
 

 

 

 

 

 

 

 

 

 

Iterative Algorithms for Ptychography 

 
 

 

 

Wenjie Mei 

 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy  

 

 

 

The University of Sheffield 

Faculty of Engineering 

Department of Electronic and Electrical Engineering 

 

 

 

 

February 2024 



2 

Abstract 

In computational imaging, ptychography is a cutting-edge technique that has 

garnered significant attention for its ability to address the challenge of the phase 

problem in the microscope. At its core, ptychography involves breaking the 

imaging process into a series of overlapping measurements. Instead of 

capturing the entire image at once, ptychography acquires diffraction patterns 

from overlapping regions of the specimen. This approach allows for the 

recovery of both amplitude and phase information with high accuracy. With the 

development of ptychography, various phase retrieval algorithms have been 

proposed in the recent decades. These different algorithms can be categorized 

as direct ptychography and iterative ptychography. Furthermore, iterative 

ptychography can also be subdivided into two types: sequential projection 

methods and set projection methods. All of these different categories will be 

discussed and analyzed in this thesis. The direct ptychography will be 

introduced in the Chapter 4, while the iterative ptychography will be in the 

Chapter 5. Further contributions in this thesis are two new blind ptychographic 

solutions. The first is generalizing the set projection methods to a standard form 

and introducing the Bayesian Optimization to tune the parameters automatically. 

The other is a novel approach called Weighted Average of Sequential 

Projections (WASP), which combines the advantages of both sequential 

projection methods and set projection methods. This thesis aims to find novel 

and effective ptychographic approaches, based on evaluating and comparing 

the existing algorithms. All the different approaches will be tested with different 

simulations and real-world ptychography experiments to verify their 

performance in different contexts and provide a deep understanding of different 

types of ptychographic solutions for future research. 
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1. Introduction 

Microscope imaging has been a cornerstone in advancing our understanding 

of the intricate world at the smallest scales, unravelling the mysteries of the 

unseen world. There are various imaging techniques for the microscope, one 

of which is Coherent Diffraction Imaging (CDI) [1], which offers a unique 

perspective on the interaction of light with matter. Unlike conventional imaging 

methods, CDI harnesses the coherent nature of light or other waves, enabling 

the reconstruction of complex structures without the need for lenses. At its 

essence, CDI involves the measurement and analysis of the diffraction pattern 

produced when a coherent wave interacts with a sample. By carefully capturing 

and processing this diffraction information, the high-resolution images of the 

sample can be computationally reconstructed without conventional lenses. This 

capability makes CDI particularly valuable in fields such as materials science, 

biology, and nanotechnology, where traditional imaging methods face 

limitations [2-5]. 

In CDI, computational imaging plays a pivotal role in the reconstruction of an 

image from diffraction patterns. One of the novel computational imaging 

techniques is called ptychography, which surpasses traditional microscopy by 

providing detailed reconstructions even in the presence of aberrations and 

limitations imposed by the optics [6, 7]. Ptychography requires a specific setup 

which moves either the specimen or the probe to produce partial and 

overlapping diffraction patterns [8]. By acquiring diffraction patterns from 

overlapping regions, ptychography not only enhances the resolution but also 

enables the recovery of complex sample structures [7]. This technique has 

been used in microscopes with a wide range of wavelengths, including visible 

light, X-ray and electron. With this great potential for different scientific fields, a 

wide variety of different algorithms have emerged in ptychography to improve 

the quality of its reconstruction. The first one is non-iterative ptychography, 
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requiring a dense scan and the diffraction patterns for every pixel, resulting in 

heavy computation and a massive dataset [8-10]. Later, a pioneering method 

called Ptychographical Iterative Engine (PIE) was introduced by Rodenburg 

and Faulkner, revolutionizing the field by eliminating the need to record 

diffraction patterns for every reconstructed pixel [6]. Instead, PIE utilized a large 

illumination probe, scanning the sample through a grid of positions, significantly 

reducing data requirements. However, PIE encountered a crucial limitation – 

the necessity for an accurate model of the illuminating probe wavefront. A 

conjugate gradient algorithm proposed by Guizar-Sicairos and Fienup broke 

this limitation. As a nonlinear optimization algorithm, it can directly incorporate 

any form of non-ideality, such as inaccurate knowledge of the probe [11]. Then 

the idea of set projection started to be used in ptychography; first one is the 

difference map (DM) [12]. Afterwards, Relaxed Averaged Alternating 

Reflections (RAAR), the Alternating Directions Method of Multipliers (ADMM), 

proximal algorithms, and maximum likelihood via least-squares (LSQ-ML) were 

successively proposed [13-16]. Meanwhile, Maiden and Rodenburg extended 

the PIE to address the recovery of the probe, giving rise to the ePIE [17]. 

Moreover, further improvements based on ePIE were achieved by introducing 

regularization and momentum, resulting in rPIE and mPIE [18]. The continuous 

advancements in computational algorithms further underscore the growing 

importance of ptychography in pushing the boundaries of microscopic imaging, 

opening new avenues for discovery and innovation. 
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2. Background 

In this chapter, I will give an overview of the computational basis of diffractive 

imaging and theoretical tools needed to understand the physical aspects of 

diffractive imaging methods. The definition and properties of the Fourier 

transform, and the wave propagation theory will be introduced at the beginning, 

leads to the phase problem and the single-shot phase retrieval method as well 

as the concept of novel phase retrieval method called ptychography. 

2.1. Microscope Theory 

A microscope is a tool to help us visually see a very small object, over many 

years in the past, the strategy to see a smaller object is to make one or more 

lenses as accurately as possible, arrange them and observe through them to 

see the object [19, 20]. However, this is very demanding on the quality of lenses. 

Nowadays, new strategies have opened up with the development of computers. 

Several imaging strategies are illustrated in Figure 2.1. 
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Figure 2.1. Different computational imaging process. (a) The conventional 

microscope imaging. (b) A post-processing is introduced to correct the imperfect 

optics. (c) The imaging optics can be adapted by the feedback from the error 

measurement in the detector plane. (d) The detector plane only records the intensity 

from the encoding process, then using computer to decode and reconstruct the 

image. 

A conventional microscope in Figure 2.1(a) requires good optics lenses, post-

processing techniques are not typically applied to correct optical aberrations or 

imperfections [21]. They rely on simple optical systems and lenses to magnify 

and visualize specimens [19, 22]. However, as a matter of fact, there is no 

absolutely perfect lens in the world. Figure 2.1(b) shows that some post-

processing techniques such like filtering, sharpening, noise reduction, contrast 
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enhancement and deconvolution etc. can be applied to correct or enhance 

images obtained with a microscope [7, 21]. Furthermore, if the optics lenses 

are adaptive rather than fixed, the feedback from the post imaging process can 

be introduced to improve the imaging setup [23], see Figure 2.1(c). All these 

imaging types mentioned above are direct imaging by the optics. The quality of 

the lens determines how good the image will be. Because the microscopes are 

used to see smaller things or structures, the resolution can generally represent 

its final imaging quality. For a conventional transmission microscope, according 

to Abbe’s theory [24], the resolution of the image is Equation (2.1)(2.1): 

𝛾 =
𝜆

2𝑛𝑠𝑖𝑛𝜃
(2. 1) 

where 𝜆 is the wavelength of the incident wave, 𝑛 is the refractive index of 

the medium between the objective lens and the object, 𝜃 is the half-subtended 

angle by the objective lens. Here, 𝑛𝑠𝑖𝑛𝜃 is defined as the numerical aperture 

(NA). It is obvious that the resolution is limited by the wavelength of the incident 

wave and the highest scattering angle that can be collected by the objective 

lens. To overcome the resolution limit imposed by the imperfect objective lens, 

a new lens-less strategy that gets rid of the lens during imaging was proposed 

in Figure 2.1 (d) [25]. The measurements from the detector are diffraction 

patterns which record the intensity information rather than obtaining the image 

of the specimen directly. This thesis will mainly focus on the decoding process 

step of this type of lens-less imaging in Figure 2.1 (d). 

2.2. Resolution 

As mentioned above, resolution is an important metric for quality of images, 

and it is limited by the wavelength and the numerical aperture (NA) of the 

objective lens for a conventional microscope [23]. However, in lens-less 

diffractive imaging, it is limited by the NA of the detector. This is an advantage 
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of diffractive imaging, as the NA of the detector is usually big enough to capture 

all the diffraction from the object. Therefore, the limitation is now only the 

wavelength.  

In the far-field propagation, the resolution of the reconstruction will not be 

changed as long as it satisfies the sampling condition. Assume there is a 

detector with 𝑁 × 𝑁 pixels, and each pixel size is ∆𝑢. The distance between 

specimen and detector is 𝑧 , see Figure 2.2. The size of the pixel in the 

reconstruction can be defined as: 

∆𝑥 =
𝜆𝑧

𝑁∆𝑢
(2. 2) 

 

Figure 2.2. The pixel size in a far-field imaging system. 

In Equation (2.2), 𝑁 is the number of pixels and ∆𝑢 is the pixel size on the 

detector, therefore, 𝑁∆𝑢  will be the size of the detector which will remain 

constant, the resolution of ∆𝑥 will not change no matter how we divide the pixel 

size in detector. Unlike Abbe's theory which considers the minimum resolvable 
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distance between two points in the object space, in lens-less imaging, another 

concept called the Rayleigh Criterion is used to find out the relationship 

between resolution and imaging system [26]. The Rayleigh Criterion is more 

concerned with the separation of point sources in an image. Assume there are 

two point sources, if the central brightest point of the diffraction image of one 

point source coincides with the first darkest point of the diffraction image of 

another point source, these two sources can be resolved [27]. For incoherent 

imaging, according to the Rayleigh Criterion, the resolution which is measured 

as a distance can be defined as: 

𝛾 =
0.61𝜆

𝑁𝐴
(2. 3) 

where 𝜆 is the wavelength, here, 𝑁𝐴 is the numerical aperture which can also 

be written as 𝑁𝐴 = 𝑛𝑠𝑖𝑛𝜃. 𝑛 is the refractive index of the media and 𝜃 is the 

half angle of the incoming wave. 

According to Equation (2.3), the resolution of an imaging system is determined 

by the wavelength and effective numerical aperture of the system [27]. The 

numerical aperture can be increased by increasing the incoming wave angle to 

improve the resolution, but it cannot be greater than 90 degrees. Improving the 

refractive index of the media around the lens can also make the numerical 

aperture larger such as by placing immersion oil near the lens [26]. Another way 

to improve the resolution is using a shorter wavelength source, e.g., UV, X-ray 

or electrons [26]. This is the physical limitation of the resolution, determined by 

the experimental configuration in practice. However, this thesis is more focused 

on computational imaging, which improves the quality of the image as much as 

possible, with some computational algorithms in the determined configuration. 

2.3. 2D Fourier Analysis 

Fourier analysis is often utilsed for both linear and nonlinear systems, it is 
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widely used in signal processing, especially in the field of communication 

systems and electrical networks. In the context of diffraction imaging in 

microscopy, Fourier analysis plays a crucial role in the formulation of the 

propagation theory, it connects the specimen in real space and its spectrum in 

reciprocal space. In this thesis, The Fourier transform is extensively used in 

many places. Here we start with its definitions and properties [26]. 

2.3.1. Fourier Transform Definitions and Properties 

In the field of Fourier optics, most problems involve two dimensions, the Fourier 

transform of a 2D function 𝜓(𝑥, 𝑦) is defined as Equation (2.4): 

Ψ(𝑢, 𝑣) = 𝓕{𝜓(𝑥, 𝑦)} = ∬𝜓(𝑥, 𝑦) 𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦 (2. 4) 

where 𝓕 is the operation of Fourier transform, 𝑖 is the imaginary unit, 𝑥 and 

𝑦  are the coordinates in real space, and 𝑢 , 𝑣  are coordinates in reciprocal 

space, usually referred to as spatial frequencies in Fourier domain. 

The Fourier Transform operation is reversible. The inverse Fourier transform of 

a reciprocal function Ψ(𝑢, 𝑣) is defined as Equation (2.5): 

𝜓(𝑥, 𝑦) = 𝓕−𝟏{Ψ(𝑢, 𝑣)} = ∬Ψ(𝑢, 𝑣) 𝑒𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑢𝑑𝑣 (2. 5) 

where 𝓕−𝟏 represents the inverse Fourier transform. 

For a 2D function, an important property is separability. A separable 2D function 

can be written as the product of two 1D function: 

𝜓(𝑥, 𝑦) = 𝜓𝑥(𝑥)𝜓𝑦(𝑦) (2. 6) 

meaning the Fourier transform of a 2D function that is the product of two 1D 

transforms [28]: 
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ℱ{𝜓(𝑥, 𝑦)} = ℱ{𝜓𝑥(𝑥)}ℱ{𝜓𝑦(𝑦)} (2. 7) 

The basic definition of Fourier transform leads to many well-known theorems. 

Here we introduce some of them which are relevant to Fourier optics. Assume 

there are two real space function 𝜓(𝑥, 𝑦) and 𝜙(𝑥, 𝑦), their Fourier transforms 

are Ψ(𝑢, 𝑣) and Φ(𝑢, 𝑣). 

1) Linearity theorem: The Fourier transform of a weighted sum of two or 

more functions is same as the identically weighted sum of their individual 

transforms, see Equation (2.8):  

𝓕{𝑎𝜓(𝑥, 𝑦) + 𝑏𝜙(𝑥, 𝑦)} = 𝑎Ψ(𝑢, 𝑣) + 𝑏Φ(𝑢, 𝑣) (2. 8) 

2) Similarity theorem: The scaling of the real space coordinates will result a 

contraction of the reciprocal space coordinates and an overall contraction 

of the amplitude, see Equation (2.9): 

𝓕{𝜓(𝑎𝑥, 𝑏𝑦)} =
1

|𝑎𝑏|
Ψ (

𝑢

𝑎
,
𝑣

𝑏
) (2. 9) 

3) Shift theorem: Linear offset in the real space will result a linear phase shift 

in the reciprocal space, see Equation (2.10): 

𝓕{𝜓(𝑥 − 𝑎, 𝑦 − 𝑏)} = Ψ(𝑢, 𝑣)𝑒−𝑖2𝜋(𝑎𝑢+𝑏𝑣) (2. 10) 

4) Parseval’s (Rayleigh’s) theorem: The energy contained in the waveform 

will remains constant after transformed into reciprocal space, see Equation 

(2.11): 

∬|𝜓(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦

∞

−∞

= ∬|Ψ(𝑢, 𝑣)|2𝑑𝑢𝑑𝑣

∞

−∞

(2. 11) 

where the left-hand side integral can be expressed as the energy contained 
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in waveform 𝜓(𝑥, 𝑦) , the integral on the right-hand side is the energy 

density in reciprocal space. 

5) Convolution theorem: The Fourier transform of a convolution of two real 

space function is equal to the product of their transforms in reciprocal space, 

see Equation (2.12): 

𝓕{𝜓(𝑥, 𝑦)⨂𝜙(𝑥, 𝑦)} = Ψ(𝑢, 𝑣)Φ(𝑢, 𝑣) (2. 12) 

where ⨂ represents the convolution operation. 

6) Fourier integral theorem: The result of successive transform and inverse 

transform of a function is itself, except at points of discontinuity, see 

Equation (2.13): 

𝓕𝓕−𝟏{𝜓(𝑥, 𝑦)} = 𝓕−𝟏𝓕{𝜓(𝑥, 𝑦)} = 𝜓(𝑥, 𝑦) (2. 13) 

7) Successive transform theorem: A successive transform of a function 

leads the change of the sign of its coordinates, see Equation (2.14): 

ℱℱ{𝜓(𝑥, 𝑦)} = 𝜓(−𝑥,−𝑦) (2. 14) 

8) Conjugate symmetry theorem: The Fourier transform of the conjugate of 

a function will be a conjugate symmetric version of its Fourier transform, 

see Equation (2.15): 

ℱ{𝜓∗(𝑥, 𝑦)} = 𝜓∗(−𝑢,−𝑣) (2. 15) 

From Equation (2.4) and (2.5), it is easy to see that, mathematically, the only 

difference between the Fourier transform and inverse Fourier transform is the 

sign of the exponent. The integrals in these two equations may not always exist 

for certain functions, that requires the function being integrated must satisfy to 

the following conditions [26]: 
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1) The function must be integrable over the infinite plane. 

2) The function must have only a finite number of discontinuities and a finite 

number of maxima and minima in any finite rectangle. 

3) The function must have no infinite discontinuities. 

This is the mathematical requirement for Fourier transform, however, in the real 

life, the signal read by a computer has to be decomposed into discrete points 

and is not continuous anymore [23]. This is called sampling in signal processing, 

the smaller interval between two adjacent discrete points means the higher 

sampling frequency. Therefore, it is essential to represent signal function by 

discrete arrays of sampled values and find a way to process these discrete 

signals when we implement Fourier operations on the computer. 

2.3.2. Sampling and the Shannon–Nyquist Sampling Theorem 

Sampling is the conversion of a continuous signal function in time domain or 

space domain into a sequence of values (a discrete function). Suppose there 

is a 2D analytic function 𝜓(𝑥, 𝑦) laying in a 2D space as shown in Figure 2.3 

(a). Assume it is sampled in a uniform manner in both 𝑥 and 𝑦 directions, see 

Figure 2.3 (b). We can now write 𝜓(𝑥, 𝑦) in a discrete form: 

𝜓(𝑥, 𝑦) → 𝜓(𝑚∆𝑥, 𝑛∆𝑦) (2. 16) 

where the ∆𝑥 and ∆𝑦 are the sample interval in different directions, 𝑚 and 𝑛 

are the integer index of the sample in correlated direction. Alternatively, 1 ∆𝑥⁄  

and 1 ∆𝑦⁄  represent the respective sample rates or frequencies. For instance, 

we sample 𝜓(𝑥, 𝑦)  in a finite space, assuming it has 𝑀 × 𝑁  samples, its 

integer index 𝑚 and 𝑛 are usually defined as: 

𝑚 = −
𝑀

2
,−

𝑀

2
+ 1,… ,

𝑀

2
− 1, 𝑛 = −

𝑁

2
,−

𝑁

2
+ 1,… ,

𝑁

2
− 1 (2. 17) 
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where 𝑀 and 𝑁 are normally considered to be even number in a standard 

index arrangement. The side lengths of the finite physical area now can be 

expressed as: 

𝐿𝑥 = 𝑀∆𝑥, 𝐿𝑦 = 𝑁∆𝑦 (2. 18) 

 

Figure 2.3. (a) An analytic 2D function, (b) the sampled version of (a). 

Now, in this case, the first concern of sampling is whether 𝜓(𝑥, 𝑦) it is able to 

fit within the finite space defined by 𝐿𝑥 × 𝐿𝑦 . This introduces the first 

requirement that the support area 𝐷𝑥 × 𝐷𝑦 which is the span of 𝜓(𝑥, 𝑦) has to 

be smaller than the finite space: 

𝐷𝑥 < 𝐿𝑥, 𝐷𝑦 < 𝐿𝑦 (2. 19) 

Figure 2.4 indicates a simple function along the 𝑥 direction, with value one for 

all the points in the support, (a) shows a support area 𝐷𝑥 along the 𝑥 direction 

of 𝜓(𝑥, 𝑦), correspondingly, (b) is its spectrogram in the Fourier domain. The 

null-to-null bandwidth is usually defined as the difference between the 
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frequencies at which the first zero crossings occur on either side of the central 

peak, shown in Figure 2.4 (b). It provides a measure of the frequency range 

occupied by the main lobe of a signal's spectrum while for most practical 

applications, the contribution of the sidelobes are negligible [28]. 

 

Figure 2.4. (a) A support 𝐷𝑥 for a real function 𝜓(𝑥, 𝑦) along the 𝑥 direction 

and (b) its bandwidth 𝐵𝑢 in Fourier domain. 

Another important concern is that whether all the detailed feature of 𝜓(𝑥, 𝑦) 

can be presented after sampling. For a bandlimited function, a continuous 

signal can be exactly recovered with a sample interval smaller than a specific 

value or a sample rate greater than a specific frequency. This is the Shannon-

Nyquist sampling theorem [28]. For a 2D function, it requires the function meet 

the conditions in both directions.  

∆𝑥 <
1

2𝐵𝑢
, ∆𝑦 <

1

2𝐵𝑣

(2. 20) 

where 𝐵𝑥  and 𝐵𝑦  are the bandwidth of the function in different directions. 

Correspondingly, the sample rate has to satisfy the follow requirement: 

𝑓𝑥 > 2𝐵𝑢, 𝑓𝑦 > 2𝐵𝑣 (2. 21) 

In addition, the half of the sample rate Nyquist frequency can be defined by: 
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𝑓𝑁𝑥 =
1

2∆𝑥
, 𝑓𝑁𝑦 =

1

2∆𝑦
(2. 22) 

2.3.3. Discrete Fourier Transform (DFT) 

As mentioned above, Fourier Transform has a requirement for the continuity of 

the function, but in practice, all the signal or image collected by the computer 

are discrete. Here, we introduce discrete Fourier transform (DFT) and its 

improved version the fast Fourier transform (FFT) [29]. DFT are the 

fundamental tools on the computer for solving Fourier problems and used 

extensively in later simulations and experiments in this thesis. Consider a 2D 

function 𝜓(𝑥, 𝑦)  and its sampled function 𝜓(𝑚∆𝑥, 𝑛∆𝑦)  as indicated in 

Equation (2.16) , apply the Fourier transform from Equation (2.4)  to this 

discrete function and use Riemann sum to get an approximation of this integral:  

∬𝜓(𝑚∆𝑥, 𝑛∆𝑦)𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦)𝑑𝑥𝑑𝑦

∞

−∞

→ ∑ ∑ 𝜓(𝑚∆𝑥, 𝑛∆𝑦)𝑒−𝑖2𝜋(
𝑢𝑚∆𝑥

𝑀 +
𝑣𝑛∆𝑦

𝑁 )

𝑀
2−1

𝑚=−
𝑀
2

𝑁
2−1

𝑛=−
𝑁
2

(2. 23) 

Therefore, the definition of DFT and inverse DFT (DFT-1) can be written as: 

Ψ(𝑢, 𝑣) = 𝑫𝑭𝑻{𝜓𝑥,𝑦} = ∑ ∑ 𝜓𝑥,𝑦𝑒
−𝑖2𝜋(

𝑢𝑥
𝑀 +

𝑣𝑦
𝑁 )

𝑀
2−1

𝑥=−
𝑀
2

𝑁
2−1

𝑦=−
𝑁
2

(2. 24) 

𝜓𝑥,𝑦 = 𝑫𝑭𝑻−𝟏{Ψ(𝑢, 𝑣)} =
1

𝑀𝑁
∑ ∑ Ψ(𝑢, 𝑣)𝑒−𝑖2𝜋(

𝑢𝑥
𝑀 +

𝑣𝑦
𝑁 )

𝑀
2−1

𝑢=−
𝑀
2

𝑁
2−1

𝑣=−
𝑁
2

(2. 25) 

where 𝜓(𝑥, 𝑦)  is a discrete real space function and Ψ(𝑢, 𝑣)  is discrete 

reciprocal function, 𝑀 × 𝑁 represents its sampling space and 𝑀, 𝑁 are the 

even integer which are the number of the sample for each direction. 

In practice, the DFT and DFT-1 are usually implemented by computationally 
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efficient FFT and FFT-1 algorithms [29]. FFT algorithms is not actually using 

Equation (2.24)  and (2.25) , but its result is consistent with these two 

equations [28]. Moreover, all the properties and theorems mentioned in section 

2.2.1 can be applied here in the discrete format as well. For example, a 

convolution of two discrete functions can be computed by multiplying its 

individual FFT result and then do the FFT-1. 

2.4. Diffraction and Wave Propagation 

In this section the Fourier theories introduced above are used to explain and 

model the propagation of coherent light or matter waves. 

2.4.1. Huygens-Fresnel Principle and Rayleigh–Sommerfeld Solution 

Diffraction is the spreading of waves around obstacles during their propagation. 

The Huygens-Fresnel principle is an analytical method for studying wave 

propagation, named for the Dutch physicist Christian Huygens and the French 

physicist Auguste Fresnel. This principle applies to both the far-field limit and 

near-field diffraction [27]. The Huygens-Fresnel principle can correctly explain 

and calculate the propagation of waves. It shows that one breaks the wavefront 

into a number of short sections and treats each section as a source of a 

spherical wavelet. Far from the source, say on a distant detector, these 

wavelets will add together or cancel each other to produce a diffraction pattern 

[26]. The diagram of Huygens-Fresnel principle is shown in Figure 2.5. 



24 

 

Figure 2.5. Huygens-Fresnel principle. 

According to the Huygens-Fresnel principle, we are now able to calculate the 

amplitude of the wave after its propagation. Assume there is a point source 

𝑠(𝑥, 𝑦, 𝑧) in 3-D space, the destination after propagation is point 𝑆(𝑎, 𝑏, 𝑐).  

The distance 𝑑 between these two points is: 

𝑑 = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑧 − 𝑐)2 (2. 26) 

The amplitude at point 𝑆 is: 

𝐴(𝑑) ∝
𝐴0𝑒

𝑖𝑘𝑑

𝑑
(2. 27) 

where 𝐴0 is the original amplitude at point 𝑠, 𝜆 is the wavelength, 𝑘 is the 

wavenumber which also can be written as 
2𝜋

𝜆
 . Therefore, the amplitude will 

decrease as the distance 𝑑 increases. 

Now in a 2-D plane with coordinate (𝑥, 𝑦). The propagation model between two 

planes is shown in Figure 2.6. 



25 

 

Figure 2.6. Propagation model between planes. 

