunged into the 

cryogen, such as liquid ethane and rapidly frozen. Liquid ethane is used at this stage as 

the liquid nitrogen boils at 77K (-196oC)[95], [96]. This boiling effect can have a negative 

impact by creating a vapor layer around the sample, slowing down the cooling rate, which 

can lead to the formation of crystalline ice[97]. 

Other approaches do not require mechanical blotting. The major advantage of the 

blotting-free methods is that the prepared sample volume is not wasted on the blotting 

paper. 

Shake-it-off uses a piezo-electric sprayer to apply the solution to the grid. The piezo-

electric sprayer frequency can be adjusted to control the size of the droplets in the range 

of 100-10 nm. However, in some cases, the specimen might be damaged by high-

frequency vibrations of the sprayer. The spring-driven plunging is done when the 

tweezers with the grid are rapidly released from the plunging solenoid[94]. Spotiton and 

Chameleon allow an inkjet to dispense pico- to nano-litre volume of solution droplets on 
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the grid before it is plunged[98][99]. The sample is deposited on self-wicking nanowire 

grids. The nanowires’ capillary action helps to spread the applied liquid before the sample 

is plunge-frozen to achieve more uniform ice distribution across the grid holes[100][101]. 

The latest developments in the sample preparation procedures include the nanofluidic 

sample support system called cryoChips[93]. It uses the capillary effect to apply the 

solution to the grid via the nanochannels. The fact that the same nanochannels are used 

to produce different samples could improve the reproducibility of the process. Grids 

prepared this way can be plunge frozen manually or with any robotic station. Another 

procedure of sample deployment to the grid is cryoWriter, also based on the 

microcapillary effect. Instead of blotting, to remove the excess of the solution, the sample 

is thinned with the laser diode, which allows the liquid to evaporate[102]. Ideally, after 

the plunge freezing, the specimen would be suspended in a thin layer of vitreous ice and 

evenly distributed in the foil holes. Figure 2.11 shows examples of different grid types 

used for sample deposition: A) self-wicking nanowires and B) hexagonal grid holes.  

Table 2.3. shows a comparison of the different sample preparation methods. 

 

 

    A      B 
 

 

 

 

 

 

 

 

Figure 2.11 A) Self-wicking nanowire grid used with Spotiton/Chameleon foil, reproduced 
from [100] Copyright  © 2018 Elsevier Inc. All rights reserved. reuse permission obtained 
from RightsLink order 5856520321372, B) example of HexAuFoil reproduced from[91] 
Copyright © 2021 MRC Laboratory of Molecular Biology This is an open access article 
under the CC BY license 
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Table 2.3 Different techniques used for the cryo-EM sample preparation. 

Sample 

deposition 

technique 

Devices Method 
Sample volume 

per grid 

Blotting 
Manual plunger, 

Vitrobot 

Pipetting, liquid 

wicked through 

paper filter 

3-5µl 

Ultrasonic spray 

Back-it-up 

High-frequency 

droplet generation 

with through-grid 

wicking 

200nl-1µl 

Shake-it-off 

High-frequency 

droplet generation 

with self-wicking 

grids 

50nl 

Inkjet Spotiton/Chameleon 

Droplets generated 

with piezo-electric 

device, deposited 

on self-wicking 

grids 

2-16nl 

Capillary effect 

cryoWriter 

Sample deposited 

using capillary 

effect with 

dewpoint control 

0.1nl 

cryoChips 

Closed nano-

channel 

architecture, 

sample thickness 

controlled with the 

channels geometry 

4pl 
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Before collecting data using a high-end microscope, the samples should be screened to 

check their overall quality. Some of the issues, such as damaged or bent grids, crystalline 

ice contaminations, empty or cracked foil holes and problems with overall particle 

distribution on the grid, can be identified before data collection, and the sample should 

be optimised by changing the parameters like specimen concentration in the solution or 

plunge freezing setup and parameters. Regardless of the methods used, the major issue 

for most of the sample preparation procedures is the randomness of protein particle 

distribution, ice quality and the general lack of reproducibility[103][104]. 

 

2.1.5.1 Specimen behaviour and ice thickness evaluation in the cryo-EM samples 

The ideal cryo-EM sample would have a single layer of particles supported by a thin layer 

of flat vitreous ice. The thinnest possible sample (that still supports the specimen without 

air-water interface damage) can help to reduce the chances for secondary scattering events 

thanks to the shorter path the beam travels through the sample and radiation damage. On 

the other hand, ice that is too thin might not be able to support the specimen. As a result, 

particles can be pushed to the edge of the foil hole and aggregated, disassembled, or 

denatured on the air-water interface. Too thick ice can result in more than a single layer 

of particles in the z-axis direction, which can lead to particle overlap and make it 

problematic to calculate defocus per particle. A wide range of angular orientations in the 

sample would help to ensure the representation of the most unique views and improve the 

final reconstruction. Also, no crystalline ice or other contaminants should be in the field 

of view as they might be detected as particles (especially by automated pickers) and affect 

the resulting cryo-EM map if not detected and removed from the dataset. These conditions 

should ensure effective data processing and allow users to obtain a high resolution of the 

final map. Unfortunately, due to the inevitable variability in sample preparation, all of the 

mentioned sample parameters may vary. Instead of the flat, thin layer, vitreous ice can 

create a convex or concave meniscus that will also affect the particle distribution (Figure 

2.12). The non-uniform ice distribution can lead to major problems at the data processing 

stage as it can affect the performance of particle picking or limit the possible final 

resolution as the particles in different ice thickness areas have different signal-to-noise 

ratios. In general, areas with the thinnest ice, up to 50nm, have less inelastic scattering of 

the electrons, which allows for clearer imaging. Thicker ice (over 150nm) contributes to 

more inelastic scattering events, which can introduce background noise. 
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Figure 2.12 Overview of the specimen behaviour in different ice thickness conditions, A) ideal 
ice, B) with non-uniform ice distribution. Reproduced from [105] The work is made available 
under the Creative Commons CC0 public domain dedication. 

 

The ice thickness is an important factor that can determine the quality and resolution of 

the final cryo-EM map. Most of the automated data collection frameworks offer functions 

to easily identify bent and deformed grids. For example, software like EPU can generate 

a virtual regular array of circles based on foil-hole size and spacing, which can be 

overlayed with the view from the microscope. If the pattern does not align with the actual 

image, it can mean that the grid is mechanically damaged, bent or twisted, which can 

happen if the sample was handled with metal tweezers without proper care[106]. Also 

empty or cracked holes which are not suitable for high-quality data collection can be 

identified based on image analysis algorithms. These solutions have been available for 

well over ten years now and implemented in Leginon[107], UCSFImage[108] and in the 

EPU from ThermoFisher Scientific. More advanced methods to identify specific issues 

with the sample quality, ice thickness and distribution were developed over the years. 

Energy filter can be used to estimate ice thickness based on the analysis of the inelastic 

scattering events. The images taken with and without the filter are compared to derive the 

ice thickness based on the mean free path of electrons in ice. This technique can be 

incorporated into the processing pipeline but requires a microscope with an energy filter. 

Aperture Limited Scattering (ALS) measures the intensity of electrons scattered outside 

the objective aperture positioned behind the specimen[109]. The thicker ice results in 

greater scattering and thinner in lower. The intensities of the remaining electrons are used 

to estimate the ice thickness. The ALS can be most useful at lower magnification levels 
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for evaluating large areas of the grids with minimal radiation damage to the sample. This 

way, the best areas for high-resolution data collection can be identified. With optical 

interferometry imaging, the ice thickness in a range from 0 to 70 nm can be measured. 

The optical measurements are based on thin film interferometry principles, which can 

predict ice thickness up to the first constructive interference point. This technique can be 

integrated into the sample preparation workflow, for example, with the optical camera 

incorporated into VitroJet system[110]. A more recent approach, MeasureIce, simulates 

thickness-image intensity look-up tables based on scattering physics. This tool allows for 

on-the-fly measurement of ice thickness without extensive calibration, making it 

accessible and convenient for researchers. It has been shown to correlate well with other 

measurement techniques and can significantly aid in selecting optimal acquisition areas 

on cryo-EM grids[111]. Other approaches for measuring the ice thickness include the ice 

channel method, which involves burning the hole through the ice with a condensed 

electron beam at a specific stage tilt, then tilting the stage to a defined second orientation, 

and the length of the channel is measured to check the ice thickness[35]. The tomography 

is the most time-consuming and includes collecting a dataset at different stage tilts, which 

leads to the reconstruction of the 3D map of the ice layer[105].  

 

2.1.6 Data collection 

Cryo-EM data collection and analysis can be done at different magnification level. The 

first step is to evaluate the overall grid quality and to identify some potential issues such 

as empty or damaged areas of the grid, large ice contaminations and to check if the grid 

is not bent before proceeding to select the areas for high-quality data collection. This can 

be done by acquiring the ‘atlas’ of the grid, a low magnification montage representing the 

whole grid. It is done in low-dose mode as a series of images representing different areas 

of the grid. The images are overlapping which allows stitching them together into one 

map that allows the users to assess the quality of the sample and decide if a specific grid 

can be used for the high-quality data collection. If, at this stage, the user observes any 

issues with the quality of the grid, they should consider optimising the sample preparation 

procedure. The ‘atlas’ of the grid can be collected in an automated way with most of the 

currently used microscopes. Once grid squares for the data collection are selected, the 

electron beam is centred over a single grid hole, still at low magnification. One of the 

major concerns during the cryo-EM data collection is radiation damage caused mostly by 

the energy released during inelastic scattering events as the beam of electrons goes 

through the sample. The sample can be damaged in multiple ways. Firstly, the covalent 
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bonds can be broken. Secondly, the excited and freed electrons freed this way move on 

to break more bonds in a cascade reaction. Additionally, the radiation can lead to 

hydrogen gas build-up within the sample, which can distort or dislocate the protein 

particles and create local bubbles, especially at the protein-ice interface, hence the name 

‘bubbling’ effect[112][113][114]. To minimise the effect of the radiation damage, the 

sample is cooled below 100 K as the studies show that it offers cryo-protection, which 

limits the motion caused by the ionising beam. Unfortunately, temperatures below 50 K 

may change the structure of the vitreous ice. Radiation damage can also be reduced by 

proper optimisation of the exposure and accelerating voltages used for data 

collection[115], [116].  

After setting the data collection parameters, a series of several images are recorded, which 

will be later summed into a single image[117]. Figure 2.13 A) shows the view of a grid, 

B) a grid-square image, C) foil-holes D) a cryo-EM micrograph. 

 

A 

 

B 

 

C 

 

D 

 
Figure 2.13 Different magnification levels for cryo-EM data collection A) view of the grid, B) 

grid-square view, C) foil-holes, D) an example of a micrograph, based on EMPIAR-10143 dataset 

The other data acquisition strategies allow tuning the defocus for each recorded frame 

with the objective lens aperture voltage modulation[118]. With the use of a Volta phase 

plate, the data can be collected in focus, which theoretically can help to improve the 

signal-to-noise ratio. The Volta Phase Plate introduces a phase shift between 45-135o, 

which was shown to improve the contrast of the image without the need to apply 

defocus[119]. The phase shift value is hard to control as it changes over time as the carbon 

film of the VPP accumulates the charge. Shifts of 90o and higher lead to contrast 

inversion and increased image blurring of the image as more low-resolution information 

is included. Additionally, the introduced phase shifts can vary across different areas of 

the phase plate, which might affect the accuracy of the CTF estimation. As the usage of 

a Volta phase plate can create problems with focusing the microscope, the Laser Phase 

Plate uses high-intensity laser beams with continuous (standing) waves to manipulate the 
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phase of electrons without introducing any physical elements in the way of the electron 

beam, which can also get charged over time and affect the final phase shift[120].  

 
2.1.7 Single Particle Reconstruction 

The ultimate goal of the single particle reconstruction pipeline is to obtain a possibly 

high-resolution three-dimensional Coulomb potential map representing a 3D structure of 

a protein from the 2D images recorded at the microscope. To do so, several steps are 

required. First of all, the imperfections arising from the data collection procedures should 

be accounted for. The recorded images are corrected to account for the motion and 

radiation damage caused by the electron beam. Then, the Contrast Transfer Function is 

estimated for each image to compensate for the distortions introduced by the imaging 

system. The next step is to pick the particle coordinates that can be across multiple 

images. Due to the very low signal-to-noise ratio in the cryo-EM image, the projections 

of the particles are averaged from multiple similar views. This can be done manually, 

based on the template matching algorithms or with recently developed machine learning 

algorithms. The similar views of the particles are grouped together into 2D classes. The 

2D classes can be used to generate an initial 3D model which plays the key part as a 

reference in future refinements. The 3D model of a protein is refined through iterative 

processes. This involves further classification of the particles based on their similarity to 

the current 3D model, followed by recalculating and updating the 3D reconstruction. This 

step may be repeated multiple times to improve the resolution and accuracy of the final 

model. If the collected data is high-quality and the processing steps are performed 

correctly, a high-resolution final 3D map is obtained, which can be used for structural 

interpretation and atomic model fitting. 

 
2.1.7.1  Beam-induced motion correction 

The biological samples used for cryo-EM are sensitive to radiation damage[121]. To 

reduce this damage, the final micrograph is averaged from several low-dose images 

recorded in the multi-second exposure time. The increased exposure time results in 

another factor which limits the quality of the images and the final resolution. The electron 

beam used for imaging causes the beam-induced motion, that introduces the 3D 

deformation of the whole sample but also introduces local motion for each 

particle[122][123]. As the whole-frame motion caused by the drift of the stage is 

estimated and corrected early in the data processing pipeline, information about 

individual particle trajectories is used for the high-resolution 3D refinement. The whole 
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frame movement is a combined result of the stage drift which for carbon support can be 

even up to a few nanometres and rotation with a few degrees tilt. As the ice layer moves, 

so do the particles. Moreover, as the data is collected as a series of single frames, the 

movement is more prominent in the first collected frames, while the last frames are more 

affected by the radiation damage as the electron dose builds up over exposure time. To 

compensate for these effects and reduce the blur, the frames are averaged. Commonly 

used MotionCorr2 software divides each frame into smaller patches (typically 5 in x and 

5 in y direction). The motion within each patch is determined iteratively for each sub-

frame of the recorded movie stack with the 2D polynomial functions to describe the 

position shift in time[124]. The motion for each patch is then corrected and frames are 

summed into the whole motion-corrected micrograph, optionally also including the 

radiation damage. This allows estimating the local shifts in specific regions, but also the 

full-frame motion trajectory. The new implementation of MotionCorr2 includes a smart 

selection of the centres of patches for local motion correction in places where motion 

features are detected[125]. 

One of the approaches to individual particle motion correction incorporates the 

calculation of the correlation between the Fourier transform of each individual frame and 

the transform of the summed frames. After optimisation of the objective function, the 

local correlation of single particle trajectories on subsequent frames can be also 

calculated. After smoothening these trajectories, the translation of the individual particles 

in the movie can be identified and used to compensate for the beam-induced motion. 

Additionally, this analysis allows users to identify Fourier components fading due to 

radiation damage and try to recover them as well[126]. 

The “Bayesian polishing” procedure implemented in the Relion cryo-EM data processing 

software uses a statistical approach to accurately trace the motion of the particles as the 

sample is exposed to the electron beam. Instead of calculating a running average of the 

movement of each particle over the frames in a collected movie, this method maximises 

the likelihood of particle trajectories from the likelihood from data and the prior 

likelihood imposed to favour smooth trajectories. The three parameters that are used to 

describe the statistics of the motion are the expected amount of motion (σD), spatial 

correlation of motion (σD) and average acceleration of the particle (σA). These 

parameters, after initialisation, are optimised iteratively by evaluating the alignment of 

the micrographs after each iteration. Additionally, it provides a model of radiation 

damage based on the dose and spatial frequency that can be used to apply proper B-factors 
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to mitigate that damage. The most effective use of this approach in the processing pipeline 

is to use the initial 3D refinement as a reference map to calculate the statistics of motion. 

Then, the optimised motion parameters can be applied to the original unaligned data to 

improve the final map. The proper motion correction for the particles can lead to routinely 

obtaining better results with a smaller number of particles and recovering high-resolution 

features of the specimen[127]. 
 

2.1.7.2 Contrast Transfer Function estimation 
 
The Contrast Transfer Function describes how the microscope parameters and data 

collection setup parameters affect the recorded data. It is a sinusoid-like function 

dependent on the frequency and oscillates between negative and positive values. This 

causes some frequencies to get positive contrast and others negative. Moreover, the 

information at the zero-crossings of the sine wave is completely lost, and data must be 

collected at different defocus levels to obtain reliable 3D reconstruction. For the higher 

frequencies, the amplitude is attenuated. This results in the modulation of the contrast of 

the final image varying with the resolution.  

The contrast transfer function for low-dose images can be described with Equations 2.5-

2.7[128] where A is the amplitude contrast parameter, 𝑠 is the spatial frequency, 𝛾(𝑠) is 

the function of spatial frequency representing varying phases, and Δϕ	is a global phase 

shift connected to amplitude contrast. 

 

𝐶𝑇𝐹(𝑠) = 	−√1 − 𝐴# ∗ sinH𝛾(𝑠)I − 𝐴 ∗ 𝑐𝑜𝑠H𝛾(𝑠)I = −sin		(Δϕ + 𝛾(𝑠)) Eq. 2.5 

 

Given that the defocus and spherical aberration are the two factors that affect the phase 

shift Equation 2.6 can be used to represent the 𝛾(𝑠) for simplified calculations, where s 

is the modulus of 𝑠, 𝐶/	is the spherical aberration, 𝜆	is the electron’s wavelength at a given 

accelerating voltage (typically between 100keV and 300keV for cryo-EM), and 𝑓(𝜃) is 

defocus in the direction described with the angle 𝜃. 

 

𝛾(𝑠) = 𝛾(𝑠, 𝜃) = − $
#
𝐶/𝜆0𝑠1 + 𝜋𝜆𝑓	(𝜃)𝑠#    Eq. 2.6 

As previously mentioned, the defocus is described by the three parameters which are the 

maximum and minimum values (𝑓. and 𝑓#) and the angle 𝜃2/3 between the long axis of 

the ellipse and the x-axis (see Figure 2.4 A) and can be described by Equation 2.7. 
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𝑓(𝜃) = 𝑓.𝑐𝑜𝑠#(𝜃 − 𝜃2/3) + 𝑓#𝑠𝑖𝑛#(𝜃 − 𝜃2/3)   Eq. 2.7 

 

The CTF can be estimated by fitting a curve to the mean of rotationally averaged 

estimated power spectra of the micrographs in the movie which is one of the standard 

procedures of defocus determination in cryo-EM[67]. The other approaches use envelope 

function for different frequency bands[128][75] or more advanced Wiener filter 

implementation[129]. Figure 2.14 shows A) an example of the Contrast Transfer Function 

fitted to the Thon rings from a cryo-EM micrograph and B) one-dimensional fitting of the 

Contrast Transfer Function. 

     A         B 

 
Figure 2.14 A) Contrast Transfer Function (lower-left quartile) fitted to the Thon rings, B) 1D fitting of 
the Contrast Transfer Function Reproduced from[75] Copyright © 2015 Elsevier Inc. All rights reserved. 
Reuse permission obtained from RightsLink order 5856541467989 
 
The CTF can also be estimated from the shape of Thon rings, but for the cryo-EM data it 

is hard to determine their position and shape from the unfiltered image without previous 

knowledge about the parameters like defocus, astigmatism, and electron scattering. 

Inelastically scattered electrons, due to the high energy loss, are not correctly focused on 

the image plane because of the chromatic aberration of the microscope lens. This way, 

they introduce additional noise rather than improved contrast[130]. 

The effect of the inelastic scattering can be removed with the use of an energy filter for 

data collection, which reduces that noise. Unfortunately, not all microscopes are equipped 

with such filters. 

 
2.1.7.3 Particle Picking 

Particle picking is one of the crucial steps in cryo-EM data processing when the 

coordinates of each particle are obtained from the micrographs. The particle-picking 

strategies include manual and automated reference-free or template-based picking. The 

most straightforward technique is manual picking, where the users select the particles 

from the micrographs by themselves. As this approach gives some control over the quality 

of the particles, experienced users can avoid false-positive picks, try to pick a set of 

particles that represent sufficient angular views, avoid picking from too thick or too thin 
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areas and avoid false-positive picks it is not time effective as usually several thousands 

of particles are required to obtain a high-resolution cryo-EM map. The number of 

particles also depends on their quality and symmetry of the map. For example, a 2.8 Å 

icosahedral map of rhinovirus C was obtained from just 8973 particles[131], whereas 160 

000 particles were needed to obtain a 3.4 Å map of asymmetric gamma-secretase[132]. 

The particle-picking task can be accelerated with automated picking tools. A hybrid 

method would require the user to pick around a few hundreds of particles and use them 

to create an initial reference for automated picking. In most cases this would have to be 

done for each dataset but might be useful for very uniquely shaped and sized specimens 

where the automated pickers would fail. The reference-free picking algorithms are 

commonly based on edge detection algorithms. The micrograph is scanned in multiple 

directions to find as many picks as possible. As the user can determine some input 

parameters such as minimum and maximum particle dimension, minimal distances 

between the particles or distance from the edge of the micrograph, still a lot of false-

positive particles can be picked, which then would have to be removed at later processing 

stages. Template matching would require a good range of templates for particles in 

different orientations. This can be achieved by initial 2D classification of the dataset from 

template-free picking or angular sampling of the reference structure. The main issues with 

this approach are the time required to process large images, sensitivity to the noise in the 

images and the template bias. In recent years, with the rise of more advanced image 

processing and Artificial Intelligence methods, new automated pickers have been 

developed with picking models trained from historical data to optimise the number and 

quality of the particles. 

The Laplacian-of-Gaussian auto-picker is a reference-free tool that allows picking the 

initial set of coordinates using the multidirectional Laplacian-of-Gaussian (LoG) filter. 

This algorithm is commonly used in image processing applications to locate the edges in 

the image. The Laplacian filter (∇#I(x, y)) works on the second derivative of the pixel 

intensities (I) of an image in x and y directions according to Equation 2.8: 

 

∇#I(x, y) = 	 4
!5

4(!
+ 4!5

4+!
     Eq. 2.8 

 

For the discrete images, this can be estimated as a convolution kernel, which is a sum of 

two one-dimensional kernels in the x and y directions:  
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The Laplacian is used to find the zero crossings of the second derivative and is very 

sensitive to noise. To alleviate this issue first, the Gaussian smoothing filter is applied to 

the image which removes the high-frequency noise and makes low-frequency features 

such as particle edges more prominent. This allows users to use a threshold to eliminate 

the detection of the zero-crossings with a weak magnitude, as they usually correspond to 

the noise[133]. The major disadvantage of using this method for the cryo-EM data is the 

fact that, as an edge-detection algorithm, it will result in a lot of false-positive picks, 

which could be the damaged particles, ice contaminations or the edges of the holes in the 

field of view. To curate the set of particles picked with LoG, the 2D classification job can 

be run. It should group together the similar views of the particles into distinctive classes 

and separate them from the false-positive picks. Then, the 2D class averages can be used 

for the second round of picking, now based on the template matching.   

The structures that can be used as a template for particle picking can vary from basic 

geometrical shapes to very detailed 2D projections of 3D refined structures. cisTEM 

software uses a soft-edged disk, which speeds up the calculations and helps to avoid 

potential template bias, but is not effective if the particle is elongated in one 

direction[134]. The approach implemented in findEM software uses the cross-correlation 

coefficient which is calculated between the template and the particle candidate, but it is 

dependent on the local changes of intensity[135]. The approach implemented in earlier 

versions of Relion uses a model with the white Gaussian noise. The template matching 

can be done in real space using correlation methods or in the Fourier space by 

multiplication of the Fourier transform of the template image and complex conjugate of 

the micrograph. The rectangular areas of potential particles are separated into the ‘particle 

area’ inside the circular mask and the background noise outside the circular mask. The 

particles are normalised inside the circular mask to obtain the noise values with mean 

zero and standard deviation of one. Thanks to this, the particles are not dependent on the 

local changes in ice thickness, intensity levels or other experimental factors. Then, the 

ratio of the probabilities based on the maximum-likelihood is calculated for each particle 

to check if it represents one of the template images or the solvent noise. It is described 

with Equation 2.9 where 𝑅6,8H𝑡I is the ratio for the particle in position 𝑡 in the image X 

considering the orientation 𝜙, 𝑃H𝑋Y𝑡, 𝐴8
6I is the probability that the particle matches one 
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of the k templates and 𝑃H𝑋Y𝑡, 𝑂I that it matches the solvent noise. The 𝜇(�⃗�) is additive 

and 𝜎(𝑟) the multiplicative normalisation factor used to equalise the intensity levels of 

the particles. 𝑟	is the coordinate system used for the whole micrograph. �⃗�	is the local 

coordinate system with the origin in the centre of circular mask M, therefore it can be 

calculated as �⃗� =	 �⃗� -  𝑡. This approach is graphically presented in Figure 2.15, where 

panel A shows the representation of an X micrograph with some particles in the field of 

view, B shows the area of the box used to estimate the background noise and C the area 

which is expected to contain the particle and is normalised according to the background 

noise parameters[136]. 
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Figure 2.15 A) Representation of the cryo-EM micrograph with some particles in the field of view, 
B) mask used for the background noise estimation, C) a mask for the expected particle area 
Reproduced from [136] Copyright © 2014 The Author. Published by Elsevier Inc. This is an open 
access article distributed under the terms of the Creative Commons CC-BY license 

 
The general issue with the automated particle picking procedures based on template 

matching is the sensitivity to matching the templates with noise called “reference bias”. 

This is commonly known in the cryo-EM community as the ‘Einstein from noise’ 

problem, where the portrait of Albert Einstein was used as a template for reference-based 

picking from 1000 images containing only the Gaussian noise, which resulted in a 

reconstructed portrait[137][138]. Among other known limitations of template matching 

is sensitivity to noise, especially if the templates have a higher signal-to-noise ratio than 

the objects or there are significant changes in background illumination, especially when 

run on lowpass filtered micrographs. They also lack the robustness to variability in the 

data, as the unique projections of the particles might be classified incorrectly or skipped. 
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The classification accuracy will also be lowered if there is heterogeneity in the data is not 

covered by the templates if particles are aggregated or occluded. Finally, as the template 

matching uses cross-correlation, processing large or complex data would be 

computationally extensive and might need to be considered when running cryo-EM 

processing pipelines. Considering all the limitations, in recent years, more advanced 

particle-picking algorithms have been developed, often using machine-learning 

approaches.  

