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Abstract

Gravitational tidal interactions between two astrophysical bodies can result in

evolution of their spins and orbits. These interactions are caused by dissipation

of tidal energy and associated transfer of angular momentum. Of particular

interest are the close-in giant exoplanets known as Hot Jupiters, because strong

tidal dissipation is expected in their own fluid envelopes as well as their host

stars.

In the study of tides, the fluid response is often split into an equilibrium tide

and a dynamical tide. We will focus on three dissipation mechanisms of the

equilibrium tide in convection zones of Hot Jupiters. The first is the action

of turbulent convection in damping tidal flows, while the other two are the

elliptical and precessional instabilities. Both of these instabilities are para-

metric in nature and excite inertial waves. The elliptical instability is excited

because of the tidal deformation of the body due to the equilibrium tide, while

axial precession and the associated precessional flow allows for the precessional

instability.

To study these mechanisms we analyse a large number of Boussinesq local

Cartesian box simulations covering a wide range of parameters. We have found

that the elliptical instability and rotating convection both generate large-scale

vortices in the flow, which inhibit the elliptical instability at small tidal ampli-

tudes or strong convective driving. The tidal dissipation due to the precessional

instability on the other hand is reduced instead of being inhibited by convec-

tion. We find that convective turbulence acts on both flows like an effective

viscosity resulting in continuous tidal dissipation. This effective viscosity can

be described well using rotating mixing-length theory. Furthermore, we find

the effective viscosity to be strongly reduced in the fast tides regime, where

the tidal frequency exceeds the convective one, in these rotating simulations.

Finally, we have generated interior models of giant planets, and find that

Jupiter and Hot Jupiters are firmly in the fast tides regime. We estimate

that both the elliptical and precessional instabilities are efficient for the short-

est period Hot Jupiters, and that the effective viscosity of turbulent convection

is likely to be negligible in giant planets compared with inertial wave mecha-

nisms.
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at different values of the Poincaré number. . . . . . . . . . . . . . . . . . . . 167

7.1 Flux-based (rotating) mixing-length theory Rossby numbers as a function

of radius for a Jupiter-like and Hot Jupiter-like planet. . . . . . . . . . . . . 181

7.2 Effective viscosity as a function of radius for a Jupiter-like planet and Hot

Jupiter-like planet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 Tidal quality factor Q′ as a function of tidal period for a myriad of mecha-

nisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xv



LIST OF FIGURES

xvi



List of Tables

1.1 Values of the tidal amplitude ϵ for various bodies within and outside the

Solar System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Table of resolutions used in the Snoopy simulations to study the elliptical

instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Table of resolutions used in the dedalus simulations to study the preces-

sional instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Table of resolutions used in the nek5000 simulations to study the preces-

sional instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1 Table of dimensional and non-dimensional parameters in Jupiter. . . . . . . 172

7.2 Table of orbital periods at which the estimates of the synchronisation, cir-

cularisation and alignment timescales are 1 Gyr. . . . . . . . . . . . . . . . 190

xvii



LIST OF TABLES

xviii



Chapter 1

Introduction

1.1 Observational evidence of tides

The tides in Earth’s oceans as primarily raised by the Moon’s gravity have been stud-

ied for many centuries, going back to Newton’s theory of gravity and more specifically

Laplace’s theory of tides in a detailed mathematical context. Although interactions be-

tween astrophysical bodies are not limited to just tides and their dissipation, these effects

are of immense importance in the evolution of orbits and spins of planets and stars, as

well as subsequently affecting their interiors. Furthermore, there are many unknowns still

surrounding tides and the dissipation they induce. Within the Solar System one might

consider the heat budget and orbital migration of Jupiter’s inner moons. Of particular

interest outside the Solar System are binary stars and exoplanets at small orbital separa-

tions from their host stars, the latter of which has only been unlocked as a class of objects

to study within the last 35 years (Wolszczan & Frail, 1992; Mayor & Queloz, 1995). We

will now turn to summarise some of the available observational evidence of tides, before

examining the way tides arise from the gravitational potential.

1.1.1 Within the Solar System

Starting with the Earth-Moon system, the tides within the oceans and seas are well known

(the author recommends finding a nice beach if one requires further evidence). The notable

long-term consequences of these tides on the Moon and the Earth themselves resides

primarily in evolution of the spin and orbit of the Earth and Moon. The Moon, being the

less massive of the two objects, is affected more strongly than the Earth is, and therefore

the Moon entered a state of spin-orbit synchronisation a long time ago. This entails that

the Moon spins around its axis at the same rate as it orbits Earth, thus continuously

showing the same side to the Earth. This effect is also referred to as tidal locking.

Further evidence of the effect of tides on orbits can be found in the semi-major

axis of the Moon, which is currently increasing at a rate of about 3.8 cm yr−1 (Williams,

2000; Williams & Boggs, 2016). Conservation of angular momentum then implies that

1
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the Earth must be losing spin angular momentum. The Earth must therefore have spun

more rapidly in the past, resulting in a shorter Earth day. The number of hours per day

obtained from fossil records shown in Fig. 1.1 does indeed attest to an increasing length

of the Earth day, and thus a decrease in the Earth’s rotation rate.

Figure 1.1: Length of an Earth day in hours as obtained from various fossil records. The
Earth day was shorter in the past, indicating a larger spin rate, and therefore higher
angular momentum. This angular momentum has been and is still being transferred to
the Moon, increasing the length of the Earth’s day and increasing the orbital period of
the Moon. Image reproduced from Williams (2000).

Departing from the comfort of the Earth-Moon system we find additional evidence

for tidal effects within the moons of Jupiter and Saturn, although these systems also still

contain many open questions. Io in particular, as the closest moon to the massive planet

Jupiter, experiences strong tidal effects and as a result it is slowly moving towards Jupiter

(Lainey et al., 2009). Io also illustrates the earlier point raised about the subsequent effects

of tidal dissipation on interiors. Io experiences very strong, continuous volcanism, which

is believed to arise due to the contribution of the dissipated tidal energy to the energy

budget of Io (Peale et al., 1979; Lainey et al., 2009). In fact, this result was predicted

using tidal theory before it was observed (Peale et al., 1979), illustrating how powerful

tidal theory can be.

1.1.2 Outside the Solar System

Outside our Solar System we find many systems with planetary configurations that are

in fact quite dissimilar to the orbital architecture we are familiar with. Most notable in

this instance are Hot (e.g. surface temperatures as high as 2500 K) Jupiters, which are

Jupiter-like planets that are hot due to strong stellar irradiation because they orbit their

host stars very closely. This however is a rather loose definition, and instead often it is

preferred to introduce a maximum orbital period and minimum mass, the exact values of

which are not agreed upon. In this thesis we will work with a maximum orbital period

of 10 days and minimum mass of 0.3MJ . One should potentially also include an upper

limit on the mass, which is often set to 13MJ , to exclude brown dwarfs. Fig. 1.2 shows

2
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all currently confirmed exoplanets in the NASA Exoplanet Archive (2024), here portrayed

in planetary mass-orbital period space. Two horizontal dashed lines are included in the

figure to denote the minimum and maximum mass respectively, as well as a vertical dashed

line to mark the maximum period. The exoplanets within this box are therefore denoted

as “Hot Jupiters”, except for those exoplanets found through pulsar timing, which are

more commonly referred to as “pulsar planets”. The colours in the figure indicate the

detection method used to find each exoplanet. Further details on these detection methods

can be found in Perryman (2018). We will however highlight the transit method, which

– as demonstrated by Fig. 1.2 – is very efficient at detecting Hot Jupiters. As the name

suggests, the crux of this method is the transit of a planet in front of its host star. This

transit will block part of the stellar light and thus result in periodic dips in the brightness

of a star. The percentage of light blocked corresponds to the size of the planet in relation

to the star, while the periodicity of the dip is used to find the orbital period of the planet.

Figure 1.2: Mass–period diagram of all discovered exoplanets. Colours indicate the dif-
ferent detection methods. Two horizontal dashed lines have been added to indicate the
minimum and maximum mass of Hot Jupiters at 0.3MJ and 13MJ respectively, as well as
a vertical dashed line at the maximum period of 10 days. The exoplanets within this box
are “Hot Jupiters” according to our definitions, except for those exoplanets found through
the pulsar timing method, which are more commonly referred to as “pulsar planets”
. Colours indicate the methods used to discover these exoplanets. Plot generated using

data taken from the NASA Exoplanet Archive (2024).

Many open questions still surround these Hot Jupiters and their origins, particularly

in comparison to our own Solar System, since Jupiter is on a much longer 4333 day orbit.

There are three hotly debated theories to explain the formation of Hot Jupiters (Dawson

& Johnson, 2018). The first, and most simple, is in-situ formation, i.e. the Hot Jupiter

forms at a small orbital separation from its host star and stays there (Batygin et al.,

2016). Secondly, there is disc migration, where the Hot Jupiter forms at a larger radius,

but migrates through the protoplanetary disc due to, for example, gravitational tidal

interactions with the disc, to reach its final close-in position (Baruteau et al., 2014). The

last theory is that of high-eccentricity migration (Naoz et al., 2011; Wu & Lithwick, 2011;

3
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Figure 1.3: Eccentricity distribution of exoplanets with Porb < 100 days and masses
M > 0.3MJ . Exoplanets with periods Porb < 3 days have eccentricities e < 0.2, but most
of these planets have e ≈ 0, whereas those with Porb > 10 days exhibit a wide range of
eccentricities. Plot generated using data taken from the NASA Exoplanet Archive (2024).

Petrovich, 2015; Nelson et al., 2017), where the Hot Jupiter is initially formed with a large

orbital separation but obtains a highly eccentric orbit. The Hot Jupiter is scattered into

this orbit by, for instance, interactions with other (proto)planets, and then circularises its

orbit at the point of periastron, i.e. closest approach to the host star, where the stellar

gravity and thus tidal effects are strongest.

The proximity of Hot Jupiters to their host stars results in a strong gravitational

pull. In addition, they are primarily composed of gas or fluid and therefore deform more

easily under the influence of tides than rock or ice. Therefore, they are likely to experience

strong tidal effects and the resulting orbital evolution can possibly be observed. In fact,

the eccentricity distribution of these Hot Jupiters as seen in Fig. 1.3 provides indirect

evidence of tidal effects operating to circularise their orbits. The orbits of Hot Jupiters

with orbital periods Porb < 3 days have eccentricities that are tending towards zero.

This circularisation is suspected to be due to a tidal effect (primarily by tidal dissipation

taking place inside the planets themselves), although there is the possibility that a subset

of the population has been formed on circular orbits. This tidal effect seems to only be

noticeable for the most close-in planets, which appear to experience sufficiently strong

tidal dissipation to circularise their orbits within their host stars’ lifetimes.

Finally, there have been clear indications of orbital decay of Hot Jupiters, particu-

larly WASP-12b (Yee et al., 2019; Turner et al., 2021), but also possibly other Hot Jupiters

such as WASP-4b and WASP-43b (Hagey et al., 2022). This orbital decay is observed by

measuring changes in the transit time of the Hot Jupiter; if the transits occur sooner than

expected this could indicate that the period of the orbit is decreasing and thus the orbit

is decaying. This orbital decay is expected to result from tidal effects (primarily by tidal

dissipation taking place inside the planets’ host stars) and demonstrates how influential

tides can be if they lead to planets spiralling into their host stars and eventually being
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destroyed. As the number of observations increases and the observations themselves be-

come more precise, i.e. less noisy and longer observations, it is likely more Hot Jupiters

with a decaying orbit will be identified. One should however consider the possibility that

such objects might be rare among the Hot Jupiter population, simply because planets that

spiral into their host stars may have already been destroyed. This would imply that Hot

Jupiters are found more readily in young systems (Hamer & Schlaufman, 2019).

1.2 Mathematical description of tides

Now, let us turn to the way tides arise from gravity. To this end, we consider a highly

simplified two body system, depicted in Fig. 1.4, consisting of body 1 with massM1, centre-

of-mass position R1 and spin vector Ωs and body 2 with massM2 and position R2 orbiting

around the centre of mass of the system with orbital vectorΩo. Here we have reduced body

2 to a point mass for simplicity. Therefore we will only consider the gravitational potential

of body 2 in body 1, but not vice versa. We define the positions R1(t), R2(t) with respect

to an arbitrary origin (as indicated within the schematic). The orbital separation between

the centres of mass of both bodies is then given by d(t) = R2(t) − R1(t). Finally, r(t)

is the location at which we examine the gravitational potential and x(t) = r(t) − R1(t)

is the vector between the centre of mass of body 1 and this same location. Note that

the bulge depicted in the figure is the bulge raised by tides and we have neglected any

rotational/centrifugal distortion effects on body 1.

1.2.1 The tidal potential

The mechanism responsible for raising the tides is simply gravity. To obtain an expression

for the tides we can start from the gravitational potential, ψ, raised at a point within

body 1 by body 2. The simplest formalism entails treating the secondary body as a point

mass like in Fig. 1.4. Some quantitative corrections arise from treating it as body with

structure instead for the very closest-in Hot Jupiters (Mathis & Le Poncin-Lafitte, 2009).

However, these corrections are often neglected when making heuristic estimates. Thus we

can write the gravitational potential as:

ψ = − GM2

|r −R2|
, (1.1)

where G is the gravitational constant. We omit the time dependence of the position vectors

in this and subsequent expressions, such that they depict a snapshot in time of the system.

We can use the vectors d and x introduced above to simplify this expression slightly by

writing it as:

ψ = − GM2

|x− d|
. (1.2)

One can then perform a Taylor expansion around x = 0, finding:

ψ = −GM2

|d|

(
1 +

2d · x
|d|2

+
3(d · x)2 − |x|2|d|2

2|d|2
+O

(
|x|3

|d|3

))
. (1.3)
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Figure 1.4: Schematic of the tidal interaction between body 1 with mass M1, position
R1(t) and spin vector Ωs and body 2, here represented as a point mass with mass M2,
position R2(t) and orbital vector Ωo. Note that the bulge portrayed in the figure is the
tidal bulge; the effects of the centrifugal force on the shape of the body have been omitted.
Figure adapted from Ogilvie (2014).