A wave illuminates from the source to plane 𝑃1, then its exit wave which has 

interacted with the specimen passes to the detector plane 𝑃2. The coordinates 

for the planes are (𝑥, 𝑦)  and (𝑢, 𝑣) . Therefore, the wave that arrives at the 

related point in 𝑃2 can be written as 

Ψ(𝑢, 𝑣) ∝
𝜓(𝑥, 𝑦)𝑒−

𝑖2𝜋
𝜆

𝑑

𝑑
(2. 28) 

where 𝜓(𝑥, 𝑦) is the exit wave from plane 𝑃1, which is the interaction of the 

object and the incoming wave from the source. The distance 𝑑 can be written 

as: 

𝑑 = √𝑧2 + (𝑥 − 𝑢)2 + (𝑦 − 𝑣)2 = 𝑧√1 +
(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2

𝑧2
(2. 29) 

where 𝑧 is the distance between two planes. 
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Based on this propagation model, another important concept called Rayleigh–

Sommerfeld solution is often used to predict the wave distribution on the 

observation plane [28]. The calculation of the wave that arrives at point 𝑅 on 

the 𝑃2  plane, based on the Rayleigh-Sommerfeld expression [26], can be 

written as:  

Ψ(𝑢, 𝑣) =
1

𝑖𝜆
∬

𝜓(𝑥, 𝑦)𝑒−
𝑖2𝜋
𝜆

𝑑

𝑑
𝑑𝑥𝑑𝑦 (2. 30) 

where 𝜓(𝑥, 𝑦) is the exit wave from plane 𝑃1, and 𝑑 is the distance between 

two points. This is just the superposition of all the spherical waves from each 

point in plane 𝑃1.  

2.5. Propagation Solutions 

It is obvious that this transmission relationship in Equation (2.30) is related to 

distance 𝑑 , the square root in the distance terms will make the Rayleigh-

Sommerfeld solution more difficult and increase the execution time of 

computational simulations [28]. Here, we introduce two more convenient 

approximations for wave propagation, one is Fresnel approximation and the 

other is Fraunhofer approximation. These two types of approximation can be 

distinguished by Fresnel number, which defined as: 

𝐹 =
𝑎2

𝑑𝜆
(2. 31) 

Where 𝑎 is the radius of the aperture in the source plane and 𝑑 is the distance 

between the aperture and observation plane. 

2.5.1. Fresnel Approximation 

When 𝐹 ≥ 1, it can be considered as Fresnel propagation, which is also called 

near-field propagation. Consider a binomial expansion: 
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√1 + 𝑎 = 1 +
1

2
𝑎 −

1

8
𝑎2 + ⋯ (2. 32) 

where 𝑎 is smaller than 1. Similarly, expand Equation (2.29) and only keep 

the first two terms: 

𝑑 = 𝑧√1 +
(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2

𝑧2
≈ 𝑧 [1 +

1

2
(
𝑥 − 𝑢

𝑧
)
2

+
1

2
(
𝑦 − 𝑣

𝑧
)
2

] (2. 33) 

Then, this approximation of distance is applied in the exponential term in 

Equation (2.30) , resulting in an assumption of a parabolic radiation wave 

instead of a spherical wave for the point source. Furthermore, substitute the 

approximation to Equation (2.30) and approximate 𝑑 ≈ 𝑧 in the denominator, 

then Fresnel approximation is: 

Ψ(𝑢, 𝑣) =
𝑒−

𝑖2𝜋
𝜆

𝑧 

𝑖𝜆𝑧
∬𝜓(𝑥, 𝑦)𝑒−

𝑖𝜋[(𝑥−𝑢)2+(𝑦−𝑣)2]
𝜆𝑧 𝑑𝑥𝑑𝑦 (2. 34) 

As an approximation, the accuracy of this expression will be affected when 

modelling scalar diffraction at a close range due to discarding the third and 

further terms in the series of the expansion [28]. Normally, if we allow 1 rad 

maximum phase change in the approximation, the distance 𝑧  between two 

planes has to meet the following condition: 

𝑧3 ≫ max {
𝜋

4𝜆
(𝑥 − 𝑢)2 + (𝑦 − 𝑣)2} (2. 35) 

where 𝑚𝑎𝑥 represents the maximum value. 

2.5.2. Fraunhofer Approximation 

On the other hand, if Fresnel number 𝐹 ≪ 1 , it will be the Fraunhofer 

approximation, which is also called far-field propagation. In this case, the 

detector is far away enough from the specimen, the coordinate (𝑥, 𝑦) is tiny 
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compared to the distance 𝑧 between two planes. The condition of 𝑧 here is: 

𝑧 ≫ 𝑚𝑎𝑥 {
𝜋

𝜆
(𝑢2 + 𝑣2)} (2. 36) 

Hence, the term 𝑥2  and 𝑦2  in the Equation (2.29)  can be neglected and 

replaced with 2𝑢𝑥 and 2𝑣𝑦 

𝑑 ≈ 𝑧 +
𝑢2 + 𝑣2

2𝑧
−

𝑢𝑥 + 𝑣𝑦

𝑧
(2. 37) 

Substitute the approximation to Equation (2.30) , then Fraunhofer 

approximation is: 

Ψ(𝑢, 𝑣) =
𝑒

−
𝑖2𝜋
𝜆

(𝑧+
𝑢2

2𝑧+
𝑣2

2𝑧)

𝑖𝜆𝑧
∬𝜓(𝑥, 𝑦)𝑒−

2𝜋𝑖
𝜆𝑧

(𝑢𝑥+𝑣𝑦) 𝑑𝑥𝑑𝑦 (2. 38) 

where the integral term can be recognized as the Fourier transform of the 

specimen function 𝜓(𝑥, 𝑦) . Therefore, we can consider the relationship of 

Fraunhofer propagation in a far-field system is a Fourier propagation. 

2.6. Phase Problem 

Consider the simplest version of a far-field diffraction imaging system, see 

Figure 2.7. A source wave passes through an aperture, illuminates the 

specimen, then the exit wave propagates to the detector located in a far-field 

Fraunhofer diffraction plane. As described in the previous section, the wave that 

arrives at the detector is the Fourier transform of the exit wave, which can be 

described as a complex scalar function: 

Ψ(�⃗� ) = |Ψ(�⃗� )|𝑒𝑖Φ(�⃗⃗� ) (2. 39) 

where |𝜓(�⃗� )| is the modulus part and Φ(�⃗� ) is the phase part, and �⃗�  is the 

coordinate vector in reciprocal space (Fourier space). The phase in the 
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Fraunhofer diffraction plane is the accumulated phase difference relative to free 

space, caused by the real part of the refractive index of the specimen as the 

wave passes through its thickness [7]. In Fraunhofer diffraction, when light 

passes through a specimen, it interacts with the material properties of the 

specimen, and the real part of the refractive index introduces phase shifts. The 

accumulated phase difference is then determined by comparing the phase of 

the diffracted light wave after passing through the specimen with the phase it 

would have had in free space. This accumulated phase difference in the 

Fraunhofer diffraction plane carries information about the internal structure or 

properties of the specimen, particularly when the specimen is transparent or 

has variations in refractive index across its thickness [26]. 

 

Figure 2.7. Schematic of a concise far-field diffraction imaging system. 

According to the propagation theory mentioned above, if the specimen and 

source are known and certain, the wave Ψ(�⃗� )  after propagation on the 

diffraction pattern can be easily predicted. However, the far-field detector is not 

able to record the phase information of the exit wave after propagation. The 

only thing we can get in the diffraction plane is the intensity of the wave after 
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propagation, denoted as: 

𝐼(�⃗� ) = |Ψ(�⃗� )|2 = Ψ(�⃗� )Ψ(�⃗� )∗ (2. 40) 

where ∗ is the complex conjugate operator. 

Applying the inverse Fourier transform to the intensity will provide only the 

autocorrelation of the specimen: 

𝓕−𝟏{𝐼(�⃗� )} = 𝜓(−𝑟 ) ⊗ 𝜓(𝑟 ) (2. 41) 

where ⊗ is the convolution operator, and 𝑟  is the coordinate vector in real 

space. 

Therefore, the phase problem is either solving Ψ(�⃗� )  in Equation (2.40)  or 

𝜓(𝑟 ) in Equation (2.41), using measured intensity 𝐼(�⃗� ) [30]. This is a classic 

inverse problem, the forward calculation from a known specimen to its 

diffraction plane is easy and straightforward. By contrast, the backward 

calculation from the diffraction plane to an unknown specimen is much more 

difficult due to the loss of phase information. The relationship between the 

specimen and the measurements is non-linear and indirect, requiring 

sophisticated algorithms to solve. These algorithms are usually computationally 

intensive, requiring significant processing power and memory, especially for 

high-resolution images or large datasets. 

2.7. Single-Shot Phase Retrieval 

Like all inverse problems, applying known constraints is a common way to find 

a solution to the phase problem, more extra prior knowledge is always helpful 

for the solution. In the phase problem, what we already know is that the 

experiment setup, the measurement of the intensity from the detector, the 

support of the specimen which is a delineated finite area.  
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A key breakthrough that uses this prior information to solve the phase problem 

is a computational iterative method proposed by Fienup [31], improved from a 

solution strategy originally from Gercherg and Saxton [6]. In Fienup’s method, 

an iterative loop is set up for the computation, shown in Figure 2.8. Here, the 

“object” is a sampled representation of the specimen, similar to that shown in 

Figure 2.3 (b). 

In this loop from Figure 2.8, each iteration will start at position A. At the 

beginning, make an initial guess of object, this guess is not very important, 

usually made up of an 𝑀 × 𝑁 image matrix filled with 1 for all pixels. In the first 

step, all the pixels outside of the known support will be 0, to enforce the fact 

that none of the radiation incident on the sample passed through this region of 

the specimen. Next, propagation to the detector plane is modelled by taking the 

Fourier transform of the estimation. Now, it comes to the position B in the loop, 

where it has got the estimated diffraction pattern. The estimated diffraction 

pattern has both estimated modulus and estimated phase. The estimated 

modulus is replaced with the measured data from the detector, keeping the 

estimated phase, to enforce the fact that the wavefront must have the same 

intensity as the measured diffraction pattern. Finally, from C to D, do the inverse 

Fourier transform and go back to real space. Now, the ‘constraint’ which is the 

measurement has been applied on the estimation. Therefore, the new object 

estimation is closer than the previous one due to correct data from 

measurement. 
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Figure 2.8. Iterative computational loop. 

This computational method is called Error Reduction (ER) [31]. By applying the 

constraints sequentially and iteratively, the error of the reconstruction will 

certainly reduce. However, the speed of convergence cannot be guaranteed. 

ER method was successful and pioneering in the early days of phase retrieval, 

laid the foundation for many later iterative phase retrieval algorithms. 

2.8. Ptychography 

A computational method called ptychography is now widely used as an 

alternative to conventional phase retrieval for solving the phase problem which 

was introduced in the last section. Compared to the conventional method in  

Figure 2.7, what makes ptychographic imaging system special is that it uses a 

moveable aperture (or ‘probe’) to move around the specimen and collect 

diffraction patterns from different positions on the sample. For each position, 

the detector will record one diffraction pattern [6]. Each position of the diffraction 

pattern should be overlapped, as the schematic diagram shows in Figure 2.9. 
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Figure 2.9. Moveable aperture in ptychography. 

Unlike the single-shot methods described in the previous section, the 

overlapped area in ptychography will provide more prior information from a 

previous scan position when it is involving the next position. Figure 2.10 

illustrates the experimental comparison of single-shot method and 

ptychography. (a) is the conventional imaging using a lens which significantly 

limits the angular range of scattered waves. The angular range is not limited in 

(b), but the phase of the scattered wave field is lost. (c) is the ptychography 

method, using a moving aperture gives a large field of view measurement at 

wavelength resolution. 
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Figure 2.10. (a) Conventional lens imaging experimental setups with a limiting 

aperture in the lens back focal plane. (b) Unlimited angular range, but the phase is 

lost. (c) Ptychography experimental setup using a moving aperture. 

In ptychography, all the positions of diffraction patterns have a similar iterative 

loop to Figure 2.8. All the estimation of different positions will be updated one 
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by one in each iteration. A flow chart of ptychography for an example of two 

positions is illustrated in Figure 2.11. 

 

Figure 2.11. Flow chart for two positions in ptychography. 

Hence, when the first position is finished in the first iteration, its adjacent 

positions have already got the new estimation of the overlapped area, which is 

more accurate than the previous estimation. Then, when doing the iteration of 

these adjacent positions, it will be closer to the correct result. It is much easier 

and more accurate to retrieve the phase because of these advantages. 

Nowadays, there are a lot of ptychography related applications and algorithms 

for microscope imaging. Ptychography has been successfully implemented in 

many fields, such as biology, materials science, physics, and chemistry. Also, 

ptychography is the core concept of this thesis, all the research in later chapters 

is based on this imaging technique. In the next section, a brief literature review 
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about existing ptychographic algorithms will be presented. 

2.9. Algorithms for Ptychography 

2.9.1. Direct Ptychography 

Since ptychography was first introduced, numerous algorithms to recover 

images from the diffraction patterns have been developed. The first method was 

direct ptychography, also referred as non-iterative ptychography, using a 

famous method called Wigner Distribution Deconvolution (WDD) proposed in 

1989 [10], more than 10 years before the modern iterative solutions. It was 

abandoned for nearly twenty years because of its complex and data-intensive 

computation, since in comparison with iterative methods WDD requires a 

diffraction pattern to be collected for every pixel in the reconstructed phase 

image. WDD handles the diffraction data as a 4D dataset, involves the use of 

the Wigner distribution to analyse and correct aberrations in both spatial and 

frequency domains, ultimately leading to improved image reconstruction. Today 

the method has seen a revival of interest due to the dramatic increase in 

computing power of computers. Rodenburg & Bates used a method called 

‘’stepping out’’ to break through the cut-off restriction to recover higher 

resolution [32]. Later in 2014, based on this, a projection strategy proposed by 

Li [33], improves the robustness and reduces the inconsistencies. Now, there 

are several successful implementations of WDD in the field of 4D-STEM 

imaging. Yang et. al. used WDD as a tool for electron ptychographic phase 

imaging of light elements in crystalline [34]. Clark et al. simulated GaN 4D-

STEM datasets of varying thickness and reconstructed via WDD [35]. Apart 

from these, a further development of WDD for 4D STEM data analysis with the 

precomputation of the Wiener filter for efficient deconvolution and the 

implementation of live processing for gradual reconstruction was introduced by 

Bangun et al. in 2023 [36]. A full derivation of WDD and detailed introduction of 
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a new WDD approach for blind ptychographic phase retrieval will be given in 

Chapter 4. 

2.9.2. Iterative Ptychography 

The inception of iterative algorithms in the field of ptychography marked a 

significant advancement in computational imaging techniques. Rodenburg 

introduced the first iterative algorithm ptychographic iterative engine (PIE) in 

2004 [6], laying the foundation for subsequent developments in the field. 

Building upon PIE, Maiden and Rodenburg introduced an extended version 

known as ePIE in 2009 [17]. Unlike its predecessor, ePIE not only solves for 

the object but also concurrently addresses the optimization of the probe 

function. This innovative approach has gained widespread adoption in various 

ptychographic applications, underscoring its versatility and effectiveness. In 

2017, further enhancements to the PIE family methods emerged with the 

introduction of regularized PIE (rPIE) and momentum PIE (mPIE) [18]. These 

variants aimed to refine and optimize the reconstruction updating process, 

enhancing the robustness and efficiency. 

Beyond the PIE family, the Difference Map (DM) method, introduced in 2005 

[37, 38], stands out as another notable approach. Similarly, DM not only 

reconstructs the object but also possesses a unique capability to solve for the 

probe. Addressing improvements in reliability and efficiency, Luke proposed the 

Relaxed Averaged Alternating Reflection (RAAR) method in 2005 [13]. This 

method builds upon the principles of DM but introduces refinements that 

contribute to a more reliable and efficient reconstruction process. RAAR 

represents a crucial development by introducing relaxation, offering a viable 

alternative with enhanced performance characteristics. 

Apart from these two categories, another iterative maximum likelihood 

approach that uses least-squares (LSQ-ML) was proposed by Odstrčil, Menzel 
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and Guizar-Sicairos in 2018 [16]. LSQ-ML introduced maximum-likelihood into 

iterative ptychography, providing stable convergence, faster initial convergence, 

and low memory requirements [16]. More up-to-date, a method called Proximal 

algorithms, which was originally developed in convex optimization theory, also 

has been used for ptychographic phase retrieval [14]. The ptychographic 

proximal algorithm performs well in the recovery of high-frequency features and 

the smoothness of the images [14]. 

This thesis is primarily concerned with analysis, comparison and improvements 

to the algorithms that are used for ptychography. In the next chapter I will model 

the ptychography and describe the performance metrics used to assess the 

different algorithms, before moving on to discuss Wigner deconvolution method 

in Chapter 4, set projection algorithms in Chapter 5; finally WASP algorithms in 

Chapter 6. 
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3. Ptychographic Simulation and 

Reconstruction 

This chapter will focus on the simulation and reconstruction of a ptychographic 

experiment on the computer, which is the basis for later chapters when we 

introduce the different ptychographic algorithms. A ptychographic algorithm 

called the extended ptychographic iterative engine (ePIE), which is now very 

popular and widely used, will be used as an example to show the simulation 

and reconstruction process. Also, the associated error metric of the simulation 

will be introduced and defined to evaluate the performance of different phase 

retrieval algorithms.  

3.1. MATLAB 

MATLAB as a mathematics and graphics software application, is a powerful tool 

for image processing. It allows comprehensive matrix manipulation and figure 

plotting. It is the primary tool used in this thesis to simulate and process the 

data for different phase retrieval methods. In MATLAB, data is usually 

represented as a matrix, images are no exception. A 2D image can be illustrated 

as a discrete format in Figure 3.1. The 2D matrix in MATLAB has two very 

intuitive coordinates called row and column, these coordinates start from 1 at 

the top left corner of the matrix, any element from the matrix 𝑀 can be located 

by its index 𝑀(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛). 
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Figure 3.1. A 2D image matrix 𝑀, the data of each pixel is stored in each discrete 

square here. A specific pixel can be accessed by its coordinates, for example, the red 

dashed arrow shows the pixel 𝑀(3,4). 

This is the basic form in which the discrete data of an image exists in MATLAB, 

and all subsequent calculations and simulations in later section are based on 

this. 

3.2. Modelling of Ptychography 

To model ptychography on the computer, the highest priority is representing the 

related experiment data in a discrete format. The core data sets in ptychography, 

such as specimen, probe and diffraction can be represented as 2D complex 

images in the MATLAB, stored as matrices with complex values. The size of 

the diffraction pattern is determined by the detector; if the sensors on the 

detector are binned into 1024 × 1024  pixels, the diffraction pattern will be 

recorded as a matrix with 1024 × 1024 elements. The size of specimen usually 

is larger than diffraction pattern, because for each scan position, only a fraction 
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of the specimen is illuminated. With the known position index, this illuminated 

fraction can be easily cut from the large specimen matrix, then the aperture is 

applied to this subset of the specimen. A schematic of a moving aperture over 

a large discrete specimen is shown in Figure 3.2. On the detector plane, the 

diffraction pattern collected is the same size as the aperture. 

 

Figure 3.2. A moving aperture over a large discrete specimen, red arrow indicates the 

moving direction. The calculation box can be indicated as 𝑅 + [𝑀 − 1,𝑁 − 1] by the 

known top left pixel, where 𝑅 is the top left pixel in the figure and 𝑀,𝑁 are the size 

of the aperture. 

3.2.1. Pixel Pitch 

Another important problem here is how to convert the scanning interval from 

physical distance into discrete pixels. In far-field ptychography, the conversion 

ratio 𝑑𝑥𝑦 is defined as: 
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𝑑𝑥𝑦 =
𝜆

𝜃
(3. 1) 

where 𝜆  is illuminating wavelength in meters, 𝜃  is the span angle of the 

detector, usually can be estimated by: 

𝜃 ≈ tan𝜃 =
𝑑

𝑙
(3. 2) 

where 𝑑 is the dimension of the detector, 𝑙 is the distance between source 

and detector.  

In a ptychography experiment, during the scanning process, small random 

offset will be added to avoid the ambiguity caused by the raster scan, which is 

referred to as raster scan pathology [39]; then, all the positions will be recorded 

as a vector or matrix, written as 𝐷 . With the conversion ratio, the scanning 

position in pixel can be calculated by: 

𝑟 =
𝐷 − 𝐷𝑚𝑖𝑛 

𝑑𝑥𝑦
(3. 3) 

where 𝑚𝑖𝑛  represents the minimum value, and the position grid 𝐷  is in 

metres. Since these positions cannot be exactly integer values of the pixel pitch 

in the reconstruction, when converted into this form, they will be rounded to the 

nearest integer value. 

Now, with the unit conversion, the physical length distance becomes discrete 

pixels. The inverse conversion from a reconstructed image with pixels to real 

world distance also can be calculated by Equation (3.3), to provide a sensible 

scale bar. 

3.2.2. The Formation of Object 

With the appropriate pixel size, the specimen in real world can be converted to 

a 2D discrete matrix, which is usually called ‘Object’ in ptychography model. In 
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a ptychography experiment, the object with size [𝑋, 𝑌], as shown in Figure 3.2, 

can be denoted as 𝑂. In the practice calculation, the [𝑋, 𝑌] is usually larger 

than the size the of moveable aperture, [𝑀,𝑁] . Therefore, a fraction of the 

entire object should be cut from 𝑂, for a specific scan position 𝑘, denoted as: 

𝑜𝑘(𝑟 ) = 𝑂(𝑟 + [𝑀,𝑁]) (3. 4) 

where 𝑟  represents pixel index. 

3.2.3. The Formation of Probe 

To form the interaction between the object and the wave from the source, the 

next step is to generate the probe function. Consider a coherent light source  

𝑺(𝑟 ), represented by a constant matrix; an aperture 𝑨(𝑟 ), with a circular hole 

at the centre; and a lens 𝑳(𝑟 ), contains phase information, see Equation (3.5), 

(3.6) and (3.7). 

𝑺(𝑟 ) = 𝑠 (3. 5) 

𝑨(𝑟 ) = {
1, |𝑟 | ≤ radius

0, |𝑟 | > radius
(3. 6) 

𝑳(𝑟 ) = 𝑒−𝑖𝜔𝑟 (3. 7) 

where 𝑟  represents the position index in the matrix, 𝑠 is a constant, 𝑟𝑎𝑑𝑖𝑢𝑠 

indicates the size of the aperture. The source light passing through the aperture, 

then converged by the lens, after a far-field propagation, creates a localised 

illumination which is the probe function, defined by: 

𝑃(𝑟 ) = 𝓕{𝑺(𝑟 ) × 𝑨(𝑟 ) × 𝑳(𝑟 )} (3. 8) 

where ×  denotes the operation of the element-wise product or Hadamard 

product for two matrices. 
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3.2.4. The Formation of Exit Wave 

According to Figure 2.7, the incident wave interacts with the specimen, and 

then the exit wave propagates to the detector field. When the incident wave 

passes through the specimen, the propagation speed will change according to 

the refractive index of the specimen. In ptychography, strong contrast arises 

from the real part of the refractive index, which is expressed in the phase of the 

transmission function [7]. The amplitude and phase change after passing 

through the specimen can be written as Equation (3.9) and (3.10)(3.10): 

𝐴 = 𝐴0𝑒
−𝛼𝑑 (3. 9) 

∆𝜑 =
2𝜋𝑛𝑑

𝜆
(3. 10) 

where 𝐴 is the amplitude after transmitted, 𝐴0 is the amplitude of the incident 

wave, 𝛼 is the attenuation coefficient depends on the material of specimen, 𝑑 

indicates the thickness of the specimen, 𝑛 represents the refractive index of 

the specimen and 𝜆  is the wavelength of the incident wave. Assume the 

thickness is very tiny and tends to zero (𝑑 → 0), both the changes of amplitude 

and phase in Equation (3.9)  and (3.10)  are negligible. The specimen or 

object function is indeed identical to the exit wave under the illumination, only if 

the specimen is infinitively thin [7]. However, as long as the specimen or object 

is thin enough in the direction of wave propagation, much thinner than the 

wavelength of the incident wave, a multiplicative approximation can be used to 

simplify the mathematical description of the interaction between the object and 

incident wave, making it more tractable. Therefore, with a simulated probe, the 

exit wave of one position can be simulated as a multiplication of probe and the 

cutout object function, written as: 

𝜓(𝑟 ) = 𝑃(𝑟 ) × 𝑜(𝑟 ) (3. 11) 
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where 𝑟  represents the position. The Pseudocode 3.1 shows the process of the 

formation of exit waves for all scan positions. In this thesis, we only consider 

the 2D specimen that is optically thin enough, assume the multiplicative 

approximation is valid all the time. 

Pseudocode 3.1: The Formation of Exit Waves 

Inputs: position vectors (R), specimen (obj), probe function (probe), probe size (M, N), the 

total number of positions (K) 

Outputs: exit waves (exitWave) 

1 For (k = 1 to K) do 

 // Form exit waves by the multiplication of object box with the probe 

2 exitWavek = probe ∙ obj(Rk to Rk+[M-1,N-1]) 

3 End loop 

3.2.5. The Formation of Diffraction Pattern 

With the exit waves, the next step is to propagate them to the detector plane to 

generate the diffraction patterns, using the propagation theory described in 

previous section 2.5. In the far-field condition, the diffraction patterns are the 

intensity part of waves after the propagation, defined as: 

𝐼𝑘(�⃗� ) = |𝓕{𝜓𝑘(𝑟 )}|
2 (3. 12) 

where 𝑘 indicates the scan position. 

The Pseudocode 3.2 describes the formation of the diffraction patterns which are 

the measured intensity on the detector. Also, Pseudocode 3.1 and Pseudocode 

3.2 can be combined into one loop to optimise computational costs. 
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Pseudocode 3.2: The Formation of Diffraction Patterns 

Inputs: exit waves (exitWave), the total number of positions (K) 

Outputs: intensity (I) 

1 For (k = 1 to K) do 

 // Propagate exit waves to the detector plane 

2 detectorWavek = 𝓕(exitWavek) 

3 Modulusk = abs(detectorWavek) 

4 Ik = (Modulusk)2 

5 End loop 

Note: 𝓕: Fourier transform, abs: amplitude. 

3.2.6. Revision of Exit Wave 

In the previous section, the forward process in Figure 2.8, from real space to 

reciprocal space has been described; this is the essential step to generate the 

test data for a ptychography simulation. With a known probe and object, we can 

generate the diffraction patterns for a ptychographic experiment with specific 

setups. Therefore, we can simulate the experiment to see if the reconstruction 

fits the true probe and object. 

