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Abstract 

Structural Health and Usage Monitoring has gained considerable interest throughout the 

engineering technologies. Especially for the aircraft industry, where damage can lead to 

catastrophic and expensive failures, and the vehicles involved undergo regular cost intensive 
inspections, a Health and Usage Monitoring System (HUMS) has one of the highest payoffs. 
Furthermore, HUMS allow new design principles for the realisation of lightweight aircraft 
structures. Different approaches towards a HUMS can be found in the literature. A system 
based on load monitoring and damage detection could provide highest potential for 
implementation in future aircrafts. 

This thesis investigates the use of multifunctional fibre Bragg grating (FBG) sensors for 

structural health and usage monitoring. It is shown, how FBG sensors can be used 

simultaneously for both, a strain sensing based load monitoring system and a Lamb wave 
based damage detection system. Several fundamental areas are addressed analytically and 

experimentally. 

This work adds new approaches towards the implementation of large area FBG sensor 

networks using fibre optical rosettes and temperature compensated strain sensors. A 

miniaturised build-up technique for a FBG temperature sensor is demonstrated which allows 
multiplexing of several strain and temperature sensors within a single fibre network. The use of 
a backing patch for FBG sensors is studied numerically and experimentally. 

In this thesis, surface mounted and structural integrated FBG sensors are used to detect Lamb 

waves. The theoretical approach that leads to the development of an appropriate ultrasonic 
interrogation system for FBG sensors is introduced. Numerical simulations on the influence of 
the grating dimensions on its ability to detect ultrasonic strain fields and their experimental 
validation are presented. 

Three different tasks of damage identification based on Lamb waves are considered: detection 

of damage, localisation of damage and severity of damage. Experimental results on all three 

tasks show that FBG sensors can compete with existing technologies. As part of the 

experimental work, a reliable, temperature independent damage index is introduced and a novel 
detection scheme using fibre grating rosettes and Genetic Algorithms for the localisation of 

damage is developed. The results of a simple fatigue test experiment on which the same FBG 

sensors were used to measure the load parameters and the crack size agree very well with the 

results using standard technologies. 
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1 INTRODUCTION 

1.1 STRUCTURAL HEALTH AND USAGE MONITORING 

Structural health and usage monitoring has become a respected and established discipline in 

engineering. Health and Usage Monitoring Systems (HUMS) deal with the development of 

autonomous systems for continuous monitoring, inspection, and damage detection of structures 

with minimum labour involvement. The ultimate goal of Structural Health Monitoring (SHM) is to 

increase reliability, improve safety, enable light weight design and reduce maintenance costs for 

all kind of structures. An overview of the subject can be found in [1-3]. A selection of conference 

papers on the subject is given in [4-7]. 

1.1.1 TERMINOLOGY 

Health and Usage Monitoring is a highly interdisciplinary field of work. This does not only 
include the different fields of engineering this can be applied to, covering the whole area of civil 

Sensors 

Data 
Analysis 

Signal 
Processing 

Materials 

Electronics 

Figure 1.1: Disciplines involved in Structural Health Monitoring. 
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engineering, power systems, aeronautics, automotive and possibly many more, but also the 

variety of disciplines being involved, depending on the field of SHM which is focussed on. 

Among the disciplines that are involved in SHM are sensors, electronics, materials, signal 

processing, and data analysis as illustrated in Figure 1.1. Many of the advances in all of these 

disciplines can contribute to the progress in SHM. The work presented here focuses on the 

development of novel sensors and advancement in the analysis of their data with a special 

emphasis on aeronautic applications. 

It is generally acknowledged that two complementary approaches can be followed to attain the 

objectives of Health and Usage Monitoring [8-12]. The first approach is the implementation of an 
integrated system that provides damage predictive capabilities, e. g. by continuously monitoring 
the usage of the structure. The second approach requires the ability to detect unpredicted 
damage. SHM is the process of damage identification (detection, location, classification and 

severity of damage) and prognosis. Identification of damage falls into two camps, either damage 

can be detected as it occurs (passive sensing), or it can be accessed through periodical 
interrogations of the structure (active sensing). The different approaches towards an SHM 

system are depicted in Figure 1.2. 

Structural Health Monitoring 

Damage Prediction Damage Detection 

Passive Sensing Active Sensing 

Figure 1.2: Different options for a Structural Health Monitoring system. 

Damage prediction through continuous monitoring of the load history of a structure can be used 
for damage prediction. It is based on the recording of structure relevant parameters and is 

performed by either monitoring strain or flight parameter sequences which are then used to 

derive a load sequence for the aircraft part under consideration. An understanding of the fatigue 

properties of the structure is required for interpretation of the data in terms of life time 

consumption and maximum permitted loads. From these data, the occurrence of overloads may 

be identified and a resulting catastrophic damage to the structure avoided, by warning the 
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operator of any exceedances in time. From the actual load spectrum recorded the fatigue life of 
the structure can be assessed in more detail than from an estimated load spectrum. However, 

the predicted fatigue life still depends on a variety of assumptions. The algorithms describing 

the load transfer information from the sensor signals and for the prediction of the remaining 
fatigue life are therefore part of a load monitoring system. 

In contrast to the damage prediction methods, the goal of damage detection system is either to 

detect damage as it occurs or to detect damage at regular inspection intervals. The detection of 

damage as it stands today is mainly related to the sensing of impacts with composites and 

monitoring of crack growth in metallic structures. It is the aim of a damage detection system to 

determine if damage has occurred and where it is located. Impact detection or Acoustic 

Emission are passive sensing techniques as only sensors can measure these events. Sensor 

measurements are constantly taken in real time while the structure is in service. The energy of 

the impact event or the acoustic emission is enough to trigger the sensors and to record the 

impact signature. In order not to miss damage that occurs during maintenance, direct analysis 

of such signatures requires the sensors to be permanently active, even when the structure is 

out of use since dropping of a tool may even cause damage when the structure is out of 

operation. By contrast, active sensing systems only need to be activated on demand at regular 

or event driven inspection intervals. External mechanical or non-mechanical loads are implied to 

the structure and the response from the structure depends on the structural condition, which is 

the basic principle of Non-Destructive Testing and Evaluation (NDT/E). It is the aim of structural 

maintenance to detect damage before its size exceeds the design limits by means of NDT/E. 

The basic idea of a smart in-service damage monitoring system is to let non-destructive 

evaluation techniques become an integrated part of the structure. From the various NDT/E 

techniques being used today only a few can be considered to be technically sufficiently mature 

for being used in a structure integrated monitoring system. The technique considered within the 

scope of this work for a damage detection SHM system is based on guided ultrasonic waves. 

Although this is not an established NDT/E procedure it shows significant potential for future 

health monitoring systems. Lamb wave inspection is the most widely used damage detection 

technique based on guided ultrasonic waves [13]. The technique is based on Lamb waves 

propagating in plate-like structures [14,15]. Lamb wave inspection requires two probes, one of 

which is used to introduce ultrasonic stress waves into the structure and the other to pick up 

these stress waves at another position. The use of Lamb waves for ultrasonic inspection has 

become very attractive especially for large structures. Lamb waves can be excited at one point 

of a structure and can be propagated over considerable distances. Hence, a relatively large 

area of the structure can be interrogated between actuator and sensor. The Lamb wave method 

involves the analysis of the transmitted and/or reflected wave. The presence of damage is 
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identified when the detected ultrasonic signal deviates from the reference signal of the 

undamaged structure, see Figure 1.3. 

Actuator 

Monitored Specimen 

Figure 1.3: Structural damage detection based on Lamb waves. 

Sensor 

It is obvious that a complementary use of damage prediction and damage detection offers 

increased reliability and accuracy. Each approach could profit from the additional information 

gained from the other method. For example the result of the predicted fatigue life gained from 

continuous loads monitoring can vary compared to the real fatigue life. Therefore, damage 

identification can help to identify whether a possible overload has caused damage to the 

structure or not. On the other hand, damage inspection could be triggered by a load monitoring 

system. Today inspection intervals are based on flight hours, independent of flight conditions. 

From the information gained from loads monitoring resulting in fatigue damage accumulated or 

impacts occurred, an event driven inspection schedule could be derived. 

The present research project focuses on the development of a Health and Usage Monitoring 

System that is capable of monitoring both operational loads as well as damage. The basic idea 

is to use only one multifunctional sensor which is sensitive to strain as a meaure of the 

operational loads and ultrasound as a measure of Lamb waves. The main advantage of such a 

system is obvious: a dramatic reduction of costs related to sensor installation and sensor 

interrogation compared to a system that uses different sensors for each measurement. Not only 

will the overall number of sensors required be reduced, but also only one interrogation unit will 

be necessary to obtain the relevant data. In addition, the combination of information from both 

systems can increase the overall reliability of the damage prognosis by an appropriate data 

fusion algorithm. Therefore, a single sensor that is capable of sensing the relevant data for the 

loads and the damage monitoring system may be advantageous. It is obvious that such a 

multifunctional sensor has to fulfil the highest demands on reliability, accuracy and lifetime. The 

failure of a single sensor would bring with it the loss of data for a number of systems, which in 

the worst case could mean the breakdown of the whole SHM system. Within this thesis the fibre 

optic Bragg grating (FBG) is proposed as the sensor with the highest potential to meet all the 
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necessary requirements. This type of sensor has been shown to exhibit excellent performance 
as a strain sensor and has become known as the fibre optic analogue of the electrical 

resistance strain gauge [16-18]. This makes the sensor ideally suited for condition monitoring 
deployment. 

Within this work the use of FBG sensors for ultrasonic sensing is studied and the different and 

sometimes opposing requirements for condition monitoring on one hand and ultrasonic 
detection on the other are considered. 

1.1.2 BENEFITS 

The major benefits of a SHM system for aeronautic and possibly many other applications can 
be divided into design and maintenance benefits (11,19-21]. SHM systems may lead to 

significant weight reductions as advanced damage tolerant design criteria for the structure can 
be implemented or to reduced maintenance costs due to real-time monitoring and reporting, 

minimum human involvement, and automation of inspection. 

In aeronautics two major different philosophies for structural design co-exist. Safe-life is 

designed to achieve the required life time without any visible crack initiating. After its defined life 

has expired the structure is taken out of service, irrespective of whether a crack has been 

identified or not. To guarantee the safe life in any case, often a large margin of safety is 

acknowledged during the design of the structure. However, this may contradict to the 

requirements of economy or performance. On the other hand the fail-safe or damage-tolerant 

concept allows cracks in a structure, provided there is enough remaining undamaged structure 
that could takeover the loads once carried by the now damaged part. This concept inherently 

requires an inspection scheme to monitor the crack propagation. Should the crack reach a 

critical dimension which has to be detected during inspection and appropriate measures, repair 

or replacement have to take place. Today most parts of civil aircraft are designed according to 

the damage tolerant concept, which allows lighter weight of the structure. 

The inspection scheme that is required for the damage-tolerant concept can be significantly 
influenced by a SHM system. Inspection in this context means the work related to structural 
inspections carried out when the aircraft is grounded at regular intervals. One of the major 

parameters determining the inspection interval is the operational stress in the structure. Figure 

1.4 shows the inspection interval as a function of the operational stress for a structural element 
in case of conventional monitoring (CM) and for a structure equipped with an SHM system. For 

a certain stress level v$tr�c, u� different inspection intervals are required for a SHM and a CM 

structure. Due to the permanent monitoring of an SHM system and the permanent knowledge of 
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structural conditions, the inspection interval for which the aircraft has to be grounded can be 

significantly increased, which as a consequence cuts down the maintenance costs. 

ISHM SHM 

icM 
----------- CM 

Structure 6operational 

Figure 1.4: Maintenance benefits from an SHM system [19]. 

In addition to the increased inspection intervals, an SHM system can contribute to reducing the 

labour work necessary for inspection, therefore reducing the ground time and minimising human 

error, due to automated and autonomous systems being deployed. Furthermore, an integrated 

SHM system, with sensors permanently installed on the components of interest, reduces the 

efforts related to dismantling the structure for inspection, again reducing maintenance time and 

costs. However, it is seen that the new inspection intervals have to be fitted into the scheduled 

maintenance program which is still required and depends mainly on the requirements for 

corrosion inspections and systems. In addition, if anomalies are detected by the SHM system, 

traditional NDT/E methods for detailed inspection to verify the damage at locations predicted by 

the SHM system, can be applied. Ground based NDT/E methods usually have more power for 

the identification of damage. 

In the case of regular inspection intervals the aircraft operator can profit from the design 

benefits. This is illustrated in Figure 1.5. A constant inspection interval suitable for the operator 

is assumed. It can be seen that the allowed operational stresses for SHM structures are 

significantly increased compared to CM structures. Increased allowable operational stresses 

can lead to a reduction of the structural weight in all aircrafts which are designed according to 

the damage-tolerant principle. This is because an increase in allowable stresses at constant 

loads is achieved through reduction of structural cross-sections and thus leading to a reduction 

in weight. The overall cost saving for the aircraft is significantly higher than only due to the 

weight saving in the monitored areas. For example lighter structures could also lead to 

considerable reductions of production costs as less material is needed, which would improve 

the efficiency of both, the manufacturers and the operators. 
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Figure 1.5: Design benefits from an SHM system [19]. 

1.2 FIBRE BRAGG GRATINGS FOR STRUCTURAL MONITORING 

The sensor that is considered within the scope of this work for implementation of an SHM 

system is the fibre Bragg grating sensor (FBGS) [16-18]. FBGS are very attractive for SHM 

systems as they provide excellent potential for multiplexing and multifunctional sensing 

networks to obtain simultaneously data on stress/strain, temperature, pressure or ultrasonic 

waves. Therefore, FBGS could help to implement an integrated SHM system which is applicable 

to all phases of the entire life cycle. In addition to the applications mentioned before in section 1 

which are related to the in-service phase, the sensors could also be used during the 

manufacturing phase, qualification phase and for recovery of the structure [22,23]. This new life 

cycle monitoring strategy is based on a feedback loop through the entire life cycle of the 

structure, where SHM provides the necessary additional knowledge about specific design 

performances, material quality, structural condition and reusability diagnosis respectively. The 

respective process is illustrated schematically in Figure 1.6. 

Life Cycle Monitoring 

00 00 

Design Manufacturing 0 In-Service 
0 Recovery 

Figure 1.6: Integrated SHM strategy for life cycle monitoring of structures. 



1.2 Fibre Bragg Gratings for Structural Monitoring 8 

SHM should be implemented as an integrated process throughout all phases of the structural 
life cycle. Therefore, the most important is to incorporate SHM into the airframe design through 

the system engineering requirements. The "design-in" SHM instead of the "add-on" SHM system 
is the key to SHM implementation and effectiveness [23]. As has been shown in the previous 

section, significant improvements towards the design of light weight structures can be achieved 
if SHM is considered [19]. 

The monitoring of structural conditions using SHM may start as soon as the manufacturing 
process of the structure begins. SHM can offer a major contribution to quality control of 

manufacturing, as it takes over the inspection of materials and structures for manufacturing 
defects. Especially for manufacturing composite materials, a real-time sensing technique based 

on FBGS can help to monitor and control the resin flow and curing process and as a 

consequence guarantee a constant and assessed quality [23-29]. At the final stage of the 

manufacturing stage, testing and qualification of the structure takes place. For both ground and 
flight testing major benefits can be expected when FBGS instead of conventional electrical 

strain gauges are deployed [30-32]. 

Clearly, the major contribution of SHM relates to the monitoring of the structural conditions and 

the identification of damage during the in-service phase. The advantages of such an approach 

have been discussed in Section 1. FBGS have been shown to be capable for monitoring the 

loads during in-flight service on-line [33-35]. A damage detection scheme using FBGS has been 

suggested that makes use of local changes in the strain field due to the presence of damage 

[36-38]. However, this approach will only work, if the sensors are located close to the possible 

failure, for example for bonded repairs [39,40]. Another approach towards damage detection 

uses the changes in the spectral properties of the FBGS due to a non-uniform strain field, that 

indicates the presence of damage [41-43]. Again this is a very localised method and not suitable 
for monitoring large areas. A new approach is followed within the scope of this thesis, using 

FBGS for sensing ultrasonic Lamb waves and identifying damage by evaluation of the Lamb 

wave signals. 

The final phase of the structural life cycle is the decision whether the component has to be 

destroyed, to be recycled eventually as a raw material in a different life cycle, or can be 

refurbished to be reused in a new service phase. SHM can supply the necessary data from the 

design, manufacturing and service phases to feed an expert decision system on the further use 

of the structure. 

Within this thesis the use of FBGS for test and qualification, for operational loads monitoring 

and for Lamb wave based damage detection will be discussed. 
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1.3 OBJECTIVES 

The overall goal of this thesis is to investigate the use of fibre Bragg grating sensors (FBGS) for 

a structural Health and Usage Monitoring System, where FBGS can be used simultaneously for 

both, strain sensing (load monitoring) and a Lamb wave sensing (damage detection). In order to 

achieve that goal a number of objectives have been set. These are: 

" to review the state-of-the-art in Structural Health and Usage Monitoring; 

" to design a FBG sensor arrangement for a multiplexed strain and temperature network; 

" to investigate the use of backing patches for FBG sensors using numerical methods; 

" to confirm the numerical results experimentally; 

" to develop a FBG sensor capable to sense strain and ultrasound (Lamb waves); 

" to model the interaction between the FBG sensor and the ultrasonic strain field; 

" to validate the model by appropriate experimental work; 

" to test the FBG ultrasonic sensor under various conditions and for various structures; 

" to apply the ultrasonic sensor for damage detection and location; 

" to use recent developments in signal processing for damage identification; 

" to validate the load and damage based methodology using a fully controlled fatigue test. 

1.4 SCOPE OF THE WORK 

The order of the chapters approximately follows the chronological order in which the work was 

carried out. 

Chapter 2 reviews the basic principles of fibre Bragg grating sensors, where special attention is 

on the reliability of the sensors for industrial applications. The advantages of draw-tower 

fabricated sensors are highlighted, and the importance of appropriate coating is discussed. 

In chapter 3 the focus is on the Bragg grating as a sensor for structural strains. The necessity of 

advanced strain measurement methods for structural engineering, particularly in the aerospace 
industry, is discussed. The advantages of Bragg gratings compared to other conventional 

methods such as electrical strain gauges are emphasised. The chapter presents a novel, 

technique to build-up strain-isolated FBGS for accurate temperature measurements. These 
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temperature sensors could be used for temperature compensation of other FBG strain sensors. 
The unique advantages of the technique presented are the small size and the multiplexing 

capabilities. This allows the formation of sensor networks with temperature compensated Bragg 

grating rosettes. One issue of particular interest when using Bragg grating rosettes is the use of 

a backing material to prearrange the sensors and to simplify the installation. A finite element 

model is used to study the influence of the backing material on the sensor function. The chapter 

also presents results of experimental work that validate the results from the FE modelling. 

In Chapter 4 an overview of current NDT/E technologies is given and their potential for future 

HUM systems is discussed. The basic principles of Lamb waves are reviewed and conventional 
techniques for Lamb wave sensing are presented. Special focus is on the use of optical 
techniques for the generation and detection of ultrasound 

Chapter 5 describes the analytical and experimental work carried out to develop a FBG 

ultrasonic sensor system, which is capable of detecting ultrasonic Lamb waves for the 

identification of damage. In addition to the established technologies, the use of FBGS for 

receiving Lamb waves is suggested. The sensor function is derived and an appropriate 
interrogation system is described. The chapter goes on to present the results of initial tests on 
the detection of Lamb waves. A numerical simulation of the sensor function follows, which 

reveals the influence of the grating length on the sensor function for different acoustical 

wavelengths. The chapter closes with the experimental results on Lamb wave detection in a 

composite plate using structural embedded FBGS. It is the first time, surface mounted and 

structural integrated FBGS have been used to detect Lamb waves. 

In order to use FBGS for damage identification, the relevant signal processing tools for the 

analysis of the Lamb wave signals are presented in Chapter 6. The chapter discusses various 

aspects of signal processing, such as signal conditioning and feature extraction. The latter 

becomes important when the information from the Lamb wave signals has to be translated into 

a diagnosis of location and severity of damage. The basic concepts of Genetic Algorithms are 

reviewed, as they play an important role in the location of damage as presented in chapter 6. 

Chapter 7 presents the results of the damage identification experiments. This chapter starts with 

a description of the experimental set-up. The different aspects of damage identification - 
detection of damage, localisation of damage, and severity of damage - are addressed in the 

corresponding sections. For the localisation of damage a novel method that uses a Genetic 

Algorithm to analyse the response of two fibre Bragg grating rosettes is presented. A method to 

predict the severity of damage independently of the temperature of the structure is developed in 

the final section. The experimental results are also discussed there. 

In Chapter 8 the layout of a demonstrator is described, on which the dual use of FBGS for load 

monitoring and damage detection is shown. The idea is to conduct a fatigue test, where the 
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FBGS are used to obtain the load parameters and the crack length. Based on this knowledge a 

prediction of the remaining lifetime of the structure is possible. The chapter begins with an 
introduction to the fatigue of materials, in order to provide the necessary terminology. Next, the 

experimental set-up is described. The results of two fatigue tests are presented, and the 

performance of FBGS and conventional sensors are compared. 

Finally in Chapter 9, the main conclusion from chapters 2 to 8 are summarised and 

recommendations for future work are presented. 



2 FIBRE OPTIC BRAGG GRATING SENSOR 

Fibre optic sensors have been studied extensively in the literature. There exist several books 

that give a comprehensive overview of the subject [44-46]. Almost every book introduces fibre 

optic Bragg grating sensors (FBGS), indeed there are two textbooks that are dedicated to fibre 
Bragg gratings (FBG) (16,17]. Recent developments can also be found in relevant journal 

publications [47-49]. Despite the emerging interest in the use of FBG for sensing applications, 
only a few publications deal with the requirements of the grating, the fibre, and the coating that 

come along with the demands of the potential user, see for example (50]. The intention of this 

chapter is to introduce the terminology, briefly review the current state-of-art and make some 

amendments with own results related to draw tower gratings. 

2.1 INTRODUCTION 

The realisation of optical fibres for the transmission of light in the 1960s has revolutionised 
telecommunication. Data transmission over several kilometres without additional amplifiers has 

become feasible using low attenuation of optical signals in silica fibres [51,52]. Fibre-based 

communication still offers highest data rates. The development of high performance equipment 
for the telecommunication market also had a high impact on the fibre optic sensor business [53]. 
Significant improvements on the technical performance have come along with a price reduction 
due to the mass production for the huge telecommunication market. Today, in the beginning of 
the 218t century fibre optic sensors have gained access to the market and started their way to 

replace conventional electrical or mechanical sensors [54]. 

Fibre optical sensors offer several advantages compared to their conventional electronic and 

electrical counterparts. With their intrinsic nature they are suitable for the deployment under 
harsh environmental conditions, e. g. in areas with high electro-magnetic fields, high voltage, 
increased exposure to radiation and in explosive or chemically aggressive environments. The 

flexibility and the ease of miniaturisation allows the unobtrusive installation of distributed sensor 

networks with several hundreds of sensor locations. Of most interest is the capability of 

structural integration of the fibre optic sensors into composite materials or concrete [24,55-68]. 
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Especially in the aerospace industry where fibre-reinforced plastics (FRP) have started to 

replace metallic structures this leads to advantages over conventional sensors not suited for 

structural integration [28,32,69-75]. 

Light propagates through the optical fibre because of total reflection of the guided light inside 

the fibre core. Total reflection occurs at interfaces where the refractive index of the outer 

material is smaller than the one of the inner material and the angel of incidence is less than the 

critival angle. The propagation of the light is characterised by the appearance of modes. The 

characteristics of the modes can be described using Maxwell's equations [76-78]. The most 

common layout of the fibres for high performance sensor applications is the single mode fibre. 

For this type of fibre only the fundamental mode can propagate. The geometry and the index 

profile of a step index single mode fibre are shown in Figure 2.1. 

a) b) ýr 
ncoat 

n 

score > ncad > ncoat 

Figure 2.1: Single mode fibre: a) Geometry; b) refractive index profile. 

a) typical values: diameter of fibre core dcore =4- 10 pm 

diameter of fibre cladding dced = 125 pm 
diameter of fibre coating dCOat = 150 - 250 pm 

b) typical values: index of fibre core n, o, g = 1.46 - 1.48 

index of fibre cladding nC1ed = 1.44 - 1.45 

index of fibre coating nCOef =<1.44 

The most common approach to give a mathematical description of light is that of an 

electromagnetic wave. For a monochromatic plane wave travelling along the z-direction, 

presented by its electric field Eem, the following expression can be derived from Maxwell's 

equations [76]: 

Eem(x, Y, Z, t) Aem(x, 
, 
V)expi(k, 

mz-o)t+11(t)) 
(2.1) 
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Here Awn is the amplitude of the wave which can vary in space, ker, = 22r, is the free-space 

wave number, w is the angular frequency, A is the free-space wavelength and fi(t) is a time- 

depending phase shift. For light travelling in a medium other than vacuum the free-space 

propagation constant will be replaced by the general propagation constant /3 = nk, where n is 

the index of refraction of the material. In general there exist two independent waves even in a 

single mode fibre that differ in their state of polarisation (SOP), i. e. they have different 

propagation characteristics. Any effect that alters either the phase, amplitude, frequency or 

state of polarisation of the wave can be measured if an appropriate interrogation system, i. e. a 

system that is sensitive to a change in one of these properties, is available. For any of the 

above mentioned effects numerous interrogation systems exist. Depending on the property of 
light affected, the sensors can be classified into [54]: 

" Intensiometric sensors, based on changes in attenuation 

" Polarimetric sensors, based on changes in the state of polarisation 

" Interferometric sensors, based on phase variations 

" Spectrometric sensors, based on frequency variations 

One common implementation of an intensiometric sensor is the optical time domain 

reflectometry (OTDR). The OTDR allows the location of regions with a change in the local 

backscatter coefficient due to environmental effects such as fibre fracture, temperature change, 

etc. Intensiometric sensors suffer from relatively low spatial resolution and low sensitivity [44, 

54]. 

Polarimetric sensors require control of the SOP for the whole fibre optic system. Although high 

resolutions can be achieved, these sensors suffer from the complexity of polarisation control. 
Examples of polarimetric sensors can be found in [79-86]. 

A large and important class of high-performance fibre optic sensors today is based on the 

interferometric principle. In an interferometer there exist two or more optical paths through which 

a propagating wave can travel. At some point these two paths combine again and any relative 

change in phase between the two waves travelling along the two paths is translated into a 

change of intensity, provided that the two waves are coherent. The interferometer works best if 

both waves have the same optical power and same SOP. In that case the fringe contrast is 

maximum, for orthogonal SOP there is no interferemce at all. Interferometers appear in different 

lay-outs, for example as a Michelson, a Mach-Zehnder, or a fibre optic Fabry-Perot 

interferometer. Especially the Fabry-Perot sensor offers high sensitivity and high spatial 

resolution due to its short sensing region. Due to its popularity several examples of 

Interferometric sensors can be found in the literature. Relevant publications can be found in (27, 

87-98]. 



2.2 General Description 15 

The category of spectrometric sensors can be divided into two sub-categories. The first includes 

sensors based on Raman and Brillouin backscatter. Both are non-linear effects that produce 

additional components besides the central wavelength in the reflected spectrum, called the 

Stokes and Anti-Stokes radiation. Combined with OTDR these effects have been used for 

determining the temperature and strain profile along an optical fibre. Such systems however 

suffer from only modest spatial resolution and sensitivity [44,54]. The second sub-category of 

spectrometric sensors comprises fibre optic Bragg grating sensors, which will be described in 

detail in the next section. 

2.2 GENERAL DESCRIPTION 

Figure 2.2 shows a photograph of a fibre optic Bragg grating beside a match to demonstrate the 

size of the device. The grating extends itself only over the black marked region of the fibre. 

Figure 2.2: Photograph of a fibre Bragg grating and a match. 

A FBG is a permanent, periodic perturbation of the refractive index which is laterally exposed 

into the core of a photosensitive optical fibre, extending over a limited length of the fibre. The 

grating is characterised by its period, amplitude, and length, usually 1-20 mm. The structure is 

called a Bragg grating, because it has a similar effect on light travelling along the fibre as has 

the crystal lattice of a solid on incoming X-rays, which was discovered by W. H. and W. L. Bragg 

[99]. The Bragg grating acts as a filter for light travelling along the fibre line. It has the property 

of reflecting light in a predetermined range of wavelength centred around a peak wavelength 

value. Figure 2.3 shows the transmission and reflection characteristics of a FBG. In this case 

light of a broadband light source, e. g. a light emitting diode (LED) or super luminescent LED 

(SLED), is coupled into a single mode optical fibre. 
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Figure 2.3: Illustration of the effect of a Bragg grating on the transmission and reflection of 
light travelling along a single mode optical fibre. 

Due to the presence of the Bragg grating, a narrow part of the whole spectrum is reflected, 

whereas this part is missing in the transmitted spectrum. The FBG acts as a filter for the 

electromagnetic wave. For conventional Bragg gratings the main effect is the coupling between 

the forward and backward propagating core modes [100]. This will be investigated in more detail 

in Section 2.3. 

The wavelength for which the contributions of the reflected light from each grating plane add 

constructively in the backward direction is called the Bragg wavelength AB. Let A be the grating 

period and n� the mean effective refractive index in the grating region then the Bragg 

wavelength can be calculated as the product of these values, see Section 2.3. External forces 

such as strain, pressure or a temperature change lead to changes in the grating period and in 

the effective refractive index. Consequently, the wavelength of the light reflected from the 

grating varies. By measuring the actual reflected wavelength an efficient interrogation system 

for the external forces can be obtained. The layout of the interrogation system will always be 

adapted to the actual requirements in terms of interrogation frequency, accuracy and other 

boundary conditions such as geometrical size, weight and last but not least costs. Therefore, 

interrogation systems will be discussed in the corresponding Sections. 
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2.3 THEORY OF BRAGG GRATINGS IN OPTICAL FIBRES 

In order to describe the optical characteristics of an FBG, Maxwell's equations for a wave 

propagating in an optical fibre have to be solved. It is useful to assume weak guidance of the 

waves, which simplifies the wave-propagation equations and the appropriate boundary 

conditions. As stated before the solutions provide the basic field distributions of the bound and 

radiation modes of the waveguide. In the absence of any perturbation these modes propagate 

without any coupling into each other. However, coupling of specific modes can occur if any 

perturbations obstruct the propagation. The most common technique to deal with this 

phenomenon is coupled-mode theory. The basic idea of the coupled-mode theory is to let the 
field of the perturbed wave be the superposition of the unperturbed waves. It provides a set of 
differential equations for the change in the amplitude of the fields along the fibre, which have 

analytical solutions for uniform perturbations [16,17,100]. 

A typical refractive index modulation is shown in Figure 2.4. For a simple grating the modulation 
has constant amplitude and strength. In case of a chirped grating the period varies over the 

grating length, an apodised grating varies in the amplitude of the index modulation over the 

grating length. Figure 2.4 defines the ac part of the index modulation An,, and the dc part dndc. 

n 

A 

Figure 2.4: Refractive index modulation in the core of a fibre. 

2.3.1 ANALYTICAL SOLUTION 

In case of a periodic perturbation of the refractive index caused by the presence of an FBG, 

couple-mode theory allows the calculation of the spectral grating characteristics. Several papers 
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and textbooks have discussed these calculations in detail [16,17,101). It is sufficient for this 

work to give the resulting power reflection coefficient R and transmission coefficient T, which 

allow the calculation of the reflection and/or transmission spectrum. 

4. 
Sjflh2(Ya "L) 

R=2 YB 
a22 

(2.2) 
cosh (YB "L)+ 2 "sink (y8 - L) 

YB 

1 
2 

cosh2 (y,, 
" L) + a2 

" sinh2 (yB 
" L) (2.3) 

YB 

where Y's =Z -a2 (2.4) 

L is the length of the Bragg grating, XAc is the AC coupling coefficient and aoc is the DC 

coupling coefficient. The coefficients are given as 

xAc _'I "r" nnac (2.5) 

aDC =s+ "r"And, (2.6) 

S=2; r - neff - (2.7) 
D 

The following definitions have been used to introduce the above equations: 
r is the confinement factor, which gives the ratio of the power guided in the core to the total 

power of the fundamental mode; S is the detuning factor and ý. o is the design wavelength for an 
infinitesimally weak index of refraction change grating; neff is the effective refractive core index 

and ?. is the variable of the wavelength. 

The maximum reflectivity Rma of the grating follows from the differentiation of (2.2): 

Rtnax = tanh2 (z 
" L) (2.8) 

The maximum occurs when the DC coupling coefficient aDc becomes zero, as then all reflected 

waves are phase matched. Using Equations (2.6) and (2.7) the exact expression of the Bragg 

wavelength As can be derived as 
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Al, 
-o=AD" 

I+r"end` =2"nef"A" I+F 
An`i` 

=2"nen'A (2.9) 
nefr nß: 8 

In contrast to Equation (A. 2) an additional term, the modification of the index by the DC part of 

the UV induced modulation, appears. As And, « neff and F< 1, this additional term is often 

neglected, and the mean effective index n eff is replaced by the effective index n, ff. 

Figure 2.5 shows calculated reflection and transmission spectra as a function of wavelength of a 

uniform Bragg grating. The maximum reflectivity Rmax and the full-width-half maximum FWHM 

are also shown. The following parameters have been chosen to calculate the spectra of Figure 

2.5: Inas = dndc = 7*10-5, F= 0.65, AD = 1530 nm, ne f=1,445 and L= 10 mm. Using (2.8) the 

maximum reflectivity can be calculated RMax = 53,6 %. 
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Figure 2.5: Typical reflection and transmission spectra of a Bragg grating as a function of 

wavelength. 

2.3.2 NUMERICAL METHODS 

Throughout this work uniform gratings have been used. Uniform gratings work very well for 

sensor applications, where a small grating spectrum is needed. They are easier to fabricate 

than special chirped, apodized or phase-shifted gratings. Yet, as will be explained in more detail 
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in section 2.5, a sensor grating may be subjected to non-uniform strain or temperature profiles. 
As a consequence the index modulation of the grating will be altered and behave like a chirped 

grating. For analysing the spectral response of the sensor gratings to arbitrary strain and 

temperature profiles non-uniform gratings have to be considered. In the case of a non-uniform 

grating a numerical solution has to be found for the equations of the coupled-mode theory. 

Many different techniques differing in their degree of complexity for simulating fibre Bragg 

gratings exist. The simplest method is the straightforward numerical integration of the coupled- 

mode equations. The transfer matrix method offers a fast and accurate way for calculating the 

spectral response of a non-uniform grating. In this approach the coupled mode equations are 

used to calculate the output fields of a short section of the grating for which the parameters are 

assumed to be constant [102,103]. Transfer matrixes are popular in Electronic Engineering 

where they are used to calculate the characteristics of a four-port device. Knowing the input 

fields, the transfer matrix then gives the output fields, which themselves are used as the input 

fields of the next section. The transfer matrix method is among the most popular methods for 

calculating Bragg gratings [103-106]. A different approach is that of Rouard, who has developed 

a technique for analysing metal waveguides. This technique, today known as Rouard's method, 
has successfully been used to simulate fibre Bragg gratings [107-110]. It works on the principle 

that the waveguide may be segmented into sub-wavelength thin films. The fields of the 

transmitted and reflected waves are calculated at each interface, stepping through the whole 
length of the grating. 

2.3.3 SIMULATION SOFTWARE 

A commercial software has been used to calculate the spectral characteristics of the gratings 
and to simulate the sensor response. The "Fiber Optical Grating Simulation for Bragg Grating 
FOGS - BG" by Apollo Photonics Inc. has been chosen. Fiber Optical Grating Simulator for 
Bragg Grating (FOGS-BG) is a powerful and user-friendly computer-aided simulation and 
optimisation tool for design and analysis of optical fibre devices based on Bragg grating [111]. 
The software has the feature of parameter scanning which enables the user to optimize the 

grating performance by varying a parameter in a defined range. This is important when the 
influence of any parameter on the FBG response has to be studied. Especially for the study of 
the influence of ultrasonic acoustical waves on the grating response, this feature has been of 

particular importance. 
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Figure 2.6: FOGS-Software: Window showing the calculated grating spectrum. 

The software calculates the spectrum of the grating using the transfer matrix approach (see 

Section 2.3.2). For simple gratings the results of the software can be compared with the 

analytical solution. Figure 2.6 shows the graphical result of the software calculation for a simple 

grating. It is very close to what can be calculated analytically. The error in the peak wavelength 
is within 1.1 % and can be neglected. 

2.4 APPLICATIONS IN TELECOMMUNICATION 

Fibre Bragg gratings have found many applications in telecommunication. For the sake of 

completeness the most common applications are listed in this brief overview of fibre Bragg 

gratings. As shown in Section 2.3, FBGs offer unique filtering properties. Combined with their 

versatility as in-fibre devices they offer enhanced performance for wavelength-stabilised lasers, 

fibre lasers and fibre amplifiers. Their filter characteristics are used to form important devices for 

modern WDM (Wavelength Division Multiplex) networks, e. g. multiplexers and demultiplexers 

and add/drop multiplexers. Another property of the FBG not mentioned before is their dispersion 

characteristic. Each wavelength has a different delay time when being reflected at the grating. 
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Especially in chirped gratings, longer wavelengths travel farther within the grating than shorter 
wavelengths therefore, they have bigger delay times. Knowing that one of the main problems 
occurring in single-mode optical fibres is chromatic dispersion, causing different wavelength 
components of a data pulse to travel at different group velocities, gratings have been made to 

act as an in-fibre dispersion compensator. 

2.5 FIBRE BRAGG GRATING SENSORS 

The section discusses the sensor functions of the FBG sensor. The material presented is based 

on [112,113]. In order to give a coherent account of the mathematical description of the sensor 
response, Equation (2.9) can be rewritten as: 

AB = 2.11eff-l1 (2.10) 

In fact this equation is only valid for a uniform grating. For apodised gratings the mean refractive 
index has to be calculated numerically and for chirped gratings the spatial dependence of the 

grating period has to be accounted for. For the shift of the Bragg wavelength due to external 
forces this is of minor impact. It is however important, that the external effect does not change 

the spectral characteristics of the grating, i. e. no additional chirp or apodisation must be 

generated. This is true if the external effect is constant on a scale compared to the size of the 

grating. 

When the response of a Bragg grating to ultrasound is considered, these effects, i. e. chirp and 
apodisation have to be considered (see Section 0). What further has to be thought of is the 

polarisation dependence of all the variables in Equation (2.10). Throughout this work only 
gratings will be considered that have been inscribed perpendicular to the fibre axis, i. e. no 
blazed gratings will be taken into account. 
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Figure 2.7: Path along optical fibre and definition of coordinate system. 

From Equation (2.10) it is apparent that a fibre Bragg grating can be used for sensing purposes, 

as both the mean refractive index n B� and the grating period A are functions of external forces 

such as strain or temperature. Therefore, a change in the Bragg wavelength can be a measure 

of temperature and strain. 

2.5.1 GENERAL SENSOR FUNCTION 

The shift in the Bragg grating centre wavelength for a freestanding sensor can be estimated 

using a linear approach, i. e. the total differential of Equation (2.10) is calculated as 

OAR AA(c,, AT) An,, 1f(E,, AT) 

_ 
(2.11) 

The subscript "0" refers to the initial state without any strain and at temperature To. AT is the 

temperature change related to the initial temperature To, i. e. dT =T - To , s, are the components 

of the strain tensor along the coordinate axes. The change of the refractive index as a function 

of temperature is covered by the thermo-optic effect, whereas its change as a function of strain 

is described by the photo-elastic effect. The grating period is changed by temperature due to 

the thermal expansion of the material and by the strain which is the relative change of the 

period compared to the initial period. The calculation of the refractive index as a function of 

strain and temperature under consideration of the polarisation has been performed in [112]. The 
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resulting index change of the mean effective index in the x-y plane (see Figure 2.7) for both 

polarisation axes p and q is given as: 

ý9 =-n0 
3' 

P126, +(Pli +P12)' 
sy +s= 

t P>> -Piz 7-2. 
ano 

+(2P12 +Pll AT (2.12) effA max -)a 222 no dT 

where a is the thermal expansion coefficient for the fibre, p, l and p12 are components of the 

strain optic tensor, y,,, is the maximum shear strain in the x-y plane and no is the index of the 

unstrained fibre. It is clear that for ymax ý0 and p� ßp12 the response of the grating depends on 
the state of polarisation. 

The effect of temperature on the grating period is already included in (2.12), in terms of the 
thermal expansion coefficient. The change of the grating period by means of strain is given as 

AA(ei)=Ao'. -: (2.13) 

It is assumed that only the strain component along the z-axis influences the grating period. 

Substituting (2.12) and (2.13) into (2.11) gives the desired general expression of the shift of the 
Bragg wavelength when exposed to strain or a change in temperature. 

For most experiments only special sub-cases of the general expression are of interest. The 
following sections will provide the basis equations for the relevant thermo-mechanical load 

cases considered in this work 

2.5.2 PURE TEMPERATURE 

If all the mechanical strains are zero and the only strains are thermally induced, the shift of the 
Bragg wavelength for a freestanding sensor can be calculated using 

AAB 
=(a+-' 

n dT 
OT (2.14) 

ao no 

The first term describes the thermal expansion and the second term the thermo-optic effect. The 

coefficients depend on the composition of the fibre material and can be found in the literature. It 
has been shown that for different amounts of germanium in the fibre silicate matrix the thermal 

expansion coefficient varies from 0.55 -1.1.10-6 for a Ge02 part of 0 -13 mol%. The thermal 

expansion coefficient is assumed to be independent of temperature. The change of the 

refractive index with temperature is dominated by the change in the density of the material. It 

has been shown that dn/dT 1.10"5 1/K. Although this quantity is in the literature often assumed 
to be independent of the temperature, some references show an increase with raising 
temperature. If high precision or a broad temperature range is required a non-linear wavelength 
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shift should be anticipated. From Equation (2.14) the expected linear sensitivity for a 1530 nm 

grating (no= 1.445) is approximately 11 pm/K at room temperature. The thermo-optic effect 

clearly dominates the temperature sensitivity of the Bragg grating, as shown in [112]. 

2.5.3 STRAIN 

Considering the case of uni-axial load along the fibre axis without any change in temperature, 

the Bragg wavelength for a freestanding sensor is obtained by 

B =(I -_2 12-v'(P11+P12)1 
(1-PQ$). (2.15) 

B. 

This is the expression most often found in the literature to describe the strain sensitivity of an 

FBG. PB" is the effective strain-optic constant and v is the Poisson's ratio. For a typical 

germanosilicate fibre the constants are pig = 0.113, P12 = 0.252 and v= 0.17 [16]. The Poisson's 

ratio is a function of strain that varies from 0.15 at low strain to 0.17 for strain levels around 0.1 

to 1 %. Using these parameters an effective strain-optic constant Pe" = 0.198 (no = 1.445) can 
be found. For the shift off the Bragg wavelength follows at 1530 nm a strain sensitivity of 

approximately 1.22 pm/pstrain. One Astrain has been defined as the strain of 1 pm/m = 104 %. 

The shift of the Bragg wavelength is linear with strain and has been found to be independent of 
temperature [112]. 

2.5.4 UNI-AXIAL LOAD AND TEMPERATURE 

In the more general case of combined thermal and mechanical loads the following expression 

for the wavelength shift under uni-axial load can be found as 

AAB 
P`ff]. e, + a"P`ff+ 

1 do 
. OT=[I-P7]. e"'+ a+ 

1 do 
. OT (2.16) 

ABa no T no 
TT 

where cm is the mechanically induced strain, so that e, =em+ adT is the sum of mechanically 

and thermally induced strain. It becomes apparent that any change in the Bragg wavelength, 

associated with an external perturbation, is the sum of strain and temperature terms. This 

complicates the use of Bragg grating sensors, as for normal applications only one perturbation 
is of interest and the other one is just a source of error. Therefore, several methods for the 

deconvolution of temperature and strain have been suggested in the literature. A practical 

solution is considered in Section 3.3 when the implementation of a FBG load monitoring sensor 
is discussed. 
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2.5.5 SURFACE MOUNTED AND EMBEDDED SENSORS 

The strain and temperature function become more complex when surface mounted or structural 

embedded sensors are studied. On the one hand, for the cases studied in the previous section, 
the strains were symmetrical and constant so that no polarisation dependence occurred; on the 

other hand the applied strains and temperature were applied only to the bare fibre. But for 

mounted and embedded fibres it is the structure that bears the loads. The question is in what 

way these thermal and mechanical loads are transferred from the structure to the sensor, in 

particular into the fibre core and the region of the Bragg grating. 

It is desirable to have a sensor response only for loads applied along the main sensor axis, i. e. 

along the fibre axis. This is for example true for resistive strain gauges. A high directivity of the 

sensor causes low cross sensitivity and therefore a minimisation of the corresponding errors. It 

is furthermore advantageous if one is able to use the calibration factors found in 

Equation (2.15). It has been shown by Betz and Trutzel that surface mounted sensors possess 

the desired properties [112,114-1161. In the case of surface mounted sensors the transfer 

functions of the structural strains into the fibre are known and can be given as follows 

Ez = sz =JE, "' +a '" OT 

Sx =-v" c. =-v"6Z'm v"a3 - AT 
(2.17) 

sy =-v"ss =-v"s='"' -v"a' - AT 

rmax =o 
Here e, c and c are the strain components and ymax is the shear strain in the fibre core. The 

structural strain e is separated into its thermal a? dT and mechanical e sm strain components. 

Also, v is Poisson's ratio of the fibre and cS is the thermal expansion coefficient of the structure. 
Equation (2.17) ensures that only the strain components along the fibre z-axis are transferred 

into the FBGS. Substituting (2.17) in (2.11) - (2.13) gives the following expression for the shift of 

the Bragg wavelength as a function of structural strain 

AAB 
_[1-Pef1. C.,, - + (1-Peff). 

a'+ 
1 do 

. 0T (2.18) ýB0 no dT 

As for most structures the thermal expansion of the material is much higher than that for silica 
fibre, the thermal expansion of the fibre has been neglected in Equation (2.18). Especially for 

the materials used in the automotive and aerospace industries, such as metals 
(aQ= 10-23*10$ 1/K) and composites (a = 3*10-6 1/K), the temperature sensitivity of the 

mounted sensors is much higher than that for single fibres (a = 1*10$1/K). 
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2.6 LIFETIME AND RELIABILITY OF BRAGG GRATING SENSORS 

Fibre Bragg gratings used for sensor applications have much higher demands on the thermal 

and mechanical performance and reliability than the ones used in telecommunication. The 

standard requirements for applications in the automotive and aircraft industry for the 

temperature range is -50 to +100 °C and for the strain range is -2000 to +2000 Astrain (see also 
Section 3.3.1. There are however some applications that require even higher temperatures for 

example for monitoring vehicle engines or aircraft turbines, where temperature goes up to 

1000 °C . High loaded aircraft structures, for example rotor blades of a helicopter, are strained 

up to 30 000 Astrain. If the Bragg grating sensor technology wants to compete in such 

applications the sensors of course have to fulfil these high demands. 

2.6.1 THERMAL DECAY 

Both, refractive index modulation and mean index change, induced by UV-illumination of the 
fibre core with an interference pattern during grating production, decay with time, especially at 

elevated temperature. On the one hand, reflectivity and wavelength changes of the FBG with 
time can cause errors in sensor applications and on the other hand, which is the worst case 

scenario, the grating can totally disappear, its reflectivity approaching zero. The thermally 
induced decay implies that the UV-induced defects (see 7.1.1. lAppendix A: ) are not 
thermodynamically stable. The refractive index change during UV-illumination is described with 

carriers trapped in energy states of certain stability [117]. For a given energy level El thermal 
depopulation of the mean occupation number is assumed to be exponential with time t and 
dependent of the temperature T. The function of the release rate vre, modelled with an Arrhenius 

approach is given as 

r E1 (2.19) vrei Ei) 
_- vo exp - ! 

BT 

Here kB is the Boltzmann constant and vo a fit parameter. 

The total number of occupied states is assumed to be proportional to the UV-induced refractive 
index change. After some time t at temperature T the demarcation energy Ed divides the states 
in approximately two groups. The demarcation energy can be written as 

Ed(T, t)=kBTln(vo "t) (2.20) 

For E, < Ed the states are depopulated, for E> Ed most states are still occupied. 
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From equations (2.5) and (2.8) the relation of modulated index change and maximum reflectivity 
is given. It follows that the total number of trapped electrons remaining at a given time N(t) is a 
function of the remaining reflectivity R of the grating. In a normalised form these quantities can 
be plotted over the demarcation energy Ed. The relation is shown in Equation (2.21). The plot is 

called a master curve, which is a function of demarcation energy. With the master curve, 

combined influence of time and temperature can be studied. The initial state distribution can be 

calculated from the slope of the master curve, given as 

77 = 
N(t) 

_ 
arctanh 

_ f(ED) 2.21 
N(O) arctanh -JR o 

From the master curve predictions of the thermal stability and the lifetime of the FBG can be 

made. The decay mechanisms of the grating allow the annealing of the gratings. This means 
that by an accelerated aging of the gratings at elevated temperatures it is possible to keep only 
the stable component of the index change at subsequent applications. Once the sensor is in 

service, no more change in reflectivity or initial Bragg wavelength will occur. Figure 2.8 shows 

an example of the master curve for draw-tower gratings. 

- 1.0 
c 
`0 0.9 
c 
o 0.8 
rn 

0.7 
0 0.6 

m 0.5 
rn 
CD 0.4 

0.3 
ca 
E 0.2 
0 
Z 0.1 

s 

s 
" 

o" 
aý 

" 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

Demarcation energy E. [eV] 

Figure 2.8: Plot of the master curve for draw-tower gratings [112]. The different symbols 

correspond to different decay experiments performed at various temperatures. 

The master curve can be used to calculate the thermal decay of the grating at any temperature 

and subsequently give a lifetime estimation for sensor in service. In [112,118,119] the lifetime 

and reliabilty of low-reflective (10 %) draw-tower gratings are discussed. Figure 2.9 shows the 

calculated lifetime curves for a grating at different operational temperatures. For draw tower 

Bragg gratings the lifetime is several decades if their application is limited to temperatures 
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below 100 °C. The limit for the sensors is around 200 °C, but varies strongly with the required 

minimum reflectivity, which is a parameter of the interrogation system used. Today's draw-tower 

gratings have improved reflectivity (>15 %), therefore the temperature range of the sensors is 

extended. 
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Figure 2.9: Calculated lifetime for draw tower gratings at different operational temperatures 

[112]. 

Mauron et al [120] report a shift of the Bragg wavelength due to the thermal decay. A decrease 

of the Bragg wavelength of several 100 pm has been found. It has been shown that this effect 

can be erased by applying appropriate annealing techniques before the grating is used for the 

sensor application. It can be concluded that the wavelength shift due to annealing is negligible 
during operation time. 

In summary, draw-tower gratings are suitable for applications in the temperature range required 
for automotive and aircraft applications. 

2.6.2 MECHANICAL STRENGTH 

Mechanical strength and fatigue of optical fibres are commonly described by a fracture 

mechanical model where a fibre is treated as a ceramic-like brittle material: surface flaws 

introduced during fibre drawing prior to the coating process start growing, due to any applied 

mechanical loads or intrinsic residual stresses. Glass dissolution due to water also reduces fibre 

strength. The power-law based general lifetime equation can be written as [118,121] 



2.6 Lifetime and Reliability of Bragg Grating Sensors 30 

Sn-2lt)= sl-2 -B. 
J(t). dt' (2.22) l1 

t0 

Failure due to stress corrosion occurs when the continuously decreasing fibre strength S(t) 

reaches the applied stress a(t). S, is the fibre initial strength, t is the time, n is the corrosion 
susceptibility factor, or n-value, and B is the crack's strength preservation factor, or B-value. 