This is the full gravitational potential due to body 2, but not all the terms in Eq. (1.3)

are responsible for raising tides on body 1. This is readily seen by examining the force

generated by each term, remembering that the force can be obtained by taking the gradient

with respect to x of the potential multiplied by the mass of the “test particle” experiencing

said force. The gradient of the first term in this expansion is simply zero. The gradient

of the second term is slightly more complicated, but it can be readily seen that it results

in a constant force independent of location within the body x. Therefore this term also

does not raise a tide; in fact this is the term responsible for the orbital motion of body 1

around body 2. The third and any subsequent terms all produce a force which depends

on the location within the planet x. It is precisely this difference in forces within body 1

that leads to a tide being raised and a tidal bulge being created. Hence, one can define

the tidal potential, Ψ, without the first two terms:

Ψ = −GM2

|d|

(
3(d · x)2 − |x|2|d|2

2|d|2
+O

(
|x|3

|d|3

))
. (1.4)

Often the choice is made to represent this potential as in Eq. (1.4), writing out explicitly

the second term and using Big O notation for the subsequent terms. This is done because

the potential decreases with powers of |x|/|d|, so every term is weaker by several orders of

magnitude than the previous term when this is small. Regardless of this choice, the entire

tidal potential can be written in a concise way using Legendre polynomials:

Ψ = −GM2

|d|

∞∑
l=2

|x|l

|d|l
Pl

(
x · d
|x||d|

)
. (1.5)
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Here Pl(x) represents the Legendre polynomial of degree l. Further to the above, we can

choose a more natural origin for the system than the one chosen in Fig. 1.4 – namely the

centre of body 1 – by setting: R1 = 0, R2 = d, x = r. Additionally, we can define the

angle between the vectors d and x to be θ. In this case we can write:

Ψ = −GM2

|d|

∞∑
l=2

|x|l

|d|l
Pl (cos θ) . (1.6)

For a Keplerian orbit with associated semi-major axis a, orbital eccentricity e and inclina-

tion i these Legendre polynomials can be expressed in terms of spherical harmonics (e.g.

Ogilvie, 2014):

Ψ = Re
∞∑
l=2

l∑
m=0

∞∑
n=−∞

GM2

a
Al,m,n(e, i)

(r
a

)l
Y m
l (θ, ϕ)e−inΩot, (1.7)

with Y m
l (θ, ϕ) the spherical harmonic of degree l and azimuthal order m. The temporal

harmonics of the orbital motion and thus tidal response are given by the integer n. In

this expression Al,m,n(e, i) is a complex coefficient that depends on the eccentricity and

inclination in a non-trivial way. See Table 1 in Ogilvie (2014) for some values of this

coefficient for the quadrupolar l = 2 tide, which is often the most important component

when |x|/|d| is small. Finally Ωo =
(
G(M1+M2)

a3

)1/2
is the mean orbital angular velocity

according to Kepler’s third law.

In a non-rotating frame the tidal frequency of each component is then given by

ω̃l,m,n = nΩo. In the frame rotating with body 1 the tidal frequency is instead given

by ωl,m,n = nΩo − mΩs, which is called the tidal frequency in the fluid frame. The

dominant component of the tidal response is typically the l = m = n = 2 component,

which is referred to as the “asynchronous tide”. For this component the tidal frequency is

ω2,2,2 = 2(Ωo−Ωs). Finally, we can absorb all the constants into the Al,m,n(e, i) coefficient

and write the full tidal potential in the frame rotating with body 1:

Ψ = Re
∞∑
l=2

l∑
m=0

∞∑
n=−∞

Al,m,n(e, i)

(
r

R1

)l

Y m
l (θ, ϕ)e−iωl,m,nt, (1.8)

where Al,m,n(e, i) =
GM2Rl

1

al+1 Al,m,n(e, i).

Additionally, one can define the tidal amplitude, ϵ, which is a dimensionless param-

eter that is used to indicate the strength of tidal effects. It is defined using the quantities

M1, M2, R1 and a above:

ϵ =

(
M2

M1

)(
R1

a

)3

, (1.9)

such that we can write:

Al,m,n(e, i) = ω2
dϵ
Rl

1

al−2
Al,m,n(e, i), (1.10)
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Table 1.1: Values of the tidal amplitude ϵ for various bodies within and outside the Solar
System. Within the Solar System the values are relatively small for planets due to their
moons, however, in the Hot Jupiter WASP-19b the tidal amplitude due to its nearby host
star is comparatively very high. Values taken from Ogilvie (2014).

Body 1 and Body 2 Tidal amplitude ϵ

Earth due to the Moon 6 · 10−8

Jupiter due to Io 2 · 10−7

Saturn due to Titan 3 · 10−8

WASP-18 due to WASP-18b 2 · 10−4

WASP-19b due to WASP-19 6 · 10−2

with ω2
dyn ∼ GM

R3
1

the dynamical or free-fall frequency of body 1. Some estimated values of

the tidal amplitude taken from Ogilvie (2014) have been reproduced in Table 1.1.

1.2.2 The Love number

We are not just interested in the tide raised in body 1 due to body 2, we would also like to

determine the tidal evolution and to this end we must define another parameter: the Love

number. The idea for the Love number arises in a very simple way: suppose that body

1 has been deformed under the influence of the tidal forces acting on it, then its mass

distribution will have changed from what would have otherwise been expected. Moreover,

the perturbed mass distribution will have its own gravitational potential. This additional

gravitational potential can be defined as:

Φ′ = Re

∞∑
l=2

l∑
m=0

∞∑
n=−∞

Bl,m,n

(
R1

r

)l+1

Y m
l (θ, ϕ)e−iωl,m,nt, (1.11)

which arises as a solution to Laplace’s equation. This potential has been written using Φ′

as it relates to the deformation of body 1’s own gravitational potential Φ. The ratio of the

coefficients of the gravitational potential of the deformation to the imposed tidal potential

for each component (l,m, n) tells us how important the tides are in deforming the planet.

If the ratio is small then the tides are relatively unimportant in deforming the planet, and

vice versa. This ratio, which is complex in general, is defined as the Love number:

kml (ωl,m,n) = Bl,m,n/Al,m,n, (1.12)

for each tidal component. In general we are interested in the Love numbers with l = 2,

i.e. the Love numbers corresponding with the quadrupolar tide. The Love numbers we

will consider are the l = m = 2 and l = 2, m = 1 components. These are the Love

numbers associated with the tidal dissipation mechanisms we wish to study, which we will

discuss in Sec. 1.5. A Love number is however an elusive quantity as knowledge about

the interior of the body is needed to compute it. For this exact reason we are very much

interested in extracting it from observational data because the real and imaginary parts of

this Love number contain a wealth of information. The real part, Re[kml (ω)], details the

amount of deformation, and therefore gives information on the interior. The imaginary
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part, Im[kml (ω)], describes how misaligned the tidal deformation is with the line connecting

the centres of mass of the two bodies, i.e. d. The misalignment is directly tied to the tidal

torque and tidal dissipation and thus orbital evolution of the system due to tides.

To see how the misalignment of the bulge with the line connecting the two centres

of mass connects to the tidal torque and later tidal evolution we can use the most well

known example of tidal interaction, namely the Earth-Moon system. In Fig. 1.5 a simple

illustration of the Earth-Moon system is presented. In this schematic Earth is treated

as the primary with mass M1, while treating the Moon as the secondary point mass M2.

The tides have acted to deform Earth’s surface into a tidal bulge, shown in grey and

exaggerated for illustrative purposes. The effects the continents would have on the tides

are also omitted.

Figure 1.5: Schematic of the Earth (body 1) and Moon (body 2) with an exaggerated
misaligned tidal bulge. The Earth rotates faster than the Moon, so the tidal bulge precedes
the line connecting the two centres of mass, here illustrated in a blue dashed line. As a
result there arise two forces on the Moon, which produce a resultant force that accelerates
the Moon, as well as resulting in a torque that transfers angular momentum from the
Earth to the Moon.

In the Earth-Moon system the primary has a larger spin rate than the orbital rotation

rate of the secondary. Therefore the tidal bulge precedes the line connecting the centres of

mass, resulting in a misalignment. This is illustrated in Fig. 1.5. The line connecting the

centres of mass is given in dashed-blue. This then results in a gravitational attraction of

the Moon to the tidal bulges, as indicated by the red arrows. These forces sum to a total

force that acts in the same direction as the direction of travel of the Moon. This force

then results in a torque, which leads to a transfer of angular momentum to the Moon from

the Earth. Conservation of angular momentum implies that the Earth must lose angular

momentum, the only source of which (within this simplified system) is Earth’s spin. Thus

Earth is expected to slow down over time, while the average distance between the Earth

and Moon must increase, exactly as found in Fig. 1.1.

The only question is what causes this misalignment. Perhaps the easiest way of
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thinking about this is that there must simply be some friction within the primary. This

friction then prevents the tidal bulge from instantaneously sliding back to the line connect-

ing the centres of mass. One can think of viscosity as this friction, but tidal dissipation

can additionally be thought to act like a friction in this scenario. Thus tidal dissipation

causes a misalignment, which creates a torque. Both the deformation and misalignment,

and thus rate of tidal dissipation, should therefore be considered when considering the

effect of tides on the orbital evolution.

For Hot Jupiter systems, the opposite configuration should instead be considered.

When considering the tide in a Sun-like star due to a Hot Jupiter the star often rotates

slowly compared to the very short period orbits of its Hot Jupiter (e.g. the ∼ 30 day spin

period of the Sun compared to the ∼ 1 day orbital period of a Hot Jupiter). This difference

is exacerbated as the star ages and slows down due to magnetic braking. In this case the

bulge precedes the line connecting the centres of mass, so the forces and resulting torques

point in a different direction, therefore acting to reduce the angular momentum and thus

semi-major axis or eccentricity of the Hot Jupiter orbit, as well as spinning up the star

(though not so much to have a significant impact in most cases, see e.g. Benbakoura et al.

2019).

One can also consider the tide in a Hot Jupiter due to its star, which will be the

focus of this work. In this case, one ends up with the reverse transfer, where the tides

in the planet compete with those in the star. The tides in the Hot Jupiter contribute to

increase the orbital angular momentum of the star, thus increasing the separation distance,

whilst slowing down the spin of the Hot Jupiter. However, the Hot Jupiter will achieve

spin-orbit synchronisation much faster than the star, which reduces its contribution to

tidal dissipation. Additionally, the angular momentum associated with the spin of the

Hot Jupiter is small compared to the orbital angular momentum, so even if all its spin

angular momentum is transferred to the orbit, it would not have a significant impact. Note

that a spin-synchronised Hot Jupiter on an eccentric orbit will however still contribute to

tidal evolution, and act to circularise its own orbit in most cases.

In terms of the observational contexts mentioned above, the choice is often made to

work with a different quantity to the Love number, namely the tidal quality factor Ql,m,n.

This prescription of a quality factor takes its inspiration from damped harmonic oscillators,

where the quality factor indicates how underdamped a given harmonic oscillator is and

thus how fast the oscillations will decay. A larger value of this quality factor implies

a slower decay. Following on from this analogy to the damped harmonic oscillator, the

quality factor in a tidal context is defined as 2π times the ratio of the maximum total

amount of energy stored in the tidal response, E0l,m,n
, to the energy dissipation rate,

Ėl,m,n, integrated over one tidal period:

Ql,m,n =
2πE0l,m,n∫
Ėl,m,n dt

. (1.13)

This is a somewhat counter-intuitive definition, in that it implies that systems which
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dissipate tidal energy faster have smaller values of Q. As it turns out, the tidal quality

factor is related to the imaginary (and real) part of the Love number:

|Im[kml (ωl,m,n)]|=
Re[kml (ωl,m,n)]

Ql,m,n
= κl,m,n. (1.14)

Indeed, this implies that knowledge of the tidal quality factor would allow for knowl-

edge of the Love number and vice versa. In general the value of Re[kml (ωl,m,n)] is close to

unity. It depends most strongly on the interior properties of the body and only weakly

depends on the values of ωl,m,n and m. Therefore, the hydrostatic value kl, independent

of ωl,m,n and m, is often employed instead of Re[kml (ωl,m,n)]. It is also customary to de-

fine the modified tidal quality factor Q′
l,m,n = Ql,m,nk

hom
l /kl, with khoml = 3/[2(l − 1)]

for a homogeneous fluid body. Furthermore, since the dominant component of the tidal

potential is the l = 2 component, often the choice is made to write this relation using this

particular component. Thus we obtain:

|Im[km2 (ω2,m,n)]|=
k2

Q2,m,n
=

3

2Q′
2,m,n

. (1.15)

These customary definitions arise from an observational context, rather than theoretical

modelling, because values of Q′
l,m,n can be indirectly obtained from observations. Obser-

vations constrain the amount of tidal dissipation by observing the rate of change of the

semi-major axis, spin, eccentricity and obliquity. These rates of change can then be used

in analytically derived expressions for these quantities as a function of Q′
l,m,n, allowing to

constrain Q′
l,m,n from the observations. These expressions, for small e and i, are (Ogilvie,

2014):

1

a

da

dt
= − 9

2Q′
2,2,2

M2

M1

(
R1

a

)5

Ωo, (1.16)

1

Ωs

dΩs

dt
=

9

4Q′
2,2,2

Lo

Ls

M2

M1

(
R1

a

)5

Ωo, (1.17)

1

e

de

dt
=

9

32

(
4

Q′
2,2,2

− 6

Q′
2,0,1

+
1

Q′
2,2,1

− 49

Q′
2,2,3

)
M2

M1

(
R1

a

)5

Ωo, (1.18)

1

i

di

dt
=

9

8

[
1

Q′
2,2,2

(
1− Lo

Ls

)
+

(
1

Q′
2,1,0

− 1

Q′
2,1,2

)(
1 +

Lo

Ls

)]
M2

M1

(
R1

a

)5

Ωo, (1.19)

where Lo and Ls represent the orbital and spin angular momentum of body 1 and body 2

respectively, given by:

Ls = I1Ωs, Lo =
GM1M2(1− e2)1/2

Ωoa
, (1.20)

with I1 the moment of inertia of body 1. From these equations it is possible to obtain
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values of Q′
l,m,n if the evolution of a,Ωs, e, i is known. The unmodified tidal quality factor

Ql,m,n cannot be obtained from these equations however, as this would require knowledge

of the real part of the Love number and thus the interior properties of the body, which

in the case of exoplanets is very unknown (and even for Jupiter and Saturn itself is still

not well understood e.g. Stevenson 2020; Helled et al. 2022). For this reason Q′
l,m,n is

the parameter of choice to report in observational studies. Often, in observational papers

a singular Q′ without subscripts will be reported, this Q′ usually represents that of the

l = m = n = 2 component as these results are usually obtained from the rate of change of

the semi-major axis, which in accordance with Eq. (1.16) only depends on this component.

In practical applications of tidal theory one works backwards. Instead of starting

by calculating the Love numbers, calculating all Q′
l,m,n and then finally calculating the

evolution of the spin and orbit, one often starts from observations which provide constraints

on the evolution of a,Ωs, e and i. From here one can estimate a (maximum) value of all

Q′
l,m,n or more commonly just Q′. If no evolution is observed a minimum value can

be estimated. Then models of tidal theory can be used to find the Q′
l,m,n originating

from a given tidal dissipation mechanism. Comparing these modelled values of Q′
l,m,n

to those found from observations can explain which mechanisms are operating to cause

certain observed tidal effects, and potentially shed light on the interiors of these objects

if both the observational values are very precise and the tidal mechanisms are very well

understood. Improving our understanding of these mechanisms is therefore of the essence,

not only to explain current observations and make predictions for future tidal evolution

of these systems, but also as a pathway to obtain information on the planetary interiors.