To reconstruct the object and the probe with only the intensity from the 

diffraction patterns, the backward process is to replace the modulus with the 

measurements, as shown in Figure 2.8. This is the general idea of most iterative 

ptychography methods, although their methods for updating specimen and 

probe are different. These differences will be discussed in detail in the later 

chapters; here, a simple pseudocode is provided to show the process, see 

Pseudocode 3.3. 
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Pseudocode 3.3: The Revision of Exit Waves 

Inputs: exit waves (exitWave), intensity (I), the total number of positions (K) 

Outputs: revised exit waves (RevisedexitWave) 

1 For (k = 1 to K) do 

 // Propagate exit waves to the detector plane 

2 detectorWavek = 𝓕(exitWavek) 

 // Replace the modulus with measured intensity  

3 correctedWavek = sqrt(Ik)∙detectorWavek / (abs(detectorWavek) + eps) 

 // Back propagate 

4 RevisedexitWavek = 𝓕−𝟏(correctedWavek) 

 End loop 

Note: 𝓕 and 𝓕−𝟏: Fourier and inverse Fourier transform. sqrt: square 

root, abs: amplitude. eps: a small constant in MATLAB to avoid 

dividing 0. 

3.2.7. Update the Object and Probe (ePIE) 

With the revised exit waves from last section, there are many ways to separate 

the object and probe from the multiplication. More details about these methods 

for different algorithms will be discussed in Chapter 5. Here, we use the 

extended ptychographic Iterative engine (ePIE) as an example to demonstrate 

the updating step [17]. An important improvement of ePIE is that it does not 

require a known probe function at the beginning. In other words, it can solve 

the probe function as well as the object by introducing a probe updating step in 

the algorithm. The updating function of object and probe is written in Equation 

(3.13) and (3.14). 

𝑜𝑘𝑗+1
(𝑟 ) = 𝑜𝑘𝑗

(𝑟 ) + 𝛼
𝑃𝑗

∗(𝑟 )

|𝑃𝑗(𝑟 )|𝑚𝑎𝑥

2 (𝜓𝑘𝑗
′ (𝑟 ) − 𝜓𝑘𝑗

(𝑟 )) (3. 13) 

𝑃𝑗+1(𝑟 ) = 𝑃𝑗(𝑟 ) + 𝛽
𝑜𝑘𝑗

∗(𝑟 )

|𝑜𝑘𝑗
(𝑟 )|

𝑚𝑎𝑥

2 (𝜓𝑘𝑗
′ (𝑟 ) − 𝜓𝑘𝑗

(𝑟 )) (3. 14) 

where 𝑃𝑗(𝑟 )  and 𝑜𝑘𝑗
(𝑟 )  are the reconstructed probe and object in 𝑗𝑡ℎ 
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iteration and 𝑘  is the scan position. 𝜓𝑘𝑗
′ (𝑟 )  is the revised exit wave and 

𝜓𝑘𝑗
(𝑟 ) is the original one. 𝑚𝑎𝑥 represents the maximum value and ∗ is the 

complex conjugate. The constant 𝛼 and 𝛽 are the tuning parameters to alter 

the step-size of the update where ePIE use 1 for both. 

Combined with the steps in previous sections, the flow chart of ePIE is 

expressed in the Figure 3.3 as well as the pseudocode in Pseudocode 3.4. The 

initial guesses of probe and object is required for the first iteration of the 

algorithm. A free-space guess is usually used for the initial object which simply 

be a matrix with value 1 everywhere, and a support of the roughly correct size 

to generate the initial probe guess. 
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Figure 3.3. The flow chart of ePIE algorithm 
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Pseudocode 3.4: ePIE algorithm 

Inputs: position vectors (R), object (obj), probe function (probe), probe size (M, N),  

intensity (I), the total number of positions (K), the total number of iterations (J), tuning 

parameter (𝛼, 𝛽) 

Outputs: reconstructed object (obj), reconstructed probe (probe) 

1 For (j = 1 to J) do 

 // Random shuffle all the positions 

2 R = shuffle(R) 

3 For (k = 1 to K) do 

 // Form the exit wave 

4 objBox = obj(Rk to Rk+[M-1,N-1]) 

5 exitWavek = probe ∙ objBox 

 // Propagate exit wave to the detector plane 

6 detectorWavek = 𝓕(exitWavek) 

 // Replace the modulus with measured intensity  

7 correctedWavek = sqrt(Ik)∙detectorWavek /(abs(detectorWavek) + eps) 

 // Back propagate 

8 RevisedexitWavek = 𝓕−𝟏(correctedWavek) 

 // Update the object and probe 

9 ∆exitWavek = RevisedexitWavek - exitWavek 

10 obj(Rk to Rk+[M-1,N-1]) += 𝛼∙conj(probe)∙∆exitWavek/max(abs(probe)2) 

11 probe += 𝛽∙conj(objBox)∙∆exitWavek/max(abs(objBox)2) 

12 End loop 

13 End loop 

Note: shuffle: a function that randomly change the order of the 

position sequence. 𝓕 and 𝓕−𝟏: Fourier and inverse Fourier transform.  

eps: a small constant in MATLAB to avoid dividing 0. sqrt: square 

root. abs: amplitude. conj: complex conjugate. max: maximum value. 

ePIE is a very classic approach to ptychography, and its process can, to some 

extent, represent a way of modelling and solving ptychographic problems on 

the computer, but of course, other algorithms will have a lot of differences with 

ePIE, which will be mentioned in detail in later chapters. 

3.3. Ambiguities in the Reconstruction 

The last section has described the basic model of ptychography for simulations 

with ePIE algorithm. In the simulations, there are several ambiguities between 

the reconstruction and the true specimen and probe, for instance, a constant 
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amplitude scaling, a constant phase offset, a global real space translation, a 

linear phase ramp and the periodic artefacts [18]. The periodic artefact is 

ignored here, because this is caused by the raster pathology, as a small offset 

is applied during the scan to erase this effect. Assume a wave after propagation  

Ψk𝑗
(�⃗� ) at scan position 𝑘 in 𝑗𝑡ℎ iteration, all the ambiguities mentioned above 

can be explained in Equation (3.15): 

Ψk𝑗
(�⃗� ) = 𝓕 {𝑃𝑗(𝑟 )𝑜𝑘𝑗

(𝑟 )} = 𝓕 {(𝑎𝑒𝑖𝑐𝑒𝑖�⃗� ∙𝑟 �̂�(𝑟 + 𝑑 )) (𝑎−1𝑒−𝑖𝑐𝑒−𝑖�⃗� ∙𝑟 �̂�𝑘(𝑟 + 𝑑 ))} (3. 15) 

where 𝑃𝑗(𝑟 )  and 𝑜𝑘𝑗
(𝑟 )  are the reconstructed probe and object, �̂�  and �̂� 

are the true probe and object, 𝑎  and 𝑐  are scalar constants, �⃗�   and 𝑑   are 

constant vectors.  

3.3.1. Global Translation 

The global translation ambiguity embodied as vector 𝑑  in Equation (3.15) is 

caused by shifts in the ptychographic measurement. The ptychography 

reconstruction process attempts to recover object’s structure by combining the 

information from all the diffraction patterns located at different positions. This 

means that different combinations of shifts can produce the same 

ptychographic data, leading to ambiguity in determining the actual object at a 

specific position. The global translation ambiguity will give a shifting effect onto 

the exit waves in real space, resulting a phase ramp after it is propagated to the 

reciprocal space. Since applying the measurements only corrects the modulus 

in reciprocal space, the phase ramp will be retained and affect the final 

reconstruction.  

3.3.2. Phase Ramp 

The second ambiguity is the phase ramp in the reconstruction. In blind 
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ptychography where the probe and object are both unknown, the reconstructed 

estimates of the object and probe can produce the same diffraction data as the 

original probe and object, but both with the phase ramp. In other words, a pair 

of phase shifts that can be applied to both estimates without changing the 

resulting diffraction patterns. This pair of phase ramps is not unique and can 

vary depending on the reconstruction algorithm and initial conditions. A phase 

ramp and its counter ramp are represented by the term 𝑒𝑖�⃗� ∙𝑟   and 𝑒−𝑖�⃗� ∙𝑟   in 

Equation (3.15). Their product is equal to the unit, which has no impact on the 

diffraction estimate. 

3.3.3. Complex Scaling 

In Equation (3.15), another term 𝑎𝑒𝑖𝑐, which usually results in complex scaling 

ambiguity. Different from the other two, the complex scaling ambiguity has no 

significant impact on the final reconstruction results. It is only a complex factor 

that scales the reconstruction. The modulus part 𝑎 affects the amplitude, and 

the phase part 𝑒𝑖𝑐 will introduce a phase offset to the reconstruction. In the real 

experiment, only the relative phase is important to determine the structure of 

the specimen. This phase offset caused by complex scaling is global and does 

not affect the relative phase of the reconstruction. However, complex scaling 

ambiguity will affect the error metric calculation in the simulation since the 

reconstruction will be compared with the ground truth in the simulation, which 

will be discussed in the later section. 

3.3.4. Remove Ambiguities 

In order to get a more accurate reconstruction in the simulation, we can remove 

these ambiguities since the ground truth of the object and probe is known in the 

simulation. Firstly, the global translation is the main reason for the fluctuation at 

the beginning of the reconstruction. The global translation can be estimated 

through an indispensable method from Guizar-Sicairos [40]. A cross-correlation 



53 

between reconstructed probe amplitudes and the ground truth, to sub-pixel 

precision, can calculate the shift vector. Once the shifting vector is estimated, 

a counter shifting can be applied to remove the ambiguity. This is the precursor 

to the correction of the rest of the ambiguities. 

After removed the global translation, the phase ramp ambiguity can be 

calculated by multiplying the reconstructed object with the conjugate of the true 

object without the global translation ambiguity, shown in Equation (3.16): 

∠ {(𝑎−1𝑒−𝑖𝑐𝑒−𝑖�⃗� ∙𝑟 �̂�(𝑟 )) × �̂�∗(𝑟 )} = ∠ {𝑎−1𝑒−𝑖𝑐𝑒−𝑖�⃗� ∙𝑟 |�̂�(𝑟 )|
2
}

= ∠ {𝑎−1|�̂�(𝑟 )|
2
𝑒−𝑖(�⃗� ∙𝑟 +𝑐)}

= −�⃗� ∙ 𝑟 − 𝑐 (3. 16)

 

where ∠ represents the phase part of a complex value. Take the derivation of 

Equation (3.17) with respect to 𝑟  can give out the vector �⃗�  which indicates 

the phase ramp. With the approximation of �⃗� , a counter phase ramp can be 

produced and applied to balance and remove the phase ramp ambiguity. 

The final step is removing the complex scaling ambiguity. For a more accurate 

error analysis, the complex scaling factor can be estimated by Equation (3.17): 

𝑎𝑒𝑖𝑐 ≈
∑ 𝑂�̅�(𝑟 )𝑟 �̂�∗(𝑟 )

∑ |�̂�(𝑟 )|
2

𝑟 

(3. 17) 

where 𝑂�̅�(𝑟 )  represents the object reconstruction after removing the global 

translation and phase ramp. 

The process of removing ambiguities is illustrated in the Figure 3.4. 
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Figure 3.4. The flow chart of removing ambiguities. 

3.4. Error Metric 

3.4.1. Simulation Error 

After removing all the ambiguities mentioned above, error metrics for the 
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simulation are designed to quantitatively evaluate the quality of reconstructed 

images by comparing them with the available ground truths, defined as 

Equation (3.18). Both the modulus and phase difference between two complex 

values are directly under comparison, which gives no uncertainty for the error. 

However, this error metric is only capable when the true object and probe is 

known in a simulation.  

𝐸𝑠𝑖𝑚 =
∑ |�̂�(𝑟 ) − 𝑂�̅�(𝑟 )|

2
𝑟 

∑ |�̂�(𝑟 )|
2

𝑟 

(3. 18) 

where 𝑂�̅�(𝑟 )  represents the object reconstruction in 𝑗𝑡ℎ  iteration after 

removing all the ambiguities. 

3.4.2. Diffraction Intensity Error 

In a real ptychography experiment, the prior knowledge of object and probe are 

usually unavailable, the simulation error in last section is invalid as the 

ambiguities cannot be removed anymore. Therefore, here, we introduce 

another error metric called diffraction intensity error to calculate the normalized 

mean square error (MSE) between the diffraction intensities and the 

measurements, defined as Equation (3.19): 

𝐸 =
∑ ∑ ||Ψ𝑘𝑗

(�⃗� )|
2
− 𝐼𝑘(�⃗� )|

2

�⃗⃗� 𝑘

∑ ∑ |𝐼𝑘(�⃗� )|
2

�⃗⃗� 𝑘

(3. 19)
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4. Wigner Distribution Deconvolution 

(WDD)  

In section 2.9.1, a direct ptychography solution called Wigner Distribution 

Deconvolution (WDD) was mentioned and some achievements based on WDD 

were briefly reviewed. In this chapter, the details of Wigner Distribution 

Deconvolution (WDD) will be mathematically explained. Then, a new approach 

of WDD that can solve the probe function as well as the object function will be 

introduced and tested with some simulation data. 

4.1. Definition of Wigner Distribution Deconvolution 

Unlike iterative methods, WDD can be considered as a direct closed solution of 

ptychography. This means that WDD is not a minimisation problem, but a 

problem similar to solving equations. WDD requires a more intensive scan grid 

for ptychography compared to iterative methods. Assume an object with the 

number of pixels [𝑋, 𝑌] , iterative methods normally have a probe with size 

[𝑀,𝑁], where [𝑀,𝑁] are smaller than [𝑋, 𝑌]. The size of the scan grid will also 

be smaller than [𝑋, 𝑌], depending on the percentage of overlapping area. By 

contrast, the scan grid for WDD will be the same size as [𝑋, 𝑌], which means 

one pixel size step during the scanning process. Also, the size of the probe will 

be the same as object. This results in a massive dataset for WDD and the heavy 

computation for reconstruction. 

4.1.1. Notes on Nomenclature 

Because WDD treats this massive dataset in a 4D format, a different 

nomenclature will be used in this chapter for better understanding, compared 

to other chapters of this thesis. A typical ptychography imaging system was 

displayed before, in Figure 2.7. As mentioned above, in WDD, there is no need 
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to extract a fraction of the object for the calculation of a specific diffraction 

pattern, since the size of the probe and diffraction pattern is [𝑋, 𝑌], same as the 

object. The nomenclature for the object and probe function is shown in the Table 

1. 

Table 1. The new nomenclature for WDD 

 
Object 

function 

Probe 

function 

Detector plane 

coordinate 

Scan position 

coordinate 

Real space 𝑜(𝑟) 𝑝(𝑟) 𝑟: [𝑟𝑥, 𝑟𝑦] 𝑅: [𝑅𝑋, 𝑅𝑌] 

Reciprocal 

space 
𝑂(𝑢) 𝑃(𝑢) 𝑢: [𝑢𝑣, 𝑢𝑤] 𝑈: [𝑈𝑉 , 𝑈𝑊] 

Notice that the 𝑟 , 𝑅 , 𝑢  and 𝑈  are 2D coordinates, and the functions in 

reciprocal space are the Fourier transforms of the functions in the real space: 

𝑂(𝑢) = 𝓕{𝑜(𝑟)} , 𝑃(𝑢) = 𝓕{𝑝(𝑟)} . All the multiplication operations between 

matrixes, except those specifically stated, are element-wise product. 

4.1.2. Mathematical Definition 

With the new nomenclature, the I-set in WDD which is the intensity 𝐼(�⃗� )  in 

Equation (3.12), now can be rewritten as Equation (4.1): 

𝐼(𝑢, 𝑅) = |𝓕r{𝑝(𝑟 − 𝑅)𝑜(𝑟)}|2 (4. 1) 

where the exit wave is formed by the multiplication of object and a shifted probe 

and 𝓕r represents the Fourier transform with respect to 𝑟. Because both 𝑢 

and 𝑅  are 2D coordinates, the intensity 𝐼(𝑢, 𝑅)  is actually in the form of 

𝐼(𝑢𝑥, 𝑢𝑦, 𝑅𝑋, 𝑅𝑌). This the presentation of 4D dataset in WDD, but here, we will 

abridge it as 𝐼(𝑢, 𝑅) in the later text. 

In Equation (4.1) , the scanning process is indicated by the shifted probe 

function. The shift of the probe in real space can be considered a phase ramp 

added to its Fourier transform in reciprocal space according to Fourier shift 
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theorem. Also, based on the convolution theorem, the Fourier transform of a 

multiplication of two real space functions, like Equation (4.1), can be written as 

a convolution of their Fourier transforms. Therefore, the intensity in Equation 

(4.1) can be rewritten as: 

𝐼(𝑢, 𝑅) = |𝑃(𝑢)𝑒−𝑖2𝜋𝑅𝑢 ⊗𝑢 𝑂(𝑢)|
2

(4. 2) 

where 𝑂(𝑢) = 𝓕{𝑜(𝑟)}  and 𝑃(𝑢) = 𝓕{𝑝(𝑟)} . 𝑒−𝑖2𝜋𝑅𝑢  represents the phase 

ramp caused by the probe shift in real space. ⊗𝑢 is the convolution operator 

along the 𝑢  direction. To calculate the amplitude in Equation (4.2) , we can 

write it as a conjugate product: 

𝐼(𝑢, 𝑅) = [𝑃(𝑢)𝑒−𝑖2𝜋𝑅𝑢 ⊗𝑢 𝑂(𝑢)] × [𝑃(𝑢)𝑒−𝑖2𝜋𝑅𝑢 ⊗𝑢 𝑂(𝑢)]
∗

(4. 3) 

where ∗ is the complex conjugate operator. 

Note that the definition of the convolution for two functions 𝑓(𝑡) and 𝑔(𝑡) is 

given by Equation (4.4): 

𝑓(𝑡) ⊗ 𝑔(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

(4. 4) 

where 𝜏 is the variable of integration. 

Here, this will be extended to a 2D application, the convolution in Equation 

(4.3) also can be expanded by its definition: 

𝐼(𝑢, 𝑅) = ∫𝑃(𝑢𝑎)𝑂(𝑢 − 𝑢𝑎)𝑒
−𝑖2𝜋𝑅𝑢𝑎𝑑𝑢𝑎 × ∫𝑃∗(𝑢𝑏)𝑂

∗(𝑢 − 𝑢𝑏)𝑒
𝑖2𝜋𝑅𝑢𝑏𝑑𝑢𝑏

= ∬𝑃(𝑢𝑎)𝑂(𝑢 − 𝑢𝑎)𝑃
∗(𝑢𝑏)𝑂

∗(𝑢 − 𝑢𝑎)𝑒
−𝑖2𝜋𝑅(𝑢𝑎−𝑢𝑏)𝑑𝑢𝑎𝑑𝑢𝑏 (4. 5)

 

where the conjugate of the convolution of two functions is equal to the 

convolution of their respective conjugates. 𝑢𝑎  and 𝑢𝑏  are the variables of 
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integration, range from −∞ to ∞. 

A Fourier transform of 𝐼(𝑢, 𝑅) with respect to the coordinate 𝑅 forms another 

important dataset in WDD called G-set, defined as Equation (4.6): 

𝐺(𝑢, 𝑈) = 𝓕𝑅{𝐼(𝑢, 𝑅)} = ∫ 𝐼(𝑢, 𝑅)𝑒−𝑖2𝜋𝑅𝑈 𝑑𝑅 (4. 6) 

Substituting Equation (4.5)  into Equation (4.6) , then gives, the definition of 

the G-set in the form of the triple integral, shown in Equation (4.7): 

𝐺(𝑢, 𝑈) = ∭𝑃(𝑢𝑎)𝑂(𝑢 − 𝑢𝑎)𝑃
∗(𝑢𝑏)𝑂

∗(𝑢 − 𝑢𝑎)𝑒
−𝑖2𝜋𝑅(𝑢𝑎−𝑢𝑏)𝑒−𝑖2𝜋𝑅𝑈𝑑𝑢𝑎𝑑𝑢𝑏𝑑𝑅

= ∭𝑃(𝑢𝑎)𝑂(𝑢 − 𝑢𝑎)𝑃
∗(𝑢𝑏)𝑂

∗(𝑢 − 𝑢𝑎)𝑒
−𝑖2𝜋𝑅(𝑢𝑎−𝑢𝑏+𝑈)𝑑𝑢𝑎𝑑𝑢𝑏𝑑𝑅 (4. 7)

 

Because the illumination from the source and the specimen both stay the same 

all the time in ptychography, the Fourier transform of the probe 𝑃(𝑢) and the 

Fourier transform of the object 𝑂(𝑢) have no dependence on the scan position 

vector 𝑅 . The integration over 𝑅  only relates to the exponential term in 

Equation (4.6). If 𝑅 ≠ 0, a fact is that this integral of the complex exponential 

term equals to 0 over an infinite range. Otherwise, if 𝑅 = 0, the exponential 

term equals to 1 and the integral diverges. Hence, the integration over 𝑅 gives 

a delta function, the G-set can be written as Equation (4.8): 

𝐺(𝑢, 𝑈) = ∬𝑃(𝑢𝑎)𝑂(𝑢 − 𝑢𝑎)𝑃
∗(𝑢𝑏)𝑂

∗(𝑢 − 𝑢𝑏)𝛿(𝑢𝑎 − 𝑢𝑏 + 𝑈)𝑑𝑢𝑎𝑑𝑢𝑏 (4. 8) 

where 𝛿 represents the delta function, which has a value of zero everywhere, 

except when 𝑢𝑎 − 𝑢𝑏 + 𝑈 = 0 . Under this condition, we can continue to 

integrate over either 𝑢𝑎 or 𝑢𝑏. For example, integrating over 𝑢𝑏, substituting 

𝑢𝑏 = 𝑢𝑎 + 𝑈, gives Equation (4.9): 

𝐺(𝑢, 𝑈) = ∫𝑃(𝑢𝑎)𝑂(𝑢 − 𝑢𝑎)𝑃
∗(𝑢𝑎 + 𝑈)𝑂∗(𝑢 − 𝑢𝑎 − 𝑈)𝑑𝑢𝑎 (4. 9) 
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For a clearer representation, we can substitute 𝜏 = 𝑢 − 𝑢𝑎 into the Equation 

(4.9), rearrange it as Equation (4.10): 

𝐺(𝑢, 𝑈) = ∫𝑂(𝜏)𝑂∗(𝜏 − 𝑈)𝑃(𝑢 − 𝜏)𝑃∗(𝑢 + 𝑈 − 𝜏)𝑑𝜏 (4. 10) 

According to the definition of convolution in Equation (4.4), Equation (4.10) 

can be considered as a convolution form of two terms, see Equation (4.11): 

𝐺(𝑢, 𝑈) = 𝑂(𝑢)𝑂∗(𝑢 − 𝑈) ⊗𝑢 𝑃(𝑢)𝑃∗(𝑢 + 𝑈) (4. 11) 

So far, it is clear to see that 𝑂(𝑢)𝑂∗(𝑢 − 𝑈) only depends on the object and 

𝑃(𝑢)𝑃∗(𝑢 + 𝑈)  only depends on the probe. That means the information of 

object and probe have been separated to some extent, so the next key step is 

to deconvolve these two terms.  

According to the convolution theorem, the convolution along the 𝑢 direction of 

the G-set can be rewritten as a product of two Fourier transforms in reciprocal 

space with respect to 𝑢, which is usually called the “H-set”, defined by Equation 

(4.12): 

𝐻(𝑟, 𝑈) = 𝓕𝑢
−𝟏{𝑂(𝑢)𝑂∗(𝑢 − 𝑈) ⊗𝑢 𝑃(𝑢)𝑃∗(𝑢 + 𝑈)}

= 𝓕𝑢
−𝟏{𝑂(𝑢)𝑂∗(𝑢 − 𝑈)} × 𝓕𝑢

−𝟏{𝑃(𝑢)𝑃∗(𝑢 + 𝑈)}

= ∫𝑂(𝑢)𝑂∗(𝑢 − 𝑈)𝑒𝑖2𝜋𝑟𝑢𝑑𝑢 × ∫𝑃(𝑢)𝑃∗(𝑢 + 𝑈)𝑒𝑖2𝜋𝑟𝑢𝑑𝑢 (4. 12)

 

We introduce the definition of the Wigner distribution to simplify Equation 

(4.12). For a general reciprocal function 𝐹, the Wigner distribution, which is 

also called the ambiguity function in signal processing theory [7], is given by 

Equation (4.13): 

𝜒𝐹(𝑟, 𝑈) = ∫𝐹(𝑢)𝐹∗(𝑢 − 𝑈)𝑒𝑖2𝜋𝑟𝑢 𝑑𝑢 (4. 13) 

Hence, we can rewrite the H-set as: 
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𝐻(𝑟, 𝑈) = 𝜒𝑂(𝑟, 𝑈)𝜒𝑃(𝑟, −𝑈) (4. 14) 

From the G-set to the H-set, the convolution operation has been simplified into 

a product of 𝜒𝑂 and 𝜒𝑃. Assuming the probe function is known, it is easy to 

form the 𝜒𝑃 by the definition of Wigner distribution, so we can deconvolve the 

probe part from the H-set by Equation (4.15): 

𝜒𝑂(𝑟, 𝑈) =
𝐻(𝑟, 𝑈)

𝜒𝑃(𝑟, −𝑈)
(4. 15) 

This division will be very unstable when 𝜒𝑃 is very small or zero, therefore, a 

Wiener filter is introduced to regulate the division operation: 

𝜒𝑂(𝑟, 𝑈) =
𝜒𝑃

∗(𝑟, −𝑈)𝐻(𝑟, 𝑈)

|𝜒𝑃(𝑟, −𝑈)|2 + 𝜀
(4. 16) 

where 𝜀 is a small constant. 

Now, 𝜒𝑂(𝑟, 𝑈)  is separated from 𝐻(𝑟, 𝑈) . According to the definition of the 

Wigner distribution, 𝜒𝑂(𝑟, 𝑈) can be written as Equation (4.17): 

𝜒𝑂(𝑟, 𝑈) = ∫𝑂(𝑢)𝑂∗(𝑢 − 𝑈)𝑒𝑖2𝜋𝑟𝑢𝑑𝑢 (4. 17) 

Apply the Fourier transform with respect to 𝑟 to Equation (4.17), gives a new 

set called the “D-set” in Equation (4.18): 

𝐷(𝑢, 𝑈) = 𝓕𝑟{𝜒𝑂(𝑟, 𝑈)}

= 𝑂(𝑢)𝑂∗(𝑢 − 𝑈) (4. 18)
 

The D-set is a function that only relates to the Fourier transform of the object 

function, can be considered as a convolution between the object function in real 

space and its conjugate shift. A full derivation of deconvolving and 

reconstructing the object function from D-set will be introduced in the next 

section. So far, all the important data sets in WDD have been described, the 
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relationship between them is shown in Figure 4.1. 