For standard telecom fibre (n>20), S(t) is small compared to both other terms in Equation (2.22) 

and can therefore be neglected. Equation (2.23) can be rewritten as 

r 
B" Si"-' f Q" 

(t') 
" dt' (2.23) 

to 

and used for lifetime estimations. The product B"S, is known as the static loading unit stress 
intercept, or intercept; B"S, , in can be obtained from static or dynamic tensile tests, where time 
to failure under constant stress, or failure stress under constant stress rate, are measured. In 

order to describe the failure mechanisms of a fibre, where many single flaws correspond to the 

overall fatigue behaviour, a statistical approach is needed. The approach usually taken to 
describe the distribution of the flaws on the fibre surface is an asymmetric, two-parameter 
Weibull cumulative density function. For dynamic tensile testing, the cumulative fracture 

probability F is given as 

Uo 

)md 

F =1- exp - 
Ed (2.24) 

The cumulative fracture probability as function of the fracture stress 0d, or the corresponding 
survival probability or reliability R=1-F, depend on the dynamic shape and scaling 

parameters and and vo, which are a measure for the width and mean value of the fracture 

strength distribution. On a double logarithmic scale the results of the dynamic tensile tests can 
be plotted and the scaling parameters can be obtained by a linear curve fit. 

Although pristine optical fibres posses high mechanical strength, the mechanical performance of 

the fibre after inscription of a Bragg grating is dramatically reduced by the fibre 

decoating/recoating process. Several studies confirm this observation. It has been shown as 

well that the mechanical strength of the grating also depends on the parameters of the grating 
inscription process (pulse energy, number of pulses, exposure intensity, etc. ). For sensor 

applications, where high mechanical strength is required, the solution is the use of draw-tower 

gratings. It has been shown that draw-tower gratings have the same mechanical strength as 

standard telecom fibres [118,121-123]. Figure 2.10 illustrates the difference in the mechanical 

strength for standard FBGs (off-line fabricated) and draw-tower FBGs (on-line fabricated). 
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Figure 2.10: a) Typical fracture stress distribution for off-line and on-line fabricated FBGS. 

b) Measured lifetime under cyclic loading, as well as static and cyclic loading 

predictions [112]. 

The analysis of the tensile tests has given the results for static lifetime of the fibre. Mauron of al. 

[118] predicted a lifetime of about 50 years at 2% constant static strain for draw-tower gratings. 

Furthermore, from the known relation of static to cyclic loading, predictions can be made on the 

cyclic fatigue of the gratings. The relation between lifetime under static tensile testing with 

constant stress 6o, and lifetime under sinusoidal cyclic tensile testing with mean stress cro, 

amplitude modulation K, and period Tp, can be written as 

TP n 

I+Ksin 
271 

1. 
dr 

(2.25) 
TP TT f 

rarr 
0 

Here t, y,, and tfstabc are the lifetimes under cyclic and pure static loading, respectively. This 

model predicts reduced lifetime for sinusoidal modulation of the applied strain. A modulation 

depth of 10 % reduces fibre lifetime by 60 % for standard fibres. Experimental verification of the 

predicted behaviour for draw-tower gratings has been shown in [118]. 

In summary, FBGs fabricated on a draw tower have outstanding mechanical performance. Their 

mechanical strength and static and cyclic lifetime can be compared with standard telecom 

fibres. Put side by side with electrical strain gauges, FBGs posses higher maximum loading 

capacity and several orders of magnitude higher strength. In automotive and aerospace 

applications with maximum strain levels up to 1%, high load frequencies and high number of 

load cycles, FBGs are superior to electrical strain gauges. Not only for their good mechanical 

performance offer draw-tower gratings the best choice for sensor gratings. The draw-tower 

technology offers the possibility for mass production and therefore a high low cost potential of 

the fabricated gratings. Furthermore, this fabrication process offers almost free choice of the 
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fibre coating. The fibre coating itself is of importance for sensor application, as discussed in the 

next section. 

2.7 FIBRE COATING 

A number of requirements which the coating has to fulfil in order to be used in fibre sensor 
applications have been set in [124]. These requirements are: 

1. There should be high adhesion for the coating on the glass-surface, as environmental 
forces have to be transferred through the coating. As has been shown in push-out experiments, 

not only are there great differences in the adhesion between polyimide and acrylate coatings 
but also disparities between two differing polyimide coatings [125]. Moreover, the coating has to 

transfer the forces without creeping or slipping. 

2. The fibre strength has to be warranted even in humid and harsh environments. The 

coating also affects the stress corrosion of the optical fibre and the optical attenuation 
(microbending losses). 

3. The required temperature range extends the range of telecom applications. Typical 

coatings for standard telecom applications can be used between -50 to +85 °C. This range is 

not sufficient for many sensor applications e. g. in aerospace systems. 

4. The material properties of the coating (Young's modulus, thermal expansion coefficient, 

coating thickness) have to be chosen individually for each application. For example, when 
bonding FBG sensors on the surface of structures, it is important to make sure that the modulus 

of the fibre coating is sufficiently high to transfer the strain being measured into the core of the 

fibre sensor over a certain bonding length. This procedure is comparable to the processing by 

electrical strain gauges. Another example for the application of FBGs is their structural 
integration into modern fibre-reinforced composites. It has been shown that by the use of an 

appropriate coating, stress concentrations in the fibre-matrix interface can be minimised and the 

sensor response affected. 

5. The change in the material properties due to temperature change and humidity has a 

negative impact on the sensor function. It has been shown that the thermal stress produced 
within the fibre by the coating can produce a strong non-linearity in the temperature response of 
the FBG with acrylate coating at negative temperatures. Taking into account the change in 

Young's modulus due to the glass transition of the coating, a substantial agreement between 

theory and practice has been found [126]. An appropriate fibre coating must not show this 

effect. Another reason for non-linear temperature behaviour is believed to be the water 
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absorption of the coating. Previoius work of the author showed the hysteresis in the temperature 

response of some FBGs from different suppliers with distinct polyimide coatings, whereas some 

FBGs did not show this behaviour at all. As FBGS written through the UV transparent coating 

have become commercially available, the temperature response of such a grating has been 

studied within the scope of this thesis. As seen in Figure 2.11 the result of the temperature test 

is disappointing. The grating shows dramatically non-linear and non-reproducible thermal 

characteristics. Two temperature cycles from room temperature over - 20 °C and + 80 °C and 

back to room temperature have been carried out. For every cycle hysteresis can be found. 

Effects as hysteresis and nonlinearities in the temperature response due to the coating have to 

be avoided for FBGs in sensor applications. 
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Figure 2.11: Temperature response of a FBG written through UV transparent coating. 

Compared to the above described requirements set for coatings in strain-sensing applications, 

polyimide and Ormocer® are the materials with the greatest advantages. Ormocer (organically 

modified ceramics) is a polymer-based material which was developed by the Fraunhofer 

Institute for Silicate Research (ISC) in Wuerzburg (Germany) at the beginning of the 1990s. 

Compared to polyimide, it has a higher adhesion on glass and - as a main advantage - it can be 

UV-cured. This is a valuable benefit for the on-line fabrication of Bragg gratings on the draw- 

tower. It has been reported that using Bragg gratings with a special Ormocer coating, the effect 

of water absorption and the corresponding hysteresis in the temperature response can be 

dramatically decreased. FBGS available on the market with their index modulation written 

through UV transparent coating show high nonlinearities in their thermal response. A coating 

optimised for UV transparency seems not to be suited for high performance sensing 

applications. 
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2.8 CONCLUSIONS 

This chapter has introduced the fibre Bragg grating as an innovative fibre optic sensor. After a 

short introduction into the theoretical and technological background of fiber Bragg gratings, their 

physical properties have been discussed with respect to sensing applications. The most 

important parameters which have to be considered before using the fibre Bragg grating as a 

strain and temperature sensor have been made out. These are: 

" Reflectivity: Depends on the fibre optic interrogation unit and the optical network 

topology. 

" Length: The grating length determines the active sensing length of the grating. The 

requirements on the grating length can be opposing, depending on the sensor 

application (see Chapter 5). 

" Thermal and mechanical strength: The fabrication process influences the thermal and 

mechanical properties of the Bragg grating. Depending on the required thermal and 

mechanical strength of the sensor, an appropriate fabrication method has to be chosen, 

e. g. off-line or on-line fabrication, doping of the fibre. An overview of current fabrication 

methods and the influence of the doping of the fibre can be found in Appendix A. 

" Fibre Coating: It has been shown that the fibre coating influences the thermal and 

mechanical properties and the response of the sensor. Therefore, the correct choice of 

the coating is very important. 

" Mounting and integration method: When the sensor has to be attached to the structure, 

either by surface mounting or structural integration, care has to be taken to ensure 

correct strain and temperature transfer from the structure under investigation to the 

Bragg grating sensor. 



3 FBG SENSORS FOR LOAD MONITORING 

The continuous monitoring of structural loads plays an important role in HUMS. The knowledge 

of structural loads is also an important parameter in the characterisation of the structure during 

the design and development phase. Measuring structural loads is therefore a basic engineering 

need, particularly in aerospace. The chapter gives an overview of the standard load 

measurement techniques in today's applications. The fibre optic Bragg grating is introduced as 

an alternative sensor element that is capable to fulfil the same requirements as conventional 

methods, but provides additional advantages. A practical sensor layout utilising a backing patch 
for strain and temperature sensors is proposed. The strain transfer function of the backing 

material is studied in detail using an FE model. The proposed sensor layout has been build up 

and an experimental validation of the modelling results is presented. Concluding remarks are 

given in the final section. 

3.1 BACKGROUND 

Monitoring of structural loads allows the end-user to gain knowledge of the usage of the 

structure. This knowledge is important in all stages of the aircraft life. The design phase of the 

aircraft requires the maximum loads to be defined in order to fulfil the structural requirements. 
Before an aircraft goes into service all design criteria have to be validated using one aircraft for 

verification. This is done during a major airframe fatigue test, where all possible load scenarios 
that may occur during the aircraft life are simulated and structural responses are measured. 
Only if the aircraft passes this test, i. e. the design criteria are validated, will it receive 

airworthiness. The requirements on such a load monitoring system and the load monitoring 

state-of-art are described in section 3.1.1. 

A major question throughout the further life of the aircraft is the actual amount of life consumed. 
Flight hours determined and being conventionally used as the parameter to characterise the 

amount of structural life spent are usually based on a loading spectrum defined during the 

design phase. However, the real loading spectrum might differ significantly from the spectrum 
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assumed during the design phase, as the aircraft is upgraded (e. g. new weapon systems, cargo 
instead of passengers) [11]. An answer to this point may be achieved by monitoring the actual 
loads directly or using flight parameters imposed on the aircraft using an in-flight monitoring 

system. 

3.1.1 IN-FLIGHT MONITORING AND STRUCTURAL TESTING 

Load monitoring of a structure or machine allows a measure of the structures or machines 

usage. Knowing the fatigue behaviour of the structural components this information can be 

combined with the actually measured loads in order to provide a measure of the fatigue life 

usage. From this many other information can be gained subsequently. In aircraft engineering 
this information can help for example to more effectively layout the inspection scheme of the 

structure [10,12,33,127-129], to improve the design of the structure for forthcoming next 

generation aircrafts [11,20], or to provide feedback on aircraft load spectra to the Regulatory 

Authority such as the Federal Aviation Authority (FAA) [130]. 

Loads play the major role in describing the operational environment of an aircraft. The structure 
is subject to a variety of loads. These are of course mechanical or aerodynamic loads resulting 
from flight manoeuvres and gusts but also loads resulting from environmental conditions, 
hazards or human error in general. The challenge associated with loads in the determination of 

the fatigue life of the structure is that loads cannot be predicted accurately. All the 

aforementioned loads vary significantly in their level, sequence and frequency of occurrence, 

depending on the actual usage of the aircraft. A possible solution to account for the negative 

effects of an uncertainty in the actual loads is to increase the monitoring effort [11]. An in-flight 

monitoring system has become an integral part of many structures, mainly fighter aircrafts [131, 

132]. Today most of the systems are based on monitoring strain or flight parameter sequences 

which are then used to derive an operational load sequence for the aircraft part under 

consideration. For the physical background of the stress-strain relations, see Appendix B. 

Initial work on in-flight monitoring was performed by bonding strain gauges to selected areas in 

the aircraft and measuring strain sequences (see Figure 3.1). The use of strain gauges directly 

correlates with the established techniques being used in major fatigue or static tests during the 

design phase. The requirements on the in-flight monitoring sensors in an operational 

environment are considerably higher than those compared to a laboratory environment. The 

development of improved bonding techniques, advanced electronics and signal processing tools 

as well as improved sensors, enabled the installation of in-flight systems. Strains are usually 

measured and stored in a data acquisition unit. Within a next step, the strains are then 

converted to stresses and a detailed fatigue life evaluation for the last flight and the overall flight 

history of the aircraft can be performed. However, as no sensor can assure 100 % reliability and 
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the complexity of a systems increases with the number of its components, the overall reliability 

of the monitoring system goes down. Furthermore, any extra sensor means more weight for the 

aircraft as not only the sensor but also the interrogation system including all the wiring has to be 

installed on-board the aircraft. This is a major drawback particularly for electrical strain gages. 
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Figure 3.1: Strain gauge installation on a Eurofighter Typhoon aircraft [12]. 

Due to the above mentioned drawbacks of the strain gauge based monitoring system, an 

alternative system based on flight parameters has been established. Flight parameters are 

obtained from sensors already built into the aircraft. These sensors measure for example 

speed, altitude, acceleration, air data, pressure, and many other parameters. Flight parameter 

systems have proven airworthiness and are thus widely accepted. As for the strain gauge, the 

information obtained from flight parameters is used to calculate loads. However, the flight 

parameter approach relies on the accuracy of calibration data, in which the relation between 

structural loads and the flight parameter has been obtained. Thus, the optimum result which can 

be achieved using a flight parameter system is a load sequence that is identical to a load 

sequence measured with strain gauges. From this point of view, a flight parameter system 

clearly is not an optimal solution. 

Before any structure goes into service it has to be certified by the relevant authorities. To get 

the admission several structural tests have to be passed in order to demonstrate the 

appropriate design and functionality of the structure. This is true for all kind of structures, 

especially within aerospace application, where failure of the structure could have catastrophic 

consequences. Structural testing is also required within the manufacturing phase of an aircraft 

in order to validate the predicted loads used during the design phase of newly developed or 

modified aircraft structures. The load spectra used for structural testing are also used to set-up 
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a maintenance schedule to monitor the fatigue life consumption of the structure. Load 

monitoring plays an important role during the test and qualification phase of the structure. 
Several types of structural tests can be identified which are usually performed to develop and/or 

certify aerospace structures. These are [133]: 

" Specimen details and material testing, where only limited regions, e. g. critical locations 

of real structures are tested. For this test only a small number of sensors is required. 

" Sub-components tests, where portions of the structure are tested under simple or 

combined loading conditions. The tests can be either statically or in fatigue cycles. The 

number of sensors needed is for most application less than one hundred. 

" Full scale ground tests, where full scale components, such as empennages, wing or 
fuselage are tested. For testing components such as the wing of an single-aisle aircraft 
like the Airbus A318, more than 800 strain sensors are required [114]. Another important 

test is the major airframe fatigue test (MAFT), where the complete airframe is tested on 

ground under static, fatigue and vibration loads (see Figure 3.2). A load spectrum 

representative of the assumed real life is applied to the structure. The number of sensor 
installations increases with the size of the aircraft. For example in order to equip a modern 
large aircraft such as the Airbus A340/600 a number of 2000 up to 3000 strain sensors is 

required. Figure 3.2 schematically shows a Tornado aircraft prepared for the MAFT. The 

structure is equipped with all the necessary devices to launch the required loads into the 

structure. 

" Structural flight test, where components or the whole airframe is tested in flight under 

loads coming from specific points of flight envelope. Component tests are usually 

performed on a specific aircraft specifically prepared and instrumented. The number of 

sensors for flight testing is reduced compared to ground testing. Yet, still several hundred 

sensors can be required for large scale testing. 

Present instrumentation for large scale structural loads testing is based on electrical strain 

gauges. For specimen details testing other methods such as the photoelastic technique or 
holographic interferometry can be applied. These methods are briefly presented in section 3.2. 
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Figure 3.2: Major Airframe Fatigue Test (MAFT) for a Tornado aircraft. 

3.2 CONVENTIONAL METHODS 

iol 

In this section an overview of common methods for measuring strain is given. Their suitability for 

implementation into a load monitoring system especially into an in-flight monitoring system is 

examined. Special emphasis is on the electrical strain gauge, since it is the most widely used 

sensor in aerospace and automotive applications. 

3.2.1 OVERVIEW 

The photoelastic or photostress method is one of the major techniques used in experimental 

strain analysis. It uses the effect that for photoelastic materials, any elastic deformation of the 

material changes its optical properties, namely the refractive index. This change in the refractive 

index will also influence the state-of-polarisation if polarised light is used to illuminate the 

material. Optical instruments such as a polariscope can measure how much the state-of- 

polarisation is changed due to the presence of a stress field acting on the photoelastic material. 

From these measurements the strain field can be derived. Although the photoelastic method is 

limited to photoelastic materials, the deployment of photoelastic coatings being bonded on the 

structural component assures that virtually any test part regardless of its shape, size or material 

composition can be examined. In practice, a thin sheet of photoelastic material is attached to 

the surface of the structure under investigation. When the structure is loaded, the photoelastic 

coating will be deformed, as is the surface of the structure, and a strain field will be developed 

inside the coating. This strain field can then be observed using an appropriate optical 
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instrument, such as the polariscope. One of the advantages of the photoelastic method is that it 

provides a full-field strain distribution of the structure. It is non-destructive and can directly 

measure the strains on the surface of the structure. However, as the surface of the structure 

has to be accessible and even be modified, e. g. a photoelastic layer has to be bonded to the 

structure, this method will not work for in-flight monitoring of complex structures. In addition, the 

optical instrument that takes the measurement can be thought of as a kind of camera, which 

means that there must be no objects between camera and structure, art, the size of the 

structure must be covered by the camera. 

Another important method is holographic interferometry. Holography is a technique to record 
and reconstruct optical wavefronts. This can be used to compare wavefronts of one object 
recorded before and after the object has been loaded. The deformation of the structure due to 

the loading will change the wavefront and the corresponding strain field can be calculated. The 

holographic method requires the illumination of the structure with coherent light. Static and 
dynamic displacement measurements can be taken for any surface that reflects enough light to 

produce interferometric changes in the recorded wavefront. The method shows the same 

advantages as the photoelastic method being a non-destructive method and providing a whole- 
field displacement measurement. In contrast to the photoelastic approach no additional coatings 

are needed. But as for the photoelastic technique no object is allowed between interferometric 

measurement devices and the structure under investigation and the size of the structure is 

limited to the viewing area of the camera device. 

3.2.2 ELECTRICAL STRAIN GAUGES - PRINCIPLE OF OPERATION 

The electrical resistance strain gauge (ESG) is a metallic or non-metallic resistance element, 

whose resistance varies in proportion to the amount of strain. Three kinds of resistance type 

strain gauge are popular for today's experimental strain analysis. These are [134,135]: 

" Foil strain gauges. Foil gauges are produced by etching or cutting the desired gauge 

pattern into a thin sheet of metal foil of an appropriate alloy. In practice, most often a 

several micrometer thick foil resistor of Cu-Ni or Ni-Cr alloy is used. These gauges feature 

accurate size and uniform characteristic through photo-etching technology. Together with 

a versatility in producing different strain gauge configurations, this makes the foil strain 

gauge the most popular tool used for strain measuring in general. 

" Wire strain gauges. These gauges use a resistor wire, typically of 13-25 micrometers in 

thickness, for the resistance element. Although most of the strain gauges used are foil 

strain gauges, the wire strain gauges is used for special application, e. g. measurements 

at very high temperature or as extra long size concrete measurement gauges. 
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" Semiconductor strain gauges. Semiconductor gauges differ in many aspects from the 

metallic foil and wire strain gauge. Their resistance element is formed by monocrystal 

such as silicon. The most important difference is their increased sensitivity with a gauge 
factor 10 to 50 times higher compared to metal gauges. This makes them suitable for 

detection of micro strains as well as of manufacturing high sensitivity transducers. 

Transducers are used to translate the mechanical quantity to be measure, e. g. pressure, 
force, acceleration, into a surface strain of an elastic member. Strain gauges mounted on 
that member then provide an electrical output proportional to the applied force. 

Semiconductor gauges are however largely affected by temperatures and show high non- 
linearity. Their applications are therefore limited. 

The basic principle of operation for metallic ESG is the change of electrical resistance with 

change in strain, found as [136] 

l 
=k"s (3.1)) Reo 

where AR, is the resistance change and RBb is the initial resistance of the conductor. The strain 

sensitivity k is also known as the gauge factor. 

It is found that the gauge factor k is produced by two factors k, and k2: the change in specific 

resistance of the conductor material and the change in the dimensions of the conductor. By 

definition, 

k=k, + k2 = 
dpSp/PJp 

+ (1+ 2v) (3.2) 
s 

where p. is the specific resistance and v is Poisson's ratio of the conductor material. The gauge 
factor is approximately 2 in general purpose strain gauges. 

Strain gauge structure 

The typical layout of the basic ESG configuration is depicted in Figure 3.3. The resistance 

element is formed into a grid of a Cu-Ni alloy foil. It is placed on a carrier matrix of plastic or 

other material. This is the representative structure of a strain gauge which is ready for bonding 

on the surface of a measuring object. For surface bonding an adhesive is used normally. 
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Figure 3.3: Typical strain gauge structure. 

Strain gauge circuitry 

The output of an ESG is a change in resistance as a function of applied strain. For a gage factor 

around 2 these resistance changes will be in the order of hundreds to a few thousand parts per 

million for strain levels normally encountered in experimental strain analysis. Resistance 

changes of this magnitude are much too low for direct indication in circuits of the ohmmeter 
type. For efficient measurement of small resistance changes a bridge circuitry, normally referred 
to as the Wheatstone bridge, is employed. Its output is usually amplified to such a degree as 

enough for indication and recording. The basic strain gauge bridge circuit is illustrated in Figure 

3.4. 

Figure 3.4: Basis strain gauge bridge circuit (Wheatstone bridge). 
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Strain gauge backing patch 

Standard strain gauges consist essentially of the sensing grid in combination with a plastic 

material that makes up the carrier or matrix. That portion of the matrix which is underneath the 

grid is called the backing. Most foil gages have an additional top layer of insulation bonded over 
the grid and backing. This top layer is often called the overlay or encapsulating layer. The 

backing serves several important functions [137]: 

" it provides a means of handling the foil pattern during installation; 

" the backing presents a readily bondable surface for adhering the gauge to the test 

specimen; 

0 it also provides electrical insulation between the metal foil and the test object. 

The important characteristics of the backing material are defined in terms of its shear modulus, 

creep, flexibility, and elongation capability. The shear modulus must be sufficiently high to 

transfer the structural strain faithfully to the sensing grid. 

Generally, a carrier matrix uses polyimide or some other organic material. Polyimide has proven 
to be a tough and flexible carrier, and can be contoured to fit small radii. In addition, the high 

peel strength of the foil on the polyimide backing makes these gauges less sensitive to 

mechanical damage during installation. 

Strain gauge bonding 

It is very important to employ proper adhesive and bonding procedures to achieve strain 

measurements by using bonded ESG. The selection of a proper adhesive is strongly dependent 

on the carrier material, operating and curing temperatures, and the maximum strain to be 

measured. Ideally, the bonding adhesive for strain gauges would: form a strong permanent 
bond; be simple to mix and use in the field; have sufficient handling time to install a large 

number of sensors; possess sufficient strength and ductility for highest strains and operate 
properly from cryogenic to highest temperatures. In practice several compromises are 

necessary in selecting the appropriate adhesive. Since certain operating characteristics are 

more important than others in a given case, a large number of adhesive systems has been 

developed. The most commonly used bonding agents are cyanoacrylate adhesives, epoxy 

adhesives and ceramic-based adhesives. 

For aerospace applications, cyanoacrylate adhesives are most widely used for bonding strain 

gauges. This is because they are suited for a large temperature range from cryogenic 
temperatures up to a few hundred degrees Celsius. Furthermore, during installation of the strain 
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gauges in the aircraft no thermal curing is allowed. Cyanoacrylates which cure at room 

temperature are therefore especially suited. 

Strain gauge errors 

Highly precise measurements can be achieved by using metal foil strain gauges. In practice, 
however, gauge performance is dependent on a number of external factors. Table 3.1 gives an 

overview of the parameters that should be considered to achieve high accuracy. A profound 
discussion of the relevant parameters can be found in [135,136]. 

Table 3.1: Overview of common sources for strain gauge read-out error 
Parameter Possible reason for malfunction 

Application Strain gauge not suited for specific application, incorrect bonding 
or alignment of ESG, bad soldering points, bad insulation 

Temperature No temperature compensation, unisotropic temperature 
distribution, rapid change of temperature 

Leadwire Capacity and resistance of leadwire, insufficient insulation and 
shielding, 

Limits Violation of the mechanical or thermal limits, Violation of the 
duration limit (fatigue) 

Environment Not correctly considered pressure, humidity, chemicals, electric 
and magnetic interference, radiation 

Structure Faults, anisotropic characteristics 

Temperature is the most serious and prominent source of error in static strain measurements 

using ESG. Temperature fluctuations will cause changes in the gauge resistance. This purely 

temperature induced resistance change causes an apparent strain. There are three basic 

methods of compensation or error correction available. The first option involves the 

simultaneous recording of both ESG output and gauge temperature with an additional 

temperature sensor. The second method is the use of a temperature compensating bridge 

circuit. The most attractive compensation method for general use involves self-temperature- 

compensated (S-T-C) gauges. S-T-C gauges display zero apparent strain when mounted on the 

corresponding type of material under test. However, S-T-C gauges are not perfectly 

compensated for a wide range of temperatures, due to the nonlinear behaviour of the thermal 

expansion coefficient and the temperature coefficient of resistance. The apparent strain is small 

only for a small range of temperature. 
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3.2.3 ELECTRICAL STRAIN GAUGES - CONFIGURATIONS 

The basic set-up for ESG is a monoaxial configuration, where the sensing direction is parallel to 

its grid. In case the direction of principal stress is known, a monoaxial gauge bonded along that 
direction is enough to perform the measurement. However, for more complicated 
measurements other configurations are desirable. ESG are produced in a variety of different 

configurations. Figure 3.5 shows representative arrangements for biaxial and triaxial 

configurations. 
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Figure 3.5: Example strain gauge configurations [136]. 

To obtain the complete state of strain on a structural surface. It is necessary to define the 
direction and magnitude of the principal strains. For the general case where the state of stress 
is unknown, this requires three separate readings at specific angles to each other. The most 

popular arrangements are the 60° delta or equiangular rosette and the 450 rectangular rosette. 
For both types analytical solutions to find the principal stresses from the measured strains along 
the axis of the rosette can be found. The advantage of the delta rosette is that the three 

readings are somewhat better defined or separated than for the 450 rosette. 
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3.3 IMPLEMENTATION OF THE BRAGG GRATING SENSOR 

Fibre optic sensors are well known for measuring strain [138]. With respect to what has been 

said in the previous section, the ability of the fibre optic Bragg grating sensor to serve as a load 

monitoring sensor is discussed in this section. The fibre Bragg grating sensor has been 

introduced in Section 2.5 as a sensing element for both strain and temperature. As the FBGS is 

often called the fibre optic analogue of the electrical strain gauge, it is interesting to compare 
both techniques. 

In general, the use of fibre optic strain sensors can give several advantages in comparison with 

conventional strain gauges, these are: 

a) Lower weight of cabling (pgiasg= 2.6 g/ cm3 versus pc� = 8.4 g/ cm3 ); 

b) No electromagnetic interference; 

c) More stable and higher strength than their metallic counterpart; 

d) Embeddable into composite materials without altering the host structure; 

The FBGS offers additional unique benefits even compared to other fibre optic sensors: 

a) Superior multiplexing capabilities: more than 3000 sensors distributed in only four fibres 

have been realised [139]. 

b) High spatial resolution: a sensor distribution of five gratings within 5 mm fibre length, i. e. 

grating length of 1 mm and spacing of 1 mm has been fabricated by the IPHT, Jena, 

Germany [140]. 

c) Self calibration: as the Bragg-wavelength is an absolute not a relative measure. 

d) Capability of mass production and therefore low cost potential. 

These advantages make the fibre Bragg grating very attractive for both ground and flight 

testing, and an alternative to the existing electrical strain gauges, provided their performance is 

comparable to that of ESG. It could also help to install load monitoring systems on-board the 

aircrafts to overcome the limitations of a flight parameter based monitoring system. 

Although the advantages of fibre optical sensors are significant, they still suffer from some 
drawbacks, which so far have obstructed their wide-spread use in real world applications, these 

are: 

a) Handling of optical fibres is different to that of electrical cables. Special training is 

needed to gain experience of fibre sensor installation. 
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b) Fibre optic sensors and interrogation systems are still more expensive than their 

electrical counterpart. Especially for FBG sensors costs are ten times the costs for ESG 

[141]. 

c) Compared to ESG, fibre optic sensors are less mature. Fibre optic sensors are still 

restricted to fewer applications, which means not as much experience as with other 

sensors has been achieved. 

d) Connecting optical fibres, especially single mode fibres as those required for FBG 

sensors, requires proper handling in order not to pollute the fibre optical interface. 

3.3.1 FBGS INTERROGATION SYSTEMS 

As for an ESG where the measurement of small changes in resistance is essential, the same is 

true for the wavelength measurements needed to interrogate the fibre Bragg grating. The 

resolution and accuracy of the strain measurements depend on the performance of the fibre 

optic interrogation system. 

Requirements 

A number of requirements on a load monitoring system have been listed in [142,143]. These 

include: 

a) number of sensors: 

b) interrogation frequency: 

c) accuracy: 

d) maximum strain level: 

e) temperature range (sensor) 

10 to 1000 

1 Hz to 1 kHz 

1% of maximum 

± 2000 up to ± 3500 Astrain 

-54 to +100°C 

f) airworthiness of system in terms of temperature, vibration, pressure, shock, etc. 

These requirements can be translated into optical needs, depending on the wavelength of the 

system. The basic choice one has to make is the selection of the wavelength region. Two major 

regions have been established at 800 nm and 1550 nm. The above mentioned requirements 
translate into the respective wavelength regions as 10 pm accuracy and ±I nm optical 
bandwidth per sensor at 800 nm or 20 pm accuracy and ±2 nm bandwidth at 1550 nm. The 

advantage for 800 nm systems is that less optical bandwidth is required and certain optical 

components, e. g. CCD (Charge Coupled Device) arrays are much cheaper than in the 1550 nm 

region. The big advantage for 1550 nm systems is they are compatible to telecommunication 
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applications. In telecommunication, 1550 nm are most attractive, because of the minimum 

optical attenuation in this wavelength region. This means all components used, profit from the 

emerging technologies and increasing prices of the large telecommunication market. 

Nowadays, most Bragg grating interrogation systems are settled in the 1550 nm region. 

Concepts 

A major advantage of FBGS over other strain measurement systems is its multiplexing 
capability. The number of measuring locations can easily be increased by networking of 
gratings in a serial or parallel layout or the combination of both. Several techniques are known 

to monitor a multitude of gratings by a single interrogation system in order to reduce the cost 

per sensing point: 

" Wavelength division multiplexing (WDM). For every grating in the network an individual 

slice of the available optical spectrum is reserved. The Bragg wavelength of any grating 
remains within its slice, even at maximum strain and temperature shift. Therefore the 

number of gratings is limited by the operating conditions and the spectral width of light 

source and detection opto-electronics. 

" Time division multiplexing (TDM). Another approach to identify the reflection of a 

specific grating is by the time, a light pulse takes to travel from the source to this grating 
and back to the detector. The run-time differs according to the distance between grating 

and interrogation system. If every grating is placed at a unique distance, all the reflections 
of all the gratings arrive at different times at the detector. A drawback to this technology is 

the demand for high time resolution of the detector and the need for fast signal 
processing. Furthermore, a minimum distance between gratings is required [144]. 

" Spatial division multiplexing (SDM). In some applications, the monitoring of all the 

gratings at a time or within a short period of time is not a necessity. In this case, the 

gratings can be addressed sequentially. A set of fibres, each containing single gratings or 

groups of serially multiplexed gratings, are joined at an optical fibre switch, that connects 
one fibre after another to the interrogation system. 
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Figure 3.6: FBG sensor system consisting of a network of Bragg gratings (see page 49 for 

details). 

A major component of the FBGS-system is the transceiver unit. The general concept of a 

transceiver unit is shown in Figure 3.6. The FBGS network shown is multiplexed by WDM at %I, 

X2, ..., X� and by SDM using a fibre switch (FS). The transceiver unit (TU) comprises a light 

source (LS), a photodetector (PD), a signal processor (SP), power electronics (PE) and the fibre 

switch. A wavelength reference (WR), e. g. a grating or a absorption cell, can be used for 

absolute wavelength measurements. The duty of the transceiver unit is, among others, the 

determination of the Bragg wavelength at adequate accuracy. Many different techniques have 

been published to perform this task [16,17,47,112,145]: 

" Ratiometric detection using passive filters. This simple method is applicable only if the 

light spectrum consists of a single Bragg reflex at a time. If WDM is used in the sensor 

network, a dispersive element is needed to split the spectrum into single signals for an 

equivalent number of detection sub-units. A sub-unit incorporates two photo-detectors 
and a passive filter placed in front of one of them. The intensity of light measured by this 

detector is attenuated by the filter according to the wavelength. Consequently, the ratio of 
intensities at detector one and two is a wavelength representation and is independent of 
the absolute intensity of the light source and the degree of reflection at the Bragg grating. 

" Wavelength scanning using tuneable filters. A different approach is the use of narrow 
bandpass filters with the ability of tuning the transmissive wavelength. Placed in front of a 

photo-detector, the filter scans the entire relevant spectrum. If the transmissive 

wavelength is equivalent to a Bragg reflex, the detector is illuminated and the wavelength 

can be derived from the adjustment of the filter. This method is well suited for WDM. 

Examples of the described filters are Fabry-Perot, acousto-optic and fibre Bragg grating 
filters. 
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" Spectrometric detection. Spectrometric detection features the simultaneous analysis of 

a wide spectrum and is therefore a preferred solution for WDM. The light emitted from the 

fibre end-face is projected to a CCD line array via a holographic grating acting as 
dispersion element. Consequently, every detector element can be illuminated by a 

specific wavelength only. And in reverse, the wavelength can be derived from the location 

of the illuminated element. 

0 Interferometric detection. In the interferometer the light returned from the fibre is split 
into two beams. Each of them is directed along a separate path before being recombined. 
The optical path of one beam is slightly longer than that of the other one which leads to an 
optical phase difference (OPD) at the recombination point. In case the OPD is a multiple 
of the Bragg wavelength, a maximum of optical power is seen by a photo detector placed 

at the output of the interferometer. By altering the OPD, the entire relevant spectrum can 
be scanned. 

" Wavelength scanning using a tuneable source. Instead of using a broadband source 
and a tuneable filter, a tuneable narrow bandwidth source can be employed. The benefit 

as a much higher spectral power density, which allows the use of low reflective gratings or 
interrogation of remote fibre sensors. 

Two fundamentally different concepts can be identified: broadband interrogation and tuneable 
laser based system. The broadband interrogation uses a broadband light source, e. g. LED or 
SLED, to couple light into the sensing fibre. Determining the reflected wavelength of the Bragg 

grating can be carried out using passive filter technologies or tuning filters. Concepts based on 
broadband light sources offer high interrogation frequencies and sufficient wavelength 
resolution. Furthermore, if the wavelength detection is done without tuneable filters, no moving 
parts are required which promises good life time performance. Systems based on tuneable 
lasers however, are favourable in terms of optical resolution. The spectral power density is 

much higher which means, also for very low reflective gratings high optical resolution can be 

achieved. The problem is a high interrogation frequency combined with a broad tuning range. 
Lasers that provide both are much more expensive than comparable systems based on 
broadband light sources. Yet, if high resolution is required and a complete spectral 
characterisation rather than just determining the reflected peak wavelength is desired, a 
tuneable laser is indispensable. 

3.3.2 STRAIN SENSOR 

In Chapter 2 the sensor function of the FBGS has been defined as as 
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where the structural strain e, " is separated into its thermal a8"IT and mechanical ss'`" strain 

components. Also, n is the refractive index of the fibre, as is the thermal expansion coefficient of 

the structure, and (1 p°") is the strain sensitivity of the FBGS comparable to the gauge factor k 

of the ESG. 

FBGS bonding 

To guarantee the strain-sensing function of the fibre-optic sensor, it has to be ensured that the 

surface of a structure being measured is able to transmit its dilation to the sensing fibre. 

Depending on the exact mounting or integration technique used, one has to investigate how the 

structure strain is transferred into the core of the fibre, in particular the material parameter (e. g. 
Young's modulus) and the geometry of the fibre coating can be used as an optimisation 

parameter. From a calibration perspective, it is desirable to find techniques where 
Equation (3.3) still holds, i. e. only the structure strain in the axial direction of the FBG sensor 

should be transferred. 

At the DaimlerChrysler research laboratories a technique for bonding FBG sensors on the 

surface of structures was developed and presented in (32,112]. This technique can be used to 

mount bare fibres on the surface of the structure. A mounting tool was developed to accurately 
bond the fibre onto the structure. After a careful selection of the adhesive, it is spread in a thin 

layer on the surface being measured. Subsequently the sensor is stamped onto the surface in 

the right direction. The mounting equipment guarantees the manageability of the fibre sensor, 
the mounting in the desired direction, and, in particular, a reproducible distribution of the glue 
between sensor and structure. The distribution was studied by examining several samples 

under a microscope and implemented in an FE model. As for ESG, the application of 

cyanoacrylate glues is often desirable because of their ease of processing and their optimised 

characteristics for strain sensor applications. It is essential that the glue does not surround the 

whole fibre, else birefringence effects could destroy the simple wavelength-strain relation (3.3). 

Using a backing patch for bonding the fibre to the structure is known from the ESG and for 

FBGS from the literature [35]. In expansion to the direct bonding method, the use of backing 

patches was studied in more detail within the scope of this thesis and is presented in the 

following paragraph. 
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FBGS backing patch 

In contrast to the electrical strain gauge the fibre can be bonded directly onto the structure, as 

no electrical insulation is necessary. However, a backing patch could be advantageous, in 

making the bonding procedure more practical. If the fibre is already placed on a backing patch, 
this patch could be simply glued to the surface and no additional care has to be taken 

concerning the surrounding of fibre by the glue. In addition, a backing could be used to 

prearrange three gratings to provide an optical rosette and to hold the sensor array together. A 

backing patch could also hold an additional sensor for temperature compensation, which can 
then be mounted in close distance to the strain sensor. 

Polyimide is the material widely used for backing electrical foil strain gauges. It is therefore a 
logical choice to investigate the use of polyimide as a backing material for FBGS. The same 

requirements in terms of its shear modulus, creep, flexibility and elongation capability as for the 

ESG hold, see Section 3.2.2. Before presenting the results of the study on the backing patch, 
further developments on temperature compensation and fibre optic rosette configuration will be 

presented in the following paragraphs. 

3.3.3 TEMPERATURE COMPENSATION 

Some applications require separate strain and a temperature sensor systems to obtain both the 

strain profile of the structure and its temperature profile. Also, knowledge of the temperature at 
the strain sensor location can help to overcome the temperature-strain cross-sensitivity, shown 
in Equation (3.3). As for the temperature compensation of ESG, several solutions to that 

problem exist [17,30]. For a Bragg grating strain sensor network, the use of Bragg gratings to 

additionally measure temperature is an obvious choice. A temperature Bragg grating sensor 

requires a special setup to protect the sensor from the variety of environmental influences. For 

example, the sensor should be protected from structural strains and stresses, which would lead 

to a misinterpretation of the temperature sensor signal. Various setup technologies were studied 
to obtain a sensor with a reproducible and adjustable (over a certain range) temperature 

characteristic curve by choosing an appropriate composition of materials. Best performance 
was achieved when the whole setup was based on quartz glass with high mechanical stiffness. 
For this purpose, a Bragg grating sensor was mounted on a 40mm-long semi-quartz shell, 

which was first carefully cleaned, and then the fibre was glued onto the plate using the mounting 
technique as described in [32]. Covered with a second semi-quartz shell, the whole construction 

was enclosed in a metal tube, with special care taken to lower the mechanical strain transfer 

from the metal to the quartz shell. Finally, the ingress and egress of the fibre were sealed with 

silica glue. A picture of the housed sensor is shown in Figure 3.7. Gratings fabricated online at 
the draw-tower by the IPHT in Jena (Germany) with a special UV-curable coating (Ormocer®) 
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were used. The temperature response of these specially fabricated sensors has to be 

determined before they can be installed for the respective application. They are then ready for 

use as single temperature sensors or as temperature references for Bragg grating strain 

sensors. The remaining strain sensitivity of the temperature sensor fabricated using the above 

process reduces to 2-3% of the initial strain sensitivity. 

Figure 3.7: Strain isolated fibre optic temperature sensor. 

With the usage of a backing patch to mount the fibre optic strain sensor, it could be profitable to 

mount the temperature sensors on the backing patch, too. A special version of the above 
described strain isolated sensor adapted to installation on the backing patch, requires the 

modification of the sensor build-up procedure. Figure 3.8 shows how a combined strain- 
temperature sensor placed on a backing patch could look like. To the right the strain sensor is 

glued onto the backing material using a cyanoacrylate adhesive. The strain isolated 

temperature sensor is placed to the left. The fibre was glued into the semi quartz shell to be in 

perfect contact with the quartz. Strain isolation from the structure was achieved by mounting the 

quartz shell in an appropriate way onto the backing patch. In this case, only punctual gluing of 

one end of the quartz shell ensures no strain can be coupled from the structure over backing 

patch and quartz shell into the fibre. The sensing region of the fibre is in the middle of shell, 

away from the edge of the shell, where strains could be transferred from the bonding. 

Figure 3.8: Combination of a fibre optic strain and temperature sensor on a single backing 

patch. 

fibre (T-sensor) fibre (F--sensor) 
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The use of a buffer material to fill the gap between quartz and backing patch could help to keep 

out moisture and contaminants. The buffer material should be of extremely low modulus for not 

transmitting any stress from the patch to the enclosed grating. Using a thermal coupling gel 

ensures the grating senses the correct temperature of the structure. 

The big advantage of the proposed temperature sensor compared to other sensors presented in 

the literature is that the temperature sensor does not necessarily mean a dead end in the fibre 

optic network. Most temperature sensors suggested in the literature require the grating to be 

located at the tip of a fibre [146]. This means, one of the greatest advantages of the FBGS, the 

high multiplexing capability is sacrificed. Mounting the fibre in the proposed way on the quartz 

shell does not require a loose end of the fibre. Even if the fibre is subjected to strain, e. g. by 

fixing both ends of the fibre to the structure, the stiffness of the quartz as the carrier material 

minimises the corresponding strain levels. Data of both sensors, the strain isolated temperature 

sensor and the strain senor bonded a backing patch is shown in Figure 3.9. Figure 3.9a 

confirms the strain independent behaviour of the temperature sensors, with a strain isolation 

better than -14 dB. For a description of the experimental set-up see section 3.5.2. Figure 3.9b 

shows the temperature sensitivity for both sensors. The strain sensor has a higher sensitivity as 
it is bonded onto the aluminium structure. Most of the wavelength shift is the thermally induced 

strain of the structure. The temperature sensor is only slightly influenced by the thermal 

expansion of the quartz shell, as the fibre itself has similar thermal expansion as the quartz. 
Using Equation (2.18) and the parameters given in Section 2.5.5, the expected temperature 

sensitivities can be obtained as 2410" 1/K for the strain sensor and 7.7*10-6 1/K for the 

temperature sensor. The experimental results give 23*10'6 1/K and 7.5'10"6 1/K for the strain 

and temperature sensor, respectively. These results agree very well with the predicted values. 

Figure 3.10 shows a photograph of the prototype strain-temperature sensor pad. The 

temperature sensor is shown on the left. The quartz shell and the bonded temperature sensor 

can be identified. The distribution of the glue (dark brown) at the fibre-quartz interface can be 

seen. On the right hand side the strain sensor is depicted. The pad was mounted on an 

aluminium structure, which appears at the grey shining layer on the bottom of the picture. The 

backing patch is the light brown layer between fibre and structure. The question of how good 
the backing material transfers the strain from the structure to the fibre is addressed theoretically 

and experimentally in Sections 3.4 and 3.5, respectively. 
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Figure 3.9: Plot of relative wavelength shift of the strain isolated temperature and the strain 

sensitive sensor: a) plotted versus actual strain level as recorded using an ESG; 

b) plotted versus actual temperature. 
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Figure 3.10: Photograph of the prototype for a combined strain-temperature sensor pad. 

3.3.4 ROSETTE TYPE CONFIGURATION 

The aforementioned combined strain-temperature sensor pad could be extended to a strain- 

temperature rosette by adding two more strain sensors on the backing patch. A possible layout 

is shown in Figure 3.11. Again the advantage of such a rosette would be the possibility of 

multiplexing several rosettes or other sensors, as the proposed temperature sensor does not 

produce a dead end of the fibre. 
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Several basic design parameters have been defined to build-up a fibre optic rosette [34,64, 

146]: Ideally, the three strain sensors in each patch would be arranged in a way, ensuring the 

largest possible angle between their respective axes., i. e. 120°. Maximising the angle between 

the sensor axes contributes to the accuracy of resolving strain in two dimensions. The minimum 

patch dimension is restricted by the maximum angular changes in the fibre path possible 

without inducing bending losses. Furthermore, small bending radii decrease the fatigue life of 
the fibre, which gives a certain limit to the minimum radius. 

For the fibre used to produce draw-tower Bragg gratings as those used in the scope of this 

thesis, see also Chapter 2, the allowed bending radii are smaller than those for standard 
telecom fibres [102]. Bending radii as small as 1 mm produce attenuation of only 0.1 dB for 10 

windings. In addition, encapsulating the sensor pad will not only prevent the fibres from 

moisture penetration, it could also stop the decrease in fatigue life due to small bending radii, as 
it can take over some of the bending induced loads of the fibre. 

1 

egre 

Figure 3.11: Proposed layout of a fibre optic rosette with temperature compensation and 

multiplexing capability. 

Figure 3.12 shows a photograph of the encapsulated rosette with an ingress and egress fibre 

terminated by FC/APC connectors. 
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Figure 3.12: Photograph of the prototype of an encapsulated fibre optic rosette with two 

connecting fibres. 

3.4 FE MODELLING 

The proposed backing patch for a fibre optic stain sensor essentially requires the ability of the 

backing material to transfer the structural strains into the fibre. Only then can a correct sensor 

response be expected. Furthermore, a complete transfer of the structural strain is required for 

Equation (3.3) to hold. If this equation no longer holds, a correction factor to the strain-sensitivity 
(1-pe") must be added. It can be assumed that the thickness and the modulus of the backing 

material play the important role. A stiff and thin material is expected to transfer strains much 
better than a soft and thick material. To study the influence of the material parameters, a FE 

(Finite Element) model was implemented and the material parameters were used as variables 
for a comparative study. 

The aim of the FE simulations was to study the strain and stress response of the fibre under 
defined loading of the structure. The thickness and the modulus of the backing material could 

be variated in the model. In a joined research project, the model was implemented at the IVW 

(Institute for Composite Materials) at Kaiserslautern, Germany [147]. There, the commercial 

software ANSYS was used to create a parametric model of the sensor pad and to calculate the 

stress and strain along selected paths. The results of the study are presented in this section. 
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3.4.1 MODELLING OF THE STRAIN SENSOR 

It was the aim of the project to study the transfer of varying mechanical strains from the 

structure to the sensor fibre in varying directions. To account for the effects due to Poisson's 

ratio, the basic model could be extended into all directions. Figure 3.13 shows the modelling of 

the complete sensor structure. The picture is an enlarged view taken from the prototype sensor 

pad, as shown in Figure 3.10. The different materials that have to be considered are displayed 

in different colours in the plot of the FE model. Special care was taken to exactly model the 

bonding of the fibre to the backing patch. A so-called meniscus can be observed in the 

photograph, which gives the form of the glue distribution underneath the fibre. The second 
bonding interface is the one from the backing patch to the structure. The geometry of all the 

layers was taken from the photograph and implemented in the FE model. 
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Figure 3.13: Photograph of the strain sensor on the backing patch and the derived FE model. 

To define the geometry of the model, a Cartesian coordinate system was applied. The origin is 

in the centre of the fibre core. The axes Figure 3.14 are defined as follows: 

0 x-axis: transverse to the fibre 

" y-axis: direction orthogonal to x-axis 

0 z-axis: parallel to the fibre axis 

The basic model of the structure has a length of 5 mm along the z-axis. The core of the fibre 

has a diameter of 6 pm, the cladding's diameter is 125 pm and the coating has a thickness of 

20 pm. The thickness of the interface from the patch to the structure is 16 pm. 

The transfer of the strain was studied along different paths. The most important path shown in 

Figure 3.14 was considered in the presentation of the results. This path starts in the origin of the 
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coordinate system and extends from z=0 to z= 5000 pm. It is essential for the response of the 

grating to determine the strain along this axis. As has been shown in [112], for the set-up under 

consideration the strains along the x-and y-axis are completely determined by Poisson's ratio of 

the fibre. 

Z 

Figure 3.14: Definition of the path inside the fibre core, along the fibre axis. 

It was assumed that all materials have an isotropic and linear elastic behaviour. The material 

parameters used for the calculations are summarised in Table 3.2. The values were available 
from previous calculations [112], missing parameters for the polyimide backing patch were 

obtained from the manufacturer [148]. 

Table 3.2: Overview of material parameters used for the FE modelling. 

Component Ex=Ey=EZ 

[Mpa] 
Gxy=GyZ=GXZ 

[Mpa] 
vxY vyZ=v, z 

[1l 
aX=ay=aZ 

[10-6 K-1] 
Fibre core 73,000 31,200 0.17 1.34 

Fibre cladding 73,000 31,200 0.17 1.34 

Coating 3,000 1,110 0.35 20 

Meniscus 3,451 1,280 0.35 54 

Backing patch Epatch Epatch/[2(1 +Vpatch)l 0.34 20 

Bonding 3,451 1,280 0.35 54 

Aluminium 70,000 26,000 0.35 23.5 

where E is Young's modulus, G is the shear modulus, v is Poisson's ration and a is the 

coefficient of thermal expansion. 
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Three different parametric variations were studied for two different directions of the structural 

strain and one for a variation of the temperature. 

3.4.2 PARAMETRIC STUDY - STRAIN 

Structural strain parallel to fibre axis 

The first parameter study involved a structural strain of the aluminium structure of eZ = 0.3 % 

parallel to the direction of the fibre axis. The temperature was set to 23 °C. The thickness of the 

backing patch and Young's modulus of the structure were the variable parameters. Young's 

modulus of the backing patch was chosen as Eperch = 2000 MPa and 3000 MPa. For each case 
the thickness of the patch was varied as tp, t h= 50 pm, 75 pm, and 125 pm. The results of the 

parameter study for a structural strain of 0.3 % are presented in Figure 3.15, where the strain 

along the path defined in Figure 3.14 is shown. 

The strain level in the fibre core at z= 2500 pm depends on the chosen parameters. It varies 
between 0.26 % and 0.28 %. A strain of 0.3 % would be assumed if the complete structural 

strain is transferred into the fibre. This shows, that due to the presence of the backing patch the 

strain has not been completely transferred. The degree to which the strain is transferred 

depends on the thickness and Young's modulus of the backing. An increase of the thickness 

obstructs the strain transfer, the same can be noticed if the modulus of the backing material is 

decreased. It can be concluded that for optimum strain transfer a thin and stiff backing patch Is 

advantageous. 

Looking at the strain levels for all the points between z= 2000 pm and z= 3000 pm reveals an 

almost constant strain level. Therefore, it can be concluded that the maximum possible strain 
has been transferred into the fibre. Any further elongation of the sensor fibre and the length of 
bonding would not affect the result. A bonding length of 2000 pm is enough to transfer to the 

optimum strain level - depending on the chosen parameters - from the structure inside the fibre 

core. 