1.3 Giant planet interiors

Evidently, if we wish to study the result of tidal deformation and tidal evolution in Hot

Jupiters we require information about their interiors. However, we have little to no direct

observational knowledge of the interiors of Hot Jupiters. Therefore we turn our attention

to the two giant planets whose interiors we do have some knowledge about, namely Jupiter

and Saturn.

Prior to the Juno mission the structures of these planets were usually described

using a three layer model (Guillot, 1999; Guillot et al., 2004; Militzer et al., 2016). The

innermost layer is the solid inner core, which was usually taken to be small and dense,

consisting of rock and metal. In this model, a large convection zone spanning most of the

interior sits atop the dense inner core. This convection zone was assumed to host efficient

convection, i.e. it had homogenised the entropy, and to be under such high pressures that

the hydrogen which made up most of its mass was metallic. Atop this metallic hydrogen

region sat the third layer, which consisted of molecular hydrogen instead. There were many

questions surrounding these models, particularly around the immiscibility of hydrogen and

helium, as well as the distribution of the heavier elements.

The Juno mission has provided a wealth of information using gravity measurements,
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1.3 Giant planet interiors

but it has also revealed that the structure is more complex than previously thought.

From these gravity measurements the distribution of mass can be determined, which has

indicated that, instead of a small dense solid core, it is possible that the core is instead

dilute (Wahl et al., 2017; Stevenson, 2020). A dilute core implies that the metals are

not concentrated in one region but are instead spread out throughout the deep interior

of Jupiter and Saturn. These results are corroborated by measurements of Saturn’s rings

(Mankovich & Fuller, 2021), the waves of which are a reflection of those in Saturn’s deep

interior, and thus allow for constraining said interior. The diluted core might then result in

a composition which is stable against convection, commonly referred to as a stable region.

Above the dilute core sits a convection zone, followed by a possible “helium rain” layer.

In the helium rain layer it is expected that the helium condenses out from the upper parts

of the layer and rains down. This difference in composition is thought to possibly result

in a second stable region. Above this helium rain layer another small convective region is

expected to sit, consisting of molecular hydrogen instead. The deep zonal winds of Jupiter

and Saturn penetrate into this layer (Galanti et al., 2019; Gastine & Wicht, 2021). Atop

all these regions sits the atmosphere, with its distinct banded cloud structure in the case

of Jupiter.

Figure 1.6: Illustration of Jupiter’s interior after the Juno mission. A dilute core of large
radial extent exists, atop which sits a layer of metallic hydrogen. Above that is the helium
rain layer. Atop the helium rain layer sits the molecular hydrogen layer; it is in this layer
that the deep zonal winds are located. Atop this all sits the atmosphere, with Jupiter’s
distinct banded cloud structure. Figure reproduced from Stevenson (2020).

The details of the above dilute core model are still unclear. It is also unclear whether

or not such a model is applicable to a Hot Jupiter given that it is much more strongly

irradiated by its host star, which might affect its interior. Nevertheless, if we wish to study

the tide in these giant planets, studying its interactions with convection is of the essence;
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both the 3-layer model and the newer dilute core models feature convective regions and

convection is usually thought of as a process that dominates in such a region, particularly

if it is efficient enough to homogenise the region.

1.4 The equilibrium and dynamical tide

Before considering the tidal dissipation mechanisms to model in such giant planets and

their interactions with convection, we must first describe the convention within tidal theory

to split the tidal response within an astrophysical object into two parts, each of which has

their own associated tidal dissipation mechanisms. The first of these is the equilibrium or

non-wavelike tide, which represents the hydrostatic bulge that has already been portrayed

in the schematics in Fig. 1.4 and Fig. 1.5. The second part of the tide is commonly referred

to as the dynamical or wavelike tide, which as the name suggests consists of waves excited

by the tide. Often it is the rotation and associated acceleration of the equilibrium tide

which launches these waves to create the dynamical tide. This distinction is only exact in

linear theory, but can still be helpful for our understanding otherwise.

1.4.1 The equilibrium tide

A prescription for the equilibrium tide was first derived by Zahn (1966), who considered

a distortion in density and pressure away from the expected value when a tidal potential

is imposed. These distortions then allow hydrostatic equilibrium to be achieved again

when considering both the imposed tidal potential as well as the distorted gravitational

potential of the primary resulting from said distortions. Using hydrostatic equilibrium

to derive the tidal response is a good initial approximation when the frequency of the

tide is low compared to the dynamical frequency. This entire derivation is based on the

instantaneous change of potential, and does not take into account any acceleration or other

forces such as the Coriolis force or damping forces when computing it. The corrections

that are required when these are taken into account are what excites the dynamical tide.

To follow the derivation in Zahn (1966) we start from hydrostatic equilibrium of the

unperturbed uniformly-rotating body:

0 = −1

ρ
∇p−∇Φ, (1.21)

with Φ the total potential of the unperturbed primary, which formally consists of both the

gravitational potential Φg and the centrifugal potential (due to rotation) Φc. By taking

the curl of this equation we obtain:

0 = −∇1

ρ
×∇p− 1

ρ
∇×∇p−∇×∇Φ,

=
1

ρ2
∇ρ×∇p. (1.22)

The latter two terms vanish because the curl of the gradient is zero. This equation implies
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1.4 The equilibrium and dynamical tide

that the gradients of ρ and p are parallel, and so must be a function of the same variable.

Furthermore, Eq. (1.21) implies that Φ is also of a function of the same variable. We

therefore choose that p and ρ are functions of Φ; incidentally, we can also write ρ = ρ(p).

Now we consider the imposed tidal potential Ψ, which satisfies Laplace’s equation

∇2Ψ = 0 within the primary because there is by definition no mass of the secondary within

the primary. We consider the linear, i.e. small amplitude, Eulerian perturbations to our

defined quantities ρ′, p′ and Φ′ and again consider hydrostatic equilibrium:

0 = − 1

ρ+ ρ′
∇(p+ p′)−∇Φ−∇Φ′ −∇Ψ. (1.23)

Upon Taylor expanding the fraction and eliminating all terms that satisfy Eq. (1.21), we

find:

0 ≈ ρ′

ρ2
∇p− 1

ρ
∇p′ + ρ′

ρ2
∇p′ −∇Φ′ −∇Ψ,

≈ ρ′

ρ2
∇p− 1

ρ
∇p′ −∇Φ′ −∇Ψ, (1.24)

where we have linearised the equation in the second expression, as we are considering only

linear effects. For ease of calculation we define the quantity W :

W = p′/ρ+Φ′ +Ψ, (1.25)

using this definition, we can rewrite Eq. (1.24):

0 = −∇W + (ρ′ − dρ

dp
p′)

1

ρ2
∇p. (1.26)

Repeating the same analysis as above by taking the curl of this equation we deduce that the

gradients ∇(ρ′− dρ
dpp

′) and ∇p are parallel, which must also be parallel to ∇W . Therefore

both of these quantities are again functions of Φ only.

Next, we consider another property of all perturbed quantities: if the tide or the

tidal components under consideration are oscillatory then they should all be proportional

to e−iωl,m,nt, and as such their means over one tidal period should vanish. This includes

W and hence:

W = 0 = p′/ρ+Φ′ +Ψ,

⇒ p′ = −ρ(Φ′ +Ψ), (1.27)

as well as the previously considered quantity ρ′ − dρ
dpp

′:

0 = ρ′ − dρ

dp
p′,

⇒ ρ′ =
dρ

dp
p′ = −ρdρ

dp
(Φ′ +Ψ).

(1.28)

(1.29)
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Finally, we can combine these in Poisson’s equation for the potential:

∇2(Φ + Φ′ +Ψ) = 4πG(ρ+ ρ′),

⇒ ∇2(Φ′) = −4πGρ
dρ

dp
(Φ′ +Ψ), (1.30)

where we have eliminated the terms that satisfy Poisson’s equation for the unperturbed

potential Φ and used the fact that ∇2Ψ = 0 inside the body of the primary. Thus we have

obtained a partial differential equation for the perturbed potential Φ′ which is valid within

the body of the primary. This can be solved if the imposed tidal potential is known, given

suitable boundary conditions. These boundary conditions are: regularity at the centre

and a free-surface condition at the surface. Upon solving this, the expressions for ρ′ and

p′ can be obtained, and thus the full perturbations due to the equilibrium tide are known.

The tidal flow perturbation associated with the equilibrium tideUe can be calculated

from the tidal displacement ξe, for which we can obtain an expression starting from the

continuity equation:

0 =
∂(ρ+ ρ′)

∂t
+∇ · ((ρ+ ρ′)Ue) =

∂(ρ+ ρ′)

∂t
+∇ · ((ρ+ ρ′)

∂ξe
∂t

). (1.31)

Again we have perturbed ρ and we treat the tidal flow and displacement as a perturbation,

thus we can linearise, taking into account that the hydrostatic background density only

depends on Φ, so ∂ρ
∂t = 0:

0 =
∂ρ′

∂t
+∇ · (ρ∂ξe

∂t
),

=
∂ρ′

∂t
+∇ · (∂ρξe

∂t
− ξe

∂ρ

∂t
),

=
∂(ρ′ +∇ · (ρξe))

∂t
,

⇒ ρ′ = −∇ · (ρξe) = −ρ∇ · ξe − ξe · ∇ρ. (1.32)

Equally, assuming adiabatic perturbations we can write from the ideal gas law:

p+ p′

(ρ+ ρ′)γ
= Constant,

⇒ 0 =
D

Dt

(
p+ p′

(ρ+ ρ′)γ

)
,

=
1

(ρ+ ρ′)γ
D(p+ p′)

Dt
+ (p+ p′)

−γ
(ρ+ ρ′)γ+1

D(ρ+ ρ′)

Dt
, (1.33)

where γ represents the adiabatic exponent. Upon using the continuity equation to rewrite
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1.4 The equilibrium and dynamical tide

the total derivative with respect to (ρ+ ρ′) we find:

0 =
1

(ρ+ ρ′)γ
D(p+ p′)

Dt
+ (p+ p′)

−γ
(ρ+ ρ′)γ+1

· −(ρ+ ρ′)∇ ·Ue,

=
∂p′

∂t
+Ue · ∇(p+ p′) + γ(p+ p′)∇ ·Ue,

=
∂p′

∂t
+
∂ξe
∂t

· ∇(p+ p′) + γ(p+ p′)∇ · ∂ξe
∂t

. (1.34)

This equation we can linearise, and then write everything inside the time derivative once

again, which leads to the conclusion:

0 =
∂p′

∂t
+
∂(ξe · ∇p)

∂t
+
∂(γp∇ · ξe)

∂t
,

⇒ p′ = −ξe · ∇p− γp∇ · ξe. (1.35)

Using this result together with Eq. (1.28) we can find an expression for the equilibrium

tide:

0 = ρ′ − dρ

dp
p′,

= −ρ∇ · ξe − ξe · ∇ρ+
dρ

dp
(γp∇ · ξe + ξe · ∇p) ,

= −ρ∇ · ξe −
dρ

dp
ξe · ∇p+

dρ

dp
(γp∇ · ξe + ξe · ∇p) ,

=

(
−ρ+ γp

dρ

dp

)
∇ · ξe. (1.36)

The term in brackets in this last expression is non-zero if the buoyancy frequency N2 is

non-zero (Ogilvie, 2014); an elegant derivation of this fact can be found in Duguid (2020).

If this holds true, the tidal displacement and thus tidal velocity are incompressible, i.e.

∇ · ξe = 0. Finally, we can combine Eq. (1.29) and Eq. (1.32) to obtain:

−ρdρ
dp

(Φ′ +Ψ) = −ξe · ∇ρ = −ξe ·
dρ

dp
∇p,

⇒ Φ′ +Ψ = ξe ·
1

ρ
∇p.

(1.37)

(1.38)

It is possible to use 1
ρ∇p = −∇Φ = g in this final expression to obtain the re-

sults in terms of known quantities. Thus the above equation gives us the equilibrium tide

displacement in the direction of gravity, i.e. the radial displacement. Then using incom-

pressibility the horizontal displacement can be derived. This is the original equilibrium

tide displacement as derived by Zahn (1966).

This derivation of the tidal displacement and associated tidal flow crucially hinges

on one argument, namely that N2 ̸= 0, or more precisely that N2 > ω2. This assumption

is typically correct in large portions of stably stratified regions of the planet, or radiative

zones in stars. However, in neutrally stratified regions or convection zones where the

convection is efficient in homogenising entropy it is in fact expected that N2 ≈ 0, i.e. it is
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approximately neutrally stratified. This crucial difference was remarked upon in Goodman

and Dickson (1998) and Terquem et al. (1998). The tide calculated in approximately

neutrally stratified regions has subsequently been referred to as the “non-wavelike tide”

(Ogilvie, 2013), although it is often still just called the equilibrium tide. Deriving the

tidal flow and displacement in this case starts from the linearised momentum equation

(neglecting all forces but the Coriolis force in this example):

∂U

∂t
+ 2Ω×U = −∇W. (1.39)

This equation can be decomposed in two parts, one for the non-wavelike tide with subscript

nw and one for the wavelike tide with subscript w:

∂Unw

∂t
= −∇Wnw, (1.40)

and
∂Uw

∂t
+ 2Ω×Uw = −∇Ww − 2Ω×Unw. (1.41)

The philosophy behind this decomposition is to consider the non-wavelike tide as an in-

stantaneous hydrostatic deformation, unaffected by the Coriolis force, and the wavelike

tide as the result of the accelerations and other forces acting on said non-wavelike tide

and then generating waves. This decomposition follows the idea of the equilibrium and

dynamical tide decomposition as introduced by Zahn, except that this derivation is valid

in neutrally stratified regions.

From Eq. (1.40) it is clear that the flow Unw (and thus tidal displacement ξnw) is

irrotational:

∇×Unw = ∇× ξnw = 0. (1.42)

This allows us to write ξnw = ∇V , for some potential V , and thus to finally find the

following expression by combining Eq. (1.29) and Eq. (1.32) for the non-wavelike tide:

∇ · (ρ∇V ) =
dρ

dp
ρ(Φ′ +Ψ). (1.43)

This partial differential equation can be solved when suitable boundary conditions

are imposed. The equilibrium tide and non-wavelike tide usually result in similar results,

although they can quantitatively differ by an O(1) factor (Barker, 2020).

1.4.2 The dynamical tide

The dynamical tide (or wavelike tide in adiabatically stratified regions) then consists of

internal waves in the fluid excited by the tide. The subsequent dissipation of these tidally

excited internal waves can be important for tidal evolution. The character of these waves

strongly depends on the medium in which they propagate. Of particular importance is the

stratification of this medium, as it is hugely influential in determining whether so-called
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1.4 The equilibrium and dynamical tide

internal gravity waves can exist. Another highly important factor would be the presence

of a magnetic field, which would allow Alfvén waves to exist. In this work however, we

do not consider the magnetic field – as is common in tidal studies to date – and limit

ourselves to hydrodynamic waves.

