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Abstract

Advancements in cutting-edge observational technologies, combined with refined

helioseismic techniques, have revealed that the surface differential rotation (which

has been observed for hundreds of years) permeates throughout the convection zone

of the Sun, below which the radiative zone rotates approximately as a solid body.

The thin layer bounding these two regions is known as the solar tachocline and is

expected to play a vital role in many of the most interesting and least understood

solar mechanisms.

This thesis studies the local instabilities of differentially rotating, stably stratified,

magnetised stellar interiors, which are relevant for the lower regions of the tachocline

among many other astrophysical contexts. Our primary focus is on the ability of

these instabilities to transport angular momentum in the regions where they operate.

We use a local box model to analyse and simulate a small patch of the stellar

radiative zone within the tachocline.

Initially, we systematically explore the hydrodynamic regime, derive the dispersion

relation for axisymmetric modes, and identify key stability criteria. Our findings re-

veal two dominant instabilities: an adiabatic centrifugal instability and the diffusive

Goldreich-Schubert-Fricke (GSF) instability. Nonlinear simulations with generalised

differential rotation profiles show that these instabilities lead to the formation of

‘zonal jets’, whose orientation and angular momentum transport properties depend

heavily on the local rotation profile.

Transitioning to the magnetohydrodynamic system, we introduce a poloidal mag-

netic field and observe its interaction with the centrifugal and GSF instabilities,

as well as the new axisymmetric instabilities enabled by its presence, in particu-

lar the magnetorotational instability. We use linear theory in combination with an

analysis of the energetic properties of the system to derive stability criteria and

better understand the instabilities in the magnetised system. Nonlinear simulations

provide insights into the dynamo-generating and angular momentum-transporting

capabilities of such flows in the presence of a magnetic field.
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Chapter 1

Introduction

1.1 A brief history of sunspots and rotation

Since antiquity mankind has gazed to the heavens in the hope of a better under-

standing of our place in the universe. Cultures worldwide have revered the Sun as a

deity, symbol of life, and source of light, warmth, and energy. Ancient civilizations

built monuments and temples aligned with the Sun’s movements, such as Stone-

henge in England and the temples of ancient Egypt. Sun worship was prevalent in

societies like the Inca, Egyptian, and Aztec civilizations. Moreover, solar calendars,

based on the Sun’s annual journey, were developed by numerous cultures to track

time and seasons, influencing agricultural practices and societal events. In modern

times, the Sun’s energy is harnessed through solar technologies for electricity gen-

eration, heating, and other applications, playing a crucial role in efforts to combat

climate change and transition to renewable energy sources.

In terms of scientific observations, the earliest documented sightings of sunspots can

be traced back to 165 BC in the far east (Yau and Stephenson, 1988), mainly in what

is now China, where over a hundred pre-telescopic records exist (Wittmann and Xu,

1987; Yau and Stephenson, 1988; Eddy et al., 1989). Sunspots are characterized

as dark patches on the surface of the Sun, formed by an intense concentration of
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Figure 1.1: Two high-resolution images of sunspots on the solar surface. On the
right-hand side, we can clearly see the distinction between the center, known as the
umbra, and the slightly lighter region just outside of it, known as the penumbra,
which is surrounded by the solar surface (BBC, 2022).

magnetic fields (Weiss, 2007). The apparent darkness of sunspots results from these

magnetic fields inhibiting convection beneath the Sun’s surface, which leads to a

decrease in temperature locally (Solanki, 2003). Sunspot sizes can vary widely,

ranging from around 2, 000km to 100, 000 km in diameter, with most being on the

order of 10,000 km in diameter. The magnetic field’s loop-like structure often causes

sunspots to appear in pairs, with one spot exhibiting positive polarity (outward-

directed) and its corresponding spot displaying negative polarity (inward-directed).

Before Doppler measurements became feasible, scientists studied the Sun’s differen-

tial rotation by tracking sunspots and documenting their changes over time. Car-

rington’s meticulous observations from 1853 to 1861 (Carrington, 1863) revealed

that sunspots at mid-latitudes exhibited slower rotation compared to those nearer

to the equator, thus establishing that the solar surface rotates differentially. Since

sunspots are absent near the poles, determining the very slow polar rotation re-

quired the use of Doppler measurements, a more recent discovery. The number and

location of sunspots heavily depends on the level of magnetic activity and evolves

over time (Harvey, 1992). The evolution of the location and quantity of sunspots

is illustrated by the renowned “Butterfly diagram” (see Fig. 1.2), which showcases

the cyclic nature of sunspot occurrence over an 11-year period, along with a ten-
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Figure 1.2: The so-called “Butterfly diagram” consists of two panels: an upper panel
representing solar latitude on the vertical axis and time on the horizontal axis, and
a lower panel which records the relative solar surface area covered by sunspots over
time. Both figures illustrate the 11-year cyclic nature of the Sun’s magnetic activity
and in turn the number of sunspots, which we refer to as the solar cycle. Figure
courtesy of Hathaway (2015).

dency for sunspots to migrate towards the equator as time progresses. This diagram

provides valuable insights into the dynamic behavior of the Sun’s magnetic activity

and its influence on sunspot formation and movement (Tobias, 2002).

Understanding the origin of the butterfly diagram requires us to unveil the secrets of

the solar cycle. The term ‘solar cycle’ refers to the time it takes for the Sun’s mag-

netic field to flip polarity, and as a dynamical system, it is not yet fully understood

(Wilson, 1994). The Sun’s magnetic field is generated by a dynamo, a phenomenon

that occurs when plasma flow generates a magnetic field. While not all stars are

necessarily expected to possess a dynamo, the Sun certainly does. Some low to

medium mass stars (0.5M⊙ ≲ M ≲ 1.1M⊙, see 1.1)1 such as the Sun are comprised

of multiple distinct regions, several of which could potentially host a dynamo. In

the case of the Sun, most astrophysicists studying this problem now believe the dy-

namo primarily operates in a region of the Sun known as the “tachocline” (Tobias,

1Where M⊙ is defined to be one solar mass.
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2002; Jones et al., 2010; Weiss, 2010), a region of strong shear at the bottom of the

convection zone, which was discovered thanks to helioseismology.

Stars vs mass

The mass of a star is arguably its most fundamental parameter. Whilst

there is some variation, stars are normally categorised into: low-mass stars

(M ≲ 1.1M⊙) containing a radiative core whilst on the main sequence (MS)

and ending their lives as white dwarfs, intermediate-mass stars that have a

convective core whilst on the MS (1.1M⊙ ≲ M ≲ 8M⊙), which also end their

lives as white dwarfs, and then high-mass stars which have a mass (8M⊙ ≲ M)

sufficient to end as a supernova explosion, leading to either a neutron star or

a black hole (Chiosi and Maeder, 1986). Note there are also some very low

mass stars (M ≲ 0.5M⊙) which are fully convective and live so long that none

have yet reached their final stages of life, but we also expect these to end up

as white dwarfs (Eddy et al., 1989; Tayler, 1994; Schwarzschild, 2015).

The Sun is a low mass star, meaning its inner core is surrounded by a radiative

region, which rotates nearly as a solid body and where energy is transported

primarily through the absorption and re-emission of photons which gradually

diffuse outwards. This zone is characterized by high temperatures and den-

sities but low opacities. This inner ∼ 70% of the star by radius also contains

98% of the mass of the star and 90% of the angular momentum (AM) resides

here (Hughes et al., 2007). Beyond the radiative zone, there exists a region

unstable to convection whose rotation rate depends on radius and latitude;

this is known as differential rotation.

1.2 Helioseismology

New technologies are paving the way for cutting-edge observational techniques, al-

lowing us to verify previously uncalibrated stellar evolution models (Eggenberger

et al., 2008). At the forefront of these methods is helioseismology (Charbonneau

et al., 1999; Corbard et al., 1999), or more generally asteroseismology. Thanks to
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state-of-the-art observational facilities such as GONG (Global Oscillation Network

Group) and IRIS (International Research on the Interior of the SUN) whose sole fo-

cus is directed towards the solar surface, we are now inundated with data. What we

see are millions of modes simultaneously oscillating throughout the Sun, typically

possessing periods between 3 and 10 minutes (Kosovichev, 2003).

Figure 1.3: A pair of figures: The
left figure illustrates solar p-mode os-
cillations in the solar interior, while
the right figure shows the inferred dif-
ferential rotation, with red indicating
faster rotation (minimum ∼ 25 day
period) and blue indicating slower ro-
tation (maximum ∼ 29 day period)
(Engvold et al., 2018).

The first reliable observations of solar os-

cillations were taken in the early 1960s

(Noyes & Leighton, 1963; Leighton et al.,

2018). Initially believed to be a surface phe-

nomenon, it was only when Frazier (1968)

thought to take Fourier transforms of this

data and create a power spectrum with it

that its true nature became apparent. Some

significant progress quickly followed (Ulrich

& Rhodes Jr., 1977; Leibacher & Stein,

2018), with the key breakthrough occurring

in 1975 thanks to Deubner (1975), who, for

the first time, identified ridges in the wave-number frequency diagram, reflecting

the modal structure of the oscillations. Rhodes Jr. et al. (1977) reported similar

findings, comparing the observed frequencies with computational models to obtain

constraints on the properties of the solar convection zone.

The modes unambiguously observed in the sun are p-modes (see Fig. 1.3) and f-

modes; along with some hopeful attempts at resolving g-modes (Wolff, 1983). Pres-

sure modes (p-modes) are acoustic waves that propagate the interior of a star within

the region known as the acoustic cavity. This region ranges from the surface of the

star to the radius at which point the phase speed equals the adiabatic sound speed;

this is the lower turning point of the mode. The f-modes are standing waves, which at

high degree resemble surface gravity waves (Christensen-Dalsgaard and Thompson,

2007). Gravity modes or ‘g-modes’ are expected to occur in the radiative interiors of
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stars but, likely due to the convection zone, have yet to be unambiguously identified

in the Sun.

Efficient analysis of this data is made far easier thanks to spherical harmonics. Just

as a Fourier series represents a function as the sum of sinusoidal waves, spherical

harmonics represent a function on a sphere as the sum of spherical harmonics.

The spherical harmonics themselves are eigenfunctions of the Laplace operator on

the surface of a sphere. This means that when you apply the Laplace operator

to a spherical harmonic, you get back a multiple of the same function. Together

the spherical harmonics form an orthogonal and complete basis embedded into the

surface of a sphere, meaning any function defined on the sphere can be expressed as

a linear combination of these spherical harmonics.

Figure 1.4: An illustration of the
spherical harmonics, with azimuthal
order (m) along the x−axis, and lati-
tudinal order (l−m) along the y−axis,
with l = n + m ≤ 4 fixed (Hollebon &
Fazi, 2020).

The general idea in analysing the raw data

is to consider the governing equations in a

spherical geometry, after which the oscilla-

tions are considered to be small perturba-

tions around the equilibrium sphere. Af-

ter forming and separating the eigenvalue

problem into horizontal and radial compo-

nents the equations of motion are described

in terms of spherical harmonics, namely,

Y m
l (θ, ϕ) = clmP m

l (cos θ) exp(imϕ). (1.1)

The coefficients clm are chosen to make the spherical harmonics orthonormal so that

any oscillation can be written as a sum of spherical harmonics each with its coeffi-

cient. These Y m
l (θ, ϕ) are known as the spherical harmonics, which are functions of

co-latitude θ and longitude ϕ, and the P m
l are the associated Legendre polynomials.

A non-radial mode in a non-rotating star is characterized by three wave numbers:
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the degree l and the azimuthal order m which determine the behavior of the modes

across the surface of the star, and the radial order n determines the number of nodes

radially. In general the frequencies ωnlm of stellar oscillations depend on all three of

these numbers. The dependence on time of an arbitrary oscillation can be written

exp(−iωnlmt), so in general a radial displacement is described by the real part of

the sum over all of these individual mode oscillations.

Once we have obtained the nature of these oscillations what follows is an inverse

problem to obtain the properties of the interior of the star, or in the case of helio-

seismology, the Sun.

1.2.1 Helioseismology as an inverse problem

Helioseismology is an inverse problem in the sense that to calculate the internal

structure from observational modal data, we must first assume a structure and then

iteratively converge towards the true solution. Several methods can perform these

types of inversions, such as “Regularized Least Squares” (Eff-Darwich & Hernández,

1997) or more modern techniques like “Full Waveform Inversion” (Hanasoge, 2014).

While the theory for the latter is currently incomplete in a helioseismic context,

it holds promise for much more detailed observational images in the future. The

general algorithm for such an inverse method involves assuming a starting model

resembling the internal structure. Then, we forward propagate this model to predict

its output based on the assumed properties. Next, we compare this output with

observational data and, using our chosen algorithm, update and improve our starting

model iteratively. These iterations are repeated until the residual (the difference

between observational and modeled data) is sufficiently small.

1.2.2 Rotation and rotational splitting

If a model of the Sun is perfectly spherical, modes with different azimuthal orders

m would exhibit identical frequencies. However, rotation breaks this symmetry,

causing the modal frequencies to be altered by the effect of rotational splitting. In
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the Sun this effect is described to first-order (i.e. weak rotation relative to mode

frequency) by:

ωnlm = ωnl0 + m

∫ R

0

∫ π

0
Kmln(r, θ)Ω(r, θ)rdrdθ, (1.2)

here r is the spherical radius and the modes with no azimuthal dependence (and

so don’t experience rotational splitting) are given by ωnl0 (Christensen-Dalsgaard

& Thompson, 2007). This is an odd function of m. The fact that different m’s

have different frequencies means it’s possible to distinguish between +m and −m

modes in the data, allowing the rotation to be observed. Knlm are functions of the

spherically symmetric structure of the Sun and are generally assumed to be known

to an adequate degree of accuracy so that the above equation gives restrictions on

the unknown angular velocity profile Ω(r, θ) in the Sun.

In terms of rotational properties, helioseismology has revealed:

• The presence of a thin shear layer, known as the tachocline, demarcating the

rigidly-rotating interior from the differentially-rotating convective envelope.

• Variations in rotation rate with depth and latitude within the convective en-

velope - known as differential rotation.

• A thin shear layer just beneath the surface, where the rotation rate gradually

decreases towards the surface.

1.3 Stellar rotation

Stars are born from interstellar gas clouds, and much like how an ice-skater will spin

faster as they bring their arms inward, as a cloud becomes smaller and more compact,

the conservation of angular momentum acts to spin up the protostar (McKee &

Ostriker, 2007). This inherited rotation often evolves intrinsically with the magnetic

field, which, neglecting non-ideal effects, is frozen into the star’s conducting plasma.

This interaction amplifies during the star’s formation, arguably making rotation one
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Figure 1.5: Solar differential rotation as inferred by helioseismology. This figure
illustrates the surface and convection zone of the Sun rotating faster at the equator,
with a period of approximately 25 days, compared to the poles, where it has a period
of approximately 29 days (Thompson, 2004).

of the most influential mechanisms governing the star’s subsequent evolution.

Once formed, the subsequent evolution of its rotation is governed by the interplay of

angular momentum lost through its external, magnetically dominated stellar wind,

and the redistribution within its interior. In the case of the Sun, the redistribution

of angular momentum, particularly throughout the convection zone, leads to a dif-

ferentially rotating configuration where the equator of the star rotates more rapidly

than the poles (Goldreich & Schubert, 1967; Rüdiger, 1989; Balbus et al., 2009).

Differentially rotating configurations give birth to a whole new landscape of impor-

tant mechanisms that drastically alter the evolutionary trajectory of a star (Spiegel

& Zahn, 1970; Knobloch & Spruit, 1982), including the redistribution of chemical

elements and angular momentum transport via meridional circulations, magnetic

effects, waves, and instabilities (Hughes et al., 2007; Maeder, 2008; Aerts et al.,

2019), all of which will be discussed shortly.

In essence, despite its great importance, the details of stellar rotation (and linked
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mechanisms) remain poorly understood. Thus, in order to elevate our understand-

ing, it is imperative to learn more about the mechanisms involved, with the goal of

understanding the underlying physics in a way that allows us to better parameterise

their effects and include such parameterisations in future, more accurate stellar

evolution codes (Eggenberger et al., 2008; Aerts et al., 2019; Buldgen, 2019b).

1.4 The solar tachocline

The tachocline is a thin layer of strong shear joining the differentially rotating

convection zone to the solid rotation of the radiative zone (Tobias, 2005). It was

initially discovered after the advent of helioseismology (Charbonneau et al., 1999;

Corbard et al., 1999), which, for the first time, has given us the ability to probe the

internal structure and rotation of the Sun.

Through analysis of surface oscillations, primarily driven by pressure waves in the

Sun’s interior, researchers have identified the tachocline as a prolate shell (Tobias,

2005; Miesch et al., 2007), slightly thicker at the equator than at the poles (Charbon-

neau et al., 1999). It exhibits a complex rotation profile, with its outer boundary

placed within the differentially rotating convection zone, and its stably stratified

interior rotating nearly uniformly (Charbonneau et al., 1999) (see Fig. 1.5).

As the tachocline connects the dense radiative interior, housing approximately 95%

of the Sun’s AM (Hughes et al., 2007), to the convective envelope, characterised by

a complex AM profile and mass loss through the solar wind and associated magnetic

braking (Mestel, 1968), its role in the Sun’s AM evolution is crucial.

Given the solid body rotation of the radiative interior juxtaposed with the strong

differential rotation exterior to it, force imbalances within the tachocline induce

a meridional circulation that transports AM towards latitudes where the exterior

rotates faster than the interior (Sule et al., 2005). This circulation likely includes

a smaller radial component, allowing for leakage into the convection zone or, to

a lesser extent, the denser radiative zone, albeit over a timescale where thermal
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diffusion counters opposing buoyancy forces (Hughes et al., 2007).

Convective overshoot at the tachocline’s outer boundary occurs when convective

plumes with sufficient AM penetrate its upper reaches (Miesch, 2005), leading to a

complex interplay between convection and shear, contributing to the excitation of

gravity waves in the radiative zone (Rogers & Glatzmaier, 2006) that produce AM

transport (Brummell et al., 2002), compositional mixing, and modifications to the

magnetic field.

The tachocline is suspected to experience a range of hydrodynamic and magnetohy-

drodynamic (MHD) instabilities (Rashid et al., 2008; Gilman, 2018), which can drive

turbulent motions and various forms of mixing. These instabilities can draw energy

from kinetic, gravitational, and magnetic sources, or a combination thereof. The

complexity of the dynamics within the tachocline, and radiative zones more broadly,

presents challenges in parameterising its role in stellar evolution codes. This is espe-

cially evident in red and sub-giant stars, where discrepancies between core-envelope

differential rotations inferred from asteroseismology and existing models highlight

this difficulty, particularly in terms of missing angular momentum (e.g., Eggenberger

et al., 2008; Aerts et al., 2019). Further research is needed to address these discrep-

ancies and improve parameterizations. By gaining a deeper understanding of these

dynamics, more accurate parameterisations can be integrated into stellar evolution

codes, enhancing their predictive capabilities and leading to improved results that

may better explain observations.

1.5 Modelling stars

We turn to the introduction of stellar evolution models by first discussing some

important timescales of interest.
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1.5.1 Timescales

Even with accelerating advancements in computational technology, quantum com-

puting, and AI, realistic simulations of stars still seem at best improbable in the

near future.

Perhaps the most fundamental issue surrounding this development is the vast range

of both spatial and temporal scales at play. Examples range from oscillations and

instabilities spanning only hundreds or thousands of kilometers, and fluctuating over

minutes and days, to global properties that evolve over several billion years.

One of the shortest relevant timescales, equating to around half an hour in the

Sun is the dynamical timescale (Kippenhahn et al., 1990; Prialnik, 2000; Maeder,

2008). This is on the order of time required, if thermal pressure supporting the gas

against the pull of gravity were to suddenly vanish, for the star to collapse in upon

itself. Characteristically, we expect this timescale to be roughly
√

R/g, where R is

the stellar radius and g ∼ GM/R2 is the gravitational acceleration at the surface,

G ∼ 6.67 × 10−11 being the Newtonian constant of gravitation (with the value in SI

units) and M is the total mass. Hence

tdyn ∼

√
R3

GM
. (1.3)

If a star is dynamically stable this is the timescale on which a small perturbation

would be restored to its equilibrium position. Whilst a star remains on the main

sequence phase it is typically be considered very close to being dynamically stable.

Another important timescale used when characterising a star is the thermal or

Kelvin-Helmholtz timescale tKH , with a value around 107 years for the Sun (Pri-

alnik, 2000; Maeder, 2008; Pols, 2011), named after the two physicists who first

described it as the evolutionary timescale of a star generating its energy output

solely by gravitational contraction. This is given by the gravitational binding en-
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ergy Eg ∼ GM2/R divided by the luminosity L. Such that,

tKH ∼ GM2

RL
. (1.4)

The largest of the timescales is that of the nuclear timescale tnuc, which is the total

energy sources of the star divided by the rate of energy loss. tnuc ∼ 1010 years for

the Sun (Kippenhahn et al., 1990; Pols, 2011).

1.5.2 Solving for stellar structure - 1D stellar models

The construction of a stellar model involves solving a set of differential equations

rooted in fundamental physical principles, alongside appropriate boundary condi-

tions for both the star’s core and its surface. These equations must account for

various microscopic properties of stellar matter, such as the behaviour of gases,

nuclear reactions, and interactions between radiation and matter (Prialnik, 2000;

Maeder, 2008). Despite considerable advancements in computational capabilities,

achieving comprehensive three-dimensional models throughout a star’s evolutionary

stages remains seemingly impossible, primarily due to the vast range of timescales

involved (Pols, 2011).

As a result, either significant simplifications must be adopted to reduce compu-

tational complexity, or alternative modeling methods, such as a local box model

(Hawley & Balbus, 1992; Hawley et al., 1995; Barker et al., 2019) can be employed

to study a particular aspect of the problem. Simplifications can involve ignoring fun-

damental effects like rotation and magnetism, resulting in a spherically symmetric

system devoid of many observed waves, instabilities, and flows.

Since it is not yet feasible to include all important physical processes in stellar evolu-

tion models, a common approach is to study a particular phenomena in isolation to

understand its dynamical properties, such as its role in mixing chemical elements,

driving flows or magnetic fields, and transporting angular momentum. These in-

sights are then used to parameterize their effects, unfortunately often through ad-hoc
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diffusive coefficients, which are then incorporated into stellar models (Eggenberger

et al., 2008; Aerts et al., 2019).

The relevance of a particular physical phenomenon in computational models depends

on the specific characteristics of the type of star being studied, which can vary from

slow rotators or those with hardly detectable magnetic fields to rapidly rotating

stars and/or with dominating magnetic fields (Maeder & Meynet, 2000; Donati &

Landstreet, 2009).

Typically, deforming effects such as those from centrifugal forces, magnetic fields,

and tidal interactions are ignored, resulting in spherically symmetric models, which

are a good first global approximation given the oblateness of the Sun is very small

(Dicke & Goldenberg, 1974). This simplifies the governing equations, which are often

expressed in terms of global spherical polar coordinates, with the radial coordinate

(r) representing the distance from the star’s center and mr representing the mass

enclosed within that radius.

In terms of global evolution, it is instructive to consider the simplest case of a spher-

ically symmetric star with no magnetic field or rotation in dynamical equilibrium.

To describe this scenario, we require four equations: conservation of momentum,

mass, energy, and one describing the nature of heat transport.

Here the momentum equation expresses the acceleration in terms of two components:

the outward acceleration due its pressure gradient, and the inward acceleration due

to gravity. These are the most fundamental forces, and additional forces may be

included depending on the specific problem being analysed. Whilst in its main

stage we consider a star to be in hydrostatic equilibrium, where the total radial

acceleration is zero, indicating a balance between these forces.

If we consider a fluid element with dmr = ρdrdS as seen in Fig. 1.6, then we can

equate forces acting on the fluid element and note that they must balance such that,

∂2r

∂t2 = −g dmr + P (r)ds − P (r + dr)ds. (1.5)
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From here we can note P (r + dr) = P (r) + ∂P
∂r dr and use dmr = ρdrdS along with

the standard form for the gravitational potential in a spherical body (g = Gmr
r2 ) to

give,
∂2r

∂t2 = −1
ρ

∂P

∂r
− Gmr

r2 , (1.6)

whilst in equilibrium, ∂2r
∂t2 = 0, so

dP

dr
= −Gρmr

r2 . (1.7)

Figure 1.6: A shell of mass dm inside
a spherically symmetric star, at radius
r and with thickness dr. The mass of
the shell is dm = 4πrρdr. The pres-
sure and gravitational forces acting on
the cylindrical mass element are also
indicated. Figure courtesy of (Pols,
2011).

This is a simplified form of the Navier-

Stokes momentum equation governing an in-

viscid, compressible, non-magnetic fluid in

a gravitational field describing hydrostatic

balance.

To obtain our next fundamental equation

we consider the conservation of mass acting

on some shell element dS. Under the same

forces as seen in Fig. 1.6, this gives

dm(r, t) = 4πr2ρdr − 4πr2ρvdt, (1.8)

where v is the radial acceleration (v = 0 in

hydrostatic equilibrium). We can then take

derivatives with respect to dr and dt, which yield,

∂m

∂t
= −4πr2ρv, (1.9)

∂m

∂r
= 4πr2ρ. (1.10)

Cross-differentiating and equating the above equations leads to the spherical form
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of the mass continuity equation,

∂ρ

∂t
= − 1

r2
∂

∂r
(ρr2v). (1.11)

Note that if this shell was located at the surface of the star, v > 0 in 1.9 would

correspond to a solar wind (loss of mass), and v < 0 would correspond to accretion

(mass gain), however as mentioned we’ll be taking v = 0 since this corresponds to

hydrostatic equilibrium. When we take v = 0 the second equation, 1.10, becomes

dmr/dr = 4πr2ρ. In general this equation relates the mass to the radius of the star,

in turn giving us the second fundamental equation of stellar structure.

The next equation comes from the conservation of energy. If we define Lr as the

energy passing through the sphere of radius r per unit time, aka the Luminosity, we

have
∂Lr

∂mr
= ϵ − ∂q

∂t
, (1.12)

where ϵ is the sum of the energy generated via nuclear processes per unit time, per

unit mass, at a radius r, including losses associated with neutrino emissions, and dq

corresponds to the heat per unit mass exchanged between the shell and its adjacent

layers within the time dt.

Lastly we have the temperature distribution which depends on the efficiency of the

radiative transport, the scales associated with which are typically much less than

the stellar radius for most of the interior of a star. In convectively stable zones the

radiative energy flux, F , is given in terms of the temperature, T , by

F = −4acT 3

3κρ

∂T

∂r
, (1.13)

where ρ is the density, c the speed of light, a the radiation-density constant, and κ

is the Rosseland mean opacity. Since Lr = 4πr2F , this leads to

∂T

∂r
= − 3κρLr

16πacr2T 3 , (1.14)

16



in radiative regions. Convectively unstable regions are less straightforward and

require the introduction of a theory for convection, such as mixing length theory.

This invokes a ‘mixing length’, representing the mean free path of a macroscopic

parcel in a fluid. In this case our energy transport equation takes the more general

form
∂T

∂mr
= −GmrT

4πr4p
∇, (1.15)

where ∇ ≡ ∂ ln T/ ln p depends on the particular choice of mixing length theory

employed.

Hence, the four equations governing the properties of a star’s internal structure

whilst on the main sequence are,

∂mr

∂r
= 4πr2ρ, (1.16)

∂p

∂r
= −Gmrρ

r2 , (1.17)

∂Lr

∂r
= 4πr2ρ(ϵ − ∂q

∂t
), (1.18)

∂T

∂r
= −GmrTρ

r2p
∇, (1.19)

representing the continuity of mass, hydrostatic balance, energy and heat transport

equations, respectively.

In reality hydrostatic equilibrium is the standard configuration for a star to be in

whilst along the main sequence, however during the early stages of its formation

and the latter stages of its life this approximation won’t be valid. As previously

mentioned these equations govern a very idealised situation and improving their

accuracy requires the inclusion of additional information in the governing equations.

Due to the difficulties involved in resolving dynamics such as waves or turbulence

in such models, they’re often included in very sub-optimal ways (Eggenberger et

al., 2008; Aerts et al., 2019). For example many types of waves and instabilities

transport angular momentum and in turn can evolve the internal rotation profile
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of a star (Maeder & Meynet, 2000; Prialnik, 2000; Rogers & Glatzmaier, 2006),

yet these are often included in models as isotropic diffusive coefficients. This is a

significant simplification over reality and ignores all nontrivial orientation properties

of these phenomena. Our hope is that refining our understanding of the transport

induced by such instabilities will lead to more accurate parameterisations, hence

enhancing stellar evolution models, and ultimately progressing our understanding

of stellar evolution.

1.5.3 The evolution of stellar rotation profiles

Stellar rotation opens the door to a zoo of new dynamical processes that regulate

the transportation of angular momentum and, in turn, evolve the star’s rotation

profile (and possibly affect mixing of chemical elements). These numerous processes

necessitate modifications to the basic equations of stellar structure. In particular, we

require an additional equation to govern the transport of angular momentum. Due

to the strong stable stratification, the transport of angular momentum is thought

to be considerably horizontally dominated. Zahn (1992) argued that due to this

strong stratification, the dominating horizontal transport will mix the rotation rate

efficiently in the horizontal direction unimpeded by the stable stratification, leading

to rotation that is approximately constant with radius, Ω(r), commonly refereed

to as ‘shellular rotation’ (though this view has also been disputed e.g. Gough and

McIntyre, 1998).

For a shellularly rotating configuration, the equation of angular momentum trans-

port in the vertical direction is, in Lagrangian coordinates (following e.g. Zahn,

1992; Meynet and Maeder, 2000), given by:

ρ
d

dt

(
r2Ω

)
Mr

= 1
r2

∂

∂r

(
ρDr4 ∂Ω

∂r

)
+ . . . . (1.20)

Here D is the total diffusion coefficient representing the effects of various instabili-

ties that operate and transport angular momentum, assuming they act like a simple

isotropic viscous diffusive process. The dots indicate terms that we have omitted
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from discussion here, such as transport of angular momentum by meridional circula-

tions. However, a lackluster understanding of the fundamental processes—including

the transport of angular momentum via instabilities—means that such equations

can lack precision and lead to errors in models that use these approaches. Our

hope is that through developing better understanding and generating improved pa-

rameterisations of such phenomena, we can develop more accurate stellar evolution

models that better match asteroseismic observations (Aerts et al., 2019).

It’s also worth briefly noting that the evolution of a star’s rotation profile is heavily

influenced by the mass loss that it experiences through its stellar wind (Maeder &

Meynet, 2000). The effect of a stellar wind on its rotation profile comes not only

from the outward loss of mass but also as a result of magnetic braking. This means

that the transport of angular momentum itself is heavily dependent on the rotation

properties of the star (Meynet & Maeder, 2000).

1.6 Angular momentum transport in the solar tachocline

In the Sun, the radiative interior contains approximately 98% of its mass (Hughes

et al., 2007), and the vast majority (95%) of its angular momentum. It is standard

practice in the treatment of the structure and evolution of such stars to assume

radiative regions are quiescent. However, in reality, they likely host an array of in-

teresting dynamics, many of which are potential mechanisms for angular momentum

transport; and hence may address some of the shortcomings of our current theories.

In the Sun, the tachocline is a particularly interesting region for angular momen-

tum transport. Serving as the boundary between the radiative interior where the

majority of angular momentum resides, and the convective zone, which continually

sheds angular momentum through its stellar wind (Mestel, 1968), it plays a crucial

role in the evolution of the Sun’s rotation profile. Its significant shear, buoyancy,

and magnetic fields offer a variety of potential mechanisms for transporting angu-

lar momentum, including instabilities, waves, and transport along magnetic field
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lines (Tobias, 2005; Gilman, 2018; Aerts et al., 2019). Furthermore, the anisotropic

nature of these forces can induce meridional circulations, further influencing the re-

distribution of angular momentum within the star (Sule et al., 2005; Balbus et al.,

2009).

The following sections will focus on the four main mechanisms of AM transport as

identified by e.g. Marques et al. (2013) and Aerts et al. (2019): meridional circula-

tion, waves, magnetism and the key topic of this thesis, instabilities.

1.6.1 Meridional Circulation

Meridional circulation is the large-scale flow along meridional lines (i.e. lines of con-

stant longitude), and acts to stir stellar radiative zones (Sule et al., 2005). Such

circulations are attributed to the centrifugal effects rotation has on the star’s iso-

bars, the Lorentz forces if a magnetic field is present, and in the case of a binary

system, the tidal forcing present. The most modern assessment of the loop of an-

gular momentum transport via meridional circulation is as follows (Decressin et al.,

2009; Rieutord & Espinosa Lara, 2009): meridional currents are first sustained by

internal stresses (such as those from instabilities) as well as from torques at the

surface due to magnetic braking and the stellar wind (Mestel, 1968). The tempera-

ture profile then changes to balance the advection of entropy due to the circulation,

and finally, due to the baroclinic torques induced by the latitudinal distribution of

temperature fluctuations on the isobar, a new differential rotation profile is formed.

This can in turn generate new flows, thus closing the loop.

1.6.2 Waves

Waves arise from the presence of restoring forces within a system. In an astrophysical

context, these forces include compressibility, stratification, magnetic fields, rotation,

or tidal effects, giving rise to sound waves, internal gravity waves (IGWs), Alfvén

waves, and inertial waves, respectively. In reality it is often more complex waves that

emerge as a result of a combination of these restoring forces. In general waves can
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be effective transporters of angular momentum, but in particular IGWs and Alfvén

waves are two particularly common and efficient propagators of AM (Schatzman,

1993; Kumar et al., 1999; Rogers & Glatzmaier, 2006; Bühler, 2014).

Internal gravity waves

In a stellar context, the most common and efficient mechanisms of IGW genera-

tion stem from either a tidal forcing due to a companion star (or planet), or from

the adjacent convective zone. Tidal generation of waves occurs primarily at the

radiative-convective interface. Subsequently, mechanisms such as thermal diffusion,

nonlinear breaking, and critical layers act to dissipate the waves, in turn facilitat-

ing the transfer of angular momentum between the interacting bodies (Goodman &

Dickson, 1998; Barker & Ogilvie, 2010, 2011; Weinberg et al., 2012; Essick et al.,

2016). In the solar case however the planets are too far away and so the gravitational

force between them is too small to generate IGWs efficiently. Internal gravity waves

(IGWs) propagate when their frequency, represented by ω, is lower than the sur-

rounding buoyancy frequency, N . The extent to which thermal diffusion affects the

wave depends heavily on its frequency and wavelength (Staquet & Sommeria, 2002).

Essentially, thermal diffusion extracts energy from within the wave and diffuses it

into the local surroundings, especially when the waves have a low frequency (and

hence for short radial wavelengths). The dispersion relation for short wavelength

IGWs, without shear or rotation, is given by,

ω2 = N 2 k2
⊥

k2 . (1.21)

Nonlinear wave breaking can result from the overturning of stratification surfaces,

leading to convective instability, or from the shear of the wave itself, known as the

Kelvin-Helmholtz instability.

In singular stars, the primary source for IGW generation is through their neigh-

bouring convection zones, and occur as a result of two primary mechanisms: bulk

excitation through Reynolds stresses in the convection zone and directly through
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convective plumes (Staquet & Sommeria, 2002). In rotating systems the Coriolis

force can lead to so-called inertial waves (Rieutord & Valdettaro, 1997; Zhang et al.,

2001). These can also be excited through tidal interactions or by convection (Astoul

et al., 2021; Astoul & Barker, 2023; De Vries et al., 2023), and in both cases these

waves can transport AM.

In a frame rotating at the rate Ω the momentum equation for an incompressible

inviscid fluid (after removing the viscous term) can be written,

∂u

∂t
+ (u · ∇)u + 2Ω × u = −1

ρ
∇p, (1.22)

which after linearisation and seeking exponential solutions of the form exp (ik · x − iωt)

we obtain the following simple dispersion relation,

ω = ±2(k · Ω)
|k|

, (1.23)

or equivalently

ω = ±2Ω cos θ, (1.24)

where θ is the angle between the rotation axis and the direction of the phase velocity.

Note the interesting property that the group velocity of an IGW, given by dω/dk,

is always perpendicular to its phase velocity, ω/k.

1.6.3 Magnetic fields

Under the extreme conditions in stellar interiors, electrons are stripped from their

parent atoms, thereby creating a soup of free flowing electrically charged parti-

cles, commonly referred to as plasma. When a plasma flows the motion of charged

particles generates a corresponding magnetic field, which itself interacts with the

fluid, leading to a wide array of complex dynamics, including solar flares (see

Fig. 1.7), prominences, and sunspots (Sweet, 1969; Van Ballegooijen & Martens,

1989; Svestka, 2012). Such configurations require a more sophisticated set of equa-

tions, necessitating the combination of Maxwell’s Laws of Electromagnetism with
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the Navier-Stokes equations. Alfvén (1942) made important contributions to the

field known as Magnetohydrodynamics (MHD), for which he was awarded the 1970

Nobel Prize in Physics.

Alfvén waves

Figure 1.7: Image captured by
NASA’s Solar Dynamics Observatory
(2017) of a solar flare – as seen in
the bright flash on the right side – on
Sept. 10, 2017. On the left hand side
of the image we can also see a solar
prominence protruding out at roughly
latitude 30◦.

From these equations we can see another

type of wave that is extremely prevalent

in astrophysical contexts are Alfvén waves

(Alfvén, 1942). These waves occur in

magnetohydrodynamic systems due to the

Lorentz force linking the momentum and

magnetic induction equations. Here the

magnetic tension in the field lines can act

as a restoring force to perturbations in the

fluid. Like other waves, Alfvén waves gener-

ate Reynolds stresses and so can transport

angular momentum that way, however they

also lead to magnetic internal stresses that

transport AM (known as Maxwell stresses),

which must also be taken into account.

In the simplest case of an incompressible magnetic fluid with no diffusion or gravity,

the full system of governing equations would be,

ρ0(∂u

∂t
+ u · ∇u) = −∇p + 1

µ0
(∇ × B) × B, (1.25)

∇ · u = 0, (1.26)

∂B

∂t
= ∇ × (u × B), (1.27)

∇ · B = 0, (1.28)
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where 1.25 contains the Lorentz force (in which µ0 is the magnetic permeability) in

the final term, 1.27 is the induction equation and 1.28 is the solenoidal constraint

on B. Performing a linear analysis on this set of equations in a similar manner to

the above, with B = B0 + b (where B0 is the imposed background field and b is

the perturbation to the magnetic field), we find the dispersion relation for Alfvén

waves:

ω2 = (B0 · k)2

µ0ρ0
. (1.29)

If we define vA = B0/
√

µ0ρ0 as the Alfvén speed, and θ as the angle between k and

B0 (in this section), then it follows,

ω2 = v2
Ak2 cos2 θ. (1.30)

Dynamos

A dynamo is a mechanism that sustains a magnetic field against diffusive decay. Low

to medium mass solar-type stars, which possess convective envelopes like the Sun,

are thought to generate dynamos. Additionally, around 10% of intermediate to high-

mass stars retain stable large-scale fossil magnetic fields from their formation (Aerts

et al., 2019). It is possible even stars with undetectable dynamos in their convective

interiors are affected by the dynamics and evolution of their fields. Coupling a star’s

stellar wind and magnetic field also leads to the redistribution of angular momentum

through a mechanism known as magnetic braking, which acts to ‘spin down’ the star

over the course of its evolution.

Magnetic fields also offer additional mechanisms for the transport of angular mo-

mentum (Moyano et al., 2023), beyond their interactions with the stellar wind. In

stably stratified regions with differential rotation, the shear flows lead to a stretch-

ing of the field lines, which through the Lorentz force ultimately causes the field to

act back on the flow, leading to an exchange of momentum. This process generally

acts to enforce uniform rotation (Mestel & Weiss, 1987). Furthermore, if a fossil

magnetic field connects adjacent radiative and convective zones, some differential

24



rotation can be transferred to the radiative zone via the field lines e.g. Strugarek

et al. (2011).

Magnetic fields can also introduce numerous additional instabilities, with two of

the best studied being the magnetorotational instability (MRI), and the Tayler

instability, which have both proven to be promising methods of enhancing angular

momentum transport as well as being mechanisms of dynamo generation (Spruit,

2002; Cantiello et al., 2014; Goldstein et al., 2019).

