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Abstract 

Abnormal angiogenesis is characterised by the alteration of physiological variables such as 

capillary permeability and fractional volume of the extravascular extracellular space. The aim 

of the work presented in this thesis was to investigate the feasibility of non-invasive 

measurement of these physiological variables through quantitative analysis of dynamic Gd- 

DTPA enhanced MRI (DEMRI) acquired using standard imaging hardware within a clinical 

setting. 

A method for quantitative analysis of DEMRI (QDEMRI) was developed and implemented 

on a standard personal computer platform using a set of programs written in the C 

programming language. The method includes pharmacokinetic modelling of Gd-DTPA 

kinetics based on the modification of existing approaches and moving-window algorithms 

for the measurement of black-box quantifiers of DEMRI. 

The measurements were performed in two angiogenesis dependent diseases: breast cancer 

and rheumatoid arthritis (RA). In a study involving QDEMRI analysis of 59 primary invasive 

breast carcinomas, a significant relationship between capillary permeability-related QDEMRI 

variables and tumour grade was found. In a randomised controlled study of early RA in 

metacarpophalangeal joints, a significant reduction in the QDEMRI variable which reflects 

fractional volume of the extravascular extracellular space was found three months after the 

start of therapy in 20 patients treated with methotrexate and intra-articular 

methylprednisolone injections, whereas it remained constant in a control group of 17 

patients who were treated with slow-acting methotrexate only. A significant reduction in the 

permeability-related QDEMRI variable was detected in 17 patients treated with leflunomide 

four months after the start of treatment whilst it remained unchanged in 17 patients treated 

with methotrexate in a randomised controlled study of established RA of the knee joint. 

The results obtained in this work indicate that the proposed QDEMRI method can be used 

in its present form to monitor treatment-induced changes in angiogenesis dependent 

diseases. Further work is needed to render these measurements fully independent of DEMRI 

acquisition settings and allow the evaluation of individual lesions. 
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Chapter 1. Introduction 

The research presented in this thesis was carried out at the time when two strands of 

scientific endeavour which were originated in 1970s reached maturity and converged. The 

first one is magnetic resonance imaging (MRI) and the second is the study of angiogenesis - 

the process of formation of new blood vessels. 

The research into angiogenesis produced mounting evidence that alterations in 

microcirculation (blood circulation at a capillary level) play an important, if not central role, 

in the pathogenesis of many neoplastic and non-neoplastic diseases [1]. At the same time, 

MRI reached the stage when the prospect of quantitation of physiological variables which 

reflect the microcirculation became feasible [2]. This convergence became of even greater 

interest as the study of angiogenesis moved from in-vitro and animal model investigations 

onto human trials and the need for non-invasive monitoring of tissue microvasculature 

became more acute. In addition to Doppler sonography and positron emission tomography 

(PET), MRI has been identified as a potential tool for non-invasive assessment of 

angiogenesis and monitoring of therapies in angiogenesis-dependent diseases [3]. 
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The objective of this work was the development of a method for the measurement of 

physiological variables that characterise tissue microcirculation (capillary permeability and the 

volume of the extracellular fluid) through quantitative analysis of dynamic contrast enhanced 

MRI (DEMRI). This method was applied to the assessment of microcirculation in two 

angiogenesis dependent diseases: breast cancer and rheumatoid arthritis (RA). 

In this chapter an overview of angiogenesis is presented with the aim of elucidating the 

importance of the measurement of these physiological variables (Section 1.1). The main 

features of MRI (and DEMRI in particular) that make it a potentially useful tool for non- 

invasive monitoring of angiogenesis dependent diseases are also presented in this chapter 

(Section 1.2). 

In addition to the computation of descriptive quantifiers of DEMRI, the methodology used 

for quantitative analysis of DEMRI in this thesis included pharmacokinetic modelling of 

MRI contrast agent kinetics. Pharmacokinetic modelling of DEMRI in neoplastic disease has 

been widely studied. However, it has not yet been applied to the quantitative assessment of 

disease activity in clinical studies of rheumatoid arthritis. In order to justify the application of 

this method in RA and underline the parallels between changes in microcirculation that 

occur in neoplastic disease and RA, the role of angiogenesis in RA is described in a separate 

section (Section 7.1). 

The final part of this chapter contains a description of the research project and the 

explanation of the contents of the subsequent chapters of this thesis. 
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1.1. Alterations of microcirculation in angiogenesis 
dependent disorders 

Angiogenesis is a process central to many normal physiological functions such as 

embryogenesis [4,5], wound healing [6] and the female reproductive cycle [7]. It is regulated 

by a complex interaction of positive (angiogenesis stimulating) and negative (angiogenesis 

inhibiting) factors. A delicate equilibrium between angiogenesis stimulators and inhibitors 

depends on numerous cellular and biochemical events [8]. 

Disruption of control mechanisms that govern angiogenesis results in pathological 

neovascularisation in both malignant and non-malignant diseases. Pathological angiogenesis 

can demonstrate itself as both excessive and insufficient angiogenesis. In malignant diseases, 

tumour growth and metastasis are driven by excessive angiogenesis [9]. Excessive 

angiogenesis is present in non-malignant diseases such as diabetic retinopathy [10], glaucoma 

[11], hemangioma [12] and rheumatoid arthritis [13]. Insufficient angiogenesis is associated 

with chronic myocardial ischaemia [14]. Pathological angiogenesis is regulated by the 

interaction between positive and negative angiogenic factors arising from both the 

pathological cells [15] and host tissues [16]. Therapeutic interventions capable of restoring 

angiogenic equilibrium by targeting key cellular and biochemical processes may lead to the 

control of angiogenesis-dependent diseases [17,18]. 

Angiogenic cascade 

Endothelial cells that form blood vessels produce angiogenic growth factors in response to 

injury or disease. These proteins subsequently bind to receptors on existing blood vessels 

and activate the production of enzymes which create holes in the basement membrane of 

blood vessels. Endothelial cells begin to proliferate and migrate through these holes with the 

aid of adhesion molecules and integrins. At the same time, enzymes such as 
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metalloproteinases dissolve the tissues in the vicinity of the new blood vessel and aid its 

further growth. The newly formed blood vessels connect into loops enabling blood to flow 

[19,20]. 

Angiogenesis related changes in microcirculation 

The principal site of nutrient delivery to tissues are blood capillaries. Their diameter is 

approximately 0.1 mm and they normally consist of a single layer of endothelial cells 

surrounded by a thin basement membrane. The bi-directional transport of materials across 

the capillary wall occurs via three principal routes: simple convection, osmotic and pinocytic 

transfer [21,22]. Microcirculation is dictated by the metabolic activity of the tissues. In 

normal tissues, the properties of microvasculature are matched with the metabolic demand. 

Pathological angiogenesis occurs in response to an increase in metabolic demand in 

neoplastic and inflammatory disease but can often become decoupled from the metabolic 

demand and persist even when the metabolic demand of the tissue is met. Resulting 

pathological neovasculature has markedly different characteristics when compared to normal, 

host tissue capillary network: there is often an increase in microvascular density resulting 

from the growth of new capillary networks, vasodilatation of existing vessels, increased 

capillary permeability and increased volume of the extravascular extracellular space (EES). 

Studies of microvascular properties of animal and human tumours have demonstrated a 

marked alteration of vascular and extravascular spaces in tumours as well as capillary 

permeability compared to the normal tissues [23]. A large degree of heterogeneity has been 

found between different types of turnouts and also within individual tumours with regard to 

their microcirculatory properties. 

Early morphological studies of tumour microvascular architecture in human brain turnouts 

have revealed markedly widened intra-endothelial cell junctions in capillary walls [24]. An 
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increased number of endothelial cells forming the vessels with associated increase in the 

number of cellular junctions was also noted [25]. Areas with a markedly elevated number 

(and increased size) of capillary fenestrations were associated with accumulation of interstitial 

fluid (brain oedema). Radioactive isotope measurement of capillary permeability in 

transplantable rat tumours and intact intestine using 1251 labelled macromolecules revealed 2- 

5 times higher values of permeability surface area product within the tumour 

microvasculature when compared with the permeability of normal intestine [26]. A 

measurement of the extracellular fluid volume in transplantable rat tumour models by using a 

combination of 1251 labelled albumin and s'Cr-EDTA also confirmed significant physiological 

differences between tumours and normal tissue [26]. The tumour extravascular extracellular 

volume ranged from 0.35 to 0.5 ml/g whereas muscle extravascular extracellular volume was 

markedly lower (0.13 ml/g). 

Neovascular microcirculation has in recent years been a subject of intensive research with 

the aim of understanding the pathways of drug delivery [27]. Hyperpermeability of tumour 

blood vessels as well as the increase in extracellular fluid pressure have been demonstrated 

in-vivo in animal models using intra-vital fluorescence in a rabbit ear, hamster cheek-pouch, 

and mouse dorsal skin chamber and cranial window [28,29]. The results of animal studies 

have been scaled-up using theoretical modelling in an attempt to translate these findings into 

clinically relevant information. 

Surrogate markers of angiogenesis 

Two surrogate markers of angiogenesis feature prominently in the clinical studies of 

angiogenesis. These surrogate markers are microvessel density (MVD) and vascular 

endothelial growth factor (VEGF) also known as vascular permeability factor (VPF). Since 

the validity of MRI-derived measures of microcirculation is often judged by their agreement 
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and relationship to these established measures, a brief description of MVD and VEGF/VPF 

is presented in this section. 

One of the most widely used methods for quantitative assessment of angiogenesis in clinical 

studies is the measurement of microvessel density (MVD) as proposed by Weidner in the 

early 1990s [30]. Tissue samples were stained with panendothelial marker (factor VIII-related 

antigen). The areas presenting with highest concentration of blood vessels ("hot-spots") were 

identified and the number of vessels was counted using light microscopy. The results of this 

seminal paper demonstrated a linear relationship between the probability of metastasis and 

"hot-spot" MVD in 49 patients with invasive breast cancer. Since the publication of 

Weidner's initial report, this technique was applied in numerous studies looking at the 

prognostic value of MVD in breast cancer as well as other solid tumours. Gasparini 

presented a review of the studies where the clinical outcome in breast cancer (relapse free 

survival and overall survival) was compared with measurements of MVD [31]. In a majority 

of studies MVD was found to be a significant independent prognostic factor in breast 

cancer. MVD was also found to be a significant prognostic factor in other types of cancer, 

including prostate [32] and cervix [33] cancers. However, in some in studies, no significant 

relationship between MVD and clinical outcome was found. This disparity can only partially 

be explained by the variations in methodology including the use of different 

immunohistochemical markers (e. g. anti-CD31 or anti-CD34) or different vessel counting 

techniques (manual or automated). 

VEGF (or vascular permeability factor) is a potent mitogen for endothelial cells [34]. VEGF 

is necessary for angiogenesis [35,36] and it also directly regulates blood vessel permeability 

[37-39]. Secretion of VEGF by tumour cells is triggered by a range of stimuli, including 

hypoxia and the action of certain cytokines. In a majority of published studies, where VEGF 

levels in breast cancer were compared with clinical outcome, VEGF was found to be a 

significant and independent prognostic marker [31]. This finding, however, is not 
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unequivocal. Obermair, for example, reported no significant relationship between VEGF 

levels in breast cancer and clinical outcome [40]. Although there is sporadic evidence that 

serum VEGF (c. f. tumour VEGF) also has clinical prognostic value [41], the data currently 

available does not provide conclusive evidence of its utility in the assessment of angiogenesis 

in cancer. 

1.2. Role of MRI in the non-invasive assessment of 
microcirculation 

The main features of MRI which make it a potentially useful tool for monitoring 

microcirculation are its non-invasiveness, superior soft tissue contrast, high spatial and 

temporal resolution and the availability of safe and efficient contrast agents. In this section, 

each of these features will be described and the principles of quantitative analysis of DEMRI 

will be outlined. A more detailed description of some aspects of MRI theory which are 

relevant to the work presented in this thesis is presented in Chapter 2. A comprehensive 

treatment of physical basis and technical aspects of MRI can be found in standard textbooks 

such as [42] and [43], respectively. A detailed coverage of current clinical applications of MRI 

is presented in [44] and a review of advanced MRI applications is given in [45]. 

MRI is based on spatially encoded nuclear magnetic resonance (NMR) signal. The 

phenomenon of NMR was first described in 1946 by Bloch [46] and Purcell [47]. NMR 

involves selective absorption and re-emission of the electromagnetic energy in the radio- 

frequency (RF) range by a sample of nuclei with non-zero magnetic moments subjected to a 

strong static magnetic field. The fact that NMR involves energy transition in the RF (non- 

ionising) range accounts for its non-invasive nature and contributes to suitability for bio- 

medical applications. A comprehensive review of safety aspects of NMR is given in [48]. 
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An NMR signal can be derived from the nuclei of the isotopes such as 'H, 13C, 19F and 31p 

(all of which possess a non-zero nuclear magnetic moment). Magnetic resonance 

spectroscopy (MRS) is concerned with the study of the NMR signal derived from these 

nuclei [49]. Due to its superior biological abundance in living tissues and high strength of its 

nuclear magnetic moment, the 1H (hydrogen proton) is used in MRI. The following very 

brief description will therefore be restricted to proton (111) NMR and its aim is solely to 

illustrate the source of often quoted "superior MRI soft tissue contrast". 

When placed inside a strong static magnetic field, a collection of 'H protons forms a net 

magnetic moment. Following an excitation by an RF field with a characteristic resonant 

(Larmor) frequency, a measurable, time varying NMR signal is induced in a receiver RF coil. 

The resonant nature of this phenomenon is a consequence of the quantum nature of energy 

transitions. The dynamic behaviour of the system of protons in response to the controlled 

perturbation and energy transition determines the properties of the time-varying NMR 

signal. NMR signal is characterised by three intrinsic NMR parameters: proton density (p), 

spin-lattice or longitudinal relaxation time (Tl) and spin-spin or transverse relaxation time 

(T2). 

In living tissues, NMR signal is derived from mobile hydrogen-containing molecules. The 

primary tissue properties reflect not only the number of 'H protons inside mobile hydrogen- 

containing molecules (through proton density p), but also characterise the mobility of these 

molecules (through relaxation times T1 and T2). Therefore, NMR tissue properties reflect 

tissue characteristics at the molecular level and provide a powerful tool for assessing not only 

the anatomical features of tissues but also their biochemical and pathological status. The 

range of values that these parameters can assume in both normal and pathological tissues is 

greater then that of the parameters used in other imaging modalities [50]. Furthermore, the 

dependence of NMR signal intensity on Tl and T2 is exponential, which further increases 
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the dynamic range of NMR and accounts for superior sensitivity of spatially encoded NMR 

(MRI) for imaging living tissues. 

The first application of NMR to the diagnosis of cancer (or indeed the first attempt to utilise 

NMR in medical diagnosis in general) was published by Damadian [51] in 1971. He proposed 

that benign and malignant tissues could be differentiated on the basis of differences in spin- 

lattice and spin-spin relaxation times (T1 and T2) as determined in vitro with NMR 

spectrometers. 

The arrival of MRI was marked by the publication of Lauterbur's seminal paper in 1973 [52]. 

The paper presented the first two-dimensional MR image obtained with the application of 

linear gradients for spatial localisation. The first image of the human body was published in 

1977 by Damadian [53]. In the same year, a detailed image of the wrist was published by 

Hinshaw [54]. 

Over the last three decades, numerous scientific and technological advances in the field of 

hardware and software design have transformed MRI from an exotic, expensive imaging 

modality, with crude spatial resolution and prohibitively long scanning time, to a widely used 

clinical diagnostic and investigational tool. 

Some of the most notable early methodological advancements include the introduction of 

Fourier imaging by Kumar [55], the development of the spin warp imaging technique by 

Edelstein [56] as well as the foundation of the principles of echo-planar imaging (EPI) by 

Mansfield [57]. 

Major technological developments include the design of highly homogenous wide bore 

superconducting magnets for clinical applications with typical magnetic field strength of I or 

1.5 Tesla, the development of powerful gradient systems with gradient strength in excess of 

20 mT/rn and rise times shorter than 200 µs, as well as an improvement in the performance 
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of the RF coils. All these developments have lead to the improvements in signal to noise 

ratio (SNR) and increased spatial and temporal resolution in modem MRI systems [58]. 

As a result of these technological and methodological advancements, and driven by the need 

to eliminate image degradation by motion artefacts (both physiological and gross body 

motion), several rapid imaging techniques were developed in the early 1990s. They include 

fast gradient echo [59], fast spin echo [60] and the commercial implementation of EPI [57]. 

Rapid acquisition techniques have dramatically reduced MRI acquisition times. An important 

result of the availability of rapid imaging techniques is the possibility of dynamic scanning 

with temporal resolution of the order of 1 second or even as low as 0.1 second on high 

performance systems [45]. 

Another landmark in the development of MRI was the design of effective and safe contrast 

agents which improved the capacity of MRI to depict lesion morphology in situations where 

the inherent tissue contrast is not sufficient to enable accurate delineation of pathological 

tissue. The first MRI contrast agent approved for clinical applications was gadopentetate 

dimeglumine (Gd-DTPA). In 1984, the results of the first volunteer and patient studies 

involving intra-venous administration of Gd-DTPA were published [61,62]. 

Gd-DTPA is a paramagnetic extracellular contrast agent that selectively alters MRI signal 

intensity (SI) throughout its distribution volume (blood plasma and extravascular 

extracellular fluid). The effect that Gd-DTPA exerts on MRI signal intensity results from the 

paramagnetic properties of the Gd3+ ion and its spatial relationship to the chelate (DTPA 

molecule) [63], whereas its pharmacokinetics is defined by the in vivo behaviour of the 

chelate [64]. Physiological variables that determine tissue microcirculation have a direct 

influence on the resulting local bulk tissue concentration of Gd-DTPA following intravenous 

administration [65]. In conventional (static) MRI applications, Gd-DTPA is used to delineate 
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tissue morphology since Gd-DTPA selectively enhances highly perfused and permeable 

tissues with a high extracellular volume. 

Furthermore, the availability of the fast imaging sequences opened the possibility of 

monitoring contrast kinetics dynamically, with high temporal and spatial resolution, thus 

providing not only morphological, but also functional information. 

The current methodological challenge is the development of strategies for quantitative 

analysis of DEMRI and the extraction of sequence- and platform-independent measures of 

the functional status of the microvasculature. 

1.3. Quantitative analysis of DEMRI 

MRI has in recent years revolutionised diagnostic radiology in virtually every organ system of 

the body [44]. Perhaps because of its seemingly inexhaustible versatility, which led to its 

widespread use in conventional qualitative radiology, not enough impetus existed for the 

development of methods for quantitative analysis of MRI. 

Signal intensity (SI) in MRI, expressed in arbitrary units, is dependent not only on the 

fundamental tissue properties but also on the imaging system field strength, the design of 

acquisition sequence, the geometry and performance of the RF coils, the receiver gain setting 

and the method used for mapping the detected signal onto a grey level (display) scale. A 

direct comparison of MRI signal intensity obtained using different acquisition sequences is 

therefore difficult. 

Interestingly, the very first application of NMR in medical diagnosis, presented an attempt to 

provide a quantitative measure of fundamental tissue properties, namely relaxation times Tl 

and 72 [51]. However, Damadian's claims that malignant tissue was uniquely defined by its 
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Ti and T2 values were quickly disputed by Hollis and others [66,67]. The availability of fast 

imaging techniques and the recognition of the potential of DEMRI to provide functional 

information resulted in a renewed interest in quantitative MRI. 

Methods for quantitative analysis of DEMRI can be divided into two fundamentally different 

groups: `black-box' and pharmacokinetic methods. 

In `black-box' methods the effect of Gd-DTPA is quantified in terms of heuristic, 

descriptive parameters describing the time course of enhancement. These `black-box' 

parameters include Maximal Enhancement (ME), Initial Rate of Enhancement (IRE) and 

Time to Peak (ITP). This method of analysis arguably does not utilise optimally the available 

data as information from only parts of the SI/time curves are used and the definitions of 

IRE, ME and TTP are based on arbitrarily chosen thresholds. It is not possible to correlate 

findings obtained by different pulse sequences or to compare parameters measured in 

different centres. In quantifying the extent of Gd-DTPA-induced contrast enhancement, no 

presumptions are made about the underlying physical or physiological processes. These 

parameters are certainly related to the physiological variables that govern tissue 

microcirculation but the form of this relationship is not known. Parameters such as IRE and 

ME might reflect an undefined combination of separate physiological factors. 

In contrast to descriptive black-box analysis, pharmacokinetic methods for quantitative 

analysis of DEMRI provide a framework that can be used to link the physics of MRI signal 

acquisition and the underlying patho-physiology that governs Gd-DTPA kinetics [68-71]. 

Pharmacokinetic (or compartmental) modelling of Gd-DTPA kinetics allows quantification 

of physiologically relevant variables such as the volume of the extravascular extracellular 

space and capillary permeability. The development of methods for quantification of DEMRI 

based on pharmacokinetic (compartmental) modelling has largely centred on cancer 

applications and assessment of blood brain barrier integrity. Within the context of 
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pharmacokinetic modelling it is theoretically possible to separate the influence of physical 

and physiological parameters on the observed changes in SI following controlled peripheral 

administration of contrast agents and thus enable the interpretation of measured DEMRI 

signal in terms of physiological variables that characterise pathological microcirculation. 

1.4. Project outline 

The primary methodological aim of this project was the formulation of a method suitable for 

quantitative analysis of DEMRI studies acquired in a clinical setting. The development of the 

method involved a modification of the existing approaches for pharmacokinetic modelling of 

Gd-DTPA enhanced DEMRI [68,69,71] with the aim of extracting maximal information 

within the constraints imposed by the need to perform image acquisition within a clinical 

setting, as part of a comprehensive clinical protocol. 

This method for quantitative analysis of DEMRI (QDEMRI analysis) was applied in three 

clinical studies in order to assess its potential to extract physiologically relevant quantifiers of 

microcirculation. 

The first study involved the application of QDEMRI analysis in breast cancer (the Breast 

Cancer Study). In the second clinical study, QDEMRI analysis was applied in the assessment 

of rheumatoid arthritis in the metacarpophalangeal (MCP) joints (MCPJ). This study will be 

referred to as the Hand RA Study. The third study involved the application of QDEMRI 

analysis in rheumatoid knee joints (the Knee RA Study). 

Implicit functional validation of this method was performed by investigating the relationship 

between the measured QDEMRI variables related to capillary permeability and histologically 

determined tumour grade in the Breast Cancer Study. 
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In the Hand RA Study, QDEMRI analysis was performed in a randomised study of the 

therapeutic effect of two established anti-rheumatic therapies with known differences in the 

timing of action: intra-articular corticosteroid (IACS) methylprednisolone and methotrexate 

(MTX). QDEMRI analysis of MCPJs was undertaken at baseline (immediately before the 

initiation of treatment) and at three and twelve months after the baseline assessment. Due to 

the known effect of intra-articular steroids on the rapid reduction of tissue oedema, and 

consequently the volume of the extracellular space in the synovial tissue, this study provided 

a framework for implicit functional validation of QDEMRI variable related to the volume of 

the extracellular space. 

In the third study (Knee RA Study), QDEMRI was undertaken as a part of a randomised 

multicentre study to investigate the treatment effectiveness of a novel anti-rheumatic drug, 

leflunomide (LEF), compared to the effectiveness of an established anti-rheumatic drug 

MTX. The measurements were performed at baseline and at four months after the start of 

treatment with the aim of investigating the potential of QDEMRI variables to measure 

possible subclinical differences in treatment effectiveness between these two therapeutic 

agents. 

The results of the QDEMRI analysis include the measurements of three pharmacokinetic 

variables: A, k21 and Ak21. Throughout the text these variables will be referred to as 

pharmacokinetic (PK) variables. As will be explained in Chapter 3, these variables are 

proportional to the physiological variables: the volume of the extravascular extracellular fluid 

EES (A, Ak21) and capillary permeability (k21Ak21). In addition to the measurement of 

PK variables, two black-box (BB) variables were measured in all three studies. These BB 

variables are: maximal enhancement (ME) and initial rate of enhancement (IRE). In the 

Breast Cancer study, one additional BB variable, washout slope (WOS) was measured as well. 

The illustration of BB variables is presented in Chapter 4. 
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In the Hand RA and Knee RA studies, QDEMRI analysis was performed on a voxel-by- 

voxel basis, in contrast to the Breast Cancer Study, where PK and BB parameters were 

derived from discrete regions of interest (ROIs). This is why the results of the Hand RA and 

Knee RA studies include two additional parameters: the total voxel counts obtained in BB 

and PK analysis (N-BB and N-PK). A summary of all measured variables, including their 

symbols and units is presented in Appendix A. 

A relationship between MRI signal intensity and local tissue concentration of Gd-DTPA is 

described in Section 2.4. A general description of compartmental modelling is presented in 

Section 2.5. An overview of principal models for pharmacokinetic analysis is presented in 

Chapter 3. 

A development of the model used for the extraction of PK variables is presented in Chapter 

4. This section also includes the results of the Monte Carlo modelling which was undertaken 

to guide the practical implementation of the method which is described in Chapter 5. 

The results of the Breast Cancer Study are presented in Chapter 6 and Chapter 7 contains 

the results of two RA studies. Finally, Chapter 8 includes a summary and the interpretation 

of the findings of this project. 
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Chapter 2. Theory of Gd-DTPA enhanced 
MRI 

DEMRI can adequately monitor the temporal variation of Gd-DTPA concentration only if 

the Gd-DTPA induced change in SI is sufficiently high, if the relationship between DEMRI 

signal intensity and underlying Gd-DTPA concentration is known over the range of tissue 

concentrations expected in clinical examinations and if the DEMRI signal can be collected 

with an adequate temporal resolution. Once the link between DEMRI signal intensity and 

Gd-DTPA concentration in the tissue sample C= Ct(t) is established, the resulting Ct(t) can 

be analysed within the framework of pharmacokinetic modelling to extract physiologically 

relevant pharmacokinetic variables that determine Gd-DTPA kinetics at a capillary level. The 

understanding of this mechanism of enhancement and its dependence on physical factors 

related to the DEMRI acquisition properties as well as systemic physiological factors (such as 

the temporal behaviour of Gd-DTPA in blood plasma) is necessary for the quantitation and 

interpretation of the observed DEMRI signal extracted from a lesion. 

Therefore, the first step in the assessment of Gd-DTPA kinetics through the analysis of 

DEMRI is the formulation of the link between the MRI signal intensity and underlying bulk 

tissue concentration of Gd-DTPA. Signal intensity (SI) in magnetic resonance imaging (MRI) 

is a complex function of multiple factors including three unique intrinsic properties of tissues 
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(proton density (p), and relaxation times Tl and T2). Whereas other inherent tissue 

properties such as physiological flow, diffusion, susceptibility, chemical shift and 

magnetisation transfer also have an influence on SI, the SI enhancement utilised in this work 

is primarily defined by the alteration of relaxation times in the presence of a paramagnetic 

contrast agent Gd-DTPA. In this chapter, a link between Gd-DTPA concentration in tissues 

and resulting relaxation times is described (Section 2.4.1) and the resulting dependence of the 

MRI signal intensity of the spoiled gradient-echo sequences is derived (Section 2.4.2). For a 

detailed treatment of the MRI theory, the reader is referred to books by Abragam, Bradley et 

al and Haacke et al [42,43,45]. A comprehensive review of clinical applications of MRI is 

presented by Stark et al [44]. 

This chapter also includes the general description of pharmacokinetic modelling (Section 2.5) 

and an illustration of the application of this method for the assessment of Gd-DTPA 

kinetics (Section 2.5.2). The observed temporal variation of Gd-DTPA concentration in a 

tissue sample C= Ct(t) is described in terms of pharmacokinetic parameters that define the 

rate of extravasation (which is related to the capillary permeability) and the locally available 

distribution volume of the Gd-DTPA (the volume of the EES). The principles of 

pharmacokinetics and compartmental modelling are discussed in detail in a book by Wagner 

[72]. 

2.1. Origin of MR signal 

A hydrogen ('H) proton has an intrinsic angular momentum (spin) I which gives rise to the 

proton magnetic moment µ= yhl , where y represents gyromagnetic ratio and h represents 

Planck's constant h/tit (y = 42.6 MHz/T for a 'H proton). When placed inside a strong 

static magnetic field Bo = kBo (where k represents the unit vector of the axis along which 

Bois applied), proton magnetic moments exhibit precessional motion with a characteristic 
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Larmor precessional frequency oAo = yBo (0 o= -yBo). They can assume only discrete 

energy states (Zeeman energy levels) which are determined by their spin quantum number I. 

In a large collection of protons in thermal equilibrium, a preferential adoption of the lower 

energy state results in the formation of a net magnetic moment M= kMo (equilibrium 

magnetisation) which is aligned parallel to the axis of the static field Bo and represents a 

vector sum of individual proton magnetic moments µ. If M is represented as a vector 

sum of the longitudinal magnetisation MZ (the component parallel to the axis of the field 

Bo) and transverse magnetisation M, (the component perpendicular to the axis of the field 

B 
0), in thermal equilibrium M=M 

Z+ 
M 

a= 
M,, = kM 

0, since M. = 0. 

The measurement of the amplitude of the equilibrium magnetisation, although theoretically 

possible [42], would be of little interest since it depends only on proton density (p) and the 

average strength of the individual proton magnetic moments. If, however, the system of 'H 

protons is subjected to the second, oscillating magnetic field B, perpendicular to the axis of 

B0, the energy is absorbed by the sample. B, oscillates with the frequency equal to the 

Larmor frequency of precession, which belongs to the RF range of the electromagnetic 

spectrum, hence Bi is also called an RF field). The resonant nature of this perturbation 

stems from the quantum behaviour of individual magnetic moments. Energy absorption is 

possible only if the supplied energy corresponds to the difference between adjacent Zeeman 

energy levels, which is given by AE = yhB0 = hCL)O 
, i. e. the energy of transition is defined 

by the Larmor frequency wo . Macroscopically, as a result of the excitation by an RF field 

Bi 
,a transient, time varying component of M will be created in the plane perpendicular to 

the axis of the static field B0 (i. e. transverse magnetisation Ma # 0). Time varying Mtr is 

capable of inducing a voltage in a receiver coil (Faraday's law of induction). At the same 

time, longitudinal magnetisation M,, 
will be depleted (IM 

ZI<M o) or completely destroyed 

(IMZI =0), depending on the strength and the duration of the applied RF field B1 [43]. 
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2.2. Relaxation mechanisms 

Following excitation, the system will gradually regain its equilibrium, through the interaction 

of individual magnetic moments with the surrounding lattice and through the interaction 

between the neighbouring protons. 

The behaviour of the system of protons in a liquid sample following energy absorption can 

be described by a set of phenomenological Bloch equations [46]. These equations describe 

the process of the restoration of longitudinal magnetisation (longitudinal relaxation) and the 

decay of transverse magnetisation (transverse relaxation) as a function of two exponential 

constants TI and T2, respectively. The modified Bloch equation (expressing Bloch equations 

in a closed vector form), which incorporates the influence of an oscillating RF magnetic field 

B1, assuming 
POI 

» 
P11 

is presented in Eq. 2-1 [43]. 

dM 
=yMx(kB° +B, )-Mtr -kMz 

-M° Eq. 2-1 dt T2 Ti 

Spin-lattice or longitudinal relaxation time T1 characterises the exponential time constant of 

the process of restoring the equilibrium magnetisation following the excitation by an RF 

pulse. This process essentially involves energy dissipation, the transfer of absorbed energy to 

the surrounding lattice. Again, on a quantum level, this energy transition can only be 

achieved through energy transitions between adjacent Zeeman energy levels. The rate of 

longitudinal relaxation (and consequently Tl) depends on the local availability of molecules 

with molecular tumbling rate which corresponds to the Larmor frequency. 

Spin-spin or transverse relaxation time T2 is an exponential time constant of the process of 

progressive loss of phase coherence of the transverse magnetisation. This process is caused 

by the interaction between neighbouring magnetic moments and, unlike longitudinal 

relaxation, does not involve energy transitions. In practice, the process of dephasing is 
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accelerated by the presence of local magnetic field inhomogeneities and therefore transverse 

relaxation follows a faster exponential decay, defined by an effective transverse relaxation 

time T2* < T2. 

Whereas relaxation time constants Tl, T2 and T2* influence the temporal behaviour of the 

NMR signal following excitation, proton density (p) determines the overall amplitude of the 

detected signal (through its influence on Mo). 

By using a set of appropriate boundary conditions, theoretically predicted Mtrand MZ at 

any time point following excitation can be derived from the expression presented in Eq. 2-1. 

If the application of B1 (where BI = IBi le-"O' in complex notation) results in the nutation 

of M through 90° (i. e. the flip angle (p = 90°) and if the relaxation during the application of 

B, is ignored, boundary conditions M. (0) = 0, My (0) =Mo and MZ (0) =0 apply, 

and the solution to the system of Bloch equations yields the following expressions for M,, 
, 

My and M.: 

dMX 
=w M -Mz °' dt T2 

dM Mr 

dt = -ý°M. _ T2 

dMZ MZ -M° 
dt Ti 

I 
Mx = Mo sin(mot)e Tz 

I 
My = Mo cos(u, ot)e Tz 

I 
M. =M0(1-e T') 

Eq. 2-2 

t 
The vector Mir has a time varying amplitude Ma = Moe T2. Similarly, if a sample is 

repeatedly excited by the application of RF pulses with a repetition time TR and a flip angle 

q, the solution of the Bloch equation will give an expression for MZ after n successive 

excitations (Eq. 2-3). 
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nTR 
T1 nTR 

MZ(nTR)=Mo (1-e TR)1-COS" cp'e 
TR +cosn cp"e T' E92-3 

1-coscp'e T' 

Steady state longitudinal magnetisation and the amplitude of transverse magnetisation at time 

TE (echo time) following the application of an RF pulse (and assuming that M 
tr =0 prior 

to the application of each RF pulse), is given by expression in Eq. 2-4. 

TR 

MZ(TR) =Mo 
(1-e TI )TR 

1-coscp"e T' 

TR 
T TE 

Ma(TE)=Mo 
(1-e 

TR sing"e Ti" 
1-coscp"e T' 

Eq. 2-4 

This excitation scheme is the basis of the spoiled gradient echo (GE) sequence, which is 

often used in DEMRI studies. The relationship between the measured signal intensity in 

MRI (which is proportional to M. (TE) in the equation Eq. 2-4) on relaxation times Tl 

and T2* is dependent upon the choice of acquisition parameters TR, TE and cp. The choice 

of imaging parameters therefore determines the sensitivity of the signal to changes in TI and 

T2* (Tl or T2* weighting) and will be discussed further in Section 2.4, in the context of Gd- 

DTPA enhanced MRI. 

2.3. MR image formation 

A very brief treatment of the process of image formation is presented in this section with the 

aim of illustrating the spatial and temporal aspects of MR image formation which have a 

direct bearing on the capacity of DEMRI to allow the assessment of dynamic physiological 

processes. The method for spatial encoding of NMR described here was based on the 
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method of Fourier zeugmatography proposed by Kumar et al [55] and modified by Edelstein 

et al ("spin-warp" technique, [56]). 

The signal derived from a volume element (voxel) dxdydz following an excitation by and 

RF pulse is proportional to the time varying transverse magnetisation 
R, 

=M o- (x, y, Z), 

where x, y and z represent the spatial coordinates of the voxel. This vector can be 

represented in a complex form and characterised by time-varying amplitude and phase, and 

the signal detected in a quadrature receiver coil is also a complex quantity (S). The signal 

emanating from the entire sample volume is then given as a sum (or a volume integral) of the 

contributions from all voxels in the volume (Eq. 2-5). In equation Eq. 2-5, S and M, 

correspond to the complex representations of the measured signal and longitudinal 

magnetisation, respectively and 4 represents a constant of proportionality determined by the 

receiver circuit settings (and assuming spatially invariant 4=4(x, y, z) = const. ). 

S=4jf jM tr (x, y, z)dxdydz Eq. 2-5 

If the spatial modulation of the phase of Mtr is performed by introducing a controlled time- 

and space-variant phase shift 0, where 0 is given as: 

A=kxx+kyy+kZz Eq. 2-6 

and where kx, ky and kZ represent spatial frequency (k-space) coordinates expressed in 

rad/m, the measured signal S can be expressed as: 
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S(k., ky' k=) 
=4 J$JM tr(x, Y, z) " ei(k, x+kyy+k'Z)dxdydz Eq. 2-7 

i. e. S represents a 3D Fourier transformation of the spatial distribution of M 
tr 

(x, y, z) . 

Therefore, the application of an inverse 3D Fourier transform on a signal sampled in k-space 

domain S(k, k 
Y, 

kZ) yields an image of M 
tr 

(x, y, z) in a spatial domain - an MR image. 

In practice, spatial modulation of 0 is achieved by selectively altering the magnitude of the 

static field Ba throughout the sample volume through the application of linear magnetic 

field gradients in three orthogonal directions G, GY and G" The magnitude of the 

effective magnetic field B experienced by a voxel located at (x, y, z) in the presence of linear 

gradients is given as: 

B= Bo + xG x+ yG y+ zG Z Eq. 2-8 

The resultant Larmor frequency at any location in the sample is given as: 

co = coo + yxG x+ yyG y+ yzG Z Eq. 2-9 

The fast frequency component wo is removed from the signal by demodulation [43] and the 

expression for 0 (Eq. 2-6) becomes: 

0=kxx+kyy+k2z=y j(xG. (t)+yGy(t)+zGZ(t))dt Eq. 2-10 

The signal sampling in the k-space domain is performed in discrete steps by adjusting the 

timing and the amplitude of linear gradients and thus selecting different coordinates kx, ky 

and kZ. This process is referred to as frequency (k,, ) and phase (ky and kz) encoding. 
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The MMR image (containing amplitude and phase information) is obtained by performing an 

inverse 3D Discrete Fourier Transform (DFT) on a complex matrix S(k 
x, 

ky, k 
z) . 

The process of image formation is illustrated below, using as an example a two-dimensional 

spoiled GE sequence, where M« is described by the equation Eq. 2-4. The timing of the 

excitation (RF) pulses and the linear gradients (pulse sequence diagram) is illustrated in 

Figure 2-1. 

p tp 

RF nn 
Gz 

Gy 

echo echo 

Gx 

Figure 2-1 Pulse sequence diagram for a spoiled GE sequence 

A slice selective excitation by an RF pulse is achieved by the application of G, during the 

excitation, thus ensuring that a single slice (x, v, z= const) is excited. The selected slice has a 

finite thickness determined by the strength of the G, gradient and the bandwidth of the 

applied RF pulse. Next, the phase encoding Gy gradient is switched on with amplitude 

G (n) and duration T5 
, thus creating a phase shift of yG (n)T5, y and selecting a single 

line of the two-dimensional k-space matrix (k 
Y, 

ky. = 1G y 
(n)Ty ). During the signal 

readout, G, is switched on and this gradient creates a phase shift of yG, t, 
nx , where t 

represent discrete time points during the signal sampling, ensuring that a single line of k- 

space matrix is traversed (k, =yG, t,,,, ky, =yGy, (n)TY). As m varies from 1 to Nx, Nx 
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elements of a single line of k-space are collected during the signal readout (this process is 

referred to as frequency encoding). In each repetition cycle (IR) one line of k-space is 

acquired. To sample an entire 2D matrix (Nx x Ny) elements, this procedure is repeated Ny 

times, where Ny represents the number of phase-encoding steps. In each successive phase- 

encoding step, a different amplitude of GY=Gy (n) is selected, and thus Ny lines of k- 

space, characterised by (k1, kY= yG y 
(n)TT) are sampled with n=1 to Ny. The total 

imaging time required for the reconstruction of a single 2D slice is given by TR x Ny. In the 

practical implementation of this method of spatial encoding, k-space matrix contains 2n 

elements in each direction and the (k 
x, 

ky, k2) matrix symmetrical with respect to the 

origin (k 
x=0, 

ky=0, kZ =0). This is achieved by reversing the sign of the readout 

gradient G. and the application of Gy (n) using discrete steps from -Gy to GY (Figure 

2-1). The formation of the echo is achieved by controlling the amplitude and the duration of 

the applied gradients and this is why this sequence is labelled "gradient echo". 

Finally, spoiler gradients (Figure 2-1) are used with short TR to ensure that M 
tr =0 prior to 

each RF pulse application (spoiled GE). Spoiling of M 
tr enhances Ti weighting of the 

signal by eliminating the residual T2* dependent signal. 

To sample a 3D matrix containing Nx x Ny x Nz elements, the signal needs to be read out 

Ny x Nz times, requiring often prohibitively long acquisition time of TR x Ny x Nz. 

However, due to the Hermitian symmetry of the k-space, partial filling of matrix elements 

can be used, thus reducing the overall imaging time. Furthermore, fast imaging techniques 

allow the acquisition of multiple lines of k-space during a single TR interval (segmented k- 

space) or even the sampling of an entire 2D matrix within a single TR as in single-shot EPI. 

The relationship between signal to noise ratio, image contrast, temporal and spatial 

resolution in MRI can be illustrated using this 2D sequence as an example, although the 

general principles apply to any MRI sequence [43]. 
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The volume of the image voxel (with slice thickness 6z) is SV = Sx x Sy x 6z, where Sx and 

By are related to the field of view (FOV) in each direction (Lx and Ly, respectively) by the 

expression: 

8V=8xx8yx8z= 
Lx 

xL xSz Eq. 2-11 
Y 

The time required to acquire a single slice is determined by the product TR x Ny, i. e. the 

temporal resolution is TR x Ny. Signal to noise ratio (SNR) is also a function of spatial and 

temporal acquisition settings. SNR is defied as the ratio of the signal intensity and the square 

root of the noise variance, and for a sample element SV SNR is given as: 

Lx 
xLyyx8z 

SNR =Sa 
Max6V 

_ 
Mtrx8V 

_M 
Nx Ny 

Nv1 tr 1 Eq. 2-12 

Nx x Ny Nx x Ny x t, Ny -x Ts 

where Ts represents total sampling time and T, represents dwell time or the sampling 

interval used in analogue to digital conversion (ADC) of the signal in the frequency encoding 

direction (sampling bandwidth U, is defined as 1/, r,, and Ts = Nx x T, ). 

SNRaMtr6V NyxTs 

Eq. 2-13 SNR aMa 
Lx Ly sz Nx x Ny x [, =M tr 

Lx x Ly Sz T., Nx Ny Nx x Ny 

Whilst at constant FOV the temporal resolution can be increased by reducing Ny, this will 

result in the loss of spatial resolution (Eq. 2-11). Temporal resolution can also be reduced if 

TR is reduced. However, the SNR is proportional to M,, (Eq. 2-13) which in turn depends 

on TR (Eq. 2-4) and very short TR values will result in a low SNR. Higher SNR can be 

achieved by using longer TR with concurrent loss of T1 weighting. Furthermore, imaging 

larger voxels (by increasing FOV) will lead to an increase in SNR accompanied by the loss of 
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spatial resolution. Conversely, increasing the matrix size will lead to the reduction of voxel 

volume and cause SNR loss according to (Eq. 2-13). Therefore, the increase in spatial 

resolution which is necessary for the detection of small lesions or assessment of lesion 

heterogeneity has to be balanced against the concomitant SNR loss. And finally, increasing 

tissue coverage by imaging multiple slices increases the temporal resolution by the factor Ns 

(number of slices) in 2D imaging. If higher values of TR are used, multiple slice imaging 

within a single TR interval is possible. However, this also has consequences on the contrast 

behaviour of the signal. 

Therefore, the relationship between temporal and spatial properties in MR imaging as well as 

image contrast and SNR is very complex: the requirements for large tissue coverage and high 

spatial resolution must be balanced against the overall imaging time which is a direct function 

of the number of voxels sampled. Furthermore, signal to noise ratio (SNR) and the contrast 

properties in MR imaging, also depend on the chosen acquisition sequence parameters. 

This relationship plays an important part in conventional, static imaging, where the achieved 

image quality (SNR and contrast properties), spatial resolution and tissue coverage must be 

balanced against the overall duration of the examination and problems related to gross 

patient motion. However, in abdominal imaging and DEMRI applications, the balance 

between these opposing requirements is particularly delicate, since the time-scale of the 

physiological motion and the rate of dynamic processes imposes much more severe 

constraints on the acceptable duration of the image acquisition. 

The exact choice of the imaging sequence, acquisition parameters and other parameters such 

as field of view, matrix size, slice thickness and orientation, depends on the information 

being sought. MRI provides great flexibility in this respect and by careful tailoring of the 

imaging protocols it is possible to acquire images suitable for assessing a wide range of 

conditions. 
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However, in certain pathological states, intrinsic tissue properties do not provide sufficient 

contrast between the lesion and surrounding tissue. In such situations, optimisation of 

sequence parameters can provide only marginal improvements in the visualisation of the 

lesion, especially if the lesion size is small and partial volume effects further diminish the 

contrast. 

Application of exogenous contrast agents can, however, create sufficient contrast between 

the lesion and the adjacent tissue if the microvascular properties of the lesion differ 

significantly from its surroundings thus further improving sensitivity and specificity of MRI. 

In the following sections, the mechanisms by which exogenous paramagnetic contrast agent 

Gd-DTPA alters primary tissue parameters and resulting signal intensity will be described. 

2.4. Gd-DTPA induced changes in MRI signal intensity 

The phenomenon of enhancement of proton relaxation in aqueous solutions through the 

interaction of magnetic moments of protons and large paramagnetic ions was fist described 

by Solomon and Bloembergen [73,74]. 