Inertial waves

Let us start by considering neutral stratification, which can be crudely thought to repre-

sent a convective region with efficient convection that has homogenised the entropy, thus

attaining adiabaticity. In these regions internal gravity waves cannot propagate. If the

object is rotating on the other hand (which astrophysical objects tend to be) then another

possible category of waves arises, namely the inertial waves.

Inertial waves (IWs) are waves restored by the Coriolis force due to the spin of

the body. For these waves the classical Cartesian plane wave Ansatz is made: ei(k·x−ωt),

where k is the wavevector and ω is the frequency of the wave. One can think of this

plane wave Ansatz as describing short wavelength waves, such that any constraints from

the boundaries are ignored. To derive their dispersion relation, one can start from the

linearised Navier-Stokes (or Euler) momentum equation, assuming both constant density

and incompressibility while only considering the effects of the Coriolis force:

∂u

∂t
+ 2Ωs × u = − 1

ρ0
∇p. (1.44)

Using the Ansatz, choosing the rotation axis to lie along the z-axis and after some algebra

one can arrive at the dispersion relation of inertial waves:

ω2 =
4(Ωs · k)2

k2
= 4Ω2

s

k2z
k2
, (1.45)

with k2 = k2x + k2y + k2z . This dispersion relation has two consequences, inertial waves

can only exist with frequencies |ω|≤ 2Ωs. If the frequency were to be higher than 2Ωs,

this would imply that one or both of the kx, ky need to be imaginary and thus that the

waves are evanescent. This situation might arise if a wave travels into a region where Ωs

is smaller due to a differential rotation for example. Evidently, these kinds of evanescent

waves cannot be directly excited, and thus for all excited waves |ω|≤ 2Ωs is maintained.

The second consequence implies that a wave with a given wave number travels in a given

direction as long as Ωs is unchanged. This can be easily seen by defining an angle with

respect to the rotation axis, θ̃ (distinct from the spherical coordinate), in which case

kz/k = cos θ̃.

ω2 = 4Ω2 cos2 θ̃. (1.46)

Finally, at a given frequency infinitely many waves with different wavenumbers satisfy this

relation, precisely because the magnitude does not come into the dispersion relation, but

rather the direction.

These waves can exhibit a very interesting phenomenon called a wave attractor
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Figure 1.7: Wave attractors of inertial waves in a spherical shell. The solid-body rotation
allows for inertial waves which travel on straight paths, the direction of which is fixed by
the ratio of the frequency to the rotation rate. For certain frequencies a closed path is
found, resulting in focusing of the inertial waves, producing these wave attractors. Figure
adapted from Rieutord and Valdettaro (1997).

(Rieutord & Valdettaro, 1997) when one considers the geometry of a planet, i.e. a spherical

shell in which to propagate. These attractors arise precisely because the direction of travel

of the inertial wave is fixed by the ratio of its frequency and rotation rate. In a planet

or star that rotates like a solid body this would allow for certain frequencies to create

a closed path as shown in Fig. 1.7, geometrically focusing the inertial waves, potentially

leading to rapid dissipation of the highly concentrated energy.

Internal Gravity Waves

If rotation is absent, however, and a stable stratification is present instead, one obtains

internal gravity waves (IGWs). This stratification is associated with variations in density,

ρ′, – or more strictly in entropy – and thus it is important to treat these variations. For ease

we utilise the Boussinesq approximation. This approximation assumes that the density

variations are small, such that they only need to be taken into account in the buoyancy

term, i.e. the term interacting with gravity. This approximation will be presented in more

detail in Ch. 2. Using the exact same technique as for the IWs, but this time setting Ω = 0

we can write:
∂u

∂t
= − 1

ρ0
∇p+Bg. (1.47)

Here we have introduced a buoyancy parameter, B = g/ρ′

ρ0
, to the equation, requiring

us to add another equation to solve the system, namely the buoyancy equation. The

buoyancy equation arises from a combination of the equation of state of an ideal gas and

the fundamental equation of thermodynamics and is given by (in the absence of diffusion):

∂B

∂t
= u · ĝN2, (1.48)
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where we have defined the Buoyancy frequency N2 according to:

N2 ≡ −g · ∇
(
s

cp

)
= −g · ∇

(
p1/γ

ρ

)
, (1.49)

where s is the entropy, cp is the specific heat capacity at constant pressure and again γ is

the adiabatic exponent. The resulting dispersion relation for IGWs is:

ω2 =
N2k2⊥
k2

, (1.50)

with k2⊥ = k2x+k
2
y. This has the same kinds of consequences as the inertial wave dispersion

relation; the IGWs can only exist when |ω|≤ N and their direction is fixed depending on

the given values of ω and N2 > 0. Like Eq. (1.45) we can write this dispersion relation

using an angle compared to the z-axis in the system:

ω2 = N2 sin2 θ̃. (1.51)

Inertia-Gravity Waves

In case both stratification and rotational effects are to be taken into account, i.e. in stably

stratified regions of rotating fluid bodies, one obtains a dispersion relation arising from a

combination of the above two dispersion relations:

ω2 = 4Ω2
s

k2z
k2

+
N2k2⊥
k2

= 4Ω2
s cos

2 θ̃ +N2 sin2 θ̃. (1.52)

In fact, this dispersion relation is also valid for convective modes in unstably stratified

regions. In these regions N2 can be thought of as negative instead of positive. Thus

an inertial wave with a given k = kx, ky, kz will in general have a smaller frequency in

convective regions than in neutrally stratified regions, assuming it can exist at all.

Both internal gravity waves and inertia-gravity waves are capable of creating wave

attractors in closed domains like the inertial waves. However, while solid body rotation

could be a decent approximation to first order for giant planets – ignoring the known

differential rotation near the surface of both Jupiter and Saturn – the buoyancy frequency

is far from constant, and thus the paths of internal gravity waves and inertia-gravity waves

are likely to bend as can be seen in Fig. 1.8, but they can still form closed paths (Dintrans

et al., 1999).
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Figure 1.8: Wave attractors of inertia-gravity waves in a spherical shell. The presence of
stratification and rotation results in curved wave paths, which can still form closed loops.
Figure adapted from Dintrans et al. (1999).

1.5 Dissipation mechanisms of the equilibrium tide

This work will mainly focus on the dissipation of equilibrium tides; therefore we opt to only

discuss these mechanisms here. A review of linear and non-linear dissipation mechanisms

of the dynamical tide can be found in Ogilvie (2014). The dissipation mechanisms of

the equilibrium tide can be further split into linear mechanisms, where the movement of

the equilibrium tide flow is resisted by processes like viscosity, and non-linear mechanisms,

where the equilibrium tidal flow itself becomes unstable due to resonances with the internal

waves described previously. In this context, “non-linear” is used to denote mechanisms

which require some finite tidal amplitude to be able to operate, but the instabilities acting

upon the tidal flow themselves can be linear ones. The linear mechanism we will discuss

in this thesis is the convective turbulence acting like a turbulent effective viscosity (since

the microscopic kinematic viscosity is negligible), while the elliptical and precessional

instabilities are the two non-linear mechanisms we will discuss.

1.5.1 Turbulent effective viscosity

The first concept of the dissipation of the equilibrium tide is the notion of a turbulent

effective viscosity which arises within convective regions in planets and stars. The basic

idea is a rather straightforward one: turbulence generated by convection will hinder the

propagation of the equilibrium tide because the various rolls and eddies will remove energy

from the tide, acting like a frictional process. The idea that it hinders the tide in a rather

chaotic way then leads to the idea of parametrising it like a turbulent effective viscosity,

or eddy viscosity, instead of trying to make predictions for the chaotic dissipation as

a function of time. This idea was first proposed by Zahn (1966) and refined in Zahn

(1989) and has been used to explain observations of tidal circularisation and decay. It

was particularly successful for explaining binary circularisation in evolved stars (Verbunt

& Phinney, 1995).

The idea for the parametrisation of this effective viscosity then arises by considering
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a characteristic lengthscale of convection, lc, and a characteristic velocity of the convective

flow, uc. These can both be estimated using so-called mixing-length theory (MLT), first

developed by Prandtl (1925). The principles of MLT consider parcels that travel with this

characteristic velocity over this lengthscale before exchanging all their energy to the rest

of the flow. In essence, the mixing-length is akin to a mean free path for the parcel. If

the lengthscale is short, it means the parcel diffuses rapidly and thus the mean free path

is short. Using this parametrisation the effective viscosity is written as:

νeff ∝ uclc. (1.53)

This formula is often derived using dimensional analysis, and usually includes a somewhat

arbitrary factor of 1/3. The effective viscosity that is derived in this manner gives rise

to very efficient tidal dissipation. It should be noted that the validity of both MLT and

the turbulent viscosity to parameterise these chaotic convective processes remains an open

question, even though MLT is widely applied in for example 1D stellar evolution models

to calculate heat transport and the turbulent viscosity or eddy viscosity is sometimes used

to justify large viscosities in simulations. Verifying both of these in detailed studies is

therefore of the essence.

Zahn’s linear reduction

In addition to the uncertain applicability of the effective viscosity, the effective viscosity

as defined in Eq. (1.53) is so large that it predicts orbital evolution on timescales much

more rapid than what is currently observed in for example systems featuring planetary

orbital decay. Fortunately, Zahn (1966) also devised an explanation why it is too large

and should be reduced as a function of the tidal frequency for fast tides. This reduction

hinges on the idea that the relevant timescales at play have not been considered in the

argument above. One can think of tidal timescales, i.e. the tidal period, to be on the order

of days (e.g. for Hot Jupiter orbits), while the convective turnover time, which one might

consider as a convective timescale could be on the order of weeks in a star, or even a year

or more in a Jupiter-like planet. Consequently, the interaction between the convective

turbulence and the tide might be thought to only occur on a tidal timescale instead of the

convective timescale. The idea for this reduction in efficiency according to Zahn (1966)

can be described using MLT arguments. The idea hinges on the fact that within one tidal

timescale, the convective parcel/eddy will only have travelled a distance of lc ·τtide/τc. The
tidal period τtide is related to the tidal frequency according to ω2,2,2 = 2π/τtide. Actually,

the l = m = n = 2 equilibrium tide is quadrupolar, and as such one should consider

the distance travelled in half the tidal timescale τtide/2. Thus the considered lengthscale

should be reduced according to:

νeff ∝ uclc
τtide
2τc

= uclc
ωc

2ω
, (1.54)
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where we have defined the tidal frequency ωc = uc/lc according to mixing-length theory.

This is sometimes referred to as Zahn’s linear reduction. Finally, the somewhat arbitrary

factor of 1/3 is often included as the proportionality factor in these estimates. In summary:

νeff =

 1
3uclc if ωc/2ω > 1,

1
3uclc

ωc
2ω if ωc/2ω < 1.

(1.55)

The tidal timescales which satisfy the former are often referred to as “slow tides”,

while those that satisfy the latter are referred to as “fast tides”. Expressions for uc, lc and

ωc will be derived in Ch. 4 using mixing-length theory and rotating mixing-length theory

(RMLT), which is a correction to mixing-length theory in the presence of rotation based

on Stevenson (1979).

Goldreich & Nicholson’s quadratic reduction

More than a decade after Zahn first proposed his linear reduction, Goldreich and Nicholson

(1977) – motivated by tides in Jupiter – produced their own reduction based on tidal and

convective timescales. Instead of considering the timescale, lengthscale and velocity of a

typical eddy or parcel interacting with the rapid tide, they hypothesised that the eddies

with a timescale similar to the tidal timescale are the ones to interact with the tide. This

however produces a number of consequences related to the lengthscale and velocity of the

eddy. To this end they used Kolmogorov’s scaling to state that an eddy with a given

lengthscale λ has a velocity uλ:

uλ ∼ uc

(
λ

l

)1/3

. (1.56)

Furthermore, they stated that the associated frequency ωλ = 2π/τλ would be reduced

according to:

τλ ∼ τc

(
λ

l

)2/3

. (1.57)

Combining these two results in:

νeff = νλ = uclc

(
τλ
τc

)2

. (1.58)

The argument above, stating that the eddies with turnover timescales similar to the tidal

timescale should be considered then implies that τλ ≈ τtide. This leads to:

νeff ≈

 1
3uclc if ωc/2ω > 1,

1
3uclc

(
ωc
ω

)2
if ωc/2ω < 1.

(1.59)

This is referred to Goldreich and Nicholson’s quadratic reduction. This reduction

leads to much less efficient tidal dissipation for fast tides than Zahn’s reduction, but

recovers the same dissipation for slow tides.
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1.5 Dissipation mechanisms of the equilibrium tide

Current consensus

Since large-scale numerical simulations became available, so has our ability to test theories

like the crude ones described above. The first attempt to verify these scaling laws was made

by Penev et al. (2007, 2009a, 2009b). They considered the interaction of convection with

the tidal flow in a local Cartesian box model. In this work they used an oscillatory shear

flow in the horizontal direction to represent the tidal flow, with gravity in the vertical

direction. Some evidence was found for the linear reduction as predicted by Zahn. It

should be noted that the tidal frequencies explored in these works are close to those of the

convection, and thus do not allow for a large temporal separation between the tides and

the convection.

Subsequently Ogilvie and Lesur (2012) performed an asymptotic analysis on this

problem to identify more rigorous results originating from theory and to find scalings

in regimes that were still unavailable to simulations. Contrasting to the result found in

the simulations by Penev et al. (2009a), Ogilvie and Lesur (2012) obtained the quadratic

reduction from their asymptotic analysis. Additionally, they performed simulations in

a triply periodic Cartesian box of Boussinesq convection interacting with an oscillatory

shear flow, which provided evidence to support a quadratic reduction. Further evidence

for this quadratic reduction was found utilising an ABC flow in Braviner (2015).

Note however, that a triply periodic box allows for “elevator modes” (with no ver-

tical variation) to arise within the flow. This is sometimes referred to as homogeneous

convection, and is not always considered to be the most physically correct way to model

convection. There is an alternative approach for convection, which is the introduction

of walls at the top and bottom of the Cartesian box, commonly referred to as Rayleigh-

Bénard Convection. This approach could also be considered unphysical, as it neither

captures the physical boundaries of a spherical object properly, nor models a small section

of a convection zone accurately, since there is a distinct absence of walls within convection

zones of gaseous objects such as giant planets and stars. Nevertheless, this, in combina-

tion with stress-free boundary conditions, is often used in local approaches of convection

modelling for simplicity and because it produces convection with well-behaved properties.