1.6.4 Instabilities

Some of the primary physical mechanisms enhancing angular momentum (AM)

transport in stars involve (magneto-)hydrodynamic instabilities e.g., Maeder, 2008;

Meynet et al., 2013; Kitchatinov, 2014; Aerts et al., 2019. When a system be-

comes unstable, turbulence can be induced, and depending on the properties of the

Reynolds and Maxwells stresses, can either enhance or restrict the flow of angu-

lar momentum in a particular direction. The timescales governing the evolution a

given instability depend on the dominant mechanism driving the instability and the

limiting mechanisms involved.

Differential rotation can induce instabilities in regions of stars that are convec-

tively stable, such as the solar radiation zone (Spiegel & Zahn, 1970; Watson, 1980;

Knobloch & Spruit, 1982). Apart from transporting angular momentum, these in-

stabilities can also mix chemical elements, which is thought to be an important

factor in a star’s evolution (Aerts et al., 2019). There are several canonical hydro-

dynamic instabilities that could occur within radiation zones, arising from rotational

kinetic energy, misalignment of equipotentials, shear flows, compositional gradients,

and magnetic fields. Here I will touch on those most relevant to this thesis.

Centrifugal instability of differentially-rotating flows

Centrifugal instabilities were first studied by Rayleigh (1917) and shortly after in

the viscous regime by Taylor (1923). Their results ultimately depended on the
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Figure 1.8: A selection of the canonical centrifugally unstable flows (Fielding, 2020).

epicyclic frequency, also known as the Rayleigh frequency, which corresponds to

the frequency at which a radially displaced fluid ring will axisymmetrically oscillate

about its equilibrium position in a differentially rotating flow. It’s worth noting that

this frequency is analogous to the Brunt-Väisälä frequency for the case of buoyancy.

It was found that for an epicyclic frequency defined as

F2
Ω = 1

ϖ3
d

dϖ
(ϖ2Ω)2, (1.31)

where ϖ is the distance from the axis of rotation in cylindrical coordinates, that the

differentially rotating flow can be unstable to this instability if F2
Ω < 0 but stable

if F2
Ω > 0. This is equivalent to saying that for instability to occur the angular

momentum per unit mass must decrease as we move away from the rotation axis.

Later works by Solberg (1936) and Høiland (1941) generalised this to systems with

stable stratification. When entropy surfaces are constant along cylinders, a stronger

criterion was found: for instability, we require N 2 + F2
Ω < 0, in addition to the

previous requirement that angular momentum per unit mass must decrease whilst

moving away from the rotation axis. N is typically large in stellar radiative zones,

so strong differential rotation is generally required for this instability to operate.

There are several types of canonical flows that produce centrifugal instabilities (see

Fig. 1.8), including the well-known Taylor-Couette flow, boundary layer flows, and

curved channel flows.
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Baroclinic instabilities

Instabilities can also arise in differentially rotating stars as a result of the misalign-

ment between their surfaces of constant pressure and density, a configuration referred

to as baroclinic. In a baroclinic equilibrium, we require an additional equation,

known as the thermal wind equation (TWE), to describe the properties of this bal-

ance.

Figure 1.9: Baroclinic instability
where p = pressure and s = en-
tropy. Figure courtesy of Knobloch
and Spruit (1982).

When there is a misalignment between the

surfaces of constant pressure and density, it

becomes possible for a parcel of fluid to move

perpendicular to gravity (without doing any

work against it) while simultaneously mov-

ing into a denser medium, thereby devel-

oping upward buoyancy and potentially be-

coming unstable (Spruit & Knobloch, 1984; Gilman & Dikpati, 2014; Kitchatinov,

2014). Baroclinic instabilities are generally inhibited (if not fully damped) by sta-

ble stratification but can become unstable when, for example, thermal diffusion is

strong enough to reduce the restoring effects of buoyancy (Knobloch & Spruit, 1982).

Baroclinically unstable displacements exist within the wedge separating the lines of

constant pressure and density. As the strength of the stratification increases, the

wedge becomes smaller (as will be seen when we discuss the thermal wind equation

in Chapter 2), and the minimum horizontal wavelength λm increases. Stability is

then achieved when λm exceeds the size of the volume considered, here, the stellar

radius (Knobloch & Spruit, 1982).

Shear instabilities

Another family of instabilities we expect to operate in the tachocline are those

triggered by horizontal and vertical shears (Maeder, 1995; Brüggen & Hillebrandt,

2001; Mathis et al., 2004; Garaud, 2020b) (see Fig. 1.10 for a snapshot of a nonlinear

simulation of such an instability).
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The stability of shear flows was first studied theoretically by Rayleigh (1880) who

considered an unstratified unidirectional shear flow between two rigid boundaries.

When studying the inviscid, non-rotating, unstratified flow, he found that for the

shear flow U(z)x̂, a necessary condition for instability is the requirement of an inflec-

tion point in its domain, i.e., d2U(z)
dz2 = 0 somewhere in the flow.

Figure 1.10: A snapshot from a
nonlinear simulation by Dzanic
and Witherden (2022) of the
Kelvin-Helmholtz instability (a
classical shear instability).

Subsequently, it was discovered that for a shear

flow with gravity in the z-direction, buoyancy

acts to inhibit the instability, and a sufficient

condition for adiabatic stability can be derived

(Howard, 1961; Miles, 1961). They determined

that Ri = N2

(U ′(z))2 < 1
4 is a necessary condition

for instability of a plane parallel shear flow with

aligned stratification, i.e., a horizontal flow vary-

ing with z in a fluid with density decreasing with

height z.

Double diffusive instabilities

When the density of a fluid depends on two sep-

arate components that diffuse at different rates,

such as salinity and temperature, a fluid can become unstable even if its density

decreases upwards, e.g. Knobloch (1982) and Garaud (2018, 2021). The dynamics

of this type of convection depend heavily on whether the faster or slower diffusing

component is responsible for driving the instability. For temperature and salinity

a configuration in which the energy is supplied from the slower diffuser is called

a fingering instability. The alternative case, in which the faster diffusing compo-

nent drives the instability, is referred to as diffusive convection. If both diffusing

quantities are responsible for the instability, then the total density stratification is

unstable, resulting in top-heavy convection.

The canonical example of a fingering instability is salt fingers, which commonly
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occur in the upper kilometer of tropical and sub-tropical oceans, where warm-salty

waters sits on top of cold-fresh waters (Schmitt, 1995; Kunze, 2003). As shown in

Fig. 1.11, if a fluid parcel is displaced upwards, because thermal diffusion is quicker

than the diffusion of salinity, the parcel will heat up and gain buoyancy at a quicker

rate than it will gain weight from the extra salinity, creating an unstable upwards

motion. This leads to finger-like plumes, which can then become unstable themselves

via parasitic instabilities, leading to turbulence.

Figure 1.11: Diagram showing the two main types of double diffusive instability,
from (Garaud, 2018). A fingering instability on the left, and diffusive convection on
the right.

On the other hand, a cold-fresh over warm-salty configuration offers another po-

tential double-diffusive instability (Garaud, 2013; Garaud, 2020a). If we consider

perturbing a fluid element downwards, similar to the salt-fingering case, its temper-

ature rapidly adjusts whilst it remains at a similar salinity. Since the salinity now

increases with depth, the parcel becomes lighter than the ambient fluid surrounding

it, and buoyancy forces start to drive it upwards. The parcel is now not only lighter

than its surroundings but, because of the heat gained, it is now lighter than it was

originally. Hence, on its way back up, it will overshoot its original starting point.

At its new equilibrium position, the parcel again quickly adjusts its temperature,

but because of the slow salinity diffusion rate, it is now saltier and heavier than its

surroundings. This process repeats itself, and the overshooting distance gradually

becomes larger and larger, resulting in a so-called ‘overstable’ mode, which is itself

unstable.
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The application of these instabilities to stars can involve viscosity (ν), thermal

diffusion (κ), magnetic diffusion (η) or diffusion of chemical elements to destabilise

an otherwise stable flow. We’ll be particularly interested in the quantities Pr = ν/κ

and Pm = ν/η. For the tachocline, Gough (2007) and Caleo et al. (2016) predict

ν = 2.7 × 101 cm2 s−1, κ = 1.4 × 107 cm2 s−1, and η = 4.1 × 102 cm2 s−1, which

implies Pr = 2 × 10−6 and Pm = 0.7 × 10−2 (both very small), suggesting that

secular instabilities may be quite common in astrophysical contexts.

Goldreich-Schubert-Fricke instability (GSF)

The GSF instability brings together many of the instabilities previously discussed.

It is a doubly-diffusive instability of differential rotation, where the action of thermal

diffusion on sufficiently small lengthscales reduces the stabilising effects of buoyancy,

allowing for the development of a fingering-type instability (analogous to the thermo-

haline instability e.g. Garaud, 2018). In a rotating shear flow where the thermal

gradient is stabilising (a radiative region) a reduction in thermal effects can allow

AM fingers to develop and grow exponentially. Subsequently, these non-linearly

saturate, e.g. by secondary parasitic shear instabilities, which grow until turbulence

develops. This configuration is visually analogous to salt fingering, and formally

analogous for axisymmetric (2D 3-component) simulations performed with purely

radial shear at the equator (for a certain choice of diffusivity ratio, Barker et al.,

2019). The GSF instability belongs to a family of instabilities referred to as ‘secular’

shear instabilities. Standard shear instabilities, for which perturbations are usually

assumed to be adiabatic, are not typically expected to develop in stellar radiation

zones, thanks to the strong stabilising effects of the stratification, which ensures

that Ri ≫ 1.

On the other hand, finite-amplitude ‘secular’ (or diffusive) shear instabilities (e.g.

Zahn, 1974; Zahn, 1992), are believed to be important by producing thermally-

diffusive shear-induced turbulence when the Richardson number Ri of the flow is

large, provided the Peclet number Pe (which measures the ratio of thermal diffusion

30



to advection timescales) is sufficiently small (e.g. Prat & Lignières, 2013; Garaud

et al., 2017; Gagnier & Garaud, 2018; Kulenthirarajah & Garaud, 2018; Cope et al.,

2020; Garaud, 2020a). The GSF instability is distinct from these in that it is a linear

instability that only operates in the presence of rotation, but it is related in that

it requires strong thermal diffusion to operate. When shear and GSF instabilities

operate simultaneously they can interact, leading to interesting nonlinear dynamics

(Chang & Garaud, 2021). The GSF instability and its co-existence with inflection-

point instabilities has also been analysed in linear theory for horizontal shears with

a tanh profile by Park et al. (2020), Park et al. (2021). They referred to the GSF

instability as the “inertial instability” (e.g. Park et al. (2019)) following its relation

to this instability in the geophysical literature.

Interestingly, the nonlinear development of the instability does not lead to a ho-

mogeneous turbulent state in general, and other interesting dynamics, such as the

formation of layering in AM (often referred to as ‘zonal jets’) has previously been

observed, which can enhance turbulent transport (particularly at non-equatorial

latitudes, in the case with radial shear, Barker et al., 2020).

The GSF instability is considered in this thesis and will be covered in much more

detail in Chapters 3 and 4.

Magneto-rotational instability (MRI)

The final instability we discuss in this section delves into the realm of magnetohy-

drodynamics (MHD). As previously mentioned, the introduction of a magnetic field

significantly alters the potential dynamics within a system. New magnetic pres-

sure and tension forces come into play, magnetic buoyancy emerges, and questions

regarding dynamo generation and magnetic heating become highly relevant (Ve-

likhov, 1959; Chandrasekhar, 1961; Hughes, 1988; Spruit, 2002; Jones et al., 2010;

Cantiello et al., 2014). One key MHD instability, which has seen extensive interest,

is the Magnetorotational Instability (MRI) (e.g. Acheson & Gibbons, 1978; Balbus

& Hawley, 1991, 1994; Balbus, 1995; Spruit, 1999; Menou et al., 2004; Menou & Le
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Mer, 2006; Ogilvie, 2007; Parfrey & Menou, 2007; Balbus, 2009; Guilet & Müller,

2015).

The MRI instability can be described using the following physical argument: con-

sider two fluid elements with masses m1 and m2 orbiting some rotation axis at

different radii (r1 < r2), joined by a weak elastic tether as seen in Fig. 1.12.

Figure 1.12: An illustra-
tion of the physical argu-
ment describing the mag-
netorotational instability
(MRI). Figure courtesy of
Hung et al. (2019).

Assuming the angular velocity decreases as a func-

tion of radius, the mass at radius r1 will move ahead,

stretching the tether. As a result, angular momentum

is transferred from m1 to m2. The fluid elements then

adjust to an orbit compatible with their new angular

momenta, where m1 moves inwards and m2 outwards.

Since ∂Ω/∂r < 0, the difference in angular velocity

increases, which leads to a repeated process that ex-

ponentially separates the fluid elements over time. It’s

important to note that this argument fails if our mag-

netic tether is too strong, since then the fluid elements

are kept tightly together. Thus, the MRI commonly

occurs for weak magnetic fields. We shall discuss the

MRI in more detail in Chapter 5.

1.7 Motivation

The overarching goal of astrophysical fluid dynamics is to understand the mecha-

nisms driving the evolution of astrophysical objects such as accretion disks, planets,

stars, and galaxies. Despite significant technological and theoretical advancements,

our understanding remains incomplete. Even the most advanced simulations strug-

gle to accurately replicate key phenomena like differential rotation, the formation of

the tachocline, and dynamo processes within the Sun. Identifying the precise physi-

cal mechanisms responsible for these phenomena continues to be a major challenge.

This thesis aims to bridge this gap by enhancing our understanding of the role of
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instabilities in transporting angular momentum within stably stratified radiative

zones, an area still poorly understood.

The following research is conducted with a particular focus on the solar tachocline, a

region with extreme parameters conducive to various instabilities. The tachocline is

crucial as it links the radiative interior, containing the majority of the Sun’s angular

momentum, to the convective zone. All angular momentum in the convective zone,

as well as that lost through interactions with the solar wind, must have ultimately

crossed the tachocline. Thus, a better understanding of the tachocline is essen-

tial for comprehending the Sun’s evolution, its magnetic dynamo, and for improving

boundary conditions in simulations of turbulent convection in its envelope. Further-

more, insights gained from studying differential rotation profiles in stably stratified,

potentially magnetized fluids, have broad applications across various astrophysical

contexts.

For example, giant planets like Jupiter, which have radiative regions, exhibit unex-

plained phenomena such as polar vortices and striking zonal jets. Nonlinear simula-

tions suggest that instabilities like the GSF instability can lead to the formation of

similar jet-type structures (Barker et al., 2020). Additionally, there are challenges

in reproducing the rotation profiles of red giant and subgiant stars. Missing angular

momentum transfer from the inner to outer regions may account for discrepancies

between observations and simulations in these cases.

1.8 Thesis structure

Much of the work presented in this thesis has been published in MNRAS (DBJT3),

or is being prepared for submission (Chapter 5) and builds directly upon previous

studies by Barker et al., 2019, 2020 (hereafter BJT1 and BJT2). BJT1 and BJT2

utilize a local Cartesian box setup to study a small patch of a stably stratified,

differentially rotating radiative zone, modeling a global ‘shellular’ (or ‘vertical’)

differential rotation that varies only with spherical radius. The primary aim of
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this work is first to generalise this to include arbitrary differential rotation profiles,

and then to study the problem in the MHD context through the incorporation of a

poloidal magnetic field.

BJT1: Radial shear at the equator The initial paper by Barker et al. (2019)

examined the case where Λ = 0 and ϕ = 0, corresponding to cylindrical rotation at

the equator. 3D equatorial simulations with vertical shear revealed homogeneous

turbulence alongside enhanced and sustained AM transport. A simple and easily

implementable theory was proposed to model AM transport in stars.

BJT2: Moving away from the equator Generalising the initial model to an

arbitrary latitude, their second paper found enhanced AM transport, with further

increases typically seen away from the equator. Notably, zonal jets (or layering

in AM) were observed in nonlinear simulations. A simple criterion for the onset

of (diffusive) axisymmetric instability at a general latitude for radial differential

rotation was derived: RiPr < 1/4.

DBJT3: The study of general differential rotation profiles The model is

proposed and discussed in Chapter 2, after which the results of the third paper are

outlined in Chapters 3 and 4, where we investigate the GSF instability in stellar ra-

diative zones with arbitrary local differential rotation (building also upon Knobloch

(1982) and Knobloch and Spruit (1982)). In Chapter 2 we first justify the use of

our local Boussinesq model and derive several key equations including the ther-

mal wind equation and the relevant dispersion relations for adiabatic and diffusive

axisymmetric modes.

Chapter 3 conducts an axisymmetric linear analysis probing the stability properties

of general rotation profiles (through varying ϕ). We analytically derive key criteria in

both the diffusive and non-diffusive regimes, identifying two key instabilities along

with a set of weaker oscillatory modes. We complement this with a numerical

analysis of the dispersion relation to develop an understanding of the regions of
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instability and the properties of the most unstable modes.

Chapter 4 explores the nonlinear hydrodynamical evolution in three dimensions us-

ing the pseudo-spectral code Snoopy in a modified shearing box. Various latitudes

and rotation profiles were investigated, encompassing cases from both the GSF and

adiabatically unstable regimes identified in Chapter 3. The emergence of robust

nonlinear zonal jets, indicative of “layering” in angular momentum, is observed.

Mixed radial and latitudinal shears are found to transport angular momentum more

effectively compared to cases with purely radial shear. We also conduct simulations

for various shear strengths to probe the effects of the background shear on the non-

linear evolution of the instability, as well as simulations in a variety of box sizes

to ensure that the properties of the instability don’t depend on the dimensions of

the box. We find that the nonlinear properties of the GSF instability are largely

independent of box size, suggesting our results could be extrapolated meaningfully

into an astrophysical context.

Effects of a poloidal magnetic field on the linear problem Chapter 5 inves-

tigates the system’s behavior in the presence of a poloidal field. The linear stability

of the system to axisymmetric perturbations is analysed both analytically and nu-

merically, where we identify instabilities with and without diffusion. The GSF, MRI,

Solberg-Høiland instability, and weakly unstable inertial gravity waves are observed

under certain parameter regimes.

Nonlinear Evolution of the Magnetic System The final section, Chapter 6,

examines the nonlinear evolution of the magnetohydrodynamic system considered

in Chapter 5. Nonlinear simulations reveal that here instabilities not only have the

ability to enhance angular momentum transport but can also significantly enhance

the strength of the magnetic field. These simulations allow us to build a deeper

understanding of how poloidal fields of various strengths alter the dynamical and

transport properties of the various instabilities. Several simulations probing the

dependence of each instability on the size of the computational domain (Lx, Ly, Lz),
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reveal which of our results could be meaningfully extrapolated into an astrophysical

context.
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Chapter 2

Local modelling of stellar

interiors

This chapter introduces the local model adopted throughout this thesis to study the

stability of differential rotation in stellar (or planetary) interiors. We present our

governing equations and the modelling approximations employed, discussing their

validity and suitability for the problems at hand. We shall also derive and discuss

both the thermal wind equation and the dispersion relation describing axisymmetric

perturbations to the hydrodynamic system.

This sets the stage for a detailed exploration of our system in Chapters 3 and 4. We

focus in those chapters on the effects of varying the parameter ϕ – the angle between

the effective gravity and local angular velocity gradient – which enables us to build

upon and generalise the results of Barker et al. (2019) and Barker et al. (2020) for

arbitrary differential rotation profiles. Whilst the effects of shear orientation on the

stability properties of this system have previously been investigated previously by

Knobloch and Spruit (1982), albeit using different notation, the following work in

Chapters 3 both verifies and builds upon their results.
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2.1 Global or Local?

Processes occurring inside stars happen on a vast range of length and time scales.

So the appropriate strategy to modelling different processes can vary widely.

Global models ignore much of the small scale dynamics in exchange for the ability

to probe phenomena on a global scale, meaning on scales comparable with the size

of a given star (or a significant portion of them). This approach has proven effec-

tive at modelling large-scale dynamo action, meridional circulations, modelling star

formation, and for producing 1D stellar models, as seen in for example Dikpati and

Gilman (2008), Miesch et al. (2010), Mordasini et al. (2015), Buldgen (2019a), and

Charbonneau (2020). However, due to computational limitations, global simulations

often lack some detailed physics and also fail to resolve effects occurring on small

scales – particularly effects smaller than any grid scales.

In contrast, the local modelling approach ignores much of the global structure of a

body and instead focuses on the details of the physics occurring in a small patch of

a star. For example, Hawley and Balbus (1992), Balbus and Hawley (1994), Balbus

(1995), Hawley et al. (1996), Sharma et al. (2006), and Barker et al. (2019) have all

exploited the use of local models to understand small scale instabilities that would

have been more difficult to capture – or perhaps would be impossible to represent –

in global models. While the local approach can offer insights into a specific region,

extrapolating these findings to a global scale can be challenging and requires careful

consideration.

Since the GSF instability is expected to be the primary instability of interest in

our hydrodynamic system, its small scale nature (required for thermal diffusion

to become appropriately strong) suggests a local approach is more appropriate.

In particular the construction of our local model here follows in the footsteps of

previous authors (Barker et al., 2019, 2020) and a small scale Cartesian box model

is adopted.
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Boussinesq Approximation

In essence the Boussinesq approximation linearises the ideal gas law for small

departures from a reference state and ignores density differences in all but

the gravity terms of the momentum equation (Spiegel & Veronis, 1960). An

approximation valid for most local instabilities in the radiative interior and

tachocline of the Sun, which are very subsonic (i.e. with u ≪ us, u being the

fluid velocity and us the sound speed). The Boussinesq approximation also

requires the reference length d ≪ Hp and d ≪ Hρ, where Hp = |1
p

dp
dzh

| is the

pressure scale height and Hρ = |1
ρ

dρ
dzh

| is the density scale height, so that the

domain height is much less than the local pressure and density scale heights

(and zh is height locally). Adopting the Boussinesq approximation results

in the mass conservation equation taking the form of an incompressibility

condition.

2.2 Local Cartesian Box Model and Equations

Our model simulates a localised region of a stably-stratified and differentially-

rotating star, akin to the lower segments of the solar tachocline. This region is rep-

resented as a Cartesian box with dimensions (Lx, Ly, Lz) and coordinates (x, y, z).

Here, y denotes the local azimuthal direction, while x and z define two directions

within the meridional plane.

The typical lengthscale d in our problem, following other double-diffusive instabili-

ties, for example see Radko (2013), is taken to be,

d =
(

νκ

N 2

) 1
4

, (2.1)

and has been observed to well describe the scale of the dominant hydrodynamic

GSF modes (Barker et al., 2020). Recalling the physical values in the tachocline

as calculated by Gough (2007) and Caleo et al. (2016) that we stated in Chapter

1, we find ν = 2.7 × 101cm2s−1, κ = 1.4 × 107cm2s−1, hence Pr = 2 × 10−6 and
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N = 8 × 10−4s−1. This produces a length scale d ≈ 49.3m. The linear GSF

modes thus have very short length-scales, approximately 10−5 times smaller than

the tachocline thickness, which we take to be 0.02R⊙ (Christensen-Dalsgaard &

Thompson, 2007).

Since the typical length-scales for GSF modes are so small (much smaller than the

density and pressure scale heights) we are justified in adopting the Boussinesq ap-

proximation (Spiegel & Veronis, 1960) (see 2.1). This allows us to neglect variations

in density except in the direction of gravity and converts our conservation of mass

equation into an incompressibility condition.

The local nature of our model means we represent the differential rotation Ω(r, β) =

Ω(r, β)Ω̂, where Ω̂ is a unit vector, r is the radius and β is the latitude, using

two components, one with a constant value of Ω together with a linear shear flow

U0 = −Sxey representing the local differential rotation. The shear strength S is

determined as the locally constant value of −ϖ|∇Ω(r, β)|, where ϖ denotes the

distance from the axis of rotation (cylindrical radius).

For computational convenience when undertaking nonlinear simulations using a

shearing box method, we align the x-axis with the variation of the shear flow U0,

despite its misalignment with respect to the local effective gravity vector eg =

(cos ϕ, 0, sin ϕ). The effective gravity is the sum of the ‘actual’ gravitational effects

along with the effects of centrifugal acceleration. Since the Sun is a slow rotator eg

is assumed to be approximately along the spherical radial direction. This approxi-

mation breaks down for rapidly rotating stars in which centrifugal deformations of

equipotential surfaces/isobars are much stronger, though our model is still valid for

these with an appropriate interpretation of eg.

The angle Λ is defined such that Ω̂ = (sin Λ, 0, cos Λ). Since Λ characterizes the

angle from the equator (perpendicular to Ω̂) to the x-axis, and considering the

misalignment of the x-axis from the spherical radial direction is ϕ, the latitude is

characterised by β = Λ + ϕ.
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Figure 2.1: Two panels indicating the local Cartesian model with arbitrarily oriented
local effective gravity eg describing local differential rotation depending on both
spherical radius and latitude in general (note, we refer to rotation profiles as Ω(r, β),
where β is the latitude). For illustration, the dark orange region may represent a
radiation zone and the yellow region an overlying convection zone, if we consider
applications to the solar tachocline. We consider a general location in a differentially-
rotating star at a latitude Λ + ϕ, with local shear along x, and normal to the
stratification surfaces (i.e. along the temperature gradient) eθ, which is inclined
relative to the local radial direction (approximately along eg) by an angle ϕ−Γ that
is determined by the thermal wind equation.

The model is illustrated in Fig. 2.1, where the left panel shows the orientation of

the box with respect to the local effective gravity eg, and the right panel illustrates

the various angles and the shear flow considered in this thesis.

BJT1 and BJT2 (Barker et al., 2019, Barker et al., 2020) employed a similar model

but with purely radial shear (i.e., co-linear with the effective gravity), so that ϕ = 0

and eg is aligned along x. This configuration corresponds to a “shellular” rota-

tion profile in which the differential rotation only depends on spherical radius, i.e.

Ω(r, β) = Ω(r). However rotation profiles can be much more general than this in

stellar interiors. The Sun, for example, exhibits both latitudinal and radial differen-

tial rotation, at least in the vicinity of the convection zone as we saw from Fig. 1.5

in Chapter 1. These are known to have different stability properties to the purely

radial shear (Knobloch & Spruit, 1982), and so it’s a natural extension for us to

investigate these properties in-depth and begin to quantify the associated transport

properties of arbitrary local differential rotations.
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The governing equations describing fluid flows in our local model are:

DU

Dt
+ 2Ω × U = −1

ρ
∇p + θeg + ν∇2U ,

Dθ

Dt
= N 2eθ + κ∇2θ,

∇ · U = 0,

D ≡ ∂t + U · ∇,

which represent the conservation of momentum and mass and transport of heat,

respectively for our velocity field U = U0 + u (where U0 = −Sxey is the back-

ground shear flow and u the velocity perturbation). Here θ = gαT̃ is a scaled

temperature perturbation, T + T̃ being the full temperature, with g being the

gravitational acceleration and α the coefficient of thermal expansion. We have

adopted a background temperature (entropy) profile T (x, z), with uniform gradi-

ent αg∇T = N 2eθ, where eθ = (cos Γ, 0, sin Γ), whilst noting that our buoyancy

frequency N 2 = g
(

1
Γ1

∂ ln p0
∂r − ∂ ln ρ0

∂r

)
> 0 where Γ1 =

(
∂ ln p0
∂ ln ρ0

)
ad

in the radiative

zone of a star. Throughout our system we also take ρ = 1 as the reference density

and take constant kinematic viscosity ν and thermal diffusivity κ, both of which are

vital ingredients in studying the GSF instability.

Throughout our nonlinear simulations, we adopt Ω−1 as our unit of time and define

the length scale d accordingly. This choice is motivated by the fact that the fastest-

growing GSF modes typically exhibit a wavelength of O(d). With this characteristic

length scale, the buoyancy timescale N −1 equals the geometric mean of the product

of viscous (d2/ν) and thermal diffusion (d2/κ) timescales (see e.g., Radko, 2013,

for a discussion of its relevance for similar double-diffusive instabilities). Using

this length scale allows us to conveniently select a suitable box size relative to the

wavelengths of the fastest-growing linear modes. Our dimensionless shear rate is

defined as S = S/Ω, and our dimensionless buoyancy frequency as N = N /Ω.

In total, excluding the dimensions of the box (and numerical resolution), our problem

features 5 independent parameters: S, Pr, N2, Λ, and ϕ (since Γ will be constrained
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by Eq. 2.9, the TWE). Notably, the Prandtl number (mentioned in Chapter 1), is a

crucial parameter in our system, defined as

Pr = ν

κ
. (2.2)

The non-dimensional momentum and heat equations can be expressed as follows:

Du + 2Ω̂ × u − Suxey = −∇p + θeg + E∇2u, (2.3)

Dθ + N2u · eθ = E
Pr∇2θ, (2.4)

subject to the incompressibility condition. Note that we define θ as our “temperature

perturbation”, which has units of acceleration and is related to T by θ = αgT , where

α is the thermal expansion coefficient. Here, we define the local Ekman number

E = ν/(Ωd2), which can be related to other parameters. Note that for simplicity,

we omit hats to denote non-dimensional quantities.

It is possible to combine this system with an additional equation, known as the

‘Thermal wind equation’ (TWE), which allows us to eliminate either the Γ or Λ

variable; we choose to eliminate Γ.

2.3 The Thermal Wind Relation

As we’ve already seen, the surfaces of constant pressure and density need not be

aligned in stellar interiors. The level of this misalignment, known as baroclinicity,

is determined by the so-called “Thermal Wind Equation” (TWE) 1, which, as we

shall see, arises from the vorticity equation. Note that if thermal wind balance were

not satisfied then we would expect the system to rapidly adjust, on a dynamical

timescale, to satisfy it. Our approach involves selecting values for Ω, S, N , Λ,

1As discussed by Knobloch and Spruit (1982), for a long time authors failed to realise that
thermal wind balance should be satisfied when considering diffusive stability. As a result, the
initial studies by Goldreich and Schubert (1967) and Fricke (1968) didn’t utilise the TWE and
contained a spurious free parameter. Acheson and Gibbons (1978) and Busse (1981) were the first
to introduce the TWE in this context.
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and ϕ to determine Γ. Alternatively, one could assume thermal wind balance by

imposing the temperature field, then make use of the thermal wind equation to

determine the corresponding differential rotation, as done in Rashid et al. (2008).

2.3.1 Derivation of TWE

The derivation of the thermal wind equation requires we take a closer look at the

momentum equation for U0, namely,

∂U0
∂t

+ U0 · ∇U0 + 2Ω × U0 = −∇p + αgTeg + ν∇2U0. (2.5)

Since U0 is steady, ∂U0/∂t = 0, and being linear in x whilst varying purely in the

y-direction implies U0 · ∇U0 = 0 and ∇2U0 = 0. Implementing these in 2.5 we

obtain,

2Ω × U0 = −∇p + αgTeg. (2.6)

The vorticity of a particular point in a flow u is given by ∇ × u, hence the equation

governing the vorticity at all points within our flow is found by taking the curl of

2.6. Doing so yields,

2Ω∇ × (Ω̂ × U0) = −∇ × ∇p + ∇ × αgTeg

= αg∇T × eg. (2.7)

Now writing our temperature profile in terms of the buoyancy frequency, N 2, and

focusing on the y-component of 2.7, we have

2ΩS sin Λey = N 2eθ × eg. (2.8)

Written out explicitly, 2.8 becomes,

2ΩS sin Λ = N 2 sin(Γ − ϕ), (2.9)
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Λ ϕ Differential rotation profile Baroclinic/barotropic?
0 - Ω(ϖ) (cylindrical) barotropic

±90◦ - Ω(z) (axial variation only) baroclinic
- 0 Ω(r) (spherical/shellular) baroclinic except at Λ = 0
- ±90◦ Ω(β) (horizontal/latitudinal) baroclinic
- - Ω(r, β) (arbitrary) baroclinic in general

Table 2.1: Table of differential rotation profiles as Λ and ϕ are varied, where here β
is latitude, z is distance along rotation axis, r is spherical radius and ϖ is cylindrical
radius in this table.

our chosen form of the TWE.

The baroclinicity within the system can be conceptualized as the component of

differential rotation along Ω̂. The special case Λ = 0 locally signifies cylindrical dif-

ferential rotation. In such a scenario the configuration is referred to as barotropic,

implying surfaces of constant density and pressure are aligned, i.e., Γ = ϕ. Con-

versely, if sin Λ ̸= 0, in general we have a misalignment between surfaces of constant

density and pressure, resulting in Γ and ϕ being distinct, a baroclinic configuration.

In the latter the rotation profile varies locally with both spherical radius and lat-

itude. The extreme case sin Λ = 1 implies Ω varies solely with distance along its

axis, denoted by Ω̂. When ϕ = 0, we have a spherical or shellular differential rota-

tion, for which Ω depends solely on the spherical radius. ϕ = ±90◦ signifies purely

latitudinal differential rotation, where Ω depending solely on the latitude. These

cases are summarized in Table 2.1. An illustration of the various angles relevant to

our problem is also provided in Fig. 2.2.

2.4 Derivation of hydrodynamic dispersion relation

Determining the linear stability of a system requires we inspect the evolution of

infinitesimal perturbations made to the background flow. We consider axisymmetric

modes (with azimuthal wavenumbers ky = 0) as these are likely to be the most

unstable, and follow closely the methods in BJT2. Knobloch and Spruit (1982)

argued that although non-axisymmetric baroclinic modes are unstable whenever

surfaces of constant pressure and temperature are misaligned (at least with a rigid

45



Figure 2.2: Illustration of the various vectors and corresponding angles in the (x, z)-
plane as defined in the text. The cylindrical radial direction (along the equator) is
along Ω̂⊥, and the rotation axis is along Ω̂. The local radial direction is (approxi-
mately) along the effective gravity direction eg, with is misaligned with respect to
the x direction when ϕ is nonzero.

boundary, as also found by Rashid et al., 2008), because the buoyancy frequency

greatly exceeds the shear rate in most astrophysical situations, baroclinic modes

will only be unstable for wavelengths larger than the stellar radius, which justifies

our focus on axisymmetric modes. This section derives the dispersion relation in

Knobloch (1982), and generalises that used in BJT1 and BJT2. This dispersion

relation will then be used in Chapter 3 to both analytically and numerically explore

the effects of varying ϕ on the linear stability of the system and the properties of

the unstable modes.

We start by seeking solutions proportional to exp(ikxx + ikzz + st), where kx and

kz are the real wavevector components in the x and z directions in the meridional

plane. Recall in our model x is radial if ϕ = 0, but more generally it is aligned

with the angular velocity gradient (shear), rather than in the radial direction. We

define the complex growth rate s = σ + iω, where the growth (decay) rate σ ∈ R

and the oscillation frequency ω ∈ R. Substituting this into our governing equations,

and retaining only the terms that are linear in perturbation quantities (since higher
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order terms are very small), it’s possible to write our system explicitly as,

sux − 2Ωuy cos Λ = −ikxp + θ cos ϕ − νk2ux, (2.10)

suy + 2Ω (ux cos Λ − uz sin Λ) − Sux = −νk2uy, (2.11)

suz + 2Ωuy sin Λ = −ikzp + θ sin ϕ − νk2uz, (2.12)

sθ + N 2 (ux cos Γ + uz sin Γ) = −κk2θ, (2.13)

ikxux + ikzuz = 0, (2.14)

where ux = ℜ[ûx exp (ik · x)], and similarly for the other variables. We have dropped

the hats for convenience so that all variables in Eqs. (2.10)–(2.14) represent the

Fourier coefficients of each quantity. Introducing sν = s+νk2 and sκ = s+κk2 into

Eqs. (2.10)–(2.14) gives,

sνux − 2Ωuy cos Λ = −ikxp + θ cos ϕ, (2.15)

sνuy + 2Ω (ux cos Λ − uz sin Λ) − Sux = 0, (2.16)

sνuz + 2Ωuy sin Λ = θ sin ϕ − ikzp, (2.17)

sκθ + N 2 (ux cos Γ + uz sin Γ) = 0, (2.18)

ikxux + ikzuz = 0. (2.19)

Solving 2.18 for θ yields,

θ = −N 2 (ux cos Γ + uz sin Γ)
sκ

, (2.20)

and rearranging 2.19 in terms of uz, we have,

uz = −kx

kz
ux. (2.21)
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Combining 2.20 with 2.21 allows us to eliminate any uz-dependence so that,

θ = −
N 2

(
cos Γ − kx

kz
sin Γ

)
ux

sκ
. (2.22)

We can calculate a succinct expression for p by taking the sum: kx·(2.15) + kz·(2.16),

so that,

ik2p = − (kxux + kzuz) sν +2Ωuy (cos Λkx − sin Λkz)+(cos ϕkx + sin ϕkz) θ. (2.23)

Then making use of 2.19 to eliminate uz, it follows,

p = 2Ωuy (cos Λkx − sin Λkz) + (cos ϕkx + sin ϕkz) θ

ik2 . (2.24)

We may now use 2.16 in conjunction with 2.19 to obtain,

uy =

(
S − 2Ω

(
cos Λ + kx

kz
sin Λ

))
ux

sν
, (2.25)

then combining this with 2.24 yields,

p =

(
2SΩ − 4Ω2

(
cΛ + kx

kz
sΛ
))

(cΛkx − sΛkz) sκ − N 2sν (cϕkx + sϕkz)
(
cΓ + kx

kz
sΓ
)

isκsνk2 ux.

(2.26)

The final step is to eliminate ux by combining the expressions for θ, uy, and p in

the x-component of the momentum equation. This gives,

s2
νsκ + asκ + bsν = 0, (2.27)

where

a = 2Ω
k2 (2ΩkxsΛ + (2ΩcΛ − S) kz) (cΛkx + sΛkz) , (2.28)

and

b = N 2

k2 (kzcΓ − kxsΓ) (kzcϕ − kxsϕ) . (2.29)
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Note that in the above and throughout we use cΛ and sΛ to refer to cos Λ and sin Λ

for brevity, and similarly for trigonometric functions with other arguments. We also

define the local specific AM gradient

∇ℓ = ∇
(
ϖ2Ω

)
= ϖ (2ΩcΛ − S, 0, −2ΩsΛ) , = |∇ℓ| (cγ , 0, −sγ) , (2.30)

which has magnitude

|∇ℓ|2 = ϖ2
(
S2 + 4Ω (Ω − ScΛ)

)
. (2.31)

The normal to the local angular momentum gradient is then

(∇ℓ)⊥ = ϖ (2ΩsΛ, 0, 2ΩcΛ − S) = |∇ℓ| (sγ , 0, cγ) . (2.32)

The vector perpendicular to the effective gravity is

e⊥
g = (−sϕ, 0, cϕ) , (2.33)

and the normal to stratification surfaces

e⊥
θ = (−sΓ, 0, cΓ) . (2.34)

The equatorial direction is defined locally as

Ω̂⊥ = (cΛ, 0, −sΛ) , (2.35)

meaning the shear along the rotation axis is

Ω̂ · (∇ℓ) = ϖ ((2ΩcΛ − S) sΛ − 2ΩsΛcΛ) = −SϖsΛ (2.36)

= |∇ℓ|(sΛcγ − sγcΛ) = −|∇ℓ|sγ−Λ. (2.37)

Hence, the angle between the rotation axis and local angular momentum gradient
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is cos−1
(
−SϖsΛ

|∇ℓ|

)
. It will also be helpful to define a modified Richardson number,

R = N 2ϖ

2Ω|∇ℓ|
, (2.38)

which can be thought of as a comparison between the stabilising effects of the

stratification against the destabilising effects from the angular momentum gradient

(Knobloch & Spruit, 1982). We also have

ϖSsΛ = −|∇ℓ|sγ−Λ. (2.39)

This means that, with some rearranging, the thermal wind equation (Eq. 2.9) can

be written as
2Ω|∇ℓ|

ϖ
sγ−Λ = N 2sΓ−ϕ, (2.40)

or in the form

sγ−Λ = RsΓ−ϕ. (2.41)

2.5 Summary

This section establishes the theoretical framework within which the research in

Chapter 3 is conducted, and which we will build upon through the introduction

of a poloidal magnetic field in Chapter 5. We began by discussing both global and

local modeling approaches, exploring their respective advantages and limitations,

as well as providing examples of problems suitable for each approach. We then in-

troduced a local Cartesian box model for simulating a stably stratified region of a

differentially rotating star.

