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ABSTRACT 

 

The thesis investigates the intricate behaviour of individual cells within a population and their 

interactions, which are crucial for elucidating processes such as cell proliferation, 

differentiation, migration, and apoptosis. Due to the complexity of cellular behaviour, machine 

learning has emerged as an optimal approach for analysing extensive datasets and detecting 

nuanced patterns in cellular dynamics. The study describes the development of computational 

tools designed to extract features from individual cells and quantitatively characterise their 

behaviour in cultured populations using time-lapse microscopy images. Employing an 

interpretable "white box" machine learning methodology, the research utilises Recurrent 

Cartesian Genetic Programming (RCGP) and PySR to classify and delineate the behaviour of 

individual cells under diverse experimental conditions. The experimental methodology 

involved conducting time-lapse microscopy on Normal Human Urothelial (NHU) cell cultures 

over 48 hours under three different conditions: control, transforming growth factor-beta (TGF-

β), and SB431542 treatment, the latter serving as a TGF-β inhibitor. The objective was to assess 

cellular responses to these specific interventions. Utilising computer vision tools for 

segmentation, tracking, and feature extraction, quantitative data were collected on cell growth, 

migration speed, and angular velocity. These data were subsequently employed to develop 

RCGP and PySR-based computational models that classify and characterise cell behaviour. 

Comparison with other machine learning technologies, such as Long Short-Term Memory 

(LSTM), random forests, and Support Vector Machines (SVMs), demonstrated the 

effectiveness of RCGP models in integrating pairwise classification and ensemble learning 

(Bagging) techniques. The methods achieved accuracies of 88.59%. The use of PySR to 

perform classification based on the combination of symbolic regression and classification 

achieved an accuracy of 92%. Both approaches facilitated a robust performance and capacity 

for interpreting the resulting classifiers based on the utilised features. In summary, the study 

emphasises a novel machine learning approach utilising RCGP and PySR to effectively analyse 

cell behaviour under diverse conditions. The models and mathematical expressions developed 

could be applied to other biological systems, offering promising avenues for advancing research 

in systems biology. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Research in cell biology specifically deals with cell interaction, functionality and 

structures. It is based on the understanding that cells contribute primarily to scientific fields 

such as genetics, biochemistry, neuroscience, and immunology [1][2]. Furthermore, in order to 

understand diseases in the medical area, research in cell biology also benefits in diagnosing, 

treating, and preventing human diseases [3]. This research also includes cell composition, 

metabolism, communication, and cell cycle (proliferation), and it will give the researcher a 

better understanding of cell functionality in the organism's development [4]. Additionally, 

studies in cell biology will benefit the fields of medicine, such as tumours, cancer, and other 

diseases, as well as regenerative medicine and tissue engineering [5]. 

Cells are the essential building elements of all living things, serving structural and 

functional purposes. Prokaryotic [6] and eukaryotic [7] are two primary types of cells, 

illustrated in Figure 1 and Figure 2, respectively. Bacteria are prokaryotic cells, also known as 

unicellular, that lack a nucleus and other membrane-bound organelles. In comparison, 

eukaryotic or multicellular cells have a nucleus and various organelles, such as plants, animals, 

fungi and protists. Although each cell type has differing functions and structures, in terms of 

cell membranes, cytoplasm and genetic material, they have similar characteristics [8]. In order 

to study these characteristics of cells, a tool like microscopy is usually used [9], which is 

explained below.  
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Figure 1: Prokaryote cell taken from [10] 

 

 

1.1.1 Cell Cultures 

Cell cultures refer to growing cells under controlled conditions, typically outside their 

natural environment [11]. This lets scientists see how cells normally work and what happens to 

them when they get exposed to different conditions, such as medicines or germs. They can do 

this by studying the cells in isolation, outside of a whole animal or plant [12]. Since the 1900s, 

growing cell cultures in labs has become important for biomedical research as it helps scientists 

understand how cells work, their genetics, and their role in disease [13]. Cells can be cultured 

from many sources, including plant, animal, or human tissues [14] and can be classified as 

primary or secondary, continuous or immortalised depending on the type and purpose [15]. 

Over the years, the practice of creating cell cultures has evolved with advances in media 

formulation, environmental control, and contamination prevention [11]. This has allowed for 

the maintenance of a homogeneous cell population and facilitated standardised experiments 

[14]. As cell culture became more prevalent, the need for detailed visualisation of these cultured 

cells intensified, leading to the integration of microscopy techniques [16]. 

 

Figure 2: Eukaryote cell taken from 
[10] 
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1.1.2 Microscopy Imaging 

A microscopy image [17] is a digital or physical image obtained through the use of a 

microscope [18], a practical tool that allows scientists to visualise objects at a microscopic 

level. Microscopy images are useful for many purposes such as studying cellular structures, 

discovering pathogens, and examining materials at a nanoscale level. In biology, researchers 

utilise microscopy images to investigate cell morphology, organelle function, and cellular 

processes [19]. In medicine, these images are used for diagnosing diseases, monitoring 

treatment effectiveness, and conducting research on numerous health conditions [20]. Different 

types of microscopies are available for particular applications. For example, in biology, light 

microscopy [21] is usually used to observe live cells and tissues, while electron microscopy 

[19] offers high-resolution images of subcellular structures. Additional techniques, such as 

fluorescence microscopy, enable the visualisation of specific proteins and molecules within 

cells, and confocal microscopy provides detailed images of thick specimens through optical 

sectioning. These different microscopy technologies enable researchers to undertake a 

complementary analysis of cell culture to facilitate their understanding. 

 

1.1.3 Cell Imaging and Analysis 

Cell imaging and analysis are the integration of hardware, software tools and biological 

methods where the software part involves computational tools, whereas the hardware part uses 

optical technology. For instance, advanced imaging techniques such as fluorescence 

microscopy allow researchers to tag specific cellular components and observe them in real-

time [22]. Coupled with computational tools like the colour segmentation approach, these 

techniques enable the quantification of cellular responses, understanding signalling pathways, 

and monitoring cellular health [23]. One of the technologies that implement high-resolution 

and super-resolution imaging techniques has further expanded cell imaging capabilities, 

allowing scientists to visualise dynamic behaviours at a very small scale [24]. Additionally, 

image analysis methods have been developed to determine the type of a cell based on feature 

parameters extracted from cell images [25]. Imaging and analysis in cell areas have helped 

study cellular biology, providing valuable insights into the complex processes in living cells. 

Similarly, in biology and medicine, implementing cell segmentation [26], tracking [27], and 

characterisation [28][29] is fundamental to understanding how the cell works. Generally, cell 

segmentation is a process that involves computer vision algorithms to differentiate cells from 



 

18 
 

other structures in the image and its background [30].  Additionally, cell tracking facilitates 

scientists to observe and record how a cell moves and changes over time [31]. Imagine marking 

one object in a crowd and examining the object’s direction and pattern. This technique helps 

understand cell movement [32], growth [33], and how the disease spreads and wounds heal 

[34]. 

In the context of cell characterisation, this process involves analysis, such as 

quantification of the cell's physical [35], structural [36], behaviour [37], biological functions 

[38], and composition of the molecule [39]. The statistical approach is one of the methods used 

to characterise the cell, but with the advancement of technology, the implementation of 

machine learning expands the complexity of cell analysis to uncover new patterns or 

relationships that traditional methods are not able to detect [40]. All the pipeline processes 

above benefit the researcher and scientist to explore and recognise how cells behave and change 

in diseases and respond to treatment. Furthermore, this knowledge is important for the new 

development of medicines and therapies to treat diseases [41][42][43]. 

 

1.1.4 Challenges with current methods 

Biological and medical studies have been furthered by major developments in cell 

imaging and analysis, and have provided new understandings of the behaviour and 

functionality of cells [44][45]. Nevertheless, these methods also have problems and 

restrictions. Image data integrity can be jeopardised by factors like sample preparation 

techniques [46], staining inconsistencies [47], and equipment limitations [48]. Additionally, 

significant computing power and resources are required for image analysis, particularly when 

dealing with large datasets [49]. A major technical challenge is accurately segmenting [50][51], 

tracking [52], and characterising [53][54] cells within intricate biological environments or 

dynamic developmental stages. This complexity intensifies when data from diverse sources is 

integrated or captured using different imaging methods [55][56]. Furthermore, Data extraction 

from high-throughput images needs advanced algorithmic techniques and in-depth knowledge 

of biology [57][58]. For example, accurate data interpretation is important for discovering new 

cellular phenomena and understanding biological processes [59]. Data integration also 

contributes to the challenge [60]. For instance, cohesively analysing data from different 

modalities of image and external data sources is necessary for producing wide cellular function 
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and disease studies [61]. This integration is needed to advance personalised medicine and 

biotechnologies and also involves a broad understanding of how cells react to different 

conditions [62]. Realising the full potential of cellular research requires addressing these issues 

and continuing to develop algorithms and computer technologies to improve imaging and 

analytical techniques [63][64]. 

 

1.2 Aim 

The aim of the research described in this thesis is to develop a computational tool 

pipeline that quantifies cell behaviour from time-lapse microscopy images, enabling an 

objective understanding of cell culture across different conditions and environments. 

 

1.3 Thesis Objectives 

This thesis will present a set of objectives that are based on the motivations described and 

the information presented in the literature review. 

1. To establish a pipeline of computer vision tools to reliably segment and track unlabelled 

cells grown in culture as adherent monolayers using normal human urothelial cells as a 

representative example. 

2. To use a pipeline to describe the variations in growth, migration speed, and angular 

velocity. 

3. To characterise the behaviour leading to changes, the differences in cell populations. 

4. To investigate the use of the features within an interpretable “white box” machine 

learning context to further characterise NHU cell behaviours. 

1.3. Thesis Contributions 

The contributions of the thesis are as follows: 

1. Development of a Computational Tools pipeline: Creating and validating reliable 

computational tools for accurate cell segmentation and tracking specific to analysing 

adherent monolayers of unlabelled cells. 
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2. Segmentation and Tracking Methodology: Introducing practical methods and 

improvements to existing segmentation techniques for unlabelled cells that enhance the 

precision and reliability of cell segmentation and tracking. 

3. Characterisation of Cell Behaviour Variability: Identifying and analysing features 

describing variations in cell growth, migration speed, and angular velocity of NHU cells 

in an objective manner not previously achieved. 

4. Insights into Cellular Responses to Treatments: comparative study of cell behaviours 

under different treatment conditions, such as control, TGF-β and SB431542, provides 

valuable insights for future research on cell responses to compounds. 

5. Application of interpretable “white box” machine learning: a novel approach, 

implementing Genetic Programming to characterise NHU cell behaviours that can 

reveal patterns and relationships in cell behaviour data that might not be evident through 

traditional analysis methods. 

 

1.4 Thesis overview 

This thesis consists of five chapters. Chapter 1 has presented a general introduction, 

background study, aim, objective and contribution. Chapter 2 presents a review of the literature 

on studies related to cell segmentation, tracking, and characterisation using traditional and 

machine-learning approaches. Chapter 3 provides the methodology for the research, detailing 

cell culture preparation, time-lapse microscopy and subsequent image analysis, including pre-

processing, the segmentation of cells, and post-processing. Methods for cell tracking, data 

extraction, cell feature parameters and the implementation of computational intelligence are 

also considered.  

The results and discussions of the overall investigation are presented in Chapter 4. It 

begins with images and data related to cell segmentation and cell tracking and then considers 

cell features, including the total number of cells, their growth curve, migration speed, and 

angular velocity. In the latter part of the discussion, the analysis concentrates on characterising 

cells using machine learning approaches to perform classification and symbolic regression 

methods. The chapter also includes comparison results between different algorithms, methods, 

and machine-learning techniques. The conclusion and future work are addressed in Chapter 5, 

starting with summaries of work done, drawing conclusions based on the results, and proposing 

several possible study progressions. Appendix A enhances the main text by including additional 
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figures and detailed results that expand upon the analyses discussed in Chapter 4. This 

supplementary material provides a deeper understanding of cell segmentation performance, 

cell tracking performance, and symbolic regression analyses across various experimental 

conditions. Figures A.1 to A.9 in Appendix A offer detailed results on cell segmentation, 

illustrating how cells are differentiated and analysed across different experimental wells. 

Figures A.10 to A.18 depict cell tracking performance, providing insights into the movement 

and behaviour of cells under different treatment conditions. Lastly, figures A.19 to A.45 display 

the outcomes of symbolic regression analyses, which help predict cell growth patterns across 

the range of experimental setups. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1. Introduction 

The aim of this chapter is to review contemporary cell segmentation, tracking and 

characterisation algorithms used for cell culture in biology applications. The literature review 

starts with a review of existing segmentation algorithms, which are fundamental for 

identifying cell morphology in complicated images. The review will then consider cell 

tracking methods that monitor cell movements over time, followed by an analysis of 

algorithms that characterise cell features, which are essential for understanding cell behaviour 

within cell culture. Each of the algorithms will be reviewed based on its application through 

either traditional or machine-learning approaches. 

 

2.2 Cell segmentation 

One of the essential image processing stages is performing image segmentation. The 

image is separated into areas or objects based on the comparable characteristics that are defined 

for each class. The aim is to achieve isolation of the cell of interest. The ability to differentiate 

between the cell of interest and other cells in the background is the prime objective of this 

procedure. As an example, Figure 3 shows Normal Human Urothelial (NHU) cell segmentation 

from a brightfield microscopy image, demonstrating the complexity of this task. 

 

Figure 3: Example result of NHU cell segmentation. Left: Input image; Right: Final 
segmentation. 
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2.2.1. Traditional approaches 

In the review of traditional cell segmentation methods, popular approaches are group 

according to intensity [65], edge [66] and region-based [67] processing. Intensity in 

segmentation refers to the brightness levels of pixels in an image. Examples of intensity-based 

approaches include thresholding [68] and histogram-based [69] methods. Edge-based 

segmentation focuses on identifying the boundaries between different regions, for example, 

Canny [70], Sobel [71], and Laplacian of Gaussian algorithms [72]. While region-based 

segmentation refers to the technique of dividing an image into multiple segments based on 

similarities between adjacent pixels. This technique focuses on finding homogeneous regions 

within an image to facilitate accurate object detection and segmentation, such as watershed 

algorithms [73], region growth [74], and morphological operations [75]. 

Cell segmentation was undertaken by Chang et al. [76] using a double thresholding 

technique combined with morphology-based operations to address the challenges in medical 

image analysis which are often dictated by noisy images with poorly defined structural 

boundaries. The proposed method employs a two-stage thresholding process—a global 

threshold to map the original image into a binary matrix representing potential cell locations, 

followed by an adaptive threshold applied to each connected component to improve the 

segmentation. This double thresholding approach effectively addresses the variability in cell 

brightness and contrast. Then, morphological opening processes are used to split cells that are 

overlapping and make the edges of cells smoother. In areas with low contrast, this method 

works well to keep cell boundaries intact and to deal with the typical problem of cell merging. 

A modified histogram-based thresholding method was used by Kheirkhah et al. [77] to 

accurately identify sperm cells in microscopic pictures. The picture histogram is first adjusted 

in a non-linear pre-processing phase to improve the contrast between the sperm cells and the 

background, increasing the bimodality of the histogram. After pre-processing, a Kittler-based 

thresholding algorithm is used to the improved histogram. This method minimises the overlap 

between two Gaussian distributions derived from the histogram data in order to distinguish the 

foreground (sperm cells) from the background. The approach involves a post-processing step 

where morphological techniques are used to improve the segmentation after thresholding. In 

order to provide a cleaner and more accurate segmentation outcome, this stage helps remove 

noise and artefacts as well as small objects. 



 

24 
 

The research developed by Ramalho et al. [78] utilised a sophisticated clustering 

algorithm paired with a Voronoi diagram to segment cell gaps and incorporate with the Canny 

edge detection algorithm to obtain more precise cell boundaries. The objective of this research 

is to enhance the automation of cervical cytology analysis by addressing common problems 

that hinder conventional approaches, such as staining variance and cell occlusion. Through the 

integration of these computational methodologies, the segmentation accuracy for identifying 

nuclei and cytoplasm within cell structures was substantially enhanced. 

An empirically determined model is used for threshold estimation in the empirical 

gradient threshold approach reported by Chalfoun et al. [79]. The technique was explained as 

being applicable to several microscopic modalities, including raw pictures, and working with 

PC, DIC, brightfield, and fluorescence. The algorithm uses the Sobel operator to get the 

gradient's absolute value. Next, it finds the threshold based on the percentile, and finally it 

performs binary morphological operations. Prior to use, three parameters need to be 

established: minimum cell size (which eliminates small items), minimal hole (which eliminates 

small holes), and manual fine-tuning (which modifies the predicted threshold). The training 

pictures' ground true mask was used to calculate the smallest item size for each of these 

approaches. 

A generalised Laplacian of Gaussian (gLoG) filter is the basis of an automated method 

for nuclei recognition in digitised histology images, as shown by Xu et al. [80]. Initially, a bank 

of gLoG kernels with various sizes and orientations is produced using the suggested approach. 

It then obtains a collection of response maps by performing convolution between the candidate 

image and directional gLoG kernels. A mean-shift technique is utilised to identify and 

categorise the local maxima of response maps according to their geometrical proximity. The 

nucleus seed is ultimately chosen from each group based on the maximal response point. 

According on experimental results on two datasets, the suggested method outperforms current 

methods for detecting nuclei. 

Rahali et al. [81] introduced an improved Marker-Controlled Watershed (MCW) 

segmentation approach for Drosophila (fly) cells. They developed two novel forms of 

foreground markers: kernels and object-marked point process markers. Kernels produced with 

the Fiji software were used to identify the core region of each cell, ensuring that each cell was 

captured clearly. The more advanced object-marked point process, established makers inside 

the object point process framework, included cell properties such as form, radiometry, and 
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contrast. This addition considerably improved segmentation accuracy by addressing concerns 

like intensity heterogeneity and cell clustering, both of which are frequent obstacles in classical 

watershed segmentation. The efficiency of this approach was evaluated using quantitative 

measures such as Dice coefficients and F1 scores, which revealed that the MCW with object-

marked point process markers outperformed standard methods, particularly in noisy situations. 

Stoklasa et al. [82] developed an enhanced approach for automatically segmenting cells 

in phase-contrast microscopy images, emphasising the difficult task of dealing with crowded 

cells. The authors provided a novel approach for accurately delineating cell borders that 

combines superpixel classification with region-growing approaches. This method consists of a 

multi-phase process that begins with image processing to improve the visibility of internal cell 

structures, followed by a classification phase to identify cell boundaries, and culminates in an 

information fusion phase that combines both sets of data to create accurate geometric models 

of each cell. An advanced morphological image segmentation approach was presented by 

Zhang et al. [83], specifically designed to address the problem of accurately segmenting 

circular overlapping cells in biomedical imaging. The method uses morphological processes 

including erosion, dilatation, opening, and closure to identify division locations between 

overlapping cells efficiently. It focuses on angles and forms that indicate cell overlap. Often 

problematic for standard approaches, this strategy works well for mildly to moderately 

overlapping cells and minimises noise interference and accurately preserves cell structural 

elements, which are essential for reliable cell analysis and counting in medical research.  

An automatic cell segmentation approach, developed by Dimopoulos et al. [84], 

introduces a novel technique called Membrane Pattern-based Cell Segmentation (MPCS), 

improving the accuracy of identifying cell boundaries in microscopy images. The method is 

important for quantitative single-cell biology because it uses distinctive intensity patterns 

across cell membranes to improve border identification. MPCS solves common problems in 

microscope image analysis, like cells with irregular shapes, differences in how they look, and 

a lot of image noise, by using graph cuts and directed cross-correlations. The process begins 

with the establishment of parameters that are intuitive to biological systems, followed by the 

identification of potential locations within the cells referred to as "seeds" and the application 

of a graph cut technique that uses cross-correlation operations. This combination interprets the 

unique membrane pattern information, ensuring that each cell is separated from the 

background. 
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 According to Chalfoun et al. [85] , an automatic segmentation method known as 

FogBank was introduced, which accurately separates cells when confluent and touching each 

other.  The method is based on morphological watershed concepts and has two novel elements 

to improve accuracy and reduce over-segmentation. At its most basic level, FogBank quantifies 

pixel intensities by employing histogram binning, which reduces the amount of image noise 

that results in over-segmentation. In addition, FogBank detects the forms of individual cells 

using a geodesic distance mask produced from raw images, as opposed to other watershed-like 

algorithms, which yield more linear cell edges. 

Magnusson et al. [86] built the Baxter algorithm tool to perform segmentation of cell 

biology images by computing the standard deviation of the pixels in a small, square region or 

“window” around every pixel and then thresholding the region based on the standard deviation 

of the pixel. In order to fill in the gaps in the binary segmentation mask, morphological erosion 

is employed to compensate for the spread produced by the large size of the square region, and 

small items are removed to limit the number of false-positive detections. A watershed 

transformation to the standard deviation image to split cells into individual cells can then be 

performed. The watershed transform is restricted to the foreground pixels of the binary 

segmentation mask, and to minimise over-segmentation, some Gaussian smoothing and H-

minima transforms are applied prior to computing the watershed transform. However, Versari 

et al. [87] introduced CellStar, a set of tools that can do the segmentation process by using a 

new modification of active rays that makes use of data about the depths of contours. Active 

rays, also known as polar active contours, are a computational framework for recognising 

object outlines. The contour extraction problem is described as an energy minimisation 

problem, and contours are members of a parametric curve’s family. The summary of published 

cell segmentation methods reviewed utilising traditional techniques is presented in Table 1. 

Table 1: The summary of traditional approaches used in cell segmentation. 

Author Method Limitation 

Chang et al. , 2018 

[76] 

Two stage thresholding technique combined 

with morphology-based operations 

● Over-segmentation [124] 
● Under-segmentation [125] 
● Manual parameter tuning. 

[125] 
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Kheirkhah et al. , 

2017 [77] 

Histogram-based thresholding 
● Inaccurate segmentation in 

complex images (shapes or 
overlap) [126] 

● Sensitivity to intensity 
distributions [127] 

● Manual parameter tuning 
[128] 

Ramalho et al. , 

2015 [78] 

Voronoi diagram and Canny edge detection 

algorithm 

● Sensitivity to intensity 
distributions. [129] 

● Lack of adaptability to 
complex cell shapes. [129] 

Chalfoun et al. , 

2015 [79] 

Empirical gradient threshold and Sobel 

operator 

● Sensitivity to intensity 
gradients. [79] 

● Manual parameter tuning. 
[79] 

Xu et al. , 2017 

[80] 

Laplacian of Gaussian (gLoG) and mean-shift 

technique 

● Lack of adaptability to 
complex cell shapes. [130] 

● Sensitivity to noise and 
artefacts. [130] 

● Potential for over-
segmentation. [130] 

Rahali et al. , 2022 

[81] 

Marker-Controlled Watershed  ● Over-segmentation [131] 
● Sensitivity to markers [131] 
● Sensitivity to intensity 

variations [132] 

Stoklasa et al. , 

2015 [82] 

Region-growing approaches ● Sensitivity to initial seed 
points [132] 

● Potential for over-
segmentation [132] 

Zhang et al. , 2022 

[83] 

Morphological processes, including erosion, 

dilatation, opening, and closure 

● Sensitivity to Structuring 
Element Size [84] 

● Limited to Lightly or 
Moderately Overlapping Cells 
[83] 

● Designed for 
Circular/Elliptical Cell 
Shapes [83] 

Dimopoulos et al. 

, 2014 [84] 

Graph cut technique that uses cross-correlation 

operations 

● Dependence on Image 
Quality [133] 

● Parameter Selection [134] 
● Separation of Touching Cells 

[135] 
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● Computational Complexity 
[136] 

Chalfoun et al. , 

2014 [85] 

Employing histogram binning and geodesic 

distance mask 

● Sensitivity to Noise and 
Artifacts [137] 

● Resolving Overlapping Cells 
at Different Depths [138] 

Magnusson et al. , 

2015 [86] 

Thresholding, morphological erosion and 

watershed (Gaussian smoothing and H-minima 

transforms) 

● Loss of Important Features 
[139] 

● nonuniform intensity [140] 
● Sensitive to noise [140] 

Versari et al. , 

2017 [87] 

Polar active contours 
● Handling Irregular Cell 

Shapes [141] 
● Sensitivity to Initialization 

[142] 
● Tuning of Parameters [143] 

 

The summary table 1 outlines various traditional approaches to cell segmentation, each 

with its own set of strengths and limitations. A critical analysis of these techniques provides 

insight into which methods are most suitable for the specific requirements of the current study. 

Thresholding techniques (e.g., Chang et al., 2018; Kheirkhah et al., 2017) are commonly used 

due to their simplicity and efficiency. However, they suffer from issues such as over-

segmentation, under-segmentation, and high sensitivity to intensity variations. Given these 

drawbacks, especially in cases where cell shapes are complex or overlapping, thresholding 

techniques may not be ideal for the primary segmentation objectives of this study. Edge 

detection and gradient-based methods (e.g., Ramalho et al., 2015; Chalifour et al., 2015) offer 

greater robustness in detecting cell boundaries but are still prone to issues such as sensitivity 

to intensity gradients and the need for manual parameter tuning. The challenges in handling 

complex cell shapes and the need for adaptability make these methods less favourable for the 

specific requirements of the research. Region-growing and watershed approaches (e.g., 

Stoklasa et al., 2015; Rahali et al., 2022) can effectively segment more complex images, but 

they tend to over-segment and are highly sensitive to initial conditions or marker selection. 

These limitations are particularly significant in a study dealing with varied and complex cell 

shapes, making these approaches less ideal. Morphological processes (e.g., Zhang et al., 2022) 

combine morphological operations with other methods, offering a more refined segmentation 
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process. However, their effectiveness is limited to certain types of cell overlaps, and they are 

sensitive to the size of the structuring element used, which could restrict their applicability in 

broader scenarios. Advanced techniques (e.g., Dimopoulos et al., 2014; Chalifour et al., 2014; 

Versari et al., 2017), such as graph cuts and active contours, are more sophisticated and capable 

of handling complex and irregular cell shapes. However, these methods require careful 

parameter tuning and are computationally intensive. Despite these challenges, their ability to 

separate touching cells and handle irregular shapes makes them promising candidates for the 

current study, provided that the necessary computational resources are available. After carefully 

analysing these techniques, thresholding methods, despite their limitations, have been chosen 

for this study but will be used primarily for post-processing the segmented images. 

Thresholding is selected because it effectively simplifies the segmentation process and 

enhances the clarity of boundaries when combined with other methods. Although it is not ideal 

as a standalone technique due to its issues with complex or overlapping cells, its application in 

post-processing can refine segmentation results by removing noise and ensuring more distinct 

cell boundaries. This makes it a suitable choice when paired with more robust segmentation 

methods, thereby addressing the specific challenges of the study. 

 

2.2.2. Machine learning approaches 

Machine learning is a field of artificial intelligence that focuses on developing 

algorithms and statistical models to enable computer systems to learn from data and make 

decisions or predictions without being explicitly programmed [88]. The main categories of 

machine learning include supervised learning, unsupervised learning, and reinforcement 

learning, with additional categories like semi-supervised learning, transduction, and learning 

to learn [88].In the context of cell segmentation, machine learning techniques have improved 

segmentation tools that are capable of learning from previously obtained training datasets and 

enhancing performance without the need for specific programming or parameter adjustment. 

FastER (fast segmentation with extremal regions) is a fast and trainable tool for cell 

segmentation developed by Hilsenbeck et al. [89]. It extracts shape and texture characteristics 

from cell areas, predicts the cell by implementing a support vector machine (SVM) [90], and 

estimates an optimal set of non-overlapping cell regions by applying the divide and conquer 

method. It supports a wide range of cell types and image acquisition modalities.  



 

30 
 

Arganda-Carreras et al. [91] announced the Trainable Weka Segmentation (TWS) tool, 

a machine learning technique that uses a small number of manual annotations to train a 

classifier and automatically segment the remaining data. TWS converts the segmentation 

problem to a pixel classification problem, in which each pixel is classified as belonging to a 

specific segment or class. A labelled set of input pixels is represented in a feature space and 

then used as the training set for a particular classifier. Once trained, the classifier can be used 

to classify either the remaining input pixels or entirely new image data. Additionally, TWS may 

provide unsupervised segmentation learning techniques (clustering) and can be adjusted to use 

custom image features or classifiers. Hernandez et al. [92] employed DeepCell, a Fully 

Convolutional Network developed for cell segmentation. Each pixel is classified as belonging 

to one of three categories: the cell interior, the cell boundary, or the image background. Good 

cell segmentation accuracy is achieved using this network, which is robust enough to adapt to 

a variety of experimental settings and requires relatively minimum training and manual 

labelling of ground-truth data. 

 An interactive tool, Ilastik, developed by Berg et al. [93], aims to make machine 

learning-based bioimage analysis accessible to those users who do not have extensive computer 

skills. It includes pre-defined procedures for image segmentation, object classification, and 

counting. Ilastik performs image segmentation by utilising pixel classification - in other words, 

it assigns a user-defined class name to each pixel in the image. The pixel classification makes 

use of image filters as features and a random forest as a classifier. Filters in 2D and 3D comprise 

a descriptor of pixel colour and intensity, edges, and texture. The pixel classification procedure 

uses semantic segmentation rather than instance segmentation. Instead of dividing a picture 

into distinct objects, it divides it into semantic classifications such as foreground vs 

background. A segmentation technique known as Usiigaci has been developed by Tsai et al. 

[94] that uses a mask regional convolutional neural network (Mask R-CNN). A pre-trained 

Mask R-CNN model on the Microsoft COCO dataset was further trained using manually 

annotated images with single-cell outlines as the classification class. The trained model is used 

to feed the images into the Mask R-CNN-based segmentation module, which generates highly 

accurate instance-aware segmented masks as a result of its application. Individual cells in the 

images have been suitably segmented into identifiers based on their borders. 

A method developed by Wang et al. [95] that incorporates both a Convolution Neural 

Network (CNN) and the standard watershed approach has been developed. Initial training 
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consisted of using a CNN to learn the Euclidean distance transform (EDT) of the mask 

corresponding to the input images (deep distance estimator). Subsequently, the authors trained 

a faster Region-based Convolutional Neural Network (RCNN) to recognise individual cells 

within the EDT image (deep cell detector). Then, using the outputs from the previous two 

rounds, the watershed algorithm completed the final segmentation. UNet was utilised by Zhou 

et al. [96] for primary cell segmentation. Image pixels are classified into cell boundaries, cell 

interiors, and backgrounds at this step. Training the network is accomplished through the 

application of the cross-entropy loss function. By using a weight map, more attention is devoted 

to the boundaries of the cells. The threshold is used to obtain cell segmentation by inferring 

from cell boundaries and cell interiors. Within segmented cells, it is possible that there are 

holes, and the flood-fill technique is employed to fill in these internal gaps. At this stage, when 

several cells are close together, each cell is not separated. As soon as the initial segmentation 

is completed, cells that are close to one another may segment into a blob, which is a part of the 

connected region. 

Arbelle and Raviv [97] proposed a novel segmentation architecture based on the 

combination of Convolutional Long Short Term Memory (C-LSTM) and a U-Net encoder-

decoder structure. Due to the network's unique architecture, multi-scale, compact, spatio-

temporal encoding can be captured in the C-LSTMs memory units. Rather than a pipeline, the 

innovative design offered here is an interlace structure combining the two notions. 

Furthermore, their solution is intended for image sequence segmentation, which can be very 

time-consuming due to the fact that the bidirectional C-LSTM is not computationally viable. 

Ayanzadeh et al. [98] presented a hybrid deep neural network-based solution for cell 

segmentation in phase contrast microscopy images that outperformed standard approaches. 

Specifically, it is intended to reduce the discrepancy between the encoder characteristics and 

the characteristics that propagate in the decoder of the U-Net architecture. They created an 

alternative feature extractor by applying the enhanced ResNet18 to the encoder of U-Net and 

swapping the ordinary blocks with residual blocks in the decoder of the U-Net structure. 

Furthermore, they used ResNet18 as the backbone of FPN, which has higher performance than 

traditional techniques. This change improved the model's ability to account for low- and high-

level semantics, as well as image details. Moreover, utilising transfer learning in the provided 

approach boosted training convergence. It enhanced the predictability of the findings, reduced 

training time, and prevented the model from over-fitting. 
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 Fazeli et al. [99] discussed the usage of deep learning networks, such as StarDist, that 

frequently need users to train or retrain models using their own images. In comparison, high-

quality StarDist pre-trained models are widely available and are likely to underperform when 

applied to data with varying stains, microscope types, and noise levels. To train StarDist models 

using the ZeroCostDL4Mic platform, which enables researchers to train (and retrain), evaluate, 

and deploy deep learning networks. Notably, the ZeroCostDL4Mic StarDist 2D notebook may 

directly generate a file containing the geometric centre coordinates of all the nuclei (tracking 

files) used as input for TrackMate. As a result, the proposed pipeline is separated into two 

sections. To begin, the ZeroCosDL4Mic platform is used to train a StarDist model. This section 

must be completed once for each type of data. Second, the trained StarDist model is used to 

segment and generate track files for the object. 

 DeLTA (Deep Learning for Time-lapse Analyse), a picture processing tool that uses U-

Net deep learning models to segment the cells from microscope images, was introduced by 

Lugagne, Lin and Dunlop [100]. They employed a combination of Ilastik and manual curation 

to generate segmentation outputs, which were then used as training sets for the Ilastik 

algorithm. It uses data augmentation operations to ensure that it is robust to experimental 

variance and imaging condition changes. As outlined in the original U-Net structure, a pixel-

wise weighted binary cross-entropy loss function was used to enforce border detection between 

cells during training the network. Weight maps were constructed prior to data augmentation 

and training to enhance the connection between two cells. A method for segmenting contacting 

cells in microscope pictures is presented by Scherr et al. [101]. By utilising a unique 

representation of cell borders inspired by distance maps, the technique can train on both 

touching and non-touching cells. Also, this approach is remarkably resistant to annotation 

errors and demonstrates encouraging results for the segmentation of microscope pictures in the 

training data that are underrepresented or not included in cell types. The proposed neighbour 

distances are predicted using a customised U-Net convolutional neural network (CNN) with 

two decoder paths, which has been trained specifically for this purpose.  

Celltrack was invented by Chen et al.[102], which used Mask R-CNN as a backbone 

network for conventional cell detection and segmentation, as well as for cell tracking. The three 

original branches for predicting classification scores have been supplemented by adding 

bounding boxes and segmentation masks. Chamier et al. [103] developed the ZeroCostDL4Mic 

platform, which allows users to implement two networks, U-Net and StarDist, which perform 



 

33 
 

state-of-the-art image segmentation on 2D and 3D imaging datasets. The DeepSea model was 

developed and proposed by Zargari et al. [104] based on a scaled-down version of U-Net 

architecture and utilised for segmentation. DeepSea makes use of residual blocks in order to 

increase the depth of the model and improve model performance, as has been shown in Residual 

Networks. The use of batch normalisation and dropout techniques can increase the speed, 

performance, and stability of a model. The application of the watershed technique was used to 

improve the outputs of the models further. As a supplemental approach, the watershed assisted 

in separating the remaining segmented cell bodies. 

 Vicar et al. [105] developed four different post-processing pipelines for U-Net-based 

cell segmentation. To enable non-deep learning transfer of the segmentation network to 

multiple sample types without the need for annotated training data, the author attempted to 

construct these post-processing pipelines with only a few customisable parameters. Compared 

to traditional transfer learning, this strategy eliminates the need for training data and requires 

computer training of the deep learning model. Additionally, they sought to use specific 

pretraining methodologies utilising unlabelled images that may be used for self-supervised pre-

training to increase the quality of final segmentation. Self-supervised pre-training increased 

both segmentation performance and transferability to diverse cell types using the proposed 

methodology. 

Wen et al. [106] used a deep network called 3D U-Net to segment cells in 3D images 

and predict the class labels (cell or non-cell) of individual voxels based on information in 

neighbouring voxels using a deep network called 3D U-Net. The U-Net can perform precise 

segmentation under a variety of imaging situations and can be trained using a small number of 

annotated images. The first volume's pre-processed images are used to train the 3D U-Net, 

which is subsequently utilised to segment cells in the subsequent volumes. The 3D U-Net can 

be immediately reused for different datasets taken under comparable optical conditions once 

trained on one dataset. The cell-like regions discovered by 3D U-Net are clustered into single 

cells using the watershed approach. Automated mesenchymal stem cell (MSC) segmentation 

and machine learning-based phenotypic categorisation using morphometric and textural 

analysis were developed by Mota et al. [107]. The algorithm was trained on micrographs of 

phase-contrast taken during the early or mid-logarithmic stages of MSC expansion. 

Localisation of cell regions is accomplished through the use of edge detection, thresholding, 

and morphological processes. Cell markers are then identified inside each region by employing 
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the H-minima transform in order to distinguish individual cells from cell clusters. In order to 

acquire single cells, clusters are segmented using a marker-controlled watershed. Machine 

learning is used to extract morphometric and textural characteristics from cells to classify them 

according to their phenotype. The summary of published cell segmentation methods utilising 

machine learning techniques is presented in Table 2. 

Table 2: Summary of machine learning approaches used in cell segmentation. 

Author Method Limitations 

Hilsenbeck et al. , 2017 [89] 
SVM 1) Challenges with 

Multi-Class and 
Imbalanced Data 
[144] 

2) High Time 
Complexity in 
Training [145] 

 

Arganda-Carreras et al. , 

2017 [91] 

random forest classifier 
1) Requirement for 

Annotated Training 
Data [146] 

2) Generalization to 
New Cell Types or 
Imaging Modalities 
[146] 

3) Handling Touching 
or Overlapping Cells 
[147] 
 

Hernandez et al. , 2018 [92] Fully Convolutional Network 

developed 

1) Requirement of a 
large amount of 
annotated training 
data [148] 

2) Boundary Sensitivity 
[149] 

3) Computational 
Complexity [150] 

Berg et al. , 2019 [93] use of image filters as 

features and a random forest 

as a classifier 

1) Computational 
Resources [93] 

2) Reliance on Local 
Pixel-Level Features 
(brightness, colour, 
and texture) [93] 
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Tsai et al. , 2019 [94],Chen et 

al. , 2021 [102] 

Mask regional convolutional 

neural network (Mask R-

CNN) 

● Computational 
demands [151] 

●  Requires a large 
amount of annotated 
data, time-consuming 
and expensive to 
acquire [152] 

● Limited 
Generalisation to 
Unseen Categories 
[152] 

Wang et al. , 2019 [95]  Convolution Neural Network 

(CNN) and the standard 

watershed approach 

● Computational 
Complexity 

●  Requires a large 
amount of annotated 
data, time-consuming 
and expensive to 
acquire [152] 

● Limited 
Generalisation to 
Unseen Categories 
[152] 

 Zhou et al. , 2019 [96], 

Fazeli et al. , 2020 [99], 

Lugagne, Lin and Dunlop. , 

2020 [100], Scherr et al. , 

2020 [101], Zargari et al. , 

2023 [104] and Vicar et al. , 

2021 [105] 

UNet 
● Computational 

complexity 
● Requires a 

significant amount of 
accurately annotated 
[153] 

● Limited 
generalisation [153] 

Arbelle and Raviv., 2019 [97]  Convolutional Long Short 

Term Memory (C-LSTM) 

and a U-Net encoder-decoder 

structure 

 

● Complexity and 
Computational 
Demand [154] 

● Difficulty in data 
training 

● Increased Parameter 
Tuning [154] 
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Ayanzadeh et al. , 2020 [98] U-Net and ResNet18 
● Complexity and 

Computational 
Demand 

● Requires a large 
training dataset [155] 

Chamier et al. , 2021 [103] U-Net and StarDist 
● Complexity and 

Computational 
Demand 

● Requires a large 
training dataset 

● Not suitable for non-
star-convex shapes 
[156] 

Wen et al. , 2021 [106] 3D U-Net 
● Complexity and 

Computational 
Demand 

● Requires a large 
training dataset 

Mota et al. , 2021 [107] Region-based edge detection, 

marker-based watershed 

method and logistic 

regression model. 