The effective viscosity was later revisited by Duguid et al. (2019, 2020) in non-

rotating local Cartesian models using an oscillatory shear flow to represent the tidal flow

and incorporating Rayleigh-Bénard Convection. They performed an extensive sweep of

parameter space for both the convective driving as well as the tidal frequency. At high

tidal frequencies evidence for the quadratic reduction was obtained, but an intermediate

scaling was also retrieved when ω ≈ ωc, with a reduction according to ω−0.5. Incidentally,

this work also analysed which size of eddy was most important in contributing to the

effective viscosity. According to the Goldreich and Nicholson (1977) arguments, which

these non-rotating works agree with in terms of scaling behaviour of the turbulent effec-

tive viscosity, the small-scale “resonant” eddies should be contributing most strongly. It

was found however that it was in fact the large scales which most strongly contributed to

the effective viscosity. So even though the end result of Goldreich and Nicholson (1977)
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was confirmed, the arguments as to why are still up for debate – in terms of real under-

standing as opposed to asymptotic theory. Below we reproduce the scalings with fitted

proportionality constants and regimes in which they are applicable as found in Duguid

et al. (2020):

νeff =



5uclc
|ω|
ωc

≲ 10−2,

1
2uclc

(
ωc
ω

) 1
2 |ω|

ωc
∈ [10−2, 5],

25√
20
uclc

(
ωc
ω

)2
|ω|
ωc

≳ 5.

(1.60)

At the same time, the effective viscosity was also revisited in the context of a global,

idealised Boussinesq spherical model in Vidal and Barker (2020a, 2020b), both to avoid

the choice of convective model and to allow a more realistic geometry and tidal flow.

The trade-off of a global model is however that they are often more demanding in terms

of computational resources, and therefore the parameter sweeps cannot be as extensive.

Nevertheless, these global simulations also found evidence for the quadratic reduction with

tidal frequency for fast tides. It should be noted however that for simulations where ω ≈ ωc

a reduction similar to the linear reduction was found, although possibly the exponent in

these simulations was more in the range of 0.5 − 1.

An alternate hypothesis

An alternative hypothesis on the topic of the effective viscosity damping equilibrium tides

has been put forward in recent years by Terquem (2021). Motivation for this alternative

hypothesis arises because the weak dissipation of equilibrium tides predicted by the Gol-

dreich and Nicholson (1977) reduction for fast tides is unable to explain observations of

binary circularisation. This hypothesis essentially flips the picture of frequency reductions

above on its head. Instead of considering the timescale separation above to indicate the

tidal flow as the rapid main flow, which is acted upon by convection on its slower timescale,

this hypothesis postulates that the convective flow is the main flow based on a Reynolds

decomposition based on timescales, i.e. the convection is the mean flow through which the

tide flows as a fast perturbation. The tidal dissipation resulting from this theory is large

(but not unreasonably large) and should therefore be considered as a mechanism worth

exploring, to see whether the theory is correct and the mechanism is viable.

Note however that this hypothesis is very much in early development stages, akin

to the heuristic arguments by Zahn (1966) and Goldreich and Nicholson (1977) above

when these results were first published, since there are many unknowns still (particularly

surrounding the temporary anti-dissipation which is reported on). Moreover, this mecha-

nism is entirely absent from the works of Duguid et al. (2019, 2020) and Vidal and Barker

(2020a, 2020b) due to the setup of their models. As such no detailed simulations have as

of yet been done to confirm these results, except in Barker and Astoul (2021), which finds

the term to be much less relevant than claimed by Terquem (2021) by several orders of
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1.5 Dissipation mechanisms of the equilibrium tide

Figure 1.9: Schematic of the elliptical flow in body 1 viewed from above due to the tidal
deformation in body 1 as a result of the tidal potential of body 2. Body 1 takes the shape of
a triaxial ellipsoid due to the tidal deformation. The flow is constrained to surfaces parallel
to the equator and the resulting stream lines shown in blue take elliptical shapes. These
elliptical shapes of the flow allow for the elliptical instability. The effect of centrifugal
distortion has been omitted in this schematic.

magnitude, such that it cannot act to significantly enhance dissipation of the equilibrium

tides.

1.5.2 The elliptical instability

On the topic of non-linear tidal mechanisms – remembering that this refers to tidal mech-

anisms which require a finite tidal amplitude to operate – we start by discussing the

elliptical instability (Kerswell, 2002). In the context of astrophysical tides, this instability

arises because the l = m = n = 2 component of the equilibrium tide with associated

tidal frequency ω2,2,2 = 2Ωo − 2Ωs takes an ellipsoidal shape around the planet, which

rotates to follow the companion. As a result the flow and thus streamlines of the tidal

flow around the planet are ellipses. This is demonstrated in the schematic of the tidally

deformed planet in Fig. 1.9. The parameter to define the shape of this ellipsoid is in

fact (proportional to) the tidal amplitude ϵ in Eq. (1.9). However, in the context of the

elliptical instability it is referred to as the ellipticity.

In this thesis the elliptical instability will be studied in the context of astrophysics,

but the elliptical instability itself has a long history of being studied simply as a fluid

dynamical instability, both theoretically and experimentally. The first discovery in this

direction was made by Crow (1970), who considered the three-dimensional stability of

interacting vortices. In this work the Crow instability was discovered, which is an insta-

bility related to the elliptical instability. Simply put, the Crow instability requires two

interacting vortices and produces a long wavelength in the axial direction (on the order of

several vortex diameters) instability caused by the strain field of one vortex on the other.

The elliptical instability on the other hand is more localised, concerned with disturbances

in the vortex core of a strained vortex that has taken an elliptical shape, producing ellip-

tical streamlines (Leweke et al., 2016). Shortly after the work of Crow (1970), Widnall

et al. (1974) theorised that the elliptical instability could exist and Moore et al. (1975)
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subsequently discovered it. At around roughly the same time, Gledzer et al. (1976) per-

formed an experiment in a rotating elliptical cylinder, studying the vortex dynamics of

such an elliptically deformed vortex. The instability observed in this study turned out to

be exactly the one found theoretically in Moore et al. (1975), and was subsequently named

the elliptical instability.

Later development considered the ideal model of an unbounded, inviscid, strained,

i.e. elliptically deformed, vortex and the instabilities associated with it (Bayly, 1986;

Pierrehumbert, 1986), which is exactly the type of flow shown in Fig. 1.9 (ignoring the

boundaries in the schematic). The modification of the elliptical instability due to the

introduction of viscosity was examined in Landman and Saffman (1987), who found inhi-

bition at large wavenumbers, but no inherent modification of the instability. An important

contribution came from Waleffe (1990), who elucidated the responsible mechanism: the

elliptically deformed streamlines excite pairs of inertial waves through parametric reso-

nances (e.g. Waleffe, 1990; Kerswell, 2002), in which the elliptical flow acts like a parent

wave, transferring energy to the inertial waves as its two daughter waves. This leads to ex-

ponential growth of the amplitude of the inertial waves. Upon considering this instability

in a tidal context, the energy transferred to the inertial waves is at the expense of energy

in the tidal flow, and therefore at the expense of orbital or rotational energy (e.g. Barker

et al., 2016). To allow this interaction – which is nothing more than a triadic resonance

– the difference of the frequencies and wavenumbers of the daughter waves must add up

to the frequency of the tidal “wave”. As long as any retarding processes such as viscous

damping can be overcome, an arbitrarily small elliptical deformation can then lead to

instability (depending on γ – which we define in Ch. 2).

Later, progress started being made on understanding the non-linear evolution of the

instability. The instability was observed to emerge in experiments, showing the expected

inertial waves. Once saturation of the linear instability was reached the excited inertial

waves started producing smaller and smaller scale waves and finally collapsed to rotating

turbulence. The turbulence typically dissipates over time, leading to the flow becoming

unstable again (e.g. Malkus, 1989; Le Bars et al., 2010; Schaeffer & Le Dizès, 2010; Barker

& Lithwick, 2013, 2014; Favier et al., 2015; Barker, 2016a; Le Reun et al., 2017, 2019). It

was found in numerical simulations that inertial waves are always unstable (D. Mason &

Kerswell, 1999)1, and will continue collapsing to smaller and smaller scales. The collapse

to turbulence either occurs via weak “inertial wave turbulence” (Malkus, 1989; Barker &

Lithwick, 2014; Le Reun et al., 2017, 2019), or rotating turbulence involving large-scale

geostrophic vortices or zonal flows (Barker & Lithwick, 2013; Favier et al., 2015; Barker,

2016a; Grannan et al., 2017; Le Reun et al., 2017, 2019). The inertial wave turbulence

(involving a sea of weakly interacting inertial waves) may occur when the forcing amplitude

is weak (Le Reun et al., 2019; Astoul & Barker, 2022), or when geostrophic modes are

1There are two works we will cite in this thesis, one with first author D. Mason, which is the work
cited here, the other with first author R. Mason, both with second author Kerswell. These works are on
very similar topics and published very soon after one another, so it would be easy to think they have the
same first author based on in-text citations alone. For clarification we will include the first initial of the
first author in the in-text citations of these works.
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1.5 Dissipation mechanisms of the equilibrium tide

suppressed, either by artificial frictional damping (Le Reun et al., 2017) or via an external

process such as the imposition of a magnetic field (Barker & Lithwick, 2014).

As mentioned above, the elliptical instability finds application as a possible tidal

dissipation mechanism in stars and planets (Rieutord, 2004; Cébron et al., 2010; Le Bars

et al., 2010; Cébron et al., 2012; Barker & Lithwick, 2013; Cébron et al., 2013; Ogilvie,

2014; Barker, 2016a), extracting energy from the equilibrium tide. This however requires

careful consideration of the dynamics of the elliptical instability, particularly the properties

of the turbulence which is expected, as well as its interaction with other processes in the

system, such as magnetic fields or (stable or unstable) stratification (Le Reun et al., 2018).

The elliptical instability has been studied previously in simulations using a local

Cartesian box model both with (Barker & Lithwick, 2014) and without (Barker & Lith-

wick, 2013) weak magnetic fields. The latter study found that the elliptical instabil-

ity leads to “bursty” behaviour, involving the interaction of instability-generated inertial

waves with geostrophic columnar vortical flows produced by their non-linear interactions.

Irregular cyclic “predator-prey behaviour” was obtained in which the elliptical instability

first excited inertial waves, these interacted non-linearly to produce vortices that inhibited

further growth of waves until these vortices were damped sufficiently by viscosity, thereby

enabling further growth of the waves. Similar behaviour features in global hydrodynamical

simulations of the elliptical instability (Barker, 2016a), where zonal flows take the place

of columnar vortices in the predator-prey dynamics. Upon taking magnetic fields into ac-

count in the local model, the behaviour changed from bursts to a sustained energy input

into the flow, as magnetic fields served to break up or prevent formation of strong vortices

(Barker & Lithwick, 2014). Similar sustained behaviour is observed if the vortices are

damped by an artificial frictional force mimicking Ekman friction on no-slip boundaries

(Le Reun et al., 2017).

The elliptical instability and convection

The elliptical instability was analysed in the convective regions of planetary (or stellar)

interiors, but did not incorporate convection explicitly (except perhaps by motivating

a choice of viscosity if this is due to turbulence). However, convection can potentially

interact with the elliptical instability in a number of ways. Firstly, we might imagine

that smaller-scale turbulent convective eddies could act like an effective viscosity not just

on the equilibrium tide but also on these larger-scale inertial waves, damping them and

inhibiting or reducing the growth rate of the elliptical instability. Secondly, convection

under the influence of rotation is known to generate mean flows (zonal flows or vortices),

and these flows could also interact with those generated by the elliptical instability.

This interaction of the elliptical instability with convection has been studied within

linear theory (e.g. Kerswell, 2002; Le Bars & Le Dizès, 2006), experimentally in cylindrical

containers (Lavorel & Le Bars, 2010) and using idealised laminar global simulations in a

triaxial ellipsoid (Cébron et al., 2010). These studies illustrate that the elliptical instability

can modify heat transport, though they did not focus on the dissipation of tidal flows which
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is one of our primary aims. The dimensionless heat transport is usually represented by

the Nusselt number (Nu), which is a measure of the ratio of the total heat flux to the

conductive flux (i.e. with no transport by fluid motions), as a function of the Rayleigh

number (Ra), the dimensionless ratio of buoyancy driving to viscous and thermal damping,

which measures the strength of convective driving. The Nusselt number was observed to

be increased by the elliptical instability for Rayleigh numbers close to and below the value

required for onset of convection. It was also observed to be larger than one even with

stable stratification (Ra < 0), indicating that the elliptical instability can contribute to

heat transport in this regime also.

1.5.3 The precessional instability

The precessional instability, like the elliptical instability, is a non-linear tidal dissipation

mechanism that arises due to an instability associated with a component of the equilibrium

tide. However, for the precessional instability it is not the tidal deformation as a result

of the l = m = n = 2 component of the tide that generates a flow that becomes unstable.

Instead, a centrifugally deformed planet with misaligned rotation axis to the orbital axis

results in gravitational forces (i.e. tidal forces) that cause the spin axis to rotate around a

secondary rotation axis. This spin-orbit misalignment, also called obliquity, is responsible

for two more components of the tide: l = 2, m = 1, n = 0 and l = 2, m = 1, n = 2 with

associated tidal frequencies ω2,1,0 = −Ωs and ω2,1,2 = 2Ωo − Ωs. The former is static in

the inertial frame, i.e. the frame not rotating with the planet, and essentially causes bulk

precessional motion of the star or planet. It is this component of the obliquity tide that we

will focus on. These precessional flows within solid boundaries are described by the laminar

flow solution known as the Poincaré solution (Poincaré, 1910). This laminar solution is

unstable to the precessional instability, which allows turbulence to arise (Kerswell, 1993).

This instability is excited because the precessional tidal flow is confined to planes

inclined to the equator with an angle which depends on the rotation rate of precession,

misalignment angle and oblateness of the body. Because the body is oblate this results

in two interesting consequences which can be seen in the schematic in Fig. 1.10. Firstly,

the planes inclined with respect to the equator in an oblate body are elliptical in shape,

thus this flow can be unstable to the elliptical instability itself. The inclination of the

planes can be quite small however, and the oblateness is usually presumed small as well,

e.g. the largest known oblateness within the Solar System is that of Saturn with a value

of 0.098, so this effect is typically quite weak. Secondly, the line connecting the centres of

these planes is not perpendicular to the planes and therefore the centres of these planes are

sheared with respect to one another. This oscillatory shear results in a shearing instability

(Kerswell, 1993) which, like the elliptical instability, can excite inertial waves through a

parametric resonance. It is in fact this part of the instability that is usually considered to

be the most relevant, especially for objects with small oblateness.

The behaviour of the precessional instability is very similar to that of the elliptical

instability, so much so that they are often mentioned together (Kerswell, 2002; Le Bars
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Figure 1.10: Schematic of the flow in body 1 due to the precession of its spin axis as a
result of the tidal potential of body 2. Body 1 takes the shape of an oblate spheroid due
to centrifugal distortion caused by its own rotation. The spin-orbit misalignment present
in the system then causes the spin axis to precess about the orbit normal. The resulting
precessional flow is portrayed in blue; these flows are inclined with respect to both the
precession and spin axis, as indicated by the normal to the surfaces in purple. These
flows take an elliptical shape because they cut through the oblate spheroid at an angle
inclined to the equator. The line connecting the centres of these flow surfaces is indicated
in red, and demonstrates a shear between the flow surfaces. The tidal deformation which
is responsible for the elliptical instability has been omitted in this schematic for illustrative
purposes.

et al., 2015). The precessing flow, like the elliptical flow, excites pairs of inertial waves

through a parametric resonance, and these inertial waves grow exponentially. The linear

instability saturates, producing small-scale inertial waves which finally collapse to rotating

turbulence after which the cycle starts anew like the elliptical instability. This effect

has been observed in simulations of the precessional instability executed in a Cartesian

shearing box model with periodic boundaries (Barker, 2016b) and in spheroidal shells with

stress-free boundaries (Lorenzani & Tilgner, 2003).