We introduced ϕ, which characterizes the angle between effective gravity and the

local angular velocity gradient, allowing for the local study of general differential

rotation profiles (as explored to some extent in Knobloch & Spruit, 1982).

The validity and utility of the Boussinesq approximation for local instabilities is

then examined. This approximation enables us to linearise the ideal gas law and
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reduce the mass conservation equation to a simple incompressibility condition.

Following this, we addressed the role of the TWE in governing the misalignment

between surfaces of constant pressure and density, and considered how this allows

us to eliminate Γ as a variable. We then derived a modified version of the TWE

which includes the angle ϕ.

Our focus on axisymmetric modes was justified by the expectation that these modes

would be the most unstable in real systems, influenced by the effect of realistic values

of N 2 on their wavelengths. A detailed derivation of the hydrodynamic dispersion

relation was then presented.

We concluded by defining additional vectors and parameters that would later be

key to our research. Overall, Chapter 2 set the stage for the subsequent detailed

exploration and analysis of the linear and nonlinear behaviour of the system.
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Chapter 3

Local linear stability of

arbitrary differential rotation

profiles

3.1 Introduction

Next we shall examine in detail the linear stability of generalised differential rotation

profiles in stably stratified radiative regions, using the modelling approach discussed

in Chapter 2. We begin with the non-diffusive (adiabatic) case, where ν = κ = 0,

and derive the corresponding stability criteria. A similar analysis is then performed

for the ν ̸= 0, κ ̸= 0 case, as well as for the oscillatory case where the real part of

the growth rate is nearly zero, leading to weakly growing gravity waves.

The following work builds upon initial studies conducted by Knobloch (1982), who

identified many of the same instability criteria for the standard cases. Their choice

to work in a cylindrical geometry and their selection of parameters led to visual

differences between criteria; however, we have verified that these are equivalent

with the correct conversions.

Subsequently, we analyse several asymptotic limits of interest, including infinite
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thermal diffusivity and strong stratification. This exploration is followed by various

numerical visualizations, including a selection of ‘lobe’ plots in Fourier space demon-

strating the strength and orientation of the unstable modes for a range of ϕ at a

fixed Λ. The maximum growth rates as a function of ϕ for both the adiabatic and

diffusive regimes are also calculated here at various latitudes. Noting that we define

a perturbation wavevector k = k(cos θk, 0, − sin θk), we present each case alongside

a selection of figures characterising k and θk against ϕ for the corresponding domi-

nant mode, as well as the critical shear necessary for the onset of instability at each

latitude.

3.2 Non-diffusive stability

Physical systems such as stably stratified radiative regions can host several different

instabilities depending on the parameter regime. Whilst our primary focus is on

the GSF instability, which indeed relies on diffusion, studying the diffusion-free case

allows us to identify when the diffusive system is really operating due to diffusion (in

which case we refer to these as “secular instabilities”) or if instead we are observing

a dynamical instability that would operate without the presence of diffusion. In par-

ticular we expect to observe a stably stratified variation of the centrifugal instability

discussed in Chapter 1.

To inspect the non-diffusive case we take ν = κ = 0, reducing 2.27 to

s2 = − (a + b) . (3.1)

For stability we require the real component of the growth rate σ ≤ 0. Since a and

b are real, this implies the flow is stable whenever

a + b > 0, (3.2)

=⇒ 2
ω̄

(
k̂ · Ω

) (
k̂ · (∇ℓ)⊥

)
+ N 2

(
k̂ · e⊥

θ

) (
k̂ · e⊥

g

)
> 0, (3.3)
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=⇒ (kxsΛ + kzcΛ) (kxsγ + kzcγ) + R (kxsΓ − kzcΓ) (kxsϕ − kzcϕ) > 0. (3.4)

Finding a stability criterion requires us to eliminate any dependence on k, which

can be done by dividing by kz and defining a quantity q = kx/kz, which gives:

(qsΛ + cΛ) (qsγ + cγ) + R (qsΓ − cΓ) (qsϕ − cϕ) > 0. (3.5)

Rewriting it in the form of a quadratic equation yields:

q2 (sΛsγ + RsΓsϕ) + q
(
sΛ+γ − RsΓ+ϕ

)
+ (cΛcγ + RcΓcϕ) > 0. (3.6)

Eq. 3.6 holds when the quadratic on the LHS has no real roots. Via use of the

discriminant, this is equivalent to,

(
sΛ+γ − RsΓ+ϕ

)2 − 4 (sΛsγ + RsΓsϕ) (cΛcγ + RcΓcϕ) < 0. (3.7)

We’re now in a position to use the thermal wind equation in the form, sγ−Λ = RsΓ−ϕ,

to eliminate R. Doing so we obtain:

(
sΛ+γ −

(
sγ−Λ
sΓ−ϕ

)
sΓ+ϕ

)2

− 4
(

sΛsγ +
(

sγ−Λ
sΓ−ϕ

)
sΓsϕ

)(
cΛcγ +

(
sγ−Λ
sΓ−ϕ

)
cΓcϕ

)
< 0,

(3.8)

subsequently multiplying through by s2
Γ−ϕ and simplifying leads to

s2
Γ−ϕ (2sΛcγ)2 − 4

(
sΓ−ϕsΛsγ + sγ−ΛsΓsϕ

) (
sΓ−ϕcΛcγ + sγ−ΛcΓcϕ

)
< 0, (3.9)

which can then be rewritten to form the criterion

−
sγ+Γsγ−ΛsΛ+ϕ

sΓ−ϕ
< 0. (3.10)

Using TWE this implies −Rsγ+ΓsΛ+ϕ < 0, or equivalently ∇ℓ·e⊥
θ < 0 when Λ+ϕ > 0

and ∇ℓ · e⊥
θ > 0 when Λ + ϕ < 0 . Together, these are equivalent to the Solberg-

Høiland conditions (or Rayleigh criteria) discussed in Chapter 1.
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3.3 Diffusive instabilities

3.3.1 Steady modes

As previously mentioned the effects of viscous and thermal diffusion, ν ̸= 0 and κ ̸=

0, can relax the stabilising effects of gravitational buoyancy, allowing the GSF in-

stability to operate under conditions that would otherwise be stable. We start by

noting that when the constant term in 2.27 is negative, we will have instability, since

this requires a real positive s. The criterion for instability can then be written,

ν2κ
(
k2
)3

+ aκk2 + bνk2 < 0, (3.11)

dividing through by κk2 (note κk2 > 0) and writing Pr = ν/κ, we have

a + Prb + ν2k4 < 0. (3.12)

If we seek diffusive instability when there is non-diffusive stability at small Pr, the

classic GSF situation, we have to satisfy 3.12 with a + b > 0. This requires b > 0

and

a < 0, (3.13)

so this is a necessary condition for instability. To obtain a sufficient condition

for stability we follow a similar approach to that used in the non-diffusive case.

Expanding a and b results in,

2
ω̄

(
k̂ · Ω

) (
k̂ · (∇ℓ)⊥

)
+ PrN 2

(
k̂ · e⊥

θ

) (
k̂ · e⊥

g

)
+ ν2k4 < 0, (3.14)

=⇒ (kxsΛ + kzcΛ) (kxsγ + kzcγ) + PrR (kxsΓ − kzcΓ) (kxsϕ − kzcϕ) + ν2k4 < 0.

(3.15)

We divide by kz and again define q = kx/kz, noting that ν2κ4 is always positive so

only ever acts to stabilise the system, and thus may be ignored. This leads to

(qsΛ + cΛ) (qsγ + cγ) + PrR (qsΓ − cΓ) (qsϕ − cϕ) < 0, (3.16)
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or equivalently

q2 (sΛsγ + PrRsΓsϕ) + q
(
sΛ+γ − PrRsΓ+ϕ

)
+ (cΛcγ + PrRcΓcϕ) < 0. (3.17)

We are again in a suitable position to use the properties of the discriminant to find

a criterion independent of k, namely,

(
sΛ+γ − PrRsΓ+ϕ

)2 − 4 (sΛsγ + PrRsΓsϕ) (cΛcγ + PrRcΓcϕ) > 0. (3.18)

In the limit of strong stratification, surfaces of constant pressure and density align

and Eq. 2.9 implies Γ −→ ϕ. This simplifies 3.18 as follows,

(
sΛ+γ − PrRs2ϕ

)2 − 4
(
sΛsγ + PrRs2

ϕ

) (
cΛcγ + PrRc2

ϕ

)
> 0,

s2
Λ−γ − 4PrRsϕ+Λsϕ+γ > 0,

leading to (cf Eq.2.30 of Knobloch, 1982),

RPr <
s2

Λ−γ

4sϕ+Λsϕ+γ
. (3.19)

Noting that R = Ri(s2
γ−Λ/(sγsΛ)), 3.19 can be written in terms of the usual Richard-

son number as,

RiPr <
sγsΛ

4sϕ+Λsϕ+γ
, (3.20)

which must be satisfied for instability. This criterion reduces to RiPr < 1/4 for

onset of instability when ϕ → 0 (shellular differential rotation; BJT2). However,

3.20 shows that instability is possible for weaker differential rotation than for ϕ = 0.

The growth rate in the limit of small Pr where the instability is strongly driven

(but adiabatically stable) can be determined by considering the limit RiPr → 0 as

Pr → 0. In this regime, we find s =
√

−a, and hence both the maximum growth

rate and the wedge angle of instability in the (kx, kz)-plane are independent of ϕ

for fixed Λ. In reality though, we are usually interested in a fixed latitude Λ + ϕ,
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in which case the growth rate and unstable wedge angles do depend on ϕ, being

maximised for mixed radial and horizontal shears rather than purely radial ones. In

this regime, the maximum growth rate and wave-vector magnitude can be predicted

from Eq.43-44 of BJT2, which we reproduce here:

s2 = 2Ω|∇ℓ|
ϖ

sin2
(1

2 (γ − Λ)
)

, (3.21)

k4 = 1
2d4 sin2

(
γ + Λ

2

)
. (3.22)

These will be plotted later in Fig. 3.3 for S = 2 as a function of ϕ for various

latitudes Λ + ϕ. On the other hand, if RiPr = O(1) as Pr → 0, the growth rate and

unstable wedge may depend on ϕ for a fixed Λ; this case is studied in A.

3.3.2 Oscillatory modes

Our cubic dispersion relation Eq. 2.27 also allows oscillatory instabilities, for which

s = σ + iω and ω ̸= 0 at onset. These are essentially weakly destabilised inertia-

gravity waves gaining energy from the differential rotation or baroclinicity. To derive

a criterion for onset (σ = 0) we substitute s = iω into Eq. 2.27, consider the limit of

strong stratification for which the TWE implies Γ → ϕ, neglect terms with higher

powers of k (following Knobloch, 1982), and equate real and imaginary parts to

obtain:

− ω2 (1 + 2Pr)
(
1 + q2

)
+ 2Ω |∇ℓ|

ϖ
(cγ + qsγ) (cΛ + qsΛ)

+ N 2Pr (cϕ − qsϕ)2 = 0, (3.23)

ω

(
−ω2

(
1 + q2

)
+ 2Ω |∇ℓ|

ϖ
(cγ + qsγ) (cΛ + qsΛ)

+N 2 (cϕ − qsϕ)2
)

= 0. (3.24)
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Since we are looking for oscillatory instabilities, we omit the solution with ω = 0,

thus we can combine the above to eliminate ω2, giving the quadratic

Pr (cγ + qsγ) (cΛ + qsΛ) + R (1 + Pr) (cϕ − qsϕ)2 = 0. (3.25)

We require a positive discriminant, so that

R <
Pr

2 (1 + Pr)
s2

Λ−γ

sϕ+Λsϕ+γ
, (3.26)

for oscillatory instability to onset (cf Eq.2.32 of Knobloch, 1982). Equivalently,

Ri <
Pr

2 (1 + Pr)
sγsΛ

sϕ+Λsϕ+γ
. (3.27)

This can be contrasted with Eq. 3.20 for direct instability (steady modes with ω = 0).

The ratio of the quantity RiPr predicted by Eq. 3.20 to that from Eq. 3.27 is

(1 + Pr)
2Pr2 → ∞ as Pr → 0. (3.28)

Hence, GSF instability occurs first as a direct instability at onset for small Pr (in

agreement with Knobloch, 1982), since oscillatory instability requires a much smaller

value of RiPr.

To determine the properties of the modes at onset in the limit Pr → 0 (and RPr→ 0),

we can solve Eqs. 3.23 and 3.24 to obtain a preferred wavevector orientation and

squared frequency

q = cot ϕ, (3.29)

ω2 = 2Ω|∇ℓ|
ϖ

sγ+ϕsΛ+ϕ. (3.30)

The first result implies that the waves have wavevectors k that lie approximately

along eg. We will shortly see that we have numerically determined that these modes

lie between eg and eθ and that they always have smaller growth rates than the fastest

growing direct GSF instability.
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3.4 Numerical analysis of the linear theory

In addition to analysing the dispersion relation analytically, here we solve it nu-

merically to illustrate the nature of the instabilities that operate for certain sets of

parameters. Throughout this section and the remainder of this thesis, we will take

our ‘standard’ set of parameters to be S = 2, N2 = 10, and Pr = 10−2 to allow a

direct comparison with BJT1 and BJT2. This choice of values was originally mo-

tivated by them being in a regime that is readily computationally accessible using

nonlinear simulations (see Chapter 4). Note that in the solar tachocline S < 2,

N2 > 10 and Pr < 10−2.

To better understand the spatial characteristics of the instability, a selection of ‘lobe’

figures, as seen in Fig. 3.1, have been made. These illustrate the base 10 logarithm of

the growth rate σ obtained by solving Eq.2.27 on the (kx, kz)-plane for axisymmetric

instabilities. In the majority of our investigations, we fix the latitude Λ + ϕ. We

then vary ϕ (and consequently Λ) to probe the effects of shear orientation on the

linear instability. Additional cases, including fixing Λ = 60◦ are also presented. In

these figures we also plot the vectors Ω̂⊥ and ∇ℓ as the solid red lines. These lines

delineate the wedge within which a < 0 and GSF-unstable modes are expected. We

also plot the vectors eg and eθ as the light blue lines, and the wedge between them

is where b < 0; this is where oscillatory modes can be found. The angles of the red

and blue lines can be found from Table 3.1 and Figure 2.2.

The main feature seen in all of these plots are “primary lobes” corresponding to

either the diffusive GSF instability, or to the adiabatic instability when Eq. 3.10 is

violated. These lobes contain (directly) unstable modes (with ω = 0) and have a

preferred wavevector orientation lying between the AM gradient ∇ℓ, and the line

perpendicular to the rotation axis Ω̂⊥. Since S ∼ Ω and given that our unit of

time is Ω−1, the fastest growing modes have growth rates O(1) and are observed

to lie along the line that is approximately half-way between these two vectors (as

predicted by 3.21). Note that this wedge is perpendicular to the physical wedge
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Figures of linear growth rate log10(σ/Ω) for the axisymmetric GSF (or
adiabatic) instability for various ϕ on the (kx, kz)-plane for N 2/Ω2 = 10, Pr= 10−2,
S/Ω = 2, at a fixed latitude Λ + ϕ = 30◦. Here we vary ϕ in multiples of 30◦ from
−90◦ to 90◦. GSF (or adiabatically) unstable modes are contained within the wedge
bounded by the two vectors Ω̂⊥ and ∇ℓ (red lines). Note that panels (a) and (b)
are adiabatically unstable according to Eq. 3.10. We also observe a smaller wedge
outside this region in panels (d), (e) and (f) containing weakly growing oscillatory
modes which are bounded by the light blue lines. The fastest growing modes (darkest
red) in adiabatically unstable cases occur for k → 0 suggesting that the presence of
diffusion leads to the preference of the largest possible wavelengths in this regime.
This is in comparison to the GSF cases where the darkest areas have a non-zero
wavenumber and hence a preferred wavelength in real space.
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within which the GSF (or adiabatically) unstable mode displacements (and velocity

perturbations) arise due to the incompressibility condition k · u = 0. Hence, these

modes have flows/displacements lying between the rotation axis and surfaces of

constant AM.

We observed in Fig. 3.1 that the orientation of the primary lobes and the maximum

growth rates at a fixed latitude Λ + ϕ = 30◦ depend strongly on ϕ. In particular,

we observe the fastest growth (and the widest primary lobes) at this latitude for

ϕ ∈ [60◦, 90◦], which are adiabatically unstable according to Eq. 3.10 (see also panel

(b) in Fig. 3.3 that displays the maximum growth rate vs ϕ). For adiabatically stable

but GSF unstable cases, here for ϕ < 30◦, we observe somewhat slower growth (but

still O(1)) and lobes that narrow as ϕ → −90◦. The fastest growing modes (darkest

red) in adiabatically unstable cases occur for |k| = k → 0, suggesting that with the

presence of diffusion the dominant modes grow on the largest possible wavelengths

(without diffusion these modes do not have a preferred wavevector magnitude k,

only a preferred wavevector orientation). This is in comparison to the GSF cases

where the darkest areas have a unique non-zero wavenumber, and hence a preferred

wavelength in real space.

On the other hand, we have observed that for a fixed Λ, varying ϕ alone does not

change the orientation or sizes of the primary lobes, but it does modify the maxi-

mum growth rates, with cases with horizontal shears for ϕ ∼ 90◦ exhibiting faster

growth than radial shears with ϕ ∼ 0◦. This result might be expected because radial

motions will be inhibited to a greater extent by the stable stratification than latitu-

dinal displacements. Decreasing Pr to a smaller, more realistic, value substantially

increases the size of the primary lobes for a given RiPr. This result holds even in

the presence of a more realistic and much larger buoyancy frequency (not shown)

as the key parameter for diffusive instability is RiPr.

We additionally note the appearance in Fig. 3.1 (and Fig. 3.2) of two further, but

much smaller “secondary lobes”, which are barely visible when ϕ = 0 and were

not previously identified by BJT2 owing to the wavenumber resolution and colour-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Figures of linear growth rate log10(σ/Ω) for the axisymmetric GSF (or
adiabatic) instability for various ϕ on the (kx, kz)-plane for N 2/Ω2 = 10, Pr= 10−2,
S/Ω = 2, with Λ = 60◦ fixed. Here we vary ϕ in multiples of 30◦ from −90◦ to 60◦.
GSF (or adiabatically) unstable modes are contained within the wedge bounded by
the two vectors Ω̂⊥ and ∇ℓ. We also observe two secondary lobes outside the primary
one. While the primary lobe is fixed in orientation, the strength and orientation
of secondary modes depends on ϕ and are only present when we are adiabatically
stable.
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scale adopted for their figures. These lobes are most visible here for ϕ = −30◦ and

ϕ = −90◦, and correspond to the oscillatory (ω ̸= 0) axisymmetric baroclinic insta-

bilities that can develop in this system (McIntyre, 1970; Knobloch, 1982; Labarbe &

Kirillov, 2021; Le Bars, 2021). These are oscillatory modes – noted in section 3.3.2

as essentially weakly excited inertia-gravity waves – in contrast to the usual GSF

(or adiabatic) instability that onsets as a direct instability within the primary lobes.

The smaller secondary lobes are likely to be overpowered by the GSF instability in

stellar interiors (see § 3.3.2), as their maximum growth rates are generally much

smaller than the primary lobes for Pr ≪ 1, however they could potentially become

important in the presence of strong chemical gradients where there are stricter cri-

teria for instability (Knobloch & Spruit, 1982).

3.4.1 Properties of the fastest growing modes

The next set of figures we present are a selection illustrating how the maximum linear

growth rates and wavenumber magnitudes vary with ϕ. We show results for both the

GSF instability (black) and the adiabatic instability (red) by solving the dispersion

relations directly, as well as the growth rate in the asymptotic limits as RiPr → 0

(green; based on Eq. 3.21) and RiPr ∼ O(1) (blue; based on Appendix A.2, Eqs. A.18

and A.19). In Fig. 3.3, we plot the growth rate of a given instability against ϕ (in

the full range between ±180◦), whilst keeping the latitude Λ + ϕ fixed, and setting

S = 2, N2 = 10, Pr = 10−2.

At the equator (where ϕ + Λ = 0), ϕ = 0 is marginally stable with S = 2, corre-

sponding to Rayleigh stability (Chandrasekhar, 1961). This is also true for any case

where ϕ is such that Λ = 0, which corresponds with cylindrical differential rotation

(Ω(ϖ) only) which is neutrally stable for S = 2 (constant angular momentum as a

function of cylindrical radius ϖ). Interestingly, we see that the effects of varying

ϕ are symmetric about zero at the equator, and there is no adiabatic instability in

this case. The fastest growing instability occurs for mixed radial/latitudinal shears

with ϕ ∼ 60◦, rather than purely latitudinal shears with ϕ ∼ 90◦, which is intu-
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(a) Latitude Λ + ϕ = 0◦ (b) Latitude Λ + ϕ = 30◦

(c) Latitude Λ + ϕ = 60◦ (d) Latitude Λ + ϕ = 90◦

Figure 3.3: A selection of figures comparing the maximum linear growth rates in both
the adiabatic (red) and diffusive (black) regimes for S = 2, Pr = 10−2, N2 = 10. The
light blue dashed line corresponds to the critical ϕ for onset of adiabatic instability
predicted by Eq. 3.10. Onset of GSF instability as predicted by Eq. 3.20 is shown
as magenta dashed lines. Predictions for the growth rate in the limits assuming
RiPr ∼ O(1) and RiPr → 0 are shown as the blue and green lines, respectively.

itively surprising. We observe the growth rate to be in very good agreement with

the prediction from the asymptotic limit as RiPr ∼ O(1), but it is smaller than the

“upper bound” predicted by considering its evaluation in the limit as RiPr → 0.

Moving away from the equator, at ϕ + Λ = 30◦ latitude we again see the expected

marginal stability when ϕ ∼ 30◦, but we also observe onset of adiabatic instability

between ϕ = 30◦ and ϕ = 90◦. Only diffusive instability is observed for ϕ < 30◦,

but adiabatic instability dominates instead when ϕ > 30◦, which typically has a

larger growth rate than GSF unstable modes. The transition between diffusive and

adiabatic instability is given by the dashed blue line, which shows the critical value of
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ϕ predicted by Eq. 3.10, and the magenta dashed lines indicate the bounds for GSF

instability given by Eq. 3.20. These are in excellent agreement with our numerical

results. Note that there is a tiny nonzero range of ϕ for which neither instability

occurs near ϕ ∼ 30◦ between the magenta and light blue dashed lines. This is a

finite Pr effect due to viscosity, which is not present in the RiPr → 0 prediction (in

green; that matches the light blue dashed line). We observe that the numerically-

computed growth rate of the GSF instability from directly solving the cubic (black)

is again in very good agreement with the prediction from the asymptotic limit as

RiPr ∼ O(1), and is somewhat smaller than the prediction valid when RiPr → 0.

The latter case also occurs for a wider range of ϕ, namely −161.6◦ ≲ ϕ ≲ −135.8◦

which is stable for the black and blue curves. One subtle feature of this case is the

change of dominant mode for ϕ ∼ 175◦ where the black, blue, and green lines all

dominate over the adiabatic instability.

The 60◦ latitude case shows similar behaviour to the 30◦ latitude case, except that

marginal stability for adiabatic instability now occurs at ϕ ∼ 60◦. However, here

the RiPr → 0 curve always produces the largest growth rates, and, in comparison to

ϕ + Λ = 30◦, there is an extended region ϕ ≳ 150◦ where the GSF curve dominates

over the adiabatic one. At the pole (Λ + ϕ = 90◦), we firstly see that the system

is stable to adiabatic instabilities for all ϕ, and onset for GSF occurs at ϕ = −64◦

and lasts until a point of stability ϕ = 90◦ (cylindrical rotation), after which a

second curve predicts instability for 90◦ ≲ ϕ ≲ 180◦ and −180◦ ≲ ϕ ≲ −116◦. The

transition to GSF instability is predicted by Eq. 3.20, plotted as the dashed magenta

line, which is in excellent agreement with our numerical results. Like at the equator,

but unlike at latitudes 30◦ and 60◦, the pole exhibits instabilities symmetrically with

respect to cylindrical rotation (ϕ = 90◦), at which point the solution is singular and

therefore is not plotted. Again, we see that the prediction in the asymptotic limit

assuming RiPr ∼ O(1) is in very good agreement with our results, whereas the

RiPr → 0 prediction is an upper bound.

We thus observe from these figures that the maximum growth rates depend strongly
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(a) Λ + ϕ = 0◦ (b) Λ + ϕ = 30◦

(c) Λ + ϕ = 60◦ (d) Λ + ϕ = 90◦

Figure 3.4: A selection of figures comparing the fastest growing wavevector magni-
tudes against ϕ at the latitudes 0◦, 30◦, 60◦, 90◦ for S = 2, Pr = 10−2, N2 = 10.
Onset of adiabatic instability as predicted by Eq. 3.10 is shown as a blue dashed
line. Onset of GSF instability predicted by Eq. 3.20 is shown as the magenta dashed
lines, and onset of adiabatic instability predicted by Eq. 3.10 is indicated by the light
blue dashed lines. We plot predictions from solving our cubic numerically (black)
as well as the corresponding asymptotic predictions assuming RiPr ∼ O(1) (blue)
and RiPr → 0 (green).

on latitude and on the differential rotation angle ϕ, but typically have similar max-

imum values O(1) (when S ∼ O(1)) when (either adiabatic or diffusive) instability

occurs. In general, the fastest growing modes typically occur for mixed radial/lati-

tudinal shears rather than purely radial or latitudinal shears, and the most unstable

orientation of the shear depends on latitude.

Fig. 3.4 shows the corresponding wavevector magnitudes (k = |k|) for the fastest

growing modes as a function of ϕ between ϕ = −180◦ and 180◦ for each panel plotted

in Fig. 3.3. We observe that in the adiabatically unstable regime (to the right of
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Figure 3.5: Critical shear strength Scrit required for onset of GSF instability
for ϕ ∈ [−180◦, 180◦] at the latitudes Λ + ϕ = 5◦, 30◦, 60◦ and 90◦ (assuming
N2 = 10, Pr = 10−2). Note: we choose 5◦ to approximate the equatorial region
for numerical reasons. For each latitude, Λ ∼ 0, corresponding to an approximately
cylindrical rotation profile, is a local maximum in Scrit because GSF instability
requires Rayleigh’s stability criterion to be violated, whereas for other latitudes
Eq. 3.20 is usually a less stringent condition except for large negative values of ϕ.

the blue dashed lines showing the predictions of Eq. 3.10) the preferred wavevector

magnitude is not plotted. This is because the diffusion-free quadratic dispersion

relation exhibits a preferred orientation but no preferred wavevector magnitude in

this local model. There is a preference for k → 0 however in this regime when

diffusion is present, as we have observed by solving our cubic dispersion relation

here, but we omit showing this.

Interestingly, we see that in the three cases that showed the largest growth rates

(latitudes 0◦, 60◦ and 90◦) we also see that all of these cases have similar |k| values on

average in the range 0.5-0.7 (in units of d−1). We observe that the asymptotic pre-

dictions for k assuming RiPr ∼ O(1) are in very good agreement with the numerical

results from solving our cubic (black), whereas the predictions assuming RiPr → 0

are typically slightly larger (indicating slightly smaller wavelength modes).

The critical shear strength Scrit required for onset of GSF instability (i.e. which

occurs for S > Scrit) at a given latitude Λ + ϕ is highly dependent on ϕ.
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The results we found are presented in Fig. 3.5 for various latitudes (assuming N2 =

10, Pr = 10−2). Note that when Λ = 0, corresponding with cylindrical rotation, and

for values Λ ∼ 0, there is a region with a local maximum constant value in Scrit = 2.

This is because cylindrical rotation profiles are only unstable if Rayleigh’s stability

criterion is violated, which is typically a more stringent condition than Eq. 3.20.

On the other hand, we show that when ϕ is negative the instability is stabilised

for sufficiently large values of ϕ. Such ϕ values (e.g. ϕ ∼ −180◦ near the equator)

correspond to outwardly varying angular momentum profiles when S is positive,

which are thus Rayleigh-stable. Hence for such negative values of ϕ (depending on

latitude), large or even infinite values of Scrit are required for instability.

Fig. 3.5 shows that a large reduction in Scrit is possible when ϕ and Λ are both

nonzero, particularly near the equator. For shellular rotation (ϕ = 0), we note that

the most readily destabilised cases are near the poles (Λ + ϕ ≈ 90◦), as identified in

BJT2. On the other hand, the equatorial regions are most readily destabilised for

primarily horizontal (or mixed radial/latitudinal) shears. In particular, note that

Λ + ϕ ≈ 5◦ is unstable for very weak horizontal shears, and more generally for those

with |ϕ − 5◦| ≳ 5◦. This figure illustrates the non-trivial behaviour of the GSF

instability as a function of latitude and ϕ.

3.5 Conclusions

This chapter focused on analysing the local linear stability of generalised differential

rotation profiles in stably stratified radiation zones through the use of our local

Cartesian box model.

Initially, we re-derived and built upon results from previous studies by authors such

as BJT1, BJT2, and Knobloch (1982), exploring both non-diffusive and diffusive

regimes and investigating their linear stability.

We then examined several asymptotic limits of particular interest by exploiting some

of the extreme parameter values typical in stellar interiors, specifically small Pr and
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large Ri. This allowed us to derive simple expressions characterising the growth rates

and behaviour of the wave vectors for the unstable modes in each of these limits,

as well as to develop a clear understanding of the effects of the various physical

processes in the system.

We then presented extensive numerical visualisations, exploring the dynamics of the

growth rate and properties of the most unstable modes as a function of ϕ. Our ‘lobe’

plots (Figures 3.1 and 3.2) identified two key instabilities: a set of primary lobes

corresponding to dominant direct instability (GSF or adiabatic), along with a set

of secondary lobes representing weakly growing inertial gravity waves.

Figures 3.3 and 3.4 reveal how variations in ϕ and ultimately different rotational

profiles affect the growth rate of the most unstable mode, highlighting how mixed

radial/latitudinal shears can be more unstable than the purely radial ones studied

in BJT1 and BJT2. Table 3.1 summarises our results from this numerical analysis.

Finally, Figure 3.5 demonstrates the clear dependence between the minimum shear

strength required for the onset of instability and the choice of differential rotation

profile at a fixed latitude.

Together, these figures have shown that the linear problem is strongly controlled

by the differential rotation profile within our local box model. We have seen that

mixed shears lead to the lowest Scrit and largest growth rates at all of the latitudes

we considered. It is important to now explore how these results translate into the

nonlinear evolution and determine for which parameters the GSF instability is most

efficient at transporting angular momentum.
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S ϕ Λ Γ γ RiPr kx kz |k| σ θk Adi stable?
Latitude = 0◦

2 −90◦ 90◦ −66.42◦ 135◦ 0.025 -0.17 0.51 0.54 0.70 71.08 ◦ ✓
2 −60◦ 60◦ −39.73◦ 120◦ 0.025 -0.053 0.58 0.58 0.76 84.81 ◦ ✓
2 −30◦ 30◦ −18.46◦ 105◦ 0.025 -0.30 0.51 0.59 0.61 59.21 ◦ ✓
2 0◦ 0◦ NA NA 0.025 NA NA NA NA NA ✓
2 30◦ −30◦ 18.46◦ −105◦ 0.025 -0.30 0.51 0.59 0.61 59.21◦ ✓
2 60◦ −60◦ 39.73◦ −120◦ 0.025 -0.05 0.58 0.58 0.76 84.81◦ ✓
2 90◦ −90◦ 66.42◦ −135◦ 0.025 -0.17 0.51 0.54 0.70 71.08◦ ✓

Latitude = 30◦

2 −90◦ 120◦ −69.73◦ 150◦ 0.025 0.47 0.49 0.68 0.36 46.28◦ ✓
2 −60◦ 90◦ −36.42◦ 135◦ 0.025 0.26 0.67 0.72 0.55 69.19◦ ✓
2 −30◦ 60◦ −9.73◦ 120◦ 0.025 -0.03 0.74 0.74 0.62 87.72◦ ✓
2 0◦ 30◦ 11.54◦ 105◦ 0.025 0.32 -0.67 0.74 0.49 64.14◦ ✓
2 30◦ −30◦ NA NA 0.025 NA NA NA NA NA ✓
2 60◦ −30◦ 48.46◦ −105◦ 0.025 -0.01 0.015 0.018 0.88 57.09◦ ×
2 90◦ −60◦ 69.73◦ −120◦ 0.025 -0.001 0.01 0.01 1.10 81.87◦ ×

Latitude = 60◦

2 −90◦ 150◦ −78.46◦ 165◦ 0.025 0.52 0.22 0.56 0.03 22.77◦ ✓
2 −60◦ 120◦ −39.73◦ 150◦ 0.025 0.52 0.52 0.73 0.29 45.20◦ ✓
2 −30◦ 90◦ −6.42◦ 135◦ 0.025 0.29 0.70 0.76 0.51 67.21◦ ✓
2 0.0◦ 60◦ 20.27◦ 120◦ 0.025 0.015 0.76 0.76 0.60 88.86◦ ✓
2 30◦ 30◦ 41.54◦ 105◦ 0.025 -0.25 0.70 0.75 0.48 70.19◦ ✓
2 60◦ 0◦ NA NA 0.025 NA NA NA NA NA ✓
2 90◦ −30◦ 78.46◦ −105◦ 0.025 0.001 0.01 0.01 0.85 81.87◦ ×

Latitude = 90◦

2 −90◦ 180◦ NA NA 0.025 NA NA NA NA NA ✓
2 −60◦ 150◦ −48.46◦ 165◦ 0.025 0.51 0.21 0.55 0.024 22.30◦ ✓
2 −30◦ 120◦ −9.73◦ 150◦ 0.025 0.51 0.49 0.71 0.32 43.98◦ ✓
2 0◦ 90◦ 23.58◦ 135◦ 0.025 0.29 0.62 0.69 0.58 65.20◦ ✓
2 30◦ 60◦ 50.27◦ 120◦ 0.025 0.049 0.65 0.65 0.70 85.69◦ ✓
2 60◦ 30◦ 71.54◦ 105◦ 0.025 -0.16 0.60 0.62 0.59 75.34◦ ✓
2 90◦ 0◦ NA NA 0.025 NA NA NA NA NA ✓

Variations in shear (GSF instability at S = 2 in Fig. 4.7 panels (a) and (b))
0.5 −30◦ 60◦ −25.037◦ 73.90◦ 0.40 0.18 -0.39 0.43 0.013 66.03◦ ✓
1.0 −30◦ 60◦ −20.035◦ 90◦ 0.10 -0.18 0.60 0.63 0.18 72.95◦ ✓
1.5 −30◦ 60◦ −14.94◦ 106.1◦ 0.044 -0.11 0.69 0.70 0.40 80.55◦ ✓
2.0 −30◦ 60◦ −9.73◦ 120◦ 0.025 -0.029 0.74 0.74 0.62 87.72◦ ✓
2.5 −30◦ 60◦ −4.34◦ 130.89◦ 0.016 0.053 0.76 0.76 0.84 86.04◦ ✓
3.0 −30◦ 60◦ 1.31◦ 139.11◦ 0.011 -0.12 -0.76 0.77 1.06 −81.12◦ ✓

Variations in shear (adiabatic instability at S = 2 in Fig. 4.7 panels (c) and (d))
0.5 90◦ −60◦ −25.03◦ −73.90◦ 0.40 0.18 -0.39 0.43 0.013 66.03◦ ✓
1.0 90◦ −60◦ 99.97◦ −90◦ 0.10 0 0 0 0.48 NA ×
1.5 90◦ −60◦ 105.06◦ −106.1◦ 0.044 0 0 0 0.85 NA ×
2.0 90◦ −60◦ 110.27◦ −120◦ 0.025 0 0 0 1.10 NA ×
2.5 90◦ −60◦ 115.66◦ −130.89◦ 0.016 0 0 0 1.31 NA ×
3.0 90◦ −60◦ 121.31◦ −139.11◦ 0.011 0 0 0 1.49 NA ×

Table 3.1: Table of linear properties for simulation parameters. For all of these we fix
Pr = 10−2 and N2 = 10. kx and kz are wavevector components of the fastest growing
linear mode, σ is the corresponding growth rate. The cases which investigated
variations in shear S were considered at Λ+ϕ = 30◦ latitude with Λ = 60◦, ϕ = −30◦

in the case that was GSF-unstable at S = 2, and Λ = −60◦, ϕ = 90◦ in the case that
is adiabatically unstable if S = 2. Our simulation units are determined by setting
Ω = d = 1.
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Chapter 4

Nonlinear hydrodynamical

simulations

4.1 Nonlinear hydrodynamical simulations and results

The primary aim of the following chapter is to develop an understanding of how

variations in the orientation of the shear, denoted by ϕ, affect the GSF instability

for the first time, and to quantify the resultant turbulent transport. Our nonlinear

simulations are performed using the pseudo-spectral code Snoopy, as discussed

in Lesur and Longaretti (2005). We start by discussing several key elements of

Snoopy, including the advantages of it being a Fourier code and its utilization of

shearing waves.

Following this we present the results from our 3D simulations, for several GSF

unstable cases, primarily at the latitudes Λ + ϕ = 0◦, 30◦ and 90◦. We quantify the

time evolution of the kinetic energy and relevant Reynolds stress components in Figs.

4.2 and 4.3, which are presented alongside snapshots of the flow at the various key

stages throughout its evolution. Non-dimensional parameters are used throughout,

and following Fig. 3.3 (and BJT2), are fixed as S = 2, N2 = 10, Pr = 10−2, along

with box dimensions of Lx = Ly = Lz = 100, unless otherwise stated. Note that
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S = 2 represents the critical value for instability onset for a cylindrical differential

rotation profile (Λ = 0) or at the equator for a shellular profile (ϕ = 0).

We then turn our focus to cases predicted in Fig. 3.3 to be adiabatically unstable

in order to gauge how the lack of a preferred wave vector magnitude, discussed in

Chapter 3, translates into the nonlinear regime. Following this we probe the effects

of varying shear strength S and box size (Lx, Ly, Lz) in § 4.3.1 and 4.3.2. Table B.1

summarises the majority of our nonlinear hydrodynamical simulations.

Finally, we analyse the angular momentum transport properties of the operating

instabilities as a function of ϕ. From this we aim to provide insights into how and

why the orientation of the shear, and consequently the local differential rotation

profile, affects the angular momentum transport within the system.

4.2 SNOOPY

All simulations presented in this chapter are performed using the pseudo-spectral

code Snoopy. Snoopy is a 3D incompressible Fourier code, in Cartesian geometry,

with the capacity to implement shearing sheet boundary conditions through the use

of ‘shearing waves’. Snoopy solves the nonlinear equations of magnetohydrodyam-

ics, and was originally developed by Lesur and Longaretti (2005) to simulate local

instabilities in accretion disks. The code is parallelised using Message Passing In-

terface (MPI) and Open Multi-Processing (OpenMP) to utilise multiple cores on

high-performance computing (HPC) facilities (such as ARC at the University of

Leeds), enabling simulations that would be otherwise impractical on a single pro-

cessor.

Being a pseudo-spectral code, Snoopy does calculations in both Fourier and real

space depending on which is more convenient in different stages of the simulation.

As a Fourier code, Snoopy involves expanding solutions in terms of complex expo-
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nentials (sines and cosines) of the form:

u = ℜ[(ûx, ûy, ûz) exp(ik(t) · x)], (4.1)

p = ℜ[p̂ exp(ik(t) · x)], (4.2)

θ = ℜ[θ̂ exp(ik(t) · x)], (4.3)

where the coefficients with hats are complex numbers in general, and where the total

solution is the sum of all of the allowed Fourier modes of this form within the box.

Once we’ve determined the coefficients of the expanded terms, taking the sum of all

Fourier modes gives us the physical velocity, temperature, and pressure fields seen

in our simulations.

One interesting feature of Snoopy is its use of time-dependent wave vectors, also

known as ‘shearing waves’, to deal with the periodic nature of the flow whilst re-

maining consistent with the background shear flow.

4.2.1 Shearing Waves

Having a background shear flow that varies linearly with x means that the modes

in our system are constantly being sheared out in the x-direction. In order to deal

with this one can either adopt shear-periodic boundary conditions (e.g. Hawley et

al., 1995) or use shearing waves. In the following we choose the latter because, as

we shall we, it allows for some simplifications to be made to the equations solved by

Snoopy.