● Sensitive to noise 
and grayscale 
unevenness [157] 

● Require manual 
intervention [157] 

● Dependency on 
Marker Selection 
[158] 

● Inadequate for 
Complex Patterns 
[159] 

 

The summary table 2 outlines various machine learning approaches used in cell 

segmentation, detailing their methods and associated limitations, and a critical analysis of these 

techniques helps identify the most suitable options for the specific needs of the current study. 

Support Vector Machine (SVM) (Hilsenbeck et al., 2017) is known for its effectiveness in 

handling high-dimensional data and its robustness in separating classes with a clear margin; 

however, it faces challenges with multi-class and imbalanced data, as well as high time 

complexity in training, making it less suitable for studies requiring efficient processing of 

diverse and complex cell images. Similarly, Random Forest Classifiers (Arganda-Carreras et 

al., 2017) offer flexibility but are constrained by the need for annotated training data, 

difficulties in generalising to new cell types or imaging modalities, and issues with handling 

touching or overlapping cells. Fully Convolutional Networks (FCNs) (Hernandez et al., 2018) 
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provide robust segmentation capabilities but require large amounts of annotated training data, 

are sensitive to boundaries, and demand significant computational resources, making them 

challenge to implement unless the necessary data and computational power are readily 

available. Random Forest Classifiers with Image Filters (Berg et al., 2019) combine feature 

extraction with classification, yet they require substantial computational resources and rely 

heavily on local pixel-level features such as brightness, colour, and texture, which might limit 

their effectiveness in handling the diverse and irregular cell shapes considered in this study. 

Moreover, Mask Regional Convolutional Neural Networks (Mask R-CNN) (Tsai et al., 2019; 

Chen et al., 2021) are powerful for segmentation but come with high computational demands 

and the need for large, annotated datasets that are time-consuming and expensive to acquire; 

furthermore, they have limited generalisation to unseen categories, which could be a significant 

drawback in studies where variability is expected. Convolutional Neural Networks (CNNs) and 

U-Net (Wang et al., 2019; Zhou et al., 2019; and others) are popular due to their ability to 

perform well on complex segmentation tasks, although they require significant computational 

resources and a large amount of accurately annotated data; additionally, their generalisation to 

unseen categories is limited, which may pose challenges depending on the dataset's diversity. 

 Convolutional Long Short Term Memory (C-LSTM) with U-Net (Arbelle and Raviv, 

2019) introduces complexity and increased parameter tuning, making it difficult to train; thus, 

while it offers enhanced segmentation capabilities, the complexity of the model and its 

computational demands may not be justified for all studies. Similarly, U-Net with ResNet18 

(Ayanzadeh et al., 2020) and U-Net with StarDist (Chamier et al., 2021) are advanced versions 

of U-Net designed to improve segmentation accuracy; however, both methods require large 

training datasets and are computationally intensive, and StarDist, in particular, may not be 

suitable for non-star-convex shapes, limiting its applicability depending on the specific cell 

structures involved. While 3D U-Net (Wen et al., 2021) offers enhanced three-dimensional 

segmentation, it does so at the cost of increased computational demand and the need for a large 

training dataset, making it well-suited for studies requiring 3D analysis but potentially 

excessive for simpler 2D tasks. Region-Based Methods (Mota et al., 2021) involving edge 

detection, marker-based watershed, and logistic regression models are more traditional 

approaches that are sensitive to noise and grayscale unevenness, requiring manual intervention 

and proving inadequate for handling complex patterns, thereby limiting their effectiveness in 

more intricate segmentation tasks. 
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 Given these considerations, Image Filters with Random Forest Classifiers using the 

tool Ilastik has been chosen for this study as Ilastik combines feature extraction with 

classification and offers several advantages, including a workflow that facilitates pixel 

classification through interactive segmentation, where users can easily adjust parameters and 

refine results in real-time. This method benefits from relatively low computational 

requirements compared to more complex neural networks, making it accessible even in less 

resource-intensive environments; additionally, Ilastik is particularly suitable for biologists due 

to its user-friendly interface, which does not require advanced programming skills, and its 

ability to handle various types of data with intuitive controls. In addition, preprocessing the 

images before using them in Ilastik is necessary as it can enhance the image quality by reducing 

noise, improving contrast, and ensuring uniformity across the dataset, which is crucial to 

maximising the effectiveness of Ilastik’s pixel classification by allowing the tool to focus on 

the most relevant features of the cells, thereby improving the accuracy of the segmentation. 

Despite the need for substantial computational resources and reliance on local pixel-level 

features like brightness, colour, and texture, Ilastik’s flexibility and ease of use make it a strong 

candidate for this study, and its workflow, which allows for efficient pixel classification and 

interactive segmentation, is particularly well-suited for the study’s needs; thus, its ability to 

handle various types of data with relatively low computational demand, combined with its 

flexibility in adjusting parameters and refining results in real-time, aligns well with the study's 

objectives. 

 

2.3 Cell Tracking 

Live-cell imaging experiments often produce vast quantities of time-lapse images [112] 

that include much more than a human can analyse through visual inspection alone. A 

computerised approach to image study allows the opportunity to efficiently and reproducibly 

obtain the full benefit of available data. In various experiments, a recurring task is the tracking 

and analysis of large numbers of cells. Over the last decade, many methodologies have been 

developed with this aim, and software tools based on these methods are continuously becoming 

feasible.  This section will discuss the computational techniques used to perform cell-tracking 

tasks. The technique will be demonstrated using both traditional and machine learning 

methods. 
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2.3.1. Traditional approaches 

A technique utilising global track linking was implemented by Magnusson et al. [86], 

to automate the tracking of living cells in microscope image sequences. The algorithm joins 

cell outlines created by a segmentation algorithm into tracks, which can then be followed 

automatically. This is accomplished by employing the Viterbi algorithm to determine which 

tracks provide the most significant conceivable increases to a probabilistically motivated 

scoring function. In addition, when new tracks are made, a mechanism is introduced that 

modifies previously created tracks, preventing mistake propagation. The algorithm is capable 

of dealing with apoptosis, mitosis, and migration, as well as false positives, missed detections, 

and clusters of cells that have been segmented together. A cell tracking algorithm, Cellstar, 

developed by Versari et al. [87] employs a multi-criteria optimisation algorithm. It involves the 

penalisation of relative displacements among neighbours, which gives collective cell motions 

more resilience. 

 Hernandez et al. [92] linked cell tracks between binary segmentations in consecutive 

frames using the Viterbi Algorithm for Cell Tracking. The tracking component of the tracking 

by detection approach is described below. The sequence of images is represented by this 

algorithm as a Hidden Markov Model, with individual cell locations serving as hidden states 

and observed detections; in this case, the segmentation from the neural network, serving as 

observations. The Viterbi method is then used to find the most likely state changes between 

each time step. The outcome is accurate tracking as it uses data from the whole image sequence 

for all the tracks and maximises the probabilistic score function, which only joins tracks if the 

total score is increased. Nevertheless, Berg et al. [93] developed Ilastik to perform automatic 

tracking-by-assignment. It tracks numerous pre-detected, potentially separated items over time 

in both 2D and 3D. In this technique, conservation tracking is used to generate probabilistic 

graphical models for all identified objects across a wide range of time points at the same time. 

Fazeli et al. [99] described how TrackMate may employ tracking files to track specified items. 

A set of images and their accompanying masks are required to train a StarDist model. The most 

time-consuming element of the analysis workflow shown here is creating a training dataset, 

which needs hand annotations of the images to be examined. For example, to make the training 

datasets, each cell or nuclei contour was manually created in Fiji [108] using the freehand 

selection tool. The generation of a high-quality training dataset is essential because it affects 

the StarDist model's specificity and performance. The creation of a training dataset, on the 

other hand, is only necessary once per dataset type. Videos of migrating cells can be efficiently 
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handled in a batch when a StarDist model has been adequately trained. The author provides a 

Fiji macro to investigate a folder containing multiple tracking files in addition to the TrackMate 

graphical interface. Despite this, the batch processing macro will offer basic quantitative 

information for each track, such as median and maximum speeds. Cell tracking is performed 

via the changed graph-based cell tracking method, which was developed by Scherr et al. [101]. 

An estimation of movement is included in the cost function of the customised tracking 

algorithm, which allows it to re-link tracks having incomplete segmentation masks over a short 

frames series. The summary of published cell tracking methods utilising traditional techniques 

is presented in Table 3. 

 

Table 3: The summary of traditional approaches used in cell tracking. 

Author Method Limitations 

Magnusson et al. , 2015 

[86],Hernandez et al. , 2018 

[92]  

Viterbi algorithm 
● Computational 

complexity increases 
with larger data sets.  
[160] 

 

Versari et al. , 2017 [87]  Employs a multi-criteria 

optimisation algorithm 

use of a "neighbourhood-

preserving criterion" for 

linking cells between frames 

during the tracking process. 

● Computationally 
intensive [172] 

● Extensive parameter 
tuning [173] 
 

Berg et al. , 2019 [93] 
Conservation tracking ● Requires accurate 

target detection and 
segmentation as a 
first step [161] 

● The number of 
tracking targets must 
be known a priori or 
estimated [161] 

● computationally 
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expensive for very 
large datasets. [162]  

Fazeli et al. , 2020 [99] 
The Linear Assignment 
Problem (LAP) and Kalman 
filtering 

● methods used assume 
linear motion models 
[163] 

Scherr et al. , 2020 [101] Graph-based cell tracking 

method 

● Computationally 
intensive when 
dealing with large 
datasets. [164] 

● Manual Parameter 
Tuning [164] 

Tsai et al. , 2019 [94] 
Particle Tracking 
Velocimetry (PTV) method 

● Sensitivity to 
Parameters [165] 

● Limited to Blob-Like 
Features [166] 

 

The summary table 3 presents various traditional approaches used in cell tracking, each 

with its own method and associated limitations. A critical examination of these methods 

provides valuable insights into their suitability for specific research requirements. The Viterbi 

algorithm (Magnusson et al., 2015; Hernandez et al., 2018) is widely recognised for its ability 

to find the most likely sequence of hidden states, making it effective in tracking cells over time. 

However, its computational complexity increases significantly with larger datasets, which can 

be a limitation when working with extensive or high-resolution time-lapse data. Multi-criteria 

optimisation algorithms (Versari et al., 2017), which employ a "neighbourhood-preserving 

criterion" for linking cells between frames during the tracking process, offer a sophisticated 

approach to ensuring continuity in tracking. While this method is powerful, it is 

computationally intensive and requires extensive parameter tuning, which could be a challenge 

in scenarios where computational resources are limited or where quick results are needed. 

Conservation tracking (Berg et al., 2019) is effective in maintaining the continuity of tracked 

cells, but it requires accurate target detection and segmentation as a preliminary step. This 

method is also computationally expensive for very large datasets, and the number of tracking 

targets must be known a priori or estimated, which adds complexity to its application. The 

Linear Assignment Problem (LAP) and Kalman filtering (Fazeli et al., 2020) methods are based 

on the assumption of linear motion models, making them less adaptable to scenarios where cell 

movements are more erratic or non-linear. While they are useful in certain controlled 

environments, their assumptions may not hold in more complex or dynamic systems. Graph-
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based cell tracking methods (Scherr et al., 2020) offer a flexible framework for cell tracking 

but are computationally intensive when dealing with large datasets. Additionally, they require 

manual parameter tuning, which can be time-consuming and may introduce user bias, 

particularly in less standardised environments. Particle Tracking Velocimetry (PTV) methods 

(Tsai et al., 2019) are effective for tracking blob-like features, but they are highly sensitive to 

parameter settings and are limited in their application to more complex cell shapes or 

movements. This restricts their use in studies where cells exhibit a wide range of morphological 

features. Considering these factors, the Follow Neighbour method implemented through the 

tool CellProfiler has been chosen for this study. CellProfiler, which is based on a flow approach, 

offers several advantages that make it particularly suitable for biologists. Its user-friendly 

interface does not require advanced programming skills, allowing biologists to perform 

complex cell tracking tasks with ease. The Follow Neighbour method, specifically, is effective 

in maintaining continuity in cell tracking by associating cells in subsequent frames based on 

proximity, which is crucial for accurately following cell movements over time. 

 

2.3.2. Machine learning approaches 

Tsai et al.[94] created an A Trackpy-based cell tracker with a graphical user interface 

which was developed for cell tracking and data verification purposes. Following cell 

segmentation, each mask has segmented cell out-lines that are labelled with unique identifiers 

(IDs). The IDs are then used for linking and tracking cells in the tracking software module, 

which is based on the Trackpy library. The characteristics of an ID, such as its location, 

equivalent diameter, perimeter, eccentricity, orientation, and shape, are utilised as parameters 

in Trackpy for cell tracking. In a time-lapse microscopy experiment, the IDs in each successive 

mask all correspond to the same cell. The investigation was carried out via the Trackpy library, 

which used the k-dimension tree technique as its default nearest neighbour search option. For 

multi-cell tracking, Zhou et al. [96] suggested an approach that combines detection and 

segmentation. The approach involves four divisions: cell centroid identification with multi-

frame pictures, primary multi-cell tracker, primary cell segmentation, and fine segmentation. 

The use of a multi-frame as an input to UNet [109] is suggested, which aids the network in 

extracting spatio-temporal data. The mitosis [110] detection algorithm improves the detection 

performance of mitotic cells, which improves the detection performance of mitosis during 

tracking. For tracking high density small cells, a fine cell segmentation approach is presented. 
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Cell tracking can be accomplished by combining the main tracking results of cell centroid 

identification with the findings of primary cell segmentation. 

 In solving stem cell tracking challenges, Wang, Mao, and Yi [111] suggested a deep 

learning system with a convolutional structure and multi-output layers. A convolutional 

structure is used to learn robust cell features via an in-depth feature learning technique applied 

to huge visual data. This framework tracks the cell's mobility using many output layers and 

simultaneously detects its mitosis as a helper task, enhancing the model's generalisability and 

facilitating practical applications in stem cell research. The tracking and detection neural 

network framework developed here also includes a particle filter-based motion model, a 

specific cell sampling technique, and a matching model update approach. Its present 

application to a microscope image collection of human stem cells reveals that it outperforms 

and is more robust than other commonly used approaches. Lugagne, Lin, and Dunlop [100] 

track cells from one frame to the next and identify cell divisions using a U-Net architecture. 

Where, as inputs and outputs, numerous images are used. For every cell point, the author uses 

four images as inputs: current frame transmitted light images, the previous frame transmitted 

light images, the previous frame binary mask, and the current frame segmentation mask. This 

U-Net model is utilised downstream from the segmentation U-Net to complete the pipeline for 

time-lapse analysis. As training outputs, by using two binary masks, the first defining the 

location of the seed cell in the next frame and the second defining the location of the 

prospective daughter cell in the event of a division. Once trained, the tracking pipeline tracks 

cells and detects cell divisions in time-lapse videos used for evaluation. 

 CellTrack R-CNN was developed by Chen et al. [102] to perform tracking jointly 

performed by integrating a Siamese tracking branch with the Mask R-CNN pipeline without 

extra post-processing techniques. To further enhance tracking performance, spatial information 

is incorporated into the tracking branch to reach learnable relative position encodings of cell 

instances, which are then effectively fused with visual features. Li et al. [123] propose a new 

deep neural network based on dynamic memory and template matching for tracking multiple 

cells in microscopy images. The network is denoted multi-object dynamic memory network 

(MODM). MODM consists of multiple dynamic memory units (DMU), which are an extension 

of the network and use a fully convolutional neural network for feature extraction. An LSTM 

dynamically updates the template with attention to cope with changing cell appearance, and a 

deep neural network performs cell detection compared to manual annotation. To improve the 
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robustness and cope with track drift, the author includes a motion constraint that exploits 

statistics of cell motion and integrates a mechanism for handling cell mitosis events using a 

deep neural network for mitotic cell detection. In order to support the Cell Tracker task, Zargari 

et al. [104] have developed DeepSea Tracking Model employing the U-Net Architecture 

scaled-down version by using pair data at time t and time t-τ in the segmentation task. To locate 

the target cell among the segmented cells in the current frame (at time t), the tracker model 

must remember its earlier location (at time t-τ). Because cells move slowly through space, the 

model can use the cell's past location to predict where it will be in the current frame. The 

position will be determined by selecting a rectangle search window in the current frame based 

on the target cell's previous bounding box location (at time t-τ). Using the same search window, 

clip the previous and current frames and feed them into the convolutional tracker model. The 

purpose of the tracker model is to localise and segment the current location of the target cell 

within the search window at time t. 

Wen et al. [106] employed a deep learning technique to combine spatial pattern and 

local cell region tactics. The feedforward network (FFN) algorithm is used to match temporally 

adjacent cells based on the distance pattern between each cell and its neighbours. Using the 

FFN pattern, all cells at time t1 are compared to all cells at time t2, and the cells with the highest 

degree of similarity are classified as identical cells at time t1 and time t2. The pipeline extracts 

the cell centre points from the cell areas segmented using 3DU-Net and the watershed 

approach, and then applies a pre-trained FFN to the cell points to generate the initial matching 

between volumes t and t+1. In order to enhance the initial correlation, a non-rigid point set 

registration (PR-GLS) method is employed for generating a coherent transformation; that is, 

identical movements are required for neighbouring cells. Combining FFN and PR-GLS results 

in more accurate predictions of cell locations, and the predicted positions are accurate due to 

the use of information from local cell regions in the 3D U-Net output. The summary of 

published cell tracking methods utilising machine learning techniques is presented in Table 4. 

 

 

 

 



 

45 
 

Table 4: The summary of machine learning approaches used in cell tracking. 

Author Method Limitations 

Zhou et al. , 2019 [96], 

Lugagne, Lin, and Dunlop., 

2020 [100] and  Zargari et al. 

, 2023 [104] 

 UNet method ● Difficulty in keeping 
track of multiple 
cells across 
frames.[167] 

● Manual annotations 
[168] 

● Time-consuming 
[168] 

Wang, Mao, and Yi., 2017 

[111] 

Convolutional neural 
network (CNN) 

● Computationally 
intensive [169] 

● Large training 
datasets [168] 

Chen et al. , 2021 [102] 
RCNN ● Computationally 

intensive [170] 
● Large training 

datasets 

 Li et al. , 2021 [123]  
 Fully convolutional neural 
network,dynamic memory 
network,template matching 
and LSTM 

● Computationally 
intensive [171] 

● Large training 
datasets [171] 
 

Wen et al. , 2021 [106]  
Deep learning technique and 
PR-GLS (Point Set 
Registration - Generalized 
Least Squares) 

● Computationally 
intensive 

● Large training 
datasets 

 

The summary table 4 outlines various machine learning approaches used in cell 

tracking, highlighting both their methods and associated limitations. Each technique has its 

strengths but also faces challenges that may affect its suitability for specific research contexts. 

The UNet method (Zhou et al., 2019; Lugagne, Lin, and Dunlop, 2020; Zargari et al., 2023) is 

recognised for its effectiveness in segmentation tasks. However, when applied to cell tracking, 

it struggles to keep track of multiple cells across frames, especially in dynamic environments. 

Additionally, the requirement for manual annotations makes the process time-consuming, 

adding to the complexity of using this method in large-scale studies. Convolutional Neural 

Networks (CNNs) (Wang, Mao, and Yi, 2017) are widely used for their powerful feature 
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extraction capabilities. Nonetheless, they are computationally intensive and require large 

training datasets, which can be a significant limitation, particularly in studies with limited 

computational resources or where acquiring extensive annotated data is challenging. The 

RCNN method (Chen et al., 2021) builds upon the strengths of CNNs, providing robust 

performance in tracking tasks. However, it shares similar limitations, being computationally 

intensive and dependent on large training datasets. These factors can make RCNNs less feasible 

for projects with tight resource constraints. Fully Convolutional Neural Networks (FCNs) 

combined with dynamic memory networks, template matching, and LSTM (Li et al., 2021) 

offer an advanced approach for cell tracking, leveraging deep learning techniques to manage 

complex tracking scenarios. Despite their advanced capabilities, these methods are also 

computationally demanding and require large amounts of training data, which can limit their 

practical application. The approach combining deep learning techniques and PR-GLS (Point 

Set Registration - Generalized Least Squares) (Wen et al., 2021) is notable for its precision in 

cell tracking. However, like the other methods, it is computationally intensive and requires 

large training datasets, making it challenging to implement in resource-limited settings. 

While the machine learning approaches outlined in the table, such as UNet, CNNs, 

RCNN, and others, offer advanced capabilities for cell tracking, they are not being utilised in 

this study. These methods, although powerful, come with significant limitations such as high 

computational demands, the need for large training datasets, and extensive manual annotation 

or parameter tuning. Given the study's specific objectives and available resources, these factors 

make these machine learning approaches less practical. As previously mentioned, the Follow 

Neighbour method implemented through CellProfiler has been selected instead. This choice is 

driven by its suitability for the study’s objectives, particularly its lower computational 

requirements and the absence of a need for extensive training data. CellProfiler’s user-friendly 

interface and flow-based approach also make it particularly accessible for biologists, allowing 

complex cell tracking tasks to be performed without advanced programming skills. The Follow 

Neighbour method is effective in maintaining continuity in cell tracking by linking cells based 

on proximity between frames, making it an ideal solution for accurately tracking cell 

movements over time. This method aligns well with the study’s needs, offering a practical and 

efficient alternative to the more computationally intensive machine learning techniques. 
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2.4.  Cell Characterisation 

In the framework of live-cell imaging studies, cell characterisation refers to a thorough 

analysis and identification of cellular characteristics across time. These studies produce 

massive amounts of data that record dynamic cellular activities. These data need to be analysed 

using modelling techniques to improve accuracy in predicting cellular responses and 

behaviours and allow simulations of complex biological processes without requiring large 

experimental setups. Necessary for drug development and disease modelling, these models 

facilitate understanding complex cellular dynamics and interconnections. This section will 

examine the wide range of modelling approaches applied to cell characterisation, emphasising 

how machine learning techniques and traditional approaches work to expedite and simplify the 

analytical process. 

 

2.4.1. Traditional approaches 

Arroyo et al. [113] proposed a multi-agent-based model that is able to describe 

dynamics in cell populations. The model consists of biological entities (cells) as agents and a 

biochemical environment. Both are represented by multisets of symbols. The evolution of the 

environment is regulated by multiset Lindenmayer rules [114] depending on the current state 

of all agents, while the evolution of each agent, which depends on the environment’s current 

state, is defined by means of multiset patterns. ARCADE, a multi-scale agent-based model, 

was developed by Yu and Bagheri [115] to investigate the emergent behaviour of heterogeneous 

cell agents in dynamic microenvironments and to show how emergent dynamics are influenced 

by the intricacy of intracellular metabolism and signalling. The authors showcase the 

effectiveness of their approach in obtaining computational and experimental understanding 

through in silico case studies focusing on context, competitiveness, and heterogeneity. There 

are notable distinctions between emergent behaviour in tissue and colony settings, as well as 

linear, non-linear, and multimodal effects of parameter modification on competition in 

simulated co-cultures and varying effects of population and cell heterogeneity on emergent 

outcomes. 

Kihara et al. [116] created a cellular automata model to estimate cell-cell interactions 

using cultured cells. They used HeLa, human osteosarcoma, rat mesenchymal stem cells, and 

rat smooth muscle A7r5 cells. The model had five variable parameters: initial cell number, 

doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition. The simulations 
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showed that HeLa and HOS cells had low adhesion and weak contact inhibition, while MSCs 

had high adhesion and positive contact inhibition. This approach is an easy method for 

evaluating cell-cell interaction properties. Li J. et al. [117] created a model of the cell cycle, 

focusing on the regulatory network controlling growth and division. They used particle-based 

computer simulations and continuum theory to analyse this model, focusing on 2D colonies 

confined in a channel. They found that the profile and speed of these growth fronts are related 

to substrate friction and cell cycle parameters, offering a method for measuring these 

parameters in experiments. 

Wieczorek [118] presented a hybrid stochastic individual-based model that incorporates 

chemotaxis in proliferating cells. The model is formulated as a combination of a branching 

diffusion process and a partial differential equation that represents the concentration of the 

chemotactic component. It has been demonstrated that in the hydrodynamic limit, as the 

number of cells approaches infinity, the model converges to the solution of a nonconservative 

system resembling Patlak-Keller-Segel. A stochastic model with nonlinear mean-field 

dynamics is established, and it has been demonstrated that the movement of descendants from 

a single cell in the individual model converges with this mean-field process. The summary of 

published cell characterisation methods utilising traditional techniques is presented in Table 5. 

Table 5: The summary of traditional approaches used in cell characterisation. 

Author Method Limitations 

Arroyo et al. , 2019 [113] Multi agent based ● Lack of standard 
analytical methods 
[174] 

● Difficulties in 
comparing [174] 
different models 

● Variability in 
implementation [174] 

Yu and Bagheri., 2020 [115]  Multi-scale agent-based 

model 

● Lack of standard 
analytical methods 
[174] 

● Difficulties in 
comparing different 
models [174] 

● Variability in 
implementation [174] 
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Kihara et al. , 2017 [116]  Cellular automata ● Oversimplified state 
transitions [175]  

● Limitations in 
capturing stochastic 
behaviour [176] 

● Difficulties in 
simulating complex 
interacting systems 
[177] 

Li J. et al. , 2021 [117] Continuum theory and 

particle-based simulations  

● Computational costs 
[178] 

● Lack of structural 
information [178] 

● Oversimplification 
[178] 

Wieczorek., 2023 [118] Hybrid stochastic individual-

based model 

● Complexity in model 
formulation [179] 

● Difficulty in 
parameter calibration 
[179] 

● High sensitivity to 
initial conditions and 
parameter 
values[179] 

● challenges in 
capturing spatial 
heterogeneity [180] 

 

The summary table 5 outlines various traditional approaches used in cell 

characterisation, highlighting their methods and associated limitations. Each approach has its 

strengths, but also faces challenges that may impact its suitability for specific research contexts. 

Multi-agent based models (Arroyo et al., 2019; Yu and Bagheri, 2020) are recognised for their 

ability to simulate the interactions between individual agents (cells) within a system. However, 

these methods suffer from a lack of standard analytical methods, making it difficult to compare 

results across different models. Additionally, there is significant variability in their 

implementation, which can lead to inconsistent outcomes and challenges in standardising these 

models for broader application. Cellular automata (Kihara et al., 2017) provide a simplified 

framework for modelling cell behaviour, particularly in discrete state transitions. However, 

their oversimplified state transitions often fail to capture the stochastic nature of biological 

systems. This method also struggles with simulating complex interacting systems, limiting its 

applicability to more intricate biological processes. Continuum theory and particle-based 
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simulations (Li et al., 2021) offer a more detailed approach by incorporating the physical and 

mechanical properties of cells. However, these methods are based on theoretical models, which 

can lead to oversimplification when representing the complex, dynamic nature of biological 

systems. Additionally, these models are not fully based on a data-driven approach, which limits 

their ability to adapt to real-time or large-scale data variations. They often lack the structural 

information necessary to fully characterise the systems being studied, making them less 

effective in capturing the true complexity of cell behaviour. Hybrid stochastic individual-based 

models (Wieczorek, 2023) attempt to combine the strengths of individual-based models with 

stochastic elements to better capture the randomness inherent in biological systems. 

Nevertheless, these models are complex to formulate and calibrate, requiring careful 

adjustment of parameters. They are also highly sensitive to initial conditions and parameter 

values, which can introduce variability in the results. Furthermore, these models face 

challenges in capturing spatial heterogeneity, which is crucial for accurately characterising cell 

behaviour in a realistic context. 

The traditional approaches outlined in the table, such as multi-agent based models, 

cellular automata, continuum theory, and hybrid stochastic individual-based models, offer 

various advantages for cell characterisation but are not being utilised in this study. These 

methods, while valuable, present significant limitations, including complexity in model 

formulation, difficulties in parameter calibration, and challenges in capturing the stochastic and 

heterogeneous nature of cell systems. Moreover, their reliance on theoretical models and the 

fact that they are not fully based on a data-driven approach can sometimes lead to 

oversimplification of the complex biological phenomena being studied, and limits their 

adaptability to varying datasets. 

 

2.4.2. Machine learning approaches 

Shen et al. [119] employed cell proliferation on titanium dioxide nanotubes (TNTs) as 

a case study using machine learning approaches to decode contradicting findings in the 

literature. The author used the gradient-boosting decision tree model and showed that cell 

density has a greater influence on cell proliferation than other experimental characteristics. The 

author also discovers that different TNT diameters can exhibit opposing trends in cell growth 

depending on how cell density and sterilisation techniques are changed. Based on this finding, 

they conclude that machine learning helps assess structure-property correlations in biomaterials 

and improves understanding of complex data in biomedical research. Ma et al. [120] developed 
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DCell, a visible neural network that simulates cellular growth accurately using 2,526 

subsystems. DCell, which has been trained on millions of genotypes, can examine the 

molecular processes behind genotype-phenotype relationships. It encompasses 80% of growth 

forecast relevance, with 484 subsystems accounting for 21%. DCell provides a foundation for 

interpreting the genetics of disease, drug resistance, and synthetic life by capturing complex 

phenotypes. Balde et al. [121] developed a novel Cell Density Prediction design using the 

Optimal Deep Learning with Salp Swarm Algorithm (CDP-ODLSSA) technique. This method 

accurately predicts cell densities in cell suspensions or cultures using the Long Short Term 

Memory-Autoencoder (LSTM-AE) model and the Salp Swarm Algorithm (SSA). 

Experimental validation of the CDP-ODLSSA technique was conducted using various 

simulations, revealing its superiority over other approaches.  

CellPhe is a pattern recognition toolkit developed by L. Wiggins et al. [122] for 

characterising cellular phenotypes in time-lapse videos. It automates cell phenotyping from 

various imaging modalities and integrates tracking information from different algorithms. 

CellPhe classifies cellular phenotypes using an ensemble classification approach with multiple 

machine learning algorithms: Linear Discriminant Analysis (LDA), Random Forest (RF), and 

Support Vector Machine (SVM) with an RBF kernel. These classifiers use majority voting to 

determine each cell’s phenotype. The authors specifically aim to classify cellular phenotypes 

in breast cancer cell lines MDA-MB-231 and MCF-7 to analyse their responses to 

chemotherapeutic drugs. In addition to classification, CellPhe employs clustering algorithms 

to analyse cell populations and identify heterogeneous subsets within these populations. 

Specifically, hierarchical and k-means clustering are used to investigate subgroups within 

single-class datasets (i.e., treated and untreated cells separately). The summary of published 

cell characterisation methods utilising machine learning techniques is presented in Table 6. 

 

Table 6: The summary of machine learning approaches used in cell characterisation. 

Author Method Limitations 

Shen et al. , 2021 

[119] 

Gradient-boosting decision tree model ● Overfitting [181] 
● Interpretability [182] 
● Sensitive to noise 

[183] 
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Ma et al. , 2018 

[120] 

Visible Neural Network ● Overparameterizatio
n [184] 

● Decreased 
interpretability [184] 

Balde et al. , 2023 

[121]  

Optimal Deep Learning with Salp 

Swarm Algorithm (CDP-ODLSSA) 

technique 

●  Complexity in 
Training and Tuning 
[185] 

● High Computational 
Resources [185] 

● Interpretability [185] 

L. Wiggins et al. , 

2023 [122] 

Linear Discriminant Analysis (LDA), 

Random Forest (RF), Support Vector 

Machine (SVM), hierarchical and k-

means. 

● Possibly of tie result 
in ensemble  

● Interpretability 
 

 

The summary table 6 outlines various machine learning approaches used in cell 

characterisation, highlighting their methods and associated limitations. Each method offers 

distinct advantages, but they also present challenges that may affect their suitability for specific 

research contexts. The Gradient-boosting decision tree model (Shen et al., 2021) is known for 

its powerful predictive capabilities, particularly in handling complex datasets. However, it is 

prone to overfitting, which can lead to poor generalisation of unseen data. Additionally, the 

model’s interpretability is limited, making it challenging to understand the underlying decision-

making process. Furthermore, this approach is sensitive to noise in the data, which can impact 

the accuracy and reliability of the results. The Visible Neural Network (Ma et al., 2018) 

provides an innovative approach to neural network design, with layers that are more transparent 

and interpretable. However, this method often suffers from overparameterization, where the 

model becomes overly complex, leading to decreased interpretability and the risk of overfitting. 

These factors can make it difficult to apply the Visible Neural Network in contexts where model 

simplicity and interpretability are crucial. The Optimal Deep Learning with Salp Swarm 

Algorithm (CDP-ODLSSA) technique (Balde et al., 2023) offers advanced deep learning 

capabilities, optimised through a metaheuristic algorithm that enhances training and tuning. 

Despite its potential, this technique is highly complex in terms of both training and tuning, 

requiring significant computational resources. Moreover, the interpretability of the model 

remains a challenge, making it less accessible for researchers who require clear insights into 

the model’s functioning. The combined approach of Linear Discriminant Analysis (LDA), 
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Random Forest (RF), Support Vector Machine (SVM), hierarchical clustering, and k-means 

(Wiggins et al., 2023) leverages the strengths of multiple algorithms to improve classification 

and clustering outcomes. However, this ensemble method can lead to ties in results, which 

complicates decision-making. Additionally, the interpretability of the ensemble model is often 

reduced, as it combines the outputs of several different methods, each with its own 

complexities. 

The machine learning approaches outlined in the table, including Gradient-boosting 

decision trees, Visible Neural Networks, CDP-ODLSSA, and ensemble methods like LDA 

combined with RF, SVM, hierarchical clustering, and k-means, offer advanced capabilities for 

cell characterisation. However, they are not being utilised in this study due to several significant 

limitations. These methods tend to require high computational resources, present challenges in 

interpretability, and can be overly complex to train and tune. Additionally, the risk of overfitting 

and sensitivity to noise further limits their practical application in certain research settings. The 

objective here is to use an interpretable "white box" machine learning approach that can 

produce symbolic expressions in the model of cell characterisation. This type of model is more 

transparent and allows for easier interpretation of how the inputs are related to the outputs, 

which is crucial for understanding the underlying biological processes. In this context, an 

evolutionary algorithm approach has been selected. Evolutionary algorithms are particularly 

well-suited for this task as they can evolve models that are both interpretable and capable of 

capturing the essential patterns within the data. This approach aligns well with the study’s goals 

by offering a balance between interpretability and predictive power, making it a practical and 

effective choice for cell characterisation. 

 

2.5. Conclusion 

This chapter has presented cell segmentation, tracking, and characterisation techniques 

utilising both conventional computer vision and machine learning approaches. These 

methodologies have demonstrated considerable potential in understanding cellular behaviour, 

which is fundamental to biomedical research and therapeutic development advancements. 

However, the review has identified that cell segmentation by traditional methods still needs to 

improve to extract reliable segmentation results from imperfect microscopy data, especially 

when dealing with overlapping and partially touching cells [186]. Meanwhile, machine 

learning approaches could detect and segment cells but involved complex computational 

processes [187] that often required annotated data [186]. Furthermore, the implementation of 
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machine learning often requires high computational resources [188] and can be opaque in 

acquiring knowledge about image segmentation undertaken due to its inherent in explainability, 

which can discourage biologists from using it in their work [189].  

Meanwhile, traditional cell tracking techniques have the challenging task of extending 

tracking methods to analyse complex cellular behaviours. While the cell cycle phase has been 

tracked, other complex phenomena have not been resolved, such as the various cellular events 

leading to cell death or collective cell migration [168]. Recently, using a machine learning 

approach helped improve accuracy in cell tracking, handling complex data and discovering 

cellular dynamics [168]. However, it required a large amount of data training and expended 

significant time, either in the training process or implementation [190]. So, the tool selection 

not only focuses on accuracy but also needs to consider the user-friendly interface, extensive 

plugin ecosystem and customisation, high throughput capability, and open source. In this work, 

based on the criteria above, we will use tools such as ImageJ [191], Ilastik [192], and 

CellProfiler [193], each selected for their unique capabilities in image processing, 

segmentation, machine learning-based classification, tracking and quantitative analysis. 

In section 2.4, cell characterisation using the traditional method has model limitations 

such as the influence of environmental factors, estimation of parameters, different scale usage, 

and lack of comprehensive regulatory models and simplifications [194]. Machine learning 

approaches can achieve good accuracy in classification and regression models but are not 

interpretable, sometimes referred to as a “black-box” approach. In biomedical engineering and 

cellular biology, the interpretable model is important and will benefit understanding in the 

decision-making process for verifying scientific hypotheses and making clinical decisions. In 

this study, we will utilise an interpretable "white box" machine learning technique known as 

evolutionary algorithms (EAs) [195]. Interpretable “white box” models in machine learning 

are systems wherein the processes and outcomes are comprehensible to human users. These 

models facilitate transparency, allowing users to ascertain how inputs are systematically 

transformed into outputs and to understand the rationale underpinning each decision. EAs are 

notably recognised for their efficacy in generating solutions for various problems based on 

data-driven approaches, providing a symbolic approach model [196]. This symbolic approach 

contributes to the interpretability by using understandable mathematical or logical expressions 

to describe how decisions are derived, making the process more transparent. Such clarity is 

eminently suitable for applications where trust and a clear understanding of the model's 

reasoning are paramount. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Introduction 

This chapter describes the methodology used to understand and analyse the behaviour 

of cells in a population.  The objective is to establish a pipeline of computer vision tools to 

reliably segment and track unlabelled cells grown in culture as adherent monolayers using 

normal human urothelial (NHU) [197] cells as a representative example. Additionally, a 

pipeline is used to describe the variations in the cell growth curve, migration speed, and angular 

velocity. Furthermore, to characterise the behaviour leading to changes in the differences in 

cell populations. Finally, to investigate the use of the features within an interpretable “white 

box” machine learning context to further characterise NHU cell behaviours. The structure of 

this chapter is as follows: A comprehensive description of the research design and methods will 

be provided. This section includes a detailed explanation of the procedure for preparing cell 

cultures, utilising Time-lapse microscopy for time-lapse image acquisition, and performing cell 

segmentation and tracking. Furthermore, the implementation of cell characterisation will be 

elaborated, employing evolutionary algorithms [198], specifically, genetic programming [199], 

to model cell behaviour and providing a symbolic approach model. Figure 4. Illustrate the 

process implemented in the study and is explained in details below. 

 

3.2 Cell culture preparation 

The experimental procedures detailed herein were primarily conducted by Ros Duke at 

Jack Birch Unit (JBU), with my involvement in assisting in the setup and execution under her 

Figure 4: Workflow diagram for research methodology. 
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direct supervision and guidance. The cells were seeded in 12 plates [200], separately, with four 

replicates for each with three different treatments. The culture is seeded in the first four wells 

with 0.1% DMSO (control), and the subsequent four wells are cultured with 0.1% DMSO and 

4ng/mL TGF-β [201]. The final four wells were cultured in 0.1% DMSO with 10μM SB431542 

as a TGF-β inhibitor [202]. The cells were returned to the incubator for 1 hour before being 

transferred to the time-lapse microscopy chamber to collect data. In Figure 5, the layout of a 

12-well microplate is detailed to illustrate the experimental setup used in the laboratory. The 

wells are organised into three groups based on their treatment conditions to facilitate 

comparative analysis. Wells 0 through 3 are maintained without any treatment, serving as the 

control group to provide baseline data. Wells 4 through 7 have been treated with TGF-beta, and 

the remaining wells, 8 through 11, are treated with SB431542, a selective inhibitor used to 

study TGF-beta signalling pathways. 