TOPAZ is modular software which offers tools to denoise the cryo-EM micrographs[139] 

and pick the particles in an automated way. In the pre-processing stage, the micrographs 

are normalised in order to minimise the varying imaging conditions, like different ice 

thicknesses and intensities. This can be done by the affinity normalisation, subtracting the 

mean value from the image and dividing it by its standard deviation or using the Gaussian 

Mixture Model. For picking, it uses Convolutional Neural Networks with Positive 

Unlabelled (PU) learning. For training, only a small batch of labelled particles from the 

micrographs is provided as true positive picks, as the other regions of the micrograph 

remain unlabelled. In the first step, the labelled particles are used to train the classifier, 

which is then applied to small regions of the micrograph to get the local predictions of 

the particle’s presence and its coordinates. Then, the sliding window technique is used to 

pick the particles with the non-maximum suppression algorithm to avoid overlapping 

detections. Each particle position is evaluated with a log-likelihood score to reflect the 

machine learning model’s confidence that the particle is present at the given location or 

if it is an artifact or a background noise. The higher log-likelihood score represents higher 

confidence in particle presence. This value can be thresholded only to extract the particles 

with a high confidence score, also considering the defined minimum distance between 

the particles to avoid multiple picks of the same particle[140]. 

Other popular approaches for particle picking use Convolutional Neural Network with 

sliding windows. The images are analysed by moving a fixed-width patch across them. 

The training of the network requires labelling both positive and negative examples 

(particles and non-particles). The sliding window method is sensitive to variability in the 

dataset, such as different particle sizes and shapes and might perform poorly in low signal-

to-noise ratio areas, which may result in an extensive number of false positive picks and 

creates the need for additional curation step.  Additionally, processing of multiple 

overlapping windows usually requires more computational time. To mitigate these issues 

crYOLO was developed, using the ‘You Only Look Once” (YOLO) algorithm, which 

analyses the image as a whole, providing also the spatial context of the particle’s 



 53 

positions. In this case, for the training of the CNN, micrographs with correctly labelled 

true particle positions were used, as the method does not require negative examples such 

as labelled backgrounds or contaminants. As the image goes through the network, it is 

down-sampled to a smaller grid. Then each grid cell is evaluated if it contains the centre 

of the particle. If the confidence of this is high, the size of the bounding box and relative 

x and y coordinates inside the grid cell are estimated. As the network is used to analyse 

the whole micrograph at once, also information about the distance between particles and 

contaminants can be used to avoid picking from contamination regions. The loss function 

used for the backpropagation during training penalises the incorrect size of the boxes, 

incorrect particle centre coordinates, and incorrect confidence of particle presence in the 

grid cell. For the training, the same micrographs were passed through the network a 

couple of times, each time slightly altered (blurred, mirrored or with additional noise 

added)[141]. The general model was trained on over 60 different cryo-EM datasets. 

crYOLO offers an automated denoising procedure as a pre-processing step, either as a 

simple lowpass filter used by default or using a denoising tool JANNI[142], [143]. 

Additionally, if the automated picker performs poorly on a specific dataset, users can fine-

tune the model, which allows users to update the general model based on a small subset 

of particles picked from a particular dataset[144]. Deep learning approaches, especially 

convolutional neural networks, can be implemented for automated particle picking with 

tools such as DeepPicker[145] or DeepEM[146].  

Still the major disadvantage of the automated pickers based on machine learning 

algorithms is the lack of the large-scale ‘ground-truth’ data which can be used for the 

model training procedures, which in most cases is the manually labelled data. Therefore, 

the selection of the subsets used for the network training (from conventional manual or 

template-based picking) can introduce bias to the model or lower their performance on 

the dataset with particles of unusual shape previously not seen by the model[144]. 

 
2.1.7.4 2D Classification 

The next step after the particles’ coordinates selection is the 2D classification. It is not as 

versatile and powerful tool as 3D classification but can be used to assess the quality of 

the data and obtain aligned class averages that can be used for the initial 3D model 

refinement. Particles with similar views are grouped into a single class. The algorithm 

considers the translation and rotation of the particles. The output 2D classes show the 

averaged image for each group of particles. At this stage, the user can evaluate the classes 

based on the particle distribution, pick the best ones and remove the remaining 
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contaminants or false positive particle picks from further processing[147]. Users can see 

if the 2D classes represent enough unique angular orientations of the specimen. In the 

recent Relion 4.0 implementation each 2D class has a quality score based on a machine 

learning algorithm, which considers metrics like the number of particles, and signal-to-

noise ratio. Additionally, the ‘overall quality’ parameter was introduced by training the 

network with the historical data of what kind of classes users decided to keep[148].  

 
2.1.7.5 3D Reconstruction 

The success of 3D reconstruction depends not only on the quality and number of particles 

picked from the micrographs but also on the angular coverage of the projections. The 3D 

model is calculated based on the Fourier Central Slice Theorem stating that the Fourier 

transform of a 2D projection of the particle matches a Fourier transform of a specific 2D 

slice through the 3D density. During the 3D refinement, the relative angles of the 2D are 

iteratively calculated according to the initial or reference model. The more complete set 

of views in the collected data leads to more complete angular coverage, resulting in finer, 

more uniform sampling in the Fourier space and high-quality 3D reconstruction[149]. 

One of the biggest challenges at this stage is the preferred orientation. It happens when 

the particles have a biased distribution of orientations because of the interactions between 

the molecules or with the air-water interface. This issue is observed especially for low-

symmetry macromolecules. To some extent, this issue can be mitigated by the addition 

of detergents to occupy the air-water interface, time-resolved vitrification or tilting the 

stage during the data collection. 

Selected particles from 2D classes are used to generate an initial model, which will be 

used for 3D refinement. This model can be generated ab-initio, based solely on the 

experimental data.  One of the methods to do this is Random Conical Tilt (RCT), which 

involves collecting a set of paired images where one of the images is recorded with the 

stage tilted. The known stage tilt angle makes it possible to determine relative orientations 

between the projections, which makes it a good starting point for iterative high-resolution 

3D refinement[150]. Another approach used more commonly in the past is the Common 

Lines method. It is based on the principle that any two projections of the 3D object share 

common lines in their Fourier Transform. Identification of these lines leads to the 

determination of relative orientations between the projections. Unfortunately, with the 

low signal-to-noise ratio in cryo-EM images, the common lines are hard to identify or can 

be identified incorrectly, leading to errors in the 3D structure. Additionally, this method 

often cannot be used to correctly identify the handedness of the structure as it is not able 
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to differentiate between mirrored images[151]. Another method which can be most 

useful, especially when studying novel structures where there is no prior information 

available but also most time and computational resources consuming is iterative 

refinement based on the autocorrelation of the 2D class averages from a randomised 

initialisation[152]. Another approach would require a reference model from a known 

structure to be used as a starting point for 3D reconstruction, which can improve the initial 

rounds of refinement. The reference should be lowpass filtered to reduce the bias. If the 

overall shape of the specimen is known, a geometrical shape like a sphere for apoferritin 

or a cylinder for T20s proteasome can provide a reasonable trade-off between ab-initio 

and model reference reconstruction by boosting the initial processing stages and 

minimising the reference bias. 3D reconstruction is an iterative process of assigning the 

angular orientation to the 2D representations of the particles. After each cycle, the new 

model is used as a reference to improve the accuracy and resolution. Most of the 

optimisation algorithms used for 3D refinement require a reasonably good initial model 

to initialise the search for the global minimum. Otherwise, they are stuck in local minima. 

The Stochastic Gradient Descent (SGD) algorithm can be used to refine proteins from 

random initialisation. As the directional gradient between the objective function and the 

current model is calculated, the model’s parameters get updated in the opposite direction 

of the gradient. It is used for initial refinement from low to high resolutions, usually 

achieving satisfactory results after several iterations. In the recent releases of Relion, SGD 

was replaced with the VDAM (Variable-Metric Gradient Descent Algorithm with 

Adaptive Moments Estimation) algorithm for 3D refinement. It is more robust to the 

noise, as the gradients can be averaged over iterations and achieve convergence in fewer 

iterations than other methods, also providing higher resolution of the initial model[153].  

The 3D refinement methods in cryo-EM are based on the Fourier central section theorem, 

which describes the relation between a 3D object and its 2D projection passing through 

the origin in reciprocal space, as shown in Figure 2.16 [149]. It implies that once the 2D 

Fourier transforms of the projections are positioned into the 3D transform, the original 

3D object can be reconstructed by calculating the inverse transform. The biggest 

challenge in the Single Particle Analysis is the fact, that the particles are distributed with 

unknown angular orientation in the micrographs. In some cases, many angular views 

might not be present at all due to the preferred orientation problem. The assignment of 

the angular orientation to the particles is done iteratively to gradually improve the final 

resolution of the 3D volume. The reference is angularly sampled to obtain the initial 

angular projections to which the particles are matched. The algorithm is optimised to 
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converge into local minima, which should ensure that the reconstruction matches the 

original model[154].  

 

 
Figure 2.16 3D reconstruction from the 2D views obtained using Fourier slice theorem 
Reproduced from [154] Copyright © 2015 Elsevier Inc. All rights reserved.Reuse permission 
obtained from RightsLink order 5856540294417 
 

Once the 3D model is obtained, the particles can be further classified into 3D classes, 

which are effectively different 3D models obtained from subsets of the full set of particles. 

This can reveal heterogeneity in the dataset which can result in areas with lower resolution 

or preferred orientation, where specific views of the specimen are underrepresented, 

which can cause the resolution anisotropy, which is directional variability of resolution. 

As a result, some parts of the model might be blurry. To address this problem, one can 

use software tools developed to identify and group together the particles representing the 

specimen in different states. In Relion, users can perform multi-body refinement. This 

focused refinement requires a user-defined mask to determine the part of the volume 

which will be excluded from the reference structure. The masked region can define the 

flexible part of the molecule[155, p.]. As the local refinement shows improvement to the 

final resolution of the map, the automated identification of the regions which are poorly 

resolved is still a challenge. FlexEM uses segmented-based Manders’ overlap coefficient 

(SMOC) as a metric to identify regions with low fitting scores at the different 

stages[156][157]. cryoDRGN uses deep neural networks to reconstruct heterogeneous 

datasets. The input requires particles stacks after 3D refinement. Then, the algorithm 

predicts the continuity of each particle and the data is decoded as 3D volumes based on 

the Variational Auto-Encoder (VAE) method[158].  

Selected 3D classes with homogenous particles can be selected for high-resolution 3D 

refinement. The subset is divided into two non-overlapping halves and each of them is 

refined independently to avoid over-fitting. By comparing those two reconstructions, the 

quality and consistency of the refinement can be evaluated. The next step towards 

obtaining a high-resolution density map is the further sharpening of the map in a volume 
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defined with a binary mask, typically with a value of 1 representing the molecule density 

volume and 0 for the solvent region. To create a mask, it is recommended to low-pass 

filter the original map and set a binarization threshold to the value that eliminates all of 

the background noise. The final resolution is calculated only in the masked region, as the 

noise in the solvent can affect the resolution estimation and lower the Fourier Shell 

Correlation curves. Additionally, as a common practice, a soft-edge fall-off is added at 

the edge of the molecular density to provide a smoother transition between 1 and 0 values, 

typically as a sinusoid or Gaussian slope, which can help reduce artefacts in Fourier 

Transform. The final resolution of the cryo-EM map is routinely determined using the 

‘gold standard’ Fourier Shell Correlation at the 0.143 threshold. Unfortunately, the mask 

for post-processing in most cases, has to be defined manually, especially when the 

specimen is not symmetrical or has irregular shapes.  

 

2.1.7.6 Resolution of the Cryo-EM maps 

The upper limit of the resolution is determined by the detector used to record the data. 

According to the Nyquist-Shannon theorem for signal processing, the highest possible 

resolution of the map, which can be obtained from the cryo-EM dataset, is twice the pixel 

size of the collected image. For example, if the data was collected with 1 Å pixel size, the 

highest resolution for the final map would be 2 Å to avoid aliasing, which introduces 

inaccuracies and distortions to the signal, resulting in the data loss, as due to insufficient 

sampling rate the high-frequency components are interpreted as low-frequency ones. In 

practical applications, the final resolution is also limited by other factors that affect the 

data collection, such as staining, defocus or beam-induced motion. The unit of resolution 

typically used in structural biology and cryo-EM is Ångström, which equals 0.1 

nanometres. The final resolution determines the features that can be seen on the map. The 

length of the carbon-carbon bond is 1.5 Å thus, the maps with higher resolution allow us 

to see individual atoms, but even at lower resolution, some of the structural features can 

be seen. Figure 2.17 shows a summary of the features which can be observed at different 

resolution ranges. All maps are overlaid with the atomic models. The maps with 

resolutions lower than 10 Å show information only about the conformational changes and 

domain boundaries. They can still be used as an initial map for further refinement in the 

data processing pipeline. Maps with a resolution of 10 Å start showing more information, 

such as the alpha-helices, which become more detailed and precise at 4 Å. As the 

resolution improves to 6 Å also, beta sheets and RNA helices pitch can be seen. Maps 

with 4 Å resolution or better usually contain most of the information required to derive a 
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highly complete and correct atomic model as they show individual beta strands, the pitch 

of alpha helices and the side chains. The comparison of the different structural features 

available to recognise at different levels of the cryo-EM maps is summarised in Figure 

2.17 [159]. 

 

 
 
Figure 2.17 Summary of the structural features recognisable at different resolution levels of cryo-
EM maps. Reproduced from [159] Copyright © 2014 Elsevier Ltd. All rights reserved. Reuse 
permission obtained from RigthsLink order  5856540702268 
 
The resolution of a cryo-EM map is routinely determined using the ‘gold standard’ 

Fourier Shell Correlation (FSC) criterion. The final reconstruction is divided into two 

independent subsets from which half-reconstructions are produced. Then, the FSC curve 

is calculated for the two shell reconstructions corresponding to different resolution levels. 

The final resolution is determined when the two reconstructions show a correlation of 

0.143[122]. The ‘gold standard’ was introduced to counter overfitting the other methods 

were prone to thanks, to the usage of the two independent half-maps to avoid false 

correlations. Equation 2.7 describes the formula for FSC calculation where 𝑟 is the radius 

of the shell, 𝑟F is each individual voxel in that volume, 𝐹. and 𝐹# the reconstructed half-

maps[160]. 

 

𝐹𝑆𝐶(𝑟) =
∑ H%(B$)H!∗	(B$)'$(	'
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!

    Eq. 2.7 

 

One limitation of the resolution estimation with the FSC criterion is that it is calculated 

across the whole density map. This can lead to an artificial under-estimation of the true 
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resolution due to the background noise contribution for not masked maps. Additionally, 

factors like the heterogeneity of the sample, damaged particles, or the preferred 

orientation problem can affect the global estimation of the resolution. The value of 

correlation cut-off has been debated for a long time in the cryo-EM community. To 

overcome these issues, other techniques to evaluate local changes in the map resolution 

were developed, which can check local and directional changes in the resolution across 

the map. Relion’s implementation uses small soft spherical masks to estimate the FSC in 

different regions of the map[161], and then the results can be checked by colouring the 

map according to this parameter in UCSF Chimera[162] as shown in Figure 2.18. Other 

approaches like ResMap use the likelihood-ratio approach. The local resolution is defined 

by calculating the smallest value of a local sinusoid which can be detected from noise 

using the False Discovery Rate procedure[163].  

 
Figure 2.18 Beta-galactosidase map coloured according to the local resolution, the temperature 
bar shows the resolution values, from reprocessing EMPIAR-10204 dataset[164] 

 
2.1.8 Atomic model building and validation 
 
The final step of the cryo-EM data processing pipeline is atomic model building and 

validation. At this stage, the atoms are fitted into the cryo-EM density, which is 

represented as a mesh in the x, y, and z coordinates system. Cryo-EM density maps can 

be used directly for the model-building task. Before that, the map can be optimised with 

more advanced post-processing software. LocScale[165] is used to sharpen the map 

locally based on the reference structure, which can be a model of a similar protein or a 

partially built model. The goal of the optimisation step is to improve the overall quality 

of the map and reduce the noise before the atomic model is fitted into the cryo-EM 

density. This can prevent the automated model-building tools from placing the atoms into 

the background noise, especially at lower resolutions between 3 and 4 Å. Figure 2.19. 

shows a flowchart of the model building and validation procedure. 
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Figure 2.19 Flowchart of the map optimisation, model building and validation procedure 

 
The software tools for automated model building in the cryo-EM maps are mostly derived 

from X-ray crystallography. The commonly used tools include Buccaneer[166], 

ARP/wARP[167] and PHENIX auto build[168]. Each of them uses different methods to 

resolve the structure and has strengths and shortcomings which should be considered 

when choosing the software to build from a particular map.  The Buccaneer traces the 

possible C-alpha position based on the 6-dimensional likelihood-based target function 

based on the FFFear method[169]. The reference structure is used to generate an electron 

density map with features similar to those of the target map. The potential C-alpha 

positions are grown into chain fragments, then the overlapping fragments are joined, and 

clashing fragments are removed, considering the Ramachandran restraints. The next step 

is resolving the side chains. Buccaneer software can be run iteratively to improve model 

completeness after each round. In the CCPEM processing pipeline, after each round of 

the Buccaneer model building procedure, the refinement step with REFMAC5[170] is run 

and the updated model serves as input for the next round of model building. The 

Buccaneer is used at various target map resolutions up to 4 Å, as the software uses a 4 Å 

sphere to trace the C-alpha positions. 

The ARP/wARP (Automated Refinement Procedure/weighted Automated Refinement 

Procedure) places dummy atoms in the electron density map and traces parts of the 

peptide chains. The partially built model is refined with REFMAC5 and another round of 

auto-tracing is performed. The automated peptide chain tracing and refinement are 

repeated until the atomic model is complete. The last step is to build the side chains.   

The PHENIX model building is based on the input sequence. The target map is divided 

into smaller sections and the software builds models into each of them. Then, the 

overlapping parts of the models are merged and refined. Additionally, if the specimen is 

a combination of the multiple occurrences of the same asymmetric units, the model can 

be built only in one of the asymmetric units and then be expanded and superimposed on 

the target map, which makes the modelling more efficient. 

With the rise of artificial intelligence in recent years, new methods and software for 

atomic model building have also emerged. AlphaFold is a groundbreaking tool developed 

by DeepMind for predicting protein structures from the protein sequence using machine 
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learning algorithms. It is also capable of predicting structures with DNA, RNA and 

ligands. Additionally, a more recent version of AlphaFold 3 can predict and model 

probable interactions between protein and potential drug candidates. Based on the input 

protein sequence, AlphaFold traverses multiple databases to obtain Multiple Sequence 

Alignment (MSA), which identifies all possible similar sequences across different 

organisms. From the MSA, crucial features of interaction between residues are extracted 

to identify parts of the sequence which would be in proximity when in folded state. Then, 

the deep neural network architecture iteratively refines the 3D position of the residues to 

improve the completeness of the final 3D model[171]. 

Relion 5.0 introduced a new feature for atomic model building incorporated into the 

processing pipeline. ModelAngelo is an automated tool which uses a Graph Neural 

Network (GNN) to combine the cryo-EM density map with a protein sequence. The cryo-

EM map is segmented into voxels which then are evaluated if they contain C-alpha atoms 

for nucleic acids, phosphorus for nucleic acids or neither. The voxels with predicted C-

alpha positions are then tested against all 20 amino acids to form a graph representation 

of the residues sequence. Residue positions are then optimised, combining the spatial 

relationships between them and information from the cryo-EM density and protein 

sequence to align the model with the map. In the final steps, the side chains are built, and 

each residue gets a confidence score, which helps to assess the overall quality of the 

generated model. The neural networks were trained on the pairs of cryo-EM densities and 

corresponding PDB models[172].   

The validation step allows checking the completeness and correctness of the atomic 

model fitted into the cryo-EM density map. The correctness of the atomic model can be 

evaluated globally by overall fit-to-map metrics or locally by scoring individual residues. 

Commonly used techniques check the geometry restraints (Molprobity[173], 

CaBLAM[174]), map and model FSC (Refmac5[170], FSC-Q[175]), a local fit of the 

residues in density (TEMPy SMOC[157], FDR-score), evaluate the model by comparison 

to a reference simulated at given resolution (Map Q-Score[176]) or check the quality of 

protein-protein interface (PI-score)[177]. If the validation procedures show that the 

atomic model is still incomplete or incorrect, the map should be optimised again, and the 

whole workflow of model building, refinement and validation should be repeated until 

the final model has a high completeness score and the residues are built correctly. Table 

2.4. compares different model validation techniques and which model characteristics they 

can evaluate. 
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Table 2.4 Summary of validation tools used for cryo-EM atomic model evaluation 

Validation Tool Evaluation 

MolProbity Global and local model geometry 

CaBLAM Global and local backbone geometry 

PI-score Protein-protein interface quality 

REFMAC5 Global fit to cryo-EM density 

TEMPy Global and local fit to map 

FDR-score Backbone fit to the map 

Map Q-score 
Global and local fit to a reference simulated at a given 

resolution 

FSC-Q Map and model FSC 

 

Initiatives like the EMDataResource Model Challenge allow benchmarking of commonly 

used model building and validation software and identifying which methods perform best 

in given cases[178], [179]. For model validation, it is always recommended to use at least 

two scores based on different methods to maximise the chances of identifying all of the 

incorrectly built parts of the model. 
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3 Development of a software tool for processing the 
cryo-EM data with non-uniform ice  

 
This chapter presents further developments to the software tool IceBreaker for the 

estimation of the ice thickness in the cryo-EM micrographs. The main features of this 

software are the assessment of cryo-EM micrographs, associating particles with the local 

environment by evaluating relative specimen thickness and finally processing the cryo-

EM micrographs based on local features, for example local contrast improvement. I will 

discuss the limitations of the introduced method and possible applications and present 

additional results, including mapping the estimated ice thickness to the measured values 

and processing the tomography data. 
The first version of this software was published as ‘IceBreaker: Software for high-

resolution single-particle cryo-EM with non-uniform ice’ and added as Appendix A. The 

Icebreaker software is implemented as part of the data collection pipeline at the Electron 

Bio-Imaging Centre at Diamond Light Source, Ltd. 
 
3.1 Introduction  
 
Noble et al. [105] have demonstrated that typical cryo-EM single particle specimens vary 

widely in the shape of ice meniscus and tilt landscape, resulting from micro-wrinklage of 

a cryo-EM grid during preparation and handling. Particles are largely attracted to an air-

water interface, where they form a thin layer, and could be subjected to a “squeeze” if 

two opposite layers come close together, which could result in protein denaturation[180]. 

Bright-field cryo-TEM image records a projection of a specimen, with densities of an 

object of interest and media in which it is embedded integrated, resulting in variation of 

the contrast due to ice thickness or specimen tilt, both of which influence the length of 

electron paths through a sample. Thus, particle quality and angular characteristics could 

vary depending on the location it was sourced from. It follows that relative ice thickness 

is an important factor that contributes to the quality and resolution of the final cryo-EM 

map. Most of the automated data collection frameworks offer functions to easily identify 

bent and deformed grids on the atlassing stage, and also empty or cracked holes, which 

are not suitable for high-quality data collection at the hole targeting stage. These solutions 

use pre-calibrated I0 value over vacuum to discriminate cracks and have been available 

for well over ten years now and are implemented in Leginon[107], UCSFImage[108] and 

in the EPU from Thermo Fisher Scientific. As these allow the assessment of the overall 
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quality of the sample, different methods were developed to further estimate or measure 

the ice thickness in the areas selected for data collection.  

One of the approaches to measure ice thickness in the cryo-EM data is to calculate 

tomograms from a tilt series collected from a target area. This is, however, the most time-

consuming approach and adds complexity to a single particle data collection[105]. 

Another method, which also disturbs the data collection procedure is tilting the stage to 

+30 degrees, milling a small cylindrical hole through the ice with the focused electron 

beam, and tilting the stage to -30 degrees. The ice thickness can be calculated then from 

the projected length of the hole in the second image. This method is limited by the fact 

that the geometry of the burnt hole might not be ideally cylindrical and lead to inaccurate 

measurement[45]. 

The aperture-limited scattering (ALS) method is an alternative which does not require 

stage tilt. The ice thickness can be calculated from the intensities recorded with and 

without the sample using equation Eq.3.1 based on the Beer-Lambert law where d is the 

ice thickness, I is the total recorded intensity with the sample, I0 is the intensity recorded 

in the absence of the sample, and λ is the free path for elastic and inelastic scattering 

which depends on voltage and the sample thickness. In practical applications of the ALS 

method the λ parameter can be limited by smaller objective aperture or by the use of 

energy filters. 

 

𝑑 = 	𝜆𝑙𝑛 5*
5
      Eq.3.1 

 

If the microscope is equipped with an energy filter, the relationship between the 

intensity recorded with and without the filter could be used (Eq.3.2). 

 

𝑑 = 	𝜆𝑙𝑛 5
5+,-

      Eq.3.2 

 

None of these methods, however, can identify the presence and impact of a local gradient 

in the micrographs since they typically return a single score. Meanwhile, modern methods 

of serial data acquisition place multiple acquisition areas inside a single hole, resulting in 

images from various places on the ice meniscus. Quantification and categorisation of such 

images might help further understanding of avenues for improving the efficiency of 

single-particle cryo-EM. The cryo-EM reconstruction process can be complicated by the 

variability of particles’ quality and conditions. Proper classification of the particles picked 
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from the areas with similar ice conditions can lead to better distinction between particle 

states or conformations and obtain better homogeneity within the subsets. Processing a 

dataset with heterogeneity or preferred orientation, where the particle projections are 

severely imbalanced, can lead to the lack of structural details and blurring in the final 3D 

map and, as a result, significant local resolution variations reflected in a lower overall 

estimated resolution. Creating subsets of particles with similar conformations or similar 

angular orientations can reveal more structural details after image averaging and improve 

structure interpretability, revealing details such as the secondary structure or side chains 

of the residues. This approach can also lead to optimisation of the required computational 

time by choosing particle quality over quantity. 

 

 
3.2 Methods 
 
3.2.1 Average pooling 

Cryo-EM micrographs are primarily affected by Gaussian and Poisson noises. The 

Gaussian noise arises from the support grid and amorphous ice surrounding the specimen 

in the sample or can be introduced during the digitisation process as the analogue signal 

is converted to digital. The Gaussian noise contributes to the overall greyscale of the 

image. The Poisson noise, on the other hand, is connected to the quantum nature of the 

electron detection process. The noise is proportional to the square root of signal intensity 

so the variance of the noise would increase with the increase of the number of detected 

electrons, making it hard to localise low-contrast particles[181], [182].  