 

Figure 4.1. The relationship between I-set, G-set and H-set, and the coordinates 

systems where D-set, 𝜒𝑃 and 𝜒𝑂 belong to. 

In Figure 4.1, the I-set is the measurement taken from the detector, and the G-

set and H-set are the Fourier transforms of the measured data along different 

directions. The D-set has the same coordinate system as the G-set, and 𝜒𝑃, 

𝜒𝑂 are the same as the H-set. In Figure 4.1, these data sets appear as 2D axes, 

but in a real ptychography experiment, any one of these coordinates actually 

covers the 2D plane, which makes these data sets 4D. In general, the WDD 

process is shown in the flow chart of Figure 4.2, and Pseudocode 4.1. 
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Figure 4.2 The flow chart of WDD process. 
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Pseudocode 4.1: Basic WDD Process 

Inputs: probe function (probe), probe size in reciprocal space (U), intensity (I), small 

constant (epsilon) 

Outputs: D-set (D) 

 // Form the G-set from the I-set 

1 G = 𝓕𝑅(I) 

 // Form the H-set from the G-set 

2 H = 𝓕𝑢(G) 

 // Calculate the Fourier transform of the probe 

3 P = 𝓕(probe) 

4 For (t = 1 to U) do 

 // Form the Wigner distribution of the probe 

6 𝜒𝑃 = P ∙ conj(shift(P, -t)) 

8 End loop 

 // Calculate the Wigner distribution of the object  

9 𝜒𝑂 = conj(𝜒𝑃) ∙ H / (abs(𝜒𝑃)
2 + epsilon) 

 // Calculate the D-set 

10 D = 𝓕𝑟(𝜒𝑂) 

 // Further calculation to reconstruct the object function from the D-set  

Note: shift: a function that shifts the input. 𝓕: Fourier transform. 

abs: amplitude. conj: complex conjugate. 

It is distinct in Pseudocode 4.1 that WDD is a non-iterative method, which is 

highly desirable in terms of computation time. However, the final reconstruction 

is limited by effects of the partial coherence, experimental instabilities and the 

finite extent of the lens [41]. These factors result in a cut-off frequency in the 

back focal plane of the lens. They are also the reason that bright field imaging 

via a conventional microscope has an information limitation. In the WDD, 

because of this defect, the information from 𝜒𝑃(𝑟, −𝑈) is also limited along the 

𝑈 direction when we form it. If we denote the cut-off frequency as 𝑈𝑚𝑎𝑥, the 

support size will be 2𝑈𝑚𝑎𝑥  for 𝜒𝑃(𝑟, 𝑈)  in the 𝑈  direction. Therefore, after 

deconvolution, 𝜒𝑂(𝑟, 𝑈)  will be limited within the finite support size, which 

causes the loss of high frequency information in the reconstruction. Although 

we cannot directly retrieve the information beyond the cut-off frequency in 

𝜒𝑃(𝑟, −𝑈) and 𝜒𝑂(𝑟, 𝑈), it does not mean that they are lost from the beginning. 

The detector is able to collect all the information along the 𝑢 direction, in other 
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words, although the support size of 𝜒𝑃(𝑟, 𝑈) is restricted vertically along the 𝑈 

direction, after deconvolution, all this high frequency information is still stored 

in the D-set, horizontally lying along the 𝑢  direction. Hence, to improve 

reconstruction resolution, further algorithm will be introduced to retrieve this 

information in the next section. 

4.2. Wigner Distribution Deconvolution Reconstruction 

This section will introduce methods to reconstruct the object beyond the cut-off 

frequency limitation. Start with the oldest one, called “stepping out” [32], and 

then its improved version, called “projection strategy” [33]. Finally, we will 

propose a new approach based on “projection strategy” to solve the blind 

deconvolution, which means the probe function is also unknown in the 

experiment. 

4.2.1. Stepping Out 

As mentioned above, in WDD, the reconstruction resolution is restricted by the 

cut-off frequency. To recover high frequency components of the object, there is 

a way to step out the horizontal information from the D-set [32]. To explain this 

process more properly, here we start from a 1D example since it is easy to be 

represented by images. However, 1D phase retrieval problem is more difficult 

to solve than 2D. In addition to the trivial transformations such as rotation, 

translation, and conjugate reflection, the 1D phase retrieval problem usually 

has many non-trivial solutions, and these solutions may differ significantly from 

the true signal [42]. Moreover, 1D phase retrieval problem is a non-convex 

optimization problem which is difficult to solve directly [42]. Assume there is a 

simple 1D object with only five elements periodically scanned pixel by pixel at 

five positions, its Fourier transform is expressed as Equation (4.19): 

𝑂(𝑢) = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸] (4. 19) 
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According to Equation (4.18) , the D-set of this 1D object can be simply 

considered as the product of the Fourier transform of object and a shifted 

Fourier transform of the object’s conjugate. This can be schematically 

represented in Figure 4.3, where each block represents a pixel point, and the 

grey blocks are the unavailable information beyond cut-off frequency.  

 

Figure 4.3. Illustration of the D-set with a simple 1D object. Red dashed box 

represents 𝐷(0, 𝑈). Green dashed boxes represent 𝐷(−1, 𝑈) and 𝐷(1, 𝑈). 𝑈𝑚𝑎𝑥 

and −𝑈𝑚𝑎𝑥 indicate the cut-off frequency. 

In Figure 4.3, the origin point only relates to the values of 𝐶 , see Equation 

(4.20): 

𝐷(0,0) = 𝐶∗𝐶 = |𝐶|2 (4. 20) 

The origin point 𝐷(0,0) is known, therefore, we can assign an arbitrary phase 

to 𝐶 to calculate the value of 𝐶, see Equation (4.21): 
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𝐶 =  √𝐷(0,0) (4. 21) 

Then, with the value of 𝐶, we can calculate the central vertical line in the D-set 

by setting 𝑢 = 0 in the D-set, as illustrated by the red dashed box in Figure 4.3. 

This step can be expressed as Equation (4.22): 

𝑂(𝑢)0 = (
𝐷(0, 𝑈)

𝐶
)

∗

= [0, 𝐵, 𝐶, 𝐷, 0] (4. 22) 

𝑂(𝑢)0 is a temporary reconstruction at 𝑢 = 0. In this case, we can only get the 

value of 𝐵  and 𝐷 , because 𝐴  and 𝐸  lie beyond the cut-off frequency 

limitation. However, if we look at the vertical lines beside the central red box, 

which is illustrated in the green dashed boxes in Figure 4.3, 𝐴∗ and 𝐸∗ are 

now inside the support size as a product with 𝐵 and 𝐷. Therefore, we can now 

figure out 𝐴 and 𝐸, using the value of 𝐵 and 𝐷 come from Equation (4.22), 

see Equation (4.23) and Equation (4.24): 

𝑂(𝑢)−1 = (
𝐷(−1, 𝑈)

𝐵
)

∗

= [𝐴, 𝐵, 𝐶, 0, 0] (4. 23) 

𝑂(𝑢)1 = (
𝐷(1, 𝑈)

𝐷
)

∗

= [0, 0, 𝐶, 𝐷, 𝐸] (4. 24) 

For a larger object with more elements, use the value of 𝐴 and 𝐸 to “step out” 

the next column to a higher frequency and then repeat. This step size is 

determined by the cut-off frequency 𝑈𝑚𝑎𝑥. A larger size example is illustrated 

in Figure 4.4. Firstly, calculate the central column shown in the black box using 

the value of central point 𝑆 . Then, take the first element of this central 

reconstruction and find its corresponding position on the 𝑢 axis, see the green 

indication in Figure 4.4. The new point 𝐵 lies on the 𝑢 axis is the square of 𝐴. 

Note that 𝑑(𝐴, 𝑆) = 𝑑(𝐵, 𝑆) , where 𝑑  represents the distance between two 
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points. Also, this distance is the same as the half length of the black box, which 

is the cut-off frequency 𝑈𝑚𝑎𝑥 . Point 𝐵  indicates a vertical line, which is the 

farthest one we can get from the black box. All the points above 𝐵  on this 

vertical line, illustrated by the green box in Figure 4.4, will be the new points 

beyond the black box, indicated by the blue box in Figure 4.4. Therefore, we 

can retrieve these new points like Equation (4.23). Then, take the new point 𝐶 

and repeat for the next “stepping out”. Similarly, on the right side of the black 

box, take the bottom point and carry out the same steps to retrieve the points 

below −𝑈𝑚𝑎𝑥, illustrated by the red indication in Figure 4.4. Combining them 

together, one “stepping out” can extend 2𝑈𝑚𝑎𝑥 length of the reconstruction of 

the object’s Fourier transform, which improves the high frequency part of the 

object reconstruction. 

 

Figure 4.4. The “stepping out” process. Back box indicates the central line. Green 
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indication shows the left part of the “stepping out” and red one shows the right part. 

Blue indication shows how points beyond the cut-off frequency are recovered. 

Now, the object’s Fourier transform can be wholly reconstructed by “stepping 

out”. Finally, apply the inverse Fourier transform to get the object function in 

real space, the entire process is shown in Pseudocode 4.2. 

Pseudocode 4.2: Stepping out in WDD 

Inputs: D-set (D), the size of the D-set (X, Y), cut-off frequency (f), small constant 

(epsilon) 

Outputs: object (obj) 

 // Calculate the central point index 

1 M = X/2 

 // Calculate the number of “stepping out” 

2 n = round(X/(2f)) 

 // Calculate the central point in the D-set 

3 c = sqrt(D(M,M)) 

 // Calculate the central vertical line 

4 O = conj(D(:,M)/c) 

5 For (k = 1 to n) do 

 // Step out both side 

6 O_left  = conj(D(:, M - k∙f)/O(M - k∙f)) 

7 O_right = conj(D(:, M + k∙f)/O(M + k∙f)) 

 // Update the Object Fourier transform 

8 O(M - k∙f : M – (k-1)∙f) = O_left 

9 O(M + (k-1)∙f : M + k∙f) = O_right 

10 End loop 

 // Calculate the object in real space 

11 obj = 𝓕−𝟏(𝑂) 

Note: round: round to nearest integer. 𝓕−𝟏 : inverse Fourier 

transform. sqrt: square root. conj: complex conjugate. D(:,M): 

represents the Mth column of the matrix D. 

The key point of the “stepping out” is to utilize the horizontal information from 

the D-set within vertical calculation step by step, until it can finally recover all 

the frequency components. However, this process is sequential, so the 

calculation of the next step is highly dependent on the results of the previous 

step, which requires a highly reliable fraction of data at the beginning. 

Otherwise, the errors will accumulate during the “stepping out” process 
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wherever initial errors occur. 

4.2.2. Projection Strategy 

To overcome the accumulating error in the “stepping out”, “projection strategy” 

is introduced to give a more straightforward and reliable way to retrieve the 

horizontal information [33]. Here, using the same example shown in Equation 

(4.19) and Figure 4.3 to explain the “projection strategy”. 

Firstly, like the “stepping out” method, reconstruct the central vertical line within 

the cut-off frequency, see Equation (4.22) . Now, we get an estimate of the 

object’s Fourier transform, 𝑂0(𝑢) = [0, 𝐵, 𝐶, 𝐷, 0] , even if it only has the part 

within the cut-off frequency. Then, shift the central estimate 𝑂0(𝑢) to form a 

new term, |𝑂(𝑢 − 𝑈)|2, see Figure 4.5. 

 

Figure 4.5. Illustration of |𝑂(𝑢 − 𝑈)|2. 
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The next step is to multiply the D-set from Equation (4.18) with 𝑂(𝑢 − 𝑈), and 

gives Equation (4.25): 

𝐷(𝑢, 𝑈)𝑂(𝑢 − 𝑈) = 𝑂(𝑢)𝑂∗(𝑢 − 𝑈)𝑂(𝑢 − 𝑈)

= |𝑂(𝑢 − 𝑈)|2𝑂(𝑢) (4. 25)
 

In this example, Equation (4.25) can be illustrated in Figure 4.6. 

 

Figure 4.6. Illustration of the Equation (4.25), each block is |𝑂(𝑢 − 𝑈)|2𝑂(𝑢). 

As shown in Figure 4.6, a common factor can be extracted from each column, 

which is exactly the value of 𝑂(𝑢). Therefore, we can sum up Figure 4.5 and 

Figure 4.6 along the 𝑈 direction, giving Equation (4.26) and (4.27): 

∑|𝑂(𝑢 − 𝑈)|2

𝑈

(4. 26) 
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∑|𝑂(𝑢 − 𝑈)|2𝑂(𝑢)

𝑈

= 𝑂(𝑢)∑|𝑂(𝑢 − 𝑈)|2

𝑈

(4. 27)
 

This process can be represented by Figure 4.7. 

 

Figure 4.7. Summation procedure. (a) Sum up |𝑂(𝑢 − 𝑈)|2𝑂(𝑢) along the 𝑈 

direction. (b) Sum up |𝑂(𝑢 − 𝑈)|2 along the 𝑈 direction. 

Now, the reconstruction of the object’s Fourier transform can be calculated by 
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the division between Equation (4.27) and (4.26), defined as Equation (4.28): 

𝑂(𝑢) =
𝑂(𝑢)∑ |𝑂(𝑢 − 𝑈)|2𝑈

∑ |𝑂(𝑢 − 𝑈)|2𝑈
 (4. 28) 

In terms of the D-set, Equation (4.28) can be rewritten as Equation (4.29): 

𝑂(𝑢) =
∑ 𝑂(𝑢 − 𝑈)𝐷(𝑢, 𝑈)𝑈

∑ |𝑂(𝑢 − 𝑈)|2𝑈
, |𝑈| ≤ 𝑈𝑚𝑎𝑥 (4. 29) 

where 𝑈𝑚𝑎𝑥 is the cut-off frequency in vertical. 

Compared to the “stepping out” method, projection method makes full use of all 

the information within the cut-off limitation and improves robustness to noise. 

Although the forward and backward shift of the low frequency parts of 𝑂(𝑢) in 

the 𝑢 direction can get up to twice the length of 𝑂(𝑢) itself, which means a 

single projection should double the support size for the next one. However, the 

cut-off frequency limits the D-set, therefore, one projection still can only extend 

2𝑈𝑚𝑎𝑥 length, which is the same as the “stepping out”. The details are shown 

in Figure 4.8. 
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Figure 4.8. Schematic of the projection in WDD. (a) The first projection. (b) The 

second projection. The blue squares show the points retrieved within the cut-off 

limitation. The green and red squares indicate the new points we retrieved 
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beyond the cut-off frequency. 

Figure 4.8 (a) is the first projection only using the central information within the 

cut-off frequency. The projection operation actually projects the top and bottom 

points at 45 degrees, to the cut-off frequency correspondingly, like the arrows 

shown in Figure 4.8 (a). The green and red squares in Figure 4.8 (a) indicate 

the new points we retrieved beyond the cut-off frequency. Hence, we can get a 

𝑈𝑚𝑎𝑥 extension for both sides, resulting in 2𝑈𝑚𝑎𝑥 in total. Then, use the new 

estimated 𝑂(𝑢) for the next projection, like Figure 4.8 (b). Repeat this until the 

whole object is recovered. A simple version of projection strategy is shown in 

Pseudocode 4.3. 
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Pseudocode 4.3: Projection Strategy in WDD 

Inputs: D-set (D), size of the D-set (X, Y), cut-off frequency (f), small constant (epsilon) 

Outputs: object (obj) 

 // Calculate the central point index 

1 M = X/2 

 // Calculate the number of “stepping out” 

2 n = round(X/(2f)) 

 // Calculate the central point in the D-set 

3 c = sqrt(D(M,M)) 

 // Calculate the central vertical line 

4 O = conj(D(:,M)/c) 

5 For (k = 1 to n) do 

 For (t = -f to f) do 

 // Calculate the sums 

 topSum += shift(O,-t)∙D(M + t∙k,:) 

 botSum += abs(shift(O,-t))2 

8 End loop 

 // Update the Object Fourier transform 

9 O = topSum/(botSum + eps) 

10 End loop 

 // Calculate the object in real space 

11 obj = 𝓕−𝟏(𝑂) 

Note: round: round to nearest integer. 𝓕−𝟏 : inverse Fourier 

transform. sqrt: square root. conj: complex conjugate. D(:,M): 

represents the Mth column of the matrix D. shift: a function that 

shifts the input. abs: amplitude. eps: a small constant in MATLAB to 

avoid dividing 0. 

4.2.3. Probe Solution 

According to the methods described above, if the probe is known, it is 

straightforward to deconvolve it from the H-set to obtain the object. If the probe 

is unknown, then to solve the object as well as the probe at the same time 

amounts to blind deconvolution of the H-set [43]. This blind deconvolution 

problem was first solved in 1993 by B.C. McCallum and J.M. Rodenburg, who 

proved that it has a unique solution [43]. Here, we proposed a new approach 

that use the idea of “projection strategy” to solve this blind deconvolution. 

According to Equation (4.15) , 𝜒𝑃(𝑟, −𝑈)  can be separated from H-set by 
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Equation (4.30): 

𝜒𝑃(𝑟, −𝑈) =
𝜒𝑂(𝑟, 𝑈)∗𝐻(𝑟, 𝑈)

|𝜒𝑂(𝑟, 𝑈)|2 + 𝜀
(4. 30) 

where 𝜀 is a small constant to avoid dividing zero. 

Similarly, form the D-set for the probe by Equation (4.31): 

𝐷𝑃(𝑢, −𝑈) = 𝓕𝑟{𝜒𝑃(𝑟, −𝑈)}

= 𝑃(𝑢)𝑃∗(𝑢 + 𝑈) (4. 31)
 

This projection for the probe solution is exactly the same as we did in the last 

section but in an opposite direction along the 𝑈, see Equation (4.32): 

𝑃(𝑢) =
∑ 𝑃(𝑢 + 𝑈)𝐷𝑃(𝑢, −𝑈)𝑈

∑ |𝑃(𝑢 + 𝑈)|2𝑈
, |𝑈| ≤ 𝑈𝑚𝑎𝑥 (4. 32) 

Therefore, with an appropriate estimate of the object, the probe function can be 

separated and solved from the H-set. 

However, when the object and probe are both unknown, this becomes a blind 

deconvolution problem. Here, an iterative method is introduced to solve the 

blind deconvolution. The iterative process of blind deconvolution starts with an 

initial estimate of the probe. The first step is to form its Wigner distribution 

χ𝑃(𝑟, −𝑈) . Then, separate χ𝑂(𝑟, −𝑈)  from H-set by Equation (4.15) , and 

calculate the object D-set from χ𝑂(𝑟, −𝑈) by Equation (4.18). The next step is 

to conduct the projection procedure to reconstruct a new estimated object from 

D-set. With this new estimate, we can now form a new Wigner distribution of 

the object, denoted as 𝜒𝑂
′ (𝑟, 𝑈) . Similarly, a new 𝜒𝑃

′ (𝑟, −𝑈)  can now be 

calculated by Equation (4.30), using 𝜒𝑂
′ (𝑟, 𝑈) and the H-set. Then, calculate 

the D-set for the probe and reconstruct a new estimated probe by the projection. 

So far, a single iteration has been completed, and the new probe estimate can 

now be used for the next iteration. The flow chart of the iterative solution is 
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shown in Figure 4.9. 

 

Figure 4.9. The flow chart of the iterative probe solution, H-set is invariable and 

employed every iteration to both 𝜒𝑃(𝑟, −𝑈) and 𝜒𝑂
′ (𝑟, 𝑈). 

Since the consistency of the H-set, this iterative method applies the constraint 

of measurement to each side of the deconvolution alternately. The pseudocode 

of this iterative deconvolution is shown in Pseudocode 4.4. 
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Pseudocode 4.4: WDD Probe Solution 

Inputs: I-set (I), initial probe (probe0), probe size in reciprocal (U), small constant 

(epsilon) 

Outputs: object function (obj), probe function (probe) 

 // Form the G-set from the I-set 

1 G = 𝓕𝑅(I) 

 // Form the H-set from the G-set 

2 H = 𝓕𝑢(G) 

 // Calculate the Fourier transform of the initial probe 

3 P = 𝓕(probe0) 

 For (j = 1 to J) do 

 For (t = 1 to U) do 

5 // Form the Wigner distribution of the probe 

 𝜒𝑃 = P ∙ conj(shift(P, -t)) 

 End loop 

 // Calculate the Wigner distribution of the object 

8 𝜒𝑂 = conj(𝜒𝑃) ∙ H / (abs(𝜒𝑃)
2 + epsilon) 

 // Calculate the D-set for the object 

9 DO = 𝓕𝑟(𝜒𝑂) 

10 // Reconstruct the object from the D-set via the projection 

 O = projection(DO) 

 For (t = 1 to U) do 

 // Form the Wigner distribution of the object 

 𝜒𝑂 = O ∙ conj(shift(O, t)) 

 End loop 

 // Calculate the Wigner distribution of the object 

 𝜒𝑃 = conj(𝜒𝑂) ∙ H / (abs(𝜒𝑂)
2 + epsilon) 

 // Calculate the D-set for the probe 

 DP = 𝓕𝑟(𝜒𝑃) 

 // Reconstruct the probe from the D-set via the projection 

 P = projection(DP) 

 End loop 

 // Calculate the object and probe in real space 

 probe = 𝓕−𝟏(𝑃) 

11 obj = 𝓕−𝟏(𝑂) 

Note: 𝓕 : Fourier transform. 𝓕−𝟏 : inverse Fourier transform. conj: 

complex conjugate. shift: a function that shifts the input. abs: 

amplitude. eps: a small constant in MATLAB to avoid dividing 0. 

4.3. Simulation of Wigner Distribution Deconvolution 

In this section, the new approach about the blind deconvolution in WDD will be 
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simulated and tested. The first simulation is using a 1D object and probe for a 

better illustration, and the second one will be a ptychographic simulation. 

4.3.1. One-Dimensional WDD Simulation 

In order to give a more intuitive demonstration of the WDD process, we start 

from a simple one-dimensional WDD, based on a simulation of a 1D object and 

a 1D probe in 2D space. In this case, each diffraction pattern is represented as 

a 1D line, the I-set, G-set, H-set and D-set become 2D and easy to display. 

Generally, if we consider a simple 1D top-hat function shown in Figure 4.10. 

 

Figure 4.10. Top-hat aperture that only has value one and zero. 

This top-hat function defines a 1D support region, all the points outside the 

support are zero. In ptychography, a 2D circular aperture is usually used to 

define the support area. Therefore, here, we use a normalized top-hat function 

as our initial aperture, which is the Fourier transform of the initial probe. To 

generate the simulation data, the actual probe is generated by putting some 

defects into the top-hat aperture. The ground truth of the object is transparent 

with modulus one everywhere but with random phase information, in this case, 
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the Fourier transform of the object is just real values without any phase in 

reciprocal space. The 1D simulation setup is shown in Figure 4.11. 

 

Figure 4.11. The 1D simulation setup. (a) and (b) are modulus and phase of the 
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correct aperture and the initial estimate, (c) is the modulus of the Fourier transform of 

a phase object. 

Reconstructing this data using the projection method for blind deconvolution 

results in Figure 4.12. From top to bottom in Figure 4.12, it illustrates the 

reconstruction of the Fourier transforms of the object and probe at different 

iterations. After 10 iterations, the reconstructions shown in red lines are nearly 

perfectly matching the ground truth. 

 

Figure 4.12. The reconstruction process of the 1D simulation. The blue lines are the 

ground truth, and the red lines are the reconstructions. 

4.3.2. Two-Dimensional WDD Simulation 
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Having validated the project method using 1D data and shown that it is a 

feasible way to reconstruct the probe simultaneously with the object, we now 

proceed to a 2D simulation, which requires a 4D dataset deconvolution.  

In the 2D simulation, 2 pictures are chosen to generate our object, which is a 

2D complex image with 64 × 64 pixels, see Figure 4.13. The lake picture in 

Figure 4.13 (a) is the modulus of the object while the cat picture in Figure 4.13 

(b) is used to form the phase part of the object. 

 

Figure 4.13. The 2D simulation object. (a) The modulus of the object. (b) The phase 

of the object. 

The probe for the simulation is the Airy disc generated by a pinhole aperture 

with the same size (64 × 64 pixels). In order to test the probe solution of WDD, 

some defects were added to the aperture and 25% defocus error was 

introduced to the probe function, see Figure 4.14. 
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Figure 4.14. The simulation aperture and probe. (a) The aperture with some defects 

at the top right corner. (b) The probe generated by the aperture in (a), but with 25% 

defocus error. 

To generate the diffraction data from this probe and object, a circular 

ptychography scan was conducted pixel by pixel. The object was expanded to 

a larger scale padded with zeros, then duplicated by itself to make a periodic 

object like Figure 4.15. The red box in Figure 4.15 indicates the calculation 

window and the arrow shows the probe moving direction. 
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Figure 4.15. The circular scan over the periodic object. The red box is the calculation 

window of the reconstruction. The red arrows indicate the scanning directions. 

To start the reconstruction, we give an initial estimate of the probe, which is an 

initial Airy disc probe modelled by a perfect pinhole aperture without any 

defocus error, modelling a perfect focussed beam. A comparison between the 

initial probe and the ground truth is displayed in Figure 2.1. 
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Figure 4.16. The comparison between the initial probe and the ground truth. (a) The 

modulus of the true probe. (b) The phase of the true probe. (c) The modulus of the 

initial probe. (d) The phase of the initial probe. 

To monitor the performance of the deconvolution, an error between the H-set 

and the product of 𝜒𝑃 and 𝜒𝑂 is measured here, defined as Equation (4.33). 

𝐸𝐻 = ∫|𝜒𝑂(𝑟, 𝑈)𝜒𝑃(𝑟, −𝑈) − 𝐻(𝑟, 𝑈)|2𝑑𝑟𝑑𝑈 (4. 33) 

where the energy of 𝜒𝑂(𝑟, 𝑈)𝜒𝑃(𝑟, −𝑈)  and 𝐻(𝑟, 𝑈)  are normalized to unity 

before the error calculation. 

The reconstruction process and the results are illustrated in Figure 4.17. 
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Figure 4.17. The WDD reconstruction process and the results. 
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The error 𝐸𝐻 is displayed in Figure 4.18. 