 

3.3 Time-lapse microscopy 

Time-lapse microscopy [203] is an advanced imaging technique that captures a series 

of images of a biological specimen at regular intervals, allowing researchers to observe 

dynamic cellular processes, such as cell growth, differentiation, and migration, over an 

extended period [204]. This technique has become an indispensable tool in various fields, 

including cell biology, developmental biology, and microbiology, for understanding the 

intricate details of cellular and subcellular events [205]. When capturing images over time for 

multiple wells, it is typically the platform that holds the wells that move, rather than the camera. 

This movement is often automated to allow the microscope to focus on different regions of 

interest, take images, and then move to the next position at pre-set time points. This automation 

is crucial for long-term imaging, as it allows for consistent image capture without manual 

Figure 5: Layout of a 12-well microplate used in 
laboratory experiments. 
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intervention. However, this setup can introduce challenges, particularly about illumination 

consistency. As the platform moves the wells, slight variations in lighting can occur due to 

changes in the angle of the light sources, the position of the wells relative to the light source, 

or even fluctuations in light intensity. Uneven illumination can lead to variations in image 

brightness and contrast, which can complicate the analysis of time-lapse data. The issue of 

uneven illumination will be explained in Section 3.4: Pre-processing Image. Phase-contrast 

microscopy, a widely used method in time-lapse microscopy, is based on exploiting differences 

in refractive indices between the specimen and its surrounding medium [206]. This technique 

enhances contrast in transparent, unstained biological samples by transforming phase shifts in 

light waves passing through the specimen into variations in amplitude, which are then 

visualised as differences in brightness and contrast [207].  

 

The significant advantage of phase-contrast microscopy is its ability to observe living 

cells without the need for potentially harmful staining or fixation procedures [208]. Figure 6 

shows the different images between brightfield and phase contrast. Nevertheless, analysis of 

the phase-contrast microscopy image by using computer vision algorithms faces two main 

challenges when it comes to object detection, such as halo formation [210] and optical artefacts 

[211]. The halo effect, often referred to as the halo-light ring, is caused by the diffraction of 

light around the boundaries of structures present in the sample, resulting in the obscuring of 

delicate features. The ring of light created by the unaltered waves is smaller than the phase 

ring, allowing low-spatial-frequency diffracted light waves from the specimen to pass through 

the annulus. The light that deviates and passes through the phase ring retains a phase difference 

of 90 degrees, which prevents any negative interference from occurring. This results in a 

Figure 6: cell image comparison between brightfield (a) 
and phase-contrast (b) microscopy [209]. 
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reversal of contrast and produces a halo effect at the edges of large objects. Undoubtedly, the 

presence of a halo surrounding cells contributes to the difficulties of the segmentation process. 

Besides the halos effect, other optical artefacts, such as shade-off and contrast inversion, could 

occur. Shade-off is the term used to describe the gradual change in intensity observed in large-

phase objects. Contrast inversion occurs when objects with a high refractive index appear 

brighter rather than darker, making it more challenging to interpret the images. The time-lapse 

microscopy setup, equipped with an environmental chamber, motorised stage, and focus system 

(figure. 7), uses an x10 objective to capture detailed images of a cell culture over 48 hours, 

with an intensity of brightfield light set to 4.1 and 0.5% contrast adjusted for optimal visibility. 

 

 

3.4 Pre-processing image 

In the field of microscopy, the presence of uneven illumination [212] in captured images 

is a prevalent issue. This is due to the background illumination intensity from the microscope 

light source not being uniform across the field of view, which results from limitations in the 

design of microscope condensers that cannot provide flat-field illumination. Furthermore, in 

time-lapse imaging, variations in image intensity may occur due to differences in acquisition 

conditions, such as lighting [213]. These intensity variations can significantly impact the 

accuracy and reliability of results, making it challenging to measure changes in cellular 

phenotypes and behaviours over time. To address these issues, images typically undergo pre-

processing correction for these variations before quantification is performed. This process 

includes a series of operations to improve the quality of the image and simplify the 

quantification process.  ImageJ [214], an open-source software developed by the National 

Figure 7: Olympus time-lapse microscopy setup. 
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Institutes of Health, is particularly useful in this context. It enables users to visualise, inspect, 

quantify, and validate scientific image data. Imaging-based methods are crucial in the life 

sciences, and as new imaging modalities emerge and datasets become more complex, 

reproducible and reliable methods to interpret biological images are essential. Image analysis 

allows users to extract information from images reproducibly, ensuring that algorithms and 

parameters remain open and consistent. Novel imaging modalities offer enhanced resolution, 

specificity, and coverage, contributing to numerous biological advancements. Modern research 

requires methods for efficient and robust manipulation, interpretation, and visualisation of 

advanced, multidimensional imaging data. Image analysis also serves a crucial biomedical role 

for diagnostic interpretation. As the prevalence of large multidimensional datasets continues to 

grow, the ability to manually take measurements becomes impractical and the sensitivity, 

accuracy, objectivity, and reproducibility of doing so can become significantly inhibited. The 

ImageJ ecosystem has evolved over time, with the first release of ImageJ in 1995, known as 

Fiji (Fiji is Just ImageJ) [215], introduced in 2007. The developers in Fiji enhanced the main 

architecture of ImageJ by incorporating an automated updating mechanism, a script editor, and 

a robust picture data model and also improved the plugin system and extensibility. Fiji enhances 

the existing structure by providing more libraries. Figure 8 illustrates the user interface of Fiji, 

an enhanced version of ImageJ, highlighting its extensive toolbar. The toolbar is packed with 

a range of tools and shortcuts that improve functionality and simplify the image processing 

process. All fundamental image modification tasks, ranging from simple actions like zooming 

and cropping to more intricate features such as adjusting thresholds and customising LUTs, 

may be easily accessed. Additionally, one helpful feature of the ImageJ software is its macro 

system, which allows for easy programming to automate repetitive processes and expand the 

capabilities of ImageJ. A macro in ImageJ is a script written in ImageJ's built-in macro language 

that automates a series of ImageJ commands. There are two ways to create a macro: the first is 

to write it manually, and the second is to use the Macro Recorder. In the manually writing 

macro method, the desired script using ImageJ's macro language is used to define specific 

automated tasks. Once the script has been written, it can be saved for easy access later. The 

Macro Recorder records the tasks as they are performed by the user and saved for use later, as 

Figure 8: User Interface of Fiji (ImageJ) showing the main 
toolbar with icons for image processing functions. 
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for the script macro described above. To run a saved macro, is straightforward within the 

ImageJ application. An example of an ImageJ macro that opens an image applies an auto 

threshold, as shown in Figure 9. 

In this image pre-processing phase, two primary steps are undertaken using the ImageJ 

plugin. 

 Correction of Uneven Illumination: The initial step involves the utilisation of the BaSiC 

Plugin to address issues related to uneven illumination. This process is elaborated upon 

in Section 3.4.1, which focuses on the correction of uneven illumination. 

 Image Normalisation: Following the correction of illumination, the image progresses 

to the next stage, which involves normalisation using the Quantile-based Normalisation 

Plugin. The specifics of this process are detailed in Section 3.4.2, which covers image 

normalisation. 

Upon completion of these two sequential processes, the image is prepared for cell 

segmentation, which is further discussed in Section 3.5, dedicated to cell segmentation. 

 

3.4.1 Uneven illumination correction 

The correction of the uneven illumination present in the image was achieved through 

the implementation of BaSiC [216] ImageJ’s plugin. BaSiC is a tool used to correct the 

background and shading of image sequences. It does this by using a method called sparse and 

low-rank decomposition. In this method, the shading model in Equation 1 includes both the 

flat-field component S(x) and the dark-field component D(x).  

 

Figure 9: A macro script to perform image auto threshold. 
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 Imeas(x)=Itrue(x)× S(x)+ D(x)        (1) 

   

Equation 1 represents a linear relationship between a measured image, Imeas(x), and its 

uncorrupted true counterpart, Itrue(x). S(x) denotes the variation in the illumination level across 

an image, referred to as flat-field and D(x) known as dark-field. As seen in Fig. 6, BaSiC 

initially constructs a measurement matrix I (step I), which is then separated into a low-rank 

matrix IB and a sparse residual matrix IR (step II). The highest rank of the low-rank matrix is 

two. This is because each column is the sum of a scaled version of S(x) (scaled by Bi) and D(x), 

both of which are initialised with zeros in step III. In step IV, the residual matrix's sparsity is 

improved by promoting a reweighted L1-norm. Furthermore, the sparsity of S(x) and D(x) is 

regulated in the Fourier domain to enforce smooth constraints on both functions. The 

optimisation problem is resolved by applying the linearised augmented Lagrangian approach. 

An automated parameter adjustment approach produces the optimal regularisation parameters 

for S(x) and D(x), which can adapt to various imagine contents. BaSiC algorithm breaks down 

the shading-free true image Itrue(x) of the ith frame of a time-lapse microscopy video into two 

components: a spatially constant baseline signal, Bi, and a spatially varying foreground signal 

that represents the biological features of interest. This decomposition aims to enhance the 

accuracy of single-cell quantification. The model for a time-lapse image is as follows: 

 

 Imeas(x)=(Bi + Fi(x))×S(x)+ D(x)                 (2) 

 

Due to background bleaching and variable experimental circumstances, Bi is typically not 

consistent across frames (Figure. 10a). By using equation (2) in reverse, the estimated S(x), 

D(x), and Bi are used to adjust the intensity profile of each frame. This correction effectively 

removes both spatial shading effects and temporal drift, as seen in Fig. 10a versus c. 
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The BaSiC ImageJ’s plugin interface for image background and shading correction is 

shown in Figure 11. Through the User Interface, users may pick a shading model, define 

shading estimation profiles, and select a processing stack. Users have control over how baseline 

drift is handled and may manually or automatically modify regularisation parameters for dark 

field and flat-field corrections. Furthermore, there are choices for making full shading 

adjustments or only calculating shading. 

Figure 11: BaSiC interface for background and shading correction. 

Figure 10: BaSiC is an automatic correction method for dynamic time-lapse data. (a) A time-
lapse movie corrupted by both shading in space and photobleaching in time. (b) The BaSiC 

workflow. (c) BaSiC corrects both spatial shading and background over time. 
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Systematic implementation of the BaSiC tool began with the use of its default settings. 

These settings typically included the automatic estimation of both flat-field and dark-field 

shading profiles based on the input image stack. The tool was initially configured with the 

"Automatic" option for the regularisation parameters (lambda flat and lambda dark), which 

control the smoothness of the estimated shading profiles. These configurations served as a 

baseline to evaluate the tool's effectiveness in correcting uneven illumination and shading 

artefacts in microscopy images. After applying the BaSiC correction with these default settings, 

the tool’s performance was assessed using the Coefficient of Variation (CV) within the 

background regions of the images. The CV was chosen as the primary metric because it 

quantifies the uniformity of the background after correction, with lower CV values indicating 

more effective illumination correction. This evaluation provided an initial measure of how well 

the default settings minimised background intensity variations. If the default settings did not 

achieve satisfactory results, indicated by a higher-than-acceptable CV, manual adjustments 

were made to further optimise the correction. Specifically, the regularisation parameters 

(lambda flat and lambda dark) were manually fine-tuned. These parameters are crucial as they 

influence the smoothness of the flat-field and dark-field estimations. The manual adjustment 

process involved iteratively modifying these parameters and re-evaluating the CV after each 

change, continuing until optimal uniformity in the background was achieved. The parameter 

adjustment process was considered complete once the CV indicated that background 

uniformity had reached an optimal level. The final settings were those that produced the lowest 

CV within the background regions while ensuring the overall integrity of the signal in the 

image. These optimal settings represented the most effective configuration of the BaSiC tool 

for the specific microscopy images being analysed. 

 

3.4.2 Image normalisation 

After correcting uneven illumination, image normalisation using quantile-based 

normalisation [217] is implemented using an ImageJ plugin to normalise the distribution of 

values in multiple images. The objective of the quantile approach is to equalise the distribution 

of probe intensities across all arrays in a given set. The approach is based on the basis that a 

quantile-quantile plot indicates that the distribution of two data vectors is identical if the plot 

forms a straight diagonal line and different if it deviates from a diagonal line. The principle is 

expanded to n dimensions so that if all n data vectors follow the same distribution, plotting the 
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quantiles in n dimensions results in a straight line along the unit vector ቀ
ଵ

√௡
, . . . . ,

ଵ

√௡
ቁ. This 

suggests that a set of data can be given the same distribution by projecting the points of an n 

dimensional quantile plot onto the diagonal. Let qk = (qk1, . . . . ,qkn) for k = 1,..., p represents 

the vector of the kth quantiles for all n arrays qk = (qk1,...,qkn).  Additionally, let d = ቀ
ଵ

√௡
, . . . . ,

ଵ

√௡
ቁ  

be the unit diagonal. To achieve the alignment of all quantiles along the diagonal, one might 

consider projecting q onto d. 

 

Projௗ𝑞௞ = ቀ
ଵ

௡
∑ 𝑞௞௝

௡
௝ୀଵ , … ,

ଵ

௡
∑ 𝑞௞௝

௡
௝ୀଵ ቁ   (3) 

 

This implies that each array can be given the same distribution by taking the mean 

quantile and using it to replace the value of the data item in the original dataset. This concept 

motivates the following algorithm for normalising a set of data vectors to share the same 

distribution: Given n arrays of length p, first form matrix X of dimensions p × n, where each 

array is a column. Next, sort each column of X to generate  Xsort. Then, calculate the row-wise 

means of Xsor and assign this mean to each element in that row, resulting in X’sort. Finally, obtain 

Xnormalised by rearranging each column of  X’sort to match the original ordering in X. The quantile 

Figure 12: Quantile Based Normalisation tool 
interface. 
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normalisation approach is a particular instance of the transformation  x’i = F−1 (G (xi)), where 

G is estimated using the empirical distribution of each array and F is estimated using the 

empirical distribution of the averaged sample quantiles. Further enhancements to the approach 

might be made by improving the estimation of F−1 and G to provide smoother results. The 

application of quantile normalisation to image stacks can be performed with the same 

technique. In essence, the concept entails categorising all the values present in every image and 

distributing them into a number of quantiles. Subsequently, the mean value across all images 

is substituted for each value inside a certain quantile. Consequently, every image should have 

highly similar value distributions when analysing their histograms. Figure 12 shows the 

Quantile Based Normalisation tool interface, allowing users to add or delete files for 

processing. The panel includes options to specify an output directory, select a masking method, 

set the number of quantiles and the replacement value, and enable rank-based rescaling if 

needed.  

The process of systematically implementing the Quantile-Based Normalisation tool 

began with the use of its default settings to establish a baseline for performance evaluation. 

The tool was initially configured with the default settings, which included setting the number 

of quantiles to 256 and replacing each quantile with the mean value. The "Rescale (if replacing 

with ranks)" option was also enabled by default. These settings were chosen to standardise the 

intensity distribution across the images or channels to be processed. After applying the default 

settings, the performance of the normalisation process was assessed using the Coefficient of 

Variation (CV) across the images. The CV provided a straightforward metric to evaluate how 

well the default settings achieved consistent normalisation. If the CV indicated that the default 

settings did not produce satisfactory results, such as when the intensity distribution remained 

uneven or biologically relevant features were distorted, manual adjustments were made. For 

example, the number of quantiles was adjusted to a different value if the default 256 quantiles 

did not provide the desired level of granularity in the normalisation process. Additionally, the 

option to replace each quantile with a value other than the mean, such as the median, was 

considered if the mean replacement introduced unwanted bias. The manual adjustment process 

was iterative, with parameters being tweaked and the CV re-evaluated after each adjustment. 

This process continued until the normalisation achieved the desired uniformity across images 

while preserving the integrity of the biological data. The parameter adjustment process was 

considered complete when the CV indicated that the images were evenly normalised, achieving 

a balance between uniformity and biological relevance. The final settings were those that 
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produced the lowest CV across the images, ensuring that the normalisation was both effective 

and reliable. 

In order to evaluate the effectiveness of image correction, the Coefficient of Variation 

(CV) was employed as a key metric for assessing uniformity, specifically within the 

background regions of the image. The CV is calculated using the following equation: 

 

CV = ቀ
Standard Deviation

Mean
ቁ × 100   (4) 

 

This equation quantifies the degree of variation remaining in the background after correction, 

with a lower CV indicating more effective background correction. To obtain the necessary pixel 

intensity data for calculating the CV in the background regions, the Plot Profile tool within 

ImageJ was used. After applying background correction, regions expected to represent the 

background were identified and selected by drawing lines across these areas using ImageJ's 

Line Tool or Freehand Line Tool. The Plot Profile tool then generated a profile of pixel 

intensities along these selected lines, providing a detailed view of the intensity variations within 

the background. The pixel intensity data from the Plot Profile was then used to calculate the 

mean and standard deviation of the intensities within these background regions. This 

calculation could be performed directly within ImageJ using its measurement functions or 

alternatively in a spreadsheet program like Excel, where standard statistical functions were 

applied. With the mean and standard deviation values derived from the background pixels, the 

CV was calculated to assess the uniformity of the corrected background. A lower CV in these 

regions indicated that the background correction had successfully minimised variations, 

achieving a more uniform and consistent background. 

 

3.5 Cell segmentation 

Cell segmentation is the process of separating an image of a cell or group of cells from 

the background and other cells. The task of segmentation involves identifying the boundaries 

of individual cells and dividing the image into distinct regions, each representing a single cell 

[218]. The aim of cell segmentation is to accurately and reproducibly identify individual cells 

in an image, which is an important stage in biological and medical applications such as cell 
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tracking, cell counting, and cell morphometry. The most difficult parts of cell segmentation are 

the different shapes, sizes, and intensities of the cells and the noise and cells that overlap. To 

overcome the challenges, various methods are used to separate cells depending on the quality 

and complexity of the images. These methods can range from simple thresholding techniques 

to more complex machine-learning algorithms. In this study, the combination of Ilastik and 

ImageJ is employed, where Ilastik is used to convert the image that has undergone the 

preprocessing pipeline into image probabilities, and ImageJ is used to convert these image 

probabilities into a binary image for object detection. 

 

3.5.1 Ilastik 

 Ilastik was initially released in 2011 by researchers at the University of Heidelberg 

[219], and then it was further maintained and developed by Anna Kreshuk's group at the 

European Molecular Biology Laboratory [220]. Ilastik is user-friendly, free, open-source, and 

available for Windows, Mac and Linux operating systems. The software usage did not require 

previous experience in image processing and offered a simple user interface with pixel-level 

and object-classification capabilities for image segmentation and classification [219]. The 

implementation of Ilastik for cell segmentation involved a combination of automatic and 

manual approaches to achieve optimal results. Ilastik uses a supervised machine learning 

approach, where various image features such as intensity, texture, and edges are employed to 

classify and segment different regions within an image. The Random Forest algorithm, which 

serves as the classifier in Ilastik, was set automatically by the tool. The automatic configuration 

of the Random Forest included the number of trees and other relevant parameters, ensuring a 

robust starting point for classification. However, the selection of image features and the process 

of image annotation were handled manually. Features such as intensity, edge, and texture filters 

were manually chosen based on their relevance to the specific characteristics of the images 

being analysed. The performance of the classifier was evaluated using the Out-of-Bag (OOB) 

error, which is generated during the training of the Random Forest. The OOB error served as a 

metric for assessing the generalisation performance of the classifier based on the selected 

features and image annotations. A lower OOB error indicated that the selected features and 

annotations were effectively capturing the necessary information for accurate classification. 

The details about the selection of features and image annotation will be discussed further in the 

next section. 
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If the OOB error indicated that the initial settings did not produce satisfactory results, 

further manual adjustments were made. This involved refining the selection of image features 

by incorporating more complex texture filters, Gaussian smoothing, or edge detectors to 

enhance the classifier's ability to distinguish between different regions. Additionally, more 

detailed image annotations were provided to improve the training process, thereby reducing the 

OOB error. Once a satisfactory OOB error was achieved, the accuracy of the cell segmentation 

was further evaluated using the Sørensen-Dice coefficient. The Dice coefficient, which 

measures the overlap between the predicted segmentation and the ground truth, provided a 

quantitative metric for segmentation accuracy. A higher Dice coefficient indicated better 

segmentation performance, with values closer to 1 representing near-perfect segmentation. The 

manual adjustment process was iterative, with features being added or refined and image 

annotations being improved. After each adjustment, the OOB error and Dice coefficient were 

re-evaluated. This iterative process continued until both metrics indicated satisfactory 

performance, specifically a low OOB error and a high Dice coefficient. The parameter 

adjustment process was complete when the OOB error indicated strong classification 

performance and the Dice coefficient confirmed accurate cell segmentation. The final settings, 

with the Random Forest algorithm automatically configured and the features and annotations 

manually optimised, achieved an optimal balance between segmentation accuracy and 

computational efficiency. This ensured that Ilastik was well-configured for the specific 

microscopy images being analysed. 

 

3.5.1.1 Pixel classification 

In addition to cell segmentation, Ilastik provides the pixel classification workflow to 

assign a label or class to each pixel in an image based on its characteristics, such as colour, 

texture, and shape. The workflow provides generic pixel features such as smoothed pixel 

intensity, edge filters, and texture descriptors. It is used in image analysis tasks that involve 

semantic segmentation of time-lapse microscopy images [219]. Figure 13 illustrates the steps 

involved in the pixel classification process, starting from input data through feature selection, 

image annotation, and training, to generating output data and enabling batch processing.   
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3.5.1.1.1 The selection of features 

After preprocessing the RAW image, it was used as the workflow's input image. After 

loading the image, proceed to the subsequent applet Feature Selection. Here, the user will select 

the pixel features and their scales, which will be used in the next step to differentiate between 

the various pixel classes. The selection of features in Ilastik is the process of deciding which 

pixel characteristics to use as input for the classification process. These characteristics include 

colour/intensity, edge, and texture. The selection of features is crucial because it can 

substantially affect the classification's precision. Figure 14 depicts an example of the menu 

feature selection, and Table 7 provides details about the function of each feature. 

The sigma parameter of the Gaussian function is used to perform image smoothing 

before applying the filter. It acts as a representation of the many scales that users can select for 

all features. Larger sigma filters can gather information from more prominent neighbourhoods 

but may compromise finer details. The effects of various sigma values on the performance of 

each filter are displayed in tables 8, 9, and 10. At a low sigma, the filter has the ability to see 

finer details, whereas at a high sigma, it is limited to perceiving bigger and more generalised 

Figure 13: Pixel classification workflow in Ilastik. 

Figure 14: Menu for features selection in 
Ilastik. 
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cell shapes. Ilastik provides a user-friendly interface for selecting and combining multiple 

features, with accompanying visualisations designed to impart a deeper understanding of the 

consequences of feature choices on the classification results. The selected features for this study 

were sigma values of 3.50, 5.00, and 10.00 for colour/intensity, edge, and texture. These values 

were chosen for several reasons. Firstly, the values capture a broader context because the 

selected sigma values cause the Gaussian filters to consider a larger neighbourhood around 

each pixel. This allows the classifier to take into account more spatial context when making 

decisions about pixel labels. Secondly, the values better distinguish between classes, as the 

sigma values help the classifier separate different classes, especially if the classes have similar 

local features but differ in larger-scale texture or shape. The additional context provided by a 

larger sigma aids the classifier in distinguishing the classes. Lastly, the higher sigma values 

facilitate the segmentation of whole structures. A higher sigma is needed to capture the relevant 

features for images with larger objects or structures. For example, to segment large cells, a too 

small sigma may only detect the edges and fail to capture the full cell shape. 

 

Table 7 : Type of filters and functionality 

Feature Filter Function 

Color/intensity Gaussian smoothing The technique used to smooth out intensity 

images represents the light intensity at each 

point in the image. This technique helps 

remove noise from the image. A larger sigma 

value will result in more smoothing, while a 

smaller value will result in less smoothing. 

Edge Laplacian of Gaussian (LoG) The method used to identify edges in an image 

is by applying a Gaussian blur and a Laplacian 

operator to calculate the second derivative of 

the image. 

Gaussian Gradient 

Magnitude (GGM) 

The method used to identify edges in an image 

by applying a Gaussian blur and a gradient 

operator to calculate the magnitude of the 

image gradient. 
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Different of Gaussian (DoG) The method consists of subtracting two 

Gaussians, where a kernel has a standard 

deviation smaller than the previous one. The 

convolution between the resulting kernel 

subtraction and the input image leads to edge 

detection in the image. 

Texture Structure Tensor 

Eigenvalues 

The structure tensor encodes an image's local 

gradient information, and its eigenvalues can 

determine the dominant gradient orientation at 

a given spot. This information can help identify 

images' edges, corners, and recurring patterns. 

Structure tensor eigenvalues determine texture 

anisotropy, which can differentiate between 

textures. 

Hessian of Gaussian 

Eigenvalues 

The Hessian of Gaussian is a second-order 

derivative of a Gaussian function. These 

methods compute eigenvalues used to 

determine the dominant orientation of the 

image gradient at a given point. 

 

 

Table 8: Gaussian smoothing at sigma = 1, 3.5 and 10. 

Gaussian smoothing 

Sigma,σ=1 σ=3.5 σ=10 
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Table 9: Laplacian of Gaussian at sigma = 1, 3.5 and 10. 

Laplacian of Gaussian 

σ=1 σ=3.5 σ=10 

   

 

Table 10: Hessian of Gaussian Eigenvalues at sigma = 1,3.5 and 10. 

Hessian of Gaussian Eigenvalues 

σ=1 σ=3.5 σ=10 

   

 

3.5.1.1.2 Pixel classification training 

The next step in pixel classification involves training a classifier to differentiate object 

classes. This process is accomplished through iterative annotation, evaluation of interactive 

prediction, and correction of errors through further annotation. Users must perform input 

labelling in order to begin classifier training. Each label added should represent a pixel class to 

be separated. This study utilised two labels: yellow for the cell and blue for the foreground. 

Figure 15 shows the image labelling for the cell and background. The cell annotation approach 

used in this study focuses on three scopes: the selection of images, annotation areas, and cell 

selection. The image selection is made by choosing one in the middle of the dataset to ensure 

it is representative of the overall data distribution and captures the average characteristics of 

the image dataset, such as cell shape. For the annotation area selection, the task involves 

annotating two areas at the top, one in the middle, and two at the bottom of the image. This 

method ensures the annotation covers the entire image, accounting for any spatial variability 
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in the appearance of cells, avoiding biassing the model towards any particular region, and 

helping the model generalise across different regions. In terms of cell selection, three to five 

cells in each area will be annotated based on their clear appearance and background. Focusing 

on cells with clear backgrounds and appearances makes sure that the annotations are clear and 

makes it easier to train a model that can tell the difference between cells and background noise, 

making it better at finding cells in new images. 

Figure 16 shows five annotation areas in the image, distributed to ensure comprehensive 

coverage and account for spatial variability. To initiate classifier training and view predictions, 

press the "Live Update" button. The Random Forest classifier will start the training process 

based on the image annotations, and the trained classifier will predict the classes when 

completed. The predictions will be shown as an overlay on the image. Figure 17 illustrates the 

Figure 16: Cell Annotation Areas for Model Training. 

Figure 15: Image labelling. 



 

74 
 

predicted image for three classes, with yellow representing cells, blue for the background, and 

light blue indicating uncertainty. To improve the image annotation, the regions of uncertainty 

require relabelling to minimise the area of uncertainty. A well-trained classifier has minimum 

uncertainty within class regions, such as between cells and backgrounds. Generally, in the 

Random Forest model, the out-of-bag (OOB) error value will indicate the uncertainty region. 

After completing the training process, the Out-of-bag (OOB) error value was used to 

assess the accuracy of the random forest model. The OOB error measures the generalisation 

performance of a random forest and is calculated as the proportion of OOB samples 

misclassified by the model. These samples are the ones in the dataset that are not used in the 

training of a particular decision tree within the random forest. A lower OOB error rate generally 

indicates better generalisation performance of the model, meaning that it can classify samples 

it has never seen before correctly. In contrast, a higher OOB error rate may indicate that the 

model is overfitting to the training data and is not generalising well to unseen samples. 

Therefore, the lower the OOB error, the more accurate the classification. 

Table 11 illustrates the comparison of different feature selection configurations and 

their corresponding Out-Of-Bag (OOB) error values. Configuration No. 1 was selected as the 

optimal setting because it resulted in the lowest OOB error value of 0.008. This configuration 

provided the best balance among the selected features and scales (σ), leading to more accurate 

predictions. In contrast, Configuration No. 2, which had an OOB error of 0.046, was 

automatically generated by the Ilastik tool. This setting did not perform as well, likely due to 

Figure 17: Image after training process 
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less tailored feature selection. Configuration No. 3, which involved selecting all feature values 

across all scales (σ), resulted in the highest OOB error of 0.058, indicating that including all 

features indiscriminately may have introduced noise or overfitting, reducing the overall model 

performance. 

Table 11: Comparison of Features Selections 

No. Features OOB  

error Gaussian 

Smoothing 

Laplacian of 

Gaussian 

Gaussian 

Gradient 

Magnitude 

Different of 

Gaussians 

Structure 

Tensor 

Eigenvalues 

Hessian of 

Gaussians 

Eigenvalues 

1 σ=3.5,5,10 

 

σ=3.5,5,10 

 

σ=3.5,5,10 

 

σ=3.5,5,10 

 

σ=3.5,5,10 

 

σ=3.5,5,10 

 

0.008   

2 σ=1.6,5,10 σ=1.6,3.5,5,10 

 

σ=1.6,3.5,5,10 

 

σ=1.6,3.5,5,10 

 

σ=1.6,3.5,5,10 

 

σ=1.6,3.5,5,10 

 

0.046 

 

3 σ = all σ = all σ = all σ = all σ = all σ = all 0.058 

 

 3.5.1.1.3 Generating the output file  

The output-generated file can be performed by following the workflow named 

“Predicted Export” tab. Using this tab, the probability image can be generated by clicking the 

“export all” button. The probability images can then be post-processed in ImageJ using custom 

Figure 18: The prediction export tab in Ilastik displays export 
options and a preview of the segmented image. 



 

76 
 

thresholding, removing small objects, and converting the image to binary images. The example 

of the prediction export tab is shown in Figure 18.  

 

3.5.1.1.4  Batch processing 

Batch processing in Ilastik allows users to apply a trained classifier to multiple images 

efficiently. Image files for batch processing can be added by dragging and dropping them into 

the file browser or using the "Select Raw Data Files" button. This method allows single or 

multiple files to be selected from the file selection. After setting up the export settings and 

adding the files, click on the "Process all files" button. Ilastik will then begin batch processing 

all images and write the resulting classification results to the specified output files. For 

environments without graphical capabilities or for automation, Ilastik can be run in headless 

mode. This requires using the command line with specific flags and arguments: --headless to 

trigger headless operation, --project to specify the path to the project file, and --input_axes to 

specify the meaning of the axes if the default guess is incorrect. Figure 19 illustrates the Batch 

Processing tab in Ilastik, displaying the selected raw data files for processing and the option to 

initiate the process. 

 

 

Figure 19: The Batch Processing tab in ilastik. 
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3.6 Post-processing 

At this stage, the post-processing for the image probabilities from Ilastik is done using 

ImageJ auto threshold. The step of auto threshold here is to convert the image to a binary image, 

making it easier to identify objects. Specifically, the IsoData auto threshold method is used. 

The method automatically determines the threshold value by iteratively adjusting it until the 

average of the foreground and background pixels converges. The algorithm begins with an 

initial threshold value,𝑡, typically set to the midpoint of the range of pixel values in the image. 

Based on this initial threshold, the image is divided into two groups: one consisting of pixel 

values less than or equal to 𝑡, and the other consisting of pixel values greater than 𝑡. The mean 

of all pixel values in each group is then calculated, denoted as 𝑚𝐿 for the lower group and 𝑚𝐻 

for the higher group. A new threshold value,𝑡𝑛𝑒𝑤, is then calculated as the average of these 

two means, using the equation 5. This new threshold becomes the current threshold for the next 

iteration. This iterative process continues, with the threshold being updated each time, until the 

change in threshold value between successive iterations is smaller than a predefined tolerance 

level, indicating convergence. 

𝑡௡௘௪  =  
௠ಽା ௠ಹ

ଶ
   (5) 

Once the image is converted to binary, small objects can be removed to reduce noise, and 

further processing steps can be applied to enhance the segmentation and ensure accurate 

identification of the objects of interest. Figure. 20 illustrates the settings window for the Auto 

Threshold plugin showing various options for thresholding images. 

 

Figure 20: Auto Threshold Settings 
in ImageJ . 
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The metric used to evaluate cell segmentation in this study is the Sørensen-Dice coefficient. 

The Sørensen-Dice coefficient is a statistical tool used to measure the similarity between two 

sets. It was independently developed by the botanists Thorvald Sørensen and Lee Raymond 

Dice in the 1940s [221][222]. The Sørensen-Dice coefficient is calculated using the following 

equation 6:  

𝐷(𝐴, 𝐵) =  2 × (|𝐴 ∩ 𝐵|)/(|𝐴| + |𝐵|)                 (6) 

In the equation |A| and |B| are the cardinalities (number of elements) of set A and B, 

respectively. Where |A ⋂ B| is the number of elements common to both sets. 

In the context of image segmentation, sets A and B represent the sets of pixels in the 

segmented image and the ground truth image, respectively. The coefficient ranges between 0 

and 1, where 0 indicates no overlap between the sets, and 1 indicates perfect agreement. The 

coefficient is particularly valuable for quantifying the performance of cell segmentation 

algorithms by comparing the automated segmentation results with the manually annotated 

ground truth, thereby providing a metric for the accuracy and reliability of the segmentation 

process. 

 

3.7 Cell Tracking 

Cell tracking refers to the process of monitoring and analysing the movement and 

behaviour of living cells over time. This involves the visual depiction, characterisation, and 

quantification of biological processes at the cellular and subcellular levels within intact living 

organisms. The primary goal is to follow the cells’ trajectories in both space and time. The 

benefit of cell tracking is to study various biological processes such as cell motility, division, 

and interaction with other cells, providing insights into embryologic development, wound 

Figure 21: Cell tracking workflow in CellProfiler. 
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healing, tissue maintenance, cancer metastasis, and immune responses [223]. In general, cell 

tracking is a crucial technique in biological research and medical diagnostics, providing an in-

depth understanding of cellular activities and facilitating progress in scientific knowledge and 

practical uses. The task for cell tracking in this study is using CellProfiler, which analyses 

binary images and identifies cells as objects to extract quantitative data. Figure. 21 illustrates 

the cell tracking workflow in CellProfiler. The process starts with input data, which undergoes 

image conversion. The converted images are then used for object tracking. The tracked objects 

and processed images are saved, resulting in the final output data. 

 

3.7.1 CellProfiler 

CellProfiler was first developed in 2005 and officially released in 2006 [224], where 

the tool is used for quantifying and examining images of cells. This tool allows biologists who 

do not have expertise in computer vision or programming to accurately quantify characteristics 

in a large number of images. CellProfiler offers advanced computational methods for image 

analysis, which are structured as separate modules that can be combined in order to create a 

pipeline. This pipeline detects and quantifies cells or other biological entities and their 

morphological characteristics [225]. CellProfiler is specifically designed to generate 

comprehensive data for every individual cell or item of interest in each image and perform the 

same unbiased analysis on a large scale, such as across hundreds or millions of photographs. 

Regarding flexible feature extraction, separate modules assess conventional morphological 

Figure 22: CellProfiler Interface. 
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characteristics such as dimensions, form, brightness, and texture. Complex information may be 

extracted using customised combinations of components. The advantage of CellProfiler is that 

it is user-friendly and that each module includes expertly written documentation from the 

imaging and biology fields. This ensures that image processing is made more accessible and 

comprehensible for scientists. Moreover, each configuration is elucidated in pragmatic terms 

to assist researchers in applying it. Figure 22 illustrates an example of the CellProfiler interface 

pipeline. The initial step to performing cell tracking is to include the postprocessing image as 

input data. Then the image will be processed in a module called ConvertImageToObjects. The 

ConvertImageToObjects module converts images into identifiable objects, making it 

particularly useful for importing previously segmented or labelled images while preserving 

their integer labels. The functionality of this module also offers the ability to convert grayscale 

images to binary before converting them into objects. In the binary conversion process, 

connected components of the image are assigned to the same object, which is beneficial for 

clearly distinguishing objects using a threshold. When using this module with grayscale 

images, note that they will be converted to binary images where pixel intensities below or equal 

to 50% of the input's full intensity range are assigned to the background (value 0), and pixel 

intensities above 50% are assigned to the foreground (value 1). The following pipeline uses the 

TrackObjects module, which enables tracking objects across sequential frames in a series of 

images, ensuring that each object maintains a unique identity throughout the output 

measurements. This module must be placed downstream of an object-identification module, 

such as IdentifyPrimaryObjects. TrackObjects link each object to its corresponding object in 

preceding and subsequent frames, facilitating the study of object lineages and the timing and 

characteristics of dynamic events in time-lapse images. The settings of the TrackObjects 

module are shown in Figure 23. The module is configured to use the "Follow Neighbors" 

method for tracking objects. Results are displayed with both colour and number, and the output 

image is named "TrackedCells." 

The module provides several key measurements for each tracked object, ensuring a 

comprehensive analysis of object behaviour and dynamics. Each tracked object is assigned a 

unique identifier called a label. If an object splits or merges, the resulting child objects inherit 

the label of their ancestor. Additionally, the module records the ImageNumber and 

ObjectNumber of the parent object in the previous frame. For splits, each child object carries 

the label of the original object from which it was split. In the case of a merge, the child object 

inherits the label of the closest parent. Motion measurements include the direction of an object's 



 

81 
 

motion in the x and y coordinates, known as TrajectoryX and TrajectoryY, from the previous 

frame to the current frame. The DistanceTraveled measurement represents the distance an 

object has moved from the previous frame to the current frame, calculated as the magnitude of 

the trajectory vectors. Displacement measures the shortest distance an object has travelled from 

its initial starting position to its current position, essentially a straight-line path between these 

points. IntegratedDistance represents the total distance an object has travelled throughout its 

lifetime. Linearity measures the linearity of the object's trajectory over its lifetime, calculated 

as the ratio of displacement (from the initial to the final location) to the integrated distance 

travelled, with the value ranging from 0 to 1. Lifetime measurements indicate the number of 

frames an object has existed, starting at 1 when the object first appears and incrementing with 

each frame it persists. The lifetimes of all remaining objects are reported in the final frame of 

the image set or movie. FinalAge is similar to Lifetime but is only reported at the final frame 

of an object's life or the end of the movie, whichever comes first. At this point, the final age of 

the object is outputted, with no values stored for earlier frames. These measurements provide 

detailed insights into the behaviour and characteristics of each tracked object, enabling robust 

analysis of dynamic events and object trajectories in time-lapse imaging. 

The cell tracking method applied in this study is the Follow Neighbour method, which 

uses a probabilistic approach combined with graph-based optimisation techniques to ensure 

that the tracked cell movements are consistent and realistic. The core of the method involves 

maximum weighted bipartite graph matching to find the best cell pairings between consecutive 

frames. Additionally, an object's movement direction is more likely to be in agreement with the 

movement directions of its "neighbours," promoting coherent and natural cell tracking [226].  

Figure 23: CellProfiler TrackObjects module interface. 
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The cell tracking accuracy assessment was strategised based on a systematic approach to ensure 

a comprehensive and representative evaluation of the tracking algorithm. First, the frames were 

sampled by selecting 20 frames from the beginning, 20 from the middle, and 20 from the end 

of the sequence. This approach ensures that different stages of the cell population dynamics are 

captured, reflecting potential variations in cell density and behaviour over time. Next, ten cells 

were randomly chosen to track each selected frame. These cells were selected from the middle 

of the images, providing a representative sample of the cell population within the frame. 