One of the commonly used techniques to reduce spatial dimensions of the dataset features 

is max pooling. It selects the maximum value from a defined region. It can be useful in 

scenarios focused on finding the highest activation signals, like edge detection. In cases 

where the Gaussian or Poisson noise is present in the signal and the signal-to-noise ratio 

is very low, max pooling would always select the highest value, which often corresponds 

to the noise instead of meaningful signal features.  

For the task of analysing the background features of the cryo-EM micrographs the average 

pooling approach seems to be more suitable compared to max-pooling. Average pooling 

can smooth the image and reduce the effect of noise as it gives equal importance to all of 

the data points in a specific region. It is especially useful for the identification of 

anomalies in the images if they are spread over the image, such as the changes in ice 

thickness gradient. In this case, average pooling preserves more information in each 
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region compared to max pooling capturing the most prominent features, which could 

result in the over-representation of noisy features.  

Average pooling is a method of image processing, which is commonly used for tasks like 

segmentation, or convolutional neural network training. It allows data reduction by down-

sampling the features of the maps (Fig.3.1). For each defined region, the average value is 

calculated according to Equation 3.3, where xi is the intensity at the given pixel, and N is 

the total number of pixels in that region. The regions are defined by kernel and stride. A 

kernel (or a pooling window) is a 2D structure determining the area over which the 

average will be calculated. Stride defines the step size for the moving of the pooling 

window over the original image; if the stride is smaller than the kernel dimensions, there 

will be an overlap in the average value calculation. In practice these two parameters will 

directly affect the results of pooling. 

 

𝑓2*J(𝑥) = 	
.
K
∑ |𝑥F|K
FL.     Eq.3.3 

 

 
Figure 3.1 Example of 2x2 kernel applied to 4x4 matrix for average pooling, with stride 2. 

For the task of analysing the background features of the cryo-EM micrographs the average 

pooling approach seems to be more suitable compared to max-pooling. Average pooling 

can smooth the image and reduce the effect of noise as it gives equal importance to all of 

the data points in a specific region. It is especially useful for the identification of 

anomalies in the images if they are spread over the image, as the changes in ice thickness 

gradient. In this case, average pooling preserves more information in each region 

compared to max pooling capturing the most prominent features, which could result in 

the over-representation of noisy features. 
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3.2.2 K-Means Clustering 

K-means clustering is a method used in image processing for image segmentation. It 

iteratively associates the data points into independent clusters based on the minimisation 

of squared distances between data points and the current cluster centroid. The cluster 

centroids are updated each iteration to minimise the sum of squared distances (variance) 

between the data points and centre of the cluster until it reaches convergence when there 

are no changes in cluster positions after a defined number of iterations. The sum of 

squared distances for the defined clusters is minimised according to Eq.3.4   

 
𝑎𝑟𝑔𝑚𝑖𝑛

𝑆
∑ ∑ ||𝑥 − 𝜇F||(CM$

#8
FL.    Eq.3.4 

 

Compared to another commonly used clustering algorithm, K-Nearest Neighbours 

(KNN), with K-Means user specifies the number of clusters that the dataset should be 

grouped into, with the centres of clusters initialised as new data points, whereas with 

KNN, the number of neighbouring particles to consider during classification is 

specified. Figure 3.2. shows the idea of clustering a 2D plane into smaller regions based 

on the distance from a set of points called ‘seeds’ This representation is called a Voronoi 

diagram. Each defined region groups together all points which are closer to the 

corresponding seed than to any other seeds. 

  
Figure 3.2 Voronoi diagram with random seed points (black), dividing the plane into 8 individual 

regions 

3.2.3 IceBreaker algorithm description 

The Icebreaker consists of two main Python scripts for image processing. The first one, 

icebreaker_groups_multi.py, estimates density gradient values caused by ice thickness 

variation independently for each micrograph. The second one, 

icebreaker_equalize_multi.py, can be used for local contrast improvement using 

histogram equalisation. The suffix ‘multi’ is used to identify the script that can process 
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multiple images simultaneously across the defined number of CPUs to speed up the 

processing. In the previous implementation, both scripts shared the same pre-processing 

steps. To reduce the required computational time the pre-processing steps are now 

adapted for each script separately. This section will focus on the script for ice thickness 

estimation. The contrast equalisation will be described in a separate section, as the output 

files are significantly different. 

1. The required input for this type of job can be defined as a path to a folder 

containing motion-corrected mrc files. Within it, a subfolder called ‘/grouped’ is 

created to store the output files.  

2. Based on the specified number of patches the image is average-pooled to reduce 

the size. The patches, representing now the average value in a specific region can 

act as super-pixels used for clustering. Additionally, at this stage, the data is also 

downsized 20 times in x and y direction. 

3. The next step is image segmentation. The data is reshaped into a 1D array, which 

allows for segmentation based on the pixel intensity. This way, the image is 

clustered along the z-axis rather than based on the x and y coordinates. It allows 

identification of the parts of the micrograph with similar intensity even if they are 

not directly connected, which is especially useful when dealing with contaminants 

or aggregates that can appear at any place in the field of view as opposed to the 

hole edges which are expected at the corners and edges of the image. The resulting 

segments do not overlap. They can be used as independent entities and accessed 

directly for local processing. After segmentation is done, the array is reshaped 

back into the 2D image. 

4. The segments defined in the previous step can be iterated over. They are used as 

a local mask for the image before clustering. The average value within each 

masked segment is calculated. This step is not computationally exhaustive as it is 

performed on the down-sampled image but provides an additional check of the 

mean values in specific regions after the K-Means algorithm selects the values for 

centroids. Now, each segmented region is associated with the mean value from 

the micrograph. 

5. The output mrc file is reconstructed by combining the segments into one image, 

which is represented by the number of values corresponding to the specified 

number of clusters. The files are named the same as the corresponding original 

images with the suffix ‘_grouped’. 
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The resulting images can help in assessing the quality of specific micrographs from which 

they were obtained, track the changes in illumination across the dataset, and associate 

particle coordinates with the estimated ice-thickness levels. It is recommended to obtain 

these images as early in the processing pipeline as possible, as one feature is to identify 

micrographs representing damaged areas or containing large contaminations. This can be 

achieved with the five_figures.py script which provides box-plot analysis for each 

micrograph representing the overall distribution of the intensities and outliers. The 

outliers in regions of low intensity (darkest areas of the micrographs) are associated with 

high-density contaminants or edges of the hole in the field of view. 

 

 
3.3 Results 
 

3.3.1 The number of clusters and the execution time 

Currently, the number of non-overlapping patches in the x and y direction is pre-defined 

in the code as 20 x 20 with 16 clusters. This is usually enough to characterise the overall 

shape of the gradient in the single particle cryo-EM micrographs since a relatively narrow 

range of magnifications resulting in a pixel size 1.2-0.8 Ångstrom per pixel is used in 

most cases and identify hole edges, contaminations and aggregates. The high number of 

clusters at this stage is not required to characterise the image; in future,  it might be useful 

to set those parameters at the beginning of data collection based on parameters like 

specimen size or some additional information about sample conditions from screening. 

The currently used setup allows processing a single micrograph in around 0.8s on a 

workstation with Intel (R) Core (TM) i5-8250U CPU @ 1.60 GHz x 8, 8 GB RAM, which 

can be further improved with parallel processing. The comparison of how the number of 

patches and clusters affects the resulting segmented image is presented in Table 3.1. The 

setup with 10x10 patches with 4 clusters is the fastest to compute but does not provide 

enough information about local changes in intensity. On the other hand, 40x40 patches 

with 16 clusters can provide the most detailed information but also is the slowest of this 

comparison. This level of detail might not be fully used for the task of analysing the ice 

distribution as the point of this task is to provide a simplified representation of the 

micrograph. A reasonable trade-off between the computation time and the level of detail 

is selected to be 20x20 patches with either 8 or 16 clusters. Fig 3.3. shows how the 

computational time required to process a single image changes with an increasing number 

of patches and clusters. In general, it is recommended to keep the size of the patches used 
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as super-pixels at least twice the size of the specimen in each direction. Otherwise, some 

of the created super-pixels might represent only the density connected to the particles 

without the background information, which can introduce local disturbances in the 

segmentation. This can be especially important when collecting data, including large 

proteins or viruses. 

 

Table 3.1 Effect of different numbers of patches and clusters on the image segmentation 

No. of 

patches  
 

No. of clusters  

 
4 8 16 

10x10 

 

 
 

20x20 

 

 

 

40x40 
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Figure 3.3 Segmentation parameters vs execution time 

3.3.2 Assessing the quality of the micrographs 

The IceBreaker grouping job is supported by two Python scripts for further data analysis. 

The first one allows a five-figure analysis of the output files. The minimum, maximum, 

median and Q1 and Q3 (first and third quartile of the distribution) values are reported for 

each micrograph to allow quick and easy inspection of the overall distribution of 

intensities in the micrographs. Mostly flat images would follow the standard distribution, 

whereas an ice gradient would introduce skewness, negative - coming from the dark areas 

of the image or positive if the image is overly illuminated in some parts. Five-figure 

analysis also reveals the outliers in each micrograph. At the previous stages of the 

processing, the images were averaged Therefore the outliers in the low-intensity areas 

can be associated with aggregates, contaminants and hole edges, rather than with dead 

pixels or measurement errors. The output from this script is a CSV file containing a name 

and a figure summary for each micrograph.  
This is a convenient representation for sorting, filtering and plotting. Fig 3.4. shows the 

recorded median values for collected micrographs. Four micrographs were selected based 

on their median value, two representing relatively thick ice (B, D), intermediate (C) and 
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thin (D). Additionally, the corresponding hole images at lower magnification were 

checked. These show that the hole illumination corresponds to the estimation at the 

micrograph level. The sample was prepared on a holey carbon support. 

 

A 

EMPIAR-10143 

  

B 

 

C 

 

D 

 

 

E 

 

 

Figure 3.4 Micrograph quality assessment using median of pixel intensity. A) The changes in 

median values of micrograph in the whole dataset reveal a large spread in calculated values, B)-

E) micrographs selected from different intensity levels with different ice conditions B) and E) 

thick ice, C) intermediate ice, D) thin ice, all accompanied with the view at lower magnification 

level showing similar ice features. 
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3.3.3 Estimated and measured ice-thickness 

To establish the relationship between the pixel intensity values detected by 

IceBreaker  and the actual ice thickness in the Single Particle Analysis experiments the 

EMPIAR-11437 dataset published with the paper ‘CryoEM micrographs of mouse 

apoferritin in a range of ice thicknesses on different microscope setups’[183] was used. 

The dataset was collected on a 300 kV Krios microscope with a K3 detector in counting 

mode. The deposited data was split into separate groups based on the ice thickness and 

grouped into ice thickness bands 0-50nm, 50-100nm, 150-200nm and 200-500nm. The 

ice thickness was calculated based on the average intensity of each image with and 

without an energy filter of 20eV according to Equation 3.2 with the electron mean free 

path estimated at 395nm. The dose-weighted images collected with the energy filter were 

used as input to the IceBreaker for the ice estimation task. Plotting the median values of 

the images from each ice thickness group shows mostly distinctive groups with only a 

few cases of overlapping as presented in Fig.3.5 A. As expected, thinner ice corresponds 

to the higher intensity values also there is more spread of relative intensities in the group 

covering 200-500nm thickness. Around 30 images (excluding overlapping ones) were 

selected from each ice band, and the median pixel intensity from IceBreaker was 

compared to the measured thickness (Fig.3.5 B). The pixel intensity was then plotted on 

a logarithmic scale (Fig.3.5 C), which allowed the fitting of a linear function for that 

sample. As this relationship was derived from the dataset collected with and without an 

energy filter, the accurate calibration of the pixel intensity to the actual ice thickness in 

future experiments would also require access to the microscope with an energy filter.  
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A 

 
B 

 

C 

 
Figure 3.5 Relationship between the pixel intensity values from IceBreaker and ice thickness 
measured with energy filter, A) plots of median intensities in the micrographs, B) relationship 
between the pixel intensity and ice thickness for selected subset of micrographs, C) linear function 
fitted for the subset of micrographs with the ice thickness plotted against ln (pixel intensity) 

 

This analysis shows that the relation between the pixel intensity and the actual ice 

thickness can be established by collecting small sampling data sets from various ice 

thickness regions, which normally are evident from an atlas, before the data collection 

using the ice measurement with the energy filter method, by fitting a linear function 

formula for the relationship between ln (Pixel_intensity) and the ice thickness in 

nanometres. For this, one should take special care to collect the reference data from good 
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quality micrographs, not damaged and ideally without the edges in the field of view. The 

proposed framework for the calibration of ice thickness can be relatively easily estimated 

in the future by an automated script, which as input would take the mean free path of the 

electrons on a specific microscope, a set of pairs of average intensities recorded with and 

without filter (at least two pairs, but higher number can make the estimation more 

precise), and the median intensity calculated with the IceBreaker. The calculations are 

based on the linear regression method. The input dataset is split into 80% training and 

20% testing subsets. This approach requires a higher number of testing samples, but as 

the linear relationship is expected, around 50 images should be sufficient. As the output, 

the script would produce a linear function equation to calculate the thickness for the rest 

of the micrographs and metrics for Mean Absolute Error and Root Mean Square Error for 

the evaluation of the quality of fit. 

Additionally, the presented analysis confirmed that even without direct measurement and 

calibration to the actual ice thickness, the IceBreaker is able to sort the micrographs based 

on the relative ice thickness, which can be useful for the analysis of the data collected 

without an energy filter. In such cases, users can split the data arbitrarily into a number 

of selected groups based on the minimum and maximum values (after removal of the 

outliers) or simply target the highest recorded intensity values. This approach was also 

presented in the IceBreaker original paper for the processing of T20s proteasome based 

on minimum-maximum sorting rather than actual ice measurement, which is similar to 

the reported apoferritin reconstructed from different ice thickness and showed that for 

highly symmetrical particles, the thinnest ice produces highest resolution. Given the 

current limitations in sample preparation methods and challenges to obtaining uniform 

and desired ice thickness across the grid, estimation based on the pixel intensity can be 

useful. It is important to note here that an absolute ice thickness number is meaningless 

without understanding the specificity of a sample. Therefore, our approach has always 

been to prioritise categorisation over quantification, implying that a useful range of 

reported ice groups should be determined from a comparative data analysis by a user. The 

description of means provided for such analysis is outlined in the next chapter. 

 

3.3.4 Considerations and limitations of the proposed method for ice thickness 

estimation related to microscope and image collection setup 

The estimated ice thickness values are based on the pixel intensity in the collected 

micrographs. Some of the data collection and microscope setup can affect these values. 

To investigate this further, parameters such as defocus, dose weighting, use of energy 
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filters and the presence of crystalline contaminations were analysed. The defocus value 

determines the degree to which the microscope objective lens is out of focus. It is used to 

modulate the CTF function. By combining data with different defocus, one can 

reconstitute the most complete frequency spectrum representation of the data. During the 

cryo-EM experiment, the micrographs are collected with the range of defocus values 

typically between 0.5-3.5 microns. To investigate how the different defocus values 

correspond to the different ice thickness levels, the EMPIAR-11397 dataset was 

processed. This dataset was collected with the energy filter to measure ice. The defocus 

value was estimated for each micrograph with CTFFIND4 software. The distribution of 

these values in different ice thickness bands is presented in Figure 3.6. This analysis 

revealed that there is no clear relationship between the defocus setup in data collection 

and the ice thickness. 

 
Figure 3.6 Defocus values distribution estimated with CTFFIND4 software in different ice 
thickness regions. For the range of the IceBreaker determined pixel values in every group (see 
Fig. 3.5 A). 

The energy filter removes inelastically scattered electrons with energy that is different 

from the original beam by the specified value (typically 20 eV). Figure 3.7. shows the 

comparison of the pixel intensity estimated with and without energy filter in different ice 

thickness regions (based on EMPIAR-11397). The average intensity in the unfiltered 

dataset is higher than after filtration, as the filter removes some of the electrons. It still 

shows distinctive groups corresponding to the measured ice regions. The filtration also 

removes some noise from the micrograph, reducing micrographs overlapping different 

ice thickness regions. The recommended approach would be to use filtered micrographs 
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for ice estimation due to reduced noise and outliers. However, proper calibration should 

also make it possible to use unfiltered data.  

A                                                  EMPIAR-11397 dataset 

 
Micrograph ID 

B 

 
Micrograph ID 

 
Figure 3.7 Comparison of pixel intensities in different ice thickness regions with (A) and without 
(B) energy filter. 
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The dose weighting is a procedure applied to reduce the effects of progressing radiation 

damage during data collection. Radiation damage in single particle cryo-EM can be 

quantified and propagates from higher resolution features to lower resolution over the 

specimen exposure to the electron beam[59]. Modern algorithms perform on-the-fly dose 

weighting, which suppresses high-frequency Fourier domain based on accumulated dose, 

while preserving low frequencies less prone to decay and required for object detection. 

The dose weighting is typically done with motion correction. This potentially could have 

an effect on the overall grey values of the resulting micrographs, thus its influence on 

IceBreaker performance needs to be investigated. The not-dose-weighted frames are 

rarely deposited to the cryo-EM repositories. To check the effect of dose-weighting on 

the estimated ice thickness, the EMPIAR-10132 dataset, which has such data, was 

analysed. Figure 3.8 shows the difference in median intensities between not dose-

weighted and dose-weighted micrographs processed with the IceBreaker software. With 

the average estimated intensity of 150000, the difference of 1000 is less than 1%. The 

images with the biggest differences were additionally investigated to reveal that the 

highest positive difference results from significant ice contaminations in the field of view 

and the highest negative differences from blurry images, possibly with the collapsing ice 

(Figure 3.8 B, C). 
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A 

 

B 

 

C 

 

Figure 3.8 A) Differences in intensity values between dose-weighted and not dose-weighted 
micrographs, B) example of an image with a high difference, C) example of an image with one 
of the lowest difference 

 
The crystalline contamination, if present in the micrograph, not only obstructs the field 

of view but also introduces additional electron scattering. Similarly to the foil-hole edges, 

it has a significantly different density than the micrograph background. Figure 3.9. shows 

images with crystalline contamination and the edge of the hole before and after 

segmentation. In both cases, the artefacts were clearly separated and associated with much 

lower intensity. Moreover, in such cases, the overall intensity distribution across the 

image will be heavily affected, and micrographs like these should be easy to identify and 

eliminate with the five_figures.py analysis script developed with the presented software. 
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A 

 

 

 

B 

 

 

 

Figure 3.9 Micrographs with crystalline contamination (A) and foil-hole edge (B) in the field of view 
before and after segmentation. 

 

This software was not thoroughly tested for datasets collected with the Volta Phase Plate. 

The plate introduces a phase shift of the scattered electrons in order to amplify the contrast 

of particles against the background noise. It is especially effective at low spatial 

frequencies, enhancing phase contrast and hence improving the visibility of the particles 

outlines. The contrast improvement is not constant as the Volta potential evolves over 

time in the phase plate material[119]. Moreover, the ice thicker than 100 nm can introduce 

additional scattering, resulting in blurring and lower contrast which can reduce the 

benefits from using the phase plate. The Volta Phase Plate is also reported to dampen the 

high-frequency resolutions, which is another factor to consider during data collection 
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setup. Handling the datasets collected with phase plates with the IceBreaker, if possible 

at all, would require additional calibration to accommodate for the changes in intensities 

resulting from phase shifts.  

 

3.3.5 Ice distribution estimated from cryogenic electron tomography dataset 

In the attempt to connect the estimated ice thickness values with an actual measurement, 

a couple of datasets from EMPIAR database were reprocessed using IceBreaker. The idea 

behind this was to trace the changing intensity at the defined positions as the stage is tilted 

and relate it to the measured thickness. Unfortunately, all images in the deposited tilt-

series were standardised to mean 0 and standard deviation equal to 1. The authors of the 

paper[105] confirmed that data before standardisation is not available. This indicates 

limitations of the proposed technique for the comparative pixel intensities analysis - it 

would work well with raw data but not normalised images. Instead, the IceBreaker was 

used to analyse the ice distribution profile based on a single image from the tilt series to 

compare it with the reported ice meniscus shape of the sample. Table 3.2 presents the 

results for samples from datasets EMPIAR-10129, EMPIAR-10137, EMPIAR-10138 and 

EMPIAR-10139. The high pixel intensity values correspond to the thin ice and low values 

to thick ice areas. Even though, with the missing data, it is not possible to estimate the 

relationship between the pixel intensity and measurement, the IceBreaker can 

successfully identify the overall shape of the sample and if it is flat, or if there is a 

meniscus or a slope from a single 0 degree image, while the authors of the original paper 

needed to collect, reconstruct and them evaluate tomogram to retrieve this information. 

In the future, this feature for on-the-fly ice profile analysis can be used to inform the 

selection of the best areas for data collection. 
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Table 3.2 Pixel intensity profiles estimated from tomography datasets 

Sample 
ID 

Reported ice profile Clustered image Estimated 3D ice profile 
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3.3.6 Mapping particle coordinates to the estimated ice thickness levels 

In contemporary single particle data analysis often only a fraction of initial particles 

contributes to the final high-resolution 3D maps. It takes weeks, and often months to 

define such a group of “best behaved” particles retaining high-resolution information. 

Authors in [183], have demonstrated that the particles in the thinnest ice should be 

prioritised for high-resolution work. In our IceBreaker paper[184], we have demonstrated 

that relationships between the ice thickness and the quality of the resulting 3D map are 

more intricate and are, likely, sample dependent. In reality, modern automated data 

acquisition methods prioritise throughput over pin-point precision, thus methods for post-

acquisition data evaluation and discrimination are required to save on processing time 

and resources.  The second IceBreaker script outlined below, can be used to associate the 

particles' coordinates with the local ice estimation. The required input is the set of grouped 

micrographs in a STAR file format obtained with the previous script and the set of 

particles with coordinates. In the previous implementation of this software, only the value 

of intensity at the reported coordinates was taken. This might result in incorrect 

classification if the particles fall on the edge between two clustered regions. To alleviate 

this problem, a new mapping system was developed based on associating the particles 

with the average of the values at five coordinates: the centre of the particle, and four 

corners of the box containing the particle. This requires an additional input argument for 

this task to define the size of the box but results in more robust mapping. Under the 

assumption that the ice gradient is continuous across the micrograph, otherwise, the hole 

would be damaged, the large differences between the adjacent groups are not expected 

within the same micrograph and misplacing the particle in the neighbouring group should 

not affect the later reconstruction. If the particle is located too close to the contaminant 

or the edge it might be annotated as a bad pick. The output file will match the input STAR 

file with an additional column containing the estimated ice value for each particle. This 

approach allows for keeping the processing pipeline intact and accessing the estimated 

ice values as a parameter for particle subset selection. Additionally, the new STAR file 

can be easily used as input to other job types. Due to the limitations in the previous version 

of Relion and the lack of possibility to introduce new variable names the pre-defined 

‘_rlnHelicalTubeID’ variable was reused, as the IceBreaker in the current state is not 

designed to work on datasets containing helical tubes (a helical tube would normally 

represent an extended continuous object which could skew the IceBreaker statistics, and 

full implications of this were not yet assessed). It was successfully used within the Relion 
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pipeline in the subsequent jobs where particle subset selection was based on this 

parameter. A more convenient and more standardised solution would be to introduce a 

custom variable named ‘_ibEstimatedIce’, which would contain information about the 

estimated ice thickness values for each particle in the STAR files. One of the limitations 

to consider is the fact that the STAR files are appended with additional columns with data 

as the processing pipeline proceeds, the introduction of a variable outside of the regular 

Relion scope can negatively interact with already existing automated tools and would 

require careful implementation. 

The subsets of particles with the estimated ice thickness parameter can be useful as soon 

as the first particle-picking job is done. At the early stage of the processing pipeline, 

filtering particles by estimated values can help to remove false picks. Later in the 

processing stage, another approach may include 2D or 3D classification based on the ice 

thickness parameters to identify possible preferred orientation problems, or even for 

generation of ab-initio models from different ice groups to see if the local ice conditions 

affect protein conformation or angular distribution. 

 

3.3.7 Local contrast improvement based on the histogram equalization 

The processing steps to obtain contrast equalized image are:  

1. The required input for this type of job can be defined as a path to a folder 

containing motion-corrected mrc files. Within it, a subfolder called ‘/equalized’ 

is created to store the output files.  

2. The image is low-pass filtered to 20Å to remove the high-frequency noise and 

reveal the ice gradient. This is done in Fourier space by multiplication of the 

transform of the image by a circular function with soft edges to avoid Fourier 

ripples. This is a commonly used step for automated particle picking. The high-

frequency noise is removed to reveal low-frequency details such as the particles 

this would also give more weight to the ice gradient background since it is a low-

frequency feature. The low-passed filter micrograph is used as an input for the 

contrast equalisation, which is performed locally in the regions determined after 

the clustering. 

3. Based on the specified number of patches the image is average-pooled to reduce 

the data size. The patches, representing now the average value in a specific region, 

can act as super-pixels used for clustering. Additionally, at this stage, the input 

images are also downsized 20 times in x and y direction. 

4. The segmentation step is the same as in the grouping mode. 
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5. The segmented image is upscaled to the original size to retrieve the data. 

6. The segments defined in the previous step can be iterated over. They are used as 

a local mask for the low-pass filtered image. In this case, histogram equalisation 

is performed into each region defined by a local mask. This step is more 

computationally exhaustive compared to local averaging in the grouping mode, as 

it is performed on a full-scale micrograph. 

7. The output mrc file is reconstructed by combining the segments into one image. 

The files are named the same as the corresponding original images with the suffix 

‘_equalized’.  

It is important to emphasise that if the contrast-improved images are used for the particle 

particle-picking step (the only application we have tested so far), the particles for 

subsequent high-resolution data analysis should be extracted from the original images. 

Because contrast-equalised images are scaled back to an original micrograph size, the 

coordinates can be directly used for particle extraction from the untreated micrographs. 

Figure 3.10. shows the idea of applying the local mask from segmentation (blue) to the 

corresponding area of the micrograph. 

 

A 

 

B 

 
Figure 3.10 Segment from clustered image used as a local mask A) clustered image with one of 
the segments highlighted (blue), B) segment applied to the lowpass filtered image as a local 
mask 

 

3.3.8 Adaptive histogram equalisation for cryo-EM micrographs 

Histogram equalisation is commonly used in image processing applications to enhance 

the contrast in the image. It is achieved by spreading out the values from the most frequent 

intensities range to cover the whole intensity range of the image. To redistribute the pixel 

intensity values, the cumulative distribution function (CDF) is used. It is based on the 

original histogram of an image and represents the distribution of probability of pixels with 
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intensity lower than a given grey level. The cumulative distribution function (CDF) of the 

greyscales in the image can be described with Eq.3.5 where p is a pixel of the image and 

i is the greyscale level in range 0 ≤ i ≤  L, where L is the total levels of grayscale. The 

resulting CDF continuous and increasing, effectively resulting in an accumulated 

histogram with a bin for each greyscale.    