Structural strain perpendicular to fibre axis 

The second parameter study involved a structural strain of 0.3 % perpendicular to the direction 

of the fibre axis. Figure 3.16 displays the results of the related parameter study. A structural 

strain of 0.3 % orthogonal to the fibre axis causes a strain parallel to the fibre inside the fibre 

core at z= 2500 pm between -0.09 % and -0.1 %. This is simply the structural strain that occurs 
inside the structure because of the contraction of the material. Only this strain component is 

then transferred into the fibre core. It is easy to calculate the structural strain along the fibre axis 
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by multiplying the orthogonal strain with Poisson's ratio. This calculation leads to a strain of 
0.105 %. As the same restrictions of the transfer from the structure to the fibre as for the parallel 

strain are assumed, this is what one would expect. 

3.4.3 PARAMETRIC STUDY -TEMPERATURE 

The third parameter study involved only a change in temperature, but no mechanical strains. 
However, due to the mismatch of the thermal expansion coefficients of the various components, 
thermally induced strain are assumed to be observable. The influence of the thermally induced 

strains was studied at +80 °C and -40°C. Starting at a reference temperature of 23 °C, this 

means an increase in temperature of 57 °C and a decrease of 63 °C, respectively. Young's 

modulus of the backing patch was kept constant at 3,000 MPa. The thickness of the patch was 

varied as tim«, = 50 pm, 75 pm, and 125 pm. Figure 3.17 displays the results of the parameter 
study for different temperatures. The strain level along the same path as for the previous 
parameter studies was examined. 

An increase in temperature results in thermally induced strains for all of the components. The 

dominating component is the aluminium structure, it is a high coefficient of thermal expansion 
and a high modulus. For this component, the thermally induced strain can be calculated from 

the thermal expansion coefficient and the temperature change. A thermally induced strain of 

etne,,,, = 0.13 % is found. The simulation shows at z= 2500 pm a strain in the fibre core of 

eZ = 0.12 %. This is consistent with the assumption that the structural strain of the aluminium is 

transferred into the fibre core, with some restrictions due to the imperfect strain transfer through 

the backing patch; which means, the fibre whose thermal expansion is much less than that for 

the other components does not take over the complete structural strain of the aluminium. 

For a decrease in temperature the thermally induced strains in all components would have 

negative signs. The change to be expected for the aluminium structure is eihe,,,, = -0.15 %. The 

result of the simulation gives at z= 2500 pm a strain in the fibre core of sZ = -0.13 %. Again this 

can be explained if an imperfect transfer of the strain in the aluminium structure through the 

backing patch is assumed. 
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Figure 3.15: Parameter study for a structural load of 0.3% parallel to the fibre axis. 
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Figure 3.16: Parameter study for a structural load of 0.3% perpendicular to the fibre axis. 
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Figure 3.17: Parameter study for two different temperatures, Epatch = 3,000 MPa. 

3.4.4 SUMMARY 

The simulations revealed the influence of the backing patch on the strain transfer from the test 

structure into the fibre core. A parametric study demonstrated the effect of varying material 

parameters for the backing material, such as the thickness and the Young's modulus, on the 

strain transfer function. It appears that a thin and stiff backing material is preferable in order to 

ensure highest possible strain transfer, and a minimum bonding length of 2,000 pm is required 
to transfer the maximum strain level from the structure inside the fibre core. In addition, a study 

of the influence of different temperature shows, that the backing patch also prevents the transfer 

of the complete thermally induced structural strain into the fibre core. 

The parameter study used typical values for the thickness and modulus of the backing material. 
The results of the simulation show that it could be a problem to use FBGS on a backing patch 
for strain sensing purposes, as the structural strain is not completely transferred into the fibre 

core. In consequence this means the FBGS gives wrong results, since the recorded strain 
levels are too small compared to the actual structural strain. However, as the material properties 

within this study are not exactly known, an experimental study could help to estimate the 

influence of the backing patch in practical applications. The results of the experimental study 

are presented in the following section. 
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3.5 EXPERIMENTAL VALIDATION 

An alternative approach to investigate the influence of a backing patch on the strain sensitivity 

of the FBGS is to carry out tension tests with bare fibres, fibres bonded directly onto a structure 

and fibres bonded using a backing patch. Analysing the strain response of the bare fibre allows 
the calculation of the strain sensitivity factor (1-pe"), which is the fibre optic counterpart to the 

gauge factor k for ESG. The change in the strain sensitivity for the bonded fibres would indicate 

any influence of the bonding procedure. If the bonding obstructs a correct transfer of the 

structural strain the measured strain sensitivity will be less than for the reference fibre. By 

studying two different bonding techniques it is possible two determine the absolute and relative 
influence of the backing patch, which is the difference compared to the reference fibre and the 

direct bonding technique. 

3.5.1 SAMPLE PREPARATION 

Two fibre Bragg gratings were chosen for strain sensitivity testing. Firstly, a tensile test was 
carried out to obtain the strain sensitivity for the bare fibres. Then both sensors were mounted 
on the same tensile test specimen. This specimen is an aluminium structure widely used for 
fatigue and tensile test. The fibre optic sensors were mounted on one side of the specimen; one 
was mounted directly on the structure the other one got a polyimide backing patch. To compare 
the results of the fibre gratings with the actual strain, an ESG was mounted on the reverse side 

of the specimen. As all the sensors were mounted at the same part of the specimen, identical 

results could be expected, provided all sensors display the correct structural strain level. 

Figure 3.18 shows the prepared specimen with two bonded FBGS. The Bragg gratings used 

were fabricated by the IPHT Jena, Germany in draw-tower technology. The grating length is 

5 mm and the reflectivity is about 15 %. An Ormocer® coating with 50 pm thickness was used. 
The first grating was mounted directly on the structure using a cyanoacrylate adhesive. A 

backing patch was used for the second grating. The backing patch is a polyimide patch from 

CMC Klebetechnik in Germany. The product name is Kaptonträger Typ HN. The material 

parameters as given by the manufacturer are: thickness = 125 pm, Young's 

modulus = 2,500 MPa. This corresponds to a rather thick backing compared to the parameters 

of the simulation. The second grating was mounted on the backing patch in a first step. A 

cyanoacrylate adhesive was used for the bonding. Then in a second step the patch was 

attached to the structure. Again a cyanoacrylate adhesive was used. This is the same adhesive 
the ESG was bonded onto the reverse side of the specimen. 
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Figure 3.18: Photograph of the tensile test specimen with two bonded FBGS. 

i) FBGS bonded using a backing patch ii) FBGS bonded directly onto the 

structure. 

3.5.2 EXPERIMENTAL SET-UP 

FBGS Interrogation System 

A system based on a tunable laser (TL) 
, Radians Innova Intun 1500, was available for 

interrogating the Bragg grating sensors and measuring the response from the sensors in 

reflection with a photodetector (PD). The wavelength measurement (WM) was carried out using 

a fiber-optic ring interferometer in combination with an absorption cell (multi-wavelength 

reference). All the components were packaged in a compact unit. The entire set-up was 

computer-controlled, and the Bragg wavelength was calculated from the measured spectrum 

using numerical methods. The system configuration for measuring the strain sensitivity of Bragg 

gratings (A,, A2, A, ) used a spectral width of 60nm with a reproducible accuracy of about 

0.2 pm for the determination of the Bragg wavelength. This was optimised for FBGS with a full 

width of half maximum (FWHM) < 150 pm and a reflectivity of -15 %, as for the present draw- 

tower gratings. The optical resolution corresponds to a strain resolution of -0.3 pm/m or a 

temperature resolution of -0.02 K. The measurement frequency of the system was limited by 

the laser scan speed (max. 25 nm/s) to -0.4 Hz for each array of sensors in one fiber. 
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Figure 3.19: Schematic layout of the FBGS interrogation system (see text for details). 

For conducting the tension test a ZWICK test machine 144, and the measurement software 

ZWICK Z2004, V1.21 was available. The machine with an inserted test specimen is shown in 

Figure 3.20. The experimental challenge in determining the strain sensitivity is the 

measurement of the corresponding strain level. ESG cannot be mounted on optical fibre, 

therefore another technique is required. The ZWICK test machine was equipped with an optical 

strain measurement system, as shown in Figure 3.20. This system involves two light sources 

which illuminate reflection marks that have to be attached to the test specimen. The reflected 

light is focused on a differential photodiode. If the structure is strained the reflection marks move 

and the differential photodiode observes a change in reflected power. A control unit moves the 

light sources to keep the reflected power maximal. From the movement of the light sources, the 

strain of the structure can be calculated. This system was proven to work correctly, as for bulk 

test objects the performance could be compared with electrical strain gauges. The tests 

conducted for obtaining the strain sensitivities used the optical strain measurement unit for the 

bare optical fibres and electrical strain gauges for the aluminium bonded optical fibres. 
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Figure 3.20: The ZWICK tension test machine 144. 

3.5.3 RESULTS 

The results of the tension tests for the bare and bonded fibres can be represented in a single 

graph to compare the difference in strain sensitivity. This graph is displayed in Figure 3.21. The 

relation of the shift in Bragg wavelength to the measured strain is plotted for the bare Ormocer- 

coated fibre, the fibre bonded onto the aluminium structure and the fibre with the backing patch 
bonded onto the aluminium. It appears there is no visible difference in the responses for the 

different fibres. To study the sensitivity more accurately, a linear fit was calculated for every 
fibre. The fit curves are also shown as straight lines in Figure 3.21. Again no visible difference 

can be made out. From the linear fit, the slope of the curve can be found. The slope 

corresponds to the strain sensitivity (1-PB"). For better quality of the results, repeated 

measurements were conducted. The initial strain sensitivity (1-Pu) for a bare fibre is found to be 

0.789 ±0.007. The fibre that was directly bonded onto the structure shows a sensitivity of 

0.781 where the same standard deviation as for the reference fibre is assumed. Within the error 

limits this is the same value. This is exactly what was expected for directly bonded fibres. 
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However, the strain sensitivity found for the fibre bonded with the backing patch, is significantly 

smaller. A strain sensitivity of 0.762 means only 96 % of the initial value. These is experimental 

proof of the influence of the backing patch on the strain sensitivity of the fibre. 

Compared to the predicted attenuation of the structural strain, the experiment shows less 

influence of the backing patch. Although the parameters for the backing patch (E = 2500 MPa 

and t= 125 pm) could not be found for the simulations, the corresponding strain value must be 

placed somewhere between the results for E= 2000 MPa and 3000 MPa in Figure 3.15. 

Therefore a reduction in strain sensitivity to 86 % to 90 % of the initial value could be expected. 

The reason for a mismatch of the simulated and experimental results could be the uncertainty in 

Young's modulus for the simulations. The analysis of the simulation, as shown in Section 3.4, 

revealed the big influence of Young's modulus on the strain sensitivity. Furthermore, the 

experimental results should be repeated to get better statistics for the analysis. 
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Figure 3.21: Bragg wavelength shift as a function of structural strain for different types of 

FBGS. 

3.6 CONCLUSIONS 

This chapter has shown the importance of a load monitoring system for the usage monitoring of 

structures. One of the favoured approaches in the literature towards a load monitoring system is 

based on the use of strain sensors. It has been reviewed that structural loads can easily be 

derived from strain measurements. The requirements on a load monitoring system for ground 
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and flight testing in aeronautic applications have been derived. Standard tools for strain 

measurements and the novel fibre optic Bragg gating sensor have been checked for their 

suitability to meet the desired properties. 

It has been found that Bragg gratings provide unique advantages compared to standard 
techniques, like the electrical strain gauge. Yet, due to the good experience with ESG a load 

monitoring system based on FBGS could only profit if the positive characteristics of the ESG are 
adapted for the FBGS. Especially in terms of temperature compensation and bonding 

techniques the standard concepts for FBGS could be improved. 

A new layout for a fibre optic temperature sensor has been proposed, which allows the 
development of fibre optic networks with several temperature sensors within a single fibre line. 

Furthermore, by using this concept for a temperature sensor a network of fibre optic rosettes 

with temperature compensation is possible. It has been highlighted that using draw-tower 

gratings, smaller dimensions of the sensor rosettes are feasible, due to the increased 

insensitivity of the fibres to bending losses compared to standard fibres. 

For practical applications a backing patch for optical fibres has been proposed in the literature. 

Within this chapter the influence of the backing material on the strain transfer function has been 

studied using FE modelling techniques. It has been found, that the backing affects the strain 
transfer from the structure into the sensing regime of the fibre. Only thin and stiff coatings can 

guarantee an optimum strain transfer into the fibre. Using a backing patch and an appropriate 
bonding of the fibre onto the patch also allows only strains along the fibre axis to be transferred 
into the fibre. This is of great advantage as the cross sensitivity of the fibre towards orthogonal 

strain becomes zero. Moreover it was found that additional bonding length of 2 mm in addition 
to the sensor length is enough to produce a constant strain level inside the fibre core. This is 

comparable to the layout of standard ESG. 

Experiments have been conducted to verify the simulation results. The trend of the simulations 
could be confirmed: a thick backing patch obstructs the strain transfer from the structure into the 

sensor fibre. However, the influence was not as big as predicted by the simulations. An 

explanation could be found as possibly inaccurate numbers for the material parameters were 
used for the simulations. 

In summary, FBGS seem to be ideally suited to build up future load monitoring systems. The 

results presented within the chapter could help to find the optimal design for future FBG sensor 

networks. 



4 STRUCTURAL HEALTH MONITORING USING 

GUIDED ULTRASONIC WAVES 

This chapter presents an overview of recent methods for structural damage detection. 

Section 4.1 gives an introduction to non-destructive testing and evaluation techniques used for 

damage detection. A special focus is on their ability for an on-board automated testing system. 
Techniques based on guided ultrasonic waves, e. g. Lamb Waves, have the potential for a 

continuous damage detection system. Their physical properties are briefly reviewed in 

Section 4.2. A summary of currently used methods for the excitation and detection of Lamb 

waves is given in Section 4.3. Standard technology using the piezoelectric effect and, iln 

addition, optical methods for generation and detection of ultrasound are closer examined. 

4.1 NON-DESTRUCTIVE TESTING AND EVALUATION 

Maintenance and inspection of structures, is one of the most important concerns in 

transportation and civil engineering. Various kinds of defects can cause structural failure this 

Includes: Internal defects such as porosity, cracks, lamination, cavities, non-metallic inclusions 

and surface defects such as cracks, slivers, pinholes, corrosion for metallic structure. It appears 

cracks are the major cause of structural failure in aerospace and marine industries. For example 
for military aircrafts cracks contribute to 70 % of all types of damage [149]. Cracks are very 
hazardous flaws with regard to the loading capability of a material. Naturally the causes of crack 

creation, and therefore also the crack shape, are as varied as the materials. Cracks can be 

caused by material fatigue, mechanical stresses, corrosion, or a combination of these. 

Various techniques have been developed for damage monitoring in structures over the last 40 

years. This section reviews the most commonly used damage detection methods and 

introduces one of the most promising techniques based on Lamb waves. 
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4.1.1 INTRODUCTION 

Non-destructive Testing (NDT) has been defined as "the branch of engineering concerned with 

all methods of detecting and evaluating flaws in materials" [150]. The essential feature of NDT is 

that the test process itself produces no deleterious effects on the material or structure under 

test. NDT technicians and engineers define and implement tests that locate and characterize 

material conditions and flaws that might otherwise cause planes to crash, reactors to fail, trains 

to derail, pipelines to burst, and a variety of less visible, but equally catastrophic events. These 

tests are performed in a manner that does not affect the future usefulness of the object or 

material. In other words, NDT allows parts and materials to be inspected and measured without 

damaging them, providing an excellent balance between quality control and cost-effectiveness. 

Non-destructive Evaluation (NDE) is a term that is often used interchangeably with NDT. 

However, technically, NDE is used to describe measurements that are more quantitative in 

nature. For example, a NDE method would not only locate a defect, but it would also be used to 

estimate the size, shape, and orientation of defects. NDE may also be used to determine 

material properties such as fracture toughness, formability, and other physical characteristics. 

The number of NDT/E methods that can be used to inspect components and make 

measurements is large and continues to grow, as researchers find new ways of applying 

physics and other scientific disciplines to develop better NDT techniques. Most common 

methods include: Visual inspection and enhanced visual inspection using penetrants and 

magnetic particle, Eddy current, Nuclear Magnetic Resonance, Microwave, Thermography, 

Optical interferometry, Radiography, Acoustic Inspection, Ultrasonic Inspection, Acoustic 

Emission, Load monitoring, and Modal Analysis. These methods are reviewed in Appendix C. 

4.1.2 NDT/NDE FOR STRUCTURAL HEALTH MONITORING 

Table 4.1 gives an overview of present NDT/E technologies under consideration for a future 

SHM system. Their ability to serve as an on-board damage detection system is evaluated and 

shown on the table. Most methods considered require a probe travelling or scanning to cover a 
large area must be disregarded for on-board systems since they need the direct intervention of 
humans to perform the inspection. Detection systems that can operate from a fixed location 

while achieving large area inspection are the prime candidates. In Table 4.1 a minus sign 
denotes there is no trend towards miniaturisation and structural integration of this technique. 

Only methods that are marked as high potentials can be considered for implementation of SHM 

systems. The technique that is especially interesting to be used in conjunction with the FBGS is 

the ultrasonic inspection using guided Lamb waves. Therefore, this technique is introduced in 

the following section. 
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Table 4.1: Overview present NDT/E technologies. 

Method Principle on-board 

electromagnetic waves 
102-107 Hz Eddy current - 
106-108 Hz Nuclear Magnetic Resonance 
109-10" Hz Radar, Microwave - 
1013-1015 Hz Visual inspection 

Thermography 

Optical interferometry 

Penetrant 

Magnetic Particle 

- 

- 

- 

- 

- 
1015-1020 Hz Radiography - 
elastic waves 
10'-104 Hz Acoustic Inspection - 
105-108 Hz Ultrasonic Inspection 

Acoustic Emission 
+/-)` 

+ 

vibrations 
10°-102 Hz Load monitoring +)"' 
10'-104 Hz Modal Analysis + 

on-board: 
+ technology shows high potential to be integrated into the structure or miniaturised 

- no trend towards miniaturization or structural integration today 

)* for ultrasonic inspection: guided wave methods show high potential, conventional 

scanning methods do not. 

)"" load monitoring is not a damage detection method; it has been included in this 

summary as it can be combined with other NDT/E techniques for applications in 

Health and Usage Monitoring Systems. 

4.2 GUIDED ULTRASONIC WAVES 

Wave packets propagating in bounded media, which are superpositions of various modes, are 

often called guided waves. There are various types of guided waves such as plate and surface 

waves. Lamb waves are guided ultrasonic waves in plate-like structures. They are governed by 

the same wave equations as bulk waves. This section gives an overview of the physical 

properties of guided ultrasonic waves and their applications to damage detection. 
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4.2.1 ELAsnc WAVES 

An elastic wave is a time-varying field of compressions and rarefactions that travels, or 

propagates, from one region of space to another [15]. Waves travelling in an unbounded bulk of 

elastic material are called bulk waves. These waves have a finite number of longitudinal and 
transversal components. Wave propagation in bounded media leads to guided waves. These 

exhibit an infinite number of modes resulting in a complex wave propagation mechanism. 

For longitudinal waves the particle displacement is parallel to the direction of propagation. The 

wave function can be written as 

y(x, t) =A sin(w t- kx) (4.1) 

where w= 2nf is the angular frequency of the wave, kus = 2mfAusis the wavenumber derived 

from the ultrasonic wavelength kus. and A is the amplitude. The longitudinal wave velocity CL of 

the wave which relates angular frequency w and wavenumber k can be found as 

CL =w (4.2) 
k 

with E being the Young's modulus, and p the density of the solid. 

For transversal (or shear) waves the particle motion is perpendicular to the direction of 

propagation. Therefore, shear waves can be polarised horizontally and vertically leading to SH 

and SV components, respectively. The wave function for a shear wave can be given as 

z(z, t)=Asin(wt-kx) (4.3) 

In order to find a similar expression for the transversal wave velocity as in (4.2), it is helpful to 

introduce the Lame constants % and p: 

(1-2vXl+v) 2(1E v) 
(4.4) 

with E being the Young's modulus, and v Poisson's ratio of the solid. 

The wave velocities cL and cr for longitudinal and transversal wave, respectively, can be given 
by 

CL 
u 

cT = 'ý (4.5) 
PP 
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The two waves do not interfere, i. e. they propagate without interacting. For an infinite and 

isotropic medium the velocities depend only on the material constants not on the geometries. In 

a bounded medium the situation is more complicated. Depending on the geometries many 

different types of wave motion are possible. One possible solution of the wave equation for a 

wave subjected to boundary conditions states the presence of guided waves in the medium. 

4.2.2 LAMB WAVES 

Lamb waves are a type of elastic waves that are guided between the two parallel surfaces of a 

test object [14,151]. For an object sufficiently thin to allow penetration to the opposite surface, 

e. g. a plate having a thickness of the order of a wavelength or so, surface waves degenerate 

into Lamb waves. Investigations on Lamb waves have been carried out continuously since their 

discovery and theoretical and experimental work has been performed for different purposes, 

ranging from seismology, to ship construction industry, to acoustic microscopy, and to non- 

destructive testing and acoustic sensors. 

The mathematical setting for the analysis of Lamb waves is that of a solid medium bounded by 

two parallel planes a distance 2d apart. The coordinate system used is given in Figure 4.1. The 

direction of propagation is assumed to be along the z-axis. 

Figure 4.1: Coordinate system for Lamb waves in a plate. 

There are two groups of Lamb waves, symmetric and antisymmetric, that satisfy the wave 

equation and boundary conditions, and which can propagate independently of the other. For the 

first group the in-plane displacement u is an even function of x, therefore the solutions are 

called symmetric. The other group is termed antisymmetric as the in-plane displacement is an 

odd function of x. A graphical representation of the modes is given in Figure 4.2. The particle 

displacement is shown in an array of vectors, which is like a "snapshot" of the particles at that 

moment. 
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Figure 4.2: Examples of Lamb wave modes [152]. 

Antisymmetric mode 

For a plane wave travelling along the z-direction the longitudinal component of the displacement 

u and the transverse component w can be calculated. For symmetric modes these can be given 

as [153] 

u= {ikA cos(px) + qB cos(gx)}e'k(=-`"`) 

w={ pA sin(px) - ikB sin(gx)}e'k(Z-`"`) 

whereas for asymmetric modes the displacements are given by 

u= {ikCsin(px)-qDsin(qx)}e'k"=-°"t) 

w= {pC cos(px) - ikD cos(gx)}e'k(z-°p`) 

where 

ww 
f2 2 

q= 
2_ 2 CL Cp CT Cp 

(4.6) 

(4.7) 

(4.8) 

A, B, C and D are arbitrary constants and c,, is the phase velocity of the Lamb mode in the above 
Equations. From the equations of the symmetrical mode one gets a homogeneous system of 
two equations for A, B (C, D antisymmetric). For these equations the determinant of the 

coefficient matrix must vanish in order to ensure non-trivial solutions. This means two 

characteristic equations have to be satisfied: 

tan(qd) 4k2 pq 
tan(pd) (q2 

_k212 
(4.9) 

for the symmetric modes, and, 
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tan(pd) 4k2 pq (4.10) 
tan(qd) ýq'` 

-k 
2y 

for the asymmetric modes. 

For a given material and a given value of frequency w, equations (4.9) and (4.10) can be solved 

numerically for the phase velocity Cp, which is a function of w, i. e. the waves are dispersive. The 

velocity depends on the product fd, which is called the frequency-thickness product. The 

phase/group velocity is often represented as a function of the frequency-thickness product and 

is called a dispersion curve. Another interesting fact is that equations (4.9) and (4.10) may have 

any number of real solutions depending on the value of N. The waveforms corresponding to the 

different solutions are termed modes. The number of modes increases with an increase of cod. 
Below a certain threshold only two modes can propagate. These are called the fundamental 

symmetric So and antisymmetric AO modes. 

An example of a phase velocity dispersion curve for the first symmetric and antisymmetric 

modes using the material properties of an aluminium specimen also used in the present 

research are given in Figure 4.3. Multi-mode propagation complicates the analysis of Lamb 

wave signals, as each mode travels at a different velocity and incident and reflected signals 

interfere. The intention therefore is to restrict the allowed frequencies to a regime where only 

the fundamental modes propagate. For the example in Figure 4.3, this is true for a frequency- 

thickness product below 1.6 MHz. mm. 
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Figure 4.3: Lamb wave dispersion characteristics for aluminium: Phase velocity dispersion 

curve. 
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Another useful plot is the group velocity dispersion curve. The group velocity cg can be derived 

from the phase velocity using 

cg =cP+ 
cp 

k (4.11) 

An example of a group velocity dispersion curve, again using material properties of the present 

research can be seen in Figure 4.4. 

_y 
5 

E 
ý`-" q 

U 
03 
m 
> 
a2 
0 
(: ' 1 

0 

..................... 
Sý 

---T--. -----. _ -_ -----__ 
- 

Ap 
. 

--... -. -. .- ---. ... --- ....... 

0.2 ') .d00812111 
Frequency Thickness [MHz. mm] 

Figure 4.4: Lamb wave dispersion characteristics for aluminium: Group velocity dispersion 

curve. 

4.2.3 DAMAGE DETECTION USING LAMB WAVES 

Already in 1957 Lamb waves have been proposed to be used for ultrasonic testing [13]. 

Subsequently many authors have contributed to the knowledge of the behaviour of Lamb waves 

and their application to inspection. Theoretical and experimental work on the interaction of 
Lamb wave with defects and on the generation and detection of Lamb waves can be found in 

[154-163]. A special focus on the use of Lamb waves for the inspection of composite structures 

can be found in [164,165]. 

The relationship between the material properties of a specimen and the propagation 

characteristics of the Lamb wave is quite complex, however an understanding is necessary to 

design an appropriate damage detection method. The Lamb wave's group velocity essentially 

varies in a similar way to the bulk velocities of a structure, i. e. as (E/p)'12, where E is Young's 

modulus and p is density. Poisson's ratio seems to have only small effects on the propagation. 
This means, if a wave travels across an area of reduced stiffness, e. g. caused by the presence 

of a crack, it will slow down. The other effect that affects the propagation of the modes is 
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analogous to travelling acoustical waves. When reaching a region of dissimilar wave speed, part 

of the incident wave is reflected in proportion to the difference in the stiffness and density of the 

regions. By the time-of-flight , i. e. the interval between the launch of the wave and the return of 
its reflection, the distance of the inhomogeneity from the source can be computed. The two 

effects, change in velocity and reflection at defects can be used to predict the presence, 
location and size of damage. Often wave attenuation and mode conversion are also observed 

and used for damage detection. 

The selection of the Lamb wave modes is important for damage detection. The choice of 
fundamental modes reduces the complexity of the propagating wave. Although theoretically a 

minimum of two Lamb wave modes always propagate in the analysed structure, it is possible to 

chose excitation frequencies for which the amplitude of one fundamental mode is reduced to 

almost zero. This is often called single-mode propagation. The ability to operate under single- 

mode conditions depends strongly on the transducer used for Lamb wave generation. The 

transducer therefore has to be chosen carefully. An overview of current transducer technologies 
is given in Section 4.3. 

It has been shown by Lowe et al [159,166] that there are significant differences in the 
interaction of the different Lamb modes with damage. As the distribution of stresses and 
displacements through the thickness of the plate differ, the nature of the modes needs to be 

understood in order to choose modes which are sensitive to defects. Ideally for long-range 

monitoring the So mode is best exploited at low frequencies, i. e. below 1 MHz. mm, where it is 

practically non-dispersive. However, resolution requirements normally force higher frequencies 

and shorter wavelengths, so that a compromise is needed. Wilcox et al. [163] have shown that 

an optimum solution can be found for a particular mode at a particular frequency. In its field 

structure the So mode is the simplest of the Lamb modes, as illustrated by the schematic mode 
shape presented in Figure 4.5a. The longitudinal and transversal displacements u and w are 
shown. For the So mode the dominating displacement is the in-plane displacement in the 
direction of travel. The mode shapes vary very little with frequency; mainly at lower frequencies 
the magnitude of the displacement w diminishes with respect to u. The distribution of the 

stresses indicates the equal sensitivity of the mode to defects at different depths. Furthermore 
the relatively low amplitude of the transversal displacement w results in minimum leakage if the 

plate is immersed in a low velocity fluid [166]. The mode shapes of the Ao mode are not as 

simple as for its symmetric counterpart, see Figure 4.5b. Whereas the So mode is characterised 
just by its dominant displacement component in the direction of travel, the AO mode has 

significantly transversal out-of-plane displacement components. What complicates matters with 
the AO mode is that the mode shape depends on frequency. At lower frequencies the shapes of 
the displacement are simply those of bending the plate and the displacement u varies linearly 

through the depth of the plate and there is a large out-of-plane body motion (w). At higher 
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frequencies the through-thickness distributions are no longer linear [159]. The differences 
between the So and AO mode become also obvious, when Figure 4.2 is considered. The particle 

motion in the mid-plane is dominated by the longitudinal displacements for the symmetric mode, 

while for the asymmetric mode the transversal displacements dominate. 

The differing through-thickness distributions of the So and A0 mode become important when the 

position of the damage or the ultrasonic transducer can be positioned within different layers of 

the plate. It has been shown that Lamb wave modes which induce high shear stresses are the 

most sensitive to delamination in composite materials. As the A0 mode induces more uniform 

shear stress distributions through the plate thickness than the So does, it can be suggested that 

regardless of its through-thickness position a delamination can be expected when the Ao mode 
is used for inspection. On the other hand, if the ultrasonic transducer is more sensitive to either 

the longitudinal or transversal displacement, it is important where the transducer is placed. If for 

example a transducer is most sensitive to a longitudinal displacement, it won't be able to record 

the A0 mode if placed in the mid-plane of the structure. 

a) 

--------------- 
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Figure 4.5: Displacement mode shapes at IMHz. mm [159,1661: a) So mode; b) Ao mode. 

Further considerations include the attenuation of the Lamb modes. Percival and Birt [167] 

showed that the attenuation of the AO mode is up to eight times greater than the So mode . This 

result implies that if the AO mode is used in a large area damage detection system, then 

significantly more sensors would be needed to overcome the same area for a given signal lever. 
Hence, the So mode appears more attractive for larger area inspection since fewer transducers 

would be required, leading to simpler systems. 

From the above presented specific properties of each Lamb mode it follows that for each 

application a suitable mode has to be chosen. Depending on the material of the test structure, 
its dimensions and the available ultrasonic transducers. 
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4.3 GENERATION AND DETECTION - TRANSDUCERS 

In order to use Lamb waves for damage detection, it is necessary to launch and detect them. A 

variety of methods is known for Lamb wave excitation and detection. This section gives an 

overview of today's most common techniques. As the majority of ultrasonic transducers is based 

on the piezoelectric effect, this phenomenon is briefly reviewed in Appendix D. Different 

transducer techniques are described in the following paragraphs, where special emphasis is on 
the previous work on the use of fibre optical sensors for the detection of ultrasound. 

4.3.1 PIEZO-BASED ULTRASONIC TRANSDUCERS 

Piezo-based transducers are commonly used for the generation of ultrasound. There are many 

possibilities on how to form a transducer to effectively couple the Lamb wave into the plate 
[168]. Because of the inverse piezoelectric effect, the actuators can also be used as sensors 
tuned into a given wavelength. This is one of the reasons why piezo-based transducers have 

become so popular. 

Wedge Transducers 

One of the most robust and versatile means of actuation uses a wedge transducer (e. g. [169, 

170]). Wedge transducers, also called angle-beam transducers, are commonly used to excite 

and detect Lamb waves in solid plates for NDE/NDT purposes. In this method, a piezoelectric 

patch is used in thickness mode to launch a longitudinal wave in the wedge material. Depending 

on the wedge angle, one can launch different Lamb modes at different wavelengths in the test 

structure. The incidence angle is determined by using Snell's law and the Lamb mode phase 

velocity from the dispersion diagrams. If the longitudinal velocity of the wedge material is cL and 
the phase velocity of the structure is cp then the appropriate geometrical condition on the wedge 

angle is sin 0= cL/cp. The only condition on the wedge material is that the bulk longitudinal wave 

should have a shorter wavelength than the Lamb mode for the transmission medium. 
Commercially available wedges can be found with variable angles which allow a range of Lamb 

wave modes to be selected. 

Comb and Interdigital Transducers 

An efficient method of coupling waves from a PZT patch into a structure is to use a comb [171] 

or an interdigital [161] design, which is a modern variation of the comb design. Comb 
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transducers and interdigital transducers are designed to excite modes with a specific 

wavelength which is controlled by the ridge spacing and the electrode finger spacing, 

respectively. The distance between the ridges or fingers, and the width of the ridges or fingers is 

taken as AF�2 , where ý, P is the wavelength of the selected Lamb mode. Wilcox et al have 

demonstrated the use of a piezoelectric polymer film (PVDF) to transmit ultrasonic Lamb waves 

into metal plates [161]. This technique offers special advantages as it can be used in curved 

surfaces which would present problems to stiff piezoceramic materials. However, the acoustic 

amplitudes achieved with this technique are well below the levels for piezoceramic transducers 

[172]. 

Piezoelectric Patches 

Conventional Lamb wave probes such as wedge and comb transducers are relatively too heavy 

and expensive to be considered for widespread deployment on a structure as part of a SHM 

system. A simple piezoelectric patch bonded to the surface of the structure can be used to 

initiate elastic waves. The shapes of the most common elements is depicted in Figure 4.6. 

Typical dimension are a few millimetres in length or diameter and only a few hundred microns in 

thickness. The operation of PZT patches is different to that of conventional ultrasonic probes 

[173]. PZT patches often use the planar mode in discs Figure 4.6a and the longitudinal mode in 

plates Figure 4.6c. This means Lamb wave excitation and sensing is achieved through in-plane 

strains of the patch, while conventional transducers excite through out-of-plane strains. PZT 

patches are strongly coupled with the structure and follow the structural dynamics. The 

properties of the coupling, such as damping and acoustic coupling strongly determine the pulse 

shape and and bandwidth issues of the transducer. The main advantages of PZT patches over 

conventional ultrasonic probes lies in their small size, lightweight, low profile and small cost. 

Furthermore, they are easy to bond to the structure and can even be embedded into composite 

materials. 

i1i 111 

a) b) c) d) 

Figure 4.6: PZT elements and vibration modes: a) disc in planar mode; b) disc in thickness 

mode; c) plate in longitudinal mode; d) plate in thickness mode. 
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Smart LayersTM 

Few non-destructive tools are available to provide continuous monitoring, inspection and 
damage detection for SHM systems. In SHM applications a permanently attached device is 

required. Acellent Technologies Inc. has presented a versatile technique that can be built into or 

upon metal and composite structures [174-176]. The system is based on the Smart Layers TM 

technology consisting of a network of piezoelectric patches embedded in a thin dielectric carrier 
film. This layer can either be surface mounted on existing structures or integrated into a 

composite structure during fabrication. An structurally integrated layer can provide built-in non- 
destructive assessment of the internal and external states of the structure. 

Phased Arrays 

Conventional transducers have a fixed focal region for the transmitted acoustical field. In order 

to focus on a defect mechanical movement of the transducer during an inspection is generally 

required. In order to reduce the efforts in moving the transducers, electronically driven array 

transducers generating ultrasound propagating in various directions are more and more often 

used [177,178]. 

A phased array probe is a transducer made up of a large number of simple probes, or 

piezoelectric elements, individually connected and independently driven so that the signals they 

transmit or receive may be treated separately or combined as desired. Multiple piezoelectric 

elements are sometimes arranged in patterns in a common housing. These are usually linear or 

circular in shape. The elements can be pulsed simultaneous or in a certain pattern to each 

other. In phased array technique the angle and the focal length can be modified by applying 

appropriate delays on the signal emitted by each elementary transducer. Kress et al [179-181] 

and Giurgiutiu [173] have demonstrated the successful use of phased arrays in order to detect 

damage. 

Air-coupled Transducers 

For the above described techniques one of the major issues that arises is the coupling between 

the transducer and the transmission medium. In order to efficiently transfer energy, a couplant is 

usually inserted at the interfaces. There are numerous possibilities for couplants, e. g. silicon 

gel, specialist couplants, or some everyday substances like honey, that have been used for 

efficient coupling of ultrasound. However, the use of couplants is not always possible, as they 

might not be compatible with the industrial process or the couplant might cause permanent 
damage or contamination to the structure. 

The problem when using air-coupled transducers [182] is that if the sound has to move between 

the test structure and the transducer, four solid-air interfaces have to be passed (from the 

transducer, to the air, to the structure, and then back again). At each interface only 1% of the 
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sound energy is transmitted since air has a very low acoustic impedance. Thus, after four 
transitions very little sound is left. One solution to overcome this problem without introducing an 
additional couplant consists in generating very high sound levels and to use high-gain, low- 
noise amplification. Transducers for air-coupled NDT systems in current commercial 
applications are made of piezoelectric elements that are driven in the thickness mode. It is a 
distinct feature of air-coupled transducers to be able to efficiently generate Lamb waves which 
are otherwise rapidly dampened if water coupling is used. 

4.3.2 ELECTROMAGNETIC ACOUSTIC TRANSDUCERS (EMAT) 

Besides piezoelectricity another physical effect can be used for generating and receiving 
ultrasonic waves: the electromagnetic acoustic effect. Electromagnetic Acoustic Transducers 
(EMAT) find attractive applications in many areas of ultrasonic NDT, especially because of their 

non-contact nature as compared to the conventional piezoelectric transducers [168,183,184]. 
The energy is transmitted by electromagnetic field from the transducer to the structure which 
avoids mechanical contact with the test surface. The conversion into or from acoustic energy 
takes place in the surface of the structure. this method thus requires no coupling medium 

avoiding a number of difficulties. When an EMAT is placed near an electrically conducting 
material ultrasonic waves are launched in the material through the reaction of induced eddy 
currents and static magnetic fields. This however, restricts their use to the examination of 
electrical conductors. EMATs are reciprocal devices, i. e. they can be used as receivers as well 
as transmitters of ultrasound. 

4.3.3 OPTICAL GENERATION OF ULTRASOUND 

The problems known from coupling the ultrasound generated within the transducer into the 

structure under test are solved by laser-generated ultrasound, which being a non-contact 
technique, does not need any couplant. In addition, optically generated ultrasound also has the 
following added advantages [168,185,186]: 

" It provides broadband ultrasound (tens of MHz); 

" Focusing the beam provides bigger spatial resolution and allows the generation of 
ultrasound in small samples (useful for acoustic microscopy); 

" Combined with a non-contact optical detection technique it provides a completely remote 
system that can operate in corrosive, high temperature and radioactive environments; 

" Flat spectra response (caused by the absence of resonant coupling conditions); 
" It launches simultaneously bulk, surface and guided waves. It can therefore be used to 

detect volumetric, surface and subsurface defects; 
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" The optical beams can reach areas that are difficult to access, if optical fibres or mirrors 

are used to steer them; 

" It offers good electromagnetic environment tolerance. 

" It is good for calibratino purposes due to the excellent reproducability. 
The limitations of the technique are: 

" Safety issues, because of the high power laser radiation. 

" The excited acoustical waves have relatively low amplitude. 

" It is not completely non-destructive, as the surface of the structure is damaged. 

In order to obtain ultrasound of sufficient amplitude to be readily detected, most work in optical 

generation has been carried out on the use of high-power pulse lasers. The two main regimes 
for high-power pulse laser generation of ultrasound are : (i) thermoelastic regime, and (ii) 

ablation regime. These regimes provide different sources of ultrasound, with differing 

characteristics. 

In Thermoelastic regime, when the beam of a laser is directed onto a solid sample, the 

electromagnetic radiation interacts with electrons in the material close to the surface. Some of 
this incident radiation is absorbed by the sample, thereby heating its surface, whilst the 

remaining energy is reflected. Thermal conductivity distributes this heat through the sample 

causing temperature gradients which generate the stress and strain fields of the elastic waves 
by thermal expansion. The main temperature changes take place only within a few microns of 
the surface. In the first approximation we can consider this ultrasonic source as a centre of 

expansion with the principal stress components parallel to the surface and no perpendicular 

components. The amplitudes of the ultrasonic waves increase linearly with the applied power 
density. 

In Ablation regime, focusing the laser beam can cause such an increase of the power density at 
the surface that it will start boiling and material to the depth of several micrometers will be 

vaporised, forming plasma. This removal of material produces a reactive stress predominantly 

normal to the surface. In this regime, the generation of compression and surface waves is 

enhanced with increasing power density, but shear waves will reach a maximum near the onset 

of plasma and then decrease. 

As the ablation process is quite destructive and even the thermoelastic regime can cause 
damage to the sample, a low-power alternative for optical generation of ultrasound is required 
[187,188]. Modulated low power CW (continuous wave) lasers can be used to generate 

ultrasound, however the amplitude of the waves is very small and therefore the thermal noise in 

the optical detectors dominates the received signal. As the thermal noise is totally random, the 

ultrasonic wave can be separated from the noisy signal using a pseudorandom modulation 
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scheme of the optical beam. The optical ultrasound bandwidth provided in this way depends on 
the pulse rise time and is often not as large as that generated by high-power pulse laser. 

Using fibre optic technology a laser phased array for the generation of ultrasound can be 

achieved, Yang et al [189] have presented results from the application of a phased optical fibre 

array to transmit pulsed laser light to the surface of a test structure. The results indicate that the 

wave modes, beam width and directivity of the generated ultrasound can be controlled using the 

phased optical fibre array. A further development on the use of fibre optic arrays is the 

embedding of the optical fibres. Swift et al [190,191] reported the excitation of ultrasound in 

carbon composite plates. By adjusting the elements of the array, the direction of the generated 

ultrasonic beam could be controlled. 

4.3.4 OPTICAL DETECTION OF ULTRASOUND 

Combining the advantages of the optical generation of ultrasound with optical detection systems 

a complete optical inspection tool for materials can be achieved. Two fundamentally different 

options exist: non-contact detection using remote laser-beams or fibre optic sensor bonded onto 

or embedded into the material . 

Non-contact methods 

Optical detection systems for ultrasound deploy most often methods that measure laser light 

reflected back from the surface of the test structure [192]. The optical methods can be divided 

into noninterferometric and interferometric techniques [193]. For interferometric methods the 

light undergoes phase or frequency modulation caused by any transient ultrasonic displacement 

at the surface of the sample. Most common two-beam interferometers, such as a Michelson or 

Mach-Zehnder one, is used for the detection of ultrasound. In this devices the laser beam is 

divided into two beams. One beam propagates to a sample surface where there is an ultrasonic 

signal and the reference beam travels to a mirror. The two beams are then combined through a 

beam mixer. The interferometer translates any phase or frequency shift of the light into an shift 

in optical amplitude, which can be easily detected using a photodetector. Interferometers are 

commercially available and in use for vibration analysis. It has been shown that these kind of 

laser vibrometers can be successfully used to detect Lamb waves and subsequently any 

damage information that is encoded into the ultrasonic signals [194,195]. 

Optical fibres have also been tested for detecting ultrasound. Pierce et al [186] reported a 
Michelson interferometer probe which was sensitive to the out-of-plane displacements related to 

the ultrasonic displacement field. The ultrasonic field out-of-plane displacements change the 

optical path of light in the interferometric sensing arm, as it is reflected from the surface of the 

sample. This system requires a highly reflective surface and the use of short focal Graded 
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Refractive Index (GRIN) lenses can improve its sensitivity through effective re-collection of the 

scattered light. 

Contact methods 

Optical fibre sensors can be bonded or embedded in a material to detect ultrasound. Fibre optic 
devices can be found as point-to point scanning devices (Fabry-Perot and FBGS) or multipoint 

scanning devices (Mach-Zehnder and Polarimetric). 

A point-to-point scanning device is said to be found when the sensor dimension is small 

compared to the acoustical wavelength to be detected. Dorighi [61,196-198] described the 

implementation of an intrinsic Fabry-Perot sensor to detect the small high frequency strains 

associated with ultrasound. The primary advantage of the fibre Fabry-Perot interferometer over 

a two beam interferometer is that only one fibre length per sensor needs to be embedded, 

whereas two beam interferometers require a fibre length for each beam of the interferometer. 

The Fabry-Perot sensor has been successfully applied to structurally integrated cure monitoring 

of epoxy [197]. 

Another point-to-point sensor is the fibre Bragg grating. The detection of ultrasound is based on 
the variation of the FBGS reflectivity spectra, as the strain field of the ultrasound waves modifies 

some properties of the grating, such as the spatial period and the effective refractive index. The 

changes in the reflectivity spectrum caused by ultrasound will be mainly a shift proportional to 

its strain field and will be modulated at the same frequency as that of the ultrasound. A detailed 

description of the implementation of a FBG ultrasonic sensor and an appropriate interrogation 

system is presented in Chapter 5. 

A multipoint scanning device is the Mach-Zehnder interferometer. The Mach-Zehnder type of 
interferometric system [87] measures the change in phase of the light propagating through an 

optical fibre that is bonded to the sample plate. The pressure field of the acoustic wave acting 

on the fibre produces this phase modulation by changing the fibre's refractive index. This 

system is also referred to as a wavefront integration technique [97] because the light in the 

embedded or bonded optic fibre is modulated by a finite portion of the ultrasonic wavefront 

rather than by only one point of it. This means that by using only one detection transducer with 

one acoustic source a large area can be covered, in contrast to the aforementioned point-to- 

point scanning devices. 

The polarimetric type of ultrasound detection measures the changes in the polarimetric state of 

light propagating through an optical fibre which has been either embedded into or bonded onto 

the plate to be tested. Thursby et al [83,84] have described the directional properties of the 

sensor and its ability to detect a hole produced in a test structure. They also showed how the 
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relative sizes of the detected signal amplitudes from the source PZT and from the hole vary 

according to the alignment of the source with the sensor axis. 

4.4 CONCLUSIONS 

This chapter has discussed present NDT/E technologies and their potential for future 

applications in Health and Usage Monitoring systems. It turned out that ultrasonic inspection 

using guided waves shows high potential for implementation in future on-board damage 

detection systems. Therefore, guided ultrasonic waves and their application for damage 

detection have been investigated in detail. From the number of generators and detectors for 

ultrasound, fibre optic technologies offer a number of advantages compared to their 

(piezo-)electric counterparts. As the FBG sensor shows good performance for load monitoring 

systems, as shown in Chapter 3, the question is if this sensor could be also used for sensing 

guided ultrasonic waves. In consequence, this would enable a multifunctional Health and Usage 

Monitoring System based on only one type of sensor, the fibre Bragg grating. The 

implementation of a FBG sensor based ultrasound detection system is presented in the 

following chapter. 



5 FBG SENSORS FOR ULTRASONIC SENSING 

This chapter presents a novel approach towards damage detection based on Lamb waves and 
fibre optic Bragg grating sensors. This includes theoretical and experimental results with FBG 

ultrasonic sensors in Section 5.1. The critical feature of the Bragg grating is the grating length to 

acoustical wavelength ratio. A simulation of the sensor response under the influence of 

ultrasound was also carried out. The results of this study are presented in Section 0. The 

performance of structurally embedded sensors in CFRP composites is presented in Section 5.3. 

5.1 IMPLEMENTATION OF THE FBG ULTRASONIC SENSOR 

The major reason that makes an ultrasonic detection scheme using FBG sensors so attractive is 

their multifunctionality (e. g. strain, ultrasound, temperature, pressure). As Chapter 3 has shown, 

FBG sensors have high potential to serve as strain sensors in future load monitoring systems. 

this chapter demonstrates that FBG sensors are feasible for ultrasonic sensing, which means 

they can be employed for the detection of guided ultrasonic waves, such as Lamb waves, 

Rayleigh waves, longitudinal waves and vertically polarised shear waves and the corresponding 
damage identification schemes. The advantages of such a dual system have been highlighted 

already in Chapter 3. This section presents the results of the work carried out within the scope 

of this thesis. 

As shown in the previous section fibre optics is particularly attractive for ultrasonic sensing as 
the sensors offer broadband detection capability. Despite the fact that research on Bragg 

grating sensors has soared, only few publications deal with Bragg gratings as ultrasonic 
sensors. Fisher et al [199-201] have demonstrated the feasibility of short fibre Bragg gratings to 

measure MHz acoustic fields and temperature simultaneously. An application can be thought of 
for medical examinations. Another demonstration of a FBGS to measure ultrasonic pressure 

waves was carried out by Fomitchov et a/ [25]. They proposed applications for measuring 

ultrasound in liquids and solids. An underwater acoustic sensor with fibre Bragg gratings has 

been examined by Takahashi et al [202,203]. They made use of a tuneable laser source for the 
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interrogation of the Bragg grating. Liu et al [204] also used a tuneable laser source for the 

detection of seismic signals up to 1.7 kHz using FBG sensors. More recently, two studies on 

Bragg gratings for the detection of Acoustic Emission have been presented [205,206]. Yet, their 

frequency range is much less than needed for Lamb wave inspection. Theoretical 

considerations on the use of FBGS for ultrasonic sensing have been presented by Coppola et al 

[207]. Their study discusses some aspects as the influence of the ultrasonic strain field on the 

Bragg grating, but do not discuss any consequences for an interrogation scheme. The literature 

survey shows the growing importance of a FBGS-based sensing technique. However, the 

application of FBGS for the detection of ultrasonic Lamb waves with respect to the detection of 

damage, has not been demonstrated yet and is introduced in this chapter. 

5.1.1 THEORY OF ULTRASONIC SENSING USING FBGS 

The basic idea of the proposed interrogation method is to use a low noise, narrow line-width 

laser diode and a high sensitivity detector. If the wavelength of the laser is set to a certain part 

of the grating spectrum, any shift of the spectrum will as a consequence modulate the reflected 

optical power. The use of a tuneable laser source allows the interrogation of several gratings 

within a single fibre line. 

The sensor function of the FBGS has been defined in Chapter 2. The relation of the Bragg 

wavelength to the structural strain and temperature can be written as 

DAB 
_[l-Prf]. e; m+ (l-Pe ). 

a'+ 
1 do 

. OT (5.1) 
AB. nodT 

where the structural strain es is separated into its thermal C? dT and mechanical e=s, m strain 

components. n is the refractive index of the fibre, as is the thermal expansion coefficient of the 

structure, and (1-P°) is the strain sensitivity of the FBGS. In case of ultrasonic detection the 

influence of temperature can be neglected, as the time scale for changes in temperature is 

much larger than that of the dynamic strain field. 

A typical Bragg grating reflection spectrum is shown in Figure 5.1. The optical power reflected 

by the fibre grating P, opt depends on the wavelength X. It can be given as a function of the 

incoming optical power P�, pt and the wavelength-dependent reflection R(2): 

P,. 
op, 

(A) = Pn, opl ,R 
(A) (5.2) 

R(2) describes the entire grating spectrum and is a non-linear function of X, see Section 2.3.1. 
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The interrogation method concentrates on the part of the spectrum where the function is 

assumed to be linear. This is assumed to be true for 20 to 80 % of the gratings' maximum 

reflectivity Rmax. The corresponding wavelength range is marked as 62. For this part of the 

spectrum, on both sides of the main peak, the slope is constant with a value presented as 

dR/dA. For experiments that only include reflection spectra it is useful to normalise the 

reflectivity of the grating with the main peak giving by definition a reflection of 1. 

1% 

>1 

> 
U 
4) 

a) 

Wavelength 

Figure 5.1: Relevant parameters to describe the grating spectrum. 

While the input wavelength is kept constant, as a first step the laser should be tuned to any 

point in the spectrum where the linear approximation holds. Yet, in order to achieve the 

maximum range in both directions, the laser should be set to the wavelength at FWHM (Full 

Width at Half Maximum). This results in a linear relation of the shift of the optical spectrum and 

the reflected power amplitude. With the laser being fixed at the wavelength 20 (see Figure 5.1), 

the time-varying reflection of the grating can be given as a function of the time-varying 

wavelength of the main peak 2(t) and initial reflection R0: 

R(A ýt)) _AA (t)+ Ro (5.3) 
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The acoustical wave travelling through the material is described as a series of expansions and 

compressions, yielding a time-dependent strain field s(t). The next step is to find an equation 
that represents R as a function of the strain s(t). As a first assumption, the strain field is 

modelled here by a longitudinal strain wave propagating along the fibre axis. In addition, the 

time dependence is assumed to be sinusoidal. 