Finally, the tracking accuracy was evaluated using the Multiple Object Tracking Accuracy 

(MOTA) metric [227]. This metric provides a robust measure of the tracking performance, 

accounting for false positives, false negatives, and identity switches, thus giving a 

comprehensive assessment of the tracking algorithm's effectiveness. The definition of Multiple 

Object Tracking Accuracy (MOTA) is as follows: 

𝑀𝑂𝑇𝐴 =  1 −  
ఀ೟(ிே೟ାி௉೟ାூ஽ௌ ೟)

ఀ೟ீ ೟்
             (7) 

The variable t is the frame index, and FNt and FPt are the false negative and false positive 

counts at frame t. Furthermore, the variable IDSW is the number of identity switches at frame 

t, while the number of ground-truth objects at frame t represents the variable GT. 

 
3.7.1.1 Data extraction and cell features 

All the extracted data is obtained using the ExportToSpreadsheet module in 

CellProfiler, where raw measurement output files are in comma-separated value (CSV) 

format. The data included in the CSV file are the number of cells, cell location (x and y), cell 

label, image number, distance, and lifespan. The data provided in the CSV files will be used 

to explore features such as cell proliferation and cell motility. These features offer detailed 

insights into cell movement and behaviour, which are essential for understanding the effects 

of various treatments in time-lapse images. Python will be used to calculate data 

automatically. 

 
3.7.1.1.1 Cell proliferation 

Cell proliferation is the process of cell division and growth. This basic biological 

mechanism promotes multicellular organisms' growth and development. Cell proliferation is 

typically measured by counting the number of cells over time, assessing DNA synthesis, or 

using cell division markers. Cell proliferation is directly reflected in the cell growth curve and 

the cell growth rate. During the log phase of the growth curve, the high proliferation rate results 
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in a steep slope, indicating rapid cell division. Conversely, during the lag and stationary phases, 

the proliferation rate is lower, leading to a shallower slope on the growth curve. By analysing 

the cell growth curve, researchers can infer the growth rate and understand cell proliferation 

dynamics under various conditions. 

 

3.7.1.1.1.1 Cell growth curves 

Cell growth curves [228] are graphical representations depicting the growth of a cell 

population over time. These curves illustrate various phases of cell growth in culture, typically 

plotted as the number of cells against time. In this study, the number of cells can be found in 

the CSV file extracted from cell tracking using CellProfiler. Figure 24 shows the cell growth 

curve with four distinct phases: lag phase, log (exponential) phase, stationary phase, and death 

phase. The y-axis represents the number of cells (logarithmic scale), and the x-axis represents 

time (in days). The lag phase is characterised by minimal cell division, the log phase by rapid 

exponential growth, the stationary phase by a balance between cell division and cell death, and 

the death phase by a decline in the number of cells. 

 

3.7.1.1.1.2 Cell growth rates 

Cell growth rates [228] refer to the speed at which a population of cells increases in 

number over a given period of time. Calculating this metric is critical for quantifying how 

quickly cells are proliferating under specific conditions. Equation 8 is used to calculate the cell 

growth rate. 

𝜇 =  
୪୬ (௧)ି୪୬ ே೚

௧ି௧೚
                  (8) 

 

Figure 24: Cell Growth Curve [229]. 
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where N(t) is the number of cells at time t,No is the initial number of cells at the starting time 

t0, t is the final time, and t0 is the initial time.  

 

3.7.1.1.2 Cell motility 

Cell motility is the capacity of cells to move actively [230]. Fundamentally, migration 

is a component of cell motility and is an essential process for growth and survival [231]. Cells 

undergo transitions between stationary and mobile states in an effort to minimise a 

quasipotential; this phenomenon can be conceptualised as an active phase transition problem 

[232]. Two relevant features related to cell motility that distinguish cell behaviour under 

different treatments are cell migration speed and angular velocity. 

 
3.7.1.1.2.1 Cell migration speed  

The cell migration speed provides information about the rate at which a cell moves from 

one location to another by quantifying the rate of cell relocation during migration. It is typically 

calculated based on the total distance a cell travels divided by the time elapsed.  The speed of 

cell migration can be calculated using the following equation: 

 

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 =  
ௗ

௧
 𝜇/𝑚𝑖𝑛  (9) 

 

To calculate cell migration speed, start by measuring the initial and final positions of the cell. 

Determine the initial position (x0, y0) of the cell at time t0. Then, determine the final position 

(xf, yf) of the cell at time tf. Next, calculate the distance travelled by using the Euclidean 

distance formula. The distance d is given by: 

 

𝑑 =  ට൫𝑥௙ − 𝑥଴൯
ଶ

+ ൫𝑦௙ − 𝑦଴൯
ଶ
  (10) 

 

Finally, determine the time interval by calculating the difference between the final and initial 

times. The time interval t is given by: 

𝑡 = 𝑡௙ − 𝑡଴             (11) 

 

3.7.1.1.2.2 Cell angular velocity 

Cell angular velocity measures the rate of change in a cell's direction or orientation 

during migration. It quantifies the rotational motion and is calculated based on the change in 
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direction between sequential positions. The angular velocity of cell migration can be calculated 

using the following method: To calculate cell angular velocity, start by measuring the initial 

and subsequent positions of the cell. For example, consider the cell moving through three 

positions. The coordinates of these positions are: Position 1, (x1, y1); Position 2, (x2, y2); and  

Position 3, (x3, y3). Next, calculate the direction angles of the cell's movement between these 

positions using the arctangent function: 

1. The angle between Position 1 and Position 2: 

 

𝜃ଵ = 𝑡𝑎𝑛ିଵ ቀ
(௬మି௬భ)

(௫మି௫భ)
ቁ   (12) 

 

2. The angle between Position 2 and Position 3: 

 

 𝜃ଶ = 𝑡𝑎𝑛ିଵ ቀ
(௬యି௬మ)

(௫యି௫మ)
ቁ   (13) 

 

Finally, calculate the angular velocity as the absolute difference between these two angles: 

 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  |𝜃ଶ − 𝜃ଵ|𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑓𝑟𝑎𝑚𝑒   (14) 

 

3.8 Cell characterisation 

In live-cell imaging studies, the comprehensive analysis of cellular behaviour over time 

is crucial for understanding complex cellular processes. Modelling techniques are essential to 

enhance predictive capabilities and simulate intricate cell behaviour accurately. Utilising 

interpretable "white box" machine learning, such as Genetic Programming, can reveal patterns 

and relationships in cell population behaviour under various treatments. This approach enables 

the extraction of valuable insights from dynamic cellular activity data, aiding in the prediction 

and simulation of the complexity of cell behaviour. By employing such techniques, researchers 
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can gain a deeper understanding of cellular processes' dynamics and improve cell behaviour's 

characterisation in response to different stimuli. 

 

3.8.1 Genetic programming 

Genetic Programming (GP) is an automated method for creating a working computer 

program from a high-level problem statement [233]. It is a type of evolutionary algorithm, a 

subset of machine learning, that is inspired by biological evolution and its fundamental 

mechanisms [234]. Genetic Programming implements an algorithm that uses random mutation, 

crossover, a fitness function, and multiple generations of evolution to resolve a user-defined 

task [234]. The process starts with a population of randomly created computer programs, which 

is progressively evolved over a series of generations using the Darwinian natural selection 

principle (survival of the fittest) and analogues of various naturally occurring operations, 

including crossover, mutation, gene duplication, and gene deletion [233]. The study explores 

the use of Recurrent Cartesian Genetic Programming (RCGP) [235] in combination with 

pairwise [236] and ensemble [237] methods for symbolic classification [238]. Additionally, the 

study utilises PySR [239], a genetic programming technique that integrates symbolic regression 

[240] with symbolic classification. 

  

3.8.1.1 Recurrent Cartesian genetic programming 

Recurrent Cartesian Genetic Programming (RCGP) is an extension of Cartesian 

Genetic Programming (CGP) that allows the creation of recurrent or cyclic graphs. RCGP can 

learn from feedback (storing internal state), which makes it useful for tasks with limited 

information. The parameter known as recurrent connection probability determines the 

possibility of mutations resulting in the creation of recurrent connections, hence controlling the 

recurrent connections. Prior to exploring RCGP in depth, it is essential to have an overview of 

Cartesian Genetic Programming (CGP). CGP originated from a method developed by Miller et 

al. in 1997 for evolving digital circuits [241]. The term "Cartesian Genetic Programming" first 

appeared in 1999 [242] and was introduced as a general form of genetic programming in 2000 

[243]. The name "Cartesian" is derived from its use of a two-dimensional grid of nodes to 

represent a program.  CGP [244] is a variant of GP [245] that primarily generates computational 

structures consisting of nodes (graphs) arranged in a non-cyclic manner, with each node 
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identified by its Cartesian coordinates. CGP is not affected by bloat [246], which is a 

disadvantage commonly found in many other GP approaches.  CGP chromosomes possess non-

functional genes, which facilitate neutral genetic drift in the course of evolution [247]. CGP 

commonly employs point or probabilistic mutation without crossover and utilises a (1 + λ)-ES. 

While CGP chromosomes maintain a constant size, the number of active nodes can change 

during evolution, resulting in phenotypes of varying lengths. The user defines a maximum 

number of nodes from which only a fraction will be active. Previous studies have demonstrated 

that overestimating the number of nodes can greatly facilitate evolution [248]. This is believed 

to enhance neutral genetic drift and could possibly offset any bias towards longer sequences 

[249]. Each CGP chromosome has function genes (Fi), connection genes (Ci), and output genes 

(Oi). The function genes serve as indices in a function look-up table, describing the 

functionality of each node. The connection genes specify where each node gets its inputs. In 

regular acyclic CGP, connection genes can connect a node to any prior program node or 

program inputs. The output genes address any program input or internal node, determining 

which are utilised as program outputs.   

CGP programs were organised with nodes arranged in rows (nodes per layer) and 

columns (layers), with each node indexed by its row and column. The arrangement of nodes 

into rows and columns is optional. A configuration using just one row with multiple columns 

can be equally effective as long as the total number of nodes remains the same. The key 

capability of CGP lies in its ability to evolve the connections between nodes rather than being 

constrained by their physical arrangement in rows and columns. Equation 15 represents a 

generic CGP chromosome with a single row structure. In this equation, α (alpha) is the arity of 

each node, signifying the number of inputs it can take. Additionally, n represents the total 

number of nodes in the program, and m signifies the number of outputs the program produces. 

F0C0,0….C0,𝛼F1C1,0….C1,𝛼 …… FnCn,0….Cn,𝛼O0….0m    (15) 

Figure 25 illustrates a Cartesian Genetic Programming (CGP) example and its chromosome, 

showing that nodes connect to earlier nodes or inputs, and not all inputs are necessarily used. 

This allows evolution to determine important inputs. CGP's advantage over tree-based genetic 

programming is that node outputs can be reused, avoiding redundant recalculations. 

Additionally, not every node contributes to the final output, allowing for inactive nodes that 

support neutral genetic drift and variable-length phenotypes. 
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Unlike Cartesian Genetic Programming (CGP), which restricts connections to prevent loops, 

RCGP allows any connection within the program. This includes connections between any 

nodes, even allowing a node to connect to itself or to the program's inputs. Figure 26 

demonstrates this flexibility with an example program generated using RCGP and its 

corresponding chromosome. 

 

RCGP phenotypes operate similarly to CGP phenotypes. The process begins with the 

active node nearest to the inputs, where each node computes its output value based on its inputs. 

After all active nodes have been updated, the program outputs are recorded. However, recurrent 

connections can pose a challenge, as a node's output may be needed before it has been 

computed. To address this, all nodes are initially set to output zero until they calculate their 

own values. When executing a RCGP phenotype, the process unfolds as follows: First, all 

active nodes are set to output zero. Next, the subsequent set of program inputs is applied. After 

this, all active nodes are updated once, transitioning their state from program inputs to program 

outputs. Then, the program outputs are read. This cycle, starting from applying the next set of 

program inputs, is repeated until all program input sets have been applied. In RCGP, the 

Figure 25: Example of CGP structure with inputs (0, 1, 2), 
functional nodes (F0, F2, F1), and output. Shows node reuse 

and inactive nodes for neutral genetic drift [235]. 

Figure 26: Example of an RCGP structure with inputs (0, 1, 2), 
functional nodes (F2, F0, F1), and output. Shows recurrent 
connections, including a node connecting to itself [235]. 
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"recurrent connection probability" parameter determines the chance that mutations will 

produce recurrent connections. For instance, setting this probability at 10% means that 10% of 

the mutations in connection genes will create cyclic connections, whereas a setting of 0% 

maintains a traditional CGP setup with only acyclic connections. While RCGP chromosomes 

function in a manner similar to traditional CGP chromosomes, they differ primarily in how they 

handle program outputs. 

 

3.8.1.1.1 Dataset preparation 

A cell culture dataset was generated from a 12-well plate, with wells 0, 1, 2, and 3 under 

control conditions (no treatment). Wells 4, 5, 6, and 7 were treated with 4 ng/mL TGFβ, while 

wells 8, 9, 10, and 11 were treated with 10 μM SB431542. Data were collected from all wells 

every 5 minutes for a duration of 48 hours. Features such as cell growth (number of cells), cell 

migration, and cell angular velocity were extracted from each well and calculated for every 

time point. However, the data for cell migration and angular velocity were averaged over the 

interval frames. This averaging method [250] [251] [252] [253] is a helpful approach used to 

analyse the overall behaviour of the cell population.  The benefit of using this average interval 

frame is that it captures the changes over time and the patterns of variation in the datasets at 

various time intervals, offering more insightful measurements than a single overall average. 

This method minimises the intricacy of unprocessed time series data to a controlled amount 

while still preserving important information. Utilising standardised time intervals enables 

unbiased comparisons between treatments by eliminating the influence of non-uniform time 

points. It also facilitates trend analysis, providing a detailed understanding of treatment effects 

over time. Average interval frames smooth out short-term fluctuation and noise, resulting in 

more stable and robust measures less influenced by outliers. Equation 16 represents the 

calculation of the average value over a frame interval. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒௝ =
ଵ

௞
∑ 𝑥௜

௝௞
௜ୀ(௝ିଵ)௞ାଵ      (16) 

The variable j represents the interval index, ranging from 1 to M , where M is the total number 

of intervals. The variable k denotes the number of frames in each interval. The term xi refers to 

the value of the feature (such as cell migration speed) at frame i. The expression (j-1)k+1 

indicates the starting frame of the j-th interval, while jk signifies the ending frame of the j-th 

interval. 
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Listing 1 shows the pseudocode for calculating the average of cell migration speed and 

angular velocity over specified intervals. The function calculate_interval_averages accepts a 

DataFrame df and an interval length interval length. It computes the number of intervals and 

iteratively calculates the mean for each interval, appending these means to a list. The list is 

then converted into a DataFrame and returned. The main script reads data from a CSV file, sets 

the interval length, calls the function to calculate interval averages, and subsequently prints and 

saves the resulting averages to a new CSV file. 

 

Listing 1: Average operation interval frame. 

BEGIN 

FUNCTION calculate_interval_averages(df, interval_length) 

    SET num_intervals = number of rows in df DIVIDED BY interval_length 

    INITIALIZE empty list interval_averages 

    FOR i FROM 0 TO num_intervals - 1 

        SET start_idx = i * interval_length 

        SET end_idx = (i + 1) * interval_length 

        SET interval_avg = mean of rows from start_idx to end_idx in df 

        APPEND interval_avg to interval_averages 

    CONVERT interval_averages to DataFrame interval_avg_df 

    RETURN interval_avg_df 

READ data from 'data.csv' into DataFrame df 

SET interval_length to 10 

SET interval_averages_df = calculate_interval_averages(df[['migration_speed', 
'angular_velocity']], interval_length) 

PRINT interval_averages_df 

SAVE interval_averages_df to 'interval_averages.csv' 

END 
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3.8.1.1.2 Dataset Normalisation 

After completing the data averaging process, the next task is to perform normalisation 

of the datasets using Min-max normalisation. Normalisation is a technique used to scale the 

features of a dataset to a specific range, typically [0, 1]. This process is essential when the 

features have different ranges or units, as it ensures that each feature contributes equally to the 

analysis. In this study, the features being normalised are cell growth, cell migration speed, and 

angular velocity. Min-max normalisation [254], also known as min-max scaling, is done by 

subtracting the minimum value of a feature from each of its values and then dividing the result 

by the range of the feature (the difference between the maximum and minimum values). 

Equation 17 illustrates the min-max scaling formula. 

𝑋௡௢௥௠ =
௑ି௑೘೔೙

௑೘ೌೣି ௑ౣ౟౤ ⬚
    (17) 

Where Xnorm represents the normalised feature value. 𝑋 denotes the original feature value. 𝑋𝑚𝑖𝑛 

is the minimum value of the feature. 𝑋𝑚𝑎𝑥 is the maximum value of the feature.  

Listing 2 shows pseudocode for normalising data using MinMaxScaler. This algorithm 

begins by importing the necessary libraries, specifically pandas for data manipulation and 

MinMaxScaler from sklearn.preprocessing for normalisation. It reads the data from a CSV file 

into a DataFrame, initialises the MinMaxScaler with a feature range of (0, 1), and selects the 

columns to be normalised (growth, migration_speed, angular_velocity). The algorithm then fits 

and transforms these columns using the scaler, prints the first few rows of the normalised data, 

verifies the minimum and maximum values of the normalised columns, and finally saves the 

normalised data to a new CSV file. This process ensures that the data is scaled within a specific 

range, facilitating better performance and comparability in subsequent analysis or machine 

learning tasks. 

 

Listing 2:Normalisation using MinMaxScaler. 

BEGIN 

  IMPORT pandas AS pd 

  IMPORT MinMaxScaler FROM sklearn.preprocessing 
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  # Load the data from a CSV file 

  df <- pd.read_csv('data.csv') 

 

  # Initialize MinMaxScaler 

  scaler <- MinMaxScaler(feature_range=(0, 1)) 

 

  # Select the columns to be normalised 

  columns_to_normalise <- ['growth', 'migration_speed', 'angular_velocity'] 

 

  # Fit and transform the data 

  df[columns_to_normalise] <- scaler.fit_transform(df[columns_to_normalise]) 

  # Display the first few rows of the normalised data 

  PRINT df.head() 

 

  # Verify the min and max values 

  PRINT df[columns_to_normalise].min() 

  PRINT df[columns_to_normalise].max() 

 

  # Save the normalised data to a new CSV file 

  df.to_csv('normalised_data.csv', index=False) 

END 

 

3.8.1.1.3 Dataset Splitting 

Dataset splitting is necessary for machine learning, ensuring that models are trained, 

validated, and tested on separate data subsets. The task approach helps evaluate the model's 

performance accurately and prevents overfitting [255]. The splitting involves dividing the 

dataset into training, validation, and testing sets by selecting data points based on the number 

of wells for each treatment. The training set is used to construct the model, in which the 

algorithm acquires knowledge from the data. The validation set is utilised to fine-tune 

hyperparameters and mitigate overfitting, offering an unbiased assessment during the training 

process. The testing set provides an unbiased evaluation of the finished model, ensuring that 
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the performance measures accurately represent the model's capacity to apply to new data. As 

mentioned earlier in this chapter, there are 12 well datasets, where datasets for Wells 0 through 

3 are maintained without any treatment (control). Datasets from Wells 4 through 7 have been 

treated with TGF-beta, while the remaining wells, 8 through 11, are treated with SB431542. 

The data-splitting approach is based on the number of wells for each treatment. For example, 

for the control group, datasets from Wells 0 and 1 are used for training, the dataset from Well 

2 for validation, and the dataset from Well 3 for testing. The same approach is also applied to 

datasets from wells treated with TGF-beta and SB431542. The implementation of dataset 

validation is based on K-fold cross-validation, where cross-validation is another method where 

the dataset is divided into k subsets, and the model is trained and validated k times, each time 

using a different subset as the validation set and the remaining k-1 subsets for training. This 

technique maximises the available data for training and validation, providing a more robust 

estimate of model performance [256].  

 

3.8.1.1.4 Cross-Validation 

Cross-validation is a widely used statistical method in machine learning for evaluating 

the performance of models and algorithms [257] [258]. It is beneficial when working with 

limited amounts of data or when assessing the model's ability to generalise to unseen data. The 

primary goal of cross-validation is to partition the dataset into multiple subsets, training and 

testing the model on each subset to obtain a more accurate estimate of its performance. Cross-

validation helps mitigate the risk of overfitting by better estimating the model's performance 

on unseen data [259]. Using different training and testing sets during each iteration ensures that 

the model's ability to generalise is considered. There are several variations of cross-validation, 

such as k-Fold Cross-Validation, Stratified k-Fold Cross-Validation, Leave-One-Out Cross-

Validation (LOOCV), Time-Series Cross-Validation, and Grouped k-Fold Cross-Validation. 

Each of these variations is tailored to different types of datasets and model evaluation 

requirements [260]. The cross-validation method helps researchers obtain a reliable estimate 

of their machine-learning model's performance and benefits model selection and improved 

predictions on new data [261]. In order to enhance the model evaluation, this study applied the 

K-fold cross-validation method. K-fold cross-validation divides the training set into K subsets, 

using each subset once as a validation set and the remaining subsets for training. This process 

is repeated K times, and the performance metrics are averaged over the iterations to provide a 
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more reliable estimate of the model's generalisation performance. Tables 12, 13, and 14 present 

the configuration for cross-validation applied to the dataset in the control, TGF-Beta and 

SB431542 treatment scenarios, demonstrating the allocation of different wells into training, 

validation, and testing sets across five folds. This setup ensures that each well is systematically 

rotated through each phase of the model evaluation process. Specifically, wells are assigned to 

the training set in combinations that include every well at least once across the folds, while the 

validation and test sets are populated to complement the training data effectively. The 

distribution helps in obtaining a reliable estimate of the model's generalisation performance by 

averaging the results across multiple configurations and treatments. 

 

Table 12: Cross-Validation for the dataset in control and SB431542 treatment. 

Fold Training Well Validation Well Test Well 

1 0,1,9,10 2,8 3,11 

2 0,2,8,10 1,9 

3 1,2,8,9 0,10 

4 0,1,8,10 2,9 

5 0,2,9,10 1,8 

 

Table 13: Cross-Validation for the dataset in control and TGF-Beta treatment. 

Fold Training Well Validation Well Test Well 

1 0,1,4,5 2,6 3,7 

2 0,2,4,6 1,5 

3 1,2,5,6 0,4 

4 0,1,5,6 2,4 

5 0,2,4,5 1,6 
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Table 14: Cross-Validation for the dataset in SB431542 and TGF-Beta treatment. 

Fold Training Well Validation Well Test Well 

1 4,5,8,9 6,10 7,11 

2 4,6,8,10 5,9 

3 5,6,9,10 4,8 

4 4,5,9,10 6,8 

5 4,6,8,9 5,10 

 

3.8.1.1.5 Pairwise Method Approach for RCGP Symbolic Classification 

Pairwise classification [262] is a method employed in machine learning, specifically in 

ranking and preference learning. The process involves converting a multi-class problem into a 

series of two-class problems, one for each pair of classes, and each combination of classes is 

examined individually. The advantages of using the pairwise method include its ability to be 

easily parallelised, as it breaks down into independent subproblems [263]. This method also 

provides redundancy by learning multiple classifiers for each pair of classes, which can 

enhance generalisation performance [264]. Additionally, it requires less training time [265]. 

The classification in this study aimed to determine which datasets belong to Control, TGF-

Beta, and SB431542. In a pairwise approach, the classification is done in pairs, resulting in 

three binary classifiers for the pairs (Control, SB431542), (Control, TGF-Beta), and 

(SB431542, TGF-Beta). Each classifier will learn to distinguish between the two classes in its 

pair. To classify a new instance, each of these classifiers makes a prediction, and these 

predictions are then aggregated to decide the final class label for the instance using an ensemble 

method. Figure 27 showcases the implementation of pairwise classification using Recurrent 

Cartesian Genetic Programming (RCGP), utilising three cell features: Cell Growth, Cell 

Migration Speed, and Cell Angular Velocity, labeled as Input 0, Input 1, and Input 2. Each input 

is employed across models for comprehensive pairwise comparisons where Pairwise 1 

distinguishes between Control and SB431542 treatments, Pairwise 2 differentiates between 

Control and TGF-beta treatments, and Pairwise 3 compares SB431542 to TGF-beta treatments. 

Each model's output is depicted as continuous values to enhance clarity and understanding, 
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with the figure legend explicitly defining each comparison. All three models utilise the same 

inputs but are trained to distinguish between different pairs of treatments, and their outputs 

collectively determine the final classification of the treatment type. 

 

Before proceeding with the training process, the datasets need to be structured as shown 

in Listing 3. The listing presents a sample dataset formatted for Recurrent Cartesian Genetic 

Programming (RCGP). The first line of the dataset specifies that each sample contains 3 input 

values and 2 output values, and there are a total of 60 samples. Each subsequent line represents 

an individual sample, with the input values listed first and the output values separated by 

commas. For example, the first sample consists of input values 0.583, 0.121, and 0.532, 

followed by output values 0 and 1. This format is consistently applied across all samples in the 

dataset. 

Listing 3: Example Dataset Format. 

3,2,60 
0.583,0.121,0.532,0,1 
0.583,0.285,0.156,0,1 
0.583,0.036,0.029,0,1 
0.583,0.201,0.338,0,1 
0.583,0.109,0.446,0,1 
0.583,0.125,0.395,0,1 
0.583,0.145,0.656,0,1 
0.583,0.114,0.038,0,1 
 

Figure 27: Pairwise Approach Using Recurrent Cartesian 
Genetic Programming implementation. 
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The setting of parameters for RCGP is shown in listing 4. The listing outlines the configuration 

parameters for the Recurrent Cartesian Genetic Programming (RCGP) model. The model uses 

a (1+4)-ES evolutionary strategy, meaning one parent generates four offspring each generation. 

The random seed is set to 10 to ensure reproducibility of results. The model takes two input 

values and has 30 computational nodes. It produces three output values, and each node can 

have up to two input connections. The probability of mutation is set to 5%, and the probability 

of connections being recurrent (feedback loops) is set to 10%. A supervised learning fitness 

function is used to evaluate the model, with a target fitness value of 0.1. This means the sum 

of the absolute differences between the predicted and target outputs should be 0.1 or lower. The 

selection scheme used is to select the fittest individuals, and offspring are produced by mutating 

a randomly chosen parent. The model's parameters are updated every 5 generations. The 

function set available for nodes includes addition (add), subtraction (sub), multiplication (mul), 

division (div), sigmoid (sig), and rectified linear unit (relu), with six functions in total. The 

model will run for a total of 8000 generations (numGens = 8000). 

 

Listing 4: Configuration Parameters for RCGP Model. 

----------------------------------------------------------- 
                       Parameters 
----------------------------------------------------------- 
Evolutionary Strategy:                    (1+4)-ES 
Random Seed:                              10 
Inputs:                                    2 
Nodes:                                     30 
Outputs:                                   3 
Node Arity:                               2 
Mutation rate:                            0.050000 
Recurrent Connection Probability:        0.100000 
Fitness Function:                         supervisedLearning 
Target Fitness:                           0.100000 
Selection scheme:                        selectFittest 
Reproduction scheme:                      mutateRandomParent 
Update frequency:                         5 
Function Set:                add sub mul div sig relu (6) 
----------------------------------------------------------- 
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The implementation of the pairwise approach for RCGP symbolic classification was 

accomplished by applying the 12 configurations of cross-validation for each pair. The flow of 

the RCGP program, as illustrated in Figure 28, begins with the initialisation of variables. 

Pointers for various parameters, datasets, and results are declared, along with integer and 

double variables for settings such as the number of inputs, nodes, outputs, and various control 

parameters, including mutation rates and update frequencies. Once the variables are declared, 

specific values are assigned to each, configuring the operational settings of the RCGP system. 

Following the setup of these variables, the RCGP parameters are initialised. This phase 

involves setting up the genetic programming environment by defining the types of node 

functions that can be used in the chromosomes and setting system-wide parameters such as the 

update frequency, the random number seed, and the probability of recurrent connections within 

the genetic structures. The parameters are then displayed to verify the correct setup. 

 

The next step involves loading the datasets. These datasets, which consist of training, 

validation, and test data, are loaded from specified file paths. The files contain the data 

necessary to evolve and evaluate genetic programs. Once the datasets are prepared, the 

evolutionary strategy is executed. This core phase of the process involves running the RCGP 

algorithm, which iteratively evolves a population of chromosomes over several generations. 

The objective is to optimise the chromosomes to solve a specific problem, with fitness 

evaluations guiding the evolutionary process towards better solutions. After completing the 

evolutionary strategy, the system proceeds to free-allocate memory. This crucial cleanup step 

involves relocating all the memory used for parameters, datasets, and results to prevent memory 

leaks. It ensures that all resources are properly managed and released after their use. Finally, 

the process concludes, marking the end of the RCGP execution. Metrics used for assessing 

model performance (e.g., accuracy) are then reviewed to evaluate the effectiveness of the 

Initialise 
variable Start 

Set variable 
values 

Initialise 
parameters 

Load datasets  Run 
evolutionary 

process  

Free allocated 
memory  Stop 

Figure 28: Flowchart of the RCGP Program. 
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model. An evolutionary strategy (ES) can be summarised in a series of steps typically followed 

in its implementation. Initially, an initial population of potential solutions is created, where 

each individual in the population is represented by a set of parameters (often real-valued) that 

define a possible solution to the problem at hand. The next step is the evaluation of the fitness 

of each individual in the population. The fitness function measures how well each individual 

solves the problem. Following this, selection occurs, where individuals from the current 

population are chosen based on their fitness. Individuals with higher fitness are more likely to 

be selected to pass their genes to the next generation. Recombination, or crossover, then takes 

place. This step involves combining pairs of selected individuals to create offspring by 

exchanging parts of the parents' parameter sets to produce new individuals. Mutation follows, 

wherein random changes are applied to the offspring's parameters. This introduces variability 

and allows the algorithm to explore new areas of the search space. In ES, mutation parameters 

can self-adapt, meaning they can change over time based on the success of previous mutations. 

Replacement is the next phase, replacing the old population with the new one. This can be done 

in various ways, such as replacing the entire population or only the least fit individuals. 

Following replacement, the process checks if the termination criteria are met. Typical criteria 

include reaching a maximum number of generations, achieving a satisfactory fitness level, or 

observing no significant improvement over several generations. Finally, the output is 

determined: the best individual in the final population is considered the solution to the problem. 

The flowchart of the Evolutionary Strategy (ES) process shown in Figure 29 illustrates how 

the algorithm iteratively improves the population of solutions until an optimal or near-optimal 

solution is found. 

 

3.8.1.1.6 Ensemble Methods 

Ensemble learning algorithms are a powerful machine learning technique that combines 

robust classifiers for enhanced performance. By running multiple classification algorithms 

simultaneously, this method yields better model performance and more accurate solutions than 

using a single classifier. The fundamental principle behind ensemble models is to merge a group 

of weak learners into a strong learner, thereby increasing the model's accuracy [266]. Errors in 

learning typically stem from noise, bias, and variance. Combining multiple classifiers helps 

reduce these factors, resulting in a more reliable classification than what can be achieved with 

a single classifier. The types of ensemble methods include Bagging, Boosting, and Stacking. 
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Five-fold cross-validation is used in this ensemble learning approach, and the metric to evaluate 

the performance is based on accuracy. 

 

3.8.1.1.6.1 Bagging 

The Bagging method, short for Bootstrap Aggregating, is a machine learning technique 

that improves model accuracy by combining the predictions of multiple base models trained 

on different subsets of the training data. These subsets are created using a process called 

bootstrap sampling, where data is randomly sampled with replacement. The final prediction is 

typically made by averaging the predictions for regression tasks or taking a majority vote for 

classification tasks. Figure 30 illustrates the Bagging process in ensemble learning, showcasing 

the three main steps involved. Initially, the training data is divided into multiple subsets (Subset 

1, Subset 2, Subset 3) using Bootstrap Sampling. This involves randomly selecting samples 

from the dataset with replacements, creating diverse subsets of the original data. Each subset 

is then used to train separate Random Forest Classifiers as base models (Base Model 1, Base 

Model 2, Base Model 3), with the diagram showing arrows connecting Subset 1, Subset 2, and 

Subset 3 to their respective base models. This indicates that these are instances of the same 

model trained on different subsets of data. Once all the base models are trained, their 

predictions are combined in the aggregation step to produce the final prediction (Output). The 

Figure 29: Flowchart of the Evolutionary Strategy (ES) 
Process. 
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aggregation block demonstrates this process, where the predictions from Base Model 1, Base 

Model 2, and Base Model 3 are merged. For classification tasks, this is typically done by taking 

a majority vote, ensuring a more reliable and accurate final output. This method enhances the 

model's performance by reducing variance and leveraging the strengths of multiple classifiers, 

as indicated in the final output block. 

 

3.8.1.1.6.2 Boosting 

Boosting is an ensemble learning method that improves model accuracy by training 

multiple models sequentially. Each new model specifically focuses on correcting the errors 

made by the previous models, giving more weight to misclassified instances. The final 

prediction is made by combining the predictions of all the models, often using a weighted vote 

for classification tasks. Figure 31 illustrates the Boosting process in ensemble learning, 

specifically employing the XGBoost algorithm, which aims to enhance performance through 

sequential model training. The process begins with an initial model trained on the entire dataset 

(x, y). After this initial training, the model's predictions are assessed to identify instances that 

were misclassified (e1), which are then assigned increased weight, resulting in a weighted 

dataset (x, y, + e1) used for training the next model. 

The training sequence continues with Model 2, which operates on this newly weighted 

data to produce new predictions and further identify misclassifications (e2). The weight 

adjustment process is repeated, generating another weighted dataset (x, y, + e2). This cycle 

proceeds until a predetermined number of models (Model N) are trained or until the error rate 

ceases to improve. Each subsequent model increasingly focuses on the instances that were 

Figure 30: Bagging process in Ensemble Learning. 
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previously misclassified, aiming to correct these errors and reduce bias. Ultimately, the trained 

models' predictions are aggregated to produce the final output. For classification tasks, this 

aggregation is typically executed through weighted voting, where the combined predictions 

from each model are tallied, and the majority vote determines the final prediction. 

 

 

3.8.1.1.6.3 Stacking 

Stacking ensemble is a machine learning technique that combines multiple models to 

improve predictive performance by using a meta-model to aggregate the predictions of base 

models. The base models are first trained on the original data, and their predictions are then 

used as input features for the meta-model, which makes the final prediction. Figure 32 

illustrates the Stacking process in ensemble learning, also known as stacked generalisation. 

This method combines multiple classification models via a meta-learner to enhance predictive 

performance. In this example, the base models consist of Logistic Regression (Base Model 1), 

Decision Tree Classifier (Base Model 2), and Random Forest Classifier (Base Model 3), while 

the meta-model is a Logistic Regression model. The process begins with training the individual 

models on the entire dataset. Each base model (Base Model 1, Base Model 2, and Base Model 

3) makes predictions on the validation set, and these predictions are collected and used as input 

features for the meta-model. The diagram shows the flow from the datasets to the base models 

and from the base models to the meta-model, with arrows indicating the transfer of predictions 

Figure 31: Boosting process in Ensemble Learning. 
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as features. The individual models are trained on the complete training set. After training, the 

predictions of each base model on the validation set are used as new input features for the meta-

learner. The meta-learner, in this case, a Logistic Regression model, is then trained on these 

predictions to make the final prediction. When new input data is provided, it is first passed 

through the individual base models, whose predictions are combined and fed into the meta-

learner. The meta-learner uses these combined predictions to generate the final output. This 

method leverages the strengths of each base model and the logistic regression meta-learner to 

improve overall predictive performance. This sequential process of training, predicting, and 

combining enhances model accuracy, as depicted in the final output block. 

 

3.8.1.1.6.4 RCGP with Pairwise and Ensemble Approach 

The implementation of RCGP models in conjunction with pairwise and ensemble 

approach is a novel method for improving classification accuracy. Figure 33 depicts an 

ensemble classification system utilising multiple RCGP models. It begins with the system 

taking three types of input data: Cell Growth, Cell Migration Speed, and Cell Angular Velocity. 

These inputs are fed into three separate RCGP models, each performing pairwise comparisons 

or analyses, labelled as RCGP (Pairwise 1), RCGP (Pairwise 2), and RCGP (Pairwise 3). These 

three RCGP models' outputs are combined in an ensemble module. This ensemble method 

aggregates the results from the different models to enhance the overall classification 

performance. Finally, the ensemble module produces a final classification output based on the 

integrated information from the three RCGP models. This figure shows a novel symbolic 

classification system that leverages the strengths of multiple RCGP models by integrating 

pairwise and ensemble learning to achieve a more accurate and robust classification outcome. 

Figure 32: Stacking process in Ensemble Learning  
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3.8.1.2 PySR 

PySR [267] is an open-source library based on genetic programming techniques to 

perform symbolic regression and symbolic classification, a machine learning task that aims to 

discover interpretable symbolic expressions that model a given dataset. 

 

3.8.1.2.1 Core Principles and Genetic Programming Techniques 

PySR was first released in 2020 [239]. It operates with multiple populations evolving 

independently but asynchronously, allowing different populations to progress at their own rates 

and interact periodically. At its core, PySR's process is based on a classical evolutionary 

algorithm using tournament selection [268] for individual selection, involving several 

mutations and crossovers to generate new individuals. In the tournament selection process, a 

subset of individuals is randomly selected from the population, their fitness is evaluated, and 

the fittest individual is chosen as the winner with a certain probability. If the fittest is not 

selected, the process repeats until an individual is chosen. The selected individual then 

undergoes a mutation, creating a new individual that replaces a population member. One 

significant modification in PySR is age-regularised evolution [269], where the eldest individual 

(determined by the Unix creation time) is replaced rather than the least fit one. This approach 

prevents premature convergence and maintains diversity within the population, avoiding a 

Figure 33: RCGP with pairwise and ensemble methods. 
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condition where individuals become too similar and focus narrowly within the search space. 

PySR's algorithm is computationally efficient and supports parallelisation, with different 

groups of individuals evolving in parallel and asynchronously migrating between groups to 

enhance diversity and exploration capabilities. The evolutionary algorithm in PySR involves 

initialising a population, applying tournament selection to subsets of individuals, selecting and 

mutating the fittest individuals, and replacing the eldest members to maintain diversity. 

Three main modifications enhance PySR's classic evolutionary algorithm. The first 

modification is the application of simulated annealing [270] to the mutation acceptance 

process, introducing a temperature parameter that affects the probability of mutation rejection 

based on fitness changes. This allows the algorithm to alternate between phases of high and 

low temperatures, balancing the exploration and refinement of individuals. Higher 

temperatures increase diversity, while lower temperatures optimise the fittest individuals, 

significantly speeding up the search process. The second modification is embedding the genetic 

algorithm within an evolve-simplify-optimise loop. The "evolve" phase involves applying 

tournament selection-based evolution for a set number of mutations. The "simplify" phase 

reduces equations to their simplest equivalent forms using algebraic equivalencies, and the 

"optimise" phase uses classical optimisation techniques, such as the BFGS algorithm [271], to 

fine-tune numerical constants within the equations. This loop allows the exploration of 

necessary intermediate states and significantly enhances the discovery of useful equations, 

especially those containing real constants, which is essential for scientific applications. 

The third modification involves using an adaptive parsimony metric. The number of 

nodes defines complexity in PySR in an expression tree, and this definition is user-

configurable. Traditionally, complexity is penalised with a constant parsimony factor, but PySR 

adaptively adjusts the complexity penalty based on the frequency and recency of expressions 

with similar complexity in the population. This adaptive penalty encourages exploring a 

balanced range of simple and complex expressions, preventing premature convergence to 

suboptimal functional forms and improving the chances of discovering more accurate and 

interpretable models. Listing 5 shows the pseudocode of the PySR outer loop program, which 

involves initialising multiple populations with random expressions, evolving these populations 

through a process of selection, mutation, simplification, and optimisation, and periodically 

migrating the best expressions between populations. The algorithm operates in parallel over 

multiple iterations to find the best mathematical expressions for a given dataset. The main steps 
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include evolving expressions, simplifying and optimising them, updating the best expressions, 

and migrating these best expressions across populations to enhance diversity and exploration. 