The magnitude of this relaxation effect depends primarily on the number of unpaired 

electrons in the valence shell of the paramagnetic species. The gadolinium ion (Gd3+) 

belongs to the lanthanide metal group and is an effective relaxation agent primarily due to its 

large number of unpaired electrons (Table 2-1). 

Valence shell Number of Net magnetic Electron spin 
configuration unpaired electrons moment relaxation time (ms) 

(magnetons) 

Gd3' 417 7 7.6 10"5 -10$ 

Table 2-1 Gd3+ properties 
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The proton relaxation enhancement, however, could not be utilised in MR applications 

before the effective means of chelating paramagnetic ions to suitable molecules (such as 

DTPA) became available. This was necessary because of the considerable toxicity of ions 

such as Gd3+. Chelating agents prevent trapping of these toxic ions in tissues and ensure 

complete excretion of toxic ions from the body [75]. 

2.4.1. Effects of Gd-DTPA on relaxation times 

Linear relationships between the change in proton relaxation rates and Gd-DTPA 

concentration were found in aqueous solutions of Gd-DTPA and also experimentally 

demonstrated for solutions in biological fluids as well as tissues [76,77]. 

The relationship between tissue relaxation rates and local tissue concentration of the contrast 

agent is given in Eq. 2-14. 

1=1 
+aC 

Tlc Tlo 

1_1 Eq. 2-14 

T2c T20 
+ßC 

Equations describing the shortening of relaxation times in 
the presence of Gd-DTPA 

In Eq. 2-14 subscript C denotes relaxation times in the presence of Gd-DTPA at a bulk 

tissue concentration of C expressed in mM = mmol/l, and subscript 0 denotes native 

relaxation times (for C= 0). Parameters a and ß are contrast agent relaxivity constants 

(expressed in (mMs)-1). 

In gradient echo (GE) sequences (and fast imaging sequences derived from GE) effective 

transverse relaxation rate is related to the native transverse relaxation rate according to the 

following expression: 
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1_I ABO 
T2' T2 

+7 
2 Eq. 2-15 

where y stands for gyromagnetic ratio and ABo represents local field inhomogeneity. 

Shortening of the effective transverse relaxation time T2* is related to local bulk tissue 

concentration of Gd3+ and is described by the expression Eq. 2-16, where (3' represents T2* 

relaxivity constant. 

1l 
_ +ß'c T2c T2ý Eq. 2-16 

The shortening of relaxation times in the presence of Gd-DTPA is illustrated in Figure 2-2. 

Native T1 of the tissue was assumed to be 1000 ms and effective transverse relaxation time 

T2* was 100 ms. Relaxivity constants for T1 and T2* are a=4.5 (mMs)-' and 13 = (1' = 5.5 

(mMs) I respectively [78]. The range of Gd-DTPA concentrations is presented on the 

horizontal axis (using a logarithmic scale). Although both relaxation times are reduced in the 

presence of Gd-DTPA, the relative effect on T1 is much more pronounced, given the higher 

initial value of T1 (Tlo). 
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Figure 2-2 Shortening of the relaxation times in the presence of Gd- 
DTPA 
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In the following section, the influence of the shortening of relaxation times in the presence 

of Gd-DTPA on the measured signal intensity is described. 

2.4.2. Effect of Gd-DTPA on signal intensity in MRI 

Signal intensity in spoiled gradient echo (GE) sequences is given in Eq. 2-17 [43]. This 

expression reflects the dynamic behaviour of M 
tr , as described in Eq. 2-4. In addition to 

intrinsic tissue properties, SI is defined by sequence parameters TR, TE and flip angle ((P). 

Consequently, the contrast between the tissue of interest and the surrounding tissues will 

depend on the differences in inherent parameters as well as the selection of the imaging 

parameters. As can be seen from the expression Eq. 2-17 below, SI will be increased in 

response to TI shortening brought about by the introduction of Gd-DTPA. However, 

concomitant shortening of T2* will lead to the signal loss. 

TR 
I- e Ti TE 

S __ kp 
TR U T2* sin cp Eq. 2-17 

1- cos (v e Ti 

Spoiled GE sequence signal intensity 

In DEMRI, SI is measured prior to the administration of the contrast and this signal 

represents baseline SI (So at C= 0) and at discrete time intervals following the administration 

of contrast (Sc) whereupon relaxation rates experience shortening according to the equations 

Eq. 2-14 and Eq. 2-16, as illustrated in Figure 2-2. The resulting changes in Gd-DTPA 

concentration in the tissue sample will give rise to a corresponding change in measured SI. 

The normalised SI, i. e. the ratio of the SI measured in the presence of Gd-DTPA at 

concentration C and baseline SI is therefore a function of Gd-DTPA concentration (Eq. 

2-18). 
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S, 
=f (c) Eq. 2-18 

0 

The normalised SI is plotted against Gd-DTPA concentration (displayed on a logarithmic 

scale) in Figure 2-3. Whereas at low Gd-DTPA concentrations, normalised SI rises in 

response to the increased concentration of Gd-DTPA, it is apparent that at high Gd-DTPA 

concentrations signal loss, rather than signal increase occurs as can be seen from Figure 2-3 

where normalised SI drops below unity at the high end of the Gd-DTPA concentration axis. 
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Figure 2-3 Illustration of normalised SI change with varying 
Gd-DTPA concentrations 

The graph in Figure 2-3 represents the relative change of SI over baseline for a spoiled Tl 

weighted GE sequence with TR/TE/cp = 13/4.6/60°, Tlu = 1000 ms, T20* = 100 ms and 

relaxivity constants a=4.5 (mMs) I and (3 = (3' = 5.5 (mMs)-1, respectively, as in Figure 2-2. 

With increasing Gd-DTPA concentration, normalised SI measured using this particular 

acquisition sequence theoretically rises up to a value of 19 at the concentration of 16 mM. 

Any further increase in Gd-DTPA concentration leads to progressive decrease of normalised 

SI. This means that at very high Gd-DTPA concentrations, normalised SI is not uniquely 

determined by the underlying Gd-DTPA concentration in the tissue sample. However, at 
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higher Gd-DTPA concentrations actual T2* relaxivity constant (3' may be considerably 

higher than 0=5.5 (mMs)-1 [79] and the progressive signal loss may occur at lower Gd- 

DTPA concentrations than those illustrated in Figure 2-3. 

In clinical applications, only a narrow range of concentrations presented in Figure 2-2 and 

Figure 2-3 is achieved following Gd-DTPA administration at a standard dose of 0.1 

mmol/kg body weight. Gd-DTPA concentrations as high as 3 mM are achieved only during 

the first pass in the blood pool [80]. Well perfused tissues typically reach a concentration of 

well below 0.9 mM which represents a theoretical upper limit for equilibrium Gd-DTPA 

concentration in the blood pool, liver, kidney and spleen combined, in the absence of 

peripheral extravasation [79]. At low concentrations the influence of T2* effects is minimal 

and normalised SI is proportional to the Gd-DTPA concentration in the sample. However, 

the exact relationship between the normalised SI and Gd-DTPA is dictated by the pre- 

contrast value of TI (T10) as illustrated in Figure 2-4. 
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Figure 2-4 Dependence of normalised SI on pre-contrast Tl 

The link between normalised SI, pre-contrast Tlo and Gd-DTPA concentration can be 

derived analytically (Eq. 2-19) from the expression for an arbitrary spoiled GE sequence 
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presented in Eq. 2-17. Therefore, the normalised DEMRI SI at any point following the 

administration of contrast (Sc/So) depends on the Gd-DTPA concentration in the tissue 

sample and the exact form of this relationship depends on the pre-contrast value of Tlo as 

well as the DEMRI acquisition settings. If the pre-contrast TI (T1o) is known, normalised 

DEMRI SI can be converted into C= Ct(t) by using appropriate lookup tables or by solving 

equation Eq. 2-18 for every measured Sc/So ratio, using Taylor expansion of the exponential 

terms. 

1- e TR 
[T1o+aCl 

-TE 
1 

+RC Je 

-TR [_Lac] 
Sc 

= 
1-cosq-e Tlo 

So - TR Eq. 2-19 
1- e Tlo TE 

TR e T2a 

1-coscp"e Do 

However, as can be seen from Figure 2-4, at low concentrations of Gd-DTPA, the 

relationship between Sc/So and C can be approximated by a linear function of the form 

described by Eq. 2-20 (the derivation is presented in Appendix B). The range of Gd-DTPA 

concentrations over which this approximation adequately represents the functional 

relationship between normalised SI and C= Ct(t), depends on the chosen TR, TE and cp, in 

addition to the values of relaxivity constants a and (3 which are generally assumed to be well 

represented by in-vitro values measured in aqueous solutions at 21°C [78]. 
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S' 
ýzl+a"C so 

TR Eq. 2-20 

a=- 
e Tlo 

. TRa 
TR 

I- e Tlo 

A linear approximation of the normalised SI as a function of Gd-DTPA 

concentration 

For very short TR (TR« Tlo) factor of proportionality a which links normalised signal 

intensity (relative signal enhancement) and local tissue concentration of Gd-DTPA could be 

further approximated by a Tlo (see Eq. 2-21). This means that under these conditions and 

at low Gd-DTPA concentrations, the relative signal change at a given Gd-DTPA tissue 

concentration will be primarily dictated by the native Tlo of the tissue and in-vivo relaxivity 

constant a. 

TR 1-TR 
a= 

e Tlo 
. TRa ; t; 

Tl0 
" TRa = 

Tl° 
-1 TRa ;z TI0 "a TR TR 

(TR 

I- e TL Ti o Eq. 2-21 
for TR 

<< Tlo 

On the other hand, if TR is large compared to Tlo or an approximation over a wider range 

of concentrations is sought (i. e. up to 3 mM or higher), a more complex functional 

relationship (e. g. quadratic) between Sc/So and C may be required. 

Once the relationship between normalised DEMRI signal intensity and underlying bulk 

tissue concentration of Gd-DTPA is established (Eq. 2-20), temporal variation of DEMRI 

can be used to assess the local pharmacokinetics of Gd-DTPA and thus provide a measure 

of the microcirculatory properties of the tissue sample. To link the observed temporal 

changes DEMRI to the local microvascular properties of the tissues, pharmacokinetic 
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modelling is applied. The theoretical basis of pharmacokinetic modelling and its application 

to the measurement of the kinetics of Gd-DTPA following intravenous injection are 

presented in Section 2.5 

2.5. Theory of the pharmacokinetic modelling of Gd- 
DTPA kinetics 

A compartmental model is the mathematical description of the pharmacokinetic process, 

which incorporates both structural and physiological a priori knowledge about the system 

under investigation [72,81]. This approach is widely used in pharmacology and nuclear 

medicine in those situations where the physiological processes under consideration are 

exceedingly complex or not known in sufficient detail. 

The first step in building a compartmental model is to identify a subdivision of a system (a 

pool) where drug, contrast medium or tracer (indicator) can be identified either physically or 

chemically. A portion of a pool, which has unique, distinguishable and uniform kinetics, can 

be regarded as a viable compartment. 

The requirement of uniform kinetics within the compartment is usually translated into an 

assumption of instantaneous mixing of the indicator within the compartment. This 

requirement is necessary in order to justify the transition between, by and large, inexact 

"real" processes and exact mathematical formalisms. Relevant physiological information can 

be concealed by the range of peripheral biological, chemical and physical processes which 

contribute to the dispersion of the indicator on passing through the system. However, in 

many applications the influence of these effects is such that the assumption of instantaneous 

mixing holds and compartmental modelling yields meaningful physiological information. 
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The relationship between individual compartments is defined and described by the 

corresponding transfer rate constants. Input functions can be obtained either by direct 

measurements or approximated by a mathematical assumption, thus taking the form of an 

idealised mathematical function. The two most frequently used input functions are bolus 

injection and constant rate infusion. 

Fi�(t F1n(t) 

F 

t 

(a) (b) 

Figure 2-5 Standard input functions: (a) Bolus injection mý�6(t) and (b) 

Constant rate infusion ' 1(u(t) - u(t -T)) T 

A number of well-established configurations are widely used in modelling common 

physiological processes 1721. It is possible to model the same process with the 

compartmental models of varying complexity. If applied correctly, compartmental analysis 

increases the amount of information extracted from the pharmacological data. It can provide 

explicit expressions for the indicator concentrations in any of the body's kinetic 

compartments. 

2.5.1. Description of an open two-compartment model 

In this section, a general description of the modelling process will he given for the open two- 

compartment model. This derivation, based on the definition of mass balance equations for 

the exchange of the indicator between the compartments is presented here because it 
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provides a general framework for modelling indicator transport, regardless of the number of 

compartments, the nature of their interconnections and the form of the input function (or 

multiple input functions). 

Fin(t) keß 

Central compartment C1(t) 

k12 jI k2. 

Peripheral compartment C2(t) 

Figure 2-6 Diagram of a generalised two-compartment model with 
central and peripheral compartments, transfer rate constants and input 

function. 

The central compartment usually encompasses those regions of the body in which the 

amount of the indicator present always remains in equilibrium with the concentration of the 

indicator in arterial plasma. This compartment includes plasma and those tissues or parts of 

tissues in which indicator concentrations rapidly reach equilibrium with plasma. These tissues 

are generally well perfused i. e. they have high blood flow per unit mass. Whether the 

particular tissue can be included in the central compartment depends largely upon the bio- 

distribution characteristics of the indicator (e. g. molecular weight, solubility). For example, 

the brain can be regarded as the part of the central compartment for substances which freely 

cross blood-brain barrier. Both the intracellular and extracellular regions of muscles and 

subcutaneous tissues, which are poorly perfused, are outside the central compartment when 

extracellular tracers are used. 
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In this two-compartment model it is assumed that the indicator is injected into and 

eliminated from the central compartment. The indicator which has been absorbed but not 

eliminated from the system is assumed to be in either the central or peripheral compartment 

at any given time (mass conservation). The fractional transfer rate of the indicators between 

these two compartments is described by the constants k, 
2 and k21. Fractional elimination 

rate constant kei describes the fractional rate of elimination of the indicator from the central 

compartment. 

The general input function is designated as Fin = Fin(t) and could be either constant rate 

infusion, single bolus or any combination of these (Figure 2-5). Mass balance equations 

governing the transfer of the indicator within this system are given below. Subscripts 1 and 2 

denote values pertaining to the central and peripheral compartment respectively. 

F;,, (t)-(k, Z +ka)m, +k2, m2 dt 
dm Eq. 2-22 

dt2 
k, Zm, -k2, m2 

Mass balance equations for the open two-compartment model 

In these equations symbols mi and m2 denote functions mi(t) and mz(t). Or in matrix 

notation: 

dm, 
dt (k12 +ka) 

dM2 k12 
dt 

k21 m, 
+ 

[Fin (t) 

-kZ, m2 0 Eq. 2-23 

Mass balance equations for the open two-compartment model in the 
matrix form 

This system of differential equations can be rewritten in terms of the indicator concentration 

within the central and peripheral compartments by substituting: 
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m, = C, V, 

m2 = C2V2 
Eq. 2-24 

with Ci and C2 representing functions describing temporal variation of indicator 

concentration in the central and peripheral compartment, respectively. Mass transfer 

equations then yield: 

dC Fi,, (t) 2 

dt V -(k12 +k,, )C, +k21 V CZ 
I V, 

Eq. 2-25 dd Z= k12 IV CI -k2IC2 
i 

Mass balance equations for the two compartment model expressed in 
terms of indicator concentration 

Or in matrix notation: 

dC, (k 12 + kj 
dt 

dC2 V' 
kiz 

dt VZ 

VZ k21 
Ci F; 

ý 
(t) 

+ V, 

-k2l 
CZ 0 

Eq. 2-26 

This set of simultaneous differential equations is most conveniently solved in the Laplace 

domain: 

sC, (s)-C, (0) 
- 

(k12 +ke 
Vi k21 Ci(s) 

+ 
Fýý(s) 

[sC2(s)_C2(O)] v'z 
k -k 

[C2s1 

)0' Eq. 2-27 
12 21 

Linear system of equations in the Laplace domain 

C1(0) and C2(0) represent the initial concentrations of the indicator in compartment 1 and 2 

respectively. Laplace transforms of standard input functions are given as: 
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Fin (t) = min8(t) -a Fin (s) = min 
Bolus Input 

Eq. 2-28 

Fin (t) =T (u(t) 
- u(t - T)) -a Fin (s) = 

Ts (1-e-sT) Eq. 2-29 

Constant Rate Infusion Input 

By substituting Fin(s) with an appropriate expression and subsequently solving the system of 

linear equations (Eq. 2-27), expressions for C1 (s) and C2(s) can be obtained. After 

performing inverse Laplace transform on those two functions, time-domain functions Ci(t) 

and C2(t) governing the temporal change of indicator concentrations in central and 

peripheral compartment are derived. 

However, even in a relatively simple compartment model configuration (such as this one) 

exceedingly complex solutions for the temporal variation of C(t) and C2(t) are obtained after 

the application of inverse Laplace transform. Let's consider the solutions of the linear 

equations in the Laplace domain (Eq. 2-27) for the simplest form of the input function, i. e. 

idealised bolus with an illustration presented in Figure 2-5 and Laplace transform given in 

Eq. 2-28. Initial concentrations are assumed to be C1(0) = C2(0) = 0. The solutions are 

presented in Eq. 2-30 below. 

Min (s+k21) 
C, (s) =2' 

s +s(k12 +k2, +kj +k., k2, 
Eq. 2-30 

k12 
Vn 

2 C2(s) = 
s2 +s(ku +k2, +kj +k0, k2, 

Compartmental concentrations in the Laplace domain 
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Temporal variation of C2 is obtained by performing an inverse Laplace transform of the 

expression C2(s), yielding an expression presented in below. 

niýý 

C2(t) -"ý vx 

(e 
2-e2 

where : Eq. 2-31 

x =k, 22 +2k, 2(k2, +ke, )+(k2, -ke, )2 

and 
y=kZ, +ke, +k, 2 

Temporal variation of indicator concentration in the peripheral 
compartment 

The solutions of the system of differential equations can, however, be simplified if it can be 

assumed that transfer velocities are the same in both directions at the interface between the 

central and peripheral compartment (k12V, = k21V2) and that the volume of the peripheral 

compartment (V2) is considerably smaller than the volume of the central compartment (VI). 

Thus: 

for k12V, = k2, V2 and Vi » V2 

k12 = k21 
V? 

«k2l 
Vi Eq. 2-32 

yielding. 

k21 +ke, +k12 -- k2, +k,, 

When these simplifications are introduced into the system presented in Eq. 2-30, the 

following system of equations is obtained: 
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(s +k 21) 
m. " 

CI(S)= 2 
V, 

= 
V, 

s +s(k21 +k,, )+ke, k21 (s+ke, ) 
Eq. 2-33 

k2l Min k2 ý? t" 
V, 

_ 
V, 

CZ(s) = 
s2 +s(kZ, +ke 

,, 
)+k., k2t (s+k21)(s+kj 

Compartmental concentrations in Laplace domain (simplified) 

And finally, the application of inverse Laplace transform to Ci(s) and C2(s) presented in Eq. 

2-33 yields the formulation of the model-predicted temporal variation of tracer 

concentration in the peripheral compartment, in response to a bolus input (Eq. 2-34). The 

expression presented in Eq. 2-34 is evidently considerably simpler than the one presented in 

Eq. 2-31, and provided that the approximations outlined in Eq. 2-32 are justified, it can 

allow a more straightforward interpretation of the experimental data. This expression yields 

physiologically interpretable (non-negative) values of concentration C2(t) for k21 > k,,. 

Mi. ýý 
C2 (t) = 

k2, 
V1 (e-k. 

It - e-k"`) Eq. 2-34 
k2, -ke, 

Temporal variation of indicator concentration in the peripheral 
compartment (simplified) 

In a generalised model comprising n compartments, functions C0(t) will be multivariable 

functions of input parameters and linear fractional rate constants and will take the form of 

complex multi-exponential functions. Extraction of these parameters can be performed by 

means of non-linear least squares fitting algorithms, using pairs of model-predicted and 

measured values of C . (t) at discrete time intervals tk. 

To summarise, a general form of the mass balance equations system for an n-compartment 

model is represented by the following matrix equation: 
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dm, 
dt 

dm - Ol k2l k3l " k(n_1), k., mI Fan (t) 

dt k12 -02 k13 k(n-1)2 k. 2 m2 0 
dm 

3 k13 k23 -03 
k(n-I)3 kn3 m3 0 

dt - - 
+ 

dm. 
-, 

k, (n_, ) k2(n-, ) " -O�-, k(n-, ) mn_, 0 
dt k, 

o 
ken k(n-, )n -O � mit 0 

n 

dt 

Generalised mass balance equations for a compartmental model 
consisting of n compartments 

Eq. 2-35 

Diagonal terms Oi represent the total sum of outflux transfer rate constants from the 

compartment i including the one which governs the transfer of the indicator out of the 

system (Eq. 2-36). In an open two-compartment model described above, 01 =k 12 + k, 
j 

and 02 = k21. 

n 

0; = Ek; 
j +kout 

j=l 
Eq. 2-36 

Fractional transfer rate constants k1 (i, j=1.. n, i* j) represent the transfer of the indicator 

from compartment i to compartment j. In an open two-compartment model, only two 

fractional transfer rate constants (k12 and k21) feature in the mathematical model 

description. 

The generalised mathematical model described above (Eq. 2-35) allows handling of the 

models of theoretically unlimited complexity. However, it must be emphasised that the value 

of the compartmental model is primarily determined by the relevant physiological 

information it provides and not necessarily by its complexity [72]. It is therefore necessary to 

find the minimal set of compartments and their interconnections which resembles 

physiological processes under investigation to a satisfactory degree. 

44 



The success of the non-linear fitting algorithms used for the extraction of pharmacokinetic 

parameters in practical implementation of the modelling will depend critically on the 

configuration of the chosen model [82]. The form of the derived relationship between the 

concentrations of the indicator in model compartments can be simplified by a judicious 

introduction of approximations, based on relative ratios between individual parameters, as 

illustrated through the comparison between expressions Eq. 2-31 and Eq. 2-34. 

2.5.2. Description of Gd-DTPA pharmacokinetics 

After intravenous injection Gd-DTPA is rapidly distributed throughout the plasma volume 

and diffused (extravasated) into the extracellular space. Its plasma concentration reaches its 

maximum soon after administration and then decays following a bi-exponential curve. The 

early distribution phase has a mean half-life of 0.20 ± 0.13 hours and is followed by the 

elimination phase with the mean half-life of 1.56 ± 0.13 hours [64]. There is evidence that no 

metabolic trapping of Gd-DTPA occurs within the body and that it is completely eliminated 

in an unchanged form by renal excretion [64,75]. Being a highly hydrophilic molecule, Gd- 

DTPA is unable to cross-cellular membranes. It has been shown that the variation of Gd- 

DTPA plasma concentration following a peripheral venous injection can be approximated by 

the monoexponential function over the period of time that is shorter than the mean half-life 

of the early distribution phase (12 minutes) [83]. This means that under those conditions the 

whole plasma volume can be represented by a single well-mixed compartment (central 

compartment). If the extra-vascular extra-cellular space of the lesion is represented as a 

second (peripheral) compartment in the formulation of an open two-compartment presented 

in Figure 2-6 and if the input (Gd-DTPA injection) is represented by an idealised delta 

function, i. e. bolus injection m,,, 6(t), the following simplified compartmental description of 

Gd-DTPA kinetics is obtained (Figure 2-7). 
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Plasma compartment Cp(t) 

kp, . I. 1 kep 

EES compartment of the 
lesion Ce(t) 

ke 

Figure 2-7 Diagram of the two-compartment model of Gd-DTPA 
kinetics 

In this model, fractional transfer rates k, 
P and k1 describe the process of Gd-DTPA 

exchange across the capillary wall and are thus related to capillary permeability. Fractional 

elimination constant k, 1 represents the rate of Gd-DTPA elimination from plasma 

(glomerular filtration through the kidneys). The approximations used in Eq. 2-32 can be 

applied since the volume of the lesion EES is considerably smaller than plasma volume and 

it is reasonable to assume that there is no active accumulation of fluid in either of the 

compartments (i. e. the transfer velocities are the same in both directions). The resulting 

concentration of Gd-DTPA in the EES compartment Ce(t) can thus be represented by the 

expression presented in Eq. 2-37. 

k`P Min 
V 

C. (t) =P 
(e-k"' 

_ e-kt Eq. 2-37 
k, 

p -ka 

Temporal variation of Gd-DTPA concentration in the EES compartment 
of the lesion 

The concentration of Gd-DTPA in the tissue sample where the fraction of the volume 

occupied by EES is V and where fractional volume of plasma can be assumed to be 

negligible is represented by Eq. 2-38. 
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k n? ýý 

C, (t) = V. C. (t) = ve 
VP (e-k"` 

- e-k"`) Eq. 2-38 
keP-k01 

Temporal variation of Gd-DTPA concentration in the tissue sample 

As the relationship between normalised SI and underlying bulk tissue concentration of Gd- 

DTPA can be assumed to be linear (Eq. 2-20), the expression presented in (Eq. 2-38) can 

be used to link the observed temporal change in normalised DEMRI variation and 

pharmacokinetic variables v,, k, 
1 and kep : 

km ep 

c z1+a"C, (t)=1+a"vCe(t)=1+a. Vek 
kp 

`e-k. 1t_e_k, t) Eq. 2-39 S0 
ep el 

Temporal variation of normalised DEMRI signal intensity as a function 
of Gd-DTPA concentration in the tissue sample 

where parameter a is a function of TR, relaxivity a and pre-contrast Tlo, as detailed in 

Section 2.4.2 and Eq. 2-20. 

This expression for model-predicted temporal variation of normalised DEMRI can be used 

for the extraction of variables which describe Gd-DTPA kinetics and reflect the physiology 

of the microcirculation for a simple, generic two-compartment model and an idealised bolus 

injection of Gd-DTPA. Variable V. reflects the fractional volume of the EES, whereas 

variable k, 
P 

is related to the capillary permeability. Fractional elimination constant k. 
i is 

related to the systemic (rather than capillary) circulation and kidney function. Variables v., 

k, and k., can be extracted from the measured DEMRI obtained at discrete time points 

tk if other parameters that feature in the expression Eq. 2-39 (m,,,, Tlo, TR, a, Vp) can be 

either measured or approximated by constant, known values. Several variations of the 

methodology presented in this chapter have been proposed in the literature and they are 

reviewed in the following chapter. 
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Chapter 3. Literature review 

The first reports of pharmacokinetic analysis of Gd-DTPA enhanced dynamic MRI 

(DEMRI) were published in 1990 and 1991 by three independent European research groups 

(Copenhagen [71], London [69] and Heidelberg [68]). They have postulated the basis of this 

approach and applied this technique to the assessment of blood-brain barrier (BBB) 

breakdown in multiple sclerosis [69,71] and brain tumours [68,71]. In all these methods Gd- 

DTPA was used as an MRI contrast agent but the results are applicable to all extracellular 

contrast agents of similar molecular weight. Gd-DTPA kinetics is represented by the 

compartment models with linear exchange processes between the blood plasma and 

extracellular extravascular space (EES) of the lesion. 

The potential of this technique for the assessment of microcirculatory properties of the 

tissues in a variety of other pathological states was quickly recognised. All subsequent models 

reported in the literature present the variations of these principal models [68,69,71] without 

radically changing the underlying methodology. Pharmacokinetic analysis of Gd-DTPA was 

applied to the assessment of breast cancer [83-85], cervical cancer [86], colorectal cancer [87] 

and heart disease [88-90]. 
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All three methods rely on a common set of assumptions regarding the properties of principal 

compartments and their interactions. Both whole-body plasma compartment and EES 

compartment of the lesion are assumed to be well mixed and characterised by a uniform 

(spatially-invariant) concentration of contrast agent at any time point following a peripheral 

administration. The concentration in plasma is represented as a mono-, bi- or tri-exponential 

function. Although these functional forms arise from different compartmental 

representations of Gd-DTPA kinetics in plasma (one, two and three compartments 

respectively), the compartment representing EES of the lesion is assumed to interact with a 

single plasma compartment (blood-plasma compartment). 

The transfer of contrast agent between compartments is assumed to be linear and time- 

invariant. A negligible interaction between EES compartment and the rest of the EES space 

is also assumed. Furthermore, relaxivity of contrast agent is assumed to be constant and well- 

represented by the in-vitro value and fast exchange model of 1H protons is assumed 

throughout, allowing a representation of effective longitudinal relaxation of the lesion by a 

single longitudinal relaxation constant Ti. The validity of assumptions regarding the in-vivo 

relaxivity [91] and the exact mechanism of water exchange [92] is still a subject of 

investigation. 

Although three principal approaches rely on a common set of assumptions, they differ in the 

way the final formulation of the model-predicted tissue response curve is represented as a 

function of physiological parameters and in the way these parameters are labelled and 

interpreted. The main differences in the practical implementation of these models are related 

to the treatment of the temporal variation of the Gd-DTPA concentration in plasma, the 

choice of input function (mode of injection) and the measurement of native (pre-contrast) 

longitudinal relaxation time Tl. A summary of the underlying methodology underpinning 

three principal approaches will be given in this chapter, generalised transport equations will 

be presented and the equivalence of mathematical representation of derived measured of 
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Gd-DTPA transport in tissues will be demonstrated. A list of parameter labels used in these 

models will be presented together with their relationship to the common set of labels 

proposed in a recent review [2]. 

3.1. Generalised model of Gd-DTPA kinetics 

General description of Gd-DTPA behaviour in tissues can be derived from the modified 

transport equations described by Kety [93], originally developed to measure kinetics of inert 

gasses in tissues. General formulation relates to the most complicated physiological situation 

of capillary transport limited by both local flow and permeability. A detailed derivation is 

given in [2] and the list of quantities, symbols and units is presented in Table 3-1. 

Symbol Name Units 

Ct tissue concentration of Gd-DTPA mm 

Cp plasma concentration of Gd-DTPA mm 

p tissue density g ml-' 

E extraction ratio 

F flow of blood per unit mass of tissue ml (min g)-1 

EF extraction ratio flow product per unit mass of tissue ml (min g)-' 

EFp extraction ratio flow product per unit volume of tissue min-' 

P permeability cm min-' 
S surface area per unit mass of tissue cm2 g' 
PS permeability surface area product per unit mass of tissue ml (min g)-' 

PSp permeability surface area product per unit volume of tissue min-' 

V. (fix) fractional volume of the EES (volume of the EES per unit 
volume of the tissue) 

Hct hematocrit (a fraction of total blood volume occupied by 
formed blood elements) 

Table 3-1 Symbols for quantities used in the formulation of generalised 
transport equation Eq. 3-1 
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The differential equation relating the temporal change of the concentration of Gd-DTPA in 

the tissue Ct(t) to the concentration of Gd-DTPA in plasma Cp(t) is given below (Eq. 3-1). 

This transport is a function of extraction ratio flow product per unit volume of the tissue 

(EFp), hematocrit (Hct) and the fractional volume of the EES (V 
e 
). 

C- (t) 
= EFp " (1- Het) " (Cp - `) Eq. 3-1 

Extraction ratio (E) is a function of flow (F), permeability surface area product (PS) and 

hematocrit (equation Eq. 3-2). 

PS 
F(1-Hct) Eq. 3-2 

E=1-e 

The generalised transport equation (Eq. 3-1) can be further simplified by separating the 

linear coefficient governing the transfer of Gd-DTPA from plasma into the EES of the 

lesion (Ka80S) and the constant describing the transfer of Gd-DTPA from EES back to 

plasma (k 
P) yielding a compact expression (Eq. 3-3). Symbols Ktrans ", k 

ep were proposed 

in the review by Tofts [2] in an attempt to simplify the annotation used in the reported work 

and enable direct comparison of the results obtained in studies carried out by different 

research groups. 

LC' 
-(t) = Ktrans .C-kC dt p `P Eq. 3-3 

The following descriptions of transfer rate constants K""9 and kep can be derived from 

equations Eq. 3-1 and Eq. 3-3: 

Ktre"$ = EFp . (1- Hct) Eq. 3-4 

and 
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EFp"(1-Hct) 
= 

K1e"' ký = Eq. 3-5 
ve vc 

In this most general case of Gd-DTPA transport, transfer constants K and kP reflect 

local arterial blood flow, capillary permeability (through extraction ratio which is a function 

of permeability surface area product PS and flow) and V.. In this generalised model of Gd- 

DTPA kinetics, Ct(t) is assumed to be influenced exclusively by the EES fraction of Gd- 

DTPA and the influence of intra-vascular Gd-DTPA is ignored by assuming negligibly small 

fractional volume of intra-vascular plasma within the lesion. Furthermore, equal permeability 

across the vascular wall in both directions (plasma to EES and EES to plasma) is assumed. 

In situations where either flow or permeability is the dominant physiological factor, i. e. when 

F»PS (low permeability) or F«PS (high permeability) expressions relating K"' and 

k,, to the physiological variables F, PS and v. can be further simplified by transforming the 

expression for extraction ratio E (Eq. 3-2) according to the value of PS/F ratio. 

F»PS (low permeability or IMPS limited" transport) 

E=I-el Po- 
PS 
HýýýL PS 

Eq. 3-6 
F(1- Hct) 

F«PS (high permeability or "flow limited" transport) 

PS 

E =1- e 
F(IHct) 1 Eq. 3-7 

Resulting expressions for transfer constants K` and kP are given in Table 3-2. 
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K trans kep 

Mixed flow and PS limited EFp(1-Hct) 
EFp(1-Hct) 

ve 
-- -- ---------- ------- -------- ------ 
PS limited PSp 

PSp 

ve 
- -- -- ------ --- ---- -- -- -- - - --- - -- --- --- - -- -- 

Flow limited Fp(1- Hct) 
FP(1 - Hct) 

ve 

Table 3-2 K" and kep under different flow and permeability 

conditions 

Factor 1-Hct is associated with F (blood flow) whenever it appears in the expressions for 

Ktr'"' and kP to exclude the influence of formed blood elements and F(1-Hct) thus 

represents the flow of blood plasma, rather than total blood flow. 

3.2. Model 1 (after Larsson [71]) 

In this model, direct arterial samples of Gd-DTPA were obtained from brachial artery and 

concentration of Gd-DTPA in plasma Cp(t) was measured by neutron activation. Plasma 

concentration was then modelled as a tri-exponential function (equation Eq. 3-8). 

Parameters a; and m; are obtained in each individual examination by fitting the Cp(t) 

obtained from blood samples to the equation Eq. 3-8. 

3 
Cp(t)=D" ai "e-ml*t Eq. 3-8 

i=1 

This model allowed extraction of K/ v. = kP from measured dynamic signal intensities 

S(t), baseline S(O) and the initial rate of signal enhancement S(O) without the measurement 

of initial TI (Tlo). A linear relationship between S(t) and Gd-DTPA concentration was 

assumed. 
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S(0) 3 
S(t) = S(0) +3D"Za; 

Lai 
1-1 

4 trans 

v 

e_m, 
t 

e- 
K trans 

m; - ve 

Eq. 3-9 

Larsson et al also suggested a more complex version of this method, where initial Tlo was 

measured and temporal variation of longitudinal relaxation rate R(t) rather than signal 

intensity S(t) was used for the measurement of K"a' / V, (kp ). 

JK transl 

ve 
Jt 

-m, t 

R(t) = R(0) + 
R(O) D"Za; ee 

Eq. 3-10 
Zaim+ - 
i=t Ve 

Parameter K""' was interpreted as EFp(1-Hct) (extraction ratio flow product) i. e. mixed PS 

and flow conditions were assumed. If PS«F this quantity is identical to that used by Tofts 

because under these conditions PSp = EFp(1-Hct). In mixed PS and flow-limited conditions 

Ktra"' represents "apparent capillary permeability". 

The approach presented in Eq. 3-10 is the most rigorous of the three methods described in 

this section in that it includes individual measurement of Tlo and Cp(t), both of which have 

a direct influence on the accuracy of extracted physiological variables. However, this 

approach is difficult to implement rigorously, especially in routine clinical practice. 

Measurement of Cp(t) in situations where representative blood vessel cannot be included in 

the field of view without considerable loss of spatial resolution requires interleaved 

acquisition to obtain Cp(t) measurements. This in turn affects the maximal achievable 

temporal resolution for the sampling of Ct(t). Furthermore, accurate sampling of Cp(t) 

following a bolus injection requires sampling interval of not more than 5 seconds [94]. At 

this temporal resolution, SNR will have to be compromised in all clinical applications where 

more than single slice coverage of the lesion under investigation is required. One solution for 
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this problem was suggested by Andersen et al [80] who proposed sequential collection of 

blood samples with 99mTc-DTPA as a tracer. This approach has an obvious advantage in that 

it does not compromise optimal acquisition settings for sampling of Ct(t). However, it is 

difficult to implement in clinical practice since it increases the complexity and invasiveness of 

the MRI examination. 

According to the theory of Gd-DTPA induced contrast enhancement, temporal variation of 

SI will be related to the pre-contrast TI relaxation time of the tissue (Eq. 2-20). Ideally, fast 

measurement of Tl would enable the most accurate measurement of the variation of the 

local bulk tissue concentration of Gd-DTPA. The changes in TI relaxation rate (1/Tl = Rl) 

would then be related to the local Gd-DTPA concentration according to the following 

expression: 

ac(t) TI c TI O co 
Rl(t) = RIO (t) + aC(t) Eq. 3-11 

C(t) =1 OR1(t) 
a 

The problems related to the influence of T2* effects in GE based sequences and the 

dependence of measurements on selected acquisition sequence parameters would be 

circumvented if this method was used for monitoring of Ct(t). However, reliable dynamic 

measurement of the TI would require the reduction of the temporal resolution if the same 

amount of tissue is scanned with high spatial resolution and SNR. A compromise solution 

can be reached if pre-contrast T1 value (T16) is used in expressions Eq. 2-20 and C(t) is then 

derived from the observed changes of normalised SI. 

Measurement of Tlo also increases the complexity of the measurement. Accurate Tlo 

measurement, and especially Tlo mapping on pixel-by-pixel basis, requires the application of 

multiple pulse sequences, duration of which can often exceed the duration of the DEMRI 
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acquisition. Furthermore, quantitative mapping of Tlo is not possible on all MRI systems 

designed for clinical use. 

3.3. Model 2 (after Tofts [69]) 

In this model, temporal variation of Gd-DTPA concentration in tissue was expressed as in 

equation Eq. 3-12 given below. 

-K 
trans 

"t 
2e v° 

-em; 
"t 

C (t) =D" Ktrana ,Z aT 
Ktraas Eq. 3-12 

m; - 
V. 

Plasma concentration of Gd-DTPA was represented by a bi-exponential fit to the data 

reported by Weinmann [64] (equation Eq. 3-13). This dataset was obtained by measuring 

discrete venous blood samples from healthy volunteers. 

2 

Cp (t) =D"Z aT " e-M,. t Eq. 3-13 
i=l 

In equations Eq. 3-12 and Eq. 3-13 D represents the dose of Gd-DTPA (mmol/kg body 

weight) and constants obtained by fitting of the Weinmann's data have the following values: 

aý = 3.99 kg 1-1, a2 = 4.78 kg 1-1, m, = 0.114 mint and m2 = 0.0111 min-1. Other 

quantities are explained in Table 3-1 and equations Eq. 3-4 and Eq. 3-5. 

Assuming that the in-vitro determined value of T1 relaxivity a remains unchanged in tissue 

and that native (pre-contrast) Tlo is known, this model allows the extraction of Wren' and 

V directly from the measured signal intensity curves. Transfer rate constant kp can then be 

calculated indirectly according to Eq. 3-5. 
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The relationship between local plasma flow and permeability was assumed to be F»PS i. e. 

the model is assumed to operate in the conditions of low PS (PS limited, see Table 3-2) and 

parameter K°sna was interpreted as permeability surface area product per unit volume of the 

tissue (PSa) or "permeability" for short. In a subsequent report [84], where this model was 

applied to the assessment of Gd-DTPA enhancement in breast tumours, it was noted that 

mixed flow and PS conditions may better reflect the microcirculation in these fast enhancing 

lesions and Kae" was referred to as "apparent permeability" thus acknowledging possible 

influence of local flow to the measured values of K""". 

This model has been one of the most frequently used in this field. It has the advantage over 

the Larsson's approach in that it does not require accurate sampling of arterial input function 

but proposes a theoretical representation of Cp(t). The theoretical model of Cp(t) is, 

however, based on a set of measurements on human subjects [64] and this certainly improves 

the validity of this approach. The data used for the formulation of Cp(t) was, however, 

acquired with low temporal resolution and Toft's representation of Cp(t) does not accurately 

represent Cp(t) in lesions which be in the vicinity of major blood vessels. More recent data 

detailing the form of arterial input function [80] could be used to increase the accuracy of 

Cp(t) in those situations. Tlo can be measured or assumed (as is the case with the other two 

models). The main criticism of this model is that it oversimplifies the Cp(t) and consequently 

Ct(t) by assuming that the injected bolus behaves as an idealised impulse (delta) function. 

Furthermore, bi-exponential representation of Cp(t) as suggested by Tofts may not be 

required for short DEMRI acquisitions. 

3.4. Model 3 (after Brix [68]) 

In this model, normalised SI was represented as a linear function of bulk-tissue 

concentration. Gd-DTPA was administered as a long constant rate infusion (of duration T) 
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and represented mathematically as a block function (Figure 2-5). In the original notation 

compartment concentrations were labelled as Cl (plasma compartment) and C2 (EES 

compartment of the lesion) and fractional transfer rate kepwas labelled as k21. The 

variation of Cp(t) was assumed to be well-represented by a mono-exponential function and 

the expression for the bulk-tissue concentration of Gd-DTPA (based on mass balance 

equations) was derived as: 

SC 
=1+ fexC2 (t) =1+ A(u(e-k°1` - 

1)e_k li - v(e-k"t - 
1)e-k"` 

/ so 

where: 

ttE [0, T] 
T- 

{T 

te [T, oo) Eq. 3-14 

and: 

kZ' 1 
ký#21 -ket) 

v= k21-key 

Model-predicted temporal variation of normalised SI 

In this approach, DEMRI curves are characterised by three parameters: A, k21 and k, 
1. 

Whereas k21 is related to capillary permeability, parameter A is not given any physiological 

interpretation and in contrast to the other two models, where either individually measured or 

assumed normal value of Gd-DTPA clearance from the blood plasma is used, k. 
i is allowed 

to vary freely. 

To enable a direct comparison of this model with the ones of Larsson and Tofts, the 

expression for tissue concentration of Gd-DTPA in response to a bolus injection was 

derived from this model [70]. Brix's notation was substituted by the notation used in the 

formulation of the generalised model of Gd-DTPA kinetics, i. e. C1 = Cp, C2 = Ce, k21 = 
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kep 
I 

Vi = Vp. The expression for tissue concentration in response to a bolus injection is 

then derived as: 

e_kel` -e-kept 
Ccýt) fex Ceýt) fex 

Vn 
k`p 

k 
,pp ep el 

e-k0 
t 

-e 
-k ep t 

K trans 

S kc -ke, 

Eq. 3-15 

This expression is identical to the one derived in the general description of open two- 

compartment model of Gd-DTPA kinetics presented in Eq. 2-38 and it enables a direct 

comparison between the kinetic variables used in Brix's approach and those used by Larsson 

and Tofts. When Eq. 3-15 is compared with Eq. 3-12, it becomes apparent that Brix's kep 

(or k21 in his notation) corresponds to the ratio of Kam"' as defined by Tofts and V. (or 

f,,, in Brix's original notation). 

The main advantage of this method is that it provides flexibility with respect to the 

mathematical representation of the input function. Rather than modelling a bolus injection as 

an idealised delta function of infinitely short duration, a more realistic input function 

configuration is possible. The treatment of the input function actually depends on the form 

of physical administration (the nature of the Gd-DTPA intravenous injection) as well as the 

formal mathematical representation of the chosen input function. Brix and co-workers used 

a long constant-rate injection (with T>60 seconds). They claim that a long infusion provides 

a more controlled input function when compared to short bolus injection. One report [94], 

based on simulations of arterial input functions based on experimental data presented by 

[80], suggests that long infusion may even have negative effect on the accuracy of parameters 

extracted by pharmacokinetic modelling. Furthermore, it has been demonstrated that short 

injection has advantageous properties in that it ensures faster and more pronounced 

enhancement of signal intensity for a constant dose of Gd-DTPA [95]. 
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The principal weakness of this model is that it over-generalises Cp(t). The model only 

provides a general shape of the Cp(t) function and even allows fraction elimination rate k. 
1 

to vary freely. Negative values of key were also reported although they are clearly 

physiologically meaningless and reduce the validity of the model. No attempt has been made 

to extract a physiologically meaningful variable (such as ff�) from the value of parameter A, 

which is a complex function of sequence parameters, relaxivity, native Tlo and f,.. 

Parameter A can therefore be used only within the narrow setting of individual studies 

defined strictly by the acquisition sequence. Parameter kip is a ratio between K""ns and V 

(or ff,, in Brix's notation). It represents a fractional elimination rate of Gd-DTPA between 

extracellular space and plasma. This parameter is independent on the acquisition settings and 

injection representation. It is directly related to Ko-8O9 which is a measure of permeability, 

but without the measurement of f,,, 
, this parameter cannot be directly related to the 

measurements obtained by using other models. 