E (t) = Aus cos(k, x-w t) (5.4) 

Here Aus is the amplitude of the acoustic wave, kus = 2; r/2us is the wave number to the 

acoustic wavelength Aus, w is the angular frequency, and x indicates the direction along the fibre 

axis. In general, R is a complex function of c, since, due to an arbitrary strain distribution, the 

grating spectrum changes not only in wavelength but also in shape. However, if the acoustical 
wavelength is much greater than the length of the Bragg grating, the strain can be considered 
constant along the length of the grating. This on the other hand poses a limitation on the actual 
detectable size of the damage. In order to obtain a significant change in the acoustical wave, 
the acoustical wavelength should be at least at the same order of magnitude as the defects size 
or smaller. For a sufficiently long acoustical wavelength the spectral response of the grating will 
shift only in wavelength and keep its shape as in standard grating theory. The influence of a 
strain field with an acoustical wavelength comparable to the length of the grating or even 
smaller is studied in Section 0. 

If there is no difference between dynamic coupling and quasi static coupling between the strain 
field and the Bragg grating then for long acoustical wavelengths the dependence of the Bragg 

wavelength with respect to strain is linear and follows Equation (5.1). The wavelength shift will 
be modulated with the same frequency as the acoustic wave. From (5.3) and (5.4), the 

reflection as a function of strain can be written as follows: 

R(E(t)) _A 
dA 

e (t) +R (5.5) 
d2 dc ° 

This can be simplified to 

R(t) = Ro + 
dE 

" s(t) (5.6) 

with 

dR dR A 
de A de 

(5.7) 

Both terms on the right-hand side in Equation (5.7) can be obtained from calibration 

experiments, as described below. The first term dR/d2 is different for each grating. Its value is a 
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function of the grating reflectivity and the grating's bandwidth, both depend on the length and 
the strength of the grating. The second term d Xc depends on material parameters and 

corresponds to (1-Fle") in Equation (5.1). 

For the measurements, the results are not obtained in terms of reflection but rather in terms of 
reflected optical power. The optical power P, opt in Equation (5.2) is converted to an electrical 
voltage U(t) by means of the photo receiver. The equation that relates the measured electrical 
voltage to the strain field seen by the fibre grating can be described by: 

-1 

The time-dependent voltage can be expressed in terms of a DC and AC component: 

U(t) =va + AU(t) (5.9) 

Finally the acoustical strain is given as a function of the measured voltage: 

-1 

0 
E(r) = AU(t) - (5.10) 

where by definition the strain at t=0 and U= Uo is zero. 

Using Equation (5.10), it is possible to determine the acoustic strain levels from the fibre-optic 

signal, provided that the calibration has been carried out carefully. The next section presents 
the results of the calibration experiments where the grating parameters were obtained. First the 

optical set-up is explained, followed by a description of the experiments. 

5.1.2 INTERROGATION SYSTEM 

The idea of a combined system based on fibre Bragg gratings is very attractive. Yet, the 
demands on the optical interrogation system are stringent, because high absolute accuracy and 
ultra-fast interrogation have to be implemented in a single system. An approach including a 
tuneable laser source will be able to meet these requirements. This approach enables a dual 
loads and damage monitoring system, where the fibre optical systems runs in a scanning mode 
to record the load levels for the time the structure is in service. During maintenance however, 

when the structure is out of service, the system can be driven in the acousto-ultrasonic mode in 
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order to detect any structural damage. The loads sensing part of the system has been explained 
in Section 3.5.2. 

The optical interrogation system is based on a tuneable laser (TL), shown in Figure 5.2. An 

external cavity laser (ECL) is used because of its extremely narrow linewidth (below 100 kHz) 

and its wide tuning range of about 100 nm in the 1500 nm region. The gratings are interrogated 

in reflection, their signal being detected by a photo receiver (PD). Any oscilloscope or PC-based 

system can be used to acquire the data. This set-up enables the interrogation of several Bragg 

gratings (FBGS X, to kn) within a single optical fibre by means of wavelength division 

multiplexing (WDM). Each grating can be measured within a certain time, before the laser scans 
to the next wavelength, which is the wavelength of the corresponding grating at FWHM. In the 

intended application, where damage detection is carried out in certain inspection intervals, an 

interrogation sequentially in time is adequate. In conclusion, this permits monitoring of a large 

area of a structure with only one optical fibre and one ultrasonic actuator. For a detailed 

discussion of the lay-out of such a system see Section 7.2.7. 

TL = Tuneable Laser 

TL (-: 7] PD = Photodetector 
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Figure 5.2: Measurement set-up for acousto-ultrasonic sensing. System operates in WDM 

mode. 

System requirements 

The requirements for the system bandwidth are determined by the expected acoustical 
frequencies. Lamb wave propagation is typically characterized by the frequency-thickness 

product. It is an objective to have a low frequency-thickness product, since only then will two 

modes of Lamb waves propagate, which simplifies signal interpretation. A low frequency- 

thickness product is commonly seen as <1 MHz mm. Most structures have a thickness >1 mm, 

resulting in an upper limit for the acoustic frequency of 1 MHz. Standard optical receivers easily 

cover the required bandwidth; the same is true for a standard oscilloscope or any another A/D 

converter. 
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The required resolution in terms of voltage strongly depends on the respective test conditions 

and is determined by the expected acoustical strain field. The acoustical wave amplitude at the 

detector depends on numerous parameters e. g. transducer properties, material of the structure, 
location of the sensor with respect to transducer, mounting techniques, and the resulting 

acoustical coupling of both transducer and receiver. It has been found that a typical order of 

magnitude for strains related to ultrasonic Lamb waves is in the Astrain range. Equation (5.10) 

translates this into a requirement for the detectable voltage. 

System limits 

The major limits that are set for the resolution of the optical interrogation system contribute from 

two devices: the laser and the photo-receiver. 

" Laser noise. Two noise sources can be identified for a laser diode: Intensity (AM) and 
Phase (FM) noise [208]. The intensity noise is usually addressed by defining the relative 
intensity noise (RIN) by relating the noise of the optical power to the mean power as [208], 

RIN =2. 
°f <I &P(f)12 > (5.11) 

<P2> 

where Af is the system's bandwidth, <P2> is the mean power and <IAP(f)12> is the mean of 
the noise of the optical power. For any laser source manufacturers give the RIN in terms of 

unit bandwidth. In order to get the intensity noise of the laser one has to consider the 

bandwidth and the mean power used for the application. For the Radians laser used in the 

present work, the intensity noise is given as RIN/Af <160 dB/Hz. The mean power of the 

laser is I mW and the system bandwidth is less than 1 MHz. It follows from (5.11) that the 

mean power of the optical noise is less than 10 nW. 

The frequency noise of the laser has two main contributions which are referred to as white 
frequency noise and 1/f noise. White frequency noise adds a Lorentzian shaped spectrum 

and 1/f noise a Gaussian spectrum to the laser'spectrum [208]. This means the laser 

oscillates not only at a single wavelength, but the spectrum is of definite width. This width is 

given by the manufacturer as the linewidth of the laser. The linewidth of the Radians laser 

is smaller than 100 kHz. This corresponds to a linewidth of 0.8 fm at 1550 nm. For optical 
devices the minimum distance for separation of two spectral lines corresponds to the 

FWHM [209]. Therefore, the minimum detectable wavelength shift of the Bragg grating 

corresponds to the linewidth of the laser. This minimum wavelength can be translated into 

a minimum detectable strain of 0.6 nanostrain. 

" Photoreceiver noise. Every electro-optical system is limited by noise, which arises from 

physical processes in the electro-optic components. The level of noise in relation to the 
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signal is given by the signal-to-noise-ratio (SNR). In photodetection the noise determines 

the minimal incident power which can be detected. A detailed analysis of the noise 

components can be found for example in [210,211]. The signal-to-noise-ratio (SNR) can 
be written as the ratio of the total mean square signal current to the total mean noise 

current. The squared total mean noise current is the sum of the squares of the individual 

noise sources: signal shot noise, dark current shot noise, and thermal noise. The 

equivalent optical power related with detector noise currents can be calculated using the 

response (in units Amps/Watts) of the photodiode. The minimum detectable signal 

current is assumed to be that for which the total signal current equals the total noise 

current (SNR=1). In terms of power, this is the noise-equivalent-power (NEP). The NEP is 

usually quoted for unity bandwidth in units of WkHz. Usually, the manufacturer gives the 

NEP in the specifications of the photoreceiver. This is usually the sum of thermal, 

electrical, and dark current shot noise. The photoreceivers used within the present work 
have a NEP < 5pWHHz. If a system bandwidth of 1 MHz is assumed, the NEP is 

< IDP(f )IZ > : 55 PW 1MHz 
_< 

5nW (5.12) 
Hz 

From the experiments the mean optical power of the Lamb wave signals at the 

photoreceiver could be determined. The minimum signal level that occurred corresponds 
to 0.8 pW. This can be compared to the power of the noise, which has been shown to be 

dominated by the relative intensity noise of the laser. With the obtained values the SNR 

of the FBGS interrogation system can be estimated as 

SNR>_ 800nW 
_19dB lOnW 

(5.13) 

An experimental procedure to determine the SNR of the interrogation system is presented In 

Section 6.5. This procedure was applied to get the SNR of the optical interrogation system for 

single shot measurements: an SNR of 14 dB was found. The experimental SNR is less than 

what could be expected from the theoretical estimations. Yet, for the experiments other noise 

sources than optical ones could also contribute to the SNR, e. g. electrical noise or mechanical 

vibrations. In Section 5.1.4 the SNR for the FBGS and the PZT are compared. As they show the 

same level of SNR, it is likely that it can be concluded that other noise sources than from the 

optical interrogation system dominate the Lamb wave detection. 
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5.1.3 CALIBRATION OF THE SENSOR 

Equation (5.10) gives the key parameter for increasing the sensitivity of the system: dR/dc. In 

order to achieve a maximum sensitivity, it should have the highest possible value, hence, both 

values dRId2 and d2/dc, (see Equation (5.7)), should be maximised. Whereas the first 

parameter can be adjusted over a wider range by appropriate grating parameters, e. g. length, 

strength, the second one is a material constant and varies only slightly for different types of 
fibre. Bragg gratings from different manufacturers have been studied by DaimlerChrysler over 

the last few years [112]. The variation in the strain sensitivity is marginal and it can assumed to 

be a constant within the measurement uncertainties. The value which is used in this work is 

dA/de = 1.2 pm/pstrain for a grating at 1540 nm. To study the variation of dR/d2 with the grating 

parameters, several different types of gratings from one manufacturer were acquired. Grating 

specifications varied in reflectivity (10 %, 50 %, 90 %) and length (1 mm, 5mm). 
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Figure 5.3: Measured grating spectrum and linear fit between 20 and 80% of the peak 

value. 

For each grating, the reflection spectrum was measured. A high-resolution interrogation system 

as described in the chapter on load monitoring was used. Figure 5.3 shows a typical result. A 

linear fit gives the desired value of the spectrum's slope and also, the wavelength range where 

the linear approximation holds can be obtained. As stated above, the grating length should be 

as short as possible, since it has to be much shorter than the acoustical wavelength. The 

gratings that have been chosen as possible ultrasonic sensing elements have a length of 1 mm. 
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To validate the resulting value for dR/de, a simple experiment has been carried out where both 

strain and the change in reflected power were measured. This involved a cantilever on which an 

electrical strain gauge (ESG) and a fibre grating have been mounted. The layout is 

schematically presented in Figure 5.4. By deflecting the cantilever, a strain is introduced in both 

the ESG and the grating. In order to accurately control the deflection of the cantilever, a 

piezotranslator was used. The grating and the ESG are glued to opposite sides of the 

cantilever, leading to a different sign of the respective strain values. In addition, the expected 

strain levels could also be calculated using standard beam bending theory. Figure 5.5 sets out 

the result of the experiments. In this graph the starting point where the laser is set to 50 % of 

maximum reflection is marked as FWHM. The range where the grating response is linear with 

strain can be clearly identified. The deviation from the linear fit at higher strain levels can be 

attributed to a thermal drift of the sensor during the time of measurements. The numerical value 

for the sensitivity dR/dc is obtained by a fitting routine. The result is within 5% of the theoretically 

derived value when dR/dA, and d2/de are combined and, hence, validates the theoretical 

developments. 
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Figure 5.4: Cantilever experiment for calibration of the FBG ultrasonic sensor. 
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Figure 5.5: Result of the calibration experiment to obtain the grating sensitivity. 

Table 5.2 summarises the parameters of possible ultrasonic sensing elements, fabricated by 

1PHT Jena, Germany. The grating found best suited has a reflection of 50 %. This results in a 

compromise for maximum sensitivity dRId2 and maximum wavelength range bA with minimum 

FWHM, which is preferable with respect to multiplexing capabilities. 

Table 5.2: Parameters of different Bragg grating sensors. 

Wavelength 

[nm] 

Reflectivity 

[%] 

Length 

[mm] 

dR/dA, 

fpm11 

dA/de 

Ipm/pc] 

dR/dc 

[Ps'] 

FWHM 

[pm] 

.5 

[pm] 

1540 50 1 1.88* 10-3 1.2 2.3* 10-3 950 300 

1540 10 5 1.13* 10-2 1.2 1.4` 10-2 130 50 

1540 90 1 2.23*10-3 1.2 2.7"10-3 1380 300 

1548 99 5 non-linear - non-linear 3000 - 
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5.1.4 LAMB WAVE SENSING 

The experimental set-up for Lamb wave detection is given in detail in Section 7.1.1. A standard 
technique for Lamb wave excitation has been used, including an arbitrary waveform generator, 
RF amplifier, and PZT transducer discs. The optical interrogation system used is that described 

in section 5.1.2. A digital oscilloscope not only enables the representation of the signals from 

both PZT and optical system, it can also be used to store the data for further processing. The 

test specimen is a perspex plate. Perspex has been chosen as it is easily available, the material 

properties are well known, and, as an isotropic material, it simplifies Lamb wave analysis. Table 

5.3 presents the material parameters which are relevant to describe the acoustical properties of 
the sample: density, longitudinal vla, 9 and transversal vt,, �s acoustical velocities, thickness of the 

plate, FT product at 150kHz, and the longitudinal acoustic wavelength 2us, rong" 

Table 5.3: Acoustical properties of the test specimen. 

Material Density vo, g vira�s Thickness FT @ 150kHz 2usºng 

perspex 1.18 g/cm3 2.67 km/s 1.12 km/s 3 mm 450 kHz mm 18 mm 

The 2us,, a, g is several times greater than the grating length, and the FT product is smaller 1 

MHz mm, thus fulfilling the requirements defined in Sections 5.1.1 and 5.1.2. Furthermore, for 

this small frequency-thickness product, the first symmetrical Lamb wave mode is non- 

dispersive, which allows a straightforward signal interpretation, which is sufficient for a simple 

validation experiment at this stage. 

The distribution of the different types of actuators and sensors is shown Figure 5.6. The lines 

along which the acoustic wave travels are marked with a dotted line, the distances are given in 

mm. In contrast to the FBGS, a PZT can be used as both an actuator or sensing element. Both 

PZT and Bragg grating (FBGS) have been surface mounted. A mounting technique for the fibre 

grating with an optimal strain-transfer from the structure to the fibre has been presented in 

Chapter 2. 
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Figure 5.6: Dimensions of the Perspex plate and location of PZT and receivers FBGS. 

Figure 5.7 shows the actuator signal and corresponding receiver signals from both PZT and 

FBGS. The actuator signal is a5 cycle sine tone burst at 150 kHz. In this experiment PZT 2 acts 

as the transducer, PZT 4 and FBGS 1 are the receivers. The evaluation of both sensor signals 

reveals that the acoustic wave is dominated by the fundamental symmetric mode. The 

corresponding time matches the distance-velocity quotient for the velocity. On closer inspection 

the FBGS response shows several smaller signals besides the dominating symmetric mode at 

100 ps. A possible explanation for the signals around 150 ps is the interference of the 

antisymmetric mode with reflections of the symmetric one. At 300 ps the back reflection of the 

symmetric mode from the opposite edge of the plate can be observed. Using Equation (5.10) 

the related strains in the optical fibre can be found. With the calibration parameters given in 

Table 5.2, a strain level of ±4 Astrain was obtained, which is in good agreement with the 

assumptions made in Section 5.1.1. The signal-to-noise ratio is 13dB for both the PZT and FBG 

sensor for a single shot measurement and 26 dB for a 128 times averaged signal, which is 

presented in Figure 5.7. 
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Figure 5.7: Lamb wave response on Perspex plate (see Figure 5.6) using FBGS and PZT. " 

a) Excitation signal (PZT2); b) FBGS signal (FBGS1); c) PZT signal (PZT4). 

As illustrated in Figure 5.8 the Bragg grating exhibits high directivity. The upper part shows the 

response of FBGS 1 when the acoustic wave is launched perpendicular to the fibre by PZT 3. 

The lower part refers to the parallel case, when the actuator is PZT 2. For both experiments, the 

grating interacts at 100 ps with the symmetric mode. However, the amplitude in the 

perpendicular case is hundredfold less than for the parallel one. This can be interpreted as 
follows: It is known from Section 2.5.5 that the grating is most sensitive to strain along the fibre 

axis. In addition the mounting technique of the fibre ensures maximum transfer of strains 

parallel to the fibre axis. The other parts of the signal refer to interferences between different 

modes and reflections from the sample edges. The directivity of the FBGS becomes important 

when their ability for damage location is studied in Chapter 7. 
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Figure 5.8: FBGS signal for different orientation of the transducers with respect to fibre axis: 

a) FBGS perpendicular to the direction of acoustical propagation; 
b) FBGS parallel to the direction of acoustical propagation. 

Table 5.4 gives an overview of the state-of-the-art FBG ultrasound detection systems that have 

been published within the last few years. The table reveals the unique approach followed within 

the presented work. So far, no attempt had been made to sense ultrasonic Lamb waves using 

FBG sensors. Although it is difficult to compare the individual systems, as they have been 

designed for different purposes, it appears they cover a large range of acoustical frequencies 

from 1.7 KHz to 2.3 MHz. As the performance of the presented systems is not discussed in the 

publications a direct comparison of the achieved SNR or sensitivity is not possible. therefore, 

the table also includes one system that uses a Mach-Zehnder interferometric sensor to detect 

Lamb waves. The results of this system in terms of detected acoustical frequency and SNR 

compare very well to that of the present work. 
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Table 5.4: Published values for FBG ultrasound detection systems. 

Reference Sensor Acoust. frequency SNR Application 

[204] FBG 1.7 kHz - seismic signals 

[205] FBG 100 kHz - acoustic emission 

[202,203] FBG 35 kHz - underwater hydrophone 

[199,201] FBG 1.9 MHz - underwater hydrophone 

[25] FBG 2.3 MHz - underwater hydrophone 

[87,212] Mach-Zehnder 230 kHz 13 dB Lamb wave 

this work FBG 460 kHz 13 dB Lamb wave 

5.2 SIMULATION OF THE FBG SENSOR RESPONSE 

The spectral response of the Bragg grating to an ultrasonic wave strongly depends on the 

amplitude and the wavelength of the acoustical wave. For the initial considerations and 

experiments the acoustical wavelength was considered to be relatively long compared to the 

grating length. This initial assumption allows to calculate the response of the grating as for a 

constant strain field, i. e. the complete spectrum shifts according to Equation (5.1) and the shape 

of the grating remains unchanged. However, if the acoustical amplitude becomes smaller, the 

assumption of a constant strain level over the complete length of the grating no longer holds. 

The grating will interact with a non-linear variation of the strain along its length. The influence of 

the strain field on the shape and position of the grating spectrum taking into account the 

geometrical and elasto-optic effects are non-linear. The corresponding mathematical equations 

cannot be solved analytically. Therefore, a numerical analysis is required to study the influence 

of ultrasound on the spectral response of the FBGS. A commercially available software was 

available to carry out the analysis. The "Fiber Optical Grating Simulation for Bragg Grating 

FOGS - BG" by Apollo Photonics Inc. was chosen because it allows for scanning of the grating 

variables which enables the user to optimise the grating performance by varying a parameter in 

a defined range. 

To study the influence of the acoustical wavelength on the response of the grating, the 

acoustical strain was modelled according to 
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E(z, t) = A,, . sin 2; r. 
zt (5.14) 

where A,,, is the amplitude and Aus is the wavelength of the acoustical wave. Here, ze[O, L] is 

the location along the fibre axis and wtE[0,2n] is introduced as a phaseshift to model the time 

dependency of the wave. 

The strain field along the fibre axis for different ratios of 2us/L is illustrated in Figure 5.9. For Aus 

»L the strain is constant along the length of the fibre, and the complete spectrum will shift 

according to Equation (5.1). If the ratio is 2, then half a wavelength fits into the length of the 

grating. This means that the complete grating is stressed, yet the strain level varies with the 

position z along the fibre axis, as a consequence the grating period varies along the fibre axis, 
too. It is known from grating theory that such a chirp influences the spectral form of the grating. 
The spectrum broadens and the peak reflection decreases [16,17]. For a ratio smaller than 1, 

part of the grating is subjected to a compression field, the other part to an expansion field. Only 

numerical analysis can determine the influence on the grating spectrum. 

%, Vs/L =c 

kusL- 

%Vs/L _ 

FBGS 
z 0L 

Figure 5.9: Presentation of different acoustical wavelength to grating length ratios. 

In case Aus »L the strain field will shift the complete spectrum according to Equation (5.1). The 

results of the software simulation when Aus is 50 pstrain and Aus is 20 mm is shown in Figure 

5.10. The acoustical amplitude was chosen relatively high compared to the experimentally 

values of 4 Astrain for better visualisation of the Bragg wavelength variation. 
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Figure 5.10: Response of the grating spectrum to a uniform time-varying strain field. 

The parameters for the grating used during for the simulation were obtained by fitting the 

spectral response of a measured grating to the theoretical curve. The grating's parameter which 

are the same for all the presented simulations are: 

" modulation of the refractive index: 

" grating length 

" grating period: 

" Bragg-wavelength: 

" sensitivity (dR/dX): 

" laser wavelength: 

nAC = nDC = 1.2"10-4 

L=2.12 mm 

A= 530.655 nm 

a, g = 1534.97 nm 

S(20%-80) = 5.8* 10-2 %/pm 

ko = 1535.15 nm 

With the proposed interrogation method, where the laser is set to the wavelength at the FWHM, 

the response of the interrogation system to the ultrasonic wave can be studied using the 

simulation software. As the laser is fixed at one wavelength the response of the interrogation 

system is linear with the reflectivity at this specific wavelength. The reflectivity at a given 

wavelength can be obtained from Figure 5.10. The mesh of the contour plot gives the reflectivity 

Wavelength 
[nm] 

1537 
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at constant wavelengths and phase. The variation of the reflectivity for a constant wavelength 

shows the sinusoidal response of the interrogation system to a sinusoidal acoustical strain field. 

The question to be answered using the simulations is where the long wavelength limit starts, i. e. 

for which ratio 2us/L the response of the grating is that of a uniformly strained grating and 

therefore linear with the incident acoustical strain amplitude. This is interesting for two reasons. 
Firstly, one wants to have a linear response of the interrogation system, because linear systems 

are best to control. A linear system would also allow the use of the calibrated values for the 

sensor response. Secondly, there are practical considerations that set certain limits on the 

grating length. Typical grating lengths are in the order from I to 10 mm. Shorter gratings are 
difficult to manufacture and it's difficult to mark the correct grating position. For the proposed 
dual use of the gratings for load monitoring and Lamb wave sensing, another limit is defined by 

the load monitoring system. Strain gauges commonly used for load monitoring have gauge 
lengths around 5 mm. If the length is too short, the strain gauge is too sensitive to local strain 

gradients, which longer gauge lengths tend to cancel. In addition, 5 mm is a practical limit for 

handling the sensor. From the above mentioned conditions on the grating length it appears that 

practical limits are 1 mm for the short and 5 mm for the long limit. This means the grating cannot 
be made infinitely short, therefore the acoustical wavelength also has to be within certain limits 

in order to be considered "long enough". The limits are discussed in the following section. 

5.2.1 PARAMETER STUDY 

In order to find out the limit for the ratio AUA, the influence of the acoustical wavelength and 

amplitude on the grating spectrum was studied. The numerical software was used to directly 

simulate the output of the tuneable laser-based interrogation system. 

Acoustical wavelength 

The first parameter to be studied was the acoustical wavelength. As mentioned in the previous 

section, it is expected that for shorter wavelengths the response of the grating is no longer 

linear, and a deviation from the response for long wavelength signals appears. Figure 5.11 sets 

out the result of the study. The modulation depth of the reflection spectrum at the laser 

wavelength was calculated. For Aus» L the amplitude has its maximum. This amplitude is 

used as a reference, for all other amplitudes at different 2us/L. As the length of the grating was 
determined, the acoustical wavelength was varied for the simulations. The range of the 

wavelength was set from 1 mm to 100 mm. For an aluminium specimen, where vp M 5000 m/s, 

this corresponds to a frequency range from 50 kHz to 5 MHz, which is the typical range for 

ultrasonic testing. The simulation was carried out at two different amplitudes of the acoustical 

strain. For simulation one, the amplitude was 50 Astrain and for simulation two it was 5 Astrain. 
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Due to the normalisation to the maximum amplitude both results can be plotted in a single 

figure. It appears that the response of the grating does not depend on the strain amplitude, but 

only on the ratio of the wavelength to grating length. The decrease in modulation depth with 

decreasing 2us/L could be fitted to an asymptotic function: y= a-bcx, the fit parameters are given 

in Figure 5.11. 

From Figure 5.11 the limit for the minimum allowable wavelength to grating length ratio can be 

defined. If the limit is set to be 3 dB (50 %) of the maximum modulation depth, the minimum 

ratio is 1.2. This means that the acoustical wavelength should have at least 1.2 times the 

grating length. A more strict definition of the minimum ratio sets the decrease in amplitude to 

0.2 dB (95 %). Then the minimum acoustical wavelength is 4 times the grating length. For a 

typical application when the structure under consideration is an aluminium plate with a velocity 

of 5000 m/s for the symmetric Lamb mode, and the grating length is 1 mm, the minimum 

acoustical wavelength is 1.2 mm or 4 mm, for a3 dB and 0.2 dB limit, respectively. In terms of 

frequency this corresponds to a maximum frequency of 4.2 MHz or 1.3 MHz. As has been 

shown in Figure 4.3 the maximum frequency that allows only the two fundamental modes to 

travel is 1.6 MHz. For practical applications this means that a FBGS of 1 mm grating length can 

be used for Lamb wave detection for almost the complete frequency range of interest. Section 

5.2.2 presents the results of the experiments, which were carried out in order to verify the 

results of the numerical simulations. 
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Figure 5.11: Normalised modulation depth as a function of 2U5/L. 



5.2 Simulation of the FBG Sensor Response 108 

Acoustical amplitude 

The second parameter that was studied is the acoustical amplitude. Figure 5.12 presents the 

results of the simulations. The maximum reflection of the grating spectrum was calculated with 

increasing strain amplitude. For Ans» La linear increase in the maximum reflection according 
to the calibration data could be expected. For the grating under consideration this means 

applying a strain amplitude of 50 Astrain would increase the reflection from 6.7 % to 10.2 %. 

Figure 5.12 shows that this is exactly what was found using the simulations. The limit of 

Aus "L holds for the plots of 2us/L =5 and 2us/L = 25. For any ratio that is smaller than that, a 

non-linear behaviour of the grating leads to significantly decreased levels of the maximum 

reflection. The simulation also reveals the limit for the linear region as defined in Section 5.1.1. 

The maximum increase in amplitude relative to the starting reflection, which was 50 % as the 

laser is set to the wavelength of the FWHM is 80 %. For the simulation this means the linear 

region ends at about 10.8 %, as indicated in the plot. the red line shows the region of the 

constant slope between 6.7 % and 10.8 %. For higher strain amplitudes the response deviates 

from that slope. The maximum reflection that can observed is of course the maximum reflection 

of the grating, which is 13.4 % at the peak wavelength. If the strain amplitude is increased 

further, the maximum reflection decreases again, as the spectral peak was passed. 
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Figure 5.12: Maximum reflection from the grating spectrum as a function of the acoustical 

amplitude for different ?, us/L. 

The results of the simulations show that the main parameter which influences the grating 

response is the acoustical wavelength. Further studies that considered the change in the 
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spectral shape such as the FWHM showed that even for very small ratios of AUSIL no change in 

the FWHM could be observed. The minimum detectable change in the FWHM is 1 pm, which is 

the highest resolution of the software. The study showed that for acoustical wavelengths and 

acoustical strain levels which are typical for Lamb wave testing the proposed interrogation 

system in combination with grating lengths for the FBGS around 1 mm ensures linear relation of 

the observed sensor signal with the applied acoustical amplitude. 

5.2.2 EXPERIMENTAL VALIDATION 

As presented in the previous section, the results from the numerical simulations predict a strong 
decrease in modulation depth when the wavelength to grating length ratio goes down. The 

experiments were carried out to study the response of FBGS with individual grating lengths to 

the incident acoustical waves. The experimental set-up is described in detail in 

Section 7.1.1. The layout of the experiment is depicted in Figure 5.13. 

2mm p- 3mm 

1mm 5mm 

5° 

250 mm 

PZT 

Figure 5.13: Layout of the aluminium sample for testing the influence of the acoustical 

wavelength to the grating response. 

The gratings were glued onto the surface of a rectangular 500 x 500 x1 mm aluminium sample. 
A Pl Ceramic PZT PIC255 was used to launch the Lamb waves. For reference measurements 

an additional PZT was available. A disk transducer was used to launch a radial symmetric 

acoustical wave field. For the choice of the PZT material see Section 7.1. All gratings were 

placed at equal distance from the PZT transducer in order to ensure same acoustical amplitude. 
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As the gratings had four different lengths, i. e. 1 mm, 2 mm, 3 mm and 5 mm, a different 

modulation depth for each grating could be expected at the same acoustical frequency. 

Figure 5.14 shows the result of the measurements for a FBGS with a grating length of 1 mm. 

Although there is a strong increase in modulation depth with increasing acoustical wavelength, 

this number decreases again after a maximum modulation depth was reached at a wavelength 

of 18 mm. This does not agree with the predictions from the simulations which suggested a 

constant modulation depth for higher wavelengths. The analysis of the experiment revealed that 

the recorded modulation depth represents the frequency characteristics of the PZT transducer. 

As explained in detail in Section 7.1, the resonance spectrum of the PZT is responsible for the 

obtained modulation depth characteristics. 
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Figure 5.14: Initial result for the modulation depth as a function of the wavelength-to-grating- 
length ratio. The grating length is 1 mm. 

The only possibility to get the correct characteristics of modulation depth is to compare the 

modulation depths for all gratings at equal acoustical wavelengths. In order to compare the 

results of the simulation with the experiment the following assumption has to be made. For 

aus» L the modulation depth has its maximum, which in this case is true for the 1 mm grating. 

If all results are normalised to the value of the 1 mm grating, all results can be compared with 

the simulation. Table 5.5 presents the measured values for the modulation depth at different 

acoustical frequencies. 
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Table 5.5: Calculation of the relative modulation depth. 

Grating 
Mod. depth [pm] 

@260kHz 

Rel. Mod. Depth 

@260kHz 

Mod. depth [pm] 

@400kHz 

Rel. Mod. Depth 

@400kHz 

1 mm 0.38 1 0.41 1 

2 mm 0.38 1 0.40 0.98 

3 mm 0.37 0.97 0.40 0.98 

5 mm 0.22 0.55 0.21 0.51 

The results of the experiment together with the results from the numerical simulations are 

shown in Figure 5.15. A good agreement of the experimental and simulated results can be 

observed. Starting at the maximum modulation depth for Aus »L there is a decrease in 

modulation depth with decreasing wavelength-to-grating-length ratio. However, there is a much 

sharper cut for the minimum allowable wavelength to grating length ratio than anticipated from 

the parameter study. The reason for this could not be explained, but would be subject to further 

work. 

L 
ä 

0.8 
c 0 cc 

0.6 
0 
E 
V 

0.4 
cc 

z 0.2 

0.0 

1.0 

0 

simulation 
o experiment@400kHz 

experiment@260kHz 

0 10 20 30 40 
Wavelength to grating length ratio AA 

Figure 5.15: Modulation depth as a function of the wavelength-to-grating-length ratio. Results 

from the numerical simulations and the experiments on an aluminium sample. 
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5.3 STRUCTURAL INTEGRATED SENSORS 

The use of composites as engineering materials for aeronautic, automotive, and naval 

structures has considerably increased over the last ten years due to several advantages they 

offer over other conventional metallic materials [213]. These advantages include high strength- 

to-weight ratios, good fatigue resistance, good corrosion resistance, and flexibility to tailor the 

mechanical properties according to loading and kinematic boundary conditions. Yet, the 

extensive use of composite materials as primary structural members in applications such as civil 

aircraft or automotives has been delayed due to the fact that the reliability of components needs 

to be demonstrated, since the presence of damage may degrade severely their mechanical 

properties. In the maintenance of transportation and civil structures, the ability to evaluate the 

integrity of the structure without removing individual structural components has therefore 

become an important technological task [165,214,215]. As part of this trend, multifunctional 

structures have aroused keen interest among the engineering and scientific community. 

Multifunctional structures, also called smart structures, integrate sensors or actuators into 

structural components to extend the structure's capabilities in comparison to pure conventional 

structures [59,128,216-219]. By incorporating a "nervous system" into the material, structures 

can be developed with the ability to sense environmental changes and even autonomously 
interpret or react to these changes. In particular fibre-optic sensors have been discovered to be 

well suited to integrating sensory capabilities into structural components as their small 

diameters do not disturb the integrity of the structure [220]. Applications range from strain, 

acceleration or displacement sensing to temperature and pressure measurements and acoustic 

emission detection [198,221-223]. FBG sensors have been well exploited for their use as 

structural integrated sensors. Their functions as embedded sensors is most widely considered 
for integrated strain monitoring [55,71,114,224-242]. 

As the objective of this work is to explore the possibility of the dual use of FBGS as strain and 

ultrasonic sensors, initial experiments have been carried out to demonstrate the detection of 
ultrasonic Lamb waves with structural integrated sensors. 

5.3.1 LAYOUT OF THE TEST SPECIMEN 

A CFRP (carbon fibre reinforced plastic) test structure was built up in order to measure the 

response of embedded FBGS under the influence of ultrasound. 
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Figure 5.16: Layout of the composite sample with embedded FBGS. Layer orientation 

(0/90/0/90/0)2. 

A simple 300 x 300 x1 mm structure for the composite sample was chosen. The sensors were 

integrated in the specimens using a laboratory technique. In order to protect the optical fibres at 

the ingress/egress locations sleeving PTFE was used The sensors were embedded parallel to 

the surrounding reinforcement fibres in order to avoid the formation of resin-rich pockets. The 

arrangement of the unidirectional prepreg layers in a (0/90/0/90/0)2 lay-up is presented in Figure 

5.16. The lay-up was chosen in way that a fibre integrated in the mid-plane has the same 

orientation to the surrounding carbon fibres as a surface mounted sensor. The specimen was 

cured in an autoclave for two hours at 170° C and 4 bar pressure. 

A schematic diagram and a photograph of the test specimen are given in Figure 5.17. Two PZT 

patches were mounted on the surface of the composite plate in order to launch and receive 

Lamb waves. One FBGS (FBG 1) was embedded in the material, as illustrated in Figure 5.16. A 

second FBGS (FBG 2) was surface mounted on the specimen at the same position of the plate. 

Figure 5.17 shows an off set between the two sensors, but only for better visualisation. This 

layout was used to sense the Lamb waves launched by PZT 1 with three sensors: one surface 

PZT, one surface FBGS, and one embedded FBGS. The signals were then analysed and 

compared. 
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Figure 5.17: Test specimen: Composite sample with embedded FBG ultrasonic sensors: 

a) Schematic layout of the test specimen; b) Photograph of the test specimen. 

5.3.2 EXPERIMENTAL RESULTS 

The same experimental set-up as described in Section 7.1 was used for Lamb wave testing. 

using piezoelectric generation and fibreoptic detection of ultrasound. The response of the 

sensors was studied at two different frequencies, i. e. 70 and 230 kHz. At 70 kHz the 

antisymmetric Ao mode dominates the signal, whereas at 230 kHz the symmetric So mode is 

more apparent. The excitation signal was a 5-cycle toneburst signal, travelling along the optical 
fibre axes. 

So-mode 

The signals recorded on the composite plate are shown in Figure 5.18. They have been 

averaged 64 times using the oscilloscope. It is interesting to compare the results for the surface 

mounted sensors and for the surface mounted and embedded FBGS. The excitation signal 

used is shown in Figure 5.18a. Figure 5.18b and c present the signals for the surface mounted 
PZT and FBGS, respectively. The incident Lamb mode arrives at first at the FBGS before it 

reaches the PZT. From the time-of-flight (TOF) and the known distance the velocity of the So 

mode was determined as 6750 m/s. For all sensors the incident wave is clearly visible. At 

150 is the PZT receives the reflection of the wave, for the FBGS these happens already at 

125 ps. 

Both, the embedded and the surface mounted sensors in Figure 5.18c and d, respectively, 

clearly detect the So mode. The time is identical as the sensors are located at the same 
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position. Also, the amplitudes are similar. The mode shape of the So mode as presented in 

Figure 4.2 and Figure 4.5 reveals that for the So mode the longitudinal displacement amplitudes 

are uniformly distributed over the thickness of the plate. As the FBGS is sensitive to the 

longitudinal strain field, same amplitudes for embedded and surface-mounted sensors could be 

expected. This is exactly what the experiment shows. 
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Figure 5.18: Lamb wave response recorded on the composite sample using the symmetric 
Lamb wave at 230 kHz: a) Excitation signal; b) surface mounted PZT sensor, c) 
surface mounted FBG sensor; d) embedded FBG sensor. 

Ao-mode 

The same measurements as for the So mode were repeated at 70 kHz for the AO mode. The 

recorded signal responses are presented in Figure 5.19. For the AO mode the Lamb wave 

velocity could be determined from the TOF to be 1400 m/s. The signals show a dominant Ao 

mode at 70 kHz, yet a distorted So mode can be identified in advance of the Ao signal. The 

surface mounted sensors recorded both modes, whereas for the embedded FBGS no signal 

can be assigned to the AO mode. This fundamental difference compared to the So mode, can be 
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explained if the mode shape of the Ao mode, shown in Figure 4.5 is considered. It appears that 

in contrast to the So mode the amplitude of the longitudinal displacement strongly depends on 
the position along the thickness of the plate. The amplitude becomes zero for the mid-plane of 
the plate. For the embedded FBGS this means it is not able to detect the Ao mode, as no 
longitudinal strain field is present to which the sensor is sensitive. The difference in the recorded 

signals for the So and Ao mode completely agree with the prediction from Lamb wave theory as 

presented in Section 4.2.2. Furthermore, the lack of any signal for the embedded sensor when 

no longitudinal strain field is present, proves the initial assumption from Section 5.1.1 correct, 
i. e. the response of the FBGS is determined by the interaction of the fibre with the longitudinal 

displacement of the ultrasonic field. 
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Figure 5.19: Lamb wave response recorded on the composite sample using the 

antisymmetric Lamb wave at 70 kHz: a) Excitation signal; b) surface mounted 
PZT sensor, c) surface mounted FBG sensor; d) embedded FBG sensor. 
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5.4 CONCLUSIONS 

This chapter has introduced a novel approach for the detection of ultrasonic Lamb waves using 
FBGS. The theoretical background and the practical implementation of a FBG sensor based 

system has been studied. 

The interrogation system deployed a tuneable laser that allows an amplitude modulated 

measurement of the Lamb wave signal. The optical specifications of the interrogation system 

were analysed and the theoretical limit for the SNR was found. Yet, experimental testing 

revealed that the practical limit is much smaller. The sensor transfer function has been obtained 

and the critical parameters for high quality measurements have been identified. Different 

commercially available gratings have been studied in order to identify the best combination of 

the parameters. The grating found to be best suited is a compromise for maximum sensitivity 

and maximum wavelength range with minimum FWHM, which is preferable with respect to 

multiplexing capabilities. 

Initial tests have been carried out to record Lamb wave signals using FBGS, which are 

unprecedented in the literature. In addition, PZT transducers have been available as a 

reference. The comparison of the results showed that the signals recorded using FBGS have 

the same SNR as those from the PZT. This means that the proposed fibre optic system can 

compete with its conventional counterpart in terms of resolution. 

The high directivity of the fibre optic sensor has been demonstrated. This can be used to 

Implement a novel damage location scheme, as shown in Section 7.2. 

Numerical simulations have been performed to study the influence of the ratio of the fibre 

grating length and the acoustical wavelength on the sensor signal. The results from the 

numerical simulations predicted a strong decrease in modulation depth when the wavelength to 

grating length ratio goes down. This behaviour has been experimentally validated. This results 

can be used to calculate the maximum allowable ultrasonic frequency for Lamb wave inspection 

for a FBGS with a given grating length, or to calculate the maximum grating length for any given 

ultrasonic frequency. 

As a further step towards the implementation of smart structures, initial experiments using 

structural integrated FBGS for the detection of Lamb waves for the first time revealed the 

different sensitivities of the embedded sensor to different Lamb wave modes. This phenomenon 

could be explained using the mode shapes of the Lamb wave modes. Furthermore, it could be 

shown that the FBG ultrasonic sensor can be treated as sensor being sensitive to the 
longitudinal and not to the transversal strain field of the ultrasonic waves. 



6 SIGNAL PROCESSING FOR DAMAGE 

IDENTIFICATION 

This chapter describes mathematical tools used for damage identification. The basic idea of the 
damage identification algorithms is to recognise the difference in the signals related to damage 

and translate this information into a diagnosis of location and severity of damage. The first 

objective and first level of the overall problem of damage identification is damage detection. 

Higher levels of the identification include severity and classification of damage, location of 
damage and finally, prediction of the remaining service life of the structure [243,2441. Apart 

from lifetime prediction, which is the subject of Chapter 8, all other damage identification issues 

are covered in this chapter. A variety of novel mathematical tools are examined to effectively 

solve the damage identification problem. 

The tools used for feature extraction are briefly introduced and their results are illustrated using 

a simple waveform. The methods are demonstrated using the excitation signal for the ultrasonic 

waves. Its properties are presented in the first section. The following two sections describe the 

tools used for feature extraction and data reduction in time and frequency domain, respectively. 
Then the concept of the Hilbert transform is introduced which will help to identify the different 

packages within the sample record. Wavelet analysis has been used for denoising of the 

signals, for feature extraction, for compression of the data, and for time-frequency analysis. The 

basic concepts of wavelet analysis are described in the corresponding section. Finally, Genetic 

Algorithms are introduced and their properties are briefly reviewed. Genetic Algorithms have 

been applied to the damage location problem. 

6.1 BURST SIGNAL 

Signal processing methods presented in this chapter are illustrated using a broadband- 

frequency signal shown in Figure 6.1. 
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Figure 6.1: Tone burst signal used to launch the ultrasonic Lamb waves. 
Carrier frequency equal to 300 kHz. 

A burst signal has been chosen because it is localised in time and can easily be identified within 

the sample record, as long as dispersion effects can be neglected. Burst signals also present 
the most common approach for Lamb wave analysis and have been used previously in various 

studies [87,154-156,158,160]. The use of burst signals allows the measurement of the time it 

has taken for a signal to travel from the sender to the receiver and to calculate either the 

velocity of the wave, in the case where the distance the signal travelled is known or vice versa, 
i. e. the distance the signal travelled assuming the velocity of the wave is known. A window 
function has been applied to the initial tone burst signal in order to minimise spillover 
frequencies. Also, the number of cycles of the carrier wave is a compromise between a very 

small number that makes the signal shorter in time domain and a larger number that would give 

a more narrowband signal in frequency domain. Kessler [164] argues that an appropriate 

number of cycles can be determined by the maximum number of waves that can be sent in the 

time it takes for the lead wave to travel to the sensor. Wilcox [245] offers a detailed analysis for 

the optimum number of cycles. However, to keep things simple, the signal chosen here is a 4.5 

cycle sine signal, windowed by a Hanning window. The Hanning window which is one period of 

a sine squared function gives a gradual transition of the discontinuity and is one of the most 

common used time windows in signal analysis [246]. An integer number has been avoided 

because of the symmetry of the signal in time domain, which makes peak of the signal easier to 

detect visually. 
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Kehlenbach [43,247] suggested the use of chirped signals instead of burst signals to avoid 

ambiguities in signal identification for dispersive wave forms. He showed that for composite 

materials better resolution in damage location and size determination can be obtained if chirp 

signals instead of burst signals are used. However, for the experiments carried out within this 

thesis dispersion was negligible, and therefore the more common burst signals have been used. 

6.2 TIME DOMAIN ANALYSIS 

Guided ultrasonic waves used for damage detection in Chapter 7 are continuous electrical 

signals generated by piezoceramic transducers and sensed by fibre Bragg gratings. Such a 

signal is referred to as a time-history [246]. A sample record is defined as the time-history 

representing a single measurement over a finite length of time. In general Lamb wave 

responses represent non-stationary data, due to the fact that burst signals are used for 

excitation. Burst signals are localised in time and can be easily identified within a sample 

record. Yet, the launch of different ultrasonic modes with different velocities and the presence of 

reflections from the structures boundaries cause the time-history to consist of many single burst 

signals, called packages. If there is no change in the condition of the structure, the time-history 

will be the same at any time the signal is recorded. This is because all sample records are 
initiated by a trigger event, which ensures the basic properties of the signal do not vary with 
time. If however, due to the presence of damage, the sample record at a given time is different 

to that recorded at a previous time, this difference has to be recognised and analysed. This 

approach is often called pattern recognition in damage detection. Reference data representing 
"no damage" (or "normal") condition serves as a template. The difference between patterns 

representing current monitored conditions and the template indicate possible damage of the 

structure. This section describes the parameters that have been used for feature extraction and 
data reduction in the time domain. The first part of this section introduces the concept of a 
discrete time series and related mathematical implications. 

6.2.1 DISCRETE TIME SERIES 

Most experimental measurements are carried out digitally, i. e. a typical function x(t) of the 

process to be measured is acquired by an analogue-to-digital (A/D) converter. The A/D 

converter samples the signal x(t) at a series of regularly spaced times, as depicted in Figure 

6.2. If the sampling interval is At, where At is constant then the discrete value of x(t) at time t=n 

dt is written as x,,, and this sequence for n=0,1,2,3, ..., N is called a discrete time series 
[248]. 
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Figure 6.2: Sampling a continuous function of time at regular intervals. 

The basic mathematical principles used for signal processing can be applied to both 

continuous/analogue or discrete/digital signals. Yet, the appearance of mathematical equations 
depends on whether analogue equations or digital algorithms have to be applied. 

The major difference between analogue and digital equations, is that the integral over the 

continuous variable t is transferred into a sum over the sampling intervals dt. This is 

represented mathematically as 

TN 

x(t)dt 
>x(n&) 

(6.1) 

0 "_° 

The integral of the continuous function is from 0 to T, whereas the sum over the sampled signal 
is from 0 to N, i. e. Ndt = T. This is the basic principle, which has to be adapted to any individual 
function in the time domain. By analogy, a similar expression can be found in frequency domain. 
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6.2.2 TIME DOMAIN PARAMETERS 

In general, signals acquired from sensors are in the time domain. The simplest parameters 

which describe time domain properties of signals and which have been used for damage feature 

extraction are: 

Maximum Value 

0 Minimum Value 

0 Mean Value defined as 

Root Mean Square (RMS) defined as 

Xmax 

Xmin 

T 

x=T jx(t)dt (6.2) 

0 

T 

x, us =1 
j'x2(t)dt 

(6.3) T 
0 

These parameters describe extreme and mean properties of the signal. In particular the RMS is 

used to indicate the average energy. Often statistical moments are important parameters to 

describe the deviation of a signal from the mean. The mean and the mean-square values are 

called the first and the second statistical moment respectively. The variance can be introduced 

as the difference between the mean square and the square of the mean value. Higher statistical 

moments are more sensitive to deviations in the data. The normalised fourth moment is called 

the kurtosis [249,250]. 

T 

Kurtosis, defined as j'(Q)4dt 
(6.4) 

Äý 
4 xRMS 

Kurtosis is often used to analyse the spikiness of the data. 

Examples 

The time domain analysis has been applied to the burst signal shown in Figure 6.1. The results 

are summarised in Table 6.1. Here, the mean value is not equal to zero, as the signal is not 

symmetrical. 

Table 6.1: Time domain analysis applied to basic tone burst signal. 

Parameter Result 
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Maximum value 0.5 V 

Minimum value -0.47 V 

Mean value 6.5*10 

Root mean square 0.14 V 

Kurtosis 7.12 

6.3 FREQUENCY DOMAIN ANALYSIS 

This section describes parameters that have been used for feature extraction and data 

reduction in the frequency domain. The first part of this section reviews the general concepts of 
frequency analysis. 

6.3.1 FOURIER TRANSFORM 

Frequency domain descriptions of time-dependent signals, such as vibrations and ultrasound, 
are generally of great engineering value. The Fourier Transform (FT) plays a major role in both 

theoretical definitions used to describe signal properties and algorithms used for signal 

processing. 

The Fourier Transform pair can be defined as 

T 

U {x(t)}=X(f)= x(t) e12if'dt (6.5) 

0 

T 

eF-1{X(. f)}=x(t)= X(f) e12n'df (6.6) 

0 

where the former is the forward transform of x(t) whereas the latter is known as the inverse 

transform. 

Discrete Fourier Transform 
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When the signal x(t) is digitised, i. e. x(t) = x(ndt) the Discrete Fourier Transform (DFT) and the 

inverse DFT can be introduced as 

N-1 

X (m) = At x(nOt)e uA'W "°r (6.7) 
n=O 
N-1 

x(n) =At X (mAf) e12x m4l nAt (6.8) 

m=0 

respectively. 

These transformations give the spectrum values X(m) at the N discrete frequencies mdf and 

give the time series x(n) at the N discrete time points ndt. An efficient way of calculating the 

DFT makes use of the Fast Fourier Transformation (FFT) [251]. The FFT algorithm calculates 

the spectra of blocks of data. The advantage of FFT is that it reduces the number of operations 

to obtain the result, but still has the same properties as the DFT [252]. 

Various parameters can be used to compare two different spectra. The arithmetic and 

geometric mean of the spectrum defined as 

A. = 20 1og 
1 `_ 

i=1 
T6 

2 

G. =INN 201og 
A' 

N r=i 
ý10-s (6.10) 

respectively, describe the difference in the amplitude of the spectral components A. 

Example 

Figure 6.3 shows the amplitude spectrum of the basic tone burst signal of Figure 6.1 as a result 

of the Fourier transformation. The main frequency component is at 300 kHz which is the carrier 
frequency of the signal. As a tone burst signal rather than a continuous wave is used, the 

spectrum extends over a certain range in frequency domain. 
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Figure 6.3: Frequency spectrum of the basic tone burst signal. Carrier frequency is 
300 kHz. 

6.4 HILBERT TRANSFORM 

The Hilbert Transform (HT) K relates the real and the imaginary component of the Fourier 

transform of a signal. It can be applied to calculate the envelope of any analytical signal. The 

envelope of a signal provides a tool to identify the maximum and position of each wave package 

within the sample record even for dispersive media. 

The concept of th Hilbert transform can be applied to any causal signal. A causal signal is a 

signal that is equal to zero for negative time values. It can be shown that for any causal signal 
the real and imaginary part of the Fourier transform are related by 

AR (f) =Al (f) *1 (6.11) 
;rf 

where Ai(( and AR(t) are the imaginary and real part of the Fourier transform, respectively. 

The relation between A, (O and AR(f can be expressed in a more general way as 
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ýC{Gýý)}=Ö(f)= 1 IG(O dq$ (6.12) 

Equation (6.12) is in fact the definition of the Hilbert transform in the frequency domain. This can 
be expressed in the time domain as 

go 

3C{a(t)}=2i(t)=-1 
Ja(r) 

-- (6.13) 
;r -r ;rt 

where * denotes the convolution and the standard definition of the convolution has been used 
being 

Go 
g(t)= f(t)*h(t)= Jf(r)h(t-D)dr (6.14) 

The HT concept can be applied to analytical signals. An analytical signal is a complex time 

signal whose imaginary part is the Hilbert transform of the real part. 