 

Listing 5: PySR [267]. 

input : X , the dataset to find expressions for 
output : the best expressions at each complexity 
param : np , the number of populations ( =40) 
param : L, the number of expressions in each population ( =1000) 
param : α H , replacement fraction using expressions from H (=0.05) 
param : α Mi , replacement fraction using expressions from ∪i Mi (=0.05) 
 
1  function pysr( X ) 
2     for i in range( np ) // [code] 
3         create P i containing L random expressions of complexity 3 
4         // e.g., (3.2 + x1) has size 3 
5         create empty set M i // will store best expressions seen in P i 
6     end 
7     create empty set H // will store best expressions overall 
8     for n in range( niter ) // [code] 
9         // the following loop is parallelized over workers: 
10        for i in range( np ) 
11            // evolve-simplify-optimize: 
12            P i = evolve( P i , X ) 
13            for E in P i  
14                simplify E 
15                optimize constants in E 
16                store updated E in P i  
17            end 
18            M i ← most accurate expression in P i at each complexity 
19            // (In actuality, M i is updated throughout evolve ) 
20            H ← most accurate expression in M i ∪ H at each complexity 
21        end 
22        // migration: 
23        for E in P i  
24            if rand() < α H  
25                replace E in P i with a random expression from H 
26            end 
27            if rand() < α M  
28                replace E in P i with a random expression from ∪ j≠ i M j  
29            end 
30        end 
31    end 
32    return H 
33 end 
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Listing 6 illustrates the evolve-simplify-optimise loop in the PySR algorithm, detailing how a 

set of expressions (P) is evolved using a dataset (X). The process involves multiple iterations 

where either mutation or crossover operations are applied to the expressions. For mutations, an 

expression is selected through a tournament and then mutated based on an annealing 

temperature that decreases over time. This mutated expression replaces the oldest expression 

in the set. For crossovers, two expressions are selected, combined, and the resulting new 

expressions replace the two oldest ones, provided they meet specific constraints. The process 

repeats for a set number of iterations to evolve the set of expressions towards better solutions. 

 

Listing 6: Evolution [267]. 

input : P, a set of expressions 
input : X as in listing 1 
output : P, the evolved set of expressions 
param : nc, the number of mutations per evolve() call (=300000) 
param : pcross, the probability of crossover (=0.01) 
 
1  function evolve(P, X ) 
2     for k in range(nc) // [code] 
3         if rand() > pcross // [code] 
4             // mutation 
5             E ← tournament(P, X ) 
6             T ← 1 - k / nc // annealing temperature 
7             E* ← mutate(E, T ) 
8             replace oldest expression in P with E* 
9         else 
10            do 
11                // crossover 
12                E1 ← tournament(P, X ) 
13                E2 ← tournament(P, X ) 
14                E1*, E2* ← crossover(E1, E2 ) 
15                replace oldest two expressions in P with E1* and E2* 
16            until satisfies_constraints(E1*) and satisfies_constraints(E2*) 
17        end 
18    end 
19    return P 
20 end 

Listing 7 shows the set of mutations supplemented with simulated annealing. The mutation 

function modifies an expression (E) based on a type of mutation selected randomly but 

weighted by predefined probabilities. The mutation types include mutating constants, replacing 

operators, appending or inserting nodes, deleting subtrees, simplifying the expression, or 
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generating a completely new tree. After applying the mutation, the new expression (E*) is 

evaluated for constraints and compared to the original for complexity and accuracy. The 

acceptance of the mutated expression is determined by a probability that incorporates the 

annealing temperature and a parsimony factor, which balances the trade-off between 

exploration and exploitation. If the mutated expression is accepted, it replaces the original; 

otherwise, the original expression is retained. 

 

Listing 7: Mutation [267]. 

Algorithm 3: Mutations. 
 
input : E, an expression 
input : T, the annealing temperature ∈ [0, 1] 
output : mutated version of E 
param : mi, for i = 1, ..., 8, the probability weight of mutation type i 
param : f, the constant perturbation scale (=1) 
param : c, the minimum perturbation (=0.01) 
param : α, the temperature scale (=0.1) 
 
1  function mutate(E, T ) // [code] 
2      adjust weights w1, ..., w8 based on constraints 
3      i ← random choice of 1, ..., 8 weighted by w1, ..., w8 
4      E* ← copy(E) 
5      switch i 
6          case 1 // mutate constant 
7              a ← (1 + f × T + c)^(2 × rand()) − 1 
8              if rand() < 0.5 
9                  a ← -a 
10             end 
11             multiply random constant in E* by a 
12         case 2 // mutate operator 
13             randomly replace an operator in E* with an operator of the same degree 
14         case 3 // append/prepend node 
15             insert random node to root or leaf of E* 
16         case 4 // insert node 
17             insert a random node inside E* 
18         case 5 // delete subtree 
19             replace a node and its children from E* with a constant or variable 
20         case 6 // simplify tree 
21             simplify E* 
22         case 7 // new tree entirely 
23             E* ← random expression 
24         case 8 // no mutation 
25             do nothing 
26     end 
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27     until satisfies_constraints(E*) 
28     C, C* ← complexity of expressions E, E*, respectively 
29     L, L* ← accuracy of expressions E, E*, respectively 
30     δanneal ← exp((L - L*) / αT) 
31     C* ← complexity of expressions E 
32     θparsimony ← frecency[C] 
33     if rand() < δanneal · θparsimony 
34         return E* 
35     else 
36         return E 
37    end 
38 end 

 The last process outline in listing 8 describes the tournament selection strategy. The 

tournament function selects a single expression from a population by randomly choosing a 

subset and iteratively finding the fittest expression within that subset. The probability of 

selecting the fittest expression is determined by a predefined parameter. If the fittest expression 

is not selected, it is removed from the subset, and the process repeats until one expression 

remains. The get fittest function calculates the fittest expression based on a combination of 

complexity and accuracy, adjusted for parsimony, to ensure the most suitable candidate is 

chosen. This selected expression is then returned as the winner of the tournament. 

 

Listing 8: Tournament selection [267]. 

Algorithm 4: Tournament selection. 
 
input : P, a population of expressions 
input : X as in algorithm 1 
output : a single expression (the winner of the tournament) 
param : ns, the tournament size (=12) 
param : ptournament, the probability of selecting the fittest individual (=0.9) 
 
1  function tournament(P, X ) // [code] 
2      Q ← a random subset of size ns of P 
3      while length(Q) > 1 
4          E ← get_fittest(Q) 
5          if rand() < ptournament 
6              break 
7          end 
8          remove E from Q 
9      end 
10     return E 
11 end 
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12 function get_fittest(P ) // [code] 
13     ℓbest ← ∞ 
14     for E in P 
15         C ← complexity of E 
16         ℓ ← accuracy of E 
17         // include adaptive parsimony: 
18         ℓ ← ℓ × exp(frecency[C]) 
19         if ℓ < ℓbest 
20             ℓbest ← ℓ 
21             E* ← E 
22         end 
23     end 
24     return E* 
25 end 

 

3.8.1.2.2 PySR Customisation feature 

PySR supports additional features such as custom loss functions, which can be specified 

as a string or a function object. These functions take scalar predictions and targets, optionally 

include a scalar weight, and return a real number greater than zero. The per-point losses are 

then summed over the dataset, allowing users to define custom regression objectives, custom 

likelihoods (such as log-likelihoods for individual data points), classification-based losses, and 

implicit objectives tailored to specific needs. Another benefit option of PySR is its ability to 

use custom operators by allowing users to define their own unary or binary functions, which 

can be integrated into the symbolic regression process. These custom operators can be any 

function and PySR treats them the same as built-in operators, making no distinction apart from 

simplification strategies. Additionally, PySR also supports various hard constraints that can be 

enforced to discover expressions in order to control their complexity and structure. These 

constraints are checked at every mutation step, and any mutation that violates a constraint is 

rejected. Users can specify constraints such as the maximum size of an expression, which limits 

the number of instances of operators, variables, and constants to bound the search space. The 

maximum depth of an expression can also be controlled to limit how deeply nested the resultant 

expressions are. Moreover, users can set the maximum size of a subexpression within a specific 

operator’s arguments, reducing the complexity of discovered expressions. Another constraint 

allows for limiting the number of nests of a particular operator combination, such as allowing 
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sin(cos(x)) but not sin(cos(cos(x))) or sin(sin(x)). These constraints help ensure that the 

generated expressions are both interpretable and relevant to the specific needs of the domain. 

 

3.8.1.2.3 Backend Architecture and Performance 

PySR leverages the high-performance SymbolicRegression.jl library in Julia [272] as 

its backend, enabling fast evaluation of expressions and distributed parallel computing. The 

search algorithm underlying PySR, described in pseudocode in listings 3 to 6, is written in pure 

Julia, which combines a high-level interface with performance comparable to languages such 

as C++ and Rust [273]. The key advantage of using Julia is its just-in-time (JIT) compilation, 

allowing PySR to perform optimisations not possible with statically compiled libraries. For 

instance, it can compile user-defined operators and losses into the core functions, and fuse 

operators into single compiled units. This automatic fusion of operators, even for user-defined 

ones, significantly speeds up the expression evaluation, which is the main bottleneck in PySR. 

Despite the backend being in Julia, PySR offers a simple Python frontend API, adopting the 

popular style of the scikit-learn machine learning library [274]. This makes symbolic regression 

and classification accessible to Python users while benefiting from Julia's speed and efficiency. 

PySR is parallelised by dispatching populations of expressions to workers (either threads for 

single-node or processes for multi-node setups), where they evolve independently over many 

iterations. After a batch of iterations, populations are returned to the head worker, which 

records the best expressions in a global "hall of fame," tracks current expressions for potential 

migration, and randomly migrates expressions from other populations and the hall of fame. 

This asynchronous parallelisation allows different populations to evolve at different speeds 

without slowing down the process. The inclusion of a global, permanent hall of fame, as 

opposed to migrating only current population members, can significantly speed up the search 

by reintroducing top expressions. 

 

3.8.1.2.4 Employing a combination of symbolic regression and classification 

The novel approach used in this study involves integrating symbolic regression and 

classification. Figure 34 describes modelling cell population behaviour through a combination 

of symbolic regression and classification using the PySR framework. The workflow begins 
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with each well receiving three input features: Time, Average Cell Migration Speed, and 

Average Cell Angular Velocity. For each well, labelled Well 0, Well 1, and so on up to Well n, 

symbolic regression models are employed to model the correlation between these input features 

and cell growth. These models are specific to each well, taking the provided inputs and 

outputting a prediction for cell growth. All wells' predicted cell growth values are then fed into 

a symbolic classification model. This classification model covers the outputs of the individual 

symbolic regression models from each well and uses this aggregated data to predict multiple 

outputs labelled y0, y1, and y2, representing different treatment conditions. Specifically, an 

output of y0 = 1, y1 = 0, and y2 = 0 corresponds to the Control treatment, y0 = 0, y1 = 1, and 

y2 = 0 corresponds to the TGF-Beta treatment, and y0 = 0, y1 = 0, and y2 = 1 corresponds to 

the SB431542 treatment. The figure visually represents the data flow from the input features 

through the symbolic regression models for each well, culminating in a combined symbolic 

classification model that outputs the final predictions for treatment conditions. This approach 

leverages the strengths of both symbolic regressions for detailed prediction of cell growth and 

symbolic classification for integrating these predictions to determine the specific treatment 

associated with the observed cell behaviour. 

 

3.8.1.2.5 Dataset Preparation and Splitting 

The data preparation involved features such as time, average cell migration speed, 

angular velocity, cell growth, and multi-class labels. In terms of splitting the data into training, 

Figure 34: Block diagram of Symbolic Regression and Classification 
in the PySR Framework. 
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validation, and test sets, the train_test_split function from Python's sklearn.model_selection 

was used. This study split the data into a training set (60% of the total data) and a remaining 

set. The remaining data was then equally divided into validation and test sets. Thus, the final 

distribution of data is 60% for training, 20% for validation, and 20% for testing. Listing 9 

illustrates the pseudocode to perform the data-splitting task in Python. The arrangement of the 

data will then be as shown in Figure 34. 

 

Listing 9: Pseudocode for Splitting Dataset into Training, Validation, and Test Sets. 

BEGIN 
    // Import the train_test_split function from the sklearn.model_selection library 
    Import train_test_split from sklearn.model_selection 
 
    // Assume X is the array of input features and y is the array of corresponding labels 
 
    // Step 1: Split the full dataset into a training dataset and a remaining dataset 
    // Define the proportion of the dataset to include in the train split 
    Set train_size to 0.7 
 
    // Perform the initial split 
    // X_train and y_train will contain 70% of the original data 
    // X_rem and y_rem will contain the remaining 30% of the original data 
    X_train, X_rem, y_train, y_rem = train_test_split(X, y, train_size) 
 
    // Step 2: Split the remaining data into validation and test datasets 
    // Define the proportion of the remaining dataset to include in the validation split 
    Set remaining_train_size to 0.5 
 
    // Perform the secondary split 
    // X_val and y_val will contain 50% of the remaining data (15% of the original dataset) 
    // X_test and y_test will contain the other 50% of the remaining data (15% of the original dataset) 
    X_val, X_test, y_val, y_test = train_test_split(X_rem, y_rem, remaining_train_size) 
 
    // Output the datasets for further processing or analysis 
    Output X_train, y_train, X_val, y_val, X_test, y_test 
END 

 

3.8.1.2.6 Parameters Value for Symbolic Regression 

Listing 10 shows the settings for the PySRRegressor model for symbolic regression are 

configured as follows: The number of processors to use is set to 12, enabling the model to 

perform parallel computations and thereby speeding up the process significantly by distributing 

the workload across multiple processors. The number of populations in the evolutionary 

algorithm is set to 18, which helps enhance the genetic diversity of the solutions. Having 

multiple populations increases the chances of finding a globally optimal solution by allowing 
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different sub-populations to explore different parts of the solution space simultaneously. The 

size of each population is set to 1000, meaning each population will contain 1000 individuals. 

A larger population size can improve the robustness of the search but may also increase the 

computational time required for each iteration. The number of cycles per iteration is set to 500, 

controlling how many evolutionary cycles are performed in each iteration. More cycles per 

iteration allow the model to refine solutions incrementally and improve the quality of the 

solutions found in each iteration. The total number of iterations is set to 200, indicating the 

total number of iterations the algorithm will run. More iterations allow the model to explore a 

larger portion of the solution space and increase the likelihood of finding better solutions. The 

binary operators used include addition, subtraction, and multiplication. These operators are the 

fundamental building blocks used to construct the mathematical expressions in the symbolic 

regression model. The precision of the calculations is set to 64-bit, meaning the calculations 

will be performed with double precision. Higher precision can lead to more accurate results but 

may also increase computational demands. The maximum size of the expressions is limited to 

40, which helps manage the complexity and computational load, ensuring the expressions 

remain interpretable and manageable. The maximum depth of the expressions is limited to 6, 

preventing the generated expressions from becoming overly complex and difficult to interpret. 

 

Listing 10: PySR Configuration Parameters for symbolic regression. 

model = PySRRegressor( 
 
    # Number of processors to use 
    procs=12,  
     
    # Number of populations in the evolutionary algorithm 
    populations=18,   
     
    # Size of each population 
    population_size=1000,   
     
    # Number of cycles per iteration 
    ncycles_per_iteration=500,   
     
    # Total number of iterations 
    niterations=200,  
     
    # List of binary operators to use 
    binary_operators=["+", "-", "*"],   
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    # Precision of the calculations 
    precision=64,   
     
    # Maximum size of the expressions 
    maxsize=40,   
     
    # Maximum depth of the expressions 
    maxdepth=6,   
) 

 

3.8.1.2.7 Parameters Value for Symbolic Classification 

The settings for the PySRRegressor model for symbolic classification are configured, 

as shown in listing 11. The number of processors is set to 12, which allows the model to perform 

parallel computations. This significantly speeds up the process by distributing the workload 

across multiple processors. The number of separate populations in the evolutionary algorithm 

is set to 18. This helps enhance the genetic diversity of the solutions and improves the chances 

of finding a globally optimal solution by allowing different sub-populations to explore different 

parts of the solution space simultaneously. Each population consists of 1000 individuals. A 

larger population size improves the robustness of the search, although it may also increase the 

computational time required for each iteration. The number of cycles per iteration is set to 500, 

which controls how many evolutionary cycles are performed in each iteration. More cycles per 

iteration allow the model to refine solutions incrementally and potentially improve the quality 

of the solutions found in each iteration. The total number of iterations the algorithm will run is 

set to 200, enabling the model to explore a larger portion of the solution space and potentially 

find better solutions. The binary operators used to build expressions include addition (+), 

subtraction (-), and multiplication (*). These operators are the fundamental building blocks of 

the mathematical expressions generated by the symbolic classification model. Additionally, a 

logistic function is used as a unary operator, defined as logistic(x) = 1 / (1 + exp(-x)). This 

function is also mapped in the extra_sympy_mappings to ensure it can be used correctly during 

the symbolic classification process. 

The precision of the calculations is set to 64-bit, meaning the calculations will be 

performed with double precision. This higher precision can lead to more accurate results but 

may also increase computational demands. The maximum size of the generated expressions is 

limited to 40, which helps manage the complexity and computational load, ensuring the 
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expressions remain interpretable and manageable. The maximum depth of the expressions is 

limited to 6, preventing the generated expressions from becoming overly complex and difficult 

to interpret. These settings are designed to optimise the symbolic classification process, 

allowing the PySRRegressor model to effectively handle and optimise complex relationships 

within the data while ensuring the generated expressions are interpretable and computationally 

feasible. 

 

Listing 11: PySR Configuration Parameters for symbolic classification. 

model = PySRRegressor( 
 
    # Number of processors to use 
    procs=12,  
     
    # Number of populations in the evolutionary algorithm 
    populations=18,   
     
    # Size of each population 
    population_size=1000,   
     
    # Number of cycles per iteration 
    ncycles_per_iteration=500,   
     
    # Total number of iterations 
    niterations=200,  
     
    # List of binary operators to use 
    binary_operators=["+", "-", "*"],  
 
    # List of unary operators to use 
    unary_operators=["logistic(x) = 1 / (1 + exp(-x))"], 
 
    # Custom mapping for the sigmoid function 
    extra_sympy_mappings={"logistic": lambda x: 1 / (1 + exp(-x))}, 
     
    # Precision of the calculations 
    precision=64,  
 
    # Maximum size of the expressions 
    maxsize=40,  # Maximum size of the expressions 
 
    # Maximum depth of the expressions 
    maxdepth=6,   
) 
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 3.8.1.2.8 Cross-Validation and Model Evaluation 

A comprehensive approach was adopted to implement cross-validation and model 

training effectively for symbolic regression and classification. The training set was divided into 

five subsets or folds to ensure that each fold served as a validation set once, while the remaining 

four were used for training. This method ensured that every dataset segment was utilised for 

validation precisely once, and the folds were representative of the entire dataset, containing a 

mix of all data features, including time, average cell migration speed, angular velocity, cell 

growth, and multi-class labels. For symbolic regression, the input features are time, average 

cell migration speed, and angular velocity, and the target value is cell growth. The process 

began with setting up cross-validation by splitting the training set into five folds and initialising 

lists to store performance metrics for each fold. For each fold, the data was split into training 

and validation sets. The symbolic regression model was then trained on the training set using 

the specified input features and target value. The model was validated on the remaining fold 

and mean squared error (MSE) and R-squared performance metrics were recorded. This 

process was repeated for each of the five folds to maintain consistency across the dataset. After 

completing the 5-fold cross-validation, the average performance metrics were calculated to 

understand the stability and reliability of the regression model. 

Hyperparameter tuning was performed using grid search during cross-validation to find 

the best model parameters. A hyperparameter grid for the symbolic regression model was 

defined, and for each combination of hyperparameters in the grid, the training and validation 

steps were repeated, and performance metrics were recorded. The hyperparameter combination 

that yielded the best performance metrics was selected. The final symbolic regression model 

was then trained on the entire training dataset using the selected optimal hyperparameters, and 

the model was evaluated on the previously held-out test set to obtain an unbiased estimate of 

its performance. Pseudocode for 5-Fold Cross-Validation and Grid Search for Symbolic 

Regression is shown in Listing 12. 

The input feature for symbolic classification is the actual cell growth values, and the 

target is the multi-class labels. The process also began with setting up cross-validation by 

splitting the training set into five folds and initialising lists to store performance metrics for 

each fold. For each fold, the data was split into training and validation sets. The actual cell 

growth values were used as input features for symbolic classification. The symbolic 

classification model was trained on the training set using these input features and the multi-
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class labels. The model was validated on the remaining fold, and the accuracy of the 

performance metrics was recorded. This process was repeated for each of the five folds to 

ensure consistency across the dataset. After completing the 5-fold cross-validation, the average 

performance metrics were calculated to understand the stability and reliability of the 

classification model. Hyperparameter tuning was also performed for symbolic classification 

using grid search during cross-validation to find the best model parameters. A hyperparameter 

grid for the symbolic classification model was defined, and for each combination of 

hyperparameters in the grid, the training and validation steps were repeated, and performance 

metrics were recorded. The hyperparameter combination that yielded the best performance 

metrics was selected. The final symbolic classification model was then trained on the entire 

training dataset using the selected optimal hyperparameters, and the model was evaluated on 

the previously held-out test set to obtain an unbiased estimate of its performance. Listing 13 

illustrates the pseudocode responsible for 5-Fold Cross-Validation and Grid Search in the 

context of symbolic classification. 

 

Listing 12: Pseudocode for 5-Fold Cross-Validation and Grid Search for Symbolic 
Regression. 

BEGIN 
    // Import necessary functions 
    Import train_test_split from sklearn.model_selection 
    Import KFold from sklearn.model_selection 
    Import GridSearchCV from sklearn.model_selection 
    Import symbolic_regression_model_library 
 
    // Assume X is the array of input features and y is the array of corresponding labels 
 
    // Step 1: Split the full dataset into a training dataset and a test dataset 
    // Define the proportion of the dataset to include in the train split 
    Set train_size to 0.7 
 
    // Perform the initial split 
    // X_train and y_train will contain 70% of the original data 
    // X_test and y_test will contain the remaining 30% of the original data 
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size) 
 
    // Step 2: Initialize the 5-fold cross-validation 
    kf = KFold(n_splits=5) 
 
    // Step 3: Define the hyperparameter grid for tuning 
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    hyperparameter_grid = { 
        'param1': [value1, value2, value3], 
        'param2': [value1, value2, value3], 
        ... 
    } 
 
    // Step 4: Initialize variables to store the best parameters and best score 
    best_params = None 
    best_score = float('inf') 
 
    // Step 5: Perform the grid search with 5-fold cross-validation 
    FOR each combination of hyperparameters in hyperparameter_grid: 
        current_params = combination of hyperparameters 
        model = your_symbolic_regression_model_library.Model(**current_params) 
 
        scores = [] 
 
        FOR train_index, val_index IN kf.split(X_train): 
            X_fold_train, X_fold_val = X_train[train_index], X_train[val_index] 
            y_fold_train, y_fold_val = y_train[train_index], y_train[val_index] 
 
            // Train the model 
            model.fit(X_fold_train, y_fold_train) 
 
            // Validate the model 
            predictions = model.predict(X_fold_val) 
            score = calculate_score(y_fold_val, predictions) // Use MSE, R-squared, etc. 
            scores.append(score) 
 
        // Calculate the average score across all folds 
        average_score = mean(scores) 
 
        // Update the best parameters if the current score is better 
        IF average_score < best_score: 
            best_score = average_score 
            best_params = current_params 
 
    // Step 6: Train the final model on the entire training dataset with the best parameters 
    final_model = your_symbolic_regression_model_library.Model(**best_params) 
    final_model.fit(X_train, y_train) 
 
    // Step 7: Evaluate the final model on the test dataset 
    final_predictions = final_model.predict(X_test) 
    final_score = calculate_score(y_test, final_predictions) 
 
    // Output the best parameters and the final performance metrics 
    Output best_params, final_score 
END 
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Listing 13: Pseudocode for 5-Fold Cross-Validation and Grid Search for Symbolic 
Classification. 

BEGIN 
    // Import necessary functions 
    Import train_test_split from sklearn.model_selection 
    Import KFold from sklearn.model_selection 
    Import GridSearchCV from sklearn.model_selection 
    Import your_symbolic_classification_model_library 
 
    // Assume X is the array of actual cell growth values (features) and y is the array of 
corresponding multi-class labels 
 
    // Step 1: Split the full dataset into a training dataset and a test dataset 
    // Define the proportion of the dataset to include in the train split 
    Set train_size to 0.7 
 
    // Perform the initial split 
    // X_train and y_train will contain 70% of the original data 
    // X_test and y_test will contain the remaining 30% of the original data 
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size) 
 
    // Step 2: Initialize the 5-fold cross-validation 
    kf = KFold(n_splits=5) 
 
    // Step 3: Define the hyperparameter grid for tuning 
    hyperparameter_grid = { 
        'param1': [value1, value2, value3], 
        'param2': [value1, value2, value3], 
        ... 
    } 
 
    // Step 4: Initialize variables to store the best parameters and best score 
    best_params = None 
    best_score = float('-inf') 
 
    // Step 5: Perform the grid search with 5-fold cross-validation 
    FOR each combination of hyperparameters in hyperparameter_grid: 
        current_params = combination of hyperparameters 
        model = your_symbolic_classification_model_library.Model(**current_params) 
 
        scores = [] 
 
        FOR train_index, val_index IN kf.split(X_train): 
            X_fold_train, X_fold_val = X_train[train_index], X_train[val_index] 
            y_fold_train, y_fold_val = y_train[train_index], y_train[val_index] 
 
            // Train the model 
            model.fit(X_fold_train, y_fold_train) 
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            // Validate the model 
            predictions = model.predict(X_fold_val) 
            score = calculate_score(y_fold_val, predictions) // Use accuracy 
            scores.append(score) 
 
        // Calculate the average score across all folds 
        average_score = mean(scores) 
 
        // Update the best parameters if the current score is better 
        IF average_score > best_score: 
            best_score = average_score 
            best_params = current_params 
 
    // Step 6: Train the final model on the entire training dataset with the best parameters 
    final_model = your_symbolic_classification_model_library.Model(**best_params) 
    final_model.fit(X_train, y_train) 
 
    // Step 7: Evaluate the final model on the test dataset 
    final_predictions = final_model.predict(X_test) 
    final_score = calculate_score(y_test, final_predictions) 
 
    // Output the best parameters and the final performance metrics 
    Output best_params, final_score 
END 

 

3.8.1.2.9 Advantages 

Symbolic regression and classification provide significant benefits by offering 

flexibility, clarity, and the capacity to reveal complex data relationships. Symbolic regression 

identifies both linear and non-linear relationships to make accurate predictions; specifically, 

this study finds the correlation between feature time, cell migration speed, and cell angular 

velocity to predict cell growth. Symbolic classification establishes clear, understandable rules 

based on target outputs, where the classification input is cell growth and the target output is 

multi-class labels. Using these techniques together allows practitioners to develop effective 

models that offer deep insights into data processes, supporting improved decision-making and 

understanding. 
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3.9 Conclusion 

In conclusion, the methodology of this study was designed to outline the sequential and 

interdependent processes crucial for comprehensive cell analysis. It commenced with cell 

culture preparation across twelve plates, each containing four replicates, across three different 

treatments: 0.1% DMSO as the control, 0.1% DMSO with 4 ng/mL TGFβ, and 0.1% DMSO 

with 10 μM SB431542 as a TGFβ inhibitor. This setup was crucial for creating a controlled 

environment that facilitated detailed observations of cell growth and responses under varying 

conditions, addressing key research hypotheses about cellular behaviour. Time-lapse 

microscopy, employing a phase-contrast x10 objective, captured detailed images over 48 hours, 

with adjustments for optimal visibility. The BaSiC plugin was used to correct uneven 

illumination, followed by image normalisation using a quantile-based ImageJ plugin, ensuring 

uniform data quality and reliability, which is vital for subsequent analyses. Cell segmentation 

involved Ilastik, which transformed pre-processed images into image probabilities via pixel 

classification, and ImageJ, which converted these probabilities into binary images for precise 

object detection. Cell tracking was performed using CellProfiler, utilising the Follow 

Neighbour method to identify cells and extract detailed quantitative data. These methods were 

chosen for their accuracy and reliability, crucial for analysing cell populations. Cell 

characterisation utilised RCGP and PySR for modelling, chosen for their interpretability and 

capability to simulate complex cellular behaviours and interactions. These tools were 

instrumental in uncovering novel relationships between cellular features, providing significant 

insights that align with the study's hypotheses regarding cell dynamics under different 

treatments. These methodologies have limitations, despite their strengths. Potential biases in 

image-based analysis and the need for broader data sets for model validation suggest areas for 

future methodological improvement. Future research could explore integrating multi-modal 

imaging and enhanced computational techniques to deepen our understanding and expand its 

applicability in biological research. This study's results deepen our understanding of cellular 

dynamics and highlight how these techniques can impact broader biological and medical 

research areas. 
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CHAPTER 4 

 

RESULTS AND ANALYSIS 

 

4.1 Introduction 

The chapter discusses results and analysis, beginning with the initial phase of image 

preprocessing outlined in Section 4.2. The process involves correcting uneven illumination and 

normalising images to enhance quality for accurate analysis. Following preprocessing, Sections 

4.3 and 4.4 detail the segmentation and tracking of cells. These steps are essential for 

monitoring cell behaviour over time and under different treatment conditions. Sections 4.5 

through 4.8 focus on analysing cell growth curves, growth rates, migration speed, and angular 

velocity. These analyses provide comprehensive insights into cellular dynamics. The latter part 

of the chapter, starting from Section 4.9, focuses on applying machine learning techniques. 

Included is Recurrent Cartesian Genetic Programming (RCGP) for pairwise and ensemble 

classifications, detailed in Sections 4.9.1, which analyse the effectiveness of various models in 

distinguishing between control and treated samples. Section 4.9.2 introduces PySR for 

regression and classification tasks across multiple wells, offering a nuanced approach to 

modelling cell behaviour based on datasets. Section 4.9.3 and its subsection 4.9.3.1 compare 

the efficacy of different machine learning algorithms in classifying cell data, emphasising the 

versatility and robustness of the approaches used. The chapter concludes with a reflection on 

the findings and their implications for understanding cellular responses under varying 

conditions, solidifying the role of advanced computational techniques in biological research. 

 

4.2 Image preprocessing 

4.2.1 Image Uneven illumination correction 

The results of the Image Uneven Illumination Correction illustrate the variation in grey 

values across pixels using different methods in image processing. The coefficient of variation 

(CV) is a statistical measure that quantifies the relative variability of grey values across pixels. 

In the context of uneven illumination correction, a lower CV is desirable because it indicates 

less variation in grey values, suggesting more uniform and consistent image quality after 
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correction, while a higher CV suggests persistent variation and incomplete correction. In the 

image time-lapse study, images were captured from 12 wells, each requiring uneven 

illumination correction to ensure accurate analysis. While the correction process was applied 

to all wells in practice, this thesis shows the results only for Wells 0, 5, and 11. Well 0 represents 

the dataset under control conditions, Well 5 corresponds to the dataset treated with TGF-B, and 

Well 11 is associated with the dataset treated with SB431542. The selected wells are positioned 

diagonally across the 12 wells, providing a representative sample of different experimental 

conditions and spatial positions within the plate. Although the results for the other wells are 

not shown here, it is important to note that the correction method was applied across all 12 

wells. The decision to highlight only Wells 0, 5, and 11 was made to provide clear examples of 

the algorithm’s effectiveness. In actual implementation, however, the correction method is 

intended to be universally applied to all wells, ensuring uniformity across the entire dataset. 

Figures 35, 36, and 37 and Tables 15, 16, and 17 provide comparative analyses of Wells 0, 5, 

and 11, respectively, each employing three different processing methods: Fast Fourier 

Transform Filter (FFTF) [275], Pseudo Flat Field Correction (PFFC) [276], and BaSiC. The 

Fast Fourier Transform (FFT) filter is a digital image processing technique that removes 

unwanted spatial frequencies from images, such as those for uneven illumination correction in 

microscopy images. It transforms the image into its frequency components, selectively removes 

or attenuates specific frequency ranges associated with illumination artefacts, and then converts 

the filtered result back to the spatial domain using the inverse Fourier transform. 

 

 

Figure 35:Coefficient of Variation (%) Comparison Across Different 
Correction Methods for Well 0 
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Table 15: Mean and Standard Deviation of Coefficient of Variation (%) for Different 
Correction Methods for Well 0. 

Method Mean Standard deviation 

RAW 1.1962 0.1937 

BaSiC 0.2799 0.0982 

PFFC 0.6828 0.1840 

FFTF 0.5772 0.0298 

By adjusting the filter parameters, this method can manage gradual shading effects and 

localised illumination problems, resulting in a more uniformly illuminated image. Meanwhile, 

Pseudo Flat Field Correction (PFFC) is a technique used to correct uneven illumination or 

background in images when a true flat field reference image is not available. 

 

Table 16 : Mean and Standard Deviation of Coefficient of Variation (%) for Different 

Correction Methods for Well 5 

Method Mean Standard deviation 

RAW 1.4606 0.0543 

Figure 36: Coefficient of Variation (%) Comparison Across Different 
Correction Methods for Well 5 
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BaSiC 0.1820 0.0088 

PFFC 0.5666 0.0115 

FFTF 0.5629 0.0129 

 

 

Table 17:Mean and Standard Deviation of Coefficient of Variation (%) for Different 
Correction Methods for Well 11 

Method Mean Standard deviation 

RAW 1.4194 0.2180 

BaSiC 0.2596 0.0649 

PFFC 0.6199 0.0437 

FFTF 0.6017 0.0682 

This process involves duplicating the original image, applying a Gaussian blur to the duplicate 

to remove objects and retain only the background illumination pattern, and then dividing the 

original image by the blurred version to flatten out the background. This approximates the 

effect of using a true flat field image for correction without the need for a separate reference 

image. 

Figure 37:Coefficient of Variation (%) Comparison Across Different 
Correction Methods for Well 11 
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The comparative analysis of the coefficient of variation for Wells 0, 5, and 11 is 

effectively depicted through the boxplots and corresponding tables in Figures 35, 36, and 37. 

These visual and statistical representations illustrate the performance of various image-

processing methods across the wells. The RAW data consistently displays the highest 

coefficient of variation across all wells, highlighting significant variability due to uneven 

illumination. In contrast, the BaSiC method shows the lowest variability, evidenced by its 

minimal presence on the boxplots and significantly lower mean and standard deviation values: 

0.2799 and 0.0982 for Well 0, 0.1820 and 0.0088 for Well 5, and 0.2596 and 0.0649 for Well 

11. Meanwhile, the PFFC and FFTF methods present medium levels of variation, with mean 

values of 0.6828 and 0.5772 and standard deviations of 0.1840 and 0.0298 for Well 0; 0.5666 

and 0.5629 with standard deviations of 0.0115 and 0.0129 for Well 5; and 0.6199 and 0.6017 

with standard deviations of 0.0437 and 0.0682 for Well 11, respectively. These detailed 

statistics provide insights into the variability and distribution characteristics of each method, 

elucidating how they manage illumination inconsistencies in processed images. Figures 38 and 

Table 18 present a thorough evaluation of the coefficient of variation across all wells, as 

depicted in the accompanying boxplot. The BaSiC approach has minimal variability, with a 

remarkably low mean of 0.2405 and a standard deviation of 0.0725, establishing it as the most 

stable and consistent method in terms of coefficient of variation (CV). The PFFC and FFTF 

approaches, which have higher CV values of 0.6231 and 0.5806, respectively, along with 

standard deviations of 0.1060 and 0.0410, show considerable variability compared to BaSiC. 

The low coefficient of variation (CV) values of the BaSiC approach highlight its efficiency in 

Figure 38: Coefficient of Variation (%) Comparison Across Different Correction 
Methods for all well 
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rectifying uneven illumination. These findings validate BaSiC as the optimal option for image 

processing in different wells, efficiently handling variability and enhancing consistency in 

image processing results. 

 

Table 18: Mean and Standard Deviation of Coefficient of Variation (%) for Different 
Correction Methods for all well 

Method Mean Standard deviation 

RAW 1.3588 0.1884 

BaSiC 0.2405 0.0725 

PFFC 0.6231 0.1060 

FFTF 0.5806 0.0410 

 

4.2.2 Image normalisation 

The results of the image normalisation illustrate the variation in grey values across 

pixels in multiple frames using different methods of image processing. To illustrate the 

outcomes of image normalisation, Figures 39 and 40 provide a comparative analysis of images 

and their corresponding histograms before and after normalisation for image frames 1 and 575, 

respectively. In both figures, the images on the left side (a and b) represent the state before 

normalisation, while the images on the right side (c and d) show the state after normalisation. 

In Figure 39, image (a) displays the image after illumination correction, with histogram (b) 

illustrating the distribution of pixel intensities before normalisation, alongside key statistics 

such as the mean and standard deviation. After normalisation, image (c) shows the normalised 

image of frame 1, with histogram (d) reflecting the changes in pixel intensity distribution, 

indicating a more consistent and clear representation. 

Similarly, Figure 40 focuses on image frame 575. Image (a) shows the image after 

illumination correction, with histogram (b) depicting the initial pixel intensity distribution 

before normalisation. Post-normalization, image (c) presents the normalised image of frame 

575, and histogram (d) demonstrates the effects of normalisation on the pixel intensities, 

showing a more refined and consistent image. These examples clearly illustrate the impact of 

normalisation on image quality, enhancing clarity and uniformity across the frames. 
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Figures 41, 42, and 43 and Tables 19, 20, and 21 provide comparative analyses of Wells 0, 5, 

and 11, respectively, each employing three different processing methods: Normalize Local 

Contrast (NLC) [277], Contrast Limited Adaptive Histogram Equalization (CLAHE) [278], 

and Quantile-Based Normalization (QBN). CLAHE is an image processing technique that 

enhances image contrast by adaptively equalising the histogram of pixel intensities within 

small regions or tiles of the image. CLAHE works locally to improve contrast and reveal details 

Figure 39: Coefficient of Variation (%) Comparison Across Different 
Normalisation Methods for Well 0. 

Figure 41: Images and histograms for image frame 1 before and after normalization. (a) 
Image before normalization, (b) Histogram corresponding to the image before normalization, 
(c) Image after normalization, (d) Histogram corresponding to the image after normalisation 

Figure 40: Images and histograms for image frame 575 before and after normalization. (a) 
Image before normalization, (b) Histogram corresponding to the image before normalization, 
(c) Image after normalization, (d) Histogram corresponding to the image after normalisation. 
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in both bright and dark areas. The image is divided into smaller, non-overlapping tiles, and a 

histogram is computed for each tile to represent the intensity distribution within that region. 

Histogram equalisation is applied independently to each tile to spread the intensity values more 

evenly. To prevent noise amplification in homogeneous regions, the histogram is clipped at a 

predefined limit, and the excess part is redistributed among all histogram bins. In order to create 

a consistent overall image, the contrast-enhanced tiles are finally combined using bilinear 

interpolation, which provides uniform transitions between neighbouring tiles. 