 

Figure 4.18. The normalized error between the H-set and the reconstructed 

𝜒𝑂(𝑟, 𝑈)𝜒𝑃(𝑟, −𝑈), indicates the performance of the deconvolution. 

Moreover, the Fourier transform of the reconstructed probe is compared to the 

true aperture in Figure 4.19. The defect on the aperture is recovered in Figure 

4.19 (b). 
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Figure 4.19. The comparison between the reconstructed aperture and the ground 

truth. (a) The true aperture used to generate the probe. (b) The reconstructed 

aperture. 

The “projection strategy” also plays a crucial role in the reconstruction. A 

comparison of the reconstruction before and after the projection is shown in 

Figure 4.20. From Figure 4.20, It is obvious that the projection improves the fine 

details of the reconstruction, which is the high frequency part of its Fourier 

transform, especially for the phase reconstruction. 
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Figure 4.20. The comparison of the reconstruction before and after the projection. 

Left part is the reconstructions before the projection, and the right part are the 

reconstructions after the projection. 
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As the results illustrate, the blind deconvolution under a bad initial condition is 

solved by the new iterative method we proposed. It only takes around 5 

iterations to the convergence, however, each iteration contains massive 4D 

calculations and the “projection strategy” for both object and probe. This results 

in heavy computation for each iteration.  

4.3.3. Comparison with ePIE 

In order to see the difference between WDD and normal iterative ptychography 

solutions, we tested the same data with ePIE, which was mentioned in Chapter 

3.2.7. The result of the reconstructions is shown in Figure 4.21. Compared to 

Figure 4.17, ePIE generally performs better than WDD in our test. Only 10 

iterations provide a considerable good reconstruction that both solved the 

object and probe. 
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Figure 4.21. The ePIE reconstruction process and the results. 

4.4. Conclusion 

Although this 4D deconvolution was confirmed to have a unique solution [43], 



93 

it is difficult to perfect deconvolve and reconstruct them. The alternating 

deconvolution between the object and the probe could be stuck at some local 

minima if there is no additional constraint applied during the iterations. Also, the 

result of the separation of two Wigner distribution functions is highly dependent 

on the value of the constant that is used in Wiener filter, see Equation (4.16). 

The disadvantage of using a Wiener filter in the division is that it forces 𝜒𝑂(𝑟, 𝑈) 

to be small wherever 𝜒𝑃(𝑟, −𝑈) is small, resulting the decrease of 𝑝(𝑟) and 

𝑜(𝑟). Although the small constant 𝜀 in the Wiener filter could be varying during 

the iteration, a large 𝜀  will cause 𝜒𝑂(𝑟, 𝑈)  and 𝜒𝑃(𝑟, −𝑈)  to be excessively 

smoothed while a small 𝜀 will make them exhibit excessive ringing. Therefore, 

further improvements could be made by seeking an optimum of 𝜀 in the Wiener 

filter as well as adding more constraints on the object or probe, such as setting 

the modulus to 1 for a phase specimen or forcing the aperture to be 1 inside 

the hole. Because of these drawbacks that we mentioned, we are seeking for 

a better solution for the ptychography. In the next chapter, we will discuss a 

completely different approach from WDD called “set projection algorithm”. 
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5. Set Projection Algorithms 

In the last chapter, a direct ptychographic phase retrieval solution called WDD 

was introduced. In addition to this, there is an important class of algorithms in 

ptychography, which are iterative solutions. In Chapter 3.2, ePIE was 

introduced as an example of iterative phase retrieval solution in ptychography. 

Apart from ePIE, there is another kind of phase retrieval method called set 

projection algorithm. This chapter will describe this category algorithms in detail 

and explain how the concept of set projection is applied in ptychography, 

starting from its mathematics background. Existing set projection algorithms for 

phase retrieval in ptychography will be reviewed and a generalized form of set 

projection algorithm will be proposed later. Furthermore, we introduce the 

Bayesian optimization into this generalized form to auto-tuning its parameters 

and present a new method called Generalized Auto-Tuning (GAT) algorithm. A 

comparison of these algorithms will be presented at the end of this chapter.  

5.1. Mathematics Background 

5.1.1. Constraint Satisfaction Problems (CSPs) 

In general, set projection algorithms are usually employed to solve Constraint 

Satisfaction Problems (CSPs). CSPs involve finding values for the problem’s 

variables that simultaneously adhere to a set of inter-dependent constraints. 

The constraints represent the rules that define the relationships between 

variables and restrict the values that the variables can simultaneously take. 

Constraints can be unary, binary, or involve multiple variables. One widely 

known example of a CSP is the Sudoku puzzle, where the variables are the 

incomplete squares in the 9 × 9  Sudoku grid, and the problem is to assign 

values to these squares that simultaneously satisfy the inter-dependent row, 

column and block constraints – i.e. that the digits 1-9 appear only once in each 
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row, column and 3 × 3  block of the grid [12]. Other problems of this type 

include the cryptarithmetic puzzle, where the constraints are sets of linear or 

nonlinear equations [44], and graph colouring or graph connectivity [44, 45], 

where the constraints are that neighbouring vertices of the graph have different 

colours. Apart from these, the constraint also can be custom-defined, specific 

to the problem domain. The phase problem in ptychography is a kind of 

constraint satisfaction problem where the constraints are the measurements 

from the detector, the support information from the aperture and all other prior 

knowledge. The ptychography iterative process shown in Figure 2.8, is actually 

applying the constraint of the measurements and the constraint of the support 

alternately, to force the reconstruction approaching the correct solution. 

5.1.2. Projection 

To show graphically what a constraint set is and how to satisfy it, here, we define 

a simple geometric constraint 𝑆, a circle in the 2D plane, as an example, see 

Figure 5.1. This is sensible in ptychography because for each pixel point in a 

diffraction pattern, a circle is a good representation of the unknown phase and 

the known modulus. Given an arbitrary point 𝑥  in this 2D plane, satisfying 

constraint 𝑆 involves determining the point on the circle that is closest to 𝑥. 

This closest point can be readily ascertained by projecting the given point onto 

the constraint circle. This operation is defined as a standard projection, written 

as 𝑃𝑆
1𝑥, where 𝑃 signifies the projection operator, 𝑆 represents the constraint 

set, 𝑥  is the given point and 1  indicates the standard relaxation degree. 

Taking constraint set 𝑆 from Figure 5.1. for example, with centre point [𝑥𝑐 , 𝑦𝑐] 

and radius 𝑟𝑆 , projection of a point [𝑥𝑚, 𝑦𝑚]  onto 𝑆  is straightforward. The 

projection is the point a distance 𝑟𝑆 from [𝑥𝑐 , 𝑦𝑐] along the line joining [𝑥𝑐 , 𝑦𝑐] 

to [𝑥𝑚, 𝑦𝑚], therefore, the standard projection point is:  

𝑃𝑆
1[𝑥𝑚, 𝑦𝑚] = [

𝑟𝑠(𝑥𝑚 − 𝑥𝑐)

√(𝑥𝑚 − 𝑥𝑐)
2 + (𝑦𝑚 − 𝑦𝑐)

2
,

𝑟𝑠(𝑦𝑚 − 𝑦𝑐)

√(𝑥𝑚 − 𝑥𝑐)
2 + (𝑦𝑚 − 𝑦𝑐)

2
] (5. 1) 
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where the denominator is the distance between two points. 

 

Figure 5.1. Schematic of projection calculation with coordinates. 

Additionally, we can introduce the concept of relaxation to the projection 

operation, denoted by the relaxed projection operation of a point 𝑥 onto a set 𝑆:  

𝑃𝑆
𝑎𝑥, where 𝑆 indicates the set and 𝑎 indicates the degree of relaxation. When 

𝑎 = 1,  𝑃𝑆
1𝑥  represents the standard projection of 𝑥  onto 𝑆 . In terms of the 

standard projection, the relaxed projection can be written as Equation (5.2): 

𝑃𝑆
𝑎𝑥 = (𝑎𝑃𝑆

1 + (1 − 𝑎)𝐼)𝑥 (5. 2)  

where 𝐼 is the identity operator. When 0 < 𝑎 < 1, it moves 𝑥 only a fraction 

of the distance toward 𝑃𝑆
1, which is called an under-relaxed projection, another 
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way is over-relaxed projection, where 𝑎 > 1, which moves 𝑥 beyond 𝑃𝑆
1. Of 

particular interest is the reflection about a constraint set, where 𝑎 = 2, defined 

as Equation (5.3): 

𝑅𝑆𝑥 = 𝑃𝑆
2𝑥 = (2𝑃𝑆

1 − 𝐼)𝑥 (5. 3) 

which moves 𝑥 twice as far as 𝑃𝑆
1 in the same direction. Consequently, the 

relaxed projection depicted in Figure 1 can be mathematically represented as 

follows: 

𝑃𝑆
𝑎[𝑥𝑚, 𝑦𝑚] =

[𝑎
𝑟𝑠(𝑥𝑚 − 𝑥𝑐)

√(𝑥𝑚 − 𝑥𝑐)
2 + (𝑦𝑚 − 𝑦𝑐)

2
+ (1 − 𝑎)𝑥𝑚, 𝑎

𝑟𝑠(𝑦𝑚 − 𝑦𝑐)

√(𝑥𝑚 − 𝑥𝑐)
2 + (𝑦𝑚 − 𝑦𝑐)

2
+ (1 − 𝑎)𝑦𝑚] (5. 4)

 

A CSP involves finding the intersection of multiple constraint sets; a geometric 

example of three non-convex constraint sets 𝑆, 𝑇, 𝑈 is illustrated in Figure 5.2. 

The arrows from 𝑥  in Figure 5.2 depict various projections with different 

degrees of relaxation.  

 

Figure 5.2. Projections with different relaxation degrees onto different sets 
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5.2. Solutions to the Constraint Satisfaction Problem (CSP) 

5.2.1. Sequential Projections (SP) 

Continuing with the picture shown above, the problem in Figure 5.2 find the 

intersection of three circular constraint sets 𝑆, 𝑇 and 𝑈, whose centres and 

radii are known. The Sequential Projections (SP) algorithm is perhaps the most 

intuitive, and certainly the oldest, way to combine these projection operations 

into an algorithm, see Figure 5.3. 

 

Figure 5.3. The geometric example of sequential projections (SP) algorithm, from 

𝑥0 → 𝑃𝑆
1𝑥0 → 𝑃𝑇

1𝑃𝑆
1𝑥0 → 𝑃𝑈

1𝑃𝑇
1𝑃𝑆

1𝑥0 

Given an initial seed point 𝑥0, the algorithm projects onto one of the constraints, 

takes the result of this projection and projects it onto a second constraint, then 

repeats, projecting onto each constraint sequentially until they have all been 

covered. The result of this sequence of projections, the point 𝑥1 in Figure 5.3, 

seeds the next iteration of the algorithm and so on, either with the same fixed 

order of projections or with the order shuffled at random between iterations. For 

the geometric problem of Figure 5.3 with a fixed projection order of 𝑆, 𝑇 then 
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𝑈, the 𝑘𝑡ℎ iteration of SP calculates the Equation (5.5): 

𝑥𝑘+1  = 𝑃𝑈
1𝑃𝑇

1𝑃𝑆
1𝑥𝑘 (5. 5) 

Furthermore, the Sequential Projections (SP) scheme can be over or under 

relaxed in a more general scheme, see Equation (5.6):  

𝑥𝑘+1  = 𝑃𝑈
𝑎𝑈𝑃𝑇

𝑎𝑇𝑃𝑆
𝑎𝑆𝑥𝑘 (5. 6)  

Where the relaxation parameters 𝑎𝑆, 𝑎𝑇 and 𝑎𝑈 are chosen or tuned for best 

performance. 

5.2.2. Product Space 

Due to the sequential nature of the SP algorithm, there exists a risk of being 

entrenched in periodic oscillations rather than reaching a settled point of 

convergence. This is especially true where the underlying data on which the 

constraints are built are noisy, so that the sets may not all intersect at a single 

solution point. The ePIE algorithm in the previous Chapter 3, operates very 

similarly to a relaxed sequential projection algorithm and this oscillating 

behaviour is very common for ePIE. Projection algorithms that avoid this 

problem treat the constraint sets collectively rather than sequentially, by framing 

the optimisation within a product space. Product space refers to the 

construction of a new space by combining multiple copies or replicas of an 

existing space [46]. For instance, if there are 𝑁 individual constraints for a CSP, 

they can be expressed as 𝑁 sets within a Euclidean space 𝐾, like the circle 

problem mentioned above. The product space in this example can be denoted 

as 𝐾𝑁 , which contains 𝑁  copies of the space 𝐾  within each of which 

embedded one primary constraint, see Figure 5.4.  
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Figure 5.4. Illustration of the product space in three-circle problem. 

The construction of the product space simplifies the CSP, it divides a CSP into 

many subproblems and allows the “parallel projection” operation, discussed 

next, onto each constraint set at the same time. This is an important concept 

that will be used in most set projection algorithms, the implementation of 

product space in ptychography will be demonstrated in later section. 

5.2.3. Divide and Concur (DC) 

Based on the idea of product space, Gravel and Elser proposed an approach 

called “divide and concur (DC)” to solve CSPs [46]. The idea is that the 

projections of a candidate solution, 𝑥𝑘 , onto each of the constraints are 

calculated in parallel (the ‘divide’ step), then these projections are averaged in 
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some way to reach a single consensus solution (the ‘concur’ step).  For a 

better demonstration, we continue to use the previous three-circles example in 

Figure 5.3 to help explain the concept more concretely. The product space in 

this instance requires three copies of the 2D plane, each holding one of the 

circle constraints. Each 2D plane also has its own estimate of the solution, so 

that 𝑥𝑘 has three components: 𝑥𝑘 = [𝑥𝑘
𝑆, 𝑥𝑘

𝑇 , 𝑥𝑘
𝑈], certainly, these three points 

could have the same value initially, but each of them is still independent with 

each other.  
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Figure 5.5. The schematic of DC approach, (a) the divide step (each constraint circle 

is actually lying in an individual copy of the space as each projection is independent, 

here we draw them together for simplicity), (b) the concur step, the new points from 

divide step will be averaged to one single solution. 

The divide and concur approach begins with the divide step, see Figure 5.5(a), 

where the projections of 𝑥𝑘
𝑆, 𝑥𝑘

𝑇 and 𝑥𝑘
𝑈 onto their respective constraints 𝑆, 𝑇 

and 𝑈 are computed, giving three new points 𝑃𝑆
1𝑥𝑘

𝑆, 𝑃𝑇
1𝑥𝑘

𝑇 and 𝑃𝑈
1𝑥𝑘

𝑈. This set 
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of parallel projections can be considered as a single ‘divide’ projection 𝑃𝐷
1 in 

the product space:  

𝑃𝐷
1𝑥𝑘 = [𝑃𝑆

1𝑥𝑘
𝑆, 𝑃𝑇

1𝑥𝑘
𝑇 , 𝑃𝑈

1𝑥𝑘
𝑈] (5. 7) 

The concur step in Figure 5.5(b) averages the individual projections from the 

divide step so that they agree with each other, enforcing the knowledge that at 

a solution to the problem, all of the projections must arrive at a single solution 

point. This averaging operation can also be expressed as a projection in the 

product space, onto a ‘concur constraint’ represented by the set 𝐶  in the 

product space: 

𝑃𝐶
1𝑥𝑘 =

1

3
(𝑥𝑘

𝑆 + 𝑥𝑘
𝑇 + 𝑥𝑘

𝑈) (5. 8) 

The divide and concur (DC) algorithm, alternates between the divide and 

concur projections, defined as Equation (5.9): 

𝑥𝑘+1 = 𝑃𝐶
1𝑃𝐷

1𝑥𝑘 (5. 9) 

DC is considerably slower than SP - a much larger number of iterations are 

required for it to reach a solution. However, it has the significant advantage that 

the projections are independent and can be calculated in parallel, so that when 

there are thousands of constraints (as is the case for ptychography) 

computation time per iteration is greatly reduced. Note that the implementation 

of DC in ptychography is called Error Reduction (ER), which is an early solution 

proposed by Gerchberg and Saxton in 1972 [47]. 

5.2.4. Averaged Reflections (AR) 

Like SP, DC can also generalise through over- or under-relaxation of the 

projections. One such relaxation produces the Averaged Reflections (AR) 

algorithm, which replaces the projections in DC with reflections, as shown in 
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Figure 5.6. (In this example the three components of 𝑥 have been initialised to 

the same value, 𝑥0.)  In terms of the divide and concur projections in product 

space, AR is expressed as Equation (5.10): 

𝑥𝑘+1 = 𝑃𝐶
1𝑃𝐷

2𝑥𝑘 (5. 10) 

As shown in the Figure 5.6, AR take reflections in the divide step, then average 

all the reflections in the concur step. 

 

Figure 5.6. The schematic of AR, average the reflections from each constraint into 

one single point. 

5.2.5. Solvent Flipping (SF) 

Another relaxed version of the DC method is Solvent Flipping (SF). SF has quite 

a long history rooted in crystallography, different from AR, SF replaces the 

projection in the concur step with a reflection rather than in divide step [30]. The 
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schematic of SF is shown in Figure 5.7. 

 

Figure 5.7 The schematic of SF, reflect the standard projections from each constraint 

into one single point. 

In terms of DC projections, SF can be written as Equation (5.11): 

𝑥𝑘+1 = 𝑃𝐶
2𝑃𝐷

1𝑥𝑘 (5. 11) 

Now, Figure 5.8 shows the behaviour of DC, AR and SF as they run through 

100 iterations searching for the solution to the three-circle problem. All of the 

three algorithms become stuck at a local minima between the three constraints, 

and no number of further iterations can extract them from this hole. To escape 

local minima like this, more elaborate algorithms are required. 
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Figure 5.8. The results of DC, AR and SF for the three-circle problem, all of them are 

stuck at the local minima. 

5.2.6. Douglas Rachford (DR) 

One algorithm that can be implemented via a product space and which 

generally does very well at avoiding these local minima, whilst also converging 

considerably more quickly than DC or AR, was originally proposed by Douglas 

and Rachford [48]. 

An iteration of DR begins identically to AR, but after the divide reflection, a 

reflection through the concur projection point is carried out to give 𝑃𝐶
2𝑃𝐷

2𝑥𝑘 as 

shown in Figure 5.9 (a). So far, the algorithm could be described as RR - 

“reflect-reflect”, but in a final step, the twice-reflected points in the product 

space and the three original product space points are averaged, as shown in 

Figure 5.9 (c), to give Equation (5.12): 
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𝑥𝑘+1 =
1

2
(𝑃𝐶

2𝑃𝐷
2 + 𝐼)𝑥𝑘 (5. 12)  

This formulation explains an alternative name for the DR algorithm: average 

successive reflections (ASR).  

 

Figure 5.9. (a) The divide step in DR are the reflections onto each set, then average 

them to get a new solution point, (b) reflect each result from divide step about the 

new solution point, (c) take half of the twice-reflected points for next iteration, (d) are 

the tracks of each projections in different spaces (different color) as well as the track 

of concur projection of 𝑥 (blue track) for 100 iterations. 

A distinctive feature of DR is that the output of equation 𝑥 is not a single point 

but three distinct points, and these points do not converge toward the solution 

point, or toward each other. Figure 5.9 (d) tracks the course of these three 

points over 100 iterations of the DR algorithm.  It is the shadow sequence 

𝑃𝐶
1𝑃𝐷

2𝑥𝑘  shown in Figure 5.9 (c), and extracted straightforwardly midway 

through each iteration of the algorithm, which converges to the solution without 
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stagnating, whilst the three components of 𝑥𝑘  spiral toward points whose 

average is the solution. The need to store the multiple components of 𝑥𝑘 

becomes an important practical consideration for large scale optimisation 

problems, where computer memory must be allocated not only to hold the 

recorded data and the reconstructed image but also the components of 𝑥𝑘. For 

ptychography, this roughly triples the memory requirements since a complex-

valued component of 𝑥𝑘  must be stored for every (real-valued) pixel of 

recorded data. 

5.2.7. Difference Map (DM) 

Difference Map (DM) is a famous set projection algorithm that was the first 

algorithm that retrieved the illumination function as well as reconstruct the 

object [17]. The definition of DM is Equation (5.13): 

𝑥𝑘+1 = {𝐼 + 𝛽 {𝑃𝐶
1 [𝑃𝐷

1 +
1

𝛽
(𝑃𝐷

1 − 𝐼)] − 𝑃𝐷
1 [𝑃𝐶

1 −
1

𝛽
(𝑃𝐶

1 − 𝐼)]}} 𝑥𝑘 (5. 13) 

If substitute 𝛽 = 1, Equation (5.13) can be rewritten as Equation (5.14): 

𝑥𝑘+1 = {𝐼 + 𝑃𝐶
1[𝑃𝐷

1 + (𝑃𝐷
1 − 𝐼)] − 𝑃𝐷

1[𝑃𝐶
1 − (𝑃𝐶

1 − 𝐼)]}𝑥𝑘

= [𝐼 + 𝑃𝐶
1(2𝑃𝐷

1 − 𝐼) − 𝑃𝐷
1𝐼]𝑥𝑘

= [𝐼 + 𝑃𝐶
1𝑃𝐷

2 − 𝑃𝐷
1]𝑥𝑘

=
1

2
(2𝑃𝐶

1𝑃𝐷
2 − 2𝑃𝐷

1 + 2𝐼)𝑥𝑘

=
1

2
[2𝑃𝐶

1𝑃𝐷
2 − (2𝑃𝐷

1 − 𝐼) + 𝐼]𝑥𝑘

=
1

2
(𝑃𝐶

2𝑃𝐷
2 + 𝐼)𝑥𝑘 (5. 14)

 

Therefore, when 𝛽 = 1, DM is exactly same as DR, and this is the form of the 

algorithm used for ptychography. 

5.2.8. Hybrid Projection Reflection (HPR) 
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A relaxation derived from the DR or ASR is the Hybrid Projection Reflection 

(HPR) algorithm [49]. HPR is an improvement of Fienup’s Hybrid Input-output 

(HIO) algorithm [30]. In terms of DC projections, the HPR can be written as: 

𝑥𝑘+1 =
1

2
(𝑃𝐶

2(𝑃𝐷
2 + (𝛽 − 1)𝑃𝐷

1) + 𝐼 + (1 − 𝛽)𝑃𝐷
1)𝑥𝑘 (5. 15) 

where 𝛽 is a tuning parameter.  

In the practical application, HPR often used as a mixed algorithm, it cycles 

through a number of iterations of (5.15), followed by a number of iterations of 

AR, then repeats. In our tests, there are 90 iterations of HPR combined with 10 

iterations of AR. 

5.2.9. Relaxed Averaged Alternating Reflections (RAAR) 

A further improvement of HPR is Relaxed Averaged Alternating Reflections 

(RAAR) algorithm. The RAAR algorithm is motivated by the hybrid projection 

reflection (HPR) algorithm [49] and the difference map proposed by Elser [13, 

37]. It is a relaxation of the HPR and defined as Equation (5.16): 

𝑥𝑘+1 = [2𝛽𝑃𝐶
1𝑃𝐷

1 + (1 − 2𝛽)𝑃𝐶
1 + 𝛽(𝐼 − 𝑃𝐷

1)]𝑥𝑘 (5. 16) 

Where 𝛽 is the tuning parameter. 

For equation (5.12) , (5.15)  and (5.16) , if 𝛽 = 1 , DR, HPR and RAAR will 

coincide. Therefore, the relaxion is controlled by 𝛽. In terms of product space 

concept, to make the relaxion degree more intuitive, Equation (5.16) can be 

rewritten as Equation (5.17): 
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𝑥𝑘+1 = [2𝛽𝑃𝐶
1𝑃𝐷

1 + (1 − 2𝛽)𝑃𝐶
1 + 𝛽(𝐼 − 𝑃𝐷

1)]𝑥𝑘

= [2𝛽𝑃𝐶
1𝑃𝐷

1 + (1 − 2𝛽)𝑃𝐶
1 + 𝛽𝐼 − 𝛽𝑃𝐷

1)]𝑥𝑘

=
1

2
[4𝛽𝑃𝐶

1𝑃𝐷
1 + 2(1 − 2𝛽)𝑃𝐶

1 + 2𝛽𝐼 − 2𝛽𝑃𝐷
1)]𝑥𝑘

=
1

2
{2𝑃𝐶

1[2𝛽𝑃𝐷
1 + (1 − 2𝛽)𝐼] − 2𝛽𝑃𝐷

1 + 2𝛽𝐼 + 𝐼 − 𝐼}

=
1

2
{2𝑃𝐶

1[2𝛽𝑃𝐷
1 − (1 − 2𝛽)𝐼] − [2𝛽𝑃𝐷

1 − (1 − 2𝛽)𝐼] + 𝐼}𝑥𝑘

=
1

2
(𝑃𝐶

1𝑃𝐷
2β

− 𝑃𝐷
2β

+ 𝐼)𝑥𝑘

=
1

2
(𝑃𝐶

2𝑃𝐷
2𝛽

+ 𝐼)𝑥𝑘 (5. 17)

 

So RAAR introduces a relaxation to the reflection in the “divide” step, compared 

to the DR method. Figure 5.10 illustrates the results from RAAR for the three-

circle problem with 𝛽 = 0.85. Compared to the DR method, the tracks of divide 

projections (red, yellow and green tracks) will converge to the final solution point 

as well as the concur projection track (blue one). 

 

Figure 5.10. The result of RAAR for the three-circle problem, the product space also 

converges to the final solution (red, yellow and green tracks end at the solution 

point). 
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RAAR algorithm allows for a controlled relaxation of the constraints in the 

optimization problem. This relaxation parameter 𝛽 can be used to control the 

step size between successive iterates and steer the iterates towards the 

solution. A small 𝛽 makes the reconstruction closer to the constraint set, while 

a larger 𝛽  explores more solution space. This flexibility allows for faster 

convergence and improved stability compared to the DR algorithm. 

5.2.10. Reflect, reflect, relax (RRR)  

Reflect, reflect, relax (RRR) algorithm is a search algorithm proposed by Elser 

in 2018 [50], that is used to solve combinatorial problems such as bit retrieval. 