If 

then 

and a(t) is called an analytical signal. 

ä(t) =JC{a(t)} (6.15) 

ä(t) =a(t)+iaa(t) (6.16) 

The physical background of the analytical signal is as follows. Real and imaginary parts of the 

analytical function can often be related to the two forms of energy always associated with a 

vibration oscillation; the potential and kinetic energy. Therefore for a complex signal when its 

real part (the square of it) represents the potential energy, then (the square of) the imaginary 

part would represent kinetic energy. 

The amplitude of the analytical signal is known as the envelope function. For narrowband 

signals the envelope can be defined as 
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A(t) = a(t)` +ä (t y (6.17) 

Physically, the square of the amplitude function represents the total energy at any time. 

Referring to guided ultrasonic waves, the envelope represents one package. It is known from 

the wave theory that this package travels with the group velocity of the wave. 

Example 

In order to demonstrate how the envelope function works, equation (6.17) has been applied to 

the burst signal shown in Figure 6.1. The result is given in Figure 6.4. For better visualisation of 

how the envelope encloses the original signal both the positive value for the root and the 

negative value have been drawn. What becomes obvious by this representation is how the 

envelope helps to identify the maximum amplitude of the peak and its position in the signal. This 

becomes even more useful if the analysed signal suffers from dispersion. 
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Figure 6.4: Envelope of the basic tone burst signal. The black line is the original signal, the 

red line is the positive and negative envelope signal. 
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6.5 WAVELET ANALYSIS 

This section introduces the basic concepts of the wavelet analysis. The continuous and the 

discrete wavelet transform as tools for analysing non-stationary data are introduced. Examples 

of applications relevant to damage identification conclude the section. 

6.5.1 INTRODUCTION 

In signal processing a major interest is the frequency composition of x(t) which is often 

approached by the Fourier transform (6.3.1) in order to get the spectrum of the process of 
interest. A disadvantage of Fourier analysis is that frequency information can only be extracted 
for the complete duration of a signal x(t) or for stationary signals. Since the integral in the 

Fourier transform extends over all time, the information it provides arises from an average over 
the whole length of the signal. Any local oscillations which represent a particular feature will 

contribute to the calculated spectrum, but the information about its location in time will be lost. 

This is a particular drawback of the Fourier transform for analysing signals such as the tone 

burst Lamb wave signals used for damage detection. For these signals it is essential to get not 

only the frequency, but also the time information for the identification of all the burst signals. A 

different method is therefore needed to overcome this limitation. 

One approach is the introduction of the so-called short time Fourier transform. This is a process 

to analyse a non-stationary signal in time domain through a segmented algorithm. The original 

signal is broken up into a series of segments by moving a window with constant length in time, 

such as the Hanning window. Each segment can then be processed by the well-known fast 

Fourier transform. In the end, all the results in the frequency domain are summed up. 

Another option to overcome the disadvantage of the Fourier transform is wavelet analysis which 

provides an alternative way of breaking a signal down into its constituent parts. Wavelet 

analysis has become a powerful tool in signal processing. It can be classified into continuous or 
discrete wavelet transforms. By analogy to the Fourier transform, the wavelet transform is a 
linear transformation that decomposes a given function x(t) into a superposition of elementary 
functions. 

A wavelet is a function yr(t) of the real argument t. This function oscillates as a wave, but is also 
localised in time, thus the name wavelet. It is represented mathematically as 
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V., b 
W- tab (6.18) 

where b is a translation parameter indicating the locality, a is a dilation or scale parameter. 

6.5.2 CONTINUOUS WAVELET TRANSFORM 

Continuous wavelets provide a powerful tool for time-scale analysis. 

The continuous wavelet transform is defined as [253] 

Ww [xýtýý W,, (a, b) =, 
ix(t) V* 

tab dt (6.19) 

where b is a translation parameter indicating the locality, a is a dilation or scale parameter, W(t) 

is an analysing wavelet and yr" indicates the complex conjugate of yr. 

It has been shown that any signal of finite energy can be represented as a linear combination of 

wavelets. The time decomposition is obtained by translation b. The scale decomposition is 

found by dilating the chosen analysing wavelet. Thus, the dilation parameter a is responsible for 

the frequency segmentation. 

For any wavelet acting as the analysing wavelet a number of conditions have been set. It must 

satisfy the admissibility condition, which is required for obtaining an inverse wavelet transform. 

The analysing wavelet must be a window function. Most wavelets used also fulfil the 

progressivity condition, which ensures that the wavelet transform does not produce any 
Interference in the time domain. In other words, the conditions imposed on the wavelet ensure it 

has a time and frequency localisation and possesses some regularity and smoothness. 

An example of an analysing wavelet for the continuous wavelet transform is the Morlet wavelet 
defined by 

i2, if I tý -1'r (6.20) 
yrýtý=e e 

The Fourier spectrum of the Morlet wavelet is a shifted Gaussian function, 

'i (f)= ire 2r2U-fo)2 (6.21) 
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The Morlet wavelet is the most widely used basic function in the continuous wavelet transform 

analysis. For the continuous wavelet transforms presented in this thesis the Morlet wavelet has 

been chosen as the analysing wavelet. 

In contrast to the Fourier transformation, which extracts periodic infinite waves from the 

analysed function, the wavelet transform analyses a function only locally at windows defined by 

the wavelet. For any wavelet y(t) the centre tt and the width 2dtt of the window can be 

calculated. The centre and the width of the window of the wavelet transform (6.19) are given by 

b+a tf and 2a dts, respectively. This property is called time localisation in signal processing 
[254]. The wavelet transform obtains good resolution in time domain at high frequencies since 
the window narrows for small values of the scale parameter a. 

It is one of the basic properties of the wavelet that it is localised in both time and frequency 

domain. If the centre and width of the frequency window of the wavelet are defined as f0 and 
2df, respectively, then the centre of the window of the wavelet transform is at fja and the width 
is equal to 2S, /a. Accordingly, the wavelet transform has good resolution in frequency domain 

at low frequencies, as the frequency window tightens for large values of the dilation term a. It 

follows that the wavelet transform offers the time-scale analysis through a two dimensional time- 

scale window with a flexible window size. Flexible window size and flexible resolution is the 

main advantage of wavelet analysis compared to time-frequency analysis. 

The square of the modulus of the continuous wavelet transform can be interpreted as an energy 
distribution over the (a, b) time-scale plane (244]. The energy of the signal is mainly 

concentrated on the time-scale plane around the so-called ridge of the wavelet transform. The 

ridge of the wavelet transform is a set of points (a, b) for which the transform behaves like the 

analytical signal. For linear systems, the ridge can be approximately given by the local maxima 
of the amplitude of the transform. Wavelet ridges can be used to determine signal 
instantaneous characteristics, which in turn can be used for damage identification. 

For the wavelet transform the two dimensional time-frequency window has constant area. 

However, in contrast to the short time Fourier transform for the wavelet the length of the window 
is flexible and changes with the change of frequency. These properties are presented 

graphically in Figure 6.5. 
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Figure 6.5: Time-frequency window: a) Short time Fourier transform; b) Wavelet transform. 
[254]. 

Giurgiutiu and Yu have presented a study that compares short time Fourier and wavelet 

transform for structural health monitoring [255]. They conclude that the major advantages of the 

wavelet transform is its size-adjustable window. This ensures that if the local area of the signal 

has a high frequency, the window length will be shorter, for low frequencies it will be longer, see 

also Figure 6.5. The problem with the short time Fourier transform is to find the optimal window 

length. Missing the optimal length will result in severe background noise in the high frequency 

area. Another advantage of the wavelet transform is that it can. extract the coefficients at a 

certain frequency of interest, which is useful for monitoring some critical frequency components 
to the performance of the structure. More advantages of the wavelet analysis come from the 

discrete wavelet transform, which allows the denoising of the signal. Short time Fourier 

transform offers no possibilities for such an application. Although Giurgiutiu and Yu found many 

reasons why wavelet analysis is advantageous compared to Fourier transform, they don't give 

any advice on which method to use. One of the reasons for this is that in their mind short time 

Fourier transform is easier to understand and use. In consequence, the authors might fear any 

potential user is distracted by the complexity of the mathematical background of the wavelet 

analysis. 

However, as the advantages of the wavelet analysis are obvious, wavelet analysis has been 

used for the damage identification analysis in this thesis, whereas short time Fourier transform 

has not been considered any further. 
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6.5.3 DISCRETE WAVELET TRANSFORM 

The continuous wavelet analysis transforms a one-dimensional time signal into a two- 

dimensional continuous time-scale domain. This representation however is highly redundant. 
Thus a logical extension of the continuous analysis is a discretisation of the time b and scale a 

parameters by discrete samples of the dyadic time-scale grid given by [253] 

2-' b=n2 ' (6.22) 

where m and n are integers. This concept leads to the discrete wavelet transform (DWT). The 

continuous wavelet transform in Equation (6.19) becomes 

Wwýmºný= Cx(t)/I(t)dt (6.23) 

where yým,,, (t) are translated and dilated analysing wavelets given by 

Yým, 
n(t)= 

2m12ý(2m t -n) (6.24) 

In theory, there is an infinite number of analysing wavelets for reasons of computational 
efficiency however, only a small subset of these is used. The most common used analysing 

wavelets that give an accurate decomposition and can be used for highly efficient numerical 

computing are orthogonal wavelets. If the functions yrm,, (t) are orthonormal, the discrete wavelet 
transform leads to the orthogonal wavelet transform. Orthogonal wavelets are special cases of 
discrete wavelets. They are concise and decompose functions without any redundancy. 
Discrete wavelets are often associated with the dilation equation and scaling functions. The 

basic scaling function fi(t) can be defined as 

N-1 
J: ck«(2t-k) (6.25) 
r=O 

where the values of ck are wavelet coefficients. These coefficients must satisfy certain 

conditions, which are discussed in detail in [256]. The scaling functions shown in Equation 

(6.25) are then used to construct the corresponding wavelets ye(t), where 

N-1 

yr(t) = j: (-1)kck4(2t + k- N+ 1) (6.26) 
k-0 
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Any arbitrary signal x(t) can be then represented as a weighted sum of wavelet functions 

following the expansion 

00 Co 
x(t) = lEc;, 

kyr(2't-k) ik 
(6.27) 

The discrete wavelet transform gives the span of the analysed signal at different resolutions 

according to wavelet scales. Wavelet functions can be constructed in a way that they form a 
family of orthogonal bases. Various orthogonal bases are used in practice. The current study 

utilises the 8th order Daubechies wavelets [257]. In order to perform a discrete wavelet 
transform, the range of variable tin (6.27) is often limited to a unit interval (0: 5 1< 1) using the 

so-called circular wavelet transform [256]. The approach is similar to the Fast Fourier Transform 

(FFT) analysis and wraps wavelet functions around the unit interval. Within this approach, the 

wavelet decomposition of x(t) can be represented in the interval 05t<1 [256] which is 

analysed as 

I v(4t) 

x(t)=aorp(t)+a, 'V(t)+Ia2 a2lw(2t 
t) 

1+ßa4 as a6 a7I 
ß( +... (6.28) 
V(4t - 2) 

yi(4t - 3) 

where the coefficients ao, a,, a2, a3, ... give the amplitudes of all the contributing wrapped 

wavelets. This equation shows that the analysed signal x(t) can be represented as a sum of 

so-called wavelet levels given by 

aogp(t) for m= -1 
xm(t) a2m+nw(2m t- n) for m=0,1,2,3.. (6.29) 

n 

All levels are in fact reconstructed signals from the appropriate wavelet coefficients ak. The 

sum of all levels recreates the original signal, i. e. 

x(t) _ xm(t) 
m 

(6.30) 

The levels are usually numbered upwards from either -1 or 0. Each of the levels displays a 
different frequency band of the analysed signal and gives the contribution to the whole signal 

energy. Higher levels correspond to high frequencies whereas lower levels exhibit low 
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frequencies of the signal. Because dilation wavelets are compact in the sense that they have a 
definite beginning and ending in the time domain, they cannot also be compact in the frequency 

domain so that their Fourier transforms extend over an infinite frequency range. The 

predominant frequency range for level m is centred at 

2m 
7--N [Hz] (6.31) 

where A is the sampling interval in [s], N is the number of samples and m is the wavelet level. 

It is obvious that with increasing wavelet level the corresponding centre frequency also 
increases. This feature allows the wavelet transform to be effectively used in frequency 

analysis. 

An example how wavelet decomposition and signal reconstruction works is given in Appendix E. 

6.5.4 APPLICATIONS 

Denoising 

As has been shown in the previous section, the DWT decomposes a signal into its wavelet 

levels, where each level corresponds to a centre frequency. Moreover, using the inverse DWT 

in order to eliminate certain frequency ranges just by setting their coefficients to zero, the DWT 

can be used for effective signal filtering. Orthogonal wavelet analysis has been found as 

perfectly suited for denoising processes. The higher the wavelet level gets, the more it contains 

noise. By omitting these higher levels during inverse wavelet transform, the noise will be absent 

in the reconstructed signal. Smart thresholding procedures have to be applied to the wavelet 

coefficients to remove the noise from the data. It has been shown that one possible solution is a 

threshold of two standard deviation for denoising [258,259]. Often the attenuation of wavelet 

coefficients yields better denoising than coefficient selection. This requires the amplitude of all 

noisy coefficients that are above the threshold to be decreased by a certain level. This 

procedure is often referred to as soft thresholding. 

The procedure of denoising falls into three steps: wavelet transform of the signal, thresholding 

of wavelet coefficients and inverse wavelet transform [260]. A threshold is used to set all 

coefficients smaller than threshold to zero. The so-called optimal threshold value T, established 
from N wavelet coefficients is given by 

T =Q 2- nN (6.32) 
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where o is the noise standard deviation. It can be shown that a robust estimation of the noise 

standard deviation can be calculated from the median of the highest level wavelet coefficients. 

These coefficients are approximately Gaussian random variables of variance o'. The median is 

used here rather than the averaged value since it can isolate outliers of potentially high 

amplitudes. To obtain the median Med, the middle coefficient ap of the noise level has to be 

taken. Yielding an estimation for the standard deviation o of 

Q= 
1 

Med 
0.6745 

(6.33) 

Figure 6.6 shows the denoising of the fibre optical data. The upper part gives the original, noisy 

signal. The signal represents a recorded Lamb wave signal, using a fibre Bragg grating sensor, 
bonded onto an aluminium plate. The clear signal has been reconstructed using the above 
described process and the 8"' order Daubechie wavelet is presented below the original signal. 
The noise has been obtained by subtracting the filtered data from the original data. The 

orthogonal wavelet transform has been used to denoise the recorded Lamb wave data for both 

FBG and PZT sensors. 
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Figure 6.6: Denoising of fibre optic signal using orthogonal wavelet transform: 

a) Original signal; b) Reconstructed clear signal; c) Reconstructed noise. 
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Signal-to-Noise Ratio 

Wavelet analysis can also be used to determine the signal-to-noise ratio (SNR) of the sampled 

signal. To do so, the denoised signal has to be obtained using one of the above described 

procedures. As a result the wavelet transformed signal has been separated into its coefficients 

representing the signal and the noise. Both parts of the signal can then be reconstructed to 

represent either signal or noise. Calculating either the mean square value or peak to peak 

amplitudes of both of the signals, the SNR can be found. 

SNR =10log RMSS'ý"°l 
(6.34) 

Noise 

The SNR for the fibre optical data in Figure 6.6 using the threshold (6.32) has been found to be 

14 dB. 

Compression and feature extraction 

A wavelet algorithm of compression and feature selection is based on a linear decomposition of 

a given function according to the wavelet synthesis formula given by Equation (6.29). In 

general, the aim of compression is to reduce the amount of information for effective storage, 
transmission and processing of the data. The main idea of wavelet based compression is to 

keep a small number of coefficients which represent the major energy of the signal. Due to the 

local nature of the wavelet decomposition, wavelet coefficients have an ability to pack energy of 

the data in a more efficient manner than other transformations [244]. 

Wavelet-based compression consists of four major steps: choice of the orthogonal basis, 

thresholding of wavelet coefficients, quantisation and encoding [244]. Thresholding truncates 

the wavelet coefficients according to their amplitude. Only a small number of coefficients which 

represent the major energy of the signal are kept. The remaining coefficients are set to zero. 
The smaller the number of wavelet coefficients kept, the higher the compression ratio. 

With respect to the analysis of Lamb wave signals use can be made of the fact that the major 

energy of the signal is related to the carrier frequency of the signal. This knowledge which is 

accessible before starting the wavelet compression is known in the literature as a priori 
knowledge of features [261]. Making use of Equation (6.31), which relates the signal frequency 

to the wavelet level, it appears that most information can be found in the wavelet level 

corresponding to the carrier frequency. 

Figure 6.7 gives the orthogonal wavelet decomposition of a Lamb wave signal. The signal has 

been gained from the difference of two signals. The first signal is the reference signal, the 
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second one the signal after damage has been introduced to the structure. The feature in the 

differential signal that represents the damage is a tone burst signal similar to the basic tone 

burst signal. This signal is due to the reflection of the original signal at the damage. Figure 6.7 

gives the differential signal and three different wavelet levels. The signal created by the damage 

can be observed in all the displayed levels. All necessary information to detect the feature 

present in level 8, is even more apparent than in the original signal. For further analysis of the 

damage, e. g. severity or location of damage other tools as presented within this chapter can be 

applied to the differential signal. Another advantage of the wavelet decomposition is that there is 

significant data reduction if only level 8 is considered. This level is represented by 256 wavelet 

coefficients compared to the original data given by 10 000 samples. 
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Figure 6.7: Orthogonal wavelet transform of a Lamb wave signal representing the 

occurrence of damage (hole 15 mm diameter). 

Time-scale analysis 

The continuous wavelet transform has been applied to the burst signal in Figure 6.1. The result 
is given in Figure 6.8. The graphs have been plotted as a time-scale spectrum. As has been 

explained in Section 6.5.2, the scale is closely related to the frequency, the information is 

therefore the same as in a time-frequency diagram. In this example a scale of 2.3 refers to a 
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frequency of 300 kHz. Thus Figure 6.8a indicates the amplitude peak and its location in time 

and frequency. The ridge in Figure 6.8b reveals the varying nature of the natural frequency of 

the basic tone burst signal. 
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Figure 6.8: Continuous wavelet transform of basic tone burst signal: a) 3-D plot; 
b) Contour plot and ridge. 
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6.6 GENETIC ALGORITHMS 

The overall task of the damage identification algorithms is to detect, locate and characterise 
damage. Damage identification methods are in fact inverse problems. There exist a number of 
impact location algorithms, e. g. system modelling [262,263] and artificial neural networks [264, 

265]. A novel approach to locate damage based on Genetic Algorithms (GAs) has been 

proposed by Coverley and Staszewski [266,267]. GAs have been successfully used to interpret 

the collected data, and to require an understanding of the operational environments and 

material thresholds for structural health monitoring. As the accuracy and robustness of the 

system is dependent on how well the optimisation codes a GA has been suggested. GAs are 

well known in many disciplines for their efficient optimisation capabilities reported by Goldberg 

[268]. The new method proposed by the authors utilises a Genetic Algorithm optimisation 

procedure based on triangulation and a least squares fitting process. 

Due to the similarity of the tasks of this thesis to the above mentioned study, Genetic Algorithms 
have been considered to detect and locate damage in structures. The following sections give an 

general overview of the basic ideas of Genetic Algorithms. Their application to damage location 

is presented in Chapter 7. 

6.6.1 INTRODUCTION 

Genetic Algorithms are a means by which machines can emulate the mechanisms of natural 

selection. It is an optimisation tool suitable for searching high dimensional spaces for the best 

solution. The algorithms are simple, robust and general, which means there is no knowledge of 
the search space assumed. GAs have been developed which perform optimisation with 
techniques modelled on biological genetics and natural selection. These operate by maintaining 
and modifying the characteristics of a population of individuals (solutions) over a large number 
of generations. This process is designed to produce successive populations having an 
increasing number of individuals with the desired properties. Like nature's solution, the process 
is probabilistic but not completely random. In fact, the rules of genetics retain desirable 

characteristics by maximising the probability of proliferation of those individuals who exhibit 
them. 

Like other optimisation tools that find the maximum value of a function, a GA seeks continuous 
improvement of a population in order to derive the best solution. Yet, rather than producing 

optimal populations, genetics need only to produce individuals that are superior to other 
individuals in the population. Thus, by optimisation the GA might find a superior, but not 

necessarily an optimal solution. The element of mutation helps to overcome this stand-off 
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situation and may produce new individuals for the next round of optimisation. The mathematical 
foundations of GAs are based on the concept of a schema or similarity template. A deeper and 

more profound representation of the mathematics can be found in (268,269]. 

GAs operate on a coding of the parameters, rather than the parameters themselves. The 

parameter space consists of individuals, which are coded as finite-length strings (genes) over 

some type of alphabet. The number of individuals in a population depends on several 

parameters including the size of each individual and the size of the solution space. Selection of 

an appropriate coding method is crucial to the success of the GA. The selection of the coding 

method however is not straightforward. There are two principles for effective coding, the 

principle of minimal alphabets and the principle of meaningful building blocks. Both are met by 

the most common coding techniques which are binary and integer coding. 

Binary coding 

In binary coding each individual consists of a number of (1,0) elements with each bit 

representing a gene. Each gene in the individual is given as its weight an appropriate power of 
two. The individual may be converted into its decimal equivalent by adding the weights over the 

1's. Hence, for an individual that represents two values of a certain measure (1 0010 

1,0 0 10 1 1) would be the binary representation of 37 and 11. Here the first 6 genes represent 
the first value, the latter the second value. The generally accepted advantages of binary coding 

are the theoretical aspects are well developed and the binary coding reduces the size of the 

optimisation space. This can be of benefit in rationalising the performance of the GA in an effort 
toward improving it. A drawback of binary coding is that there is overhead associated with 

converting a floating point number to a binary string and back for each fitness function. 

Integer coding 

For integer coding each gene is an integer number. The individual consists of as many genes 

as are necessary for the representation of the optimisation problem. The same individual as in 

the example above would be (37 11). The primary advantage of integer number coding on the 

one side is its conceptual simplicity. On the other side it no longer requires the conversion 
between the binary strings and the floating point values for the variables being optimised, thus 

resulting in a good resolution and the elimination of computation overhead. 
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6.6.2 GENETIC OPTIMISATION 

Given an initial population of individuals, a genetic algorithm produces a new population of 

individuals according to a set of genetic rules. These rules are devised so that the new 

generation tends to have individuals with superior performance compared to those in the 

previous generation. A measure for this performance is the fitness function. It ensures that 

successive generations of individuals are produced which tend to represent superior 

populations. GAs optimise the population rather than the single individual. That mostly 

contributes to the robustness of the method. Even if the genetic process inadvertently acts to 

lose a desirable characteristic in one individual, it may be safely retained in other members of 
the population. Genetic optimisation starts by generating, at random, an initial population of 

possible solutions. According to their individual fitness, high quality "parents" are selected to 

generate future off springs. The following simple genetic rules for GAs can be used. 

Reproduction 

Reproduction is an artificial version of natural selection. This process ensures that individuals 

are copied into the next generation according to their fitness. Copying individuals with respect to 

their fitness means that individuals with a higher value have a higher probability of contributing 

one or more offspring in the next generation. Figure 6.9 gives a graphical representation of this 

method. Once a individual has been selected for reproduction, an exact replica of the individual 

is made. It is then entered into a pool of individuals, a tentative new population, for further 

genetic operator action. 

Individual Fitness Individual 

1010101010 high 1010101010 

1001001001 low 1010101010 

1011011011 medium 1011011011 

PARENTS OFFSPRING 

Figure 6.9: Reproduction. 

Crossover 

This is a method of combination between pairs of individuals in which the randomly chosen sub- 

strings from each individual are switched. Single point crossover involves cutting the individuals 

of the parents at a randomly chosen common point and exchanging the right-hand-side genes, 

as indicated in Figure 6.10. 
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101010 01 »»»... » 
101010111 

101101,101 101101 Eo) 

PARENTS OFFSPRING 

Figure 6.10: Crossover. 

Mutation 

Making alterations to the values of one or more genes in a individual is referred to as mutation. 
This can result in entirely new gene values being added to the gene pool. With these new gene 

values, the genetic algorithm may be able to arrive at better solutions than was previously 

possible, e. g. when the algorithm got stacked at a non optimal solution. However, to avoid 
losing too many of the fittest individuals, the mutation rate usually is kept small, in the order of 

one mutation per thousand bit. In binary coding mutation consists of inverting random bits of the 

genotypes as explained in Figure 6.11. 

Mutation Site Mutation Site 

1010.0 010 101011010 

PARENTS OFFSPRING 

Figure 6.11: Mutation. 

New Blood 

To prevent a population from stagnating, new entirely random chosen individuals are chosen 
that form perturbations into the population. Again, the rate of creating entirely new individuals 

should be kept small. 

Elite 

In order to keep the best solutions in a population, they can be copied automatically into the 

next population. This process is called Elite. It avoids the loss of the fittest genetic material. 

The above explained genetic rules form an iterative process through new generations. The GA 

ends after the termination criteria are satisfied or after a specified number of generations. The 
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last generation then contains a population that is dominated by the fittest individuals, as 
illustrated in Figure 6.12. 

Create initial random population I 

Evaluate fitness for each individual 

Termination criteria fulfilled? 1 yes 
Stop 

no 
I Select parents according to fitness 

Recombine parents to generate offspring 

Mutate offspring I 

Replace population by new generation 

Figure 6.12: Basic Genetic Algorithm procedure [270]. 



7 EXPERIMENTAL IDENTIFICATION OF DAMAGE 

The results from damage identification experiments are presented in this chapter. The Lamb 

wave based approach, as presented in Chapter 5, was applied to test a variety of structures. 
Fibre Bragg gratings were used to sense the Lamb wave responses. In addition, conventional 

piezoceramic transducers served as a reference for the fibre optic results. The experiments 
followed three different levels of damage identification, i. e. detection, location and severity of 
damage. Damage detection forms the first level of damage identification. The signal processing 
tools, presented in the previous chapter, were used to identify the presence of damage as 

reported in Section 7.1. Two different approaches were chosen depending on whether the 
location of the damage was known a priori or not. In case the damage position is unknown, the 

second level of the damage identification process has to be applied, i. e. location of the damage. 

This is presented in Section 7.2. The method followed here makes use of the directivity of the 

fibre Bragg grating sensor. A Genetic Algorithm was applied to calculate the location of the 
damage in metallic and plastic plates. The third level of damage identification, i. e. information 

about the severity of damage, is addressed in Section 7.3. Once the location of damage has 
been found, changes in Lamb wave responses can be related to the severity of damage. 
Finally, the influence of variable thermal conditions on the reliability of damage identification is 

studied in Section 7.4. The discussion of the results focuses on the comparison of fibre optic 

and piezoelectric sensor data. 

7.1 DAMAGE DETECTION 

Within the whole process of damage identification, damage detection forms the primary 

objective. It is therefore necessary to find robust and reliable measures to identify the presence 

of damage within recorded signals. Several aspects of damage detection were studied within 
the experiments. First of all, the feasibility of fibre Bragg grating (FBG) sensors for damage 

detection was investigated. The performance FBG sensors can be compared using 

conventional piezoceramic transducers (PZT) as a reference. As a second task different signal 

parameters were studied to find a reliable measure indicating the presence of damage. 
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7.1.1 EXPERIMENTAL PROCEDURES 

The experiments were carried out at three different locations. For the most part the testing took 

place at the DaimlerChrysler research laboratory in Ulm, Germany. Other tests were performed 
in the Department of Electronic and Electrical Engineering of the Strathclyde University in 

Glasgow, UK. Most of the evaluation work took place in the Department of Mechanical 

Engineering of the Sheffield University in Sheffield, UK. It is clear that different experimental 

conditions were experienced at the above locations. The basic experimental set-up which was 

common to all tests is shown in Figure 7.1. 

Function Generator Power Amplifier 

1ý Tuneable Laser 

0 

co 

Photo Detector 

PZT &cýuator FBG Sensor 

PZT Sensor 

Monitored Structure 

Interface 

Digital Oscilloscope 

Figure 7.1: Schematic diagram of the basic experimental set-up. 

Instrumentation 

The HP (Hewlett Packard) 33120A and the TTI (Thurby Thandar Instruments Ltd. ) TGA 1242 

served as function generators. Both devices allow the generation of arbitrary signals. Both 

generators have a GPIB (General Purpose Interface Bus) interface, so that they can be 

controlled by a computer. 

Control PC 
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At all locations an ENI (Electronic Navigation Industries) power amplifier was available. They 

differed however in the amplification and the frequency range. The ENI 406L, used in Ulm, has 

an amplification of 40 dB and a frequency range from 150 kHz - 250 MHz; the maximum output 

power is 6 W. The ENI 2100L, used in Glasgow, has 50 dB amplification and a frequency range 

from 10 kHz - 12 MHz; the maximum output power is 100 W. It is clear that the 2100L is better 

suited for damage detection applications since frequencies range from kHz to MHz levels. 

Nevertheless, initial experiments were performed using the 406L amplifier which, at the time, 

was the only instrumentation available. For verification of the experimental results, the 2100L 

amplifier was sent to Ulm. 

The tuneable laser used for the experiments was the INTUN 1500D, made by Radians Innova. 

This is an external cavity laser (ECL) which was used because of its extremely narrow linewidth 

(below 100 kHz) and its wide tuning range of about 100 nm in the 1500 nm region. The 

maximum optical power is 2 mW. Maximum tuning speed is 25 nm/s, which means the complete 

range can be swept within 4 s. The laser has a low relative intensity noise of 160 dB/ JHz. 

Due to the variety of different reflections of the FBG sensors used, a photodetector with variable 

amplification was desirable, so the output voltage of the fibre optic sensor could be adjusted to 

the acoustical power level. Furthermore, variable bandwidth of the detector helped to implement 

the dual use concept of the FBGS, i. e. as low dynamic strain sensors and high dynamic 

ultrasound receivers. Initially, the New Focus v2011 photoreceiver was used. The frequency 

bandwidth of this photoreceiver can be adjusted from DC to 30 kHz low pass and from 100 Hz 

to 250 kHz high pass. Additionally, its amplification can be chosen from 1 to 3x10°. Since the 

upper frequency limit may be critical for applications where higher ultrasonic frequencies are 

used, another photodetector was available. The FEMTO DCLPCA-200 photodetector also has 

variable bandwidth from DC to 1 KHz and from 10 kHz to 600 kHz. The integrated amplifier 

allows variable amplification from 1x103 to 1x10". Both photodetectors have equal noise 

performance and have been found equally suited for Lamb wave sensing. 

A digital oscilloscope not only enabled graphical presentation of responses from both PZT and 

optical sensors, but was also used to store the data for further processing. Tektronix 

oscilloscopes have been used at all locations. The TDS 3034B, available in Ulm, and the TDS 

3014, available in Glasgow, only differ in their bandwidth; the bandwidth is 300 MHz and 

100 MHz for both oscilloscopes, respectively. The 100 MHz bandwidth is sufficient for ultrasonic 
tests where maximum signal frequency is below 1 MHz. The further, common specifications of 

the oscilloscopes include 4 input channels, 2.5 GS/s sampling rate and interfaces for connection 

and data transmission to a computer. 

A PC with an Intel Pentium II processor and Microsoft Windows operating system was used for 

data storage and further signal processing. The PC was also used to control instruments like 
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the tuneable laser, the function generator and the digital oscilloscope using a GPIB interface or 

a serial interface. 

PZT discs, see Figure 4.6, were applied for the excitation of Lamb waves. Two different types of 
transducers were studied, i. e. the Ferroperm Pz29 with a diameter of 10 mm and a thickness of 
0.4 mm and the Pl Ceramic PIC255, with 10 mm diameter and 0.2 mm thickness. The 

acoustical properties of both transducers were examined experimentally. No significant 
difference in the performance of both PZTs was observed for a range of excitation frequencies. 

However, the PI Ceramic discs have wrapped-around electrodes, i. e. both electrodes are on the 

upper side of the disc, which makes the connection very easy. The PZTs were bonded on the 

plates using the Polytec EPO-TEK 301. This epoxy-based glue cures overnight and produces 

good quality bonds. 

The FBG used for damage detection have a grating length of 1 mm. They were fabricated by 

IPHT Jena, Germany. Their reflectivity is about 15 %, whereas the spectral width is close to 

500 pm. The FBG were bonded using the Kyowa CC-33A. This glue is recommended for the 

installation of electrical strain gauges. Good results for the FBG sensors bonding were also 

obtained. 

7.1.2 INITIAL EXPERIMENTS 

There is currently no standard or even a best-practice advice available on how to proceed for 

damage detection when Lamb wave sensing is used. There are however some basic rules that 

should be followed. As already described in Chapter 4, the basic idea is to use a frequency 

region where only fundamental modes exist. Furthermore, the mode and the frequency chosen 

should be such that dispersion is kept to a minimum to avoid any difficulties in signal analysis 

and interpretation. The first step therefore is to calculate the dispersion curves for the structure 
to be tested. This requires the knowledge of the material properties such as Young's modulus 
E, Poisson ratio v, density p and the thickness t of the plate. 

Dispersion curves give theoretical values for the phase and group velocity and the preferable 
frequency of the Lamb wave modes. However, due to insufficient knowledge of material 

properties and complex geometry of tested structures they are difficult to obtain in practice. 
Furthermore, dispersion curves give optimum frequencies for Lamb waves. These frequencies 

are not necessarily the optimum driving frequencies of the ultrasonic transducers. The 

performance of the piezoceramic transducers depends on their geometry and the related 

resonance and anti-resonance frequencies. 
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Material properties 

Table 7.1 gives the properties of the materials used for damage identification. The velocity 
measurements were taken at 130 kHz for the Perspex and 300 kHz for the aluminium plates. A 

comfortable way was found to measure the group velocity by looking at the envelopes of the 

signals. The time difference between the envelope peaks from the excitation signal and the 

corresponding mode was taken as a measure for the time-of-flight. Knowing the distance from 

actuator and receiver, the group velocity can be obtained. 

Table 7.1: Material properties of the test structures. 
Parameter Perspex Aluminium 

Young's modulus, E [GPa] 24 70 
Poisson ratio v 0.35 0.345 

Density, p [kg /M3] 1190 2700 

Thickness, t [mm] 3 1 

Longitudinal velocity [m/s] 2730 6320 

Shear velocity [m/s] 1430 3130 
Velocity So (Calculated) [m/s] 2300 5300 

Velocity So (Experimental) [m/s] 2100 5000 

Velocity Ao (Calculated) [m/s] 1400 2700 

Velocity Ao (Experimental) [m/s] 1600 2900 

Although generally good correlation between measured and calculated velocities has been 

obtained, an offset of about 10% could be observed, as presented in Table 7.1. The reason for 

this is most likely insufficient knowledge of material properties. As the properties have not been 

available from manufacturers, the properties found in standard literature [15] have been taken 
instead. 

Frequency selection 

The optimum frequency of excitation is influenced by the frequency characteristics of the 

actuator, receiver and structure. In order to choose the best frequency, the amplitude of Lamb 

wave responses as a function of frequency has been obtained experimentally, as shown in 

Figure 7.2. 
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Figure 7.2: Maximum amplitudes of the So-Lamb wave mode in aluminium. 

Here, a peak around 290 kHz can be identified. This dominant effect is the resonance frequency 

of the PZT bonded on the aluminium plate. It is well known that the best dynamic performance 
is achieved when the excitation frequency is chosen as one of the resonance frequencies of the 

transducer. For disc shaped transducers the radial mode of the piezoceramic generates the So 

mode which is dominated by a longitudinal wave travelling in the plate [271,272]. From the 

amplitude-frequency characteristics the optimum frequency for So Lamb wave sensing in 

aluminium and Perspex plates have been found to be 290 kHz and 130 kHz respectively. This 

probably indicates the influence of the acoustical coupling between the PZT and different 

structures. 

The attenuation characteristics of the material also influence the frequency characteristics of the 

Lamb waves. It is well known that the attenuation curve is proportional to 1/f [273]. This explains 

the higher amplitudes on the lower frequency part of the spectrum in Figure 7.2. It has been 

shown in Chapter 5 that the response of the grating at this frequency range is independent of 

the frequency. However, within the experimental set-up a high pass filter at about 100 kHz has 

been used to cut low frequencies. 

7.1.3 EXPERIMENTAL APPROACH USING A PRIORI KNOWLEDGE ABOUT DAMAGE LOCATION 

For the analysis of Lamb wave responses two fundamentally different approaches can be 

applied, depending on different damage conditions. The first approach is used when the 

location where the damage will occur is known a priori. Another approach has to be chosen if 

there is no knowledge or indication where on the structure damage can appear. 

lUU 1UU SUU 4UU 5UU 
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Several circumstances can be thought of when explicit knowledge of damage location exists. 

For example, it is well known that fatigue cracks start to grow at points of high stress 

concentration, e. g. close to rivets or holes [274,275]. These high risk areas could be monitored 

in particular. The same is true for repaired damage. One method of repairing fatigue cracks in 

aircraft structures is to bond a patch of composite material [276-279]. This will slow down the 

fatigue process, although it will not completely stop it. Again, the task is to monitor such an area 

and see if any changes occur which would indicate growth of the crack. The second level here 

would be to gain precise knowledge of how much the crack grows. This subject will be covered 

in section 7.3. A third case where the location of damage is known in advance is the presence 

of so-called hot spots. This means that, from experience with the same kind of structure in other 

applications, points with high probability of failure are known, which in consequence have to be 

monitored in detail. 

If there is knowledge about possible damage locations, the placement of transducers is 

simplified. A good choice is to position acoustical sender and receiver so that damage occurs 

along a straight line between both transducers (Figure 7.3). This line can be referred to as the 

primary acoustical path. In Chapter 4 different aspects of how damage will change wave 

propagation have been explained. If damage occurs on the primary acoustical path, the signal 

amplitude and velocity will change mainly because the acoustical properties of the material 

along the path have been altered by the damage. Any acoustical path, e. g. edge reflections in 

Figure 7.3, that will not pass the damage should remain unchanged. The distance between PZT 

and FBG transducers used in the experiments was 30 cm. The hole was placed in the middle. 

Reflected 
PZT --"-"" 

Hole FBG 
Paths C; --------=-------- Primary 

Acoustical 

Path 

Figure 7.3: Transducer locations for damage detection with a priori knowledge of damage 

location. 

The PZT actuator was used to generate the ultrasonic Lamb waves. The waves propagated 

along the dotted lines from the actuator to the FBG sensor. The line that crosses the indicated 

hole is the primary acoustical path. The reference (initial) condition has not involved any 

damage in the plate. To simulate damage a hole of 12 mm diameter was drilled into the test 

structure. Figure 7.4 gives two Lamb wave responses for the reference and damage conditions. 
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Figure 7.4: Lamb wave responses for the experiment with a priori knowledge of damage 
location: a) reference condition; b) damage condition; c) differential signal. 

Two different packages of burst signals can seen in Figure 7.4. Identification of the packages 

can be achieved by measuring the time-of-flight and then see which distance the wave must 
have travelled. The corresponding path can be found from the geometry of the test structure. 
Here the first package is the So mode travelling along the primary acoustical path. The second 
package refers to the reflected waves as indicated in Figure 7.3. 

The presence of damage can be identified within the differential signal in Figure 7.4c. The 

amplitude of the first package becomes smaller as can be found in the differential signal. 
Furthermore, the first package arrives later due to the expected decrease in the velocity. The 

question is how much do the amplitude and the arrival time change with respect to severity of 
damage. This question will be addressed in Section 7.3. 

7.1.4 EXPERIMENTAL APPROACH WHEN DAMAGE LOCATION IS UNKNOWN 

In the previous section examples have been given for damage events where the position is 

known in advance. The more general case however is the one without any a priori knowledge of 
damage location. This includes damage induced by impact, because the statistical nature of 
impacts makes it impossible to predict where the impact might occur. Furthermore, it is not 

always possible to predict where fatigue cracks will initiate. 
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Therefore, a different experimental approach has to be used when possible damage locations 

are not known in advance, i. e. damage is not on the primary acoustic path. Hence, damage 

detection can not rely on the analysis of the first package. Instead the presence of damage will 
be indicated by an additional wave package within the Lamb wave response. This package is 

the reflection of the Lamb wave from the damage. The assumption here is that damage can 

reflect ultrasonic waves. Damage was simulated here by drilling holes into the test structure. 

The radial symmetry and the different acoustical properties of structural material and air ensure 

the hole reflects the incoming Lamb wave. 

The layout of the experiment to detect damage in case its location is unknown is shown in 

Figure 7.5. In this case the hole had been drilled off the primary acoustical path. The plate was 

dimensioned big enough, so that no reflection from the edge could influence the acoustical 

signal. The hole diameter was 12 mm as in the previous experiment. For better visualisation of 

the reflected wave, the orientation of the fibre sensor was adapted to the reflected signal. The 

distance between the PZT and the FBG sensor was 30 cm and the length of the acoustical path 

including PZT actuator, hole and FBG sensor was 70 cm. 

PZT FBG 

Reflected 

Path from 
Primary 

Damage 
Acoustical 

Hole Path 

Figure 7.5: Transducer locations for damage detection when damage location is unknown. 

Again the signals for the reference and the damage conditions were recorded. This time the 

differential signal, i. e. the difference between the damage and reference condition, was 

calculated, so the reflected signal becomes apparent. Figure 7.6 presents the results. 
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Figure 7.6: Lamb wave responses for the experiment without knowledge of damage 
location: a) reference condition; b) damage condition; c) differential signal. 

Here, the primary So mode at 60 ps and the AO mode at 110 ps have very small amplitudes, due 

to the misalignment of the fibre sensor to the primary acoustical path. The last package with the 
big amplitude is a reflection from the plate edge at a different angle. The presence of damage is 
indicated by the wave package at 135 ps in Figure 7.6c This package corresponds to the 

expected time-of-flight for a wave reflected from the hole. The question addressed in the next 
section is how to use differential signals for damage location. 

7.2 DAMAGE LOCATION 

7.2.1 SENSOR LAYOUT 

In Chapter 3 the concept of fibre based strain rosettes has been introduced. For any loads 

where principal load directions are unknown, or for multi-axial load cases, the rosette 

configuration allows one to determine the principal directions and the principal strains. By 

analogy the rosette type sensor configuration can be used to determine the direction of 

acoustical strain fields. Optical Bragg grating sensors are well suited for rosette applications, as 

explained in Chapter 3. This is due to high inherent directivity. In addition, an appropriate 
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mounting technique can eliminate any strain cross-sensitivity. Strain rosettes can be used for 

detection of principal directions. For any strain sensor that is not adjusted to the principal 

direction, the strains along the principal direction can be found by applying the theory of 

elasticity. For an isotropic structure the equation to describe the sensitivity of the strain sensor 

with respect to the angle of the principal axis has been defined in Equation (B. 5) see also [280]: 

E_ = E, cost a+ F, sin 2a (7.35) 

Here eZ is the strain along the sensor axis, e,, e2 are the principal strains and a is the angle 

measured from the direction of el; the geometry is shown in Figure 7.7. The strain sensor in 

Figure 7.7 is a fibre Bragg grating and the principal axis of strain by the direction of the 

acoustical Lamb wave field. The Lamb wave can be assumed to be cetected in the far field, as 

the distance from the ultrasonic source to the sensor is much larger than the acoustical 

wavelength. In consequence, the Lamb wave far field can be assumed to be a plane wave, and 

e2 in Equation (7.35) is equal to zero. 

Lamb 

wave 
E2 

Figure 7.7: Definition of coordinates for the interaction of the Bragg grating with the 

ultrasonic wave. 

For a rosette configuration Equation (7.35) is true for every sensor when a is adapted as a+ (3 

and a+ 2(3 for gratings 2 and 3, respectively. Here, ß is the angle of the rosette configuration. A 

120° rosette set-up has been chosen for ultrasonic source location. The layout of the fibre 

Bragg grating rosette is shown in Figure 7.8a. An example of the reflection spectra of three 

gratings forming a rosette is displayed Figure 7.8b. 
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Figure 7.8: a) Layout of the Bragg grating rosette; b) Corresponding reflection spectra. 

The Bragg grating can detect damage in the differential Lamb wave signal, as demonstrated in 

Section 7.1. From the differential signal, the amplitude, frequency and the time of arrival of the 

acoustical wave at the sensor location can be obtained. The proposed rosette interrogation 

technique only requires the amplitude analysis. It is sufficient to record the peak-to-peak 

amplitude of the signal for each individual grating within the rosette. The 120° set-up has the 

advantage that it enables a normalised measurement, I. e. one that is independent of the 

magnitude of the transmitted acoustical strain field. It is clear from trigonometric relations that 
for a 120° set-up the sum of the amplitudes A, is constant. Therefore it is practical to use 

normalised amplitudes, as defined by 

A, =2 3A' i =1,2,3 
j`4k (7.36) 

k 

Here I is the grating number and the factor 3/2 is obtained from the trigonometric relations. 

From the normalised amplitudes one is able to calculate the direction of the incoming acoustical 

strain field, by using the inverse of Equation (7.35) when the strain is replaced by the 

normalised amplitudes. One direction, however, is not sufficient to locate the source. A second 

rosette placed at a suitable distance from the first one is therefore required to give another 
direction to the source. Combining this information by calculating the intersection of the two 

directions will finally point out the location of the ultrasonic source. 
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The advantage of the proposed source location scheme is that there are no absolute signal 

values needed. As stated above, by using normalised amplitudes the technique accounts for 

varying amplitudes of the transmitted signal. Possible reasons for alteration in the signal 

amplitude are changes in the bonding between PZT transducer and the structure. Ageing 

effects and thermal or mechanical stresses may weaken that interface, so time-varying signal 

amplitudes would be the consequence. In addition, the rosette technique does not require any 

measurement in the time domain. As explained in [247] the exact determination of arrival time of 

a Lamb wave signal is rather difficult because of Lamb waves dispersion. This drawback is 

overcome with the amplitude related interrogation technique presented in the next section. 

7.2.2 GENETIC ALGORITHM 

A Genetic Algorithm (GA) was chosen for analysing the location tests. The problem when 

analysing the measured data for one rosette is the periodicity of the sinusoidal amplitude 

function. For each amplitude there are four corresponding angles giving a total of twelve angles 

for a rosette consisting of three gratings. Yet, only one angle UR1 will coincide for each of the 

gratings. The task is to find this angle as this will give the direction to the acoustic source for the 

first rosette as shown in Figure 7.9. After analysing data from two rosettes one ends up with two 

directions but four angles, as aR1,2+ 1800 would also represent the desired direction (see Figure 

7.9). The final task is then to find two angles for which the corresponding straight lines intersect, 

as shown in Figure 7.9. Calculating the x, y coordinates of the intersection I will give the location 

of the acoustic source. The idea is to optimise all these parameters. A GA procedure is used, as 

described below 

X 

R_ 

Figure 7.9: Possible solutions to the location problem. 
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Possible solutions are represented by two angles, each for one of the fibre rosettes. Therefore, 

a chromosome for the algorithm could be represented as (aRl, aR2 ). In integer coding each of 
the angle is an individual and is represented by one gene, which is an integer number. 
Maximum integer number then is 360. For binary coding each angle or individual should be 

represented by 9 genes. Nine genes (1,0) can give a maximum integer number equal to 511. As 

in this case an integer between 0 and 360 is needed, the software will map the numbers 
between 360 and 511 into the set 0-360. 

The idea is to put all these conditions on the possible solutions into the fitness function of the 

GA. The role of the GA is to create sets of angles, which could be a solution to the localisation 

problem. For any pair of angles depicted by the GA the corresponding amplitude for each of the 

three gratings per rosette has to be found. These amplitudes A, 1 (i = 1,2,3 j=1,2) can be 

calculated as 

A; =a, sin' r 
aR f-a, 

180 18 -; r 80 
(7.37) 

where the indices i, j denote sensor and rosette respectively. For the 120° rosette ßi = 0°, 

ß2=60°, and ß3=120°, a1,2 are the fit parameters from the sinusoidal fit (Equation (7.42)) and ap 

are the angles depicted by the GA.. 

The fitness function f depends on the difference between the calculated amplitudes A, 1 and the 

measured amplitudes A,. It can be represented as: 

fZ 
0i 

Aj - }ý (7.38) 

tj 

This function has its maximum when the angles given by the GA are the solution. 

The software code that implements the fitness function to obtain the damage location is given in 

Appendix H. 

7.2.3 GA PERFORMANCE CRITERIA 

Source location performance 

A measure of performance is required, to indicate the location accuracy, offered by the GA. This 

can be estimated using the root mean square error (RMSE) defined as 
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1(X� -X»), (7.39) 
RMSE(x) = n=l 

N 

where for a given total of N samples, x� is the actual coordinate and z� is the predicted 

coordinate. Alternatively, the relative percentage error RMSre, can be found as 

z 

(7.40) 
RMSFirel 

(x) - 
x-1 

Nn 
X100% 

The error as a proportion of the analysed plate area is given as 

RMSE(x)x RMSE(y) 
o EP, ý = x100 

xp x yp 

where xp and yp are the dimensions of the area covered by the sensors. 

Fitness performance 

The performance of the genetic algorithm can be assessed by the quality of the fitness function. 

A good fitness function assures a quick convergence to the solution. The mean and average 
fitness of the GA are observed as a function of the number of generations completed. 

Parameter performance 

As for the fitness function, the performance of the GA parameters, such as number of 

chromosomes per generation, mutation probability, needs some qualitative assessment. Again 

the behaviour of the mean and average fitness over the number of generation is considered. 
Good choice of parameters would give the fittest chromosomes earlier, i. e. for a lower number 

of generations, than comparatively worse parameters. 

7.2.4 DIRECTIVITY 

The directivity of the FBGS was studied by measuring the strain amplitudes of each of the 

rosette gratings with respect to the orientation of the ultrasonic source. The amplitude was 
determined by measuring the peak-to-peak value of the Bragg grating signal. The experimental 
data were then fitted to the expected cosine-squared function, defined as 
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A(a)=a, sin' IT 180 
1) (7.42) 

where a,, 2 are the fit parameters. 

The first test studied the response of the grating on an aluminium plate when different Lamb 

wave modes were used. Although for reasons explained before, the So mode is preferred 

throughout this thesis, the directivity of the grating was studied for both AO and So modes, in 

case there is any difference in how the grating behaves for different modes. A second 

experiment was performed for a Perspex plate. 
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Figure 7.10: Grating directional characteristics on an aluminium plate. 

The result of the Ao mode (at 70 kHz) for an aluminium plate is shown in Figure 7.10. Clearly the 

experimental results confirm the predicted directivity function. The results of the various 

experiments have been gathered in Table 7.2. 

Table 7.2: Directivity curves for FBGS rosettes. 

a, a2 

Theory 90 1 

So for an aluminium plate 90.2 0.92 

AO for an aluminium plate 92.5 0.96 

So for a Perspex plate 87.7 0.93 



7.2 Damage Location 160 

The fit parameters for all gratings are in good agreement; 5% differences have been observed. 

Within the experimental uncertainty, this is the predicted function, see equation (7.35). 

Experimental errors are mainly due to low signal to noise ratio (< 0 dB) for the peak-to-peak 

amplitude around 90°. 

7.2.5 LOCATION OF ULTRASONIC SOURCES 

The next step towards a damage location test is the localisation of ultrasonic sources. Locating 

an ultrasonic source means the acoustical signal sent by a transducer is received and identified. 

The experiment was performed on aluminium and Perspex plates. The layout of the test 

structures is shown in Figure 7.11. Two fibre grating rosettes at a distance of 50 cm were 

mounted on the plate. Several PZT transducers were bonded on two semicircles, to study the 

directivity of the gratings. The length of the rosette triangle was 2 cm. The geometrical off-set is 

negligible compared to the distance between the rosette and the PZT actuator. For the 

aluminium plate five PZT transducers , numbers 1-5 in Figure 7.11, were chosen for testing the 

location technique. For the Perspex plate four PZT were available, shown as a-d. 