 

Table 19: Mean and Standard Deviation of CV (%) for Different Normalisation Methods for 
Well 0 

Method Mean Standard deviation 

NLC 12.1217 1.0993 

CLAHE 9.2524 0.8909 

QBN 3.8851 0.0775 

Besides, Normalise Local Contrast is a method that changes pixel intensity levels within 

predefined neighbourhoods to improve local contrast. For the purpose of determining the size 

of the local region around each pixel, the method comprises picking block radii along the x and 

y axes. Within these small locations, the degree of contrast enhancement is controlled by the 

standard deviation parameter. The approach computes the local mean and standard deviation 

Figure 42: Coefficient of Variation (%) Comparison Across Different 
Normalisation Methods for Well 5 
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for every block and normalises the pixel values based on these computations to attain a uniform 

distribution. This normalisation improves detail visibility and lessens the impact of non-

uniform light.  The comparative analysis of the CV for Wells 0, 5, and 11 is visually and 

statistically represented through the boxplots and corresponding tables in Figures 41, 42, and 

43, illustrating the performance of different normalisation methods across the wells. In Well 0, 

the boxplot shows NLC with the highest coefficient of variation, followed by CLAHE and 

QBN with the least. 

 

Table 20: Mean and Standard Deviation of CV (%) for Different Normalisation Methods for 
Well 5 

Method Mean Standard deviation 

NLC 11.4656 0.4036 

CLAHE 5.9609 0.1614 

QBN 2.7343 0.0782 

The summary statistics (Table 19) detail NLC having the highest mean of 12.1217 and a 

standard deviation of 1.0993, CLAHE with a mean of 9.2524 and a standard deviation of 

0.8909, and QBN with the lowest mean of 3.8851 and a minimal standard deviation of 0.0775. 

For Well 5 (Table 20), the NLC method exhibits the highest variability in CV, with a mean of 

11.4656 and a standard deviation of 0.4036. Following NLC, CLAHE and QBN show lower 

Figure 43: Coefficient of Variation (%) Comparison Across Different 
Normalisation Methods for Well 11 
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variability. CLAHE has a mean of 5.9609 and a standard deviation of 0.1614, while QBN 

displays a mean of 2.7343 and a standard deviation of 0.0782. In Well 11 (Table 21), QBN 

exhibits the lowest variability, with a mean of 3.0225 and a standard deviation of 0.0524. Next, 

the NLC method shows the highest coefficient of variation, with a mean of 10.1634 and a 

standard deviation of 0.0624. Lastly, CLAHE presents lower variability compared to NLC, 

with a mean of 6.6540 and a standard deviation of 0.2766. 

 

Table 21: Mean and Standard Deviation of CV (%) for Different Normalisation Methods for 
Well 11 

Method Mean Standard deviation 

NLC 10.1634 0.0624 

CLAHE 6.6540 0.2766 

QBN 3.0225 0.0524 

 

The coefficient of variation (CV) across all wells was analysed, with results presented in 

Figures 44 and Table 22 focusing on image normalisation. The QBN method showed the best 

performance in image normalisation, with minimal variability (mean CV = 3.2286, SD = 

0.5035). Such a result establishes QBN as the most stable and consistent approach for image 

normalisation. NLC and CLAHE displayed higher variability, with NLC yielding a mean CV 

Figure 44: Coefficient of Variation (%) Comparison Across Different 
Normalisation Methods for all well 
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of 11.2692 (SD = 1.0520) and CLAHE producing a mean CV of 7.3318 (SD = 1.5395). The 

low CV values of the QBN approach demonstrate its effectiveness in generating uniform image 

enhancements across different well conditions. These findings support QBN as the optimal 

image processing technique for applications requiring consistent results in image normalisation 

across multiple wells. 

 

Table 22: Mean and Standard Deviation of CV (%) for Different Normalisation Methods for 
all well 

Method Mean Standard deviation 

NLC 11.2692 1.0520 

CLAHE 7.3318 1.5395 

QBN 3.2286 0.5035 

 

4.3 Cell segmentation 

In this analysis, the performance of three segmentation tools, Ilastik, Weka [279], and 

Labkit [280], are evaluated using datasets from the control, TGF_beta, and SB431542 

treatments. Ilastik, detailed in Chapter 3, is the primary tool and is compared against Weka and 

Labkit to show the most effective tool for cell segmentation. The Weka segmentation tool, 

known as Trainable Weka Segmentation, is an advanced image analysis tool that combines 

machine learning algorithms with image processing techniques to perform automated 

segmentation of complex images. It utilises Weka data mining and machine learning software 

to train a classifier based on user-defined examples of different image regions or features. This 

classifier then applies the learned patterns to segment entire images or image stacks, 

distinguishing between various structures or objects of interest. Labkit is a Fiji plugin that 

segments large microscopy image data. It provides memory-efficient and fast random forest-

based pixel classification for automated image segmentation. Additionally, Labkit offers a user-

friendly interface for the manual annotation of images. 

This section provides a summary of cell segmentation performance. Data from well 0, 

representing the control group, well 4, associated with TGF-B treatment, and well 8, 

corresponding to SB431542 treatment, are presented. Detailed information for the remaining 

wells can be found in Appendix A (Figure A.1 to Figure A.9). For the data from well 0 (Figure 
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45, Table 23), Ilastik exhibited a mean Dice coefficient of 0.9076 with a standard deviation of 

0.0162. In comparison, Weka and Labkit displayed lower mean coefficients of 0.7995 and 

0.6345, with standard deviations of 0.0180 and 0.0485, respectively. The corresponding 

boxplot highlights Ilastik's high median and narrow interquartile range (IQR), indicating 

reliable performance. The cell segmentation performance for the TGF-Beta treatment dataset 

is depicted in the figures and tables provided. In well 4 (Figure 46, Table 24), Ilastik showed a 

mean Dice coefficient of 0.8713 with a standard deviation of 0.0225. Weka and Labkit recorded 

lower mean coefficients of 0.7859 and 0.7945, with standard deviations of 0.0109 and 0.0078, 

respectively. The boxplot demonstrates Ilastik’s superior performance, characterised by a 

higher median and narrower interquartile range (IQR), which indicates more consistent results 

compared to Weka and Labkit.  

 

Table 23: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 0 

Segmentation tool Mean Standard deviation 

Ilastik 0.9076 0.0162 

Weka 0.7995 0.0180 

Labkit 0.6345 0.0485 

 

Figure 45:  Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 0. 
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The figures and tables provided details on the cell segmentation performance of the 

SB431542 treatment dataset. In well 8 (Figure 47, Table 25), Ilastik achieved a mean Dice 

coefficient of 0.8942 with a standard deviation of 0.0095. In contrast, Weka and Labkit 

exhibited lower mean coefficients of 0.8003 and 0.7150, with standard deviations of 0.0210 

and 0.0133, respectively. The boxplot highlights Ilastik's superior performance, which is 

evident from its higher median and narrower interquartile range (IQR), indicating more 

consistent results than its counterparts.  

 

Table 24: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 4 

Segmentation tool Mean Standard deviation 

Ilastik 0.8713 0.0225 

Weka 0.7859 0.0109 

Labkit 0.7945 0.0078 

 

Figure 46: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 4 
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Table 25: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 8 

Segmentation tool Mean Standard deviation 

Ilastik 0.8942 0.0095 

Weka 0.8003 0.0210 

Labkit 0.7150 0.0133 

 

The overall performance of cell segmentation across different treatments using various 

tools is illustrated in Figure 48. This analysis encompasses datasets from control, TGF-Beta, 

and SB431542 treatments. In Figure 48, the boxplots show the Sørensen-Dice Coefficient for 

Ilastik, Weka, and Labkit across all treatments. Ilastik consistently achieved the highest median 

Dice coefficients across the treatments, indicating its effectiveness in segmentation. Weka 

displayed moderate performance with greater variability, while Labkit showed the lowest and 

most variable results across the treatments. The summary statistics for the Sørensen-Dice 

Coefficient using different segmentation tools for all treatments. Ilastik demonstrated the 

highest mean Dice coefficient for the control treatment (0.9121, SD = 0.0166), followed by 

TGF-Beta (0.8745, SD = 0.0262), and SB431542 (0.8771, SD = 0.0175). Weka showed lower 

mean Dice coefficients, with 0.8059 (SD = 0.0142) for the control, 0.7776 (SD = 0.0323) for 

Figure 47: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 8 



 

137 
 

TGF-Beta, and 0.7771 (SD = 0.0290) for SB431542. Labkit exhibited the lowest mean Dice 

coefficients, with 0.7599 (SD = 0.0797) for the control, 0.7234 (SD = 0.0549) for TGF-Beta, 

and 0.7283 (SD = 0.0531) for SB431542 

 

 

These results highlight Ilastik's effectiveness in cell segmentation across all treatments, 

as evidenced by its highest mean Dice coefficients and relatively low standard deviations. This 

consistency is particularly important in biological research, where treatments like TGF-Beta 

and SB431542 can lead to significant morphological changes in cells. Ilastik’s ability to 

maintain high accuracy across diverse conditions ensures that these treatment-related changes 

are captured accurately, leading to more reliable interpretations of experimental outcomes. 

Weka, while showing moderate segmentation performance, displayed higher variability. This 

variability could complicate the interpretation of results in biological studies, potentially 

leading to less reliable conclusions about treatment effects. Labkit consistently performed the 

most lacking, with the lowest mean Dice coefficients and higher standard deviations. This 

suggests that Labkit may struggle to accurately segment cells, particularly when treatments 

cause significant morphological changes, making it less suitable for studies requiring precise 

cell segmentation. In summary, a higher Sørensen-Dice Coefficient value signifies enhanced 

performance of the segmentation algorithm. A coefficient approaching 1 indicates that the 

predicted segmentation closely aligns with the ground truth, demonstrating greater accuracy. 

Figure 48: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for all well 
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This level of precision is crucial in biological research, where accurate segmentation is 

necessary for downstream analyses such as cell tracking and treatment efficacy assessment. As 

a result, Ilastik stands out as the most efficient tool for achieving precise and dependable cell 

segmentation across different treatment conditions. 

Table 26 presents the results of the significance test conducted using the Wilcoxon 

Signed-Rank Test, which demonstrates that Ilastik exhibits a statistically significant difference 

in performance compared to both Weka and Labkit when applied to the dataset from the control 

environment (p-value < 0.05). Furthermore, the test results indicate that there is no statistically 

significant difference in performance between Weka and Labkit, as the p-value exceeds 0.05. 

This implies that these two algorithms perform similarly in terms of the segmentation task. 

 

Table 26: Significance test results for different segmentation algorithms on the control 
environment dataset. 

 

Table 27 presents the results of the significance test using the same method as in Table 26, 

demonstrating that Ilastik, Weka, and Labkit each perform differently when applied to the TGF-

B treatment dataset. The p-values are all less than 0.05, indicating statistically significant 

differences between each pair of algorithms in terms of segmentation task performance. 

 

Table 27: Significance test results for different segmentation algorithms on the TGF-B 
treatment dataset. 

 

Comparison P-Value Significant Different 

Ilastik vs Weka 0.00024 Yes 

Ilastik vs Labkit 0.00023 Yes 

Weka vs Labkit 0.08 No 

Comparison P-Value Significant Different 

Ilastik vs Weka 0.00023 Yes 

Ilastik vs Labkit 0.00022 Yes 

Weka vs Labkit 0.03 Yes 
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Table 28 shows that Ilastik, Weka, and Labkit exhibit different performance levels when 

applied to the SB431542 treatment dataset. The p-values for each pairwise comparison between 

Ilastik and Weka, Ilastik and Labkit, and Weka and Labkit are all below 0.05, confirming 

statistically significant differences in segmentation task performance among the three 

algorithms. 

 

Table 28: Significance test results for different segmentation algorithms on the SB431542 
treatment dataset. 

 

4.4 Cell tracking 

In this analysis, the performance of three cell tracking methods, Follow Neighbour 

(FN), Overlap [281], and Linear Assignment Problem (LAP) [282], is evaluated using datasets 

from the control, TGF-beta, and SB431542 treatments. Follow Neighbour (FN), detailed in 

Chapter 3, serves as the primary tracking method and is compared against the Overlap and 

Linear Assignment Problem (LAP) methods to determine the most effective approach for cell 

tracking. Overlap-based cell tracking is developed to follow the movement and behaviour of 

cells over time in a sequence of time-lapse images. It relies on measuring the overlap between 

cellular regions in consecutive frames to determine cell position and identity. The core concept 

is that a cell in one frame will occupy a similar position in the next frame, allowing the tracking 

algorithm to match cells based on their overlapping areas. The method is highly automated, 

requiring minimal user intervention, making it suitable for handling large datasets efficiently. 

It is adaptable to various imaging conditions and cell types, optimised for speed, enabling the 

rapid processing of large volumes of images. The Linear Assignment Problem (LAP) is a 

combinatorial optimisation challenge that assigns agents to tasks to minimise total costs. This 

optimisation is realised by establishing an optimal assignment that relies on a cost matrix, 

where each matrix element quantifies the cost of assigning a specific agent to a particular task. 

In cell tracking, LAP is employed to monitor cell movements across consecutive frames in 

time-lapse imaging. The Hungarian algorithm is utilised to solve the LAP efficiently. It 

Comparison P-Value Significant Different 

Ilastik vs Weka 0.00022 Yes 

Ilastik vs Labkit 0.00021 Yes 

Weka vs Labkit 0.0061 Yes 
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functions by subtracting the smallest element from each row and column of the cost matrix, 

covering all resulting zeros with the minimal number of lines, and iteratively adjusting the 

matrix until an optimal assignment is achieved. In cell tracking, LAP encompasses two 

principal steps. The initial step, frame-to-frame linking, involves connecting detected cells 

between consecutive frames using a cost matrix typically derived from the distances between 

cell positions, aiming to minimise these cost sums. The subsequent step, track segment linking, 

connects these initial track segments to forge complete trajectories. The metric MOTA is used 

to quantify the accuracy of the cell tracking performance, where a MOTA close to 100% is 

preferred because it indicates that the tracking algorithm is highly accurate, with minimal errors 

in tracking multiple objects. This section provides the cell tracking performance. Data from 

well 0, representing the control group, well 4, associated with TGF-B treatment, and well 8, 

corresponding to SB431542 treatment, are presented. Detailed information for the remaining 

wells can be found in Appendix A (Figure A.10 to Figure A.18). The Follow Neighbour method, 

as shown in Figure 49 and Table 29 for well 0, demonstrated the highest performance, with a 

mean MOTA (Multiple Object Tracking Accuracy) of 90.17 and a standard deviation of 3.08. 

The Overlap method followed with a mean of 81.72 and a standard deviation of 7.22. The 

Linear Assignment Problem (LAP) method showed the lowest performance, with a mean of 

62.03 and a standard deviation of 2.88. The corresponding boxplot illustrates that the Follow 

Neighbour method had the highest median MOTA and a narrow interquartile range (IQR), 

indicating consistent performance.  

 

Figure 49: MOTA (%) Comparison Across Different Tracking Methods for 
Well 0. 
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Table 29: Mean and SD of MOTA (%) for Different Tracking Method for Well 0 

Method tracking Mean Standard deviation 

Follow neighbour 90.17 3.08 

Overlap 81.72 7.22 

Linear assignment problem 62.03 2.88 

 

As shown in Figure 50 and Table 30 for well 4, the Follow Neighbour method demonstrated 

the highest performance, with a mean MOTA (Multiple Object Tracking Accuracy) of 85.22 

and a standard deviation of 3.14. The Overlap method followed with a mean of 74.64 and a 

standard deviation of 3.99. In contrast, the Linear Assignment Problem (LAP) method 

exhibited the lowest performance, with a mean of 53.35 and a standard deviation of 4.62. In 

well 5 (Figure 61, Table 40), the Follow Neighbour method achieved the highest mean MOTA 

at 83.80, with a standard deviation of 4.02. The Overlap method recorded a mean of 71.50 and 

a standard deviation of 1.96. In contrast, the LAP method's performance was significantly 

lower, with a mean of 54.37 and a standard deviation of 1.58.  

 

 

 

Figure 50: MOTA (%) Comparison Across Different Tracking Methods 
for Well 4 
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Table 30: Mean and SD of MOTA (%) for Different Tracking Method for Well 4 

Method tracking Mean Standard deviation 

Follow neighbour 85.22 3.14 

Overlap 74.64 3.99 

Linear assignment problem 53.35 4.62 

 

 The dataset for Well 8 is illustrated in Figure 51 and summarised in Table 31. The Follow 

Neighbour method is the most effective, with a mean score of 88.66 and a standard deviation 

of 3.76, indicating stable results. The Overlap Method Tracking achieves a moderate mean of 

75.03 and a standard deviation of 4.06. In contrast, the Linear Assignment Problem method 

records the lowest mean at 55.88 and the highest variability with a standard deviation of 8.81. 

The box plot in Figure 51 demonstrates these findings, showing higher median values and 

tighter interquartile ranges for the Follow Neighbour method compared to the others. 

 

Table 31: Mean and SD of MOTA (%) for Different Tracking Method for Well 8 

Method tracking Mean Standard deviation 

Follow neighbour 88.66 3.76 

Overlap 75.03 4.06 

Linear assignment problem 55.88 8.81 

Figure 51: MOTA (%) Comparison Across Different Tracking Methods 
for Well 8 
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The overall performance of cell tracking across different treatments using various 

methods is illustrated in Figure 52. This analysis encompasses datasets from control, TGF-

Beta, and SB431542 treatments. In Figure 52, the boxplots display the Multi-Object Tracking 

Accuracy (MOTA) for the Follow Neighbour, Overlap, and Linear Assignment Problem 

methods across all treatments. The Follow Neighbour method consistently achieved the highest 

median MOTA percentages across the treatments, indicating its effectiveness in tracking. The 

Overlap method displayed moderate performance with greater variability, while the Linear 

Assignment Problem method exhibited the least favourable results with the most variability 

across the treatments. The summary statistics for MOTA using different tracking methods for 

all treatments. The Follow Neighbour method demonstrated the highest mean MOTA for the 

control treatment (88.23, SD = 3.30), followed by TGF-Beta (86.31, SD = 4.12), and SB431542 

(87.35, SD = 4.55). The Overlap method showed lower mean MOTA percentages, with 75.44 

(SD = 8.37) for the control, 74.56 (SD = 4.74) for TGF-Beta, and 74.64 (SD = 4.03) for 

SB431542. The Linear Assignment Problem method exhibited the lowest mean MOTA 

percentages, with 55.58 (SD = 7.97) for the control, 56.53 (SD = 5.12) for TGF-Beta, and 56.35 

(SD = 5.52) for SB431542. These results highlight the effectiveness of the Follow Neighbour 

method in cell tracking across all treatments, evidenced by its highest mean MOTA percentages 

and relatively low standard deviations. The Overlap method, while showing moderate tracking 

performance, displayed higher variability. The Linear Assignment Problem method 

consistently exhibited the lowest mean MOTA percentages and higher standard deviations. In 

Figure 52: MOTA (%) Comparison Across Different Tracking Methods for all 
well 
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summary, a higher MOTA value signifies enhanced performance of the tracking method. A 

higher percentage indicates that the predicted tracking closely aligns with the ground truth, 

demonstrating greater accuracy. As a result, the Follow Neighbour method stands out as the 

most efficient method for achieving precise and dependable cell tracking across different 

treatment conditions. 

Table 32 presents the results of the significance test conducted using the Wilcoxon 

Signed-Rank Test, demonstrating that the different cell tracking methods exhibit statistically 

significant differences in performance when applied to the dataset from the control 

environment (p-value < 0.05). The results indicate that there are significant performance 

differences between Follow Neighbour and Overlap and Linear Assignment Problem, as well 

as Overlap and Linear Assignment Problem. These findings suggest that the algorithms perform 

differently in terms of the cell tracking task under the control environment. 

 

Table 32: Significance test results for different cell tracking methods on the control 
environment dataset. 

 

Table 33 presents the results of the significance test using the same method as in the previous 

analysis, demonstrating that each of the cell tracking methods (Follow Neighbour, Overlap and 

Linear Assignment Problem) perform significantly differently when applied to the TGF-Beta 

treatment dataset. The p-values for all comparisons are less than 0.05, indicating statistically 

significant differences between each pair of methods in terms of their cell tracking 

performance. 

 

Comparison P-Value Significant Different 

Follow Neighbour vs 

Overlap 

0.00048 Yes 

Ilastik vs Linear Assignmnet 

Problemt 

0.00052 Yes 

Overlap vs  Linear 

Assignmnet Problemt 

0.00047 Yes 
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Table 33: Significance test results for different cell tracking methods on the TGF-Beta 
treatment dataset. 

 

Table 34 demonstrates the significance of test results using the same test method as in previous 

tables, focusing on the cell tracking methods applied to the SB431542 treatment dataset. The 

table shows that Follow Neighbour, Overlap and Linear Assignment Problem exhibit 

statistically significant performance differences, with all p-values well below 0.05. These 

results confirm significant cell tracking performance distinctions among the tested methods. 

 

Table 34: Significance test results for different cell tracking methods on the SB431542 
treatment dataset. 

 

4.5 Cell growth curve 

Figure 53 illustrates the growth curves of cells over time, with data points collected at 

5-minute intervals and the number of cells recorded for each well. The wells are categorised 

based on the treatments applied: green lines represent the control treatment (Wells 0, 1, 2, 3), 

red lines represent wells treated with SB431542, an inhibitor of the TGF-beta signalling 

pathway (Wells 8, 9, 10, 11), and yellow lines represent wells treated with TGF-Beta, a growth 

Comparison P-Value Significant Different 

Follow Neighbour vs 

Overlap 

0.00041 Yes 

Ilastik vs Linear Assignmnet 

Problemt 

0.00049 Yes 

Overlap vs  Linear 

Assignmnet Problemt 

0.00043 Yes 

Comparison P-Value Significant Different 

Follow Neighbour vs 

Overlap 

0.00049 Yes 

Ilastik vs Linear Assignmnet 

Problemt 

0.00054 Yes 

Overlap vs  Linear 

Assignmnet Problemt 

0.00045 Yes 
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factor (Wells 4, 5, 6, 7). At the beginning of the line graph, the initial cell counts for each 

treatment and well did not start at the same number of cells. This variation is due to factors 

such as the differing settings of fields of view for each well, which were based on the centre of 

the well and cell visibility, prioritising good lighting and minimal debris. Additionally, the 

movement of cells in and out of the microscope's field of view contributed to this variation. 

The green lines for Wells 0-3, representing the control treatment, show a steady increase in cell 

growth over time. Such a pattern indicates normal cell proliferation without any interference. 

The growth curves for the control wells are relatively similar, suggesting consistency in cell 

behaviour under standard conditions. In the case of the TGF-beta treatment, the treated wells 

show a slow increase in cell count over time, suggesting that TGF-beta may have an inhibitory 

effect on cell proliferation, thereby slowing down the growth rate compared to the control and 

SB431542 treatments. For the wells treated with SB431542, there is an increase in cell count, 

but they exhibit a moderate level of cell growth compared to the control treatment. 

 

4.6 Cell growth rate 

Figure 54 illustrates the growth rate for different wells under control, TGF-beta, and 

SB431542 treatments. The colours indicate the specific treatments, with green bars 

representing the control (Wells 0-3), yellow bars for TGF-beta (Wells 4-7), and red bars for 

SB431542 (Wells 8-11). The wells under the control treatment show high growth rates, ranging 

from approximately 6.0 x10-4 to 8.0 x10-4 min-1, indicating normal cell proliferation under 

standard conditions without any treatment interference. The control wells display consistent 

Figure 53: Cell Growth Curve Across Different Treatments 
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and high growth rates, serving as a baseline for normal cell proliferation. In contrast, the TGF-

beta treatment results in significantly lower growth rates in Wells 4-7, mostly around 1.0x10-4 

to 3.0x10-4 min-1, suggesting that TGF-beta has a substantial inhibitory effect on cell 

proliferation. The TGF-beta treated wells exhibit markedly lower growth rates than the control, 

confirming the inhibitory effect of TGF-beta on cell proliferation. The SB431542 treatment 

results in moderate to high growth rates in Wells 8-11, ranging from approximately 4.0 x10-4 

to 7.0 x10-4 min-1. These rates are lower than the control but significantly higher than the TGF-

beta treated wells. The wells treated with SB431542 show growth rates between the control 

and TGF-beta treated wells, promoting cell proliferation but not to the level of untreated cells. 

SB431542 is known to inhibit TGF-beta signalling, which explains the observed increase in 

growth rate compared to the TGF-beta treatment alone. Figure 55 illustrates the overall growth 

rates for the control, TGF-beta, and SB431542 treatments. The control group exhibits the 

highest growth rates, indicating consistent cell proliferation under standard conditions. The 

TGF-beta treatment group shows significantly lower growth rates, suggesting that TGF-beta 

substantially inhibits cell proliferation. The SB431542 treatment group demonstrates 

intermediate growth rates compared to the control and TGF-beta treatments. 

 The significance test used in Figure 55 to derive the p-values was the independent t-

test, which is appropriate for comparing the means of two independent groups, particularly 

because the data is small and normally distributed, making this parametric test well-suited for 

evaluating differences in mean cell growth rates across the experimental conditions. Based on 

the significance test results, the p-value between the control group and the TGF-Beta group is 

0.000427, which is significantly less than the typical significance level of 0.05, indicating a 

statistically significant difference in growth rate between the control and the TGF-Beta 

Figure 54: Cell Growth Rate Comparison Across Different Wells 
Under Various Treatments. 
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treatment. Similarly, the p-value between the control and the SB431542 treatment is 0.032384, 

also below the 0.05 threshold, confirming a statistically significant difference in growth rate 

between these two groups. Additionally, the p-value between the TGF-Beta and the SB431542 

treatment is 0.000889, well below 0.05, again indicating a statistically significant difference in 

growth rate between these two treatment groups. Finally, the significance tests show that all 

pairwise comparisons between the Control, TGF-Beta, and SB431542 groups reveal 

statistically significant differences in growth rate. These findings suggest that the treatments, 

TGF-Beta and SB431542, significantly impact the growth rate compared to the control and 

each other. 

 

4.7 Cell migration speed 

Figure. 56 illustrates the mean migration speed of cells over time under three different 

treatments: Control, TGF-beta, and SB431542. The migration speeds are plotted for multiple 

wells, with each treatment group represented by a specific colour. Green lines (Wells 0-3) 

represent the control treatment, yellow lines (Wells 4-7) represent the TGF-beta treatment, and 

red lines (Wells 8-11) represent the SB431542 treatment. The cells in the control group start 

with a high migration speed that decreases and stabilises at a lower rate. The same pattern is 

observed in the TGF-beta and SB431542 treated groups, but with notably higher stabilised 

speeds. The general decrease in migration speed observed across all treatments over time can 

be attributed to several biological factors, notably the effects of increasing cell density. As the 

cell density within the culture increases, it leads to crowding [283] and contact inhibition, 

Figure 55: Cell Growth Rate Comparison Across Different 
Treatments with Statistical Significance 
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which physically restricts cell movements. Increased cell density results in more crowded 

conditions that trigger several phenomena affecting cell behaviour. These include increased 

mechanical forces exerted between cells, changes in the strain fields surrounding them, and 

alterations in the patterns of collective cell movement. Collectively, these factors contribute to 

a gradual decrease in migration speed as the cell population becomes denser, demonstrating 

how environmental and spatial constraints can significantly influence cellular dynamics. 

Figure 57 presents the overall mean migration speeds for the Control, TGF-Beta, and 

SB431542 treatments, as depicted through boxplots summarising the data. The Control group 

exhibits the lowest migration speeds, representing baseline cell motility under standard, 

Figure 57: Mean Migration Speed Comparison Across Different 
Treatments with Statistical Significance. 

Figure 56: Mean Migration Speed Over Time for Different Treatment. 
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untreated conditions. In contrast, the TGF-Beta treatment group demonstrates significantly 

higher migration speeds, indicating that TGF-Beta enhances cell motility. The SB431542 

treatment group shows slightly lower migration speeds than the TGF-Beta group, although still 

higher than those observed in the Control group. The p-values displayed in the figure, derived 

from the Mann-Whitney U test, indicate the differences in migration speeds between the 

groups, some of which are statistically significant. Several conclusions can be drawn from the 

Mann-Whitney U test's statistical results regarding the effects of the treatments on mean 

migration speed. The comparison between the Control and TGF-Beta treatments reveals a 

significant difference in mean migration speed, with a p-value of p=0.0009. Given that this p-

value is below the commonly accepted significance threshold of 0.05, it indicates that the TGF-

Beta treatment significantly enhances mean migration speed compared to the Control, 

consistent with its established role in promoting cellular motility. In contrast, the comparison 

between the Control and SB431542 treatments yields a p-value of p=0.0584, which exceeds 

the significance threshold of 0.05. This suggests that the difference in mean migration speed 

between these two treatments is not statistically significant, implying that SB431542 has a 

more moderate effect on cell motility than TGF-Beta. Furthermore, the comparison between 

the TGF-Beta and SB431542 treatments demonstrates a significant difference in mean 

migration speed, with a p-value of p=0.0020. This finding indicates that TGF-Beta and 

SB431542 exert differential effects on cell motility. Overall, TGF-Beta significantly increases 

mean migration speed compared to both the Control and SB431542 treatments, while 

SB431542 exhibits a less pronounced but still elevated effect compared to the Control. These 

results underscore the potent role of TGF-Beta in promoting cell migration. 

 

4.8 Cell angular velocity 

Figure 58 displays the mean angular velocity of cells over time under three treatments: 

Control, TGF-beta, and SB431542. The angular velocities are plotted for multiple wells, with 

each treatment group represented by a specific colour. Green lines (Wells 0-3) represent the 

control treatment, yellow lines (Wells 4-7) represent the TGF-beta treatment, and red lines 

(Wells 8-11) represent the SB431542 treatment. At the initial state, the control treatment 

displays a slightly higher mean angular velocity than the TGF-beta and SB431542 treatments, 

which start with almost similar angular velocity values. Over time, cells in the control treatment 

show a slight increase in mean angular velocity, but these values remain lower than those 
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observed in the TGF-beta and SB431542 treatments. However, cells treated with TGF-beta 

show a more pronounced increasing trend in angular velocity, stabilising at a higher level than 

the control. Similarly, cells treated with SB431542 also demonstrate an upward trend in angular 

velocity over time, with values higher than the control but slightly lower than the TGF-beta 

treated treatment. The observed increase in angular velocity over time across all treatments can 

be attributed to several biological factors, particularly the effects of increasing cell density in 

culture. As cell density rises, higher intercellular torque significantly affects the regulation of 

angular velocity in rotating cells [284]. With increasing crowding, the intercellular forces and 

torques change, leading to a higher mean angular velocity. These observations suggest that 

physical interactions between cells, influenced by their density, play a crucial role in 

modulating their movement dynamics. 

Figure 59 illustrates the mean angular velocity of cells under three different treatments: 

Control, TGF-beta, and SB431542. The control treatment exhibits the lowest angular velocity, 

indicating more stable or uniform cell rotation under standard conditions. In contrast, the TGF-

beta treatment group shows significantly higher angular velocity, suggesting that TGF-beta 

enhances the motility and dynamic behaviour of the cells. The SB431542 treatment group 

demonstrates angular velocities higher than the control but slightly lower than the TGF-beta 

treatment, indicating a moderated effect on cell motility compared to TGF-beta. The results of 

the significance tests between the Control and TGF-Beta treatments reveal a notable difference 

in mean angular velocity, with a p-value of 0.00025, which is well below the conventional 

significance threshold of 0.05. However, the results of the significance test between the Control 

and SB431542 treatments indicate no statistically significant difference, with a p-value of 

0.065, which is above the 0.05 threshold. Additionally, the difference in mean angular velocity 

Figure 58: Mean Angular Velocity Over Time for Different Treatments. 
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between the TGF-Beta and SB431542 treatments is significant, with a p-value of 0.018, 

confirming that this difference is statistically meaningful since it is below the 0.05 threshold. 

These tests highlight significant differences in mean angular velocities between the Control 

and TGF-Beta, as well as between the TGF-Beta and SB431542 groups. However, the Control 

and SB431542 groups do not show a statistically significant difference. This underscores the 

unique influence of TGF-Beta on mean angular velocity compared to the other treatments. 

Results from all the above figures indicate that cells under control conditions served as a 

baseline. Cells treated with TGF-beta demonstrated suppressed proliferation [285], increased 

cell migration [286], and enhanced angular velocity. Conversely, cells treated with SB431542 

exhibited promoted cell growth [287]. Experimental variables, such as the selection of the field 

of view in time-lapse imaging, influenced the average cell growth observed with the SB431542 

treatment. Additionally, studies have shown that higher concentrations of SB431542 might lead 

to off-target effects that could inhibit cell growth. Furthermore, it has been demonstrated that 

SB431542 can exert dose-dependent effects on various cell types [288] and inhibit cell 

migration and angular velocity [289]. 

 

4.9 Machine Learning Classification 

4.9.1 RCGP Pairwise with ensemble classification 

This section presents the results for three pairwise classifications using distinct 

treatment datasets. The data from wells 0, 1, 2, and 3 represent the datasets for control 

Figure 59:  Mean Angular Velocity Comparison Across Different 
Treatments with Statistical Significance. 
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treatment, whilst the data from wells 4, 5, 6, and 7 are used for the TGF-Beta dataset and the 

data from wells 8, 9, 10, and 11 for the SB431542 dataset. The pairwise approach involves 

comparing two datasets to identify their differences or similarities. In this study, three pairwise 

classifications were conducted. The first classification, Pairwise 1, compares the dataset from 

the control condition with the dataset from the SB431542 treatment. The second classification, 

Pairwise 2, compares the control condition dataset with the TGF-Beta treatment dataset. 

Finally, the third classification, Pairwise 3, examines the dataset from the SB431542 treatment 

alongside the dataset from the TGF-Beta treatment.. Additionally, the results from the three 

pairwise comparisons (Pairwise 1, Pairwise 2, and Pairwise 3) were combined using an 

ensemble approach. In this approach, ensemble techniques such as Bagging, Boosting, and 

Stacking were applied to enhance the overall classification performance. The selection of the 

final ensemble method was determined based on which technique achieved the highest test 

accuracy. The detailed architecture of how the pairwise classifications were implemented and 

how the ensemble method was applied is illustrated in Figure 33. 

 

4.9.1.1 Pairwise Classification 1: Cross-Validation results for dataset with Control and 

SB431542 Treatment 

The results for Pairwise Classification 1, utilising a dataset subjected to control and 

SB431542 treatment. Data were analysed across three different configurations: 5 nodes (node 

5), 15 nodes (node 15), and 30 nodes (node 30). The boxplot and the summary table, labelled 

as Figure 60 and Table 35, respectively, provide a thorough analysis of the 5-fold cross-

validation accuracy for each node configuration. The boxplot for the 5-node configuration 

Figure 60: 5-Fold CV Accuracy (%) for Different Nodes - 
Pairwise Classification 1. 
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reveals the lowest median accuracy and the narrowest interquartile range (IQR). The findings 

echo the summary table, which indicates a mean accuracy of 55.07% and a standard deviation 

of 4.47. Conversely, the 15-node configuration displays a higher median accuracy and a wider 

IQR, with the table documenting a mean accuracy of 63.79% and a standard deviation of 8.91. 

The boxplot for the 30-node configuration illustrates the highest median accuracy, supported 

by the table, which reports the highest mean accuracy of 78.17% and a standard deviation of 

6.54. The observed trend of increasing accuracy with a more significant number of nodes 

suggests that the model's predictive capabilities are enhanced by expanding the node count. 

The enhancement, particularly evident in the 30-node configuration, likely reflects 

advancements in the model's parameters and optimised settings, resulting in the most robust 

performance. 

 

Table 35:Summary Statistics for 5-Fold CV Accuracy (%) - Pairwise Classification 1. 

Statistic Node 5 Node 15 Node 30 

Mean accuracy (%) 55.07 63.79 78.17 

Standard deviation 4.47 8.91 6.54 

 

4.9.1.2 Pairwise classification 2: Cross validation result for dataset with control and TGF-

Beta treatment 

The findings from Pairwise Classification 2, which involved datasets from control and 

TGF-Beta treatment, were assessed using three different node configurations: 5 nodes (node 

Figure 61:5-Fold CV Accuracy (%) for Different Nodes - 
Pairwise Classification 2. 
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5), 15 nodes (node 15), and 30 nodes (node 30). Both the boxplot, shown as Figure 61, and the 

summary table, noted as Table 36, detailed the 5-fold cross-validation accuracy for each 

configuration. For the configuration with 5 nodes, the boxplot revealed the lowest median 

accuracy alongside the narrowest interquartile range (IQR), a detail that aligns with the 

summary table showing a mean accuracy of 52.92% and a standard deviation of 2.23. The 

configuration with 15 nodes showed a notable increase in median accuracy and a broader IQR, 

with reported mean accuracy and standard deviation of 66.46% and 7.54, respectively. The 

configuration encompassing 30 nodes displayed the highest median accuracy, which the 

summary table supports, noting the highest mean accuracy at 78.28% and a standard deviation 

of 6.78. This increasing trend in accuracy with adding more nodes suggests an enhancement in 

the model’s predictive efficiency. The most notable improvements seen in the 30-node 

configuration are likely due to refined model parameters and optimised settings, contributing 

to better performance. 

Table 36: Summary Statistics for 5-Fold CV Accuracy (%) - Pairwise Classification 2. 

Statistic Node 5 Node 15 Node 30 

Mean accuracy (%) 52.92 66.46 78.28 

Standard deviation 2.23 7.54 6.78 

 

4.9.1.3 Pairwise classification 3: Cross validation result for dataset with SB431542 and 

TGF-Beta Treatment 

The results from Pairwise Classification 3, involving datasets treated with SB431542 

and TGF-Beta, were evaluated using three different node configurations: 5 nodes (node 5), 15 

nodes (node 15), and 30 nodes (node 30). Both the boxplot, displayed as Figure 62, and the 

summary table, referred to as Table 37, outlined the 5-fold cross-validation accuracy for each 

configuration. For the 5-node configuration, the boxplot showed the lowest median accuracy 

along with the narrowest interquartile range (IQR), corresponding with the summary table, 

which recorded a mean accuracy of 52.77% and a standard deviation of 1.21. The 15-node 

configuration indicated a moderate increase in median accuracy and a broader IQR, with a 

mean accuracy of 60.64% and a standard deviation of 5.55 reported. The 30-node configuration 

exhibited the highest median accuracy, which was supported by the summary table, showing 

the highest mean accuracy of 67.97% and a standard deviation of 5.54. The increasing accuracy 

with more nodes suggests the model becomes more efficient as it grows. The significant 
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improvements seen in the 30-node configuration are likely due to refined model parameters 

and optimised settings, leading to better performance. 

 

Table 37: Summary Statistics for 5-Fold CV Accuracy (%) - Pairwise Classification 3. 

Statistic Node 5 Node 15 Node 30 

Mean accuracy (%) 52.77 60.64 67.97 

Standard deviation 1.21 5.55 5.54 

 

4.9.1.4 Test result Pairwise classification 

The test accuracy percentages outlined in Table 38 for three distinct pairwise 

classifications showcase the performance across different datasets and node configurations.  

Table 38: Test Accuracy (%) for pairwise classification. 

Pairwise classification Test accuracy (%) 

Pairwise 1  80.76 

Pairwise 2 79.17 

Pairwise 3 73.46 

 

The table provides a comprehensive analysis of the results from each classification, 

emphasising the node configurations that produced the best outcomes. In Pairwise 1, the dataset 

Figure 62:5-Fold CV Accuracy (%) for Different Nodes - 
Pairwise Classification 3. 
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treated with control and SB431542 was analysed using a 30-node configuration, which proved 

the most effective for this set. This classification achieved the highest test accuracy of 80.76%. 