𝑐𝑑𝑓((𝑖) = 	∑ 𝑝(	(𝑥 = 𝑗)F
"LN    Eq.3.5 

 

According to Inverse distribution function properties, there is a constant K which allow 

obtaining an image y with a new flat distribution of pixel intensities (Eq. 3.6) 

 

𝑐𝑑𝑓+(𝑖) = (𝑖 + 1)𝐾	𝑓𝑜𝑟	0 ≤ 	𝑖 ≤ 	𝐿   Eq.3.6 

 

Which can also be described as a transform y = T (k) = cdfx (k) 

The linearisation of the CDF leads also to histogram equalisation, as linear CDF would 

mean that the pixels with different intensities contribute equally to the new image.  

Adaptive histogram equalisation is the approach which aims to improve contrast locally 

in different parts of the image. Local masks obtained with the IceBreaker group together 

the areas of the micrograph with similar background features, which makes them good 

candidates to define the areas for adaptive processing. The resulting image after the 

adaptive equalisation will heavily depend on the number of clusters used. Fig 3.11.A 

shows a low-pass filtered micrograph and the distribution of pixel intensities, panel B 

shows the image after segmentation with 40x40 patches and 8 clusters, and panel C 

presents a micrograph after adaptive contrast equalisation with the distribution of the 

particle intensities (blue) overlaid with the original distribution (yellow). The skewness 

of the original is reduced, resulting in a more even intensity across the image. 
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Figure 3.11 Effect of contrast equalisation, A) original lowpass filtered, B) image clustered with 
40x40 patches and 8 clusters, C) image after local contrast equalisation, D) distributions of 
intensities in the images; new intensity distribution (blue) overlapped with original (yellow) 
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To check how the selected number of clusters affects the final image, an example with a 

coarser gradient was selected and presented in Fig.3.12.A along with pixel intensity 

distribution revealing a large number of pixels both in dark and bright areas. In this case, 

the 8 clusters are not enough to fully recover the data from the micrograph (Fig.3.12.B), 

moreover performing the contrast equalisation in a region with too high a difference in 

the intensities can introduce artefacts on the edges of the masks. To reduce this effect a 

larger number of 32 clusters was used. In this case (Fig.3.12.C) contrast was improved 

successfully, additionally isolating aggregates in the field of view as separate entities. As 

the results improved, the required processing time increased from 1.94s for 8 clusters to 

9.35s for 32 clusters. 

A 

     
B 

   
C 

   
Figure 3.12 Example of image with coarse ice gradient, A) lowpass filtered original image with 
pixel intensity distribution, B) image segmented with 8 clusters, result from contrast equalisation 
that introduces artifacts on the edges of the clusters areas, C) image segmentated with 32 clusters; 
higher number of clusters allowed to eliminate artifacts and remove the ice gradient; pixel intesity 
distribution after equalisation (blue) and from the original image (yellow)    
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The proper choice of the number of clusters used for adaptive contrast equalisation proved 

to be affected by the initial image conditions. It is yet to be analysed how to optimally set 

this parameter to balance the satisfactory results with the required computational time. 

One of the possibilities could be to analyse the histogram of the original low-passed image 

to identify what level of correction is required and based on this to choose the appropriate 

number of clusters. Additionally, the contrast enhancement used in the presented work is 

not a linear operation and it’s main objective is to improve the contrast between the 

particles and the background in order to improve micrograph interpretability and particle 

picking. Once the particle coordinates are obtained, they should be re-extracted from the 

original micrographs for high-resolution refinement. 

Another approach for contrast improvement on the cryo-EM micrographs includes band-

pass filtration. It removes the high-frequency noise as well as the low-frequency noise 

that can be connected to the background intensity changes caused by non-uniform ice 

thickness. The optimal band-pass filter parameters would be different for micrographs 

with different defocus values. To demonstrate this, two micrographs were selected, one 

with a relatively high underfocus of 3.2 microns, which is typically at the end of defocus 

range, and another one closer to focus at 1.3 microns underfocus. From each micrograph, 

particles were picked with automatically using Laplacian-of-Gaussian. At each defocus 

level raw micrograph was tested, as well as micrograph after filtration with different 

bandpass filter setup, and after contrast enhancement with the IceBreaker software.  Table 

3.3 shows how the number of picks from two micrographs with high and low defocus can 

change based on the bandpass filter setup and how they compare to the original 

micrograph and after IceBreaker flattening 
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Table 3.3 Number of particles picked from micrographs with different defocus with and without 
bandpass filter. 

Defocus [microns] Bandpass filter setup No. of particles picked 

3.22 No filter (raw micrograph) 882 

20-200 Å 1068 

20-250 Å 1006 

20-400 Å 918 

20-500 Å 913 

Enhanced with IceBreaker 1014 

1.35 No filter (raw micrograph) 900 

20-200 Å 1059 

20-250 Å 1009 

20-400 Å 966 

20-500 Å 954 

Enhanced with IceBreaker 996 

 

For currently used particle pickers, the contrast level between the particle and background 

is one of the main factors. Therefore, more particles can be picked from thinner areas with 

high contrast than from thicker ice. Modifying the threshold for picking to include thicker 
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areas often leads to many false positives being selected. IceBreaker solves this problem 

by equalising contrast on the whole micrograph. This means that a single threshold can 

be used for efficient particle picking across the whole range of ice gradients. Figure 3.13 

shows a comparison of picks from a fragment of micrograph at high-defocus where red 

circles indicate ‘particles’ found after 20-200 Å band-pass filtration and blue circles 

‘particles’ selected from IceBreaker treated micrographs. In both cases particles are 

evenly picked from all areas, despite the lower left corner was significantly darker. Close 

analysis of picks reveals that in both cases false positives containing ice contamination 

are present. However, only IceBreaker algorithm would allow ice distribution analysis 

for their efficient removal. The same algorithm can be employed for the removal of the 

particles picked from the carbon film edges of the hole since they normally have a very 

distant optical density profile. After applying the band-pass filtration, even if the 

background is more uniform, the information about the local ice conditions is lost and 

cannot contribute to further processing stages. 

 

Figure 3.13 Comparison of picks from a 3.2 micron underfocus micrograph treated with band 
pass filter (red) and after contrast improvement with IceBreaker (blue). 

 
3.4 Conclusions and future works 
 

The relationship between the local pixel intensity calculated with the IceBreaker and the 

actual ice thickness measured on the single particle analysis data with the energy filter 

method was established. A description of a framework which can be used for calibration 

of the values is provided. It would also be useful to relate the ice thickness estimation 

with measurement with different methods based on the stage tilt like tomography 

reconstruction or hole milling. Initial results showed that the local pixel intensity can be 

used to represent the overall shape of the sample similar to that obtained from 

tomography. 
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The exact estimation of the ice thickness would be helpful, but even in cases where the 

calibration is not possible, sorting the intensities between maximum and minimum values 

and creating subsets can provide information about the behaviour of the sample and a 

particular cryo-EM specimen characteristic. 

IceBreaker was developed and evaluated using the historical dataset available in the 

public archives. The possibilities of optimising data collection parameters and 

microscope setup to get the most out of the ice distribution analysis would require a 

considerable amount of time and ideally, access to the microscope to thoroughly test 

different scenarios and draw conclusions. Results presented in this part, related to dose-

weighting, energy filter, defocus, and presence of crystalline ice contaminations, are 

limited to the selection of deposited datasets and time restrictions. 

The identified issues with not optimal contrast equalisation performance were pointed out 

in this work and addressed by increasing the number of clusters in presence of the coarse 

ice gradient to improve the results. The presented example of band-pass filtration 

indicated inconsistent performance of this approach in different defocus regions. 

Extensive trials of different contrast improvement algorithms, probably with different 

input parameters as well, would require a substantial amount of time and would not 

guarantee finding solution to cover each case. The main strength of presented software is 

that, even after applying filters or other operations to the micrographs or particles, it still 

can carry the information about local ice conditions which can be used at later stages of 

processing. 

The distribution of local pixel intensities can be also used to evaluate the quality of 

micrographs rather than single particles, which can lead to better data management and 

selection of the best images for processing. Analysis of the image at a lower magnification 

level can help to select the areas for data collection. Figure 3.14. shows the results of 

processing at lower magnification. The intensities in the holes can indicate the local 

conditions and shape of the ice layer. Panels A and B show images from EMPIAR-10143 

where the holey carbon support was used. Panel C shows an image from EMPIAR-10138 

with holey carbon Spotiton support. After segmentation, the hole areas corresponding to 

high and low intensity can be colour-coded, similar to the ‘fire-n-ice’ colour scheme used 

in Relion. The image magnification in Figure 3.14. is consistent with the one used for 

medium-magnification maps in tomography and could be utilised for single-particle 

tomography area targeting. It remains to be explored if GridSquare magnification used in 

pure single particle data collection routines has sufficient detail for the accurate direct ice 

gradient profiling with IceBreaker. 
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Figure 3.14 Segmentation based on the intensity for lower magnification level, images at the 
medium magnification used as the input for IceBreaker reveal changes in the intensity inside the 
hole, in the future this can help to annotate the grid holes and select regions of the grid for data 
collection; images coloured with Relion ‘fire-n-ice’ scheme where red corresponds to high 
intensities (thinned ice) and blue to lower (thick ice) 

As the local contrast equalization shows promising results in the removal of the ice 

gradient from the background of the micrographs, the proper choice of parameters 
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requires further analysis to balance the benefits of the improved interpretability of the 

micrographs and the required processing time. 

The improved, flat representation of the micrograph can be useful for maximising the 

particle picking with methods based on edge detection, but the fact that the resulting 

images are processed with non-linear transformation could affect the performance of 

particle pickers based on the correlation methods. Methods based on machine learning 

methods could be retrained on this new type of image to optimise the picking. 

Finally, the definition of local masks which group together parts of the micrographs with 

similar background features open the doors for a variety of local processing applications.  
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4 Implementation of the atomic model validation tool 
based on the False Discovery Rate approach 

 

This chapter presents updates to the atomic model validation tool based on the False 

Discovery Rate approach. Metrics for evaluation of the classifier performance are 

presented based on the root mean square deviation (RMSD) of the atomic positions in 

superimposed target and reference atomic models. The parameters such as input map 

sharpening, number of particles used for map refinement and local resolution are taken 

into consideration in evaluating the approach as they affect the overall score performance. 

The first version of the presented software was published in the Frontiers of Molecular 

Biosciences as “Cryo-EM Map–Based Model Validation Using the False Discovery Rate 

Approach”, added as Appendix B. This tool is implemented in the CCPEM software suite. 

 

4.1 Introduction  
 

Atomic models are crucial for interpreting biological structures at near-atomic resolutions 

and help to understand their functions, mechanisms and interactions. In recent years, a 

number of tools have been developed for building atomic models from cryo-EM density 

maps[185], [186], [187], [188]. This allowed users to quickly and routinely obtain highly 

complete structures with a recent boost of methods adapted from the field of Artificial 

Intelligence. Unfortunately, even robust atomic model building and refinement 

workflows can introduce errors, especially when building from maps with resolution 

ranges 3-5 Å. The local changes in cryo-EM map resolution can lead to an inaccurately 

traced backbone or incorrect secondary structure elements with misplaced a-helices and 

B-sheets[189]. Other common issues with auto-generated models are over- and 

underfitting of the atomic coordinates to the density or reference bias introduced if the 

model is built or extended from a reference model, all leading to the output model not 

representing the actual features of biological structure. 

Several methods were developed to validate the correctness of atomic models based on 

different criteria to ensure the accuracy and reliability of the model. Completeness and 

continuity of the model are used to assess if all residues and parts of the protein are 

correctly connected to represent the protein sequence without discontinuities and register 

shift errors [190]. 
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The geometry of the model can also be assessed without referencing it to the map, by 

evaluating the model according to stereochemical restraints applied to the whole 

model[191]  or its specific elements such as water molecules or targeted ligands. 

Ramachandran plots assess high resolution features such as backbone torsions while 

CaBLAM[174] evaluates lower resolution features involving backbone C-alpha 

geometry. 

Another criterion of model validation is density fit metrics, where the model is validated 

against the map calculated from experimental data[157], [175], [176], [179], [192]. The 

major issue with these methods is that they are prone to errors in validation where there 

is a variance in local resolutions across the map. 

During the deposition of the maps and models to EMDR, the depositors define a 

numerical threshold for the rendering of the cryo-EM map in visualisation tools, such as 

COOT[193] or UCSF Chimera[162]. This parameter is important for data interpretation 

as the cryo-EM maps are typically not standardised or normalised between any fixed 

range. This value is also a parameter used for Atomic Inclusion score validation. This 

method would threshold the map at a given value and calculate the fraction of how many 

atoms are inside the density represented at that threshold, resulting in an overall score 

between 0 and 1 for the model. Additionally, each residue is colour-coded green if it is 

entirely inside the map or red if it is entirely outside, based on the position of all the atoms 

in that residue. As a recommendation, the threshold should be chosen to represent the 

volume corresponding to the molecular weight of the specimen of interest, and the 

software reports the defined volume, but still, the user input is used by default[194].  

The output of most validation tools is similar and typically includes a list of potentially 

problematic residues or atoms, which can later be inspected in visualisation tools like 

UCSF Chimera or re-refined manually in the interactive COOT interface. As an outcome 

of the EMDR challenge, it is recommended to use multiple scoring parameters, ideally 

based on different criteria, for a comprehensive model assessment. 

 

4.1.1 Raw and sharpened cryo-EM maps 

Cryo-EM maps are typically reconstructed from two independent datasets (half-maps). 

Half maps are two separate reconstructions of the same structure, refined from the same 

data collection[195]. Half-maps are calculated from two distinctive sets of particles that 

do not overlap to improve the resolution and signal-to-noise ratio of the final map. This 

approach is used to avoid false correlations when the Fourier Shell Correlation is 

calculated[196]. After all the data has been processed and combined, and can be used for 
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post-processing tasks, like sharpening or local refinement, to improve the interpretability 

of the final map. A common practice for map sharpening is applying the global B-factor 

to the map. The B-factor value is estimated based on the Guinier plot analysis[122], which 

describes how the power spectrum of the cryo-EM map decays with resolution, resulting 

in the loss of high-frequency information on the map. The rotationally averaged power 

spectrum of the density is calculated in the resolution shells between the maximum 

resolution of the map reported from the value at 0.143 FSC curve, typically up to 10	Å, 

as this is the resolution range, where Wilson statistics can be applied, as the scattering 

amplitudes of randomly positioned atoms decrease with resolution in a roughly linear 

relation. The amplitude decay plot for the experimental data is compared with the plot 

from the reference structure to see how much compensation is required. The B-factor is 

calculated as a difference in slope parameters between the linear fit of data from the 

reference model and experimental data. The correctly chosen B-factor should boost the 

signal in the high-frequency region, but it can also amplify high-frequency noise. B-factor 

can be applied to the map in the reciprocal space in the form of multiplication of the 

Fourier transform of the map and the transform of function e- (B-factor/4d^2), where d is the 

map resolution[197]. Usually, maps with a resolution better than 4	Å and an estimated 

global B-factor lower than 150 would be suitable for model building. Given that the B-

factor is applied globally, local resolution changes can affect the final model's quality. 

Therefore, both raw and sharpened maps should be checked to avoid oversharpening. 

Another approach to avoid oversharpening is using methods for local sharpening, such as 

LocScale[165], [198]. 

 

4.1.2 False Discovery Rate approach 

An atomic model validation tool is presented based on the framework introduced for 

thresholding of cryo-EM densities with False Discovery Rate (FDR)[199]. The 3D 

confidence map, which associates each voxel within the volume of interest as carrying a 

molecular signal or noise, is generated by multiple hypothesis testing and an FDR control 

framework.   

In hypothesis testing, the null hypothesis (H0) is the initial statement defining some 

relationship between the variables, while the alternative hypothesis (Ha) usually suggests 

the opposite. A p-value is a statistical measure that represents the probability of observed 

results if the null hypothesis is true. It quantifies how likely it is that differences between 

groups are random, with values ranging between 0 and 1. A p-value lower than the set 

significance level (typically 0.05) suggests that the observed difference is unlikely to be 
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caused by chance, and as a result, the null hypothesis is rejected, indicating the statistical 

significance of the observation. The p-value analysis can be used to reject the null 

hypothesis, but at the same time, it does not automatically indicate the truth of the 

alternative hypothesis. The null hypothesis used for the Confidence Map calculation is 

that the intensity at a given voxel of 3D cryo-EM map is greater than the observed 

background. The requirement to test each voxel results in a multiple testing problem. 

Each test results in it’s own p-value, which is adjusted to meet the False Discovery Rate 

framework requirements. The FDR describes the expected proportion of false rejections 

out of all rejections. The p-values are adjusted to control the proportion of false 

discoveries to account for multiple hypotheses comparison[200]. The resulting 

Confidence Map is the representation of adjusted p-values of each voxel. For the 

interpretability of the output, 1-FDR is used, which means that the map thresholded with 

a value of 0.99 represents all voxels with a maximum p-value of 1% [201]. 

 

4.2 Methods 
 
4.2.1 Processing stages description: 

1. The required inputs to the procedure, as implemented in the CCPEM software 

suite, include a cryo-EM electron density map and the atomic model in cif/mmcif 

or pdb format. Users can define the size of the noise cube for p-value calculation. 

By default, the cube that represents 5% of the full map volume is applied. Users 

also have the option to display the cube size and position relative to the map to 

ensure that the cube contains the background noise and does not overlap the 

protein density. The standalone Python script for model validation requires as 

input an already calculated Confidence Map and the model. The Confidence Map 

can be calculated from the task with the same name in the CCPEM suite or from 

the source script (Maximilian Beckers / FDRthresholding · GitLab). 

2. The coordinates of the atoms in the model are mapped to the density grid from the 

Confidence Map. The current implementation allows users to choose the size of 

the volume of interest for the atoms to be validated. Available options include 1A 

radius for every atom, Van der Waals radius for each atom fetched from the 

GEMMI library [202], and the volume calculated from the Sigma threshold in a 

similar manner as it is implemented in volume visualisation tools according to 

equation r = 1.5 × 0.225 × res, where r is the radius for validation and res is the 

map resolution. By default, the radius of 1	Å is applied, but users can choose other 

https://git.embl.de/mbeckers/FDRthresholding
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modes with input parameters –mode vdw for Van der Waals radius, the Sigma 

Threshold mode also requires to specify the map resolution with –mode st –res 

map_resoluiton. The sigma factor value, with the resolution, is used in the 

molecular visualisation tool UCSF Chimera to determine the width of Gaussian 

distribution to describe each atom. 0.225 is a default used value which 

corresponds to the Fourier Transform of the distribution fall to 1/e of it’s max 

value at the wavenumber 1/resolution [203]. We use 1.5×sigma as the radius, 

which represents ~82% of the distribution. 

3. Based on the selected radius, each atom is associated with the average value from 

the Confidence Map. By default, the FDR score is calculated as the average of the 

values at the coordinates of the backbone atoms: C-alpha, C and N. This approach 

is used to find the misplaced residues not supported by the map density. The 

carbonyl oxygen is often not supported by the map density at resolutions lower 

than 3	Å . For the validation of the position of the nucleic acids, the coordinates 

of the C1′, C2′, C3′, C4′, C5′, O3′, O4′, O5′, and P atoms are used. In the case of 

water molecules and ligands, all atoms are used. Additionally, users can use the 

option for minimal validation based only on C-alpha positions for residues and 

C1’ for nucleic acids, which can be useful for ab initio models built from low-

resolution cryo-EM maps. In the recent implementation, we also added an option 

to run the validation for all atoms in the model, as it can be useful for further 

investigation of the positioning of specific atoms rather than whole residues. 

4. As the output, a CSV file with FDR score for each residue is provided, with the 

chain and residue name and ID. The output file has a suffix indicating which 

radius mode was used for validation. The output from the task implemented in 

CCPEM would also include the attribute file, which allows users to colour the 

residues according to their FDR scores in USCF Chimera and easily identify areas 

of the model for further inspection. 

 

4.2.2 Metrics for the evaluation of classifier performance 

The performance of the classifier was evaluated against the root mean square distance 

(RMSD) calculated for the backbone atoms of the target model and the reference model. 

The true positive (TP) is a residue predicted to be correct and is actually correct (in this 

case, placed inside the density), the true negative (TN) is a residue predicted to be placed 

incorrectly and actually placed incorrectly (outside the density), false positives (FP) are 

residues reported to be correct, but actually are incorrect and false negatives (FN) that are 
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classified as incorrect, but are actually correct. Equations 4.1.-6. show metrics used to 

check the quality of the classifier. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 O9)OK
O9)OK)H9)HK

,      Eq.4.1 

 

𝐸𝑟𝑟𝑜𝑟 = 	 H9)HK
O9)OK)H9)HK

= 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦,    Eq.4.2 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 O9
O9)HK

,      Eq.4.3 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 OK
OK)H9

,     Eq.4.4 

 

𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 	 HK
O9)HK

= 1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,   Eq.4.5 

 

𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒 = 	 H9
OK)H9

= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦,    Eq.4.6 

 

Furthermore, the Receiver Operating Characteristic (ROC) was plotted to select the 

optimal cut-off threshold to identify the incorrectly placed residues. The area under the 

curve (AUC) serves as a global measure of the ability of the classifier to discriminate 

between true and false positives. An AUC of 0.5 represents a test with no discriminating 

ability, no better than a random guess, and an AUC of 1.0 means perfect classification. 

 

4.3 Results 
 

4.3.1 FDR score and cryo-EM map sharpening  

The FDR score is calculated based on the background noise distribution. The residue 

scores will change based on what kind of sharpening was applied to the input map. To 

demonstrate this, I used PDB model 6nbb.2 with EMDB-0406 Alcohol Dehydrogenase 

map, which was deposited with raw map, half-maps and the mask the depositors used for 

sharpening. The map was sharpened with the Relion 4.1 post-processing task. The auto 

B-factor estimation returned a value of -50. Additionally, B-factors of -25 Å#, -75 Å# and 

-100 Å# were applied to the raw map, also using the Relion 4.1 framework. To further 

investigate the results, a cube of the background noise with the size of 20x20x20 voxels 

was selected, and the noise distribution from the maps sharpened with B-factors of -25 
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Å#, -50 Å# and -75 Å# in this volume of interest is presented in Figure 4.1.A. As expected, 

the sharpening changes the background noise distribution, which could affect the p-values 

of the distributions and also the FDR score. The sharpening levels will also change the 

distribution of values in the molecular volume. As presented in Figure 4.1.B the FDR 

score gradually degrades with increased sharpening. However, it can be seen that many 

of the peaks are aligned. The correlation coefficient between the raw map and the one 

sharpened with the B-factor of -50[122] was calculated and equals 0.71. To align the FDR 

score plots, the third quartile of the distribution was brought to 0.8. This way, a global 

FDR score threshold can be applied to identify the outliers in different models (Fig.4.1.C). 

The initial approach was to use the Z-score metric to find the outliers. The Z-score was 

calculated for each residue of the model by subtracting the mean value from the residue 

value and dividing it by the standard deviation. It is a commonly used method to identify 

outliers in a dataset, ideally when the distribution is close to normal. This approach was 

helpful when scoring the high-quality models with only a few outliers if the Z-score was 

lower than -2, meaning that the residue score was at least two standard deviations below 

mean score. It proved to be less robust when the mean is lower and standard deviation 

spread is larger for lower-quality models. Moreover, the different sharpening levels affect 

the overall distribution of the scores per model, making it more challenging to assess 

different models or models built from maps differently sharpened. Figure 4.1.D shows 

the boxplot representation of the distribution of the FDR scores obtained from high-

quality PDB model 6nbb.2 built from EMDB-0406 Alcohol Dehydrogenase map. 

Without any sharpening, the FDR scores from the raw map density highlight only the 

most serious issues in the model. The median value and overall score distribution 

drastically change as the additional sharpening is introduced. The evaluation of the model 

performance in this section of the thesis was performed based on aligning the distributions 

on the Q3 value. The Q3 corresponds to the top 25% of the scores which is more robust 

compared to Q2, even for bad models. 
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A 

 
B 

FDR Score with different B-Factor values for EMDR-0406 and PDB 6nbb.2 model 
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C 
FDR Score with different B-Factor values for EMDR-0406 and PDB 6nbb.2 model, Q3=0.8 

 

 

D  
FDR score distribution for PDB 6nbb.2 ranked 

against maps with different sharpening 

          
Figure 4.1 FDR score from the sharpened maps, A) noised distribution in the background box of 

the maps after sharpening with different B-factors, B) FDR-score degrades as the applied B-factor 

increases, C) moving the third quartile (Q3) of the distribution to 0.8 shows that low scoring parts 

of the model align, D) FDR score distribution for PDB 6nbb.2 model ranked against maps with 

different sharpening 
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4.3.2 FDR score evaluation  

As the reference to evaluate the performance of the classification, the best scoring models 

were selected from EMDR model challenge for target maps of apoferritin EMD-20026 at 

1.9 Å resolution, alcohol dehydrogenase EMD-0406 2.9 Å and T20 proteasome EMD-

6287 2.8 Å. A total number of 36 test models were chosen, and from each one monomer 

was selected, resulting in a total number of 8861 residues. The FDR-score is evaluated 

based on the RMSD for the distances between the backbone atoms C-alpha, C and N 

atoms of the reference and test models expressed in Angstroms, calculated according to 

equation 4.6, where n is the number of atoms, and v,w are atomic coordinates: 

 

𝑅𝑀𝑆𝐷(𝑣,𝑤) = 	o.
P
∑ ||𝑣F −𝑤F||#P
FL. ,   Eq.4.6 

 

The conditions, with the assumption that all atoms are positioned correctly in the 

reference model, were defined as follows: True Positive when the FDR-score is above 

certain threshold, and the RMSD is lower than the cut-off distance, True Negative when 

the FDR-score is lower, and the RMSD is higher, False Positive when the FDR-score is 

high, and the RMSD is also high, and finally False Negatives, when FDR-score is low, 

and the RMSD is low. Table 4.1 presents the metrics values for FDR-score thresholded 

at 0.65 for the 1	Å RMSD evaluation. 1	Å	radius	used	for	validation	results	in	higher	

AUC	for	each	RMSD	value	tested.	As	it	covers	a	smaller	volume	of	interest,	the	FDR	

score	can	be	calculated	more	precisely	without	overlapping	with	the	background	

noise.	Table	4.2.	 summarises	 the	confusion	matrix	at	 the	 selected	 threshold	with	

91%	 of	 true	 positive	 predictions. Figure 4.2. shows ROC curves for two different 

validation radius values. The ‘1A’ mode performs better than Van der Waals atomic 

radius with every tested RMSD value. The smaller radius is more precise and does not 

introduce additional volume which in some cases can represent the noise. 