Yt ac 
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FBG rosette 

250mm , UR1 %`. aR2 
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ýi 5 

0 
0 
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X 

Figure 7.11: Layout of the samples and definition of a coordinate system. 
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GA performance using integer and binary coding 

Two options for the GA coding were studied to investigate the location performance. The mean 

and maximum fitness of the GA operation for both integer and binary coding are displayed as 
functions of generations in Figure 7.12. Here, good convergence to the optimal solutions can be 

observed. 
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Figure 7.12: Mean and maximum fitness of the GA operation: a) binary; b) integer coding. 

Both codings result in the same maximum fitness values corresponding to the same solution. 

However, the maximum fitness for binary coding converges much faster to its maximum value 

than does the integer coded GA; the binary coded GA gets the maximum fitness after only three 

generations, whereas the latter converges after 270 generations. A fast convergence can be 

seen as a measure of good performance of the Genetic Algorithm, provided the population has 

not been flooded with one solution. The presented results show that average fitness is 

siginifcantly lower than maximum fitness. This ensures good diversity of the population and 
therefore no tlominance of one solution. Hence, the binary coding ib fiouna t peqvrm aeaer 
than the integer coding for this specific task. One pöSSible explanation of this is the Ivw nurnDcr 
of genes per chromosome for the integer coding. Thus, mutation plays a more important role 

and because of low mutation probabilities and high number of new blood chromosomes a 

certain number of generations is necessary before the fitness can improve. 

The choice of the parameters to define the GA is vital to its performance. Different coding types 

require different parameter settings, as can be deduced from what has been said above. 

Several parameter settings have been studied, where the performance of the parameters has 

been measured by their ability to converge to maximum fitness within a minimum number of 

generations. The best choice of the parameters obtained is given in Table 7.3. The results of 

the performance tests for the two types of coding clearly shows that binary coding should be 

No. of Generations 
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preferred. Binary coding has therefore been applied to get the results presented in the next 

sections. 

Table 7.3: Best choice of GA parameters used for location studies. 

Parameter Binary Coding Integer Coding 

No. Chromosomes per Pop. 40 16 
No. Generations 500 500 
No. Genes per Chromosome 18 2 

Crossover Probability 0.6 0.8 
Mutation Probability 0.05 0.05 
No. Elite Chromosomes 3 3 

No. New Blood Chromosomes 5 8 

Source location using GA and binary coding 

Despite the small number of experiments the results shown in Figure 7.13 and Figure 7.14 

clearly show the capability of the proposed interrogation scheme of detecting the position of the 

source of an ultrasonic wave. An overview of the achieved performance and the errors is given 

in Table 7.4. It is not understood why the error in the y-coordinate is significantly higher than for 

the x-coordinate on the aluminium and why it is the other way round for the Perspex plate. In 

general, the signal to noise ratio in the calibration experiment could be improved, which would 

also decrease the errors in the location algorithm. However, that would affect x- and y- 

coordinates for both experiments to the same degree. 

Table 7.4: Performance of the source location algorithm. 
Parameter Aluminium Perspex 

RMS error for x-coordinate 2.5 cm 4.0 cm 
RMS error for y-coordinate 6.5 cm 1.9 cm 
rel. RMS error for x-coordinate 9.2 % 20.2% 

rel. RMS error for y-coordinate 27.8% 7.6 % 
rel. error for plate area 0.7% 0.3% 
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Figure 7.13: Actual and calculated acoustic source location on aluminium plate. 
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Figure 7.14: Actual and calculated aCOUStiC SOUrce location on Perspex plate. 
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7.2.6 DAMAGE DETECTION AND LOCATION 

The layout for the damage location experiments is shown in Figure 7.15. As a starting point two 

holes (1,2) were drilled into the aluminium sheet. The diameter of the holes was 12 mm. In 

order to simulate reference and damage conditions, a plug had been made that fits into the 

hole. By pressing the plug into the hole and adding some acoustical coupling material, the initial 

state without any hole could be reconstructed. Using the plug method repeated measurements 
for the same damage were possible. 

yO PZT (A, B, C) 
20" Hole (1,2) 

A FBG rosettes 

Figure 7.15: Layout of the samples for the damage detection and location test. 

Two FBG rosettes were used for Lamb wave sensing. They were mounted 50 cm apart. Three 

piezoceramic transducers (A, B, C) were available as ultrasonic sources, which generated Lamb 

waves into the plate. The positions of the transducers was carefully chosen. Two transducers 

(A, B) were placed on the neutral axis (900 orientation) of one grating for each rosette. The 

other transducer (C) was located in the centre of the plate. When the hole is not in line with the 

primary acoustical path, the grating will respond to the reflected wave which comes from a 

direction where the grating is sensitive. Clearly, all the gratings in any rosette could sense the 

wave reflected from the hole, but it was assumed that it is advantageous to have a configuration 

as described above. To calculate the position of the holes the same GA as in the previous 

experiments was used. The directivity curves of the rosettes were again applied. 

The experimental results shown in Figure 7.16 demonstrate how damage detection and location 

using FBGS work. The graph gives the actual and calculated locations when different 

transducers have been chosen as ultrasonic sources. The locations obtained by the proposed 

method are shown and prove to be remarkably accurate provided that the optimum position of 

the PZTs relative to the Bragg grating rosettes is used. The letters next to the stars indicate 
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which PZT source was used to obtain that particular location. It is clear that, in order to obtain 

the most accurate results, the case to be avoided is that in which the source is aligned along the 

axis of one of the Bragg gratings. In this case the signal obtained directly from the PZT is so 

large that it becomes difficult to recover the signal from the hole accurately. 
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Figure 7.16: Actual and calculated damage location on an aluminium plate. 

Table 7.5 gives the performance parameters of the location algorithm. Here, all transducers 

produce good results. The qualitative conclusions of interpretation of Figure 7.16 is verified by 

the smaller errors for transducers A and B compared to transducer C. It is interesting to 

compare the relative RMS errors for the hole location experiments with the source location tests 

(Table 7.4). The rel. RMS error for the x- and y-coordinates is even less than for the initial 

source location experiments on aluminium. However, more experiments would be needed to get 

better statistics for the damage detection results. 

Table 7.5: Performance of the damage detection and location algorithm. 

Parameter Transducer A, B Transducer C 

RMS error for x-coordinate 1.0 cm 6.5 cm 
RMS error for y-coordinate 2.9 cm 5.5 cm 
rel. RMS error for x-coordinate 4.3% 26.9 % 

rel. RMS error for y-coordinate 19.9% 22.9% 

rel. error on plate 0.1 % 1.4% 
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7.2.7 DISCUSSION 

The proposed method for damage detection and localisation using the directivity of the FBGS 

was proven to work correctly. Various experiments on different materials and at different 

laboratories indicate that the changes due to a simulated damage can not only be detected but 

also be localised on a plate. The method worked independently of structural materials, provided 

they are isotropic and homogenous. Two different holes, each of 12 mm diameter, could 

successfully be detected and localised using a GA-based procedure. However, the results still 
have a preliminary character, as only a few measurements were carried out. 

It appears that optimal location of actuators and sensors can be proposed. The best 

performance was obtained for each rosette having one grating on the neutral axis of the PZT 

actuator. This information can be used to design a network of transducers to monitor large 

structures. The optimisation criteria are: a small number of sensors and transducers, a layout 

that follows the neutral axis suggestions and a complete coverage of the structure. 

The basic idea is to design a unit cell, with maximum area and minimum sensor effort. This cell 

can be constructed drawing a circle and placing an equally sided triangle on its circumference. 

One rosette is placed in each corner of the triangle. The PZT for launching the ultrasound is 

placed in the centre of the circle. This ensures for each rosette the PZT is neutral to one grating. 

The concept is depicted in Figure 7.17, where the solid lines give the unit cell. 

; tte 

Figure 7.17: Proposed layout for the monitoring of large structures. 
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The maximum area which can be covered by the unit cell depends on the structural material, 

acoustical power launched by the PZT and performance of the optical measurement system. 
From the optical system the minimum signal-to-noise-ratio (SNR) is given. The attenuation of 
the structure determines the maximum length that a signal is allowed to travel before the 

launched acoustical power becomes too weak to produce a sufficient SNR at the optical 

system. This maximum length will give the radius of the initial circle, on which the basic 

equilateral triangle is placed. If the area to be monitored is larger than the unit cell, the unit cell 

can be extended in all directions. An example for a an extension is shown in Figure 7.17. The 

dotted lines represent the extended monitoring system. For the current system the maximum 

radius of the unit cell that has been tested is about 50 cm. However, further knowledge of the 

materials attenuation is needed to estimate the overall maximum area that could be monitored. 

7.3 SEVERITY OF DAMAGE 

This section gives the results of the experiments carried out to study the severity of damage. 

Several signal processing tools were applied to the Lamb wave signals in order to find a 

parameter that corresponds to the severity of damage. This parameter can be referred to as the 
damage index. The basic idea is that for future applications the damage identification system is 

able to calculate the damage index from the recorded Lamb wave signals and relate this index 

by a simple algorithm to the real size of damage. The parameter that serves as the damage 

index therefore has to fulfil several requirements. It must be unambiguous, sensitive to even 

small damage and the function that relates damage size and damage index should be as simple 
as possible, e. g. contain a minimum number of constants and variables. Furthermore, it is 

requested that the damage index has small cross sensitivity to other physical parameters, e. g. 
temperature, humidity, or loads. This problem will be addressed in Section 7.4. 

The experimental work involved both FBG sensors and PZT transducers to sense Lamb wave 

signals. The results of the two different sensors can then be compared. It is particularly 
interesting to see how well the results agree and if the FBG sensors perform as good as PZT 

transducers which are widely used for Lamb wave based damage identification. 

7.3.1 EXPERIMENTAL SET-UP 

The specimen used to conduct the experiments was a rectangular Ix 400 x 400 mm aluminium 

plate. The plate and the positions of the sensors are shown in Figure 7.18. The material 

properties can be found in Table 7.1. 
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Figure 7.18: Layout of the experiment to determine the severity of damage. 

The experimental procedure involved the same excitation signal as presented in Chapter 6. Two 

different driving frequencies were used to investigate whether the frequency affects damage 

identification. The frequencies were adapted to the propagation characteristics of the So mode 

at 260 kHz and 460 kHz. The smaller frequency is less dispersive whereas the higher one gives 

smaller acoustical wavelengths. Smaller wavelengths are advantageous because there is less 

interference of the waves on the plate due to shorter wave packages and the ratio of damage 

size and wavelength is bigger for constant damage size, thus giving higher sensitivity to 

damage. 

7.3.2 ANALYSIS OF LAMB WAVE SIGNALS 

The understanding of wave propagation in the specimen is important before any experimental 

tests are performed. The signals may contain reflections of the waves from boundaries of the 

plate and mode conversions can occur in order to satisfy the boundary conditions; even multiple 

reflections can be observed as the attenuation in aluminium is small. This makes interpretation 

of the Lamb wave signals difficult for complex specimens. The test specimen (Figure 7.18) used 
in the current study produced variety of Lamb wave reflections resulting in a complex Lamb 

wave signal. The possible wave propagation paths for the plate are illustrated in Figure 7.19; 

the total number of acoustical paths is higher. These additional paths can be found due to the 

symmetry of the specimen. The shortest distance is named d,. The distances d2 and d3 have 

equal length, they represent the reflections from the lateral face, whereas d4 and d5 are the 

reflection from the corner, d4 and d5 also have same lengths. The multiple reflections given by 

d6 and d7 come again from the lateral faces. Distance d7 has the same length as d4 and d5. 

Obviously, owing to the symmetry the distances are the same for FBGS and PZT. The 
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distances of wave propagation paths are: d, - 280 mm; d2 = d3 - 450 mm; 
d4=d5=d7-570 mm and- dg-630mm 

d5 d7 

d2 di 

d3 
d6 da 

Figure 7.19: Possible paths of propagation on test specimen. Note: Due to symmetry the 
total number of paths is 12. 

Some of the waves interfere at the sensor location due to the existence of propagation paths of 

equal length. This means if the symmetry is not perfect e. g. due to minor misalignments when 
bonding the sensors, it can be expected that not all responses look the same. Thus, for different 

driving frequencies and therefore different acoustical wavelengths the interference patterns will 
be different. 

The reference Lamb wave responses acquired using the FBGS at two different frequencies are 

shown in Figure 7.20. The first package arrives at the FBGS after a time-of-flight (TOF) of 
57 ps, the second one after 90 ps and the third one after 104 ps. There are packages at 120 Ps 
for the 260 kHz signal and at 135 ps for the 460 kHz which do not have a counterpart in the 

other frequency signal. 
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Figure 7.20: Lamb wave response of an undamaged aluminium plate sensed using FBG 

sensors at two different frequencies: a) 260 kHz; b) 460 kHz. 

The time-of-flight and the velocity of the So mode can be used to calculate the distance the 

corresponding wave package travelled. As there is no mode conversion on symmetric 
boundaries [281], the corresponding time-of-flight for the distances given in Figure 7.19 can be 

calculated. This allows one to identify different wave packages and their propagation paths. The 

results are summarised in Table 7.6. It appears that the first package is clearly identified as the 

incident So mode travelling along d1. The second package is identified as the mode reflected on 
the lateral faces of the plate. The third package is hard to identify. This is likely since six 
different acoustical paths interfere at the receiver. This pattern will be different for different 

frequencies as the corresponding acoustical length of the package also changes and also the 

phase of the wave is changed. The same reasons that explain the difficulties in identifying the 

third package hold for the fourth package. 
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Figure 7.21: Lamb wave response of an undamaged aluminium plate sensed at 460 kHz: 

a) PZT; b) FBGS. 

Figure 7.21 presents Lamb wave signals from the undamaged plate sensed using a PZT and a 
FBGS receiver. The excitation signal had a frequency of 460 kHz. Again the different wave 

packages can be identified and their time-of-flight can be calculated. The time-of-flight from the 

recorded signals can be compared to the time-of-flights that correspond to possible acoustical 

paths. The result together with the result for a 260 kHz signal recorded using a PZT transducer 

is given In Table 7.6. It appears that the first two packages are clearly identified as the incident 

So mode travelling along d1, and as the mode reflected on the lateral faces of the plate, 

respectively. However, the amplitude of the second package is different for PZT and FBGS. It is 

much higher for the PZT. As four acoustical paths arrive at the same time, the second package 
is an interference signal. The amplitude for the PZT must be higher as the FBGS has a high 

directivity. This means only the waves along the fibre axis fully contribute to the response 
signal. In contrast the PZT contains all waves. The third and fourth packages are hard to identify 

for all analysed signals. This is likely since several acoustical paths interfere at the receiver. If 

the symmetry of the plate is disturbed and if not all the PZT and FBGS are perfectly 

symmetrically bonded, each sensor will see an individual interference pattern. Furthermore, this 

pattern will be different for different frequencies as the corresponding acoustical length of the 

package also changes and also the phase of the wave is changed. Not only will geometrical 
disruptions of the symmetry influence the interference pattern. The structure itself might not be 

perfectly symmetric regarding its physical properties. For example, rolled aluminium sheets tend 

to lose their isotropy. 
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Table 7.6: Identification of the Lamb wave modes. 

FBG at 260 kHz FBG at 460 kHz PZT at 260 kHz PZT at 460 kHz Acoustical path 
57ps 57ps 57ps 57ps d, =56ps 
90 Ns 90 Ns 86 ps 86 is d2, d3 = 89 ps 
104ps 104ps 105ps 117ps d4, d5, d7 = 113ps 

120 ps 135ps 124ps 134ps d6=127ps 

It can be concluded that for analysing the Lamb wave data independently of the receiver or the 

frequency used, only the first two packages within the signal should be considered. 

7.3.3 DAMAGE INDEX VS. DAMAGE SIZE 

The aluminium plate was used to study the influence of damage severity on Lamb wave 

responses. Damage was introduced into the plate by drilling a hole into the centre of the plate. 
In order to obtain different severity of damage, the hole diameter was increased in steps from 0 

to 26.8 mm. For each step the Lamb wave signals were recorded for two different frequencies 

and with two different receivers as explained in the previous section. 

Several signal processing tools as presented in Chapter 6 were used. Some of these tools 

analyse the entire signal whilst others concentrate on the individual wave packages. Lamb wave 

responses from one experiment are used to study different signal processing tools; the best 

methods will then be applied to other experiments with other receivers and different 

frequencies. 

Original signal and its envelope 

The experiment that employed the FBGS at 460 kHz serves as the reference for the damage 

index. Figure 7.22 shows the signals and their envelopes for different severities of damage. The 

wave packages within the signal can be identified using Table 7.6. The first important thing to 

notice is the decreasing amplitude of the first package with increasing damage severity (hole 

diameter). The second alteration in the response signals is the change of shape in the third 

package and between the third and fourth package. This can be easily explained following the 

discussion given in Section 7.3.2: The first package passes the damage; parts of the signal will 
be reflected, thus this energy is missing in the transmitted signal. The amplitude of the signal 

therefore decreases. After the third package arrives there are many waves interfering at the 

position of the FBGS. Therefore, small changes in the propagation of the waves will alter the 

interference pattern of Lamb wave responses. The relation of the amplitude of the first package 

to the damage size will be studied in more detail later in this section. 
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Figure 7.22: Series of Lamb wave signals sensed with FBG sensor at 460 kHz for different 

hole diameters: a) 0.8 mm; b) 6 mm; c) 14 mm; d) 26.8 mm. 

Continuous wavelet transform 

The concept of the continuous wavelet transform (CWT) for time frequency analysis has been 

introduced in Section 6.5. The results of the CWT analysis for the Lamb wave responses 

presented in Figure 7.22 are shown in Figure 7.23. Here, the contour plots represent the 

frequency composition of the signal over time. The colour of the plots corresponds to the 

amplitude of the frequency component. The four packages defining the individual Lamb waves 

can be easily identified. The parameter that is plotted on the left axis is the scale parameter a, 

that relates to frequency. The main frequency components appear around 460 kHz, which is the 

carrier frequency of the excitation signal. There is a change in the contour plots with increasing 

size of the damage. The decreasing amplitude of the first package and the increasing 

amplitudes of the second and third can be identified. However, other tools such as image 

processing are required to extract more information in order to obtain a damage index from the 

contour plots. An alternative approach would be to concentrate on the ridge of the wavelet. The 

CWT ridge is a smooth curve that approximates the local maxima of the transform. The ridge is 

indicated as a black solid line in Figure 7.23. A closer view is given in Figure 7.24 where the 
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ridge for the undamaged and severely damaged plate are plotted. The results show that Lamb 

wave responses have a varying frequency content for all individual wave packages. However, a 

quantitative analysis of the results is difficult and requires additional tools, e. g. pattern 

recognition. The CWT helps to get an intuitive understanding of the Lamb wave signals. 
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Figure 7.23: Series of CWT of the Lamb wave signals sensed with FBG sensor at 460 kHz 

for different hole diameters: a) 0.8 mm; b) 6 mm; c) 14 mm; d) 26.8 mm. 
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Figure 7.24: Contour plot of the wavelet transform ridge for two different damage conditions. 

Fourier Transform 

The Fourier transform as defined in Section 0 has been applied to the signals presented in 

Figure 7.22. The frequency spectra for each of the signals are given in Figure 7.25. Much more 

harmonics compared to the spectrum of the excitation signal in Figure 6.3 appear in every 

single spectrum. This is because the reflections and interference of the waves create harmonics 

and widen the frequency band. This effect has also been reported by Mallet in [194]. Damage is 

exhibited by a small reduction of the spectral amplitude. However, it is questionable if this 

amplitude change is sufficient to serve as a damage index. 
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Figure 7.25: Frequency spectrum for the Lamb wave signals for different damage conditions. 
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Time and Frequency Domain Parameters 

The parameters that could serve as damage index include the variance, mean, RMS value and 
Kurtosis in time domain and geometric and arithmetic mean of the spectrum in frequency 

domain. Their definitions can be found in Chapter 6. The parameters have been calculated for 

Lamb wave responses representing various damage conditions. Every parameter has been 

normalised to the reference value at zero damage. The normalised parameters can act as a 
damage index as the relative change of the index is independent of the time or frequency 

domain. The damage index is then plotted against the severity of damage (hole diameter); the 

results are shown in Figure 7.26. 
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Figure 7.26: Time and frequency domain analysis of the Lamb wave signals sensed with 
FBG sensor at 460 kHz: 

a) Mean value; b) Variance; c) RMS value; d) Kurtosis (in time domain) 

e) Geometric mean; 0 Arithmetic mean (in frequency domain). 

In time domain the only parameter that shows monotonic behaviour is based on the Kurtosis. 

None of the parameters in the frequency domain corresponds to the damage severity. The 

damage index based on the Kurtosis was also investigated for the PZT sensors. In case of the 

PZT Kurtosis and all the other parameters show no correlation with damage size. This shows 
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that none of the parameters obtained from the time history of the Lamb wave signal meets the 

requirements earlier set for the damage index. The reason for this can be found in the complex 

wave propagation on the test specimen. With so many waves reflecting and interfering, the 

signals recorded with the FBGS also becomes complicated. And the environmental effects can 
not be separated from the damage. 

An alternative approach for an appropriate damage index is to concentrate on the individual 

wave packages of the signal. 

Wave package analysis 

As has been shown in Section 7.3.2, the individual wave packages can be related to the So 

mode travelling along different acoustical paths. Especially the first two packages are easy to 

identify and their acoustical path are known. What makes them particularly interesting is that 

whereas the first package passes the damage the second one, which is the reflected wave from 

the lateral face, is not influenced by the damage. One would therefore expect, that the 

amplitude and time-of-flight (TOF) remain constant for the second package. This provides a 

reference measure for the changes in package one. If for any reasons the boundary conditions 

change, e. g. the excitation signal differs in amplitude or there is a delay in trigger time, this can 

be corrected by relating package one to package two. 

The following graphs show the evaluation of the TOF and the amplitude information for the first 

two packages. The TOF for the first and second package are shown in Figure 7.27a and b. The 

first package arrives later with increasing damage severity. This can be explained as the 

damage changes the material properties as the material becomes weaker, i. e. density gets 
smaller and so does Young's modulus. As a consequence the velocity of all waves including the 

So mode decreases. The second package also shows minor variations in the TOF. These can 
be referred to errors in the measurement or changes in the environmental conditions. To 

account for the latter, the TOF for the first signal can be normalised. The first way of 

normalisation is to Calculate the ratio of the TOF for the first and second wave package. These 

are referred to as TOF 1 and TOF 2. The second possibility is to take the difference of TOF 2 

and TOF 1. Both results are shown in Figure 7.27c and d respectively. Both measures show 

good monotonic behaviour with damage severity. However, due to the ripples on the function 

the resolution is not optimal. Before analysing the result quantitatively the amplitude of the 

packages is considered. 

The amplitude information for the first and second package are given in Figure 7.28a and b 

respectively. The first package shows decreasing amplitude with increasing damage. As the first 

package passes the damage, a part of the signal will be reflected at the metal - air interface, in 



7.3 Severity of Damage 178 

consequence this energy is missing in the transmitted signal. The amplitude of the signal 

therefore decreases. The second package however should not be affected by the damage. The 

observed changes in amplitude must have other reasons, e. g. changes in the boundary 

conditions. These can occur as the plate had to be removed from the test bench and be 

transported to the workshop for drilling the hole. The mechanical loads might change the 

coupling of both PZT and FBGS on the plate and therefore the transmission characteristics of 

the Lamb wave. Again the idea is to account for these effects by normalising the amplitude of 

package one by package two. Two possible ways of normalisation are shown in Figure 7.28c 

and d: calculation of the ratio and the difference of the amplitudes for the first and second wave 

package referred to as ampl 1 and ampl 2, respectively. For both methods a good monotonic 

behaviour of the damage index with the actual severity of damage can be found. The damage 

index shows a linear relation to the damage size for hole diameters smaller than 15 mm. The 

resolution in the range of hole diameter is very good, the individual points for 0.8 mm, 1.4 mm 

and 2 mm can be separated. For hole diameters larger than 15 mm a saturation effect can be 

observed: the slope becomes smaller and then it gets saturated. 
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Figure 7.27: Analysis of the time-of-flight (TOF) information for the first two wave packages 
(direct and refelected wave front) sensed with FBG sensor at 460 kHz: 

a) TOF for the first package; b) TOF for the second package 

c) Ratio of TOF 2 to TOF 1; d) Difference of TOF 2- TOF 1. 
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Figure 7.28: Analysis of the amplitude information for the first two wave packages (direct and 

refelected wave front) sensed with FBG sensor at 460 kHz: 

a) Amplitude of the first package (amps 1); b) Amplitude of the second package 
(ampl 2); c) Ratio of ampl 2 to ampl 1; d) Difference of ampl 2 and ampl 1. 

Further resultsThe same signal processing tools that have been presented in the previous 

paragraphs were applied to other experiments. The experiments investigated the use of a PZT 

sensor and the use of a different carrier frequency of the excitation signal. A total number of four 

results can be combined to study the concept of a damage index that is correlated with the 

damage size. 

The results for both receivers and frequencies based on the analysis of the first and second 

wave package are presented in Figure 7.29 The evaluation of the time and amplitude ratio is 

presented in Figure 7.29a and b, respectively. There is good correlation of damage index and 

damage severity. Although the normalisation is somewhat arbitrary as the ratio of the two 

numbers does not have any physical interpretation, the consistency of the curves for within the 

amplitude and time analysis is obvious. For both receivers and at both frequencies there is a 

relation of damage index and damage size. For the same frequency the results for the PZT and 

FBG sensors agree very well. The different between amplitude and time is that for the amplitude 

the damage index changes about 50 to 100 %, whereas the index changes only about 0.5 to 

0.8 % for the time analysis. 
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The picture is different for the analysis of the amplitude and time differences, as presented in 

Figure 7.29c and d. For this analysis the time and amplitude differences are normalised to their 

initial values. In case of the time difference again the results for PZT and FBG sensors at the 

same frequencies agree. However, the index based on the difference in amplitude is different 

for all the studies. The problem in the analysis is that there is no physical identity to the 

normalised damage indices of amplitude and time. The normalisation to the second package is 

somewhat arbitrary and might depend on the initial conditions. 
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Figure 7.29: Damage Index obtained from wave package evaluation using different 

transducers and driving frequencies: 

a) Time ratio; b) Amplitude ratio; c) Time difference, d) Amplitude difference. 

It is problematic to find a mathematical model to describe the relation of damage index and 

damage size. The reason is because Lamb waves are guided waves and cannot be treated via 

standard scattering theory. No models are known from the literature that describe the influence 

of a hole on the amplitude and velocity of the Lamb wave. McKeon and Hinders present a 

theoretical approach to model the scattering of low order Lamb waves [282]. However, they do 

not discuss their result with respect to amplitude or velocity of the So mode. A different approach 
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has been chosen be Diligent et al [157]. They present the results of modelling the reflections 

from a hole using FE analysis. The calculated the reflection coefficient of a hole with respect to 

the ratio of the diameter of the hole and the acoustical wavelength. 

Figure 7.30 gives the results from this work in a presentation of damage index versus diameter 

to wavelength ratio. The amplitude analysis is shown in Figure 7.30a and the time analysis in 

Figure 7.30b. Both results can be compared to an analysis presented in [157]. The PZT and 

FBG sensors at 460 kHz for amplitude and time analysis show the same tendency as the 

reflection coefficient in [157]. There is a steep increase for a diameter to wavelength ratio from 0 

to 1, a flat region from 1 to 2 and a stepper region again above 2. Although the results do not 

correspond identically the same behaviour is obvious. This proves good consistency of the 

results obtained here with other results known from the literature. 
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Figure 7.30 Damage Index obtained from wave package evaluation as a function of the 

diameter to wavelength ratio: a) Amplitude ratio; b) Time ratio. 

It can be concluded that using the normalised amplitude and time changes of the first two 

packages a damage index can be defined. Both PZT and FBG sensors produce very similar 

results, which means the FBGS is as good as a PZT capable to determine the severity of 

damage. The difference at 260 and 460 kHz can not be explained, but they occur for both PZT 

and FBGS. 
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This section showed that FBG and PZT sensors produce corresponding results for the severity 

of damage. The ratio of the time-of-flight and the amplitude of the first and second wave 

package within the Lamb wave response can be used as damage index that shows good 

monotonic behaviour with increasing damage severity. The best result using a FBG sensor 

shows that hole diameters as small as 0.8 mm can be identified. 

7.4 TEMPERATURE EFFECTS 

For the aluminium specimen used in the previous chapter to detect damage, the influence of 

temperature on the damage index was studied. Temperature testing took place at different 

severities of damage, i. e. for different diameters of the hole. The specimen was heated and 

cooled to see how the temperature affects the damage detection results. Temperature is one of 

the environmental effects that cannot be controlled in real world applications. Therefore it is 

important to find a damage index that is independent of the temperature. This section presents 

the results of the temperature tests. 

7.4.1 EXPERIMENTAL SETUP 

The same specimen as for the detection of damage severity was used to study the influence of 

temperature. The experimental setup is the same as described in Section 7.1. The aluminium 

plate was placed into a climate chamber to control the temperature. The chamber used is a 

Vötsch Klimakammer VCS 7033. The temperature can be controlled from -50 to +200 °C, the 

humidity can be adjusted from 5 to 95 %. The chamber is big enough to insert the complete 

specimen which is 400 x 400 mm. Furthermore, the chamber has a fixture to insert the lead 

wires and optical cables. 

Starting point for the temperature cycle was at 25 °C. Temperature was increased step by step 

to 70 °C and was then cooled down to -20 °C, before the starting point was reached again. A 

loop has the advantage that any hysteresis in the specimen's behaviour becomes obvious. 

Before taking the measurement at each step the temperature was kept constant for about 

15 min. The influence of temperature on the results obtained from both receivers, PZT and 

FBGS, was studied. The frequency of the excitation signal was kept constant at 260 kHz. 
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The temperature tests were carried out for the reference condition, at 0.8 mm, 12 mm and the 

maximum damage at 26.8 mm diameter of the hole. 

7.4.2 RESULTS 

To give an overview how temperature influences the Lamb wave propagation, the signals for 

the reference plate recorded with the FBGS are studied. The signal processing tools applied to 

the signals in Section 7.3 are used to analyse the thermal influence. 

Original signal and its envelope 

The Lamb wave responses as acquired at four different temperatures are displayed in Figure 

7.31. Two things can be noticed immediately: The major changes happen to the fourth package. 
Its amplitude decreases with temperature and has a minimum at +70 °C. The amplitude of the 

first three packages is only slightly changed by temperature and the relative amplitude seems to 

be constant. 
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Figure 7.31: Series of Lamb wave signals at different temperatures sensed with FBG sensor 

at 260 kHz: a) -20 °C; b) +10 °C; c) +40 °C, d) +70 °C. 

More results can be found in Appendix I. 
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Wave package analysis 

The best results for the damage index in the previous chapter were obtained when only the first 

two packages of the Lamb wave signal were considered. It is therefore logical to concentrate on 
these packages for the temperature test. and check the damage Index on its cross sensitivity to 

temperature. 

The results of the TOF evaluation are given in Figure 7.32. The TOF for the first and second 

packages are shown in Figure 7.32a and b. The TOF for the first and second packages clearly 
depend on the temperature. Higher temperature gives later arrival times than lower 

temperature. It is also observed that the effect is completely reversible and no hysteresis 

occurs. This can be explained as temperature changes the material properties. If the material 
becomes warmer the density decreases as does the Young's modulus. As a consequence, the 

velocity of all waves, including the So mode decreases. Again, for normalisation of the results, 
the ratio and the difference of the first two wave packages have been calculated. For the ratio 

any dependency of the temperature with damage index is lost. The variations in the signal are 

very small compared to the variations due to damage (see Figure 7.27c). Taking the difference 

still keeps the close relation with temperature. This can be understood as the effect of a change 
in velocity will effect both packages equally, but as the second package has a longer distance to 

travel, the difference in distance will also appear in the difference of the TOF. 

The amplitude information for the first and second package are given in Figure 7.33a and b, 

respectively. For both packages the amplitude is influenced by temperature. There are several 

options how temperature can influence the amplitude. By changing the density of the material 

also the attenuation is changed. This means higher attenuation at lower temperatures will 

decrease the amplitude. However, more relevant might be the influence of the temperature on 

the interface from PZT and FBGS to the aluminium. The receivers are bonded to the surface 

using adhesives: cyanoacrylate for the FBGS and epoxy for the PZT. The strength of the bond 

and therefore the ultrasonic coupling characteristics are changed with temperature. Again the 

idea is to account for these effects by normalising the amplitude of package one by the 

amplitude of package two. Two possible ways of normalisation are shown in Figure 7.28c and d: 

calculation of the ratio and the difference of the amplitudes for the first two wave packages. The 

results show that using these methods the influence of the temperature on the damage index 

can be minimised. 
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Figure 7.32: Analysis of the time-of-flight (TOF) information for the first two wave packages 

a) TOF for the first package; b) TOF for the second package 
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Figure 7.33: Analysis of the amplitude information for the first two wave packages 

a) Amplitude of the first package (ampl 1); b) Amplitude of the second package 
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Further results 

The temperature test was repeated for different sizes of the induced hole. That is at 0.8 mm, 
12 mm and at 26.8 mm diameter of the hole. These tests were examined using the wave 

package analysis as presented in the previous paragraphs. For each test the damage indices 

were calculated for a range of temperatures. 

The results of all the tests is given in Figure 7.34, where damage index is plotted versus the 

temperature. Figure 7.34a and b of the figure present the results when the damage index is 

calculated using the ratio of the amplitudes or the TOF of the first two packages. Both PZT and 
FBG show a similar behaviour. The same is true for the effect of temperature at different values 
for the hole diameter. The change in the damage index due to temperature looks scattered and 

is very small compared to the change in the damage index as a result of increasing hole 

diameter as shown in Figure 7.29. 
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Figure 7.34: Influence of temperature on damage index: 

a) Time ratio; b) Amplitude ratio; c) Time difference, d) Amplitude difference. 
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Figure 7.34c and d show the result when the damage index is calculated using the difference of 
the amplitudes or the TOF. The results is not as good as for the ratios. The damage index 

obtained from the TOF still strongly depends on the temperature, while the damage index for 

the amplitude analysis looks scattered and shows big variations. Again the problem comes from 

the normalisation of the amplitude difference. If, for example, at the reference state the 

difference has a negative sign whereas for other temperatures the sign changes, for the 

normalised index positive and negative values occur. Such a result can not be compared to 

others where no change in the sign of the index appears. 

7.4.3 DIscussION 

To demonstrate how temperature can affect the determination of damage size, an example 

using the results for the FBGS at 260 kHz is given in Figure 7.35. For the graph the damage 

index based on the time ratio analysis and the corresponding values for damage size and 
temperature as obtained from the experiments are plotted. A quadratic fit has been used to find 

a mathematical representation of the damage index - severity of damage relation. The area that 
is indicated by the red rectangle denotes the uncertainty introduced by the temperature effect. 
The biggest influence of temperature is a change in the damage index of about 0.7 %. Using the 

quadratic fit this can be translated into an error in the damage size. Here the error is 3 mm. This 

is the same order where measurement errors in the damage size give a lower limit for the 

minimum detectable damage size. 

In conclusion, temperature has only minor effects on the proposed damage index. It can be 
treated as noise, that disturbs the resolution in the small damage region. Temperature 

compensation works for both types of receivers, PZT and FBGS. The influence of other 
environmental effects on the damage index was not studied. However, it can be assumed using 
the proposed normalisation of the damage index a good compensation of any effects that 

equally effect the acoustical path of both Lamb wave packages can be achieved. 
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Figure 7.35: Influence of the temperature on the determination of damage size. 

7.5 CONCLUSIONS 

This chapter has explored the experimental identification of damage. Tests were carried out to 

address the three objectives of damage identification: detection of damage, location of damage 

and severity of damage. For the detection of damage, two different cases have been studied: 

with and without a priori knowledge of damage. The experiments showed that for both cases 

FBG sensors can be used to record the Lamb waves. The information found in the signals 

allows the detection of damage. 

The directivity of the FBG sensor has been used to introduce a new concept of localisation of 

damage. By mounting the FBG in a rosette, the directivity characteristics of the gratings can be 

used to determine the direction of the incoming acoustic wave. It has been shown that this 

concept works not only for incident waves but also for reflected waves from a damage. A 

Genetic Algorithm has been applied to calculate the location of damage in an aluminium plate. 

This type of damage location is reserved for FBG sensors as a circular PZT transducer does not 

have the required directivity. Furthermore, this approach is useful if a dual strain and ultrasound 

monitoring sensor system has to be designed. The rosette is a common device for the strain 
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measurements and this work has shown for the first time that it also has the ability to locate 
damage by recording ultrasonic Lamb waves. 

Tests were also performed on aluminium plates to determine the severity of damage by varying 
the diameter of drilled holes. A variety of signal processing tools have been applied to the 

recorded Lamb waves signals in order to extract a reliable feature that could serve as a damage 
index. The best parameter found is based on the analysis of the amplitude and time-of-flight of 
the first two arriving Lamb wave packages. This damage index has good correlation with the 

actual damage size. It also works for both types of receivers, FBGS and PZT. 

The influence of temperature on the proposed damage index has been studied. It appears that 

a damage index based on the ratio of the amplitudes or time-of-flight for the first two wave 
packages is only slightly influenced by temperature and therefore perfectly suited to serve as a 
temperature compensated damage index. Furthermore, the results show that PZT and FBG 

sensors exhibit similar behaviour. 

Fibre Bragg grating sensors have been found to be very effective for damage detection, 
damage location and determining the size of damage. For most of the tests they perform 
equally well as the more common piezoceramic transducers, but they offer superior 
performance for the proposed damage location scheme. 



8 FATIGUE ANALYSIS USING FBG SENSORS 

The previous chapter showed how a damage identification system based on fibre Bragg grating 

sensors could work. Methods for damage detection, damage localisation and determining the 

severity of damage were experimentally verified. This chapter describes a combined Health and 
Usage Monitoring System (HUMS) for the fatigue analysis of metallic structures. Initial tests 

have been carried out to demonstrate the dual load and damage monitoring on a simple 

aluminium plate. A fatigue test was carried out to study the crack propagation of the plate. The 

first section of this chapter gives an introduction to fatigue analysis. Basic concepts such as the 

safe-life and the fail-safe approach are explained and the relevant analysis tools based on load 

spectra and stress histories are presented. The experimental setup for the fatigue test is 

described in the second section. For load monitoring FBGS were used to record the load history 

of the test. For a comparative study electrical strain gages were also applied to record the 

loads. The results of the study are presented in the third section of this chapter. For fatigue 

analysis the crack growth was observed using a conventional method and Lamb wave analysis. 
FBGS and PZT were applied to record the Lamb wave signals. The same methods as 

presented in Chapter 6 were applied to determine a damage index that correlates with the 

damage or in this case the crack length. The results for both transducers are given in this 

chapter and their performance is compared. Final remarks on this initial test of a dual loads and 
damage monitoring system based on FBGS conclude the chapter. 

8.1 BACKGROUND 

The word fatigue in technical terms stands for damage and failure of materials under cyclic 
loads. It is an engineering task on the one hand to understand the basic principles of fatigue 

and on the other hand to find methods to measure and quantify the phenomenon. Research on 

fatigue involves many scientific disciplines and has been of interest to academic and industrial 

institutes for many years. 
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For the most general situation the progressing of fatigue can be classified in the following 

stages [275]: 

a) Sub structural and micro structural changes which cause formation of permanent 
damage. 

b) Creation of microscopic cracks (crack initiation). 

c) Growth of microscopic cracks to form dominant cracks (crack propagation). 
d) Stable propagation of the dominant crack. 

e) Structural instability or complete fracture. 

The exact definition of when the state of crack initiation occurs is one of the biggest 

impediments to the development of life prediction models. The state of crack initiation is needed 
to predict the total fatigue life of the structure which is defined as the sum of the number of 

cycles to initiate a fatigue crack and the number of cycles a crack propagates until it reaches 
final crack length. 

The classical approach to fatigue design is called the total-life or safe-life approach. To obtain 

the total fatigue life the number of cycles necessary to produce a failure of an initially 

undamaged specimen is estimated under controlled amplitudes of cyclic stresses or strains. 

Both parts of the life time cycle, the one before crack initiation and the one until final failure 

contribute to the total life. It turns out that the crack initiation life dominates the total life, in fact it 

can be as high as 90 % of the total life. Therefore, the aim of the total-life approach is to design 

a structure that prevents crack initiation. In service the structure is then driven at load levels that 

are too low to initiate a crack. Structures designed in that way can traditionally be found in 

ground-vehicles. 

In contrast, the damage-tolerant or fail-safe approach tolerates the existence of flaws or cracks 
in a structure, provided that they do not exceed a critical size. The structure therefore may 

contain an initial crack and the useful fatigue life is determined as the number of cycles that is 

required to propagate the crack from its initial size to a critical dimension. Various methods are 

available to determine that critical dimension for a specific structure. Crack propagation is 

characterised by empirical crack growth laws based on fracture mechanics. Different 

approaches to these empirical laws exist and can be used to determine the crack growth life. 

The defect-tolerant approach is often used in fatigue-critical applications, for example the 

aerospace industry. 

The design of a structure will depend on which approach to fatigue life one will follow. It is 

essentially the microstructure of the material that will determine whether its more appropriate to 

prevent crack initiation and therefore favours a total-life approach or whether its designed to 

resist a crack propagation and so is suitable for the defect-tolerant approach. 
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In aeronautics the two different design philosophies co-exist. Safe-life is designed to achieve 
the required life time without any crack initiating. To determine the specific load spectra for a 

structure in service, tests have to be carried out in a first instance. This information on the loads 

will then be used to obtain the fatigue life of the structure under real life conditions. A safety 
factor might then be added to this life and the expected maximum life time of the structure can 
be specified. After its individual life the structure will be taken out of service, irrespective of 

whether a crack has developed or not. To guarantee the safe-life in any case, a large margin of 

safety is acknowledged during the design of the structure. However, this may contradict to the 

requirements of economy or performance. On the other hand the fail-safe or damage-tolerant 

concept would allow for cracks in a structure, provided there is enough remaining undamaged 

structure that could takeover the loads once carried by the now damaged part. This concept 
inherently requires an inspection scheme to monitor crack propagation. Should the crack arise 
to a critical dimension this has to be detected during inspection and appropriate measures, e. g. 

repair or replacement have to be taken, see also Section 0 for more details. 

Regardless of which approach, safe-life or fail-safe, is taken, an inspection scheme is always 
desirable. It helps to avoid catastrophic failures due to any unforeseen damage either due to 

wrong design parameters or to unexpected structural events in service. For many structures in 

safety critical environments there exist detailed inspection schemes and regulations, for 

example the FAA regulations in the aircraft industry. These rules have to be obeyed whatever 
design philosophy the structure originally followed. 

An in-depth discussion of the safe-life and fail-safe approach can be found in Appendix F. 

8.1.1 FATIGUE ANALYSIS AND STRUCTURAL HEALTH MONITORING 

The benefits of a Structural Health Monitoring (SHM) system have already been discussed in 

the first chapter of this thesis. The motivation for a dual loads and damage monitoring system 

for fatigue analysis is reviewed in this section and the major benefits related to fatigue analysis 

are recalled. 

A damage-tolerant approach requires the inspection of the structure at certain intervals. This is 

because cracks are tolerated in the material and the growth of the cracks must be monitored in 

order to prevent a crack growing to its critical dimension, which would result in catastrophic 
failure of the structure. The remaining life of the structure can be determined as the number of 

cycles that is required to propagate the crack from its current size to a critical dimension. 

Empirical crack growth laws are available to predict the remaining life of the structure if the 

current crack size is known and the future load spectra can be anticipated. The crucial point is 

that the load spectra are not always known to the required extension. Today, fatigue crack 
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growth analysis is based on past experience and projected to the future service. A 

corresponding inspection schedule is proposed and must be obeyed. During the inspection the 

structure is checked for existing cracks and their propagation since the previous inspection. 

A structural health and usage monitoring system that is capable of monitoring loads and 
damage could help to improve the current inspection scheme and therefore give better 

knowledge of the life consumption so far and the remaining structural life. The load monitoring 

part of the system is designed to permanently update the anticipated load spectra. This allows 

an adaptation of the analysis to the actual service experience. The damage monitoring part 

gives the actual crack length independently of any inspection intervals, as the integrated system 

can explore the structure autonomously. The proposed SHM system for fatigue analysis could 

always update the remaining fatigue life, even from flight to flight. 

The basic idea followed within this work is that a single sensor could be used for loads and 
damage monitoring. The previous chapters have shown that the fibre Bragg grating sensor is 

capable of sensing both the loads and the ultrasonic waves needed for damage detection. The 

fatigue test presented in this chapter combines all the experience with the individual monitoring 
task. An array of three Bragg gratings was used to monitor the loads that occur during the 

fatigue test and the Lamb wave signals after certain intervals in order to determine the crack 
length. 

8.2 EXPERIMENTAL PROCEDURE 

At the Department of Mechanical Engineering at the University of Sheffield several tests were 
initiated to study damage detection and classification techniques using Lamb wave signals. 
Some of these tests involved different experimental techniques to record the data. Other tests 

focused on fatigue analysis of a metallic test specimen. In order to compare all experimental 

results a simple specimen was designed and manufactured. The specimens were used for 

testing the dual loads and damage monitoring system using FBG sensors at the 

DaimlerChrysler research laboratory in Ulm, Germany. The experimental setup and the test 

specimen are described in the following sections. 

8.2.1 INSTRUMENTATION 

The standard experimental setup for recording Lamb wave responses as presented in 

Chapter 7 was used to carry out the tests. Additional devices were necessary for recording the 

loads. A HBM (Hottinger Baldwin Messtechnik) strain recorder was used to interrogate the 

Electrical Strain Gages (ESG). The strain gage used was a HBM 61120Y13. This strain gage is 
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thermally adapted to aluminium. The HBM strain recorder was connected via RS232 to a laptop 

in order to store the data for further signal processing. For recording the fibre optical strain 

signals a Micron Optics si425 was available. This device is capable of measuring 128 FBG 

sensors with a frequency of 250 Hz. This bandwidth is high enough for sampling the dynamic 

fatigue test loads. The machine used to run the fatigue test was an Instron 8800. The 

Figure 8.1: Experimental setup for the fatigue tests: 

a) Control panel of the fatigue test machine (Instron 8800), b) Test specimen 

c) Fibre-optic control laptop and optoelectronic devices, d) Digital Oscilloscope 

e) Signal Generator, f) Electrical strain gage control laptop and amplifier 

g) Micron Optics si425. 

parameters for the fatigue test were a static load of 20 kN, a dynamic load of ±9 kN and a 

cycling frequency of 10 Hz. A sine wave was used for dynamic loading of the specimen. Figure 

8.1: Experimental setup for the fatigue tests: 

a) Control panel of the fatigue test machine (Instron 8800), b) Test specimen 

c) Fibre-optic control laptop and optoelectronic devices, d) Digital Oscilloscope 

e) Signal Generator, f) Electrical strain gage control laptop and amplifier 

g) Micron Optics si425. 
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shows a picture of the lab with all the devices installed. 

8.2.2 TEST SPECIMEN 

The test specimen was a rectangular 400 x 150 x2 mm aluminium plate. The material was an 
NS4 aluminium alloy, having a Young's modulus of 71 GPa and a density of 2700 kg/m3. The 

Poisson ratio is assumed to be 0.338. The shear velocity in this material is 3100 m/s and the 

longitudinal velocity is 6300 m/s. All these parameters were taken from [194]. 

The layout of the test specimen is shown in Figure 8.2. A number of clamping holes was drilled 

at the top and bottom side of the plate. A small notch had been made using spark erosion in the 

centre of the plate. A detailed view of the notch is also presented. The notch was made in order 

to initiate the crack at the desired position. The layout of the notch was designed in a way that 

makes sure, the crack starts to grow perpendicular to the loading direction. As the starting 

position of the crack is known in advance the sensor positions were chosen accordingly. 

Different acoustical paths were used for Lamb wave propagation. Path (a) goes from PZT I to 

FBGS 1. This is 45° direction to the principal load and to the expected direction of the crack 

growth. Path (b) involves PZT II and FBGS 2. The direction is along the principal load and 

perpendicular to the direction of the crack. Path (c) goes from PZT I to FBGS 2 and Path (d) 

goes from PZT II to FBGS 1. Whereas the acoustical paths (a) and (b) pass through the crack, 

paths (c) and (d) will bypass small cracks. In addition to the FBGS shown in Figure 8.2, more 
PZT were mounted on the reverse side of the plate at corresponding positions to the FBG 

sensors on the front side. This allowed the parallel recording of PZT and FBGS Lamb wave 

responses along identical acoustical paths, the only difference being the surface on which the 

transducers were mounted. As described in Chapter 7, an epoxy (Epotek 306) was used to 

bond the PZT transducer to the structure, whereas the FBGS were bonded using cyanoacrylate 

glue (Kyowa CC-33A). For the fatigue test the fibres were bonded directly onto the surface of 

the structure, no backing patch was used. 
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Figure 8.2: Layout of the test specimen and sensor positions. 

As presented in Section 0 it is essential for the FBG sensor to have a suitable sensor length to 

be able to detect both, static and ultrasonic strain. The ultrasonic frequency chosen for the 

Lamb wave signals was 300 kHz, which for aluminium corresponds to a wavelength of 17 mm. 
Therefore, the FBG sensors used for the fatigue test had a grating length of 1 mm. The Bragg 

gratings were fabricated by IPHT Jena, Germany. Their reflectivity is about 15 %, their spectral 

width is about 500 pm. The FBG sensors installed could not only be used for detection of the 

ultrasonic Lamb waves, but could also be employed for measuring the strains related to the 

loading of the specimen. For a comparative study an electrical strain gage (ESG) was 

additionally mounted on the front side of the specimen. The same bonding technique as for the 

fibre was used. 
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Both sides of the test specimen are shown in Figure 8.3. The sensors on the front side can be 

seen in Figure 8.3a. On this side of the specimen two PZT transducers were mounted to excite 

the ultrasonic waves, two FBG sensors to receive the ultrasound. All three gratings on the front 

side could be used to record the loads, together with the additionally mounted electrical strain 

gage. The reverse side of the test specimen is shown in Figure 8.3b. Here, two PZT 

transducers were mounted to launch the Lamb waves whereas two more PZT discs were used 

as ultrasonic receivers. They monitored the same acoustical path as the FBGS on the front 

side. 

a) 
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Figure 8.3: Photograph of the test specimen clamped into the test machine: 

a) Front side with FBGS installation; b) Reverse side with PZT installation. 
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8.3 LOAD MONITORING 

The fatigue test was carried out in the following way. Before starting the test the reference 

condition was recorded for both the PZT and the FBG sensors. Then a dynamic load was 

applied. After a certain number of cycles the specimen was investigated for the presence of any 
fatigue cracks. If a crack was observed its length was documented and the dynamic loads were 
applied again. In this way a crack propagation curve was obtained. Additionally to crack 

monitoring the dynamic loads were recorded using both ESG and FBGS. From the loads history 

the fatigue parameters such as the mean static stress and the modulation stress amplitude 

could be obtained. The purpose of monitoring the loads for this simple fatigue test with constant 
load amplitude and frequency was to compare the performance of the ESG and FBGS for 

operational load monitoring, when the same FBGS was also used for Lamb wave sensing. 

Two different approaches can be used to calculate the actual loads. The straight forward 

method is to calculate the load making use of 

F 
Q=- A 

(8.1) 

where F is the applied force and A is area of the specimen with the surface perpendicular to the 

applied force. 

The second way to obtain the load is making use of Hooke's law: 

ar=E"E (8.2) 

where cis the strain measured by the electrical or optical strain gage and E is Young's modulus 

of the specimen. 

Figure 8.4 shows the recorded signals of the ESG and FBGS. The information of the strain 

gage signal was directly converted into a load using Equation (8.2). The result is shown on the 

right axis of Figure 8.4a. The FBGS in this experiment was not calibrated to any load, therefore 

no direct conversion of the Bragg wavelength into a corresponding load was possible. However, 

this measurement could be used to obtain calibrated loads from the FBGS for further load 

monitoring. 
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Figure 8.4: Sequence of the dynamic loading of the fatigue test specimen: 

a) Electrical Strain Gage; b) Fibre Bragg Grating Sensor. 