Precession and the associated precessional instability has received a fair share of

attention as it was found to produce sustained turbulence in the fluid in realistic spherical

(Tilgner & Busse, 2001) or spheroidal geometries (Lorenzani & Tilgner, 2001, 2003). As

such it is thought that the precessional instability could power a dynamo in for example

the Earth’s core (Malkus, 1968; Kerswell, 1996; Tilgner, 2005; Wu & Roberts, 2008; Le

Bars et al., 2015). Furthermore, it has application as a tidal mechanism as it is thought to

result in spin-orbit alignment, i.e. evolution of the spin-orbit angle so that the equatorial

and orbital planes coincide (Le Bars et al., 2015; Barker, 2016a). The shearing instability

part of the precessional instability can be studied in isolation by considering a local box

approach in which the streamlines are circular, but vertically sheared. The entire box is

rotating around the spin axis and the rotation of precession is represented by a secondary

rotation perpendicular to the spin axis, with rotation rate Ωp = PoΩs. The parameter

Po is the Poincaré number and indicates how fast precession occurs compared to the spin
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rotation; in analogy to the elliptical instability this parameter is sometimes also denoted by

ϵ. This unbounded approach is documented in Kerswell (1993), presenting an initial linear

instability analysis. This local shearing instability approach to precession has been taken

in various papers (Barker, 2016b; Pizzi et al., 2022; Kumar et al., 2024) reproducing some

of the results found in spheroidal geometries: it excites inertial waves, like the elliptical

instability, generates vortices, like the elliptical instability, and as a result sees intermittent

activation. Its exact operation was examined numerically in Pizzi et al. (2022), studying

the transfers of energy. They identified two different regimes, one where the vortex is

completely dominant in the simulation at low Poincaré number, and one where the inertial

waves contribute meaningfully at higher Po. Furthermore, the precessional instability was

studied in tandem with weak magnetic fields as well, which show that just this aspect

of the precessional flow and its instability can indeed act as a dynamo (Barker, 2016b;

Kumar et al., 2024).

Intriguingly, work has been done to study the possibility of wave attractors arising

due to precession. It was found that indeed the inertial waves as generated from these

instabilities in a spherical shell can generate wave attractors (Hollerbach & Kerswell, 1995;

Noir et al., 2001). The chosen geometry is therefore of importance to the precessional

instability, and one can expect it to be equally important to the elliptical instability.

The precessional instability and convection

The precessional instability interacting with convection has received less attention than

the elliptical instability interacting with convection. The interaction was however studied

using a linear stability analysis in cylindrical geometry in Benkacem et al. (2022), and

using simulations in spheroidal objects in Wei and Tilgner (2013). The former found

that the instability is slightly enhanced for weak convection, and is suppressed for strong

convection. The latter found that indeed the precessional instability is enhanced for weak

convection, allowing it to onset where it previously could not. Furthermore, it was found

that convection can onset at weaker convective driving when weak precession is present.

With strong precession it requires stronger convective driving to onset. Finally, in a similar

fashion to the elliptical instability it was found that the precession can cause additional

heat transport compared to convection in isolation.

In terms of the local Cartesian box approach, this interaction has not yet been

studied. However, the evolution of the precessional instability in isolation together with

walls in the vertical direction has been studied in R. Mason and Kerswell (2002)2 and Wu

and Roberts (2008), finding that the introduction of these walls imposes a mode selection

constraint on the precessional instability. In fact this mode selection constraint forces a

distinct growth rate on each set of inertial waves which are able to resonate and grow

and reduces the maximum growth rate compared to expectations from the unbounded

analysis.

2The second of the papers with first author Mason, second author Kerswell; this one with first author
R. Mason
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One might then expect a number of interesting effects similar to the elliptical insta-

bility. Again an effective viscosity might arise to damp the inertial waves; the convective

mean flows might interact with the instability. Furthermore, in this particular geometry,

the presence of convection, or stratification in general, might affect the mode selection

constraint. The most unstable modes could become a function of the buoyancy frequency

and rotation rate. Moreover, it is highly likely the growth rate of the instability will

be affected by the stratification based on the linear analysis of Benkacem et al. (2022)

even though their model does not include walls. Finally, at high enough values of the

Poincaré number, it is possible that this additional precessional rotation axis influences

the convection and modifies or even prevents the formation of mean flows.

1.6 Research Aims

The effectiveness of the above tidal mechanisms is still poorly understood, particularly

when considering the interaction of the elliptical and precessional instabilities with con-

vection. There is strong motivation to study these interactions because these instabilities

are expected to arise in convective regions. Indeed, we wish to study these interactions in

a clear and concise manner, without any effects due to for example a spherical geometry.

Therefore we take the local box approach for both instabilities with stress-free walls at

the top and bottom of our model to accommodate Rayleigh-Bénard convection.

There are numerous questions that then arise from the introduction of convection

to the elliptical and precessional instabilities. We have outlined some of these questions

below:

• Will convection act to enhance the elliptical/precessional instability, or will it sup-

press it?

• Can the elliptical/precessional instability influence convection and modify the heat

transport?

• How will the changes in behaviour impact our predictions for tidal dissipation and

tidal quality factors in Hot Jupiters and binary stars? Can we derive scaling laws to

make estimates about real astrophysical systems?

Additionally, we wish to study the effective viscosity described above, which interacts with

our tidal flows. Questions which we hope to answer are:

• Will the interactions of the convection with the tidal flow, that can be parameterised

with a turbulent effective viscosity, arise in our simulations?

• Does the effective viscosity match Zahn’s linear reduction or Goldreich and Nichol-

son’s quadratic reduction?

• Can we use (R)MLT to derive scaling laws for the convective velocity, lengthscale

and turnover time in our simulations?
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• Will the effective viscosity match the (R)MLT predictions applied to the effective

viscosity reduction in the simulations?

• Will the extrapolated effective viscosity contribute meaningfully to tidal dissipation

in giant planets or will it be inefficient as previously predicted?

To answer these questions we will execute numerous simulations, which will be ver-

ified using linear stability analyses. The setup of our local Cartesian box model with

stress-free impermeable walls at the top and bottom will be detailed in Ch. 2. In addition

to the setup of the model, we will detail the properties of the elliptical instability and,

for the first time, derive the linear growth rate of the elliptical instability after the intro-

duction of walls at the top and bottom of the local Cartesian box. Furthermore, we will

detail Rayleigh-Bénard convection in this chapter. In Ch. 3 we will study the behaviour

of the elliptical instability interacting with the convection in the numerical simulations.

Here we will endeavour to answer the questions related to the behaviour of the elliptical

instability in the presence of convection as well as examining whether the convection acts

as a turbulent effective viscosity on the tidal flow in these simulations. Following on from

the studies on the behaviour of the interactions, in Ch. 4 we will attempt to quantify the

dissipation in our simulations due to both the elliptical instability under the influence of

convection as well as the turbulent effective viscosity, should it be present, and derive scal-

ing laws for both as well as the relevant convective quantities, i.e. the convective velocity,

lengthscale and frequency.

In Ch. 5 we pivot to the precession problem. In this chapter we will detail the

properties of the precessional instability, as well as presenting, for the first time, the

associated linear stability analysis in the presence of stratification after the introduction

of the walls. In Ch. 6 we will study the interactions of the precessional instability with

convection in our simulations, attempting to constrain how the precessional instability and

the precession itself interact with the convection. In addition, we will seek to derive scaling

laws for the tidal dissipation due to the precessional instability and effective viscosity, if

present. Having obtained the scaling laws for the tidal dissipation due to both the elliptical

and precessional instability and effective viscosity, if present, we will apply these to 1D

models of the interiors of (Hot) Jupiter-like planets to derive timescales of tidal evolution

in Ch. 7. Finally, in Ch. 8 we will summarise all our findings.
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Chapter 2

Theoretical background of the

elliptical instability and convection

Before we can start answering the research questions regarding the elliptical instability

interacting with convection posed in Ch. 1, we must dive a little deeper into the origins

of the elliptical instability. To this end we first discuss the form the background tidal

flow takes in a local model of a giant planet or star. Next, we present the linear stability

analysis of the elliptical instability with walls at the top and bottom and deduce the

characteristics of the instability, such as the most unstable mode and growth rate. We

will then discuss rotating convection and its associated linear stability analysis. Finally

we derive the quantities of interest in our system such as the kinetic energy and tidal

energy injection rate. From here we detail the Snoopy code utilised for this work and

the numerical methods employed. Once these have been covered we test that we do

indeed retrieve the linear growth rates as expected in the simulations. Finally, we discuss

the parameters we will vary in this study as well as the resolutions we employ for the

simulations.

2.1 The elliptical instability

2.1.1 The background tidal flow

The elliptical instability originates from the elliptical streamlines of the tidal flow corre-

sponding to the “asynchronous tide”, i.e. the l = m = n = 2 component of the tide,

within a rotating planet or star. This component of the tide is quadrupolar, and therefore

the tidal frequency is twice the rotation rate of the tidal flow, because the equivalent to

“high tide” passes by an observer located on the body twice during one rotation period

of the flow. The tidal frequency is ω2,2,2 = 2(Ωo − Ωs), and thus the rotation rate of this

flow, in what is known as the bulge frame, is given by γ = (Ωo −Ωs). In the literature for

the elliptical instability the orbital rotation rate is sometimes denoted by n while the spin

rotation rate is denoted by Ω, and γ = Ω − n (Barker & Lithwick, 2013), which differs

by a minus sign compared to the previous definition of γ = (Ωo − Ωs). We will adopt
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the conventions used in Barker and Lithwick (2013) in the rest of this thesis. Using these

definitions, the bulge frame is the frame rotating at the rate n about the axis of rotation of

the planet. The tidal flow, which we treat as a background flow Ũ0 present in our system,

in this frame takes the form (Barker & Lithwick, 2013):

Ũ0 = γ

 0 −(1 + ϵ) 0

1− ϵ 0 0

0 0 0

 x̃, (2.1)

where x̃ represents the position vector from the centre of the planet. In the frame rotating

with the planet at the rate Ω, it can be written alternatively as:

U0 = Ax = −γϵ

sin(2γt) cos(2γt) 0

cos(2γt) − sin(2γt) 0

0 0 0

x, (2.2)

where x now represents the position vector from the centre of the planet in the frame

rotating with the planet. This description represents the exact l = m = n = 2 component

of the equilibrium tide of a uniformly rotating incompressible fluid body perturbed by

a companion on a circular aligned orbit (Chandrasekhar, 1967; Barker et al., 2016), but

approximates the main features of the equilibrium tide in more realistic models described

previously (Terquem et al., 1998; Ogilvie, 2013; Barker, 2020). We choose to work in the

frame rotating with the planet, so that Eq. (2.2) describes the tidal flow. As described

briefly in Sec. 1.5.2, the elliptical instability operates because the background flow given

in Eq. (2.2) acts like a parent wave with zero wavenumber, i.e. a steady oscillator that

oscillates with an amplitude of γϵ, that can achieve a triadic resonance with two daughter

inertial waves, resulting in a parametric instability.

2.1.2 Governing equations and setup of the problem

In this work we have chosen to work in a local Cartesian box model – which can be thought

to represent a small patch of a planet or star (see Fig. 2.1) – and we will build upon the

previous works of Barker and Lithwick (2013, 2014) and Le Reun et al. (2017) to study

the interaction of the elliptical instability with convection in this model, focusing on the

resulting tidal dissipation. Our local model allows for higher resolution studies, which in

turn allows us to reach more turbulent regimes than e.g. Cébron et al. (2010) and Lavorel

and Le Bars (2010), as well as providing the cleanest way to study the instability with

minimal effects from the chosen boundaries of the container.

We model the convective instability using Rotating Rayleigh-Bénard Convection

(RRBC). RRBC is chosen as it is the simplest model of rotating convection (Chan-

drasekhar, 1961) which allows us to study its interaction with the elliptical instability.

In this setup two impermeable walls are introduced at the top and bottom of the local

box, to avoid “homogeneous convection”. At these walls or plates the temperature is fixed

and in the case of convection the bottom plate is hotter while the top plate is cooler. This
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Figure 2.1: Location of the local box in the convection zone of a Hot Jupiter, indicating
the rotation axis and the temperature gradient represented by the red (hot) and blue
(cold) sides of the box. Gravity is chosen in the vertical direction in the box.

introduces a vertical temperature difference and therefore a density difference to the flow.

Upon choosing the direction of gravity, which is chosen to be the vertical direction, we

find that gravity will act on this density difference, generating a buoyancy force and thus

allowing convective motions to occur.

In addition to modelling convection using RRBC, we employ the Boussinesq ap-

proximation (Spiegel & Veronis, 1960). The crux of this approximation is to consider

small density variations – compared to some reference density – in the studied system.

In particular, the density variations are neglected in every term bar the buoyancy term.

The philosophy behind this choice is that the buoyancy force generated by gravity acting

on the density variations can still be large, even if the density variations themselves are

small. Using the Boussinesq approximation is justified if and only if the two required

conditions are satisfied: 1) flows are much slower than the sound speed, u ≪ cs, which is

a condition that is also present in the anelastic approximation and 2) the vertical size of

the domain d is much smaller than a pressure or density scale height, d ≪ Hp. A local

system that only considers a small section of the astrophysical body can justifiably use this

approximation, as density is not expected to change much if the size of the chosen system

is small enough. Any large-scale variations of the properties of a planet, such as density

and temperature, as a function of radius cannot be captured when this approximation is

employed. Moreover, large-scale circulations spanning a full convection zone of multiple

density scale heights cannot be modelled using this approximation. The advantage of this

approximation is however that computation and analysis is massively eased, both because

density variations can be neglected and because the continuity equation is reduced to the

37



2. THEORETICAL BACKGROUND OF THE ELLIPTICAL
INSTABILITY AND CONVECTION

incompressibility condition, eliminating sound waves in the system:

∇ · u = 0. (2.3)

In addition to choosing the temperature gradient and gravity in the vertical direc-

tion, we also choose the rotation axis to be vertical, as indicated in Fig. 2.1. The box in the

current setup thus represents a polar region, because the local rotation and gravity vectors

are either aligned or anti-aligned (depending on the sign of Ω). The dimensions of this box

are [Lx, Ly, d] with Lx = Ly = Ld. The boundary conditions in the horizontal directions

are periodic, while in the vertical direction they are impermeable, uz(z = 0) = uz(z =

d) = 0, and stress-free, ∂zux(z = 0) = ∂zux(z = d) = ∂zuy(z = 0) = ∂zuy(z = d) = 0.