  

Table 4.1 Performance metrics for FDR score 

Accuracy Error Sensitivity Specificity 

0.9480 0.0520  0.9634  0.6496  
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Table 4.2 Confusion matrix for the FDR score with 0.65 threshold and 1	Å RMSD 

  Actual values 

  Positive Negative 

Predicted  

values 

Positive 0.91 0.02 

Negative 0.04 0.03 

 

 

 
ROC curves 1A mode 

 

ROC curves VdW radius mode 

 

Figure 4.2 Comparison of the ROC curves for FDR score calculated with 1Å and Van der 
Waals radius modes  for different RMSD distances from the reference model 

 

The proposed method scores the atomic model based on how well it aligns with the 

molecular volume. And this is irrespective of whether the correct residue is in that 

position. Such limitations of the FDR-score were observed during the RMSD analysis. In 

cases of register shifts where the atoms are shifted along the residues, they can get high 

FDR scores but match incorrect positions in the map, for example, atoms shifted along 

the alpha helix or moved from their true position but still supported by the density. The 

other case is where some or all or the mistraced residues are still within the molecular 

volume. In this case, these residues will still hold a high FDR score. An example of this 

is shown in Figure 4.3., where the model of alcohol dehydrogenase 60_2 shows areas 

where the overall quality of the model is low, but still some of the residues score high. 

Nonetheless, low-scoring residues, highlighted in the output report, should bring user 
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attention to this part of the model for inspection. Also, the automated pruning 

implemented in the programme would remove not only each low-scoring residue but also 

one before and one after it, which should overall clear this area of the model. The pruning 

option which removes a low scoring residue (and additionally one residue before and after 

in the backbone to make more space for rebuilding) is available and implemented in the 

CPP-EM suit and will be added in Doppio. As a result it writes out the PDB file with 

pruned model and a text file with IDs and names of removed residues. 

Overall, we recommend the use of auto-sharpened maps to generate FDR scores. The use 

of raw maps tends to highlight only the serious mis-traces in the model. Oversharpened 

maps are likely to generate more false positives (errors in the model) with this approach. 

To compare the performance with respect to different map sharpening levels, we aligned 

the distributions on Q3 value. Although it is more robust than baselining on Q2, especially 

at higher sharpening levels, it is not optimal and a better normalisation based on 

sharpening levels is required to make the score less sensitive to differences in sharpening 

levels. In the new version of the CCPEM suite (Doppio) a local Z-score is calculated for 

each residue within 12	Å radius. This minimises the effect of variability in local resolution 

and sharpening levels on the scores. Errors are identified based on the local distribution 

of scores around each residue.    

 
Figure 4.3 FDR score can report high scores for some residues even if the model is incorrectly 
built in that region, which can result in increased numbers of False Positives in the classification 

 

4.3.3 FDR score and Local Resolution 

The final resolution of the cryo-EM map is often calculated from the Fourier Shell 

Correlation between the half-maps. This provides only a global estimate as the resolution 

can vary locally. This is usually governed by the inherent dynamics, heterogeneity and 
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other effects from image processing and reconstruction. Other factors that affect the local 

resolution of the cryo-EM map are specimen symmetry, application of a 3D binary mask 

that separates molecular signal from noise, sharpening procedure, or map anisotropy 

caused by the preferred orientation of the sample. Typically, due to averaging effects, the 

resolution can vary based on the distance from the centre of the molecule, with the lowest 

resolution on the map periphery. 

To minimise the effect of sharpening and masking of the final map, I used the FDR score 

from the auto-sharpened maps calculated with ‘1A’ radius mode and Q3 value transposed 

to the value of 0.8 and compared it against the local resolution map calculated with 

LocRes implementation in Relion 4.1[163]. The selected dataset includes maps and 

models submitted for the EMDR 2016 and 2019 model challenges. In each case two 

models are evaluated, one high-quality model and one low-scoring according to the 

EMDR Challenge outcomes. The apoferritin models 28_1 and 38_1 built from map 

EMDR-20026 with local resolutions ranging from 1.94	Å to 2.03	Å (Fig 4.4.A), T20s 

Proteasome models T0002EM123_2 and T0002EM189_2 from EMDR-6287, with 

resolution from 2.71	Å to 3.02	Å (Fig. 4.4.B), the alcohol dehydrogenase models were 

T0104EM028_1 and T0104EM060_2 submitted for the target map EMDR-0406 which 

covers resolution ranges between 2.96	Å and 3.82	Å (Fig. 4.4.C). From the plots, it can be 

seen that in every case the overall FDR score gets lower with lower local resolution. In 

each shown resolution band, models are scored higher in high local resolutions. The low-

scoring residues also appear independently from the changes in local resolutions. In 

conclusion, the FDR score can be used to evaluate the models across the range of 

resolutions, but local changes in resolution can lower the score. It also needs to be taken 

into consideration that parts of the maps can be genuinely disordered or poorly refined in 

lower local resolution areas. The presented analysis does not show a clear correlation 

between the local resolution of the map and the FDR score. 

The information from the local resolution estimation done, for example, with LocRes in 

Relion or similar programs, can be used as an additional information to calculate the FDR 

maps by local weighting[204]. This approach would often require the half-maps required 

to obtain information about the local resolution. This approach was tested and the 

performance of the FDR score from globally sharpened map was compared to FDR score 

from local resolution weighted raw and sharpened map of T20s proteasome EMDR-6287 

where local resolution ranges from 2.7-3.1 Å. Figure 4.5.A shows comparison of the FDR 

score plots, showing that even with the local resolution information the raw is useful only 

to identify the worst outliers. Figure 4.5 in panel B shows the EMDR-6287 map coloured 
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accordingly to the local resolution, panel C shows the confidence map calculated from 

auto-sharpened map, panel D- confidence map from raw map with local resolution 

information and panel E- confidence map from auto-sharpened map with local resolution 

information. Snapshots of the outliers are provided to further investigate the quality of fit. 

Glutamate 31 is marked as an outlier by all FDR maps. The raw map, even with the local 

resolution information, was the only one which did not correctly identify Methionine 101 

as an outlier. 

 

 
A 
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B 

 
C 

 
Figure 4.4 Comparison of FDR score of the models at different local resolution reveals lower 
scores as the local resolution decreases 
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D 

 

E 

 
GLU 31 

 

 

 

 

 

 

 
MET 101 

 

 

 

 

 

 

 
Figure 4.5 Comparison of FDR scores calculated from postprocessed map, raw map weighted 
with local resolution information and post processed (pp) weighted with local resolution 
information. For the comparison panel B shows original post-processed density coloured 
accordingly to the local resolution. C- Confidence map calculated from auto-sharpened map, D- 
Confidence map calculated from a raw map supported by local resolution information, E- 
Confidence map calculated from an auto-sharpened map supported by local resolution 



 110 

information. Additionally, positions of residues GLU31 and MET101 in the maps are shown for 
comparison. 

 

4.3.4 Number of particles vs final resolution 

The final resolution of the map would be affected by the number of particles used for 

reconstruction. In theory, as the number of particles increases, the resolution is expected 

to improve. More particles add to signal about the structure and allow more accurate 

refinement. However, the relationship between the number of particles and the final 

resolution is not linear. There are other factors that limit the practically achievable 

resolution, such as the particle quality, radiation damage, sample heterogeneity, angular 

view coverage (preferred orientation) or defocus setting of the microscope[122]. To 

investigate how the number of particles affects the performance of the FDR score, I used 

the T20s Proteasome EMPIAR-10025 datasets. The data was processed using the Relion 

4.1 pipeline, after motion correction with MotionCorr[124], and CTF estimation with 

CTFFIND4[75]. The first round of particle picking was done template-free with the 

Laplacian of Gaussians method. Initial 2D classes were used for template-based particle 

picking. After selecting the best classes with a total number of 73263 particles, the ab 

initio 3D model was generated and used for 3D classification. After that, the subsets were 

selected by adding 10000 particles each time and running the 3D refinement with D7 

symmetry and the same 3D reference map, resulting with final maps refined from 10000 

to 70000 particles. The relationship between the number of particles and the final 

resolution is presented in Figure 4.6.A.  

The FDR score was calculated for the unsharpened maps to base the comparison solely 

on the number of particles and not to introduce the additional parameter of the sharpening 

factor. Analysis of the FDR scores revealed some residues marked as outliers in each map 

but also some that, with the maps with the higher number of particles, started to fit better. 

Figure 4.6.B shows the plots for models validated from maps refined with 10000, 20000 

and 70000 particles, as they have the highest difference in the final resolutions. The 

residues selected for further investigation in UCSF Chimera included Tyrosine (Tyr132, 

Chain S), which scored low with maps from a lower number of particles and high with 

70000 particles (Fig.4.6.C) and Glycine (Gly192, Chain S), which scored low with every 

map (Fig.4.6.D). To compare the maps, they are represented in UCSF Chimera with the 

thresholds that represent the same molecular volume. This comparison shows that there 

are some outliers in the maps, which can be found at different resolution levels. Some 

residues marked as outliers might be positioned correctly, but the quality of the 3D map 



 111 

density is not good enough to support them. The higher resolution map has lower number 

of outliers. 

A 

 
B 
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C 

 
D 

 
Figure 4.6 FDR score calculated for different numbers of particles used for T20s proteasome map 
refinement, A) the resolution increases with a higher number of particles, B) FDR scores 
calculated from different numbers of particles shows that with higher number of particles and 
higher resolution the residues score better but still some of the outliers are found in every case, 
C) comparison of the position of Tyrosine 132 chain S shows that with higher number of particles 
the density improves to fit the model backbone, D) an example of a residue (Glycine 193, chain 
S) which is not supported by the density at any resolution, This worst outliers can be identified at 
different resolution ranges. 

4.3.5 FDR Score compared to Atom Inclusion 

The FDR backbone score was compared with the Atom Inclusion score, which also 

reports whether the atoms and residues are traced within the molecular contour. The Atom 

Inclusion score requires the user to select a density threshold for calculating the scores. 

This value should ideally correspond to the molecular weight of the protein, but the 

threshold recommended by the author is often subjective. This makes the Atom Inclusion 

score sensitive to the selection of the contour level, artificially increasing the assessed 

model quality if the threshold is too low or lowering it if it is too high. Additionally, the 

globally set threshold might not properly represent the local variability of the density map. 

The new method based on the False Discovery Rate does not require users to specify such 
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parameters as it separates the molecular density from background noise. The inclusion 

score for residues is calculated for all atoms, while the FDR score uses only C-alpha, C 

and N. The Validation tools were compared based on the potentially misfitted residues 

they can identify. The Atom Inclusion scores are calculated for the deposited primary 

map at the contour level recommended during map deposition. The 3ajo model was 

validated against EMD-20026 apoferritin map (Fig.4.7). Two areas were selected, to 

investigate cases where Atom Inclusion scores were low and FDR scores high (B). In the 

area where the sidechains are not supported by the density the Atom Inclusion reports low 

score for the whole residue, where the FDR score shows the good fit of the residue’s 

backbone. Both methods score low where the local density is not supporting the model 

(C).  

A 

   
B 

 

C 

 
Figure 4.7 Comparison of the FDR score and Atom Inclusion for PDB 3ajo model and EMD-
20026 map, A) plots of the FDR score and Atom inclusion shows regions where the scores are 
different, B) TYR 12 – ASP 15 with low Atom Inclusion score due to the lack of support for the 
side chains, C) ASP 89 – ASP 92 where both methods score low due to poorly refined density  

The PDB 3j9i T20s proteasome model was scored both with FDR using auto-sharpened 

EMD-6287 map and Atom Inclusion with the map thresholded at 0.025 level. The 
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comparison presented in Fig 4.8.A reveals areas of the model which is scored differently 

by each method. Figure 4.8.B shows that the Atom Inclusion score gets lower if the side-

chains of the residues are not included even if the backbone is well placed into the density. 

Fig. 4.8.C shows part of the model, where the FDR score identified the misplaced 

backbone, but the atom inclusion gave high overall scores to the residues as other atoms 

are included within it.  

A 

   
 
B 

 

 
C 

 
Figure 4.8 Comparison of the FDR score and Atom Inclusion for PDB 3j9i model and EMD-6287 
map, A) plots of the FDR score and Atom inclusion, B) PRO 17 – ALA 27 with low Atom 
Inclusion score due to low visualisation threshold that excludes side-chains, C) ILE 215 – GLY 
218 where FDR score identified backbone atoms out of the density, but Atom Inclusion scored 
the residues highly as atoms from side chains are shifted into density  
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Comparison of the FDR score and Atom Inclusion for alcohol dehydrogenase model PDB 

6nbb and map EMDR-0406 in Fig 4.9.B shows the area scoring low with both methods 

where the residues are not supported by the density at the beginning of the chain A. Fig. 

4.9.C. shows that the recommended threshold level 0.02 introduces gaps in the density 

resulting in low Atom Inclusion score, where the FDR method gives high score to the 

residues. 

A 

 
B 

 

C 

 
Figure 4.9 Comparison of the FDR score and Atom Inclusion for PDB 6nbb model and 
EMD-0406 map, A) plots of the FDR score and Atom inclusion, B) SER 1 – GLY 4 
with both scores low as there is no map density to support the residues C) ALA 162 - 
SER 164, too high visualisation threshold creates gaps in the density resulting in low 
Atom Inclusion score, the FDR score is high. 
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4.4 Conclusions and future works 
The FDR score is affected by the sharpening level of the map and the proposed approach 

of moving the third quartile of the distribution to 0.8 helps to align the differences in the 

scale of FDR scores. This doesn't account for the differences in the outliers identified at 

different sharpening levels. Nevertheless, it makes it possible to identify the worst outliers 

between the differently sharpened maps. By default, the auto-sharpened map is 

recommended for FDR score calculation and observed to be more useful in identifying 

issues with model backbone trace. 

The local changes in resolution and quality of the maps can also affect the FDR scores. 

One way to approach this challenge could be weighting the Confidence Map according 

to the estimated local resolution. Examples presented in this chapter did not show 

considerable improvement in outlier detection compared to default Confidence Map 

calculation. Obtaining the local resolution map requires additional input (unfiltered half-

maps) and extra computational steps of calculating the local resolutions reference and 

then weighting the FDR map. In order to investigate this problem fully, a reasonably large 

dataset of cryo-EM maps deposited with half-maps would be required. Also, the 

collection of maps should not only include entries with different global resolutions, but 

also different levels of variance in the local resolution to see to what extent the local 

changes in resolution can be compensated with local sharpening. This kind of project 

could be beneficial for the cryo-EM community and add another tool for local model 

quality evaluation, but should also allocate a significant amount of time for collecting the 

proper test dataset, scoring the models and finally, analysing the results. 

The number of particles affects the overall quality and resolution of the map. Maps refined 

with fewer particles contain fewer outliers, but the worst outliers are also identified when 

a high number of particles is used. 

Based on the performance of the score in identifying errors in models, the 1Å radius mode 

performs better than the radius defined by Van der Waals of each atom. We note that 

some residues can score high if they fit into the density even at an incorrect position but 

within the molecular volume. In the future, another layer of validation can be added by 

also checking the quality of a group of residues in specific areas, which can be 

implemented using the sliding window technique or similar. 

The comparison of the FDR Score with Atom Inclusion showed that Atom Inclusion is 

sensitive to the threshold selection, additionally if too high threshold is selected it can 

introduce discontinuities in the map and a large number of identified issues with atom 
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positions. Finally, the Atom Inclusion score calculated per residue uses all atoms in the 

residue, which can still score high even if the backbone atoms are outside of the map. 
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5 Conclusion 
 
5.1 Summary  
As a result of this PhD project, automated software tools and procedures were developed 

to annotate the cryo-EM images. The introduction of a new parameter based on the local 

pixel intensity, which can be calibrated to the measured ice thickness, can improve the 

data processing. This parameter can be used at the initial stages of data processing to 

evaluate the overall quality of the micrographs. It can also annotate individual particles 

based on local ice conditions to investigate their quality and behaviour. With many new 

tools used for sample preparation developed in recent years, the major challenges are still 

the lack of reproducibility and ice distribution control. There are established procedures 

that can identify the sample quality and ice condition in the sample, but they require 

additional steps during data collection (e.g. stage tilting) or specific microscope setup 

(energy filter or Aperture Limited Scattering methods). The main advantage of the 

presented approach is that it requires minimal additional steps, and then only if the 

calibration is required. It can also be successfully run for historical datasets for additional 

analysis. 

In Chapter 3, we presented additional analysis and applications of the introduced software 

tool, which can be used to locally improve the contrast and estimate the ice distribution 

on the cryo-EM micrographs. Estimating the ice thickness distribution allows users to 

annotate each of the picked coordinates with the average pixel intensity and identify the 

contamination regions or to group particles according to the local ice conditions. Users 

can group together particles from similar ice thickness areas and run local refinement to 

check the resolution and distribution of the angular orientations of the particles with 

cryoEF or similar tools. This way, the optimal ice conditions for a given specimen, which 

will provide a high signal-to-noise ratio and good angular coverage, can be identified and 

targeted during the data collection at the high-end microscope.  The presented software 

can also be used to improve particle picking from a new set of micrographs with uniform 

contrast distribution. This approach is used to pick as many particles as possible, 

considering that particles recovered from thick ice regions might have lower quality. In 

some cases, where the particles have preferred orientations in the data set, analysis of 

different ice thickness regions can reveal some of the unique views and improve the initial 

3D model despite the lower quality of individual particles. With these options, users can 

not only improve the particle picking with more picks from the regions that were 
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previously skipped because of the non-uniform contrast distribution but also apply the 

local or global pixel intensity threshold to remove the contaminations from picks. 

The software was written in Python 3 and is also implemented as an "External job" type 

in Relion. It is freely available from GitHub or can be installed from PyPI 

(https://pypi.org/project/icebreaker-em). With this approach, we would like to make it 

easily accessible for users and encourage them to install it and use it at their local 

institution. The initial ice conditions evaluation, even at the mid-range microscope, can 

be used to identify the most promising ice thickness levels, for example, those which 

would provide good angular view coverage and a high signal-to-noise ratio. This 

approach could provide additional information about overall sample quality and more 

effectively plan the data collection at the high-end microscope. 

There are existing atomic model validation software tools that use different techniques. 

They allow addressing a variety of potential problems with the model, from the global 

and local fit to the map, backbone and rotamers geometry or protein-protein interfaces. 

As the different programs specialise in detecting particular issues with the model, it is 

always recommended to use a proper validation approach or multiple metrics to get a 

comprehensive evaluation of the final model. As a part of this research, a new model 

validation tool based on the False Discovery Rate was developed with the outcomes 

summarised below. 

Chapter 4 presents the additional evaluation of an atomic model validation tool based on 

the False Discovery Rate approach. The tool allows users to determine if the parts of the 

model are built into the actual cryo-EM density or if they are placed into the noise. Each 

residue is ranked, and users can investigate the potentially problematic ones in a 

visualisation tool like the UCSF Chimera or automatically remove the low-scored ones. 

We also presented a detailed comparison between this tool and other commonly used 

metrics such as FSC-Q, Map Q-score, PHENIX validation toolbox and TEMPy SMOC 

and SCCC scores. This study revealed the benefits of using multiple validation tools 

based on different methods and metrics, as some of the problems with models can be 

easily spotted with one and overlooked by the others. This software tool is now 

implemented and available from the CCPEM software suite for the cryo-EM community. 
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5.2 Limitations and future work  

Progress in cryo-EM data collection and processing can be achieved either by upgrading 

instrumentation or by the introduction of new software tools. As the hardware upgrade is 

always something that makes the most important changes, the software can be created to 

pinpoint some specific problems at different stages of the data processing and to automate 

the processing procedures to routinely obtain high-resolution cryo-EM reconstructions. 

The main limitation encountered during the research presented in this thesis is the limited 

availability of unoptimised or failed datasets. Even if the quality of the final resolution 

cryo-EM map is low or the model is incomplete, the data is well curated, and people do 

not frequently deposit flawed datasets to EMPIAR or PDB repositories. Instead, they try 

to optimise the sample preparation procedure and try using a new dataset. The availability 

of a range of datasets with different quality is crucial for software development to 

properly understand and describe the problem and then find a correct method to solve it 

or automate the process. The annotated negative and false negative datasets are also a 

vital part of the machine learning model training workflow to train a neural network with 

high precision and recall. The development of software for users to improve data 

processing heavily depends on the feedback provided by users. The opportunity to present 

these projects during various seminars and poster sessions, as well as collaboration with 

Electron Bio-Imaging Centre and Collaborative Computational Project for Electron 

Microscopy during this PhD, allowed me to reach out to a large potential user base and 

better understand the needs of cryo-EM community. 

The IceBreaker software was introduced to the data collection and processing pipeline at 

eBIC. We hope this will encourage users to use it for their data acquisition sessions. The 

software was developed and tested mostly on historical datasets, and feedback from actual 

users can help further optimise the parameters for data collection. This software can be 

run automatically, without user interaction for on-the-fly processing. We developed a 

robust ice-thickness estimation framework, which does not interrupt the data collection 

setup and helps people to make the most of their experiments. In the future, the contrast-

improved micrographs can be used as input data for machine-learning based automated 

particle pickers, such as ‘fine-tuning’ with crYOLO. The software is parallelised to run 

on multiple CPUs, which works reasonably well given the higher availability of CPUs as 

the GPUs are used for computationally heavy tasks. The ice thickness levels are estimated 

from the pixel intensity values recorded by the detector. The pixel intensity values are 

now compared with ice thickness measured during data collection with and without an 
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energy filter. If the IceBreaker becomes a tool commonly used during the data collection 

sessions, we could build a large database of high-quality particles with additional 

information about the ice conditions from which they were picked. The long-term goal 

would be to use this information to train a machine learning model to automatically select 

the optimal ice conditions for data collection, even at lower magnification levels. 

The developed and published model validation tool is a new addition to the CCPEM 

software suite. It offers the functions to automatically check the protein backbone fit into 

the cryo-EM density and the option to remove residues fitted poorly or into the 

background noise. The software evaluates only the backbone atom positions, and the side 

chains or rotamer positions are not considered. This approach should work reliably for 

the lower resolution range of 2.8-3.5 Å, where the misfit of the backbone usually causes 

the side chain misplacement. It was shown that in some cases, it could perform better than 

the Atom Inclusion score used as a validation during map and model deposition but relies 

on the selection of interpretation level, which in many cases might not be optimal. With 

this software, we score the relative position of atomic coordinates according to the cryo-

EM density. The other useful functionality would be to check for sequence register errors, 

as even if the residue is incorrect but fits into density, it might receive a high score.  The 

preliminary results do not show a strong correlation between the confidence score and 

local changes in resolution, which can also be caused by protein flexibility or data 

heterogeneity. Further development in that direction could improve the performance of 

this software and help to identify problems which originate from incorrect refinement or 

from the quality of collected data. In general, most of the automated model-building tools 

do not consider local resolution changes. The ‘pruning’ option removes poorly scored 

residues and can be useful for iterative model building. Incorrectly built parts of the 

current model can be automatically deleted, and the remaining part can be used as input 

for the next model building round. The comparison with other commonly used validation 

tools showed this tool could be complementary to them and identify some of the issues 

missed by other methods. 

5.3 Closing remarks  

The cryo-electron microscopy technique for protein structure determination is becoming 

more popular and accessible to users. The quality and number of deposited maps have 

improved greatly in recent years. In 2020, the 1.22 Å apoferritin map was obtained as the 
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first cryo-EM structure at atomic resolution. What since the 1970s was considered wishful 

thinking supported only by theoretical calculations finally became reality. 

The high-throughput data collection and improved quality of recorded data bring new 

challenges for the cryo-EM. The vital task is to optimise the data collection strategies to 

make the most of the microscope time. This can be done by automatically targeting the 

regions of cryo-EM grids, which can result in high-quality reconstruction. Currently, one 

of the major concerns for data processing is the structural heterogeneity and anisotropic 

resolution, which could not even be determined at lower resolutions a few years ago. If 

the particles in the sample have different conformations and it is not identified and 

properly classified, it might not be possible to obtain high-resolution 3D reconstruction. 

The local changes in resolution can heavily affect the automated model-building 

techniques, leading to incorrect or incomplete models. 

The EMDataResource and Electron Microscopy Public Image Archive (EMPIAR) data 

repositories are invaluable resources of historical cryo-EM data with details about the 

experiment setup. The datasets deposited in a unified way are useful for identifying 

common issues and can be a great starting point for the development of new methods. 

Initiatives like EMDataBank map building and model validation challenges are great 

platforms to bring together the cryo-EM community to benchmark the state-of-the-art 

tools for cryo-EM data processing. This way, new procedures and workflows can be 

established and presented to users with instructions and recommendations on how to 

effectively use them. In the research presented in this thesis, we often used targets from 

such challenges as they allowed us to evaluate our results, see the improvements, and 

identify flaws in our approach. Unfortunately, in many cases, the databases do not provide 

enough bad and low-quality data, which is also essential for new methods of development 

and validation. 

The future developments in the cryo-EM could be done in two major directions. The first 

approach is improvements in hardware equipment, including new types of detectors, that 

would allow obtaining higher quality images, which can lead to better quality and 

resolution of the reconstructions. The development of new sample deposition devices and 

procedures could help to improve the sample stability and reproducibility. The other 

approach is software development with the rise of machine learning algorithms that could 

be applied to automate the data collection and processing pipeline even further. 
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High-end cryo-EM microscopes are still very expensive to operate, and only a few 

facilities worldwide can afford them. The total operational cost of running the cryo-EM 

microscope and equipment can be from £3000-£5000 per day. Recent developments in 

cryo-EM imaging show that final maps with resolutions better than 5Å (3.4 Å resolution 

from 16 500 particles of DPS protein with tetrahedral symmetry) are achievable with 

lower-end equipment and 100keV accelerating voltage[50, p. 100]. The possibility of 

better availability of cryo-EM instruments for users at reduced costs can be beneficial for 

better planning and optimisation of data collection. In most cases, the achievable 

resolution should be sufficient for a high-throughput preliminary screening of drug 

candidates or the initial investigation of the specimen parameters and behaviour in the 

sample before high-resolution data collection at the high-end facility. This approach, if 

commonly adopted, could help to make the most of the true cryo-EM potential with high-

end, high-resolution processing. At the same time, lower-end microscopes could serve for 

training purposes to familiarise people with cryo-EM data collection procedures and serve 

as a platform for testing and developing new software for automated data collection 

optimisation and processing without requiring costly downtime of the high-end devices.  
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SUMMARY

Despite the abundance of available software tools, optimal particle selection is still a vital issue in single-par-
ticle cryoelectron microscopy (cryo-EM). Regardless of the method used, most pickers struggle when ice
thickness varies on a micrograph. IceBreaker allows users to estimate the relative ice gradient and flatten
it by equalizing the local contrast. It allows the differentiation of particles from the background and improves
overall particle picking performance. Furthermore, we introduce an additional parameter corresponding to
local ice thickness for each particle. Particles with a defined ice thickness can be grouped and filtered based
on this parameter during processing. These functionalities are especially valuable for on-the-fly processing
to automatically pick as many particles as possible from each micrograph and to select optimal regions for
data collection. Finally, estimated ice gradient distributions can be stored separately and used to inspect the
quality of prepared samples.