It is known for its good performance and ease of implementation in two sets 

problem. Here, we first time apply it in the ptychographic phase retrieval 

problem. RRR involves two reflections, followed by an average [50], in terms of 

DC, it can be expressed as Equation (5.18): 

𝑥𝑘+1 =
2

𝛽
𝑃𝐶

2𝑃𝐷
2𝑥𝑘 + (1 −

2

𝛽
) 𝑥𝑘 (5. 18) 

The choice of the parameter 𝛽 in the RRR algorithm is important. It determines 

the step size in the search map and affects the algorithm's convergence 

behaviour. Here, we use 𝛽 = 0.2  in the test. The Figure 5.11 illustrates the 

performance of RRR in three-circle problem, RRR has a similar result to DR as 

it only changes the final updating weighting. 
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Figure 5.11. The result of RRR for the three-circle problem 

5.2.11. T-lambda (𝐓𝝀)  

Another new solution is T-lambda (T𝜆) algorithm, proposed by Thao in 2018 [51], 

to solve structured optimization problems. T𝜆 can be viewed as a relaxation of 

the DR algorithm to overcome the lack of stability of DR when applied to 

inconsistent problems. The numerical performance of T𝜆 is better compared to 

the RAAR algorithm for both consistent and inconsistent sparse feasibility 

problems [51]. Likewise, we first time implement the T𝜆  to ptychography, 

defined as Equation (5.19): 
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𝑥𝑘+1 =
1

𝛽 + 1
𝑃𝐶

𝛽+1
𝑃𝐷

𝛽+1
𝑥𝑘 + (1 −

1

𝛽 + 1
) 𝑥𝑘 (5. 19) 

where 𝛽 = 1.75 for our test. T𝜆  is an over-relaxed version of DR, it increases 

the step in both divide projection and concur projection but finally use a smaller 

updating weighting. 

Figure 5.12 shows the performance of T𝜆 in the three-circle problem, it can 

converge the product space as well as the global solution. 

 

Figure 5.12 The result of Tλ for the three-circle problem 

5.2.12. General Projection Algorithm 

ER, AR and SF rely on local minimization strategies to address the phase 

problem, which can often lead to convergence toward a local minimum in 

various scenarios. In contrast, another type of set projection algorithm is using 

more global minimizers such as DR and HPR, additional feedback from its 

product space is introduced in these methods to reach the solution. Further 
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improvements are tuning the relaxation of DR or HPR, gives RAAR, RRR and 

T𝜆. The adjustment of the relaxation gives better convergence and performance 

in set projection algorithms. To distil their shared attributes, at its most general, 

the two reflections within the DR algorithm can be relaxed, and the averaging 

step the factor 0.5 in Equation (5.12) can also be given a tunable weighting. 

This results in an algorithm with three tuning parameters, 𝑎 , 𝑏  and 𝑐 , that, 

depending on their values, can realise many set projection algorithms from the 

literature. This general form we will call the general projection algorithm, the 

definition is given in Equation (5.20): 

𝑥𝑘+1 = 𝑎𝑃𝐶
𝑏𝑃𝐷

𝑐𝑥𝑘 + (1 − 𝑎)𝑥𝑘 (5. 20) 

where 𝑎 controls the updating step from previous iteration, 𝑏 is the degree of 

relaxation of concur projection and 𝑐  is the degree of relaxation of divide 

projection. With appropriate choice of 𝑎 , 𝑏  and 𝑐  this very general update 

formula can implement any of the product space methods we have discussed. 

Table 2 gives the values of the three parameters that correspond to various 

different algorithms, all of which roll the three tuning parameters into a single 

parameter, 𝛽. 
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Table 2. Different values of 𝑎, 𝑏 and 𝑐 for different set projection algorithms. 

Algorithm 𝒂 𝒃 𝒄 

Divide and Concur (DC) or (ER) [46] 1 1 1 

Average reflections (AR) [30] 1 1 2 

Solvent flip (SF) [30] 1 2 1 

Douglas Rachford (DR) or (DM) [12] 0.5 2 2 

Relaxed averaged alternating reflections 

(RAAR) [13] 
0.5 2 2𝛽 

Reflect, reflect, relax (RRR) [50] 𝛽/2 2 2 

𝑇𝜆 [51] 1/(𝛽 + 1) 𝛽 + 1 𝛽 + 1 

5.3. The Parameter Tuning in General Projection Algorithm 

The general projection algorithm proposed in the last section, provides a flexible 

way to solve the set projection problem. Apart from the fixed methods (DC, AR, 

SF and DR), RRR, RAAR and Tλ  has a tuning parameter 𝛽  which could 

seriously affect their performance. This section will further discover different 

parameters for these three methods, and propose a new approach which can 

auto-tuning the parameters for the general projection algorithm. 

5.3.1. Different Parameters for RRR, RAAR and 𝐓𝝀 
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Continuing with the three-circle problem, different values of 𝛽  have been 

tested and displayed in Figure 5.13. Figure 5.13 (a) is RRR with 𝛽 = 0.4, which 

is an under-relaxed DR that only changes the final updating weight, (b) is over-

relaxed one with 𝛽 = 1.6 . A more minor updating step makes the process 

smoother and reduces the spirals. Figure 5.13 (c) and (d) plots the convergence 

of the three product space points for the RAAR algorithm with 𝛽 = 0.8, and 

𝛽 = 0.7. RAAR adds some under-relaxation in the divide projection compared 

to DR. As 𝛽 approaches 1, RAAR will resemble DR. In the case of three-circle 

problem, 𝛽 smaller than 0.8 makes it difficult to converge, see Figure 5.13 (d). 

This threshold varies in different problems, but generally, 0.85 is recommended 

for  𝛽  by our own experience. Tλ  introduces the relaxations to all three 

parameters, the finally updating weight is inversely proportional to the divide 

and concur projection steps to give a balance in global. The tracks in Figure 

5.13 (f) were struggling for many iterations in a position far from the solution, if 

𝛽 gets smaller, it will be stuck at some local minima. A larger 𝛽 in 𝑇𝜆 gives a 

quicker converging rate at the beginning and will avoid the local minima 

problem, 0.8 was chosen for our test. This behaviour is quite consistent for all 

of the under-relaxed versions of DR. Notice that the relaxation of one of the 

reflection operators helps the product space points converge to the global 

solution of the optimisation problem, see Figure 5.13 (c), (e) and (f). This 

appears to be an important factor in determining algorithm performance, with 

relaxed variants of DR generally working much better than DR itself for 

ptychography. 
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Figure 5.13. The results of different algorithms in the three-circle problem for 100 

iterations, the blue track is the solution while the tracks other different color 

represents the projections in different product space, (a) RRR with 𝛽 = 0.4, (b) RRR 

with 𝛽 = 1.6, (c) RAAR with 𝛽 = 0.8, (d) RAAR with 𝛽 = 0.7, (e) 𝑇𝜆 with 𝛽 = 0.8, (f) 

𝑇𝜆 with 𝛽 = 0.7. 
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5.3.2. Auto-Tuning via Bayesian Optimization 

The performance of the general projection algorithm is very different, even with 

a tiny change in the relaxation parameters. Therefore, here is a new challenge 

of finding the best parameters for a particular problem, which is usually called 

hyperparameter optimization. Hyperparameter is an important concept in 

machine learning; hyperparameter optimization or tuning is choosing a set of 

optimal hyperparameters for the algorithm. There are several ways to optimize 

the hyperparameter, such as grid search, random search and Bayesian 

optimization.  With grid search, a set of hyperparameters and performance 

metrics are specified, and then the algorithm iterates through all possible 

combinations to determine the best match. It works well, but it is relatively 

tedious and computationally intensive, especially when using a large number 

of hyperparameters. Although random search is based on similar principles as 

grid search, random search randomly selects a set of hyperparameters at each 

iteration. The method is efficient when a relatively small number of 

hyperparameters primarily determine the outcome of the model. Finally, 

Bayesian optimization is a technique based on Bayes' theorem, which 

describes the probability of an event occurring that is relevant to current 

knowledge [52]. When using Bayesian optimization for hyperparameter 

optimization, the algorithm constructs a probabilistic model and uses regression 

analysis to select the best set of hyperparameters iteratively. This is a good 

approach for a noisy black-box function optimization and is selected as the 

optimizer for our ptychographic problem. 

Bayesian optimization aims to minimize a real-valued function. During the 

optimization, a Gaussian Process (GP) model of the objective function will be 

maintained and trained internally [53]. Then, an acquisition function will be used 

to balance sampling at points that have low modelled objective functions and 

exploring areas that have not yet been modelled well, to determine the next 
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evaluation point.  

In detail, the optimization starts from sampling a random set of initial points in 

the hyperparameter space and evaluates the objective function values at these 

points. The results of these initial evaluations are used to construct the initial 

surrogate model. To refine the surrogate model, the Gaussian Process (GP) is 

used to build the surrogate model through the covariance between input data 

points. The Gaussian Process (GP) will assume that the objective function 

obeys the normal distribution, the probability distribution of the objective 

function is constructed by means of a covariance function (kernel function) 

based on the available data points. This can deal with the uncertainty of the 

model and provide prediction confidence intervals [54]. Once the surrogate 

model is built up, it can be used to predict the value of the objective function for 

a given combination of hyperparameters.  

In addition to the model, another important concept is the acquisition function 

during the optimization. The acquisition of function decides the next sample 

point which is the new combination of hyperparameters. There are three 

different strategies for the acquisition function, Expected Improvement (EI), 

Probability of Improvement (PI), Upper Confidence Bound (UCB) [55, 56]. 

Expected Improvement (EI) is to find the expected improvement in the objective 

function value over the current best value. It is most commonly used acquisition 

function for most situations, especially when the objective function has more 

uncertainty [56]. Probability of Improvement (PI) calculates the probability that 

the value of the objective function exceeds the current optimal value, which is 

simple and suitable for the case with limited computational resources, but may 

be defective in the range of exploration [56]. Finally, Upper Confidence Bound 

(UCB) requires manual adjustment to achieve the best performance, it is 

suitable for long-term optimisation tasks, which can be balanced between 

exploration and exploitation by adjusting the parameters [56]. Based on this, 
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here, Expected Improvement (EI) was chosen as the acquisition function for the 

auto-tuning task. 

In this thesis, the Bayesian optimization was implemented through MATLAB 

Statistics and Machine Learning Toolbox. The Gaussian Process (GP) model 

will be updated with ARD Matern 5/2 covariance kernel function [53, 54], 

defined as: 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2 (1 + √5𝑟 +

5

3
𝑟2) 𝑒−√5𝑟 (5. 21) 

where 𝑟  is the Euclidean distance between 𝑥𝑖  and 𝑥𝑗 , 𝜎𝑓  is the signal 

standard deviation. When the auto-tuning is in progress, the quality of 

reconstruction and corresponding 𝑎, 𝑏, 𝑐  parameters will be feed into the 

Gaussian process model. To sample the next point, the acquisition functions 

evaluate the “goodness” of a point based on the posterior distribution function 

from the trained model [52]. The strategy we used is 'expected-improvement', 

it evaluates the expected amount of improvement in the objective function, 

ignoring values that cause an increase in the objective [52]. If we define 𝑥𝑏𝑒𝑠𝑡 

as the location of the lowest posterior mean and 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) as the lowest value 

of the posterior mean. The 'expected-improvement' will be: 

𝐸(𝑥, 𝑄) = 𝑚𝑎𝑥{0, 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥)} (5. 22) 

where 𝑄 is the posterior distribution, 𝑓(𝑥) is the Gaussian process model, 𝜇 

is the mean value, 𝑚𝑎𝑥  is a function that chose the max one between the 

inputs. 

5.3.3. Generalized Auto-Tuning (GAT) Algorithm 

In our case of ptychography, we proposed a new method based on Bayesian 

optimization called Generalized Auto-Tuning (GAT) algorithm. GAT aims to tune 
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the three parameters 𝑎, 𝑏, 𝑐  of the general projection algorithm during the 

reconstruction. The tuning range are from 0.01 to 1 for 𝑎, and 0.01 to 2 for 𝑏 

and 𝑐. The Bayesian optimization will be called every 100 iterations, see Figure 

5.14. 

 

Figure 5.14. The flow chart of generalized auto-tuning algorithm, rem represents the 

remainder after division. 

The gradient of error metric of the next 10 iterations from the current 

reconstructed object, probe and corresponding 𝑎, 𝑏, 𝑐 values will be assessed 

as the objective function in the Bayesian optimization to ensure the optimized 

𝑎, 𝑏, 𝑐  will help the reconstruction error decrease, illustrated in Figure 5.15. 

Moreover, the optimization will be compared to the gradient from the previous 

10 iterations, to avoid unnecessary change of 𝑎, 𝑏, 𝑐. Finally, because a large 

and sudden change of the relaxation in projection sometimes will destroy the 
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whole reconstruction, an extra insurance is added after tuning. If the gradient 

goes up successively, the 𝑎, 𝑏, 𝑐 values will be reset as the one before tuning. 

The initial values are 1 for all of 𝑎, 𝑏, 𝑐, which is ER (DC) from Table 2. The 

worst case is that the tuning is unsuccessful all the time, then it will remain using 

ER.  

 

Figure 5.15. The process of the Bayesian Optimization. When the optimization is 

called at the red point, the reconstruction of the object and probe at this point will be 

feed to the Bayesian Optimizer. The optimizer aims to reduce the gradient for the 

next few iterations, the best one will provide the best values for 𝑎, 𝑏, 𝑐. 

5.4. Set Projection in Ptychography 

In the previous sections, we implemented different set projection methods to 

the three-circle problem and discussed the effects of the tuning parameters in 

these approaches. Typically, ptychography is a phase retrieval problem, which 

is inherently non-convex [14, 57]. This is because the relationship between the 

measured intensities and the phase information involves quadratic constraints, 

making the optimization landscape non-convex with many local minima [14, 58]. 



123 

The set projection ptychographic solutions such like Difference Map (DM) are 

designed to addresses the non-convexity of phase retrieval. The set projection 

algorithms in ptychography minimize the error by balancing the projections, 

gradually improving the consistency with both the measured data and the 

overlap constraints. In this section, the connection between set projection and 

ptychography will be described in detail as well as the applications of set 

projection methods in ptychography. 

5.4.1. Iterative Ptychographic Phase Retrieval 

As mentioned in pervious Chapter 3.2, in ptychography, a moving probe 

illuminates a part of the object at a time, collecting the diffraction patterns for 

different positions. Following the previously mentioned notation, denote the 

object by 𝑜𝑘𝑗
(𝑟 )  the probe by  𝑃𝑗(𝑟 ) , where 𝑘  is the scan position and 𝑗 

represents current iteration number. The exit wave propagates to the detector 

is 𝜓𝑘(𝑟 ). The intensity recorded by the detector, representing the diffraction 

pattern, is denoted as 𝐼𝑘(�⃗� ) . Since the diffraction pattern 𝐼𝑘(�⃗� )  only 

encompasses the modulus information of the exit wave, the phase is lost during 

the propagation, that is the phase problem in microscope imaging. Fienup [31] 

proposed a remarkable solution to the phase problem in 1980s, building upon 

the pioneering work of Gerchberg and Saxton [47]. This method was described 

as single-shot phase retrieval in Figure 2.8. Contrast to it, later, more advanced 

ptychographic iterative solutions have a similar computational loop as the 

single-shot method, shown in Figure 5.16. Ptychographic iterative method 

initially starts from point A with the initial estimation of object and probe, form 

the exit waves for all the scan positions. Then, from A to B, do the Fourier 

transform to get estimated diffraction patterns, Ψ𝑘(�⃗� ) = 𝓕{𝜓𝑘(𝑟 )} . 

Subsequently, the estimated phase is retained while the modulus is replaced 

with measurements from the detector, Ψ′𝑘(�⃗� ) = √𝐼𝑘(�⃗� )
Ψ𝑘(�⃗⃗� )

|Ψ𝑘(�⃗⃗� )|
. Now, with the 

corrected modulus, an inverse Fourier transform is executed to return to real 
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space, 𝜓′𝑘(𝑟 ) = 𝓕−𝟏{Ψ′𝑘(�⃗� )} . Finally, update the object and probe, the new 

estimation will be used for the next iteration. The sequential projection methods 

in ptychography such like ePIE, mentioned in Chapter 3.2.7, solve this problem 

position by position, which means that the next computation for the next position 

is dependent on the last one. Unlike this, set projection methods in 

ptychography treat every position equally. The calculation for each position is 

independent and can be parallelized. 

 

Figure 5.16. The schematic of iterative ptychographic solution. Right part indicates 

the ‘divide’ step in ptychography and the left part is the ‘concur’ step. 

5.4.2. Constraint Sets in Ptychography 

In the aspect of set projection, there are two main constraints in ptychography, 

the first one is the ‘modulus constraint’, which is the prior knowledge from the 

measurements obtained from the detector. As shown in the red dashed box on 

the right side in Figure 5.16, the process of replacing the modulus with 

measured data is the modulus projection in ptychography, the replacement is 
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pixel to pixel for each diffraction pattern. Each pixel here manifests as a point 

with given complex value in the Fourier space, the measurement is a circle with 

the radius defined by measured modulus, same as the example shown in 

Figure 5.1. The modulus projection for each pixel is to find the closest point on 

the circle from the given point, that why the three-circle problem was introduced 

earlier—to serve as an example of ptychography's constraint in the Fourier 

domain. The product space here will contain 𝑁 copies of Euclidean spaces, 

each one has same size as the object and hold one diffraction pattern. The 

projections onto the modulus constraint are individual with respect to each 

diffraction pattern. Therefore, the idea of ‘divide’ can be introduced into modulus 

projections. All of modulus projections can be done in parallel at the same time. 

On the other hand, the aperture in ptychography defines the support, all the 

pixels outside the support will be zero, this is certain information in the 

experiment. Also, all these adjacent scan positions are overlapped with each 

other to some extent in ptychography. This known support and the overlapping 

areas provide another important constraint called ‘consistency constraint’ or 

‘single-probe-and-object constraint’. Essentially, that means the portion of 

object within the support in the same position across any diffraction pattern 

remains consistent all the time, likewise, the probe is always the same as well. 

The consistency projection is the step between D to A in the Figure 5.16, mainly 

for separating the probe and object from the form of the product and updating 

the probe and object for the next iteration. It is also can be considered as the 

‘concur’ step. Therefore, iterative ptychography applies these two constraint 

sets to the reconstruction alternately, which alternates between the divide and 

concur steps. 

5.4.3. Updating the Object and Probe (Sequential Projection) 

Also, in order to reconstruct the object and probe, the sequential projection 

methods are different from the set projection methods. The sequential 
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projection methods step through all the diffraction patterns, usually in a random 

order, which is satisfying the modulus constraints one by one. Therefore, the 

reconstruction can be considered as minimizing the regularized cost functions 

shown in Equation (5.23) and (5.24): 

ℒ𝑂 = ∑(|𝓕 {𝑃𝑗(𝑟 )𝑜𝑘𝑗
′(𝑟 )}| − √𝐼𝑘(�⃗� ))

2

�⃗⃗� 

+ ∑𝐴(𝑜𝑘𝑗
′(𝑟 ) − 𝑜𝑘𝑗

(𝑟 ))
2

𝑟 

(5. 23) 

ℒ𝑃 = ∑(|𝓕 {𝑃𝑗′(𝑟 )𝑜𝑘𝑗
(𝑟 )}| − √𝐼𝑘(�⃗� ))

2

�⃗⃗� 

+ ∑𝐵 (𝑃𝑗′(𝑟 ) − 𝑃(𝑟 ))
2

𝑟 

(5. 24) 

Where 𝑜𝑘𝑗
′(𝑟 )  is the new object estimate, and 𝑃𝑗′(𝑟 )  is the new probe 

estimate in 𝑗𝑡ℎ  iteration at 𝑘𝑡ℎ  position. 𝐴  and 𝐵  are the regularization 

functions that dictate how strongly the reconstruction are anchored to their 

previous estimate.  ePIE as an example of sequential projection method, the 

regularization functions of it are Equation (5.25) and (5.26) [18]: 

𝐴 =
1

𝛼
 |𝑃𝑗(𝑟 )|𝑚𝑎𝑥

2
− |𝑃𝑗(𝑟 )|

2 (5. 25) 

𝐵 =
1

𝛽
 |𝑜𝑘𝑗

(𝑟 )|𝑚𝑎𝑥
2
− |𝑜𝑘𝑗

(𝑟 )|2 (5. 26) 

where the tuning constants 𝛼  and 𝛽  are usually set to unity [17], 𝑚𝑎𝑥 

represent the maximum value. Also, an improved version of this called 

regularized PIE (rPIE) uses the regularization functions as Equation (5.27) 

and (5.28) [18]: 

𝐴 = 𝛼 (|𝑃𝑗(𝑟 )|
2

𝑚𝑎𝑥
− |𝑃𝑗(𝑟 )|

2
) (5. 27) 

𝐵 = 𝛽 (|𝑜𝑗(𝑟 )|
2

𝑚𝑎𝑥
− |𝑜𝑗(𝑟 )|

2
) (5. 28) 

where 𝛼  and 𝛽  are the tuning parameters. When 𝛼 = 1  and 𝛽 = 1 , it 
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coincides with ePIE. 

Minimizing the cost functions in Equation (5.23) and (5.24) is to satisfy the 

modulus constraint, which can be considered as a projection. This minimization 

can be solved by taking Wirtinger derivatives of the cost functions and setting 

the result to zero. This gives the updating functions for the object and probe in 

Equation (5.29) and (5.30): 

𝑜𝑘𝑗
′ (𝑟 ) = 𝑜𝑘𝑗

(𝑟 ) +
𝑃𝑗

∗(𝑟 ) (𝜓𝑘𝑗
′ (𝑟 ) − 𝜓𝑘𝑗

(𝑟 ))

|𝑃𝑗(𝑟 )|
2 + 𝐴

(5. 29) 

𝑃𝑗
′(𝑟 ) = 𝑃𝑗(𝑟 ) +

𝑜𝑘𝑗
∗(𝑟 ) (𝜓𝑘𝑗

′ (𝑟 ) − 𝜓𝑘𝑗
(𝑟 ))

|𝑜𝑘𝑗
(𝑟 )|2 + 𝐵

(5. 30) 

Note that when 𝛼 = 1  and 𝛽 = 1 , this is the same as Equation (3.13)  and 

(3.14), shown in the previous ePIE example. The object updating function in 

Equation (5.29) only reconstruct a fraction of the entire object, since it only 

deals with one scan position. After all the positions solved, the entire object will 

be reconstructed completely. 

5.4.4. Updating the Object and Probe (Set Projection) 

Unlike the sequential projection methods, set projection methods consider all 

the scan positions in a single batch. The cost functions for set projection method 

are defined as Equation (5.31) and (5.32): 

ℒ𝑂 = ∑∑(|𝓕 {𝑃𝑗(𝑟 )𝑜𝑘𝑗
′(𝑟 )}| − √𝐼𝑘(�⃗� ))

2

�⃗⃗� 𝑘

(5. 31) 

ℒ𝑃 = ∑∑(|𝓕 {𝑃𝑗′(𝑟 )𝑜𝑘𝑗
(𝑟 )}| − √𝐼𝑘(�⃗� ))

2

�⃗⃗� 𝑘

(5. 32) 

The minimization of these two cost functions is the same way, taking the 
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derivatives and setting the result to zero, gives the updating functions for the 

object and probe, written as Equation (5.33) and (5.34): 

𝑂′
𝑗(𝑟 ) =

∑ 𝑃𝑗
∗(𝑟 )𝜓𝑘

′
𝑗
(𝑟 )𝑘

∑ |𝑃𝑗(𝑟 )|
2

𝑘
=

∑ |𝑃𝑗(𝑟 )|
2
𝜓𝑘

′
𝑗
(𝑟 )

𝑃𝑗(𝑟 )
 𝑘

∑ |𝑃𝑗(𝑟 )|
2

𝑘

= ∑
𝜓𝑘

′
𝑗
(𝑟 )

𝑃𝑗(𝑟 )
𝑘

(5. 33)

 

𝑃′
𝑗(𝑟 ) =

∑ 𝑜𝑘𝑗
∗(𝑟 )𝜓𝑘

′
𝑗
(𝑟 )𝑘

∑ |𝑜𝑘𝑗
(𝑟 )|2𝑘

=

∑ |𝑜𝑘𝑗
(𝑟 )|2

𝜓𝑘
′
𝑗
(𝑟 )

𝑜𝑘𝑗
(𝑟 )

 𝑘

∑ |𝑜𝑘𝑗
(𝑟 )|2𝑘

= ∑
𝜓𝑘

′
𝑗
(𝑟 )

𝑜𝑘𝑗
(𝑟 )

𝑘

(5. 34)

 

This is a straightforward way to separate the object and probe from its product 

which is the corrected exit wave. In the set projection methods, the modulus 

projection for each position is independent and can be parallelized since each 

position does not require any information from the others. In Equation (5.33) 

and (5.34), all the corrected exit waves are lying in its own space. They are the 

results come from the modulus projections, each one only holds the prior 

knowledge from one diffraction pattern, which is a part of information about the 

object. Then, Equation (5.33) and (5.34) aggregate all the planes across the 

product space, gives a global updating for the object and probe. This step 

combines all the individual projections from the product space into a single 

consensus solution, also can be considered as the ‘concur’ projection.  

More specific expression of ‘divide and concur’ in ptychography can be written 

as Equation (5.35), (5.36) and (5.37): 

𝜓𝑘′𝑗(𝑟 ) = 𝑃𝐷
1𝜓𝑘𝑗

(𝑟 ) = 𝑃𝑚
1𝜓𝑘𝑗

(𝑟 ) = 𝓕−𝟏 {√𝐼𝑘(�⃗� )
𝓕 {𝜓𝑘𝑗

(𝑟 )}

|𝓕 {𝜓𝑘𝑗
(𝑟 )}|

} (5. 35) 
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𝜓𝑘𝑗+1
(𝑟 ) = 𝑜′

𝑘𝑗
(𝑟 )𝑃′𝑗(𝑟 )

= 𝑂𝑗
′(𝑘 + 𝑟 )𝑃′𝑗(𝑟 ) (5. 36)

 

𝜓𝑘𝑗+1
(𝑟 ) = 𝑃𝐶

1𝑃𝐷
1𝜓𝑘𝑗

(𝑟 ) (5. 37) 

where the 𝑂𝑗
′(𝑘 + 𝑟 )𝑃′𝑗(𝑟 )  is calculated by Equation (5.33)  and (5.34)  can 

be considered as 𝑃𝐶
1 . Set projection algorithms for ptychography oscillates 

between these two steps as shown in Equation (5.37). The pseudocode of the 

general projection algorithm in ptychography is shown in Pseudocode 5.1 and 

Pseudocode 5.2 as the example. All the set projection methods mentioned in the 

Table 2 can be implemented via the general projection algorithm with different 

𝑎, 𝑏, 𝑐 parameters. 