The results from the recording of the load history using the ESG can be compared with the 

results from the force method. Table 8.1 shows the results for the mean static load and the load 

amplitude, as defined in Section 0. The experimental error in the results for both methods is 

assumed to be less then 5 %, which is standard error in practical applications of strain gages 

[136]. 

Table 8.1: Calculated load parameters using the strain and the force method. 

Parameter Strain method Force metho 

Mean static load am 73.5 MPa 67.5 MPa 

Load amplitude Ua 31.6 MPa 30.5 MPa 

Both methods give slightly different results for the load parameters. This can be explained by a 

systematic error as the actual Young's modulus might differ from the specifications of the 

manufacturer. Within these error limits the results for both methods are in good agreement. 

A further measure of the ability of the FBGS for load monitoring can be found when the 

frequency response of the load history is studied The spectra obtained by the ESG and FBGS 

are shown in Figure 8.5, respectively. The ESG spectrum was recorded with 200 Hz and the 

FBGS spectrum with 250 Hz sampling frequency. Both spectra show the 10 Hz dynamic load. 



8.4 Crack Growth and Damage Monitoring 200 

Furthermore, the harmonics of this basic frequency can be identified. As a result both methods 

of load monitoring produce comparable results in terms of analysing the recorded loads history. 
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Figure 8.5: Frequency spectra of the recorded signals in Figure 8.4: 

a) Electrical Strain Gage; b) Fibre Bragg Grating Sensor. 

8.4 CRACK GROWTH AND DAMAGE MONITORING 

The dynamic fatigue test aimed to establish a damage index for the Lamb wave analysis that 

correlates with the actual crack length. Two specimens were available for the initial tests. 

8.4.1 CRACK PROPAGATION CURVES 

For both specimens that were available for the fatigue test the test conditions, e. g. the sensor 

installation and the fatigue parameters were identical. To see how good the experimental 

conditions could be reproduced, the crack propagation curves as obtained by visual inspection, 

are plotted in the same diagram. The crack length was determined using a lens and a meter. 

Figure 8.6 shows both crack propagation curves. For the first specimen no data has been 

gathered between 150 000 and 230 000 cycles. This is because no crack was observed during 

the experiment, but as the evaluation shows this is related to an uncertainty in the visual 

inspection. As the curves perfectly agree for other regions, a crack must have occurred, but 

20 40 60 80 100 
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remained undetected. The coincidence of the two curves shows that not only the experimental 

conditions were identical for both tests, but the specimens as well. Furthermore, both 

specimens behaved equally, which allows a comparison of their results. 
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Figure 8.6: Crack propagation curve for both fatigue test specimens. 

8.4.2 ANALYSIS OF THE LAMB WAVE SIGNALS 

The first step in analysing the Lamb wave data is to understand the Lamb wave propagation in 

the specimen. This allows the identification of each wave package within the recorded signal. 

According to what has been said in Chapter 7 the frequency of the Lamb wave was chosen to 

support the propagation of only the So Lamb wave mode. The possible ways of propagation for 

the Lamb waves are displayed in Figure 8.7. The shortest distance is named d,. This is the 

direct path from the source to the receiver, passing the notch and the expected crack. The 

distances d2 and d3 have equal length, they represent the reflections from the lateral face. The 

distances d4 and ds are the reflection from the clamping holes, where multiple reflections can 

occur; d4 and d5 also have same lengths. The multiple reflections given by d6 and d7 come from 

the edges of the specimen. The distances for the different ways of propagation are the 

following: d, - 60 mm; d2 = d3 = 160 mm; d4 = d5 = 300 mm and d6 = d7 = 400 mm. 
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Figure 8.7: Possible ways of propagation for the Lamb waves on the test specimen when 
PZT 2 is the sender and FBGS 2 is the receiver. 

As the distances are the same on the front side and the reverse side of the specimen, the Lamb 

wave signals recorded using FBG and PZT sensors can be compared. Yet, from the high 

number of acoustical paths it is clear that the recorded Lamb wave responses will be complex. 

In addition, due to the presence of propagation ways of equal length some of the waves 

interfere at the sensor location. This means if the symmetry is not perfect due to minor 

misalignments when mounting the sensors, it can be expected that not all the signals for PZT 

and FBG sensors are similar. 

Figure 8.8 presents the Lamb wave signal of the plate in a no-damage condition recorded using 

a PZT and FBG receiver. The excitation signal had a frequency of 300 kHz. A 4.5 cycle tone 

burst signal was used, as for the experiments in Chapter 7. The individual wave packages can 

be identified and their time-of-flight (TOF) be calculated. The first package arrives at the PZT 

after the time-of-flight of 13 ps and slightly later at the FBGS after 16 Ns. The second package 

arrives at approximately the same time for both sensors after 33 Ns. Then there are different 

wave packages for each of the sensors. The third package for the FBGS arrives at 57 Ns, and 

there is a smaller package at 77 ps. For the PZT the third package is at 61 Ps whereas the 

fourth also arrives at 88 ps. The fourth package has a counterpart in the FBGS signal also at 

88 Ns. 
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Figure 8.8: Lamb wave response for the reference state without any crack: 

a) PZT; b) FBGS. 

The time-of-flight and the velocity of the So mode (5000 m/s) can be used to calculate the 

distance the corresponding wave package travelled. As there is no mode conversion on the 

boundaries, the corresponding time-of-flight for the distances given in Figure 8.8 can be 

calculated. This allows the identification of the different packages and their propagation paths. 

The result is presented in Table 8.2. The first package is clearly identified as the incident So 

Lamb wave mode travelling along path d1. Furthermore, the second package is also identified 

for both receivers as the mode reflected on the edges of the plate. As two acoustical paths 

arrive at the same time, the second package is an interference signal. The third and fourth 

package are hard to identify for all signals. This is because there are several reflections from 

the clamping holes for each side of the plate. It is therefore understood that each sensor will 

give different signals, as the interference pattern for each sensor is different. It can be 

concluded that for analysing the Lamb wave data only the first two packages within the signal 

should be considered. The same is true when the second pair of ultrasonic transducers, PZT 1 

and FBGS 1 is considered, as the analysis of the Lamb wave signals gives similar results. 

Table 8.2: Identification of the Lamb wave packages. 

FBGS PZT Acoustical path 

16ps 13ps d, =12ps 
34 ps 32 ps d2, d3 = 32 ps 

57and77ps 61 ps d4, d5=61 ps 
88ps 88ps d6, d7=80ps 
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8.5 RESULTS 

This section provides the results for both test specimens using FBG and PZT transducers. The 

evaluation of the Lamb wave signals follows the results presented in Chapter 7.3. There, a 

damage index based on the wave package analysis was introduced. 

8.5.1 ANALYSIS OF SPECIMEN 1 

Figure 8.9 shows a picture of the 30 mm crack taken after 310,000 cycles, when the specimen 

was removed from the fatigue test machine. As the detailed view of the crack reveals the crack 

started to grow at the desired locations at the edges of the initial notch. The direction of the 

crack propagation was perpendicular to the applied load. When calculating the crack length the 

size of the initial notch was neglected. 

Figure 8.9: Photograph of specimen 1 and detailed view of the crack. 

Analysis of the FBGS signals 

crack 

A series of the recorded Lamb wave signals using the FBG sensors is presented in Figure 8.10. 

For this series, the acoustical path (a), as shown in Figure 8.2, has been evaluated. The graphs 

show the signals at distinctive points of the crack propagation curve. The first package 

decreases in amplitude with increasing number of cycles, whereas the second package is not 

much influenced. To see if this is a monotonic behaviour with the actual crack length, a detailed 

analysis of the signals using is necessary. A damage index based on the amplitude and time-of- 

flight of the first two packages is considered. 
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Figure 8.10: Lamb wave responses at different stages of the fatigue test: 

a) -0 cycles, crack length =0 mm); b) 200,000 cycles, crack length =2 mm; 

c) 300,000 cycles, crack = 21 mm; d) 310,000 cycles, crack = 32 mm. 

Figure 8.11 presents the results of the time-of-flight (TOF) analysis for the first two packages.. 
The analysis of the TOF for the first package reveals a steadily growing delay in the arrival time 

with increasing crack length. There is however some deviation from this behaviour for small 

crack lengths below 5 mm. Looking at the second package a constant TOF can be found. Again 

for the starting region this observation doesn't hold. The delay of the first package and the 

constant TOF of the second package is expected theoretically. As the first package passes the 

damage, it will be slowed down by the increasing crack length, whereas the second, reflected 

package is not influenced by the crack. It is interesting to see that the deviation from the 

predicted behaviour in the starting region is equivalent for both packages. A possible 

explanation is that this deviation is due to aging effects of the bonding of PZT or FBG 

transducers. For the small crack length region up to 5 mm the structure was already subjected 

to 200,000 fatigue cycles. If this weakens the bonding of the actuators and receivers, a constant 

delay in the arrival of the signals could be expected. Furthermore, the effect of the aging of the 

b) 
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bonds might be stronger than the actual influence of the crack length on the TOF. To account 
for fatigue effects of both packages the ratio of the TOF and the difference were calculated. The 

graphs show a visible correlation of the damage index with the actual crack length. 

Figure 8.12a and b show the evaluation of the amplitudes for the first two packages. The 

amplitude of the first package rapidly decreases with growing crack length. It is noticeable that 

even for a constant crack level at the reference state, i. e. at zero crack length, the amplitude 
already decreases. The analysis of the second package shows an increase in amplitude with 

growing crack length but also an decrease in amplitude at zero crack length. This can be 

explained if the result is assumed to be the superposition of two independent effects. The first 

effect is the growing of the crack length. It can be expected that this effect reduces the 

amplitude of the first package as this package passes the damage. A growing of the crack size 
increases the reflectivity of the damage, in consequence the transmitted signal must be 

reduced. Package number two which is not affected by the crack should remain undisturbed. 
The second effect that contributes to the decrease in signal amplitude is the aging of the 

bonding of the PZT and FBGS. This process starts independently of the crack growth. It can be 

expected that a weakening of the bonds due to fatigue decreases the amplitude of the recorded 

signals. Both effects overlap and it is not clear whether one effect is dominating or both effects 

show the same influence. Hence, the idea is to normalise the amplitude of the first package with 

respect to the second package. This should help to separate the aging effect from the effect of 
damage. The result of the normalisation is shown in Figure 8.11 c) and d). For the amplitude 

ratio there is visible correlation with the crack length for crack lengths larger than 10 mm. The 

amplitude difference still shows uncorrelated behaviour at zero crack length, there is however 

some correlation with the crack length even for lengths below 10 mm. 
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Figure 8.11: Analysis of the time-of-flight (TOF) information for the FBG sensors: 

a) TOF for the first package; b) TOF for the second package 

c) Ratio of TOF 2 to TOF 1; d) Difference of TOF 2 and TOF 1. 
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Figure 8.12: Analysis of the amplitude information for the FBG sensors: 

a) Amplitude of the first package (ampl 1); b) Amplitude of the second package 
(ampl 2); c) Ratio of ampl 2 to ampl 1; d) Difference of ampl 2- ampl 1. 
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Analysis of the PZT signals 

The layout of the test structure allowed the simultaneous interrogation of the same acoustical 

path with FBG and PZT sensors. The results of the PZT measurements are shown in Figure 

8.13 and Figure 8.14. For the first package a delay in the TOF with increasing crack length can 
be observed. A different result is obtained for the second package, where no clear correlation 

with the crack length can be found. As for the FBGS signals, a possible explanation for this 

behaviour can be found in the combination of two effects: the influence of the crack length on 
the propagating Lamb wave and the fatigue of the bonding of the ultrasonic transducers. The 

latter effect is responsible for a delay in TOF even if no crack exists. 

The analysis of the amplitudes shows a strong decrease in the amplitude for both signals. The 

highest rate of reduction appears for zero crack length. Since the crack has not yet started to 

grow, the influence of the dynamic loads on the ultrasonic sender and receiver is most likely to 

be responsible for the observed phenomenon. It turns out that with increasing crack length the 

crack itself seems to influence the amplitudes, as for the first package the amplitude continuous 
to diminish whereas for the second package the amplitude slightly rises again. 

Comparing the results of the FBG and PZT sensor it appears that both transducers produce the 

same results. For both sensors the superposition of two effects, the aging of the bonding of the 

acoustical sender and receiver and the influence of the crack length on the amplitude and the 

TOF can be identified. It appears that for the time analysis after some oscillations for small 

crack lengths there is a monotonic growth in the damage index with increasing crack length. 

The limit for good correlation is approx. 5 mm. For the amplitude analysis the dominating effect 
is the reduction in the transmitted signal due to an increase in damage size. Both damage 

indices suggested show a correlation with the actual crack length. Monotonic increase in 

damage index with growing crack size can only be observed for crack lengths more than 

10 mm. 
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Figure 8.13: Analysis of the time-of-flight (TOF) information for the PZT receivers: 

a) TOF for the first package; b) TOF for the second package 

c) Ratio of TOF 2 to TOF 1; d) Difference of TOF 2 and TOF 1. 
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Figure 8.14: Analysis of the amplitude information for the PZT receivers: 

a) Amplitude of the first package (ampl 1); b) Amplitude of the second package 

(ampl 2); c) Ratio of amp! 2 to ampl 1; d) Difference of ampl 2- ampl 1. 
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Further results 

Two acoustical paths were available for Lamb wave propagation as shown in Figure 8.2. The 

evaluation of the results for the first path from PZT II to FBGS 2 has been presented in the 

previous section. The results of the second path from PZT I to FBGS 1 could not be evaluated. 

One possible reason for this is a failure of the FBGS sensor due to aging effects of the bonding 

combined with an erroneous installation of the sensor. The corresponding path on the reverse 

side on the plate which employed two PZT transducers could be analysed. 

Figure 8.15 shows the combined results of specimen 1. The damage index was calculated 

using the ratio of the amplitude and TOF for the first two packages. Looking at the results of the 

PZT transducers a smaller damage index of PZT 1 compared to PZT 2 is observed. As for 

PZT 1 the direction of the incoming wave with respect to the propagation axis of the crack is 

45°and for PZT 2 it is 90° some differences could be expected. However, it is difficult to 

quantitatively predict the influence of the incident angle. Both damage indices based on the 

amplitude and the TOF ratio show monotonic increase only for crack lengths over 10 mm. A 

possible explanation of this minimum detectable crack length is that only for crack lengths 

longer than 10 mm the effect of crack size dominates the aging effect of the bonding of the PZT 

and FBGS receivers. 

10 

8 

x6 a) 
V 
cq 
aý 
c°'v 2 
E 
co 
0 0 

1.10 

E 1.08 
z 1.06 

1.04 

1.02 

1.00 

1" FBGS 2 PZT 1 PZT 2 

a) ' 

. 

"v° 

B3ovAo 
IIp 

oot, 00AAo 

b) 

. 
.G 

.. go0 

05 10 15 20 25 30 

Crack length [mm] 

Figure 8.15: Damage Index for specimen 1 obtained from wave package evaluation as a 

function of crack length: a) Amplitude ratio; b) Time ratio. 
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In general good agreement of the FBGS and PZT ultrasonic receiver was observed. A damage 

index could be established for both types of receivers. The damage index shows good visible 

correlation with the actual crack length. However, a lower limit for the minimum detectable crack 

length was found to be approximately 10 mm. 

8.5.2 ANALYSIS OF SPECIMEN 2 

The fatigue test carried out to analyse the fatigue of specimen 1 was repeated using 

specimen 2. Figure 8.16 shows a photograph of the crack. The photograph reveals that the 

crack did not grow perpendicular to the load axis, but at an angle of 75° with respect to the 

loading direction. 
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Figure 8.16: Photograph of specimen 2 and detailed view of the crack. 

Analysis of FBGS and PZT signals 

crack 

Different acoustical paths were used for the FBG and PZT sensors. For the PZT sensors these 

are paths (a) and (b), as shown in Figure 8.2, and for the FBG sensors paths (c) and (d). The 

analysis of the FBGS and PZT signals follows the evaluation presented for specimen 1. The 

results of evaluations are presented in Figure 8.17a and b for the amplitude and the time-of- 

flight, respectively. The presentation of the Hilbert Transform and the CWT can be found in 

Appendix J. 

For both FBGS receivers there is only small correlation of the damage index with the crack 

length. The index based on the amplitude ratio works better for FBGS 2 in Figure 8.17. Here, an 

increase in damage index with growing crack size can be found at crack lengths above 15 mm. 

while for FBGS 1 this starts at a larger crack length of about 25-30 mm. The limit for the TOF 

evaluation is about 30 mm for both sensors. The results for the PZT transducers show better 

correlation to the crack length than the FBG sensors. The minimum crack length before a 

monotonic increase in damage index with increasing crack length can be observed, is smaller 
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than for the FBG sensors. This limit is found at about 15 mm crack length, only for PZT 2 there 

is a trend for the TOF evaluation that this limit is significantly lower at 5 mm. Furthermore, for 

PZT 1 and amplitude evaluation a saturation of the damage index above 35 mm crack length 

can be noticed. 
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Figure 8.17: Damage Index for specimen 2 obtained from wave package evaluation as a 
function of the crack length: a) Amplitude ratio; b) Time ratio. 

The results reflect the different acoustical arrangements for both types of sensors. The damage 

index for the PZT receiver starts much earlier to grow than the one for the corresponding FBGS. 

This can be understood, as the waves for the PZT transducers always pass through the crack, 

whereas for the FBG sensors, this is true only after a crack length of 30 mm.. As for the first 

specimen the damage index of the PZT also doesn't start to correlate with the crack length 

before a minimum crack length is reached. A possible explanation for a lower limit could be the 

domination of the aging effects in the low cycle and low crack length regime, as explained in 

Section 8.5.1. 

As the two acoustical paths differ in their orientation to the crack direction a different damage 

index level is expected. The damage index for the path perpendicular to the crack is relatively 

higher than the one for the other path. Only for the time ratio based index and the FBGS 

receivers no such a difference can be observed. 
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From the amplitude and time signals for each individual receiver, the same conclusions as for 

specimen 1 can be drawn. A superposition of two effects takes place: the aging of the bonding 

of the acoustical sender and receiver and the influence of the crack length on the amplitude and 
the time-of-flight. 

8.5.3 DIscussION 

Despite the fact that only two specimens were tested, damage detection results display trends 

that are consistent for all evaluations. Firstly, the results for the PZT receivers agree for both 

specimens. This is illustrated in Figure 8.18. Good agreement for both sensors can be found for 

crack lengths larger than 15 mm, when the amplitude based damage index is used. Below that 
limit no clear trend is observed for both specimens and single receivers. For the time ratio 
based index the consistency of the curves for the first and second specimen is even better. The 

two curves can be overlaid to a single monotonic growing damage index with respect to the 

crack length. The results show that different specimens manufactured from the same material 

exhibit similar results. This allows for crack length estimation when damage indices are 

calibrated. The second trend that is established for both specimens is the relative amplitude of 
the damage index with respect to the orientation of the acoustical path. The damage index is 

higher on condition the wave passes through the crack, e. g. results for paths (a) and (b) in 
Figure 8.2 will be better than that for paths (c) and (d) for small crack lengths. This means the 

positioning of the ultrasonic senders and receivers is important to get optimum damage 
indication levels. 

Yet, what is also consistent to both specimens, is that there is no good correlation of damage 
index and crack length in the small crack length region. There is non-monotonic behaviour in 

the damage index which cannot be explained, but might be simply the effect of noise on the 

measurement. The study shows that it is important to understand the physics behind wave 

propagation and wave interaction with damage. Further theoretical and experimental 
investigations are required to quantitatively describe the influence of the angle of the incident 

wave on the damage index. In addition, a study of the influence of the aging effects of the 

ultrasonic sender and receiver would be necessary to distinguish between these effects and 
damage. 
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Figure 8.18: Damage index for specimens I and 2 and PZT receivers I and 2: 

a) Amplitude ratio; b) Time ratio. 

Due to the failure of FBGS 1 on the first specimen, only one Bragg sensor can be compared for 

both specimens. The result is presented in Figure 8.19, where different values of the damage 

index can be observed for both specimens. The monotonic behaviour for specimen 1 and 2 can 
be observed after 10 and 30 mm, respectively. This can be explained when propagation paths 

are analysed. For specimen 1 the Lamb wave always passes the crack, whereas for 

specimen 2 the crack has to grow to about 30 mm before any interaction between Lamb wave 

and the fault can be expected. As for the PZT there is no unambiguous trend below the 

minimum crack length for which the correlation with the crack length starts. It is not clear 

whether the fluctuations in the damage index come from experimental errors or if they are 

related to other phenomena of the Lamb wave detection. 

In conclusion, the results from the fatigue test show good consistency of the FBG and PZT 

receivers. This means, FBG sensors could be used in addition or instead of PZT transducers for 

the sensing of ultrasonic Lamb wave signals. Any signal processing tools that have been or will 
be established for PZT could be adapted for the analysis of FBGS signals. Furthermore, the 

proposed damage index based on the analysis of the first two Lamb wave packages showed 

good correlation with the actual crack length, if a minimum crack length is passed. 
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Figure 8.19: Damage index for specimens 1 and 2 and FBG sensor 2: 

a) Amplitude ratio; b) Time ratio. 

8.6 CONCLUSIONS 

This chapter has explored the application of Bragg grating sensors for fatigue analysis. The 

Bragg grating sensor offers the unique advantage of determining both essential parameters for 

a Health and Usage Monitoring System: loads and crack length. A test was conducted where 

the multifunctionality of Bragg grating sensors was used to gather the strains that occurred 

during the fatigue test, and for sensing ultrasonic Lamb waves in order to predict the crack 

length. Alternative sensors were available to compare the results of the FBG sensors with the 

conventional methods. An electrical strain gage was used for measuring the loads and a PZT 

transducer was used to sense the ultrasonic signals. The test demonstrated the feasibility of the 

Bragg grating sensor to be used a dual strain and ultrasonic sensor. The load monitoring 

experiment yielded similar results for the strain gage and the FBG sensors with respect to 

amplitude and frequency analysis. The same FBG sensors then produced consistent Lamb 

wave signals with the signals recorded by a conventional PZT. In order to demonstrate the 
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correlation of damage index and crack length, the tools that relate the Lamb wave damage 

index to a damage size, as established in the previous chapter, have successfully been adapted 

to indicate the crack length for both the FBGS and the PZT. The limit for the minimum 

detectable crack length has been found to be approximately 10 mm. Further experiments have 

been suggested that could help to overcome that limit, and providing a deeper understanding of 

the fatigue of the ultrasonic sensors and the interaction of the Lamb waves with a crack. 

It is worth to note, that only the FBGS provides potential for dual use measurements. A PZT is 

an electrically capacitive element, which is not suitable for static or quasi-static measurements- 
The bad performance of PZT compared to ESG for strain sensing has been demonstrated by 

Kessler [164]. In contrast, as inductive elements, ESG are not suited for high dynamic 

measurements. A common limit for ESG amplifiers and analysing tools is 50 kHz [283]. The 

FBGS with an interrogation system based on a tuneable laser will be able to perform superior 

strain measurements compared to ESG, as the wavelength measurements provide absolute 

strain levels and ultrasonic measurements that compare with the performance of conventional 
PZT. 

Consequently, FBG sensors have a high potential to be used in future Health and Usage 

Monitoring Systems. An automated HUMS for aircraft could utilise FBG sensors to record the 

load history on every flight. After each flight, the relevant parts of the structure could be 

monitored using the Lamb wave method. From these ultrasonic signals the position and severity 

of damage could be established. This combined load/damage information could lead to a 

prediction of the remaining fatigue life if the same load spectrum as on the previous flight is 

assumed. The load spectrum used for calculating the remaining life can be adapted after every 
flight. The advantage using FBGS in addition to other advantages of fibre optic sensors, is that 

only one sensor and also only one sensor interrogation system needs to be used to perform the 

dual loads and crack growth monitoring. Therefore saving installation weight, time and money, 

provided the fibre optic system compares to the conventional strain gage or ultrasonic systems 

with respect to weight, size and price. It should be noted, that there is still an ultrasonic sender 

required, to launch the ultrasonic Lamb waves that will be detected using the FBGS. 



9 CONCLUSIONS AND FUTURE WORK 

The work presented in this thesis has demonstrated the ability of fibre optic Bragg gratings to be 

used as either high precision strain sensors or broadband ultrasonic receivers. Motivation for a 
Structural Health and Usage Monitoring system based on multifunctional FBG sensors has 

been given. The requirements for the implementation and application of such a load monitoring 

and damage detection system have been discussed. This chapter draws conclusions from the 

analytical and experimental work presented in this thesis and presents recommendations for 

further experimentation in this field. 

9.1 REVIEW OF THESIS 

The thesis has investigated the use of fibre Bragg grating sensors for Structural Health and 
Usage Monitoring. Several fundamental areas on the interaction of FBG sensors with structural 

conditions have been addressed analytically and experimentally. 

In chapter 2, the fibre Bragg grating was introduced as a multifunctional sensing element. The 

chapter provided an overview of the state of the art for Bragg gratings sensors. The 

requirements on the sensor and the fibre for industrial applications were discussed, and the use 

of draw-tower gratings was suggested. 

Chapter 3 presented the motivations for monitoring the loads of engineering structures, 

especially for aerospace applications. Conventional techniques for load monitoring based on 

strain measurements were compared to the FBGS. Although the use of FBGS for experimental 

strain analysis has been extensively discussed in the literature, this work added new 

approaches towards the implementation of large area FBGS networks using fibre optical 

rosettes and temperature compensated strain sensors. 

Chapter 4 provided an overview of current NDT/E technologies. An introduction into damage 

detection based on Lamb wave methods was given. The state-of-the-art for optical detection 

and generation of ultrasound was presented. 
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The first successful detection of Lamb waves using FBG sensors was described in Chapter 5. 

The theoretical approach that led to the development of an appropriate ultrasonic interrogation 

system for FBGS was introduced. Numerical simulations on the influence of the grating 
dimensions on its ability to detect ultrasonic strain fields and their experimental validation were 

presented. A simple fibre optic smart structure, i. e. a composite sample with embedded FBG 

sensors, was presented. For the first time embedded fibre sensors were used for Lamb wave 
detection. 

Chapter 6 presented signal processing tools that could be applied to the Lamb wave signals for 

signal conditioning and signal analysis. The use of traditional techniques, such as frequency 

analysis and novel approaches, such as wavelet analysis were applied to a simple reference 

signal. The methods could then be transferred to more complex signals obtained from 

experimental data in the subsequent chapters. 

FBG ultrasonic sensors have been applied to experimental identification of damage in 

Chapter 7. Three different tasks of damage identification were considered: detection of damage, 

localisation of damage and severity of damage. Experimental results on all three tasks were 

presented and compared to the results of conventional PZT receivers. As part of this 

experimental work, a reliable, temperature independent damage index was introduced and a 

novel detection scheme using fibre Bragg grating rosettes and a genetic algorithm for the 

localisation of damage was developed 

In Chapter 8 the findings of the previous chapters culminated in a demonstrator on which the 
dual load monitoring and damage detection capabilities of the FBG sensors were demonstrated. 
The chapter presented the results of a simple fatigue test experiment on which the FBG sensors 
were used to measure the load parameters and the crack size. 

9.2 SUMMARY OF FINDINGS 

This section gives a brief overview of the findings presented within this thesis. For further 

reading the list of publications that have been published during the presented work is given in 

Appendix K. 

9.2.1 FBG SENSORS FOR LOAD MONITORING 

The use of fibre Bragg grating rosettes for the evaluation of structural loading conditions is well 
known in the literature. The rosette normally needs to be prearranged on a backing patch for 

proper alignment of the sensors axes. In addition to the strain sensing gratings the mounting of 
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a temperature sensor has been proposed for compensating the thermal drift of the strain 

sensors. In this work a new, miniaturised build-up technique for the temperature sensor has 

been demonstrated which allows multiplexing of several strain and temperature sensors within a 

single fibre network. The use of a backing patch for FBG sensors has been investigated 

numerically and experimentally. It appears that thickness and Young's modulus of the backing 

material determine the characteristics of the strain transfer. Only thin and stiff materials will 

couple the strain from the structure to the fibre core. A decrease in strain transfer down to 86 % 

of the original value has been calculated depending on the material properties. A reduction to 

96 % has been found experimentally, indicating that some parametric errors could be within the 

numerical simulations. The importance of the correct choice of the backing material has been 

highlighted. 

9.2.2 FBG SENSORS FOR LAMB WAVE SENSING 

An interrogation system for ultrasonic sensing using FBG sensors has been proposed. The 

system is based on a tuneable laser which can be driven in a scanning mode for high resolution 

spectral measurements or in a fixed-tuning mode in order to allow high dynamic ultrasonic 

measurements. The mathematical description of the sensor function has been derived. The 

optical interrogation system has been characterised and calibrated. It has been shown that the 

system can detect Lamb wave signals in plate like structures, and is competitive in its 

specifications with standard PZT technology. The SNR for single shot has been shown to be 

13 dB on a Perspex plate and 15 dB on an aluminium plate, which agrees well with the findings 

for standard PZT. Two initial experiments have demonstrated the capability of the FBG sensor 
to detect Lamb waves either in a surface mounted or structural integrated configuration. 
However, it appears that if the FBG is integrated in the mid-plane of the plate, it is sensitive only 
to the symmetric Lamb mode. 

Numerical simulations of the response of the FBG sensors to an ultrasonic strain field have 

shown the influence of the ratio of grating length to acoustical wavelength on the sensor 
function. The result indicates that the acoustical wavelength should be 4 times the grating 
length. As the fabrication limit for the minimum grating length is about 1 mm this means the 

acoustical wavelength should be more than 4 mm for the fibre optic sensor. The numerical 

findings have been validated experimentally. 

9.2.3 FBG SENSORS FOR DAMAGE IDENTIFICATION 

A novel approach for the localisation of damage has been proposed. This approach makes use 

of the directivity of the FBG. By mounting the FBG in a rosette, the directivity characteristics of 
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the gratings can be used to determine the direction of the incoming acoustic wave. Genetic 

Algorithms have been implemented to calculate the location of damage on an aluminium plate. 
It has been shown that this method is capable of detecting and locating a hole of 12 mm 
diameter within a monitored area of 50 x 50 cm. This type of damage location technique Is 

reserved for FBG sensors as circular PZT do not possess the required directivity, which makes 
the corresponding procedure very complex. 

Recent developments of signal processing tools have been applied to the recorded Lamb 

waves signals in order to extract a reliable feature that could serve as a damage index. The 

best parameter found is based on the analysis of the amplitude and time of flight of the first two 

arriving Lamb wave packages. This damage index has good correlation with the actual damage 

size. It turned out that the damage index based on the time and amplitude of the Lamb wave 

packages has minimum cross sensitivity due to temperature. It has been shown that the 

minimum resolvable damage size is 3 mm if the temperature effects are taken into account. It 

has been concluded that FBG sensors perform equally well as the more common piezoceramic 
transducers, but offer superior performance for the proposed damage location scheme. 

9.2.4 MULTIFUNCTIONAL FBG SENSORS FOR LOAD MONITORING AND DAMAGE DETECTION 

A fatigue test of a simple metal plate has been conducted where Bragg grating sensors were 

used for recording the strains that occurred during the fatigue test and for recording ultrasonic 
Lamb waves in order to predict the crack length. The results indicated the feasibility of the 
Bragg grating sensor to be used as a multifunctional strain and ultrasonic sensor. The load 

monitoring experiment yielded similar results for the electrical strain gage and the FBGS with 
respect to amplitude and frequency analysis. The same FBGS then produced consistent Lamb 

wave signals with the signals recorded by a conventional PZT. Both receivers showed good 

correlation of damage index with actual crack length. The practical implementation of such 

measurements could be an accurate lifetime prediction of the structure based on the actual 
loads and crack lengths. 

9.3 FUTURE WORK 

This thesis has investigated some basic concepts for a dual use of FBGS for load monitoring 

and damage detection. Several topics have been covered in some detail, and in this section 
future work in these fields is proposed. 
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9.3.1 FBG SENSORS FOR LOAD MONITORING 

The proposed layout of the temperature compensated rosette needs experimental validation, 

under superimposed mechanical and thermal loads. From this experiments error limits could be 

derived to determine the temperature and strain accuracy of the FBG sensor. 

The strain transfer functions of the FE model need further experimental validation. In this work 

only one combination of backing thickness and Young's modulus could be tested. Further tests 

with different materials could help to find a practical solution for which the backing patch does 

not affect the calibrated strain sensitivity of a bare fibre. 

9.3.2 FBG SENSORS FOR DAMAGE IDENTIFICATION 

In the work described here, all damage identification tests were performed on simple plates 

made of isotropic materials such as Perspex and aluminium. The proposed damage index 

needs further investigation for anisotropic materials such as composites, in order to proof good 

correlation between damage index and severity of damage, e. g. crack length. As composites 
become more and more important in the aerospace and automotive industry, answers have to 

be found to see if the proposed damage index could be adapted to composite materials. 

The damage index proposed in this work compares the signals of a wave that has interacted 

with the damage and a wave that has been reflected from a boundary and has not interacted 

with the damage. This detection scheme requires the presence of boundaries, which in practical 
applications might not always exist. Therefore, another approach that should be tested is to use 
two FBGS receivers. One that is located close to the ultrasonic source and detects the wave 
before it interacts with the damage and the second on further away from the source, which 

detects the wave after the interaction with the damage. Because of the multiplexing capabilities 

of the FBGS a second ultrasonic receiver could be easily added. The use of two receivers 

requires further analytical and experimental investigation. 

9.3.3 MULTIFUNCTIONAL FBG SENSORS FOR LOAD MONITORING AND DAMAGE DETECTION 

One of the major advantages of FBG sensors in Structural Health and Usage Monitoring 

Systems is their multifunctionality. This work proposed an interrogation scheme based on a 

tuneable laser which could operate in two modes: scanning and locked onto a single 

wavelength. For the experiments carried out within this work, two different lasers were used, 

one for the scanning mode and one for the lock mode. The reason is that no laser was available 
that could be operated in a fast scanning mode and high stability wavelength lock mode. By the 

end of this work, a tuneable laser has become available that could be operated in both modes 
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[284,285]. Based on this laser, a software controlled interrogation system could be build-up that 

could switch from load monitoring to damage detection by a simple mouse-click. This needs of 
course experimental validation. 

The fibre sensors that were used in the fatigue test were directly bonded onto the surface of the 

material. As a backing patch was proposed for installation of fibre rosettes, the use of a backing 

patch for an ultrasonic FBGS should also be considered. However, to understand the effect of 
the backing material on the propagation and coupling of the Lamb waves, a numerical study, 

e. g. FE modelling or experimental investigations is required. 
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Appendix A: Fibre Bragg Grating Sensors 

Photosensitivity 

In 1978 Hill and co-workers observed an increasing reflection of the light of an argon ion laser at 

488 nm in a germanium-doped silica fibre [18]. The light coupled into the fibre interfered with the 

Fresnel reflected beam from the end of the fibre and formed a standing wave intensity pattern. 

The high-intensity points obviously altered the index of refraction and the so far unknown non- 

linear effect has been called photosensitivity. This effect describes the influence of ultraviolet 

light on the refractive index of photosensitive optical fibres. In contrary to the well known photo- 

elastic effect that occurs in ferroelectric materials due to the electro-optic effect, photosensitivity 

produces less intense index modulations [49]. 

Standard telecommunication fibres possess only relatively low photosensitivity, which can be 

increased by means of photosensitisation. This expression encompasses a number of methods 
that have been found useful to increase the photosensitivity of fibres. Doping of the fibre core 

proved to be a very effective method. As almost all fibres contain some kind of dopant used to 

generate the index profile of the fibre, this almost automatically leads to increased 

photosensitivity of commonly used fibres. Since germanium doped fibres are the most important 

photosensitive fibres, most studies that focused on the theory of photosensitivity focus on that 

material [286-290]. However, several other methods such as hydrogen loading [291], flame 
brushing, use of other writing wavelengths than the common 240 nm band [292] and use of 

other co-dopants have been successful [16,17]. 

The effect of photosensitivity is still not fully understood. Not just one single effect can be made 

responsible for all the effects seen in the experiments. Three main contributions have been 

made out in germanosilicate optical fibres: 

0 Formation of colour centres (GeE') 

0 Densification and increase in tension 

" Formation of GeH 

The colour centre model predicts an increase in the population of GeE' centres, which are 
germanium oxygen vacancy defects in the glass matrix, after UV exposure. The resultant 
colour-centres are responsible for changes in the UV absorption spectra, which lead to a 

change in the refractive index directly through the Kramers-Kronig relationship. The 

densification model is based on changes in the fibres density that result in refractive index 

changes. Such a change in the materials density can be induced by the UV laser irradiation. In 

hydrogen loaded fibres one important effect of the hydrogen is the reaction with the Ge ion to 

form GeH, under the influence of UV radiation. The formation of GeH changes the band 
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structure in the UV region. As in the colour-centre model, these changes, in turn, influence the 

local refractive index as per the Kramers-Kronig model. 

Due to different dominating photosensitive effects a classification of the different types of Bragg 

gratings has been established: Type I, Type Ila and Type II. 

Type I gratings refer to gratings that are formed in normal photosensitive fibres under moderate 
intensities. They are the most utilised Bragg gratings in telecom and sensor applications. The 

qualitative form of the UV-induced change of the refractive index versus time for a type I grating 
is shown in Figure A. 1. 

Lnuv 

Figure A. 1: UV-induced change of the refractive index versus time. 

The high growth rate of the index change, and of the corresponding reflectivity of the grating, 
allows the formation of single pulse gratings. This will be important for the fabrication process, 
as discussed in the next section. 

Type Ila gratings are inscribed through a significantly longer process than Type I gratings. 
Although the have the same spectral characteristics, Type Ila gratings have noticeable higher 

thermal decay limits. Their limitation is however associated with the time-consuming fabrication 

process. 

Type II gratings are formed under very high, single-pulse fluence. They have different 

transmission and reflection characteristics. Wavelengths longer than the Bragg wavelength can 

pass the gratings, whereas shorter wavelengths are strongly coupled into the cladding. Thermal 

stability tests have shown that Type II gratings are extremely stable at high temperatures. And 

in contrast to Type Ila gratings, the fabrication process is conform with the on-line fabrication of 
the gratings [122]. 

Exposure time 
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Fabrication 

The aforementioned discovery of photosensitivity took place when interference occurred 
between light coupled into a fibre and the reflected wave from the fibre end. The standing wave 

produced a modulation of the refractive index of the period 

A= 
Am 

2nef (A. 1) 

where A; � is the wavelength of the light coupled into the fibre and n en is the effective refractive 
index in the grating region. The so-formed grating then causes a reflection of incident light that 

meets the Bragg condition: 

AB = 2YIe 
fA (A. 2) 

It is obvious that this equation is only satisfied for the wavelength of the light used to produce 
the grating as depicted in Equation (A. 2). This restriction has been overcome by a new 
fabrication process established by Meltz and his co-workers in 1989 [293]. They managed to 

inscribe the grating externally by side-exposing a photosensitive fibre to the interference pattern 

of a UV irradiation source. It is possible to side-write a grating into the fibre core, because the 
fibre cladding is transparent for UV light, whereas the core is not. There exist two major 

methods for side-writing Bragg gratings into fibres, the interferometric technique and the phase 

mask technique. A third method where the grating is written point-by-point has almost no 

practical importance, but is suitable for special purpose gratings . For commercial fabrication of 
Bragg gratings the use of the phase mask technique is the standard process. The advantages 
of this method lay in the excellent reproducibility, low demands on the coherence of the light 

source and the possibility to produce long and complex grating structures. The drawback 
however is that for every grating with a specific structure or wavelength one specific phase 
mask has to be provided. The interferometric method has the advantage that it is easy to 

change the grating period and therefore to produce any desired Bragg wavelength This is 

shown in Figure A. 2. The UV laser beam is split into equal intensity beams that subsequently 
recombine after the reflection at two mirrors. The beams interfere at the region of the fibre core 
and produce a fringe pattern that subsequently creates the Bragg grating. The period of the 

grating follows from the period of the interference pattern, that depends on both the UV 

wavelength luv, and the angle 0 between the intersecting UV beams. The period of the grating 
is then given as 
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A= ALT 
2 sin 

9 (A. 3) 
2 

\ Bragg grating 

It can be shown that it is relatively simple to change the desired grating period by changing the 

angle between the intersecting beams. The interferometric technique however has stringent 

requirements on a stable mechanical set-up. Furthermore, a laser source with a good spatial 

and temporal coherence and stable wavelength and power output is required. 

UV laser 
beam 

Beam 
splitter 

Mirror 

Optical fibre 

x ýOý kuv 

Figure A. 2: Fabrication of fibre Bragg gratings - the interferometric technique. 

The standard fabrication process requires the stripping of the UV absorbing polymer coating 
before the fibre can be exposed to the UV irradiation. Several investigations show that this 

process significantly weakens the fibre and reduces its mechanical strength [294] (see 

Section 2.6.2). Even if the fibre is recoated after the inscription process, the high mechanical 

strength is lost. Two methods have been established that avoid this drawback. The first 

technique is the inscription during fibre drawing [123,295-297] and the second one the 

inscription through a special UV transparent polymer coating. FBGs fabricated directly through 

the polymer coating have become commercially available [298,299]. Investigations that 

accompanied the current work showed poor thermal behaviour of this kind of gratings (see 

Section 2.7). It has to be stressed that for sensor applications other properties of the fibre 

grating are required than for telecom FBGs. Mechanical and thermal strength are vital for any 

structural monitoring. This is true not only for the grating itself but also for the coating of the 
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fibre. The draw-tower technique offers another advantage over other inscription methods as one 
has almost free choice of the fibre coating (see also Section 2.7). Because no recoating is 

required a coating with excellent adhesive properties can be chosen. For the inscription of the 

grating during the fibre drawing process only single shot gratings can be formed. This is 

because the fibre itself is in constant motion at the draw tower. Single pulse gratings can be 

fabricated due to the high growth rate of the grating reflectivity as presented in Figure A. I. 

Under controlled drawing and inscription conditions reflectivities up to 15-20 % can be achieved. 
Another big advantage of the draw-tower technique is its suitability for mass production. No 

other method offers the chance of writing many gratings in the same section of a fibre within a 

reasonable time scale. Therefore, this thesis mainly deals with gratings directly fabricated at the 

draw-tower. 



Appendix B: Stress-Strain Relations 

Structural loads are usually determined by observing the deformation of the structure under a 

specific load. The relation between the structural load and the deformation can be obtained from 

the stress-strain relations. Within certain stress limits the relation between structural load oand 

structural strain ex is given by Hooke's law, which for unidirectional stress can be written as 
[280] 

Qx 
E 

(e. 1) 

where E is Young's modulus or the modus of elasticity. The strain is defined as e= iUL0, where 

AL is the change in length and Lo is the initial length of the structure. For isotropic and 

homogenous materials it appears that any uniaxial stress produces lateral strains sy and eZ 

where the following relationship holds [280] 

Q 
6y = Es = -v x= -vex E 

and v is known as Poisson's ratio. 

(B. 2) 

In case of monitoring the loads of mobile structures such as aircraft or automotives, the 

structural layout will always be such as the response of the structure to any operational load is a 
linear elastic deformation, i. e. equation (B. 1) holds. However, the real load is most likely to be 

more complex than an uniaxial load and will result in a multiaxial stress field. For linear elastic 
deformations the principle of superposition can be employed, which means that two or more 

stress fields can be combined by direct superposition whereas the order of the combination 
does not affect the final stress field [300]. 

Similarly to the Hooke's law, given by Equation (B. 1), the following linear relation for the shear 

stress -r y and the shear strain y, ý, can be found [280] 

z 
y=G with G=E 

2(1 + vý 
(B. 3) 

where G is the modulus of rigidity or modulus of elasticity in shear. The shear strains yn and y2 

are defined accordingly. 

The aim of any load monitoring system is to provide knowledge about the actual operational 
loads of the structure. In a general three dimensional system this requires the knowledge of the 

three components of stress and the three components of shear stress. However, most practical 
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applications are referred to an experimental stress analysis in flat plate-like structures whose 
thickness is small compared with its other dimensions or to a free surface of a more complex 
three-dimensional body. For these special cases, there are no stresses in the direction 

perpendicular to the surface. This condition is known as the plane stress. It can be 

characterised as QZ = r,, Z = rn = 0. The equations to solve therefore reduce to a two-dimensional 

problem. The stress-strain relations become [280] 

6x =1VZ 
(Ex 

+ vs-, 

(Ty= 
Er+ve (B. 4) 

1-vZ 

Qs =0 rxy = Gym 

The task of building up a load monitoring system can therefore be done by implementing a 

strain monitoring system. Knowing the structural properties as Young's modulus, modulus of 

rigidity and Poisson's ratio, the stress field can be derived from the strain field using Equation 

(B. 4). 

Principal strain 

Many engineering problems require the knowledge of the strain level associated with another 

coordinate system or the determination of the directions of maximum and minimum strain. The 

latter are also called the principal strains. Therefore it is necessary to find the equations of strain 
transformation from one coordinate system to another. If the initial system is the x-y system and 

the destination system is the x'-y' system then an angle a between the x and the x' axis can be 

defined. The following equations of strain transformation can be found as [300] 

sX =e cos' a+E., sin' a+ yam, sin a cos a 

sy = ex sin2 a+e., cos 2 a-yr, sinacosa (B. 5) 

Yxy, = 2(sx -cy)sin acosa+y , 
(cos2 

a-sine a) 

Principal strains are generally indicated by indices 1 and 2. It can be shown that the principal 

strains, the principal angle a and the maximum shear strain can be obtained as [300] 
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Principal stresses from principal strains 

Once the principal strains c1 and e2, Young's modulus E, and Poisson's ratio vare known, the 

principal stresses ai and 02 can be found by replacing the subscripts x and y in Equation (B. 4) 

by 1 and 2: 

Ql =1 

ý2 
(El 

+vE2} U2 =1EZ 
(62 

+v81) (B. 7) 

The directions of the principal stresses are the same as those of the principal strains. 
Determining the principal stresses from the strains requires the following properties of the 

structure under investigation: 

0 homogenous material without any discontinuities or faults; 

" isotropic characteristics, i. e. Young's modulus and Poisson's ratio are independent of the 

direction; 

0 linear elastic behaviour, i. e. the Hooke's law holds. 



Appendix C: NDT/E Methods 

Visual Inspection 

Visual Inspection is the leading NDT/E method and it represents the highest percentage of the 

inspection procedures that is applied to aircrafts in service. Although it was the first inspection 

method used in the industry, it took a long time to be formally acknowledged. The method can 

be divided into to categories: direct visual and remote (indirect) visual. For direct visual testing 

the human eye may be assisted by measuring devices, auxiliary light sources, visual aids such 

as magnifiers, mirrors and cameras. Direct visual examination is conducted when access allows 

the eye to be within 610 mm of the surface to be examined, and at an angle not less than 30° to 

the surface to be examined [301]. Whenever the eye cannot obtain a direct view of the 

specimen test surface without an assisting device, a remote visual examination is required. It is 

defined as an inspection that uses one of the following three aiding devices: borescopes 

(endoscopes), fibrescopes and video technology. Borescopes have been originally developed to 

inspect the bores of rifles or cannons utilising a hollow tube, a mirror and a miniaturised light 

source. The introduction of optical fibres for optical image transmission allowed the formation of 

a flexible fibrescope in contrast to the rigid borescope. The development of video and 

photographic devices that can be mounted on the scopes and record the image produced 

established the latest category of remote visual testing. 

Applications that are covered by Visual Inspection are manifold. The fundamental task is the 

detection of discontinuities on the surface of the materials. These can be inherent to the 

material, process-induced or service-induced. They can appear in form of corrosion, cracks, and 

many other ways. The advantage of visual inspection over other techniques is that it generally 

gives the clearest view of the test surface. The direct view will result in the processing of the full 

spectrum of light wavelengths that are available to the human eye and the brain to form an 

image. The information on the damage is directly available to the inspector through a change in 

colour, forming of shades and textures or any other visual attributes. Clearly, NDE by means of 

visual testing is restricted to the surface of the test structure. As it will not always be possible to 

have access to the inspection area even with the aid of remote imaging tools, visual testing is 

limited to the cases where access is can be gained. However, with emerging technology of 

video and photographs, e. g. digital imaging and storage as well as miniaturisation these limits 

are further put ahead. Another draw back is that the results of visual testing depend on the 

experience and skill of the inspector. 

Penetrant Testing 

Penetrant Testing is a method that is part of visual inspection. The basic principle on which 

Penetrant Testing is based is that of capillary action. Capillary action is a surface tension 
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phenomenon that permits liquids to be drawn into tight openings. Penetrant Testing is a widely 

used NDE method and can be applied to a variety of materials. For Penetrant Testing to object 
to be examined has to be carefully cleaned. Then a penetrant -a material that seeps into and 

out of a surface discontinuity - is applied. To be seen, the penetrant must be of different colour 
than the surface and it must be able to remove some of the penetrant, so that any profile of the 
discontinuity becomes visible. 

Penetrant Testing has found applications in many industries including automotive and 
aerospace manufacturing and maintenance. The major advantage of the method is that it can 
be applied to almost every material. In addition, it is a relatively simple method and very 
economical. The major drawback is that it is restricted to the detection of surface discontinuities. 
Furthermore, the results strongly depend on the experience and skill of the inspector. Which is 

especially true because of the high demands on the surface cleanness. Moreover, the 
inspection area must be accessible to the inspector or to any visual aid tool. 

Magnetic Particle Testing 

Magnetic Particle Testing is another NDT/E method that belongs to the large group of visual 
inspection methods. It is used for detecting discontinuities on the surface or near the surface of 
components or structures. Magnetic Particle Testing is governed by the laws of magnetism and 
is therefore restricted to ferromagnetic materials. It is a relatively simple method, where the test 

object first has to be magnetised. Simultaneously, finely divided ferromagnetic particles are 
spread out over the surface. Any defects in the material will affect the magnetic field of the test 

specimen. Thus, the magnetic particles will be attracted to the edges of the defects. Looking at 
the distribution of the magnetic particles on the surface of the test specimen, surface and near 
surface defects will be outlined. 

Applications of Magnetic Particle Testing are in any industry that deals with ferromagnetic 

materials, this is true for example for the automotive and aerospace industries. There are a 
number of advantages of magnetic particle testing. As penetrant testing it is a simple and 
economical method. But this method also works if the defect is filled with a foreign material and 
even for slightly subsurface defects. The greatest disadvantages have already been mentioned, 
its restriction to ferromagnetic materials and to surface or near-surface defects. Also, as for all 

visual inspection methods, the area of inspection must be accessible. 

Acoustic Emission 

Acoustic Emission (AE) testing is a method used to detect and locate faults in mechanically 
loaded structures and components [302,303]. It provides comprehensive information on the 

origination of a discontinuity in a stressed component. The development of the discontinuities, 
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e. g. the growth of a crack , can also be monitored, when the component is subjected to an 

external stimulus such as a change in load, pressure, temperature, etc. Under mechanical 
loading the discontinuities in the component release energy. This energy travels in the form of 
high-frequency stress waves. These waves, analoguous to induced ultrasonic waves are 

received with the use of ultrasonic sensors. Analysis of the collected data comprises the 

characterisation of the received voltage according to their source location, voltage intensity and 
frequency analysis. 

Acoustic emission has been attempted for a wide variety of applications. A widely used 

application is for example the testing and certification of metal pressure vessels or for fatigue 

crack detection in aerospace structures . 

The strengths of acoustic emission are that it is useful for a variety of materials, it is a rather 
inexpensive technique and sensitive to small events. However, the results are very complex and 

very high data rates have to be recorded. The limitation of the method is its reduced 

repeatability. 

Eddy Current 

Eddy current testing is one of the oldest and most commonly used NDT/E methods. Being a 

mature, proven technology with a solid theoretical foundation, it is widely accepted in industries 

such as automotive, aeronautics and power generation, and it is an integral part of inspection 

and maintenance in these industries. Eddy Current is one of the NDT/E methods that is 

prescribed in the inspections and maintenance regulations for standard commercial aircrafts. 