The combination of the Boussinesq approximation and the stress-free impermeable walls

implies that this local model thus represents a single convection cell (or mixing-length)

in the vertical. Boundary conditions in the vertical for the temperature perturbation are

assumed to be perfectly conducting, i.e., θ(z = 0) = θ(z = d) = 0.

We start from the full Navier-Stokes equations for RRBC under the Boussinesq

approximation. In these equations we represent the total velocity U = U0 + u as the

addition of the background flow and the velocity perturbation u = (ux, uy, uz) and the

total pressure Ptot = P (z) + p as the background pressure P (z) obtained from hydro-

static balance, with a contribution from background flow to be steady, and the pressure

perturbation p. This equation is presented together with the heat equation – with total

temperature Ttot = T (z) + θ as the addition of the background temperature profile T (z)

and the temperature perturbation θ – and the incompressibility condition:

DU

Dt
+ 2Ωẑ ×U = − 1

ρ0
∇Ptot + αgTtotẑ + ν∇2U +F , (2.4)

DTtot
Dt

= κ∇2Ttot, (2.5)

∇ ·U = 0, (2.6)

where
D

Dt
≡ ∂

∂t
+U · ∇. (2.7)

In these equations ρ0 is the reference density, g is the local gravitational acceleration

(assumed constant), α is the (constant) thermal expansion coefficient, ν is the viscosity, κ

is the thermal diffusivity and F is the tidal forcing responsible for perfectly maintaining

the background flow U0. If we consider a local box of vertical dimension d the conduction

state or background temperature profile T (z) can be derived by considering the heat

equation in a background stationary state (u = 0, ∂tT = 0) and employing the boundary
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conditions that T (z = 0) = T0 and T (z = d) = T0 −∆T :

U0 · ∇T = κ∇2T,

⇒ 0 =
d2

dz2
T. (2.8)

The term U0 · ∇T vanishes because U0 is purely horizontal. The resulting temperature

profile can then be written, using the boundary conditions, as:

T (z) = T0 −
∆T

d
z. (2.9)

Without loss of generality T0 is set to zero, so the temperature at the bottom

(hot plate, typically) is T (z = 0) = 0, while the temperature at the top (cold plate)

is T (z = d) = N2/(αg), such that the temperature difference is ∆T = −N2/αg and the

temperature gradient is:

T =
N2

αgd
z. (2.10)

A negative value of N2 corresponds to a positive ∆T and thus a hot plate at the bottom

and a cold plate at the top, which is the setup that can be unstable to convection, and is

referred to as unstable stratification. When choosing N2 as positive, corresponding to the

hot plate at the top and cold plate at the bottom, this is referred to as stable stratification

instead as it is stable to convection.

Now considering the above governing equations and eliminating all terms that satisfy

the background state we are left with:

Du

Dt
+ u · ∇U0 + 2Ωẑ × u = − 1

ρ0
∇p+ αgθẑ + ν∇2u, (2.11)

Dθ

Dt
− uz

∆T

d
= κ∇2θ, (2.12)

∇ · u = 0, (2.13)

where
D

Dt
≡ ∂

∂t
+U0 · ∇+ u · ∇. (2.14)

We can now non-dimensionalise by scaling all instances of a lengthscale in the

above equations with the vertical domain size d (distance between the plates), scaling

all timescales using the corresponding thermal timescale d2/κ, thus scaling velocities with

κ/d, pressures with ρ0κ
2/d2, and finally scaling temperature with ∆T (i.e. by the tem-

perature difference between the plates). The governing equations for the dimensionless

velocity and temperature perturbations u and θ to the background flow U0 and conduc-

tion state temperature profile T (z) in the Boussinesq approximation, in a frame rotating

at the rate Ω about the z-axis, are then:
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Du

Dt
+ u · ∇U0 +

Pr

Ek
ẑ × u = −∇p+RaPrθẑ + Pr∇2u, (2.15)

∇ · u = 0, (2.16)

Dθ

Dt
− uz = ∇2θ. (2.17)

In these equations we have introduced multiple non-dimensional parameters to describe

our system, which are the Rayleigh number:

Ra =
αg∆Td3

νκ
, (2.18)

which describes the ratio of convective driving to viscous and thermal diffusive effects, the

Ekman number (ratio of viscous to Coriolis terms):

Ek =
ν

2Ωd2
, (2.19)

and the Prandtl number:

Pr = ν/κ, (2.20)

which describes the ratio of viscosity to thermal diffusivity. Note that we can relate

the dimensional buoyancy frequency N2 to the Rayleigh number according to N2 =

−RaPrκ2/(αgd4), so that when Pr = 1, the dimensionless value (in thermal time units,

where d2/κ = 1) is N2 = −Ra. The background tidal flow also introduces the dimension-

less ellipticity ϵ and the tidal rotation rate γ in our chosen units. We will fix the Prandtl

number in the rest of this thesis to reduce the number of executed parameter sweeps and

thus computational costs. We choose to set Pr = 1 for consistency with the previous works

we will build on e.g. Cébron et al. (2010), Wei and Tilgner (2013), Barker et al. (2014),

and Guervilly et al. (2014).

2.1.3 Analytical derivation for the linear growth rate

From these governing equations we can determine the growth rates of the two instabilities

present within the system: the elliptical instability and the convective instability. The

growth rate of the elliptical instability is well known in isolation (Kerswell, 2002), and

that of rotating convection in our chosen geometry is well studied (Chandrasekhar, 1961).

We will treat the derivation of these instabilities in isolation; it is expected, from previous

works, that the influence of one instability on the other is to slightly modify the growth

rate but not to lead to any fundamental changes (Kerswell, 2002). What might however

lead to changes of the behaviour of the elliptical instability is the introduction of stress-free

walls. As such, we will derive the growth rate of the elliptical instability in this geometry.

To this end, we adapt the method described in R. Mason and Kerswell (2002), which was

originally employed to derive the growth rate of the precessional instability in the same

geometry, which we will summarise in Ch. 5.
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The elliptical instability in the presence of stress-free walls

The elliptical instability is a parametric instability and so one can not simply find the

dispersion relation and deduce the growth rate of the instability from there; instead we

must employ asymptotics to find how the two daughter inertial waves grow from the

resonance between the tidal flow U0 and these waves. One can think of the tidal flow as

a “wave” with frequency 2γ, as seen from Eq. (2.2), completing the three way interaction,

known as a triadic resonance, needed for this parametric instability. We start from the

momentum equation Eq. (2.11), neglecting all temperature terms:

∂u

∂t
+U0 · ∇u+ u · ∇U0 + u · ∇u+ 2Ωẑ × u = −∇p+ ν∇2u. (2.21)

We linearise this equation and set the viscosity to 0. We know that the main effect of

viscosity is to introduce a reduction to the final growth rate of −νk2, where k is the

wavenumber magnitude (Kerswell, 2002), thus we can safely omit it from this calculation

and include the reduction later. All terms containing the small parameter ϵ, in this case

contained within U0, are moved to the RHS of the equation and all terms without ϵ to

the LHS:
∂u

∂t
+ 2Ωẑ × u+∇p = −U0 · ∇u− u · ∇U0. (2.22)

We can work out the products U0 · ∇u and u · ∇U0 and write them both in matrix

form. For clarity and brevity we write C ≡ cos(2γt), S ≡ sin(2γt):

−U0 · ∇u = γϵ

(
Sx+Cy
Cx−Sy

0

)
·
(

∂x
∂y
∂z

)
u,

= γϵ

(
(Sx+Cy)∂x+(Cx−Sy)∂y 0 0

0 (Sx+Cy)∂x+(Cx−Sy)∂y 0
0 0 (Sx+Cy)∂x+(Cx−Sy)∂y

)
u,

−u · ∇U0 = γϵ(ux∂x + uy∂y + uz∂z)

(
Sx+Cy
Cx−Sy

0

)
,

= γϵ
( Su+Cv

Cv−Sv
0

)
= γϵ

( S C 0
C −S 0
0 0 0

)
u = −Au.

(2.23)

(2.24)

These can be rewritten using Euler’s formula:

sin(2γt) = − i

2
(ei2γt − e−i2γt), cos(2γt) =

1

2
(ei2γt + e−i2γt),

obtaining for the RHS of Eq. (2.22):

−U0 · ∇u− u · ∇U0 = ϵ
(
ei2γtL+ e−i2γtL∗)u, (2.25)

with

L =
γ

2

(−i+(−ix+y)∂x+(x+iy)∂y 1 0
1 i+(−ix+y)∂x+(x+iy)∂y 0
0 0 (−ix+y)∂x+(x+iy)∂y

)
. (2.26)

We rewrite Eq. (2.22) as:
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∂u

∂t
+ 2Ωẑ × u+∇p = ϵ

(
ei2γtL+ e−i2γtL∗)u, (2.27)

together with incompressibility condition ∇ · u = 0 and the boundary conditions: uz(z =

0) = uz(z = 1) = 0. Setting ϵ = 0 returns the inertial wave problem (Greenspan, 1968).

Using our chosen boundary conditions the real part of the eigenmodes of inertial waves

takes the form:
ux

uy

uz

p

 =


k2(kxλ− 2ikyΩ) cos(nπz)/4Ω

2k2⊥
k2(kyλ+ 2ikxΩ) cos(nπz)/4Ω

2k2⊥
−ikz sin(nπz)/λ

cos(nπz)

 ei(kxx+kyy+λt), (2.28)

where the amplitude of the pressure perturbation is chosen as 1 without loss of generality.

The total, horizontal and vertical wavenumber of each eigenmode are given by k2 =

k2x + k2y + k2z , k
2
⊥ = k2x + k2y and kz = nπ respectively, which satisfy the dispersion relation

for the frequency λ:

λ = ±2Ωkz
k

. (2.29)

This dispersion relation is the same as presented in Eq. (1.45) and it, together with

the eigenmodes, tells us how the daughter waves behave, but does not shed any light on

the growth of their amplitudes due to the elliptical instability. To study the amplitude

growth we examine the behaviour at O(ϵ) instead. We follow R. Mason and Kerswell

(2002) and, using the method of multiple timescales, introduce a slow timescale τ = ϵt

such that variables are assumed to depend on the fast timescale t0 and slow timescale τ ,

i.e. u = u(t0, τ). The time derivative becomes:

∂

∂t
=

∂

∂t0
+ ϵ

∂

∂τ
. (2.30)

Like R. Mason and Kerswell (2002) we will consider the linear combination of two

inertial waves A and B, each with its own kx, ky, kz and thus λ. These waves each have

associated amplitudes A and B, which should only grow on the slow timescale τ . We can

thus represent the perturbation velocity field u as these two inertial waves in addition to

an unspecified correction u1 at O(ϵ):

u = A(τ)uA(x)e
iλAt +B(τ)uB(x)e

iλBt + ϵu1(x, t) +O(ϵ2). (2.31)

Using this expression in Eq. (2.27) and keeping only terms of O(ϵ) we find:

∂u1

∂t0
+ 2Ωẑ × u1 +∇p1 =A

(
ei(λA+2γ)tL+ ei(λA−2γ)tL∗

)
uA(x)

+B
(
ei(λB+2γ)tL+ ei(λB−2γ)tL∗

)
uB(x)

−AτuAe
iλAt −BτuBe

iλBt, (2.32)
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where p1 is the correction to the pressure at O(ϵ), Aτ = dA
dτ and Bτ = dB

dτ . Then we define

the inner product under which these inertial waves are orthogonal (R. Mason & Kerswell,

2002):

⟨u,v⟩ ≡ lim
L→∞

1

L2

∫ L/2

−L/2

∫ L/2

−L/2

∫ 1

0
u∗ · v dz dy dx. (2.33)

We then take the inner product of Eq. (2.32) with the first wave uA: ⟨AuAe
iλAt,Eq. (2.32)⟩.

This inner product with the LHS of Eq. (2.32) leads to secular growth, and thus we demand

non-secularity, therefore obtaining an expression similar to the one found in R. Mason and

Kerswell (2002) for precession:

0 = ⟨uA,A
(
ei(λA−λA+2γ)tL+ ei(λA−λA−2γ)tL∗

)
uA(x)

+B
(
ei(λB−λA+2γ)tL+ ei(λB−λA−2γ)tL∗

)
uB(x)

−AτuAe
i(λA−λA)t −BτuBe

i(λB−λA)t⟩. (2.34)

Again, any secular term must vanish, therefore upon removing all terms that are time-

dependent, we retain:

(2.35)Aτ ⟨uA(x),uA(x)⟩ = B⟨uA(x),
(
ei(λB−λA+2γ)tL+ ei(λB−λA−2γ)tL∗

)
uB(x)⟩.

Thus if we want a non-trivial solution we require that λB = λA ± 2γ. Choosing λB =

λA+2γ and continuing to follow the same derivation pattern as in R. Mason and Kerswell

(2002) yields:

Aτ ⟨uA(x),uA(x)⟩ = B⟨uA(x),L∗uB(x)⟩,

Bτ ⟨uB(x),uB(x)⟩ = A⟨uB(x),LuA(x)⟩.

(2.36)

(2.37)

There exist growing solutions of the form (A,B) = (A0, B0)e
σΩϵt, which implies that

(Aτ , Bτ ) = σΩ(A,B) with growth rate:

σ2Ω2 =
⟨uA(x),L∗uB(x)⟩⟨uB(x),LuA(x)⟩
⟨uA(x),uA(x)⟩⟨uB(x),uB(x)⟩

. (2.38)

We start working out these inner products by calculating ⟨uA(x),L∗uB(x)⟩:

u∗
A(x) · L∗uB(x) =u∗

A · γ
2

iuB,x + (ix+ y)∂xuB,x + (x− iy)∂yuB,x + uB,y

uB,x − iuB,y + (ix+ y)∂xuB,y + (x− iy)∂yuB,y

(ix+ y)∂xuB,z + (x− iy)∂yuB,z

 ,

=
γ

2

[
iu∗A,xuB,x + ikB,x(ix+ y)u∗A,xuB,x + ikB,y(x− iy)u∗A,xuB,x

+ u∗A,xuB,y + u∗A,yuB,x − iu∗A,yuB,y

+ ikB,x(ix+ y)u∗A,yuB,y + ikB,y(x− iy)u∗A,yuB,y

+ ikB,x(ix+ y)u∗A,zuB,z + ikB,y(x− iy)u∗A,zuB,z

]
.

(2.39)

(2.40)
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From this expression we see that the products between u∗
A and uB take five general forms:

u∗A,xuB,x, u
∗
A,xuB,y, u

∗
A,yuB,x, u

∗
A,yuB,y and u∗A,zuB,z. In the first four of these products

the integral over z will take the form of:

∫ 1

0
cos(nAπz) cos(nBπz) dz =

{
1/2 if nA = ±nB,
0 else.