In the shearing wave formalism, Fourier modes don’t take the usual form exp (ik · x)

with constant k. Instead, in order to account for the continuous deformation of k

due to the background shear flow, we use time-dependent wave vectors k(t). This

means our basis functions are sheared waves (known as ‘shearing waves’) which take

the form exp(ik(t) · x). The ky and kz wave numbers remain time-independent and
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are given by those typical in a periodic domain,

ky = 2πny/Ly, ny ∈ Z, (4.4)

kz = 2πnz/Lz, nz ∈ Z. (4.5)

The main difference comes from the kx wave vector, which is the one affected by

the shear, for which we have:

kx(t) = 2πnx/Lx + Skyt, nx ∈ Z. (4.6)

The periodicity of these waves implies that every mode in the system automatically

satisfies shear-periodic boundary conditions, and hence our whole system satisfies

periodic boundary conditions without the need to impose the boundary conditions

further in the code.

To see how the shearing wave formulation benefits Snoopy, let’s consider the ad-

vective derivative arising from the background flow U0, before taking the real part,

∂u

∂t
+ U0 · ∇u = ∂

∂t
(û exp (ik(t) · x)) + i

(
k̇ · x

)
û exp (ik(t) · x) − ikySxû exp (ik(t) · x) .

(4.7)

Without shearing waves (i.e., if k̇ = 0), the final term creates difficulties due to its

linear dependence on x, since it therefore doesn’t satisfy typical periodic boundary

conditions. However, we can choose to define,

k̇(t) = Skyex, (4.8)

so that the final term is exactly balanced by the middle term in 4.7 and thus they

both vanish thanks to the use of shearing waves. Using shearing waves is equivalent

to using coordinates that follow the background flow U0, which allows us to express

any perturbation using Fourier modes as long as they can be assumed to satisfy
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periodic boundary conditions in such a frame. Since kx increases linearly with time,

we must apply a remapping procedure to be able to resolve flow structures with

a given spatial scale for a long time. To do so, we apply a periodic remap on the

timescale t = nLy/SLx for n = 1, 2, 3, .... This procedure is explained in Umurhan

and Regev (2004) and Lesur and Longaretti (2005). It is required because a given

wave in the shearing coordinates frame appears as a time-dependent wave in the

original steady frame. As time progresses the wavenumbers in the shearing frame

describe increasingly higher wavenumbers in the steady frame, and consequently,

the original wave will eventually no longer be represented if only a finite number of

Fourier modes are employed. Using a periodic remap prevents us from losing energy

on the large scales (Rogallo, 1981).

4.3 Nonlinear Evolution of GSF instability

Snapshots of the y component of the velocity field, uy, (which is the variable that

most clearly shows both the linear and nonlinear behaviour) in the (x, z)−plane

are given in Figs. 4.1-4.5. The upper left image in each of these figures shows how

the local model fits into the global picture for each choice of parameters. Panel

(c) shows the linear growth phase, which is dominated by the fastest growing mode

velocity perturbations (“AM fingers”) that are orientated roughly half-way between

Ω̂ and (∇ℓ)⊥ (indicated by solid black lines). Here, centrifugally-driven AM fingers

develop. Panel (d) shows the initial nonlinear saturation of these fingers and the

formation of zonal jets. Panels (e) and (f) show the evolution of the zonal jets,

illustrating the potential for them to grow in strength and tilt away from their

initial orientation depending on the parameters. Given sufficient time all cases here

with nonzero ϕ (and nonzero Λ) achieved a steady layered state, in which the zonal

jets contribute to generating sustained AM transport. For additional details on AM

transport (and the role of Reynolds stresses), see Aside 4.3.
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Reynolds Stress

The role of stresses are not only to ensure a timely submission of this thesis

but also to describe how the forces internal to a fluid affect its evolution.

The particular stress tensor of interest in quantifying angular momentum

transport is the Reynolds stress (and additionally when magnetic fields are

present, the Maxwell stresses).

We wish to understand the interaction between some perturbation and the

surrounding flow. One way of gaining additional insights would be to calculate

the kinetic energy equation and see which terms transfer energy between the

two.

We calculate the energy equation by taking the dot product of u with our

perturbed momentum equation

u · (Du + 2Ω × u + u · ∇U0) = u · (−∇p + θeg + ν∇2u). (4.9)

Simplifying and volume averaging gives

1
V

∫
V

D|u|2dV = − 2
V

∫
V

(Ω × u) · u dV − 1
V

∫
V

∇p · u dV

+ 1
V

∫
V

(θeg) · u dV + 1
V

∫
V

(ν∇2u) · u dV − 1
V

∫
V

(u · ∇U0) · u dV. (4.10)

An application of the divergence theorem to the pressure and non-linear ad-

vection terms leads to (and applying periodic boundary conditions),

∫
V

∇ · (pu) dV =
∫

S
pu · n dS = 0, (4.11)

and

∫
V

u · (u · ∇u)dV =
∫

V
∇·(1

2 |u|2u)dV =
∫

S

1
2 |u|2u · dS = 0. (4.12)
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Reynolds Stress

Noting that the term − 2
V

∫
V (Ω×u)·u dV = 0 since (Ω×u)·u = 0, means the

only term that determines kinetic energy transfer between the perturbation

and the shear flow is the last term,

− 1
V

∫
V

(u · ∇U0) · u dV = − 1
V

∫
V

SuxuydV = − S

V
Rxy(t). (4.13)

Rxy is the Reynolds stress where

Rxy = 1
V

∫
V

uxuydV. (4.14)

The Reynolds stresses (and where applicable Maxwell stresses) are vital quan-

tities indicating the angular momentum and energy transport properties of a

fluid. We will go into further detail of the energetics in § 5.5.1.

Panel (b) in each of Figs. 4.1-4.5 shows the kinetic energy spectrum on the (kx, kz)-

plane (averaged over y) at t = 250, by which point every simulation we investigated

had reached a statistically steady state exhibiting strong zonal jets. This shows the

orientations of the modes as a function of their spatial scale, which strongly exhibit

a preferred direction at small wavenumbers and become increasingly isotropic for

larger wavenumbers. Note that the de-aliasing wavenumber in these simulations

has magnitude 5.83, so the decrease in spectral power by then is evidently more

than a factor of 103 from the peak, suggesting that our simulations are well resolved

spatially. We also checked the initial more turbulent phases of our simulations, such

as t = 50, and all were verified to be well resolved spatially by analysing the kx, ky

and kz spectra.

The first set of snapshots are presented in Fig. 4.1. These illustrate the y-component

of the velocity at various points throughout the evolution of the instability at the

equator (at the times t = 10, 50, 100 and 250). This is an equatorial (Λ+ϕ = 0) case

with ϕ = 30◦, Λ = −30◦, which we can see from Fig. 3.3 is within the GSF-unstable
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(a) Diagram (b) KE spectrum at t = 250

(c) uy at t = 10 (d) uy at t = 50

(e) uy at t = 100 (f) uy at t = 250

Figure 4.1: Panel (a) depicts the local configuration of the box, filled with the
snapshot of uy at t = 10, within the global picture at the equator with ϕ = 30◦, Λ =
−30◦, S = 2, Pr = 10−2 and N2 = 10. This is coupled with snapshots of the y-
component of the velocity in (x, z) slices at y = 0 at various points throughout the
evolution of the GSF instability. By t = 10 AM fingers have developed in the wedge
of instability, in between (∇ℓ)⊥, and Ω̂. By t = 50 we already see clear layering,
made up of oppositely-directed zonal jets. The jets are fully developed by t = 100
and we see from its evolution at t = 250, along with Figs. 4.2 and 4.3, that this
is a statistically steady state transporting enhanced levels of AM. Panel (b) shows
the KE spectrum, log10 Re[ûxû∗

x + ûyû∗
y + ûzû∗

z], in the (kx, kz)-plane at t = 250,
illustrating how the orientation of the layered state differs from that of the initial
fingers.
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Figure 4.2: Evolution of the kinetic energy K (K = 1
2⟨|u|2⟩) for S = 2, N2 = 10,

Pr = 10−2, with ϕ varied but at a fixed latitude Λ+ϕ. We observe the orientation of
the shear to directly affect the final K levels within both the GSF and adiabatically
unstable regimes. Panels (a) and (b) are plotted on a semi-log scale which clearly
captures the exponential growth phases, whereas the slow evolution for ϕ = −60◦

necessitated the use of a log-log scale for panel (c) which exhibited a lower initial
growth rate.
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Figure 4.3: Reynolds stress component ⟨uxuy⟩ illustrating angular momentum (AM)
transport for the same cases as Fig. 4.2. Variations in ϕ at a fixed latitude Λ + ϕ
can lead to enhanced levels of AM transport, illustrating the influence of shear
orientation on the turbulent dynamics. These effects are observed within both the
GSF regime and the adiabatic instability. Panels (a) and (b) show the results on a
semi-log scale to highlight differences across several orders of magnitude, while panel
(c) uses a log-log scale to better capture the slow evolution observed for ϕ = −60◦.
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regime. By t = 10 centrifugally-driven AM fingers have developed within the wedge

of unstable directions. At t = 50 the AM fingers have saturated nonlinearly and

formed zonal jets or AM layers. Figs. 4.2 and 4.3 show the corresponding volume-

averaged kinetic energy (K = 1
2⟨|u|2⟩, where ⟨·⟩ denotes a volume average), and

AM transport (i.e. Reynolds stress component ⟨uxuy⟩), respectively. The jets are

fully formed by t = 100, and we see from the subsequent evolution at t = 250,

and Figs. 4.2 and 4.3, that this is a statistically steady state, which is transporting

enhanced levels of AM.

Figs. 4.2 and 4.3 indicate that the transport properties of the GSF (and adiabatic)

instability depend heavily on shear flow orientation ϕ and at a fixed latitude Λ + ϕ.

We notice that the magnitudes of turbulent transport in the final states are, on

a whole, well ordered with respect to the predictions for the linear growth rates

in Fig. 3.3, in that ⟨uxuy⟩ is generally larger for cases with larger growth rates

σ. However exceptions are observed, resulting from undetermined nonlinear factors

such as the strengths of zonal jets in each case. We also notice that the case with

ϕ = −60◦ at the equator (Λ + ϕ = 0) doesn’t behave in the same way as ϕ = 60◦,

despite the symmetrical nature (about zero) of the growth rate σ predicted by linear

theory in Figs. 3.3 and 3.4. Instead KE and AM transport properties are significantly

increased in comparison with ϕ = 60◦, which Fig. 3.3 would suggest to be roughly

equal based on the linear growth rates.

Once the initial growth phase becomes nonlinearly saturated, jet migration and

mergers dominate the dynamics. A merger can be seen particularly clearly in the

equatorial case with ϕ = −90◦ (the green line in Fig. 4.2), between times t ≈ 65

and t ≈ 85 the layers in the system merge to form larger scale jets that transport

angular momentum more efficiently.

Fig. 4.4 shows snapshots from a simulation at a non-equatorial latitude Λ + ϕ = 30◦

(cf. BJT2) within the GSF unstable regime, with ϕ = −30◦, Λ = 60◦, with otherwise

the same parameters. As predicted by 3.1 instability onsets initially between lines

(∇ℓ)⊥ and Ω̂, such that the preferred direction is along x. Parasitic instabilities
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(a) Diagram (b) KE spectrum at t = 10

(c) uy at t = 10 (d) uy at t = 50

(e) uy at t = 100 (f) uy at t = 250

Figure 4.4: Panel (a) depicts the local configuration of the box, filled with the
snapshot of uy at t = 10, within the global picture for a non-equatorial case at
latitude Λ + ϕ = 30◦ with ϕ = −30◦, Λ = 60◦, S = 2, Pr = 10−2 and N2 = 10. This
is coupled with snapshots of the y-component of the velocity in (x, z) slices at y = 0
at various points throughout the evolution (at times t = 10, 50, 100 and 250) of the
observed GSF instability in panels (c) to (f). At t = 10 AM fingers are observed
inside the wedge of instability, in between the lines (∇ℓ)⊥ and Ω̂. By t = 50 AM
fingers have saturated by parasitic instabilities and are now well within the non-
linear regime and the onset of layer formation. The flow at t = 100 and t = 250 is
weaker in magnitude than that in Fig. 4.1, and the layers are less distinct from one
another here. Panel (b) shows the kinetic energy spectrum in the (kx, kz)-plane at
t = 250.
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(a) Diagram (b) KE spectrum at t = 250

(c) uy at t = 10 (d) uy at t = 50

(e) uy at t = 100 (f) uy at t = 250

Figure 4.5: Panel (a) depicts the local configuration of the box, filled with the
snapshot of uy at t = 10, within the global picture for a case at the north pole
with latitude Λ + ϕ = 90◦ with ϕ = 30◦, Λ = 60◦, S = 2, Pr = 10−2 and N2 = 10.
This is coupled with snapshots of the y-component of the velocity in (x, z) slices
at y = 0 at several points in the evolution (at times t = 10, 50, 100 and 250) of
the GSF instability in panels (c) to (f). At t = 10 AM fingers develop within the
unstable wedge, and by t = 50 they have saturated and clear AM layers start to
appear. Interestingly, we see throughout the t = 50, 100 and 250 snapshots that
these layers rotate to orientate themselves along lines of constant AM. The lack of
changes after t = 100 indicates the system has attained a statistically steady state.
Panel (b) shows the kinetic energy spectrum in the (kx, kz)-plane at t = 250.
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acting on these fingers then lead into the non-linear regime, which quickly starts

forming zonal jets. Comparing these panels with Figs. 4.2 and 4.3 clarifies that

at t ≈ 50 the initial exponential growth has subsided and the following growth in

energy and turbulent transport results from strengthening or mergers of the jets.

Potentially as a result of similarities in both the wavevector magnitudes and growth

rates predicted by Figs. 3.4 and 3.3 for ϕ < 30◦, cases within −90◦ < ϕ < 30◦

have roughly the same velocities and hence mean kinetic energies. Interestingly a

purely radial shear with ϕ = 0◦ produced the least AM transfer of these cases at

this latitude.

The final case for which we will show snapshots in the GSF unstable regime in this

section is a case at the (north) pole Λ + ϕ = 90◦ in Fig. 4.5. Here ϕ = 30◦, Λ =

60◦, S = 2, Pr = 10−2 and N2 = 10. Early phases of evolution have unstable

mode flows excited between (∇ℓ)⊥ and Ω̂ but the nonlinear evolution orientates the

subsequent zonal jets to become approximately parallel to lines of constant AM.

This is consistent with what we might expect if the instability saturates by moving

the system back towards marginal stability, though it is difficult to understand

this quantitatively given the complexity of our shear flow at this time. Again, we

conclude from the lack of changes between t = 100 and t = 500 that these layers

have reached a statistically-steady state with enhanced transport properties.

It should be noted that the small initial growth rate for ϕ = −60◦ requires the use

of a logarithmic time scale in 4.2 and 4.3 to see that this case does grow in strength

and form layers; albeit over a much longer period of time. This case appears to

saturate at a very low level, as might be expected based on its linear growth rate

being relatively small compared to the other cases plotted.

Adiabatically unstable cases

As we have identified in Chapter 3 and shown in Fig. 3.3, the system can be adia-

batically unstable for certain ϕ and latitudes Λ + ϕ. When the adiabatic stability

criterion Eq. 3.10 is violated, we expect much more violent instabilities that do not
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(a) Diagram (b) KE spectrum at t = 250

(c) uy at t = 10 (d) uy at t = 50

(e) uy at t = 100 (f) uy at t = 250

Figure 4.6: Panel (a) depicts the local configuration of the box, filled with the
snapshot of uy at t = 10, within the global picture for a case in the adiabatically-
unstable regime at Λ + ϕ = 30◦ latitude, with ϕ = 60◦, Λ = −30◦, S = 2, Pr = 10−2

and N2 = 10. This is coupled with snapshots of the y-component of the velocity in
(x, z) slices at y = 0 at various points throughout the evolution. This adiabatically
unstable case exhibits rapidly growing AM fingers, which saturate shortly after
t = 10. By t = 50, the system is highly turbulent, and |uy| is far larger here than
observed in any of the cases. By t = 100 and 250 we see AM layers orientated
along the same line as the initial fingers, despite the strong flows that develop.
The zonal jets formed are much stronger than any in the GSF-unstable regime, in
agreement with Figs. 4.2 and 4.3. Panel (b) shows the kinetic energy spectrum in
the (kx, kz)-plane at t = 250. 87



require diffusion to operate. These are essentially adiabatic centrifugal instabilities.

We have shown in Fig. 3.4 that in this regime the unstable modes do not have a finite

preferred wavevector magnitude in the absence of diffusion, with all modes having

the same orientation growing at the same rate, but that the presence of diffusion

prefers modes to have arbitrarily large length-scales, with k → 0.

We show the flow for one case at latitude Λ + ϕ = 30◦ with ϕ = 60◦, Λ = −30◦ in

Fig. 4.6. This is the case in Figs. 4.2 and 4.3 with the highest levels of turbulent

transport (and one of the highest for energy, only below the other adiabatically un-

stable case with ϕ = 90◦) for this latitude. The growth rate in this regime predicted

by Fig. 3.3 is only marginally higher than that with ϕ = 0◦ (as shown in BJT2).

However, the lack of a finite preferred wavevector magnitude (without diffusion)

always permits large wavelength modes on the scale of the box to grow, resulting in

a dependence on the size of our Cartesian box we will analyse in §4.3.2. These then

saturate leading to flows with much larger amplitudes than any of the GSF unstable

cases in Figs. 4.1-4.5. The zonal jets in these cases are correspondingly stronger, and

these adiabatically unstable cases lead to the highest values of turbulent transport.

Note that Fig. 4.3 shows up to three orders of magnitude stronger AM transport in

these adiabatically-unstable cases when compared to the GSF-unstable ones.

Ostensibly the dynamics are similar to the GSF-unstable cases, however the timescales

for the different phases to occur, and strengths of the flows, vary largely between

these regimes. We notice that the AM fingers at t = 10 are larger than those in the

GSF regime, and by t = 50, the system is in a highly turbulent state, with |uy| being

far larger than observed in any of the adiabatically-stable cases. Whilst fluctuations

tend to be large in the adiabatic regime, by t = 100 we reach a statistically steady

state in which large-scale layers have formed, orientated along the same line as the

initial fingers by t = 250, despite their large amplitudes.

Adiabatically unstable differential rotation profiles are primarily driven by latitu-

dinal rather than radial shears (ϕ ∼ 90◦). Since the orientation of these shears is

less impeded by gravitational buoyancy, thermal diffusion is less important. As a
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result, such instabilities are expected to evolve much more rapidly than the diffusive

instability analysed in the previous section.

We note that an increase in angular momentum transport always accompanies an

increase in lengthscale of the layered flow. For cases where the initial instability

occurs at finite small scale, this increase in lengthscale arises owing to mergers of

the zonal jets; these mergers can take significant time to onset and complete. For

the adiabatically unstable cases where the initial instability occurs on a large spatial

scale, the increase in angular momentum transport is significant even at early times.

4.3.1 Variation of shear strength S

We now examine the effect of varying the shear strength S for two different shear

orientations at a latitude Λ + ϕ = 30◦. The first has Λ = 60◦ and ϕ = −30◦

(“mixed radial/horizontal shear”) and is GSF-unstable (but adiabatically stable)

when S = 2, and the second has Λ = −60◦ and ϕ = 90◦ (“horizontal shear”) which

is adiabatically unstable when S = 2. However, note that whether these cases are

diffusively or adiabatically unstable depends on S. We have observed the qualitative

behaviour of the flow in these simulations to be very similar to the cases presented in

§ 4.1, so we restrict our presentation to the volume-averaged quantities. The mean

kinetic energy and AM transport are shown in Fig. 4.7. Cases that are adiabatically

unstable in Fig. 4.7 are indicated by dashed lines.

The criterion for diffusive instability given by Eq. 3.20, and for adiabatic instability

given by Eq. 3.10, both indicate that the shear strength S directly affects the onset

of each type of instability. In addition, larger shears lead to larger growth rates.

Interestingly though, whilst larger shears lead to larger initial growth rates, the

results of Fig. 4.7 suggest that this doesn’t necessarily translate into a higher kinetic

energy K in the final steady state. Counter-intuitively, if we look carefully at panel

(a) we can see that after the initial growth phase, the energy for S = 1 grows to

slightly overtake that for S = 1.5. This was also observed in some cases in BJT2, and

is potentially related to the relatively stronger, larger wavelength, and potentially
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more stable (to parasitic shear instabilities) zonal jets for lower shears.

However the AM transport, shown via ⟨uxuy⟩, in the final steady state is in all

cases ordered in the way predicted by their initial linear growth rates, with larger

S cases providing larger ⟨uxuy⟩. Adiabatically unstable cases have more energetic

flows and provide higher levels of AM transport than GSF unstable cases, indicating

that when the Solberg-Høiland stability criteria (i.e. Eq. 3.10) are violated in stars

we would expect much more rapid dynamical evolution.

4.3.2 Dependence on box size

In order to verify whether the nonlinear results for our local simulations might be

applicable to astrophysical objects we must check whether the nonlinear saturation

properties of each instability depend on the box size. To do this, we performed

additional simulations with S = 2 at a latitude of Λ + ϕ = 30◦ with Lx = Ly =

Lz = 200d and 300d, and with appropriate spatial resolutions (as indicated in 4.1),

for both a GSF unstable case with Λ = 60◦ and ϕ = −30◦, and an adiabatically

unstable case with Λ = −60◦ and ϕ = 90◦. Results are shown in Figs. 4.8 and 4.9 for

the mean kinetic energy and AM transport. In order to ensure the smallest scales

remain well resolved even in larger boxes, we increase our resolutions as specified in

Table 4.1.

Fig. 4.8 demonstrates that AM transport (⟨uxuy⟩) in GSF-unstable cases is approxi-

mately independent of box size. This is a very promising and important result, since

it indicates that the turbulent transport predicted by our simulations is robust, and

can potentially be applied to model AM evolution in stars (once other parameters

have been adjusted). The smallest Lx case is more bursty than the flow in larger

boxes, but the mean values are very similar throughout its evolution. The kinetic

energy attained in the final state is also very similar, though this varies slightly

more as the box is enlarged. These results are consistent, but not obvious, from the

fact that the GSF instability has preferred wave-vector magnitude in linear theory,

as predicted by Fig. 3.4. This useful result means that the results from this the-
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Figure 4.7: Dependence of mean kinetic energy and AM transport (Reynolds stress)
on shear flow strength S for two different shear orientations. Panels (a) and (b)
show a case with Λ = 60◦ and ϕ = −30◦ that is GSF-unstable when S = 2, and
panels (c) and (d) show a case with Λ = −60◦ and ϕ = 90◦ that is an adiabatically
unstable when S = 2. Both of these are at Λ + ϕ = 30◦ latitude with N2 = 10 and
Pr = 10−2. AM transport in the final steady states are well ordered with respect to
initial linear growth rates. K is not however, perhaps due to the relatively stronger
and larger wavelength zonal jets for S = 1. Note that every shear strength we tested
for Λ = 60◦ and ϕ = −30◦ was GSF unstable and similarly every Λ = −60◦ and
ϕ = 90◦ case was adiabatically unstable.
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Figure 4.8: Dependence of K and ⟨uxuy⟩ on box size for the GSF instability at a
latitude Λ + ϕ = 30◦, where we vary each of (Lx, Ly, Lz). We fix S = 2, N2 = 10,
Pr = 10−2, Λ = 60◦ and ϕ = −30◦. The AM transport is approximately independent
of box size, and K only depends weakly on it, implying that we can potentially
extrapolate results in this GSF-unstable regime to stars.

sis, within the GSF unstable regime, can be applied to astrophysical problems with

confidence.

On the other hand, Fig. 4.9 shows that both the kinetic energy and AM transport

in adiabatically unstable cases that violate Eq. 3.10 exhibit a strong dependence on

box size. This might be predicted from linear theory, because in this regime there

is a preferred orientation but not a preferred wavevector magnitude for adiabatic

instability, and Fig. 3.4 indicates that in this regime the fastest growing mode in

Nx Ny Nz

GSF unstable (ϕ = −30◦ Λ = 60◦)
Lx,y,z = 100 256 256 256
Lx,y,z = 200 512 256 512
Lx,y,z = 300 512 512 512
Adiabatically unstable (ϕ = 90◦ Λ = −60◦)
Lx,y,z = 100 256 256 256
Lx,y,z = 200 512 256 512
Lx,y,z = 300 512 512 512

Table 4.1: Table of resolutions (number of grid points in each dimension before de-
aliasing) used when testing the effects of boxsize on the nonlinear properties of both
types of instability. Cases with Lx,y,z = 100 were also re-run with higher resolution
but no differences were found over the original resolution.
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Figure 4.9: Dependence of K and ⟨uxuy⟩ on box size for the adiabatic instability at
a latitude Λ + ϕ = 30◦, where we vary each of (Lx, Ly, Lz). We fix S = 2, N2 = 10,
Pr = 10−2, Λ = −60◦ and ϕ = 90◦. The strong dependence on box size implies that
results obtained in this regime in our local model cannot be reliably extrapolated
to stars.

the presence of diffusion has k → 0. As a result, the wavelengths of the fastest

growing modes grow without bound to fit within the box. Fig. 4.9 verifies that

in this regime, where the mechanism limiting k is the box size, then the nonlinear

properties of the instability also depend on it. While this leads to a violent instability

that transports AM very efficiently, our results in this regime cannot therefore be

reliably extrapolated to stars and planets due to this clear box size dependence.

To simulate this regime reliably, we would either need to know a reliable box size

for our model in terms of our length scale d, or we would need to use models with

non-linear shear profiles, different geometries, or which incorporate other effects

that could introduce a preferred scale or limit the wavelengths of the modes (e.g.,

inclusion of the β effect or compressibility).

4.3.3 Momentum transport as a function of ϕ

In Fig. 4.10, we summarise the mean Reynolds stress components ⟨uxuy⟩, ⟨uxuz⟩

and ⟨uyuz⟩ as a function of ϕ, after performing both spatial and temporal averaging

in the final turbulent state (after layer mergers). The angular momentum transport

is quantified by ⟨uxuy⟩, whereas the other two would correspond with turbulent
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driving of mean flows/circulations in the meridional plane.

Out of all the GSF-unstable (but adiabatically stable) cases studied, we found mixed

radial/latitudinal shears (ϕ ̸= 0◦) and particularly latitudinal shears (ϕ ∼ ±90◦) at

the equator (Λ + ϕ = 0◦) to lead to the most transport. As shown in Fig. 4.10,

purely latitudinal shears are the most unstable and produce AM transfer over three

orders of magnitude greater than we previously found in BJT2 for the case of radial

differential rotation (ϕ = 0◦). The increased transport properties when (|ϕ| ∼ 90◦)

are at least in part due to the nearly perpendicular directions of the buoyancy and

shear, such that buoyancy restoring forces are expected to be weaker. This nonlinear

finding is consistent with the linear results shown in Fig. 3.5, which suggests that

the configuration is least stable near the equator for |ϕ| ∼ 90◦ compared both

with ϕ = 0◦ and with other latitudes in the GSF-unstable regime. On the other

hand, adiabatically-unstable cases generally have much larger transport than the

GSF-unstable ones for a latitude of 30◦. It is interesting that in the GSF-unstable

regime, ⟨uxuy⟩ is only weakly dependent on ϕ for latitude 30◦.

In summary, we have found that the GSF instability is typically much more effi-

cient at transporting momentum in stars with mixed radial/latitudinal or purely

latitudinal differential rotations vs the shellular (radial) case, particularly near the

equatorial regions. When adiabatic instability occurs, it also significantly enhances

the transport. The most efficient transport is found near the equator for primar-

ily latitudinal differential rotation profiles. A configuration with purely latitudinal

shear at the equator would be unusual, but this tendency for predominantly hori-

zontal shears to be more unstable and to transport momentum more efficiently than

vertical/radial shears, and for the growth rates and transport rates for primarily

horizontal shears to be maximised near the equator are the general trends we have

observed. Note that ⟨uxuy⟩ for a purely latitudinal shear would correspond with

latitudinal transport of angular momentum, which we have shown is generally much

more efficient than radial transport. When ϕ ̸= 0◦, ⟨uxuy⟩ does not correspond

with radial momentum transport, as would be most commonly parameterised in 1D
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Figure 4.10: Figure showing the Reynolds stresses (and hence momentum transport)
as a function of ϕ for various latitudes. The mean value in each case is calculated
once the instability has reached its final turbulent/layered state after mergers, and
the error bars indicating fluctuations are the standard deviations from the mean.
All the latitude = 0◦ and 90◦ cases are GSF unstable (adiabatically stable) and
adiabatically unstable cases occur for latitude = 30◦ after the vertical red lines at
ϕ = 30◦. 95



stellar models. Indeed, it is unclear how relevant 1D stellar models with rotation –

even with a suitable parameterisation for turbulent transport – would be at captur-

ing the long-term consequences of angular momentum transport due to these (and

other) fluid and MHD instabilities.

4.4 Conclusions

The research in this chapter has revolved around understanding the nonlinear effects

of varying shear orientation, parameterised by the angle ϕ, on the GSF instability

and quantifying the resultant turbulent transport.

Our simulations were performed using the 3D incompressible Fourier code Snoopy,

which was originally developed by Lesur and Longaretti (2005) to simulate local

instabilities in accretion disks. We’ve worked in a Cartesian geometry (following

Chapter 2) with shear periodic boundary conditions that are automatically satisfied

thanks to the use of time-dependent wave vectors (shearing waves).

Through a combination of figures showing time series of volume-averaged flow quan-

tities and snapshots of the flow (4.1-4.6), we’ve seen a strong dependence of the

dynamics on variations in ϕ. Initially at (t ≈ 10) we saw the development of AM

fingers with an orientation and strength that closely followed the predictions made

in Chapter 3. By (t ≈ 50) parasitic instabilities had started to turn the system tur-

bulent, and by (t ≈ 100) nearly all simulations had become layered, some of which

exhibited merges by our final snapshot (t ≈ 250). Such mergers led to larger scale

jets and correspondingly higher levels of turbulent transport.

Varying S showed that, on a whole, increases in the strength of the background

shear generally leads to higher angular momentum transport in the final layered

system.

Simulations run with various box dimensions (Lx, Ly, Lz) showed that the preferred

|k| for the GSF instability seen in Fig. 3.4 lead to consistent results across boxes of

different sizes. This suggests that our simulations capture the transport well in GSF
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unstable cases, potentially allowing us to extrapolate our results to astrophysical

objects. However, the lack of a preferred |k| for cases within the adiabatic regime

(also observed in Fig. 3.4) manifested itself as a strong dependence on the dimensions

of the box. These results ultimately suggest that it would be difficult to draw

astrophysically-relevant conclusions from cases in this regime.

In terms of practical applications the main result of this section has been that the

AM transporting properties in a stably stratified, differentially rotating flow, can

be significantly enhanced by mixed radial/latitudinal shears over purely radial ones.

Since this level of detail is not currently incorporated into stellar evolution modes

it may account for some of the discrepancies that are observed between theoretical

predictions and helioseismic observations that further work should explore in more

detail.

Whilst a rigorous stability analysis has not yet been conducted on the quasi-stably

layered state, larger layers were observed to support more angular momentum trans-

port than several smaller layers over the same box size. Note that we saw no indi-

cation of the number of layers increasing; rather, layers tended to combine to create

larger layers and never split into an increasing number of layers. This suggests that

over longer time scales, such as those in a physical system such as the tachocline, the

transport properties would either increase or remain steady if this holds there. It

could then be speculated that should the GSF instability operate in a physical sys-

tem such as the solar tachocline, the jets may eventually grow to become large-scale,

stable structures that enhance what are currently believed to be the transporting

properties in the tachocline. Along with the possible dynamo-generating properties

of the jets, these factors make the final system particularly interesting to study.

Whilst the value of S in the solar tachocline is generally thought to be less than

2, the relatively stable nature of the jets suggests the possibility that jets may

have formed during the Sun’s earlier stages of evolution, when it was more rapidly

rotating, with stronger shears. During this period, S may have been significantly

larger (and closer to our ‘standard’ choice S = 2) than what is currently observed.
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The results from this chapter, in combination with those from BJT1 and BJT2

have explored in detail the linear and nonlinear properties of the hydrodynamical

system. However, astrophysical bodies are rarely non-magnetic and are highly likely

to exhibit dynamically important magnetic fields. Such fields constrain the system

to not only be described by Newtonian laws of motion but also to Maxwell’s laws of

electromagnetism (supplemented by the Lorentz force). The combination of these

sets of equations leads to new, complex interactions, and magnetic fields are known

to drastically alter the dynamics of many astrophysical systems. As such it’s a

natural step to next consider the implications of including such fields in our system.
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Chapter 5

Linear stability of magnetised

differentially rotating radiative

regions

5.1 Introduction

In this thesis chapter, we study the local axisymmetric magnetohydrodynamical

instabilities of differential rotation in magnetised and stably-stratified regions of

stars and planets. We use a small-scale Cartesian Boussinesq model at an arbi-

trary latitude and with the most general shear (so as to model radial, latitudinal,

or mixed differential rotations) as we have studied hydrodynamically in Chapter

3. We study both non-diffusive instabilities (including magnetorotational, MRI,

and adiabatic Solberg-Høiland instabilities) and diffusive ones (including GSF, and

double-diffusive MRI). These instabilities could drive turbulent transport and mix-

ing in stellar/planetary radiative regions, including the solar tachocline, but their

linear and nonlinear dynamics are incompletely understood. We revisit linear ax-

isymmetric instabilities with and without diffusion and analyse their properties in

the presence of magnetic fields, including deriving stability criteria and computing
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growth rates, wavevectors and energetics, both analytically and numerically. We

perform a more general analysis of axisymmetric local instabilities than prior work,

exploring arbitrary orientations of the differential rotation and diffusive processes.

The presence of a magnetic field leads to stability criteria depending upon angular

velocity rather than angular momentum gradients, as has been found previously

(Balbus, 1995).

The presence of even a weak magnetic field is known to drastically modify the sta-

bility of differentially-rotating flows (e.g. Chandrasekhar, 1961; Acheson & Gibbons,

1978; Balbus & Hawley, 1991). Stability criteria with magnetic fields tend to involve

angular velocity gradients – which typically require much weaker differential rota-

tions to ensure instability – rather than the angular momentum gradients without

fields, because the field can act as a tether between fluid particles and allow them to

exchange angular momentum. The magneto-rotational instability (MRI) is one such

manifestation when a weak magnetic field is introduced into a differentially-rotating

flow (e.g. Chandrasekhar, 1961; Acheson & Gibbons, 1978; Balbus & Hawley, 1991,

1994; Balbus, 1995; Spruit, 1999; Ogilvie, 2007; Balbus, 2009; Oishi et al., 2020;

Vasil et al., 2024). This can operate and drive turbulence even in flows that would be

hydrodynamically stable. Its operation in stably-stratified stellar interiors (i.e. ra-

diation zones) in the presence of diffusive processes has been studied in some prior

works (Menou et al., 2004; Menou & Le Mer, 2006; Parfrey & Menou, 2007; Guilet

& Müller, 2015; Caleo & Balbus, 2016; Caleo et al., 2016), but much remains to

be explored of its linear properties, and especially its nonlinear evolution in stars.

Guilet and Müller, 2015 performed linear analysis and numerical simulations of the

MRI in a local stably-stratified model of a proto-neutron star (with extra neutrino

cooling). Our approach is broadly similar to theirs but we will study arbitrary lo-

cal differential rotations. Global simulations in spherical geometry of the MRI (or

Tayler instability that is also present in these) in stellar radiative zones have also

been performed (Gaurat et al., 2015; Jouve et al., 2015; Meduri et al., 2019; Jouve

et al., 2020), though these kinds of studies may not adequately represent all of the
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possible local instabilities. As in earlier chapters of this thesis, we choose to adopt

a local model here, partly because such models are the simplest ones for studying

small-scale MHD instabilities, and also because they can explore more realistic pa-

rameter regimes with numerical simulations (particularly with regards to smaller

diffusivities) than global models would allow in the nonlinear regime.

Here we introduce magnetic fields to build directly upon Barker et al. (2019, here-

after BJT1), Barker et al. (2020, hereafter BJT2), and Chapters 3-4 that studied

hydrodynamical instabilities in a local Cartesian representation of a small patch of a

stably-stratified, differentially-rotating stellar or planetary radiation zone. A global

“shellular” (radial) differential rotation varying only with spherical radius was con-

sidered at the equator in BJT1 (and an axisymmetric turbulence closure model was

developed and verified for this case by Tripathi et al., 2024), and at a general latitude

in BJT2. In Chapter 3, we generalised the model to consider an arbitrary differential

rotation profile, which varies with both radius and latitude. Here we incorporate

magnetic fields into this more general model. Following a similar approach, we

perform an axisymmetric linear stability analysis here, which we will follow with

complementary three-dimensional nonlinear numerical simulations in future work.

Our primary goals are to understand the properties of the GSF instability in the

magnetic system, the possibility of an additional double-diffusive MRI, and deter-

mining their potential roles in angular momentum transport, chemical mixing, and

dynamo generation. Our linear study is related to the one undertaken by Latter

and Papaloizou (2018) for the Vertical Shear Instability in astrophysical discs (e.g.

Urpin & Brandenburg, 1998; Nelson et al., 2013; Barker & Latter, 2015), which is

the same as the GSF instability in that context.

The goal of this chapter is to gain insights into how the presence of a locally uniform

magnetic field affects the linear properties of local magnetohydrodynamical instabil-

ities of differential rotation in stellar and planetary radiative zones. We determine

how the properties of the unstable modes depend on magnetic field strength B0 and

magnetic Prandtl number Pm = ν/η (the ratio of kinematic viscosity ν to ohmic
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Figure 5.1: Illustration of the various vectors and corresponding angles in the context
of our local box model. The cylindrical radial direction (along the equator) is Ω̂⊥,
and the rotation axis is Ω̂. The local radial direction is (approximately) along the
effective gravity direction eg, which is misaligned with respect to the x-direction
when ϕ is nonzero. The magnetic field in linear theory is always along z (therefore
perpendicular to the shear in x), which is the only direction in the meridional plane
in which a steady equilibrium exists.

diffusivity η). This is accompanied by an analysis of the energetics of the various

instabilities in our model and derivations of several new results.

5.2 Local Cartesian model

We follow Chapter 2 by employing a local Cartesian box model to study small-scale

magnetohydrodynamical instabilities of differential rotation in a stably-stratified

region of a star or planet.

We build upon the hydrodynamical studies of BJT1, BJT2 and the results seen in

Chapters 3 and 4 by now introducing a uniform static background poloidal mag-

netic field B0 = B0B̂ that is in equilibrium, satisfying the local analogue of Ferraro’s

law of isorotation (Ferraro, 1937). For this flow to be in equilibrium in the merid-

ional/poloidal (x, z) plane, it must lie along z with B̂ = (0, 0, 1), being always

perpendicular to variation of the shear flow U0 locally. This permits a well-defined

equilibrium state even if it may complicate interpretation of our model because the

field is not purely radial or horizontal, depending on the value of ϕ. The field is radial
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if ϕ = ±90◦ and it is latitudinal if ϕ = 0◦, ±180◦. We do not consider toroidal/az-

imuthal fields in our linear analysis, which are typically thought to be dominant in

the solar tachocline, because they play no role for local linear incompressible ax-

isymmetric perturbations. They can, however, affect global perturbations through

hoop stresses (Mamatsashvili et al., 2019), but we will not pursue this here. A

toroidal field would affect non-axisymmetric perturbations (e.g. Ogilvie & Pringle,

1996; Hollerbach et al., 2010) but analysing those (and their non-modal growth) is

less straightforward, and it is likely that axisymmetric instabilities are the fastest

growing ones in any case (e.g. Latter & Papaloizou, 2018). An initially purely

toroidal field can play a role nonlinearly even if the linear instability is axisymmet-

ric however, so future nonlinear simulations should explore these fields, also because

of their possible role in driving non-axisymmetric instabilities.