Eddy Current theory is based on the principles of electromagnetism, particularly the inductive 

behaviour of alternating current. The eddy current probe is an AC transformer that picks up an 

AC electromagnetic field that has been induced by an excitation coil. The eddy current probe 

consists of a pair of coils. The first one is the excitation coil that is driven by an AC signal, the 

other one is the pick up coil and it is connected to a voltmeter. During the test procedure, the 

excitation coil produces a primary magnetic field. In the presence of a ferromagnetic material 

this field will induce a current in the conductive material. These currents will travel in closed 

paths, generally circular due to the geometry of the excitation coil, thus the name eddy currents. 
Like all currents, the eddy currents themselves produce a magnetic field, this time called the 

secondary field, that opposes the primary field. What happens to the pick up coil is that both 

primary and secondary field overlap. For perfect conductors and couplings primary and 

secondary field are equal and therefore cancel each other. The magnitude of the voltage that is 

displayed at the voltmeter of the pick up coil strongly depends on the conductivity and magnetic 

permeability of the test material. Changes therein will affect the voltage. Conductivity variations 



Appendix 251 

occur for example with material processing, hardness and temperature. Any inhomogeneity of 
the material due to cracks, flaws, porosities, etc. implies an apparent change in the overall 

conductivity compared to a defect free region. It is clear that the test specimen has to be a 
ferromagnetic material. This is true for metals and alloys, but also for low-conductivity materials 

such as graphite-epoxy composites, or steel-reinforced concrete. 

What makes Eddy Current so attractive are the advantages it has as a noncontacting method: 

no couplants are required nor is a preparation of the structure necessary. This allows for 

automated high-speed inspection. Furthermore, the system cost is relatively low compared for 

example to radiographic methods. The probe size is small, the technique is light weight and 

portable. However, there are a number of disadvantages, so is the inspections method limited to 

conductors, only a surface or near-surface evaluation is possible, and the interpretation of the 

obtained test results are one of the most complex. Furthermore, it takes lots of time to monitor 
large surfaces. 

Ultrasonic Inspection 

Acoustical testing is one of the oldest methods to test the integrity of structures. When a solid 

object is struck this will set up a vibration at the natural frequency of the object. Any major 
disturbance of the structural homogeneity will distort that natural frequency and indicate that 

there is a problem (see also the paragraph on Vibration/Modal Analysis in this section). Yet, this 

approach in the region of acoustical frequencies being audible to the human ear takes relatively 
large disturbances to cause a detectable change in sound. This is because the size of the 

distortion and the acoustical wavelength need to be of the same order in magnitude for any 
interaction. Turning to smaller defects such as those important for NDE, as a consequence the 

acoustical wavelength has to decrease. The corresponding frequency range is known as 

ultrasound. 

The basic concepts behind ultrasonic NDT/E are simple as described in [303,304]. Ultrasonic 

waves can propagate in solids. As the waves travel, they interact with the material in a way that 

can be predicted from physical modelling. Looking at the transmitted or reflected waves 

knowledge can be gained about the constitution of the structure. For example, the thickness 

and the elasticity of the structure can be obtained, even the existence of flaws and cracks can 

be identified. The most popular ultrasonic method is the scanning of the test object. The use of 

guided ultrasonic waves also provides a suitable tool for structural inspections. However, as the 

approach is different to that of scanning inspections, guided waves are explained in Section 4.2. 

Ultrasonic inspection requires the use of a transducer, to transform a voltage pulse into an 

ultrasonic pulse and vice versa. The transducer is placed onto the test object and transmits the 

pulse into it. The pulse travels through the object, responding to its geometry and mechanical 
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properties. The signal is then received by another transducer (pitch-catch method) or reflected 
back to the original transducer (pulse-echo method). Either way, the signal is transformed back 

into an electrical pulse, which can be observed and stored on devices such as oscilloscopes. An 

A-Scan measures the density of the test object at a single point, a B-scan refers to the 

variations along a single line, and a C-scan is a collection of B-scans forming a surface contour 

plot. C-scanning is a flexible and robust technique, and has become common practice in 

innumerable applications, especially in the aircraft industry, where ultrasonic NDT/E is used to 

detect cracks and fatigue damage of safety-critical parts. 

The big advantage of the ultrasonic method is, that besides radiography it is the only method 
that can reveal substantial subsurface flaws in materials. But ultrasonic testing does not suffer 
from the safety hazards of radiography. Moreover, ultrasound has a high penetration depth, a 
high sensitivity and accuracy in detecting flaws, and allows automation and area scans. The 

drawback is that best results can only be achieved when a couplant is used to attach the 

transducers to the structure. Some non-contact or dry contact techniques have been developed, 

but suffer from limitations in sensitivity and accuracy. There is also a limit in detecting planar 
flaws parallel to the wavefront. Ultrasonic testing is time-consuming when large surfaces have 

to be investigated. In addition, access to the surface is required. Furthermore, implementation 

and data interpretation of the ultrasonic inspection requires highly skilled operators. 

Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance (NMR) is a method to determine material properties such as the 

gyro magnetic ratio and to determine the distribution of certain elements in the test specimen. A 

strong homogenous magnetic field is used to align the nuclear spin due to their magnetic 

momentum. A short high frequency signal is used to flip the spin state of the nucleus. The 

frequency of that motion only depends on the gyro magnetic ratio and the strength of the static 

magnetic field. Using appropriate coils and powerful data processing units one can get 
tomographic pictures of the specimen. NMR is widely used in medicine and has also found its 

way into NDT. However, the method is relatively expensive and the equipment is bulky. 

Microwave Testing 

The microwave method uses high-frequency electromagnetic energy for the inspection and 

characterisation of materials. The microwave frequency region is generally taken to lie between 

a few hundred megahertz and a few hundred gigahertz, the corresponding wavelengths range 

from 100 cm to 1 mm. The operating frequency is chosen to maximise the interaction of the 

electromagnetic wave with dielectric layers, inclusions, surface flaws, cracks, etc. Microwave 
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inspection generally consists of measuring various properties of the electromagnetic waves 

scattered by, reflected from, or transmitted through a test specimen. The interaction of the wave 

with the material depends on the incident power level, the absorption factor of the material and 
the frequency of operation. The development of devices and signal processing tools for 

microwave inspection benefits from the importance of radar and microwave technology for 

example in military applications and traffic (speed) control. 

Demonstrated and potential applications of microwave NDT/E include [305]: accurate 
measurements of thickness, detection of disbonds and delaminations, determination of fibre 

orientation in composites, and detection and sizing of cracks in metals. An important feature of 
microwave testing is that it is a non-contacting inspection method, which allows for inspection of 
difficult accessible areas or moving parts. The internal inspection of structures is restricted to 
dielectric materials, for conducting materials the inspection is limited to their surfaces. One of 
the big advantages of the technique is the big choice of different probes and sensors. It is 

therefore possible to find devices that fit best to a given inspection task. If the probes are 
arranged in arrays, relatively large areas of the specimen can be investigated by forming beams 

of the electromagnetic waves and analysing the propagation characteristics. 

Thermography Testing 

Thermography is a collective noun for both an active thermography, where external heating is 

used to induce temperature changes and the thermal response of the sample being monitored, 

and a passive thermography, where no external thermal source is required and the condition of 
the sample is obtained by its static thermal properties, e. g. hot-spots in electrical circuits. Active 

thermography is more relevant to NDT/E, as it is the intention to find damage which normally 
doesn't appear as a change in temperature itself, but as a modification of the thermal response. 
Despite the large number of different thermography methods, there are a some common 
features to all active thermography methods. For all methods a controlled heating of the 

specimen is required. The thermal energy has to be transported into and within the specimen. 
Commonly, an infrared camera is used to make images of the resulting structure surface 
temperature distribution. From these images the information about the material and structural 

properties of the sample have to be obtained. The most common way to introduce heat into a 

structure is by optical heating, for example by a pulsed laser beam. The temperature distribution 

on the surface is often imaged by fast infrared cameras triggered by the laser pulse, enabling 

high temporal resolution and high sensitivity. 

Many defects of interest such as cracks or delaminations are very readily detected with active 
thermography. Thermography is used in all kind of applications ranging from vessel monitoring 
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to aircraft inspections. Several advantages make thermography attractive, such as being a non- 

contact inspection tool. Even large stand-off distances are possible. NDT/E using thermography 
is not restricted to the surface of the structure. Faults such as delaminations in composites that 

are not visible on the surface become detectable. This is because the delamination alters the 

thermal behaviour of the material and the temperature distribution on the surface is influenced 
by the properties of the whole material. Another strength of the technique is that studying the 
thermal properties (specific heat and thermal conductivity) of a material differs from other 
methods that focus on elastic or electrical properties. Thus, it will be more suitable to detect 
damages that rely to changes in thermal properties. A disadvantage however is that energy 
consumption is high in order to induce the thermal energy into the specimen and that a 
miniaturisation of the method is currently not feasible. 

Optical Interferometry Testing 

Optical interferometry in the NDT/E context comprises methods such us holographic 
interferometry, speckle interferometry and shearography. Interferometry is a means of detecting 

phase changes in an optical wave. To do so, coherent light that has travelled along two different 

optical paths is brought to interference. The image that is produced by an interferometric set-up 
is an interference pattern. Depending on the relative phase of the wave travelling along the two 
different paths, the interference can be either positive, then the two amplitudes add, it can be 

negative, then the amplitudes cancel or anything in between. The interferometer can be said to 
translate any phase modulation into an amplitude modulation. [78]. 

The holographic interferometry uses coherent light to illuminate the test object. The reflected 
light and a reference beam are recorded for example on a photographic film. Due to 

interference of both beams, a holographic interferogram develops. From this interferogram the 

three dimensional image of the object can be reconstructed. The recorded holographic 

interferogram prior to any damage serves as a reference against which later interferograms 

after the object deformation can be compared. Any object deformation will induce a phase shift 
between the reference and the current holographic interferogram. By interference of the two 

wavefronts of both holographic interferograms, the phase difference becomes a variation in 

brightness, which can easily be measured. This is the principle of holographic testing: Surface 

distortions are mapped to changes in optical irradiation and can then be quantified. 

Another interferometric method is speckle interferometry. Here, an interference pattern is 

derived from interfering an image before and after the object has been damaged. The optical 

phase can be made sensitive to local in-plane or out-of-plane displacements. In consequence, 
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the information on any changes of the structure is encoded in the brightness of the 

interferometric image. 

Both techniques suffer from the same drawback, as vibrations have to be eliminated and the 

geometrical distances have to be maintained between and during the measurements. A 

drawback that is overcome by shearography. This methods used a "shear optic" that enables a 

recording of the reflected light of the object from slightly different positions and brings them to 
interference. Compared to speckle interferometry this method gives rather displacement 

gradients than absolute displacements. 

The obvious advantage of any interferometric technique is that it is non-contact. Since the 

measurements are being made with light, remote sensing of deformations is possible. 
Measurements can be made in hostile environments as long as there is any optical path 

available. As the sensitivity of the interferometer is related to the wavelength of the light, a high 

sensitivity can be achieved and measurements on the order of a fraction of a wavelength are 

possible. The potential draw-back is its restriction to surface displacements, no inner changes of 
the material can be measured. The area covered by the interferometric inspection is restricted 
to the illuminated area of the light source and the focus of the recording optics. 

Radiography 

Radiography, especially X-ray radiography, is one of the few NDT/E methods that can examine 
the interior of the test specimen and it is one of the methods that works on all materials. Since 

the discovery of the X-rays by Wilhelm Röntgen more than a hundred years ago, radiography 
has become a mature method in NDE. 

X-rays are produced in a vacuum tube when high-speed electrons are attracted by an anode 

and collide with the anode material. The electrons are produced when a filament is heated to 

incandescence. The electrons leave the material and are accelerated in the electric field. When 

the electrons hit the anode two different effects take place: On the first hand, the characteristic 
X-rays with energies determined by the atoms of the anode. The colliding electrons eject orbital 

electrons from the anode atoms. These electron vacancies are promptly filled and X-rays with 

characteristic energy are emitted. The second effect, that usually dominates the X-ray 

production is the interaction of the electrons passing the anode with the electron structure of the 

atoms. Each interaction results in radiative loss in the form of bremsstrahlung. X-rays penetrate 

the test object almost without any deflection, but they get attenuated. Attenuation is proportional 

to the third power of the atomic number of the target material. If the X-rays that have passed the 

test object are recorded on a detector or photographic film, inhomogeneities of the material 

become visible. Using a sophisticated arrangement of several X-ray detectors, it is even 
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possible to get a three-dimensional image of the object. This method is called computer 

tomography. 

Radiography has found many applications, especially for the inspection of welds and castings. 
But also in the aircraft industry it is used for initial and in-service inspections. The major strength 

of radiography is that it can give information not only of the surface but of the whole volume of 
the test object. The interpretation of the images obtained is often intuitively and the whole 

procedure is rather simple. Furthermore, a permanent recording is possible. The disadvantage 

of the technique is the related safety hazard, as X-rays are harmful to the human health. In 

addition, the equipment and the implementation is expensive. Radiography has its limitations in 

the detection of cracks, where for specific crack geometries a penetrant is needed to give 

sufficient contrast on the detector. 

Vibration/Modal Analysis 

The basic principle on which modal analysis is based is the existence of resonant frequency 

modes (eigenmodes) when a structure is excited by ambient energy, an external shaker, or 

embedded actuators. These resonant frequencies are linked to the acoustical properties of the 

structure. Any discontinuities within the structure will alter the acoustical properties and 

consequently the resonant frequency modes. From analytical models or response-history tables 

the corresponding location of the damage can be calculated. Modal analysis requires the 

excitation of the test object and the recording of the object response, e. g. by using strain 

gauges or accelerometers. From the response of the structure the resonant modes have to be 

calculated and then have to be compared to the undamaged modes. 

Although this technique holds much potential for NDT/E, it currently suffers from some 
limitations. The problem is that the resonant modes strongly depend on the boundary 

conditions, e. g. geometrical dimensions of the object and loads. Any change in the boundary 

conditions, for example by thermal expansion, will therefore also change the resonant modes. 
More sophisticated approaches making use of non-linear effects (higher harmonics, distortions, 

modulation) have been used in this area. Limits regarding the detectable size of the damage 

make vibration/modal analysis a global technique being useful only for a large ratio of damage 

dimension to structure dimension [164]. 



Appendix D: Piezoelectricity 

In 1880, Jacques and Pierre Curie discovered that a pressure applied to a quartz crystal creates 

an electrical charge in the crystal. Tension and compression generated voltages of opposite 

polarity, and in proportion to the applied force. Later they also verified that an electrical field 

applied to the crystal would lead to a deformation of the material. The crystal lengthened and 

shortened according to the polarity of the field, and in proportion to the strength of the field. 

These behaviours were labelled the piezoelectric effect and the inverse piezoelectric effect, 

respectively. The word piezo is derived from the Greek word piezein, which means to press or 

squeeze [306]. 

Since the piezo effect exhibited by natural materials such as quartz, tourmaline or Rochelle salt, 

is very small, polycrystalline ferroelectric ceramic materials such as barium titanate and lead 

(plumbum) zirconate titanate (PZT) with improved properties have been developed. PZT 

ceramics are available in many shapes and are the most widely used materials for actuator or 

sensor applications. The term PZT has become a synonym for any piezoelectric material. 

Ferroelectric ceramics become piezoelectric when poled. At temperatures below the Curie 

temperature, PZT crystallites exhibit tetragonal or rhombohedric structure. Due to their 

permanent electrical and mechanical asymmetry, these types of unit cells exhibit spontaneous 

polarisation and deformation. Groups of unit cells with the same polarisation and deformation 

are called domains. Because of random distribution of the domain orientations in the ceramic 

material, a ferroelectric poling process is required to obtain any macroscopic anisotropy and the 

associated piezoelectric properties. If heated above the Curie temperature the PZT crystallite 

unit cell takes on cubic centrosymmetric structure. When cooled the domains reform, but with 

randomised orientations, and the material does not regain its macroscopic piezoelectric 

properties. 

O A2+ = Pb, Ba, 

divalent metal ion 

Q O2- = Oxygen 

Q B4+ = Ti, Zr 

tetravelent metal ion 

Figure D. 1: Crystal structure of a traditional piezoelectric structure (Perovskite Crystal). 
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The asymmetric arrangement of the positive and negative ions imparts permanent electric 
dipole behaviour of the crystals. Before the poling treatment, the domains are randomly oriented 
in the piezoceramic material. During poling an intense electric field is applied to the material. 
Through this polarising treatment (poling), domains most nearly aligned with the electric field 

expand at the expense of domains that are not aligned with the field. The material expands 
along the axis of the field and contracts perpendicular to that axis as the domains line up. When 

the field is removed most of the dipoles are locked into a configuration of near alignment. The 

material now has a remanent polarisation, which can be degraded by exceeding the 

mechanical, thermal and electrical limits of the material. When a voltage is applied to the poled 
piezoelectric material, the ions in the unit cells are shifted and, additionally, the domains change 
their degree of alignment. The result is a corresponding change of the dimensions of the PZT 

material. 

The piezoelectric effect is explained in Figure D. 2 [307]. The disk of a piezoelectric material with 
antisymmetric unit cell is shown in Figure D. 2a Mechanical compression or tension on a 

piezoelectric ceramic element changes the dipole moment, creating a voltage, Figure D. 2b. 

Compression along the direction of polarization, or tension perpendicular to the direction of 

polarization, generates voltage of the same polarity as the poling voltage. Tension along the 
direction of polarization, or compression perpendicular to the direction of polarization, generates 

a voltage with polarity opposite that of the poling voltage. These actions are generator actions -- 
the ceramic element converts the mechanical energy of compression or tension into electrical 

energy. This behaviour is used in fuel-igniting devices, solid state batteries, force-sensing 
devices, and other products. Values for compressive stress and the voltage (or field strength) 
generated by applying stress to a piezoelectric ceramic element are linearly proportional up to a 
material-specific stress. The same is true for applied voltage and generated strain. 

If a voltage of the same polarity as the poling voltage is applied to a ceramic element, in the 
direction of the poling voltage, the element will lengthen and its diameter will become smaller. If 

a voltage of polarity opposite that of the poling voltage is applied, the element will become 

shorter and broader Figure D. 2c. If an alternating voltage is applied, the element will lengthen 

and shorten cyclically, at the frequency of the applied voltage. This is a motor action -- electrical 
energy is converted into mechanical energy. The principle is adapted to piezoelectric motors, 

sound or ultrasound generating devices, and many other products. 
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Figure D. 2: Piezoelectricity: a) disk after polarisation; b) disk compressed: generation of 

voltage; c) applied voltage: deformation of disk [307]. 

Because of the anisotropic nature of piezoelectric materials, effects are dependent on direction. 

To identify directions, the axes termed 1,2, and 3, are introduced, see Figure D. 3. The axes 4,5, 

and 6 identify rotations (shear deformation). The direction of polarization (3 axis) is established 

during the poling process by a strong electrical field between two electrodes. 

1 

Figure D. 3: Coordinate system introduced to describe the piezoelectric effect. 

The fundamental equations relating the stress, strain, electric field, and displacement within a 

piezoelectric material [173] can be described by the following electromechanical equations 

known as constitutional equations: 

ýij =SYk! 6kl +dkijEk 

and 

T Di = dik, 6kl + pik Ek 

(D. 1) 

(D. 2) 
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where i, j, k, 1= 1,2,3, and, j is the strain tensor, s;; k, is the compliance tensor measured at zero 

electric field, Ek is the applied electric field, pk is the dielectric constant (permittivity) measured 

at zero mechanical stress, Tid is the stress tensor, dkj are the piezoelectric constants, and D; Is 

the dielectric displacement. The superscripts E and T indicate that the values of constants are 

obtained at constant electric field and constant stress, respectively. Equation (D. 1) states that 

the strain in the piezoelectric material is proportional to both applied stress and the applied 

electric field (the inverse piezoelectric effect). Equation (D. 2) states that the electric 
displacement is proportional to both applied stress (direct piezoelectric effect) and the applied 

electric field. Piezoelectric materials are characterized by several coefficients: 

du The piezoelectric charge coefficient is the ratio of the electric charge generated per 

unit area to an applied force and is expressed in Coulomb/Newton (C/N). 

gj: The piezoelectric voltage coefficient is the ratio of the electric field produced to the 

mechanical stress applied and is expressed as Volt. meter/Newton (Vm/N) 

kü. Coupling coefficients. The coefficients are energy ratios describing the conversion 
from mechanical to electrical energy or vice versa. k2 is the ratio of energy stored 
(mechanical or electrical) to energy (mechanical or electrical) applied. 

pu: Dielectric constant. The permittivity or dielectric constants for a piezoelectric ceramic 

material is the dielectric displacement per unit electric field. The relative permittivity is the 

ratio of p;, * to the dielectric constant of free space po (8.85x10-12 As/V m). 

In general the d and g coefficients have different values depending upon the orientation used. 
Direction 3 is considered to be the direction along which the sample has been polarised and 
directions I and 2 are the other perpendicular dimensions. The most widely used piezo- 
coefficients, dm and gin, charge and voltage respectively, possess two subscripts. The first 

refers to the electrical axis, while the second subscript refers to the mechanical axis. Because 

piezoelectric devices are thin, the electrodes are only applied to the top and bottom surfaces. 
Accordingly, the electrical axis is always 3, as the charge or voltage is always transferred 
through the thickness (n = 3) of the element. The mechanical axis can be either 1,2, or 3, since 
the stress can be applied to any of these axes. Another important parameter is Young's 

modulus for each direction, describing the elastic response of the material. 



Appendix E: Wavelet Analysis 

This appendix explains how wavelet decomposition works. A sine wave with an added white 

noise has been decomposed into its wavelet components. The SNR is 6dB. Each component of 

the transform is called a level and the levels are numbered from 0 upwards. The number of 
levels depends on the number of data points that represent the signal to be decomposed. When 

the separate levels are added together, the original signal can be reconstructed, see Figure Al. 
. 

Figure A. 1: Original signal and its reconstruction using the wavelet transform. 

It is important for discrete wavelet analysis that the signal to be analysed has been sampled at 

equally spaced intervals, as described above. In the sine wave f(r) covers a range of r from 1 to 

1024. The sequence length of N of the signal being analysed determines how many wavelet 
levels there are. For N= 2" there are n+2 wavelet levels. However, the first level is only a 

constant and is not considered further. So, without that first level, for N= 1024 = 210 there are 

ten wavelet levels as shown in Figure A. 2. 

At each level m the analysing wavelet consists of a number of 2m wavelets at equally spaced 
intervals along the horizontal axis. Every wavelet is displaced N12' places with respect to its 

neighbour. Each of the analysing wavelets has the same shape. The position and spread of 

each wavelet along the horizontal axis is therefore determined by the structure of the wavelet 

transform and can not be altered. Only the vertical size of each wavelet needs to be adjusted to 

the analysed signal. The vertical sizes are specified by an appropriate term in an N-term series 

a(r), r=1 to N. The goal of the wavelet transform is to take the initial signal sequence f(r) and 

convert this into a new sequence of numbers a(r) where r is of [1 to N]. This sequence defines 

the vertical size of the wavelets at each of the set horizontal scales and positions in such way 

0 200 400 600 800 1000 
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that the addition of all the wavelets, taken together, faithfully reproduces the original signal 
(Figure A. 3). 
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Figure A. 2: Decomposition of a signal into its wavelet components. 
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Figure A. 3: Reconstruction of a waveform from its wavelet components. 
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Appendix F: Safe-Life and Fail-Safe Approaches 

Safe-Life Approach 

In the safe-life or total-life approach the total fatigue life is the sum of the number of cycles to 

initiate a crack and the number of cycles after crack initiation until the ultimate failure of the 

structure. Over the years two domains have appeared into which load cycles can be separated. 
On one side there are high-cycle fatigue (HCF) applications. These have in common a long life 

(high-cycle) and relatively low loads. Whereas on the other side low-cycle fatigue (LCF) 

applications are characterised by high loads and relatively short life time. A short life may 

contain 10 to 100 000 cycles while high-cycle fatigue refers to a total cycle number higher than 

100 000. The latter one is characteristic for most applications in aircraft and automotive 

engineering. Therefore, it is considered in more detail in the following section. 

High-Cycle Fatigue 

The stress-life approach was first introduced by Wähler in 1860, who plotted the results of his 

fatigue tests in terms of nominal stress amplitude versus number of cycles to failure, what has 

become known as S-N curves. The stress-life approach only holds when the cyclic loading is 

essentially elastic, i. e. Hooke's law is valid. It is the approach usually chosen to characterise 

high-cycle fatigue. Note that the terms load and stress are used interchangeable within the 

context of this work. 

Load parameters 

The general parameters used to describe the stress cycle in structural testing are explained 

using a sinusoidal waveform as shown in Figure F. 1. 

0 
(Imin 

10 
period 

Figure F. 1: Nomenclature for load parameters. Variation of stress or with time t is shown. 
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The load consists of two main components, a mean static stress component cam and a 

modulation stress with the amplitude ßa. Based on maximum and minimum stress these are 

defined as 

6= 
07max - 6mm 

'm= 

Amax +amm 
Q= Qmax -Qmm (F. 12 

2 

where the stress range dQ has also been defined. 

It should be noted that although fatigue is related to cyclic load, the mean load is also of 
importance to the S-N curve. Different combinations of mean stress and stress amplitude will 
lead to different results for the total fatigue life. In general, any non-zero mean load will 

contribute to a reduced life. A common representation of non-zero load contribution can be 

found in the so-called Haigh diagrams. 

The central diagram in the stress-life approach is the aforementioned S-N data plot. It plots the 

stress amplitude versus the number of cycles to failure. For an example see Figure F. 2. For 

many materials, e. g. steel, this curve yields a constant level beyond about 106 cycles. This level 

is called the fatigue limit ße. Should the load amplitude not exceed that level the specimen will 

have an infinite life. That concept is referred to as the endurance limit. In practical terms infinite 

is anything beyond 107 to 108 cycles, which is the limit set in fatigue life analysis. 

ý_ 

a) 
c 
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Figure F. 2: Typical S-N plot showing the stress amplitude versus the cycles to failure for a 
typical material, e. g. steel. 

On a log-log scale the relation between load a and failure cycles N can be described as a 

straight line (see Figure F. 3). The slope of the line can be derived between two points N and No. 

-J -'-- - -- ý' ýl L-V --J 
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log 6- log a 
(F. 2) 

log N- log No 

The function N(6) can be thus derived to be 

N=N0 6b 
6o 

ä, 

cm 0 

a, 

0 
E 
ca 

E 
U) 

cycles to failure Nf [log scale] 

Figure F. 3: Idealised form of the S-N curve. 

(F. 3) 

Regardless of how accurate the inspection methods and the fatigue analysis parameters are, 

the process of crack growth is a stochastic process. This means that for real tests scatter will 

occur. The three main sources have been obtained as [274]: 

a) Consistence of material parameters for different batches; 

b) Local differences due to inhomogeneities; 

c) Errors in measurement. 

It is therefore always possible to misinterpret the data and to miscalculate the remaining life of 

the structure. The fatigue and fracture analysis has to include a statistical interpretation of the 

data. A very common approach is the introduction of a coefficient of variation. Due to the 

uncertainties the measured values Nf for a specific stress amplitude will follow a statistical 

distribution. In fatigue analysis the Weibull distribution is often used [274]. The statistical nature 

of the process is expressed by the presentation of a failure probability instead of using absolute 

values. Weibull defined the failure probability as follows: 

N No 
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(F. 4) PF =1- P, =1- exp - 
ý'"W ) 
co 

where mw is the Weibull modulus or Weibull parameter and Qo a reference strength. 

The failure probability PF gives the fraction of the number of specimens that will fail below a 
failure strength OF. Whereas Ps will represent the fraction that has higher failure strength than 

aF. For QF = ap the fraction of the failed specimens is 63.3 %. This means the reference strength 

vo is defined as the load level for which the probability of failure is 63.3 % 

Fail-Safe Approach 

The fail-safe or damage-tolerant approach uses the characterisation of fatigue crack 
propagation as an application of the theory of fracture mechanics to fatigue life. It implies that 
for an experimental validation of the theory, cycles to failure or stress amplitudes are not the 
important measures but number of cycles and crack length. 

Damage-tolerant fatigue approaches are based on the assumption that every engineering 

structure is inherently damaged. Therefore, the useful fatigue life is the life that it takes for the 

existing crack to propagate from initial size to a critical dimension. The initial size can be either 

measured by any NDT method or defined by the resolution limit of the NDT method. The critical 
dimension though is not inherently known but will depend on the application and what is defined 

as its critical dimension. Crack propagation is only a suitable method if there is a stable regime 

of crack growth, that can be described mathematically and be accessed experimentally. This is 

true for most metallic materials but only to some extent for polymers and composite materials. 
The regime where stable crack growth conditions hold is for medium sized cracks where the 

crack propagation is independent of crack size. The time , respectively the number of cycles, for 

which a stable crack propagation can be assumed, is long enough to allow inspection of crack 

size at certain intervals. From the crack size and number of cycles the remaining life time can 
then be derived. This is the basis for many of today's inspection and maintenance regulations. 

Considering the crack growth at a constant load amplitude, the rate of growth of a fatigue crack 
is expressed in terms of the crack length increment per cycle, dajdN. Under different loading 

conditions there will be different values of dajdN, which can be obtained experimentally. When 

the applied stress range is held constant, the rate of growth of a fatigue crack generally 
increases with increasing number of fatigue cycles. Figure F. 4 schematically shows a typical 

fatigue crack growth curve. 
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Figure F. 4: Typical crack growth behaviour at constant stress amplitude for two different 

load levels. 

Reliable methods for characterising the crack propagation in terms of an appropriate loading 

parameter are needed. The loading parameter enables a quantification of the materials 
behaviour during crack growth for different combinations of applied stresses, specimen 

geometry and crack geometry. For a cyclic variation of the applied loads, a method based on 
linear elastic fracture mechanics has been proposed by Paris and Erdogan [275], who 

suggested the relevant loading parameter to be the stress intensity factor K. The stress intensity 

factor can be derived from the applied fatigue load a and the crack length a, as 

K= Y6 era. (F. 5) 

where Y is a geometrical factor depending on the ratio of crack length to the width of the 

structure. The stress intensity factor range is the difference of maximum and minimum stress 
intensity factor which correspond to maximum and minimum fatigue stress, respectively. This 

can be expressed as 

AK =Y 06 ; cap. (F. 6) 

Paris and Erdogan [275] showed that the fatigue crack growth increment da, JdN is related to the 

stress intensity factor range by the power law relationship 

da� 
_ QAK)` (F. 7) 

dN 

where C and m are scaling constants. They are influenced by environment, temperature and 

most relevant to the load ratio R, that is the ratio of the minimum to maximum stress intensity 

factor Km��Kmax. 

number of cycles. N 
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The stress intensity factor for commonly used fatigue test specimens and crack configurations 

can be found in handbooks and monographs on fracture mechanics. For the fatigue test 

specimen used in the experiments the stress intensity factor is given in Appendix G. 

Different regimes of fatigue crack growth 

The Paris/Erdogan power law relationship (F. 7) expresses a linear relationship for da/dN and 

AK on a log-log scale. At extreme values of AK, both below and above the linear regime, there 

is a rise in crack growth rates with increasing AK. A plot of da/dN and AK on a log-log scale will 
for the most common metals and alloys look as schematically illustrated in Figure F. 5. 
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Figure F. 5: Schematic illustration of the different regimes of stable fatigue crack 

propagation [275]. 

Three distinct regimes can be identified in Figure F. 5. Regime A is characterised by the near- 

threshold fatigue crack growth. Below the threshold AKO , cracks either don't grow at all or at 

undetectable rates. Above that threshold there is a dramatic increase in daJdN with AK. Known 

as the Paris regime, the regime B exhibits a linear variation of log daJdN with log AK. In 

regime Ca rapid increase of crack growth for high values of AK can be seen. This causes 

catastrophic failure at stress intensities beyond this point. 

Crack Growth Analysis 

In this section the important terms such as load spectra, structural strength, etc. are defined and 

related to the crack growth process. 

According to Broek [274] the two objectives of damage tolerance analysis are: 
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a) Determination of the effect of cracks on the structural strength. 

b) Determination of the crack growth as a function of time. 

The effect of crack size on the structural strength can be explained using Figure F. 6. The 

remaining strength under the presence of cracks is referred to as residual strength P, as . This 

strength is a function of crack size a. The general form of this relationship is presented in the 

residual strength diagram, Figure F. 6. Here, the structural strength is expressed in terms of the 

load a. The strength is the load the structure can carry before fracture occurs, this is the fracture 

load a,,,. For the structure in service, fracture takes place when a load Q= a,,. arises. This 

eventually ends in a unstable fracture process where the structure finally breaks into two or 

more pieces. This process may take place in a fraction of a second. However, if the load does 

not exceed the fracture load cracks will grow, not by fracture, but by other cracking mechanisms 

such as fatigue, stress-corrosion or creep. 

In the residual strength diagram or, is the ultimate load for an undamaged structure, i. e. crack 

length a, = 0. Note that a� is finite, otherwise the structure would have been over-designed. The 

maximum anticipated service load is as. In most areas of engineering, e. g. aeronautics, a safety 

factor fs is multiplied to a,. The designer sizes the structure so that the initial strength equals 

q� = fs aS. The service load is defined such that it is only reached in exceptional circumstances, 

e. g. critical weather conditions. The average service load o is much less than that. 

During the fatigue life of the structure the cracks grow and become longer. In consequence, the 

residual strength gets less. This means that the safety factor gets lower and the probability of 

failure increases. This could finally lead to a residual strength less than as. Safety factor will be 

reduced to 1 and fracture already occurs at c r, the highest service load or even at the average 

load a,. This is what must be prevented. Therefore, a limit is introduced somewhere above 0". 

This limit gives the permissible residual strength o. It is defined by multiplying a remaining 

safety factor f, to the maximum service load QP = f, o. With the permissible load also the 

maximum permissible crack size app has been defined implicitly. Provided the residual strength 

diagram is known and ap prescribed, app follows from the diagram. 

With the knowledge of the maximum permissible crack size the question arises when this crack 

size is reached in service. This can be deduced from the crack propagation curve. The shape of 

this curve is subject to the crack growth analysis. Starting from some initial crack length a, o, 

which for example could be the smallest detectable crack length, the crack grows during time. 

The permissible crack length app can be plotted on the curve and the life of the structure can be 

found using the diagram. Life of the structure which in this case is the life of safe operation, i. e. 

until app is reached, is then the corresponding time H on the time axis. Since crack growth is not 

allowed beyond aqp, the crack must be detected and repaired before the time H has expired. In 
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order to detect the crack in time, the time between two inspections must be less than H. Often, 

the inspection time is taken as H/2. 

For both the residual strength and the crack growth diagram the relevant parameters and 

factors, e. g. safety factors and inspection times, are prescribed by rules and regulations. The 

manufacturer or operator of a structure has to ensure that these instructions are obeyed. 
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Figure F. 6: Residual strength diagram. Effect of the presence of cracks to the structural 

strength. 
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Figure F. 7: Crack growth curve and the safe operation life. 
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Crack growth analysis concepts 

In the case of constant amplitude loading the analysis of crack growth can be performed without 

a computer. A crack in the structure will grow at the rates indicated by the crack growth 
diagram. Analysis of the crack growth can be carried out manually, if the geometry factor for the 

structural configuration is known. The crack growth follows from an integration of the rates. The 

remaining lifetime can thus be calculated using the material's rate data obtained from the 

Paris/Erdogan equation, initial crack length and load amplitude. 

As most structures undergo a variable load spectrum, the analysis of the crack growth is not 

that straightforward. In fact, crack growth under variable amplitude loading brings up a new 

phenomenon called retardation. 

When one single high stress occurs in an otherwise constant load spectrum, the crack growth 
immediately after the overload is much slower than before. This is known as retardation. It is 

practically not possible to perform a crack growth analysis without accounting for retardation 

effects. Retardation is a complex phenomenon and there exist several mathematical-physical 

models to describe it, none of them however covering all aspects of the problem. The basic idea 

behind retardation is that for the microscopic scale crack growth the plastic zone near the crack 
tip is most important. The size and properties of that zone are dramatically changed when an 

overload occurs. In consequence the crack propagation after the overload event differs from the 

one before that event. 

Retardation is not the only limit to crack growth analysis. There exist several factors that affect 

crack propagation. In any case where predictions on crack propagation have to be made these 

effects should be accounted for to the highest degree possible. However, the influence of many 
factors remains uncertain as they cannot be obtained. Among the factors that affect crack 

propagation are: thickness of the structure; type of product; heat treatment; cold deformation; 

temperature; manufacturer, batch-to-batch variation; environment; frequency [275]. 

As the data for all factors might not be available from experiments or manuals, estimation is 

often needed. 

Load spectra and stress histories 

A load spectrum in this context is defined as any statistical representation of loads and stresses. 
A stress or loads history is a particular sequence of stresses or loads experienced by a 

structure or component in service. 

For the fatigue analysis of materials the knowledge of the stress history is essential. Any 

prediction of the fatigue crack propagation rate or propagation time of a specific crack from 

starting time to the permissible size requires the input of crack propagation data, geometry 
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factors and stress history. The effects of stress history are significant as different load spectra 
lead to different shapes of the crack growth curve. 

Most load spectra can be represented by exceedance diagrams. The representation by an 

exceedance diagram has many advantages for random and semi-random loads, not in the least 

for its simplicity. In most cases the stress history used in crack propagation analysis is a 

simplified version of the stress history anticipated to occur in service. Simplification is necessary 
because the actual stress cycles can not be known in advance and stress history must be 

derived as an interpretation of past load measurements on similar structures. 

Load spectra have to be obtained before crack growth analysis can be performed. Two different 

kind of spectra are distinguished. On the one hand, the man-induced spectrum, where the 

spectrum can be calculated on the basis of anticipated usage. This is for example true for 

fighter aircrafts. On the other hand there is the nature-induced spectrum where the main loads 

are due to environmental influences, e. g. waves, winds, rough roads. Examples for that include 

commercial aircrafts. 

In order to obtain the load spectrum, only indirect measurements are possible. Measurements 

such as strain gauge records are called indirect because strains are measured and have then to 

be transferred into loads. These measurements are very extensive and give rise to huge 

amounts of data. A smart data reduction is strongly needed in order to obtain a specific pattern 

or envelope of the data set. Two options exist, for example power density spectra can be 

calculated or exceedance diagrams can be established. Many counting methods for data 

reduction have been developed. Starting from simple peak count and mean-crossing peak 

count to range pair count and range-pair mean count. The latter is also known as the rainflow 

count and commonly known as the best method for the representation of fatigue. However, any 

method can be obtained as long as the spectrum allows the correct prediction of the crack 

growth. 

The exceedance diagram shows how often a certain load level is exceeded. This is the number 

of times certain maxima, minima or ranges are exceeded, depending on the counting method 
that has been applied. 

A typical spectrum for nature induced loads (waves, winds) is presented in Figure F. 8a. The 

diagram is linear in the semi-log representation. It shows symmetry around a steady load, which 
in this diagram is around zero load. This diagram is an example of the general trend for 

commercial aircraft load spectra. 

A man-introduced load spectrum produces a non-linear diagram in the semi-log scale (Figure 

F. 8b). The steady load is not necessarily zero. This is an example for fighter aircraft. 
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As no load experience is available for new structures, fatigue crack growth analysis must be 

based on past experience and projected to the future service. Today, for some structures (e. g. 

military aircrafts with their mechanically induced loads) continuous monitoring is carried out in 

order to permanently update the anticipated load spectra. This allows an adaptation of the 

analysis to the actual service experience. 
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Figure F. 8: Exceedance diagrams: a) weather induced loads: commercial aircraft; 
b) mechanical induced loads: fighter aircraft. 

Fracture control 

As has been outlined above, the analysis of fatigue crack growth allows the determination of the 

remaining residual strength of a material at a given crack size. Furthermore, the remaining 

structural life can be obtained, as the time that it takes for the present crack to grow to the 

maximum permissible crack size. This time period H to reach the maximum crack size is the 

essential information needed. As no crack is allowed to grow beyond that size, a repair or 

replacement is dictated by H. The following options are available for the implementation of 

fracture control [274]: 

a) Periodic inspection: repair upon crack detection. 

b) Fail safe design: repair upon occurrence of partial failure. 

C) Durability / safe life design: replacement or retirement after time H. 

d) Periodic proof testing: repair after failure in proof test. 

e) Stripping: periodic removal of crack. 

Damage tolerance requirements sometimes prescribe the fracture control procedure. For 

example military aircraft requirements prescribe methods (a) and (c). Commercial aircraft 

requirements prescribe method (a) and by their intent promote (b). 
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The control by periodic inspection requires the detection of the crack before it reaches the 

maximum permissible crack size. Any method that is known from non-destructive evaluation can 
be used. The most promising methods are discussed in Section 4.1. For every method there is 

a certain crack length ado, that gives the minimum detectable crack size. For any inspection 

before ago, the crack is unlikely to be discovered. This has to be taken into account when 
defining the requirements for the inspection intervals. Damage tolerance analysis, which gives 
the residual strength and crack growth curves for the structure of interest, is performed solely to 

determine the time period H and from this the inspection intervals. Safety is maintained by 

providing a sufficient number of inspections during H, to ensure crack discovery before the 

maximum permissible crack size. 

Providing fail safe design by means of crack arresters or multiple load paths, is essentially a 

variation of the period inspection method. Also for the fail safe design cracks have to be 

discovered and repaired. The difference is that the structure is designed for tolerance of large 

damage which is more readily apparent. 

If no inspections can or will be done, a small crack could be assumed to exist initially in the new 

structure. The time H for this crack to grow to maximum permissible size is then the available 

safe life. In that case the structure or component must be retired or replaced before the time H 

has passed. This is the durability or safe life design. 

The proof testing approach is chosen when the permissible crack size is smaller than the 

detectable crack size. At certain test intervals the component (or part of it) is subjected to a 

proof stress. If the component passes the test, i. e. no fracture occurs, the whole structure is 

assumed to have a safe operational life for the forthcoming test interval. 

Stripping is another option for fracture control for structures where the permissible crack size is 

so small that it defies detection. By stripping away a surface layer at certain test intervals, the 

crack size could artificially be decreased. For any crack growth curve this means to slow down 

the crack propagation. As a consequence, for the next test interval a safe operation life can be 

assumed. 
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Appendix H: Source Code for Genetic Algorithm 

s*******s******s**fs*****ss**********************************t***t**t*****t**" 

For use in the location tests using two rosettes of three fibre Bragg gratings. 
This procedure returns fitness values of chromosomes in the genotype. 
The fitness values is obtained from difference in the calculated and measured 
amplitude of the grating response. 
The routine is used for the source location problem in an aluminium structure. 
-x and y coordinates are chosen optimaly by the GA. 
The integer coding of optimal coefficients is used. 
The phenotype and fitness values are stored in the database and used 
to save computation time. 
Finnaly, the total, minimum, maximum and averaged values 
offitness in the population are computed. 

Procedures and functions called. double vector, free double vector 

****************************************************************************** 

/* Include genetic algorithm header file 

#include "header. h" 

/****************************************************************************/ 

void fitness( population, population size, chromosome_length, 
min fitness, max fitness, ave fitness ) 

INDIVIDUAL **population; /*Array ofpointers to individuals */ 
int population size; /* Number of individuals per population */ 
int chromosome_length; /* Number of genes per chromosome 
double *min fitness; /* Minimum fitness of the genotype 
double *maxfitness; /* Maximum fitness of the genotype 
double *ave fitness; /* Averaged fitness of the genotype */ 

/* Begin ofprocedure */ 

char system command[256]; 
/* Character string used to execute compression 

software*/ 
unsigned *chromosome; /* Chromosome from the population */ 
unsigned *unsigned vectoro; /* Memory allocation routine 
unsigned *free unsigned vectorO; /* Memory deallocation routine 
int anglel 1; /* Source angle Rosette] Sensor! */ 
int angle21; /* Source angle Rosette2 Sensor] */ 
int anglel2; /* Source angle Rosette] Sensor2 
int angle22; /* Source angle Rosette2 Sensor2 
int anglel3; /* Source angle Rosettel Sensor3 */ 
int angle23; /* Source angle Rosette2 Sensor3 */ 
int sample; /* Sample number */ 
int ind counter; /* Loop counter, individuals */ 
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int gene 
- 
counter; 

float s_dist; 
float x, y; 
float m_ampl[20][6]; 
float norm ampl[20][6]; 
float amplitude[370]; 
float talc ampl[6]; 
float ml, m2; 
float sum ampl_I, sum ampl_2; 
double total fitness; 
double *double_vectoro; 
double *free double_vectorO/**/; 
FILE *fp_input; 
FILE *fp_file; 

/* Allocate memory for chromosome vector 

chromosome = unsigned vector( MAX_INTEGER ); 

/* Initialize total, minimum and maximum values offitness 

total_fitness = fitness = 0.0; 
*min fitness = 10000000.0; 

/* Read calculated amplitudes for different angle values 

sample = 4; 

/* Loop counter: genes 
/* squared distance of calc. and meas. amplitude*/ 
/* Impact coordinates from the GA 

/* Measured amplitudes */ 
/* Normalized amplitudes */ 
/* Fitted amplitudes from file */ 

/* Calculated amplitudes*/ 
/* slope of the intersection lines*/ 
/* sum of measured amplitudes/rosette *1 
/* Totalfitness of the genotype 
/* Memory allocation routine */ 

/* Pointer the "input ta"file 
/* Pointer to the"generations"file 

fp_input = fopen( "ampl_360. dat", "r"); 
for( gene counter = 0; gene counter <= 360; gene_counter +) 
fscanf( fp_input, "%g\n", &amplitude[genecounter] ); 
fclose( fp_input ); 

/* Read measured amplitudes 

*1 

*1 

*1 

fp_input = fopen( "m ampl. dat", "r"); 
for( gene_counter = 1; gene_counter <= 5; gene counter++ ) 
fscanf( fp_input, "%g %g %g %g %g %g \n", &m_ampl[gene counter][1], 
&m ampl[gene counter][2], &m ampl[gene_counter][3], 
&m_ampl[gene counter][4], &m_ampl[gene_counter][5], 
&m_ampl[gene counter][6]); 
fclose( fp input ); 

/* Loop over chromosomes - begin *1 

for( ind_counter = 1; ind counter <= population_size; ind_counter++ ) 
{ 

/* Write to the "generation"file information about number of chromosomes 
/* being produced 

*1 

fp_file - fopen( "generations", "a"); 
fprintf( fp file, " chromosome = %d\n", ind counter ); 
fclose( fp file ); 
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/****************************************************************************/ 
/* Extract the fitness value 

/* Calculate possible angles from chromosomes 
/* anglell and angle2l are main angles, anglel2 and angle22 derived 

angle 11 = population[ind counter]->chrom[1 

if(anglel 1>360) 
anglell= (int)((anglel l- 360)*(360.0/151.0)); 

if (angle 1l > 60) 
anglel2 = anglel l- 60; 
else 
anglel2 = anglel1 + 300; 

if (anglel l> 120) 
anglel3 = angle ll- 120; 
else 
anglel3 = anglel 1+ 240; 

angle2l= population[ind counter]->chrom[2]; 

if(angle2 1 >3 60) 
angle2l= (int)((angle2l- 360)*(360.0/151.0)); 

if (angle2l > 60) 
angle22 = angle2l - 60; 
else 
angle22 = angle2l + 300; 

if (angle2l > 120) 
angle23 = angle2l - 120; 
else 
angle23 = angle2l + 240; 

/* normalize measured amplitudes 

sum ampl_1=m_ampl[sample][1] +m_ampl[sample][2] + 
m_ampl[sample][3]; 
norm ampl[sample][1] = 1.5 * m_ampl[sample][1] / sum ampl_l; 
norm ampl[sample][2] = 1.5 * m_ampl[sample][2] / sum ampl_1; 
norm_ampl[sample][3] = 1.5 *m ampl[sample][3] / sum ampl_l; 

sum ampl_2 = m_ampl[sample][4] + m_ampl[sample][5] + 
m ampl[sample][6]; 

norm_ampl[sample][4] =1.5 * m_ampl[sample][4] / sum_ampl 2; 
norm_ampl[sample][5] = 1.5 *m ampl[sample][5] / sum_ampl_2; 
norm_ampl[sample][6] = 1.5 *m ampl[sample][6] / sum ampl_2; 

/* calculate amplitudes from angles 
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calc_ampl[ I]= amplitude[angle ll]; 
calc_ampl[2] = amplitude[anglel2]; 
calc_ampl[3] = amplitude[anglel3]; 
calc_ampl[4] = amplitude[angle2l]; 
calc_ampl[5] = amplitude[angle22]; 
calc_ampl[6] = amplitude[angle23]; 

calculate squared distance of calculated and measured amplitude 
needs to be a minimum for maximum fitness */ 

s_dist = pow((double) (none ampl[sample][1] - calc ampl[1]), 2.0) + 
pow( (double) (norm_ampl[sample][2] - calc_ampl[2]), 2.0) + 
pow( (double) (norm_ampl[sample][3] - calc_ampl[3]), 2.0) + 
pow( (double) (norm_ampl[sample][4] - calc_ampl[4]), 2.0) + 
pow( (double) (norm_ampl[sample][5] - calc_ampl[5]), 2.0) + 
pow( (double) (norm ampl[sample][6] - calc_ampl[6]), 2.0 ); 

/* check for impossible solutions */ 

if (anglel 1= angle21) 
s dist = 10000000.0; 

calculate intersection of the two main angles anglell and angle2l 
lines have the form yl = ml *x and y2 = m2 * (x - 50), where x and y are given in centimeters, 
Origin (0,0) is at rosette 1 ml =- tan(anglel1), m2 =- tan (angle2l) 
check where fangen function is infinite */ 

if (s_dist < 10000000.0) 

if (angleI l= 90 11 angle 1. l= 270) { 
x=0.0; 
y= 50.0 * tan((double)((angle21 *M PI)/180.0)); 
} 
else if (angle21= 9011 angle21= 270) { 
x= 50.0; 
y=- 50.0 * tan((double)((angle 11 * M_PI)/180.0)); 
} 
else { 
m1= - tan((double)((anglel 1* M_PI)/180.0)); 
m2 =- tan((double)((angle2l * M_PI)/180.0)); 
x=50.0 * (m2/(m2-ml)); 
y=m1 *x; 
} 

if (s dirt =10000000.0) { 
x=0.0; 
y=0.0; 
} 

/* this can never be a solution, so any output (0,0) indicates an error in the conditions */ 

if(s dist = 0.0) 
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s dist =10000000.0; 

population[ind_counter]->fitness =1.0 / s_dist; 

/* Estimate minimum and maximum fitness values */ 

if( population[ind counter]->fitness > *max fitness ) 

*max_fitness = population[ind_counter]->fitness; 
fp_input = fopen( "corja. dat", "w"); 
fprintf( fp_input, "%g %g\n", x, y ); /* changed here ! */ 
fprintf( fp_input, "%d %d\n", angle 11, angle 12 ); 
fprintf( fp_input, "%d %d\n", angle21, angle22 ); 
fclose( fp_input ); 
} 

if( population[ind_counter]->fitness < *min_fitness ) 
*min_fitness = population[ind_counter]->fitness; 

/* Take the next chromosome from the population 
/* Loop over chromosomes - end */ 

/* Estimate averaged fitness value 

for( ind counter = 1; ind_counter <= population-size; ind_counter++ ) 
total fitness += population[ind_counter]->fitness; 

*ave fitness = total_fitness / (float) population_size; 

/* Deallocate memoryfor vector chromosome 

free unsigned vector( chromosome ); 

) /* End of procedure */ 

********************************* End ************************************ý 
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Original Waveform and Envelope (see Chapter 7.4) 
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Figure 1.2.: Series of Lamb wave signals at different temperatures. 
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Continuous wavelet transform 
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Appendix J: Additional Results for Fatigue Analysis Specimen 2 

Original signal and envelope for FBG sensor (see Chapter 8.4) 
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Continuous wavelet transform for FBG sensor 
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Original signal and envelope for PZT transducer 
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Continuous wavelet transform for PZT transducer 
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