3.5. Correlation of QDEMRI variables with 
histopathology 

Although three principal approaches for pharmacokinetic analysis of Gd-DTPA enhanced 

DEMRI have initially been applied to the assessment of brain lesions (brain tumours [68,71] 

and multiple sclerosis [69,711), they have subsequently been used in the evaluation of a 

variety of tumours, with the research into Gd-DTPA pharmacokinetics in breast tumours 

being particularly prominent. 

A comprehensive comparison between the results obtained using all three methods has not 

been reported in the literature although the mathematical equivalence of the three principal 

approaches was described [2,70] as discussed in the previous sections. Berkowitz et al 

performed a validation of the Tofts' approach in a study where the measurement of 
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permeability in chemically induced blood-retinal barrier lesions in an animal model was 

obtained [96]. The measurements of permeability surface area product per unit volume of 

the tissue (PSp) were in agreement with the measurements obtained using classical 

physiological methods. A comparison of Larsson's and Tofts' measurement of PSp of the 

defective blood-brain barrier in multiple sclerosis indicated a good agreement between the 

results obtained using these two models [97]. However, the range of permeability in multiple 

sclerosis (up to 0.072 min-1) is significantly lower than in a majority of cancerous lesions, and 

the equivalence of these two approaches in the assessment of pathologies with higher 

permeability has not been fully investigated. Mussurakis et al [98] performed a comparison of 

Tofts' and Brix's methods in a study of primary breast lesions. In this study, both methods 

yielded equivalent discriminatory power for the differentiation between benign and 

malignant breast lesions. 

Pharmacokinetic analysis was applied in several other clinical studies of DEMRI in breast 

lesions where the primary aim of the quantitative analysis was the differentiation between 

benign and malignant tumours. Significantly higher permeability-related quantifiers of 

DEMRI were reported in invasive breast carcinomas than in benign lesions, although a 

variable degree of overlap between these groups of lesions was also noted in all published 

studies, regardless of the choice of the method used for PK analysis [98-104]. 

Quantitative analysis of DEMRI in breast cancer lesions based on black-box quantifiers of 

signal enhancement is still widely performed. Black-box analysis techniques involve the 

computation of the amplitude of enhancement at pre-specified time points, so-called 

enhancement ratios (ER) normalised to fatty tissue [105] or baseline pre-contrast SI [106], as 

well as the time [107] and the pattern [108] of contrast arrival. Furthermore, a macroscopic, 

qualitative evaluation of the shape of the enhancement curve is used for the classification of 

the lesions [109]. Other BB variables, such as maximal enhancement (ME), steepest-slope or 
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initial rate of enhancement (IRE), wash-out slope (WOS), and descriptive parameters derived 

from heuristic models such as that proposed by Orel [110], are also reported in the literature. 

A comparison between BB and PK quantifiers of DEMRI has been only sporadically 

reported the literature and the results of these comparisons are equivocal. Müller-Schimpfle 

et al [111], for example, found that the application of PK modelling did not result in the 

improvement in the discrimination between benign and malignant breast lesions when 

compared to BB assessment. Hulka [101] and Mussurakis [98], on the other hand, reported 

that their PK variables allowed a more specific classification of breast cancer lesions than BB 

measurements (such as ER, ME and wash-out slope WOS). Whilst Müller-Schimpfle used 

Brix's model for the extraction of PK parameters, Hulka applied Larsson's method and 

Mussurakis used both Brix and Tofts methods (and found them to be equivalent). Temporal 

resolution of DEMRI in Müller-Schimpfle study was low (1 minute) whereas Hulka and 

Mussurakis used DEMRI sets acquired with a markedly higher temporal resolution of 12 and 

6 seconds, respectively. Therefore, the different conclusions reached in these studies 

regarding the comparative utility of PK and BB methods are at least partly attributable to the 

differences in the DEMRI acquisition protocols. 

It is virtually impossible to draw direct conclusions about the validity of individual 

approaches for both PK and BB analysis from the data currently presented in the literature 

due to the enormous diversity of the acquisition, sampling (i. e. ROI selection) and analysis 

methods. For example, acquisition protocols for DEMRI in breast tumours range from so- 

called semi-dynamic (with temporal resolution of more than 1 minute) with large tissue 

coverage to dynamic (with higher temporal resolution) and usually targeted selective 

unilateral tissue coverage. It is evident, however, that DEMRI patterns do differ significantly 

between benign and malignant lesions and in particular that permeability-related PK variables 

(regardless of the method used for PK analysis) do demonstrate a higher degree of 

permeability in malignant lesions. 
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The recognition that neovascularisation plays an important part in determining tumour 

aggressiveness [112] prompted investigations into the relationship between DEMRI findings 

and surrogate markers of angiogenesis such as microvessel density (MVD) and VEGF in 

breast cancer, as well as other types of cancer (see Chapter 1). Several studies have reported a 

significant relationship between these surrogate markers of angiogenesis and DEMRI in 

breast lesions using PK and BB analysis methods, whilst others identified no measurable link 

between them. The results of the representative studies are summarised in Table 3-3. 

Study Pathology 

Knopp [99] Breast lesions 

Hulka [101] [100] Breast lesions 

Ikeda [104] Breast lesions 

Hawighorst [113] Cervical cancer 

Summary of the findings 

" correlation between MVD and k21 in 
VEGF positive lesions 

" correlation between VEGF and k21 

" no correlation between EF and MVD 

" correlation between Ktre"S and MVD 

" correlation between A, ME and MVD 

" k2, and IRE prognostic factors 

Hawighorst [86] Cervical cancer 

Mayr [115] Cervical cancer 

George [114] Colorectal cancer 

Stomper [116] Breast lesions 

Buadu [117] Breast lesions 

Buckley [118] Breast lesions 

" correlation between A, k21 and MVD 

" k21 predicts lymphatic involvement 

" correlation between A and k21 and MVD 

" negative correlation between k21 and VEGF 

" correlation between Ka'"' and serum 
VEGF 

" correlation between MVD and ME 
" no correlation between MVD and IRE 

" correlation between MVD and IRE 

" correlation between MVD and IRE 

Table 3-3 Reported correlations between surrogate angiogenesis 
markers and DEMRI 

The most detailed study of the relationship between pharmacokinetic variables (A and k21) 

and both MVD and VEGF in breast tumours was reported by Knopp [99]. In this study 

Brix's model has been used for pharmacokinetic analysis. Significantly higher values of k21 

were measured in the malignant lesions when compared to the benign ones. In malignant 

63 



tumours, k2j was significantly higher in VEGF positive lesions than in the VEGF negative 

ones. Interestingly, k21 was strongly correlated with MVD only in VEGF negative lesions. 

In VEGF positive lesions (where higher k21 values were detected) there was no correlation 

between k2, and MVD. 

Hulka [100,101] reported no significant correlation between MVD and extraction-flow 

product (EF) in benign and malignant breast cancer (Larsson's approach). However, they 

found that cancers had higher EF than benign lesions and that ME was inferior in 

discriminating between benign and malignant lesions than EF. In another study of breast 

lesions Ikeda [104] demonstrated significant relationship between Kae" and MVD. A 

modified Tofts' method was used in this study. Mayr et al used Brix's method for the 

evaluation of cervical cancer and found that MVD correlated significantly with measured 

values of A and k21. They also reported that k21 was inversely proportional to VEGF 

expression but they were unable to explain this seemingly contradictory finding. 

Hawighorst [113] reported a significant correlation between the parameter A and MVD as 

well as ME and MVD in a study of primary uterine cervical cancer. In this study, VEGF and 

MVD were not correlated with survival whereas parameters k2l and IRE were shown to be 

significant prognostic factors (Brix's model). None of the measured DEMRI parameters 

correlated with VEGF. Black-box parameters were shown to give equivalent information. In 

their earlier study [861, they reported significant correlations between A and MVD as well as 

k21 and MVD in a mixed cohort of primary and recurrent cervical tumours. Parameter k21 

(although correlated with MVD) was superior to MVD in detecting lymphatic involvement. 

In a study reported by George [114] serum VEGF measurements were significantly 

correlated with K""' (Tofts' model) in colorectal cancers. Pre-treatment Ka°" values were 

predictive of treatment response. The lesions with higher pre-treatment Ka'"' had a better 

response to chemoradiotherapy. 
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Representative of the findings obtained in studies where black-box parameters were used in 

the assessment of breast tumours are the reports by Stomper [116], Buadu [117] and Buckley 

[118]. Stomper reported no correlation between ME in benign and malignant breast lesions 

whereas Buadu and Buckley reported significant correlation between IRE and MVD [117, 

118]. Buckley reported that none of the PK variables demonstrated a significant correlation 

with MVD but pointed out that a natural logarithm of permeability-related PK variable 

correlated significantly with MVD. 

A large degree of heterogeneity was observed in all these clinical studies and although some 

of them show measurable links between DEMRI findings and histopathological measures of 

microcirculation, the nature of these links is still not clear. Most authors agree, however, that 

DEMRI findings are indeed dependent upon the angiogenic status of the lesions. However, 

other contributing factors determine the overall DEMRI signal behaviour and the 

relationship between derived quantifiers of DEMRI and surrogate markers of angiogenesis. 

One of the recognised sources of variability arises from different methods used for MVD 

measurements. Furthermore, discrete MVD measurements are compared with PK and BB 

DEMRI variables derived from discrete ROIs with often uncertain spatial agreement 

between two tissue samples. 

In conclusion, there is ample evidence that DEMRI findings obtained through a wide variety 

of methods vary significantly between benign and malignant lesions. As far as the 

pharmacokinetic modelling of Gd-DTPA is concerned, there is no convincing evidence that 

the principal approaches discussed in this chapter differ significantly in terms of their 

capacity to differentiate between benign and malignant lesions or to reflect isolated surrogate 

measures of angiogenesis. 

These pharmacokinetic methods were shown to allow a comparable measurement of 

physiological variables such as the volume of the EES and apparent capillary permeability. 
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However, the methods used for quantitative analysis of DEMRI do differ in terms of their 

complexity and suitability for applications within a clinical setting as will be discussed in the 

following chapter. 
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Chapter 4. Development of the method for 
QDEMRI analysis 

In this chapter, a development of the method used for QDEMRI analysis in the clinical 

applications (the breast cancer and RA) is described. The method includes the 

pharmacokinetic analysis of DEMRI (Section 4.1) as well as the computation of black-box 

variables (Section 4.3). 

The theory of DEMRI dependence on the underlying physiological properties of the 

microcirculatory bed and the data currently reported in the literature suggest that temporal 

resolution as well as the sensitivity of the measured signal to changes in Gd-DTPA 

concentration define the capacity of DEMRI to measure physiological variables. 

Furthermore, tissue coverage and achieved spatial resolution are often important factors in 

defining the utility of DEMRI examinations performed within a clinical setting. Due to the 

nature of the MRI signal measurement and spatial encoding (Section 2.3), the temporal and 

spatial characteristics as well as the SNR and contrast properties of the DEMRI arc not 

independent. Therefore, the requirements for a large tissue coverage and high spatial 

resolution impose constraints on the achievable temporal resolution, SNR and contrast 

properties of the DEMRI datasets. The design of the methods for the quantitative analysis of 
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DEMRI is therefore influenced by the nature of the experimental setting and the desired 

clinical objectives. 

The analysis of the principal models for pharmacokinetic analysis of Gd-DTPA 

enhancement presented in Chapter 3 suggests that these methods are mathematically very 

similar and that the extracted pharmacokinetic variables obtained using these three methods 

are inter-related [70]. Furthermore, currently available evidence obtained in clinical 

applications of these methods does not provide conclusive evidence that any one of these 

methods is superior to the others. From the theoretical point of view, Larsson's approach is 

the most comprehensive one since it enables the correction for two most important 

covariates which influence the accuracy of DEMRI measurements of physiological variables, 

namely Tlo mapping as well as individual sampling of Cp(t) (through the measurement of 

Gd-DTPA concentration in sequentially obtained blood-samples or parallel DEMRI 

sampling of vessels which supply the lesion of interest). However, rigorous implementation 

of this approach is difficult (if not impossible) on a majority of clinical MRI systems and it 

may compromise the maximum achievable spatial and temporal resolution, tissue coverage 

and T1 sensitivity of the signal extracted from the lesion of interest. Due to the complex 

inter-relationship between SNR, spatial and temporal resolution (Section 2.3), the acquisition 

of good quality signal for the sampling of Cp(t) can lead to the reduced quality of the 

DEMRI signal collected from the lesion of interest. 

The selection of the acquisition settings for DEMRI in three clinical studies which are the 

subject of this thesis was constrained by a set of strict pre-set clinical requirements. A 

complete bi-lateral coverage of both breasts was required in the study of breast cancer since 

one of the principal clinical objectives was the detection of possible multifocality. In the RA 

studies, a representative multi-slice coverage of inflamed joints was required to allow the 

assessment of highly amorphous and heterogeneous synovial tissue. In all these studies, 

DEMRI was required to yield images of diagnostic quality, suitable for qualitative assessment 
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by radiologists. Furthermore, the duration of the DEMRI acquisition was required to be 

short (5 minutes or less) in order to minimise problems related to gross patient motion and 

patient discomfort. The duration of the DEMRI acquisition in the RA was also limited 

because of the need to minimise the impact of Gd-DTPA leakage into the synovial fluid and 

thus enable the measurement of synovial volume immediately after the completion of the 

DEMRI acquisition. Limiting the duration of the DEMRI was also deemed important with 

regard to reducing the total duration of the MRI examination. 

The development of an effective method for pharmacokinetic modelling of Gd-DTPA 

enhancement for in the clinical applications which are the subject of this thesis focused on 

an adaptation of two models (Brix's and Tofts) which incorporate a theoretical 

representation of Cp(t) and thus do not impose additional constraints on the DEMRI 

acquisition within the tissue of interest. The comparison of the two approaches for 

theoretical representation of Cp(t), input function and contrast elimination is presented in 

Section 4.1 followed by the formulation of the mathematical representation of the 

pharmacokinetic model used in this thesis. 

The model was then examined using a series of Monte Carlo simulations in order to 

investigate the influence of DEMRI sampling characteristics on the capacity of the proposed 

model to measure physiological variables (Section 4.2). The algorithm for the extraction of 

black-box variables is presented in Section 4.3. This algorithm was designed to allow 

automated, user-independent measurement of BB variables. The same algorithm was utilised 

in the design of the method for automated detection of the onset of enhancement and the 

calculation of the initial solutions for the non-linear least squares fitting of the simulated 

DEMRI datasets to the proposed theoretical model function. 
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4.1. Model definition 

Treatment of plasma concentration Cp(t) 

The treatment of Cp(t) was based on the theoretical representation of Cp(t) as proposed by 

Tofts et al and Brix et al (Section 3.3 and Section 3.4). In particular, a theoretical description 

of Cp(t) was sought which adequately represents Gd-DTPA plasma kinetics during a short 

DEMRI acquisition. 

To enable a direct comparison between these two representations of Cp(t), Brix's model 

formulation in response to a bolus injection is considered here rather than a constant rate 

infusion, since Tofts' method also assumes a bolus input. According to Brix's model, Cp(t) is 

represented as a mono-exponential function (Eq. 4-1). 

C, ýt)= 
Min 

e_k°It 
VP Eq. 4-1 

Total plasma volume is represented by Vp [I] and initial plasma concentration Cp(O) [mmol/l 

= mMJ according to this model is given as: 

C mi., 
_ 

DxBW 
P(O)= Vp SxBW Eq. 4-2 

where D [mmol/kg] represents the injected dose per kilogram body weight (BW [kg]) and 8 

[1/kg] represents the fraction of BW occupied by body plasma. 

The standard administration dose of Gd-DTPA is 0.1 mmol/kg. For a subject with a body 

weight of 70 kg, a total of 14 ml of contrast is injected (with a standard concentration of 0.5 

NI). Uniform levels of Gd-DTPA concentration in plasma (in different subjects) are achieved 

if the assumption of a constant ratio between body weight and total plasma volume holds. 
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The calculation of plasma volume from body weight is adequate for persons of average body 

weight. If the subject is at either end of the spectrum for weight (excessively obese or 

excessively cachectic), then plasma volume should be calculated from body surface area 

[119]. The ratio of plasma volume and body weight (S) ranges between 0.041/kg to 0.05 1/kg 

with an average of 0.045 1/kg [119], i. e. an average S=0.045 1/kg. The plasma volume can 

be calculated as 55% of total blood volume which in turn represents 8% of the total body 

weight yielding an average of 0.0441 of plasma per kg body weight [120], a figure which is in 

agreement to that reported in [119]. 

If the injected Gd-DTPA mixes uniformly and instantaneously within the entire plasma 

volume, the initial concentration of Gd-DTPA in plasma will be 2.22 mM, corresponding to 

a dilution of the injected Gd-DTPA in a volume of Vp =5x BW = 3.15 litres for a subject 

with a body weight of BW = 70 kg and S=0.045 1/kg (Eq. 4-3). 

m'^ 
_ 

O. 1 x BW 
C 2.22mM 

° 
(0) _ Vi 0.045 x BW = Eq. 4-3 

However, Tofts' representation of Cp(t) yields the following value of Cp(O): 

Cp (0) = DE a'=0.877mM Eq. 4-4 

This concentration reflects a larger effective Gd-DTPA distribution volume of 

approximately 0.114 [l/kg] x BW [kg], or 7.98 litres for a subject with a body weight of BW 

= 70 kg. 

This enlargement of Gd-DTPA distribution volume is a result of the rapid extravasation of 

Gd-DTPA on its passage through the blood vessels following peripheral administration. The 

administered dose is therefore diluted throughout the plasma volume and the portion of the 

total body interstitial fluid. This process of peripheral extravasation is accounted for in the 

Tofts' model, where Cp(t) is represented as a bi-exponential function. 
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Brix's formulation of Gd-DTPA concentration in the lesion EES compartment also features 

the value of Vp (Eq. 3-15) but it is in effect combined with other parameters (including the 

fractional volume of the extracellular fluid f,,, ) to form their parameter A (Eq. 3-14) or Alt 

in Hoffman's version of the same model [83], where t represents the duration of the 

infusion. Consequently, they were unable to offer any physiological interpretation for their 

parameter A (Eq. 3-14). According to the analysis of Cp(O) presented above, their central 

compartment should comprise not only blood plasma but also a fraction of the peripheral 

EES space which rapidly equilibrates with blood plasma, thus forming a larger initial 

distribution volume of Gd-DTPA. 

A direct comparison between the bi-exponential plasma model suggested by Tofts (Eq. 

3-13) and the simplified mono-exponential representation of plasma clearance (Eq. 4-5) was 

performed. In the simplified mono-exponential representation, a single fractional elimination 

constant (ke1 = 0.058 min-') reported by Weinmann et al [64] was used together with the 

initial plasma concentration Cp(0) of 0.877 mM as described above (Eq. 4-4). 

Cp (t) = 0.877e-'e" Eq. 4-5 

The result suggests that a mono-exponential fit may adequately replace a more complex, bi- 

exponential representation for scanning duration of less than 5 minutes. The difference in 

Cp(t) computed using these two models at 5 minutes post-injection is 3% (0.02 mM) with an 

overall mean difference of 1% ± 1%. (See Figure 4-1). However, at 10 minutes post-injection 

this difference is considerably larger (11%) and bi-exponential representation of Cp(t) may 

be required. 
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Figure 4-1 Mono-exponential approximation of Cp(t) 

The fractional elimination rate key was allowed to vary freely in the Brix's method. As 

discussed in Section 3.4, this parameter can assume physiologically uninterpretable values, 

especially if the observation of Ct(t) through DEMRI is truncated shortly after the 

equilibrium between Gd-DTPA concentration in plasma and EES of the lesion is reached. 

Buckley et al also used mono-exponential representation of Cp(t) over the sampling period 

of 5 minutes in a variation of the Brix's method [121], following the same argument that over 

this time period a mono-exponential representation of Cp(O) is sufficient. He, however, 

allowed key to vary freely, but later noted that due to the symmetry of the function Ct(t) 

with respect to kei and k, 
1 , the estimation of ke1 can cause unpredictable errors in the 

estimation of the permeability-related parameter k21 [122]. 

In this work, it was therefore decided to fix parameter ke1 to the mean value measured in 

healthy volunteers (as did Tofts). However, as explained above, a mono-exponential function 

was shown to be adequate approximation of a more complex bi-exponential representation 

of Cp(t), for DEMRI studies with the duration of less than 5 minutes. 
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Treatment of the input function 

Another important difference between Brix's and Tofts' methods stems from the differences 

in the chosen method of Gd-DTPA administration and the mathematical representation of 

the input function. The relationship between these two models was discussed in Section 3.4 

where Brix's zero-order constant infusion input function was reduced to an idealised bolus in 

order to enable a direct comparison with the Tofts' representation. 

However, the influence of the representation of the input function can be examined by 

performing the opposite transformation, i. e. assuming a constant rate infusion input function 

(with the duration of the infusion T, as used by Brix), which in the limit as T approaches 

zero is reduced to a delta function which corresponds to an idealised bolus (as used by 

Tofts). Furthermore, an approximation of the input function as a constant rate infusion 

allows a more realistic representation of the plasma and tissue response to a peripheral 

administration in the initial period following injection and especially at sites distal from the 

major supply arteries. A bolus injection is usually administered over a period of 

approximately 10 seconds. The data reported by Andersen et al and Fritz-Hansen et al [80, 

88] demonstrate that the resulting Cp(t) curve has an approximate width of 20 seconds (time 

to peak). Therefore, a short constant rate infusion may be a more realistic representation of 

the bolus injection than an idealised delta function. 

According to the arguments outlined above, the final formulation of the Cp(t) is therefore 

assumed to follow the expression given in Eq. 4-6, with a fixed k, 
1 = 0.058 min-' and a 

constant rate infusion input of duration T seconds. The expression is derived by substituting 

the representation of constant rate infusion in the Laplace domain (Eq. 2-29) in the system 

of linear equations presented in Eq. 2-27 and applying approximations described in Eq. 

2-32. 
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C, (t) = 
Min 

(ekelt 
- 

I)e_kelt = 

0.877 
(ekelt 

- 
I)e_kelt 

l VpTke, Tke, 

where: 

It te [0, T] 
T= 

T tE[T, oo) 

Eq. 4-6 

As discussed above, this expression actually describes the variation of Gd-DTPA in blood 

plasma and a portion of the EES which rapidly equilibrates with blood plasma. This function 

is illustrated in Figure 4-2 for a constant rate infusion of T= 20 seconds duration. 

1 
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0 

Figure 4-2 Cp(t) model 

The concentration of the Gd-DTPA in the EES space of the lesion (Ce(t) = C2(t)) in 

response to a constant rate infusion with duration T and Cp(t) of the form presented in Eq. 

4-6 is derived and presented in Eq. 4-7 below, with fixed kei = 0.058 min-'. Again, this 

function is derived from a system of equations Eq. 2-29 in response to a constant rate 

infusion. 
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Cc (t) _ C2 (t) 
-V 

Min 

1 

(u(e-kS 
- 1)e-k"s - v(e-k"t - 1)e"k"T) _ 

P 

0.877 (u(e_kNý 
-1)e_k,, t - V(e-k'N` -1)e-k21t Tl 

where: 

It tE [O, T] Eq. 4-7 

'C= 
TtE [T, ao) 

and: 
k21 1 

u-k., (k21 -key) 
V_ k21-ka 

Model-predicted temporal variation of Gd-DTPA concentration in the 
peripheral compartment 

The resulting model-predicted temporal variation of normalised DEMRI SI (f(t)), is then 

derived by combining the expressions presented in Eq. 2-20 and Eq. 4-7. The symbols u, v 

and ,r are defined in Eq. 4-7. 

f(t) = s= 
C, (t) =1+fcxC2(t) _ 

0 
0.877 

=1 +af,,, T 
(u(e-kdz 

-1)e-kit - v(e-k"` -1)e-k"`) _ 

=1 + A(u(e-k"` -1)e"'`l` - v(e-k"T -1)e_k21) Eq. 4-8 

where: 

A=affX 
0.877 

T 

Model-predicted temporal variation of normalised SI 

This function is mathematically identical to the one proposed by Brix (Eq. 3-14). However, 

by using a modified Tofts' representation of Cp(t), the variable A is linked explicitly with the 

underlying fractional volume of the EES of the lesion (f,,, or V. ). Furthermore, the 
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fractional elimination rate k, 
1 is excluded from the set of model parameters and replaced by 

a constant value. 

Only two variables (k21 and ff,, ) are allowed to vary freely. Each SI curve derived from the 

DEMRI set from either a discrete ROI or a single voxel is therefore characterized by a pair 

of pharmacokinetic parameters (fe,, 
,k 21). These parameters are extracted from the 

measured values of normalized SI (s(t k )) at discrete time intervals tk by means of non- 

linear least squares fitting (Levenberg-Marquardt, [123]). Non-linear least squares methods 

are applied to find the values of the parameters fex and kip for which the sum of the 

squared variations of the model-predicted values f( t k) from the measured normalised signal 

intensity curves s(tk) is minimised. The problem can be described in terms of minimisation 

of the non-linear, multivariable objective function Chi Square (x2) given as: 

2 
-ni(f(tk, 

fex, kZ)-S(tk))2 
Eq. 4-9 

kL=0 6k 

In Eq. 4-9 ßk represents the values of standard deviations of the measurements s(tk) and 

n represents the total number of points in each SI curve. 

To assess the behaviour of this model under different SNR and sampling conditions 

(sampling interval and sampling duration) and determine the influence of the length of 

infusion (T) on the accuracy and precision of the extracted physiological parameters, a series 

of Monte Carlo simulations was performed. 

4.2. Monte Carlo simulations 

Monte Carlo methods refer to a family of computational methods for simulation of natural 

processes which contain a naturally random component with the application of computer- 
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generated, pseudo-random numbers [124]. The development of Monte Carlo methods is 

closely related to the development of modern computers. It is used extensively in 

computational physics to solve previously intractable problems in field theory and 

thermodynamics. 

In this work, a pseudo-random number generator was used to simulate MRI signal subjected 

to different levels of Gaussian noise. Signal intensity curves, derived from a range of 

simulated values of variables fx and k21 and under different assumed experimental 

conditions (sampling duration, sampling frequency, duration of the infusion) were subjected 

to varied levels of Gaussian noise, generated using a random number generator [123]. This 

random number generator is based on the one proposed by Park and Miller with Bays- 

Durham correction [125]. For every predefined pair of variables fix and k21, under 

constant experimental conditions and constant noise level, 1000 curves were generated and 

analysed. The ability of non-linear fitting algorithms to extract true values of k21 and ff,, 

under different experimental conditions and noise levels was quantified in terms of the 

relationship between the pre-set values and the population of fitted values. 

This method for the estimation of uncertainties of the measured values of k21 and f, 
X was 

also used as a tool for the assessment of sampling and contrast administration requirements. 

4.2.1. Core simulation 

The model-predicted function describing the normalised SI variation as a function of fix and 

k21 (f(t), Eq. 4-8) was computed in the core simulation with the following set of assumed 

parameters: repetition time TR = 13 ms, flip-angle cp = 60°, T1 relaxivity ct = 4.5 (mMs)-1, 

pre-contrast Tlo = 900 ms, infusion duration T= 20 seconds, sampling interval Delta T= 

10 seconds, sampling duration 300 seconds. The range of fix was 0.1 - 0.9 and the range of 

k21 was 0.01 - 0.09 s-t. This range of simulated values encompasses the entire range of fex 
, 
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k21 and K"" values reported in the literature (with resulting K""a ranging from 0.06 

min-' to 4.86 min-'). The pre-contrast Tlo = 900 ms was chosen since it corresponds to the 

upper end of the range of Tl values in skeletal muscle at 1.5 T [50] and also approximates 

the mean Ti value of breast cancer [126,127]. Furthermore, when the in-vivo measurements 

of Tl in synovitis, which were performed by Hull et all [128] using a 0.04 T MRI system, are 

converted to corresponding values at 1.5 T, an estimate of synovial Ti of 958 ms is obtained. 

The conversion of these T1 values to values T1 at 1.5 T was performed by applying the 

empirically derived constant for magnetic field dependence of TI in breast carcinomas, 

reported in a review by Bottornley et al [127]. 

In the core simulation, it was assumed that the time of the onset of enhancement in tissue is 

known (To,,., ) and that it coincides with the onset of enhancement in plasma. Furthermore, 

initial solutions required for the non-linear least squares fitting were equal to the known, pre- 

set values of ff,, and k21. Monte Carlo simulations were performed using software written 

in the C programming language (Appendix E) with random number generators, straight line 

and non-linear least squares fitting routines adopted from a book by Press et al [123]. 

The examined range of k21 was represented by a set of nine discrete values, ranging from 

0.01 s-I to 0.09 s-I, in steps of 0.01 s-1. Similarly, nine discrete ff,, values were selected to 

represent ff,, values ranging from 0.1 to 0.9, in steps of 0.1. The two-dimensional matrix 

was thus formed, consisting of 81 elements. This matrix can be regarded as a test phantom 

comprising equal proportions of samples characterised by 81 distinct fix and k21 

combinations. 

For each pair of pre-set values of fex and k 
21 (fe,, ,k 21) a series of 1000 curves with 

Gaussian noise was generated and subjected to non-linear least squares fitting to the 

proposed model function. The results obtained by fitting individual curves were stored in an 

array. For a matrix of consisting of 81 (f 
x, 

k 
2l) elements, a total of 81000 SI curves were 
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simulated, and 81000 pairs of fitted values of fe,, and k21 were obtained. Illustrations of 

core simulation curves generated under 1% and 10% Gaussian noise levels (with 

corresponding SNR of 100 and 10, respectively) and pre-set values of fex = 0.5 and k21 = 

0.05 s-1 are given in Figure 4-3 and Figure 4-4. Simulated noiseless curves s(t) are depicted 

with red lines with superimposed noisy curves (s_n(t)). 
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Figure 4-3 Simulated s(tk) and f(t) with 1% Gaussian noise 
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Figure 4-4 Simulated s(tk) and f(t) with 10% Gaussian noise 
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The curve presented in Figure 4-3, for example, belongs to a set of 1000 curves generated 

and analysed within this particular matrix element (fe,, =0.5, k21=0.05 s-'), in this Monte 

Carlo simulation run (which comprised the simulation of 81000 curves in total). 

On completion of the Monte Carlo simulation run, the relationship between the population 

of results obtained by fitting the simulated curves to the model-predicted function and pre- 

set values of f,. and k21 was examined. 

All the results collected for a given fx and k21 pair were summarised in terms of the 

achieved accuracy (the difference between the mean of the fitted values and the pre-set 

values) and precision (the level of dispersion of the fitted values). 

The accuracy of the fitting procedure for each of the resulting 81 matrix elements was 

computed as a difference between the mean fitted value and the nominal value expressed as 

a percentage of the nominal value. The accuracy of fX estimation is denoted as A_ ff,, (f,,, 
, 

k21) and the accuracy of k2, estimation is labelled A_k21(fex , 
k21). Both values are two- 

dimensional functions of the nominal, pre-set values of fix and k21, and are presented as 

percentages. 

A-fex (fex, k21) =100(ffx ft- )/ ex [%] 

A_k21 (f.,,, k21) ,: -1 00(k21 fit- k2, )/k21 [%] 

In these calculations, f,,, 
-fit and k2l_fit represent the mean fitted value of fex and 

k21 (respectively), obtained in a series of n= 1000 Monte Carlo runs. For example, the 

fitting of a series of 1000 curves obtained in a matrix element (fe,, =0.5, k21=0.05 s-') at 1% 

noise level (one of which is illustrated in Figure 4-3) yielded an average f.,, _fit of 0.49997 

with a standard deviation of 0.00176 and an average k 
21 _fit of 0.05005 s-' with a standard 

deviation of 0.00101 s-1. The accuracy of the fitting in this matrix element (ff,, =0.5, 
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k210.05 s-i) is thus calculated as A_ ff,, (ff,, ,k 21) = -0.006% and &k2, (f,,, ,k 21) = 

2.013%. 

Precision of the fitting procedure (the degree of dispersion of the fitted parameters) was 

expressed as the coefficient of variation (CV). Precision of fX estimation is denoted as 

P_fýX (f,,, , 
k21) and precision of k21 estimation is labelled P_k21(fex 1 

k21). 

P-fox (fex' k21) = IOOSD(fex fit)/ fez ft [%] 

P_k2, (fa, k21) =100SD(k2, _fit)/k21 -fit 
[%] 

Using the same example as before (i. e. 1000 simulations in a matrix element (f =0.5, 

k21=0.05 s-I) at 1% noise level), the precision of fex estimates in this matrix element is 

calculated as P_fe,, (fe,,, k21) = 0.352% and P_k21(fex, k21) = 2.012%. A diagram of the 

simulation procedure is presented in Figure 4-5. 

The overall precision and accuracy (A_ f,,, , A_ k 
21 , 

P_ fix 
, P_ k 

21) achieved in one 

complete simulation run over the entire range of fC and k 
21 (involving the analysis of a full 

set of 81000 curves) is expressed as the average of all matrix cell values (Eq. 4-10). 

A-f x=2: 
1: A-fex (feX ýk zi ) 

fa k� 
P-fix - 1: 1: P-f x 

(f 
x"k 21 

f� k2 

ý+ ý+ Eq. 4-10 
A-k21 - Lý 

2: A-k21 Vex 
ýk 21) P-k 21 = 1: 

Lý P_k21(f 
ck 21) 

fa k� fa k� 
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Setting of general simulation parameters D, mi., T, 
TR, Tla, <p, 
up, ke 

, 
Computation of Cp(t) sampling 

duration, 
sampling 

Setting of input fcx and k21 values (fe , 
k, i) 

interval, noise 
amplitude 

Computation of Ct(t) 

Computation of the noiseless signal s(t) 

1000 times 

Computation of the noisy signal s_n(t) 
(random Gaussian noise generator) 

Nonlinear fitting of s_n(t) fex fit, 
k21 fit, 
SD(fex_fit), 

Computation of means and standard SD(K21_fit) 
deviations of fitted parameters 

Computation of accuracy and A_fex(fex, k21), Ak21(fe,,, k21) 

precision matrix elements P_fex(ff,, k2, ), P_k21(ff,, k21) 

Computation 

Figure 4-5 Monte Carlo simulation flow-chart 

4.2.2. Constrained minimisation 

All parameters were subjected to the constraint of non-negativity. In addition to this 

constraint, k21 was required to be at least two times larger than the fractional elimination 

rate constant kei in order to avoid problems associated with the symmetry of the expression 

for Ct(t) with respect to k, 
1 and kel [1221. A modification of the fitting algorithm was also 

implemented to restrict the fitted values of k21 to below a threshold of 0.125 
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(experimentally determined) due to the tendency of the algorithm to find local minima at 

extremely high k21 values in a proportion of curves simulated under high noise levels. 

Nois Unconstrained Constrained 
Acc 

Acc 

Prec 

Prec 

f fex 

1 k21 

fex 

k21 

0.01 (0.03) 

0.05(0.11) 

0.51 (0.33) 

2.66(1.42) 

0.01 (0.03) 

0.51(0.33) 

0.05 (0.11) 

2.66(1.42) 

Nois Unconstrained Constrained 

Ace f fex 0.58(l. 00) 0.58 (1.00) 

Ace f I¢1 8.08 (14.53) 5.24 (3.56) 

Prec fex 5.27 (3.58) 3.01 (3.91) 
Prec k21 34.90 (30.35) 24.73 (10.40) 

Table 4-1 Results of the constrained minimisation in the core 
simulation at 1% and 10% noise levels 

The results of the simulations performed at two different noise levels (1% and 109/0) are 

listed in Table 4-1, where table elements represent the overall achieved accuracy and 

precision (mean and one standard deviation), expressed as a percentage of the nominal (pre- 

set) values, as defined in the previous section. As can be seen from Table 4-1, parameter f,,, 

can be estimated with high accuracy (less than 1% of the nominal value) at both noise levels 

and irrespective of the application of the k21 constraint as described above. Parameter k21, 

however, displays significantly larger level of bias (8% reduced to 5% when the constraint is 

employed) and considerable level of dispersion (35% and 25% for unconstrained and 

constrained algorithms, respectively). The influence of the k21 constraint becomes apparent 

only at high noise levels, with the measurements performed at 1% noise remaining 

unchanged. 

To illustrate the performance of the constrained algorithm for different elements of 

(f , 
k21) matrix, two-dimensional maps of P_f,,, and P_k21 are presented in Figure 4-6. 
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Figure 4-6 Precision of fex and k, 
1 estimates under 1% noise level 

In this two-dimensional surface-plot representation, the matrix elements with coordinates 

(fex 
, 

k, ) are located at the intersections of vertical and horizontal gridlines. The measured 

values of precision of the estimates achieved in individual matrix elements are expressed as 

percentages and colour coded using an identical colour-coding scheme (displayed in the 

legend). The precision of feX estimation is within 1% (coded in light blue) for all matrix 

elements apart from the ones in the bottom left-hand corner (where both fcx and k, 
1 are at 

the extreme lower end of the examined range). The precision of k,, estimates, however, 

varies considerably and deteriorates with decreasing c and increasing k21. In the upper 

half of the examined range of f% the precision of k, 
1 estimates is between 1'% and 3% of 

the nominal value at this noise level (the areas coded dark red and yellow). 

4.2.3. Influence of SNR on model performance 

The results presented in Table 4-1 illustrate the importance of noise levels on the 

performance of the algorithm. To examine more closely the nature of this influence, a core 

simulation was performed (with the application of the k2i constraint) under ten noise levels, 

ranging from 1'% to 10%. The results arc presented in Figure 4-7. 
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Figure 4-7 Accuracy and precision of fex and k, estimates under 

varying noise levels 

The values on horizontal axes represent noise factors, i. e. noise factor of 0.01 (1'% noise) 

corresponds to a SNR setting of 100. Error bars represent 1 SD limits. At all noise levels, 

parameter f,,, displays very stable behaviour. However, the ability of the minimisation 

algorithm to reliably extract k, 
1 

from noisy datascts deteriorates rapidly with decreasing 

SNR. 

4.2.4. Influence of temporal resolution on model performance 

The influence of the temporal resolution (Delta T) on the performance of the fitting routine 

was assessed by modifying the core simulation and collecting f(t) samples (s(tk)) with Delta T 

=I second, 5 seconds and 20 seconds (with a fixed overall sampling duration of 300 

seconds). The results were compared with the core simulation (Delta T= 10 seconds) and 

the summary of the measurements is presented in Table 4-2. 
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1% Noise Delta To Is Delta T=Ss Delta T=10s Delta T=20s 

Accuracy of tex 0.00 (0.01) 0.00 (0.02) 0.01 (0.03) 0.01 (0.04) 

Precision of tex 0.16 (0.10) 0.36 (0.22) 0.51 (0.33) 0.73 (0.47) 

Accuracy of k21 0.00 (0.02) 0.02 (0.07) 0.05 (0.11) 0.09(0.16) 

Precision of k21 0.84 (0.44) 1.88 (1.00) 2.66 (1.42) 3.70 (1.94) 

10% Noise Delta T=Is Delta T. Se DeltaT=10s Delta T. 20s 
Accuracy of fez 0.06 (0.13) 0.34 (0.82) 0.58 (1.00) 1.11 (1.43) 

Precision of fox 1.59 (1.02) 3.67 (2.69) 5.24 (3.56) 7.58 (4.85) 

Accuracy of k21 0.52 (0.72) 1.78 (2.29) 3.01(3.91) 4.67 (7.45) 

Precision of k21 8.40 (4.32) 18.22 (8.29) 24.73 (10.40) 32.62 (13.45) 

Table 4-2 Results of the simulations performed with different sampling 
intervals (Delta T) 

As can be seen from Table 4-2, the accuracy and precision of fitted parameters deteriorates 

with increasing Delta T at any given noise level. This relationship, however, is not linear. 

Doubling sampling frequency by reducing Delta T from 10 seconds to 5 seconds, results in 

the improvement in P_ k21 from 25% to 18% at the 10% noise level. The parameter f., 

again displays only a moderate degree of dependence on Delta T and can be fitted reliably 

even at the 10% noise level and low temporal resolution (Delta T= 20 seconds). 

4.2.5. Trade-off between SNR and sampling interval 

The results of simulations performed at noise levels of 1.41 and 0.7% in addition to the 

original 1% and 14.1% and 7% in addition to original 10%, revealed that doubling of 

sampling frequency has approximately the same effect as the loss of SNR by a factor of 

(i. e. increase in the noise level by the same factor). The results obtained at Delta T =10 at 

10% noise level are equivalent to those obtained at Delta T=5 at 7% noise level. In other 

words, sampling at higher frequencies (higher temporal resolution) accompanied by the 

concomitant reduction of SNR to Nr2 SNR does not improve the accuracy of the fitted 

parameters. 
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Delta Ta 5s Delta Ta 10s Delta Ta 20s 
1.41%noise 1%noise 0.7%nolse 

Accuracy of fex 0.01 (0.02) 0.01 (0.03) 0.01 (0.02) 

Precision of fex 0.50 (0.32) 0.51 (0.33) 0.51 (0.33) 

Accuracy of k21 0.04 (0.11) 0.05 (0.11) 0.05 (0.10) 

Precision of 121 2.67(l. 42) 2.66 (1.42) 2.62 (1.36) 

Delta T" 5s Delta T -10s Delta Ta 20s 
14.1%noise 1O%noise 7%noise 

Accuracy of fex 0.64 (1.26) 0.58 (1.00) 0.60 (0.91) 

Precision of fex 5.24 (3.70) 5.24 (3.56) 5.31 (3.54) 

Accuracy of Q1 2.96 (3.90) 3.01 (3.91) 2.84 (3.96) 

Precision of k21 24.84 (10.86) 24.73 (10.40) 24.55 (10.71) 

Table 4-3 Trade-off between sampling duration and noise level 

Similarly, sampling at a lower temporal resolution (long Delta T) does not adversely affect 

the performance of the model if the SNR is increased by at least factor of yL. 

4.2.6. Influence of infusion duration 

The simulations were performed using variable duration of infusion, ranging from T=I 

second (which approximates an idealised bolus input) to T= 120 seconds. The results are 

summarised in Table 4-4. 
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Noise 1% T -Is T= 5s T= 10s T= 20s 

Accuracy of fax 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 0.01 (0.03) 

Precision of fax 0.49 (0.31) 0.49 (0.31) 0.50 (0.32) 0.51 (0.33) 

Accuracy of k21 0.04 (0.10) 0.04 (0.10) 0.04 (0.10) 0.05 (0.11) 

Precision of k21 2.55(l. 33) 2.53(l. 31) 2.58(l. 35) 2.66(l. 42) 

Noise 1% T= 30s Tm 60s Ta 120s 

Accuracy of fax 0.01 (0.03) 0.01 (0.03) 0.01 (0.04) 

Precision of fax 0.52 (0.34) 0.55 (0.38) 0.67 (0.52) 

Acaracy of k21 0.06 (0.12) 0.09 (0.17) 0.15 (0.27) 

Precision of 121 2.77(l. 50) 3.14(l. 76) 4.06 (2.41) 

Noise 10% To Is To Ss T=10s Ts20s 

Accuracy of fex 0.54 (0.93) 0.55 (0.96) 0.56 (0.96) 0.58(l. 00) 

Precision of fez 5.07 (3.41) 5.12 (3.46) 5.14 (3.47) 5.24 (3.56) 

Accuracy of k21 2.83 (3.96) 2.74 (3.91) 2.88 (3.98) 3.01 (3.91) 

Precision of k21 24.05 (10.47) 23.87 (10.43) 24.21 (10.47) 24.73 (10.4) 

Noise 10% T- 30s T= 60s T= 120s 

Accuracy of fez 0.62(l. 04) 0.71 (1.09) 0.92 (1.05) 

Precision of fex 5.35 (3.68) 5.70 (3.88) 6.66 (4.31) 

Accuracy of k21 3.19 (4.02) 3.83 (4.87) 5.63 (7.51) 

Precision of k21 25.48 (10.64) 27.87 (11.7) 33.15 (13.03) 

Table 4-4 Influence of infusion duration on model performance 

The results presented in Table 4-4 suggest that shorter infusion duration allows mode 

reliable estimation of k2, and ff,, 
. These results confirm the findings reported by Tofts and 

Henderson [94,95] although they show only a mild overall influence of the infusion duration 

T. The duration of infusion has direct bearing on the overall duration of DEMRI acquisition 

and, according to the results presented here, longer infusion times do not improve the model 

performance. On the other hand, the assumption that the experimental data are derived from 

samples with an effective T of 5 seconds (or lower) is unrealistic in tissues distal from the 

major supply vessels and the site of contrast injection [80,88]. The results presented in Table 
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4-4 indicate that the variation in the algorithm performance over the range of T between 10 

seconds and 30 seconds is negligible. 

To assess the potential errors caused by modelling the input function as a bolus whilst the 

actual input function is a constant-rate infusion with T= 20 seconds, another simulation was 

performed by using data samples calculated by assuming T= 20 seconds but modelled using 

a function with T=1 seconds (idealised bolus). If the start of enhancement coincides with 

the start of bolus, fitted values of k21 are underestimated by 34% at both noise levels. The 

values obtained by "bolus" modelling will coincide with the parameters fitted by assuming T 

of 20 seconds only if the bolus is assumed to occur at the centre of the infusion. 

4.2.7. Influence of sampling duration 

To assess the influence of sampling duration on the performance of the model, a core 

simulation was performed with sampling duration of 150 seconds (one half of the original 

300 seconds) and 600 seconds (double the original 300 seconds). 