INTRODUCTION

Advancements in cryoelectron microscopy (cryo-EM) instru-

mentation, detector development, and data processing algo-

rithms have allowed reconstructions to be obtained at atomic

resolution (Nakane et al., 2020). The final quality of the cryo-

EM reconstruction depends on several factors at different stages

from the sample preparation and data collection to the data pro-

cessing. One of the crucial features is the thickness and variance

of the vitreous ice across the grid. The ice parameters in principle

can be optimized at the sample preparation stage by the adjust-

ments of plasma exposure time, blot force, and time (Passmore

and Russo, 2016). Despite recent advancements in instrumenta-

tion, the vitrification process is still highly variable and not repro-

ducible (Dandey et al., 2020; Drulyte et al., 2018; Rubinstein

et al., 2019; Tan and Rubinstein, 2020). The overall quality of

the prepared cryo-grids needs to be assessed before the data

collection. Currently, user tools in data collection software

such as EPU can be helpful in the automated selection of the

best areas of the grid and excluding damaged areas. More

advanced routines to estimate the ice thickness using energy fil-

ter, the aperture limited scattering method (Rice et al., 2018),

diffraction patterns (Ahn et al., 2020), or classification routines

based on machine learning algorithms for the images at low

magnification (Yokoyama et al., 2020) allow targeting only the

grid areas with desired ice thickness. This can lead to improve-

ments in the final resolution and reduce the data collection

time, but most of the methods need to be optimized for each

project and microscope (Rheinberger et al., 2021).

The ideal setup for single-particle analysis would have the par-

ticles distributed in a thin, vitreous ice layer. The surface of the

ice in the data collection areas should be flat and normal to the

electron beam. Particles should occupy most of the grid holes,

be oriented randomly, and not overlap with each other (Noble

et al., 2018). Areas with too thin ice can be devoid of proteins

or the proteins can be damaged or denatured on the air-water

interface (D’Imprima et al., 2019). Thicker ice results in low

SNR, errors in defocus determination, and limits the final resolu-

tion. Even though it is recommended to make the grids with thin-

nest-possible ice that can still support the specimen, in many

cases the particles will be pushed to thicker ice areas (Wu

et al., 2016), or, in other cases, the particles will have preferred

orientation(s) (Cianfrocco and Kellogg, 2020; Glaeser and Han,

2017). Generally, the collected dataset will include images of var-

iable ice thickness that affects signal-to-noise ratio (Baxter et al.,

2009). Recently, image processing techniques or artificial intelli-

gence-(AI)-based denoising software tools have been developed

to improve the interpretability of the micrographs (Bepler et al.,

2020). The denoised micrographs allow for picking additional

particles that were otherwise not distinguishable from the noise

(Wagner and Raunser, 2020). The problem of preferred orienta-

tion and missing angular projections of the specimen can limit

the final resolution and affect the performance of the map recon-

struction algorithms even with the large number of picked parti-

cles (Rosenthal and Henderson, 2003; Sorzano et al., 2021).

Onemain shortcoming common tomost of the state-of-the-art

automated tools is the fact that they do not take into consider-

ation the fact that particles distributed in different ice thickness
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regions may have different quality and features. After the pro-

cessing, most of that information, which could lead to the

improvement of the final resolution, cannot be recovered.

Currently there is no software tool that allows the user to easily

connect the ice thickness parameter with the quality and state

of the particles in different areas of the prepared sample.

In this work, we present a software tool, IceBreaker, for the ice

thickness estimation and digital ice gradient removal on the

cryo-EM micrographs. The software allows the segmentation

of the micrographs and grouping areas with similar ice features.

It can be used for local image processing as filtering or contrast

enhancement, as well as annotating and removal of the ice

contamination and/or carbon film fringes. Importantly, it intro-

duces the empirical ice thickness parameter that can be associ-

ated with each particle based on the picked coordinates. The

described tool can be used as a stand-alone image processing

software or as an external job in the integrated Relion workflow

(Zivanov et al., 2018).

RESULTS

The IceBreaker workflow
The IceBreaker software allows segmentation of the cryo-EM

micrographs based on the distribution of the pixel intensities re-

corded by the detector. The term ‘‘estimated ice thickness

value’’ is introduced to describe and group the areas of the

micrograph with similar pixel intensities. This information can

be exploited during the later stages of the cryo-EM processing

pipeline; e.g., particle picking, 2D classification, or 3D refine-

ment. An overview of the workflow is presented in Figure 1

with examples of the resulting images. Each of the steps is

described below.

Input data: the required input is a set of motion-corrected

cryo-EM micrographs. The IceBreaker can be run as an external

job of the Relion project or as a stand-alone tool from the com-

mand line. It can be used as a part of the data collection pipeline

or performed on historical data. Various tools for motion correc-

tion (Grant andGrigorieff, 2015; Li et al., 2013; Zheng et al., 2017;

Zivanov et al., 2019) can be installed separately. They do not

affect IceBreaker results, as long as the whole dataset is pro-

cessed with the same setup. The pixel intensity values from

the input images are used to estimate the distribution of the ice

thickness in a given dataset.

Step 1. Pre-processing: filtering and feature flattening: the

20 Å low-pass filter is applied to each micrograph to remove

the high-frequency noise and reveal features such as particles,

ice contamination, foil hole edges, and the ice gradient. Then,

the micrograph is divided into a pre-defined number of patches:

40 in x and 40 in y direction, which is independent of the size of

the micrograph. Within each patch, an average value of pixel in-

tensities is calculated. This way local features are reduced to 1/

1,600 of the micrograph area on top of the initial 20 Å filter. In our

test cases, this was sufficient to reveal trends and low-frequency

changes in the background, which represent the changes in the

ice thickness. Additionally, the super-pixels represented by each

patch can be used to reduce the size of the micrographs and

improve the computation speed. Micrographs processed this

way are used as input to the next stage of the processing.

Step 2. K-means clustering: the K-means clustering algorithm

is used to group together the areas of the rescaled, feature-flat-

tened micrograph with similar values. By default, each micro-

graph is divided into 16 segments. Then, the segmented image

is upscaled to match the original size of the micrograph. This re-

sults in a micrograph with 16 discrete regions with unique values

of the intensities of the pixels. Each group populates the pixels

that originally represented similar background features in a given

neighborhood. The segmented micrographs are saved and can

be used for further processing in two ways. First, for masking

and local processing of the original micrographs, and second,

as a reference to identify the micrograph quality in the neighbor-

hood of the coordinates selected during the particle picking.

Step 3. Local processing for contrast improvement or ice

gradient estimation: the groups defined in the previous step

allow the local processing of the original dataset. Each segment

represents an area with similar background features and can be

Figure 1. The IceBreaker workflow

The required input is a set of motion-corrected micrographs. The pre-pro-

cessing stage includes low-pass filtering and further feature flattening done by

local averaging. The output image is used for the K-means clustering to obtain

segmented micrographs. From the segmented micrographs, the user can

create local masks for local contrast improvement, which can lead to improved

particle picking, or empirically estimate ice gradient and use this information as

an additional parameter for the processing.
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used as a local mask that can be applied to the original, motion-

correctedmicrographs.Within eachmask, the image processing

operations such as contrast improvement can be performed.

The application of the contrast equalization in different areas of

the micrograph separately results in the final image with a similar

ratio between the particles and the background features. This

also alleviates the problem of oversaturation of parts of the im-

age when it is equalized as a whole. The resulting image has a

similar ratio between the particles and the background, which

can be beneficial for the particle picking tools based on the tem-

plate matching algorithms.

Another use of the presented approach allows estimating the

average ice thickness in segmented micrographs. The defined

local masks can be applied to the motion-corrected images.

Within each mask, an average value of the pixel intensities can

be calculated to estimate the ice thickness in the selected re-

gion. This way, a set of segmented micrographs with the esti-

mated ice distribution is created and can be used to associate

the picked particle coordinates with the background intensity

in the area where they come from. The empirical ice thickness

parameter describes whether the particle was picked from the

area with high signal-to-noise ratio (which would correspond to

the thin ice conditions) or low for the particles embedded in

thicker ice. It also allows filtering and selecting subsets of parti-

cles of similar quality.

The performance of the IceBreaker was tested using several

datasets available from the Electron Microscopy Public Image

Archive (EMPIAR) database. The presented results are focused

on the main features of the software: (1) local contrast enhance-

ment to improve the particle picking; (2) evaluation of the micro-

graphs’ quality and identification of the ice contaminations and

foil hole edges; and (3) the cryo-EM data processing with the

newly introduced empirical ice thickness parameter.

Local contrast enhancement
One of the main challenges when processing cryo-EM micro-

graphswithnon-uniform icedistribution is the fact that thecontrast

levels between the particles and the background features vary in

different parts of the image. This can affect the performance of

the automated particle pickers, especially those using a single

value threshold to detect false-positives. In order to normalize

the local contrast between the particles and the background

across the whole micrograph, IceBreaker segments low-pass-

filteredmicrographs into areas of similar overall intensity. The pro-

cedureof local contrast enhancement ispresented inFigure2. The

input motion-corrected micrograph (Figure 2A) is pre-processed

using a low-pass filter to identify the changes in background inten-

sities corresponding to the ice distribution (Figure 2B). The K-

means clustering is applied to the low-pass-filtered micrograph

to obtain a segmented image (Figure 2C) where pixels with similar

intensities are grouped together. Each of the segments created

this way can be used as a local mask for image processing. An

example of such a mask is highlighted blue in Figure 2D. It can

be applied to the low-pass-filtered micrograph to directly access

pixel coordinatesasshown inFigure2E.Withineachmask, thehis-

togram equalization is performed. This procedure is repeated for

each segment of the micrograph. The resulting image in Figure 2F

is flattened with the ice gradient removed. Contrast between par-

ticles and the background features is improved both in the areas

that were originally dark and bright. Images curated this way can

be used as a direct input for automated particle picking. As shown

in Figures 2G and 2H, particle picking with crYOLO is much

improved after image flattening and contrast enhancement (Fig-

ure 2H) compared with the original micrograph (Figure 2G). The

particles initially skipped due to poor contrast are now included,

especially those in the darker area, yielding a greater number of

picked particles. While increasing the number of picked particles

is valuable when the dataset is small, views with weak contrast

are missing, or when performing 2D classification, users should

keep inmind that thequalityof theparticles fromthicker ice regions

might be poorer and should be evaluatedwhen aiming for the best

possible resolution. IceBreaker introducesmeans for such evalua-

tions,which are describedbelow.Figure2I showsacomparisonof

the number of particles picked with Relion3.1. Laplacian of

Gaussian (LoG) autopicker from original micrographs, micro-

graphs after band-pass filtration (with the setup of 20–500 Å),

and micrographs after contrast equalization with the IceBreaker.

The IceBreaker produces micrographs with consistent intensity

distribution, which allows the pickers to perform more reliably.

By contrast, the band-pass filter produces a correction that often

varies over the area of the micrograph and does not equalize the

contrast between particles in thin and thick areas. The improved

picking from band-pass-filtered images is still affected by the

changes between the micrographs, such as defocus value, as

the filter parameters are set globally for the whole dataset. The

IceBreaker allows us to improve the contrast for eachmicrograph

individually and achieve better results.

Micrograph quality evaluation and ice contamination
detection
The segmented micrographs can be used to evaluate the overall

quality of the collected dataset, in addition to CTF estimation.

Figure 3A shows the distribution of the pixel intensities, which

represents the background for a subset of 20 micrographs

from the beta-galactosidase dataset EMPIAR-10204 (Kato

et al., 2018). This analysis revealed several features of the

data, which are discussed on selected examples of the micro-

graphs and their 3D profiles presented in Figure 3B: (1) micro-

graphs with darker backgrounds, associated with the thicker

ice in these areas of the grid, can be easily separated from the

ones with a lighter background and thinner ice; (2) a symmetrical

box plot indicates a uniform background as in micrograph no.3,

while a skewed box plot in micrograph no. 17 or 3D presentation

suggests an ice gradient; (3) the outliers in box plot representing

micrograph no.10 and the corresponding 3D representation indi-

cate there are ice contaminations. Such analysis provides infor-

mation that can improve further processing. Micrographs with

lower quality can be excluded. The outlier analysis can be helpful

to set thresholds for the particle pickers to avoid ice contamina-

tions or remove them from the already-picked set of coordinates.

Figure S1A shows a segmentedmicrograph with the ice contam-

ination in the field of view. The contaminations can be easily

identified by checking the pixel intensities distribution (Fig-

ure S1B). The coordinates picked with the LoG include areas

associated with the contamination, which can be easily removed

based on the pixel intensities distribution thresholding (Figures

S1C and S1D). Associating the particles’ coordinates with local

background values can also help to exclude false-positive
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particle positions with automated pickers based on template

matching or machine learning.

Processing based on the ice thickness parameter
The information about the distribution of the background pixel in-

tensities can be associated with the coordinates of the particles

picked using any available picking tool. With the IceBreaker, we

introduce a new empirical particle parameter representing the

estimated ice thickness based on the background features of

the area where the particle is located. Users can check the over-

all distribution of the particles and their orientations with respect

to their background quality. Figure 4 presents such analysis us-

ing the T20S proteasome dataset EMPIAR-10025 (Campbell

et al., 2015). The histogram in Figure 4A shows the number of

particles associated with different ice thickness values. These

values are calculated from the segmented micrographs as an

Figure 2. IceBreaker contrast enhancement

(A) A raw micrograph of T20S (EMPIAR-10025) used as an input.

(B) A 20 Å low-pass filtered micrograph, revealing non-uniform distribution of ice.

(C) A segmented micrograph, where each segment can be used as a local mask.

(D and E) Local mask (blue) applied to a corresponding example segment of the micrograph.

(F) The micrograph after contrast equalization.

(G and H) Automated particle picking using crYOLO on the original micrograph (G) and after local contrast equalization (H).

(I) Number of particles picked by crYOLO (top) and LoG (bottom) from original (blue), 20–500 Å band-pass-filtered (orange), and local contrast-equalized (gray)

images randomly selected from the dataset (10%). Scale bar, 50 nm.
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average value of pixel intensities in each segment (Figure 4B).

The histogram shows that the majority of the particles were

picked from the intermediate ice thickness values. There is an

apparent skewness in the particle distribution due to the

absence of particles in very thin ice, which is possibly too thin

to embed T20Ss proteasome particles. The set of over 120,000

automatically picked particles, after 3D refinement in Relion

with the D7 symmetry, were split into 20 groups based on the

ice thickness parameter. This allows us to assess how the parti-

cles behave in different ice thickness conditions, as shown in the

particle angular distribution (Naydenova and Russo, 2017) plots

(Figure 4C). For presentation clarity and to match the lowest

populated group I, each plot is done for a randomly selected

subset of 100 particles. In group I, which represents the thicker

ice area, the number of picked particles is low, but both top

views and side views of the T20S proteasome are present. As

Figure 3. Assess the distribution of the ice by IceBreaker

(A) Box plots for a subset of 24 micrographs of b-Gal from EMPIAR-10204, showing pixel intensities distribution in the micrographs after segmentation.

(B) Images and corresponding 3D ice distribution profiles of selected micrographs. Asterisks (*): micrograph no. 3 with no ice contamination and uniform ice

distribution, micrograph no. 10 with the ice contamination indicated by the outliers on the box-plot, micrograph no. 17 with the non-uniform ice gradient rep-

resented by the skewed distribution. Scale bar, 50 nm. The size of each of the boxes in the box plots (equivalent of error bar) corresponds to the values of the first

and the third quartile; orange bar represents median value of the given micrograph. The whiskers indicate datapoints that fall into the 1.5 interquartile range (IQR)

and the outliers (marked with black X) represent datapoints that significantly differ from the dataset.
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the ice gets too thin to support the top view (group IV), the

angular plot shows a shift from the pole (top view) toward the

equatorial area (side view). The selection of the particles from

the regions can lead to under-representation of specific views,

or preferred orientation, even if the signal-to-noise ratio is better.

The most populated groups in the intermediate ice thickness

show good support for most of the angular views required for

an isotropic reconstruction (groups II–III), still the quality of the

particles and signal-to-noise ratio may differ between the

groups.

To further gauge the effect of ice thickness on 3D reconstruc-

tion, we regrouped the full dataset of picked particles into five

groups based on the ice thickness parameter, as shown in Fig-

ure 5A. Figures 5B and 5C show the post-processed maps

rendered in UCSF Chimera (Pettersen et al., 2004). Maps are

colored by the local resolution calculated with LocRes (Kucukel-

bir et al., 2014) and labeled with the final resolution for each re-

ported after Refine3D and post-processing jobs. Figure 5B

shows a comparison of the densities obtained using all

121,000 particles and 66,000 particles from thinnest-ice groups

(4 and 5). Particles from optimal ice conditions allowed to obtain

similar resolution, 3.19 Å after refinement and 2.87 Å after post-

processing, as the larger number of particles (3.19 Å and 2.90 Å

respectively). From each ice thickness group, a random subset

of 7,000 particles was selected for an additional round of 3D

refinement with D7 symmetry followed by the post-processing

with Relion. The setup parameters for each subset were the

same, as well as the mask used for post-processing. There is a

Figure 4. Distribution of T20S particles (EM-

PIAR-10025) in different ice thickness

(A) Distribution of the number particles picked with

crYOLO from original micrographs (gold) and from

contrast-equalized micrographs (cyan).

(B) An example of segmented micrograph with

strong ice gradient, from the thick (I) to the thin (IV)

ice area.

(C) Angular distribution of particles in selected ice

thickness areas (I–IV). For each region, 100 particles

were selected randomly to match the lowest popu-

lated group, I. The red arrow shows that the top

views of the particles are not supported in the thin-

nest ice group, IV, and particles orientation are

shifted toward equatorial area.

clear trend that the resolution improves as

the ice thickness reduces, from 4.5 Å to

3.8 Å after refinement and 4.0 Å to 3.26 Å

after post-processing. This shows that

associating the particles with the local ice

thickness can help to identify the optimal

ice thickness areas to obtain the best

possible resolution for a given specimen.

This also allows us to test whether

preferred orientation may have been

caused by recording data from areas of

sub-optimal ice thickness. Finally, if the

size of the data allows, resolution improve-

ment can be achieved by selecting parti-

cles from particular ice groups.

The T20S proteasome has a D7 symmetry and may not be

affected by the lower number of edge-on views in thin ice. We

therefore selected another low-symmetry particle dataset,

gamma-secretase (EMPIAR-10194), for the ice thickness-based

refinement (Bai et al., 2015). The distribution of particles in the

estimated ice thickness groups was analyzed (Figure 6A).

Combining all particles from various ice thickness resulted in a

density map at 4.07 Å resolution after refinement and at 3.81 Å

post-processing. The particles were later divided into three

groups based on the estimated ice thickness value. From each

group, a subset of 60,000 particles was randomly selected and

refined with C1 symmetry. In this case, a trend of resolution

improving with thicker ice allowed to improve resolution from

5.60 Å to 4.59 Å after refinement and from 4.84 Å to 4.16 Å in

thick ice after post-processing. This result in conjunction with

the previous example shows that particles from different esti-

mated ice regions substantially influence the quality of the

cryo-EM map.

DISCUSSION

The non-uniform ice distribution on the cryo-EMmicrographs af-

fects the data processing and the quality of the final map. The

thickness of ice in which the particles are embedded affects

the local signal-to-noise ratio, particle quality, and behavior.

The presented software, IceBreaker, aims to overcome the is-

sues caused by the varying ice gradient. The tailored contrast

enhancement can improve the micrographs’ interpretability
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and the performance of automated particle picking tools. At the

same time, it allows the application of information about the ice

distribution in the original micrograph for later stages of process-

ing. To our knowledge, currently no other software offers this

level of insight into the ice gradient in the micrograph.

With the analysis of pixel intensity distribution in the

segmented micrographs, users can get an insight into overall

quality of the collected data. This helps the user to easily identify

the micrographs with non-uniform ice distribution, ice contami-

nation, and foil hole edges in the field of view. Based on the

outlier analysis, a threshold can be applied to exclude areas of

poor quality from further processing.

Our software allows determining empirically and associating

the ice thickness parameter with each particle. It allows us to

select optimal particles and achieve the best possible resolu-

tion for collected cryo-EM datasets. It provides users with addi-

tional information about the dataset and the possibility

to determine angular distribution of particles in different ice

gradient regions. Users can filter and group the particles based

on the estimated optical density of the micrographs, normally

associated with amorphous ice thickness, ice contamination,

or foil hole fringes. Presented results using the EMPIAR-

10025 dataset as an example show improvement in the final

resolution of the map with the particles picked from thinner

ice. Because the T20S proteasome has high symmetry,

the effect of missing orientations in thinner ice areas was less

prominent. The fact that the non-symmetrical gamma-secre-

tase dataset (EMPIAR-10194) has improved resolution of the

map from thicker regions shows that the local ice conditions

can affect the quality of the final map, and the thinnest ice

sometimes has to be avoided. In this case, better results

were obtained from thicker ice. This type of analysis can be

done during the initial, small-scale data collection to determine

the optimal setup for a given dataset and to target the best ice

conditions, whether for the optimal angular orientation

coverage or for a better signal-to-noise ratio.

A

C

B

Figure 5. 3D reconstruction of T20S particles based on ice thickness

(A) Particle subsets selected from the T20s dataset (EMPIAR-10025) according to ice thickness parameter. Group 1 corresponds to the thick ice, group 5 the

thin ice.

(B) Cryo-EM maps reconstructed from all 121,913 particles and 66,000 particles from thinnest ice groups, 4 and 5.

(C) Cryo-EMmaps reconstructed from a set of 7,000 particles picked randomly from each ice group 1–5, D7 symmetry applied.Maps are colored according to the

local resolution. For each map, reported resolutions after 3D refinement and post-processing are indicated. Temperature scale bar values are in Angstroms.
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The IceBreaker can be run as an external job in an existing Re-

lion3.1 project, as it has been integrated into Relion seamlessly,

or run as a stand-alone software. Further integration with data

collection pipelines, such as IspyB (Delagenière et al., 2011),

can extend the use of IceBreaker for selection of the best regions

for data acquisition on the fly, based on specimen properties.

The software is being incorporated as a part of the data process-

ing pipeline (Fernandez-Leiro and Scheres, 2017) and the CCP-

EM software suite (Burnley et al., 2017). We demonstrate

the utility of IceBreaker with a few examples shown here, and

the method can be applied to any cryo-EM single-particle data-

set, either already collected or being collected.
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Figure 6. 3D reconstruction of gamma-secretase particles based on ice thickness

(A) Particle subsets selected from the gamma-secretase dataset (EMPIAR-10194) according to ice thickness parameter. Group 1 corresponds to the thick ice,

group 3 the thin ice.

(B) Cryo-EM map reconstructed from all selected particles.

(C) Cryo-EMmaps reconstructed from a set of 60,000 particles picked randomly from each group 1–3, C1 symmetry applied. Maps are colored according to the

local resolution. For each map, reported resolutions after 3D refinement and post-processing are indicated. Temperature scale bar values are in Angstroms.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Beta-galactosidase (Kato et al., 2018) EMPIAR-10204

Thermoplasma acidophilum 20S

proteasome

(Campbell et al., 2015) EMPIAR-10025

Human gamma-secretase (Bai et al., 2015) EMPIAR-10194

PDB: 5a63

The cryoEM density map of T20s

proteasome with various ice thickness,

subset 1 (EMPIAR-10025 reprocessing)

This paper EMD-13309

The cryoEM density map of T20s

proteasome with various ice thickness,

subset 2 (EMPIAR-10025 reprocessing)

This paper EMD-13310

The cryoEM density map of T20s

proteasome with various ice thickness,

subset 3 (EMPIAR-10025 reprocessing)

This paper EMD-13311

The cryoEM density map of T20s

proteasome with various ice thickness,

subset 4 (EMPIAR-10025 reprocessing)

This paper EMD-13312

The cryoEM density map of T20s

proteasome with various ice thickness,

subset 5 (EMPIAR-10025 reprocessing)

This paper EMD-13313

The cryoEM density map of T20s

proteasome with various ice thickness,

subset 4 and 5 combined (EMPIAR-10025

reprocessing)

This paper EMD-13902

The cryoEM density map of T20s

proteasome with various ice thickness, full

dataset (EMPIAR-10025 reprocessing)

This paper EMD-13901

The cryoEM density map of human gamma-

secretase complex with various ice

thickness, subset 1 (EMPIAR-10194

reprocessing)

This paper EMD-13903

The cryoEM density map of human gamma-

secretase complex with various ice

thickness, subset 2 (EMPIAR-10194

reprocessing)

This paper EMD-13904

The cryoEM density map of human gamma-

secretase complex with various ice

thickness, subset 3 (EMPIAR-10194

reprocessing)

This paper EMD-13905

The cryoEM density map of human gamma-

secretase complex with various ice

thickness, full dataset (EMPIAR-10194

reprocessing)

This paper EMD-13907

Software and algorithms

Relion3.1 (Zivanov et al., 2018) https://github.com/3dem/relion

MOTIONCORR2 (Zheng et al., 2017) https://emcore.ucsf.edu/ucsf-software

CTFFIND-4.1 (Rohou and Grigorieff, 2015) https://grigoriefflab.umassmed.edu/

ctf_estimation_ctffind_ctftilt

crYOLO (Wagner et al., 2019) https://pypi.org/project/cryolo/

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Prof. Peijun

Zhang (peijun.zhang@strubi.ox.ac.uk)

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

The reconstructed cryoEM dennsity maps have been deposited at EMDB and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table. The cryoEM density maps reconstructed from T20S proteasome particles

picked form various ice-thickness areas have been deposited in the EMDB under accession code EMD-13309 for the group 1 with

thickest ice, EMD-13310 for the group 2, EMD-13311 for the group 3, EMD-13312 for the group 4, EMD-13313 for the group 5 with

thinnest ice, EMD-13902 for the combined group 4 and 5 and EMD-13901 for the full dataset respectively. The cryoEM density maps

from human gamma-secretase particles picked form various ice-thickness areas have been deposited in the EMDB under accession

code EMD-13903 for the group 1 with thickest ice, EMD-13904 for the group 2, EMD-13905 for the group 3 with thinnest ice and

EMD-13907 for the full dataset.