The incompressible MHD equations governing perturbations to the shear flow U0

and background stable stratification in the Boussinesq approximation, in the frame

rotating at the rate Ω, are

Du + 2Ω × u + u · ∇U0 = −∇p + θeg + B · ∇B + ν∇2u, (5.1)

Dθ + N 2u · eθ = κ∇2θ, (5.2)

DB = B · ∇u + B · ∇U0 + η∇2B, (5.3)

∇ · B = 0, (5.4)

∇ · u = 0, (5.5)

D ≡ ∂t + u · ∇ + U0 · ∇. (5.6)

Here the temperature perturbation θ is defined as in Chapter 2. We use Alfvén speed

units for the magnetic field, such that the dimensional magnetic field is B/
√

µ0ρ,

where ρ is the constant reference density that we henceforth set to unity and µ0 is

the vacuum permeability. Magnetic pressure is contained within the total pressure

p.

We again expect the star to adjust rapidly to satisfy thermal wind balance, and
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Λ ϕ Differential rotation Magnetic field
0 - Ω(ϖ) (cylindrical) arbitrary

±90◦ - Ω(z) (axial variation) arbitrary
- 0 Ω(r) (spherical/shellular) horizontal/latitudinal
- ±90◦ Ω(β) (horizontal/latitudinal) radial
- - Ω(r, β) (arbitrary) arbitrary

Table 5.1: Table of differential rotation profiles and magnetic field orientations (in
the meridional plane) as Λ and ϕ are varied. Here β is latitude, z is distance along
rotation axis, r is spherical radius and ϖ is cylindrical radius.

Figure 5.2: Illustration of the key vectors and corresponding angles in the (x, z)-
plane. The cylindrical radial direction (along the equator) is along Ω̂⊥, and the
rotation axis is along Ω̂. The local radial direction is (approximately) along the
effective gravity direction eg, which is misaligned with respect to the x-direction
when ϕ is nonzero. The magnetic field is along z.

enforcing this requirement eliminates the angle Γ as a free parameter as in Chapters

2-4. This means that U0 and its thermal state satisfy the thermal wind equation.

This is unaffected by our magnetic field B0. The representation of various global

differential rotation profiles and magnetic field orientations in our local model are

summarised in Table 5.1. We also illustrate the various angles in our problem in

Fig. 5.2. See Chapter 2 for further details of the non-magnetic model. As before

we use units defined by the rotational timescale, Ω−1, and lengthscale d since the

fastest growing hydrodynamic (GSF) modes typically have wavelengths O(d). Note

that with the addition of a magnetic field, it is not clear that unstable modes will
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necessarily have lengthscales O(d), and in fact, we will show that MRI modes may

have much larger scales. However, for comparison with BJT1, BJT2, and earlier

chapters, and for comparing GSF and MRI modes, we continue to adopt this choice

of non-dimensionalisation here.

5.3 Linear theory

We consider linear perturbations to our flow U0, thermal state, and magnetic field

B0. From Eqs. 5.1–5.6, such velocity (u), magnetic (B), pressure (p) and temper-

ature (θ) perturbations are described by (where we have avoided introducing hats

on perturbations)

Du + 2Ω × u + u · ∇U0 = −∇p + θeg + B0 · ∇B + ν∇2u, (5.7)

Dθ + N 2u · eθ = κ∇2θ, (5.8)

DB = B0 · ∇u + B · ∇U0 + η∇2B, (5.9)

∇ · B = 0, (5.10)

∇ · u = 0, (5.11)

D ≡ ∂t + U0 · ∇. (5.12)

Note that we have defined our field and flow to satisfy B0 · ∇U0 = 0 so that the

basic state is an equilibrium configuration. Note that this restriction was not made

in many prior works, including Balbus and Hawley, 1994; Menou et al., 2004; Menou

and Le Mer, 2006, but it is necessary to have a well-defined static basic state. Having

a time-dependent basic state also makes results obtained for any other poloidal field

configuration difficult to interpret.

5.3.1 Derivation of the magnetic dispersion relation

To understand the stability in our system, we first need to derive the dispersion

relation. We start with the same hydrodynamic equations describing the viscous

rotating shear flow with gravity in the eg direction as before, but this time including
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a magnetic field B0 = (0, 0, B0). Hence, we have the momentum equation with

additional magnetic tension and pressure terms. The variables are represented as:

U → U0 + u, p → p + p̃, ρ → ρ + ρ̃, T → T + T̃ , B → B0 + b. (5.13)

Writing our equations out in component form, we have the momentum equation:

∂tux − 2ΩcΛuy = −∂xp̃ + θcϕ + νuxx + B0∂zbx, (5.14)

∂tuy − 2Ω (sΛuz − cΛux) − Sux = −∂yp̃ + νuyy + B0∂zby, (5.15)

∂tuz + 2ΩsΛuy = −∂z p̃ + θsϕ + νuzz + B0∂zbz. (5.16)

The heat equation is:

∂tθ − Sx∂zθ + N 2 (uxcΓ + uzsΓ) = κ (θxx + θyy + θzz) . (5.17)

The induction equation is:

∂tbx = B0∂yux + η∂2
xxbx, (5.18)

∂tby − Sx∂yby = B0∂zuy − bxS + η∂2
yyby, (5.19)

∂tbz = B0∂zuz + η∂2
zzbz. (5.20)

We consider axisymmetric modes with meridional wavevectors k = (kx, 0, kz) =

k (cos θk, 0, − sin θk) with magnitudes k =
√

k2
x + k2

z and angles θk, since axisym-

metric modes are likely to be the fastest growing (e.g. Latter & Papaloizou, 2018).

These permit complex exponential solutions proportional to exp (ikxx + ikzz + st).

We define the complex growth rate s = σ +iω, where the growth (decay) rate σ ∈ R

and the oscillation frequency ω ∈ R. Doing so we obtain:

(
s + νk2

)
ux − 2ΩcΛuy = −ikxp + θcϕ + i (B0 · k) bx, (5.21)
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(
s + νk2

)
uy − 2Ω (sΛuz − cΛux) − Sux = i (B0 · k) by, (5.22)

(
s + νk2

)
uz + 2ΩsΛuy = −ikzp + θsϕ + i (B0 · k) bz. (5.23)

For the heat equation, we have:

(
s + κk2

)
θ = −N 2 (uxcΓ + uzsΓ) . (5.24)

For the induction equation:

(
s + ηk2

)
bx = B0∂zux, (5.25)

(
s + ηk2

)
by = B0∂zuy, −bxS (5.26)

(
s + ηk2

)
bz = B0∂zuz, (5.27)

alongside the solenoidal and conservation of mass equations:

kxux + kzuz = 0, (5.28)

and

kxbx + kzbz = 0. (5.29)

It’s helpful to rewrite sν = s + νk2, sκ = s + νk2, sη = s + νk2. By rearranging the

induction and conservation equations, we may also obtain expressions for ux and bx.

By doing so, we quickly obtain helpful new forms for some of the variables,

uz = −kx

kz
ux, (5.30)

bz = −kx

kz
bx, (5.31)

bx = iB0 · k

sη
ux, (5.32)

bz = iB0 · k

sη
uz, (5.33)
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and using the above expression for bx:

by = − iSB0 · k

s2
η

ux + iB0 · k

sη
uy. (5.34)

We can now write θ as,

θ = −N 2

sκ

(
cΓ − kx

kz
sΓ

)
ux. (5.35)

Using these expressions in the y-component of the momentum equation, we obtain,

uy = sη

sνsη + i (B0 · k)2

(
S
(

1 + (iB0 · k)2

s2
η

)
− 2Ω

(
cΛ + kx

kz
sΛ

))
ux. (5.36)

We can then compute the y-component of the vorticity equation to eliminate p

giving,

sν(kzux−kxuz)−2Ω(cΛkz+sΛkx)uy = (kzcϕ−kxsϕ)θ+i(B0·k)2(kzbx−kxbz), (5.37)

which we can combine with the previous information to determine the dispersion

relation,

k2

kz

(
sν + i (B0 · k)2

sη

)
+ N 2 (kzcΓ − kxsΓ) (kzcϕ − kxsϕ)

sκ
−

2Ωsη (cΛkz + sΛkx)
sνsη + i (B0 · k)2

(
S
(

1 + (iB0 · k)2

s2
η

)
− 2Ω

(
cΛ + kx

kz
sΛ

))
= 0. (5.38)

Multiplying by kz
k2

(
sν + i(B0·k)2

sη

)
and using our definition of b = (kzcΓ−kxsΓ)(kzcϕ−

kxsϕ), defining ω2
A = (B0 · k)2 and rewriting in terms of vectors where possible we

obtain:

(
sν + ω2

A

sη

)2

+b
N 2

sκ

kz

k2

(
sν + ω2

A

sη

)
−2Ω (cΛkz + sΛkx)

(
S
(

1 + ω2
A

s2
η

)
− 2Ω

(
cΛ + kx

kz
sΛ

))
= 0,

(5.39)
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or (multiplying through by s2
ηsκ),

sκ

(
sηsν + ω2

A

)2
+ sηbN 2 kz

k2

(
sνsη + ω2

A

)
− 2

(
Ω · k̂

)
sκ

(
S
(

s2
η + ω2

A) − 2Ωs2
η(cΛ + kx

kz
sΛ

))
= 0. (5.40)

Manipulating the above equation one can obtain the quintic dispersion relation in

the form,

s2
ηs2

νsκ + 2sηsνsκω2
A + sκω4

A + as2
ηsκ + sκξ + b(s2

ηsν + sηω2
A) = 0, (5.41)

where

a = 2
ϖ

(
k̂ · Ω

) (
k̂ · (∇ℓ)⊥

)
,

= 2Ω
k2 (sΛkx + cΛkz) (2ΩkxsΛ + (2ΩcΛ − S) kz) ,

= 2Ω|∇ℓ|
ϖ

sΛ−θk
sγ−θk

, (5.42)

b = N 2
(
k̂ · e⊥

θ

) (
k̂ · e⊥

g

)
,

= N 2

k2 (kzcΓ − kxsΓ)(kzcϕ − kxsϕ),

= N 2sθk+ϕsθk+Γ, (5.43)

ξ = −2
(
k̂ · Ω

)
Sω2

A

kz

k
= 2SΩsΛ−θk

sθk
ω2

A, (5.44)

and

ω2
A = (B0 · k)2 = k2B2

0s2
θk

, (5.45)

is the squared Alfvén frequency. We remind the reader that we have also defined

the local angular momentum gradient

∇ℓ = ϖ (2ΩcΛ − S, 0, −2ΩsΛ) , = |∇ℓ| (cγ , 0, −sγ) , (5.46)
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which has magnitude

|∇ℓ|2 = ϖ2
(
S2 + 4Ω (Ω − ScΛ)

)
. (5.47)

The normal to this is

(∇ℓ)⊥ = ϖ (2ΩsΛ, 0, 2ΩcΛ − S) = |∇ℓ|(sγ , 0, cγ). (5.48)

We also define the vector perpendicular to the effective gravity,

e⊥
g = (−sϕ, 0, cϕ), (5.49)

and the normal to stratification surfaces,

e⊥
θ = (−sΓ, 0, cΓ). (5.50)

The baroclinic shear (along the rotation axis) is

Ω̂ · (∇ℓ) = −SϖsΛ = |∇ℓ|sγ−Λ. (5.51)

The dispersion relation (5.41) can be expanded out as a quintic equation

s5 + c1s4 + c2s3 + c3s2 + c4s + c5 = 0, (5.52)

where the coefficients c1 to c5 are given by

c1 = k2(2η + 2ν + κ), (5.53)

c2 = k4(η2 + 2ηκ + 4ην + 2νκ + ν2) + 2ω2
A + a + b, (5.54)

c3 = k6(η2κ + 2ην2 + 2η2ν + κν2 + 4ηκν)

+ 2ω2
Ak2(η + ν + κ) + ak2(2η + κ) + bk2(2η + ν), (5.55)
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c4 = k8(2ην2κ + 2η2νκ + η2ν2) + 2ω2
ak4(ην + ηκ + νκ)

+ ω4
A + ak4(2ηκ + η2) + ξ + bk4(2ην + η2) + bω2

A, (5.56)

c5 = k10η2ν2κ + 2ω2
Ak6ηνκ + ω4

Ak2κ + aη2κk6

+ ξk2κ + bk6η2ν + bω2
Ak2η. (5.57)

5.3.2 Non-diffusive (in)stability

Non-diffusive modes, i.e. those with ν = κ = η = 0, are described by the reduced

dispersion relation

s4 +
(
2ω2

A + a + b
)

s2 +
(
ω4

A + bω2
A + ξ

)
= 0, (5.58)

ignoring neutral modes with s = 0. Note that the only appearance of the magnetic

field is through the combination B0 ·k = B0kz in ωA, therefore the adiabatic growth

rate is independent of B0 if arbitrary kz are permitted. This can be solved to give

s2 =
−
(
2ω2

A + a + b
)

±
√

4aω2
A − 4ξ + (a + b)2

2 . (5.59)

If we take B0 = 0 this reduces to the adiabatic dispersion relation Chapter 3,

s2 = −(a + b). Since s2 is always negative if a + b is positive, with s being purely

imaginary, then the system is Solberg-Høiland stable. The discriminant ∆ = 4aω2
A−

4ξ + (a + b)2 in (5.58) is always positive (see below), so the roots for s2 are always

real. Hence, non-diffusive oscillatory instabilities cannot occur. To see this, note

that from Eqs. 5.42 and 5.48 we have

k̂ · (∇ℓ)⊥ = ϖ
(
2
(
k̂ · Ω

)
− S

)
, (5.60)

and using the definition of ξ (Eq. 5.44),

∆ = 4aω2
A − 4ξ + (a + b)2 = (a + b)2 + 8ω2

A

(
k̂ · Ω

)2
, (5.61)
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which being the sum of squares must be non-negative. The criterion for onset of

direct instability (real roots) occurs when (for neutral stability s = 0)

ω4
A + bω2

A + ξ = 0, (5.62)

and instabilities occur when this term is negative. So the only way to destabilise a

hydrodynamically Solberg-Høiland stable configuration without diffusion is for the

left hand side of Eq. 5.62 to be negative, which corresponds with a direct instability,

the MRI. For fixed |k| the MRI works best with a weak field, meaning the stabilising

term ω4
A is small compared to the others, and when the fluid is neutrally rather than

stably stratified (b = 0). Then, MRI just requires a mode with a k which makes

ξ negative. In the weak field or small wavenumber case, ω4
A → 0 faster than the

remaining terms in Eq. 5.62, so for non-zero B0, instability occurs if

b − 2
(
k̂ · Ω

)
S kz

k
< 0. (5.63)

Hence when Ω(ϖ), we have N2 − 2ΩS < 0. If the stabilising effects of buoyancy

can be eliminated by fast thermal diffusion when Pr/Pm → 0, the stability criterion

in the weak field case is −2ΩS < 0, which involves angular velocity rather than

angular momentum gradients (e.g. Balbus & Hawley, 1998). So S > 0 is required

for instability (to MRI), which is generally much easier to satisfy than Rayleigh’s

criterion for centrifugal instability, which requires S > 2 in the hydrodynamic case,

implying outwardly decreasing angular momentum.

Marginal stability to stratified non-diffusive MRI

In order to find the non-diffusive unstable modes for weak fields we substitute k =

k(cos θk, 0, − sin θk) into Eq. 5.63 and solve for the marginal stability lines, giving

N 2 sin(θk + Γ) sin(θk + ϕ) + 2ΩS sin(Λ − θk) sin θk = 0. (5.64)
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In the strongly stratified limit, N2 ≫ |ΩS| and Γ ∼ ϕ (from Eq. 2.9),

N 2 sin2(θk + ϕ) − 2ΩS sin(θk − Λ) sin θk = 0. (5.65)

This can only be satisfied if N2 ≫ 2|ΩS| when sin2(θk + ϕ) ∼ 0, hence θk + ϕ ≈ nπ

where n ∈ N. Note that θk is defined below the x-axis so −θk is the angle above

it. This means that −θk = ϕ = Γ when n = 0, indicating that k lies along eθ

or eg, so that fluid motions are along stratification (or constant pressure) surfaces,

i.e. parallel to e⊥
θ ∼ e⊥

g . Hence instability is possible for a wedge of wavevector

angles around eθ (e.g. Balbus, 1995).

Fastest growing non-diffusive modes

We now find the wavevector magnitude k and orientation θk corresponding to the

maximum growth rate, and in turn identify the dominant mode. To find the fastest

growing mode we first maximise over k2, and then maximise over the angle θk. Note

a and b only depend on θk and not on the magnitude k, so ∂a/∂k2 and ∂b/∂k2 are

both zero. We also have

∂ω2
A

∂k2 = ω2
A

k2 , and ∂ξ

∂k2 = ξ

k2 . (5.66)

We now examine the adiabatic quartic dispersion relation

s4 +
(
2ω2

A + a + b
)

s2 +
(
ω4

A + bω2
A + ξ

)
= 0. (5.67)

To obtain the fastest growing mode properties, we differentiate with respect to both

k2 and θk and require ∂k2s = ∂θk
s = 0. Setting the k2 derivative of Eq. 5.67 to zero

gives:

s2 = −N 2

2 sϕ+θk
sΓ+θk

− ΩSsθk
sΛ−θk

− k2B2
0s2

θk
. (5.68)
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This is clearly maximised for weak fields or for modes with k → 0 where the last

term vanishes, since that provides a stabilising effect, though we must have nonzero

B0 to obtain this result. Now we can maximise over θk to obtain

0 = −N 2

2 sΓ+ϕ+2θk
− ΩSsΛ−2θk

− k2B2
0s2θk

. (5.69)

In the strongly stratified limit the dominant term is usually the first one involving

N 2, which is stabilising, unless we choose a specific range of θk. This means that

in order to maximise the growth rate we need to minimise this term. Indeed the

magnitude of this term is smallest when θk ≈ −Γ+ϕ
2 i.e. when the wavevector is

approximately halfway between eg and eθ. Note that in the strongly stratified

limit the TWE implies that ϕ ≈ Γ and hence this term approximately vanishes

for θk ≈ −ϕ ≈ −Γ. For such wavevectors that minimise the stabilising effects of

buoyancy,

s2 = ΩSsϕsΛ+ϕ − B2
0ω2

As2
ϕ. (5.70)

Note that the magnetic term that only occurs in the non-weak field limit is always

positive, meaning that in the adiabatic regime a stronger magnetic field should

increase the maximum growth rate of the instability. In the weak field case we can

ignore the second term and are just left with

s2 = 2ΩSsϕsΛ+ϕ. (5.71)

Hence, we require both ϕ and Λ + ϕ to have the same sign, either both in the

northern or southern hemisphere for onset of instability.

Note that Eq. 5.68 is an expression for s2 in terms of θk. From this we can show (also

using TWE) that ∂θk
s2 = 0 (max growth rate) implies sΓ+ϕ+2θk

sΛ+sΛ+2θk
sΓ−ϕ = 0.

Hence when strongly stratified Γ ≈ ϕ, this predicts the fastest growing direction to

be along eθ since it requires sΓ+ϕ+2θk
≈ 0, hence −θk ≈ ϕ, consistent with marginal

stability results above.
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5.3.3 Diffusive instabilities

Small Pr/Pm limit: efficient thermal diffusion

In the limit of very efficient thermal diffusion relative to viscous and ohmic dif-

fusivities, we would expect Eq. 5.58 to approximately apply for sufficiently large

wavelength instabilities (with smallish k, for which viscous and ohmic diffusion are

relatively unimportant) but with b = 0. To show that this is indeed the case, if we

consider Eq. 5.52, set ν = η = 0 and then consider the limit κ → ∞ (this is like

considering the joint limits Pr/Pm → 0 and Pr → 0) with all other quantities O(1),

we obtain the dispersion relation

s4 +
(
2ω2

A + a
)

s2 +
(
ω4

A + ξ
)

= 0. (5.72)

This is the same as Eq. 5.58 with b = 0 and describes MRI modes satisfying the

unstratified (b = 0) non-diffusive dispersion relation with nonzero field1. The fastest

growing modes (maximising over k2, i.e. setting ∂k2s = 0) in the limit of weak fields

or small k (for which ω4
A can be ignored relative to the other terms) satisfy

s2 = − ξ

2ω2
A

=
(
k̂ · Ω

)
S

kz

k
(5.73)

= SΩsΛ−θk
sθk

. (5.74)

In this limit instability occurs for any S > 0 (though strictly the approximations

for which this limit applies are then no longer valid). The growth rate is maximised

over θk when ∂θk
s2 = 0, giving

sΛ−2θk
= 0 ⇒ θk = Λ

2 − n
π

2 , (5.75)

1This is analogous to what we found for the hydrodynamic case in the limit Pr → 0 and RiPr → 0,
where the fastest growing mode growth rates were described by s2 = −a, the adiabatic unstratified
dispersion relation, see Chapter 3 or A.2.3. However, the dispersion relation here requires the
presence of non-vanishing magnetic field.
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for n ∈ N, i.e. for modes with orientations halfway between the rotation axis (along

Ω̂) and the angular velocity gradient (along x) when n = 1. For cylindrical differ-

ential rotation (Λ = 0), this implies θk = ±π
2 , and hence wavevectors are along z,

as expected (e.g. Balbus & Hawley, 1991). On the other hand, when Λ = −30◦,

θk = −105◦ (indicating 105◦ above the x axis), and when Λ = 60◦, θk = −60◦

(indicating 60◦ above the x axis). This will be found to be consistent with our later

Figures 5.3–5.5 for the largest Pm considered, and is most evident for the strongest

magnetic fields plotted there.

These results are consistent with the discussion of (e.g. Menou & Le Mer, 2006) that

postulate the relevance of the parameter

Pr
Pm = η

κ
≲

SΩ
N 2 . (5.76)

For even stronger fields or larger wavenumbers, there is a stabilising effect of mag-

netic tension through the ω4
A term in the dispersion relation. Fields are sufficiently

strong when ω2
A = B2

0k2s2
θk

∼ 2ΩSsθk−Λsθk
, and hence typically for k2 ∼ 2ΩS

B2
0

.

In addition, larger k modes will be increasingly affected by ohmic diffusion and

viscosity.

Diffusive modes in the small shear (small S) limit

In Chapter 3, we computed the curves showing the lowest value of the shear S for

which instability is possible as a function of the angle ϕ, the angle between the shear

and gravity directions (see figure 3.3, Chapter 3). Apart from the exceptional case

at the equator, there is a finite minimum S below which no instability occurs. This

is no longer the case when a magnetic field is added. There is then a whole range of

ϕ for which the system is unstable for arbitrarily small S. This is quite surprising, as

the shear drives both GSF and MRI instability, so one might imagine that reducing

the shear towards zero would eliminate the instability. What happens is that the

growth rate does tend to zero as S is reduced, but it can always remain positive, so
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the critical value of S for instability can be zero. To establish this, we consider the

case ϕ > 0. Since S is small, the thermal wind equation Eq. 2.9 means that Γ is very

close to ϕ, so both are positive if ϕ > 0. We then look for modes with wavenumber

k = k(cθk
, 0, −sθk

) with θk = π − (Γ + ϕ)/2 so that k is nearly antiparallel to both

eθ and eg. Since b = N 2 sin(θk + Γ) sin(θk + ϕ), this makes b very small, O(S2). For

these disturbances, fluid flows along the stratified surfaces, doing negligible work

against gravity. We also choose the magnitude of k such that k2 ∼ O(S), so since

S is small, k is also small. We now put these scalings into the diffusive quintic

equation Eq. 5.52-5.55 noting that the growth rate s ∼ O(S) ∼ O(k2), to obtain at

leading order

ω2
A = B2

0k2 sin2 ϕ, a = 4Ω2 sin2 β, ξ = −2k2SB2
0 sin β sin3 ϕ, (5.77)

where β is the (positive) latitude,

as3 + ak2 (2η + κ) s2 +
(
ω4

A + ak4
(
2ηκ + η2

)
+ ξ

)
s

+ ω4
Ak2κ + ak6η2κ + ξk2κ = 0. (5.78)

Since ϕ > 0, ξ is negative and a and ω2
a are positive, so we can choose k2 relative to

S so that the constant term in this cubic is very slightly negative, say −ϵκk2, where

ϵ > 0 is very small. Then s is O(ϵ) so the quadratic and cubic terms in Eq. 5.78 can

be ignored. The linear term can now be written

(
ω4

A + ak4
(
2ηκ + η2

)
+ ξ

)
s =

(
−ϵ + 2ak4ηκ

)
s, (5.79)

so provided ϵ < 2ak4ηκ (this requires non-zero latitude) the linear term has a

positive coefficient, so the growth rate s is positive. This establishes that for any

latitude β > 0 and ϕ > 0 there is always instability for any shear. Note, however,

that the growth rate predicted is only O(SB2
0), i.e. small, and it does require a

small k, so that the bounding box has to be large, despite the box being local, so

there are clearly limits on how small S can be in practice.
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5.4 Numerical linear results

In this section we numerically solve the dispersion relation to graphically analyse

the properties of the possible instabilities in our system. In Figures 5.3–5.5 we probe

effects of varying the magnetic field strength B0 and magnetic Prandtl number Pm

for three different configurations with different latitudes β = Λ + ϕ and orientations

of the shear with respect to gravity ϕ. We fix Pr = 0.01, small, but motivated by

parameters accessible with nonlinear numerical simulations, and S = 2 (following

Barker et al., 2020; Dymott et al., 2023) and Chapters 3 & 4, since the latter

choice would be marginally stable according to Rayleigh’s criterion for cylindrical

differential rotation. We present pseudocolour plots of the base 10 logarithm of

the growth rate of an axisymmetric perturbation in Fourier space (kx, kz) in these

figures. Over-plotted in red are the lines Ω̂⊥ and ∇ℓ, within which the direct GSF

instability occurs, and in light blue are the directions of buoyancy (more specifically,

the normal to stratification surfaces) and gravity, eθ and eg, respectively. For

comparison the hydrodynamic cases with B0 = 0 are shown in the top row of each

figure. The magnetic field strength B0 is increased within the set [0, 1, 2.5, 5] with

each successive row, and Pm is increased within [0.01, 0.1, 1] with each successive

column.

We identify two sets of ‘lobes’ of instability operating in the system. The dominant

set are bounded by ∇ℓ and Ω̂⊥ in the hydrodynamic case, and they correspond to the

dominant direct instability. This is either the double-diffusive GSF or the adiabatic

Solberg-Høiland instability. The fastest growing modes typically have growth rates

O(1), which we note is comparable to Ω−1, given our unit of time, and are initially (in

the hydrodynamic case) observed to lie along the line that is approximately half-way

between ∇ℓ and Ω̂⊥. This wedge – in Fourier space – is perpendicular to the physical

wedge within which the unstable mode displacements and velocity perturbations

arise, since the incompressibility condition implies k̂ · u = 0. The second set of

smaller lobes, when present, contains oscillatory modes, which are weakly growing

internal magneto-inertia-gravity waves that propagate and are destabilised within
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(d) (e) (f)
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(j) (k) (l)

Figure 5.3: Logarithm of the growth rate log10(σ/Ω) of axisymmetric perturbations
plotted on the (kx, kz)-plane according to Eq. 5.41, for various B0 and Pm, with
ϕ = 30◦, Λ = −30◦. Parameters are N 2/Ω2 = 10, Pr= 10−2, S/Ω = 2. We vary the
strength of the magnetic field from B0 = 0 to B0 = 5 down each column, and vary
Pm from Pm = 0.01 to Pm = 1 along each row. GSF modes are primarily confined
within the wedge bounded by Ω̂⊥ and ∇ℓ (red lines). However as the field strength
increases (downwards) the wavevector orientation is shifted to correspond more with
the double-diffusive MRI. Increasing B at fixed Pm decreases both the maximum
growth rate and the size of the unstable region on the (kx, kz)-plane. Reducing
magnetic diffusivity by increasing Pm on the other hand seems to have the opposite
effect and enhances the destabilising effects of the field, leading to a larger region of
instability as well as a stronger destabilisation of the dominant mode.
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Figure 5.4: Logarithm of the growth rate log10(σ/Ω) of axisymmetric perturbations
plotted on the (kx, kz)-plane according to Eq. 5.41, for various B0 and Pm, with
ϕ = −30◦, Λ = 60◦, i.e. a mixed radial/latitudinal shear at latitude Λ + ϕ = 30◦.
Parameters are N 2/Ω2 = 10, Pr= 10−2, S/Ω = 2. We vary the strength of the
magnetic field from B0 = 0 to B0 = 5 down each column, and vary Pm from
Pm = 0.01 to Pm = 1 along each row. GSF unstable modes are primarily confined to
within the wedge bounded by Ω̂⊥ and ∇ℓ (red lines) for weak fields, but this direction
is modified when the double-diffusive MRI takes over. We observe a secondary set
of unstable oscillatory modes, consisting of weakly destabilised magneto-inertial-
gravity waves. These grow more weakly than the primary lobes but they are less
affected by the stabilising effects of the magnetic field.

120



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: Logarithm of the growth rate log10(σ/Ω) of axisymmetric perturbations
plotted on the (kx, kz)-plane according to Eq. 5.41, for various B0 and Pm, with
ϕ = 60◦, Λ = −30◦, i.e. a mixed radial/latitudinal shear at latitude Λ + ϕ = 30◦.
Parameters are N 2/Ω2 = 10, Pr= 10−2, S/Ω = 2. We vary the strength of the
magnetic field from B0 = 0 to B0 = 5 down each column, and vary Pm from
Pm = 0.01 to Pm = 1 along each row. When B = 0 the system is adiabatically
unstable since it violates the Solberg-Høiland criterion. This is visually characterised
by a tendency for the fastest growing modes to occur even as k → 0, suggesting that
the presence of diffusion leads to the preference of the largest possible wavelengths
in this regime. This is in comparison to the GSF and double-diffusive MRI modes
cases where the fastest growing modes here have a unique non-zero wavenumber and
hence a preferred wavelength in real space.
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the wedges bounded by eg and eθ.

The introduction of non-zero B0 has observable effects on the orientation, strength

and structure of the unstable region in parameter space. Increasing the strength of

the field for a fixed Pm has a tendency to force the modes into alignment with the

preferred direction for double-diffusive MRI modes, as predicted by the analysis in

§ 5.3.3, and to shift them to larger scales (smaller k magnitudes). Note that we

do not observe the adiabatic MRI to dominate here, which would be identifiable by

modes aligned with eθ as explained in § 5.3.2. This is likely due to the effects of

thermal diffusion in eliminating the stabilising effects of buoyancy forces on MRI

modes when Pr/Pm = η/κ is small, which is the case here when Pm ≥ 0.01 as

Pr = 0.01 remains fixed. The addition of a field seems to impose a stabilising

effect on the hydrodynamically-unstable GSF modes, ultimately resulting from the

stabilising effects of magnetic tension (see also Latter & Papaloizou, 2018), and so

the majority of cases exhibit a smaller growth rate for the dominant instability as

B0 is increased.

Magnetic diffusivity counteracts the effects of magnetic fields, and this is clearest for

small Pm in the left panels of Figures 5.3–5.5. Cases with Pm = 1 have the weakest

ohmic diffusion, and cases with Pm = 0.01 have much more efficient ohmic than

viscous diffusion. Small Pm allows magnetic cases to return to the hydrodynamic

limit and larger Pm closer to unity therefore exhibit the strongest magnetic effects

for a given B0. When Pm = 1, instability is possible outside the hydrodynamic

region contained within the lines Ω̂⊥ and ∇ℓ. This can be seen most clearly in the

right-most bottom panel of these figures, where magnetic effects are strongest (and

magnetic diffusion is weakest). The direction of the preferred modes in that case are

better described by the unstratified (due to rapid thermal diffusion) MRI in § 5.3.3.

The oscillatory modes seem to be only very marginally modified by the magnetic

field, as is seen most clearly in Fig. 5.4. This suggests that the internal inertia-gravity

waves (IGWs) observed to be destabilised in Chapter 3, within the wedge between

eg and eθ continue to be weakly destabilised magneto-inertial-gravity waves.
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5.4.1 Parameter dependence of fastest growing mode

After displaying the properties of all unstable axisymmetric modes on the (kx, kz)-

plane in our system as B0 and Pm are varied, we now turn to explore the variation

in the fastest growing mode optimised over kx and kz as the parameters are varied.

We primarily consider S = 2, N2 = 10 at 4 latitudes (β = ϕ + Λ = 0◦, 30◦, 60◦ and

90◦).

Non-diffusive instabilities

We first explore non-diffusive (stratified) instabilities by solving the quartic disper-

sion relation in Eq. 5.67 numerically (using fminsearch on −ℜ[s] in Matlab), to

determine the properties of the fastest growing mode, which we present in Figs. 5.6-

5.8 as a function of the direction of the differential rotation ϕ for all possible values,

for three different latitudes β = 30◦, 60◦ and 90◦. The left panels show the growth

rate σ of the fastest growing mode, the middle panels the corresponding wavenumber

magnitude k, and the right panels the wavevector orientation θk = tan−1(−kz/kx).

Note that the magnetic field only appears in Eq. 5.67 through powers of ωA, therefore

the results in the left and right panels of Fig. 5.6 are independent of the magnetic

field, whereas the middle panels show results for B0 = 1 but k can be straightfor-

wardly scaled to consider any B0 since the y-axis can be interpreted as B0k (and

kz can be obtained using the corresponding θk). This means that for strong fields,

instability prefers small k.

Fig. 5.6-5.8 shows results at a latitude of 30◦. Red lines indicate where the non-

diffusive hydrodynamic Solberg-Høiland instability operates, and blue lines where

the magnetic field modifies the instability over the hydrodynamic case (shown in

Fig. 4(b) in Dymott et al., 2023). When the non-diffusive hydrodynamic Solberg-

Høiland modes are unstable in red, between approximately ϕ ∈ [60◦, 150◦], there

is no preferred k, only a preferred wavevector orientation. In this limit, the blue

lines suggest the wavevector k → 0 for this range of ϕ, corresponding to large-scale

modes. The magnetic field widens the unstable region to below ϕ = 0◦ from ϕ ≈ 30◦.
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(a) σ at latitude 30 (B = 1)

(b) k at latitude 30 (B = 1)

(c) θk at latitude 30 (B = 1)

Figure 5.6: A selection of figures illustrating the properties of the fastest growing
non-diffusive (ν = κ = η = 0) modes with an imposed magnetic field for S = 2
and N2 = 10 for latitude 30◦. Top panel: maximum growth rate σ as a function
of ϕ. The red curve is where the fastest growing mode is hydrodynamic and the
magnetic field plays no role, which prefers modes with k → 0. The blue curves
are where the corresponding k is non-zero and magnetic field affects the growth
rate. Middle: k when it is finite and there is instability. Bottom: corresponding
wavevector orientation θk, which is well-defined for all growing modes.

124



(a) σ at latitude 60 (B = 1)

(b) k at latitude 60 (B = 1)

(c) θk at latitude 60 (B = 1)

Figure 5.7: A selection of figures comparing the properties of the fastest growing
non-diffusive (ν = κ = η = 0) modes with an imposed magnetic field for S = 2
and N2 = 10 for ϕ + Λ = 60◦. Top panel: maximum growth rate σ as a function
of ϕ. Middle: k when it is finite and there is instability. Bottom: corresponding
wavevector orientation θk, which is well-defined for all growing modes.
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(a) σ at latitude 90 (B = 1)

(b) k at latitude 90 (B = 1)

(c) θk at latitude 90 (B = 1)

Figure 5.8: A selection of figures illustrating the properties of the fastest growing
non-diffusive (ν = κ = η = 0) modes with an imposed magnetic field for S = 2
and N2 = 10 for ϕ + Λ = 90◦. Top panel: maximum growth rate σ as a function
of ϕ. Middle: k when it is finite and there is instability. Bottom: corresponding
wavevector orientation θk, which is well-defined for all growing modes.
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(a) σ at Λ + ϕ = 0
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(b) |k| at Λ + ϕ = 0
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(c) θk at Λ + ϕ = 0

Figure 5.9: Properties of the fastest growing modes for various values of the mag-
netic field B0 with S = 2, Pr = 10−2, N2 = 10, Pm = 0.1, for different rotation
profiles (values of ϕ) at the equator. The hydrodynamically stable case of ϕ = 0◦,
corresponding to cylindrical rotation, is destabilised by the magnetic field. Within
close proximity of cylindrical rotation (−15◦ ≲ ϕ ≲ 15◦) increases in field strength
of up to roughly B0 = 2.5 increase the growth rate. This is paired with a decrease
in the wavelength of this mode and deviation in orientation from the hydrodynamic
case, where θk tends to align itself more so with the orientation of the field. For
other ϕ, the field tends to stabilise the instability over the hydrodynamic case, re-
ducing its maximum growth rate and wavenumber k.
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(a) σ at Λ + ϕ = 30
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(b) |k| at Λ + ϕ = 30
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(c) θk at Λ + ϕ = 30

Figure 5.10: Properties of the fastest growing modes for various values of the mag-
netic field B0 with S = 2, Pr = 10−2, N2 = 10, Pm = 0.1, for different rotation
profiles (values of ϕ) at a latitude β = Λ + ϕ = 30◦. The addition of a magnetic
field significantly alters the linear growth rate of the diffusive modes, and typically
acts to reduce both the growth rate σ and wavenumber k, but it does not affect the
adiabatically unstable region for ϕ ∈ [60◦, 170◦]. The effect of the magnetic field
depends on both field strength (B0) and differential rotation profile (ϕ). Nearly
cylindrical differential rotations ϕ ≈ 30◦ (Λ = 0) that are hydrodynamically stable
are heavily destabilised by the addition of a magnetic field, which corresponds to
onset of the MRI.
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(a) σ at Λ + ϕ = 60
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(b) |k| at Λ + ϕ = 60
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(c) θk at Λ + ϕ = 60

Figure 5.11: Properties of the fastest growing modes for various values of the mag-
netic field B0 with S = 2, Pr = 10−2, N2 = 10, Pm = 0.1, for different rotation
profiles (values of ϕ) at a latitude β = Λ + ϕ = 60◦. The addition of a magnetic
field significantly alters the linear growth rate of the diffusive modes, and typically
acts to reduce both the growth rate σ and wavenumber k for ϕ ∈ [−180◦, 30◦], but
instead increases the growth rate for ϕ ∈ [30◦, 170◦]. The effect of the magnetic field
depends on both field strength (B0) and differential rotation profile (ϕ). Nearly
cylindrical differential rotations ϕ ≈ 60◦ (Λ = 0) that were hydrodynamically stable
have become heavily destabilised by the addition of a magnetic field, which corre-
sponds to onset of the MRI.
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(a) σ at Λ + ϕ = 90
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(b) |k| at Λ + ϕ = 90
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(c) θk at Λ + ϕ = 90

Figure 5.12: Properties of the fastest growing modes for various values of the mag-
netic field B0 with S = 2, Pr = 10−2, N2 = 10, Pm = 0.1, for different rotation
profiles (values of ϕ) at a latitude β = Λ + ϕ = 90◦. The magnetic field sig-
nificantly alters the linear growth rate of the diffusive modes, and in the range
ϕ ∈ [−180◦, 30◦] typically acts to reduce both the growth rate σ and wavenumber k.
However for nearly cylindrical differential rotation profiles with ϕ ≈ 90◦ (Λ = 0) we
see a significant destabilisation of the previously hydrodynamically stable modes,
which corresponds to onset of the MRI which are the most unstable of cases at this
latitude.
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For latitudes 60◦ and 90◦, there are no purely hydrodynamically unstable non-

diffusive modes, but it can be seen by comparison with Fig. 3.4 in Chapter 3 that

the field widens the unstable range of ϕ. The growth rate has a similar maximum

value to the hydrodynamic case, with σ ∼ 1 for the maximal ϕ. ϕ ≈ −30◦ to

180◦ are typically the most unstable configurations, and they also have the largest

wavelength (smallest k) instabilities, whereas ϕ approximately between −150◦ and

−30◦ are typically non-diffusively stable.

Diffusive instabilities

In stellar radiation zones, rapid thermal diffusion means that Pr ≪ 1 and Pm ≪ 1

but Pr/Pm = η/κ ≪ 1. Hence, the stratified non-diffusive instability we have just

analysed is likely to be substantially modified by thermal diffusion. As a result, we

turn to solve the full triply-diffusive dispersion relation Eq. 5.41 with Pr = 10−2

and Pm = 0.1, for which Pr/Pm = 0.1 and is therefore small. We show the growth

rate (left panels), wavevector magnitudes (middle panels) and orientations θk (right

panels) as a function of ϕ for various field strengths strengths B ∈ [0, 1, 2.5, 5, 10]

in Figs 5.9, 5.10, 5.11, 5.12 for latitudes 0◦, 30◦, 60◦ and 90◦, respectively. These

demonstrate the effect of a magnetic field on the linear growth rate over the complete

range of differential rotation configurations (value of ϕ) with S = 2.