Noise 1% Duration Duration Duration 
150s 300s 600s 

Accuracy of fex 0.06 (0.18) 0.01 (0.03) 0.00 (0.01) 

Precision of fex 1.30(l. 54) 0.51 (0.33) 0.31 (0.15) 

Accuracy of IQ1 0.05 (0.17) 0.05 (0.11) 0.06 (0.10) 
Precision of k21 3.81 (2.37) 2.66 (1.42) 2.39 (1.39) 

Noise 10% Duration Duration Duration 
150s 300s 600s 

Accuracy of fex 1.67 (1.59) 0.58 (1.00) 0.14 (0.19) 

Precision of fex 11.06 (7.38) 5.24 (3.56) 3.05 (1.45) 

Accuracy of 101 5.32(7.11) 3.01 (3.91) 2.61 (3.66) 

Precision of k21 32.23 (13.68) 24.73 (10.40) 22.13 (10.04) 

Table 4-5 Influence of sampling duration on model performance 
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The results presented in Table 4-5 suggest that increase in sampling duration yields a 

relatively minor improvement in the performance of the fitting algorithm. However, very 

short sampling duration (150 seconds) results in increased errors in both fix and k21. The 

findings presented in Table 4-5 have an important bearing on the practical implementation 

of DEMRI because they demonstrate that the doubling of the examination duration from 5 

min to 10 min does not confer any benefit regarding the quantitative analysis of DEMRI. 

4.2.8. Influence of time offset between s(t) and Cp(t) 

The results presented so far have been obtained under the assumption that a true onset of 

the enhancement (T0, ) is known and that the time scale used for fitting the sample data 

coincides with the time axis used to generate the concentration curves. However, the true 

start of the enhancement can occur at any point within the sampling interval. To simulate the 

effect of the uncertainty of the time offset between the measured samples of s(t) and the 

Cp(t), a series of simulations was performed with a variable time offset between the Cp(t) 

and Ct(t). The simulated error in To.,, (S) was varied from -10 seconds to +10 seconds in 

steps of I second. 

Tonet' = Tonset +61 S= -10, -9, .. -1,0,1, .. 
9,10 

For example, with a sampling interval of Delta T= 10 seconds, T.,,., ' =Tonset -10, the 

assumed start of enhancement (T0,.. ') occurs 10 seconds ahead of the true onset 

As can be seen from Figure 4-8, high accuracy of f,,, and k21 fitting can only be achieved if 

the To�., is known or detected accurately. 

Furthermore, if the errors in the measurement of Tonsec are symmetrically distributed either 

side of To�. 
i, the errors in fex and k21 will be partially cancelled. If the probability 

distribution of 8 is uniform, overall accuracy of fex and k21 with 1% noise in s n(t) will be 
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0.10±0.67 (%) and 5.65±11.16 (%) respectively. Overall accuracy is computed over the entire 

set of 21 simulations (with different delta values ranging from -10 to +10 seconds). Figure 

4-8 also illustrate the fact that the effect of Tonset uncertainty on the fitted values of fex and 

k, 
1 is markedly different. Underestimation of Tonset (ö<0) results in the underestimation of 

fex and overestimation k, 
1 . 

When 8>0, the sign of errors are reversed. 
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Figure 4-8 Distribution of errors in fex and k 
21 estimation as a function 

of the errors in T0 
1 at 1% noise level 

This set of simulations was repeated at the higher noise level (10%). At this noise level, the 

overall accuracy of fcx and k2i are 0.67±11.27 (%) and 6.06±10.20(%) respectively (again, 

uniform distribution of 6 is assumed). A similar pattern of errors in f,,, and k2, was 

detected (Figure 4-9). The accuracy of fitted values of k21 is predominantly determined by 

the uncertainty of To,, 
yet and changes only marginally in response to the 10-fold increase in 
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noise level. At the higher noise level of 10% fCx has a small positive bias when S=0 (when 

true To,,,, 
1 

is assumed), and the smallest errors occur when 6=3 seconds. 
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Figure 4-9 Distribution of errors in fex and k, estimation as a function 

of the errors in Ton,,, at 10% noise level 

These results demonstrate that the detection of the onset of enhancement has a very strong 

influence on the performance of the fitting algorithm and the achieved levels of accuracy and 

precision. The errors incurred by incorrect measurement of Tonset are substantial even at low 

noise levels. The parameter k, is more susceptible to this source of error than felt 
. 

Furthermore, the true influence of the temporal resolution (Delta T) on the performance of 

the fitting algorithm (and consequently, the ability to accurately measure fex and k21) is a 

direct consequence of the magnitude of the uncertainty of Tonet 
. 

As can be seen from Table 
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4-2, in the absence of Tonset uncertainty (S = 0), sampling time has only a mild influence on 

the performance of the fitting algorithm. 

,X 
and k 

21 in particular rise sharply with 181 (modulus of However, by noting that errors in f. 

8), and that the maximal value of 181 is directly related to the temporal sampling resolution 

(Delta T), the true influence of sampling time on the ability to measure f, and k21 is 

revealed. 

The algorithm used for the detection of To�., in s_n(t) was based on the measurement of 

the black-box variable IRE (initial rate of enhancement). The description of the algorithms 

used for the measurement of black-box variables is therefore presented in the following 

section. It includes the description of the algorithms used for the measurement of IRE and 

maximal enhancement (ME). 

4.3. Algorithms for measurement of black-box variables 

In this section, the algorithms for the measurement of black-box (BB) variables ME and IRE 

are presented. The relationship of these heuristic variables to the underlying pharmacokinetic 

variables ff, 
( and k21 is explored by computing theoretical, model-based equivalents of ME 

and IRE. The method for the detection of the onset of enhancement (T0, ) based on the 

measurements of IRE is also described in this section. 

According to the mathematical representation of the model (Eq. 4-7 and Eq. 4-8), the 

maximal rate of change in Ce(t) and consequently Ct(t) and f(t) will be reached at the end of 

infusion (t = T). The function presented in Eq. 4-8 has a discontinuity at t=T but the 

maximal rate of change can be computed as the slope of the tangent to the f(t) curve at t= 

T. An accurate detection of this tangent will lead to the accurate detection of T.,,,,,. From 

the equation Eq. 4-8, the following expression is obtained for the derivative of f(t) at t=T: 
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IREoc 
dät)I 

-ad dttt)I t- -T t=T 

-af0.877 
k 2, (e-kdT - e-k"T ) T kZ, -kr, 

Eq. 4-11 

Maximal enhancement (fmax) is reached when the first derivative of f(t) equals zero (Eq. 

412). 

df(t) 
=0=>e -k"` -e -k2lt =0 Eq. 4-12 dt 

The resulting expression for the tm. (the time when the maximal enhancement is reached) 

is given below (Eq. 4-13). 

-1 tmax =1 In ek"T 
k2l Eq. 4-13 k; -ke, e -1 

It is now possible to obtain the expression for model-based equivalent of ME as a function 

of pharmacokinetic parameters (Eq. 4-14). 

ME cc fm. =1+aCt (t 
mex) = 

=1+A 
k21 

(eknT - I)C_k2lt'""` -I 
(ekdT - 1)e_kat""" 

k, 1 
(k 

21 -k. 1) 
(k 

2, -k. 1) Eq. 4-14 

where A= a fx 0.877 
T 

This relationship between model-based equivalents of BB variables ME and IRE and PK 

variables k21 and f is illustrated in Figure 4-10 and Figure 4-11. 
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Figure 4-10 Influence of fex and k, 
i on IRE 

The initial rate of enhancement is strongly influenced by both PK variables. The highest 

values of IRE occur when both fe,, and k, 
1 reach the upper end of the range (the area 

shaded in blue, Figure 4-10). 
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Figure 4-11 Influence of fr,, and k,, on ME 
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Maximal enhancement (ME), however, is predominantly determined by the value of fix 
, 

with only a mild influence of k 
21, as illustrated in Figure 4-11. 

To enable an automated measurement of BB variables, moving window algorithms were 

developed and implemented in the C programming language. The application of the moving- 

window calculation of IRE and ME was designed to minimise the influence of random noise 

fluctuations which are particularly prominent in voxel-by-voxel sampling where inherent 

SNR of the SI/time curves is likely to be low. These algorithms were also designed to 

eliminate the need for visual inspection of individual curves and subjective selection of time 

points where ME and IRE are measured. Furthermore, an automated measurement of IRE 

allowed the identification of To�., which is an essential pre-requisite for automated non- 

linear modelling of DEMRI and the calculation of PK variables, as discussed in Section 

4.2.8. The description of the algorithms is based on the data presented in Section 4.2.1 (core 

simulation, Figure 4-3 and Figure 4-4). 

An algorithm for the measurement of ME involved the application of moving window 

averaging of groups of n=5 consecutive points. The chosen number of points encompassed 

a temporal window of 40 seconds, at a pre-set sampling interval of Delta T= 10 seconds. 

The algorithm stored the values of ME obtained in individual windows in an array, and 

following the inspection of an entire SI/time curve (including N-n+I windows), the 

maximal value was identified and stored. 

To enable the automated measurement of IRE, an algorithm employing moving-window 

least squares fitting of the straight line through a series of consecutive points on the 

normalised SI/time curve was developed. The routine for least squares fitting of the straight 

line was adopted from a book by Press et al [123]. This method is illustrated below in Figure 

4-12, where straight lines fitted using five windows comprising five consecutive points are 

superimposed on the normalised SI/time curve. The five illustrated windows start at 40,50, 
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60,70 and 80 seconds. The line subtending the maximal angle to the horizontal axis (the line 

representing the segment where maximal rate of enhancement is detected) is highlighted in 

red. The simulated curve is identical to the one presented in Figure 4-4 (subjected to a 10% 

Gaussian noise level). Only the initial part of the curve is illustrated here (with t ranging from 

0 to 150 seconds). 

The maximal number of windows (groups of consecutive points) is determined by the total 

number of measurements in the DEMRI series (N) and the window size (n). In this example, 

N= 36, n=5 and the maximal number of windows is N-n+1= 31. However, the 

number of windows can be reduced by specifying the start and the end point for the 

temporal range where IRE is expected to occur, thus reducing the total processing time. 
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Figure 4-12 Moving window algorithm for the measurement of IRE 

Figure 4-13 illustrates the resulting values of the slopes of the straight lines fitted through 16 

consecutive windows (with window start ranging from 0 to 150 seconds) under 1% and 10`%o 

noise levels. 
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Figure 4-13 Identification of Tonsec and IRE 

The algorithm for the detection of Tonsee and the measurement of IRE stores these values 

into an array, identifies the maximal slope and the location of the window where this 

maximal value is measured. In this example, the pre-set value of the onset of enhancement 

(60 seconds) is correctly identified under both noise levels. 

The relationship between theoretical values of BB variables and the measurements obtained 

in a series of simulations at the 10% noise level (core simulation settings, as described in 

Section 4.2.1) is illustrated below in figures Figure 4-14 to Figure 4-17. The measurement of 

IRE by straight line fitting results in consistently lower values of IRE than the theoretically 

derived tangent calculated using Eq. 4-11 (Figure 4-14 and Figure 4-15). 
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Figure 4-14 Relationship between IRE and k 
21 for fixed fe, = 0.5 

The error bars represent 1 SD limits of the measurements obtained in Monte Carlo 

simulations. Although the proportionality between the measured IRE and PK variables is 

preserved, the sensitivity of the measured IRE to underlying values of k21 and fex is 

markedly reduced when compared to the relationship between theoretical IRE and PK 

variables. For example, a nine-fold difference in k21 results in only two-fold difference in 

IRE. The sensitivity of IRE to changes in f% is significantly higher, with nine-fold 

difference in fex resulting in seven-fold difference in IRE. 
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Figure 4-15 Relationship between IRE and f,, for fixed k, 
i = 0.05 s-1 
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The measurements of ME, however, remain almost independent of k21 as illustrated in 

Figure 4-16. 
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Figure 4-16 Relationship between ME and k, for fixed fe% = 0.5 

In contrast to its relationship to k 
Zi , 

ME is highly sensitive to changes in fex 
, with the 

preserved degree of proportionality and sensitivity to fex in the measured values of ME. 
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Figure 4-17 Relationship between ME and f, for fixed k, = 0.05 s-I 

Furthermore, as indicated by one standard deviation (SD) error bars in Figure 4-14 to Figure 

4-17, the measurements of IRE are subject to a higher level of dispersion than the 
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corresponding measurements of ME with an average coefficient of variation over the entire 

range of k21 and f,. of 3% for ME and 15.6% for IRE. 

The application of this algorithm allowed an automated detection of To,,., with average 

Tom.., over the entire range of ff� and k21 being 65.4 seconds with SD of 9.4 seconds 

compared to the pre-set value of 60 seconds. However, the application of the same 

algorithm at a 1% noise level, yields an average To�., of 63.4 seconds with a standard 

deviation of only 1.3 seconds, which further illustrates the importance of SNR in the 

quantification of DEMRI. 

The influence of the uncertainty in the measurement of T. 
�,,,, 

is illustrated by comparing the 

results obtained in simulations with a 1% noise level and a known value of To�.., (pre-set in 

the core simulation) and the results obtained by the measurement of To,,., from simulated 

curves using the above-described algorithm (Table 4-6). Whereas the influence of the 

uncertainty in To�., has virtually no effect on estimated values of the effect on the 

estimates of k21 is pronounced even at this low noise level. 

Known Tonset Measured Tonset 

Accuracy of fex 0.01 (0.03) -0.94 (1.62) 

Precision of fex 0.51 (0.33) 0.64 (0.56) 
Accuracy of k21 0.05 (0.11) 11.79 (15.52) 

Precision of k21 2.66(l. 42) 7.11 (6.71) 

Table 4-6 Influence of the uncertainty in To�,, 
t on the measurement of 

PK at 1% noise level 

The influence of the increasing noise level on the ability of this algorithm to estimate PK 

variables f and k21 is illustrated in Table 4-7, below. 
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1%Noise 5% Noise 10%Noise 

Accuracy of fax -0.94 (1.62) -0.99 (1.79) -0.77 (1.70) 

Precision of fex 0.64 (0.56) 2.82 (2.16) 5.39 (3.78) 

Acaracy of k21 11.79 (15.52) 22.7 (21.98) 35.27 (31.89) 

Precision of k21 7.11 (6.71) 29.92 (12.55) 44.12 (14.66) 

Table 4-7 Influence of noise on the measurement of PK variables with 

uncertain To�., 

4.3.1. Allocation of initial solutions for non-linear minimisation 

In all of the simulations presented so far, the non-linear minimisation was performed by 

supplying pre-set values of PK variables f. and k21 as initial (starting) solutions. In the 

practical implementation of this algorithm, these values need to be supplied to the algorithm 

at the start of iterative minimisation. The clinical applications of DEMRI, which are the 

subject of this thesis, require extensive coverage of diffuse, highly inhomogeneous tissue. 

Such DEMRI datasets present a difficult environment for complex, iterative non-linear 

fitting. Given that the typical dataset would yield tens of thousands of SI curves with a 

significant noise component, the optimal allocation of initial solutions is critical to the 

success of the DEMRI analysis. 

Whilst user defined initial solutions could be acceptable in the analysis of a small number of 

ROIs, pixel-to-pixel analysis of the datasets acquired in the clinical applications described in 

this study require a fully automated approach. The allocation of fixed initial values may not 

be suitable for this type of analysis due to a large degree of inhomogeneity and the resulting 

wide range of enhancement patterns within the pathology under investigation as well as the 

surrounding parenchyma. 
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In this project, an automated method for generation of initial solutions for non-linear least 

squares fitting of the measured DEMRI SI/time curves to the model-predicted function was 

developed. The calculation of the initial solutions was based on the measurements of BB 

variables ME and IRE. By examining the relationship between model-based equivalents of 

BB variables ME and IRE (Figure 4-10 and Figure 4-11), and the analytical expressions 

which provide a direct link between BB and underlying PK variables, it was noted that the 

ratio of the IRE and the maximal amplitude of enhancement (ME - 1) depends solely on the 

value of k21. 

If the expressions given in Eq. 4-11 and Eq. 4-13 are combined to form the ratio 

IRE/(ME-1), the following expression is obtained: 

IRE 

_k 
21 

(e-k., T 
- C_k2, 

T ) 

ME-1 (k-2 

-L 
(ek2uT 

- i)ek21t, e,,, - (ekaT 
- 1)ekdt�ý. Eq. 4-15 

keil l 

This ratio is determined solely by variable k21 (when kei is fixed, as described in Section 

4.1) and it can be used to estimate k2l based on the measured values of ME and IRE. 

Whilst both BB variables have a degree of dependence on both f. and k21, the ratio 

between IRE and the amplitude of enhancement ME-1 can be explicitly linked to the value 

of the fractional transfer rate k2,. The surface plot of the ratio defined in Eq. 4-15 is 

presented in Figure 4-18 illustrating the dependence of this ratio on k21 and its 

independence of ff,, 
. 
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Figure 4-18 Influence of fe,, and k21 on IRE/(ME-1) 

Following the estimation of k,, from the ratio presented in Eq. 4-15, an estimate of fex 

can be derived from the expression for ME (Eq. 4-13). When the initial solutions calculated 

using this method were supplied to the non-linear fitting algorithm (in a simulation 

performed at 5% noise level), the following results were obtained: 

Pre-set Initial 
Solutions 

Calculated Initial 
Solutions 

Accuracyof fex -0.99 (1.79) -1.03 (1.76) 

Precision of fex 2.82 (2.16) 2.89 (2.26) 

Accuracy of k21 22.7 (21.98) 22.31 (22.15) 

Precision of k21 29.92 (12.55) 29.62 (12.62) 

Table 4-8 Comparison between the estimates of PK variables obtained 
with pre-set and calculated initial solutions 

As the results presented in Table 4-8 demonstrate, the performance of the fitting routines 

remained essentially unchanged when these calculated initial solutions were supplied instead 

of the known, pre-set values. These simulations were performed at 5% noise level. 
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The method for QDEMRI analysis described in this chapter was applied to the study of Gd- 

DTPA enhancement in primary breast cancer and in rheumatoid arthritis of the MCP joints 

and knees. The measurements of pre-contrast Ti (Tb) were not available in these studies 

and the pharmacokinetic modelling resulted in the computation of two independent 

pharmacokinetic variables, A and k2l 
. Variable A is directly proportional to the local value 

,,, 
but it also depends on tissue pre-contrast Ti, Ti relaxivity a, the applied repetition of f. 

time TR and the initial plasma concentration Cp(O) according to the following expression: 

A=af 
Cp(O) 

=af 
0.877 

.Te: T 

TR 

=e 
TTR TRa fix 

Cp(O) 
T 

1-e Tlo 

Eq. 4-16 

Furthermore, to obtain the measurement corresponding to the transfer rate constant (K trans 

= fix " k21), the product of two measured PK variables A and k21 (Ak21) was also 

recorded. By assuming an average value of Cp(0) = 0.877 mM, in-vitro relaxivity a and a 

representative Tlo value, variable A can be used to estimate the underlying fraction of the 

EES (f,,, ). Similarly, variable Ak21 can be used to provide an estimate of K"", which is 

related to permeability surface area product. The fractional transfer constant k21 does not 

depend on any other systemic or MR data acquisition variable. In addition to these three PK 

variables, the method includes the measurement of BB variables ME and IRE in all three 

studies. 
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Chapter 5. Implementation of QDEMRI for 

clinical applications 

In this chapter, a description of the practical implementation of the method for QDEMRI 

analysis, which was introduced in Chapter 4, is presented. The chapter includes the 

description of the image acquisition protocols (Section 5.1), as well as the explanation of the 

pre-processing procedures including the selection of ROIs and the selection of sub-volumes 

for voxel-by-voxel processing (Section 5.2). Image viewing, ROI selection and image 

segmentation were performed using an image processing package AnalyzeTM (Biomedical 

Imaging Resource; Mayo Foundation, Rochester, MN). All QDEMRI processing was 

performed on a standard PC platform (running under Windows NT and Windows 2000 

operating systems), using a set of programs written in the C programming language. The 

routines for straight-line fitting and non-linear minimisation were adopted from a book by 

Press et al [123]. 

5.1. DEMRI acquisition 

All imaging was performed on a 1.5 T MRI scanner (Gyroscan ACS NT, Philips Medical 

Systems, Best, The Netherlands). The MR signal detection was performed with a quadrature 
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knee coil in the Knee RA Study, a linear circular 11 cm diameter surface coil in the Hand RA 

Stud), and a standard bilateral breast coil in the Breast Cancer Study. 

The selection of the imaging volumes was performed following the acquisition of survey 

scans in three orthogonal directions. In the Breast Cancer Study, the complete coverage of 

both breasts was ensured. Imaging volume selection was particularly important in the RA 

Studies, since the selection of optimal anatomical landmarks allowed adequate volume 

repositioning in the follow-up scans. 

5.1.1. Breast Cancer Study DEMRI acquisition protocol 

A 2D multislice, TI-weighted gradient echo sequence was used (TR/TE/(p = 213/4.6/90°, 

FOV = 300mm, RFOV = 100'%, 25 slices, 4mm slice thickness, 12 dynamic scans at 32.5 

seconds intervals, 154 x 256 image matrix, reconstructed to 256 x 256 matrix). Total imaging 

time was 390 seconds. The patients were positioned prone with both breasts inside the 

breast coil. The imaging was performed in the transverse plane, with the imaging volume 

encompassing both breasts in all three dimensions. 

108 

Figure 5-1 Positioning of the imaging volume in the Breast Cancer Study 



An illustration of the positioning of the imaged volume is presented in Figure 5-1. where 

coloured lines indicate the position of transverse slices superimposed on sagittal cross 

sections through right and left breast. 

5.1.2. Hand RA Study DEMRI acquisition protocol 

DEMRI of the dominant hand was performed using a 3D T1 weighted spoiled gradient echo 

sequence (TR/TE/(p = 14/3.8/40°, FOV = 100mm, RFOV = 50%, 6 slices, 3mm slice 

thickness, 20 dynamic scans at 7.1 seconds intervals with 170 x 256 image matrix, 

reconstructed to 256 x 256). The total scanning time was 142 seconds. The imaging volume 

encompassed four (2nd to 5th) MCPJs. The patients were positioned prone with their arm 

extended in front of their head and the circular coil placed on the dorsum of the hand. 

An illustration of the positioning of the imaging volume is presented in Figure 5-2, where 

coloured lines indicate the positions of transverse slices superimposed on a coronal and 

sagittal cross section. The imaging volume encompassed four (2' to 5th) MCPJs and was 

positioned using a set of precise anatomical landmarks to ensure adequate coverage of the 
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Figure 5-2 Positioning of the imaging volume in the Hand RA Study 



MCP joint capsules at baseline and follow-up scans. The angulation of the imaging volume 

was defined by the central plane cutting through the middle of the 2nd and 4th MCPJs 

spaces as defined by coronal images. 

5.1.3. Knee RA Study DEMRI acquisition protocol 

DEMRI scans of the knee were acquired by using a 2D multislice, Tl-weighted spoiled 

gradient echo sequence (TR/TE/(p = 13/5.0/60°, FOV = 250mm, RFOV = 60%, 5 slices, 

5mm slice thickness with 5mm gap, 40 dynamic scans at 8 seconds intervals with 205 x 256 

image matrix, reconstructed to 256 x 256). The total scanning time was 320 seconds. The 

patients were positioned supine with the signal knee positioned inside knee coil. An 

illustration of the positioning of the imaging volume is presented in Figure 5-3 where the 

coloured lines indicate the position of the sagittal slices superimposed on coronal and 

transverse cross sections. 
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Figure 5-3 Positioning of the imaging volume in the Knee RA Study 



The imaging volume was positioned using a set of precise anatomical landmarks: five sagittal 

slices were selected centred on the middle of the interchondylar notch and orthogonal to the 

planes tangential to the femoral chondyles, both posteriorly and inferiorly. 

5.1.4. Gd-DTPA injection 

A standard dose of 0.1 mmol per kilogram body weight of gadopentetate dimeglumine Gd- 

DTPA (Magnevist®, Schering, Berlin, Germany) was used. The Gd-DTPA injection was 

followed by a 10 ml saline flush. The injection was administered manually with a constant 

injection rate over a period of Tinf = Delta T in the RA studies (i. e. 7.1 and 8 seconds in the 

Hand RA and Knee RA studies, respectively) in order to facilitate the synchronisation 

between the injection and the acquisition. In the Breast Cancer Study, Tinf was set to Tinf = 

Delta T/2, due to the low temporal resolution (Delta T= 32.5 seconds). In all studies, 

effective duration of the infusion (T) which was used for the modelling of SI, was 

approximated by 2xTinf (i. e. double the actual injection duration). This approximation was 

based on the data reported by Andersen et al and Fritz-Hansen et al [80,88] for short 

peripheral injections. Furthermore, the analysis presented in Section 4.2.6 indicates that the 

effects of the variation in T over this range of values exert a minimal influence on the 

performance of the fitting algorithm. Effective injection duration was T= 14.2 seconds in 

the Hand RA Study, T= 16 seconds in the Knee RA Study and T= 32.5 seconds in the 

Breast Cancer Study. 
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5.2. DEMRI pre-processing 

5.2.1. Breast Cancer Study 

An illustration of the pre-contrast and post contrast images (acquired 4 minutes after the 

baseline scan) in the Breast Cancer Study is presented in Figure 5-4 and Figure 5-5, 

respectively. These images represent all 25 transverse anatomical slices acquired at t=0 and t 

= 4.02 minutes. Individual Dl? MRI datasets in this study included 300 images (25 slices x 12 

dynamic frames) yielding files containing almost 20 million voxcls (or 37.5 Mbytes of data, 

since a 2-byte representation of grey-level SI was used). 
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Figure 5-4 Pre-contrast datasct in the Breast Cancer Study 



These images are normally viewed in a cinc-loop, using an MR console. To enable a more 

efficient identification of the enhancing structures, a set of subtraction images is generated as 

well (Figure 5-6). A baseline (prc-contrast) image is subtracted on a voxcl-by-voxel basis 

from each subsequent dynamic image. The set of images presented in Figure 5-6 represents 

the difference between the image set obtained at 4.02 minutes after the acquisition of the 

baseline and the pre-contrast image. 
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Figure 5-5 Post-contrast dataset in the Breast Cancer Study 
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Figure 5-6 Post-pre contrast subtraction dataset in the Breast Cancer 
Study 

A lesion located in the right breast is clearly visible on the subtracted images. Figure 5-7 

represents a pair of pre- and post-contrast images and a resulting subtraction image of the 

transverse slice cutting through the centre of the lesion. 
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In routine clinical practice, the lesion is evaluated by placing a region of interest (Rol) on a 

subtraction image and displaying a SI/time curve on a MR console. As illustrated in Figure 

5-7, the subtraction method is effective in delineating the extent of the lesion. However, 

these images are not suitable for the analysis of the internal architecture of the lesion and its 

relationship to the surrounding parenchyma. 

To improve the visualisation of the lesions, parametric maps of BB variables MI?, IRE and 

the wash-out-slope (WOS) were computed on a voxel-by-voxel basis and displayed 

superimposed on grey-scale anatomical images. These images were generated automatically 

using a set of programs written in the C programming language, and the resulting colour 

coded images were linked into an html (hypertext markup language) database. The 

computation of the BB variables ME and IRE was performed using the method described in 

Section 4.3. To match the size of the moving windows to the temporal resolution of the 

DEMRI datasets, a three-point window was used (encompassing temporal segments of 65 

seconds). Variable WOS was computed on a voxel-by-voxcl basis by measuring the slope of 

the Icast-squares straight line through the fixed five-point window encompassing the last 130 

seconds of the SI/time curves. All three images (MN, IRE and WOS) could be interrogated 

simultaneously. This processing step did not involve any user interaction. No segmentation 

or motion correction was applied and a uniform colour-coding scheme was used in all 

115 

Figure 5-7 Pre-contrast, post-contrast and subtraction image through the 

centre of the lesion in the Breast Cancer Study 



studies. Computation of colour-coded parametric maps effectively condensed the 

information contained in the original DEMRI datasets. The colour-coding scheme used for 

spatial mapping of BB variables is presented in the Appendix D. 

A further data reduction step involved the identification of the anatomical slices which 

encompassed the individual lesion. Figure 5-8 illustrates a set of parametric maps 

corresponding to the five transverse slices encompassing a lesion illustrated above in Figure 

5-4 to Figure 5-7. In Figure 5-8, the top row contains parametric maps of ME, the middle 

row represents the maps of IRE, and the WOS maps are presented in the bottom row. 

ME 

IRE 

wo s 

Following the inspection of these maps, the most representative (usually central) cross 

section was identified by the trained radiologist (Figure 5-9) and a single circular 16-voxel 

ROl was placed close to the lesion rim and away from the necrotic, central areas (if present). 

In Figure 5-9 the first (left) image represents a map of ME, the second (central) image 

represents the map of IRE and WOS map is presented in the third image (right). 
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Figure 5-8 Identification of the lesion using colour-coded parametric 
images 



ROI selection was restricted to tumour periphery in the light of the evidence that malignant 

lesions show significantly higher peripheral enhancement than non-malignant lesions [129]. 

An illustration of the ROI selection procedure is presented in Figure 5-10. A circular ROI 

(blue circle) was placed inside the lesion and its location was recorded in a separate object 

file. The ROI illustrated in Figure 5-10 is superimposed onto a colour map of variable IRE. 

However, ROI selection was based on simultaneous inspection of all three parametric maps 

(Figure 5-9). 

Figure 5-10 ROi selection in the Breast Cancer Study 

As a result of this procedure, a single SI/time curve was derived from each identified lesion 

and analysed using a program written in the C programming language which quantified the 
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Figure 5-9 Parametric maps of the variables ME, IRE and WOS 



temporal variation of SI change in terms of three black box and three pharmacokinetic 

variables. In this study, QDEMRI analysis was restricted to the quantification of SI/time 

curves derived from the 16-voxel ROIs in order to compensate for relatively low temporal 

resolution (Delta T= 32.5 seconds) by ensuring a high SNR of the sampled curves. The 

achieved SNR levels in 59 evaluated lesions (estimated as a ratio between the maximal 

amplitude of enhancement (ME - 1) and the SD of the normalised SI over the temporal 

window where the maximal enhancement was detected) ranged from 6.5 to 585.4 with a 

mean of 67.6 ± 101.0 (mean ± SD, n= 59). 

5.2.2. RA Studies 

The pre-processing of the DEMRI datasets in two RA studies was performed in an identical 

fashion, apart from the initial segmentation step which was applied only in the Hand RA 

Study. 

The segmentation of DEMRI datasets in the Hand RA study was performed using 

AnalyzeTM software (Biomedical Imaging Resource; Mayo Foundation, Rochester, MN). A 

set of pre-contrast (baseline) images was loaded into the Image Edit module and an 

interactive region-growing algorithm was applied to segment the MCP joints 2 to 4 and 

exclude the MCP 1 from further analysis. This step was performed since the imaging volume 

was designed to encompass joints 2-4 and the position and location of MCP 1 was highly 

variable and inconsistent. An illustration of this segmentation procedure is given in Figure 

5-11. This step was the only part of the processing which involved user intervention. 
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Figure 5-11 Image segmentation module (AnalyzeTM) 

The segmented volume was used to create a binary mask, which was applied to each Hand 

RA DEMRI set prior to further processing. 

The preliminary analysis of DEMRI sets involved the computation of parametric maps of 

ME, in order to define enhancement thresholds and estimate the levels of SNR in the 

acquired data. The enhancement thresholds were determined by examining a randomly 

selected set of 5 DEMRI datasets in each study and determining the level of enhancement 

which allowed the inclusion of the complete enhancing synovial tissue with a minimal 

inclusion of the voxels from surrounding tissues (i. e. muscle, bone marrow and fat). The 

selected threshold levels (ME = 1.2 and ME = 1.3) were then applied in all Hand RA and 

Knee RA datasets, respectively. 

The next pre-processing step in the two RA Studies involved the estimation of SNR. SNR 

was measured on a pixel-by pixel basis as a ratio between the maximal amplitude of 

enhancement (ME - 1) and the SD of the normalised SI over the window where maximal 

enhancement was detected. In 106 DENIRI datasets in the Hand RA study, an average SNR 

was 13.0 ± 1.4 and in 68 studies in the Knee RA Study an average SNR was 11.5 ± 1.5. To 
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increase the SNR of the measured normalised SI curves prior to the application of non-linear 

fitting, spatial filtering with a low pass (average) nine-voxel kernel was applied. The filtered 

SI in each spatial matrix element was computed as an average of the central voxel and the 

eight neighbouring voxels. The resulting SNR in the two RA studies was 22.3 ± 3.4 and 20.9 

± 3.3, in the Hand RA and Knee RA studies, respectively. Given that the temporal resolution 

in these two studies was less than 10 seconds and that the application of spatial filtering 

increased the SNR level (with an average SNR greater than 20), QDEMRI analysis was 

performed on a voxel-by-voxel basis. 

5.3. QDEMRI analysis 

5.3.1. Breast Cancer Study 

The algorithm for the computation of BB variables in this study was identical to the one 

used for the computation of parametric maps (Section 5.2.1), i. e. the algorithm described in 

Section 4.3 was applied with a window size of n=3 points for the measurement of ME and 

IRE and an additional measurement of WOS was performed using a fixed five-point 

window. 

In the Breast Study, the acquisition protocol was based on that proposed by Kuhl et al [109] 

and multi-slice imaging (25 transverse sections) was performed with TR of 213 ms. To 

examine the effect of non-linearity of normalised SI response to the changing C= Ct(t) with 

this relatively large TR, the non-linear fitting using both linear and quadratic approximation 

of normalised SI (Sc /So) was performed. 

In this analysis, a constant Tlo was assumed in all lesions CTlo = 876 ms, the mean value of 

Tlo in invasive breast carcinomas [126]). For an assumed linear response to C= Ct(t), the 
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expression presented in Eq. 2-20 was used. Next, the measured Sc/So curves were converted 

to Ct(t) using a quadratic fit of the normalised SI, over the range of concentrations from 0 to 

1 mM, thus encompassing the range of Gd-DTPA concentrations in breast lesions reported 

by den Boer et al [102]. The resulting expression for Sc/So over this range of concentrations 

is presented in Eq. 5-1. For every measured value of Sc/So, the quadratic equation Eq. 5-1 

was solved and every normalised SI curve was converted into C= Ct(t). 

S& 
z 1.062+3.2222"C-1.0940"C2 

So Eq. 5-1 

A quadratic approximation of the normalised SI as a function 

of Gd-DTPA concentration Mo = 876 ms and C<1 mM) 

Three pharmacokinetic variables (k21, A and Ak 21) were extracted in 59 lesions and the 

results were converted to f and K"'. With the assumed linear response, the measured 

k21 and ff, were 0.038 ± 0.026 s-1 and 0.45 ± 0.13, respectively (with a resulting K°" of 

1.00 ± 0.70 min-'). With a quadratic approximation, the measured k2, and fix were 0.036 t 

0.025 s-1 and 0.57 ± 0.21, respectively (with a resulting KtT , of 1.17 ± 0.84 min-'). 

The measurements obtained using these two methods were strongly correlated (p = 0.990, p 

= 0.990 and p=0.989 for f, k21 and Ktre", respectively with p<10-6) and only the 

results obtained using a linear approximation were used for the statistical analysis presented 

in Chapter 6. However, it was noted that the application of the linear approximation leads to 

the underestimation of f,,, (and consequently K") if linear approximation is used. The 

variable k21 is only marginally affected by the nature of the assumed relationship between 

Sc/So and Ct(t), with the mean difference between the k21 values obtained using two 

methods described above being 0.0025 s-I (less than 7% of the mean value) whereas the 

underestimation of f if the linear method is used is 0.13 (i. e. f. 
X estimated using a linear 

approximation is 13% lower than that obtained with a quadratic approximation). 
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Figure 5-12 includes the illustrations of SI/time curves extracted from two different lesions 

(ROI I and ROI 2) and superimposed least squares lines obtained after non-linear fitting of 

the experimental data to the proposed pharmacokinetic model (Eq. 4-8). 
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Figure 5-12 Examples of SI/time curves from the Breast Cancer Study 

The results of the QDEMRI analysis performed on SI/time curves derived from these two 

ROIs are presented in Table 5-1. The observed differences in the pattern of Gd-DTPA 

uptake are reflected in the values of the measured variables. 

ROI 1 ROI 2 

ME 1.68E+00 2.39E+00 

IRE [s-1] 1.15E-02 3.05E-02 

WOS(s-1] 3.32E-04 -1.37E-04 
k21 [s-1] 2.58E-02 5.03E-02 

A [s-1] 1.18E-02 2.54E-02 

Ak21 [s-2] 3.04E-04 1.28E-03 

Table 5-1 Example of the results of QDEMRI analysis in the Breast 
Cancer Study 

The samples obtained from individual ROls were stored in a single text file and the 

QDEMRI analysis was performed automatically, without any user interaction. In the Breast 

Cancer Study, experimental data fitted the proposed pharmacokinetic model well, with only 

one of the 59 ROI-derived SI/time curves generating a relatively large squared residual suns 
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(exceeding the mean obtained in the entire set by more than two SD), most likely as a result 

of a significant pure-vascular component. The analysis of the results obtained in this study is 

presented in Chapter 6. 

5.3.2. RA Studies 

Following the pre-processing of DEMRI datasets, according to the procedure described in 

Section 5.2.2, QDEMRI processing in the two RA studies was performed using the 

QDEMRI method presented in Chapter 4. The processing was performed on a voxel-by- 

voxel basis and the pattern of Gd-DTPA enhancement in each examined voxel was 

quantified in terms of two BB variables (ME and IRE) and three PK variables (A, k21 and 

Ak2l). The algorithm for voxel-by-voxel processing included several control procedures 

designed to eliminate from the analysis the voxels with significant vascular and motion 

artefact components. The total numbers of voxels included in the BB and PK analyses was 

recorded in each study (N-BB and N-PK, respectively). These numbers correspond to the 

total volume of the enhancing tissue. Because PK analysis was performed only in voxels 

where BB variables were measured successfully, N-BB is larger than N-PK, depending on 

the success rate of the fitting procedure. 

An average DEMRI dataset required voxcl-by-voxel processing of 29000 and 30500 SI/time 

curves in the Knee RA and Hand RA studies, respectively. The required processing time was 

less than 30 seconds per dataset (on a 600MHz, 128Mb PC system). In the two RA studies, 

pharmacokinetic modelling was successfully performed in 95.5 t 2.6% and 98.5 ± 0.8% of 

the voxels (in Hand RA and Knee RA studies, respectively), suggesting that the proposed 

pharmacokinetic model adequately represents these experimental data. The analysis of the 

QDEMRI findings in these two studies therefore includes the analysis of seven measured 

variables: ME, IRE, A, k21, Ak21, N-1313 and N-PK. 
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To illustrate the results of QDEMRI analysis obtained in these two studies, the measured PK 

variables A and Ak21 are converted to fx and K"", thus removing a slight influence of 

the differences in acquisition settings used in the two RA studies. Computed values of 

variable A can be converted to fractional volume of the EES (f,,, ) by assuming a constant 

pre-contrast Tlo value and Cp(0), as described earlier (Eq. 4-16). In the following maps, this 

conversion was performed with an assumed Tlo of 900 ms and Cp(0) of 0.877 mM. The 

variable A is converted into ff,, (unit-free fraction, i. e. a value of fix = 0.5 corresponds to 

the voxels where 50% of the volume is occupied by EES). Likewise, the measured values of 

the variable Ak21, collected in individual voxels can be transformed into corresponding 

values of Ku " and expressed in min-', using the same assumed values of Tlo and Cp(0). 

The same colour-coding scheme was used for spatial mapping of derived values of fix and 

K"""' in both RA studies (Appendix D). 

Examples of the parametric colour-coded maps of PK variables (superimposed on original, 

pre-contrast anatomical images) obtained in the two RA studies are presented in figures 

Figure 5-13 to Figure 5-18. The program for the calculation of these images was also written 

in C programming language. Figure 5-13 demonstrates the distribution of fex in one of the 

Hand RA studies. It clearly demonstrates an extensive synovitis in MCPJs 2 and 3, with a 

lesser involvement of MCPJs 4 and 5. As discussed in Chapter 4, the estimation of fx is not 

as vulnerable to random noise fluctuations as the variable k21. The difference in spatial 

coherence between the maps of fe* 
, 

k21 and K`re"' (Kae"' ec Ak21) further illustrates this 

point. 
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Figure 5-13 Parametric map of fex in a RA Hand study 

Figure 5-14 Parametric map of K in a RA Hand study 

125 



Figure 5-15 Parametric map of k21 in a RA Hand study 

Parametric maps of PK variables measured in a sample RA Knee study are presented in 

Figure 5-16 to Figure 5-18. These quantitative maps clearly demonstrate the inflamed pannus 

in the supra-patellar and tibio-femoral region. It appears that the highest values of PK 

variables are measured in the central, deep-seated parts of the pannus. However, a degree of 

contamination by extra-capsular enhancing voxels is also evident (note colour-coded voxels 

in the skeletal muscle and popliteal vessels in Figure 5-18). 

Figure 5-16 Paranictric rttap of l, 
` 

in a RA Knee study 
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Figure 5-17 Parametric map of Kran. in a Knee RA study 

Figure 5-18 Parametric map of fex (left) and K trans (right) in a Knee RA 

study (single sagittal slice) 

QDEMRI datasets obtained by voxel-to-voxcl S1 analysis can be presented as histograms. 

The histograms of variable Ake, obtained in the same patient at three different points 

during the course of the therapy (I-land RA Study) arc illustrated in Figure 5-19. 
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Figure 5-19 Histograms of the variable Ak21 measurements in the same 

patient during the course of the therapy 

These histograms are conveying the information about the location and dispersion of 

measured values inside individual DEMRI sets. Clearly, the mode of all three samples is low, 

i. e. the largest proportion of measured voxel SI is derived from tissues with low values of 

Ak21 and the histograms are skewed to the right. 

For the purposes of analysis of treatment effectiveness, the properties of the calculated 

parameter populations needed to be quantified even further. The properties of derived 

parameter populations need to be summarised and expressed as values which enable direct 

comparison between individual patients and measurements obtained at different points in 

the treatment cycle. The hypothesis is that all of the measured QDEMRI variables arc 

directly proportional to the physiological variables that reflect the extent and the intensity of 

the inflammation process and therefore reflect disease activity. At the same time, the 

extremes of the measured parameter populations are often related to the artefactual 

enhancement (see Figure 5-18). The decision on how to treat the tail portion of the 

histograms presented in Figure 5-19 is therefore influenced by the need to preserve the 

potentially relevant information and at the same time limit the influence of erroneous 

measurements. 
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The approach adopted in this thesis was to quantify the measured QDEMRI variables 

populations in terms of their trimmed means. Percentile limits of the acquired histograms 

were identified and the values higher than the 90th percentile limit were excluded prior to the 

computation of the mean. Each DEMRI study was therefore quantified through a set of five 

QDEMRI variables summarising the location of corresponding QDEMRI variable 

histograms (ME, IRE, A, k21, Ak2i) and two voxel counts (N-BB and N-PK). The results 

obtained in two clinical trials where these QDEMRI variables were measured at different 

points during treatment are presented in Chapter 7. 
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Chapter 6. Application to breast cancer 

Since its introduction into clinical practice by Heywang-Kobruner in 1986 [130], DEMRI has 

almost unequivocally demonstrated high sensitivity for detection of breast cancer [131]. 

However, an agreement on the optimal scanning, sampling and analysis protocols is still not 

reached, and a wide variety of methodologies are still being used. The main limitation of 

DEMRI in the investigation of breast lesions lies in its low specificity and the majority of the 

studies in this field were centred on the design of methods for improving the distinction 

between malignant and benign breast lesions. The most basic criterion for the differentiation 

between benign and malignant lesions (presence or absence of enhancement) yields a 

specificity of only 37% [132]. Particularly problematic is the differentiation between benign 

fibroadenomas, ductal carcinoma in situ (DCIS) and some of the less angiogenesis- 

dependent types of cancer, such as invasive lobular carcinomas [133]. Improvement in 

DEMRI specificity in breast cancer (to 75-85%) can be achieved by its integration with other 

diagnostic findings and the formulation of precise inclusion criteria [133,134]. 
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Previous studies 

As discussed in Chapter 3, quantitative analysis of DEMRI allows differentiation between 

malignant and benign breast lesions and several studies have demonstrated a significant 

degree of correlation between DEMRI quantifiers and surrogate measures of angiogenesis. 

Several animal model studies of breast cancer have demonstrated a strong relationship 

between tumour grade and capillary permeability using macro-molecular contrast media 

(MMCM) [135-139]. Turetschek reported a significant correlation between permeability 

measured using both albumin-(Gd-DTPA)3o [137,138] and ultra small superparamagnetic 

iron oxide (USPIO) particles [139], and tumour grade, as well as MVD in chemically induced 

breast carcinoma in rats. However, experimental studies were unable to demonstrate an 

increase in permeability to the smaller Gd-DTPA molecule in higher-grade tumours [135, 

136]. Daldrup et al reported that permeability to Gd-DTPA did not vary significantly 

between different tumour grades [136]. Su et al reported that Gd-DTPA can allow 

differentiation between benign and low-grade tumours, but not between low- and high-grade 

tumours [135]. One study attempted to compare acquisition and analysis methods according 

to their capacity to detect differences between different grades of experimental breast cancer 

[140]. None of the examined acquisition and analysis models yielded a statistically significant 

differentiation between different tumour grades. 

Only a few studies have attempted to directly correlate DEMRI findings with prognostic 

factors such as tumour grade and nodal status in clinical studies of breast cancer [141-145]. 