The code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key re-

sources table.

The software is freely available also from https://github.com/DiamondLightSource/python-icebreaker or can be downloaded with

the Python Package Index https://pypi.org/project/icebreaker-em/

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All data are generated from the datasets provided in the Key resources table.

METHODS DETAILS

IceBreaker scripts
The IceBreaker can be run from the command line or as an external job in Relion project. The software includes twomain scripts. The

ib_job.py can be used for image processing. It requiresmotion-correctedmicrographs as an input. It can be run in twomodes: ‘flatten’

to improve the contrast or ‘group’ to estimate the ice thickness in different areas of themicrographs. The number of threads for parallel

processing can also be definedwith input parameter but is limited by the number of available CPU threads. Example commandwhich

can be used with Relion is:ib_job –o Output/Directory/ –in_mics PathToMotionCorrMicrographs.star –mode flatten –j 10: the micro-

graphs listed in the star file will be processed to improve the contrasts. 10 threadswill be used to process 10micrographs at the same

time and speed up the processing. The output micrographs will have the same name as input files with suffix ‘_flattened.mrc’.

ib_job –o Output/Directory/ –in_mics PathToMotionCorrMicrographs.star –mode group –j 10: the micrographs listed in the star file

will be segmented according to the background pixels intensities. Again, 10 threads will be used to process 10 micrographs at the

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

LocRes (Kucukelbir et al., 2014) http://resmap.sourceforge.net

Mrcfile (Burnley et al., 2017) https://github.com/ccpem/mrcfile

NumPy (Harris et al., 2020) https://numpy.org

OpenCV (Bradski, 2000) https://opencv.org

Gemmi GEMMI - library for structural biology —

Gemmi 0.5.2 documentation

https://github.com/project-gemmi/gemmi

Chimera (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/

IceBreaker This paper https://github.com/DiamondLightSource/

python-icebreaker

https://pypi.org/project/icebreaker-em/

Zenodo deposition https://doi.org/10.5281/

zenodo.5743790
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same time and speed up the processing. The output micrographs will have the same name as input files with suffix ‘_grouped.mrc’.

The second script ib_group.py is used to process the star file with particle coordinates and associate them with estimated back-

ground quality. As input, it requires a star file with particle coordinates and a set of ‘grouped’micrographs created in the previous step

with ‘ib_job.py’ in groupmode. Example command to run ‘ib_group.py’ is: ib_group –oOutputFile.star –in_mics micrographs_grou-

ped.star –in_parts particles.star

The output .star file has an additional column with the ‘ice-thickness’ parameter value for each particle. As for now, this new

parameter is labelled as ‘_rlnHelicalTubeID’. The star file can be used in Relion to select subsets of the particles in the processing

pipeline.

Image processing and analysis
The IceBreaker is written in Python 3. The micrographs are processed with the mrcfile package (Burnley et al., 2017). The STAR files

are handled with GEMMI. The tool requires NumPy (Harris et al., 2020) and OpenCV (Bradski, 2000) packages for data processing.

The image segmentation is done with the K-Means algorithm (Lloyd, 1982). It is a commonly used clustering algorithm which can

give insight into the structure of the data, in this case themicrographs. The n observations are split into k number of sets S, where k%

n. The objective is to group observations in sets in a way to minimize the sum of squared distances (variance) between the obser-

vations and the centre of the cluster to which they are assigned, according to the (Equation 1):

argmin
S

Xk

i =1

X

x˛Si

kx � mik
2

= argmin
S

Xk

i = 1
jSijVarSi (Equation 1)

where x denotes observation, Si is a set of observations and mi represents the mean of points in set Si.

The contrast improvement performed in each defined local mask is based on the histogram equalization algorithm. It adjusts the

contrast of the input image to evenly utilize the full range of intensities. To do so, the cumulative distribution function (cdf) calculated

for the histogram normalized between 0 and 1 has to be linearised to produce a new image with a flat histogram. The (Equation 2)

describes the linearised cdf:

cdfyðiÞ = ði + 1ÞKfor0%i%L (Equation 2)

where y is the corrected image, I is the pixel intensity level, K is a constant value and L is total number of intensity levels. The cumu-

lative distribution function is increasing and continuous thus according to the definition of the inverse distribution function, if F-1(p),

p˛(0,1), there is a real number x that F(x) = p, therefore F-1(F(X)) = X (Gilchrist, 2000). The transform which is applied to the original

image to obtain corrected image is described with (Equation 3):

y = TðkÞ= cdfxðkÞ (Equation 3)

where y is the corrected image, x is the initial image and k is the pixel intensity level in the range [0, L-1].

To evaluate the quality of themicrographs the box plots are used. They provide information about the data distribution based on the

five-number summary (Tukey, 1977). It includes the minimum, the maximum, the median and the first and the third quartile. The first

quartile (Q1) represents the 25th percentile, which means that 25% of recorded observations have lower value. The third quartile (Q3)

represents the 75th percentile. The size of the box is determined by the interquartile range (IQR) which is a distance between Q1 and

Q3, IQR=Q3-Q1. The outliers are detected as observations outside the range:

½Q1 � 1:5IQR;Q3 + 1:5IQR� (Equation 4)

T20S data processing
The deposited dataset was averaged, therefore no further motion correction was performed. The dataset was processed with Re-

lion3.1 pipeline. The parameters of contrast transfer function were estimated with CTFFIND-4.1 (Rohou and Grigorieff, 2015). The

motion corrected micrographs had contrast equalized with the IceBreaker for particle picking. The total number of particles picked

with crYOLO was 163,630. After manual selection of the best 2D classes from reference-free classification 121,913 particles were

used for 3D classification. The best 3D class was used as a reference for 3D refinement with D7 symmetry which resulted in

3.19 Å resolution based on the gold standard FSC = 0.143 criterion. The post-processing with the soft mask created from low-

pass filtered initial 3D class and automatically estimated negative B-factor resulted with 2.90 Å final resolution. Local resolution

changes were calculated with LocRes and rendered with UCSFChimera. After refinement the particles were divided into five subsets

according to the estimated ice thickness value, from each group a set of 7,000 particles was randomly selected and refined again to

see how the varying ice affects the final resolution.

Gamma-secretase processing
The dataset was processed with Relion3.1 pipeline. Motion correction was done using MotionCor2 with 5x5 patches and binning

factor 2. CTFFIND-4.1 was used to estimate the parameters of contrast transfer function. 920,945 particles picked with crYOLO

from 2,925 micrographs were used for reference-free 2D classification. The best 2D classes were selected manually. The initial

3D classification resulted with reported resolution 7.47 Å. 308,706 particles from the best 3D classes were used for the 3D refinement
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with C1 symmetry and resulted in 4.07 Å resolution based on the gold standard FSC = 0.143 criterion. The map was sharpened using

a soft mask created from the atomic model PDB 5a63 (Bai et al., 2015) and with automatically estimated negative B-factor. After

sharpening, the final resolution was 3.81 Å. The changes in local resolution were calculated using LocalRes. The larger number of

particles were kept to allow selection of representative subsets from different estimated ice thickness levels. The particles used

for the 3D refinement were were associated with the estimated ice thickness value using the IceBreaker. Three subsets of 60,000

particles each were selected randomly from groups representing thin, medium and thick ice and used for re-refinement and post-

processing with the same setup.

QUANTIFICATION AND STATISTICAL ANALYSIS

The methods of statistical analysis are provided in method details and supplemental information.
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Cryo-EM Map–Based Model
Validation Using the False Discovery
Rate Approach
Mateusz Olek1,2 and Agnel Praveen Joseph3*

1Department of Chemistry, University of York, York, United Kingdom, 2Electron BioImaging Center, Rutherford Appleton
Laboratory, Didcot, United Kingdom, 3Scientific Computing Department, Science and Technology Facilities Council, Research
Complex at Harwell, Didcot, United Kingdom

Significant technological developments and increasing scientific interest in cryogenic
electron microscopy (cryo-EM) has resulted in a rapid increase in the amount of data
generated by these experiments and the derived atomic models. Robust measures for the
validation of 3D reconstructions and atomic models are essential for appropriate
interpretation of the data. The resolution of data and availability of software tools that
work across a range of resolutions often limit the quality of derived models. Hence, the final
atomic model is often incomplete or contains regions where atomic positions are less
reliable or incorrectly built. Extensive manual pruning and local adjustments or rebuilding
are usually required to address these issues. The presented research introduces a
software tool for the validation of the backbone trace of atomic models built in the
cryo-EM density maps. In this study, we use the false discovery rate analysis, which
can be used to segregate molecular signals from the background. Each atomic position in
the model can be associated with an FDR backbone validation score, which can be used
to identify potential mistraced residues. We demonstrate that the proposed validation
score is complementary to existing validation metrics and is useful especially in cases
where the model is built in the maps having varying local resolution. We also discuss the
application of the score for automated pruning of atomic models built ab-initio during the
iterative model building process in Buccaneer. We have implemented this score in the
CCP-EM software suite.

Keywords: cryo-EM, model validation, FDR map, CCP-EM, automated model building

INTRODUCTION

Improvements in cryo-EM data collection and processing techniques in recent years have enabled
structure determination at near-atomic resolutions (Subramaniam, 2019). For structure
interpretation, a number of tools for ab-initio model building have been developed and used in
recent years (Hoh et al., 2020; Terwilliger et al., 2020; Pfab et al., 2021; Lawson et al., 2021). Despite
the resolution revolution, the majority of maps (92%) deposited in the EM Data Bank (https://www.
ebi.ac.uk/pdbe/emdb/) are at resolutions worse than 3 Å, and the average resolution of maps this year
is around 5 Å (https://www.ebi.ac.uk/pdbe/emdb/statistics_sp_res.html/). Moreover, some local
areas in the cryo-EM map can be poorly resolved. These issues may result in some parts of the
derived atomic model being incorrectly built or traced into background noise. Model validation tools
that are based on the analysis of stereochemical properties of the atomic model, such as MolProbity
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(Williams et al., 2018), CaBLAM (Prisant et al., 2020), or
Ramachandran plots, detect potential issues with the geometry
of the model. The users can inspect the possible incorrect regions
of the model and attempt to fix these in interactive visualization
tools like Coot (Emsley et al., 2010).

Another set of validation tools evaluate the agreement of the
atomic model with the cryo-EM map. Some of these scores can
estimate the agreement of each residue against the area of the map
covered by the residue. The agreement is either quantified as
Manders’ overlap coefficient in SMOC (Joseph et al., 2016), real
space cross-correlation coefficient in PHENIX local CCC
(Afonine et al., 2018), or a score of atomic resolvability in
MapQ (Pintilie 2020). One of the observations from the recent
model challenge is that the absolute values of some of these
metrics are sensitive to the map resolution (Lawson et al., 2021).
One reason is the underlying sensitivity of the metric toward
differences in the shape of map distributions at different
resolutions. Another reason is the fact that the synthetic map
calculation from the model may not be optimal to represent
experimental data at different resolutions.

The recently introduced FSC-Q score allows us to assess the
local agreement of a model with the cryo-EM density map, and is
normalized to account for local resolution variation (Ramírez-
Aportela et al., 2021). The map-model local Fourier shell
correlation (FSC) is normalized with respect to the local FSC
obtained from the halfmaps. The FSC-Q score is calculated as the
difference between these two and the values fluctuates around 0.
A threshold of +/− 0.5 is recommended to detect poorly fitted
atoms. Although the FSC-Q calculation is not directly affected by
the B-factor values used for map sharpening, the mask applied
can have an effect in the local FSC calculation.

MapQ scores atoms in the residues by comparing the distance-
dependent map value fall-off against a Gaussian-like reference
derived from a map of apoferritin resolved at 1.54 Å and an
associated well-fitted atomic model. The Q-score is calculated as a
correlation between the map values and the reference Gaussian.
Values close to 1 indicate that the atom is well resolved (Pintilie,
2020).

Metrics such as the atom-inclusion score (Lagerstedt et al.,
2013), implemented as part of EMDB validation analysis, identify
atoms in the model that are outside a selected map contour. The
score is hence very sensitive to the choice of map contour, which
is often subjective. Also, in cases where the local resolution varies
across the map, a single contour may not be optimal to cover the
entire molecular volume without including the background noise.

The resolution of cryo-EM maps may vary as a result of
molecular flexibility, partial occupancy, non-uniform particle
orientation, and other factors associated with the
reconstruction process. Often, the resolution is better in the
core and it gradually worsens toward the edges or other
flexible parts of the molecular assembly. The statistical analysis
used in the false discovery rate (FDR) approach allows associating
confidence in distinguishing molecular signals from the
background and detecting weak features in the map based on
the statistical significance estimate. The FDR calculation (Beckers
et al., 2019) generates confidence maps with values at each voxel
reflecting the fraction of voxels expected to contain molecular

signals at this threshold (the voxel value). The 1% FDR threshold
(confidence map threshold of 0.99) was demonstrated to reliably
discriminate voxels associated with the molecular volume from
the background noise over a wide resolution range, including
maps at near-atomic resolutions to 6.8 Å and the subtomogram
averages in the resolution range 7–90 Å.

In this study, we present a tool for validating the backbone
trace of an atomic model by estimating the confidence that the
backbone atoms are in the molecular volume rather than the
background. Each residue in the model are assigned scores based
on the confidence map calculated using the FDR approach. We
demonstrate the utility of the approach to detect mistraced
residues, using datasets from the EMDB model challenges
2015/16 and 2019, and compare it against other metrics used
in the field for estimating local fit to maps.

This procedure is also useful for pruning mistraced regions of
the model generated by ab-initio modeling tools like Buccaneer
(Hoh et al., 2020). Especially at areas of the map with resolution
worse than 3.5 Å, it is not uncommon that the chain may be
mistraced into the background. Also, Buccaneer often traces a few
polypeptide fragments in the background areas with noisy
features or artifacts from map reconstruction and
postprocessing. These fragments are not connected with the
main chains of the model and usually are only of a few
residues long. Currently, there is no automated tool to locate
and remove mistraced residues. Where possible, the pruned
models can then be extended with one of the automated
model building tools or rebuilt in an interactive tool like Coot.

Initial results indicate that our approach is effective in
detecting mistraced regions of the model and for automated
pruning of models as part of Buccaneer. The FDR backbone
validation score assesses whether the backbone coordinates are
within the molecular volume and is complementary to existing
validation tools that either assess the model quality or evaluate
agreement with the map. The described tool is implemented and
available as a part of the CCP-EM (Burnley et al., 2017)
software suite.

METHODS

The FDR backbone validation method assesses positions of the
atoms in the input model based on the confidence map derived
using the FDR approach (Beckers et al., 2019). For the confidence
map calculation, a processed/sharpened but unmasked map is
preferred. Masked maps that exclude the majority of solvent
background are not useful for confidence map calculations. The
procedure estimates the background noise distribution from four
density cubes placed outside of the particle volume in the x, y, and
z central axes by default. Each voxel of the map is then compared
against the background estimate to detect significant deviations
and a p-value is associated to quantify significance. To account for
the number of voxels and their dependencies, the p-values are
further adjusted using false discovery rate (Benjamini and
Yekutieli, 2001). Each voxel is assigned with an FDR-adjusted
significance score between 0 and 1, 0 refers to noise only and 1 to
a clear molecular signal. A score of 0.99 indicates that a maximum
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of 1% of voxels (1% FDR) is expected to be background noise,
beyond this threshold.

We use the following steps to calculate the FDR backbone
score:

(1) The minimal input for the FDR-validation is the pdb or cif/
mmcif format file of the atomic model and the confidence
map calculated using the FDR control approach. The
confidence map can be calculated using the “confidence
map” implementation in the CCP-EM software suite or
using a standalone installation from the source (https://git.
embl.de/mbeckers/FDRthresholding).

(2) The input model coordinates are extracted and mapped
onto the confidence map grid by associating the voxel(s)
around the atomic coordinate (within 1 Å).

(3) Each atom of the model is then associated with the
corresponding map value from the confidence map. In
the default mode, the FDR backbone score of each residue is
calculated as an average of map values at the coordinates of
the C-alpha, C, and N atoms. We use this approach
primarily to detect mistraced residues based on the
positions of backbone coordinates in the map. We
exclude the backbone carbonyl oxygen as they are often
associated with weak map information at resolutions worse
than 3 Å. This approach can be used to detect misplacement
of the side chains as well, although missing map data at the
ends of acidic and highly flexible side chains can lead to false
detections. For nucleic acids, the average score is calculated
based on the C1′, C2′, C3′, C4′, C5′, O3′, O4′, O5′, and P
atoms positions. For ligands and waters, all of the atoms are
taken into consideration. The users can also choose an
optional validation mode based solely on the Cα positions
of the residues and C1′ for nucleic acids. This mode is useful
with models with only Cα atoms, usually built in low-
resolution cryo-EM maps.

(4) Additionally, this tool offers an option to prune the atomic
model, which can be used to automatically remove the
residues with a score lower than 0.9 as well as the preceding
and following residues. A model pruned this way can be
used in the next stages of the iterative model building
procedures, where the missing segments can be extended
or rebuilt. This is useful when dealing with the ab-initio
models from the automated model building tools. In some
cases, particularly when building in areas of the map with a
local resolution worse than 3.5 Å, parts of the chains can be
traced into the background.

(5) As an output, we provide a CSV format file containing the
list of residues with the associated FDR backbone scores.
The models after pruning will have the low scoring residues
removed. They are saved in the selected folder with the
original model names with a suffix “pruned” added
depending on the mode used. We also provide an
attribute file that can be used to associate the FDR score
for each residue in the atomic model in UCSF Chimera
(Pettersen et al., 2004). The model can then be colored
using the FDR score attribute to identify areas with low
scores.

The FDR backbone validation tool is written in Python 3. To
handle the I/O model files in pdb and cif/mmcif format the
GEMMI package (Wojdyr, 2017) is used. The map files are
processed with the mrcfile python package (Palmer, 2016).
The tool also requires NumPy (tested with v1.16.2 (NumPy
v1.16 Manual’ 2019)). The GUI implementation with CCP-EM
software suite was done using PyQt (‘PyQt 4.9.4 Reference Guide’
2011).

In this study, we compare the FDR backbone validation
approach against other metrics for estimating local fit to maps.
For a fair comparison, the other metrics were also calculated only
on the backbone atoms of the models. The map deposited in
EMDB as a “primary” map was used for the analysis, the FSC-Q
score calculation also requires the half-maps.

The Q-score values for the backbone atoms were calculated
using the MapQ plugin (v1.6) for UCSF Chimera, at the
resolution reported for the deposited primary map.

The FSC-Q score was calculated using the tool (validate fsc-q)
integrated in the Scipion v3.0.7-Eugenius. The FSC-Q value for
the backbone is calculated as an average for the C, N, and
Cα atoms.

The SMOC and SCCC scores were calculated using the
score_smoc.py script available from TEMPy1 in CCP-EM v1.5,
for the minimal backbone of the models (C, N, and Cα atoms).
The script was run with the “-distance” mode option which uses
distance from the atoms for identifying voxel-covered. SMOC
estimates the Manders’ overlap coefficient while SCCC calculates
the cross correlation coefficient.

The PHENIX map/model CCC (v1.18.2) scores were
calculated on the models obtained from 10 cycles of atomic
B-factor refinement with REFMAC5 (Murshudov et al., 2011)
(using the keyword option “refi bonly”). This was done to ensure
that the atomic B-factors are refined as PHENIX uses the atomic
B-factors as part of the map calculation from the atomic model.

The box size of the input map was trimmed wherever possible
to improve the speed of the computations. The FDR-validation
requires a sharpened but unmasked map, with the background
features present in order to estimate the noise distribution.

RESULTS

To demonstrate the application of our approach, we used the
following examples, the majority of which are models submitted
to the EMDBmodel challenges for target maps resolved at a range
of resolutions. In each case, we compare the FDR backbone scores
against other metrics that estimate local fit to map. Using a set of
residues detected as “mistraced” by the FDR backbone score, we
assess agreement with other scores and also highlight cases where
there is a disagreement. We use the reference model from the
model challenge to compare the backbone conformation and fit
to map. Please note that the reference model does not always have
the best fit to map for all residues in the model, and often several
of the models submitted to the challenge have a better fit (Lawson
et al., 2021). In some cases, there are obvious backbone misfits in
the reference model, as discussed below. In such cases, we also
compare the model of interest against other models reported with
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a higher rank higher in the model challenge based on a number of
validationmetrics (https://model-compare.emdataresource.org/).

Alcohol Dehydrogenase (2.9Å, Target
T0104)
We computed per-residue backbone scores based on different
metrics for the chain A of model T0104EM060_2 submitted to
the Model Challenge 2019 for the target alcohol dehydrogenase
map (EMD-0406) resolved at 2.9 Å resolution (Herzik et al. 2019;
Figure 1A). We checked residues either associated with lower

confidence scores (0.95 or lower) or where the scores disagree in
detecting a mistrace, and compared against the reference model
used in the model challenge (PDB ID: 6nbb). The reference
structure has 10 models representing local conformational
variability. We chose the second model (6nbb.2) for our
analysis as it has a relatively better fit with the map when
inspected in UCSF Chimera, for cases we discuss in Figures 1,
2, especially at the N-terminus (Figure 2B). The metrics used for
comparison includes Q-score, SMOC, SCCC, PHENIX local
CCC, and FSC-Q, calculated only for the backbone atoms (see
Methods). The residues highlighted in red boxes in Figure 1A

FIGURE 1 | Comparison of local assessment metrics for the atomic model of alcohol dehydrogenase (color bar shows the correspondence with the FDR scores
assigned, residues in red have FDR scores around 0.8 or worse, yellow around 0.9, and green around 1.0). The metrics are calculated only for the backbone atoms. (A)
Per-residue plot of MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone scores for the chain A of the atomic model T0104EM060_2 from the EMDB model
challenge, the red boxes highlight the residues selected for detailed analysis in the panels below. For Gly 86 (B), Leu 116 (C), Ala 162 (D), and Asn 259 (E), the panel
shows a table with values of scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-0406, gray) displayed at the
recommended contour level and rendered in UCSF Chimera; and the residue fit in map as modeled in the reference (PDB ID: 6nbb.2).
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indicate some of the regions where the scores differ. We provide a
detailed analysis of these residues. Figures 1B–E show a table
with the values of each metric and corresponding Z-scores, along
with a snapshot of the residue colored by the FDR backbone
score. Also, the corresponding view of the residue from the
reference model 6nbb.2 ((Herzik et al., 2019), model 2) is
provided. The models are overlaid with the deposited cryoEM
density map EMD-0406 (Herzik et al., 2019) and rendered at the
author-recommended contour level 0.02 (0.6σ).

Compared to a few other models submitted to the model
challenge, the model T0104EM060_2 is ranked lower by the

validation metrics used in the challenge (https://model-
compare.emdataresource.org/2019/cgi-bin/em_multimer_results.
cgi?target_map�T0104emd_0406). Plot of per-residue backbone
scores for the chain A (Figure 1A), also shows that many residues
in this model are associated with lower scores (drops in the plot).
We investigated a few residues including cases where the metrics
disagree. Gly86 is highlighted as a potential mistrace by the FDR
backbone score of 0.83 (Figure 1B). The residue in the reference
model has a high FDR score (0.991) and the backbone shows
better fit to map with a different conformation involving a shift
and differences in backbone dihedrals. Z-scores computed for

FIGURE 2 |Comparison of metrics for the atomicmodel of alcohol dehydrogenase (color bar shows the correspondencewith the FDR scores assigned, residues in
red have FDR scores around 0.8 or worse, yellow around 0.9, and green around 1.0). The metrics are calculated only for the backbone atoms. (A) Per-residue plot of the
scores from MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the chain A of the atomic model T0104EM028_1 from the EMDB model; the red
boxes highlight the residues selected for detailed analysis in the panels below. For Ser1 (B), Glu 74 (C), Gly 201 (D), and Gly 270 (E), the panel shows a table with
values of scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-0406, grey) displayed at the recommended contour level
and rendered in UCSF Chimera; and the residue fit in map as modeled in the reference (PDB ID: 6nbb.2).
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different metrics reflect that none of the other scores identify this
mistrace with any significance (absolute value of Z-scores < 1).
Note that the Z-scores for FDR backbone assessment are less
reliable, especially because the majority of the residues often have
a score of 1.0 and the distribution is not close to normal. We
recommend using the absolute values of this score to detect
potential mistraces.

Figure 1C shows Leu116 associated with a low FDR backbone
score of 0.65. It can be seen that the backbone Cα and C are out of
the map at the recommended contour level. In comparison, the
reference model shows a better fit of backbone atoms. The
mistrace is also detected by the MapQ score (0.31, Z-score
−2.27), while PHENIX-CCC (0.63, Z-score −1.33) and FSC-Q
(0.70, Z-score 0.96) have lower scores but associated with
relatively low significance (Z-scores of −1.33 and 0.96,
respectively).

Another residue Ala162 is located at a relatively disordered or
low-resolution area of the map (Figure 1D), and the backbone is
partly out of the map contour when compared to the reference
model. All the scores identify the mistrace with significance
(absolute Z-scores > 2.0), and the residue is associated with a
low FDR backbone score of 0.05. Even though the map at the
recommended contour level does not fully support the backbone,
the reference model shows a better fit and has an FDR backbone
score of 0.978. This reflects that the FDR backbone score detects
voxels covering molecular volume even in the low resolution
areas of the map.

Figure 1E shows Asn259 associated with an FDR backbone
score of 0.83 with part of the backbone outside the contoured
map. The reference model shows a better fitted backbone
conformation (Figure 1E). MapQ also points to the potential
mistrace in the submitted model with a Q-score of 0.46 although
with a less significant Z-score of −1.19. The other metrics fail to
identify this issue with the backbone fit. Hence, in comparison to
other metrics tested in this study, the FDR backbone score detects
cases of mistrace where one or more backbone atoms are
displaced into background noise.