The equatorial case in Fig 5.9 is symmetric about ϕ = 0 and is adiabatically (non-

diffusively) stable for S = 2 for any ϕ and B0. The hydrodynamic B0 = 0 case

is stable when ϕ = 0, corresponding to cylindrical rotation at the equator, but it

becomes destabilised by even a weak magnetic field. This destabilisation is seen at

all latitudes and is a result of a change in the stability criteria governing instability

here. In the hydrodynamic case we require a violation of Rayleigh’s criterion, which

requires angular momentum to decrease outwards on isobars for instability, whereas

in the magnetic case this criteria can – for certain field strengths – correspond to an

MRI mode that requires angular velocity to decrease along isobars without diffusion

instead, which is a condition that is much easier to satisfy. Within close proximity
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to the cylindrically-rotating profile (−15◦ ≲ ϕ ≲ 15◦), the magnetic instability

operating is significantly more unstable than the hydrodynamic case. Increases in

field strength of up to roughly B0 = 2.5 lead to larger linear growth rates for the

corresponding dominant mode, which is paired with a decrease in the wavelength

(increase in |k|) and a significant deviation in orientation from the hydrodynamic

case there, where θk tends to align itself more closely with the orientation of the

field (θk ∼ 90◦, implying k is along z). Outside of this region (and particularly so

for ϕ outside of −60◦ ≲ ϕ ≲ 60◦), the field acts to inhibit the growth rate of the

hydrodynamic GSF instability and to increase its wavelength (reduce its k). For

these parameters it is clear that the magnetic field typically has a stabilising effect

on the growth rate except close to cylindrical rotation.

Fig. 5.10 shows the same results for the latitude Λ+ϕ = 30◦ case. Here the symmetry

about ϕ = 0◦ seen at the equator is broken and varying ϕ has more complex effects.

Cylindrical differential rotation corresponds here to ϕ = 30◦ (since then Λ = 0◦),

and we observe that it is stable when B0 = 0 but is destabilised by the addition

of a magnetic field, with more magnetised cases becoming more unstable until the

growth rate becomes independent of B0 for B0 ≥ 2.5. After ϕ ≈ 60◦ there is very

good agreement between all cases. This is when the non-diffusive hydrodynamic

Solberg-Høiland instability operates (as seen in Fig. 5.6), which prefers k → 0, and

magnetic fields have no effect on it.

There is a notable change in the range of non-zero |k|, which goes from |k| ̸= 0 for

169◦ ≲ ϕ ≲ −157◦ ∪ −135◦ ≲ ϕ ≲ 28◦ in the hydrodynamic case (note that the

boundary between 180◦ and −180◦ is continuous due to symmetry) to 168◦ ≲ ϕ ≲

−160◦ ∪ −100◦ ≲ ϕ ≲ 60◦ in the strongest B = 10 case. Note however that in

any region where more than one B has defined |k| values the smaller B0 always has

the shorter wavelength. In regions where the magnetic instability is operational the

field again acts to force θk into alignment with the preferred direction for unstratified

MRI modes discussed in § 5.3.3. Regions where the dominant mode switches from

one form of instability to another can also be seen by a discontinuity in θk, as seen
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in panel (c).

At latitude Λ + ϕ = 60◦, shown in Fig. 5.11, the effects of the field are in many

ways similar to Fig. 5.10. The range of unstable ϕ values does however decrease

with increasing B0, with the smallest range of instability being −145◦ ≲ ϕ ≲ −100◦

in the hydrodynamic case up to −155◦ ≲ ϕ ≲ −59◦ at B0 = 10. However, the field

is destabilising, leading to larger growth rates between 15◦ ≲ ϕ ≲ 160◦, where the

largest B0 is the most unstable.

Similar results are found at latitude Λ+ϕ = 90◦ in Fig. 5.12. Modes with 20◦ ≲ ϕ ≲

150◦ are destabilised by the field, with nearly cylindrical rotation profiles (Λ ∼ 0)

being most strongly destabilised by the field. Cylindrical rotation is marginally

stable in the hydrodynamic case but is the most unstable configuration for any

B0 > 1 plotted here, and grows faster than any hydrodynamic case in this figure.

Finally, we determine numerically the critical value of S for instability (Scrit), once

again by optimising over kx and kz. We show results in Fig 5.13 for Scrit as a function

of ϕ for B0 = 0.1 (solid lines) and B0 = 1 (dashed lines) at a latitude 30◦, along

with the corresponding wavevector magnitude k and orientation θk. Our numerical

results confirm the arguments presented in § 5.3.3. In complete contrast to the

hydrodynamic case, we find double-diffusive MRI occurs for any S > 0 for ϕ > 0◦,

such that Scrit = 0 for such differential rotations. The corresponding wavenumber

k also becomes arbitrarily small, implying arbitrarily large wavelength instabilities

according to our local model. When ϕ < 0◦, the dominant instability is primarily

the hydrodynamic GSF instability, weakly modified by magnetic fields. This has a

preferred k = O(1) (in units of d−1) when it operates, and it is weakly inhibited by

the presence of the magnetic field. We expect to find similar results – in terms of the

modification of the hydrodynamic results shown in Chapter 3 – for different latitudes

and field strengths. Stronger fields would widen the operation of the diffusive MRI

and inhibit the GSF modes further. However, GSF modes may still be the dominant

instability for differential rotations with ϕ < 0◦.

Overall, the addition of a magnetic field tends to inhibit diffusive rotational insta-
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Figure 5.13: Critical value of S for instability (top), and the corresponding wavevec-
tor magnitude (middle) and orientation (bottom), for B0 = 0.1 and 1, with
S = 2, Pr = 10−2, N2 = 10, Pm = 0.1, for different rotation profiles (values of
ϕ) at latitude Λ + ϕ = 30◦. For ϕ > 0◦ there is instability for any S > 0 for B0 ̸= 0,
consistent with results obtained in § 5.3, due to the operation of the double-diffusive
MRI (shown in red). For ϕ < 0◦, the instability is similar to the hydrodynamic GSF
instability (shown in blue; cf. 3.3 in Chapter 3), and exhibits a preferred k ∼ d.
The magnetic field slightly weakens operation of the GSF instability for ϕ < 0◦.
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bilities by reducing σ for ϕ ≲ 0◦, and to promote (increase σ) instability for ϕ ≳ 0◦,

particularly for nearly cylindrical differential rotations (Λ ∼ 0◦, where ϕ equals

the latitude). The wavelength of the dominant instability is typically affected by

the strength of the field, with stronger fields generally exciting larger wavelengths

(smaller k’s). The orientation of the mode also differs from the hydrodynamic pre-

diction for strong enough fields. The effects of magnetic fields on diffusive rotational

instabilities are therefore complex, but in nearly all cases the field strongly modifies

the growth rate or wavenumber of the dominant mode. We may thus expect mag-

netic fields to substantially modify turbulent transport in stellar radiative regions.

5.5 Energetics of the instabilities

5.5.1 Derivation of the energy equations and evaluation for linear

modes

In this section we analyse the energetics of the instabilities in our model, which is

helpful to explore in more detail the physical mechanisms and energy sources that

drive the various instabilities and to further quantify the role of magnetic fields.

In order to derive the total energy equation we must first calculate equations that

govern the different types of energy in our system, namely, kinetic, thermal/potential

and magnetic. We start with the equations governing the evolution of perturbations

given by Eqs. 5.7–5.12. To obtain volume-averaged energy equations we take the

scalar product of Eq. 5.7 with u and 5.9 with B for the kinetic and magnetic

energies, and multiply 5.8 by θ for thermal energy, and then volume average. We

denote volume averages by ⟨·⟩ where ⟨·⟩ = 1
V

∫∫∫
· dV , where V is the volume of

our box, which for linear modes is taken to be a single wavelength of the dominant

mode. We define the kinetic, magnetic and thermal energies of our perturbations

according to

K = 1
2⟨|u|2⟩, M = 1

2⟨|B|2⟩, P = 1
2⟨ |θ|2

N 2 ⟩. (5.80)
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For the kinetic energy equation we obtain

∂tK = −⟨u · (u · ∇)U0⟩ + ⟨θu · eg⟩ + ν⟨u · ∇2u⟩

+ ⟨u · (B0 · ∇)B⟩. (5.81)

Note that ⟨u · (u ·∇)u⟩ = ⟨u · (U0 ·∇)u⟩ = ⟨u ·∇p⟩ = 0 using the chain rule, incom-

pressibility and the divergence theorem (applying periodic boundary conditions),

and noting that the Coriolis force does no work (u · (2Ω × u) = 0). Alternatively,

we can substitute U0 = −Sxey and this becomes

∂tK = S⟨uxuy⟩ + ⟨θu · eg⟩ + ⟨u · (B0 · ∇)B⟩ + ν⟨u · ∇2u⟩. (5.82)

This indicates that the kinetic energy of perturbations can grow by extracting kinetic

energy from the shear flow/differential rotation (first term), from conversions of

thermal to kinetic energy (second term), from conversions of magnetic to kinetic

energy (third term), and that it is dissipated by viscosity (fourth term, which can

be shown to be negative definite through integration by parts).

Similarly we can obtain the magnetic energy equation, noting that ⟨B · (u · ∇)B⟩ =

⟨B · (U0 · ∇)B⟩ = 0, giving

∂tM = ⟨B · (B0 · ∇)u⟩ − S⟨BxBy⟩ + η⟨B · ∇2B⟩. (5.83)

This indicates that magnetic energy of perturbations can grow from conversion of

kinetic to magnetic energy (first term), from extracting kinetic energy from the

background shear flow/differential rotation (second term), and that it is dissipated

ohmically (fourth term). Note that the term ⟨B · (B0 · ∇)u⟩ in Eq. 5.83 can be

shown to be equivalent with −⟨u · (B0 ·∇)B⟩ in Eq. 5.82 using integration by parts,

which indicates that these just convert kinetic to magnetic energy and vice versa,

and do not inject total energy into the system.

The final energy equation that we need to consider is the one governing the thermal
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energy in the system. For this, we obtain

∂tP = −⟨θu · eθ⟩ + κ⟨θ∇2θ

N 2 ⟩, (5.84)

using the results ⟨θ(u · ∇)θ⟩ = ⟨θ(U0 · ∇)θ⟩ = 0. This shows that thermal energy

grows through conversion from kinetic to thermal energy (first term) and that it

is dissipated by thermal diffusion (second term). Hence, the equation for the total

energy E = K + M + P, is

∂tE =S(⟨uxuy⟩ − ⟨BxBy⟩) + ⟨θu · (eg − eθ)⟩

+ ν⟨u · ∇2u⟩ + η⟨B · ∇2B⟩ + κ⟨θ∇2θ

N 2 ⟩. (5.85)

This indicates that the total energy of perturbations can grow only via extraction of

kinetic energy from the shear flow/differential rotation into perturbation kinetic or

magnetic energies (first two terms), or via the baroclinic term that extracts potential

energy from the basic state into kinetic and thermal energies (last term on first the

line), if and only if these contributions exceed the sum of the viscous, ohmic and

thermal dissipations (terms on the bottom line).

We can use these results to analyse the energy sources contributing to the instabili-

ties described by Eq. 5.41. To do this, we calculate each of the terms in these energy

equations for a single axisymmetric Fourier mode with a wavevector k = (kx, 0, kz).

This can be used to understand better both the driving forces of the instability and

the momentum transporting properties of the instability. We first express ⟨uxuy⟩

for a single mode with ux = ℜ [ûx exp (ik · x + st)] and uy = ℜ [ûy exp (ik · x + st)].

Using the properties of complex numbers, ℜ(A)ℜ(B) = 1
2ℜ(AB + AB∗), where ∗

denotes the complex conjugate, this can be written

⟨uxuy⟩ = 1
2⟨ℜ(ûxûy exp (2st + 2ik · x) + exp(2ℜ[s]t)ûxû∗

y)⟩

= 1
2 exp(2ℜ[s]t)ℜ(ûxû∗

y), (5.86)
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upon applying the periodic boundary conditions (thereby eliminating the first term

on the top line).

For a single linear mode we can use Eqs. 5.7–5.12 to relate ûy to ûx (and similarly

for all other variables) to obtain

ûy = sη

sνsη + ω2
A

(
S
(

1 + ω2
A

s2
η

)
− 2Ω

(
cΛ + kx

kz
sΛ

))
ûx, (5.87)

and we also note that ûz = −(kx/kz)ûx. Substituting this into Eq. 5.86, and using

ℜ[ûxû∗
y] = ℜ[û∗

xûy], gives the concise form for the xy-component of the Reynolds

stress

⟨uxuy⟩ = |ûx|2

2 ℜ

sη

(
S
(

1 + ω2
A

s2
η

)
− 2Ω

(
cΛ + kx

kz
sΛ
))

sνsη + ω2
A

 . (5.88)

We also have

B̂y = iωA

sη

[
ûy − S

sη
ûx

]

= iωAûx

sη

− S
sη

+
S
(

1 + ω2
A

s2
η

)
− 2Ω

(
cΛ + sΛ

kx
kz

)
sν + ω2

A
sη

 , (5.89)

along with B̂z = −(kx/kz)B̂x, which allows the xy-component of the Maxwell stress

for a single mode to be written

⟨BxBy⟩ = 1
2ℜ[B̂xB̂∗

y ] exp(2ℜ[s]t)

= ℜ

ω2
A|ûx|2

2s2
η

− S
sη

+
S
(

1 + ω2
A

s2
η

)
− 2Ω

(
cΛ + sΛ

kx
kz

)
sν + ω2

A
sη


 . (5.90)

The third and final term that can inject energy into the system is

⟨θu · (eg − eθ)⟩ = ⟨θ[ux (cϕ − cΓ) + uz (sϕ − sΓ)]⟩, (5.91)

which is essentially a measure of the extent that baroclinicity (i.e. non-coincidence
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of constant density and pressure surfaces) drives the instability. We use

θ̂ = −N 2

sκ

(
cΓ − kx

kz
sΓ

)
ûx, (5.92)

along with incompressibility to write:

⟨θu · (eg − eθ)⟩ = 1
2ℜ

[
N 2

sκ

(
kx

kz
sΓ − cΓ

)(
(cϕ − cΓ) − kx

kz
(sϕ − sΓ)

)]
|ûx|2. (5.93)

Note that this term vanishes entirely when eg = eθ, and is thus unimportant when

sΛ = 0 (no differential rotation along the rotation axis), and it is small in the

strongly stratified limit when N 2 ≫ 2ΩSsΛ.

The kinetic energy is

K = 1
2⟨|u|2⟩ = 1

4[|ûx|2 + |ûy|2 + |ûz|2] exp(2ℜ[s]t), (5.94)

which can be expressed in terms of |ûx|2 using our equations for ûy (5.87) and ûz

(conservation of mass). The magnetic energy is

M = 1
2⟨|B|2⟩ = 1

4
[
|B̂x|2 + |B̂y|2 + |B̂z|2

]
exp 2ℜ[s]t, (5.95)

which can also be expressed in terms of |ûx|2 using the following expressions:

|B̂x|2 = ω2
A

|sη|2
|ûx|2, (5.96)

|B̂y|2 = − ω2
A

|sη|2

∣∣∣∣∣∣∣∣−
S
sη

+
S
(

1 + ω2
A

s2
η

)
− 2Ω

(
cΛ + sΛ

kx
kz

)
sν + ω2

A
sη

∣∣∣∣∣∣∣∣
2

|ûx|2, (5.97)

|B̂z|2 = ω2
A

|sη|2
(

kx

kz

)2
|ûx|2. (5.98)

The thermal energy for a single mode can be expressed as

⟨ |θ|2

2N 2 ⟩ = N 2

4|sκ|2
(cΓ − kx

kz
sΓ)2|ûx|2. (5.99)
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Using these expressions we can determine the energetic contributions to the growth

rate for a single Fourier mode by noting that

2ℜ[s] = ∂t ln E = 1
E

∂tE , (5.100)

where the right hand side contains all six terms in Eq. 5.85 and is independent of the

mode amplitude since |ûx|2 cancels in both numerator and denominator. This can

also be used as a check of our codes by ensuring that the growth rate ℜ[s] is predicted

to machine precision by using the linear relations between the components that we

have just derived. Once this has been confirmed we can compute the contribution

of each of the first three possible driving terms on the right hand side of Eq. 5.85

to the growth rate to determine whether a given instability is driven by Reynolds

stress, Maxwell stress or baroclinic term.

5.5.2 Numerical analysis of linear mode energetics

Unstable modes energetics: variation with B0

We present results from computing the contributions to the growth rate from the

three source terms on the right hand side of Eq. 5.85. In particular, we determine

the contributions to the growth rate from the Reynolds stress, Maxwell stress, and

baroclinic driving terms in Eqs. 5.88, 5.90 and 5.93 as a visual tool to better un-

derstand the mechanisms driving the various instabilities, as well as the role of the

magnetic field. Each of these are divided by 2E in order to compute their contribu-

tion to σ for the reason explained in Eq. 5.100. All of the figures in this section use

our standard choice of parameters, Pr = 10−2, N 2 = 10 and S = 2 unless stated

otherwise.

Figs. 5.14 and show pseudocolour plots for various Λ and ϕ of the growth rate (first

row) along with the contributions to it from Reynolds stresses (second row), Maxwell

stresses (third row) and baroclinic source terms (fourth row) on the (kx, kz)-plane,

for various magnetic field strengths B0 = 1, 2.5 and 5. Rows two to four represent the
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Figure 5.14: Energetic contributions to instability on the (kx, kz)-plane for Λ = −30◦

and ϕ = 30◦, B0 = 1, 2.5 and 5 (increasing in columns as we go from left to right)
all with S = 2, N2 = 10, Pr = 0.01 and Pm = 0.1. Top row: growth rate. Second
row: Reynolds stress contribution. Third row: Maxwell stress contribution. Fourth
row: baroclinic contribution. Stable modes with ℜ[s] ≤ 0 are indicated in white for
clarity.
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Figure 5.15: Energetic contributions to instability on the (kx, kz)-plane for Λ = 60◦

and ϕ = −30◦, B0 = 1, 2.5 and 5 (increasing in columns as we go from left to right)
all with S = 2, N2 = 10, Pr = 0.01 and Pm = 0.1. Top row: growth rate. Second
row: Reynolds stress contribution. Third row: Maxwell stress contribution. Fourth
row: baroclinic contribution. Stable modes with ℜ[s] ≤ 0 are indicated in white for
clarity.

142



first three terms in Eq. 5.85, the sum of these, together with the three diffusive terms

(not plotted) in Eq. 5.85 has been verified to match the growth rate σ to machine

precision. In contrast to Figs. 5.3–5.5 they use a linear colour scale since the various

contributions plotted can take either sign, as we observe in these figures. Overall,

these figures allow us to explore how variations in field strength for (B0 = 1, 2.5, 5)

and rotation profile (through Λ and ϕ) alter the instabilities whilst simultaneously

probing which energy source terms are responsible.

In Figs. 5.14 we first analyse the configuration at the equator with mixed shear

(Λ = −30◦, ϕ = 30◦) explored earlier in Fig. 5.3. This configuration is GSF unsta-

ble in the hydrodynamic case and remains unstable for weak fields. Strong fields

tend to inhibit instability for k ∼ 1 and to shrink the unstable lobes, in addition

to changing their orientation. For B0 ≤ 2.5, Reynolds stresses are the primary

drivers of instability for most (kx, kz), indicating that unstable modes are primarily

driven by extracting kinetic energy from the differential rotation. As B0 is increased

further, Maxwell stresses play an increasingly important role, until they dominate

for B0 = 5, indicating that shear flow kinetic energy is extracted in the form of

perturbation magnetic energy. The different locations of the peaks in Reynolds and

Maxwell stresses – and the increasingly stabilising effects (negative values shown)

of Maxwell stresses where the Reynolds stresses are maximal – are consistent with

the changes in orientations of the unstable lobes as B0 is increased, from initially

being between Ω̂⊥ and ∇ℓ to become closer to ∇ℓ for the strongest fields. For this

latitude and flow baroclinic driving terms are typically subdominant, but they still

contribute non-negligibly to driving instabilities for weaker fields. The effect of the

field in reducing the maximum growth rate observed in Fig. 5.9 is also confirmed

here.

We next look at a case with latitude 30◦ with mixed shear (Λ = 60◦, ϕ = −30◦) in

Fig. 5.15 as first studied in Fig. 5.4. This configuration is GSF unstable hydrody-

namically and remains unstable for weak fields. We saw from Fig. 5.10 that the field

acts to monotonically stabilise the system with increasing B0, which is consistent
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with Fig. 5.15. We again observe that the primary lobes of instability are driven

primarily by Reynolds stresses for B0 ≤ 2.5, but become increasingly driven by

Maxwell stresses for stronger fields. We also observe the positive Reynolds stress

contributions are mainly confined to within the hydrodynamically unstable wedge

delineated by the lines Ω̂⊥ and ∇ℓ, and are maximal approximately halfway between

these. The increasing importance of Maxwell stresses and the shift in orientation of

the lobes indicates the transition in the dominant instability from GSF to double-

diffusive MRI. Notice that the Maxwell stress generally has a preferred wavevector

magnitude, evident by the darkest red (most unstable) modes being located in the

centre of the lobes. We also observe the unstable region shrinking as the double-

diffusive MRI enables instability for smaller and smaller k for appropriately oriented

modes. The baroclinic term is unimportant for the primary lobes, as is indicated

by the bottom panels.

The secondary lobes evident in Fig. 5.15 are hydrodynamically unstable oscillatory

modes within the wedge defined by eg and eθ. The bottom panels of this figure

confirm that these modes are baroclinically driven since σ approximately equals its

baroclinic contribution, with Reynolds and Maxwell stresses playing negligible roles

in driving them. The growth rates and unstable mode wavevectors are mostly unaf-

fected by the magnetic field, except that these become weakly destabilised magneto-

inertial-gravity waves rather than inertia-gravity waves when the field is sufficiently

strong.

Similar trends as B0 is varied are found for Λ and ϕ that are adiabatically Solberg-

Høiland unstable in the hydrodynamic case, and for cases at the poles that are

hydrodynamically adiabatically stable.

Fastest growing mode energetics: variation with B0

We next turn to analyse how the energetic contributions vary with B0 for the fastest

growing modes, obtained by optimising over kx and kz for each case. Results are

shown in Fig. 5.16 for various latitudes and differential rotations. We study both
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Energetic contributions to instability for the fastest growing mode
(optimised over kx and kz) as a function of the magnetic field strength B0 for
various Λ and ϕ cases. These show the growth rate, and the contributions to it from
Reynolds stresses (⟨uxuy⟩), Maxwell stresses (⟨bxby⟩) and baroclinic source terms
(⟨θu · (eg − eθ)⟩ against field strength B0. All panels show Pm = 0.1 and Pm = 1,
and the other parameters are Pr = 10−2, N 2 = 10 and S = 2.
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Pm = 1 and Pm = 0.1 in order to investigate the role magnetic diffusivity plays in

these results.

Panel (a) of Fig. 5.16 analyses a case with ϕ = 60◦, Λ = −30◦ that is adiabatically

Solberg-Høiland unstable in the hydrodynamic case. We find the growth rate in

this case is essentially independent of B0, as predicted from Figs. 5.6 and 5.10.

The primary result of changing B0 is to decrease the range of unstable kx and kz

as we have confirmed in Fig. 5.5. This case is driven by the Reynolds stress for

all B0 considered, since the red symbols provide a larger contribution to the total

growth rate, for both Pm plotted. Magnetic diffusion does not play an important

role here, confirmed by the negligible role of Pm. The baroclinic driving term is

the secondary contributor to instability for the smaller B0, but it appears that it

may be superseded for B0 ≳ 25 by Maxwell stresses. There is a jump from one

unstable mode to another around B0 = 12 where baroclinic and Maxwell stress

terms approximately balance, where the k and θk values instantly switch.

Panel (b) of Fig. 5.16 analyses a case with cylindrical differential rotation (Λ = 0,

which is neutrally hydrodynamically GSF stable for all latitudes with S = 2. This

case is significantly destabilised by even weak magnetic fields as we have seen in

Figs. 5.10, 5.11 and 5.12, and this instability is the double-diffusive MRI. This in-

stability is driven by an approximately equal combination of Reynolds and Maxwell

stresses, which perfectly coincide for large B0. This can be termed “Alfvénisation”

of the instability for fields for sufficiently strong fields. The complete lack of any

baroclinic driving is evident in this figure, and is also observed in panel (f) which

also has Λ = 0, as is expected for any cylindrical rotation profile.

Panel (c) probes instabilities at the poles by considering ϕ = 60◦ and Λ = 30◦.

Figs. 5.8 and 5.12 indicated that this latitude is widely unstable to adiabatic mag-

netic instabilities, in stark contrast to the hydrodynamic results (Dymott et al.,

2023), which found no adiabatic instability there. This instability is again the MRI,

and it is driven by an approximately equal balance of Reynolds and Maxwell stresses

indicating “Alfvénisation” once again. The growth rate increases by around 35%
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between B0 = 0 and B0 = 5, after which increases in B0 lead to only marginal

increases in σ.

Panel (d) explores a shellular rotation profile with ϕ = 0◦ and Λ = 60◦. These cases

were explored hydrodynamically in BJT2. This figure indicates that the instability

is initially driven almost entirely by Reynolds stresses when B0 ∼ 0, but Maxwell

stresses dominate for B0 ≳ 5. The introduction of magnetic fields weakens the

instability and reduces σ (after a small rise for B0 ∼ 1) over the B0 = 0 case. A

plateau is reached for σ by B0 ≳ 15, where the instability is primarily driven by

Maxwell stresses. Once again, the baroclinic driving term is very weak in this case

for any B0.

Panel (e) shows the behaviour of the fastest growing mode from the parameters of

Fig. 5.15 with ϕ = −30◦ and Λ = 60◦. As B0 is increased σ is drastically reduced.

Up to B0 ≈ 5 for Pm = 0.1 and B = 3 for Pm = 1 Reynolds stresses are the

dominant contributor to the growth rate, but as the growth rate decreases with

increasing field strength Maxwell stresses become the dominant contributor with

these lines converging towards each other. We may achieve “Alfvénisation” again

for sufficiently large B0, but this is not observed by B0 = 25. As was observed in

Fig. 5.4 the Pm = 1 case is consistently more unstable than the Pm = 0.1 case,

however as the growth rate tends to zero this difference becomes marginal.

In this section we have analysed the unstable mode energetics as B0, Pm and the

properties of the differential rotation were varied. We have found that the fastest

growing modes are always driven predominantly by a combination of Reynolds and

Maxwell stresses for non-zero B0 and that baroclinic driving is negligible except

for the subdominant secondary lobes. For strong enough magnetic fields, in many

cases in which the double-diffusive MRI operates, the contributions of Reynolds

and Maxwell stresses equalise. Overall, these results confirm that even a weak

magnetic field can drastically alter the stability of differentially rotating flows in

stellar radiation zones.
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5.6 Applications to the Sun and red giant stars

We now turn to estimate parameter values for the solar tachocline as a potential

application of this work. Recall that we defined our lengthscale d as

d =
(

νκ

N 2

) 1
4

, (5.101)

since this describes the scales of the dominant hydrodynamic GSF modes. In the

solar tachocline (e.g. Gough, 2007; Caleo et al., 2016), we find ν = 2.7 × 101cm2s−1,

κ = 1.4 × 107cm2s−1, hence Pr = 2 × 10−6 and N = 8 × 10−4s−1. This produces a

length scale2 d ≈ 49.3m. The linear GSF modes thus have very short length-scales

approx 10−5 of the tachocline thickness. The dimensional wavenumber kdim = k/d,

using our dimensionless wavenumber k.

The magnetic field strength and structure in the tachocline is highly uncertain.

Nevertheless, any poloidal magnetic field is probably in the range 0.5G to 5kG (e.g.

Mestel & Weiss, 1987, and we are not aware of substantially stronger subsequent

constraints). The field there is likely to be mostly toroidal, but only poloidal fields

enter our stability analysis for axisymmetric modes. The arguments of Gough and

McIntyre (1998) for the maintenance of the tachocline also suggest a minimum

poloidal field of 1 G is required there.

Our dimensionless magnetic field B is written in Alfvén speed units; therefore it has

units d Ω where Ω = 2π/Prot, and Prot = 27 days is the Sun’s mean rotation period.

The corresponding physical magnetic field magnitude Bdim from the dimensional

Alfvén speed VA = Bdim/
√

µ0ρ

Bdim = B0dΩ√
µ0ρ, (5.102)

⇒ Bdim ≈ 2.1 × 10−6B0 T ≈ 0.021B0 G, (5.103)

2Please note the unfortunate typo in BJT1, where this was written as km instead! No other
values in BJT1 need modifying and slightly different numbers were used from stellar models for the
various parameters there than the ones we quote here.
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using Ω = 2.7 × 10−6s−1 (implying N 2/Ω2 ≈ 8.7 × 104), ρ = 210 kgm−3 and µ0 =

4π ×10−7 in SI units. This means that a field of 1 G corresponds to a dimensionless

B0 ≈ 46 in our units if d is the relevant length-scale. Note that d was defined based

on the diffusive hydrodynamic GSF modes, and we have found the double-diffusive

MRI to potentially have much larger wavelengths.

On the other hand if we want to consider a field of 1 kG, this requires B0 = 4.6×104

in dimensionless units, which is much larger than we have considered here. The fields

we have primarily explored in this work are at the weaker end, with B0 ≲ 25, corre-

sponding to fields weaker than approximately 0.5 G in the tachocline. This choice

was partly made to permit us to explore the modification of hydrodynamic diffusive

rotational instabilities by a weak field, and was partly made because we found that

for larger B0 the GSF mode is primarily stabilised and the dominant instability by

far is the double-diffusive MRI. This agrees with several of the conclusions from

Caleo and Balbus (2016) and Caleo et al. (2016).

Note that η = 4.1 × 102cm2s−1 in the tachocline, so Pm = 0.065 and Pr/Pm =

3 × 10−5 there. Hence, we are in the regime of rapid thermal diffusion relative to

viscous and ohmic diffusion in the tachocline, as discussed in § 5.3.3.

In the core of red giant stars, whose core-envelope differential rotations remain

poorly explored, as considered in BJT1 and using the numbers there, d ∼ 100m,

Ω ∼ 10−7s−1. This produces Bdim ∼ 1.12B0
√

ρ/105gcm−3 G. Hence in that problem

Bdim ∼ B0 G in the cores of red giant stars. Since there have been constraints

on fields in these from asteroseismology of order 40 to 610 kG (Deheuvels et al.,

2023), this suggest we should consider B0 ≳ 103 in red giant stars also. Hence

double-diffusive MRI is expected to be more important than GSF, depending on

the rotation profile, and perhaps not for ϕ < 0◦.
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5.7 Conclusions

We have presented a theoretical analysis of local triply-diffusive instabilities of dif-

ferential rotation in magnetised radiation zones of stars and planets, building upon

the hydrodynamical studies of Barker et al. (2019, 2020) and Dymott et al. (2023)

and Chapters 2 & 3. Understanding the properties of these instabilities, and ul-

timately their nonlinear behaviour, is essential because they have been proposed

to play important roles in angular momentum transport and chemical mixing in

stars (e.g. Caleo et al., 2016; Aerts et al., 2019), and they may even play a role in

the solar dynamo (Parfrey & Menou, 2007; Vasil et al., 2024), but many aspects

of them are currently very poorly understood. Our focus has been on the effects

of a poloidal magnetic field on the properties of linear axisymmetric instabilities of

differential rotation, which are governed by a quintic dispersion relation first derived

by Menou et al. (2004). We have performed a detailed analysis of the dispersion

relation, firstly for non-diffusive instabilities, reproducing prior work on the strati-

fied MRI (e.g. Balbus, 1995), before analysing diffusive instabilities in various limits

analytically and numerically.

In strongly stably stratified regions of stars, adiabatic theories would predict the

fastest growing mode displacements to be along stratification (i.e. approximately

spherical) surfaces. However, rapid thermal diffusion can eliminate the stabilising

effects of buoyancy if Pr/Pm and Pr are sufficiently small, which is very much

the case in stars. In this limit double-diffusive3 MRI operates and can change the

properties of the unstable modes depending on the differential rotation. We have

obtained new analytical and numerical results on the various instabilities in this

triply-diffusive system as a function of the differential rotation profile and magnetic

field strength.

Our analytical and numerical results have highlighted that even a weak magnetic

field can considerably modify the local instabilities of differentially rotating flows

3Referred to as such because the relevant diffusing quantities are magnetic field and entropy;
molecular viscosity is typically even weaker.
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(e.g. Balbus & Hawley, 1998, and many prior works). We have found that for dif-

ferential rotations with (angle between effective gravity and local angular velocity

gradient) ϕ > 0◦, MRI may dominate over the magnetic modification of hydrody-

namic GSF instabilities. However, for ϕ < 0◦, hydrodynamic GSF modes could still

be important even if they are weakened by magnetic tension for moderately strong

fields. We found that even weak fields destabilise hydrodynamically stable regions

in parameter space, particularly for nearly cylindrical differential rotation profiles.

We have analysed in detail the properties of axisymmetric modes, including how the

growth rates and wavevectors depend on the strength of the magnetic field, mag-

netic Prandtl number Pm, and local differential rotation profile. We have analysed

in detail the energetics of the various instabilities in our system, first by deriving the

energy equation and then by evaluating the various source terms for linear axisym-

metric modes. These consist of Reynolds stresses, Maxwell stresses and baroclinic

driving terms. We find that the MRI is typically driven by Reynolds and Maxwell

stresses in approximately equal proportions (so-called Alfvénisation) in a wide range

of cases.

We believe that it is important to set up a meaningful time-independent magnetic

equilibrium to properly analyse MHD instabilities. We take a different viewpoint

to many prior works that attempted to model arbitrary field configurations without

ensuring Ferraro’s law of isorotation was satisfied (e.g. Balbus & Hawley, 1994;

Menou et al., 2004; Menou & Le Mer, 2006; Parfrey & Menou, 2007; Caleo et

al., 2016). In our model we ensured our basic state was an equilibrium state and

verified the local analogue of Ferraro’s law of isorotation. This is analogous to

the original works of Goldreich and Schubert (1967) and Fricke (1968) having an

additional degree of freedom because they ignored the constraint of thermal wind

balance. Similar issues have also plagued studies of the effects of magnetic fields on

the vertical shear instability in astrophysical discs (e.g. Urpin & Brandenburg, 1998;

Latter & Papaloizou, 2018, in which the latter authors take the same viewpoint as

us).
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Depending upon the differential rotation, we find that MRI can occur for much

weaker shears than the hydrodynamic GSF instability, and that it can occur on

much larger scales. We anticipate that when it operates, MRI is likely to be more

efficient at transporting angular momentum than the GSF instability, though the

latter could still be important for configurations in which the MRI is not excited.
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Chapter 6

Nonlinear

Magnetohydrodynamical

Simulations

6.1 Introduction

The following chapter builds on Chapters 4 and 5 to quantify how the addition

of a magnetic field affects the evolution of local instabilities in a stably stratified

differentially rotating region of a stellar radiative zone.

Following Chapter 4 we again use the pseudo-spectral code Snoopy to run nonlinear

simulations for 4 sets of Λ and ϕ values at the latitudes Λ+ϕ = 0◦, 30◦ and 90◦. Our

intention is to quantify the evolution of the energetic and transport properties of the

system over time, for which our findings will be presented in Figs. 6.1, 6.4, 6.7 and

6.10. At each of the key stages throughout its evolution we also present snapshots

of the flow (see Figs. 6.2, 6.5, 6.8 and 6.11) as a visual guide to the evolution. We

fix our non-dimensional parameters throughout to be S = 2, N2 = 10, Pr = 10−2,

Pm = 10−1 with a typical box size Lx = Ly = Lz = 100, and a resolution of

Nx = Ny = Nz = 256 unless otherwise stated. These choices have been made to
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allow a direct comparison to some of the cases explored hydrodynamically in Chapter

4 and in Barker et al. (2020). We impose an initial uniform vertical magnetic field

B(t = 0) = B0ez in our simulations – rather than an imposed background field as

in Chapter 5 – so our B here represents the total magnetic field in our simulations.

Depending on the strength of the magnetic field we found in Chapter 5 that the

system is unstable to either a magnetically modified version of the operating hy-

drodynamic axisymmetric instability – either an adiabatically-unstable centrifugal

(Solberg-Høiland) instability or the GSF instability depending on the parameter

regime – or an axisymmetric MRI-type instability. We analyse simulations explor-

ing the evolution of the various instabilities in our system in the presence of a

magnetic field. We also explore the box size dependence of the various instabilities.

Fully 3-dimensional box figures are also presented of the flow in the strong B0 = 10

field cases once they’ve reached their final dynamical regime. These figures are pre-

sented alongside corresponding energy spectra that demonstrate these simulations

to be well resolved, reinforcing our trust in these results.

6.2 Nonlinear analysis

We first present a selection of figures (Figs. 6.1, 6.4, 6.7 and 6.10) characteriz-

ing the time evolution of various properties of interest, including the Reynolds

stress component ⟨uxuy⟩, the Maxwell stress component ⟨BxBy⟩, the total stress

(y-momentum transport rate) given by S⟨uxuy − BxBy⟩, as well as the kinetic en-

ergy KE = 1
2⟨u2

x + u2
y + u2

z⟩, and magnetic energy ME = 1
2⟨B2

x + B2
y + B2

z ⟩. We

explore various field strengths B0 ∈ [0, 1, 2.5, 5, 10] with the other parameters de-

fined as stated above. Note that any regions corresponding to negative values of

the Reynolds or Maxwell stress in Figs. 6.1 or 6.4 are left blank due to our use of

a logarithmic scale, which explains the breaks in the lines for the larger B0 values

after initial saturation of instability.

We present these alongside complementary snapshots (slices through our box in the
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(x, z)-plane at y = 0) at key stages in the evolution for the field strengths B0 = 1, 5,

and 10 in Figs. 6.2, 6.5, 6.8 and 6.11. Following Chapter 4, we consider a set

of four values of Λ and ϕ at the three latitudes 0◦, 30◦, 90◦. These cases include

a hydrodynamically GSF-unstable case at each latitude and a hydrodynamically

adiabatically-unstable case at latitude 30◦ so that we can analyse how the addition

of a magnetic field modifies these.

Across all cases the system’s behaviour depends heavily on the strength of the im-

posed magnetic field, either showing a magnetically-modified version of the existing

hydrodynamic instability, or transitioning to the MRI for strong enough fields. For

all cases that are hydrodynamically-unstable to the GSF instability, a change of

regime occurs when B0 ≳ 2.5 for the parameters (N2, S, Pr and Pm) we have simu-

lated. In contrast, adiabatically unstable cases appear more resistant to the effects

of the magnetic field, presumably because the adiabatic Solberg-Høiland instability

is much more strongly driven, typically with larger growth rates and unstable mode

length-scales. Only the strongest fields we considered, with B0 = 10, were sufficient

to substantially alter the nonlinear evolution in these cases.

6.2.1 Equatorial case (ϕ = 30◦, Λ = −30◦)

At the equator, we consider ϕ = 30◦ and Λ = −30◦, a case with mixed but primarily

radial shear. This case is GSF unstable with diffusion but is adiabatically stable

when B0 = 0. Initially the lower linear growth rates caused by the magnetic field

predicted in Chapter 5 (see Fig. 5.9) manifests as a prolonged linear growth phase

in these cases with B0 ̸= 0. After this, cases with stronger fields generally exhibited

more energetic flows which typically took longer to settle into a final state. These

final states seem to be made up of modes which have saturated close to the box

scale as opposed to the layers seen in the hydrodynamic regime; this can be seen in

Figs. 6.2 and 6.3. For the lower field strengths B0 = 1 and B0 = 2.5 the layered

states have an ostensibly similar nature to the hydrodynamic regime seen in Fig. 4.1;

however, the resultant flows with stronger fields seem much less stable and generate
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far larger fluctuations. Other than having stronger fluctuations, the layered system

at the equator only leads to significantly different properties in ⟨BxBy⟩, whereas

⟨uxuy⟩ and total stress ⟨uxuy⟩ − ⟨BxBy⟩ seem to attain roughly similar levels.