None of these studies included pharmacokinctic analysis of DEMRI. Their results appear to 

be inconclusive and in part contradictory. Whilst Mussurakis [142] and Bone [144] found a 

significant correlation between DEMRI and prognostic factors, Fischer [143] and Stomper 

[141] found no correlation between them. Different acquisition and sampling protocols have 

been employed in each of these studies, as well as different methods for quantitative analysis 

of DEMRI. Furthermore, there was a considerable variation in the number of 
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patients /lesions studied, their histological mix, the method used for grading as well as the 

choice of prognostic factors that DEMRI was compared with (tumour grade, nodal status, 

DNA S-phase percentage as well as various immunohistochemical prognostic indicators). 

The temporal resolution of DEMRI acquisitions used in these studies ranged from 12 

seconds [142], to 7 minutes [144]. Tissue coverage ranged from 64 transverse slices 

encompassing both breasts [144] to 4 targeted sagittal slices [142]. 

Stomper [141] studied a small series (17 patients) and chose to compare DEMRI with DNA 

S-phase percentage (a measure of increased cell proliferation). He used a heuristic method 

proposed by Orel [110] for quantitation of DEMRI. In their acquisition protocol, 5 

contiguous slices were scanned with a temporal resolution of 30 seconds and a small ROI (2 

mm2) which gave the highest amplitude of enhancement was selected for analysis. No 

association between black-box parameters and DNA S-percentage was found in this study. 

In an earlier study conducted by the same group, a marginal difference in the wash-out rate 

between low grade (Grade I and Grade 2) and high grade (Grade 3) tumours was found 

[145]. Only 19 invasive carcinomas were available for this comparison. There was no 

association between DEMRI parameters and nodal status. 

In a large study (190 patients) reported by Fischer [143], a semi-dynamic protocol with a low 

temporal resolution of 1.5 minutes was used. A complete coverage of both breasts was 

achieved by scanning 32 transverse slices. DEMRI was quantified using an enhancement 

ratio at 3 minutes post-injection. Small ROIs (2-5 voxels) were selected for analysis. 

Enhancement ratios were rather crudely grouped into three categories, based on empirically 

determined percentage thresholds. There was no significant difference between the 

distributions of enhancement ratios in three histological grade groups and no association 

with node status was detected. In a sub-set of 40 patients where immunohistochemical 

staining was performed, no correlation was found between immunohistochemical prognostic 

factors and ER. However, non-invasive carcinomas had lower ER than invasive carcinomas. 
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The acquisition protocol used by Bone et al [144] was also semi-dynamic, with only two 

acquisitions obtained after the baseline pre-contrast scan and the injection of Gd-DTPA, 

with an extremely low temporal resolution of 7 minutes. The most representative cross 

section of the lesion was identified from a set of 64 slices and the entire enhancing area used 

to calculate enhancement ratios (ER) at 7 and 13 minutes post-injection. The lesions were 

classified in only two groups (high grade and combined low- and intermediate-grade). A 

significant difference between enhancement ratios in high and low/intermediate grade 

tumours was found. There was no distinction between node-positive and node-negative 

tumours. 

Mussurakis [142] used a targeted dynamic protocol with temporal resolution of 12 seconds 

and the coverage of only 4 sagittal sections. In this study, enhancement ratios at I and 2 

minutes post-injection as well as the maximal enhancement ratio were calculated using SI 

curves derived from the entire lesion (large manually drawn ROI) and semi-automatically 

detected 9-voxel ROIs with highest amplitude of uptake. In both sets of ROIs, significantly 

higher ERs were measured in node-positive than in node-negative tumours. A significant 

relationship between all ERs extracted from small ROIs and tumour grade was found. 

Although the selection of ROIs was performed by inspecting parametric maps of 

pharmacokinetic parameters, their values or possible association with prognostic factors were 

not reported. 

This study 

The aim of this Breast Cancer Study was to apply QDEMRI analysis described in Chapters 4 

and 5 to histologically confirmed and graded invasive human breast carcinomas and to 

investigate the capacity of PK measurements of permeability (k21 and Ak2, ) to reflect 

histological tumour grade and node status. The hypothesis was that given a documented 

difference in capillary permeability between benign and malignant breast tumours, a 
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relationship between permeability-related QDEMRI variables and tumour aggressiveness 

persists within invasive breast carcinomas. Secondly, the capacity of other QDEMRI 

variables to detect differences between carcinomas of different tumour type and nodal status 

was investigated. 

6.1. Study description 

MRI examination of the breasts was performed in patients with breast lesions where 

conventional triple assessment (X-ray mammography, ultrasound and clinical examination) 

did not provide conclusive diagnosis and where further information about the extent of a 

known lesion and/or possible multifocality was being sought. 

Of 255 consecutive patients who underwent MRI examination, mastectomy was 

subsequently performed in 66 cases and a full pathology report, including tumour grade and 

lymph node status, was available for 53 patients (60 lesions). Tumour grading was performed 

using the Nottingham Prognostic Index for primary breast cancer [146]. The imaging 

protocol is described in Chapter 5. Both breasts (25 transverse slices) were scanned for 5 

minutes with a temporal resolution of 32.5 seconds. In one examination, quantitative analysis 

was not possible due to excessive patient motion. 

Full QDEMRI analysis was performed retrospectively in 59 lesions (in 52 patients). All 

patients were female with a median age of 55 (ranging from 32 to 80). The lesions were 

classified according to their histological grade into three groups. Twelve lesions were found 

to be Grade 1 tumours, twenty-nine, Grade 2 and eighteen, Grade 3 tumours. Thirty lesions 

had negative node status and twenty-nine were node positive. Forty-four lesions were 

classified as invasive ductal carcinomas not otherwise specified (NOS), eleven were invasive 

lobular carcinomas, two were invasive tubular carcinomas and two were invasive mutinous 
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carcinomas. Thirty-four out of fifty-nine lesions had a significant in-situ (DCIS) component. 

Table 6-1 presents a summary of the pathology grading and lymph node status for the set of 

fifty-nine evaluated lesions. 

Node Status 

negative positive Total 

Grade 1 10 2 12 

Tumour Grade Grade 2 11 18 29 

Grade 399 18 

Total 30 29 59 

Table 6-1 Summary of histological status of breast cancer lesions 

6.2. Summary of the measurements 

All lesions were sampled following a procedure described in Section 5.2.1 and QDEMRI 

analysis was performed on SI curves derived from representative ROIs. Preliminary 

computation of parameteric maps used for the selection of ROIs and ROI selection was 

performed blinded to the results of histopathological analysis. QDEMRI analysis yielded a 

set of six variables for each evaluated SI curve (three pharmacokinctic variables: A, k21 and 

Ak21 and three black-box variables ME, IRE and WOS). A summary of pharmacokinetic 

QDEMRI variables is presented in Table 6-2. This table lists the mean values and standard 

deviations in three histological subgroups. 
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A [s-1] k21 [s-1] Ak21 [s-2] 

Mean SD Mean SD Mean SD 

Grade 1 (n = 12) 3.66E-02 1.18E-02 2.70E-02 1.37E-02 9.49E-04 4.32E-04 

Grade 2 (n = 29) 4.31 E-02 1.35E-02 3.39E-02 2.66E-02 1.43E-03 1.14E-03 

Grade 3 (n = 18) 4.31 E-02 1.01 E-02 5.28E-02 2.69E-02 2.21 E-03 1.08E-03 

Table 6-2 Pharmacokinetic QDEMRI variables in the Breast Cancer Study 

A summary of black-box QDEMRI variables is presented in Table 6-3. Again, the mean 

values of measured variables and their standard deviations are listed for each of the three 

subgroups. 

ME IRE [s"1] WOS [s-1] 

Mean SD Mean SD Mean SD 

Grade 1 (n = 12) 2.04E+00 3.28E-01 2.19E-02 7.40E-03 2.90E-04 1.11E-03 

Grade 2 In = 29) 2.20E+00 3.61E-01 2.50E-02 9.94E-03 -1.18E-04 9.25E-04 

Grade 3 (n = 18) 2.26E+00 2.87E-01 2.92E-02 7.98E-03 -5.84 E-04 9.26E-04 

Table 6-3 Black-box QDEMRI variables in the Breast Cancer Study 

Scatter plots of the original measurements and corresponding error-bar plots (representing 

the mean and two standard error (SE) limits) of measured subgroups of QDEMRI variables 

are presented in Figure 6-1 to Figure 6-6. 
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6.3. Statistical analysis 

SPSS statistical software package (Version 10.0, SPSS, Chicago, IL) was used for statistical 

analysis. All statistical tests were performed at a=0.05 confidence level. A preliminary 

analysis of the distribution of measurements of each of the six QDEMRI variables revealed 

no significant deviation from normality in three histological subgroups. The results of the 

Kolmogorov-Smirnov test for normality are listed in Appendix C. This analysis was 

performed on eighteen sets of measurements (six variables divided into three histological 

subgroups) with the sample size of n= 12 for Grade 1 lesions, n= 29 for Grade 2 lesions 

and n= 18 for Grade 3 lesions. Due to the small sample size, further division according to 

the node status and tumour type was not performed. 

Data transformation 

Although the Kolmogorov-Smirnov test indicated no significant deviation from normality, 

the symmetry of the data subgroups was further analysed as symmetry is one of the pre- 

requisites for reliable calculation of regression coefficients [147]. The symmetry of the data 

subgroups was quantified through the computation of skewness. 

Tumour Grade 

Grade I Grade 2 Grade 3 
A . 689 . 253 -. 166 

k21 1.204 1.819 1.350 
Ak21 . 036 1.979 1.132 

ME . 808 . 000 -. 146 

IRE -. 021 . 072 . 717 

WOS -. 273 -. 306 -. 357 

Table 6-4 Skewness of QDEMRI variable subgroups in the Breast 
Cancer Study 
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The values of subgroup skewness values are listed in Table 6-4. In order to increase data 

symmetry prior to the application of regression analysis, a suitable data transformation was 

sought for each QDEMRI variable. A maximal absolute value of skewness of 0.5 was 

accepted as a symmetry target. Transformation coefficients for each of the six QDEMRI 

variables were determined by an iterative procedure designed to minimise total absolute 

skewness, whilst ensuring that absolute skewness does not exceed 10.51 in any of the 

subgroups. With the exception of variable WOS where no further improvement of symmetry 

could be achieved (and where the original skewness in neither of the three subgroups 

exceeded 10.5 1), natural logarithm transformation yielded adequate reduction of skewness in 

all data subgroups. A list of transformations is given in Table 6-5. 

Transformation 

A In (A + 0.0237 ) 

k21 In(k21-0.0046) 

Ak21 In (Ak21 + 0.0005 ) 
ME In (ME - 0.7472 ) 

IRE In ( IRE + 0.0157 ) 

Table 6-5 List of variable transformations 

A list of resulting subgroup skewness values is given in Table 6-6. Transformed variables are 

distinguished from the original measurements by a superscript prime (e. g. original variable A 

is transformed into A'). 
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Tumour Grade 

Grade 1 Grade 2 Grade 3 

A' . 360 -. 081 -. 400 

k21' -. 289 -. 074 . 300 
Ak21' -. 497 . 460 . 388 

ME' . 400 -. 379 -. 389 

IRE' -. 297 -. 300 . 245 

Table 6-6 Skewness of the transformed QDEMRI variable subgroups in 
the Breast Cancer Study 

Regression analysis 

Following data transformation, linear regression of QDEMRI variables (Y) on tumour 

grade was performed using the following regression model: 

V'=B, +B2, GZ+B3 G3 Eq. 6-1 

where B, represents the intercept and B2 and B3 represent unstandardised regression 

coefficients. G2 and G3 denote two "dummy variables" used to provide binary coding of 

tumour grade (independent categorical variable), with G2 =1 and G3 =0 for grade 2 

tumours, G2 =0 and G3 =I for Grade 3 turnouts and G2 = G3 =0 for Grade 1 

tumours. 

The results of the regression analysis are presented in Table 6-7 below. The table lists 

multiple correlation coefficient R, the coefficient of determination (goodness-of-fit) R2 and 

their significance (p-value) for each QDEMRI variable. 
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R R2 p. value 

A' . 223 . 050 . 239 

k21' . 432 . 187 . 003 

Ak21' . 467 . 218 . 001 

ME' . 250 . 063 . 163 

IRE . 294 . 087 . 079 
WOS . 314 . 099 . 054 

Table 6-7 Regression analysis summary 

As can be seen from Table 6-7, there is a significant relationship between tumour grade and 

PK variables k2, and Ak21. The strength of this relationship, however, is modest. This is 

reflected in relatively low values of R (0.432 and 0.467 for k21' and Ak2l', respectively). 

The strength of association between BB variable WOS and tumour grade reached borderline 

significance (R = 0.314, p=0.054). Low values of R2 (which represents the proportion of 

variation in the dependent variable explained by the regression model) indicate that a 

relatively low proportion of the overall variation in the data is attributable to the underlying 

(histologically determined) tumour grade and reflect a high level of scatter in the data. 

The individual unstandardised coefficients B2 and B3 with their corresponding 95% 

confidence intervals (95% CI) and p-values for each of the QDEMRI variables are listed in 

Table 6-8. Constant B, is also included in this summary of the model and its mean and 

confidence interval describe the location of the intercept (mean value in the Grade I group). 
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95% Cl 

B Lower Upper p. value 

81 (constant) -2.83E+00 -2.93E+00 -2.72E+00 
A' B2 1.00E-01 -2.87E-02 2.29E-01 . 125 

B3 1.09E-01 -3.12 E-02 2.49E-01 . 125 

B1 (constant) -3.97E+00 -4.40E+00 -3.55E+00 

k21' B2 8.61 E-02 -4.25 E-01 5.97E-01 . 737 

B3 8.11E-01 2.56E-01 1.37E+00 . 005 p<0.005 
B1 (constant) -6.57E+00 -6.82E+00 -6.31E+00 

Ak21' B2 1.95E-01 -1.02E-01 4.93E-01 . 194 

B3 5.94E-01 2.71E-01 9.17E-01 . 001 p<0.005 
B1 (constant) 2.25E-01 8.61E-02 3.63E-01 

ME' B2 1.17E-01 -4.79E-02 2.82E-01 . 161 

B3 1.72E-01 -7.12 E-03 3.51E-01 . 059 

B1 (constant) -3.30E+00 -3.43E+00 -3.17E+00 
IRE' B2 6.73E-02 -8.55E-02 2.20E-01 . 381 

B3 1.81E-01 1.55E-02 3.47E-01 . 033 p<0.05 
B7 (constant) 2.90E-04 -2.68E-04 8.47E-04 

WOS B2 -4.07E-04 -1.07E-03 2.55E-04 . 223 

B3 -8.74E-04 -1.59E-03 -1.55E-04 . 018 P<0.05 

Table 6-8 Unstandardised regression coefficients in the Breast Cancer 
Study (contrasts against Grade 1) 

The results presented in Table 6-8 indicate that none of the measured variables provided a 

significant distinction between Grade 1 and Grade 2 tumours since none of the B2 

coefficients were significantly different from zero. However, the separation between Grade 1 

and Grade 3 tumours in regression models for k21', Ak21', IRE' and WOS (represented by 

the regression coefficients B3), is significant although detected values of B3 have broad 

confidence intervals. Furthermore, variables k21' and Ak21' appear to provide a more 

significant separation between Grade 1 and Grade 3 tumours when compared to BB 

variables IRE' and WOS. 

Whilst Table 6-8 describes contrasts between Grade 2 and Grade 3 tumour measurements 

against Grade 1, an alternative regression model is used to assess the contrasts between 

Grade 1 and Grade 3 with respect to Grade 2 measurements. This regression model is 

described in Eq. 6-2. 
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V'=B, "G, +B, + B3 "G3 Eq. 6-2 

In this regression model, B2 represents the intercept and B, and B3 represent 

unstandardised regression coefficients. G, and G3 denote two "dummy variables" used to 

provide binary coding of tumour grade, with GI =1 and G3 =0 for Grade 1 tumours, G, 

=0 and G3 =1 for Grade 3 tumours and GI = G3 =0 for Grade 2 tumours. 

The contrasts between Grade 1 and Grade 3 with respect to Grade 2 measurements are 

quantified by individual unstandardised regression coefficients B, and B3, their 95% 

confidence intervals (95% Cl) and p-values for each QDEMRI variable (Table 6-9). 

95% CI 

B Lower Upper p. value 
B2 (constant) -2.72E+00 -2.79E+00 -2.65E+00 

A' 131 -1.00E-01 -2.29E-01 2.87E-02 . 125 

63 8.54E-03 -1.04E-01 1.21E-01 . 880 

B2 (constant) -3.89E+00 -4.16E+00 -3.61E+00 

k21' 131 -8.61E-02 -5.97E-01 4.25E-01 . 737 

B3 7.25E-01 2.78E-01 1.17E+00 . 002 p<0.005 
B2 (constant) -6.37E+00 -6.53E+00 -6.21 E+00 

Ak21' B1 -1.95E-01 -4.93E-01 1.02E-01 . 194 

B3 3.99E-01 1.38E-01 6.59E-01 . 003 p<0.005 
62 (constant) 3.42E-01 2.53E-01 4.31E-01 

ME' B1 -1.17E-01 -2.82E-01 4.79E-02 . 161 

83 5.50E-02 -8.92E-02 1.99E-01 . 448 

B2 (constant) -3.23E+00 -3.31 E+00 -3.15E+00 
IRE' BI -6.73E-02 -2.20E-01 8.55E-02 . 381 

83 1.14E-01 -1.95E-02 2.48E-01 . 093 

B2 (constant) -1.18E-04 -4.76E-04 2.41E-04 

WOS 131 4.07E-04 -2.55E-04 1.07E-03 . 223 
B3 -4.67 E-04 -1.05E-03 1.12E-04 . 112 

Table 6-9 Unstandardised regression coefficients in the Breast Cancer 
Study (contrasts against Grade 2) 

Again, constant B2 is also included in this summary of the model and its mean and 

confidence interval describe the location of the intercept (mean value in the Grade 2 group). 
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The results presented in Table 6-9 indicate that the only variables which provide significant 

distinction between Grade 2 and Grade 3 tumours are k21' and Ak21'. Whilst variables 

IRE' and WOS are sensitive enough to reflect the differences between Grade 1 and Grade 3 

tumours, they do not vary significantly between Grade 2 and Grade 3 tumours (compare 

regression coefficients in Table 6-8 and Table 6-9). 

The confidence intervals of the regression coefficients can be used to estimate the location 

of the means of transformed variables in each of the tumour grade subgroups. Inverse 

transformation yields the estimates of the QDEMRI variable means in three tumour grade 

subgroups, expressed in original units. 

95% cl 
Mean' Lower Upper 

Grade 1 3.56E-02 2.95E-02 4.24E-02 

A Grade 2 4.18E-02 3.39E-02 5.09E-02 

Grade 3 4.24E-02 3.37E-02 5.23E-02 

Grade 1 2.34E-02 1.68E-02 3.35E-02 

k21 Grade 2 2.51E-02 1.69E-02 3.87E-02 
Grade 3 4.69E-02 2.89E-02 7.82E-02 

Grade 1 8.88E-04 5.75E-04 1.29E-03 

A1c21 Grade 2 1.19E-03 7.50E-04 1.79E-03 

Grade 3 2.03E-03 1.33E-03 3.00E-03 

Grade 1 2.00E+00 1.84E+00 2.19E+00 
ME Grade 2 2.15E+00 1.94E+00 2.41E+00 

Grade 3 2.23E+00 1.99E+00 2.53E+00 

Grade 1 2.12E-02 1.68E-02 2.63E-02 

IRE Grade 2 2.38E-02 1.82E-02 3.03E-02 

Grade 3 2.86E-02 2.18E-02 3.66E-02 

Grade 1 2.90E-04 -2.68E-04 8.47E-04 
WOS Grade 2 -1.18E-04 -7.80E-04 5.45E-04 

Grade 3 -5.84 E-04 -1.30E-03 1.35E-04 

" Gsanatrle mm is obtsh d after hwrw logrot i cV sbnnWon 

Table 6-10 Estimated means of QDEMRI variables in the Breast Cancer 
Study 

These estimated 95% confidence interval limits for mean values of QDEMRI variables are 

presented graphically in Figure 6-7. The displayed p-values represent the overall regression 
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model significance (see Table 6-7). Red squares represent lower CI limits, blue squares 

represent upper CI limits and green squares represent geometric means of each variable 

(variable \X/OS, as described earlier, was not subjected to logarithmic transformation). 
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Figure 6-7 Estimated means of QDEMRI variables in the Breast Cancer 
Study 

The results of the regression analysis indicate that there is a slight (non-significant) trend 

towards higher values of A, ME and IRE with increasing tumour grade. The pattern of 

distribution of variable A (which is proportional to the fractional volume of the EES, fex ) 

between tumour groups suggests that Grade 2 and Grade 3 tumours have similar EES 

p=0.239 
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fraction (fa) whereas permeability-related variables k2, and Ak2i undergo an abrupt 

change in the transition between Grade2 and Grade 3 tumours. This change is also reflected 

in the observed pattern of WOS distribution between different tumour grades, although it is 

more gradual. High (positive) values of WOS indicate that the uptake of contrast in the 

lesion continues beyond the end of SI sampling. Low (negative) values of WOS indicate 

rapid washout of contrast from the lesion. 

In the unstandardised regression models (Eq. 6-1 and Eq. 6-2), regression coefficients 

obtained for different QDEMRI variables have different units and their magnitudes can 

therefore not be compared directly. A direct comparison between the regression coefficients 

is possible if the regression analysis is performed on standardised variables. To enable a 

direct comparison between the strength and the nature of association between measured 

QDEMRI variables and histologically determined tumour grade all transformed variables 

were standardised, i. e. expressed as Z scores, using the following expression: 

Z(V, )- V'-V 
SD(V ) 

Eq. 6-3 

where Z(V') represents standardised transformed variable, 
T 

represents the overall mean 

of the transformed variable and SD(V') represents the standard deviation of the 

transformed variable. Standardised regression coefficients (derived from the regression 

model described in Eq. 6-1, for contrasts against Grade 1 tumours) are presented in Table 

6-11. This table includes p-values for individual regression coefficients, which are identical to 

those presented in Table 6-8. 
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B 

95% Cl 

Lower Upper P- Value 
Bt (constant) -. 436 -1.010 . 137 

Z(A') B2 . 530 -. 152 1.213 . 125 

B3 . 576 -. 165 1.316 . 125 

B1 (constant) -. 358 -. 889 . 173 

Z(k21') B2 . 106 -. 525 . 737 . 737 

B3 1.002 . 317 1.687 . 005 p<0.005 
Bt (constant) -. 576 -1.097 -. 056 

Z(Ak21') B2 . 406 -. 213 1.025 . 194 

B3 1.235 . 563 1.907 . 001 p<0.005 
B1 (constant) -. 452 -1.021 . 118 

Z(ME) B2 . 481 -. 197 1.158 . 161 
B3 . 706 -. 029 1.442 . 059 

B1 (constant) -. 387 -. 949 . 175 

Z(IRE) B2 . 295 -. 374 . 963 . 381 

B3 . 794 . 068 1.520 . 033 p<0.05 

B1 (constant) . 468 -. 091 1.027 

Z(WOS) B2 -. 408 -1.073 . 256 . 223 

B3 -. 876 -1.598 -. 155 . 018 P<0.05 

Table 6-11 Standardised regression coefficients in the Breast Cancer 
Study (contrasts against Grade 1) 

The results presented in Table 6-11 in demonstrate the degree of separation between Grade 

2 and Grade 3 tumours and the measurements obtained in Grade I group, expressed 

through the standardised regression coefficients and their confidence limits. The estimated 

mean of variable Ak21' in Grade 3 tumours is displaced from the estimated mean of Grade 

1 tumours by 1.235 standard deviations whereas the separation between these two groups 

measured by variable k21' is 1.002 standard deviations. These standardised regression 

coefficients can be directly compared to the standardised regression coefficients for BB 

variables (0.876 and 0.794 SD for WOS and IRE', respectively). 
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95% CI 

B Lower Upper p-value 

B2 (constant) . 094 -. 275 . 463 

Z(A) B1 -. 530 -1.213 . 152 . 125 

B3 . 045 -. 551 . 641 . 880 

B2 (constant) -. 252 -. 593 . 090 

Z(k21') B1 -. 106 -. 737 . 525 . 737 

B3 . 895 . 344 1.447 . 002 p<0.005 
B2 (constant) -. 170 -. 505 . 165 

Z(Ak21') B1 -. 406 -1.025 . 213 . 194 

B3 . 829 . 287 1.370 . 003 p<0.005 
B2 (constant) . 029 -. 338 . 395 

Z(ME) B1 -. 481 -1.158 . 197 . 161 

B3 . 226 -. 366 . 818 . 448 

B2 (constant) -. 092 -. 454 . 269 

Z(IRF) B1 -. 295 -. 963 . 374 . 381 

B3 . 499 -. 085 1.084 . 093 
B2 (constant) . 060 -. 300 . 419 

Z(WOS) 61 . 408 -. 256 1.073 . 223 

B3 -. 468 -1.049 . 113 . 112 

Table 6-12 Standardised regression coefficients in the Breast Cancer 
Study (contrasts against Grade 2) 

The results presented in Table 6-12 demonstrate the degree of separation between Grade 1 

and Grade 3 tumours and the measurements obtained in Grade 2 group, expressed through 

the standardised regression coefficients and their confidence limits. The regression model 

presented in Eq. 6-2 was applied to standardised variables. The estimated mean of variable 

Ak21' in Grade 3 tumours is displaced from the estimated mean of Grade 2 tumours by 

0.829 standard deviations whereas the separation between these two groups measured by 

variable k21 is 0.895 standard deviations (p< 0.005 for both variables). The separation 

between Grade 2 and Grade 3 tumours based on BB variables, however, is not significant. 

Regression coefficients have markedly lower amplitudes when compared to PK variables 

k21 and Ak21 (0.499 and 0.468 for IRE' and WOS, respectively). 

There was no significant association between QDEMRI variables and nodal status (p>0.05). 

Furthermore, groups with and without a significant in-situ component (DCIS) also did not 
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vary significantly (p>0.05). All differences were assessed by applying an independent samples 

t-test to transformed QDEMRI variable measurements. 

Conversion of PK variables into K""s and ff,, 

If a constant pre-contrast value of Tlo and a constant value of initial plasma concentration 

Cp(O) are assumed, the measurements of PK variables A and Ak21 can be converted into 

f,,, (fractional volume of the extracellular space EES) and K`re"$ (apparent capillary 

permeability). By assuming Tlo of 876ms in invasive breast tumours (reported by Merchant 

[126]) and initial plasma concentration of 0.877 mM (after Tofts [69], see Section 3.3), the 

following values of f.. and K"' are obtained from the measurements of A and Ak21 

obtained in this study. 

fox Ktrans [1/min] 

Mean SD Mean SD 

Grade 1 (n = 12) . 389 . 126 . 606 
. 276 

Grade 2 (n = 29) 
. 459 . 144 . 913 . 725 

Grade 3 (n = 18) 
. 459 . 107 1.409 

. 689 

Table 6-13 Conversion of PK variables into f. 
X and K""" 

These values are in good agreement with fix and K "n, values in invasive breast carcinomas 

reported by Tofts et al (Kk81' of 0.1 - 1.2 min-' and ff,, of 0.3 -0.8) [84], den Boer et al 

(K"8n' of 1.05 ± 0.75 min-' and fx of 0.47 ± 0.20 )[102]. Whereas Tofts did not measure 

Tlo, den Boer included a pre-contrast measurement of Tlo in their pharmacokinetic analysis. 

Our measurements of Ktr805 are somewhat higher than those obtained by Ikeda [104] (0.52 

± 0.22 min-') and Hulka [100,101] (0.45 ± 0.22 min-') possibly as a result of different Cp(t) 

models. Both Ikeda and Hulka have modelled Cp(t) as a three-exponential function. Neither 

of these studies, however, included measurements of fix and K "'"' in subgroups of invasive 
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cancers, defined by histological grade or nodal status. Furthermore, the proportion of high- 

grade tumours and tumours of different histological type will have influenced the mean 

values of Kea and ff,, measured in all these studies. 

6.4. Summary of the findings 

In this study a significant correlation between permeability-related pharmacokinetic variables 

(k2, and Ak2t) and tumour grade in invasive breast cancer was found. No association was 

found between any of the QDEMRI variables and tumour nodal status or presence of DCIS. 

A comparable measurement of permeability in different histological grades of human breast 

cancer has not, to our knowledge, been reported in the literature. Our measurements are in 

broad agreement with permeability-related measurements in invasive breast carcinomas in 

humans reported elsewhere in studies involving unspecified mix of histological grades and 

nodal involvement. 

None of the measured QDEMRI variables varied significantly between Grade 1 and Grade 2 

tumours. Whereas pharmacokinetic variables k21 and Ak21 varied significantly between 

Grade 1 and Grade 3 tumours as well as between Grade 2 and Grade 3 tumours, black-box 

variables IRE and WOS varied significantly only between Grade 1 and Grade 3 tumours and 

their overall association with tumour grade was not statistically significant. Analysis of 

standardised regression coefficients indicates that the variable Ak21 provides the greatest 

degree of separation between Grade I and Grade 3 tumours, whereas variable k21 

demonstrated the largest difference between Grade 2 and Grade 3 tumours. Standardised 

regression coefficients of BB variables were consistently lower than those obtained for PK 

variables, suggesting the greater sensitivity of PK variables to differences in microcirculation 

between different tumour grades. 
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The reported lack of correlation between permeability measurements obtained using Gd- 

DTPA and tumour grade in experimental breast cancer studies is most probably due to the 

faster rate of overall circulation in small animal models which requires higher DEMRI 

temporal resolution in order to resolve extravasation rates of small Gd-DTPA molecule in 

highly permeable tumours. 

Whilst it is not possible to trace all possible sources of discrepancy between the results 

presented in this study and other clinical studies where the relationship between tumour 

grade and BB quantifiers of DEMRI was investigated, one probable source of variability lies 

in the different acquisition sensitivity to underlying TI changes. To illustrate theoretical T1 

sensitivity of acquisition protocols used in this and other studies, normalised SI curves were 

generated assuming Tio of 1000 ms and T2* of 100 ms with a=4.5 and 3=5.5 mM-1 s-1 

and acquisition parameters (rR/TE/(p) used in each individual study. The most T1 sensitive 

acquisition sequence was used by Stomper [141,145] (Figure 6-8). However, their studies 

included only a small number of subjects and perhaps inadequate ROI selection and analysis, 

and the imaging volume encompassed only five contiguous slices. Fischer et al [143] 

conducted a large study but employed a sub-optimal acquisition protocol, with respect to 

both temporal resolution (1.5 minutes) and T1 sensitivity (Figure 6-8). 
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Figure 6-8 Comparison of Ti sensitivity of acquisition sequences 

In two studies where simple enhancement ratios displayed significant association with 

tumour grade [142,144] and nodal status [142], T1 sensitivity was somewhat higher than that 

achieved by our acquisition protocol (Figure 6-8). Their superior TI sensitivity, however, was 

associated with concomitant loss of spatial coverage [142] and temporal resolution [144]. 

In summary, this study provided a compromise between the conflicting requirements for 

high temporal and spatial resolution, tissue coverage and T1 sensitivity all of which are 

important for determining the utility of breast cancer DEMRI examinations. The results 

presented in this chapter indicate that permeability-related PK variables obtained using 

QDEMRI analysis method described in this thesis do differ significantly between different 

tumour grades, in particular between low-grade (Grade I and 2) and high-grade (Grade 3) 

tumours, whereas simple BB indices do not. None of the measured QDEMRI variables, 

however, varied significantly between node-positive and node-negative lesions. 
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Chapter 7. Application to rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory disease characterised by the 

symmetric involvement of the synovial joints. It is brought about by the disruption of the 

autoimmune system, caused by an, as yet, unidentified mechanism. RA affects approximately 

1% of the population [148]. Although the course of RA is variable, long-term follow-up 

studies have consistently shown that RA is characterised by poor outcome, with progressive 

structural joint damage and impairment of joint function as well as an increase in premature 

mortality [149]. RA is therefore no longer regarded as a benign disease and the aim of 

treatment is not only the control of symptoms but also the reduction of mortality and 

prevention of structural joint damage and disability. Furthermore, there is mounting evidence 

that an early, aggressive treatment of the RA can significantly improve the long-term 

outcome [150]. 

The pharmacological treatment of RA includes the administration of non-steroidal anti- 

inflammatory drugs (NSAIDs), disease modifying anti-rheumatic drugs (DMARDs) and 

possible introduction of low-dose glucocorticoids. The traditional "pyramidal" approach to 

treatment based on the initial treatment of symptoms (via NSAIDs and glucocorticoids) and 

gradual introduction of DMARDs has recently been abandoned in favour of more aggressive 
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treatment with DMARDs in early RA in the light of evidence that early intervention with 

DMARDs significantly improves the disease outcome [151,152]. 

7.1. Angiogenesis in RA 

In addition to the recognition of the importance of diagnosing and treating early RA and the 

mounting evidence that soft tissue inflammatory changes precede and indeed cause 

subsequent structural joint damage [153], it is now widely acknowledged that RA is an 

angiogenesis dependant disease as suggested by Folkman and others [1,17,154]. 

The primary sites of RA are diathroidal synovial joints although it is associated with a range 

of systemic manifestations [148]. Inflammatory soft tissue changes affect primarily the 

synovial lining of the joint capsule (synovial membrane or synovium, Figure 7-1). However, 

other peri-capsular structures are often inflamed. 

synovial membrane 
bone- I /-joint capsule 

". t rýý} """. ýtlýfw ;, " , 'A; -..... ýýý normal joint 

fluid 

inflamed joint capsule 
synovial 

membrane 

RA joint 

cartilage synovial fluid 

Figure 7-1 Alterations in synovial joints architecture in RA [155] 
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The joints affected by RA are characterised by the hyperproliferation of the synovium and 

the formation of hypervascular pathological tissue called pannus. Figure 7-1 illustrates the 

architectural changes in synovial joints affected by RA. The synovial membrane becomes 

thickened and inflamed. Hypertrophic synovium, together with a variable degree of joint 

effusion, contributes to clinical signs of joint swelling. 

Pannus formation through angiogenesis is one of the earliest histopathological findings in 

RA [156]. Angiogenic pannus growth is thought to be central to the initiation of irreversible 

structural damage to the articular cartilage and subchondral bone in rheumatoid joints [157]. 

This neovascularisation is thought not only to maintain the chronic architectural changes of 

the pannus microvasculature but also to play an active role in the inflammation [154]. The 

alterations in the microvascular architecture resulting from the angiogenesis (including pre- 

existing vessel dilatation and new blood vessel formation) may facilitate the infiltration of the 

synovium by the inflammatory cells [158]. The factors specifically promoting angiogenesis in 

RA have not been identified. However, both synovial tissue and fluid are enriched in 

angiogenesis-promoting molecules [159,1601. 

Many of the available treatments for RA have been shown to possess some degree of 

antiangiogenic activity [161,162]. For example, methotrexate induced angiogenesis inhibition 

was demonstrated by Hirata et al [163]. Furthermore, in patients with active RA treated with 

glucocorticoid methylprednisolone alterations in pro-angiogenic cytokine TNF-alpha 

expression in the synovial membrane correlated with clinical response [164]. 

The recognition of the role of angiogenesis in RA has prompted the research into the 

formulation of specific anti-angiogenic therapies for RA. The research into the role of pro- 

angiogenic cytokine TNF-alpha in RA [165] led to the formulation of a new class of anti- 

rheumatic drugs: biological anticytokine agents. Infliximab and etanercept are and TNF- 

alpha antibodies that have been proven to reduce the symptoms of RA in patients with 
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highly active disease [166,167]. Both infliximab and etanercept have been shown to arrest 

structural joint damage in large scale randomised controlled clinical trials [168,169]. 

Furthermore, it has been shown that synovial blood vessels from RA patients show 

increased expression of integrin av(33 [170,171] which is a potent angiogenesis marker [172, 

173]. A study of the effect of the intra-articular administration of integrin av[33 antagonist in 

an animal model of arthritis was shown to lead to the inhibition of synovial angiogenesis, as 

well as a reduction in joint swelling, synovial infiltrate, and pannus formation, in both early 

and well-established arthritis leading to significant protection against the development of 

cartilage erosions [174]. 

These encouraging advances in the field of pharmacological treatment of RA have 

underlined the need to address the methods used for diagnosis, so that this disease can be 

treated in its early, potentially reversible stage. A multitude of new therapeutic agents that 

target synovial microvasculature are being developed and their effective evaluation would 

benefit from sensitive, objective and quantitative assessment of synovitis in RA, thus 

shortening the process of pre-clinical testing. Proof-of-concept studies could be carried out 

using a small number of subjects, over a short time period if an effective tool for measuring 

sub-clinical changes in synovitis was available. Furthermore, due to the high cost of these 

emerging therapies, an objective method for pre-treatment assessment of RA may facilitate 

effective targeted selection of patients who are most likely to benefit from the treatment with 

particular drugs. 

Contrast-enhanced MRI has been put forward as one of the candidates for the fulfilment of 

this role. Both static and dynamic Gd-DTPA enhanced MRI have been applied for the 

assessment of disease activity in RA (Section 7.2). MRI applications in RA include 

characterisation of synovitis (inflammation of the synovial lining of the joints) as well as the 

assessment of bone damage. There is evidence to suggest that MRI is superior to 

conventional radiography in demonstrating the extent of bone damage, particularly in early 
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RA [175]. Furthermore, Gd-DTPA enhanced MRI appears to be superior to clinical 

assessment in diagnosing early RA [176]. 

Quantitative analysis of Gd-DTPA uptake in RA has been shown to be feasible and the 

results presented in the literature suggest a close link between the histological markers of 

inflammation and Gd-DTPA induced SI changes in MRI. The argument is being put 

forward that contrast enhanced MRI, due to its sensitivity to pathologic features of RA, as 

well as its non-invasiveness and favourable spatial and temporal resolution, should be 

considered as a new gold standard for the assessment of RA [177]. 

7.2. Quantitative analysis of contrast enhanced MRI in 
RA 

Since the publication of the first images of the human wrist by Hinshaw in 1977 [54], MRI 

has revolutionised the practice of musculoskeletal radiology [44]. The potential utility of MRI 

in the assessment of RA has been suggested by Hull [128], Beltran [178] and others [179- 

181]. The introduction of MRI contrast agents has provided a major impetus for the 

development of MRI applications in this area. Whereas on conventional non-contrast MRI 

different joint structures (such as joint effusion, synovitis, intraarticular pannus, subchondral 

sclerosis, and subchondral pannus) have similar signal intensities, and cannot be reliably 

differentiated from one another [178,182], Gd-DTPA enhanced MRI allows the 

visualisation of hyperthrophic synovium in RA [179,180,182], since it selectively enhances 

only perfused tissues with high capillary permeability and high local distribution volume. 

The direct link between the Gd-DTPA-induced MRI signal intensity enhancement and the 

degree of inflammatory activity stems from the fact that cardinal features of inflammation 

include increased vascularity, capillary permeability and tissue oedema, all of which have a 

direct influence on the local pattern of uptake of Gd-DTPA [64]. 
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Different approaches to quantitative measurement of disease activity in RA based on 

contrast enhanced MRI include static, volumetric assessment of the synovial lining volume 

through the analysis of subtraction (post-pre contrast) Tl-weighted images [183-189] and the 

analysis of the temporal pattern of enhancement in DEMRI through the computation of 

enhancement indices derived from manually selected ROIs [179,183,184,190-194]. 

Whereas quantitative assessment of synovial volumes from static Gd-DTPA enhanced MRI 

has been studied in the knee [183,184,187,189], wrist [185,186] and finger joints [188], 

quantitative analysis of DEMRI has to date been limited to the study of knee joints. 

Static contrast enhanced MRI in the assessment of RA 

MRI-derived volumes of synovial tissue have been shown to reflect the changes in disease 

activity following intra-articular treatment with glucocorticoids [183,184,195] and radiation 

synovectomy [187]. The measurement of pannus volume using static Gd-DTPA enhanced 

MRI in rheumatoid wrists was compared to the findings of F-18 Fluorodeoxyglucose (FDG) 

Positron Emission Tomography (PET). MRI-derived pannus volume correlated strongly 

with the FDG uptake, thus confirming that the extent of Gd-DTPA enhancement reflects 

the metabolic changes in joint inflammation [186]. (stergaard et al have found a significant 

correlation between the measurements of synovial volume and histological markers of 

inflammation [189]. However, in their subsequent report, they found that quantitative 

DEMRI measurements correlated with histology more closely than the measurements 

obtained from static MRI [193]. 

Correlation of DEMRI findings with histology in RA 

A number of research groups have assessed the correlation between the findings of DEMRI 

and histological markers of inflammation in RA. König et al [179] demonstrated the link 
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between the initial rate of Gd-DTPA uptake in rheumatoid knees and the vascularity of 

synovitis, determined by histological analysis of synovial specimens. They have also 

demonstrated the capacity of quantitative measures of maximal enhancement and the time of 

maximal enhancement to distinguish between vascular and fibrous pannus. Tamai et al [194] 

provided further histological evidence that DEMRI reflects the degree of local disease 

activity in RA by demonstrating that the degree of enhancement was greater in synovial 

regions with a higher degree of fibrin exudation, cellular infiltration, villous hypertrophy, 

vascular proliferation, and granulation formation in synovial specimens from rheumatoid 

knees. Gaffney et al analysed the relationship between both qualitative [191] and quantitative 

[190] histological features of synovial samples in RA and the initial rate of enhancement of 

DEMRI in the acute synovitis of knee joints. They have found that the initial rate of 

enhancement correlated with qualitative histological score of acute inflammation but not 

with clinical or laboratory findings [191]. In their subsequent publication, they have reported 

a significant correlation between the initial rate of enhancement and the blood vessel 

numerical density as well as the blood vessel fractional area [190]. Ostergaard et al also found 

that initial rate of enhancement was correlated with histological features of active 

inflammation such as vessel proliferation and mononuclear leukocyte infiltration [193]. 

DEMRI in the assessment of treatment effectiveness in RA 

In addition to the work described above (where DEMRI was used in the RA lesion 

characterisation), quantification of DEMRI in RA has also been used as a method for the 

measurement of treatment effectiveness [183,184,192]. Ostergaard et al have suggested that 

quantitative analysis of DEMRI in RA may be used to monitor the response to therapy and 

demonstrated the effect of intra-articular methylprednisolone injection in rheumatoid knees 

over a period of 180 days [192]. A decrease in measured initial rate of enhancement was 

detected within a week of the administration of IACS. However, the measured IRE regained 
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pre-treatment levels at the six months follow-up. Creamer et al [184] reported a significant 

reduction in the maximal enhancement and the initial rate of enhancement in RA knees 

treated with intra-articular corticoid triamcinolone hexacetonide as early as one week after 

treatment. In one study [183], quantitative DEMRI findings (maximal enhancement and time 

of maximal enhancement) were found to be unrelated to the clinical outcome. 

Pharmacokinetic modelling of DEMRI in arthritis and inflammation 

Pharmacokinetic analysis of DEMRI in human studies of RA has not been reported to date. 

However, PK-QDEMRI was applied in animal models of arthritis [196,197] and 

inflammation [198]. A macro-molecular blood-pool contrast medium (albumin-(Gd- 

DTPA)3o, [199]) was used instead of Gd-DTPA. Van Dijke et al reported a significant 

difference between the permeability surface area product (PS) in sham-treated and antigen- 

challenged temporomandibular joints in rabbits, but found no differences between the 

measurements of plasma volume (PV) [196]. These findings were similar to those obtained 

by the same research group in a study of knee joint arthritis in rabbits. Again, measurements 

of PS were correlated with histological score but PV values were found not to be 

significantly associated with histological assessment of synovitis. Demsar et all [198], who 

studied a different animal model of inflammation (an intramuscular sterile abscess in Fischer 

rats) using the same MMCM technique reported a good discrimination between inflamed 

tissues and surrounding parenchyma based on spatially mapped PS, but not PV values. 

7.3. Study description 

The studies currently reported in the literature where DEMRI was utilised for the assessment 

of disease activity and therapeutic response in RA have provided valuable information about 

the link between DEMRI findings and disease activity in RA. However, the methods used 
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for quantitative analysis utilised in these studies include a significant degree of subjectivity 

and are therefore not suitable for objective, user-independent assessment of disease activity 

in RA. The lack of standardisation in this area has contributed to the fact that, despite initial 

promise, quantitative analysis of DEMRI is still not effectively used in the assessment of 

disease activity, response to treatment or the investigation of the aetiology of RA. 

Black-box analysis of DEMRI in RA 

In all clinical studies published to-date, quantitative analysis of DEMRI in RA was 

performed using manually selected ROIs and individual SI/time curves were characterised 

through a range of black-box variables (maximal enhancement, initial rate of enhancement, 

time to maximal enhancement). The normalisation to pre-contrast SI was performed in some 

of these studies [183,192,193], but not in others [184,190,191], thus rendering their 

findings applicable only within their individual experimental setting. The measurement of the 

initial rate of enhancement and maximal enhancement was based on visual inspection of 

individual SI/time curves and no attempt has been made to automate this process and make 

it insensitive to random fluctuations in SI. The identification of the temporal location of the 

initial linear phase of enhancement was also made subjectively. 