For Pairwise 2, the dataset involving treatments with control and TGF-Beta was also analysed 

under a 30-node configuration. It recorded a test accuracy of 79.17%, slightly lower than that 

of Pairwise 1. Pairwise 3, which included datasets treated with both SB431542 and TGF-Beta, 

used the same 30-node configuration, resulting in the lowest test accuracy at 73.46%. The 

reduced accuracy in this classification, compared to the others, suggests an increased 

complexity arising from the combination of both treatments. This complexity might have led 

to increased variability or overlapping features within the dataset, making accurate 

classification more challenging. These findings indicate that while a 30-node configuration was 

consistently the best choice across the classifications, the varying levels of accuracy highlight 

the importance of aligning the model configuration with each dataset's specific challenges and 

characteristics to optimise outcomes. 

The selection of a 30-node limit for the RCGP architecture was strategically determined 

based on accuracy metrics derived from test datasets and the structural efficacy of the final 

network model. 

 

Table 39: Comparison Test Accuracy (%) for different node configurations. 

 

The data in Table 39 indicate that the 30-node configuration of the Recurrent Cartesian Genetic 

Programming (RCGP) architecture provides an optimal balance between computational 

efficiency and accuracy. The test accuracy for the 30-node model, derived from pairwise 1 

classification, is 80.76%, slightly lower than the 81.52% achieved with 60 nodes. However, 

this marginal improvement in accuracy is offset by the significant increase in computational 

time, which doubles from approximately 12 hours to 24 hours. Furthermore, the complexity of 

the network diagram increases from 19 nodes in the 30-node model to 39 nodes in the 60-node 

model, further contributing to the higher computational demands. Therefore, the 30-node 

RGCP architecture Test Accuracy Computational time Network diagram 

model  

30 nodes 80.76 ≈12 hours 19 nodes 

60 nodes 81.52 ≈24 hours 39 nodes 
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configuration is preferable, offering a more efficient and manageable solution without 

compromising significantly on accuracy. 

 

4.9.1.5 Ensemble Classification 

4.9.1.5.1 Bagging 

The provided visual data and table, labelled as Figure 63 and Table 40, respectively, 

illustrate the performance metrics of a bagging ensemble method using Random Forest for 

classification tasks across three settings for the number of estimators: 10, 50, and 100. These 

components detail how classification accuracy improves as the number of estimators increases. 

In Figure 63, the Random Forest ensemble with 10 estimators displays the lowest accuracy, 

with the median just above 80% and a narrow spread, indicative of consistent but modest 

performance. Further substantiation comes from Table 40, which shows a mean accuracy of 

80.41% with a standard deviation of 0.82 for this setting. 

 

Table 40:Summary Statistics for 5-Fold CV Accuracy (%) for bagging method. 

Parameter setting Mean accuracy Standard deviation 

n_estimators=10 80.41 0.82 

n_estimators=50 85.90 0.72 

n_estimators=100 92.48 0.45 

Figure 63:5-Fold CV Accuracy (%) for different estimator value 
- bagging method. 
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As the number of estimators increases to 50, there is a noticeable rise in median 

accuracy to around 85%, accompanied by a slightly reduced interquartile range (IQR), 

suggesting improved performance with less variability. The table confirms this with a mean 

accuracy of 85.90% and a reduced standard deviation of 0.72. The configuration with 100 

estimators exhibits the highest accuracy, with the median nearing 93% and the tightest IQR, 

highlighting the best performance and greatest consistency among trials. Correspondingly, 

Table 40 shows that 100 estimators achieve the highest mean accuracy of 92.48% with the 

lowest standard deviation of 0.45, firmly confirming optimal performance and stability 

observed in the boxplot. Data from the study demonstrates a positive correlation between the 

number of Random Forest bagging ensemble estimators and classification accuracy. Increasing 

the number of estimators enhances the model's generalisation capabilities. Decreasing standard 

deviation values as the number of estimators increases suggests that more estimators not only 

boost accuracy but also enhance the stability and consistency of the model's predictions across 

different subsamples of the data. The observed trend underscores the effectiveness of investing 

in more complex models with additional estimators, which can yield substantial improvements 

in predictive accuracy. For practical applications, opting for a higher number of estimators in 

Random Forest configurations can significantly enhance outcomes, especially in scenarios that 

demand high reliability and precision in classification tasks. 

 

4.9.1.5.2 Boosting 

 

Figure 64:5-Fold CV Accuracy (%) for different estimator 
value - boosting method. 
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Table 41:Summary Statistics for 5-Fold CV Accuracy (%) for boosting method. 

Parameter setting Mean accuracy Standard deviation 

Learning rate=0.01 69.53 0.74 

Learning rate=0.1 84.38 1.18 

Learning rate=0.3 88.85 2.83 

 

The visual data and table, labelled as Figure 64 and Table 41, respectively, showcase 

the performance metrics of an XGBoost boosting ensemble method evaluated at different 

learning rates (0.01, 0.1, and 0.3) based on 5-fold cross-validation accuracy. Figure 64 boxplot 

at a learning rate of 0.01 shows the lowest accuracy, with the median just above 70% and a 

narrow interquartile range (IQR), indicative of consistent yet modest performance. Table 41 

records a mean accuracy of 69.53% with a standard deviation of 0.74 at this learning rate, 

aligning with the boxplot's indicated performance. As the learning rate increases to 0.1, the 

median accuracy in the boxplot rises significantly to around 85%, and the IQR broadens 

slightly, suggesting improved performance with a moderate increase in variability; the table 

confirms this with a mean accuracy of 84.38% and a standard deviation of 1.18. At the highest 

learning rate of 0.3, the boxplot reveals the best performance, with the median accuracy nearing 

90% and the widest IQR, reflecting the highest variability and the strongest overall accuracy. 

Table 41 supports the findings, indicating that the mean accuracy at this learning rate peaks at 

88.85% with a standard deviation of 2.83, confirming optimal performance and more 

significant variability. Data show that higher learning rates in the XGBoost method correlate 

positively with increased classification accuracy. However, such increases in accuracy also lead 

to greater variability in results, as evidenced by expanding interquartile ranges and rising 

standard deviations with higher learning rates. This pattern illustrates a clear trade-off between 

learning rate and performance in XGBoost boosting methods. While higher learning rates 

enhance model accuracy, they also introduce more variability in the model's predictions. Thus, 

carefully managing learning rates is crucial, particularly in scenarios that require consistent and 

robust performance. Adjusting the learning rate to match the specific demands and tolerance 

for the variability of the task can significantly enhance outcomes in predictive tasks utilising 

XGBoost. 
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 4.9.1.5.3 Stacking 

 

Table 42: Summary Statistics for 5-Fold CV Accuracy (%) for stacking method 

Parameter setting Mean accuracy Standard deviation 

max_iter=250, max_depth=2, 
n_estimators=25 

76.56 1.59 

max_iter=500, max_depth=3, 
n_estimators=50 

84.26 5.94 

max_iter=1000, max_depth=5, 
n_estimators=100 

85.65 5.70 

 

The provided visual data and table, labelled as Figure 65 and Table 42, illustrate the 

performance metrics of a stacking ensemble method that integrates three different algorithms: 

Logistic Regression, Decision Tree Classifier, and Random Forest Classifier. This method 

evaluates the impact of tuning specific parameters—max_iter for Logistic Regression, 

max_depth for Decision Tree Classifier, and n_estimators for Random Forest Classifier—on 

5-fold cross-validation accuracy. The boxplot in Figure 65 displays accuracy results for three 

configurations. The first configuration with max_iter=250, combined with max_depth=2 and 

n_estimators=25, shows the lowest median accuracy slightly below 80% and a narrow 

interquartile range (IQR), indicative of consistent but modest performance. Increasing the 

parameters to max_iter=500, max_depth=3, and n_estimators=50 results in a median accuracy 

of about 85% and a broader IQR, reflecting improved performance with a moderate increase 

Figure 65: 5-Fold CV Accuracy (%) for different estimator value - 
stacking method. 
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in variability. The third configuration maximizes the parameters to max_iter=1000, 

max_depth=5, and n_estimators=100, achieving the highest median accuracy around 86% with 

an IQR similar to the second setting, suggesting the best and most consistent performance. 

Corresponding numerical data in Table 42 supports these observations: the initial 

parameter set (max_iter=250, max_depth=2, n_estimators=25) achieves a mean accuracy of 

76.56% with a standard deviation of 1.59, reflecting the lowest performance. The second set 

(max_iter=500, max_depth=3, n_estimators=50) shows an increased mean accuracy of 84.26% 

and a higher standard deviation of 5.94, indicating enhanced performance. The most advanced 

parameter configuration (max_iter=1000, max_depth=5, n_estimators=100) records the 

highest mean accuracy at 85.65% with a standard deviation of 5.70, confirming the optimal 

performance indicated in the boxplot. These findings suggest that enhancing the parameters of 

max_iter for Logistic Regression, max_depth for Decision Tree Classifier, and n_estimators 

for Random Forest Classifier within a stacking ensemble method can significantly improve 

classification accuracy. As these parameters increase, the models more effectively capture 

complex patterns in the data, leading to higher accuracy. However, this also introduces 

variability in the results, as seen in the expanding IQRs and rising standard deviations. 

 

4.9.1.5.4 Test result Ensemble classification 

The test accuracy percentages presented in Table 43 for three distinct ensemble classification 

methods, Bagging, Boosting, and Stacking, illustrate their performance across various 

ensemble strategies. The table provides a comprehensive analysis of each method's results, 

emphasising each's effectiveness in handling classification tasks. 

 

Table 43: Test Accuracy (%) for ensemble classification. 

Ensemble classification Test accuracy (%) 

Bagging 88.59 

Boosting 85.34 

Stacking 82.15 
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Bagging classification, employing Random Forests techniques to aggregate multiple decision 

trees, achieved the highest test accuracy at 88.59%. The performance highlights Bagging's 

strength in reducing variance and delivering robust predictions by averaging several deep and 

possibly overfit trees. Boosting classification, specifically using the XGBoost algorithm, 

recorded a test accuracy of 85.34%. Although slightly lower than Bagging, XGBoost excels at 

addressing challenging cases by incrementally building the ensemble and adjusting the weight 

of instances, thus enhancing the ensemble's accuracy with each iteration. Stacking 

classification involves a combination of Logistic Regression, Decision Tree Classifier, and 

Random Forest Classifier to enhance the final prediction accuracy and yield the lowest test 

accuracy at 82.15%. The outcome may indicate challenges in effectively blending the outputs 

of diverse classifiers or fine-tuning the meta-classifier that integrates these outputs, potentially 

leading to reduced efficacy compared to other ensemble strategies. Overall, Bagging was the 

most effective strategy in this analysis, providing the highest classification accuracy. 

 

4.9.1.6 RCGP pairwise classification model 

The computational network graph, shown in Figure 66, displays a model with three 

input data points on cell growth, migration speed, and angular velocity to produce two binary 

outputs, "Output 0" and "Output 1." These outputs classify biological conditions into two 

categories: Control and SB431542, based on specific combinations of the binary results: 

Figure 66: Model classification for dataset control and SB431542 classification. 
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Control (0,1) and SB431542 (1,0). The model consists of 19 nodes, not including the three 

primary input nodes and two output nodes. These nodes are engaged in performing a variety of 

mathematical operations that manipulate the data as it moves through the model. Inactive 

components not used in the model are shown in grey, while the active parts of the optimised 

model are depicted in black. This distinction helps identify which elements of the 

computational graph actively contribute to the outputs, illustrating an efficient data flow 

through key pathways. Data processing begins with three specific inputs: cell growth ((0) 

input), migration speed ((1) input), and angular velocity ((2) input). Each input undergoes 

addition, subtraction, multiplication, division, and is processed by sigmoid functions, which 

crucially integrate the inputs to reflect underlying biological processes or interactions. In binary 

classification, the sigmoid functions are employed to map any real-valued number into the 0 to 

1 range. This function is vital for generating probabilities and determining whether a specific 

condition or classification is met. The output configurations provide clear classifications: 

"Control" is indicated by an output combination of (0,1), suggesting typical or expected 

behaviour under normal conditions, while the combination of (1,0) indicates conditions 

influenced by SB431542, signifying a specific cellular response or behaviour due to the 

treatment. The model offers a robust framework for conducting detailed biological analyses 

and classifying cellular behaviours under control or SB431542 treatment by methodically 

mapping complex inputs through calculated operations and using sigmoid functions for precise 

classification. 

Figure 67 presents a computational network graph incorporating three input variables: 

cell growth, migration speed, and angular velocity. This model generates two binary outputs, 

"Output 0" and "Output 1," which are utilised to categorise biological conditions into Control 

and TGF-beta. The binary combinations of Control (0,1) and TGF-beta (1,0) determine the 

classifications. The model's architecture includes 14 nodes, excluding the three primary input 

and two output nodes. These nodes execute various mathematical operations that transform and 

manipulate the data throughout the model. Inactive parts of the model are coloured grey, 

highlighting non-utilised components, whereas active sections that are part of the optimised 

model are coloured black. This colour coding is essential for delineating which components of 

the computational graph are integral to the outputs, showcasing an effective data flow through 

essential pathways. The process begins with the three inputs mentioned above: cell growth ((0) 
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input), migration speed ((1) input), and angular velocity ((2) input). Operations, including 

addition, subtraction, multiplication, division, and processing through sigmoid functions, are 

applied to these inputs. These functions are critical as they integrate the data to mirror 

underlying biological processes or interactions. The sigmoid functions are essential in binary 

classification, where they convert any real-valued number into a 0 to 1 range, crucial for 

calculating probabilities and establishing whether a specific condition or classification is 

achieved. The outputs are distinctly defined: "Control" is signified by an output combination 

of (0,1), indicating typical or expected behaviour under normal conditions. Conversely, the 

combination of (1,0) represents conditions affected by TGF-beta, denoting a particular cellular 

response or behaviour resulting from the treatment. This model provides a solid framework for 

classifying cellular behaviours under conditions of Control or TGF-beta influence by 

methodically organising complex inputs through strategic operations and utilising sigmoid 

functions for accurate classification.  

Figure 68 presents a computational network graph incorporating three input variables: 

cell growth, migration speed, and angular velocity. This model generates two binary outputs, 

"Output 0" and "Output 1," which are utilised to categorise biological conditions into 

SB431542 and TGF-beta. The binary combinations SB431542 (0,1) and TGF-beta (1,0) 

determine the classifications. The model's architecture includes 22 nodes, excluding the three 

Figure 67: Model classification for dataset control and TGF-Beta classification. 
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primary input and two output nodes. These nodes execute various mathematical operations that 

transform and manipulate the data throughout the model. Inactive parts of the model are 

coloured grey, highlighting non-utilised components, whereas active sections that are part of 

the optimised model are coloured black. The process begins with the three mentioned inputs: 

cell growth ((0) input), migration speed ((1) input), and angular velocity ((2) input). Operations, 

including addition, subtraction, multiplication, division, and processing through the sigmoid 

and ReLU functions, are applied to these inputs. The inclusion of ReLU functions, which are 

used to introduce non-linearity without affecting the scale of the input, is critical as they further 

refine the data. Meanwhile, sigmoid functions are essential in binary classification, where they 

convert any real-valued number into a 0 to 1 range, crucial for calculating probabilities and 

establishing whether a specific condition or classification is achieved. The outputs are distinctly 

defined: "SB431542" is signified by an output combination of (0,1), indicating typical or 

expected behaviour under conditions influenced by SB431542. Conversely, the combination of 

(1,0) represents conditions affected by TGF-beta, denoting a specific cellular response or 

behaviour resulting from the treatment. This model provides a robust framework for classifying 

cellular behaviours under conditions influenced by SB431542 or TGF-beta by methodically 

organising complex inputs through strategic operations and utilising sigmoid and ReLU 

functions for accurate classification.  

 

 

Figure 68: Model classification for dataset SB431542 and TGF-Beta classification. 
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4.9.2 PySR Regression with classification 

This section presents the results of symbolic regression and classification using the 

PySR genetic programming approach across distinct treatment datasets. The datasets for the 

control treatment are represented by data from wells 0, 1, 2, and 3. Data from wells 4, 5, 6, and 

7 are used for the TGF-Beta dataset, and data from wells 8, 9, 10, and 11 for the SB431542 

dataset. Symbolic regression will be performed for each well, acknowledging the inherent 

heterogeneity within biological systems. Each well in a multi-well plate may experience slight 

variations in conditions such as cell density, microenvironment, and reagent exposure, leading 

to distinct behaviours or responses. By analysing each well separately, symbolic regression 

captures these unique characteristics, resulting in more accurate models that reflect the specific 

conditions of each well. This approach also facilitates the discovery of mathematical models 

that describe the relationships between variables. Independent analysis of each well uncovers 

specific patterns that might be lost in aggregated data, providing a more detailed understanding 

of the underlying biological processes. This level of detail is crucial for accurate modelling in 

complex systems. 

Biologically, variability is a fundamental aspect of experiments, arising from factors 

such as biological noise and differences in cell populations. Treating each well as an 

independent micro-experiment allows us to understand how these variables uniquely influence 

the system, offering insights into the biological variability and robustness of observed 

phenomena. Moreover, it enables the discovery of well-specific phenomena that might be 

obscured in a pooled analysis, potentially leading to new hypotheses for further investigation. 

Analysing individual wells preserves important information that might be lost through data 

aggregation. Aggregating data can mask subtle yet significant differences between wells. By 

analysing each well independently, we maintain the integrity and richness of the data, leading 

to more tailored models that better capture the system's dynamics and enhance our 

understanding of the biological processes involved. In this analysis, the input features for each 

symbolic regression include time, migration speed, and angular velocity. The output of each 

symbolic regression, representing cell growth, will be combined into a symbolic classification 

model that provides the final predictions for treatment conditions. Symbolic classification will 

then be applied to all treatments, ensuring that the diverse responses to treatments are 

accurately captured and modelled, ultimately allowing for a more precise prediction of 

treatment outcomes across different conditions. 
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4.9.2.1 Symbolic regression  

This section presents the results and analysis of a regression model designed to predict 

cell growth. The analysis includes symbolic regression for well 0, which represents the control 

group; well 4, associated with TGF-β treatment; and well 8, corresponding to the SB431542 

treatment. Detailed results for additional wells are provided in Appendix A (Figure A.19 to 

Figure A.36). The effectiveness of the regression model is further illustrated in Figures 69 and 

70, and Table 44. Specifically, Figure 85 features a series of box plots that demonstrate the 

coefficient of determination (R²) across various parameter settings in a 5-fold cross-validation 

setup for Well 0. The settings range from 5 populations with 30 iterations to 15 populations 

with 150 iterations, demonstrating that increased model complexity generally improves 

predictive accuracy, as evidenced by rising median R² values. 

 

Table 44: Summary Statistics for 5-Fold CV R² Mean for Well 0 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.529 0.0022 

5 Populations, 80 Iterations 0.583 0.0174 

5 Populations, 150 Iterations 0.654 0.0206 

Figure 69: Box Plot of Regression Model 5-Fold Cross-
Validation Results for Well 0. 
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Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.529 0.0022 

10 Populations, 30 Iterations 0.695 0.0088 

10 Populations, 80 Iterations 0.757 0.0024 

10 Populations, 150 Iterations 0.705 0.0078 

15 Populations, 30 Iterations 0.835 0.0131 

15 Populations, 80 Iterations 0.889 0.0118 

15 Populations, 150 Iterations 0.884 0.0045 

 

Table 44 provides a numerical complement to the visual data, offering detailed summaries of 

the mean R² values and their standard deviations for the parameter configurations. The table 

confirms the trends observed in the box plots and identifies the optimal setting of 15 

populations and 80 iterations as having the highest mean R² value of 0.889 and standard 

deviation of 0.0118. Such findings suggest that this configuration offers the best accuracy. In 

Figure 70, a scatter plot is presented that compares actual versus predicted cell growth using a 

model configured with 15 populations and 80 iterations. The application of this model to the 

test dataset yields an R² value of 0.870, demonstrating robust predictive performance. 

The box plot (Figure 71) and summary statistics table (Table 45) provide a detailed 

analysis of the coefficient of determination (R²) for various parameter settings in a symbolic 

regression model using 5-fold cross-validation with a focus on data from Well 4. An upward 

Figure 70: Actual Vs Predicted Growth On Test Data (R² = 
0.870). 
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trend in R² values is observed as the number of populations and iterations increases, reflecting 

enhanced model performance. For instance, increasing from 5 populations and 30 iterations 

(R²=0.493) to 15 populations and 150 iterations (R²=0.880) shows a significant improvement. 

The decrease in variability, represented by the size of the boxes and the length of the whiskers, 

suggests more consistent performance with higher populations and iterations. Minimal outliers 

in the box plot further indicate consistent cross-validation results. As shown in the summary 

statistics table, standard deviation values generally decrease with higher populations and 

iterations, indicating increased consistency in performance. The model exhibits the lowest 

performance at 5 populations and 30 iterations with a mean R² of 0.493 and a standard deviation 

of 0.0194. Performance improves with 80 and 150 iterations, reaching mean R² values of 0.533 

and 0.569, respectively. For 10 populations and 30 iterations, performance increases to 

R²=0.643. With 80 and 150 iterations, mean R² values are 0.699 and 0.746, respectively. The 

standard deviation remains low, indicating consistent model performance. At 15 populations 

and 30 iterations, the mean R² is 0.819. Increasing iterations to 80 and 150 further improves 

the mean R² values to 0.843 and 0.880, respectively, with low standard deviation indicating 

high consistency. 

 

 

Figure 71: Box Plot of Regression Model 5-Fold Cross-Validation 
Results for Well 4. 
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Table 45: Summary Statistics for 5-Fold CV R² Mean for Well4 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.493 0.0194 

5 Populations, 80 Iterations 0.533 0.0384 

5 Populations, 150 Iterations 0.569 0.0367 

10 Populations, 30 Iterations 0.643 0.0092 

10 Populations, 80 Iterations 0.699 0.0198 

10 Populations, 150 Iterations 0.746 0.0174 

15 Populations, 30 Iterations 0.819 0.0264 

15 Populations, 80 Iterations 0.843 0.0157 

15 Populations, 150 Iterations 0.880 0.0241 

 

 

Figure 72 presents the actual versus predicted cell growth on test data, with an R² value 

of 0.867. The scatter plot shows predicted values plotted against actual values, with the ideal 

Figure 72:Actual Vs Predicted Growth On Test Data (R² = 0.867). 
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fit line (dashed red) representing perfect predictions. Most data points closely align with the 

ideal fit line, indicating a strong correlation between predicted and actual values. The high R² 

value of 0.867 on test data confirms the cross-validation findings, affirming the model's 

reliability and accuracy. The test data scatter plot demonstrates that the model performs well in 

predicting cell growth. Points closely follow the ideal fit line, indicating accurate predictions. 

Optimal parameter settings, identified as 15 populations and 150 iterations, result in the best 

performance, yielding the highest mean R² value of 0.880 and a low standard deviation. The 

test data results, with an R² value of 0.867, validate the model's effectiveness, assuring its 

suitability for applicable applications. 

The performance of a symbolic regression model under various parameter 

configurations was evaluated using 5-fold cross-validation, with results for well 8 displayed in 

Figure 73 (box plot) and Table 46 (summary statistics). The coefficient of determination (R²) 

exhibits a positive correlation with increasing populations and iterations, suggesting enhanced 

model performance. Specifically, R² values improve from 0.511 to 0.910 as populations 

increase from 5 to 15 and iterations from 30 to 150. The box plot reveals decreasing variability 

in R² values, evidenced by smaller boxes and shorter whiskers, as population and iteration 

numbers increase. This trend indicates more consistent performance across folds. 

 

Figure 73:Box Plot of Regression Model 5-Fold Cross-Validation 
Results for Well 8. 



 

173 
 

Table 46: Summary Statistics for 5-Fold CV R² Mean for Well 8 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.511 0.0314 

5 Populations, 80 Iterations 0.527 0.0210 

5 Populations, 150 Iterations 0.591 0.0099 

10 Populations, 30 Iterations 0.629 0.0180 

10 Populations, 80 Iterations 0.729 0.0319 

10 Populations, 150 Iterations 0.775 0.0031 

15 Populations, 30 Iterations 0.784 0.0074 

15 Populations, 80 Iterations 0.894 0.0105 

15 Populations, 150 Iterations 0.910 0.0129 

  

The summary statistics table demonstrates a decreasing trend in standard deviation values with 

increasing population and iteration numbers, further supporting improved consistency in 

performance. Performance analysis reveals that the model achieves its lowest at 5 populations 

and 30 iterations (mean R² = 0.511, SD = 0.0314). Modest improvements are observed at 80 

and 150 iterations (mean R² = 0.527 and 0.591, respectively). With 10 populations, 

performance improves across iterations: R² = 0.629 (30 iterations), R² = 0.729 (80 iterations), 

and R² = 0.775 (150 iterations), maintaining low standard deviations. Optimal performance is 

achieved with 15 populations: R² = 0.784 (30 iterations), R² = 0.894 (80 iterations), and R² = 

0.910 (150 iterations), with minimal variability. Figure 74 presents a scatter plot of predicted 

versus actual cell growth on test data, yielding an R² of 0.878. Most data points closely align 

with the ideal fit line, validating the model's predictive accuracy and corroborating cross-

validation results. Minor discrepancies are observed at lower growth values. The optimal 

configuration (15 populations, 150 iterations) demonstrates superior performance (mean R² = 
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0.910, low variability). The model's performance on test data, as indicated by an R² value of 

0.878, demonstrates its practical utility. This slight reduction in performance compared to the 

cross-validation results (R² = 0.910) is consistent with typical patterns observed when models 

are applied to novel datasets, reflecting the challenges inherent in generalising unseen data. 

 

Figure 75 illustrates the distribution of R² values for the Control, TGF-B, and SB431542 

treatments, based on symbolic regression applied to the test dataset. The boxplot provides a 

concise visual summary, effectively highlighting the consistency of the model's performance 

across the different treatments. To determine whether there are statistically significant 

differences in the R² values among the three treatment groups (Control, TGF-B, and 

SB431542), a Kruskal-Wallis test was conducted. The test resulted in a p-value of 0.789. As 

this p-value is greater than the commonly used significance level of 0.05, the null hypothesis 

cannot be rejected. This result indicates that there is no statistically significant difference in the 

R² values among the Control, TGF-B, and SB431542 treatment groups. Consequently, the lack 

of significant difference suggests that the performance of the model is consistent across the 

different treatments. The key biological insight here is that the symbolic regression model, 

which predicts cell growth based on inputs such as time, migration speed, and angular velocity, 

demonstrates consistent performance across different treatment conditions. The consistent R² 

values across the Control, TGF-B, and SB431542 groups suggest that the model reliably 

predicts cell growth. This robustness is crucial for understanding the impact of these treatments 

on cell behaviour and supports the model's applicability across diverse experimental scenarios. 

 

Figure 74: Actual Vs Predicted Growth On Test Data (R² = 0.878). 
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4.9.2.2 Symbolic classification 

The classification model's performance was evaluated using a dataset from control 

(well 0, 1, 2, and 3), TGF-Beta (well 4, 5, 6, and 7), and SB431542 (well 8, 9, 10, and 11) 

treatment. The model's accuracy was assessed through a 5-fold cross-validation process, and 

the results are summarised in a box plot and a table of mean accuracies with standard 

deviations. Figure 76 illustrates the box plot of the classification model's 5-fold cross-

validation results. The x-axis represents various parameter settings, specifically the number of 

populations (3, 9, and 18) and the number of iterations (50, 100, and 200). The y-axis indicates 

the accuracy achieved by the model. A clear trend of increasing accuracy can be observed as 

the number of populations and iterations increase. For instance, the accuracy for the 

configuration with 3 populations and 50 iterations starts around 41.80%, while the 

configuration with 18 populations and 200 iterations achieves an accuracy close to 87.10%. 

Table 47 presents the summary statistics for the 5-fold cross-validation mean accuracy, 

including the standard deviation for each parameter setting. Configurations with 3 populations 

show a mean accuracy ranging from 41.80% to 58.10%, with increasing iterations resulting in 

higher accuracy. Configurations with 9 populations demonstrate a mean accuracy from 64.70% 

to 73.90%. The most notable improvements were made with 18 populations, where the mean 

Figure 75: R² value distribution for Control, TGF-B, and SB431542 
treatments in symbolic regression on the test dataset 
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accuracy ranged from 79.30% to 87.10%. The highest accuracy observed is 87.10%, achieved 

with 18 populations and 200 iterations, indicating the model's capability to classify the dataset 

accurately.  

 

 

Table 47: Summary Statistics for 5-Fold CV Mean Accuracy (%) for Symbolic Classification. 

Parameter setting Mean Accuracy Standard deviation 

3 Populations, 50 Iterations 41.80 0.0164 

3 Populations, 100 Iterations 50.10 0.0204 

3 Populations, 200 Iterations 58.10 0.0082 

9 Populations, 50 Iterations 64.70 0.0121 

9 Populations, 100 Iterations 71.90 0.0111 

9 Populations, 200 Iterations 73.90 0.0113 

Figure 76: Box Plot of classification Model 5-Fold Cross-Validation 
Results. 
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Parameter setting Mean Accuracy Standard deviation 

3 Populations, 50 Iterations 41.80 0.0164 

18 Populations, 50 Iterations 79.30 0.0143 

18 Populations, 100 Iterations 81.90 0.0112 

18 Populations, 200 Iterations 87.10 0.0123 

 

The classification accuracy on the test data is reported as 92.31%, suggesting that the model 

generalises well to unseen data. The low standard deviations across different configurations, 

particularly those with higher populations and iterations, imply consistent performance and 

robustness of the model. 

 

4.9.2.3 Symbolic regression and classification model 

In this section, a model for symbolic regression is presented for each well based on their 

treatment. The y value represents cell growth, x0 represents time, x1 represents migration speed, 

and x2 represents angular velocity. Regarding the control treatment, well 0 is represented by 

equation 18, well 1 corresponds to equation 19, well 2 is described by equation 20, and well 3 

is depicted by equation 21. The visualisation of the equations, showing the relationship between 

variables, is provided only for well 0. For wells 1, 2, and 3, please refer to Appendix Figures 

A.37 through A.39. 

 

Symbolic regression model for Well 0 

𝑦 = 6.78 × 10ିଵ ⋅ 𝐴ଵ ⋅ 𝑥଴ ⋅ 𝑥ଶ ⋅ (𝑥ଵ − 𝑥ଶ) + 8.42 × 10ିଶ ⋅ 𝐴ଶ − 𝑥ଵ ⋅ 𝐴ସ + 2.25 × 10ଶ     (18) 

Where; 

𝐴ଵ = 𝑥ଶ − 0.7032 

𝐴ଶ = 𝑥଴ − 31.865 

𝐴ଷ = 𝑥ଵ − 0.433 
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𝐴ସ = 𝐴ଶ ⋅ 𝐴ଷ ⋅ 𝑥ଵ − 145.1451 

 

Figure 77 presents a 3D scatter plot that demonstrates the relationship between predicted cell 

growth, time, and cell migration for Normal Human Urothelial (NHU) cells over a span of 48 

hours based on the symbolic regression equation derived for Well 0. The X-axis represents 

time, indicating the duration of observation. The Y-axis displays cell migration speed, and the 

Z-axis illustrates predicted cell growth. Each point on the plot is colour-coded to represent 

different levels of cell growth, ranging from 300 to over 650, as shown on the colour gradient 

bar. This visualisation highlights the pattern of cell growth over time in relation to migration 

speed, providing insights into how cell migration influences growth dynamics in a controlled 

environment. 

 

Symbolic regression model for Well 1 

𝑦 = 6.74 × 10ିହ ⋅ 𝑥଴
ଶ + 3.72 × 10ଵ ⋅ 𝐴ଵ

ଶ ⋅ 𝐴ଶ
ସ − 4.6 × 10ିଵ                          (19) 

Where; 

𝐴ଵ = 1 − 1.7 × 10ିଵ ⋅ 𝑥ଵ 

𝐴ଶ = 1 + 9.8 × 10ିଵ ⋅ 𝑥ଵ 

Figure 77: 3D Surface Plot of Predicted Cell Growth vs. Migration 
Speed and Time. For Well 0 

(minute) 
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Symbolic regression model for Well 2 

𝑦 = −6.43 × 10ଷ ⋅ (𝑥ଵ𝑥ଶ)ଶ ⋅ (𝐴ଵ − 9.4 × 10ିଵ ⋅ 𝑥ଶ)ଶ + 1.30 × 10ଷ ⋅ 𝐴ଶ
ଶ + 1.0 × 10ିଵ ⋅ 𝐴ଷ ⋅

𝑥ଵ
ିଵ                                            (20) 

Where; 

𝐴ଵ = 𝑥ଵ + 1.0 × 10ିଶ 

𝐴ଶ = 𝑥ଵ − 3.5 × 10ିଵ 

𝐴ଷ = 𝑥଴ + 2.46 

 

Symbolic regression model for Well 3 

𝑦 = −4.57 × 10ିହ ⋅ 𝐴ଵ + 4.27 × 10ଵ ⋅ 𝑥ଵ + 𝐴ଶ ⋅ (𝐴ଷ + 9.25 × 10ିଵ) + 2.22 × 10ଶ        (21) 

Where; 

𝐴ଵ = 𝑥଴ ⋅ (𝑥ଵ − 𝑥଴) 

𝐴ଶ = ൬
𝑥ଵ

𝑥ଶ
൰

ଶ

+
7.81 × 10ିଵ ⋅ 𝑥ଶ

𝑥ଵ − 4.99 × 10ିଵ
 

𝐴ଷ = 𝑥ଵ ⋅ (𝑥ଶ − 𝑥ଵ) 

 

As for the TGF-beta treatment, well 4 corresponds to equation 22, well 5 is described by 

equation 23, well 6 is depicted by equation 24, and well 7 matches equation 25. The 

visualisation of the equations, showing the relationship between variables, is provided only for 

well 4. For wells 5, 6, and 7, please refer to Appendix Figures A.40 through A.42. 

 

Symbolic regression model for Well 4 

𝑦 = (1.06 ⋅ 𝑥ଵ
ଷ + 𝐴ଵ) ⋅ (3.0 × 10ିଶ ⋅ 𝑥଴ − 1.15 ⋅ 𝐴ଶ + 𝐴ଷ + 2.85 × 10ଶ)             (22) 

Where; 

𝐴ଵ =
𝑥଴ ⋅ (8.4 × 10ିଵ − 𝑥ଵ) + 𝑥ଵ

𝑥଴ ⋅ (5.0 × 10ିଶ ⋅ 𝑥ଶ + 3.8 × 10ିଵ)
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𝐴ଶ =
𝑥ଶ

ଷ

(𝑥ଵ − 4.6 × 10ିଵ) ⋅ (𝑥ଶ − 5.6 × 10ିଵ)
 

𝐴ଷ =
𝑥ଶ

ଶ

6.7 × 10ିଵ − 𝑥ଵ
 

 

Figure 78 showcases a 3D scatter plot that maps the relationship between predicted cell growth, 

time, and cell migration for Normal Human Urothelial (NHU) cells over a 48-hour period, 

utilising a symbolic regression equation derived for Well 4. The X-axis denotes time, 

representing the duration of observation, while the Y-axis measures cell migration speed. The 

Z-axis displays predicted cell growth. Each point on the plot is colour-coded to indicate various 

levels of cell growth, ranging from 180 to 280, as depicted on the colour gradient bar. This 

visualisation underscores the pattern of cell growth over time in connection to migration speed, 

offering valuable insights into how migration dynamics impact cell growth under TGF-β 

treatment. 

 

Symbolic regression model for Well 5 

𝑦 = −𝑥ଶ
ଶ ⋅ (𝑥ଶ + 3.0) + 𝐴ଵ ⋅ 𝐴ଶ − 𝐴ଷ + 1.20 × 10ଶ                                      (23) 

Figure 78: 3D Surface Plot of Predicted Cell Growth vs. Migration 
Speed and Time for Well 4. 

(minute) 
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Where; 

𝐴ଵ = 2.39 × 10ି଺ ⋅ (1.84 × 10ିଷ ⋅ 𝑥଴ − 1)ଶ ⋅ 𝑥ଶ 

𝐴ଶ = 1.25 × 10଻ ⋅ (2.83 × 10ିସ ⋅ 𝑥଴ − 1)ଶ + 5.49 × 10଺ ⋅ (4.27 × 10ିସ ⋅ 𝑥଴ − 1)ଶ 

𝐴ଷ =
7.19 ⋅ 𝑥ଵ − 4.92

𝑥ଵ
ଶ − 𝑥ଶ + 2.53 × 10ିଵ

 

 

Symbolic regression model for Well 6 

𝑦 = −1.73 × 10ିଷ ⋅ 𝑥଴ + 𝐴ଵ ⋅ 𝑥ଵ
ଷ + 𝐴ଶ ⋅ 𝑥ଵ + 8.21 ⋅ 𝑥ଶ

ଶ + 1.40 × 10ଶ                        (24) 

Where; 

𝐴ଵ = 4.29 × 10ିଶ ⋅ (𝑥଴ − 1.10 × 10ଵ) 

𝐴ଶ =
(1.14 − 1.45 ⋅ 𝑥ଵ) ⋅ (𝑥଴ − 1.40 × 10ଶ)

𝑥ଶ ⋅ (3.96 × 10ି଺ ⋅ 𝑥଴
ଶ + 4.28 ⋅ 𝑥ଵ

ଶ)
 

 

Symbolic regression model for Well 7 

𝑦 = 𝐴ଵ ⋅ (4.65 × 10ିଷ ⋅ 𝑥଴ − 2.08) + 𝐴ଶ + 1.08 × 10ଶ ⋅ 𝐴ଷ
ଶ                                    (25) 

Where; 

𝐴ଵ =
𝑥ଵ − 6.02 × 10ିଵ

𝑥ଶ − 8.24 × 10ିଵ
 

𝐴ଶ =
𝑥ଵ − 5.93 × 10ିଵ

𝑥ଶ
ଶ − 9.55 × 10ିଵ

 

𝐴ଷ = 1.83 × 10ିସ ⋅ 𝑥଴ + 9.62 × 10ିଶ ⋅ 𝑥ଶ
ଶ + 1 

 

In terms of the SB431542 treatment, well 8 is described by equation 26, well 9 matches 

equation 27, well 10 is depicted by equation 28, and well 11 corresponds to equation 29. The 

visualisation of the equations, showing the relationship between variables, is provided only for 

well 8. For wells 9, 10, and 11, please refer to Appendix Figures A.43 through A.45. 
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Symbolic regression model for Well 8 

𝑦 = (−1.44 × 10ି଼) ⋅ 𝐴ଵ ⋅ 𝐴ଶ ⋅ 𝑥଴
ଶ − 𝑥ଶ + 𝐴ଷ + 𝐴ସ                           (26) 

Where; 

𝐴ଵ = (8.83 × 10ିଷ ⋅ 𝑥଴ − 1)ଶ 

𝐴ଶ = 9.08 × 10ି଼ ⋅ 𝑥଴
ଶ − 1 

𝐴ଷ = 1.34 × 10ଶ +
9.32 × 10ିଵ − 𝑥ଶ

9.31 × 10ିଵ − 𝑥ଵ
 

𝐴ସ =
7.11 × 10ିଵ − 𝑥ଶ

ଶ

(6.80 × 10ିଵ − 𝑥ଵ) ⋅ (𝑥ଵ − 3.20 × 10ିଶ)
 

 

In Figure 79, a 3D scatter plot elucidates the dynamics of cell growth influenced by migration 

speed and time for Normal Human Urothelial (NHU) cells, modelled over a 48-hour period 

using a symbolic regression equation for Well 8. Time is plotted on the X-axis, illustrating the 

duration for which observations were recorded. Cell migration speed is charted on the Y-axis, 

whilst predicted cell growth is delineated on the Z-axis. The varying levels of cell growth, 

ranging from 150 to 400, are visually differentiated using a colour gradient bar. This chart 

Figure 79: 3D Plot of Predicted Cell Growth vs. Migration Speed and 
Time for Well 8. 