Pseudocode 5.1: General Projection Algorithm in Ptychography 

Inputs: obj (obj), probe (probe), intensity (I), the total number of positions (K), the total 

number of iterations (J), tuning parameter (𝑎, 𝑏, 𝑐). 

Outputs: exit waves (exitWave). 

1 For (k = 1 to K) do 

 // Calculate the exit waves for all the positions 

2 exitWavek = obj(Rk to Rk + [M,N]) ∙ probe 

3 End loop 

4 For (j = 1 to J) do 

5 For (k = 1 to n) do 

 // Product space projection 

6 cProj = b∙obj(Rk to Rk + [M,N])∙probe – (1-b)∙exitWavek 

 // Modulus projections, applying measurements 

7 mProj = c∙(sqrt(Ik)∙𝓕(cProj)/abs(𝓕(cProj))) + (1-c)∙cProj 

 // Update exit waves 

8 exitWavek = a∙mProj + (1-a)∙mProj 

9 End loop 

10 End loop 

 // Update the object and probe 

 // Apply any additional constraints 

Note: 𝓕: Fourier transform. conj: complex conjugate. abs: amplitude. 

sqrt: square root. 
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The updating step of the object and probe is shown in Pseudocode 5.2. 

Pseudocode 5.2: The Updating of the Object and Probe 

Inputs: obj (obj), probe (probe), exit waves (exitWave), the total number of positions (K). 

Outputs: obj (obj), probe (probe). 

 // Initialise numerator and denominator sums 

1 topO = bottomO = zeros(X,Y) 

2 topP = bottomP = zeros(M,N) 

3 For (k = 1 to K) do 

 // Update numerator and denominator sums for the probe 

4 topP += conj(obj(Rk to Rk+[M,N]))∙exitWavek 

5 bottomP += abs(obj(Rk to Rk+[M,N]))2 

6 End loop 

7 For (k = 1 to K) do 

 // Update numerator and denominator sums for the object 

8 topO(Rk to Rk+[M,N])    += conj(probe)∙exitWavek 

9 bottomO(Rk to Rk+[M,N]) += abs(probe)2 

10 End loop 

11 obj = topO/(bottomO + eps) 

12 probe = topP/(bottomP + eps) 

Note: zeros: a matrix full of zeros. eps: a small constant in MATLAB 

to avoid dividing 0. abs: amplitude. conj: complex conjugate. 

5.5. Comparison of Different Set Projection Algorithms 

In this section, several ptychographic simulations will be applied to different set 

projection algorithms and the GAT method. The results will be displayed and 

analysed in the later part. 

5.5.1. Simulation Configuration 

Figure 5.17 illustrates the object used for simulations, which is a complex-

valued image of frog’s red blood cells derived from a real-world optical bench 

ptychography experiment [59]. Figure 5.17 (a) is the modulus of the object, the 

red box delineates the reconstruction area, red circles indicate two different 

sizes of probe, and the blue box shows the area of error calculated. 
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Figure 5.17. The simulation object (a) the modulus of object, (b) the phase of object. 

The red box is the reconstruction area, red circles are two different sizes of probe, 

and the blue box is the area where error calculated. 

The two different sizes of probe in the red circles in Figure 5.17 (a), are shown 

in Figure 5.18. 
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Figure 5.18. Two different sizes of probe. (a) is the large size (512×512 pixels) probe, 

and (b) is one of the diffraction patterns for its simulation. (c) is the small size 

(128×128 pixels) probe, and (d) is one of the diffraction patterns for its simulation. (c) 

and (d) are zoomed in four times. 

For the large size simulation, there are totally 400 scan positions arranged in a 

20 × 20 grid with an average step size of 36 pixels and ±20% random offsets. 

The small size simulation has a 80 × 80 scan grid with an average step size 

of 6 pixels and ±20% random offsets, 6400 positions in total. 

Apart from the blood cell object simulation, a noisy dataset with a designed 
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object with phase change is used to test different algorithms, see Figure 5.19(a). 

Poisson distributed noise is added to this designed object. In practice, the noise 

level is usually expressed by the number of electrons or other particles that 

arrive at the detector plane, which is normally called “counts”. The diffraction 

patterns with different level Poisson noise are shown in Figure 5.19 (b-i). As 

shown in the figures, in this test, when the counts is below 106, there are many 

noticeable noise spots on the diffraction patterns. The brightness of the 

diffraction pattern saturates when the counts is greater than 108, this is also 

corroborated by the later SNR calculations. 

To demonstrate the effect of Poisson noise to the reconstruction, ER was 

selected to run the reconstructions at different levels of Poisson noise since it 

is the most stable algorithm under the noise situation. There are 8 different 

levels of noise, the results of them are shown in Figure 5.20 (a). 

Correspondingly, the average Signal-to-Noise Ratio (SNR) between the 

diffraction patterns and the noiseless one for each noise level was calculated 

and displayed in Figure 5.20 (b). 

From Figure 5.20, the reconstruction quality is decreasing as the level of noise 

increasing. Combining their SNR value, in this thesis, we will choose 104 

counts as a very noise test and 5 × 105 counts for a moderate noisy situation 

for all the ptychographic algorithms in later sections. 
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Figure 5.19. (a) The phase object for the noise test, the red box is the scan area, and 

the circle indicates the probe size. The blue area is error calculation box. (b) The 

diffraction pattern with 104 counts. (c) The diffraction pattern with 5 × 104 counts. 

(d) The diffraction pattern with 105 counts. (e) The diffraction pattern with 5 × 105 

counts. (f) The diffraction pattern with 106 counts. (g) The diffraction pattern with 

108 counts. (h) The diffraction pattern with 1010 counts. (i) The diffraction pattern 

with 1015 counts.  

 



135 

 
Figure 5.20. (a) The error metric of ER at different levels of Poisson noise. (b) The 

average SNR at each noise level.  

5.5.2. Parameter Tuning for RRR, RAAR and 𝐓𝝀 

In order to get the best performance of RRR, RAAR and Tλ, the simulation with 

large size probe is used to test different values of 𝛽. Here, we tested 𝛽 = 0.85, 

𝛽 = 0.7, 𝛽 = 0.5, 𝛽 = 0.2. All the conditions result in a under relaxed DR in the 

final updating step. Note that when 𝛽 > 1, which is an over relaxed DR, RRR 

fails in our test. The test results are shown in Figure 5.21. The error is calculated 

by Equation (3.18), which was introduced in Chapter 3.4. 
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Figure 5.21. The simulation results for RRR with different 𝛽. 

Since the reconstruction is visually indistinguishable from the ground truth, if 

the simulation error is lower than 10−5, here, we only display its error curve to 

indicate its performance. From Figure 5.21, the error of RRR keeps jiggling up 

and down, a smaller 𝛽 seems can relax the frequency of this oscillation, but it 

reduces the convergence rate. Therefore, we will choose 𝛽 = 0.85  for our 

further tests. 

The second test is for RAAR, the results are displayed in Figure 5.22. 
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Figure 5.22. The simulation results for RAAR with different 𝛽. 

Figure 5.22 indicates that smaller 𝛽 significantly reduces the convergence rate 

of RAAR. However, similar to RRR, an over relaxed 𝛽 does not work in our 

test. Hence, we use 𝛽 = 0.85 for RAAR. 

Similarly, the test results for Tλ is illustrated in Figure 5.23. 
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Figure 5.23. The simulation results for Tλ with different 𝛽. 

Tλ is slightly different from RRR and RAAR since it introduces the relaxations 

to both 𝑏  and 𝑐 , then another relaxation in the opposite way for 𝑎 . As 

mentioned before, for the three-circle problem in Figure 5.13 (f), a small 𝛽 will 

cause the difficulty to escape from the local minima, which seems to happen 

here for 𝛽 = 0.5, 𝛽 = 0.2 and 𝛽 = −0.2. Therefore, we will use 𝛽 = 0.85 for 

Tλ in further tests. 

5.5.3. Noiseless Simulation Results 
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In our simulation tests, the first simulation data is perfect data without any noise. 

All the ambiguities are removed during the reconstruction since the true object 

and probe are known in the simulation. Hence, the simulation error could be 

very small, approaching to the minimum accuracy of the computer. 

This first result show in Figure 5.24 is using the big size probe. 

 

Figure 5.24. The error of the simulation with large size probe (512 × 512 pixels, 400 

diffraction patterns), (a) The MSE between the reconstruction and the ground truth, 

(b) The MSE between the reconstructed diffraction patterns and the measurements. 

For the generalized auto-tuning (GAT) algorithm in this test, the values of 𝑎, 𝑏, 𝑐 

are displayed in Figure 5.25. 
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Figure 5.25. The values of 𝑎, 𝑏, 𝑐 for Generalized Auto-Tuning (GAT) algorithm in the 

large size probe simulation. 

As shown in Figure 5.24, the error metric demonstrates that Tλ is slightly better 

than RAAR, and both of them have significantly better performance than other 

set projection methods except GAT. ePIE a kind of sequential projection 

algorithm, here, it is used as a reference because of its popularity in 

ptychography. GAT performs very well in this test; it converges at the smallest 

error within only around half of the number of iterations that Tλ used. From 

Figure 5.25, although the auto-tuning is conducted every 100 iterations, GAT 

only changes the values of 𝑎, 𝑏, 𝑐 twice, the final tuning result has a similar 𝑏  

and 𝑐, but increased the value of 𝑎, compared to RAAR and Tλ. This small 
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change significantly improves the convergence rate. The phase reconstruction 

of object and probe is displayed in Figure 5.26, the results from GAT, RRR and 

Tλ is picked up to show since they can represent the reconstruction at different 

error levels. Because the error is very low, the difference between the 

reconstructions and the ground truth is not distinguishable to the eye. 

 

Figure 5.26. The phase reconstructions from GAT, Tλ and RRR. The red box 

indicates the zoomed area. 

Another result for small size probe simulation is shown in Figure 5.27, the 
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performance is similar to the large size one. More positions and denser data 

make the reconstruction more difficult. GAT is still the best one in Figure 5.27, 

and its advantage is magnified. Apart from GAT, all the other algorithms cannot 

reach the minimum error level this time. The error of Tλ, RAAR and HPR is 

below 10−5, slightly better than others. SF failed in both large and small size 

simulation. 

 

Figure 5.27. The error of the simulation with small size probe (128 × 128 pixels, 

6400 diffraction patterns), (a) The MSE between the reconstruction and the ground 

truth, (b) The MSE between the reconstructed diffraction patterns and the 

measurements. 

Figure 5.28 indicates the values of 𝑎, 𝑏, 𝑐 for GAT during the reconstruction. 

There are many tuning attempts this time, compared to the simulation with large 

size probe. The spikes in Figure 5.28 illustrates the unsuccessful tunings, 𝑎, 𝑏, 𝑐 

are reset to the pervious values after only few iterations. It is also clear to see 

the rise of the error from the Figure 5.27. In general, the addition insurance 

prevented some unnecessary changes, increased the stability of the auto-

tuning. 
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Figure 5.28. The values of 𝑎, 𝑏, 𝑐 for Generalized Auto-Tuning (GAT) algorithm in the 

small size probe simulation. 

5.5.4. Noise Simulation Results 

The noise test is adding the Poisson distributed noise to the diffraction pattern. 

The first result in Figure 5.29 has 5 × 105 counts in each diffraction pattern. 

GAT, AR and ER performs better than other algorithms in the aspect of noise 

tolerant. 𝑇𝜆  and RAAR are still quite similar and better than the rest as a 

relaxed version of DR.  ePIE works well at the beginning, but it is not stable 

and suddenly collapsed. 
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Figure 5.29. Noise simulation results with 5 × 105 counts in each diffraction pattern. 

(a) The MSE between the reconstruction and the ground truth, (b) The MSE between 

the reconstructed diffraction patterns and the measurements. 

The values of 𝑎, 𝑏, 𝑐 are shown in Figure 5.30. There are twice successfully 

tuning. finally gives similar values as AR.  
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Figure 5.30. The values of 𝑎, 𝑏, 𝑐 for Generalized Auto-Tuning (GAT) algorithm in the 

noise simulation with 5 × 105 counts in each diffraction pattern. 

Some reconstructed objects are illustrated in Figure 5.31; a zoomed area in red 

box is selected to show more details. The reconstructions of GAT, AR and ER 

are difficult to be distinguished with the naked eye, they have the best resolution 

and almost to see all the features. The resolution of Tλ and RAAR is slightly 

worse, fails to reconstruct the fine details in the center. In contrast, ePIE only 

works well at the central part. The results of the remaining algorithms are 

unsatisfactory. 
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Figure 5.31. The phase reconstruction from GAT, Tλ, RRR, HPR and ePIE for the 

noise simulation with 5 × 105 counts in each diffraction pattern. 

The second test only has 104 counts in each diffraction pattern. This can be 

considered as a very noisy situation in ptychography. The error lines are shown 

in Figure 5.32. 
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Figure 5.32. Noise simulation results with only 104 counts in each diffraction pattern. 

(a) The MSE between the reconstruction and the ground truth, (b) The MSE between 

the reconstructed diffraction patterns and the measurements. 

In this case, only AR, GAT and ER worked in the test; the rest of the others all 

failed. The 𝑎, 𝑏, 𝑐  values in GAT are shown in Figure 5.33. Here, the auto-

tuning was executed every 30 iterations, but only the first time was successful. 

This single tuning gives the values closer to AR, and improves a lot compared 

to ER, which is the initial condition of GAT. 
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Figure 5.33. The values of 𝑎, 𝑏, 𝑐 for Generalized Auto-Tuning (GAT) algorithm in the 

noise simulation with only 104 counts in each diffraction pattern. 

The reconstructed objects are illustrated in Figure 5.34. Tλ, as well as other 

failed set projection methods, their reconstructions are entirely noise. ePIE only 

reconstructs a small fraction feature at the center, and the feature is not very 

clear. 
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Figure 5.34. The phase reconstruction from GAT, AR, ER, Tλ, and ePIE for the noise 

simulation with only 104 counts in each diffraction pattern. 

5.6. Conclusion 

In our simulation tests, RAAR and Tλ are similar. As a relaxed version, they 

have a great improvement compared to the DR or DM. Also, their performance 

is generally good except for the very noisy data test. By contrast, RRR, as 

another type of relaxed DR, does not make a significant progress in the 

ptychography. AR performs much better than other algorithms in the aspect of 
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noise tolerance for both tests at different noise levels. ER has a stable 

performance in all the simulations since its error was proved to be reduced 

continuously [31], however, its convergence rate is not guaranteed. GAT has 

the best performance in the noiseless simulation, and also does well in the 

noise tests. As it turns out, only a few times of successful tuning can greatly 

improve the quality of reconstruction. This method also has good adaptivity to 

different datasets. However, because the optimization is error curve based, the 

time and memory cost of objective function during the optimization could be 

very high, depending on the dataset size. In the future, it is worth to investigate 

the practical effects of these three parameters on each projection process to 

find out a more efficient and accurate way to assess the influence of these three 

parameters. Also, the optimization based on the error curve is not significant in 

the real experiment since the unambiguous error is not available. An alternative 

is to use other methods to evaluation the quality of the reconstruction, such like 

Fourier Ring Correlation (FRC) [60, 61]. The improvement on the objective 

function for GAT may further enhance its effectiveness. 
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6. Weighted Average of Sequential 

Projections (WASP) for Ptychographic 

Phase Retrieval 

In the previous chapter, most existing set projection algorithms have been 

discussed. ePIE as an example of a sequential projection algorithm was 

introduced in Chapter 3.2.7. In this chapter, a novel ptychographic approach 

called Weighted Average of Sequential Projections (WASP) will be presented. 

Furthermore, a parallel version of WASP will be demonstrated that splits 

operation across several different computation nodes. Tests and results about 

WASP and its competitors will be shown at the end of the chapter. 

6.1. Definition of Weighted Average of Sequential Projections 

(WASP) 

This section will explain the definition of WASP and illustrate it through the 

three-circle example as shown in the previous chapter. 

6.1.1. Sequential Projections (SP) & Divide and Concur (DC) 

The principle behind WASP is to combine sequential projections and the idea 

of divide and concur (DC). The concepts of both have already been discussed 

in the last chapter. WASP uses the outputs of sequential projection as the divide 

part, then averages all the results into one single point by a concur step. An 

illustration of the implementation of WASP in the three-circles problem is shown 

in Figure 6.1. 
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Figure 6.1. The schematic of WASP approach. (a) The divide step in WASP is to 

make sequential projections onto constraints, record all the results on each constraint 

(b) The concur step in WASP, the new points from sequential projections will be 

averaged to one single solution. 

The order of sequential projections in Figure 6.1 (a) is not critical, also a 

relaxation can be introduced into this step. 𝑥𝑘+1 in Figure 6.1 (b) will be the start 

point for the next iteration. Therefore, the prior information from each constraint 

will be better utilized during the sequence. For the example of the three-circle 

problem, WASP and the set projection methods both take the average of three 
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result points, but each result point in set projection method is one single 

projection for one constraint. By contrast, WASP uses sequential projections, 

therefore, the second point has the prior knowledge from the first one, and the 

third point has the knowledge from previous two. That results in the global 

average of sequential projection gives a more weighted and appropriate 

response to all the constraints. The divide and concur in WASP can be written 

as Equation (6.1) and (6.2): 

𝑃𝐷
a𝑥𝑘 = [𝑃𝑆

a𝑥𝑘 , 𝑃𝑇
a𝑃𝑆

a𝑥𝑘 , 𝑃𝑈
a𝑃𝑇

a𝑃𝑆
a𝑥𝑘] (6. 1) 

𝑃𝐶
b𝑥𝑘 =

b

3
(𝑃𝑆

a𝑥𝑘 + 𝑃𝑇
a𝑃𝑆

a𝑥𝑘 + 𝑃𝑈
a𝑃𝑇

a𝑃𝑆
a𝑥𝑘) (6. 2) 

where 𝑎 and 𝑏 are the relaxation degree to adjust the performance. 

Unlike set projection algorithms, WASP does not require to store the product 

spaces which contain the results from the projections. Only the averaged point 

will be recorded for the calculation in the next iteration. This is the memory 

efficiency of WASP in comparison to set projection algorithms. 
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Figure 6.2. The results of DC, SP and WASP for the three-circle problem. 

Figure 6.2 shows the results of the three-circle problem with DC, SP and WASP 

solutions. As it illustrated, DC was trapped at some local minima. In this simple 

example, SP reached the final solution since there are only three constraints 

here. However, in the case of ptychography, there are usually hundreds or 

thousands of modulus constraints, which will cause the instability of SP, 

especially when the data is noisy. By introducing global optimization in SP, 

WASP can generally avoid the local minima problem and get to the solution 

more smoothly. 

6.1.2. Application in Ptychography 

Ptychography was described in detail in a pervious chapter. It can be generally 

considered as an alternating problem between ‘consistency projection’ and 

‘modulus projection’. To solve the object and probe, the ultimate goal is making 

the reconstructions satisfy both of these constraints. The minimization of the 

cost functions and the updating of the object and probe were explained in 
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section 5.4.3 and 5.4.4. For the sequential projection methods, the updating 

functions for the object and probe was shown in Equation (5.29) and (5.30), 

here we refer them again as shown below: 

𝑜𝑘𝑗
′ (𝑟 ) = 𝑜𝑘𝑗

(𝑟 ) +
𝑃𝑗

∗(𝑟 ) (𝜓𝑘𝑗
′ (𝑟 ) − 𝜓𝑘𝑗

(𝑟 ))

|𝑃𝑗(𝑟 )|
2 + 𝐴

(5.29) 

𝑃𝑗
′(𝑟 ) = 𝑃𝑗(𝑟 ) +

𝑜𝑘𝑗
∗(𝑟 ) (𝜓𝑘𝑗

′ (𝑟 ) − 𝜓𝑘𝑗
(𝑟 ))

|𝑜𝑘𝑗
(𝑟 )|2 + 𝐵

(5.30) 

where 𝐴 and 𝐵 are the regularization functions. The regularization functions 

for PIE style methods were given in Equation (5.25) , (5.26) , (5.27)  and 

(5.28). Generally, both regularizers for ePIE and rPIE are working well in the 

WASP. Here, we proposed a new regularizer for WASP, defined as Equation 

(6.3) and (6.4): 

𝐴 = 𝛼 〈|𝑃𝑗(𝑟 )|
2〉 (6. 3) 

𝐵 = 𝛽 (6. 4) 

where 〈|𝑃𝑗(𝑟 )|
2〉 represents the average over all elements of matrix |𝑃𝑗(𝑟 )|

2. 

Compared to ePIE and rPIE, the average operation is computationally cheaper 

than the maximum operation, also, the average of probe intensity remains fairly 

constant, whereas the maximum can be unstable and affect by some extremes. 

Similarly, the regularizer for probe is just a constant value since the modulus of 

object is between 0 and 1. More details and comparison between different 

regularizers for WASP will be discussed in the later section. 

In the sequential projection methods, Equation (5.29) only updates the object 

at position 𝑘 , which is fraction of the entire object. However, for the set 

projection methods, the entire object can be updated by Equation (5.33) and 
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(5.34), referred here: 

𝑂′
𝑗(𝑟 ) = ∑

𝜓𝑘
′
𝑗
(𝑟 )

𝑃𝑗(𝑟 )
𝑘

(5.33) 

𝑃′
𝑗(𝑟 ) = ∑

𝜓𝑘
′
𝑗
(𝑟 )

𝑜𝑘𝑗
(𝑟 )

𝑘

(5.34) 

In this case, the updating of the object is the sum of the exit waves over all the 

positions and dividing by the sum of the probe. The bright areas of the probe 

will contribute more to the sum than dark areas. Similarly, the transmissive part 

of the object also contributes more to the probe updating. 

The idea of WASP is to combine these two different ways together. Firstly, step 

through all the scan positions like sequential projection methods, during this, 

record the sums that needed for Equation (5.33) and (5.34). Finally, when all 

the positions are solved, use Equation (5.33) and (5.34) for a global updating 

of the object and probe. This global average step is the “Weighted Average 

(WA)” part of WASP while the first one is the “Sequential Projections (SP)” part. 

The flow chart of WASP is illustrated in Figure 6.3. 
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Figure 6.3. The flow chart of WASP, the blue area is the SP part, whereas the orange 

area represents the WA part. 
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The iteration starts from SP part, step out all the positions, then do the weighted 

average (WA), the outcome of WA will be input to the next iteration. The 

pseudocode of WASP is shown in Pseudocode 6.1. 

Pseudocode 6.1: Weighted Average of Sequential Projections (WASP) 

Inputs: position vectors (R), object (obj), object size (X, Y), probe function (probe), probe 

size (M, N), intensity (I), the total number of positions (K), the total number of iterations 

(J). 

Outputs: reconstructed object (obj) and probe (probe) 

1 For (j = 1 to J) do 

 // Initialise numerator and denominator sums 

2 topO = bottomO = zeros(X,Y) 

3 topP = bottomP = zeros(M,N) 

4 R = shuffle(R) 

5 For (k = 1 to K) do 

 // Form exit waves and apply the modulus constraint 

6 objBox = obj(Rk to Rk+[M,N]) 

7 exitWavek = objBox∙probe 

8 detectorWavek = 𝓕(exitWavek) 

9 correctedWavek = sqrt(Ik)∙detectorWavek /(abs(detectorWavek) + eps) 

10 newExitWavek = 𝓕−𝟏(correctedWavek) 

11 ∆exitWavej = newExitWavek-exitWavek 

 // Sequential projection update of object and probe 

12     obj(Rk to Rk+[M,N]) += conj(probe)∙∆exitWavej /abs(probe)2 + 𝐴 

13     probe += conj(objBox)∙∆exitWavej /abs(objBox)2 + 𝐵 

 // Update numerator and denominator sums 

14     topO += conj(probe)∙newExitWavek 

15 bottomO += abs(probe)2 

16 topP += conj(objBox)∙newExitWavek 

17 topO += abs(objBox)2 

18 End loop 

 // Weighted average update of object and probe 

19 obj = topO/(bottomO + eps) 

20 probe = topP/(bottomP + eps) 

21 Apply any additional constraints 

22 End loop 

Note: zeros: a matrix full of zeros. shuffle: a function that 

randomly change the order of the position sequence. 𝓕 : Fourier 

transform. 𝓕−𝟏: inverse Fourier transform. eps: a small constant in 

MATLAB to avoid dividing 0. sqrt: square root. abs: amplitude, conj: 

complex conjugate. 
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6.1.3. Memory Footprint 

Compared to set projection algorithms, WASP does not require to store all the 

projection results in the SP part. This allows WASP to run with less memory. 

Assume there is an object with size [𝑋, 𝑌] and a probe with size [𝑀,𝑁], the 

total scan positions is 𝐾 . The memory cost for the sequential projection 

algorithms, set projection algorithms and WASP is described in Table 3. 

Table 3. The basic memory requirements for different algorithms 

Algorithm Number of stored pixels 

Sequential Projection Algorithms (ePIE) 2𝑋𝑌 + 2𝑀𝑁 + 𝐾𝑀𝑁 

Set Projection Algorithms (RAAR, DM, ER) 2𝑋𝑌 + 2𝑀𝑁 + 3𝐾𝑀𝑁 

WASP 5𝑋𝑌 + 5𝑀𝑁 + 𝐾𝑀𝑁 

Normally, the largest part from the table is 𝐾𝑀𝑁  which represents 𝐾 

diffraction patterns. Set Projection Algorithms need to store the product spaces 

that results in 3𝐾𝑀𝑁. This is significantly increasing the memory requirements. 

By contrast, WASP records the sums during the iteration, this part only needs 

a small memory space. For the example of the simulation with small size probe 

in Chapter 5.5.1, [𝑀,𝑁] = [128, 128] , [𝑋, 𝑌] = [1200, 1200]  and there are 

6400 diffraction patterns in total. Therefore, the number of stored pixels can be 

calculated for different types of algorithms, if we consider all of them are double 

precision, which is 8 bytes per pixel, see Equation (6.5): 

2𝑋𝑌 + 2𝑀𝑁 + 𝐾𝑀𝑁 = (2.88 + 0.03 + 104.86) × 106

= 107.78 × 106 pixels ≈ 862.16 MB

2𝑋𝑌 + 2𝑀𝑁 + 3𝐾𝑀𝑁 = (2.88 + 0.03 + 314.58) × 106

= 317.49 × 106 pixels ≈ 2540 MB

5𝑋𝑌 + 5𝑀𝑁 + 𝐾𝑀𝑁 = (7.20 + 0.08 + 104.86) × 106

= 112.14 × 106 pixels ≈ 897.12 MB (6. 5)
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Generally, WASP takes the advantage of the set projection methods but only 

with a small memory requirement. 