The magnetic field does not appear to substantially modify the magnitude of the

total stress, i.e. total angular momentum transport rate, in the final turbulent state,

only its relative contributions from Reynolds and Maxwell stresses, which become

increasingly dominated by the latter to a greater extent for stronger fields. Due to

computational constraints, it is difficult to tell whether the larger B0 cases (partic-

ularly B0 = 10) have converged fully to their final state in Fig. 6.1, however, we do

not expect significant subsequent deviations from their final values since the linear

instability appears to have saturated by then.

The kinetic energy (KE) and magnetic energy (ME) are also presented in Figs. 6.1.

In a similar manner to what was seen for the stresses, the addition of the magnetic

field acts to increase the duration of the linear phase of the simulation for these

parameters, at the end of which we see an extremely large peak in energy before

nonlinearly saturating and evolving into a turbulent flow. The smaller linear growth

rates are predicted in the GSF-unstable regime in Chapter 5 (see Fig. 5.9) and

arise from magnetic tension partially stabilising GSF modes. Higher field strengths,

particularly after the change in regime around B0 = 2.5, lead to layers that are much

less stable and fluctuate much more aggressively than the hydrodynamic or low B0

cases. This is likely to be related to the effects of the magnetic field in increasing

the length-scale of the linearly-unstable modes as observed in Fig. 5.9, where there

is a change from k ∼ 0.6 when B0 = 0 (black line) to k ∼ 0.1 when B0 = 10 (green

line) in panel (c). This change in the linear mode wavelength is consistent with the

snapshots in the linear growth phase in Fig. 6.2. We might expect then the possible

parasitic instabilities of the linear modes to be more severely constrained by the

box size, thereby allowing them to attain larger amplitudes. Spatial averaging will

also be over a smaller number of unstable mode wavelengths, so we would expect to

observe more variability in the temporal dynamics.
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After the initial growth phase, the turbulent and layered regimes appear to act

as dynamos1 in generating a significantly enhanced and sustained magnetic field

strength throughout the subsequent evolution, as observed in the bottom right panel.

Interestingly, despite their differing initial fields, all cases with (B0 ≥ 2.5) lead to

a similar order of magnitude of magnetic energy in the final turbulent state. The

field is enhanced most efficiently for B0 = 2.5 over its initial value and these results

indicate the operation of a GSF-induced dynamo for these parameters.

Snapshots are plotted in Fig. 6.2 in the y = 0 plane, which verifies that higher

field strengths, and their associated lower initial growth rates, lead to a prolonged

duration for the unstable modes to grow in the linear regime. For B0 = 1 the

initial linearly-unstable fingers are no longer visible by t = 50, whereas for the

B0 = 5 case, this happens later at nearly t = 100, and for B0 = 10 it happens even

later at approximately t = 200. After these times cases with stronger fields display

extended temporal variability before a final statistically-steady state is attained.

The addition of a magnetic field also clearly influences the orientation of the flow

at all stages throughout its evolution, from the linearly growing modes early on

to the final turbulent or layered state. The orientation of the linear fingers aligns

with the results in Chapter 5, which predicted θk ∼ 125◦ at B0 = 1, θk ∼ 100◦ at

B0 = 5, and θk ∼ 110◦ at B0 = 10. However, the orientation of the modes seems

to evolve depending on several factors, including ϕ (as seen in Chapter 4) and the

strength of the magnetic field. Unlike the hydrodynamic and weak field cases, the

unstable modes grow in the form of “elevator modes”, which develop preferentially

along x for sufficiently strong fields. They subsequently tilt slightly but evolve over

time to become roughly perpendicular to the orientation of the jets observed in the

hydrodynamic cases in Fig. 4.1. The jets that form in the presence of a weak B0 = 1

field closely follow the dynamics of the hydrodynamic case, with the jets ending up

1Note that the usage of the term ‘dynamo’ does not refer to a true dynamo since we are imposing
an initial uniform background magnetic field. Hence, the magnetic energy will not diffuse to zero.
Strictly speaking, the flow is acting as an amplifier of the background field we impose. Additional
simulations would be required to investigate whether or not these instabilities could act as true
dynamos, but we will continue to refer to them as dynamos in the text.
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tilted at approximately the same angle. This is well predicted by the linear theory

in Chapter 5, as panel (c) of Figure 5.9 suggests that θk ∼ 125◦ for both cases.

We analyse the kinetic energy spectrum on the (kx, kz)-plane in the bottom panel

of Fig. 6.3 for the case with B0 = 10. This shows the alignment of the mode

energy in spectral space to be broadly similar to the initial linear orientation in the

hydrodynamic case, being oriented approximately halfway between Ω̂⊥ and ∇ℓ, even

once the flow has nonlinearly saturated and for B0 = 10. The decay in energy from

the peak of the spectrum of approximately 102 at the smallest k to 10−5 by k ∼ 2

(comfortably below the de-aliasing wavenumber) indicates that these simulations

are spatially well resolved. The top panel of Fig. 6.3 shows the uy flow in 3D using

a pseudo-colour plot. We observe the flow to be predominantly y-invariant. Hence

the flow remains essentially axisymmetric even in the nonlinear regime, therefore

the flow shown in slices at y = 0 in Fig. 4.1, even at the largest B0, do indeed

represent zonal jets. A key aspect of the nonlinear saturation of all instabilities is

thus the formation of zonal jets.

6.2.2 Hydrodynamically GSF unstable case at latitude 30◦ (ϕ =

−30◦, Λ = 60◦)

Moving away from the equator we next consider ϕ = −30◦ and Λ = 60◦, correspond-

ing to the hydrodynamically GSF unstable case at latitude 30◦ seen in Fig. 4.4. We

saw in Fig. 5.10 that magnetic fields of higher strengths again suppress the linear

growth rate of the most unstable mode, here resulting in an extended initial growth

phase in simulations. We can see from Fig. 6.5 that whilst for B0 = 1 the fingers

have become turbulent by t = 50, B0 = 5 is still well within the linear growth

phase at this time. From Fig. 6.4 we see that the linear phase ends for the B0 = 5

case around t = 80. The B0 = 10 case takes longer still, with fingers observed in

Fig. 6.5 until t = 100, and 6.4 suggesting turbulence onsets at around t = 200. The

prolonged stability of the linear mode fingers for B0 = 2.5, 5 and 10 is suggested

by their linear growth rates (see Fig. 5.10) of σ ∼ 0.3, 0.2 and 0.1 respectively,
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Figure 6.1: Illustrating the nonlinear evolution of ⟨uxuy⟩, ⟨BxBy⟩, and the angular
momentum transport (total stress) S(⟨uxuy⟩−⟨BxBy⟩), alongside the kinetic energy
(KE) and magnetic energy (ME), for B0 = 0, 1, 2.5, 5, 10, at the equator. These
are accompanied by a visual representation of our local box (for B0 = 0 at t = 10)
in a global context.
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(a) (B0 = 1) uy at t = 10 (b) (B0 = 5) uy at t = 50 (c) (B0 = 10) uy at t = 50

(d) (B0 = 1) uy at t = 50 (e) (B0 = 5) uy at t = 100 (f) (B0 = 10) uy at t = 100

(g) (B0 = 1) uy at t = 100 (h) (B0 = 5) uy at t = 250 (i) (B0 = 10) uy at t = 250

(j) (B0 = 1) uy at t = 400 (k) (B0 = 5) uy at t = 400 (l) (B0 = 10) uy at t = 350

Figure 6.2: Snapshots of the flow component uy at various times for different mag-
netic field strengths (B0 = 1, 5, 10) with ϕ = 30◦ and Λ = −30◦. Each row corre-
sponds to a different time: t = 10 (top row), t = 50 (second row), t = 100 (third
row), t = 250 (fourth row), and t = 400 – or t = 350 for B0 = 10 – (bottom row).
These illustrate the evolution and development of instabilities in the flow, showing
how the presence and strength of the magnetic field influence the structure and
dynamics over time. Notably, higher magnetic field strengths result in prolonged
linear phases and more significant fluctuations before reaching a quasi-stable state.
The snapshots highlight the transition from initial linear instabilities to turbulent
and layered regimes, emphasizing the role of magnetic fields in altering jet formation
and orientation.
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(a) (B0 = 10) uy at t = 350

(b) (B0 = 10) KE spectra at t = 350

Figure 6.3: Figures illustrating, in the equatorial case with B0 = 10 with ϕ = 30◦ and
Λ = −30◦, (a) the uy component of the velocity throughout our 3D box of dimensions
Lx,y,z = 100 at t = 350 (b) the kinetic energy spectrum on the (kx, kz)-plane, which
shows these simulations to be well resolved. The two solid lines represent Ω̂⊥ and
∇ℓ within which hydrodynamic GSF modes are unstable.
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in comparison to σ ∼ 0.5 and 0.65 for B0 = 0 and 1. However, the increase in

wavelength of the modes for these higher field strengths, with |k| = 0.35, 0.25 and

0.15 for B0 = 2.5, 5 and 10 compared to |k| = 0.75 and 0.6 for B0 = 0 and 1, not

only makes the linear modes more resilient to parasitic instabilities, leading to much

larger energy levels required for the linear modes to become unstable, but also ulti-

mately results in larger structures once the flow has settled. This is seen in Figures

6.5 and 6.6, which tend to lead to enhanced nonlinear properties, including angular

momentum transport.

The magnetic field in our system seems to stabilise the fingers in the linear regime,

making them more robust to parasitic instabilities and hence we see these fingers

building in strength to extremely large values (several orders of magnitude higher

than the hydrodynamic peak) before they become unstable, after which the release

of this energy produces very turbulent flows. This could partially be related to the

field increasing the length-scale of the dominant unstable mode to be closer to the

box-scale, thereby constraining the possible parasitic instabilities of these modes.

Potentially as a result of the larger peak at the end of its linear phase, the B0 = 5

case onsets into a more turbulent flow with larger fluctuations than for B0 = 1, 2.5.

However, once this stored energy has been released the three cases B0 = 1, 2.5 and

5 all exhibit dynamics similar to the GSF-unstable cases, albeit with mode and jet

orientations and length-scales modified by the magnetic field (see Fig. 6.5). However

the flow for ϕ = −30◦, Λ = 60◦ at B0 = 10 develops in a quite different manner

to the B0 = 0 simulation. In particular, in Fig. 6.5 we observe weaker jets that

have slightly reduced levels of transport than in the B0 = 2.5 and B0 = 5 cases,

with the field impeding the Reynolds stresses, with the value of ⟨uxuy⟩ settling to

the lowest of all the field strengths considered here. Whilst the transport properties

seen in Fig. 6.4 are the highest for the mid-strength fields, B0 = 2.5 and 5, the

increases in ⟨bxby⟩ over the hydrodynamic and weak field cases mean that even with

its restrictions on ⟨uxuy⟩, a field of strength B0 = 10 still generates a flow which

transports roughly equivalent rates of angular momentum as B0 = 0 and 1. Since the
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(f) Lat = 0◦

Figure 6.4: Illustrating the nonlinear evolution of ⟨uxuy⟩, ⟨BxBy⟩, and the angular
momentum transport S(⟨uxuy⟩ − ⟨BxBy⟩), alongside the kinetic energy (KE) and
magnetic energy (ME), for B0 = 0, 1, 2.5, 5, 10, at latitude 30◦. These are accom-
panied by a visual representation of our local box (for B0 = 0 at t = 10) in a global
context.
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(a) (B0 = 1) uy at t = 10 (b) (B0 = 5) uy at t = 50 (c) (B0 = 10) uy at t = 50

(d) (B0 = 1) uy at t = 50 (e) (B0 = 5) uy at t = 100 (f) (B0 = 10) uy at t = 100

(g) (B0 = 1) uy at t = 100 (h) (B0 = 5) uy at t = 250 (i) (B0 = 10) uy at t = 250

(j) (B0 = 1) uy at t = 250 (k) (B0 = 5) uy at t = 400 (l) (B0 = 10) uy at t = 350

Figure 6.5: Evolution of uy in snapshots at various times for the case ϕ = −30◦, Λ =
60◦. Panels (a)-(c) show uy during the linear growth phase (at t = 10 or 50) for
magnetic field strengths B0 = 1, 5, and 10 respectively, while (d)-(f) depict uy at
t = 50 or 100. Panels (g)-(i) present uy at t = 100, followed by (j)-(l) at t = 100
or 250, and (m)-(o) at t = 250 or 350 for B0 = 1, 5, and 10 respectively. The plots
illustrate the evolution of flow patterns over time, revealing distinct behaviours
influenced by varying magnetic field strengths.
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(a) (B0 = 10) uy at t = 350

(b) (B0 = 10) KE spectra at t = 350

Figure 6.6: Figures illustrating, in the case B0 = 10 with ϕ = −30◦ and Λ = 60◦, (a)
the uy component of the velocity throughout our 3D box of dimensions Lx,y,z = 100
at t = 350 (b) the kinetic energy spectrum on the (kx, kz)-plane, which shows these
simulations to be well resolved. The two solid lines represent Ω̂⊥ and ∇ℓ within
which hydrodynamic GSF modes are unstable.
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Maxwell stress (⟨bxby⟩) generated by the field seems to have reached a maximum

by B0 = 5 we suspect that any further increases in field strength would lead to

a reduction in the levels of angular momentum transport occurring for the same

parameters otherwise. From Fig. 6.4, we see that outside of the strong temporal

fluctuations, the magnetic field has little influence on the mean levels of kinetic

energy in the system, with perhaps only a small reduction coming from the field

with B0 = 10, but further investigations would be required to confirm this trend. A

difference is, however, observed in the magnetic energy of the system. As was seen

at the equator, all B0 ̸= 0 cases act as dynamos, with the magnetic energy of the

system saturating at a similar value for all B0 ≥ 2.5. The B0 = 1 case generated a

weaker field amplification, about an order of magnitude lower magnetic energy than

the cases with larger fields.

We show a 3D snapshot of uy in the top panel of Fig. 6.6 for B0 = 10 in the final

stages of the simulation at t = 350. This shows that the flow remains close to

axisymmetric, just like for the equatorial case with B0 = 10 shown in the previous

section, and that the flows shown in the slices in Fig. 6.5 are zonal jets. The kinetic

energy spectrum indicates that the orientation of the modes in the (kx, kz)-plane

in this case is drastically different from the hydrodynamical modes excited when

B0 = 0. The latter are contained within the wedge between the black lines showing

Ω̂⊥ and ∇ℓ close to the kx = 0 axis, whereas the unstable modes for B0 = 10 are

nearly perpendicular to this, as we have also observed in Fig. 6.5. This is predicted

by linear theory in Fig. 5.10 which predicts θk ∼ 90◦ for B0 = 0 whereas θk ∼ 155◦

for B0 = 10. The B0 = 10 case has a similar jet orientation and wavelength in the

final stages to the linear modes, whereas the B0 ≤ 5 cases exhibit changes in both

the direction and wavelengths of the zonal jets, which tend to coarsen with time for

smaller B0. These figures also indicate this simulation to be spatially well resolved.

Our simulations suggest that while the flow is still GSF unstable for latitude 30◦

(not including B0 = 10), stronger magnetic fields, and in turn larger |⟨BxBy⟩|, trans-

late into higher levels of angular momentum transport. Intriguingly, the dynamo
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amplifying the imposed magnetic field in cases with B0 ̸= 0 generates similar levels

of magnetic energy in the final states of all cases with B0 ≥ 2.5.

6.2.3 Hydrodynamically adiabatically unstable case at latitude 30◦

(ϕ = 60◦, Λ = −30◦)

Next, we examine a differential rotation profile with ϕ = 60◦ and Λ = −30◦, a

scenario previously identified in Fig. 4.6 as hydrodynamically adiabatically unstable.

This case was analysed linearly in Fig. 5.10 where we found σ ∼ 0.92 and θk = 130◦

with a preferred wavenumber k → 0 independently of B0. Here the evolution of the

instability initially seems more resilient to the addition of a magnetic field, until

B0 = 10. Fig. 6.7 illustrates that, after a marginally extended linear duration, cases

within the adiabatically unstable regime with (B0 ≤ 5) exhibit very similar transport

behaviour. The transport (S(⟨uxuy⟩ − ⟨BxBy⟩)) in these cases is dominated by

the Reynolds stress, until the Maxwell stress dominates for B0 = 10. In these

simulations the linear growth rate and orientations are not affected by B0, hence

any changes in the wavelength or orientations in the final stages of our simulations

must result from nonlinear effects.

The slower linear growth for the B0 = 10 strong field case is surprising given that

Fig. 5.10 predicts σ ∼ 0.9 for all field strengths, which is consistent with the growth

rates we observe for B0 = 0, 1, 2.5 and 5 in Fig. 6.7. From panels (a) and (b) in

Fig. 5.6 we can see that ϕ = 60◦ is the start of adiabatically unstable rotation

profiles as ϕ is varied at latitude = 30◦ and so, regardless of field strength we

see a preference for arbitrarily small wave vectors |k| → 0. In this B0 = 10 case

the addition of the field generates substantially higher turbulent stresses and final

transport properties within the system. This may result from the single, very strong

zonal jet that develops in this case (see panels (i) and (l) of Fig. 6.8) that leads to

by far the highest velocity flows seen in any of our simulations analysed here. The

flow in the final stages is six times faster flowing than the weak field B0 = 1 case

(in panel (j) of Fig. 6.8).
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Figure 6.7: A figure illustrating the nonlinear evolution of ⟨uxuy⟩, ⟨BxBy⟩, the angu-
lar momentum transport S(⟨uxuy⟩−⟨BxBy⟩), alongside the kinetic energy (KE) and
magnetic energy (ME), for B0 = 0, 1, 2.5, 5, 10, in the hydrodynamically adiabati-
cally unstable regime (ϕ = 60◦, Λ = −30◦) at latitude 30◦. These are accompanied
by a visual representation of our local box (for B0 = 0 at t = 10) in a global context.
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(a) (B0 = 1) uy at t = 10 (b) (B0 = 5) uy at t = 10 (c) (B0 = 10) uy at t = 10

(d) (B0 = 1) uy at t = 50 (e) (B0 = 5) uy at t = 50 (f) (B0 = 10) uy at t = 50

(g) (B0 = 1) uy at t = 100 (h) (B0 = 5) uy at t = 100 (i) (B0 = 10) uy at t = 100

(j) (B0 = 1) uy at t = 250 (k) (B0 = 5) uy at t = 250 (l) (B0 = 10) uy at t = 220

Figure 6.8: Snapshots of the flow evolution for the case with parameters ϕ = 60◦

and Λ = −30◦, illustrating the adiabatically unstable regime throughout the var-
ious stages of its evolution. Initially we see the development of fingers of angular
momentum, which take longer to develop for higher values of B0, after which there
is a phase of nonlinear saturation due to parasitic instabilities that leads to turbu-
lence which ultimately gives way to layering in the angular momentum. Notably,
the figure showcases the development of strong layers filling the box, with smaller
scale instabilities suspected to be Kelvin-Helmholtz instabilities observed on the
boundaries between the layers. Panel (l) at the bottom highlights these smaller
scale instabilities, generating noticeable vortices that may impact the mean flow dy-
namics, though probably only weakly as they do not significantly alter the layered
structures subsequently.
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(a) (B0 = 10) uy at t = 220

(b) (B0 = 10) KE spectra at t = 220

Figure 6.9: Figures illustrating, in the case B0 = 10 with ϕ = 60◦ and Λ = −30◦, (a)
the uy component of the velocity throughout our 3D box of dimensions Lx,y,z = 100
at t = 220 (b) the kinetic energy spectrum on the (kx, kz)-plane, which shows these
simulations to be well resolved. The two solid lines represent Ω̂⊥ and ∇ℓ within
which hydrodynamic GSF modes are unstable.
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One interesting feature of the B0 = 5 case is the presence of a strong spike in

its properties around t = 220, occurring well after the initial nonlinear saturation.

However, it is not clear whether this is a magnetic phenomenon or just a nonlinear

effect.

From Fig. 6.7 and our snapshots in Fig. 6.8 it is clear that the adiabatically unstable

regime quickly becomes very turbulent, in line with our expectations from their large

growth rates (σ ∼ 0.9) in Fig. 5.10. After the initial elevator modes nonlinearly

saturate, layers quickly form throughout the domain, becoming exceedingly strong

and box-filling. By t = 50 the velocities are an order of magnitude above any another

other simulation at this point in time. Nevertheless, the 3D snapshot of the B0 = 10

case in the top panel of Fig. 6.9 is dominated by an axisymmetric zonal flow but

with many visible strong smaller-scale vortices. We also observe from the energy

spectrum in Fig. 6.9 that the flow appears well resolved despite the very turbulent

flows being driven.

On average the zonal jets that form are clear and maintain a consistent orientation

in the nonlinear regime in our simulations. However, they do seem to experience

relatively strong intermittent turbulence between the layers. Seen clearly in (a) of

Fig. 6.9, where the zonal jets here can be seen to have a similar appearance to

the other layered states seen in the modified GSF regimes. Not only do these jets

have enhanced velocities here but interestingly the strong shear between the layers

seems to be an ideal environment to host smaller-scale instabilities, likely similar to

Kelvin-Helmholtz instabilities. These instabilities generate discernible vortices that

may impact flow properties, however their net influence appears minor on the mean

flow as they do not significantly alter the layered flow structures.

All B0 ̸= 0 cases again exhibit dynamos, amplifying the initial field substantially,

with by far the most efficient dynamo coming from the B0 = 10 case, which amplifies

the magnetic energy by a factor of 103.

To summarise, this adiabatically unstable case is not strongly affected by the mag-
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netic field linearly or nonlinearly until the strongest field with B0 = 10 is applied.

Then, the transport and energetic properties of the flow are substantially enhanced

by the field. It would be interesting to explore whether this behaviour would be

expected to persist for even larger B0. We shall study the dependence of box size

on the transport properties of this case later in Section 6.3.

6.2.4 Polar case (ϕ = 30◦, Λ = 60◦)

The final examples we will consider here are hydrodynamically GSF unstable cases

at the pole, with ϕ = 30◦, Λ = 60◦. Much like for the other hydrodynamically

GSF unstable cases we see that the cases seem to be split into two sets: B0 = 0, 1,

which demonstrate typical GSF-type behavior, and B0 = 2.5, 5, and 10, which seem

to be more aggressively unstable, with higher turbulent stresses, energetic, and

transport properties seen in Fig. 6.10. We suspect this could be associated with a

double-diffusive MRI instability. The more modest properties associated with weak

field cases correspond to the smaller wave length modes predicted from Fig. 5.12

in Chapter 5, with |k| ∼ 0.65 and |k| ∼ 0.5 at B0 = 0 and B0 = 1 respectively, in

comparison to |k| ∼ 0.3, 0.2 and 0.1 for B0 = 2.5, 5 and 10.

Fig. 5.12 suggests that the larger growth rates σ ∼ 0.55, 0.65 and 0.65 for B0 = 2.5, 5

and 10 would lead to faster growth compared to the value σ ∼ 0.45 for both B0 = 0

and 1. However, our kinetic energy plots in Fig. 6.10 shows that in our nonlinear

simulations, after onset, the unstable modes grow in strength slightly slower than

the angular momentum fingers in the modified GSF unstable cases. We speculate

that this could be related to the initial conditions that might have preferentially

excited a smaller-scale mode. The unstable modes also seem more resistant to

parasitic instabilities for larger B0 and grow to much larger energies before becoming

unstable and generating turbulence. Strongly magnetised cases lead to higher levels

of transport in comparison to the weak field or hydrodynamic cases. Although much

lower than the initial peak at the end of their linear growth phases, the higher field

strength cases with B0 ≥ 2.5 tend to saturate at between one and two orders of
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magnitude larger transport levels than seen in the weak field regime.

The formation of AM layers is observed to be much weaker in Fig. 6.11 than the

other GSF unstable cases, with all fields stronger than B0 = 1 producing box-filling

turbulent flows with large-scale eddies rather than coherent zonal jets. Even a weak

B0 = 1 field seems to significantly destabilise the formation of AM layers over the

hydrodynamic simulations seen in Fig. 4.6. The flow in these magnetic simulations

with stronger fields also exhibits stronger non-axisymmetric components in the flow

than the weaker field cases, as shown in the top panel of Fig. 6.12 for B0 = 10. For

the stronger field cases, the formation of box-scale eddies and zonal flows seems to

correspond to the significant, rapid fluctuations in Fig. 6.10, with over an order of

magnitude variation between the upper and lower limits of the levels of transport

between fluctuations. The fluctuations are less pronounced in the B0 ≤ 1 cases,

where the zonal jets and associated turbulent flows occur on a length-scale that is

a smaller fraction of the box size.

Whilst all B0 ̸= 0 cases enhance the level of magnetic energy within the system, the

more turbulent flows observed in Fig. 6.11 corresponding to B0 = 2.5, 5, 10, were

found to be far more efficient dynamos. The magnetic energy is relatively insensitive

to B0 for B0 > 1 for the cases we explored.

6.3 Dependence on box size

Given that we have found the magnetic field changes the wavevector of the fastest

growing linear modes in Chapter 5, it is important to see how these translate into

the nonlinear regime, and in particular to determine whether or not these changes

lead to changes in the dependence on, or lack thereof, on the dimensions of the box

Lx, Ly and Lz. To explore the effects of varying the box size dimensions on our

magnetised simulations, we have performed simulations similar to those in Chapter

4. We study cases with Lx,y,z = 200, 300 and a adopt a higher resolution for these

larger boxes, with Nx,y,z = 512, a resolution which we found in Chapter 4 to be
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Figure 6.10: A figure illustrating the nonlinear evolution of ⟨uxuy⟩, ⟨BxBy⟩, the an-
gular momentum transport S(⟨uxuy⟩ − ⟨BxBy⟩), alongside the kinetic energy (KE)
and magnetic energy (ME), for B0 = 0, 1, 2.5, 5, 10, at the pole (ϕ = 30◦, Λ = 60◦).
These are accompanied by a visual representation of our local box (for B0 = 0 at
t = 10) in a global context.
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(a) (B0 = 1) uy at t = 10 (b) (B0 = 5)uy at t = 10 (c) (B0 = 10)uy at t = 10

(d) (B0 = 1) uy at t = 50 (e) (B0 = 5) uy at t = 50 (f) (B0 = 10) uy at t = 50

(g) (B0 = 1) uy at t = 100 (h) (B0 = 5) uy at t = 100 (i) (B0 = 10) uy at t = 100

(j) (B0 = 1) uy at t = 250 (k) (B0 = 5) uy at t = 200 (l) (B0 = 10) uy at t = 220

Figure 6.11: Snapshots of the velocity component uy at various times for different
magnetic field strengths (B0 = 1, 5, 10) with ϕ = 30◦ and Λ = 60◦. These snapshots
illustrate the evolution through the various stages of the instability. They demon-
strate how the presence and strength of the magnetic field influence the structure
and dynamics over time. Notably, higher magnetic field strengths result in prolonged
linear phases and more significant fluctuations before reaching a quasi-stable state.
The snapshots highlight the transition from initial linear instabilities to turbulent
and layered regimes, emphasising the role of magnetic fields in altering jet formation
and orientation.
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(a) (B0 = 10) uy at t = 220

(b) (B0 = 10) KE spectra at t = 220

Figure 6.12: Figures illustrating, in the case B0 = 10 with ϕ = 30◦ and Λ = 60◦, (a)
the uy component of the velocity throughout our 3D box of dimensions Lx,y,z = 100
at t = 220 (b) the kinetic energy spectrum on the (kx, kz)-plane, which shows these
simulations to be well resolved. The two solid lines represent Ω̂⊥ and ∇ℓ within
which hydrodynamic GSF modes are unstable.
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sufficiently high for the simulations to be well resolved. Given that our ‘standard’

simulations are run in boxes of dimensions 1003, a mode must have a wavelength

of less than 100 to fit in the box, i.e. k ≤ 2π/100 ≈ 0.063. This means we expect

modes close to k = 0.063, would likely have their evolution strongly affected by the

scale of the box in some manner.

In Chapter 4, we saw that having a well-defined wave vector magnitude |k| meant

that, regardless of the dimensions of our box, the GSF instability had the same

typical scales in the nonlinear evolution and led to approximately the same angular

momentum transport rates. This is an important result highlighting the possibil-

ity for astrophysically relevant extrapolations to be made from these results. At

ϕ = −30◦, Fig. 5.10 shows that the linear effect of the magnetic field is to lower |k|,

thus increasing the wavelength of the instability. However, unlike in the adiabati-

cally unstable regime, the wavelength of the modes remained (largely) well-defined,

suggesting that as long as our box is large enough to capture the unstable modes,

there should be no significant dependence on box size, that is, as long as the wave-

length associated with that |k| fits in the box. This suggestion is from linear theory

but also appeared to hold in our hydrodynamic cases in Chapter 4, so we explore it

here for magnetised cases.

We have therefore performed simulations with B0 = 1 and B0 = 2.5 with ϕ =

−30◦, Λ = 60◦ (latitude 30◦) at Lx,y,z = 100, 200 and 300. This case is hydrodynam-

ically GSF-unstable and has a preferred wavenumber for the fastest growing linear

mode. We show the evolution of time-averaged quantities for these in Fig. 6.13.

This shows that the turbulent transport – both via Reynolds and Maxwell stresses

– and the kinetic and magnetic energies are insensitive to the dimensions of the box.

Indeed, there is a remarkable convergence in the averaged quantities in the turbulent

state towards the end of these simulations between all of these cases. This indicates

that the magnetically-modified GSF regime is also insensitive to the box size, hence

our simulations can more reliably be used to probe the astrophysical regime than if

this was not the case.
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Figure 6.13: Analysis of nonlinear dynamics for magnetic fields B0 = 1 and B0 = 2.5
with ϕ = −30◦ and Λ = 60◦, examining the dependencies on box dimensions Lx, Ly,
and Lz. Panels (a)–(c) show the evolution of the total stress, ⟨uxuy⟩ and ⟨−BxBy⟩,
indicating the magnetic field’s effects on angular momentum transport. Panels (d)
and (e) display the variations in kinetic and magnetic energy. Increased box sizes
reduce flow fluctuations, suggesting boundary conditions may influence stability.
Box size does not significantly affect dynamics, supporting possible extrapolation of
our model to larger astrophysical scales.
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The second cases we explore are a box size comparison for what is a hydrodynam-

ically unstable case ϕ = 60◦, Λ = −30◦, this time with the addition of a magnetic

field of strength B0 = 2.5. In both the hydrodynamic and magnetohydrodynamic

regimes the ϕ = 60◦, Λ = −30◦ case was found to be adiabatically unstable with

linear growth rates and wavevectors independent of B0. Throughout our simulations

in Chapter 4 (which included diffusion) the most unstable modes had a preference

for arbitrarily small length scales, resulting in wavelengths that tended to fill the

box regardless of its size. The increased wavelengths of the unstable modes and

zonal jets that were generated for larger box sizes led to a strong dependence on

box size, implying that these findings could not be extrapolated to the astrophys-

ical context reliably without additional information. Our results presented here in

Fig. 6.14 show that the addition of a magnetic field does not change this behaviour

and the turbulent properties continue to depend on Lx,y,z. It would be of interest

to investigate the B0 = 10 case, as we saw in Fig. 6.10 that the dynamics of the flow

was quite different in this case. However, such simulations are very computationally

expensive so have not been investigated here, and this topic is left for future studies.

Note Fig. 5.6 suggests that ϕ = 60◦, Λ = −30◦ will continue to have a dependence

on box size for any value of B0.
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Figure 6.14: Analysis of nonlinear dynamics for magnetic field strength B0 = 2.5
with ϕ = 60◦ and Λ = −30◦, examining the dependencies on box dimensions Lx, Ly,
and Lz. Panels (a)–(c) show the evolution of the total stress as well as ⟨uxuy⟩ and
⟨−BxBy⟩, indicating the magnetic field’s effects on angular momentum transport.
Panels (d) and (e) show the evolution of kinetic and magnetic energy. These results
suggest a strong dependence on box size, with larger boxes capturing longer wave-
length modes and potentially more stable jets.
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One noticeable feature of increasing the box size was the notable decrease in fluctu-

ations in the flow over Fig. 6.4, particularly in GSF-unstable cases. This suggests

that our boundary conditions may be responsible for some of these fluctuations but

we observe that the mean properties of the flow converge as we increase the box

size. Larger boxes allow larger wavelength parasitic modes to act on the zonal jets

and other large-scale flows. In addition, larger boxes contain more turbulent eddies,

so the averaging procedure will tend to smooth out some of the fluctuations seen in

smaller boxes.

6.4 Conclusions

This chapter has expanded on our hydrodynamic exploration of the nonlinear evo-

lution presented in Chapter 4 into the magnetohydrodynamic regime. We have

presented results obtained using the pseudo-spectral code Snoopy (discussed in

Chapter 4) to perform a number of nonlinear simulations of a stably-stratified,

differentially-rotating shear flow in the presence of a magnetic field, and in turn, de-

veloped a deeper understanding of the nonlinear evolution of the various instabilities

in such flows and their abilities at transporting angular momentum.

Following Chapter 4, we investigated four cases: three GSF (hydrodynamically)

unstable cases at the latitudes 0◦, 30◦, and 90◦, and one (hydrodynamically) adi-

abatically unstable case at latitude 30◦. Running these simulations has allowed us

to quantify the evolution of the various energetic and turbulent stress-related prop-

erties, as well as the associated angular momentum transporting properties of the

operating instabilities. To identify the visual properties of each of the operating in-

stabilities and to see the effect that imposing a magnetic field in the z-direction has

on the dynamics of the flow (particularly any modifications made to the orientation

of the zonal jets), we presented all of our time evolution plots in conjunction with

snapshots of the flow at carefully chosen points that highlight various key stages in

the flow’s evolution.
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Throughout our simulations, we observed that the lower linear growth rate gener-

ated by the addition of a magnetic field in many cases led to an extended linear

growth phase of the instability but ultimately did not impede the instability’s con-

sequent angular momentum transport properties. In fact, the highest field strengths

generally corresponded to the most energetic flows with the highest turbulent trans-

port levels. The magnetic field thus typically acts to enhance turbulent transport

in our system for the cases we have explored.

In cases where the instability was driven primarily the magnetic field, instead of the

fingers of AM observed in Chapter 4 we instead initially saw the occurrence of MRI

modes on larger scales similar to “channel flows”, which seemed more resilient to

parasitic instabilities and required much higher energies before becoming themselves

unstable.

The hydrodynamically adiabatic instability (with ϕ = 60◦, Λ = −30◦) seemed ini-

tially to be more resilient to the effects of the field, largely showing the field to not

strongly affect the mean transport properties until a field as large as B0 = 10 is con-

sidered. On the other hand, due to the instability preferring the smallest possible

|k| (predicted in Chapter 3 and Chapter 5), we saw in Fig. 6.14 that the instabilities

tend to increase their size to fill the box regardless of its dimensions. This leads to

transport properties that depend strongly upon (Lx, Ly, Lz), making it difficult to

extrapolate these hydrodynamically adiabatically unstable cases to an astrophysical

context.

A promising result is however that our simulations of the magnetically-modified

GSF instability for both B0 = 1 and B0 = 2.5 (one in either of the instability

regimes), the stress, energy, and transport properties remained consistent across

different box sizes suggesting a box of Lx,y,z = 100 is adequate to capture a realistic

representation of the both instabilities.

All B0 ̸= 0 cases we explored exhibit flows that act as dynamos with varying levels

of efficiency. The flows in all simulations significantly enhance the level of magnetic
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energy in the system over the initial imposed field. We have not explored dynamos

starting from a very small seed magnetic field, but that would be interesting in

future work. We have therefore found that instabilities of differential rotation in

stellar radiation zones can act as dynamos.
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Chapter 7

Conclusions

In this thesis we have systematically explored the physics of local

(magneto-)hydrodynamical instabilities operating in stably-stratified, differentially-

rotating regions of stars, with a particular emphasis on applications to the solar

tachocline. Such instabilities are thought to be crucial for developing accurate mod-

els of solar and stellar dynamos, transport of chemical elements, and the evolution

of solar and stellar rotation profiles. This research has built upon prior works, par-

ticularly Knobloch and Spruit (1982) and Barker et al. (2019, 2020), to develop a

more comprehensive understanding of the local stability and nonlinear dynamics in

these regions.

We described the local Cartesian box model introduced by Barker et al. (2019, 2020)

in Chapter 2, including our addition of the angle ϕ, which represents the angle be-

tween the local ‘effective’ gravity, eg, and the orientation of the shear. This addition

allowed us to study radial (ϕ = 0◦), latitudinal/horizontal (ϕ = ±90◦) and mixed

radial and latitudinal shears, which in combination with the uniform background ro-

tation, Ω̂, allowed us to study more general differential rotation profiles than studied

by Barker et al. (2019, 2020).

We also discussed how the local nature of the GSF instability (which requires length

scales small enough for thermal diffusion to become sufficiently efficient) allows us to
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adopt the Bousinessq approximation in Chapter 2.1. This simplifies the equations

such that the density needs only to be taken into account when it is combined with

gravitational terms. We also re-derived both the thermal wind equation (2.9), the

equation governing the angle between the surfaces of constant density and pressure in

the system, as well as the hydrodynamic cubic dispersion relation 2.27 describing the

growth of local axisymmetric instabilities, which is equivalent, albeit using slightly

different notation, to that presented in Knobloch and Spruit (1982).

Figure 7.1: A summary of the modal
structures of the various instabilities
in Fourier space at 30◦ latitude. The
top panel shows both the GSF in-
stabilities (primary lobes) along with
additional weakly unstable baroclinic
modes (secondary lobes) that operate
at ϕ = −30◦ and Λ = 60◦. The bot-
tom panel shows the adiabatic insta-
bility that occurs for ϕ = 60◦ and
Λ = −30◦. The key result is that
unlike for the adiabatic modes the
largest growth rates (darkest red) for
the GSF instability occur for well-
defined (kx, kz).

Chapters 3 & 4 present a detailed study

into the local hydrodynamic instabilities of

differentially-rotating stably-stratified flows

in stellar and planetary interiors. The

primary focus was on the GSF instabil-

ity, a double-diffusive axisymmetric insta-

bility in differentially-rotating flows that

requires thermal diffusion to relax the

stabilising effects of buoyancy to oper-

ate, but we also analysed the adia-

batic instability present when the Solberg-

Høiland stability criteria are violated,

which can be seen clearly in Fig. 7.1.

Chapter 3 revisited the linear stability

problem (building upon Knobloch, 1982;

Knobloch & Spruit, 1982; Barker et al.,

2019, 2020), discussed its properties in de-

tail and derived several new results. An in-

depth linear analysis of the most important

asymptotic regimes is also presented in Ap-

pendix A.2.3. In particular, we derived a

criterion Eq. 3.20 for the critical value of
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RiPr for onset of (diffusive) axisymmetric

instability, where Ri is the local gradient Richardson number and Pr is the Prandtl

number. We also solved the cubic linear dispersion relation numerically in the

(kx,kz) plane for axisymmetric modes and discovered lobes of oscillatory instability

previously predicted by Knobloch (1982) but previously never analysed in detail,

see Fig. 7.1. These were found to grow more weakly in stellar interiors than the

directly growing GSF modes however.

(a) Latitude Λ + ϕ = 30◦

(b) Latitude Λ + ϕ = 30◦

Figure 7.2: A figure illustrating the
linear growth rate of the fastest grow-
ing mode and its corresponding wave
vector magnitude across all possible
ϕ values for various instabilities and
limits at latitude 30◦.

We then solved for the linear growth

rates and wavevectors in both the diffusive

GSF and adiabatically-unstable regimes (see

Fig. 7.2). The GSF instability was found

to have broadly similar linear properties for

radial, horizontal and mixed radial/horizon-

tal shears, though there are important de-

pendencies on the local orientation of the

shear as a function of latitude for both the

growth rate and dominant wavevector. On

the other hand, we found the adiabatic in-

stability excited when the Solberg-Høiland

stability criteria are violated typically has a

larger growth rate than the diffusive GSF

instability. More importantly though, it

has a preferred orientation but no preferred

wavevector magnitude in our local model in

the absence of diffusion. With diffusion, we

find there is a preference for arbitrarily long

length-scales.