(minute) 
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offers a lucid visual representation of how migration speeds correlate with the growth patterns 

of NHU cells under conditions influenced by SB431542 treatment, thereby highlighting key 

trends and potential biological implications. 

 

Symbolic regression model for Well 9 

𝑦 = −𝑥ଶ + (𝑥ଵ − 1.25) ⋅ 𝐴ଵ + 𝑥ଵ ⋅ 𝐴ଶ + 2.3 × 10ିଵ ⋅ 𝐴ଷ + 1.26 × 10ଶ             (27) 

Where; 

𝐴ଵ = (−3.66 × 10ିହ ⋅ 𝑥଴ − 1.0 × 10ିଶ) ⋅ (𝑥଴ + 1.95 × 10ଶ) 

𝐴ଶ =
−2.67 ⋅ 𝑥ଶ ⋅ 𝑥଴ + 6.0 × 10ିଶ ⋅ 𝑥଴ − 1.29 × 10ଶ ⋅ 𝑥ଶ

𝑥ଶ ⋅ 𝑥଴ ⋅ (3.90 ⋅ 𝑥ଵ ⋅ 𝑥ଶ + 4.03 ⋅ 𝑥ଵ − 3.99)
 

𝐴ଷ =
1

𝑥ଶ ⋅ (𝑥ଵ − 9.4 × 10ିଵ)
 

 

Symbolic regression model for Well 10 

𝑦 = 𝐴ଵ ⋅ 𝑥଴
ଶ + 1.44 × 10ିଶ ⋅ 𝐴ଶ ⋅ 𝑥଴ + 1.88 × 10ଶ ⋅ 𝑥ଶ − 3.15 × 10ଵ + 𝐴ଷ            (28) 

Where; 

𝐴ଵ =
−1

𝑥ଵ
ଶ ⋅ (1.08 × 10ିହ − 4.94 × 10ିଽ ⋅ 𝑥଴) 

𝐴ଶ =
1

𝑥ଵ ⋅ 𝑥ଶ
 

𝐴ଷ = −
1.50 × 10ଶ

𝑥଴ − 1.86 × 10ଶ
+

6.38

𝑥ଶ
ସ  

 

Symbolic regression model for Well 11 

𝑦 = 8.83 × 10ିଶ ⋅ 𝑥଴ + 1.15 × 10ଶ + 𝐴ଵ − 𝐴ଶ                           (29) 

Where; 
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𝐴ଵ =
6.90 × 10ିଷ

𝑥ଵ − 4.94 × 10ିଵ
 

𝐴ଶ =
1.35 × 10ଶ

−8.17 × 10ିଷ ⋅ 𝑥଴ − 2.36
 

 

In this study, the stability of each model was assessed individually, where each symbolic 

regression produced an equation that was evaluated against unseen data to predict cell growth. 

Table 48 summarises the coefficient of determination R² values for each well, which serve as 

an indicator of how well the models were able to predict cell growth based on the test data. The 

R²values for all wells ranged between 0.816 and 0.909, indicating that the models consistently 

performed well in predicting cell growth across different wells. This narrow range of R²values 

suggests a high level of stability and consistent predictive accuracy across the different wells, 

even though the specific symbolic regression equations generated for each well were not 

identical. The consistently high R²values across all wells suggest that the symbolic regression 

models are stable and reliable in predicting cell growth. Despite the differences in the equations 

generated for each well, the models exhibit similar trends in predictive accuracy, as evidenced 

by the closely clustered R²values. This consistency across multiple datasets under similar 

conditions reinforces the stability of the models and their ability to generalise well to unseen 

data. 

 

Table 48: R² Values for Symbolic Regression Models for All Wells. 

Well Coefficient of determination, R² 
0 0.870 
1 0.854 
2 0.816 
3 0.886 
4 0.867 
5 0.816 
6 0.841 
7 0.909 
8 0.878 
9 0.896 
10 0.818 
11 0.869 
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For symbolic classification, y0 represents output 0, y1 represents output 1, and y2 

represents output 2. This setup represents the multi-binary output for classification, where x0 

corresponds to growth 1, x1 corresponds to growth 2, x2 corresponds to growth 3, and x3 

corresponds to growth 4. 

 

Symbolic classification model 

𝑦଴ =
ଵ

ଵାୣ୶୮൫ିଶ଴(଴.ଷହ×௫మା(௫య×ଵ.ଶଵି௫బ)ିଵ଴଴)൯
−

ଵ

ଵାୣ୶ ൫ିଶ଴(௫భ×଴.ଶସିଵ଴଴)൯
              (30) 

𝑦ଵ = 1 −
ଵ

ଵାୣ୶୮൫ିଶ଴(ଶ.ଵହ×௫భି௫బିଵ଴଴)൯
                  (31) 

𝑦ଶ =
ଵ

ଵାୣ୶୮൫ିଶ (଴.ସହ×௫బି௫మ×଴.ଷ଴ିଵ )൯
−

ଵ

ଵାୣ୶୮൫ିଶ଴(ଶ.ଵଽ×(௫భି௫మ)ିଵ଴଴)൯
× (2.31 − 𝑥ଷ × 0.01) ×

(−3.36 + 0.01 × 𝑥ଷ)                    (32) 

 

4.9.3 Comparison of Classification with Different Machine Learning Algorithms 

Long Short-Term Memory (LSTM) [290] is a specialised type of recurrent neural 

network architecture designed to address the vanishing gradient problem in traditional RNNs. 

Developed by Hochreiter and Schmidhuber in 1997, LSTM networks are particularly adept at 

learning and processing sequential data, making them invaluable for tasks that require 

understanding context over extended periods. The key innovation of LSTMs lies in their unique 

cell structure, which incorporates gates (input, forget, and output gates) to control the flow of 

information, allowing the network to remember or discard information as needed selectively. 

This design enables LSTMs to capture long-term dependencies in data, especially for 

sequential and time series prediction. 
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Table 49: Summary Statistics for 5-Fold CV Mean Accuracy of LSTM Classification. 

Parameter setting Mean accuracy (%) Standard deviation 

2 layer (64,32) 82.61 4.76 

2 layer (32,16) 78.71 3.14 

2 layer (16,8) 72.67 3.07 

 

The classification results of LSTM models with varying layer configurations are depicted in 

the box plot titled Figure 80, comparing the performances of different LSTM layer setups. The 

visual representation shows a trend where larger LSTM layers achieve higher accuracy but also 

exhibit greater variability. The median values, represented by the lines within the boxes, 

indicate that the accuracy tends to be highest for the configuration with 2 layers (64, 32), 

followed by 2 layers (32, 16), and lowest for 2 layers (16, 8). The interquartile ranges (IQR) 

illustrate the spread of accuracy values, with larger boxes indicating higher variability, 

particularly noticeable in the 2 layers (64, 32) configuration. Detailed statistical data on the 

classification performance of various LSTM configurations are shown in Table 49. The table 

includes each configuration's parameter settings, mean accuracy (%), and standard deviation. 

The configuration with two layers (64, 32) has a mean accuracy of 82.61% and a standard 

Figure 80: LSTM Box Plot of Classification Model 5-Fold Cross-
Validation Results. 
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deviation of 4.76, indicating higher performance but greater variability. The two layers (32, 16) 

setup records a mean accuracy of 78.71% and a lower standard deviation of 3.14, showing 

more consistent outcomes. The configuration with two layers (16, 8) has the lowest mean 

accuracy at 72.67% and the smallest standard deviation of 3.07. The analysis shows that the 

configuration with two layers (64, 32), where the first layer has 64 units and the second layer 

has 32 units, achieves the highest mean accuracy but also has significant variability, indicating 

inconsistent performance. The configuration with two layers (32, 16) demonstrates moderate 

accuracy with reduced variability, suggesting consistent performance. The setup of the two 

layers (16, 8) has the lowest mean accuracy but the least variability, indicating high consistency. 

These findings highlight a trade-off between achieving high accuracy and maintaining 

consistent performance across different LSTM configurations, emphasising the impact of layer 

setup on network behaviour. 

Random Forest [291] is a machine-learning algorithm developed by Leo Breiman in 

2001. It operates under ensemble learning methods, combining multiple decision trees to create 

a robust and accurate predictive model. During training, it constructs many decision trees and 

outputs either the mode of the classes (for classification) or the mean prediction (for regression) 

of the individual trees. Random Forest uses bagging, or bootstrap aggregating, where each tree 

is built from a sample drawn with replacement from the training set. Additionally, it employs 

feature bagging, selecting a random subset of features for consideration at each node split. This 

randomness enhances the model's robustness and reduces overfitting compared to individual 

decision trees. 

 

Figure 81: Random Forest Box Plot of Classification 
Model 5-Fold Cross-Validation Results. 
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Table 50: Summary Statistics for 5-Fold CV Mean Accuracy of Random Forest 
Classification. 

Parameter setting Mean accuracy (%) Standard deviation 

n_estimators = 100 62.69 1.86 

n_estimators = 200 67.47 1.47 

n_estimators = 300 72.64 2.83 

 

The box plot titled Figure 81 illustrates the classification performance of a Random Forest 

model using 5-fold cross-validation across different numbers of estimators. The n_estimators 

parameter varies among three settings: 100, 200, and 300. The plot shows that the median 

accuracy increases as the number of estimators rises, with n_estimators = 300 achieving the 

highest median accuracy. The interquartile ranges (IQR) indicate the spread of the accuracy 

values, with larger spreads observed at higher n_estimators values, particularly at 300, 

suggesting greater variability. The accompanying table, Table 50, provides summary statistics 

for the mean accuracy and standard deviation for each setting of the n_estimators parameter. 

The configuration with n_estimators = 100 shows a mean accuracy of 62.69% and a standard 

deviation of 1.86, indicating relatively low performance with moderate variability. The 

configuration with n_estimators = 200 records a mean accuracy of 67.47% and a lower standard 

deviation of 1.47, indicating improved performance with reduced variability. Finally, the 

configuration with n_estimators = 300 presents the highest mean accuracy at 72.64% and the 

highest standard deviation at 2.83, indicating both high performance and greater variability. 

The analysis displays a trend where increasing the number of estimators in the Random Forest 

model leads to higher mean accuracy. However, the configuration with n_estimators = 300, 

despite achieving the highest mean accuracy, shows the greatest variability, indicating potential 

inconsistencies in performance. In contrast, n_estimators = 200 provides a balance with 

moderate accuracy and reduced variability, suggesting more consistent performance. The 

configuration with n_estimators = 100 maintains moderate variability despite having the lowest 

mean accuracy. The n_estimators parameter affects the Random Forest model's behaviour and 

outputs, highlighting a trade-off between accuracy and consistency. 

Support Vector Machine (SVM) [292] is a supervised machine learning algorithm for 

classification and regression tasks. Developed by Vladimir Vapnik and his colleagues in the 
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1990s, SVM focuses on finding the optimal hyperplane that separates different classes in a 

high-dimensional feature space. By mapping input data to a higher-dimensional space, SVM 

can establish a linear decision boundary even for non-linearly separable data. The algorithm 

maximises the margin between classes, defined as the distance between the decision boundary 

and the nearest data points from each class, known as support vectors. Margin maximisation 

improves the model's generalisation capability, enhancing performance on unseen data. SVMs 

can handle both linear and non-linear classification tasks through various kernel functions, 

which perform the mapping to higher-dimensional spaces implicitly, making the algorithm 

computationally efficient. 

 

Table 51: Summary Statistics for 5-Fold CV Mean Accuracy of SVM Classification. 

Parameter setting Mean accuracy (%) Standard deviation 

Kernel = linear 62.47 1.47 

Kernel = polynomial 67.60 1.10 

Kernel = rbf 70.11 2.64 

 

Figure 82 depicts the classification performance of a Support Vector Machine (SVM) model 

using 5-fold cross-validation across different kernel functions: linear, polynomial, and radial 

Figure 82: Support Vector Machine Box Plot of Classification 
Model 5-Fold Cross-Validation Results. 
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basis function (RBF). The box plot exhibits that the median accuracy varies with different 

kernel functions, with the RBF kernel achieving the highest median accuracy. The interquartile 

ranges (IQR) reflect the spread of accuracy values, with the RBF kernel showing a wider 

spread, suggesting greater variability. The whiskers and outliers provide further insights into 

the range and extremities of the accuracy data. Table 51 shows summary statistics for each 

kernel function's mean accuracy and standard deviation. The linear kernel configuration shows 

a mean accuracy of 62.47% and a standard deviation of 1.47, indicating lower performance 

with moderate variability. The polynomial kernel records a mean accuracy of 67.60% and a 

lower standard deviation of 1.10, suggesting improved performance with reduced variability. 

The RBF kernel presents the highest mean accuracy at 70.11% and the highest standard 

deviation at 2.64, indicating high performance and more significant variability. The analysis 

indicates that the choice of kernel function significantly affects the performance of the SVM 

model. The RBF kernel achieves the highest mean accuracy but exhibits the most significant 

variability, suggesting potential inconsistencies in performance. In contrast, the polynomial 

kernel strikes a balance with moderate accuracy and reduced variability, indicating more 

consistent performance. The linear kernel maintains moderate variability while having the 

lowest mean accuracy. The results underscore the balance required between attaining high 

accuracy and ensuring consistent performance, emphasising the critical role of selecting an 

appropriate kernel function for the SVM model. 

 

4.9.3.1 Test Result Classification with Different Machine Learning Algorithms 

The table 72 compares test accuracy percentages for different classification methods: 

PySR, RCGP, LSTM, Random Forest, and Support Vector Machine (SVM). The table 

summarises the test accuracy of five classification methods. PySR achieved a test accuracy of 

92.31%, indicating that it is a highly effective model for the dataset used. RCGP, on the other 

hand, recorded a test accuracy of 88.59%, which is slightly lower but still represents a 

substantial level of accuracy. The LSTM model achieves the test accuracy at 80.96% and 

Random Forest model follows with a test accuracy of 71.43%, showing respectable 

performance but trailing behind the LSTM. The SVM model records the lowest test accuracy 

at 68.63%, suggesting it is less effective than the other two methods in this scenario. The 

comparison reveals that PySR achieved the highest accuracy, followed by RCGP, the LSTM 

model, the Random Forest, and the Support Vector Machine (SVM) regarding test accuracy.   
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Table 52: Comparison of Test Accuracy for Different Classification Methods (PySR, RCGP, 
LSTM, Random Forest, and SVM). 

Classification method Test accuracy (%) 

PySR 92.31 

RCGP 88.59 

LSTM 80.96 

Random forest 71.43 

Support Vector Machine 68.63 

 

This order highlights the relative effectiveness of these models in handling the specific 

classification task. PySR, being the most accurate, demonstrates its robustness for this dataset, 

while RCGP also performs strongly. LSTM models, though less effective than PySR and 

RCGP, still handle sequential and temporal data well due to their recurrent structure, which 

captures dependencies over time. While performing reasonably well, the Random Forest model 

does not match the accuracy of the LSTM. Random Forest models excel at capturing complex 

interactions between features through their ensemble approach of multiple decision trees. The 

SVM model shows the lowest performance among these methods. SVM can be prone to 

overfitting, mainly when model complexity or the data contains noise, leading to lower 

generalisation performance on the test set. Additionally, SVM may struggle with datasets with 

complex structures or non-linear relationships that are not well captured by the chosen kernel. 

 

5.0 Conclusion 

In conclusion, this chapter has demonstrated the implementation of various advanced 

computational techniques in analysing cell culture data, underscoring novel approaches in 

model construction and analytical methods. The illumination correction techniques, such as 

FFTF, PFFC, and BaSiC, were critically evaluated, with BaSiC achieving the lowest mean 

coefficient of variation, thereby enhancing image quality significantly. Besides, Quantile-

Based Normalisation was identified as the most efficacious method for standardising images, 

ensuring consistency across analyses. Tools like Ilastik were shown to be highly accurate in 
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cell segmentation, while the Follow Neighbour method provided the highest MOTA scores in 

cell tracking. Detailed analyses of cell growth curves and rates under various treatments yielded 

important biological insights, particularly highlighting the inhibitory effect of TGF-beta on cell 

proliferation. Moreover, migration speed and angular velocity measurements further elucidated 

these treatments' impact on cell dynamics, with TGF-beta significantly enhancing cell motility, 

whereas SB431542 moderated it. 

The application of RCGP with a pairwise and ensemble classification approach, 

alongside PySR, which combines symbolic regression with symbolic classification, introduced 

novel modelling capabilities within the domain of machine learning classification. These 

models demonstrated high classification rates and predictive accuracies and facilitated the 

generation of symbolic equations and network diagrams that reveal underlying biological 

behaviours. This aspect is highly valuable, providing interpretable "white box" models that 

contribute profoundly to our understanding of the data. This is very different from 'black box' 

methods like LSTM, which, although accurate, don't clearly show how they work. A 

comparative analysis with other machine learning models, such as Random Forest and SVM, 

underscored the trade-offs between accuracy and interpretability, highlighting the advantages 

of novel approaches employed in RCGP and PySR for detailed scientific analysis. These 

findings emphasise the critical role of selecting appropriate analytical tools to enhance our 

understanding and methodologies in cellular biology research, ensuring that precision in 

analysis and depth in interpretative clarity are maintained. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Introduction 

This thesis aimed to develop a computational tool pipeline to quantify cell behaviour 

from time-lapse microscopy images, facilitating an objective understanding of cell culture 

across different conditions and environments. The study achieved its objectives and made 

several significant contributions to computational biology. Below is a summary of the essential 

findings and contributions of this research. 

 

5.2 Summary of Key Findings 

Initially, the first objective was to establish a pipeline of computer vision tools to 

reliably segment and track unlabelled cells grown in culture as adherent monolayers using 

normal human urothelial cells as a representative example. This objective was achieved by 

meticulously designing and implementing a robust methodology detailed in Chapter 3. The 

study commenced with cell culture preparation across twelve plates, each containing four 

replicates, under three different treatments: a control, TGF-β, and SB431542 as a TGF-β 

inhibitor. Time-lapse microscopy captured detailed images, which were processed using the 

BaSiC plugin to correct uneven illumination and normalised using a quantile-based ImageJ 

plugin. Cell segmentation was performed using Ilastik for pixel classification and ImageJ to 

convert probabilities into binary images for precise object detection. Cell tracking was 

conducted using CellProfiler’s Follow Neighbour method. This comprehensive pipeline 

established a reliable cell segmentation and tracking framework, validating its effectiveness in 

analysing unlabelled cells grown as adherent monolayers. While this pipeline was developed 

specifically for normal human urothelial cells, its underlying principles are applicable to other 

cell types, particularly those that exhibit similar growth patterns, such as epithelial cells in other 

tissues. Future work could explore adjustments to pixel classification and segmentation 

parameters to tailor the pipeline for different cell morphologies, thus broadening its 

applicability. Furthermore, the versatility of the pipeline extends to different imaging 

configurations. Although it was primarily tested with time-lapse microscopy, the segmentation 
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and tracking techniques employed are compatible with various imaging methods. For example, 

with additional pre-processing, the pipeline could be adapted for use with fluorescence 

microscopy or high-resolution imaging, enhancing its utility across a range of imaging setups 

in computational cell biology. This led to Contribution 1: Development of a Computational 

Tools Pipeline. The research successfully developed and validated a computational tools 

pipeline for accurate cell segmentation and tracking, tailored explicitly for analysing adherent 

monolayers of unlabelled cells. This achievement fulfilled the aim of creating a robust 

computational tools pipeline. 

The second objective was to use the pipeline to describe the variations in growth rate, 

migration speed, and angular velocity. This objective was achieved as demonstrated in Chapter 

4. Advanced computational techniques were implemented to analyse cell culture data, 

including illumination correction techniques (FFTF, PFFC, and BaSiC), with BaSiC achieving 

the lowest mean coefficient of variation and significantly enhancing image quality. Quantile-

Based Normalisation ensured consistency across analyses. Ilastik proved highly accurate in cell 

segmentation, and the Follow Neighbour method achieved the highest MOTA scores in cell 

tracking. Detailed analyses of cell growth curves and rates under various treatments revealed 

significant biological insights, particularly the inhibitory effect of TGF-beta on cell 

proliferation. Migration speed and angular velocity measurements further elucidated the 

treatments' impact on cell dynamics, with TGF-beta significantly enhancing cell motility and 

SB431542 moderating. These findings underscore the pipeline's utility in capturing critical 

aspects of cell behaviour, offering biologists a robust tool for quantifying cellular responses to 

different treatments. By providing precise measurements of growth rate and motility, the 

pipeline enables a deeper understanding of the molecular mechanisms through which TGF-beta 

and its inhibitors modulate cell behaviour, thus offering valuable insights for further biological 

research. These analyses objectively described variations in cell growth rate, migration speed, 

and angular velocity. This led to Contribution 3: Characterisation of Cell Behaviour Variability. 

Chapter 4 focused on identifying and analysing features that describe variations in cell growth, 

migration speed, and angular velocity of NHU cells. These findings provided an objective 

framework for understanding cell behaviour variability, achieving a level of analysis not 

previously attained. 

The third objective was to characterise the behaviour leading to changes and the 

differences in cell populations. This objective was addressed in Chapters 3 and 4, where the 

methodologies and analyses provided detailed characterisations of cell behaviour under various 
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treatments. The comparative study of cell behaviours under different conditions (control, TGF-

β, and SB431542) revealed significant insights into the inhibitory effect of TGF-beta on cell 

proliferation and its enhancement of cell motility. These findings highlighted the differences in 

cell populations and their responses to different environmental conditions, comprehensively 

depicting the behaviours leading to changes in cell populations. These findings align closely 

with the original aims of the study, demonstrating how specific treatments impact cellular 

behaviour. For biologists, this research provides predictive insights into how similar treatments 

might influence other cell types or complex tissue environments, potentially guiding future 

research into the effects of TGF-beta and its inhibitors in contexts such as cancer or tissue 

regeneration. This accomplishment supports Contribution 4: Insights into Cellular Responses 

to Treatments. The comparative study of cell behaviours under different treatment conditions, 

including control, TGF-β, and SB431542, offered valuable insights into cellular responses to 

compounds. These insights are critical for future research on cellular responses to treatments, 

providing a deeper understanding of how different compounds influence cell behaviour. 

The fourth objective was to investigate using the features within an interpretable "white 

box" machine learning context to further characterise NHU cell behaviours. This objective was 

achieved by applying RCGP and PySR, as discussed in Chapter 4. These tools introduced novel 

modelling capabilities within machine learning classification, demonstrating high 

classification rates and predictive accuracies. The models facilitated the generation of symbolic 

equations and network diagrams that revealed underlying biological behaviours, providing 

interpretable "white box" models. This approach contrasted sharply with more opaque "black 

box" methods like LSTM, which, despite yielding good accuracy, offered less insight into their 

operational mechanics. These machine-learning models allowed for a deeper characterisation 

of NHU cell behaviours, uncovering patterns and relationships in the data that traditional 

analysis methods might overlook. The potential to adapt these interpretable machine learning 

models for other cell types presents an exciting avenue for future research. By applying these 

models to diverse biological datasets, researchers could further our understanding of cellular 

behaviour across a range of contexts, enhancing the broader applicability of the tools developed 

in this study. This aligns with Contribution 5: Application of Interpretable "White Box'' 

Machine Learning. The research implemented a novel approach using RCGP and PySR to 

characterise NHU cell behaviours. These tools provided high classification rates and predictive 

accuracies, generating symbolic equations and network diagrams that offer significant insights 

into cell behaviour data. 
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Additionally, introducing practical methods and significant improvements to existing 

segmentation techniques were critical achievements of this research. As demonstrated in 

Chapter 3, the methodology enhanced the precision and reliability of cell segmentation and 

tracking for unlabelled cells. Tools like Ilastik were shown to be highly accurate in cell 

segmentation, while the Follow Neighbour method provided the highest MOTA scores in cell 

tracking. These improvements ensured that the segmentation and tracking processes were 

precise and reliable, addressing the need for advanced computational techniques in cell 

analysis. This contribution directly aligns with Contribution 2: Segmentation and Tracking 

Methodology by providing enhanced tools and methodologies that improve the segmentation 

and tracking of unlabelled cells. 

 

5.3 Contributions to the Field 

This research has made several significant contributions to the field of computational 

biology. Firstly, the development and validation of a computational tools pipeline for cell 

segmentation and tracking addressed the need for reliable analytical tools. Secondly, the 

segmentation and tracking methodology introduced practical improvements, enhancing the 

precision and reliability of these processes. Thirdly, the characterisation of cell behaviour 

variability provided an objective framework for understanding variations in cell growth, 

migration speed, and angular velocity. Fourthly, insights into cellular responses to treatments 

offered valuable implications for future research on cellular responses to compounds. Lastly, 

the application of interpretable “white box” machine learning revealed patterns and 

relationships in cell behaviour data that traditional methods might overlook. These 

contributions suggest exciting possibilities for future research, particularly in adapting these 

tools and methodologies to different cell types and imaging conditions, thus enhancing their 

general applicability across diverse biological contexts. The impact of these contributions 

extends beyond computational biology, potentially influencing future research in cell biology, 

drug development, and personalized medicine by providing tools that can more accurately 

model and predict cellular behaviour under various conditions. 
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5.4 Recommendations for Future Research 

Despite the robust findings, the study acknowledged limitations such as the specificity 

of NHU cells and the conditions tested. Potential biases in image-based analysis and the need 

for broader data sets for model validation suggest areas for future methodological 

improvement. Future research should generalise the pipeline to other cell types and 

experimental conditions to validate its robustness and versatility. Specifically, future studies 

could explore the pipeline’s effectiveness on a variety of cell types and imaging configurations, 

ensuring that the methodologies developed are broadly applicable and useful across different 

biological contexts. Integrating multi-modal imaging and enhanced computational techniques 

could deepen understanding and expand applicability in biological research. Additionally, 

refining the machine learning models to enhance their interpretability and accuracy would be 

beneficial. 

In conclusion, this thesis advances theoretical and practical knowledge in 

computational biology, providing a robust foundation for future research. The development and 

validation of a computational tool pipeline for cell segmentation and tracking mark significant 

contributions to the field. The novelty of this research lies in the application of interpretable 

machine learning models, which reveal underlying patterns and relationships in cell behaviour 

data. These insights not only advance our understanding of NHU cells but also offer potential 

applications to other cell types and experimental setups, thereby broadening the impact and 

relevance of this research across various domains of cellular analysis. Looking forward, the 

methodologies and findings presented in this thesis could serve as a cornerstone for future 

advancements in cellular analysis, potentially leading to more accurate and predictive models 

of cellular behaviour, which are crucial for fields such as drug development, cancer research, 

and regenerative medicine. This innovative approach enhances our understanding and sets the 

stage for ongoing advancements in cellular analysis. 
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APPENDIX A 

 

Table A.1: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 1 

Segmentation tool Mean Standard deviation 

Ilastik 0.9245 0.0107 

Weka 0.8080 0.0227 

Labkit 0.8160 0.0438 

 

Figure A.1: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 1 

Figure A.2: Sørensen-Dice Coefficient Comparison Across 
Different Segmentation Tools for Well 2 
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Table A.2: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 2 

Segmentation tool Mean Standard deviation 

Ilastik 0.9079 0.0182 

Weka 0.8097 0.0151 

Labkit 0.8134 0.0174 

 

 

Table A.3: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 3 

Segmentation tool Mean Standard deviation 

Ilastik 0.9082 0.0251 

Weka 0.8060 0.0076 

Labkit 0.7757 0.0241 

 

 

 

 

 

Figure A.3: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 3 
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Table A.4: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 5 

Segmentation tool Mean Standard deviation 

Ilastik 0.8436 0.0178 

Weka 0.7733 0.0198 

Labkit 0.7328 0.0102 

 

Figure A.5: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 6 

Figure A.4: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 5 
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Table A.5: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 6 

Segmentation tool Mean Standard deviation 

Ilastik 0.8899 0.0253 

Weka 0.7418 0.0401 

Labkit 0.6496 0.0375 

 

 

Table A.6: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 7 

Segmentation tool Mean Standard deviation 

Ilastik 0.8931 0.0182 

Weka 0.8093 0.0236 

Labkit 0.7167 0.0237 

 

 

 

 

 

Figure A.6: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 7 
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Table A.7: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 9 

Segmentation tool Mean Standard deviation 

Ilastik 0.8696 0.0161 

Weka 0.7671 0.0286 

Labkit 0.7650 0.0291 

 

 

Figure A.7: Sørensen-Dice Coefficient Comparison Across Different 
Segmentation Tools for Well 9 

Figure A.8: Sørensen-Dice Coefficient Comparison Across 
Different Segmentation Tools for Well 10 
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Table A.8: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 10 

Segmentation tool Mean Standard deviation 

Ilastik 0.8745 0.0200 

Weka 0.7572 0.0456 

Labkit 0.6517 0.0176 

 

 

Table A.9: Mean and SD of Sørensen-Dice Coefficient for Different Segmentation Tools for 
Well 11 

Segmentation tool Mean Standard deviation 

Ilastik 0.8699 0.0220 

Weka 0.7838 0.0095 

Labkit 0.7813 0.0176 

 

 

 

 

Figure A.9: Sørensen-Dice Coefficient Comparison Across 
Different Segmentation Tools for Well 11 
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Table A.10: Mean and SD of MOTA (%) for Different Tracking Method for Well 1 

Method tracking Mean Standard deviation 

Follow neighbour 90.10 3.89 

Overlap 79.97 4.44 

Linear assignment problem 60.83 10.61 

 

Figure A.11: MOTA (%) Comparison Across Different Tracking Methods for 
Well 2 

Figure A.10: MOTA (%) Comparison Across Different Tracking 
Methods for Well 1 
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Table A.11: Mean and SD of MOTA (%) for Different Tracking Method for Well 2 

Method tracking Mean Standard deviation 

Follow neighbour 86.03 2.17 

Overlap 69.45 7.60 

Linear assignment problem 49.88 2.46 

 

 

Table A.12: Mean and SD of MOTA (%) for Different Tracking Method for Well 3 

Method tracking Mean Standard deviation 

Follow neighbour 86.60 2.90 

Overlap 70.61 8.75 

Linear assignment problem 49.57 3.94 

 

 

 

 

 

 

 

Figure A.12: MOTA (%) Comparison Across Different Tracking 
Methods for Well 3 
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Table A.13: Mean and SD of MOTA (%) for Different Tracking Method for Well 5 

Method tracking Mean Standard deviation 

Follow neighbour 83.80 4.02 

Overlap 71.50 1.96 

Linear assignment problem 54.37 1.58 

 

 

Figure A.13: MOTA (%) Comparison Across Different Tracking Methods 
for Well 5 

Figure A.14: MOTA (%) Comparison Across Different Tracking Methods 
for Well 6 
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Table A.14: Mean and SD of MOTA (%) for Different Tracking Method for Well 6 

Method tracking Mean Standard deviation 

Follow neighbour 91.17 2.20 

Overlap 80.74 3.47 

Linear assignment problem 60.73 6.31 

 

 

Table A.15: Mean and SD of MOTA (%) for Different Tracking Method for Well 7 

Method tracking Mean Standard deviation 

Follow neighbour 85.04 3.64 

Overlap 71.38 2.29 

Linear assignment problem 57.66 5.47 

 

 

 

 

 

 

Figure A.15: MOTA (%) Comparison Across Different Tracking 
Methods for Well 7 
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Table A.16: Mean and SD of MOTA (%) for Different Tracking Method for Well 9 

Method tracking Mean Standard deviation 

Follow neighbour 88.71 3.85 

Overlap 77.62 2.17 

Linear assignment problem 58.23 5.76 

 

Figure A.16: MOTA (%) Comparison Across Different Tracking Methods 
for Well 9 

Figure A.17: MOTA (%) Comparison Across Different Tracking Methods 
for Well 10 
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Table A.17: Mean and SD of MOTA (%) for Different Tracking Method for Well 10 

Method tracking Mean Standard deviation 

Follow neighbour 82.92 5.52 

Overlap 70.50 2.47 

Linear assignment problem 52.53 3.70 

 

 

Table A.18: Mean and SD of MOTA (%) for Different Tracking Method for Well 11 

Method tracking Mean Standard deviation 

Follow neighbour 89.12 3.85 

Overlap 75.43 4.68 

Linear assignment problem 58.78 2.64 

 

 

 

 

 

Figure A.18: MOTA (%) Comparison Across Different Tracking 
Methods for Well 11 
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Table A.19: Summary Statistics for 5-Fold CV R² Mean for Well 1 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.542 0.0102 

5 Populations, 80 Iterations 0.583 0.0255 

5 Populations, 150 Iterations 0.595 0.0102 

10 Populations, 30 Iterations 0.733 0.0324 

10 Populations, 80 Iterations 0.757 0.0245 

10 Populations, 150 Iterations 0.718 0.0164 

15 Populations, 30 Iterations 0.826 0.0296 

15 Populations, 80 Iterations 0.883 0.0376 

15 Populations, 150 Iterations 0.885 0.0080 

 

 

 

Figure A.19: Box Plot of Regression Model 5-Fold Cross-
Validation Results for Well 1 
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Figure A.21: Box Plot of Regression Model 5-Fold Cross-Validation 
Results for Well 2 

Figure A.20: Actual Vs Predicted Growth On Test Data (R² = 0.854) 
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Table A.20: Summary Statistics for 5-Fold CV R² Mean for Well 2 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.518 0.0031 

5 Populations, 80 Iterations 0.599 0.0098 

5 Populations, 150 Iterations 0.661 0.0041 

10 Populations, 30 Iterations 0.685 0.0085 

10 Populations, 80 Iterations 0.773 0.0050 

10 Populations, 150 Iterations 0.685 0.0084 

15 Populations, 30 Iterations 0.801 0.0182 

15 Populations, 80 Iterations 0.861 0.0043 

15 Populations, 150 Iterations 0.876 0.0153 

 

 

 

 

Figure A.22: Actual Vs Predicted Growth on Test Data (R² = 
0.816). 
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Table A.21: Summary Statistics for 5-Fold CV R² Mean for Well 3 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.532 0.0047 

5 Populations, 80 Iterations 0.566 0.0095 

5 Populations, 150 Iterations 0.619 0.0115 

10 Populations, 30 Iterations 0.704 0.0087 

10 Populations, 80 Iterations 0.748 0.0092 

10 Populations, 150 Iterations 0.737 0.0147 

15 Populations, 30 Iterations 0.810 0.0308 

15 Populations, 80 Iterations 0.893 0.0114 

15 Populations, 150 Iterations 0.914 0.0056 

 

Figure A.23: Box Plot of Regression Model 5-Fold Cross-
Validation Results for Well 3. 
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Figure A.24: Actual Vs Predicted Growth On Test Data (R² = 
0.886). 

Figure A.25: Box Plot of Regression Model 5-Fold Cross-
Validation Results for Well 5. 
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Table A.22: Summary Statistics for 5-Fold CV R² Mean for Well 5 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.476 0.0054 

5 Populations, 80 Iterations 0.521 0.0195 

5 Populations, 150 Iterations 0.613 0.0163 

10 Populations, 30 Iterations 0.660 0.0147 

10 Populations, 80 Iterations 0.707 0.0096 

10 Populations, 150 Iterations 0.751 0.0041 

15 Populations, 30 Iterations 0.795 0.0086 

15 Populations, 80 Iterations 0.833 0.0048 

15 Populations, 150 Iterations 0.878 0.0212 

 

 

 

 

 

Figure A.26: Actual Vs Predicted Growth On Test Data (R² = 0.816). 
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Table A.23: Summary Statistics for 5-Fold CV R² Mean for Well 6 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.517 0.0071 

5 Populations, 80 Iterations 0.560 0.0037 

5 Populations, 150 Iterations 0.595 0.0090 

10 Populations, 30 Iterations 0.657 0.0149 

10 Populations, 80 Iterations 0.730 0.0129 

10 Populations, 150 Iterations 0.736 0.0192 

15 Populations, 30 Iterations 0.851 0.0133 

15 Populations, 80 Iterations 0.880 0.0078 

15 Populations, 150 Iterations 0.898 0.0110 

 

 

Figure A.27: Box Plot of Regression Model 5-Fold Cross-
Validation Results for Well 6. 
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Figure A.28: Actual Vs Predicted Growth On Test Data (R² = 
0.841). 

Figure A.29: Box Plot of Regression Model 5-Fold Cross-
Validation Results for Well 7. 
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Table A.24: Summary Statistics for 5-Fold CV R² Mean for Well 7 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.506 0.0149 

5 Populations, 80 Iterations 0.544 0.0344 

5 Populations, 150 Iterations 0.590 0.0212 

10 Populations, 30 Iterations 0.665 0.0124 

10 Populations, 80 Iterations 0.706 0.0156 

10 Populations, 150 Iterations 0.744 0.0185 

15 Populations, 30 Iterations 0.825 0.0153 

15 Populations, 80 Iterations 0.847 0.0156 

15 Populations, 150 Iterations 0.896 0.0163 

 

 

 

 

Figure A.30: Actual Vs Predicted Growth On Test Data (R² = 
0.909). 
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Table A.25: Summary Statistics for 5-Fold CV R² Mean for Well 9 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.523 0.0227 

5 Populations, 80 Iterations 0.554 0.0110 

5 Populations, 150 Iterations 0.597 0.0024 

10 Populations, 30 Iterations 0.660 0.0118 

10 Populations, 80 Iterations 0.744 0.0121 

10 Populations, 150 Iterations 0.732 0.0076 

15 Populations, 30 Iterations 0.805 0.0213 

15 Populations, 80 Iterations 0.892 0.0071 

15 Populations, 150 Iterations 0.919 0.0046 

 

 

Figure A.31: Box Plot of Regression Model 5-Fold Cross-
Validation Results for Well 9. 
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Figure A.32: Actual Vs Predicted Growth On Test Data (R² = 0.896). 

Figure A.33: Box Plot of Regression Model 5-Fold Cross-Validation 
Results for Well 10. 
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Table A.26: Summary Statistics for 5-Fold CV R² Mean for Well 10 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.523 0.0121 

5 Populations, 80 Iterations 0.565 0.0037 

5 Populations, 150 Iterations 0.622 0.0129 

10 Populations, 30 Iterations 0.673 0.0084 

10 Populations, 80 Iterations 0.739 0.0095 

10 Populations, 150 Iterations 0.745 0.0106 

15 Populations, 30 Iterations 0.828 0.0097 

15 Populations, 80 Iterations 0.885 0.0147 

15 Populations, 150 Iterations 0.914 0.0232 

 

 

 

 

 

Figure A.34: Actual Vs Predicted Growth On Test Data (R² = 
0.818). 
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Table A.27:Summary Statistics for 5-Fold CV R² Mean for Well 11 Symbolic Regression. 

Parameter setting R2 Mean Standard deviation 

5 Populations, 30 Iterations 0.5285 0.0182 

5 Populations, 80 Iterations 0.5610 0.0233 

5 Populations, 150 Iterations 0.6180 0.0151 

10 Populations, 30 Iterations 0.6600 0.0114 

10 Populations, 80 Iterations 0.7445 0.0132 

10 Populations, 150 Iterations 0.7340 0.0102 

15 Populations, 30 Iterations 0.8130 0.0118 

15 Populations, 80 Iterations 0.8785 0.0104 

15 Populations, 150 Iterations 0.9010 0.0190 

 

 

Figure A.35: Box Plot of Regression Model 5-Fold Cross-Validation 
Results for Well 11 
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Figure A.36: Actual Vs Predicted Growth On Test Data (R² = 
0.869). 

Figure A.37: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 1 
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Figure A.39: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 3 

Figure A.38: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 2 
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Figure A.40: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 5 

Figure A.41: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 6 
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Figure A.42: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 7 

Figure A.43: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 9 
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Figure A.45: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 11 

Figure A.44: 3D Scatter plot of Predicted Cell Growth vs. Time and 
Cell Migration for Well 10 