The problems associated with discrete sampling of often highly heterogeneous synovial 

tissue were highlighted in a study by Ostergaard et al [193] and the strongest degree of 

correlation with histological markers of inflammation was found when the complete DEMRI 

volume was included in the analysis. Furthermore, this study demonstrated the importance 

of the measurement of the initial rate of Gd-DTPA uptake in the period between 30 seconds 

and 1 minute post-injection, since the measurements obtained within this time frame 

displayed the highest degree of correlation with histological findings. The measurement of 

the time of maximal enhancement, proposed as an indirect measure of the rate of 
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enhancement by Clunie et al [183] is limited by the existence of a long plateau of 

enhancement present in synovial tissues, as demonstrated by Yamatto et al [200]. 

In this thesis, the measurement of black-box variables ME and IRE was performed using 

moving-window algorithms described in Section 4.3 and their implementation in RA studies 

was presented in Chapter 5. These algorithms enable voxel-by-voxel sampling of the 

normalised SI/time curves throughout the entire enhancing volume in an automated fashion, 

without the need for user-interaction. The location of the steepest gradient of the normalised 

SI/time curve (initial rate of enhancement, IRE) is detected automatically, as well as the 

maximal amplitude of enhancement (ME). This method is thus suitable for an objective, 

global assessment of disease activity in RA. Parametric colour-coded maps of variables used 

for quantification of Gd-DTPA enhancement enable the high-resolution analysis of the 

spatial distribution of the inflamed synovium, whereas quantitative, histogram-based 

measurements representing the overall measure of disease activity allow the monitoring of 

treatment effects. An automated method for the measurements of BB variables in 

rheumatoid knees was reported earlier by our research group [201]. However, the sampling 

was not performed on a voxel-by-voxel basis. Manually selected ROIs were used for the 

evaluation of enhancement. 

Furthermore, the quantitative analysis of DEMRI in MCP joints has not been reported to- 

date although these joints are particularly important for the assessment of the early RA since 

they are often the first joints to be affected by RA [202]. 

PK analysis of QDEMRI in RA 

Macro-molecular contrast media (MMCM) used for the pharmacokinetic analysis of DEMRI 

in animal models of arthritis [196,197] and inflammation [198] were not available for clinical 

applications. It has been argued that MMCM allow a more precise discrimination between 

164 



normal and abnormal microvasculature due to the larger size of the MMCM molecules 

compared to small, extracellular agent such as Gd-DTPA [196-198]. Whilst it seems 

reasonable to suggest that the measurement of permeability surface area product by MMCM 

enhanced DEMRI is likely to be more specific [203], it is possible that it may not be 

sufficiently sensitive to reveal the changes in microcirculation that occur in early RA. 

In MMCM enhanced DEMRI, the fractional plasma volume (PV) is measured rather than 

the fractional volume of the EES (fix). This presents a major limitation of this approach, 

because blood plasma volume may not correlate with the degree of inflammation in arthritic 

lesions in contrast to the volume of the extracellular space [204]. The authors indeed note 

that their parameter PV does not correlate with the histological features of inflammation and 

does not provide sufficient discrimination between the lesion and the surrounding 

parenchyma [196-198]. Furthermore, this method of measuring PS requires long DEMRI 

acquisitions (30 minutes [196,197] or even 60 minutes [198]) and simultaneous sampling of 

Cp(t), making it less suitable for clinical applications. 

Pharmacokinetic modelling of Gd-DTPA enhanced MRI in RA has not been reported to 

date. This work therefore presents the first attempt to apply PK modelling of Gd-DTPA 

kinetics in clinical studies of RA. 

In this thesis, QDEMRI analysis (including both black-box and pharmacokinetic analysis) 

was applied in two randomised clinical studies where the effectiveness of the treatment with 

methotrexate was compared to that of methotrexate with concurrent administration of intra- 

articular steroid (IACS) methylprednisolone (The Hand RA Study) or leflunomide (LEF), in 

a study of RA of the knee (The Knee RA Study). A summary of the therapies which were 

assessed by QDEMRI in two RA studies is presented in Table 7-1 below. 
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Treatments studied 

The Hand RA Study MTX vs MTX+IACS 

The Knee RA Study MTX vs LEF 

Table 7-1 Summary of the investigated treatments in RA studies 

The patients treated with methotrexate (MTX), which is the most commonly used 

conventional DMARD which suppresses cytokine production in RA [205], provided control 

groups in both trials, because placebo control was ruled out due to ethical considerations. 

Whilst these treatments are not specifically targeted to suppress angiogenesis in RA, all of 

them have been shown to possess a degree of anti-angiogenic effect [163,164,206,207]. The 

documented difference in the timing of action of these therapies provided the framework for 

implicit validation of QDEMRI measurements. Whilst MTX is a slow-acting DMARD, intra- 

articular administration of steroids in rheumatoid knees was shown to result in rapid (within 

one week) reduction in synovitis [184,192]. 

Leflunomide (LEF), is a novel immunomodulatory DMARD (pyrimidine synthesis inhibitor) 

that has been shown to be effective in treatment of RA [208]. It has been shown to be 

equivalent to other established DMARDs (methotrexate and sulfasalazine) in terms of its 

capacity to reduce symptoms of RA and retard disease progression [209-212]. Furthermore, 

LEF has a somewhat faster onset of action than MTX. In a study of 482 RA patients 

conducted by Strand et al [209], the onset of effect occurred at a mean of 8.6 weeks in 

patients treated with LEF compared with 9.5 weeks for those treated with MTX. 

The application of this method in a clinical study comparing the effect of fast acting intra- 

articular injection of steroid and slow acting methotrexate in a study of MCP joints (the 

Hand RA Study) provided a framework for implicit validation of the findings of PK analysis. 

In particular, the measurements of variable A, which according to the theoretical 
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pharmacokinetic model reflects the fractional volume of the EES (f,,, ), were expected to 

reflect the changes instituted by the administration of IACS. The results of QDEMRI 

analysis performed in this study are presented in Section 7.4 

A possible differential effect of leflunomide versus methotrexate in rheumatoid knees was 

investigated in the second randomised clinical study (the Knee RA Study). The results of the 

BB analysis, performed using an earlier version of the methodology presented in this thesis 

were presented by our research group [213]. In this thesis, additional measurements of PK 

variables were performed to compare the findings of BB and PK analysis. The results of 

QDEMRI analysis performed in this study are presented in Section 7.5. 

7.4. Hand RA Study 

7.4.1. Study description 

This randomised study was designed to examine the effects of two therapies with different 

times of the onset of action on the degree of synovitis and formation of bone erosions in 

MCP joints (MCPJs) in patients with early RA. Whereas the primary aim of the work 

presented in this thesis was the application of QDEMRI analysis for the assessment of 

synovial Gd-DTPA uptake, the qualitative analysis of synovial enhancement and bone 

erosions was performed by Conaghan et al [214]. The two therapies under investigation were 

a slow acting disease modifying drug (DMARD) methotrexate (MTX) and methotrexate with 

intra-articular injections of corticosteroid methylprednisolone (MTX+IACS), where IACS 

component of therapy induces rapid reduction in synovitis. The institutional review board 

provided ethical approval for this study and written informed consent was obtained from all 

patients. 
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The MCPJs were studied in forty previously untreated consecutive patients recruited from an 

early arthritis clinic, all of whom were diagnosed with rheumatoid arthritis according to the 

revised American Rheumatism Association (ARA) criteria [215]. In the first stage (0-3 

months), patients were randomised to receive either methotrexate alone (MTX group) or 

MTX and intra-articular corticosteroids into all clinically active joints (MTX+IACS group). 

The MTX group received no further corticosteroids until the second stage (3-12 months) 

when both groups received standard therapy (with continuing MTX dose escalation and 

intra-articular and intra-muscular corticosteroid as routinely indicated). DEMRI scans of the 

dominant hand were performed immediately before the start of treatment (baseline Scan 1) 

and at three and twelve months after the start of treatment (Scan 2 and Scan 3, respectively) 

according to the protocol described in Section 5.1.2. 

Thirty-seven patients successfully completed the first stage of the study (baseline and three 

months follow-up). Out of this group of thirty-seven patients, thirty-two completed the 

second stage of the study (twelve months follow-up). QDEMRI analysis was performed in 

thirty-seven patients where at least the first follow-up scan was available. 

The disease duration varied between 2 and 11 months (median 5.5 months). None of these 

patients received any DMARDs prior to the enrolment into the study. The median age was 

59 years (range: 21 to 83 years). Twenty-one patients were female and sixteen were male. 

MTX group consisted of 17 patients and MTX + IACS group consisted of 20 patients. 

Both patient groups were started on an identical methotrexate treatment regime following 

the baseline clinical and laboratory assessment and baseline DEMRI scan (Scan 1). They 

received 7.5mg of methotrexate per week initially rising to 12.5 mg per week for twelve 

weeks. In addition to this MTX + IACS patients received methylprednisolone injections 

immediately after the baseline examinations. All clinically active joints were injected, with the 

dose ranging from 10mg for small joints to 40mg for larger joints. The first follow-up 
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DEMRI scan was performed at three months (Scan 2). In the second stage of the study (3-12 

months) both patient groups received an identical, standard treatment as described above. 

The second follow-up DEMRI scan (Scan 3) was performed at the end of the stage two (at 

twelve months after the start of therapy). 

7.4.2. Summary of the measurements 

All DEMRI scans were analysed on a voxel-by-voxel basis following the procedure described 

in Chapter 5. The entire DEMRI volume (apart from MCPJ1) was included in the analysis. 

Seven QDEMRI variables were measured in each DEMRI set including two black-box 

parameters (IRE and ME) and three pharmacokinetic parameters (A, k21, Ak21) as well as 

two voxel counts N-BB and N-PK obtained by counting all voxels included in the black-box 

and pharmacokinetic analyses, respectively. All measurement units are listed in Appendix A. 

QDEMRI analysis was performed blinded to the treatment allocation and the order of scans. 

After obtaining the treatment allocation key, the variables were arranged in treatment and 

visit groups, thus forming six sub-groups. They were labelled as follows: 

MTX (1) baseline scan in the MTX group (n = 17) 

MTX (2) 3 months follow-up in the MTX group (n = 17) 

MTX (3) 12 months follow-up in the MTX group (n = 16) 

MTX+IACS (1) baseline scan in the MTX+IACS group (n = 20) 

MTX+IACS (2) 3 months follow-up in the MTX+IACS group (n = 20) 

MTX+IACS (3) 12 months follow-up in the MTX+IACS group (n = 16) 

A total of 106 DEMRI studies were analysed. A summary of the measurements is presented 

in Table 7-2 to Table 7-4 and Figure 7-2 to Figure 7-8. Means and standard deviations of 

seven measured parameters in each of the six scan groups are presented in Table 7-2 (voxel 

counts), Table 7-3 (pharmacokinetic parameters) and Table 7-4 (black-box parameters). 
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N. PK 

Mean SD 

N$B 

Mean SD 

MTX (1) (n =17) 3.66E+04 1.21E+04 3.84E+04 1.21E+04 

MTX (2) (n = 17) 3.58E+04 1.42E+04 3.73E+04 1.47E+04 

MTX (3) (n = 16) 2.51E+04 9.63E+03 2.61E+04 9.87E+03 

MTX+IACS (1) (n= 20) 3.44E+04 1.35E+04 3.57E+04 1.40E+04 

MTX+IACS (2) (n= 20) 2.17E+04 1.34E+04 2.26E+04 1.37E+04 

MTX+IACS (3) (n= 16) 2.19E+04 9.44E+03 2.30E+04 9.79E+03 

Table 7-2 Summary of voxel counts measurements in the Hand RA Study 

A (s-1] 

Mean SD 

k21 (s-1] 

Mean SD 

Ak21 (s-2] 

Mean SD 

MTX (1) (n = 17) 7.19E-02 1.68E-02 3.98E-02 5.78E-03 2.1 9E-03 4.72E-04 

MTX (2) (n =17) 6.90E-02 1.92E-02 3.86E-02 7.08E-03 2.07E-03 5.87E-04 
MTX (3) (n =16) 5.41E-02 1.28E-02 3.73E-02 5.56E-03 1.51E-03 3.92E-04 

MTX+IACS (1) (n = 20) 7.22E-02 1.64E-02 3.58E-02 6.28E-03 1.97E-03 4.18E-04 

MTX+IACS (2) (n = 20) 5.59E-02 1.84E-02 3.87E-02 8.91 E-03 1.60E-03 4.48E-04 

MTX+IACS (3) (n= 16) 5.03E-02 1.39E-02 3.87E-02 8.18E-03 1.43E-03 2.33E-04 

Table 7-3 Summary of pharmacokinetic parameters measurements in the 
Hand RA Study 

ME 

Mean SD 

IRE Is-1] 

Mean SD 

MTX (1) (n =17) 1.93E+00 2.20E-01 3.09E-02 6.61E-03 

MTX (2) (n =17) 1.87E+00 2.28E-01 2.88E-02 7.94E-03 

MTX (3) (n =16) 1.68E+00 1.45E-01 2.24E-02 5.18E-03 

MTX+IACS (1) (n= 20) 1.89E+00 1.80E-01 2.77E-02 5.34E-03 

MTX+IACS (2) (n= 20) 1.69E+00 1.91E-01 2.23E-02 5.36E-03 

MTX+IACS (3) (n = 16) 1.62E+00 1.42E-01 2.07E-02 4.28E-03 

Table 7-4 Summary of black-box parameters measurements in the Hand 
RA Study 

To illustrate the distribution of measured QDEMRI variables, the differences between the 

measurements at different points during the treatment cycle and in different treatment 

groups, the values of individual measurements are presented in scatter plots and the 
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corresponding summary error bar plots (Figure 7-2 to Figure 7-8). Error bar plots represent 

the mean of each individual cluster and two standard error (SE) limits. 
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Figure 7-2 Distribution of variable N-PK in the Hand RA Study 
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Figure 7-3 Distribution of variable N-BB in the Hand RA Study 
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Figure 7-8 Distribution of variable IRE in the Hand RA Study 

7.4.3. Statistical analysis 

SPSS statistical software package (Version 10.0, SPSS, Chicago, IL) was used for statistical 

analysis. All statistical tests were performed at a=0.05 confidence level. A preliminary 

analysis of the distribution of measurements of each of the seven QDEMRI variables 

revealed no significant deviation from normality in six scan subgroups. This analysis was 

performed on 42 sets of measurements (seven variables divided into six scan subgroups) 

with the sample size ranging from 16 to 20. The results of the Kolmogorov-Smirnov test for 

normality are listed in Appendix C. No significant departure from normality was detected by 

this test, and the differences between individual QDEMRI variables subgroups were 

analysed by using tests for normally distributed variables (at a=0.05 confidence level). 
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Baseline measurements 

The analysis of baseline measurements revealed no statistically significant differences 

between two treatment groups. Parameter k21 was, however, marginally elevated in the 

MTX group (p = 0.051). The results of an independent t-test for the differences in means are 

presented in Table 7-5. 

p. vaiue 

t-test for Equality of Means 

95%Confidence 
Interval of the 

Difference 
Mean 

Difference Lower Upper 

N-PK (1) . 611 2.16E+03 -6.38E+03 1.07E+04 

N-BB (1) . 526 2.74E+03 -5.96E+03 1.14E+04 

A(1) . 951 -3.38E-04 -1.15E-02 1.08E-02 

k21 (1) . 051 4.01E-03 "1.75E-05 8.04E-03 

Ak21 (1) . 142 2.22E-04 -7.86E-05 5.23E-04 

ME (1) . 530 4.25E-02 -9.38E-02 1.79E-01 

IRE (1) . 121 3.19E-03 -8.90E-04 7.27E-03 

Table 7-5 Analysis of baseline measurements in the Hand RA Study 
(MTX vs. MTX+IACS) t 

Repeated measures ANOVA 

Following the analysis of baseline measurements of QDEMRI variables, the analysis of 

treatment-induced changes was performed by applying repeated measures ANOVA test on 

the measurements obtained in the two treatment groups at three points during the course of 

the treatment. The results are summarised in Table 7-6 and Table 7-7 below. The results of 

this analysis confirm that the observed pattern of changes in QDEMRI variables over the 

course of treatment is indeed statistically significant for all variables apart from k21. 

t Mean Difference = Mean (MT9 - Mean (MTX+IACS) 
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F p-value 

N-PK MTX 12.304 . 000117 p<0.0005 

N-BB MTX 13.298 . 000068 p<0.0001 

AMTX 15.480 . 
000022 p<0.00005 

k21 MTX . 765 . 473974 n. s. 

Ak21 MTX 14.695 . 000032 p<0.00005 

ME MTX 14.278 . 000040 p<0.00005 

IRE MTX 11.523 . 000181 p<0.0005 

Table 7-6 Repeated measures ANOVA in the MTX group 

F p4value 

N-PK MTX+IACS 17.530 . 000006 p<0.00001 

N-BB MTX+IACS 17.736 . 000005 p<0.00001 
A MTX+IACS 22.526 . 000001 p<0.000005 
k21 MTX+IACS 1.165 . 324136 n. s. 

A1c21 MTX+IACS 11.049 . 000201 p<0.0005 

ME MTX+IACS 22.528 . 000001 p<0.000005 

IRE MTX+IACS 13.768 . 000042 p<0.00005 

Table 7-7 Repeated measures ANOVA in the MTX+IACS group 

The results indicate a highly significant change in all QDEMRI variables apart from k21 in 

both treatment groups. The direction and temporal pattern of treatment-induced changes is 

analysed in more detail in the following section. 

Multiple comparisons (post-hoc) analysis 

The temporal pattern of treatment-induced changes in the two treatment groups is markedly 

different as indicated by the measurements presented in Table 7-2 to Table 7-4 and the 

scatter plots (Figure 7-2 to Figure 7-8). The nature and the magnitude of these differences in 

individual pairs of measurements were assessed by applying post-hoc tests (multiple 

comparisons tests) with Least Significant Difference (LSD) correction for multiple testing. 
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The changes in QDEMRI variables at three months follow-up 

At three months follow-up, there were no significant changes in the MTX group (Table 7-8), 

whereas all variables in the MTX+IACS group (with the exception of k21) were significantly 

lower when compared to baseline (Table 7-9). 

MTX Group 
Mean 

Difference p-value 

95% Confidence 
Interval 

Lower Upper 
Bound Bound 

N-PK 7.90E+02 n. s. . 759 -4.43E+03 6.01E+03 

N-BB 1.14E+03 n. s. . 663 -4.15E+03 6.43E+03 

A 2.88E-03 n. s. . 431 -4.47E-03 1.02E-02 

k21 1.15E-03 n. s. . 451 -1.92E-03 4.23E-03 

Ak21 1.20E-04 n. s. . 375 -1.52E-04 3.93E-04 

ME 6.15E-02 n. s. . 219 -3.85E-02 1.62E-01 

IRE 2.11E-03 n. s. . 262 -1.66E-03 5.87E-03 

Table 7-8 Multiple comparisons tests in the MTX group 
(Scan 1 vs. Scan 2) 

MTx+LACs 
Group Mean 

Difference p. value 

95% Confidence 
Interval 

Lower Upper 
Bound Bound 

N-PK 127E+04 p<0.00001 . 0000061 7.90E+03 1.76E+04 

N-BB 1.31E+04 p<0.00001 . 0000053 8.14E+03 1.80E+04 

A 1.64E-02 p<0.00001 . 0000067 1.01E-02 2.26E-02 

k21 -2.90E-03 n. s. . 1654564 -7.05E-03 1.26E-03 

Ak21 3.70E-04 p<0.005 . 0014564 1.53E-04 5.87E-04 

ME 1.96E-01 p<0.00001 . 0000082 1.20E-01 2.72E-01 
IRE 5.47E-03 p<0.0005 . 0002110 2.79E-03 8.15E-03 

Table 7-9 Multiple comparisons tests in the MTX+IACS group 
(Scan 1 vs. Scan 2) 
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The changes in QDEMRI variables at twelve months follow-up 

The comparison between baseline measurements and the measurements obtained at twelve 

months after the start of the treatment indicates a significant reduction in all QDEMRI 

variables (apart from k21) in both treatment groups (Table 7-10 and Table 7-11). 

MTX Group 
Mean 

Difference p. value 

95%. Confidence 
Interval 

Lower Upper 
Bound Bound 

N-PK 1.14E+04 p<0.0005 . 00012 6.14E+03 1.67E+04 

N-BB 1.23E+04 p<0.0001 . 00006 6.91E+03 1.77E+04 

A 1.78E-02 p<0.00005 . 00003 1.04E-02 2.53E-02 

k21 2.51E-03 n. s. . 11171 -6.16E-04 5.63E-03 

Ak21 6.82E-04 p<0.00005 . 00002 4.06E-04 9.59E-04 

ME 2.46E-01 p<0.00005 . 00003 1.45E-01 3.48E-01 

IRE 8.51E-03 p<0.0001 . 00008 4.69E-03 1.23E-02 

Table 7-10 Multiple comparisons tests in the MTX group 
(Scan 1 vs. Scan 3) 

MTX+IACS 
Group Mean 

Difference p. value 

95% Confidence 
Interval 

Lower Upper 
Bound Bound 

N-PK 124E+04 p<0.00005 . 0000216 7.31E+03 1.76E+04 

N-BB 1.26E+04 p<0.00005 . 0000217 7.42E+03 1.79E+04 

A 2.19E-02 p<0.0000005 . 0000001 1.53E-02 2.85E-02 

k21 -2.96E-03 n. s. . 1805830 -7.37E-03 1.44E-03 

Ak21 5.37E-04 p<0.00005 . 0000370 3.07E-04 7.67E-04 

ME 2.63E-01 p<0.0000005 . 0000001 1.82E-01 3.43E-01 
IRE 7.05E-03 p<0.00005 . 0000151 4.21E-03 9.90E-03 

Table 7-11 Multiple comparisons tests in the MTX+IACS group 
(Scan 1 vs. Scan 3) 
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The differences in treatment effectiveness 

Although a significant change in QDEMRI variables was detected at three months in the 

MTX+IACS group and not in the MTX group, this in itself is not a sufficient evidence of 

the differences between the treatment effectiveness of these two therapies [147]. Therefore, 

the magnitude of treatment-induced changes was assessed by applying an independent t-test 

on the values of differences between measurements obtained in Scan 1 and Scan 2 (e. g. A (1- 

2), k2l (1-2) etc. ) as well as differences between measurements in Scan 1 and Scan 3 (e. g. 

A(1-3), k21 (1-3) etc. ). All paired measurement differences were tested for normality using 

the Kolmogorov-Smirnov test and no significant departure from normality was detected. 

There were no significant differences in responses at twelve months follow-up, whereas the 

differences in voxel counts, parameter A and ME were significantly higher in the 

MTX+IACS group at the three months follow up. The differences in voxel counts and A 

were more pronounced than corresponding changes in ME. Interestingly, the changes in 

parameter k21 displayed opposite trends in two treatment groups. Whereas the values of 

k21 were reduced by 2.51 (10-3 s-i) in the MTX group, they rose by 2.96 (10-3 s-1) in the 

MTX+IACS group at twelve months post-treatment. This result, however, was not 

statistically significant (p = 0.065). 
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Independent Samples Test 

t-test for Equality of Means 

95% Confidence 
Interval of the 

Difference 
Mean SE 

p-value Difference Difference Lower Upper 

N-PK(12) . 0005 -1.20E+04 3.11E+03 -1.83E+04 -5.64E+03 
N-BB(1-2) . 0005 -1.19E+04 3.11E+03 -1.82E+04 -5.60E+03 
A(1-2) . 0014 -1.35E-02 3.88E-03 -2.14E-02 -5.60E-03 
k21 (1-2) . 1380 4.05E-03 2.67E-03 -1.37E-03 9.47E-03 

Ak21 (1-2) . 1826 -2.49E-04 1.83E-04 -6.22E-04 1.23E-04 

ME (1-2) . 0207 -1.34E-01 5.55E-02 -2.47E-01 -2.18E-02 
IRE (1-2) . 1778 -3.36E-03 2.44E-03 -8.34E-03 1.61E-03 

Table 7-12 Differences in the magnitude of response in two treatment 

groups at three months 

The results of the independent t-tests performed on the differences between baseline and the 

three months follow-up measurements are listed in Table 7-12. The changes in variables N- 

PK, N-BB, A and ME at the three months follow-up were markedly higher in the MTX + 

IACS group. Differences in the effectiveness of these two treatments at 12 months follow- 

up were not statistically significant (Table 7-13). 
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Independent Samples Test 

p-value 

t-test for Equality of Means 

95% Confidence 
Interval of the 

Difference 
Mean SE 

Difference Difference Lower Upper 

N-PK (1 -3) . 972 -1.32E+02 3.77E+03 -7.82E+03 7.56E+03 

N-BB (1-3) . 906 4.60E+02 3.86E+03 -7.42E+03 8.34E+03 

A(13) . 851 -1.05E-03 5.56E-03 -1.24E-02 1.03E-02 
k21 (1-3) . 065 4.54E-03 2.36E-03 -2.92E-04 9.37E-03 

Ak21 (1-3) . 334 1.80E-04 1.83E-04 -1.96E-04 5.55E-04 

ME (1-3) . 844 1.43E-02 7.21E-02 -1.34E-01 1.62E-01 

IRE (13) . 355 2.26E-03 2.40E-03 -2.67E-03 7.19E-03 

Table 7-13 Differences in the magnitude of response in two treatment 
groups at twelve months 

Conversion of QDEMRI variables 

The voxel counts presented in Table 7-1 can be converted into millilitres of tissue by 

multiplying them by a voxel volume (0.46 mmx). Average baseline volume was 16.7 ± 5.5 ml 

in the MTX group and 15.7 ± 6.2 ml in the MTX+IACS group. At twelve months follow-up 

the volumes were reduced to 11.5 ± 4.4 ml in the MTX group and 10.0 ± 4.3 ml in the 

MTX+IACS group. The volumes reported here are based on the total number of voxels 

included in the pharmacokinetic analysis (N-PK). 
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Volume [mlj 

Mean SD 

MTX(1)(n=17) 16.7 5.5 

MTX(2)(n=17) 16.4 6.5 

MTX(3)(n=16) 11.5 4.4 

MTX+IACS (1) (n = 20) 15.7 6.2 

MTX+IACS(2)(n=20) 9.9 6.1 

MTX+IACS (3) (n = 16) 10.0 4.3 

Table 7-14 Volumes of the enhancing tissue in the Hand RA Study 

If a constant value of T1 is assumed (Flo = 900 ms) and a uniform Cp(0) in all subjects is 

assumed to be 0.877 mM, an estimate of physiological variables fix (v., the volume of the 

EES) and apparent permeability K` can be obtained from the measurements of A and 

Ak21 presented in Chapter 4, Eq. 4-16. 

fex Ktrans [min. -Il 

Mean SD Mean SD 
MTX(1) . 290 . 068 . 530 . 114 

MTX (2) . 278 . 077 . 501 . 142 

MTX (3) . 218 . 052 . 365 . 095 

MTX+IACS (1) . 291 . 066 . 476 . 101 

MTX+IACS (2) . 225 . 074 . 387 . 108 

MTX+IACS (3) . 203 . 056 . 347 . 056 

Table 7-15 Average values of f,,, and K"a` in the Hand RA Study 

7.4.4. Summary of the findings 

The statistical analysis of QDEMRI findings indicated a significant treatment-induced 

change in both treatment groups over the twelve months course of treatment (Table 7-6 and 

Table 7-7). The only variable which remained essentially unchanged during this period was 

k21. Furthermore, QDEMRI analysis demonstrated a significant difference in the time 
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course of treatment induced changes in two treatment groups. Whereas a significant 

remission was achieved at three months in the MTX+IACS group (Table 7-9), no changes in 

QDEMRI variables were detected in the MTX group (Table 7-8). However, at twelve 

months follow-up, the patients in both treatment groups achieved a comparable degree of 

remission, suggesting that an early intervention with IACS did not confer a long lasting effect 

on the microvascular properties of the synovium (Table 7-10 and Table 7-11). 

The results obtained at three months follow-up indicate that QDEMRI variable A (which 

according to the theoretical description of the model reflects the fractional volume ff,, of 

the extracellular extravascular space, EES) was significantly reduced compared to the 

baseline only in the MTX+IACS group. This is in agreement with the known difference in 

the timing of action between IACS and MTX. Whereas IACS induce a rapid reduction in 

tissue oedema, MTX (being a slow acting DMARD) affects the tissue microcirculation more 

gradually and the achieved reduction in QDEMRI variables (and their physiological 

counterparts) was not statistically significant at the three months follow-up. Furthermore, the 

pharmacokinetic variable A exhibited greater sensitivity to the differences in treatment 

response between two treatment groups at the three months follow-up when compared to 

the BB variable ME (Table 7-12). 

QDEMRI analysis indicates that in addition to the reduction of the volumes of the 

enhancing tissues, anti-rheumatic therapies have an effect on reducing both the available Gd- 

DTPA distribution volume (through variable A) and the apparent capillary permeability 

(K""') in the residual enhancing volume. They were markedly reduced at twelve months 

follow-up in both treatment groups. However, the patients in the MTX+IACS group 

achieved remission at three months after the start of therapy, in contrast to patients treated 

with MTX only where significant reduction in QDEMRI variables was measured only at 

twelve months follow-up. 
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The conversion of the voxel counts into the volumes of the enhancing tissue presented in 

Table 7-14 can be used to assess the physiological relevance of the detected differences 

between two therapies at the end of the first stage of the study. After the completion of the 

first stage of the study, average enhancing tissue volume in the MTX+IACS group was 

reduced from 15.7 ± 6.2 ml to 9.9 ± 6.1 ml whereas it remained constant in the MTX group 

(16.7 ± 5.5 at baseline vs. 16.4 ± 6.5 at three months follow-up). 

The difference in achieved volume reduction between the MTX and MTX+IACS groups 

was significant (p<0.0005, Table 7-12). Based on the results presented in Table 7-12, the 

mean difference in achieved volume reduction in two treatment groups is -5.5, with 95% CI 

limits of (-8.4, -2.6) expressed in ml of enhancing tissue. This means that the achieved 

reduction in the volume of the enhancing tissue patients treated with MTX+IACS was on 

average 5.5. ml larger than that measured in the MTX group which represents approximately 

one third of the average baseline volume and can be interpreted as clinically relevant. 

A similar analysis of physiological counterparts of the QDEMRI variable A (Table 7-15) 

indicates that the average difference between the responses at three months was -1.35 with a 

95% confidence interval of (-2.14, -0.56) expressed in 10-2 s-1. When converted into fex 
, 

these values correspond to the average difference in ff,, change between MTX and 

MTX+IACS of -0.054 with a 95% CI of (-0.086, -0.023), where ff,. is expressed as a unit 

free fraction. The detected difference in fix response represents 18.7% of the average 

baseline fex 
. 
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7.5. Knee RA Study 

7.5.1. Study description 

Thirty-nine patients were recruited for this prospective two-centre double-blind trial. The 

study objective was to compare the effectiveness of an established DMARD methotrexate 

(MTX) with a novel compound, leflunomide (LEF). The institutional review board provided 

ethical approval for this study and a written informed consent was obtained from all patients. 

In thirty-four patients both baseline and post-treatment scans (follow-up at four months 

after the start of treatment) were successfully acquired using a protocol described in Section 

5.1.3. 

All patients were diagnosed with rheumatoid arthritis according to the revised ARA criteria 

[215]. Disease duration varied between 3 months and 26 years (median 2 years). None of 

these patients received any DMARDs for four weeks prior to the enrolment into this study. 

IACS injections were not allowed during the trial period. The median age was 60.5 years 

(range: 28 to 77 years). Fifteen patients were male and nineteen were female. This patient 

group was randomly divided into two treatment groups: MTX only and LEF only. Each 

group consisted of seventeen patients. 

Both patient groups were started on a treatment regime following a baseline clinical and 

laboratory assessment and a baseline DEMRI scan. The patients received sixteen weeks (four 

months) of treatment with 20 mg LEF per day with a loading dose of 100 mg/day for three 

days (LEF group) or 7.5 to 15 mg of MTX per day (MTX group). A follow-up DEMRI scan 

was performed at four months after the start of the treatment. 
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7.5.2. Summary of the measurements 

All DEMRI scans were analysed on a voxel-by-voxel basis following the procedure described 

in Chapter 5. The entire DEMRI volume was included in the analysis. Seven QDEMRI 

variables were measured in each DEMRI set, including two black-box parameters (IRE and 

ME) and three pharmacokinetic parameters (A, k21, Ak21) as well as two voxel counts N- 

BB and N-PK obtained by counting all voxels included in the black-box and 

pharmacokinetic analyses, respectively. All measurement units are listed in Appendix A. 

QDEMRI analysis was performed blinded to the treatment allocation and the order of scans. 

After obtaining the treatment allocation key, the variables were arranged in treatment and 

visit groups, thus forming six sub-groups. They were labelled as follows: 

LEF (1) baseline scan in the LEF group (n = 17) 

LEF (2) follow-up after 4 months in the LEF group (n = 17) 

MTX (1) baseline scan in the MTX group (n = 17) 

MTX (2) follow-up after 4 months in the MTX group (n = 17) 

A total of 68 DEMRI studies were analysed. A summary of the measurements is presented in 

Table 7-16 to Table 7-18 and Figure 7-9 to Figure 7-15. Means and standard deviations of 

seven measured parameters in each of the six scan subgroups are presented in Table 7-16 

(voxel counts), Table 7-17 (pharmacokinetic parameters) and Table 7-18 (black-box 

parameters). 

N-PK N-BB 

Mean SD Mean SD 

LEF (1) 2.93E+04 8.74E+03 2.98E+04 8.93E+03 

LEF (2) 2.91E+04 8.62E+03 2.95E+04 8.74E+03 

MTX (1) 2.77E+04 1.02E+04 2.81E+04 1.04E+04 

MTX (2) 2.87E+04 1.11E+04 2.92E+04 1.11E+04 

Table 7-16 Summary of voxel counts measurements in the Knee RA 
Study 
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A [s-1] k21 [s-1] Ak21 [s-2] 

Mean SD Mean SD Mean SD 

LEF(1) 4.19E-02 8.27E-03 2.95E-02 8.86E-03 1.02E-03 4.22E-04 

LEF (2) 4.14E-02 7.21E-03 2.13E-02 8.71E-03 7.27E-04 3.55E-04 

MTX(1) 4.14E-02 9.05E-03 2.56E-02 7.74E-03 8.44E-04 2.48E-04 

MTX (2) 4.06E-02 8.65E-03 2.91E-02 1.29E-02 9.23E-04 3.27E-04 

Table 7-17 Summary of pharmacokinetic parameters measurements in 

the Knee RA Study 

ME IRE [s-1] 

Mean SD Mean SD 

LEF (1) 1.65E+00 1.32E-01 1.38E-02 2.45E-03 

LEF (2) 1.61E+00 1.03E-01 1.24E-02 2.67E-03 

MTX (1) 1.63E+00 1.10E-01 1.27E-02 2.52E-03 

MTX (2) 1.62E+00 1.03E-01 1.30E-02 2.46E-03 

Table 7-18 Summary of black-box parameters measurements in the Knee 
RA Study 

The values of individual measurements are presented in scatter plots and the corresponding 

summary error bar plots (two SE limits) are presented in Figure 7-9 to Figure 7-15. 
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Figure 7-9 Distribution of variable N-PK in the Knee RA Study 
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Figure 7-10 Distribution of variable N-BB in the Knee RA Study 
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Figure 7-11 Distribution of variable A in the Knee RA Study 
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Figure 7-12 Distribution of variable k, in the Knee RA Study 
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i in the Knee RA Study 
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Figure 7-14 Distribution of variable ME in the Knee RA Study 

N 

h 
i 

Figure 7-15 Distribution of variable IRE in the Knee RA Study 

7.5.3. Statistical analysis 

SPSS statistical software package (Version 10.0, SPSS, Chicago, IL) was used for statistical 

analysis. All statistical tests were performed at a=0.05 confidence level. A preliminary 
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analysis of the distribution of measurements of each of the seven QDEMRI variables 

revealed no significant deviation from normality in the four scan subgroups. This analysis 

was performed on 28 sets of measurements (seven variables divided into the four scan 

subgroups) with the sample size of 17. The results of the Kolmogorov-Smirnov test for 

normality are listed in Appendix C. No significant departure from normality was detected by 

this test, and the differences between individual QDEMRI variables subgroups were 

analysed by using tests for normally distributed variables (at a=0.05 confidence level). 

Baseline measurements 

The analysis of baseline measurements in LEF and MTX groups for each of the seven 

variables revealed no statistically significant differences between the treatment groups. The 

results of the baseline assessment (an independent t-test for the differences in means) are 

summarised in Table 7-19. 

p. value 

t-test for Equality of Means 

95% Confidence 
Interval of the 

Difference 
Mean 

Difference Lower Upper 

N-PK (1) . 610 1.69E+03 1.69E+03 -4.98E+03 
N-BB (1) 

. 608 1.72E+03 1.72E+03 -5.04E+03 
A(1) . 878 4.61E-04 4.61E-04 -5.60E-03 

k21 (1) . 181 3.90E-03 3.90E-03 "1.91 E-03 
Ak21 (1) . 147 1.77E-04 1.77E-04 -6.65E-05 
ME (1) 

. 557 2.47E-02 2.47E-02 -6.02E-02 
IRE (1) . 216 1.08E-03 1.08E-03 -6.60E-04 

Table 7-19 Analysis of the baseline measurements in the Knee RA Study2 

2 Mean Difference = Mean (LEF) - Mean (MTV') 
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Paired samples t-tests 

The changes in QDEMRI variables between baseline and four months follow-up were 

assessed by applying a paired samples t-test. The results of the statistical analysis of paired 

measurements at baseline (1) and at the four months follow-up (2) in the two treatment 

groups are presented in Table 7-20 (LEF group) and Table 7-21 (MTX group). 

Paired Samples Test' 

Paired Differences 

95% Confidence 
Interval of the 

Difference 

Mean SD Lower Upper p-value 
N-PK (1) - N-PK (2) 2.24E+02 8.64E+03 -4.22E+03 4.67E+03 . 916 

N-BB (1) - N-BB (2) 2.54E+02 8.84E+03 -4.29E+03 4.80E+03 . 907 

A (1)- A (2) 4.90E-04 5.27E-03 -2.22E-03 3.20E-03 . 707 

k21 (1) - k21 (2) 8.17E-03 1.03E-02 2.89E-03 1.34E-02 . 005 

Ak21 (1)-Ak21 (2) 2.95E-04 3.24E-04 1.28E-04 4.61E-04 . 002 

ME (1) - ME (2) 3.83E-02 6.65E-02 4.14E-03 7.25E-02 . 030 

IRE (1) - IRE (2) 1.36E-03 2.07E-03 2.96E-04 2.43E-03 
. 016 

a" Treatment= LEF. (n s 17) 

Table 7-20 QDEMRI variables changes in the LEF group 

Paired Samples Test' 

Paired Differences 

95%Confidence 
Interval of the 

Difference 

Mean SD Lower Upper p-value 
N-PK (1) - N-PK (2) -1.06E+03 1.27E+04 "7.57E+03 5.44E+03 . 733 

N-BB (1) - N-BB (2) -1.11E+03 1.27E+04 -7.63E+03 5.41E+03 . 723 

A(1)-A(2) 7.93E-04 4.96E-03 -1.76E-03 3.34E-03 . 519 

k21 (1) - k21 (2) -3.52E-03 1.46E-02 -1.10E-02 4.00E-03 . 336 
Ak21 (1) - Ak21 (2) -7.90 E-05 3.94E-04 -2.82 E-04 1.24E-04 . 420 

ME (1) - ME (2) 5.26E-03 6.36E-02 -2.75E-02 3.80E-02 
. 738 

IRE (1) - IRE (2) -3.03E-04 2.47E-03 -1.57E-03 9.65E-04 
. 619 

a Treatment   MTX (n -17) 

Table 7-21 QDEMRI variables changes in the MTX group 
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A significant reduction in variables k21, Ak21, ME and IRE was detected in the LEF group 

(Table 7-20) whereas all variables remained constant at four months follow-up in the MTX 

group (Table 7-21). 

The differences in treatment effectiveness 

The magnitude of the treatment-induced changes (see section 7.4.3) was assessed by applying 

an independent t-test on the values of differences between measurements obtained in Scan I 

and Scan 2 (e. g. A (1-2), k21 (1-2) etc. ). All paired measurement differences were tested for 

normality using the Kolmogorov-Smirnov test and no significant departure from normality 

was detected. The results are presented in Table 7-22. 

Independent Samples Test 

t-test for Equality of Means 

95%Confidence 
Interval of the 

Difference 
Mean SE 

p., alue Difference Difference Lower Upper 
N-PK (1-2) . 731 1.29E+03 3.72E+03 -6.32E+03 8.90E+03 

N-BB (1-2) . 719 1.36E+03 3.75E+03 -6.31 E+03 9.03E+03 

A (1-2) 
. 864 -3.03E-04 1.76E-03 -3.88E-03 3.27E-03 

k21 (1-2) 
. 012 1.17E-02 4.33E-03 2.82E-03 2.06E-02 

Ak21 (1-2) . 005 3.74E-04 1.24E-04 1.21E-04 6.26E-04 

ME (1-2) . 148 3.31E-02 2.23E-02 -1.24E-02 7.85E-02 

IRE (1-2) 
. 041 1.67E-03 7.82E-04 7.12E-05 3.26E-03 

Table 7-22 Difference in treatment response magnitude between two 
treatment groups 

Parameters k21, Ak21 and IRE exhibited significantly different degree of change at the four 

months post treatment in LEF and MTX group. 
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Conversion of QDEMRI variables 

The voxel counts presented in Table 7-1 can be converted into millilitres of tissue by 

multiplying them by the voxel volume (4.77 mm3). The average baseline volume was 139.9 ± 

41.7 ml in the LEF group and 131.9 ± 48.9 ml in the MTX group. 

These volumes remained constant at the four months follow-up (138.8 ± 41.1 ml in the LEF 

group and 136.9 ± 52.7 ml in the MTX group). The volumes reported here are based on the 

total number of voxels included in the pharmacokinetic analysis (N-PK). They include not 

only the enhancing synovium but also the enhancing extra-capsular structures. 

Volume [ml] 

Mean SD 

LEF (1) 139.9 41.7 

LEF (2) 138.8 41.1 

MTX(1) 131.9 48.9 

MTX (2) 136.9 52.7 

Table 7-23 Volumes of the enhancing tissue in the Knee RA Study 

If a constant value of Tl is assumed (Tlo = 900 ms) and a uniform Cp(0) in all subjects is 

assumed to be 0.877 mM, an estimate of physiological variables f,,, (v., the volume of the 

EES) and the apparent permeability Kt`°°' can be obtained from the measurements of A 

and Ak2, presented in Chapter 4, Eq. 4-16. 

fox Ktrans (min-1] 

Mean SD Mean SD 

LEF (1) . 190 . 038 . 278 . 115 

LEF 2) . 188 . 033 . 198 . 097 
MTX (1) . 188 . 041 . 230 . 068 
MTX (2) . 184 . 039 . 

251 
. 089 

Table 7-24 Average values of fix and K trans in the Knee RA Study 
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Correlation with clinical and laboratory findings 

The clinical and laboratory data collected concurrently with the DEMRI data was not 

available for point-to point statistical comparison with the results presented in this study. 

However, the results that have been reported using the data collected in this study indicate 

that there was no statistically significant difference in the responses measured in the MTX 

and LEF groups using clinical and laboratory assessment. It was reported, though, that 

patients in the LEF group exhibited greater improvement in tender joint count, duration of 

morning stiffness, visual analogue scale (VAS) pain intensity, Modified Health Assessment 

Questionnaire (M-HAQ) score, C-reactive protein (CRP) level, and rheumatoid factor (RF) 

titer [213]. The patients in the MTX group showed greater improvement in erythrocyte 

sedimentation rate (ESR) compared with the baseline. 

Table 1. Summary of changes from baseline in clinical outcome 
assessments after 4 months of treatments 

Treatment 

Leflunomide Methotrexate 
Parameter (n = 18) (n = 21) P 

Tender joint counit -9.9 ± 9.0 -5.9 ± 6.4 0.1738 
Swollen joint countt -4.6 ± 7.1 -4.6 ± 7.0 0.9628 
Patient global assessment$ -0.9 ± 0.9 -1.0 ± 1.1 0.9604 
Physician global -0.9 ± 0.8 -0.8 ± 1.0 0.5293 

assessmentt 
Morning stiffness, minutes -120 ± 318 -76.2 ± 165 0.9218 
Pain intensity$ -16.2 ± 25.8 -10.1 ± 17.7 0.4072 
M-IIAQ score, 0-24 -6.44 ± 8.89 -4.1 ± 7.82 0.3042 
ESR, mm/hour -3.3 ± 18.3 -11.6 ± 22.1 0.2445 
CRP level, mg(dI -17.1 ± 33.8 -14.1 ± 27.0 0.6464 
RF, units/ml -65.7 ± 104.6 -40.3 ± 105.1 0.8477 
ACR 20% responders, % 50 47.6 1.000 

" Except where otherwise indicated, values are the mean ± SD. 
M-HAQ = modified Health Assessment Questionnaire; ESR = 
erythrocyte sedimentation rate; CRP = C-reactive protein; RF = 
rheumatoid factor; ACR = American College of Rheumatology. 
t Twenty-eight-joint assessment. 
# 0-100-mm visual analog scale (VAS). 

Table 7-25 Summary of clinical and laboratory findings in the Knee RA 
Study (reproduced from [213]) 

As can be seen from Table 7-25, an improvement in clinical and laboratory findings was 

detected at four months after the start of therapy in both treatment groups with no 
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statistically significant changes between LEF and MTX treated patients. Similar clinical and 

laboratory outcomes were reported in two further studies performed on the subsets of the 

patients included in the QDEMRI analysis presented in this thesis [216,217] with no 

significant differences between treatment groups. 