Figure 2 presents a similar analysis of the model
T0104EM028_1 submitted to the same target map. Ser1 at the
N-terminus of chain A is associated with an FDR backbone score
of 0.67, clearly indicating a potential mistrace. Ser1 is associated
with a disordered area of the map with no prominent map
information at the recommended contour (Figure 2B).
PHENIX_CC (0.75, Z-score −2.11) and MapQ (0.62, Z-score
−1.73) scores also suggest poor agreement with data. The map
trace is more obvious at a lower contour level (Supplementary
Figure S1), and the terminal N atom is outside the map even at
this level. Hence, there is less confidence associated with the
backbone atom positions and this is also highlighted by
PHENIX_CC and MapQ scores.

Figure 2C highlights Glu74 with both backbone and side
chain atoms out of the recommended contour. The residue, as
modeled in the reference, shows better fit with backbone atoms
(and most of the side chain) inside the recommended contour.
The lack of map information for the end of side chain is a
common trait observed in cryo-EM maps for negatively charged
side chains. FSC-Q and MapQ indicate a backbone mistrace with

Z-score values less than −2.0 (>2.0 in case of the FSC-Q score).
The other metrics also highlight this, although with a relatively
lower significance (Z-score < −1.5).

Gly201 is associated with an FDR validation score of 0.92.
Other scores do not seem to indicate mistrace with any
significance (all Z-scores were between −1 and 1) (Figure 2D).
This residue has a different backbone conformation in the
reference model and is associated with an FDR backbone
score of 1.0. The backbone has a better fit in the reference
with all atoms except carbonyl oxygen inside the
recommended contour. Another case where only the FDR-
validation score detects a mistrace of backbone is Gly270,
where the reference model shows a better fit with the map
with a slight shift in atom positions (Figure 2E). The
backbone residue shifted outside of the map density is
presented in Figure 2E. These cases highlight that the FDR
backbone score can work in complementarity to the scores
that quantify agreement with the map.

The structure of alcohol dehydrogenase has zinc ions bound
but the ions are not modeled in all of the structures submitted to
the model challenge. Supplementary Figure S2A presents a
comparison of two models submitted (Model Challenge IDs:
T0104EM010_1 on the left panel and T0104EM028_1 on the
center) where the zinc atoms are modeled, along with the
reference model (PDB ID: 6nbb) on the right. In the model
T0104EM010_1, the zinc atom is highlighted as a potential misfit
based on our approach, and no obvious map data can be seen at
this position. It can be seen that the ligands in both the model
T0104EM028_1 and the reference structure are placed in a
position justified by map density and supported by the higher
FDR backbone scores. It is worth mentioning that many of the
automated model building software do not support ligand fitting,
and therefore this is often done interactively. The presented
validation technique can be useful for validating the modeled
ligands in cryo-EM maps.

T20s Proteasome (2.8Å)
Another set of models used for the evaluation of the FDR
backbone validation approach were chosen from those
submitted to the model challenge for the target map of the
T20s proteasome (EMD-6287), resolved at 2.8 Å resolution.
Figure 3A presents the comparison of scores from difference
metrics obtained for the chain L of the model T0002EM133_1.
Again, the areas where the scores disagree were inspected closely.

Several residues in this model are associated with lower score
values as evaluated by different metrics (Figures 3B–E). In this
case, the Z-scores are less meaningful as the distribution of scores
is likely to deviate significantly from normal because of the
presence of several low-scoring residues (outliers). Therefore,
we considered a less stringent absolute Z-score cutoff of 1.0 to
associate significance to the scores. Again, as the FDR scores do
not follow a normal distribution (often many residues have a
score of 1.0 and a few scoring lower), the Z-scores are less useful.
We recommend using the absolute FDR scores to detect potential
mistraces.

Val14 is associated with a low FDR score of 0.83, also
supported by a lower MapQ score of 0.32 (Z-score −1.73)
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(Figure 3B). The backbone N atom is out of the map contoured at
the recommended level. The reference model (PDB ID: 3j9i)
shows a better fit and has an FDR score of 1.0. Hence, the FDR
backbone score and MapQ detect the mistrace with a greater
significance compared to other metrics.

Figure 3C shows Gly128 which has been scored lower by
MapQ (0.23, Z-score: −2.20), and FSC-Q has a score of 0.39,
although with a relatively less significant Z-score of 1.09. The
backbone of this residue is associated with an FDR backbone
score of 0.91. Visual inspection of the backbone shows that the Cα
and carbonyl C atoms are partly out of the contoured map. The

reference model shows a better fit of this residue with a higher
FDR score of 0.99.

Tyr180 is assigned a low FDR backbone score of 0.83
(Figure 3D), and the other scores do not highlight a backbone
misplacement with all absolute Z-score values less than 0.5. The
backbone N atom of the modeled residue is partly outside the
contoured map. The reference model (chain B) shows a better
backbone and a side chain fit and has an FDR backbone score of
0.99. Hence, the FDR score detects backbone misplacements
compared to other metrics used in this study and is thus
effective in identifying mistraced residue backbone.

FIGURE 3 | Comparison of metrics for the atomic model of T20s proteasome, calculated only for the backbone atoms. (A) Comparison of the per-residue scores
from MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the chain L of the atomic model T0002EM133_1 from the EMDB model; the red boxes
highlight the residues selected for detailed analysis in the panels below. For Val 14 (B), Gly 128 (C), Tyr 180 (D), and Lys 220 (E), the panel shows a table with values of
scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-6287, grey) displayed at the recommended contour level
0.025 (3.3σ) and rendered in UCSF Chimera; and the residue fit in map as modeled in the reference (PDB ID: 3j9i).
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This is another case where the scores disagree is Lys220
(Figure 3E), which is associated with a low FDR backbone
score of 0.75, while the other scores do not highlight a
mistrace with significance. The MapQ score is relatively lower
with a value of 0.51 (Z-score: −0.70). A closer inspection and

comparison with reference suggests that the residue has a better
placement in the reference with a shift of backbone atoms
accompanied by better positioning of side chain. The residue
backbone in the reference was assigned an FDR score of 0.92 and
the residues on either side of Lys220 also score low. This

FIGURE 4 | Comparison of metrics for the atomic model of γ-secretase, calculated only for the backbone atoms. (A) Comparison of per-residue scores from
MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the chain C of the atomic model T0007EM192_2 from the EMDBmodel challenge; the red boxes
highlight the residues selected for detailed analysis in the panels below. For Gly 15 (B), Phe 21 (C), Gly 126 (D), and Trp 188 (E), the panel shows a table with values of
scores obtained with each metric and corresponding Z-scores; the residue fit in the target map (EMD-3061, grey) displayed at the recommended contour level and
rendered in UCSF Chimera (first row); the residue fit in map asmodeled in the reference (PDB ID: 5a63, center), and the fit of model T0007EM119_2 in the map (last row).
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highlights the possibility of further improvement of backbone
atom placement in this segment of the reference.

γ-Secretase (3.4Å, Target T0007)
The FDR backbone validation tool was used to assess another
model (Model Challenge ID: T0007EM192_2) submitted to the
EMDB Model Challenge 2015/2016 (Lawson and Chiu, 2018) for
the gamma secretase map EMD-3061, solved at 3.4 Å resolution
(Bai et al., 2015). Figure 4 shows the comparison of different
scores associated with residues in the chain C of the model.
Figures 4B–E provide a closer look into some of the areas of the
model where the scores disagree. As discussed below, the
reference model (PDB ID: 5a63) does not show a better fit for
most of these cases. Hence, we also compared the backbone fit
against T0007EM119_2, which is another model submitted to the
model challenge for this target and ranked higher than the
reference by multiple metrics used in the challenge.

Gly15 is associated with an FDR backbone score of 0.87
(Figure 4B) and MapQ also associates a low score of 0.39
with the backbone (Z-score: −1.53). Other scores do not
highlight a mistrace of backbone atoms for this residue. Visual
inspection shows that the N and Cα atoms are outside the map at
the recommended contour. In the reference model (PDB ID:
5a63), the backbone shows a slight shift of the backbone toward
the map volume. In the model T0007EM119_2, which scored
higher than the reference in the model challenge, the atoms are
shifted well into the map and Gly15 has an FDR score of 1.0.
Hence, the slight backbone misplacement is highlighted by FDR
and MapQ scores in this case.

Phe21 is also associated with a low FDR validation score of
0.67 and MapQ associates a relatively lower Q-score of 0.41
(Z-score: 1.35) (Figure 4C). The reference model shows similar
backbone atom positions but associated with a lower FDR
backbone score (0.58). Upon closer inspection of the model at
a higher contour level, we find that the carbonyl C atom is out of
the map. In the model T0007EM119_2, the residue shows a
slightly better fit with the backbone shifted into the map, and has
an FDR backbone score of 0.83. Multiple metrics (the FDR score
and MapQ) point to a potential backbone misfit and further
investigation is required in this case to establish this and check for
improvement upon refitting.

Figure 4D shows Gly126 with the Cα atom outside the map at
the recommended contour. The modeled residue is detected as
potential mistrace with an FDR backbone validation score of 0.83
and a lower SMOC score of 0.74 (Z-score −2.18). Other scores do
not highlight this with a significant Z-score. The backbone of
Gly126 in the reference model (PDB ID: 5a63) is also partly
outside the contouredmap and associated with a lower FDR score
(0.75). In the model T0007EM119_2, a similar scenario was
found where the Cα atom is partly outside the map contour.
Both the FDR score and SMOC identify a misfit in this case
reflecting a potential for improvement of the backbone fit. In the
absence of a good reference fit, further investigation and refitting
is required to confirm the backbone misplacement.

Another residue associated with a low FDR backbone score of
0.49 is Trp188 (Figure 4E). The backbone mistrace is evident in
this case when compared to the reference structure (PDB ID:

5a63), where Trp188 is better fitted in the map (Figure 4E) and
has an FDR backbone score of 1.0. FSC-Q and MapQ scores also
detect the backbone misplacement with significant Z-scores. The
model T0007EM119_2 also shows a well-fitted backbone with an
FDR score of 0.995. Hence, in this case, the FDR score works in
complementarity with the metrics that calculate CCC or similar
(SMOC).

Supplementary Figure S2B highlights another segment of the
model (T0007EM192_2) with a polysaccharide, where the atomic
positions in the terminal monosaccharide units have relatively
lower FDR scores. The FDR validation score is calculated as an
average of scores of the atoms in each unit. These terminal units
of the carbohydrate are expected to be more flexible and the range
of values of the score reflects this as well, suggesting higher
uncertainty of the positions at the edges for being associated with
molecular signals. The terminal monosaccharide unit in the
reference model (PDB ID: 5a63) is also associated with lower
FDR validation scores.

RNA Polymerase Complex From
SARS-CoV-2 (2.5Å)
We also applied our approach to assess the atomic model (PDB
ID: 7bv2) deposited with the recently published structure of RNA
polymerase complex (EMD-30210, 2.5 Å) from SARS-CoV-2
virus (Yin et al., 2020). A few residues in the model have
lower confidence scores assigned (Figure 5A).

Figure 5 shows a comparison of the validation metrics for
residues in the chain B of the model. The FSC-Q score was not
calculated for this case as the half maps were not available from
EMDB. Figures 5B–D provide insights into selected regions of
the model, fitted in the map contoured at the recommended level
0.058 (4.3σ). At this contour the map data corresponding to most
of the backbone of low-scoring residues at the N-terminus is
disconnected, possibly indicating relatively lower local
resolutions. We also assessed the backbone atom placement at
a lower contour level (0.035) (Figures 5B–D, second row). To
check whether the disconnected map data is due to local over-
sharpening (often resulting from a global sharpening factor
applied to the map), we calculated a locally sharpened map
using LocScale (Jakobi et al., 2017) implemented in the CCP-
EM software suite (Figures 5B–D, last row).

Figure 5B shows Val83 highlighted as a potential mistrace by
the FDR score with a value of 0.67 and MapQ (0.45, Z-score
−2.30). The poor quality of fit is also indicated by other metrics
including SMOC (0.69, Z-score −1.27), SCCC (0.51, Z-score
−1.80), and PHENIX (0.58, Z-score −1.81). It can be seen that
this residue backbone is not fully supported by the map even at a
lower contour level (Figure 5B, second row) and the backbone
peptide N atom is partly out of the map. As expected, the locally
sharpened map from LocScale is less disordered with the peptide
N atom at the edge of the map contour. The peptide N has a low
FDR score of 0.0 compared to Cα and carbonyl C which have
scores of 1.0. In this case, the backbone is likely to be misplaced as
highlighted by multiple scores.

A similar case involving Leu98 is presented in Figure 5C.
Leucine 98 scores low with all other metrics (Z-scores lower than
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−2.0) and this residue has an FDR score of 0.92. The position of
carbonyl C atom is not fully supported by the map even at a lower
contour and this atom has an FDR score of 0.75. In this case,
multiple metrics highlight a potential backbonemisfit and require
further investigation to explore the possibility of improving the
fit. The locally sharpened map also shows disconnected map trace

at the selected contour, with the carbonyl C atom placed outside
the contour. In the absence of a good reference fit for this residue,
Asn109 on the other hand, is highlighted as a misfit by MapQ
(0.12, Z-score −5.57), SCCC (0.49, Z-score −2.02), and PHENIX
(0.58, Z-score −1.86) (Figure 5D). However, the FDR validation
score assigns a value of 1.00 (Z-score 0.13) for this residue

FIGURE 5 | Comparison of backbone validation metrics for the atomic model of the RNA polymerase complex (PDB ID: 7bv2). (A) Comparison of the per-residue
scores from MapQ, SMOC, SCCC, PHENIX, and FDR backbone score for the chain B of the atomic model, the red boxes highlights the residues selected for detailed
analysis in the panels below. For Val 83 (B), Leu 98 (C), and Asn 109 (D), the panel shows a table with values of scores obtained with each metric and corresponding
Z-scores; the residue fit in the target map (EMD-30210, grey) displayed at the recommended contour level and rendered in UCSF Chimera; the residues fit in the
map rendered at a lower contour level.
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backbone, suggesting no mistrace of the backbone. A closer
inspection of this position in the model shows that the
lower contour level covers most of the backbone atoms of
the residue, except carbonyl C atom where the map is still
disconnected. The locally sharpened map is smoother with
no disorder and shows a better coverage of backbone atoms.
The residue is located at a low resolution area of the map and

it is likely that the backbone is within the molecular volume
but the atoms are misfitted, as highlighted by the other
metrics.

Supplementary Figure S2C shows an area of the modeled
RNA where the terminal nucleotide has a lower FDR score. The
map density is also disordered at this position likely due to the
higher flexibility of this part of the RNA.

FIGURE 6 | Pairwise correlations of different metrics: MapQ, SMOC, SCCC, PHENIX, FSC-Q, and FDR backbone score for the atomic models: (A) Chain A of
alcohol dehydrogenase T0104EM060_2, (B) chain A of T0104EM028_1, (C) chain L of T20s proteasome T0002EM133_1, (D) chain C of γ-secretase T0007EM192_2,
and (E) chain B of the RNA polymerase complex model 7bv2.
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Correlation Between Different Metrics
In the cases discussed above, we show a number of cases where
different metrics disagree in the detection of backbone mistrace
and cases where the FDR backbone scores can be complementary.
To check how different metrics rank models based on local
backbone fit to maps, we scored ten of the models submitted
to the 2019Model Challenge for the target alcohol dehydrogenase
map (EMD-0406), and nine of them were built using ab-initio
model building approaches. For each model, the number of
residues of chain A associated with a Z-score lower than −2.0
were counted (Table 1). The table also shows the number of
residues with the FDR backbone score less than 0.9. The models
in the table are sorted by the global CCC scores derived from the
assessment results of the model challenge (https://model-
compare.emdataresource.org/2019/cgi-bin/em_multimer_
results.cgi?target_map�T0104emd_0406). No two metrics
completely agree in the ranks assigned to the models based on
the number of potential backbone misfits. However, there is a
general agreement on best scoring the models and those with the
lowest ranks. Note that the Z-scores are less meaningful in cases
where the distribution of the score is far from normal. This is
expected to affect the ranks, especially in the case of FSC-Q and
MapQ where the outliers have significantly lower scores than the
rest of the distribution.

To further investigate the pairwise agreement between
metrics, we computed pairwise correlations between scores
for the case studies discussed above. Figures 6A–E present the
correlation matrices highlighting pairwise correlations
between metrics for each case (corresponding to Figures
1–5). In a general scenario where an atomic model fits well
overall in a map but includes a few mistraced residues, the
majority of the residues have FDR scores of 1.0 and we expect
lower scores for mistraced residues. Hence, the FDR score
being less variable relative to other scores, the pairwise
correlations involving the FDR score are expected to be low.
Indeed, we observe this for most of the models except for
T0104EM060_2 and T0002EM133_1 where many of the
residues are associated with low backbone scores (Figure 4).
In these two cases, the FDR score shows better correlation with
MapQ with pairwise correlation coefficients of 0.66 and 0.84,

respectively. MapQ scores also correlate with SCCC and
PHENIX_CC scores for these two cases.

Overall, SCCC and PHENIX CCC show a good correlation in
most cases with pairwise correlations in the range 0.64 to 0.87,
which is expected as both scores involve calculation of cross
correlation coefficient. SCCC and SMOC scores are largely
correlated as well with pairwise correlations spread between
0.37 and 0.94. These two scores use similar underlying
procedures for synthetic map generation from model and
identification of voxels covered by atoms. FSC-Q does not
correlate with any of the other scores as the score reflects the
model-map (andmap-model) differences, unlike the other scores.

Pruning Ab-Initio Built Models
The proposed approach was used to prune models generated by
Buccaneer (Cowtan, 2006) which is an ab-initio model building
tool that works by an iterative process involving finding backbone
seed positions, growing them to fragments, connecting and
pruning fragments to chains and pruning the resulting chains.
Often the final model from Buccaneer needs to be pruned
interactively in Coot to remove any fragments and fix any
obvious mistraces. Identifying parts of the model that are
fitted into low confidence regions of the map enables
automated pruning of the models.

We tested this using the ab-initio model built using the
Buccaneer software for the 2.9 Å reconstruction of alcohol
dehydrogenase (EMD-0406). Figure 7A shows the model built
from four Buccaneer cycles. The confidence map–based approach
identifies fragments built into the background noise outside the
molecular density (highlighted in red). The zoomed area provides
a closer look at the loop where one of the residues is mistraced
and backbone atoms are out of the contoured map. Figure 7B
shows the same model after pruning based on our approach. All
the fragments and mistraced residues were removed. Residues on
either side of the low scoring residue are also removed while
pruning. This helps to rebuild this whole region in the next round
of the automated model building. Figures 7C,D shows the
confidence scores for the same segment from the model
T0104EM028_1 and the reference model (6nbb.2),
respectively. The residues of these models have higher

TABLE 1 | Outlier detection by different metrics for ten of the models submitted to the 2019 Model Challenge for the target alcohol dehydrogenase map (EMD-0406). For
each model, the table number of residues of chain A associated with Z-scores lower than −2.0. For the FDR backbone score, the table also shows the number of
residues with an FDR backbone score less than 0.9

ModelID CC Method FDR_score
<0.9

FDR_score MapQ SMOC SCCC PHENIX FSC-Q FSC-Q

Z-score < −2 Z-score
< −2

Z-score
< −2

Z-score
< −2

Z-score
< −2

Z-score > 2 Z-score
< −2

T0104EM035_1 0.32 Ab-initio 3 6 15 9 8 8 12 7
T0104EM027_1 0.32 Ab-initio 8 7 15 11 9 10 10 6
T0104EM010_1 0.32 Ab-initio 7 9 14 8 13 6 11 7
T0104EM041_1 0.32 Ab-initio 10 10 10 9 13 9 13 5
T0104EM090_1 0.31 Ab-initio 21 19 12 13 12 12 12 0
T0104EM028_1 0.31 Ab-initio 9 15 13 12 10 10 14 2
T0104EM025_1 0.31 Optimized 8 9 12 17 14 11 14 5
T0104EM082_1 0.31 Ab-initio 9 9 15 18 18 12 12 2
T0104EM060_2 0.28 Ab-initio 39 66 17 14 14 16 8 0
T0104EM054_1 0.27 Ab-initio 83 26 17 16 18 17 18 3
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confidence scores and the residues are fitted better in the
contoured map.

DISCUSSION

The majority of cryo-EM reconstructions in EMDB are
determined at resolutions worse than 3 Å and often the
local resolution varies significantly in maps that are
otherwise resolved at higher resolutions on an average.
Hence, the chances of errors in the model are higher and
validation tools that can detect errors and areas with high
uncertainty, are necessary. In this study we tested an
approach that evaluates the backbone trace of atomic
models based on the local molecular signal (compared to
background noise) in the map. The confidence scores
calculated per voxel from the original map using the FDR
control approach (Beckers et al., 2019) are mapped to
individual backbone atoms in the model.

For the purpose of testing the approach, we used examples
covering a range of reported resolutions from 2.5 to 3.4 Å. The
residue backbones that have an FDR score less than 0.9 are
included in Supplementary Table S1. Most of these models are
built using model building and refinement tools commonly used
in the field, as part of the EMDB model challenges. These
challenges act as platforms to assess models derived using a
wide range of modeling techniques and compare metrics
which can be used to evaluate these atomic models. It also
provides a repository of models built from a range of map
targets and a reference model to compare against, which can
be extremely useful for development and testing of new validation
software.

We show that the FDR backbone score is complementary to
existing model evaluation tools. The proposed score evaluates
only the atomic positions and not the model agreement with the
map. Hence, it is not useful for detecting any misfits within the
molecular contour. Also, the current implementation of the score
does not identify side chain rotamer misfits. However, as seen in

FIGURE 7 | Results from pruning the model built ab-initio with the Buccaneer software tool on the map of alcohol dehydrogenase (EMD-0406). (A) Ab-initio built
model where residues associated with low confidence scores are in red. Potential misfit of residue 107 (chain A) is highlighted, and fragments built into the background
noise outside the molecular density are also associated with low confidence scores. (B)Model after pruning; the misfitted residue in the chain A is removed along with the
preceding and following residues (Gly106-Asn108), and fragments in the background are also removed. (C) The model T0104EM028_1 with residues in this
segment with higher confidence scores. (D) Reference model (PDB ID: 6nbb) with the segment highlighted.
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many of the cases discussed in results, often backbone mistraces
are associated with side chain misfits as well.

On the other hand, as demonstrated in results, some residues
where one or more atoms are fitted into the background noise
may still have fit-to-map scores within tolerable limits. This
misplacement of backbone atoms is evident when compared to
the reference, where a better backbone fit can be found. In such
cases, the FDR backbone score works in a complementary
manner.

Potential backbone mistraces involving a number of glycine
residues were detected by the FDR backbone score (see Results),
and not by other metrics. One explanation could be that glycine is
often seen in flexible loops associated with low-resolution areas of
the map, and some of these scores are sensitive to map resolution.
In general, limiting the score calculations to backbone atoms,
might also affect some of the scores like CCC, where a sufficiently
large distribution of values is expected for meaningful estimation
of mean and standard deviation and hence a reliable score
calculation.

We also show that the approach detects weak molecular
signals that are at low resolution areas of the map and not
otherwise obvious. We recommend that residues associated
with FDR scores less than 0.95 usually require attention and
residues with scores less than 0.9 usually reflect clear cases of
backbone mistrace.

We also demonstrate that the approach is useful in detecting
residue mistraces in a model. Hence, the tool is useful as part of
iterative model building pipelines or to evaluate the final model.
Automated pruning of models based on this approach can be a
useful step in the iterative model building and refinement process.
Models after pruning can be also a starting point for extending or
iterative building with the Buccaneer model building tool. As
presented in the results, the approach is useful to validate ligands,
carbohydrates, and nucleic acids as well.

The implementation of this score as a tool in the CCP-EM
software suite makes it easily accessible for the cryo-EM
community. The described software tool is available from the
CCP-EM suite as “FDR validation task” confidence map

FIGURE 8 | Integration of the presented tool with the CCP-EM software suite. (A) Input interface for the FDR-validation task. The original map (preferably
unmasked) or a precalculated confidence map and a model are required as inputs. If the original map is provided as input, a confidence map will be calculated internally.
Users have access to the advanced setup options for confidencemap job. (B)Overview of the launcher tab listing the output files. (C)Results tab with the FDR backbone
scores plots for each chain. (D)Resulting models colored according to calculated confidence score, overlaid with the confidencemap in UCSF Chimera (accessible
from the results tab of the CCP-EM task).
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calculation can be run as part of this task, where the user has to
provide the original map (preferably unmasked) and the model to
validate. As an option, the user can adjust the size of the noise box
used for calculation of background statistics. In some cases,
especially if the specimen is significantly elongated in one
direction, users should also check the preview of the noise
boxes to make sure that the noise box does not contain any
part of the molecular volume. The extended options for the
confidence maps section allows to set the advanced parameters
for the FDR maps calculation (Figure 8A).

If the user has already generated the FDR map, it can be used
directly as an input (Figure 8B). Instead of a confidence map, any
custom map can be used as well and residues will be assigned
scores based on values in the map. Validation based on the scores
of backbone atoms is run by default, users can additionally choose
to validate only the CA positions. Optionally, the model can be
pruned further to remove residues associated with low confidence
scores. A model file with atomic b-factors replaced by the
confidence scores and a CSV file containing the confidence
scores for each residue are generated as outputs. If the option
to prune the model was chosen, a pruned model is provided as the
additional output, along with a text file containing the list of all
removed residues. Figure 8C shows the launcher tab with a list of
output files generated from the job. On the results tab, a link is
included to open the resulting models directly in UCSF Chimera
with the model colored based on the confidence scores. Figure 8D
shows the results open directly inUCSFChimera with the resulting
model colored according to the confidence score.

For a confidence map of size 192 × 192 × 192 voxels, the
assignment of FDR scores to residues takes about 0.22 s on a PC
with specification: Intel(R) Core(TM) i5-8250U CPU@ 1.60 GHz
x 8, 8 GB RAM. The latest CCP-EM nightly release available
from https://www.ccpem.ac.uk/download.php includes the
implementation of “FDR validation task” The source code of
the tool for evaluating atomic models based on confidence maps
is available from (https://github.com/m-olek/FDR-validation).

CONCLUSION

In this study, we present a tool for validating atomicmodels derived
from cryoEM maps. It works based on the calculation of the
confidence maps, which estimates molecular signal to noise at
every voxel, and also detects weak signals from the low resolution
areas of the map. This helps to assess atomic positions based on the

local information in the map and identify mistraced residues in the
model. This approach is complementary to other validation tools
that quantify agreement with the map, as it evaluates atom
positions based on the local map information. We believe that,
with the integration with the CCP-EM software suite, the presented
tool will be a useful addition to the existing validation tools.
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