In Chapter 4 we used a modified version of

the pseudo-spectral code Snoopy, first in-
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Figure 7.3: A figure summarizing key results from our hydrodynamic nonlinear sim-
ulations. The panel on the left shows the strong dependence of angular momentum
transport in our system on the angle ϕ, illustrating how more general differential
rotation profiles can have enhanced transport properties. These increases typically
coincide with the formation and merging of layered structures, as shown in the panel
on the right, which displays the final quasi-stable steady state at the end of a sim-
ulation with parameters ϕ = 30◦, Λ = −30◦, S = 2, Pr = 10−2, and N2 = 10.
The merging of layers, particularly evident for the green line at t ≈ 70, leads to an
increase in transport.

troduced by Lesur and Longaretti (2005), to performed a suite of non-linear simu-

lations exploring how more general differential rotation profiles (than purely radial

ones) affected the evolution and transport properties of both types of instabilities.

Our simulations largely confirmed the linear predictions made in Chapter 3, and

identified two distinct regimes (as ϕ is varied) in the nonlinear evolution, corre-

sponding to the GSF-unstable and adiabatically-unstable regimes. GSF-unstable

cases typically exhibited the formation of strong zonal jets which often merged over

time to form stronger jets with enhanced transport properties, see Fig. 7.3. Such

jets had a preferred orientation at first consistent with the fastest-growing linear

modes, but later evolved depending on the parameters of the simulation. The mean

AM transport and turbulent kinetic energy in the GSF regime also demonstrated

convergence as the box size is increased. This is consistent with what might have

been predicted based on the linear modes possessing a preferred length-scale. This is

a key result meaning our local simulations of the GSF instability could potentially

be used to practically study the turbulent transport and its relevance for stellar
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interiors after suitable extrapolation to astrophysical parameter values.

The adiabatically-unstable cases, on the other hand, resulted in much more efficient

AM transport and energetically stronger flows, in some cases leading to sustained

AM transfer that is several orders of magnitude larger than the GSF-unstable cases.

However, consistent with the linear modes in this regime seeking the largest length-

scales, we found the AM transport continues to increase and does not converge as

our box size is increased. This suggests that turbulent transport in stars within the

adiabatically-unstable regime cannot be reliably studied using similar local Boussi-

nesq models with linear shear.

In the hydrodynamic regime we also conducted a linear analysis and nonlinear sim-

ulations probing the effect of the shear strength S, which suggested that instability

is more likely to occur in earlier stages in the life of a star where it rotates more

rapidly and potentially has stronger differential rotation. These stages in the life

of a star have much more efficient AM transport. However, this instability could

potentially operate (e.g. at mid-latitudes) in the solar tachocline, for example (e.g.

Barker et al., 2020). We also noted that this instability may operate on the equato-

rial atmospheric jets of hot Jupiters that advect heat from day-side to night-side (e.g.

Goodman, 2009; Li & Goodman, 2010; Barker et al., 2020). It would be difficult

or impossible to resolve in existing global simulations (e.g. Showman et al., 2009;

Mayne et al., 2017) but could potentially significantly modify their atmospheric

flows and should be studied further.

Chapter 5 presented an in-depth theoretical analysis of local triply-diffusive insta-

bilities of differential rotation in magnetised radiation zones of stars and planets,

by building upon the hydrodynamical studies of Barker et al. (2019, 2020) and

Dymott et al. (2023) and work done in Chapters 3 & 4. Here our focus was re-

garding the effects of a poloidal magnetic field on the properties of linear axisym-

metric instabilities of differential rotation, which are governed by a quintic disper-

sion relation first derived by Menou et al. (2004) and re-derived here. We have

performed a detailed analysis of the dispersion relation, firstly for non-diffusive
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instabilities, reproducing prior work on the stratified MRI (e.g. Balbus, 1995), be-

fore analysing diffusive instabilities in various limits analytically and numerically.
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Figure 7.4: A figure illustrating the
linear growth rate of the fastest grow-
ing mode and its corresponding wave
vector magnitude against ϕ values for
various magnetic field strengths at
latitude 30◦. Whilst the magnetic
field generally tended to dampen the
growth rate and decrease |k| in all
cases hydrodynamically unstable, it
destabilizes the special case of cylin-
drical differential rotation, which is
always stable at S = 2 in the hydro-
dynamic regime.

Previous adiabatic theories have predicted

that in the presence of strong stable strati-

fication, the fastest growing mode displace-

ments are along stratification (i.e. approx-

imately spherical) surfaces. However, we

have found that rapid thermal diffusion can

eliminate the stabilising effects of buoyancy

when Pr/Pm and Pr are sufficiently small,

a very appropriate assumption for stellar in-

teriors. In this limit double-diffusive MRI

can operate and alters the properties of the

unstable modes in a manner dependent on

the differential rotation. In addition we ob-

tained new analytical and numerical results

on the various instabilities in this triply-

diffusive system as a function of the dif-

ferential rotation profile and magnetic field

strength.

Our analytical and numerical results have

highlighted that even a weak magnetic field

can considerably modify the local instabili-

ties of differentially rotating flows (e.g. Bal-

bus & Hawley, 1998, and many prior works).

We also found that for differential rotation

profiles with (angle between effective grav-

ity and local angular velocity gradient) ϕ >

0, double-diffusive MRI may dominate over
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Figure 7.5: A figure showing how the nonlinear evolution of the angular momentum
transport S(⟨uxuy⟩ − ⟨BxBy⟩) and magnetic energy (ME), changes with magnetic
field strength (B0 = 0, 1, 2.5, 5, 10), at latitude 30◦.

the magnetic modification of hydrodynamic

GSF instabilities. However, when ϕ < 0, hydrodynamic GSF modes could still be

important even if their linear growth is weakened by magnetic tension for moderately

strong fields. We observed even weak fields to destabilise hydrodynamically stable

regions in parameter space, particularly for nearly cylindrical differential rotation

profiles, as seen for example in Fig. 7.4.

We have analysed in detail the properties of axisymmetric modes, including how the

growth rates and wavevectors depend on the strength of the magnetic field, mag-

netic Prandtl number Pm, and local differential rotation profile. We have analysed

in detail the energetics of the various instabilities in our system, first by deriving the

energy equation and then by evaluating the various source terms for linear axisym-

metric modes. These consist of Reynolds stresses, Maxwell stresses and baroclinic

driving terms. We found that the double-diffusive MRI was driven by Reynolds and

Maxwell stresses in approximately equal proportions (so-called Alfvénisation) for a

wide range of cases.

Finally, in Chapter 6, we presented simulations of the nonlinear evolution of the

stably-stratified, differentially-rotating system in the presence of a purely poloidal
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field as an initial condition. We focused on the same four Λ and ϕ values presented

in Chapter 4 in the hydrodynamical case, three GSF-unstable cases which cover the

latitudes 0◦, 30◦, and 90◦, and one hydrodynamically adiabatically-unstable case at

latitude 30◦.

In general, the reductions in the linear growth rate due to magnetic tension, as

discussed in Chapter 5, resulted in an extended linear growth phase for the GSF

instability at higher field strengths (see Fig. 7.5). The greatest variations both visu-

ally and in the dynamical properties occurred between cases in either magnetically-

modified hydrodynamic, or MRI-type regimes. The strength of the field governed

which instability operated, for hydrodynamically GSF-unstable cases it was either

a magnetically-modified GSF instability or the MRI that operated, whereas for the

adiabatic case it was either the modified adiabatic hydrodynamic instability or MRI.

Magnetically-modified GSF cases generally exhibited more modest dependence on

the field strength, with some increase in the transport properties coming from the

increases in the Maxwell stress (−⟨BxBy⟩) contribution, but largely this was com-

pensated by a similar decrease in Reynolds stresses (⟨uxuy⟩). On the other hand,

instabilities significantly modified by the magnetic field lead to far more turbulent

and energetic flows, generating both greater levels of transport and more extreme

fluctuations once the systems had nonlinearly saturated.

An important feature of our magnetic simulations is that all flows acted as dynamos,

in the sense that they significantly enhanced (and subsequently sustained) the level

of magnetic energy in the system see for example Fig. 7.5. It would be of interest in

future work to study cases with a very weak imposed field to analyse the kinematic

stages of the dynamo in more detail.

Our simulations with various box sizes have revealed that the effects of a magnetic

field on the wavevector properties, as observed in Chapter 5, extend into the non-

linear regime, similarly to our hydrodynamical results in Chapter 4. Specifically,

the magnetic field alters the wave vector magnitude |k|, influencing the wavelengths

of the most unstable modes and the resulting zonal jets. However, cases predicted
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by Fig. 5.10 to have a well-defined |k| maintain this characteristic for larger field

strengths. For ϕ = −30◦ and Λ = 60◦, our results show that as long as the sim-

ulation box is large enough to capture the unstable modes, there is no significant

dependence of transport properties or averaged quantities on box size.

At both B0 = 1 and B0 = 2.5, the stress, energy, and transport properties remain

consistent across different box sizes, suggesting a box of Lx,y,z = 100 is adequate to

capture a realistic representation of both instabilities. This is a promising result.

For our choice of hydrodynamically unstable parameters (ϕ = 60◦ and Λ = −30◦),

the presence of a B0 = 2.5 field was not strong enough to hinder the adiabatic

instability’s preference for larger length scales. The instability filled the box regard-

less of its size, suggesting that, unlike the hydrodynamically GSF-unstable cases in

Fig. 6.13, these simulations cannot be reliably extrapolated to astrophysical con-

texts.

7.1 Future Work

The study of local magnetohydrodynamic instabilities is a vast topic and their pos-

sible applications to astrophysics is no less so. Even without any major deviations

from our linear Boussinesq model, such as the inclusion of sound waves or density

variation through the anelastic approximation or nonlinear shear profiles (such as

tanh x), the possible avenues for further research are seemingly endless.

A good place to start would certainly include a thorough numerical investigation of

the linear problem in the context of parameters relevant to the solar tachocline.

A deeper understanding of the quasi-stable zonal jets formed in the nonlinear phases

of the GSF instability would be particularly desirable. A numerical linear stability

analysis of these jets, with a particular focus on parameter regimes relevant to

the tachocline could deepen our knowledge of their transportation and dynamo

generation properties.
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A more complete suite of nonlinear simulations, particularly in the magnetic case,

would also be very illuminating. This could include a broader and a more in-depth

analysis into the interaction of general differential rotation profiles with a poloidal

magnetic field at a wider range of latitudes. In particular cylindrical rotation profiles

have also been overlooked in this thesis, which given the strong effect of even weak

magnetic fields in these cases observed in Chapter 5 would be a promising region of

parameter space to explore further the stratified MRI. The addition of a magnetic

field, in many cases, significantly lowers the critical shear required for onset of

instability, so simulations with much lower shears, more applicable to the solar

tachocline, would be very interesting to find out if given sufficient time these too

formed strong zonal jets with enhanced momentum transporting properties.

More general mixed toroidal/poloidal field configurations would be difficult to study

analytically, as the background shear would stretch the magnetic field, making it

time-dependent or would require a non-axisymmetric (non-modal) analysis. How-

ever, varying the orientation of the magnetic field is straightforward in nonlinear

simulations using Snoopy. Since toroidal fields are expected to be most prevalent

in the tachocline, their effects on the evolution of the various instabilities discussed

here would be particularly interesting to study. It would also be valuable to explore

how changes in the field orientation affect the orientation of the zonal jets observed

in the later stages of our simulations and how this impacts the levels of angular

momentum transport.

A comprehensive nonlinear analysis could be conducted for a range of simulations

probing the effects of varying Lx,y,z for all of the possible instabilities in the system.

It would be particularly interesting to look at the effects of box size on the dynami-

cally unstable MRI, e.g. ϕ = 60◦, Λ = −30◦ for B0 = 10, as the transport properties

here were the highest observed in our simulations presented in Chapter 6.

Whilst direct nonlinear simulations in more realistic parameter regimes (such as Pr

or Ri) are currently too computationally expensive, we might imagine that the rapid

progress on cutting-edge machine learning techniques may soon offer an opportunity
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to probe these regimes using our simulation data at more accessible parameters.

Investigating the role of compositional gradients on both the linear (Knobloch &

Spruit, 1983) and nonlinear properties of this problem is another promising direc-

tion. Chemical gradients are known to significantly influence the stability and evolu-

tion of fluid flows in stellar interiors, potentially affecting the mixing and transport

properties within these regions. Understanding these effects could provide insights

into the chemical evolution and overall dynamics of stars.

Finally, our local simulations are a good approach for understanding the physics

of these instabilities, conducting global simulations specifically tailored to studying

these instabilities would help bridge the gap between our local models and global

stellar dynamics. This approach could lead to a more accurate incorporation of the

effects of these instabilities into stellar evolution models, enhancing our understand-

ing of their role in stellar and planetary interiors.
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Appendix A

Asymptotic analysis of

hydrodynamic model

A.1 Asymptotic limits of interest

Stellar interiors are subject to extreme conditions and correspond to interesting

parameter regimes for this problem. For example, Gough (2007) calculates in the

tachocline ν = 2.7 × 101cm2s−1, κ = 1.4 × 107cm2s−1 so that Pr = 2 × 10−6 along

with a buoyancy frequency of N = 8 × 10−4s−1. The rotation rate is approximately

Ω = 2.7 × 10−6s−1 corresponding to a mean solar rotation period of 27 days, hence

the ratio of Ω/N = 3.4 × 10−3.

Asymptotics exploit the largeness or smallness of some parameters to simplify the

problem and can also be a method for focusing on particularly dominant properties

of the system, such as fast rotation or strong stratification, and to understand what

happens in these limits. From a computational perspective, studying simplified

systems can enable otherwise intractable simulations to be performed by omitting

inessential dynamics (e.g. sound waves in the Boussinesq approximation).
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A.2 Instability in the asymptotic limit of small Prandtl

number

Given that Pr = 2 × 10−6 in stellar interiors the first obvious limit to explore is

Pr ≪ 1.

Expanding our dispersion relation Eq. 2.27, it follows

s3 + s2(2νk2 + κk2) + s(a + b + ν2k4 + 2νκk4) + ν2κk6 + aκk2 + bνk2 = 0. (A.1)

Considering the orders of the terms in A.1, when Pr ≪ 1 (implying ν ≪ κ) we have

(for S ∼ Ω)

a ∼ O(Ω2), b ∼ O(Ω2/Pr), s ∼ O(Ω), k2 ∼ O(Ω/ν). (A.2)

Since νk2 is small compared to κk2 it can thus be neglected, reducing Eq. A.1 to

s3 + s2κk2 + (a + b + 2νκk4)s + ν2κk6 + aκk2 + bνk2 = 0. (A.3)

We have s3 = O(Ω3) and s2κk2 = O(Ω3κ/ν), therefore since κ ≫ ν this second

term is much larger than the first, so we may ignore the s3 term. Similarly as = Ω3

but bs = O(Ω3κ/ν), which is much larger, so we may also neglect as by comparison

with bs. This means that we can reduce Eq. A.3 to

s2κk2 + 2sνκk4 + ν2κk6 + bs + aκk2 + bνk2 = 0, (A.4)

where all terms in Eq. A.4 are O(Ω3κ/ν). Note both Ri and R are O(1/Pr) in this

scaling, and since Pr is small, Ri and R are large and Ri Pr (and R Pr) are assumed

to be O(1). We express

a = 2Ω|∇ℓ|
ϖ

sin(Λ − θk) sin(γ − θk), b = N 2 sin2(θk + ϕ), (A.5)
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by defining the wavevector as k = k(cos θk, 0, − sin θk) = (kx, 0, kz). In order to

maximise s over all possible wavenumbers kx and kz, we first maximise over all

magnitudes k2, and then over all possible orientations θk. Note a and b only de-

pend on θk and not on the magnitude k, so ∂a/∂k2 and ∂b/∂k2 are both zero.

Differentiating Eq. A.4 with respect to k2 and setting ∂s/∂k2 = 0, it follows that

κs2 + 4sνκk2 + 3ν2κk4 + aκ + bν = 0. (A.6)

Multiplying by k2 and subtracting Eq. A.4 from this equation (to eliminate the s2

term), gives

2sνκk4 + 2ν2κk6 − bs = 0. (A.7)

The difference between the non-zero ϕ case investigated here and the case analysed

in BJT2 is that our expression for b is more general. If we define

λ = κνk4

b
, (A.8)

we obtain

s = 2νk2λ

1 − 2λ
. (A.9)

To get positive s, i.e. growing modes, we require 0 < λ < 1/2 in Eq. A.9. Now we

eliminate s and k4 from Eq. A.4 and divide by κk2 to get

s2 + 2sνk2 + ν2k4 + bs

κk2 + a + bPr = 0. (A.10)

Eliminating s through the use of Eq. A.9 we get

4ν2k4λ2

(1 − 2λ)2 + 4ν2k4λ

(1 − 2λ) + ν2k4 + 2νk2λb

(1 − 2λ)κk2 + a + bPr = 0. (A.11)

Now we use Eq. A.8 to eliminate k4 and multiply through by (1 − 2λ)2 to get

(1 − 2λ)2a = (λ − 1)Prb. (A.12)
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We now have the two key equations,A.9 which gives s in terms of λ, and A.12,

which relates λ to a and b. Maximising s over θk requires us to differentiate A.9

with respect to θk and set ∂s/∂θk = 0 to obtain the maximum growth rate. First

we eliminate k between A.8 and A.9 to get

(1 − 2λ)s = 2Pr1/2λ3/2b1/2. (A.13)

Now we differentiate A.13 and A.12 partially with respect to θk. Since we require

s to be a maximum, we set ∂s/∂θk = 0. These two equations allow us to eliminate

∂λ/∂θk, giving an equation between ∂a/θk and ∂b/θk. Since we have both a and

b in terms of θk in A.5, this is the equation that determines the critical value of

θk that corresponds to ∂s/∂θk = 0, i.e. the maximum growth rate. Differentiating

A.13 with respect to θk and then multiplying by 2λ(1 − 2λ) gives

(2λ − 3)b ∂λ

∂θk
= λ(1 − 2λ) ∂b

∂θk
. (A.14)

Differentiating A.12 with respect to θk and then multiplying by (1−2λ)(λ−1) gives

(1 − 2λ)(λ − 1)
a

∂a

∂θk
= (2λ − 3) ∂λ

∂θk
+ (1 − 2λ)(λ − 1)

b

∂b

∂θk
. (A.15)

Now A.14 can be used to eliminate (2λ−3)∂λ/∂θk and A.12 can be used to eliminate

a/b, to obtain

(2λ − 1) ∂a

∂θk
= Pr ∂b

∂θk
. (A.16)

Differentiating our expressions for a and b in A.5 and substituting them into A.16,

we obtain

(1 − 2λ)2Ω|∇ℓ|
ϖ

sin(Λ + γ − 2θk) = PrN 2 sin 2(θk + ϕ), (A.17)

or using the definition of R,

(1 − 2λ) sin(Λ + γ − 2θk) = RPr sin 2(θk + ϕ). (A.18)
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If the parameters RPr, Λ, γ and ϕ are given, A.12 is

(1 − 2λ)2 sin(Λ − θk) sin(γ − θk) = (λ − 1)RPr sin2(θk + ϕ). (A.19)

A.18 and A.19 form a pair of simultaneous equations for λ and θk which can be

solved numerically (see Figs. 3.3 and 3.4). Note that once θk is found, b can be

found from A.5, then A.8 determines k4 from λ, such that knowing λ determines

the magnitude of the critical k for maximum growth rate, and θk gives the direction

of the vector k. Once θk is found, a and b can be constructed, and so s, the maximum

growth rate, can be found from A.9.

A.2.1 RiPr= O(1) as Pr→ 0 (λ → 0)

The limit λ → 1/2 (in which RiPr→ 0 as Pr→ 0) is not affected by ϕ because only

a, and not b (see 3.21), matters in this limit, and a is independent of ϕ. However in

the limit λ → 0 (in which RiPr= O(1) as Pr→ 0), ϕ does matter, and A.12 becomes

a + Prb = 0, (A.20)

and A.18 becomes

sin(Λ + γ − 2θk) = RPr sin 2(θk + ϕ). (A.21)

Putting in the expressions A.5 for a and b into A.20, which are valid in the Pr → 0

limit, it follows that

sin(Λ − θk) sin(γ − θk) + RPr sin2(θk + ϕ) = 0. (A.22)

Eliminating RPr between A.21 and A.22 we obtain an equation for the optimum θk.

To do this, we let

θ̃k = θk + ϕ, Λ̃ = Λ + ϕ, γ̃ = γ + ϕ. (A.23)
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Then A.21 and A.22 become

sin(Λ̃ + γ̃ − 2θ̃k) = RPr sin 2θ̃k (A.24)

and

sin(Λ̃ − θ̃k) sin(γ̃ − θ̃k) + RPr sin2 θ̃k = 0. (A.25)

We expand the sines in A.25 and divide by sin2 θ̃k, giving

sin Λ̃ sin γ̃ cot2 θ̃k − sin(Λ̃ + γ̃) cot θ̃k + cos Λ̃ cos γ̃ = −RPr. (A.26)

Expanding A.24 using

sin(Λ̃ + γ̃ − 2θ̃k) = sin(Λ̃ + γ̃) cos 2θ̃k − cos(Λ̃ + γ̃) sin 2θ̃k (A.27)

and dividing by sin 2θ̃k we obtain

sin(Λ̃ + γ̃)cos2 θ̃k − sin2 θ̃k

sin 2θ̃k

− cos(Λ̃ + γ̃) = RPr, (A.28)

or noting that sin 2θ̃k = 2 sin θ̃k cos θ̃k

1
2 sin(Λ̃ + γ̃) cot θ̃k − 1

2 sin(Λ̃ + γ̃) tan θ̃k − cos Λ̃ cos γ̃ + sin Λ̃ sin γ̃ = RPr. (A.29)

Adding A.26 and A.29 in order to eliminate R Pr along with some helpful cancella-

tions,

sin Λ̃ sin γ̃ cot2 θ̃k − 1
2 sin(Λ̃ + γ̃) cot θ̃k

− 1
2 sin(Λ̃ + γ̃) tan θ̃k + sin Λ̃ sin γ̃ = 0, (A.30)

which can be written as

sin Λ̃ sin γ̃(cot2 θ̃k + 1) − 1
2 sin(Λ̃ + γ̃)(cot2 θ̃k + 1)

cot θ̃k

= 0. (A.31)

202



Here a factor cot2 θ̃k +1, which must be nonzero, cancels out, and expanding sin(Λ̃+

γ̃) gives

cot θ̃k = 1
2(cot γ̃ + cot Λ̃), (A.32)

which may be rewritten as

cot (θk + ϕ) = 1
2[cot (γ + ϕ) + cot (Λ + ϕ)], (A.33)

in the original variables. In the λ → 0 limit, this simple equation gives θk, the angle

of k for the fastest growing mode.

A.2.2 Shellular ϕ = 0 case

This case corresponds to a shelluar differential rotation profile as seen in Barker

et al. (2020). If we take Λ as positive, ∇ℓ has z-component −2ϖΩ sin Λ, so γ must

also be positive. Similarly if Λ is negative, γ is also negative. Hence whatever the

sign of Λ, in the ϕ = 0 case there is always just one root θk of A.33 and it lies

between Λ and γ. The wedge of instability between Λ and γ is the range of angles

for θk where a is negative. At large N 2, which means large R and Ri, b is large and

positive (from O(Ω2/Pr) where Pr is small). Inside the wedge, a is negative, but it

has smaller magnitude than b, only O(Ω2). This means that a + b is positive, which

corresponds to being adiabatically stable, but a + bPr can be negative, implying

GSF/diffusive instability. Diffusion at low Pr reduces the stabilising effects of the

b term, allowing the shear instability corresponding to a to overcome it, leading to

the GSF instability.

There also exists a smaller wedge in which b is negative for 0 < θk < Γ, since

b = N 2 sin θk sin(Γ + θk). However, for large R and small Pr the thermal wind

equation implies Γ is small, only O(Ω2/N 2), so although b is negative it has a very

small magnitude, which will normally be wiped out by a in this tiny wedge of b

instability. It may be possible for the angles Λ and γ to be very small also, so that

both a and b are both very small, and negative b might be bigger than positive a,
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but this unusual limit has yet not been explored.

A.2.3 The non-shellular ϕ ̸= 0 case

Since ϕ is unrestricted, we have more possibilities than in the shellular case with

ϕ = 0. If Λ + ϕ and γ + ϕ both have the same sign, and both lie between 0 and

π, then the previous argument for the shellular case still holds, and θk + ϕ lies in

the wedge between Λ + ϕ and γ + ϕ, meaning θk lies between Λ and γ, i.e. in the

unstable wedge of negative a. Example: for Λ = 30◦, γ = 60◦, ϕ = 15◦ the solution

of A.33 is θk = 42.626◦, in the required wedge giving negative a, positive b and

positive s, so it’s a local maximum of s. This case is very similar to the shellular

case, and we complete the analysis of this case below in subsection A.2.3.

However, we could ask, what happens if the vector eg lies between Ω⊥ and ∇ℓ? If Λ

and γ are both positive, this would mean ϕ is negative, and Λ < −ϕ < γ. Now Λ+ϕ

is negative and γ + ϕ is positive. This means that cot x is no longer continuous as x

increases from Λ+ϕ to γ +ϕ because it goes to infinity at x = 0. Example: Λ = 30◦,

γ = 60◦, ϕ = −45◦. Looking at A.33, cot(θk + ϕ) = 0.5(cot 15◦ − cot 15◦) = 0, so

θk +ϕ = 90◦, so θk = 135◦ which is not in the unstable wedge. We have a solution for

A.33 here, but it has both a and b positive, so from A.25 RPr is negative. This is not

what we want physically in the radiation zone, because we want the stratification to

be stable, with R > 0 as it is in the tachocline. If eg lies between Ω⊥ and ∇ℓ, then

there is a value of θk = −ϕ which lies in the unstable wedge and has b zero. If b is

zero, our original scaling breaks down, because b is no longer O(Ω2/Pr). For these

modes, with k lined up with gravity, and a negative, the fastest growing modes will

be small k2 adiabatic modes with σ =
√

−a, i.e. on the fast rotational timescale.

ϕ ̸= 0 case when eg lies outside the wedge between Ω⊥ and ∇ℓ

This is the case where A.33 gives a physically satisfactory maximum growth rate

with k in the unstable wedge. Expanding the expression for A.5a using sine and

cosine rules for sums, and using A.32, the condition for s to be a local maximum,

204



we may obtain, after some simplifications,

a = −Ω|∇ℓ|
2ϖ

sin2 θ̃k
sin2(γ̃ − Λ̃)
sin Λ̃ sin γ̃

. (A.34)

Now we have an expression for R/Ri in order to express b in terms of Ri rather than

R. To do this we use the definition of ∇ℓ, to deduce

2Ωϖ

|∇ℓ|
= sin γ

sin Λ ,
ϖS
|∇ℓ|

= cos Λ sin γ

sin Λ − cos γ. (A.35)

Now R = N 2ϖ/2Ω|∇ℓ| and Ri = N 2/S2 by definition, hence R/Ri = S2ϖ/2Ω|∇ℓ|.

So the square of A.35b divided by A.35a gives

R
Ri =

(cos Λ sin γ

sin Λ − cos γ

)2 sin Λ
sin γ

= sin2(γ − Λ)
sin γ sin Λ . (A.36)

Now from A.5b

b = N 2 sin2 θ̃k = R2Ω|∇ℓ|
ϖ

sin2 θ̃k = Ri2Ω|∇ℓ|
ϖ

sin2 θ̃k
sin2(γ − Λ)
sin γ sin Λ . (A.37)

Now in the λ → 0 limit, A.20 tells us that a = −Prb. Putting together our expres-

sions for a and b,

Prb = RiPr2Ω|∇ℓ|
ϖ

sin2 θ̃k
sin2(γ − Λ)
sin γ sin Λ

= −a = Ω|∇ℓ|
2ϖ

sin2 θ̃k
sin2(γ̃ − Λ̃)
sin Λ̃ sin γ̃

. (A.38)

Looking at these expressions, sin2(γ − Λ) = sin2(γ̃ − Λ̃), so these terms cancel. We

thus end up with

RiPr = sin γ sin Λ
4 sin(γ + ϕ) sin(Λ + ϕ) , (A.39)

which is different from the shellular ϕ = 0 case where the limit λ → 0 corresponded

to the simpler RiPr = 1/4.

If Λ and γ are both positive (they must have the same sign) and ϕ is positive,
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then the limit is RiPr < 1/4. This is stabilising, because it means that Ri has to

be smaller for instability, and since Ri = N 2/S2 this means the shear S has to

be larger for instability. Example: Λ = 30◦, γ = 60◦, ϕ = 30◦ gives the limit as

RiPr = 1/8, so the range of instability is reduced from 0 < RiPr < 0.25 down to

0 < RiPr < 0.125 confirming positive ϕ is stabilising if γ and Λ are positive.

However, if ϕ is negative when γ and Λ are positive, ϕ is destabilising. Example:

Λ = 30◦, γ = 60◦, ϕ = −15◦, then the upper limit of RiPr is increased to 0.5915 so

a smaller shear S will still be unstable.

If ϕ is negative and |ϕ| approaches the smaller of Λ or γ then sin(Λ+ϕ) or sin(γ +ϕ)

will become small so that A.39 will diverge to infinity. This is correct, because as ϕ

approaches the wedge of instability, we expect the system to become adiabatically

unstable, i.e. unstable whatever Ri is. If eg is inside the wedge, fluid motion

perpendicular to gravity cannot be stabilised by the stratification, and since it is

inside the wedge it is driven by the shear, so it is very unstable.

The non-shellular case close to λ = 0

Now suppose that λ is small but not quite zero (i.e. the limit RiPr = O(1) as

Pr → 0), so that squares and higher powers of λ can be neglected. Then A.12 gives

λ = a + Prb
3a

. (A.40)

Now a + Prb is small and negative, but not quite zero. If we put in the expressions

A.34 for a and A.38 for b, A.40 becomes

λ = 1
3

(
1 − 4RiPrsin γ̃ sin Λ̃

sin γ sin Λ

)
= κνk4

b
, (A.41)

so

k4 = N 2 sin2 θ̃k

3

(
1 − 4RiPrsin γ̃ sin Λ̃

sin γ sin Λ

)
. (A.42)
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This means that if RiPr is just a little less than the limiting value given by A.39

there is an unstable solution with a long wavelength, because k is small from A.42,

and the growth rate is also small from A.9, giving

s = 2
√

PrN sin θ̃k√
3

(
1 − 4RiPrsin γ̃ sin Λ̃

sin γ sin Λ

)1/2

. (A.43)

This result has been confirmed numerically, and describes the slow growth which

occurs when the strength of the differential rotation is only just above the minimum

value required for instability.
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Appendix B

Nonlinear simulation results
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S ϕ Λ ⟨uxuy⟩ ⟨uxuz⟩ ⟨uyuz⟩
√

⟨u2
x⟩

√
⟨u2

y⟩
√

⟨u2
z⟩

Latitude = 0◦

2 −90◦ 90◦ 2883.0 ± 490.5 −13.4 ± 69.9 92.9 ± 147.4 34.1 ± 260.7 32.2 ± 89.3 27.2 ± 260.7
2 −60◦ 60◦ 510.0 ± 41.5 73.1 ± 9.3 195.4 ± 20.8 15.1 ± 0.6 31.6 ± 1.3 13.0 ± 0.6
2 −30◦ 30◦ 135.8 ± 16.8 37.7 ± 5.7 112.0 ± 14.0 7.8 ± 0.4 15.2 ± 0.9 7.7 ± 0.4
2 0◦ 0◦ NA NA NA NA NA NA
2 30◦ −30◦ 138.8 ± 20.6 −38.9 ± 7.0 −115.6 ± 17.2 7.9 ± 0.5 15.4 ± 1.1 8.0 ± 0.5
2 60◦ −60◦ 134.8 ± 16.5 −36.9 ± 5.6 −111.8 ± 14.0 7.8 ± 0.4 15.1 ± 0.8 8.0 ± 0.4
2 90◦ −90◦ 2838.2 ± 578.9 14.9 ± 76.8 −128.3 ± 130.6 34.6 ± 4.0 88.3 ± 7.0 28.1 ± 3.8

Latitude = 30◦

2 −90◦ 120◦ 25.7 ± 8.3 −1.6 ± 1.1 −20.7 ± 8.0 2.9 ± 0.6 13.8 ± 2.3 3.2 ± 0.7
2 −60◦ 90◦ 25.9 ± 7.1 −2.7 ± 0.5 −7.5 ± 2.1 3.3 ± 0.3 8.1 ± 2.7 3.5 ± 0.3
2 −30◦ 60◦ 24.1 ± 1.6 −1.8 ± 0.2 0.7 ± 0.6 3.2 ± 0.1 7.9 ± 0.3 3.3 ± 0.1
2 0◦ 30◦ 11.3 ± 1.5 −1.1 ± 0.4 5.2 ± 1.2 2.4 ± 0.2 8.1 ± 1.5 2.6 ± 0.2
2 30◦ 0◦ 0 0 0 NA NA NA
2 60◦ −30◦ 958.5 ± 509.5 −334.2 ± 216.2 −516.6 ± 311.6 28.4 ± 6.3 29.9 ± 6.6 23.8 ± 5.1
2 90◦ −60◦ 9219.3 ± 4186.1 −633.0 ± 529.9 −499.5 ± 483.9 83.8 ± 15.4 86.7 ± 16.7 53.1 ± 11.2

Latitude = 90◦

2 −90◦ 180◦ 0 0 0 NA NA NA
2 −60◦ 150◦ 3.5 ± 0.8 −0.9 ± 0.2 −9.5 ± 2.1 0.5 ± 0.1 4.6 ± 0.3 1.2 ± 0.1
2 −30◦ 120◦ 17.5 ± 2.1 −5.4 ± 0.3 −22.9 ± 2.2 2.2 ± 0.2 7.1 ± 0.5 3.2 ± 0.2
2 0◦ 90◦ 37.0 ± 2.0 −20.7 ± 1.0 −25.6 ± 1.7 4.5 ± 0.1 6.6 ± 0.1 5.1 ± 0.1
2 30◦ 60◦ 162.8 ± 22.5 −113.4 ± 11.6 −77.3 ± 12.2 10.6 ± 0.5 11.1 ± 0.7 8.0 ± 0.5
2 60◦ 30◦ 138.4 ± 19.8 −110.8 ± 25.1 −31.5 ± 10.9 15.7 ± 1.3 8.2 ± 0.5 8.4 ± 0.6
2 90◦ 0◦ 0 0 0 NA NA NA

Variations in shear (GSF instability at S = 2 in Fig. 4.7 panels (a) and (b))
1 −30◦ 60◦ 15.5 ± 1.3 1.0 ± 0.1 2.9 ± 0.3 2.2 ± 0.1 5.7 ± 0.5 1.2 ± 0.1

1.5 −30◦ 60◦ 17.8 ± 1.5 −0.7 ± 0.2 1.0 ± 0.3 2.6 ± 0.1 4.7 ± 0.2 2.1 ± 0.1
2 −30◦ 60◦ 24.1 ± 1.4 −1.8 ± 0.2 0.8 ± 0.6 3.2 ± 0.1 7.8 ± 0.3 3.3 ± 0.1

2.5 −30◦ 60◦ 29.5 ± 2.1 −3.7 ± 0.4 −0.1 ± 1.0 4.0 ± 0.1 11.0 ± 1.2 4.2 ± 0.1
Variations in shear (adiabatic instability at S = 2 in Fig. 4.7 panels (c) and (d))

1 90◦ −60◦ 161.0 ± 69.6 −64.2 ± 71.3 −18.6 ± 24.8 24.5 ± 7.6 11.1 ± 3.3 12.6 ± 6.1
1.5 90◦ −30◦ 646.7 ± 306.2 −790.2 ± 531.5 −365.7 ± 313.6 76.2 ± 14.9 65.9 ± 12.7 42.9 ± 10.0
2 90◦ −60◦ 916.8 ± 459.9 −639.1 ± 563.4 −493.2 ± 481.9 83.5 ± 17.1 86.3 ± 18.4 52.9 ± 12.5

2.5 90◦ 30◦ 1082.4 ± 758.1 −567.9 ± 768.2 −580.3 ± 842.6 88.0 ± 24.9 99.8 ± 29.9 61.0 ± 19.6

Table B.1: Table of hydrodynamic simulation parameters and nonlinear outcomes.
All simulations have Pr = 10−2, N2 = 10 and Lx,y,z = 100. Time-averages are based
on the entire simulation after the initial linear growth phase. Simulation parameters
not listed in this table are given in § 4. Our simulation units are determined by
setting Ω = d = 1.

210



References

Acheson, D. J., & Gibbons, M. P. (1978). On the instability of toroidal magnetic

fields and differential rotation in stars. Philosophical Transactions of the

Royal Society of London Series A, 289 (1363), 459–500. https://doi.org/10.

1098/rsta.1978.0066

Aerts, C., Mathis, S., & Rogers, T. M. (2019). Angular momentum transport in

stellar interiors. Annual Review of Astronomy & Astrophysics, 57, 35–78.

Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150 (3805),

405–406.

Astoul, A., & Barker, A. J. (2023). Tidally excited inertial waves in stars and planets:

Exploring the frequency-dependent and averaged dissipation with nonlinear

simulations. The Astrophysical Journal Letters, 955 (1), L23.

Astoul, A., Park, J., Mathis, S., Baruteau, C., & Gallet, F. (2021). The complex

interplay between tidal inertial waves and zonal flows in differentially ro-

tating stellar and planetary convective regions-i. free waves. Astronomy &

Astrophysics, 647, A144.

Balbus, S. A. (1995). General local stability criteria for stratified, weakly magnetized

rotating systems. The Astrophysical Journal, 453, 380.

Balbus, S. A. (2009). A simple model for solar isorotational contours. Monthly No-

tices of the Royal Astronomical Society, 395 (4), 2056–2064.

211

https://doi.org/10.1098/rsta.1978.0066
https://doi.org/10.1098/rsta.1978.0066


Balbus, S. A., Bonart, J., Latter, H. N., & Weiss, N. O. (2009). Differential rota-

tion and convection in the sun. Monthly Notices of the Royal Astronomical

Society, 400 (1), 176–182.

Balbus, S. A., & Hawley, J. F. (1991). A powerful local shear instability in weakly

magnetized disks. I. Linear Analysis. The Astrophysical Journal, 376, 214.

Balbus, S. A., & Hawley, J. F. (1994). The stability of differentially rotating, weakly

magnetized stellar radiative zones. Monthly Notices of the Royal Astronom-

ical Society, 266 (4), 769–774.

Balbus, S. A., & Hawley, J. F. (1998). Instability, turbulence, and enhanced trans-

port in accretion disks. Reviews of Modern Physics, 70 (1), 1–53.

Van Ballegooijen, A. A., & Martens, P. (1989). Formation and eruption of solar

prominences. The Astrophysical Journal, 343, 971–984.

Barker, A. J., & Latter, H. N. (2015). On the vertical-shear instability in astro-

physical discs. Monthly Notices of the Royal Astronomical Society, 450 (1),

21–37.

Barker, A. J., Jones, C. A., & Tobias, S. M. (2019). Angular momentum transport

by the gsf instability: Non-linear simulations at the equator. Monthly Notices

of the Royal Astronomical Society, 487 (2), 1777–1794.

Barker, A. J., Jones, C. A., & Tobias, S. M. (2020). Angular momentum transport,

layering, and zonal jet formation by the gsf instability: Non-linear simu-

lations at a general latitude. Monthly Notices of the Royal Astronomical

Society, 495 (1), 1468–1490.

Barker, A. J., & Ogilvie, G. I. (2010). On internal wave breaking and tidal dissi-

pation near the centre of a solar-type star. Monthly Notices of the Royal

Astronomical Society, 404 (4), 1849–1868.

212



Barker, A. J., & Ogilvie, G. I. (2011). Stability analysis of a tidally excited internal

gravity wave near the centre of a solar-type star. Monthly Notices of the

Royal Astronomical Society, 417 (1), 745–761.

BBC. (2022). Sunspots [Accessed: 2024-02-04]. https://www.skyatnightmagazine.

com/advice/skills/how-observe-track-sunspots/
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