The immunohistochemical analysis of synovial samples revealed that the expression of 

vascular cell adhesion molecule 1 (VCAM-1), which is a marker for endothelial cell activation 

and injury, was reduced in both groups [216], but this difference was significant only in the 

leflunomide-treated patients (p<0.05). Arthroscopic samples cellularity (CD68+ 

macrophages and T cells) was also significantly reduced in LEF patients and remained 

constant in the MTX group (p<0.05). In a separate report [217], a rapid reduction in 

neutrophil migration was detected in the period between 3 and 14 days post-treatment in 

both treatment groups (p<0.001). However, this effect was not detected at four months after 

the start of treatment. 

7.5.4. Summary of the findings 

In this study, the results of QDEMRI analysis demonstrated significant reduction in PK 

variables related to capillary permeability (k21 and Ak21 and black-box variables (ME and 

IRE) in patients treated with leflunomide and no change in patients treated with 

methotrexate at four months after the start of treatment. Total volumes of enhancing tissue 

remained constant in both treatment groups as well as the measurements of PK variable A, 

which reflects the fractional volume of the extracellular space (fe,, ). The changes in BB 

variables detected over this time period were less pronounced and the highest degree of 

discrimination between two treatment groups was demonstrated through the measurements 

of variable Ak21, which according to the pharmacokinetic model definition reflects capillary 

permeability surface area product (K' ') 
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The findings reported by Kraan et al [216], which report a significant reduction in the 

expression of vascular cell adhesion molecule 1 (VCAM-1) in patients from this study treated 

with leflunomide but not the ones treated with methotrexate, suggest that leflunomide acts as 

a more potent angiogenesis inhibitor since VCAM-1 was shown to induce angiogenesis in- 

vivo by Koch et al [218]. Although only a tentative link between the findings presented in 

this thesis and those reported by Kraan et al can be made at present due to the lack of direct 

point-to-point statistical comparison, the apparent agreement between the measured 

reduction in QDEMRI variables Ak21 and VCAM-1 is encouraging and adds weight to the 

notion that QDEMRI variables, and Ak21 in particular, can indeed detect the changes in 

angiogenic activity in RA. 
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Chapter 8. Discussion 

In this project, a method for quantitative analysis of dynamic Gd-DTPA enhanced MRI was 

developed and the feasibility of its application for the analysis of DEMRI studies acquired 

within a clinical setting was demonstrated. 

The project structure provided the framework for evaluating the proposed methodology in 

an already widely studied application (breast cancer), translating it to a novel application 

(rheumatoid arthritis) where established therapies were examined in a randomised study 

design (the Hand RA Study). Finally, it was implemented in a study where an established 

therapeutic agent was compared to a novel anti-rheumatic drug (the Knee RA Study). 

The pharmacokinctic model which forms the part of the method for QDEMRI analysis 

described in this thesis has evolved from the existing approaches to modelling Gd-DTPA 

kinetics as described in Chapter 3. The most comprehensive method, as described by 

Larsson [71], could not be applied within the project's experimental setting. A measurement 

of truly quantitative physiological variables is possible only if the Tlo values are sampled in 

individual lesions and the concentration of Gd-DTPA in plasma is measured in each patient 

and incorporated into the calculation of pharmacokinetic variables. The model presented 
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here, therefore, incorporates a theoretical representation of Cp(t) based on data provided by 

Weinmann [64] in a fashion similar to that employed by Tofts [69], with a distinction that a) 

mono-exponential plasma clearance model is used instead of the bi-exponential one and b) 

input function was represented by a constant rate infusion rather than an idealised delta 

function. 

It was noted that the accurate estimation of k. 
1 (fractional elimination rate, which is 

primarily related to the systemic Gd-DTPA washout following intravenous administration) is 

impeded by the short duration of DEMRI acquisitions. This parameter is allowed to vary 

freely in the Brix's implementation [68], although the authors note that it is not of diagnostic 

value and often assumes negative (physiologically uninterpretable) values. Furthermore, the 

formulation of the mathematical representation of residual tissue concentration is 

symmetrical with respect to k21 and k, 
1, which may lead to the erroneous estimation of 

k21 [122]. Therefore, in the proposed model key is fixed to the mean value reported by 

Weinmann and the non-linear fitting algorithm is constrained with respect to the relationship 

between k21 and k., which leads to the suppression of k2l values which are lower than 

2 kß,. 

The input function was modelled as a constant rate infusion (as in Brix's model [68] and in 

contrast to Tofts' implementation) in an attempt to allow for a more realistic representation 

of characteristic sigmoid-shape SI changes observed in lesions distal from major blood 

vessels. Although this modification leads to the increased complexity of the derived function 

for normalised SI, the model behaved well in a range of pathologies in all three clinical 

studies. 

In Brix's implementation (and other models derived from Brix's, such as that used by 

Buckley [121]), variable A was not explicitly linked to the fractional volume of the 

extracellular space (fe ). Subject to the same set of assumptions used in Tofts' model, it was 
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shown that this variable could be used to obtain an estimate fix as described in Section 4.3. 

In this thesis, estimates of fex were obtained using assumed constant values of Tlo 

representative of the tissues studied and a uniform value of initial Cp(O), which are in good 

agreement with literature values. Furthermore, in the Breast Cancer Study, a conversion of 

variable Ak21, which was theoretically linked to a standardised measure of apparent 

permeability K°a"', yielded estimates which are in broad agreement with Ka measured in 

invasive breast cancers reported by other workers. 

Although the precise measurement of individual values of ff,, and K"' was not possible 

in this project, due to the unavailability of individual measurements of Tlo and concomitant 

measurements of representative Cp(t), the described conversion of measured 

pharmacokinetic variables A and Ak2, into their counterparts (ff,, and K""s, respectively) 

may allow a direct comparison of measurements obtained using different acquisition 

protocols. The remaining pharmacokinetic variable k21 is by definition independent of 

acquisition settings. 

The proposed method was applied for the analysis of DEMRI datasets acquired using 

conventional, commercial MRI hardware and all processing was performed on a standard 

personal computer workstation. A degree of user interaction was necessary in the Breast 

Cancer Study (ROI selection based on calculated parametric images) and the removal of 

MCPJI by segmentation in the Hand RA study. The processing of the DEMRI datasets in 

the Knee RA Study required no user interaction. The selection of the enhancement 

thresholds for QDEMRI analysis in the two RA studies was performed following the 

inspection of parametric enhancement maps in a randomly selected subset of DEMRI 

datasets. 

In all three studies, both pharmacokinetic and black-box variables were extracted in parallel 

with the aim of performing a direct comparison between their measurements. A theoretical 
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link between pharmacokinetic and black-box variables was also explored during the 

development of QDEMRI algorithms (Section 4.3). 

The pre-processing procedures were performed using commercially available software 

(AnalyzeTM) whilst all computations of pharmacokinetic and black-box variables were 

performed using software written for this thesis in the C programming language. Following 

the selection of ROIs in the Breast Cancer Study and the enhancement thresholds in the two 

RA Studies, QDEMRI analysis of SI/time curves (derived from ROIs or individual voxels) 

was performed in a fully automated fashion, requiring no user interaction. Dynamic 

allocation of initial solutions for the non-linear least-squares fitting of the measured SI/time 

curves to the proposed model (required for the extraction of pharmacokinetic variables) 

ensured a robust performance of the computational algorithm and enabled automated batch 

processing of the DEMRI datasets. In the two RA studies, where voxel-by-voxel processing 

was performed, a complete analysis of individual DEMRI datasets required less than 30 

seconds, allowing uninterrupted analysis of 120 DEMRI datasets in only one hour (on a 600 

MHz, 128Mb PC system). 

In all three clinical studies, experimental data fitted the proposed pharmacokinetic model 

well, with only one out of fifty-nine examined SI/time curves in the Breast Cancer Study 

generating an excessive residual Chi Square value (x2) and with the success rate of voxel-by- 

voxel processing higher than 95% in the two RA studies. 

The measurement of black-box variables was performed using moving-window algorithms 

which circumvented the need for user interaction, such as the visual inspection of individual 

SI/time curves, subjective identification of the onset of enhancement and maximal 

enhancement or the measurement of enhancement ratios at discrete time points. The 

objectivity and robustness of this approach thus compares favourably to that employed for 

the measurement of black-box variables in similarly designed DEMRI studies in breast 
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cancer [141-144] and RA [183,184,192]. Furthermore, these automated algorithms were 

found to be particularly well suited to the voxel-by-voxel computation of QDEMRI variables 

and allowed the creation of quantitative parametric maps of individual variables. Similar 

parametric maps of rheumatoid synovium have not been utilised by other research groups to 

date. These maps are used as an additional tool in the identification of suspect lesions in the 

clinical evaluation of breast DEMRI studies at our institution. In RA they provided a tool for 

the analysis of the morphology of the inflamed synovium and have recently been used to 

demonstrate radial predilection of synovitis in MCPJs [220]. A histogram-based method for 

the measurement of the overall disease activity in RA was also proposed in this thesis as a 

tool for objective monitoring of treatment-induced changes. 

A conventional 'explicit' validation of the measurements which are obtained by the described 

model for QDEMRI analysis would involve their direct comparison with gold standard 

measurements of relevant physiological variables. In the absence of a suitable non-invasive 

in-vivo gold standard method for the measurement of these variables, several research 

groups have attempted to correlate the findings of quantitative analysis of DEMRI with 

surrogate markers of angiogenesis, such as MVD and VEGF. 

In this work, an alternative `implicit' functional validation of the QDEMRI measurements 

was performed. This approach is based on the notion that a functional assessment of 

microcirculation should not be compared to the isolated morphological or chemical 

surrogate markers of angiogenic activity, but that a suitable functional model should be used 

to assess the capacity of QDEMRI to provide an objective measure of disease activity. 

Implicit functional validation involved the application of the QDEMRI method in clinical 

studies that were chosen as exemplars in which specific changes in physiological variables are 

expected to occur. 
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This approach is reasonable given the large variability of correlation coefficients between 

MVD and QDEMRI parameters reported in the literature (see Section 3.5) suggesting that 

perhaps the structural information obtained by immunohistochemical staining does not 

reflect fully the functional status of the microvasculature. A dense network of capillaries can 

be utilised only partially, with effective transport across the capillary walls in a sample 

occurring in a fraction of the available network. Similarly, a relatively sparse capillary network 

can be formed by highly permeable vessels, allowing easy transport between plasma and 

extracellular space. The metabolic activity of the tissues which is directly related to metastatic 

potential of cancers or severity of inflammation will be reflected by the rate of transport 

across capillary walls and not necessarily by the density of the available capillary network. 

It is the function, and not the morphology alone, that determines the pathological status of the 

tissues. QDEMRI can (under optimal scanning conditions) quantify the function and it is 

therefore not surprising that it does not correlate unequivocally with a morphological 

measurement, such as MVD. 

The most vociferous proponents of the anti-angiogenic cancer therapy, including Folkman 

who is credited with the major discoveries in this area [9], have increasingly criticised the use 

of MVD and VEGF as independent measures of treatment efficacy. They argue that 

although MVD and VEGF were shown to be useful prognostic indicators in cancer, they 

may not be a suitable for the detection of treatment induced changes [18]. Morphological 

assessment of histology specimens may not reflect a true functional MVD. This is indicated 

by the results in the study of xenografts where as few as 20% and not more than 85% of 

tumour microvessels were perfused at any given time [219]. In anti-angiogenic treatment 

cancer, the primary objective is the impairment of the nutrient delivery to the cancer cells 

through a direct action on capillary endothelium. If the treatment is successful, and results in 

the reduction of the number of cancer cells, a paradoxical increase of MVD can occur as a 

result of the reduction of intercapillary distance. Furthermore, isolated measurements of 
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VEGF (or any other angiogenic factor) may not adequately represent the effect of anti- 

angiogenic treatment This is because an overall angiogenic activity depends on a multitude 

of pro- and anti-angiogenic factors that arise from both tumour [15] and host [16] cells. 

The implicit functional validation of QDEMRI measurements obtained in the Breast Cancer 

Study was therefore carried out by their direct comparison with the prognostic factors: 

histologically determined tumour grade and nodal status. The capacity of the proposed 

model to measure apparent permeability in this study was judged by the degree of correlation 

between permeability-related pharmacokinetic variables and tumour grade in the invasive 

breast cancer. 

The most important finding of this study is that there was a statistically significant 

correlation between permeability-related pharmacokinetic variables (k21 and Ak21) and 

tumour grade in invasive breast cancer. However, no association was found between any of 

the QDEMRI variables and tumour nodal status. Whereas the measurements of k21 and 

Ak21 did not vary significantly between low grade tumours (Grade I and Grade 2) they 

differed significantly between low grade and high grade (Grade 3) tumours. Whilst black-box 

variables ME, IRE and WOS did exhibit a degree of variation with tumour grade, none of 

them reached statistical significance for the overall association with tumour grade. 

These findings confirm the hypothesis that the relationship between permeability-related 

QDEMRI variables and tumour aggressiveness persists within invasive breast carcinomas. 

The strength of this relationship, however, is relatively weak due to the large amount of 

scatter in the measurements obtained in different tumour grade groups and in particular 

between Grade 1 and Grade 2 lesions. 

These results are in agreement with the results of animal studies reported by Turetschek et al 

who found a significant correlation between permeability measured using both albumin-(Gd- 
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DTPA)3o [137,138] and ultrasmall superparamagnetic iron oxide (USPIO) particles [139], 

and tumour grade in chemically induced breast carcinoma in rats. However, animal studies 

where Gd-DTPA was used as a contrast agent [135,136,140] found no correlation between 

the tumour grade and the permeability. A study reported by Heiblich [140] was designed to 

compare different acquisition and analysis strategies using a controlled, chemically induced 

animal model of breast cancer. None of the examined methods provided a significant 

quantitative association with histological tumour grade. A T2* based method proposed by 

Kuhl [221], reached borderline significance for the discrimination between the tumour 

grades. It is unclear, though, if these findings [135,136,140] can be directly applicable to 

human studies due to the faster rate of systemic circulation in small animal models which 

requires higher DEMRI temporal resolution in order to resolve extravasation rates of small 

Gd-DTPA molecules in highly permeable tumours. 

None of the four published clinical studies where a similar comparison between the 

quantitative findings of Gd-DTPA enhanced dynamic MRI were compared to prognostic 

indices in breast cancer [141-144] included the extraction of pharmacokinetic permeability- 

related variables. Their results (based on the measurements of descriptive black-box indices) 

are contradictory. A significant correlation between histological tumour grades and lymph- 

node status and DEMRI findings in breast cancer was reported in two studies [142,144] but 

in two remaining studies [141,143], no such relationship was found. It is difficult to perform 

a direct comparison between the results obtained in these studies and the results presented in 

this thesis due to the differences in the data acquisition, methods employed for quantitative 

analysis as well as the size and histological composition of examined lesions. The possible 

influence of different DEMRI acquisition sensitivity to T1 is illustrated in Section 6.4. 

There is a broad agreement between the results obtained in this Breast Cancer Study and 

those of Fischer and Stomper [141,143], in that no significant changes in IRE and ME with 

tumour grade and nodal status were found in either study. It is unclear, however, if 
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pharmacokinetic modelling of their data using the model proposed in this work would 

confirm the fording that a significant difference in PK variables can exist even if the BB 

variables extracted from the same DEMRI datasets remain constant. 

In the two studies where a significant correlation between histological tumour grades and 

lymph-node status and DEMRI findings in breast cancer was reported [142,144], the 

parameters used for the quantification of DEMRI were black-box enhancement ratios, 

similar to the BB QDEMRI variables described in this study (ME and IRE). Early 

enhancement ratios at fixed time points following the administration of the contrast are 

related to IRE, whereas maximal enhancement ratio corresponds to the variable ME. These 

results are in contradiction with the findings of the Breast Cancer Study presented in this 

thesis where no significant association of similar BB parameters (IRE and ME) with tumour 

grade and nodal status was found. 

Buckley and Mussurakis have compared tumour grade (and other histopathological findings) 

to the enhancement ratios, but not to PK variables [142]. In their earlier work, PK variables 

were shown to differ significantly between benign and malignant lesions [222], but did not 

correlate with MVD measurements [118]. An apparent contradiction between the findings 

obtained in this study and those reported by Mussurakis' group could perhaps be 

investigated by performing both analysis methods (the one used in this thesis and the 

method used in [142]) on DEMRI datasets acquired in these two studies. 

The capacity of this method to provide a measure of fractional volume of EES (fe,, ) was 

similarly assessed by performing an implicit functional validation in the Hand RA Study. 

Tissue oedema is a primary target for intra-articular steroid therapy in RA, with consequently 

predictable rapid reduction in fe,, 
. QDEMRI analysis was performed in a randomised study 

design at three time points during the course of therapy in early RA. The validity of the 
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measurements of fix -related PK variable (A) was assessed by its capacity to measure f,,, 

reduction at three months after the start of therapy with IACS. 

The main finding of the Hand RA Study was that the post-hoc analysis of changes of 

QDEMRI variables at three months after the initiation of treatment revealed a significant 

reduction in EES related variable A (which is directly proportional to f,,, ) only in the 

MTX+IACS group. This is in accordance with the expected action of the intra-articular 

steroids on the reduction of tissue oedema in inflammatory disorders. A slow acting MTX 

group served as a control at the first follow-up (three months after the initiation of 

treatment). No significant change in variable A was detected in this control group at the first 

follow-up due to the slower and more gradual onset of MTX induced effects. 

The results of the Hand RA Study also demonstrate a significant reduction of the total 

volume of the inflamed synovium in the MTX+IACS group at first follow-up. This is 

consistent with the findings of other MRI studies where the volume of the enhanced 

synovium was used as a primary MRI endpoint in assessing the effect of steroid treatment in 

RA [183,184,195]. The results obtained in this study, however, indicate that the average 

fractional volume of the EES within the residual synovium also decreases following therapy. 

Pharmacokinetic modelling of Gd-DTPA enhanced MRI in RA has not been reported to 

date and consequently no similar measurements of ff,, in synovial tissues were available for 

comparison with the results obtained in this work. As discussed in Section 7.2, 

pharmacokinetic modelling of dynamic MRI with the application of macro-molecular 

contrast media in animal models of arthritis [196,197] and inflammation [198] does not 

allow the measurement of ff,, 
. These methods allow the measurement of the fractional 

plasma volume (PV) but the authors note that PV does not correlate with histological 

assessment of synovitis nor does it allow the discrimination between the inflamed tissue and 

the surrounding parenchyma. Furthermore, MMCM-based methods require prohibitively 
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long DEMRI acquisitions (in excess of 30 minutes) as well as simultaneous sampling of 

Cp(t), making it less suitable for clinical applications. 

In the Hand RA Study, a significant treatment-induced change in all examined BB and PK 

variables (with the exception of fractional transfer rate k21) was measured in both treatment 

groups. In the second part of this study, both patient groups received identical treatment and 

at the second follow-up (twelve months after baseline assessment), no significant differences 

between the two treatment groups were detected. This suggests that the administration of 

IACS did not confer any additional long-term therapeutic benefit. In this study, BB variables 

IRE and ME provide an equivalent estimate of the treatment effectiveness, due to the fact 

that they are primarily influenced by the variable A. A significant change in A is therefore 

translated into a significant change in IRE and ME, if the value of k21 remains constant. 

A comparison between the measurements of BB and PK variables indicates that the level of 

agreement between these two groups of variables depends on the nature and the magnitude 

of differences in the underlying microcirculatory characteristics of the examined tissues. 

Whereas in the Breast Cancer Study a significant association between tumour grades and 

QDEMRI variables was found only in the PK variables subset, in the two RA studies both 

sets of variables demonstrated a similar pattern of change during the course of treatment. 

A more pronounced relationship between PK variables and histological tumour grade in the 

Breast Cancer Study and marginally higher sensitivity to treatment induced changes in two 

RA studies could be attributed to the fact that PK analysis utilises measured DEMRI curves 

in their entirety whereas individual BB variables are extracted from limited subsets of the 

acquired data. 

Although the described method for QDEMRI analysis yielded promising results in three 

different clinical applications, several problems were identified during the model 
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development and practical implementation. A large amount of scatter in the measurements 

obtained in the Breast Cancer Study and the lack of correlation between QDEMRI findings 

(the permeability-related variables, in particular) and the lymph node status suggest the 

importance of covariates which were not accounted for in this method. The most important 

covariates include pre-contrast Tl value of the individual lesions and the properties of 

individual, subject-specific description of Gd-DTPA concentration in blood plasma, Cp(t). 

Due to the lack of these measurements, PK variables extracted in this study could not be 

converted to absolute individual values of fex and K. If these covariates are not 

accounted for, this method will be of limited value in the assessment of individual lesions 

and tissue characterisation. Due to the fact that most of the sources of uncertainty that 

severely impair the capacity of this method to characterise individual lesions are essentially 

randomly distributed, the randomised controlled studies, such as two RA studies presented 

in this report, are less likely to be adversely influenced by the lack of individual Tlo and Cp(t) 

measurements and other sources of error. Therefore, this QDEMRI method can be used in 

the assessment of treatment effectiveness in its present form. It is nevertheless possible that 

the inclusion of Tlo and Cp(t) measurements may increase the sensitivity of the method and 

allow the measurement of smaller treatment-induced changes in RA. 

The strength of the arguments for the introduction of the proposed changes to the 

pharmacokinctic model could have been examined formally by replicating the methods 

applied by other research groups and performing full analysis of the data collected in the 

three clinical studies using multiple model formulations. This also applies to the 

measurement of BB variables. The true value of the proposed moving-window algorithms 

could have been tested by performing a direct comparison with the measurement of BB 

variables used in similarly designed clinical studies. Furthermore, the influence of acquisition 

and sampling strategies on the performance of the QDEMRI method could have been 

investigated in more detail by extending the scope of Monte Carlo simulations presented in 

Chapter 4 to include factors such as Ti sensitivity. 
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Throughout the development of the proposed QDEMRI method, the need to increase the 

robustness and objectivity of the measurements compared to the existing approaches was 

one of the most important aims. Although the set of decisions taken to meet this aim can 

certainly be justified theoretically, they have not been tested on experimental data collected in 

this project. For example, the reproducibility of pre-processing stages of QDEMRI analysis 

was not assessed formally. The assessment of reproducibility from the point of acquisition 

could have been used as one of the criteria for the comparison of different sampling and 

analysis methods in addition to the capacity of derived variables to reflect expected 

functional differences in microcirculation. An important measure of in-vivo precision of this 

method could be obtained by performing scan-rescan reproducibility measurements. Serial 

measurements of synovial tissues in patients with RA could also be used to quantify the 

degree of spontaneous fluctuations of disease activity, unrelated to the effect of specific 

therapies. 

The statistical analysis of the measurements obtained in this project was limited to the 

analysis of individual QDEMRI variables and their isolated performance within the chosen 

models used for implicit functional validation. It is possible that the application of more 

sophisticated multivariate statistical methods and the inclusion of clinical and laboratory 

findings may increase the amount of information gained from QDEMRI analysis. 

A continual evaluation of new DEMRI acquisition strategies and emerging MRI contrast 

agents should be undertaken in order to increase the capability of the QDEMRI analysis to 

provide a more specific measure of truly quantitative physiological variables that characterise 

tissue microcirculation. The method described here can be used for investigation of other 

soft tissue tumours and other joints affected by RA. The theoretical evaluation of new 

acquisition protocols should be performed initially by applying Monte Carlo simulations by 

extending the method illustrated in Chapter 4. This method could identify a limited number 

of the most promising acquisition strategies suited to the investigation of particular 
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pathology (with respect to their location and size). These can then be further tested by 

performing phantom measurements and finally, limited pilot studies can be used to evaluate 

the performance of the chosen acquisition strategy in a clinical setting. 

The work presented in this thesis demonstrated the feasibility of quantitative analysis of 

dynamic Gd-DTPA enhanced MRI acquired within a clinical setting, using standard imaging 

hardware. Fast and robust image processing and computational algorithms, requiring 

minimal user interaction, were developed and implemented on a readily available PC 

platform. The capacity of this method to extract measurements related to important 

physiological variables (capillary permeability and the fractional volume of the extracellular 

space) was demonstrated through its application in two different angiogenesis-dependent 

diseases. Whereas the results obtained in this thesis indicate that the utility of this approach 

in routine clinical evaluation of individual lesions is limited at present, they confirm its 

potential role as a non-invasive, objective method for measurement of treatment-induced 

changes in RA, even in its current form. 

Perhaps the most significant recent development in the study of angiogenesis, which is 

directly related to the work presented in this thesis, is the widespread acceptance of the 

notion that angiogenesis plays a central role in the evolution of RA. This development led to 

the introduction of novel specific anti-angiogenic therapies for RA, such as biological 

anticytokine agents infliximab and etanercept [166,167]. With further development of similar 

therapeutic agents, the need for serial, non-invasive and objective assessment of the 

treatment effects on abnormal synovial microcirculation is likely to increase in the coming 

years [177). The method for QDEMRI analysis described in this thesis has a potential to 

fulfil this role as demonstrated by the results obtained in two clinical RA studies presented in 

Chapter 7. It incorporates pharmacokinetic modelling of dynamic Gd-DTPA enhanced MRI 

which has been utilised in the assessment of angiogenesis in cancer but not yet applied in the 
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clinical evaluation of RA. This work, therefore, presents the first attempt to apply 

pharmacokinetic modelling of Gd-DTPA kinetics in clinical studies of RA. 

This method may be of particular value in the pharmaceutical research. "Proof-of-concept" 

studies of anti-angiogenic therapeutic agents could be performed on relatively small numbers 

of patients. An indication of a potential drug effect can possibly be obtained earlier, due to 

the fact that this method can reveal subclinical changes which are in the direct pathway of 

the angiogenic treatment. Possible applications of this method include not only the 

monitoring of therapies in RA but also the evaluation of neo-adjuvant chemotherapy in soft 

tissue tumours. 

With further advances in MRI acquisition techniques and the formulation of novel MRI 

contrast agents, the present limitations of QDEMRI analysis will continue to be addressed 

and this method will gain a more prominent role in the clinical evaluation of angiogenesis- 

dependent diseases. The work presented in this thesis hopefully presents a step towards its 

introduction into clinical practice. 
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Appendix A. 

QDEMRI variables: symbols and units 

Variable Units 

A S-1 PK variable (proportional to the volume of the extracellular fluid) 

k21 s-I PK variable (proportional to the capillary permeability) 

A S-2 
PK variable (proportional to the capillary permeability and the volume 

21 of the extracellular space) 

ME au. 
BB variable, maximal enhancement, with 100*(ME-1) representing % 
SI increase over baseline 

IRE S-1 
BB variable, initial rate of enhancement, with 100*IRE representing 
% SI increase per second 

WOS S-I 
BB variable, the rate of washout with 100*WOS representing % SI 
change per second (Breast Cancer Study only) 

N-BB count a total number of voxels included in BB analysis (proportional to the 
volume of the enhancing tissue (not included in Breast Cancer Study) 

N-PK count a total number of voxels included in PK analysis (proportional to the 
volume of the enhancing tissue (not included in Breast Cancer Study) 
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Appendix B. 

Derivation of the expression for normalised SI in spoiled 

GE sequence following the administration of Gd-DTPA 

So Pre-contrast (baseline) SI 

Sc Post-contrast SI 

The ratio between post-contrast and baseline SI is given by: 

TR 
I- e Tlc TE 

kp 
TR "e T2c -sing 

Sc 
_ 

1-coscp"e T1 
So - TR 

TE 
Eq. B-1 

kP 
1- e TL 

TR "e T2. " sin cp 

1-COS(p"e Tl. 

After substituting post-contrast relaxation times with expressions Eq. 2-14 and Eq. 2-16, 

the following expression is obtained: 

1+aC 
1- e TR 

{Tlo 

-TE 
1+ ß'C 

e 
{T2° ) 

- SC 
- 

1- cos 9. e TR{Tlo + aC 

- TR Eq. B-2 So 
1-e Tla TE 

TR C T2o 

1-cosy-e Tlo 

The following substitution is made for ease of notation: 

TR 
e TI0=X Eq. B-3 
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Furthermore, for low concentrations and short repetition times TR: 

TRaC «1 

e-TRaC-1-TRaC 
Eq. B-4 

Also, for very short TE and low concentrations 

e-TEI'C Ae i 
Normalised SI is then given by. 

1- x- (1-TRaC) 
Sc 

_ 
1-coscp"x"(1-TRaC) 

So 1-x 
1- coscp"x 

1-x+x"TRaC 1-COS cp"x 
_ 1-x 1-cosy. x+coscp"x"TRaC 

Eq. B-5 

=(1+ 1x "TRaC'l" 
1 Eq. B-6 

-x l+coscp"x" TRaC 
1-coscp"x 

TR 

I+x" TRaC =1 +e TL 
" TRaC 

1-x TR 
1-e Tlo 

Assuming that 

1 

l+cos(P. x"TRaC 
( P- .x 

cosy x"TRctC«1-cosy -x 
Eq. B-7 

« 
1-COST"x 

cosy. x" TRa 
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Normalised SI can be approximated by. 

TR 
Sc 

1+x" TRaC =1 +e 
T1G 

" TRaC 
So 1-x TR 

1-eTlo 

Finally: 

S' 
1+a"C 

so 

where: 

TR 

a_e 
Tle 

. TRa 
TR 

1-eTl. 

Eq. B-8 

Eq. B-9 

Eq. B-10 
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Appendix C. 

Results of the Kolomogorov-Smirnov tests 

Tumour Grade A k21 Ak21 ME IRE WOS 

Grade 1 . 707 . 689 . 997 . 759 . 999 . 989 

Grade 2 . 948 . 083 . 449 . 966 . 968 . 707 

Grade 3 . 989 . 138 . 738 . 888 . 700 . 414 

Table C -1 Asymptotic 2-tail significance of the Kolomogorov-Smirnov 
test in the Breast Cancer Study 

Scan Group N? K N-8B A k21 Ak21 ME IRE 

MTX (1) . 962 . 944 . 625 . 972 . 965 . 979 . 898 

MTX (2) . 783 . 815 . 722 . 439 . 793 . 869 . 989 

MTX (3) . 936 . 843 . 787 . 999 . 325 . 815 . 218 

MTX+IACS (1) . 894 . 912 . 758 . 636 . 552 . 868 . 259 

MTX+IACS (2) . 872 . 928 . 151 . 755 . 270 . 504 . 598 

MTX+IACS (3) . 991 . 977 . 279 . 889 . 587 . 609 . 892 

Table C-2 Asymptotic 2-tail significance of the Kolomogorov-Smirnov 
test in the Hand RA Study 

Scan Group N. PK N. BB A k21 Ak21 ME IRE 

LEF (1) . 963 . 952 1.000 . 897 . 620 . 860 . 995 

LEF (2) . 955 . 929 . 945 . 729 . 755 . 695 . 899 

MTX (1) . 896 . 886 . 982 . 883 1.000 . 602 . 999 

MTX (2) . 829 . 958 . 911 . 569 . 955 . 996 . 900 

Table C-3 Asymptotic 2-tail significance of the Kolomogorov-Smirnov 
test in the Knee RA Study 
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Appendix D. 

Colour-coding schemes for parametric images 

1.4 to 1.6 0.003 to 0.004 0.001 to 0.002 

.:.,, &t.. $$ m.:... _ ow* ®o _- . a. . . Jualto 0.001 

1.8 to 2.0 0.005 to 0.006 -0.002 to -0.001 

2.0 to 2.2 0.006 to 0.007 -0.003 to -0.002 

2.2 to 2.4 0.007 to 0.008 -0.004 to -0.003 

> 2.4 > 0.008 -0.005 to -0.004 

Figure D-1 Colour-coding scheme in parametric images of ME, IRE 

and WOS in the Breast Cancer Study 

70 to 105 0.2 to 0.3 0.2 to 0.3 

105 to 140 0.3 to 0.4 0.3 to 0.4 

140 to 175 0.4 to 0.5 0.4 to 0.5 

175 to 210 0.5 to 0.6 0.5 to 0.6 

210 to 245 0.6 to 0.7 0.6 to 0.7 

245 to 280 0.7 to 0.8 0.7 to 0.8 

280 to 315 0.8 to 0.9 0.8 to 0.9 

> 315 > 0.9 > 0.9 

Figure D-2 Colour-coding scheme in parametric images of ME, IRE 

and fX and Krans in the two RA Studies 
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Appendix E. 

A sample source code: Monte Carlo Simulation 
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/r.:. r. ". ". r .............: r.. rr. r.. z... "+"rrr. rr.. r... r.. ". r*"*. r. r... rrrrrr" 

Application: Monte Carlo Simulation 

Platform: Microsoft DOS/Windows 
Author: Aleksandra Radjenovic (inlcudes routines adopted from 

Numerical Recipes by Press, W. H. et al, 1994) 
Date: June 2000 

rrrr rrwrwwrrr r rrrrr. wrwwrwrrwrrrrrrwrrwrrrrwwr: rrwrrrrww+wr w rrrwrw+rrrwwrrrwý 

# -: i duce 
S, 

7: c . 
', > 

# MC1uUC <stulib. n> 

#include <string. h> 
#include <math. h> 
Minclude "nr. h" 
#inclucc "nru i1. h" 
#incluee "s. muIate. h" 

/4. ffkifiYfYff#1R**#R Yt 1Rf#R1f4#Y#rt#t#i#iYff*#kfYtYi#tYtftYfffRR*lrtifRf. *ff 

FUNCTION: main() 

""... "".. f... ""1f#..... "f. rrf*fYfYr#1RYfYfY*rlrf#rr#tYiY#111rf****f**fYiY. #*1 

..., _ýr_: l (v0_C) 
{ 

int i, j, k, 1; 
OutFile = (open("MC dump. txt", "wt"); 
if (OutFile == NULL) 
{ 

printf("topen ERROR! \n"); 

exit (1); 
I 
Min = Dose * BW; 
fprintf(OutFile, "Simulation\tMC No\tk2l\tfex\tfit k21\tfit fex\t"\ 

"fit chi2\tno iterations\n"); 
for (i=O; i<1; i+t) 
{ 

InitialiseO; 
Fill Simulation Parameters(i); 
for (j=O; j<NO POINTS; j++) 
{ 

Time(j) - Time(j) =j* TimeStep; 

if (Time[ j] <= SimParams[iJ. mTINF) 
Tau[j) = Time[j]; 

else 
Tau[j] - SimParams[i). mTINF; 

j loop: concentrations time 
Fill Sample Data(i); 
Look Up(i); 
for (1 - 0; l<MATRIX DIM; 1++) 

for(k=0; k<MATRIX_DIM; k++) 

TINF = TINFSet; 

Fill Simulation_Parameters(i); 
Fill Sample Data(i); 
Success = NO-MONTE-CARLO; 
SuccessFit = NO-MONTE-CARLO; 
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58 
59 Calculate ME IRE From My_Function(k, 1, i); 
60 // Start Monte Carlo Here 
61 Do Monte Carlo(i, k, 1); 
62 Fill Sample Data(i); 
63 Perform Calculations(i, k, 1); 
64 1 loop 
65 k loop 
66 }// simulation loop i 
67 NumOfSims = i; 
68 for (i=0; i<NumOfSims; i++) 
69 [ 
70 Print Simulation Summary(i); 
71 //accuracy of fex 
72 #define PS(fld, lab) Print_Summary(i, OffsetOf(TSimResult, tld), lab) 
73 PS(mFit fex Accuracy, "\nAccuracy of fex"); 
74 PS(mFit fexStd over Mean, "Precision of fex"); 
75 PS(mFit k21 Accuracy, "\nAccuracy of k21"); 
76 PS(mFit k21 Std over Mean, "Precision of k21"); 
77 PS(mFit fex Accuracy Trim, "\nAccuracy of fex trimmed"); 
78 PS (mFit fex Std over Mean Trim, "Precision of fex trimmed"); 
79 PS(mFit k21 Accuracy Trim, "\nAccuracy of k21 trimmed"); 
80 PS(mFit k21 Std over Mean Trim, "Precision of k21 trimmed"); 
81 #undef PS 
82 Print All(: ); 
83 } 
84 fclose(OutFile); 
85 
86 ] 
87 
88 /... +.....:.: +: r.... r. r.. r. r.. r..: ra. r..: +. ++. +:............ +. +........ r.... a. 
89 FUNCTION: 

:.:...... rr:.... 
D. o 

. iM. 
o. n. t. e 

. _Cea. 
rrl. o.. ( 

90 i) ..... i.. +. ar.. t+.... +. r.......... a.:...... i/ 
91 :: aric 
92 
93 1nt i 
94 int k, 
95 int 1 
96 
97 [ 
98 int n; 
99 

100 struct TSimulationParameters "pSP = &SimParams[i]; 
101 struct TSimBlock "pSB = &SimBlock[k](1]; 
102 struct TRunningSums `pRS = &RunningSums[k][1]; 
103 struct TPlateau 'pPD = &PlateauData[k)[1]; 
104 struct TNonLin "pNL = &NonlinData[kJ)l]; 
105 struct TSlope 'pSD &SlopeData[k][1]; 
106 memset(&RunningSums[k][l], 0, sizeof(struct TRunningSums)); 
107 for (n=0; n<NO MONTE CARLO; n++) 
108 
109 
110 Create_Concentration Curves( 
111 pSP->mVl 1, pSP->mV1 2, pSP->mTINF, pSP->mkel 1, 
112 pSP->mkel 2, pSP->mal Tofts, pSP->ma2__Totts, 
113 pSP->mkl_Tofts, pSP->mk2 Tofts, 
114 pSB->mSB k21, pSB->mSB_u 1, pSB->mSB_v_1, 
115 pSB->mSBu 2, pSB->mSB v 2); 
116 A= pSP->mA * pSB->mSB_fex; 
117 Create Noiseless Signal)A); 
118 
119 Create_Noisy_Curves(pSP->mNoiseFactor); 
120 Select_Sparse_Sample( 
121 pSP->mStart, pSP->mNumber_to_sample_int, 
122 pSP->mSamplinglnterval); 
123 Get Plateau(S1 WithNoiseSample, k, 1, i); 
124 GetSlope(S1 WithNoiseSample, k, 1, i); 
125 
126 pRS->mPlateau +- pPD->mVal; 
127 pRS->mPlateau2 += pPD->mVal * pPD->mVal; 
128 pRS->mSlope += pSD->mMaxSlope; 
129 pRS->mSlope2 += pSD->mMaxSlope * pSD->mMaxSlope; 
130 pRS->mStartlRE +- pSD->mMaxSlopelnterval; 
131 pRS->mStartIRE2 += pSD->mMaxSlopelnterval 
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pSD->rnMaxSlopelnterval; 
133 pR5->r. Rat: o += pSD->c: TheRatio; 
134 pRS->mRatio2 += pSD->mTheRatio * pSD->mTheRatio; 
135 NumOfFuncCalls = 0; 
136 // revert now to the pre-set assumed values 
137 KEL = pSP->mkel 2; 
138 TDASH = pSP->mTINF; 
139 Get InitEstk2l(k, 1); 
140 Get Init Est A(k, 1,1); 
141 status = Calculate Fit(S1 WithNoiseSample, k, 1, i); 
142 
143 MC k21[n] = pNL->mNL fitk2l; 
144 MC fex[n] = pNL->mNL fit fex; 
145 pRS->mk2l += pNL->mNL fitk2l; 
146 pRS->mk212 += pNL->mNL fitk2l*pNL->mNL_fitk2l; 
147 pRS->mfex += pNL->mNL fit fex; 
148 pRS->mfex 2 += pNL->mNL fit fex*pNL->mNL_fit_fex; 
149 pRS->mchi2 += pNL->mNL fitChi2; 
150 pRS->mchi2 2 += pNL->mNL fitChi2*pNL->mNL fitChi2; 
151 pRS->mno its (double)pNL->mNL number of iterations; 
152 pRS->mno its 2 +_ (double)pNL->mNL number of iterations * 
153 pNL->mNL number of iterations; 
154 n loop monte-carlo 
155 
156 
157 /fflffff++11111f. +rffaff11f11fafaflffaa++a******frfaaa+afffal+lfaaaaflal++af+ 
158 FUNCTION: Perform Calculations() 
159 ***********if ******************************kalt******ittt+f************f altfý 

160 vo. a Perforrr. 
_Calculatio. 