6.2. Simulation Results of WASP 

In this section, the same simulation tests carried out for the set projection 

algorithms is now applied for WASP. The simulation configuration was 

described in detail in Chapter 5.5.1. 

6.2.1. Different Regularizers for WASP 

As mentioned in the previous section, different regularizers can be applied to 

the sequential part of WASP. The tests for different regularizers are conducted 

using the noiseless blood cell data with the small size probe (128 × 128 pixels, 

6400 diffraction patterns). The first one is testing the new WASP regularizer 

from Equation (6.3)  and (6.4)  with different parameters. The results are 

displayed in Figure 6.4. 
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Figure 6.4. The results for the new WASP regularizer with different parameters. 

The new regularizer uses the average operation instead of the maximum 

compared to the PIE style regularizer. It generally works well from Figure 6.4. 

The value of 𝛼 has a greater impact on the reconstruction than 𝛽, smaller 𝛼 

gives a better performance in the test. Note that when 𝛼 < 1.7 in our tests, the 

reconstruction of WASP initially collapsed. Therefore, we chose 𝛼 = 2  and 

𝛽 = 1, for our WASP regularizer. 
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The second test is for the PIE style regularizer. The results are shown in Figure 

6.5, compared to the WASP regularizer with 𝛼 = 2 and 𝛽 = 1. 

 

Figure 6.5. The results for the PIE style regularizer with different parameters. 

As Figure 6.5 shown, rPIE regularizer with a very small 𝛼 = 0.01 performs well 

in this test. However, when 𝛼 = 0.1, which is the value normally recommended 

in rPIE, the convergence rate is much slower, and the different value of 𝛼 and 

𝛽 give relatively large differences in results. Comparing Figure 6.4 and Figure 

6.5, in general, the new WASP regularizer is better than PIE style regularizer in 

terms of stability and convergence speed. Therefore, we will use the new regularizer 

with 𝛼 = 2 and 𝛽 = 1 for our further tests. 
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6.2.2. Noiseless Simulation Results 

The first noiseless simulation is the blood cell data from an optical bench 

ptychography experiment. The configuration was described in Chapter 5.5.1. 

There are two different sizes of probe used in this simulation, the simulation 

error of the large one (512 × 512 pixels, 400 diffraction patterns) is shown in 

Figure 6.6. Note that apart from WASP, the results of other algorithms are the 

same as shown in Chapter 5.5. The tuning results of GAT can also be found in 

Chapter 5.5. 

 

Figure 6.6. The error of simulation with large size probe (512 × 512 pixels, 400 

diffraction patterns), (a) The MSE between the reconstruction and the ground truth, 

(b) The MSE between the reconstructed diffraction patterns and the measurements. 

The reconstruction of WASP in this simulation is displayed in Figure 6.7, the 

centre part of it is zoomed in to show more details. 
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Figure 6.7. (a) The phase reconstruction of the simulation using large size probe 

(512 × 512 pixels). (b) The centre region with 200 × 200 pixels are displayed. The 

red box indicates the zoomed area. 

The second simulation is using a small size probe (128 × 128  pixels, 6400 

diffraction patterns). The simulation error is shown in Figure 6.8. 

 

Figure 6.8. The error of simulation with small size probe (128 × 128 pixels, 6400 

diffraction patterns), (a) The MSE between the reconstruction and the ground truth, 

(b) The MSE between the reconstructed diffraction patterns and the measurements. 
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As we can see from first simulation with the large probe, most algorithms can 

reach the threshold of the simulation error that equal to 10−5; the reconstruction 

below this threshold is visually indistinguishable from the ground truth. In this 

case, WASP only takes around 400 iterations to reach the minimum error. There 

are four algorithms (RAAR, 𝑇𝜆, GAT, and WASP) reached around the global 

minimum at the working precision of the computer, but RAAR and 𝑇𝜆  take 

around 2500 iterations to achieve this error level. The error of GAT is the lowest 

one as it is optimized based on error curve, but it is more time consuming due 

to the auto-tuning process. This is slightly different in the second simulation with 

the smaller sized probe. The small probe results in less information in each 

diffraction pattern and less overlapping between them, only WASP and GAT 

reached the minimum error within 2500 iterations. RAAR and 𝑇𝜆 seem to have 

a trend to converge, but it will take thousands of iterations before this eventually 

happens. WASP in this case is the most successful one from the error curve in 

Figure 6.8, it converges very fast and has the minimum error. WASP 

demonstrates a rapid initial convergence rate compared to other methods in 

both simulations, therefore, in the next section, a test with different initial 

conditions will be carried out to see its performance. 

6.2.3. Initial Convergence 

This test is about the robustness to the initial conditions, different initial errors 

will be added to the probe defocus. The test is using same blood cell object with 

the large size probes (512 × 512 pixels) that has different defocus error. The 

probe modelled the stopped-down beam from a soft X-ray source of 515 eV 

with an 8 mrad convergence semi-angle and a defocus of 750𝜇𝑚. The initial 

probes varied from 500 to 1000𝜇𝑚, equivalent to defocus errors from -33 to 

33%. The converge requirement for each algorithm is that the reconstruction 

error reaching 10−4 , the number of iterations it used will indicate its initial 

convergence rate. There are five algorithms selected for this test, basically 
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picked from three different levels of final error that shown in Figure 6.6 (a). GAT 

is not chosen here because its convergence rate is highly dependent on the 

tuning interval. The results are shown in Figure 6.9. 

 

Figure 6.9. The convergence speed of different algorithms with different defocus error 

in the initial probe. 

From the table in Figure 6.9, WASP generally does very well in all the range of 

defocus error in our test, in most cases, it only takes around 100 iterations to 

converge. Notable here is that the sequential projection algorithm (ePIE) and 

WASP can handle a poorer initial condition than set projection algorithms 

(RAAR, DM, ER) which rapidly diverged in the first few iterations when the initial 

defocus error was larger than 10%. Because of the characteristic that always 

reducing the error in ER method, it does converge eventually for a quite wide 

range of defocus errors, but it costs thousands of iterations. 

6.2.4. Noise Simulation Results 

Another test is the noise test, same as the previous test for the set projection 

algorithms in Chapter 5.5.4. The simulation object is a designed phase object; 

different levels of Poisson-distributed noise were added into the data, the 

details are shown in Figure 5.19. The first result is from a moderate level error 

which has 5 × 105 counts in each diffraction pattern, is in Figure 6.10. 
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Figure 6.10. The results from different algorithms, for the moderate level noise 

simulation (5 × 105 counts per diffraction pattern). (a) The MSE between the 

reconstruction and the ground truth, (b) The MSE between the reconstructed 

diffraction patterns and the measurements. 

WASP takes only 20 iterations to converge in the noise test, this is much quicker 

than other algorithms. Also, the performance of WASP considerable good, the 

phase reconstruction of WASP is shown in Figure 6.11, compared to other 

algorithms.  
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Figure 6.11. The reconstructions from different algorithms for the moderate level 

noise simulation (5 × 105 counts per diffraction pattern). 

As we can see, the reconstruction of WASP has a very high resolution at the 

centre, it only has some defects at some edges, better than 𝑇𝜆 and RAAR. 

Compared to GAT, WASP has more advantages in the time cost since the good 

reconstruction from GAT needs several times tuning. 

The second noise test is adding higher level noise to the data, which only has 

104 counts in each diffraction pattern. The simulation error is displayed in Figure 

6.12. 
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Figure 6.12. The results from different algorithms, for the higher level noise 

simulation (104 counts per diffraction pattern). (a) The MSE between the 

reconstruction and the ground truth, (b) The MSE between the reconstructed 

diffraction patterns and the measurements. 

In this case, most set projection algorithms failed in the test, including T λ and 

RAAR, which generally did very well in noiseless and moderate noise tests. ER 

has a very good noise tolerance, and it is stable in all the tests. WASP has the 

fastest convergence rate, however, the error slightly goes up after it reached 

the minimum. This phenomenon is probably caused by the local minima issue 

in the sequential part since it also happens in ePIE. 
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 Figure 6.13. The reconstructions from different algorithms for the higher level 

noise simulation (104 counts per diffraction pattern). 

Figure 6.13 illustrates the reconstructions from different algorithms, the 



171 

performance WASP is not bad in this very noisy simulation. As a combination 

of ER and ePIE, it improved a lot compared to ePIE, also it is faster than ER. 

6.3. Parallel WASP 

As mentioned before, apart from the small memory footprint, rapid initial 

convergence rate and robustness to noise and poor initial conditions, another 

important advantage of WASP is that it can be parallelized. Unlike set projection 

algorithms, sequential projection algorithms such like ePIE or rPIE cannot be 

fully parallelized, since in the sequence, any new estimate from one position 

has to feed into the next position. One solution of this is to divide all the positions 

into mini-batches [16], each of them handle a sub-set of the projections. These 

sub-sets can be processed in parallel by a similar way as set projections 

algorithm does. However, it is sequentially between mini-batches, the output of 

one mini-batch need to feed to the next one, finally, the output of batches feed 

serially into the object and probe updates. Here, we present a different way of 

parallelizing the sequential projection with the idea of WASP. A parallel example 

of the circle problem is illustrated in Figure 6.14, another constraint 𝑉  is 

introduced for better demonstration. For this four constraints problem, we 

equally divide them into two mini-batches: [𝑇, 𝑉]  and [𝑈, 𝑆] . Then, two 

sequential projections are conducted on each mini-batches, this step can be 

fully parallelized and distributed to different workers where each of them will 

handle one sequential projection. When all the sequential projections are 

completed, a weighted average (WA) will bring them into a single solution. 
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Figure 6.14. Parallel WASP 

Therefore, this is a new parallel way of sequential projection method that serial 

feeds parallel. In the ptychography application, the full data of diffraction 

patterns will be divided into random mini-batches. Each of them is assigned to 

a different worker, which conducts the sequential projection (SP) part of WASP. 

The outputs of each worker are four partially-filled matrices: the sums for the 

numerator and denominator of updating matrix that was shown in Figure 6.3. 

Finally, when all the workers finish the assigned job, these outputs will be 

summed and divided according to the weighted average (WA) part in Figure 6.3. 

A flow chart of parallel WASP is shown in Figure 6.15. 
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Figure 6.15. Flow chart of Parallel WASP 

The algorithm of parallel WASP can be written in two parts, the first one is called 

WASP Hive, which distribute jobs to different workers, collect and process the 

outcomes from them. The pseudocode of WASP Hive is shown in Pseudocode 

6.2. 
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Pseudocode 6.2: The WASP Hive 

Inputs: object (obj), probe function (probe), diffraction pattern sets (DPset), the number of 

workers (N), the total number of iterations (J). 

Outputs: reconstructed object (obj) and probe (probe) 

1 For (j = 1 to J) do 

 // Parallel for loop 

2 Parfor (n = 1 to N) do 

 // Assign diffraction pattern sets to different workers and collect the results from them 

3 [topOn, bottomOn, topn, bottomPn] = WASPwoker(obj, probe, DPsetn) 

4 End loop 

 // Weighted average update of object and probe 

5 obj = ∑ topOn𝑛  /(∑ bottomOn𝑛  + eps) 

6 probe = ∑ topPn𝑛  /(∑ bottomPn𝑛  + eps) 

7 Apply any additional constraints 

8 End loop 

Note: Parfor: parallel for loop. WASPwoker: a function that does SP 

part of WASP. eps: a small constant in MATLAB to avoid dividing 0. 

∑  𝑛 : sum along n direction. 

Different diffraction pattern sets are allocated to different workers at the same 

time in a parallel for loop at line 3 in Pseudocode 6.2. Assume each worker has 

the same computational power, diffraction patterns are suggested to be equally 

divided into mini-batches. The algorithm for a WASP worker is shown in 

Pseudocode 6.3. 
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Pseudocode 6.3: The WASP Worker 

Inputs: position vectors (R), object (obj), object size (X, Y), probe function (probe), probe 

size (M, N), intensity at relevant positions (I), the number of allocated positions (K), the 

number of sub-iterations (J). 

Outputs: numerator and denominator sums for object (topO & bottomO) and probe (topP & 

bottomP) 

1 For (j = 1 to J) do 

2 topO = bottomO = zeros(X,Y) 

3 topP = bottomP = zeros(M,N) 

 // Initialise numerator and denominator sums 

4 R = shuffle(R) 

5 For (k = 1 to K) do 

 // Form exit waves and apply the modulus constraint 

6 objBox = obj(Rk to Rk+[M,N]) 

7 exitWavek = objBox∙probe 

8 detectorWavek = 𝓕(exitWavek) 

9 correctedWavek = sqrt(Ik)∙detectorWavek /(abs(detectorWavek) + eps) 

10 newExitWavek = 𝓕−𝟏(correctedWavek) 

11 ∆exitWavej = newExitWavek-exitWavek 

 // Sequential projection update of object and probe 

12     obj(Rk to Rk+[M,N]) += conj(probe)∙∆exitWavej /abs(probe)2 + 𝐴 

13     probe += conj(objBox)∙∆exitWavej /abs(objBox)2 + 𝐵 

 // Update numerator and denominator sums 

14     topO += conj(probe)∙newExitWavek 

15 bottomO += abs(probe)2 

16 topP += conj(objBox)∙newExitWavek 

17 BottomO += abs(objBox)2 

18 End loop 

22 End loop 

Note: zeros: a matrix full of zeros. shuffle: a function that 

randomly change the order of the position sequence. 𝓕 : Fourier 

transform. 𝓕−𝟏: inverse Fourier transform. eps: a small constant in 

MATLAB to avoid dividing 0. sqrt: square root, abs: amplitude, conj: 

complex conjugate 

A single WASP worker will carry out the sequential projection part (SP) of WASP, 

the Pseudocode 6.3 also is same as Pseudocode 6.1 but without line 19-21. 

Because sequential projection algorithms have a very good initial convergence 

rate, only a few iterations can return a reasonable initial guess. Running the SP 

part for a number of sub-iterations generally provides a better quality of the 



176 

output sums. Moreover, run time of a single iteration of SP part is relatively 

small. Hence, a single iteration for each worker will significantly waste more 

time on the job allocation and data collecting in the Hive to achieve the 

convergence. On the other aspect, more workers will reduce the number of 

positions assigned to each one. The allocation of positions is random, however, 

actually some positions can be assigned more than one times to different 

workers. This causes the redundancy between WASP workers, higher 

redundancy will improve the convergence rate but also increase the 

computation time in each worker. In the next part, the simulation of different 

number of workers, sub-iterations and the redundancy will be discussed and 

compared. 

6.4. Simulation Results for Parallel WASP 

The simulations of parallel WASP use the same blood cell data as shown in 

Chapter 5.5.1. The test is noiseless and using the small size probe (128 × 128 

pixels, 6400 diffraction patterns). 

6.4.1. Simulation for Different Number of Workers 

The first simulation shows the influence of different number of workers. In total 

6400 diffraction patterns are equally divided into workers with 20% redundancy 

between each worker. Also, the number of sub-iterations is fixed to 5 in this test. 

The error metric is displayed in Figure 6.16. 
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Figure 6.16. The error metric of different number of WASP workers with 5 sub-

iterations and 20% redundancy, the brackets indicate the number of diffraction 

patterns allocated to each worker. 

As the number of workers increases, it takes more iterations to converge since 

each worker handle fewer diffraction patterns. Each time in a single worker, it 

processes a smaller fraction of the whole data will increase frequency of job 

distribution at the Hive. This relationship is nearly linear. Notable here is that 

more iterations of convergence do not mean more time consumption to reach 

the convergence. More workers will significantly reduce the time of each 

iteration due to the parallel computing and smaller data fraction. Ideally, if the 
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time cost by job distribution and collection is not considered, then in the best-

case scenario, doubling the number of workers will reduce the time per iteration 

by half. However, as the parallel WASP has not optimized for the parallel 

computations sufficiently, it is premature here to make any quantitative time 

analysis. 

6.4.2. Simulation for Different Number of Sub-iterations 

The second test is changing the sub-iterations. In this simulation, the number 

of workers is fixed to 8 with 20% redundancy. The results are shown in Figure 

6.17. 
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Figure 6.17. The error metric of different number of sub-iterations for 8 workers and 

20% redundancy. 

Generally, sub-iterations provide more prior knowledge from the overlapping 

between diffraction patterns through the sequential projections. Figure 6.17 

illustrates the convergence rate of different sub-iterations. Similarly, in the best 

theoretical scenario, doubling the number of sub-iterations will double the time 

consumption in each worker. In return, a better outcome from the workers will 

reduce the iterations for the convergence. From the error metric, 100 sub-
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iterations cost around 150 iterations while 50 sub-iterations cost about 300 

iterations; another pair is that 20 sub-iterations use about 700 iterations to 

converge while 10 sub-iterations need around 1300 iterations. The ratio in these 

two pairs is around factor 2, roughly matching the ideal time model. If we 

multiply the convergence iteration number with the sub-iterations, the total 

number of iterations is not much different as shown in Table 4. 

Table 4. The relationship between sub-iterations and the total iterations for the 

convergence. 

Sub-iterations 
Convergence iteration 

number (approx.) 
Total iterations 

100 150 15000 

50 290 14500 

20 700 14000 

10 1350 13500 

5 2900 14500 

Theoretically, it indicates that the number of sub-iterations does not significantly 

affect the final time consuming of the convergence. However, in practice, sub-

iterations affect the times of job allocations, and loading data to each worker 

will cost time as well. 

6.4.3. Simulation for Different Redundancy 

The final test is about the redundancy between workers. In this simulation, there 

are 8 workers with 5 sub-iterations in each. The redundancy represents the 

overlapping between mini-batches. Each batch will have some percentage of 

the duplicated diffraction patterns from other batches. This enhances the 

connection between each worker, improves the final global weighted average 

updating. The simulation results are shown in Figure 6.18. 
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Figure 6.18. The error metric of different redundancy for 8 workers with 5 sub-

iterations. 

The higher redundancy can reduce the convergence iterations, but the 

relationship seems not linear from Figure 6.18. Also, the increased time 

consumption of adding redundancy is difficult to evaluate. From our experience, 

20% redundancy generally works well, it can speed up the convergence rate 

with only a little additional time consumption. In another aspect, if a massive 

number of workers are used, in this case, there are only a few diffraction 
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patterns allocated to each worker, the redundancy will affect the max limitation 

of the parallelism. 

6.5. Conclusion 

In this chapter, we combined the sequential projection method and the idea of 

“divide and concur” in set projection methods, proposed a new approach called 

WASP. Like the sequential projection method, WASP has a rapid initial 

convergence rate, small memory requirement, and can handle a poor initial 

condition. On the other hand, WASP also has the ability to reach a global 

minimum and is parallelizable for large size data. It generally has the advantage 

of both sequential projection method and set projection methods. Moreover, it 

also has a good tolerance for the noise. WASP provides a new way to do the 

parallel computing in ptychography. This chapter analysed three different 

aspects that could affect the parallelism, such as the number of workers, sub-

iterations and redundancy between mini-batches. In the future, optimizing the 

regularizer for WASP can perhaps further improve its performance. Also, more 

algorithmic techniques in ptychography such like position correction [62], 

background noise correction [63-66] can be applied to WASP. Furthermore, 

WASP provides  a basic framework for ptychography. Based on this framework, 

different ptychographic applications can be implemented as well, such as 3D 

ptychography [67, 68], multi-slice [69-71] and modal decomposition [72-75], 

which gives WASP the potential for its future development and extension. 
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7. Real-World Experiments 

In this chapter, the different algorithms mentioned in previous chapters will be 

applied to the different types of real-world ptychography experiments to 

compare their performance. 

7.1. Optical Experiment 

The first data is from an optical experiment with visible light [59, 76]. The 

specimen is a plant leaf structure held by a microscope slide. It is a far-field 

experiment using laser illumination with a 675 nm wavelength. The data 

collection NA is 0.25, and probe NA is 0.16. The reconstruction results of some 

algorithms are shown in Figure 7.1. The result of RAAR is almost identical as 

Tλ, and DR is similar to RRR which has a very distinct phase ramp across the 

reconstruction. The error lines are displayed in Figure 7.2. WASP shows a very 

fast initial convergence rate, and it has the lowest error at the end. GAT worked 

as ER for a long time at the beginning, then after the successful tuning, the 

reconstruction is much improved compared to the ER. The tuning parameters 

are indicated in Figure 7.3. 
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Figure 7.1. The reconstruction results of the plant structure. (a) WASP, (b) GAT, 

(c) Tλ, (d) RRR, (e) ER, (f) ePIE. 
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Figure 7.2. The error metric for the plant structure experiment. 



186 

 

Figure 7.3. The values of 𝑎, 𝑏, 𝑐 for Generalized Auto-Tuning (GAT) algorithm for the 

plant structure reconstruction. 

7.2. X-ray Experiment 

The second experiment data is from a near-field X-ray experiment [69]. The X-

ray experiment used a cone beam geometry with a beam energy of 10 keV. The 

specimen is a Siemens star, which is designed to have features of varying 

spatial frequencies, making it useful for evaluating the resolution and contrast 

capabilities. The reconstruction results are illustrated in Figure 7.4, and the 

error metric is shown in Figure 7.5. 
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Figure 7.4. The reconstruction results of the Siemens star. (a) WASP, (b) GAT, (c) Tλ, 

(d) ER, (e) RRR, (f) ePIE. 
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Figure 7.5. The error metric for the Siemens star experiment. 

As it shown in Figure 7.4 and Figure 7.5, WASP has the best resolution in the 

reconstructions, and it converges faster and is more stable than ePIE. GAT had 

one successful tuning at the first hundred iteration. The tuning results were 𝑎 =

0.51, 𝑏 = 1.70, 𝑐 = 1.89, which gives a similar reconstruction as Tλ and RAAR. 

Although there is a slight phase ramp across Figure 7.4(a) diagonally, WASP 

was the only one that can roughly see the number of the 0.2𝜇𝑚  resolution 

target. Also, the reconstruction of WASP has a smoother edge for each spoke 
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in the Siemens star, while others’ edges seem to be brighter than other places 

in Figure 7.4(b-f). 

7.3. Electron Experiment 

The final experiment is near-field electron Lorentz ptychography, using a latex 

sphere sample with a TEM at 300 keV [77]. The phase reconstructions are 

shown in Figure 7.6, and the error metric is in Figure 7.7. It is the first time that 

we can see some reconstructed features from SF through all the simulations 

and real-world experiments tests. The DR type methods have a strong phase 

ramp at the edges. The tuning of GAT is not acceptable within 500 iterations; 

therefore, it remains using the parameters for ER, which is good in this case. 

WASP gives the most successful reconstruction in this test. As a combination 

of ER and ePIE, it embodies the progress, especially at the edge area. The 

latex sphere in Figure 7.7(a) are clearly visible, however the edges of the latex 

sphere in the other methods blend into the background in some places. 

Moreover, Figure 7.7(b-f) have some dark shadow in the background while the 

background of WASP is more clear and able to see more detail about the 

texture. 
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Figure 7.6. The phase reconstruction results of the latex sphere. (a) WASP, (b) ER, 

(c) ePIE, (d) Tλ, (e) RRR, (e) SF. 
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Figure 7.7. The reconstruction results of the latex sphere. 
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8. Conclusion and Future Work 

The development of ptychography brings great potential for solving the phase 

problem in microscope imaging. As a computational solution to the phase 

problem, there are many different categories of algorithms for ptychography. 

This thesis explored and tested these different phase retrieve algorithms with 

different simulations and real experiments data.  

The first one is a direct ptychographic solution called Wigner Distribution 

Deconvolution (WDD), described in Chapter 4. WDD is a closed and linear 

solution to the phase problem. However, it requires a dense scan which results 

in a massive 4D intensity dataset. WDD normally requires the prior knowledge 

about the probe, and the reconstruction is limited by the cut-off frequency in the 

4D dataset. In this thesis, we introduced the “project strategy” [33] which based 

on the “stepping out” [32] to break the cut-off limitation. Furthermore, we 

proposed a new iterative way to solve the probe function via the “project 

strategy” on the opposite direction. The probe solution is feasible in our 

simulation; however, its performance is not good as expected, compared to 

iterative method (ePIE). One reason is the value of the small constant in the 

Wiener filter used in the blind deconvolution. In the future, it is worth to 

implement a varying Wiener filter during the reconstruction to discover the 

optimum of the small constant. 

The second category is set projection algorithms in Chapter 5. We 

demonstrated the principles of set projections in detail using a simple three-

circle problem and explained the relationship between ptychography and set 

projections. After analysed most existing set projection algorithms for 

ptychography, we suggested a general projection algorithm with three tuning 

parameters 𝑎, 𝑏, 𝑐, which can form most existing set projection algorithms in 

ptychography. Based on this, Tλ and RRR are first time implemented to the 
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ptychographic problem. Furthermore, we proposed a new approach called 

generalized auto-tuning algorithm, which is based on Bayesian Optimization. 

This method can automatically tune the parameters 𝑎, 𝑏, 𝑐  during the 

reconstruction, and generally performs well in all the simulation tests. However, 

the time and memory cost of the optimization could be very high, depending on 

the dataset size. A better model to evaluate the influence of these parameters 

to the projections may provide a more efficient way for the tuning process. 

Finally, with idea of the set projection algorithm and the sequential projection 

algorithm, we proposed a novel ptychographic solution called Weighted 

Average of Sequential Projections (WASP) in Chapter 6. As a combination of 

set projection method and sequential projection method, WASP simultaneously 

incorporates the advantages of both; it has a rapid initial convergence rate, 

small memory requirement, robustness to poor initial conditions, noise 

tolerance, the ability to reach a global minimum and is parallelizable for large 

size data. Also, a parallel version of WASP was investigated with three different 

aspects. WASP provided a fundamental framework for ptychography, 

showcasing the potential for expansion into various types of ptychographic 

problem. From an algorithmic perspective, the future improvement of its 

performance may be enhanced by optimizing the regularizer.  
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