"s 

161 
162 int 
163 int k, 
164 int 1 
165 
166 
167 struct TS: mulationParameters *pSP = &SimParams[i]; 
168 struct TSimBlock *pSB - &SimBlock(k)[1]; 
169 struct TRunningSums *pRS = &RunningSums[k][1); 
170 struct TPlateau *pPD = &PlateauData[k)[1]; 
171 struct TNonLin `pNL = &NonlinData(k)[1]; 
172 struct TSlope *pSD = &SlopeData[k](1); 
173 struct TSimResult *pSR = &SimResult[k][1J[i); 
174 
175 SummaryTrimmed(MC k21, k, 1, SuccessFit); 
176 
177 pSR->mFit k21 Mean_Trim = MC Mean; 
178 pSR->mFit k21 Std Trim = MC SD; 
179 pSR->mFit k21 Std over Mean Trim = MC SDOverMean; 
180 
181 pSR->mFit k21 Accuracy Trim - 100 * (MC Mean - pSB->mSB k21 )/ 
182 pSB->mSB_k21; 
183 
184 Summary Trimmed(MC fex, k, 1, SuccessFit); 
185 
186 pSR->mFit fex Mean Trim = MC Mean; 
187 pSR->mFit_fex_Std_Trim = MC SD; 
188 pSR->mFit_fex Std 

_over 
Mean Trim = MC SDOverMean; 

189 
190 pSR->mFit_fex_Accuracy_Trim - 100 * (MC_Mean - pSB->mSB fex) / 
191 pSB->mSB_fex; 
192 
193 calculate plateau results 
194 Summary_Monte_Carlo(pRS->mPlateau, pRS->mPlateau2, Success); 
195 
196 pSR->mPlateau Mean - MC Mean; 
197 pSR->mPlateau_Std - MC SD; 
198 pSR->mPlateau Std_over Mean - MC SDOverMean; 
199 
200 calculate slope results 
201 Summary-Monte Carlo(pRS->mSlope, pRS->mSlope2, Success); 
202 
203 pSR->mSlope Mean - MC Mean; 
204 pSR->mSlope_Std - MC SD; 
205 PSR->rSlope Std over Mean = MC_SDOverMean; 
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229 
230 
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266 
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269 
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2'11 
272 
273 
274 
275 
276 
277 
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2 "l9 

// calculate Start 
Summary Monte Carlo(pRS->mStartlRE, pRS->mStarLIRE2, Success); 

pSR->mStarLIRE_Mean = MC Mean; 

pSR->mStartlRE Std = MC SD; 
pSR->mStartlRE Std over Mean = MCSDOverMean; 

// calculate Ratio 
Summary Monte Cario(pRS->mRatio, pRS->mRatio2, Success); 

pSR->mMeasured_Ratio_Mean = MC_Moan; 

pSR->mMeasured Ratio Std = MC SD; 

pSR->mMeasured Ratio_Std_over_Mean = MC_SDOverMeun; 

// calculate k21 
Summary_Monte_Carlo(pRS->mk2l, pRS->mk21 2, SuccessFit); 

pSR->mFit k21 Mean = MC Mean; 

pSR->mFit k21 Std = MC SD; 

pSR->mFit k21 Std over Mean = MC SDOverMean; 

pSR->mFit k21 Accuracy = 100 * (MC Mean - pSB->mSB k21) / 

pSB->mSB k21; 

calculate fex 
Summary_Monte_Carlo(pRS->mfex, pRS->m£ex 2, SuccessFit); 

pSR->mFit_£ex_Mean = MC Mean; 
pSR->mFit_fex SLd = MC SD; 
pSR->mFit fex_Std_over_Mean = MC_SDOverMean; 

pSR->mFit_fex_Accuracy = 100 * (MC Mean - pSB->mSB tex) / 

pSB->mSB fex; 

calculate chit 
Summary Monte Carlo(pRS->mchi2, pRS->mchi2 , SuccessFit 

pSR->mFitchi2_Mean = MC Mean; 

pSR->mFit chit Std = MC SD; 

pSR->mFit chit Std over Mean = MC SDOverMcan; 

// calculate no iterations 
Summary Monte Carlo(pRS->mno its, pRS->mno its 2, SuccessFit); 

pSR->mFit Molts Mean = MC Mean; 

pSR->mFit_Nolts Std = MC SD; 

pSR->mFiL Molts Std over Mean - MC SDOverMean; 

pSR->mSucccss = SucccssFiL; 

/ti#4t4f*****4*4***f**i##14#4ff###if1*t*f4f##f4tt##týt#tYYf***1i*f**##******* 

FUNCTION: Initialise() 

void Initialise 

void 

SamplingInlcrval = 10; 

SLart = 0; 

NumberToSample - ((NO POINTS I NO BASELINE - 1) - Slarl) / 
(SampIIngIII lcrval) + 1; 

NumberToSamplcInl a (inl) NumberToSample; 

TINFAssumcd - 1; 
TIN FPoiit LsAssLimed - (int) (TINFAssumed / Tims"Slcp) 

TINFSct - 20; 
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280 TINFPointsSet = (int)(TINFS(, t / TimeStep); 
281 
282 TINF = TINFScL; 
283 TINFPoints = (int)(TINF / TimeStep); 
284 
285 al Tofts = 0.399; 
286 a2 Tofts = 0.478; 
287 kl Tofts = 0.0019; 
288 k2 Tofts = 0.000185; 
289 
290 kel_1 = 0.080000000001; 
291 kel 2 set = 0.0009627; 
292 kel 2= kel 2 set; 
293 
294 T10 set = 900; 
295 T10 = T10 set; 
296 Alpha = 4.5; 
297 TR = 13; 
298 
299 NoiseFactor = 0.1; 
300 
301 NPT = 5; 
302 BLOCK = 5; 
303 
304 

305 /++++x++++x+xx+xx++x+++++******++x+++************************************++x" 

306 FUNCTION: Print Summary() 

307 +xx+++++++++x+x++++xx+++++xx+++x+++++++++++++++++++++++++: +++++++++++++++++*1 
308 void Print Summary 
309 
310 int sim, 
311 int offset, 
312 char *label 
313 
314 { 
315 int k, I; 
316 struct TSimResult *p; 
311 double val; 
318 
319 NuminMatrix = MATRIX DIM MATRIX DIM; 
320 TempSum = 0; 
321 TempSum2 = 0; 
322 TempSummary = 0; 
323 for (k=0; k<MATRIX DIM; k+f) 
324 { 
325 for (1=0; 1<MATRIX DIM; l++) 
326 
327 p= &SimResult[kJ[1][sim]; 
328 val = "((double *)((int. )p + offset)); 
329 it (vol. > 100000) 
330 { 
331 NuminMatrix = NuminMatrix - 1; 
332 continue; 
333 
334 TempSum += Val; 
335 TempSum2 +_ (vol * Val); 
336 
33'1 
338 TempSummary = TempSun / NuminMatrix; 
339 printf("'bs (mean And SD)\LXe\L", label, TempSummary) 
340 TempSummary = TempSum2 " NumInMattix - TempSum ' TempSum; 
341 TempSummary = TempSummary / NuminMatrix; 
342 TempSummary = TompSummary / (NumInMatrix-1); 
343 Temp Swnmuxy = ayrt(TcmpSummary) 
344 prin[L("ieAn", 'I'ý"m('Sutmn, +ry) 
345 ) 
346 

34/ /++x++*****************+**********************************... *.. *.. *... ****** 
348 FUNCTION: PrintSingle() 
349 ******+++*****************************************... *. *..... *********++. +++ý 
350 v')id Print t; inyl(ý 
351 ( 
352 int sim, 
353 int onset, 
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354 char *label 
355 
356 
357 int k, 1; 
358 struct TSimResult *p; 
359 for (k=O; k<MATRIX_DIM; k++) 
360 { 
361 for(1=0; l<MATRIX_DIM; 14+) 
362 
363 p= &SimResult[k]IlJ[simj; 
364 OneToPrinLBuffer[k)[1] = *((double *)(((int)p) + offset)); 
365 
366 } 
367 Print Summary Results(label); 
368 } 
369 
370 /**#**x**#*x##**x*x#x+*+*##+x++#fi+*#**#*+*#*#+#xxx*x*******xx*x***+*********t 
371 FUNCTION: PrintAll() 
372 *****x#*####+****+x****t*#**t****t*******#**t#t++#*****xxt++*****++++*+*****/ 

373 void Prot All 

374 
375 int sim 
376 ) 
377 { 
378 kdefino PS(fld, lab) Print_Single(sim, Ottsct0t(TSimResulL, lid), lab) 
379 int k, 1; 
380 PS(mCalc IRE, "Calculated IRE"); 
381 PS(mCalc ME, "Calculated ME"); 
382 PS(mCalc Ratio, "Calculated Ratio"); 
383 PS(mCalc TMAX, "Calculated TMAX"); 
384 PS(mCalc_True Start, "Calculated True Start"); 
385 PS(mFit_fex_Mean Trim, "Calculated Mean Fitted fox Trim"); 
386 PS(mFit_fex_Accuracy Trim, "Calculated Accuracy of Fitted fox Trim"); 
387 PS(mFit fex Std Trim, "Calculated SD of Fitted fox Trim"); 
388 PS (mFiL fex Std over Mean Trim, "100*SD/Mean of Fitted tex Trim"); 
389 PS(mFit tex Mean, "Calculated Mean Fitted fox"); 
390 PS(mFiltex Std, "Calculated SD of Fitted fox"); 
391 PS(mFitfox Std over Mean, "100*SD/Mean of Fitted tex"); 
392 PS(mFit fex Accuracy, "Accuracy fox 100'(titLed fox - set Lex)/set tex"); 
393 PS(mFit_k21_M(? an Trim, "Calculated Mean Fitted k21 Trim"); 
394 PS(mFit_k2l Accuracy Trim, "Calculated Accuracy of Fitted k21 Trim"); 
395 PS(mFitk2l Std over Mean Trim, "100'SD/Mean of Fitted k21 Trim"); 
396 PS(mFit k21 Mean, "Calculated Mean Fitted k21"); 
397 PS(mFit k21 Std, "Calculated SD of Fitted k21"); 
398 PS(mFit_k21 Std over Mean, "100*SD/Mean of Fitted k21"); 
399 PS(mFit k21 Accuracy, "Accuracy k21 - 100'(k21 tit - k21 set)/k21 tit"); 
400 PS(mFitchi2 Mean, "Calculated Mean Fitted Chit"); 
401 PS(mFiL chi2 Std, "Calculated SD of Fitted Chi2"); 
402 PS(mFit_chi2 Std over Mean, "100'SD/Mean of Fitted Chi-"); 
403 PS(mFitNoIts Mean, "Calculated Mean Fitted No Iterations"); 
404 PS(mFit Nolts Std, "Calculated SD of Fitted No Iterations"); 
405 PS(mFit Nolts Std over Mean, "100*SD/Mean of Fitted No Iterations"); 
406 PS(mPlateau Mean, "Calculated Mean Measured ME"); 
407 PS(mPlateau Std, "Calculated SD of Measured ME"); 
408 PS(mPlateau Std over Mean, "100'SD/Mean of Measured ME"); 
409 PS(mSIape Mean, "Calculated Mean Measured IRE"); 
410 PS(mSlope Std, "Calculated SD of Measured IRE"); 
411 PS(mSlope Std over Mean, "100*SD/Mean of Measured IRE"); 
412 PS(mMeasured Ratio Mean, "Calculated Mean Measured Ratio"); 
413 PS(mMeasured Ratio Std, "Calculated SD of Measured Ratio"); 
414 PS(mMeasured Ratio Std over Mean, "100'SD/Mean of Measured Ratio"); 
415 I'S(mStarLIRE Mean, "Calculated Mean Measured Start"); 
416 PS(mStartlRE Std, "Calculated SD of Measured Start"); 
41'/ PS(mSLartIRE Std over Mean, "100'SD/Mean of Measured Start"); 
418 for (k=O; k<MATRIX DIM; k++) 
419 
420 for (1=0; 1<MATRIX DIM; 1++) 
421 OneToPrintButter[kJ[1 = 9imResult[k][I]1sim]. mSucCess; 
422 
423 Print Summary Results("Success of MC runs"); 
424 
425 #undef PS 
426 } 
421 
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429 FUNCTION: Create Concentration CurvesO 
430 +� *+*******+**. *«**+«**************ý*********««««: **+********«*r***********/ 

431 void Create Concentration Curvr"S 
432 ( 
433 double VI 1, 
434 double V1 2, 
435 double TINF, 
436 double kel 1, 
437 double kel 2, 
438 double al Tofts, 
439 double a2 Tofts, 
440 double kl Tofts, 
441 double k2 Tofts, 
442 double k21, 
443 double u 1, 
444 double v 1, 
445 double u 2, 
446 double v-2 
447 
448 
449 int i; 
450 for (i=0; i<NOPOINTS; i++) 
451 { 
452 C1 1[i) =M in / V1 1/ TINF / kel 1 
453 (exp(kel 1* Tau[i]) - 1) * exp(-kel 1` Time[i)); 
454 
455 C1 2[iJ =M in / V12 / TINF / kel 2* 
456 (exp(kel 2* Tau[ij) - 1) * exp(-kel 2` Time[ij); 
457 Cl[iJ = Cl 1[i] + Cl 2[i]; 
458 C2 1[ij = Min / V1_1 / TINF 
459 
460 u1* (exp(kel 1* Tau[i)) - 1) * exp(-kel 1* Time(iJ) - 
461 v1* (exp(k21 * Tau[i)) - 1) ` exp(-k21 * Time[ij) 
462 
463 C22[ij =M in / V1 2/ TINF ` 
464 
465 u2* (exp(kel 2* Tau[iJ) - 1) * exp(-kel 2* Time[ij) - 
466 v2* (exp(k21 * Tau[i)) - 1) ` exp(-k21 * Time[i)) 
467 
468 C2[i) = C2 1[i) C2 21iJ; 
469 Cl ToCts[iJ = al Toils * exp(-kl Toils * Time[ij) 
470 a2 Tofts * exp(-k2 Toils * Time[iJ); 
471 
472 C2Tofts[iJ = al Toils * k21 / (k21 - kl Toils) 
4`/3 ( exp(-kl Tofts * Time[i)) - exp(-k21 * Time[i)) )+ 
4'/4 a2 Toils * k21 / (k21 - k2 Toils) * 
475 cxp(-k2 Tofts ` Time[ij) - exp(-k21 * Time[ij)); 
476 
4"/7 
478 
479 /***************************«****************************""****************.. 
480 FUNCTION: Create Noiseless Signal() 
481 +*+****«***+**+*+: ****+*«******+*************«****, ****************«*****«. / 
482 void Create Noiseless Signal 
483 
484 double A 
485 ) 
486 ( 
487 int i; 
488 for (i= 0; i<NO BASELINE; i1 i) 
489 ( 
490 S1[ij = 1.0; 
491 S2[iJ 1.0; 
492 S3[i) = 1.0; 
493 } 
494 for (i= NO BASELINE; i<NO POINTSINO BASELINE; iii) 
495 
496 S1[i) =1+A* C2 2[i-NO BASELINE]; 
497 S2[ij =1fA" C2[i-NO BASELINE]; 
498 S3[iJ =1IA C2 Tofts[i-NO BASELINE); 
499 } 
500 } 
501 
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502 /#x*x+xxx4ff4##++x#*++xx#+f4+x***}*#*x++++#}r*+++: fff}}fffff 4ff}}*+*#}**#f+ff 
503 FUNCTION: Create Noisy_Curves 

}**++++++f4fff4R#}+4Rfi4R+44f 4f rfff 444f******4*4*******4f+}++}+}*#f******lff/ 504 

505 void Create Noisy Curves 
506 ( 
507 double NoiseFactor 
508 ) 
509 ( 
510 int i; 
511 Lor (i=0; i<(NO POINTS + NO BASELINE); i++) 
512 
513 SampleTime[i] =i* TimeStep; 
514 S1 WithNoise[i] = S1[ij * (1 + NoiseFactot * gasdev(&Idum)); 
515 S2 WithNoise[i] = S2[i] * (1 4 NoiseFaclor * gasdev(&Idum)); 
516 S3_WithNoise[iJ = S3[i] * (1 + NoiseFactor " (3asdev)&Idum)); 
517 
518 } 
519 
520 /l1f 4f+f44f1f4+*f4+ix****#4**t***}f******}**}f++***************************** 

521 FUNCTION: Select_Sparse_Sample)) 
522 R***#+*#*+*#***RRt4RR+44t44ff 44ff44tf+ff4******+*********************f4}t*rf/ 

523 void Select Sparse Sample 

524 
525 int Start, 
526 int NumberToSamplelnt, 
527 int Samplinglnterval 
528 
529 { 
530 int i; 
531 for(i=0; i<NumberToSamplelnt; i++) 
532 
533 S1 WithNoiseSample[i] = S1 WithNoise[Start +i SamplinglntervalJ; 
534 S2_WithNoiseSample[i) = S2 WithNoise[Start +i* Samplinglntervalj; 
535 S3_WithNoiseSample[ij = S3_WiLhNoise(Start +i* SamplinglnLerval]; 
536 
537 Si WithoutNoiseSample[iJ = S1[Start Ii" Samplinglntervalj; 
538 S2 WithoutNoiseSample[i) = S2[Start + SamplingIntervall; 
539 S3_ WithoutNoiseSample[iJ = S3[Start +iS. +mplinglntervalj; 
540 ) 
541 

592 

$93 

599 /*+**RRf44f***********************f+**f*f4*fff}ff****f****R+*R*f************* 

545 FUNCTION: Fill Sample Data() 
++++R+}4Rffffflff+++x4+******+#+RtR+RRr+f 4a 4ffaf}4}f*+++t*+#1f}+}***f}*++tr+/ 546 

547 void Fill Sample Data 
548 
549 int index 
550 
551 
552 int i, j; 
553 strucl TSimBlock *pSB; 
559 for (j=O; j<MATRIX DIM; j++) 
555 
556 Lor(i = 0; i<MATRIX DIM; i++) 
551 
558 p5b = &SimBlock[i][jJ; 
559 
560 pSB->mSB Lex = 0.1 +j"0.1; for 5 0.1 + j"0. 
561 pSB->mSB k21 = 0.01 +i*0.01; for 5: 0.01 + i"0.02 
562 pSB->mSB kel 1= SimParams[indexj. mkel 1; 
$63 pSB->mSB kel 2= SimParams[indexJ. mkel 2; 
564 
565 pSB->mSB v1=1/ (pSB->mSB k21 - pSB->mSB kel 1); 
566 pSB->mSB u1= pSB->mSB k21 / pSB->mSB kel 1' pSB->mSB v 1; 
567 pSB->mSB v2=1/ (pSB->mSB k21 - pSB->mSB kel 2); 
568 'SB->mSB u2= pSB->mSB k21 / pSB->mSB kel 2 pSB->mSB v 2; 
569 
510 
571 
572 
573 /*++fff+4f*++*******+f***************************************R4}if***1rf*Rf+} 

579 FUNCTION: Fill Sample Data With Noise 
575 ****************+**********************************************************/ 
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576 
577 
578 
579 
580 
581 
582 
583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 

vu'Q F_11 Sam. plc Data Wien Noise 

int index 

int i, j; 
strict TSimBlock *pSB; 
for ( j=0; j<MATRIXDIM; jff 
I 

for(i = 0; i<MATRIX_DIM; i++) 

pSB = &SimBlock[iJ[ji; 

pSB->mSB fex 

pSB->mSB k2l 

pSB->mSB_fex 
pSB->mSB k21 

while (pSB->mSB 

pSB->mSB fex 

pSB->mSB fex 

= 0.1 +j*0.1; // for 5 0.1 i j"0.2 

= 0.01 + i"0.01; for 5: 0.01 + i"0.02 

= pSB->mSB fox + 0.1 * gasdev(&Idum); 
= pSB->mSB k21 + 0.01 * gasdev(&Idum); 
fox < 0) 

= 0.1 +j*0.1; 
= pSB->mSB fex 1 0.1 * gasdev(&Idum); 

) 
while (pSB->mSB k21 <2* SimParams[indux;. mkel 2) 
i 

pSB->mSB k21 = 0.01 ti"0.01; 
pSB->mSB k21 = pSB->mSB k21 f 0.01 " jd; iev(SIuum); 

pSB->mSB kel 1= SimParamstindexj. mkel_l; 
pSB->mSB kel 2= SimParams[indexj. mkel 2; 

pSB->mSB v1 =1/ (pSB->mSB k21 - pSB->mSB kel 1); 
pSB->mSB u1= pSB->mSB k21 / pSB->mSB kel 1* pSB->mSB v 1; 
pSB->mSB v2=1/ (pSB->mSB k21 - pSB->mSB kel 2); 
pSB->mSB_u__2 = pSB->mSB k21 / pSB->mSB kel 2' pSB->mSB v 2; 

I//j 

FUNCTION: Fill Simulation Parameters() 

void Fill Simulation Parameters 

int i 

struct TSimulationParameters *pSP - &SimParams[i]; 

pSP->mNumber to sample int 

pSP->mSampling IntervaI 

pSP->mStarL 
pSP->mTINF 
pSP->mTINFPoints 
pSP->mTINFAssumed 
pSP->mTINFPointsAssumed 
pSP->mBW 
pSP->mDose 
pSP->mM in 

pSP->mal Tofts 
pSP->ma2 Tofts 
pSP->mklTofLs 
pSP->mk2 Totts 
pSP->mkel 1 
pSP->mkcl 2 
pSP->mVI Fractionl 
pSP->mVl Fraction2 
pSP->rVl 1 
pSP->mVI 2 
pSP->mT10 
pSP->mTlO set 
pSP->mAlpha 
pSP->mTR 
pSP->mA 

- NumberToSamplelnL; 

- SamplingInterval; 

= SLarL; 

= TINF; 

- TINFPoints; 

- TINFAssumed; 

- TINFPoinLsAssumed; 

- BW; 

- Dose; 

- Dose * BW; 

- al Totts; 

- a2 Tolls; 

- kl Totls; 

- k2 Tolts; 

- kel 1' 10.0 / TINF; 
- kel 2; 

- V1 Fractiornl; 
- V1 Fraclion2; 

- BW ' V1 Fractionl " TINF / 10.0; 
- BW " V1 Fraction2; 

- T10; 

= T10 set; 
- Alpha; 

- TR; 

- TR / 1000 1 Alpha " exp(-TR / T10) 
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650 (1 - exp(-TR / T10)); 
651 pSP->mA_set = TR / 1000 * Alpha * exp(-TR / T10 set) / 
652 (1 - exp(-TR / T10 set)); 
653 pSP->mNoiseFactor = NoiseFactor; 
654 pSP->mNPT = NPT; 
655 pSP->mBLOCK = BLOCK; 
656 
6 5'7 
658 /++++++++++++++x++++++++++++++++r+r+++++r++++++++r++rw+++rww++wwr++******+x+w 

659 FUNCTION: My Compare 
660 +++++rr++++++++w++++++++++rrr+r+++++rx+++++++++xxr+rr++++w+xwxw+x++++++++++/ 

661 inL My Compare 

662 
663 const void *pl, 
664 const void *p2 
665 
666 
667 double dl, d2; 
668 
669 dl =( (struct TTempsort *)pl )->mValue; 
670 d2 =( (struct TTempSort *)p2 )->mValue; 
671 
672 if (dl < d2) 
673 return -1; 
674 if (dl == d2) 
675 return 0; 
676 return 1; 
677 
678 
679 /+++++++++++r++++++++r+++rr+++r+r++++x++r++rar+++++++w+w+x+++++r w+x+++x++++r" 
680 FUNCTION: Get Plateau() 
681 +++rrrxrrr+r+rrrr+r+++++++rrr++rr++r+w+++++rww+wwwx+++r++++w************xrr+/ 
682 void Get Plateau 

683 
684 double *column, 
685 int x, 
686 int y, 
687 int sim index 
688 
689 { 
690 int i, k; 
691 double sum std, plateau; 
692 int. BLOCK = SimParams[sim indexJ. mBLOCK; 
693 int ZZ = SimParams(sim index). mNumbei to s, ur. ple itit 
694 double DELTA = SimParams)sim index]. mSamplinglnterval TimeSLcp; 
695 slruct TTempSorl *pTS; 
696 struct TPlateau *pPD; 
69/ for (k=0; k<=ZZ-BLOCK; k+t) 
698 { 
699 sum std = 0; 
700 plateau = 0; 
'101 
702 for (i = 0; i, BLOCK; ; 14) 
703 
704 plateau t= e<11urnJkfJ 
'705 
706 //+**...... ++.. ................... *****...,,,...... ...,,......,.... 
'107 store ttie values for sorting in the temp ;t ILICt Lilt' 

709 

110 TempSort(kj. tnvalue = plateau / BLOCK; 
111 for (i = 0; i<BLOCK; i4t) 

112 
113 sutra std 4= ( (plateau / BLOCK-columnik if) " 
714 (plateau / BLOCK-column(hix 
715 
716 if (BLOCK ! -1) 
71/ TempSort[k]. mStdDev - (double) sgrl(sum std / (BLOCK - 1) 
118 else 
119 TempSort(k(. mStdDev - 0; 
720 TempSort)k(. mindex - k; 
721 
722 gsort (TempSort, ZZ-BLOCKtl, sizcol (strucl TTempSorl), My Compare) 
'723 pPD = &PlateauData(xOyJ; 
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724 pTS = &TempSort[ZZ - BLOCK]; 
725 pPD->mVal = pTS->mValue; 
'726 pPD->mStd = pTS->mStdDev; 
727 pPD->mTime = (double) ( (pTS->mindcx + BLOCK / 2) " DELTA 1; 
728 pPD->mMin = TempSort[0]. mValue; 
729 if (pPD->mVal < 1) 
'130 pPD->mVal = 1; 
731 if (pPD->mStd) 
732 pPD->mVal_Std = (pPD->mVal-1) / pPD->mSLd; 
733 else 
734 pPD->mVal Std = 0; 
735 1 
736 

737 +++++++++++++++++++++++++r+++++++*++++r+++++++++++++******++++++++++++++++++ 

738 FUNCTION: Get Slope() 
739 **********+++++++++++++++++++++++++++++++++++++++++++++r++++++++++++++++++++ý 

740 void Get Slope 

741 
742 double *column, 
743 int pix_x, 
144 int pix y, 
745 int sim index 
746 
747 
748 int j, 
749 index, 
750 mwt; 
751 int NPT = SimParams[simindex]. mNPT; 
'752 int START = 0; 
753 int STOP = SimParams[sim index]. mNumber to sample int - NPT; 
754 double DELTA = SimParams[sim index]. mSamplinglnterval * TimeStep; 
755 double a[NO POINTSfNO BASELINE], b[NO POINTS+NO BASELINE], 
'156 siga[NOPOINTSiNO BASELINE], sigb[NO POINTS+NO BASELINE], 
757 chi2[NOPOINTS+NO BASELINE], q[NO POINTS+NO BASELINE]; 
758 double x[NO POINTS+NO BASELINE], y[NO POINTS+NO BASELINE], 
759 sig[NOPOINTS+NO BASELINE]; 
760 struct TSlope *pSD; 
761 struct TTempSort *pTS; 
"162 struct TPlateau *pPD; 
163 mwt = 0; // No STD weighting 
764 START = (int) 
765 NO BASELINE / SimParams[simindex]. mSamplinglnterval - 
766 2* SimParams[sim index]. mTINF / 
767 SimParamsisim index]. mSamplingInterval 
/68 
/69 STOP = (int) 
170 NO BASELINE / SimParams[sim index]. mSamplinglnterval + 
771 2* SimParams[sim index]. mTINF / 
772 SimParams[sim index]. mSamplinglnterval 
773 
774 
175 tor ( index=START; index <= STOP; index++ 
776 
777 
1-18 
179 for ( j=0; j<NPT; if' 
780 
'181 x1j+1J = (index + j) * DELTA; 
/82 y1J+11 = (double) column]index+j1; 
/83 sig(j+1) = 1.0; 
184 ) 
/85 
186 tit (x, y, NPT, si(3, mwl, &a[index], &b[index], &siga(index], 
78'/ &sigb[indexI &c11 i2[indexj, &q[index] 
788 
189 
/90 TempSorl[index -START]. mIndex index; 
191 TempSort[index-START]. mValue - b[index]; 
792 TempSort(index-START]. mStdDev - sigb[index]; 
793 
794 gsort (TempSort, STOP-START+1, sizeot (slruct TTempSorl), My Compare); 
195 pSD = &S1opeData[pix x][pix y]; 
796 pTS = &TempSorL[STOP-START]; 
797 
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798 pSD->mMaxSlope = (double)pTS->mValue; 
799 pSD->mMaxSlopeSig = (double)sigb[pTS->mIndexj; 
800 pSD->mMaxSlopelntercept = (double)a[pTS->mIndex]; 
801 pSD->mMaxSlopelnterceptsig = (double)siga[pTS->mindex]; 
802 pSD->mMaxSlopeChi2 = (double)chi2[pTS->mindexJ; 
803 
804 pSD->mMaxSlopelnterval = (pTS->mindex) * DELTA; 
805 pSD->mMinSlope = (double)TempSort[0]. mValuc; 
806 pPD = &PlateauData[pix_x](pix y]; 
807 
808 pSD->mTheRatio = (pPD->mVal != 1) ? 
809 (pSD->mMaxSlope / (pPD->mVal - 1)) 
810 (0); 
811 pSD->mOnset = (pSD->mMaxSlope != 0) ? 
812 ((1 - pSD->mMaxSlope Intercept) / pSD->mMaxSlope) . 
813 (0); 
814 ] 
815 
816 /++++++xx++x+++++++++++++++++++************+++. ++******xx, xx, +++++++... +++. ++ 
817 FUNCTION: 

+++++x++++++++++Calculate *: 
M+E 

++I+R+E **F*r*o*m *+M+y +RF+uxn+c+t+iro+n+*( 818 *) ****************. +. +,,, +: / 
819 void Calculate ME IRE From My Function 
820 
821 int pix x, 
822 int pixy, 
823 int sim index 
824 
825 
826 struct TSimBlock *pSB = &SimBlock[pix x][pix yJ; 
827 strucL TSimulationParameters *pSP = &SimParams[sim index]; 
828 struct TSimResult *pSR = &SimResult[pix xJ[pix y][aimindex); 
829 double t max, c max; 
830 double k21 = pSB->mSB k21; 
831 double u= pSB->mSB u 2; 
832 double v= pSB->mSB v 2; 
833 double kel = pSB->mSB kel 2; 
834 double T= pSP->mTINF; 
835 double A= pSP->mA * pSB->mSB Lox * 
836 pSP->mM in / pSP->mVl 2/ 
83'7 pSP->mTINF; 
838 t max =1/ (k21-kel) * log( (exp(k21 * T) - 1) / (exp(kel * T) - 1) 
839 
840 c max =u* (exp(kel * T) - 1) " exp(-kel t max) - 
841 v* (exp(k21 ` T) - 1) * exp(-k21 *t max); 
842 pSR->mCalc_ME =1iA*c max; 
843 pSR->mCalc IRE =A* k21 *v* (exp(-kel * T) - exp(-k21 * T)); 
844 pSR->mCalc TMAX =L max; 
845 pSR->mCalc True Start = TimeStep * NO BASELINE; 
846 pSR->mCalc Ratio = k21 *v (exp(-kcl"T) cx)p(-k-'l'T)) /c max; 
847 
848 

849 /++x+++*+xxx, +++++x+++++++r++++x***+*+++++, +, ++x +xx, +, ****** � +:, x, +++., +x+w" 

850 FUNCTION: Xmrqmiri() 

851 ++xx+x*+++++x+x++*. xx+.. +++*+, ++x+++x. +...,. +.. x......... *., x++***********.. / 

852 lilt Xmrgmin 

853 
854 double `Column, 
855 int px, 
856 int py, 
857 int sim index, 
858 double *Result 
859 
860 [ 
861 struct TSimulationParameters *pSP = &SimParams(sim index); 
862 struct TSimBlock *pSB - &SimBlock[px]]pyj; 
863 int Start - (inL) (SlopoData[px][py]. mMaxslopelnterval / 
864 (TimeStep * pSP->mSamplinglntcrval)(-1; 
865 i. nt ZZ = pSP->mNumber to sample inl; 
866 jilt NPT - ZZ - Start; 
867 double DELTA - pSP->mSamplinglnterval * TimeStep; 
868 double Guess A= pSP->mA * pSB->mSB Lex " pSP->mM in / 
869 pSP->mVl 2/ pSP->mTINF; 
870 double Guess k21 = pSB->mSB k21; 
8'11 int True start; 
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872 int i, *ia, itst, k, m£it=MA; 
873 double alamda, chisq, ochisq, *x, *y, *yt, *sig, **covar, **A1ph,; 
874 static double a[MA+1J = (0.0,1.0,1.0); 
875 static double gues[MAI1J = (0.0,0.001,0.001); 
876 is = ivector(1, MA); 
877 x= vector(1, NPT MAX); 
878 y= vector(1, NPT MAX); 
879 yt = vector(I, NPT MAX); 
880 Sig = vector(1, NPTMAX); 

881 covar = matrix(1, MA, 1, MA); 
882 Alpha = matrix(1, MA, 1, MA); 
883 

884 True start = (int)NO BASELINE/pSP->mSamplingInterval; 
885 Start = True start; 
886 NPT = ZZ - Start; 
887 for (i=1; i<=NPT; i++) 
888 
889 x[iJ = (double) DELTA*(i-1); 
890 sig[i) = 1.0; 
891 y[i) = (double) Column[Start+i-1]; 
892 
893 gues[1) = Guess A; 
894 gues[2] = Guess k21; 
895 for (i=1; i<=mfit; i++) 
896 ia[iJ=1; 
897 
898 for (i=1; i<=MA; i++) 
899 a[i]=gues[i]; 
900 alamda = -1; 
901 status = mrqmin )x, y, sly, NOT, a, ja, MA, covar, Alpha, &chisq, My Func, &aIamda) 
902 k=1; 
903 itst = 0; 
904 for (;; ) 
905 
906 kli; 
907 ochisq = chisq; 
908 status = mrgmin) x, y, siy, NOT, a, ia, MA, covai, Alpn. r, trchit, y, 
909 My Func, &alamdd); 
910 
911 if (chisq > ochisq) 
912 ( 
913 itst=0; 
914 
915 else if ( fabs(ochisq-chisq) < CHI TOLERANCE 
916 t 
911 itst+i; 
918 J 
919 if (itst < 4) 
920 continue; 
921 alamda = 0.0; 
922 status = mrgmin( x, y, sig, NOT, a, a, MA, covert, Alpha, &chisq, 
923 My Func, &alamda); 
924 break; 
925 
926 ------------------------------------------------------------ 
927 Gaussj returns 0 when OK. This is then passed on to mrymin 
928 // 1 and 2 mean singular matrix errors 
929 ------------------------------------------------------------ 
930 Everything is tine! 
931 it ( ! status 
932 
933 Result 0) = a[1J; 
934 // convert to Lex 
935 Result [1) = a[21; 
936 Result[2] = covar[1J[1]; 
937 Result[3] - covar[2)[1]; 
938 Result [4) - chisq; 
939 tree matrix(Alpha, 1, MA, 1, MA); 
940 tree matrix(covar, 1, MA, 1, MA); 
941 free vector(siq, 1, NPT MAX); 
942 freevector(yt, 1, NPT MAX); 
943 tree vector(y, 1, NPT MAX); 
944 tree vector(x, 1, NPT MAX); 
945 tree iveclor(ia, 1, MA); 
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941 return 1; 
948 
949 else 
950 { 
951 freematrix(Alpha, 1, MA, 1, MA); 
952 freematrix(covar, 1, MA, 1, MA); 
953 freevector(sig, 1, NPT MAX); 
954 freevector(yt, 1, NPT MAX); 
955 freevector(y, 1, NPT MAX); 
956 freevector(x, 1, NPT MAX); 
957 free ivector(ia, 1, MA); 
958 return 0; 
959 
960 
961 
962 /++++++++++++++++++++++++r++++++++. +++++rr: ++++++++:. +++.. ++r"+++. +..... +... + 
963 FUNCTION: My_FuncO 
964 ft+R++1+++++RA+R+R+R++++++++i++Y+l++++"++++"+++\+"+"+++++t+1+t++++++++++++++/ 

965 void My Func 
966 
967 double L, 
968 double all, 
969 double *y, 
970 double dydall, 
971 int na 
972 
973 ( 
974 double z, v, cone, dydc; 
975 NumOfFuncCalls 4= 1; 
976 
977 if ( a12] < (2 * KEL) 
978 1 
979 dyda(2] = -dyda(2]; 
980 return; 
981 
982 
983 it ( all] <0 
984 { 
985 dyda[1] = -dydalli; 
986 return; 
987 
988 
989 if ( a[2) > 0.125 
990 { 
991 dyda(2] - -dydal2]; 
992 return; 
993 
994 
995 if ( a[2] > KEL 
996 z-1 a(2] - KEL ); 
997 else 
998 { 
999 return; 

1000 
1001 
1002 v-z/ KEL; 
1003 if (t <- TDASH 
1004 cone - a12] v(I- ex)>(-KEL t) )-z"(1- exp(-a12] L) 
1005 else 
1006 cone - a12] v( exp(-KEL " (L - TDASH)) - exp(-KEL " t) )- 
1007 z*( exp(-alt] * (t - TDASH)) - exp(-a12] " tl ); 
1008 'y - (1 + all] " cone); 
1009 dydc - all); 
1010 dydall) - cone; 
1011 it (t <- TDASH 
1012 { 
1013 dyda(2] - dydc 
1014 z*z( exp(-KEL expl-o12] t) )- 
1015 z"t expl-a(2] " t) 
1016 
101/ 
1018 else 
1019 1 
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1020 dyda[2] = dydc * 
1021 z*z*( exp(-KEL * L) - exp(-KEL * (t - TDASH)) )- 
1022 z*z"( exp(-a[2] " t) - exp(-o(2 (l - TDASH)) )- 
1023 z" 
1021 t* exp(-a)2] *t )- 
1025 (t - TDASH) * exp(-a[2] (t - TDASH)) 
1026 
1027 
1028 
1029 [ 
1030 
1031 /+++++++++++++++++++++r+r+r++++++++++r+r+r******. +++r+******************., +.. 
1032 FUNCTION: Calculate Fit() 
1033 +++++++r++++++r+++++++++++rr++r+++++++r++r+r++r+r+r+rrrr+r++r+r+++++..... ++/ 

1034 int Calculate Fit 

1035 
1036 double *Column, 
1037 int px, 
1038 int py, 
1039 int sim index 
1040 
1041 [ 
1042 int status = 0; 
1043 double results[6); 
1044 struct TSimBlock "pSB = &SimBlock[pxJ[py]; 
1045 strucL TNonLin *pNLD = &NonlinData[px][py]; 
1046 struct TSimulationParameters +pSP = &SimParams[sim index); 
1047 double kel = pSB->mSB kel 2; 
1048 status = Xmrgmin(Column, px, py, sim index, results); 
1049 pNLD->mNL_fitA = results[0J; 
1050 pNLD->mNL_fit fex = (pNLD->mNL fitA / pSP->mA set / pSP->mM in) * 
1051 (pSP->mVl 2* pSP->mTINF); 
1052 pNLD->mNL fitk2l = results[1]; 
1053 if ( pNLD->mNL fitk2l>0.3 
1054 [ 
1055 status = Xmrgmin(Column, px, py, sim index, results); 
1056 
1057 pNLD->mNL fitChi2 = resulis[4]; 
1058 pNLD->mNL number of_iterations = NumOiFuncCalls; 
1059 pNLD->mNL fitAk21 = pNLD->mNL titA ' pNLD->mNL fitk2l; 
1060 it (pNLD->mNL fitk2l > 0.1) 
1061 status = 0; 
1062 if (pNLD->mNL fitA <= 0) 
1063 status = 0; 
1064 
1065 return status; 1 if OK 
1066 
1067 

1068 /+: +++: +++++++++++++r+rr+rrr+rr++rr+. ******++++++**************************.. 
1069 FUNCTION: Summary Monte Carlo() 

10/0 +r+r+++r+r+r++++++**********************************************************ý 

1011 void Summary Monte Carlo 

1012 
10'13 double Sum, 
1014 double Sum-', 
1015 long int No 
10'16 
1071 
10/8 double a, b, d, e; 
1019 it ( No <2 
1080 
1081 MC SD - 1000000; 
1082 MC Mean = 1000000; 
1083 MC SDOverMean = 1000000; 
1084 
1085 return; 
1086 
108'1 
1088 MC Mean = Sum / No; 
1089 a= No * Sum2; 
1090 b- Sum * Sum; 
1091 da-b; 
1092 e-d/ No; 
1093 ee/ (No - 1); 
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1095 MC SDOverMean = 100 * MC MC Mean; 
1096 
1097 
1098 /+++++rxrrrr+x+a+++x+x++x+xxrx+raxrrrrx rr++axrrxx+rxr+++x. +x++++r++aarrxrr+xx 
1099 FUNCTION: Print Simulation Summar y() 
1100 ++++x+xxxxx+xaaxxarr: yrrxraxxaraýraraxr r+xax+: arr++a +x rxrxrr++++ar++xxxaxxax/ 
1101 void Print Simulation Summary 
1102 ( 
1103 int i 
1104 
1105 ( 
1106 struct TSimulationParamelers *sp = &SimParams)jj; 
1107 
1108 prinLf("\n\nSimulation no\t%d\n\n", i); 
1109 prints("a\t%e\n", sp->mA); 
1110 printf("al Tofts\t%e\n", sp->mal Toils); 
1111 printf("a2 Tofts\t%e\n", sp->ma2 Tolts); 
1112 printf("a set\t*e\n", sp->mA set); 
1113 printf("Alpha\Lxe\n", sp->mAlpha); 
1114 prinlf("BLOCK\t'fd\n", sp->mBLOCK); 
1115 prinLt("BW\t%e\n", sp->mBW); 
1116 printf("Dose\t'*e\n", sp->mDose); 
1117 prinlf("kl Tofls\t/e\n", sp->mkl Toils); 
1118 printf("k2 Tofts\L'ne\n", sp->mk2 Toils); 
1119 printf("kel 1\tYe\n", sp->mkel 1); 
1120 printf("kel 2\lie\n", sp->mkel 2); 
1121 prinlf("M in\t'de\n", sf)->mM in); 
1122 printt("NoiseFactor\tre\n", sp->mNoiseFactor); 
1123 printf("NPT\t'rd\n", sp->mNPT) ; 
1124 prinIt("NumberToSampleInt\Itd\n", sp->mNumber to sample inl); 
1125 printf("Samplinglnterval\t', d\n", sp->mSamplingInterval); 
1126 printf("Start lid\n", Sp->mStart); 
1127 printf("T10\t', cAn", sp->mTlO); 
1128 printf("T10 sel\LKe\n", sp->mTlO set); 
1129 printf("TINF\tXe\n", sp->mTINF); 
1130 printf("TINFPoinls\L`rd\n", sp->mTINFPoints); 
1131 prinlf("TINFAssumed\L'te\n', sp->mTINFAssumed); 
1132 print f("TINFAssumed points\0d\n", 5p->mTINFPointsAssumed); 
1133 printf("TR\t%e\n", sp->mTR); 
1134 printf("V1 1\t9c\n", sp->mVl 1); 
1135 printt("V1 2\lXe\n", sp->mVl 2); 
1136 print)("V1 Fractionl\lt(, \n", sp->mV1 Fractionl); 
1131 prints ("V1 Fraction2\LYeAn", sp--mV1 Fr action2) 
1138 
1139 
1140 /xrx++++rxxrr+rrr rrraxrrxr+x. ++a++r+x+rr rrx. a+. +r rxxxxxrxar+x+++rr++xaxr+x+ar 

1141 FUNCTION: Print Summary Results() 
1145 rx+++++a+++raxrarrxrxr++rr+xrrxa++++aaar rrara+++rr+a+rxx+. +. +rrrx+a+a+r x++aa/ 
1143 Veil) Print Sunnnury Re:; it 
1144 
1145 char label[] 
1146 
1147 
1148 int 1, k; 
1149 print! )"\n\L\t\l\l%s\n", label); 
1150 print))"\n\t\t\t\L"); 
1151 tor (1=0; 1<MATRIX DIM; lr') 
1152 ( 
1153 prinLt("Lox - 'i . 2eAL", :; imBlock) oJ 1) . mSB lox); 
1154 
1155 printt("\n"); 
1156 tor (k=0; k<MATRIX DIM; krr) 
115'7 
1158 prinLi("\t\L\tk21 - 1, . 

2e\t", Sim Block(k)[0). mSB k21) 
1159 tor(1-0; 1<MATRIX DIM; 144) 
1160 ( 
1161 printf("3e\t", OncToPrintBu tter(k)(1)); 
1162 ) 
1163 printt)"\n"); 
1164 
1165 
1166 
116/ /""ra.. aa... e.. agar. aa. raa.. a...... raa... r. r. r. raar. a........ a..... r. r rr..... 
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1168 FUNCTION: Look Up() 
1169 x+«x++++xr+rr++++r++++xx******++++r+++r+rrr++++x«xxr++r+rr«+a+++++++++++++++/ 

1170 void Look Up 

1171 ( 
1172 int i 
1173 
1174 
1175 double k2l delta = 0.00001; 
1176 double T= SimParams[i). mTINF; 
1177 double kel = SimParams[i). mkel 2; 
1178 double K21, up, down, TMAX; 
11'19 int step; 
1180 
1181 for (step = 0; step < MAXLOOKUPS; step++) 
1182 { 
1183 K21 = 0.001 + k21 delta * step; 
1184 TMAX =1/ (K21 - kel) * log((exp(K21 * T) - 1) / (exp(kel " T) - 
1185 1)); 
1186 up = K21 *( exp(-kel * T) - exp(-K21 * T) ); 
1187 down = K21 / kel * (exp(kel * T) - 1) * exp(-kel " TMAX) - 
1188 (exp(K21 * T) - 1) * exp(-K21 * TMAX); 
1189 LookUps[stepj[1] = up / down; 
1190 LookUps[stepl[0) = K21; 
1191 
1192 
1193 
1194 /+x++x+++++++++x++r++«+++++x«+++++x«+x«+++rxrx+r+++++++++++x++++++++++rr++ar+ 
1195 FUNCTION: Get Init Est k2l() 
1196 «+++++++rrr+rx+r«++******+++r++rr+rrxr+a++«++++a+x+«+a++++++++++aara+++r+++a/ 

1197 void Get Init Est k21 

1198 
1199 int px, 
1200 lot py 
1201 
1202 
1203 double Ratio; 
1204 long int i=0; 
1205 Ratio = SlopeData[pxl[pyl. mThcRatio; 
1206 if ( Ratio < LookUps[OJ[1) ) 
1207 NonlinData[pxJ(pyJ. mNL estk2l = LookUps[0J[01; 
1208 else if ( Ratio > LookUps[MAXLOOKUPS-1J(1] ) 
1209 NonlinData[pxj[pyJ. mNL estk2l - LookUps[MAXLOOKUPS-11[0]; 
1210 else 
1211 { 
1212 while(Ratio>LookUps[i[[1J) 
1213 it+; 
1214 NonlinData[pxJ[py). mNL estk2l = LookUps[i)[0); 
1215 
1216 J 

1217 

1218 /xr++x++++rx+«+««a+rr+««+«*+++++«******************************++r+r++a+++*+a 

1219 FUNCTION: Get Init Est AO 

1220 a+a++*++r++r+++r+ar++rxa******++++++++. ++x«a+r++. +"««.. +a++++. +r+a++aa++*+++/ 

1221 void Get Init Est A 

1222 
1223 int px, 
1224 int py, 
1225 int i 
1226 ) 
1221 { 
1228 double k21, u, v; 
1229 double Max, c Max, t max; 
1230 double T= SimPatams [iJ. iuTINF; 
1231 double kel = SimPaiams[iJ. mkcl :.; 
1232 k21 = NonlinData[pxl[py]. mNL cstk2l; 
1233 Max - (double) PlatcauData[px][py] . mV, il; 
1234 u= k21 /( kel " (k21 - kcl) 
1235 v=1/ (k21-kcl); 
1236 t Max -1/ (k21 - kel) log( (exp)k21 T) - 1) / (ex)'(kcl 1') - 1) 
1231 c max =u )exp(kel " T) - 1) " exp(-k"1 t max) - 
1238 v* (cxp(k21 T) - 1) " exp(-k21 t max) 
1239 
1240 NunlinData[pxj[py]. mNL estA - (Max - 1) /c Max; 
1241 J 
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1242 
/xx+x+x+x+x+rr+++++++++x+++xxxxx+xx++xxxxx++xrr+r+x+xrxrx+xrr++*. xrxr+rrrr+rr 1293 

1244 FUNCTION: Summary Trimmed() 
1295 xrxx+rxxxxrxx+xxr+r+rxr x+x*++xxxrx*******rar******rxrr********************* 

1246 vo! d Summary Trimmed 

1247 ( 
1248 double *MC_column, 
1249 int x, 
1250 int y, 
1251 int No MC 
1252 
1253 { 
1254 int i, j, Step; 
1255 struct TTempSort Cell[NO MONTE CARLO]; 
1256 double Perc[NO MONTE CARLO], Score, Scoret, a, b, d, e, 
1257 Mean, Std; 
1258 Score = 0; 
1259 Scoret = 0; 
1260 for(i=0; i<NO MC; i++) 
1261 { 
1262 Cell[i]. mValue = MC column[iJ; 
1263 Cell[i]. mindex = i; 
1264 
1265 qsort(Cell, No MC, sizeof (struct TTempSort), My Compare); 
1266 Step = No MC / NO DIVISIONS; 
1267 for (j=0; j<NO DIVISIONS; j+f) 
1268 
1269 Perc[j] = Cell[j * Step]. mValue; 
1270 
1271 
1272 Perc[NO_DIVISIONS) = Cell[No_MC - 11. mValue; 
1273 j=0; 
1274 Lor(i = 0; i< (NO DIVISIONS-1) * Step; i1 i) 
1275 
1276 Score f= Coll[i]. mValue; 
1217 Scorc2 4= Cell [i]. mValue ' Cell [ij. mValue; 
1278 j+i; 
12"79 
1280 
1281 Mean = (float) Score / j; 
1282 a=j* Score2; 
1283 b= Score * Score; 
1284 d=a-b; 
1285 e=d/j; 
1286 e=e/ (j - 1); 
1287 Std = sgrt(e); 
1288 
1289 MC Mean = Mean; 
1290 MC SD =Std; 
1291 MC SDOverMean = 100 * Std / Mean; 

1292' 
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