(2.41)

Thus these terms vanish unless nA = nB or nA = −nB. The fifth term u∗A,zuB,z takes the

form of: ∫ 1

0
sin(nAπz) sin(nBπz) dz =


1/2 if nA = nB,

−1/2 if nA = −nB,
0 else.

(2.42)

Clearly, these integrals enforce nA = |nB| on all terms, providing information about the

required vertical wavenumbers for resonance. Additionally, for this computation they all

introduce a factor of 1
2 . The x and y dependence of all components of u(x) are equal and

therefore the integrals over x and y under consideration are:

1

2L2

∫ L/2

−L/2

∫ L/2

−L/2
e−i(kA,xx+kA,yy)ei(kB,xx+kB,yy) dy dx = 1/2, (2.43)

1

2L2

∫ L/2

−L/2

∫ L/2

−L/2
xe−i(kA,xx+kA,yy)ei(kB,xx+kB,yy) dy dx = 0, (2.44)

1

2L2

∫ L/2

−L/2

∫ L/2

−L/2
ye−i(kA,xx+kA,yy)ei(kB,xx+kB,yy) dy dx = 0. (2.45)

Integrating these three expressions will always reduce to zero unless kA,x = kB,x and

kA,y = kB,y, in which case all exponentials cancel, which is what we have assumed in

Eq. (2.43). If the exponentials cancel, the last two integrals still vanish because an odd

function is integrated over a symmetric interval. The volume integrals therefore always

reduce to a factor ±1/2 provided the required resonance conditions of the daughter waves

are satisfied: (1) nA = ±nB, (2) kA,x = kB,x = kx and kA,y = kB,y = ky, (3) λB = λA+2γ.

Requirements (1) and (2) together result in further conditions kA,⊥ = kB,⊥ = k⊥ and

kA = kB = k. Furthermore, requirements (1) and (2) imply that λB = −λA and thus

combined with requirement (3) λB = −λA = γ. Combining all this, we know that the

only terms in Eq. (2.40) that are non-zero after integration are:

(2.46)⟨uA(x),L∗uB(x)⟩ =
1

2

(
iû∗A,xûB,x − iû∗A,yûB,y + û∗A,xûB,y + û∗A,yûB,x

)
,

where the hatted quantities denote only the constant factors of the inertial wave eigen-

modes in Eq. (2.28). Upon working out this product and a little algebra:

⟨uA(x),L∗uB(x)⟩ =
k4γ

64Ω4k4⊥

(
−2kxky + i[k2y − k2x]

)
(3Ω− n)2. (2.47)
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Likewise we find for the other inner product in the numerator:

⟨uB(x),LuA(x)⟩ =
k4γ

64Ω4k4⊥

(
−2kxky − i[k2y − k2x]

)
(3Ω− n)2, (2.48)

which is the complex conjugate of Eq. (2.47). We retrieve the same expressions for the

terms in the denominator as obtained in R. Mason and Kerswell (2002):

⟨uA(x),uA(x)⟩ =
k4

4Ω2k2⊥
, ⟨uB(x),uB(x)⟩ =

k4

4Ω2k2⊥
, (2.49)

Combining Eq. (2.47), Eq. (2.48) and Eq. (2.49), we find for the growth rate:

σ2Ω2 = γ2
92

162
(3Ω− n)4

92Ω4
. (2.50)

Finally we obtain for the growth rate:

σΩ =
9

16
γ
(3Ω− n)2

9Ω2
=

9

16
γ
(3γ + 2n)2

9(γ + n)2
. (2.51)

The growth rate in this final expression is the same as that of the elliptical instability

in the triply periodic case (Kerswell, 2002) and thus the introduction of walls has not

modified the growth rate of the elliptical instability. From our definitions of uA and uB

we can then write that the velocity field grows according to:

u = (A0uAe
−iγt +B0uBe

iγt)eσΩϵt. (2.52)

Note that the expression obtained in Eq. (2.51) is multiplied by ϵ to obtain the growth

rate of the amplitude. The elliptical instability is always active – if such waves exist that

satisfy the resonance conditions – in the absence of viscosity; there is no critical value

of ϵ that must be exceeded for it to operate. This however is in the inviscid limit; upon

including viscosity one finds an additional leading order correction to the growth of the

velocity of e−νk2t (Kerswell, 2002), which can be readily seen by rederiving the eigenmodes

in Eq. (2.28) starting from the governing equations with viscosity included. The solution

for the velocity perturbation u at this order with viscosity included is given by:

u = (A0uAe
−iγt +B0uBe

iγt)e(σΩϵ−νk2)t. (2.53)

Rotating convection

We can also find the growth rate of the convective instability; this however is a better

known problem than the elliptical instability and therefore we only highlight the key

details. We start from the dispersion relation of rotating convection (Chandrasekhar,
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1961):

s3 +As2 +Bs+ C = 0, (2.54)

where A,B,C are given by:

A = (2Pr + 1)k2,

B = k4Pr(Pr + 2)− RaPr
k2⊥
k2

+ Pr2
k2z

l2Ek2
,

C = (−Raa2 +
k2z
Ek2

+ k6)Pr2.

(2.55)

(2.56)

(2.57)

This dispersion relation is cubic and will therefore allow three real solutions for s, those

solutions with a positive real part are convectively unstable and will have growing ampli-

tudes, or one real and two complex solutions. If the solutions are complex the behaviour is

referred to as oscillatory. We are interested in the real solutions, because – at our chosen

Pr = 1 – the associated steady modes become unstable first and are the fastest growing.

Onset of the convective instability is achieved when s = 0, which implies that C

must be zero. From this one can determine the criterion for instability for a perturbation

with a given wavenumber:

Ra =
(k2z + k2⊥)

3 + k2z
Ek2

k2⊥
, (2.58)

with k2⊥ = k2x + k2y the horizontal wavenumber and kz = nπ the vertical wavenumber.

The minimal value of this Rayleigh number for instability in our local box model can be

obtained by setting kz = π and minimising with respect to k⊥. One then obtains in the

asymptotic limit Ek ≪ 1:

k⊥,c ∼
(
π2

2

) 1
6

Ek−
1
3 , Rac ∼ 3

(
π2

2

) 2
3

Ek−
4
3 , (2.59)

with k⊥,c the critical perpendicular wavenumber for which the critical Rayleigh number,

Rac, of the instability is minimised. However, as Ra is increased beyond this critical value

the most unstable mode will change away from the critical wavenumber. We must instead

numerically solve the dispersion relation in Eq. (2.54) to find the most unstable mode and

subsequent growth rate of the instability at every value of Ra. Equally, if the Ekman

number is not very small, the relations in Eq. (2.59) above are not accurately satisfied and

instead Eq. (2.58) is minimised directly and solved to obtain the critical Rayleigh number.

2.1.4 Known properties of the elliptical instability and convection

The linear properties of the elliptical instability have been reviewed by Kerswell (2002),

but are also illustrated by the linear instability analysis performed above. The instability

operates when two inertial waves have frequencies which differ by approximately the tidal

frequency 2γ, represented by the condition that λB = λA ± 2. In the short wavelength

limit, this occurs for two waves with frequencies λ = ±γ. The two inertial waves must
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also have the same vertical and horizontal wavenumbers. Finally, the inertial waves in

question must, by definition, each satisfy the dispersion relation for inertial waves. This

leads to the further constraint that γ = ±2Ωkz/k, in the absence of stratification.

The elliptical instability is further influenced by de-tuning of the most unstable

modes as well as convection. The effects of these on the elliptical instability in the un-

bounded case can also be found in the review by Kerswell (2002). De-tuning is used to

refer to any waves that do not satisfy the resonance conditions exactly, which reduces the

maximum growth rate. De-tuning of the waves also interacts with the effects of viscos-

ity, and the reduction of the growth rate due to both effects together could be enhanced

or reduced compared to either effect in isolation. Finally, if an (un)stable stratification

(aligned with the rotation axis) is present the expression for the growth rate of the un-

bounded elliptical instability – for small ϵ – is further modified according to (Kerswell,

2002):

σΩ =
9

16
γ
4(3γ + 2n)2(γ2 −N2)

9γ2(4(γ + n)2 −N2)
. (2.60)

Both the effects of unstable stratification (negative N2) and stable stratification (positive

N2) can be computed using this equation. We observe that stable stratification typically

inhibits the linear growth of the elliptical instability, but that unstable stratification typi-

cally enhances the growth rate. One can consider the dispersion relation of inertia-gravity

waves in Eq. (1.52) to determine which combinations of N2, γ and Ω are allowed such

that inertia-gravity waves can exist. Upon requiring that ω = γ in the dispersion rela-

tion, as these are the frequencies of the waves excited by the elliptical instability, one

finds that three cases arise. If 4Ω2 > γ2, the dispersion relation requires that N2 ≤ γ2

and thus N2 < 4Ω2. Next, if 4Ω2 < γ2, it requires that N2 ≥ γ2 and thus N2 > 4Ω2.

Finally, if 4Ω2 = γ2 there are no constraints on N2. The first two cases imply that the

growth rate obtained from Eq. (2.60) is always positive, and the latter case implies that

the growth rate becomes independent of the buoyancy frequency when 4Ω2 = γ2 because

4(γ + n)2 = 4Ω2 = γ2. All three cases ensure that the growth rate in Eq. (2.60) does not

go to infinity.

In an astrophysical context, in the absence of stratification, the elliptical instability is

furthermore affected by the rotation of the primary body around the companion, and thus

the rotation of the elliptical bulge, because it modifies the growth rate depending on the

rotation speed n (Craik, 1989). The growth rate is decreased for most values of n (e.g. see

Fig. 1 in Barker & Lithwick, 2013), and it cannot operate in the interval n = [−3
2γ,−

1
2γ].

In this interval no inertial waves exist that satisfy the dispersion relation. In the interval

n = [−1
2γ, 0] the growth rate is increased, though everywhere else it is decreased, over

the case with n = 0. For clarity of presentation γ = Ω is chosen in the rest of this

work, resulting in n = 0, strictly representing the unphysical scenario where the body in

question is not rotating around its companion which causes the tidal effects. This implies

that the bulge is therefore not rotating around the body. As a result of setting γ = Ω
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the dispersion relation of the most unstable mode reduces to kz/k = ±1
2 . The elliptical

instability then grows at a rate proportional to γϵ. Although this scenario is unphysical

indeed, it turns out that for simulations the only linear effects of choosing a different

value of Ω, and therefore a non-zero value of n, would be to modify the growth rate of

the elliptical instability (Barker & Lithwick, 2013) as well as the wavenumber of the most

unstable mode (Barker & Lithwick, 2014).

As previously described, the non-linear evolution of the elliptical instability – in

the absence of magnetic fields – results in large geostrophic vortices in the flow in local

Cartesian box models such as ours. Thus we expect that our non-linear simulations should

show these large geostrophic vortices if the elliptical instability operates. Interestingly, in

RRBC simulations in a local Cartesian box model large-scale vortex (LSV) structures

also emerge in the flow when rotation dominates (Favier et al., 2014b; Guervilly et al.,

2014; Rubio et al., 2014). This LSV emerges with stress-free impermeable walls at the

top and bottom, i.e. our chosen boundary conditions, and grows to the size of the box

in the horizontal. One of the effects of this convectively-generated LSV is to reduce heat

transport, as the vertical convective motions are suppressed by such a vortex (Guervilly et

al., 2014). An additional reason to study convective LSVs is that the elliptical instability

is naturally suppressed by the presence of its own non-linearly generated large vortex

(Barker & Lithwick, 2013). The convective LSV might suppress the elliptical instability

in the same manner, potentially preventing it from operating efficiently.

2.1.5 Energetic analysis of simulations

To analyse the energy of the flow and determine the quantities of interest in our simulations

we derive a kinetic energy equation by taking the scalar product with u of Eq. (2.15) and

then averaging over the box. We define our averaging operation on a quantity X here

as ⟨X⟩ = 1
L2d

∫
V X dV . Note that this definition is different compared to the one in

Eq. (2.33). We obtain:

d

dt
K = −⟨u · (u · ∇U0)⟩ − ⟨u · (U0 · ∇u)⟩+WB −Dν. (2.61)

The term associated with the Coriolis force has vanished because u · (ẑ×u) = 0, the well

known result that the Coriolis force does no work. In addition we have defined the mean

kinetic energy:

K ≡ 1

2
⟨|u|2⟩, (2.62)

the work done by buoyancy:

WB ≡ PrRa⟨θuz⟩, (2.63)

and the mean viscous dissipation rate

Dν ≡ −Pr⟨u · ∇2u⟩. (2.64)
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These three terms are well known as they arise from considering the energy equation of

rotating convection. The two remaining terms which are newly introduced due to the

background flow on the RHS of Eq. (2.61) shall be individually addressed, starting with

the −⟨u · (u · ∇U0)⟩ term, which we will rewrite by using Eq. (2.24):

I ≡ −⟨uAu⟩ = −⟨u · (u · ∇U0)⟩, (2.65)

where we have defined this term as the energy injection rate or more generally the energy

transfer rate I. This term is the one responsible for injecting energy from the tidal flow

to the local inertial waves (and vice versa) and therefore allowing the elliptical instability

to operate. Equally, if there is a contribution of the tidal flow acting on the convection or

the convection acting on the tidal flow that energy transfer will also be contained within

this term.

The second term on the RHS of Eq. (2.61) can be rewritten using various vector

calculus identities:

⟨−u · (U0 · ∇u)⟩ = −⟨U0 ·
1

2
∇|u|2⟩ = −⟨1

2
[∇ · (U0|u|2)− |u|2(∇ ·U0)]⟩. (2.66)

The second term on the RHS vanishes due to incompressibility and we are left with:

− 1

V

∫
1

2
[∇ · (U0|u|2)] dV = − 1

2V

∫
U0|u|2·n̂dS = 0, (2.67)

where we have applied the divergence theorem. By definition U0 has no z component,

so on the top and bottom walls U0 · n̂ = 0 and the contribution to the surface integral

vanishes there. The horizontal boundary conditions are periodic, and the contribution

on these boundaries will thus be cancelled, because n̂ has opposite signs on each side.

Therefore Eq. (2.67), and by extent the second term on the RHS of Eq. (2.61), vanishes.

From this derivation we know that like the Coriolis force this term does not produce any

net work; it is however an important part of the elliptical instability and required for its

operation. Finally, we can then write the kinetic energy equation:

d

dt
K = I +WB −Dν . (2.68)

To obtain an equation for the thermal (potential) energy when the stratification is

convectively unstable, i.e. Ra > 0, we multiply Eq. (2.17) by PrRaθ and average over the

box to obtain in a similar manner:

d

dt
P =WB −Dκ, (2.69)

where we have defined the mean thermal energy P and the mean thermal dissipation rate
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Dκ as:

P ≡ PrRa
1

2
⟨θ2⟩, Dκ ≡ −PrRa⟨θ∇2θ⟩. (2.70)

The total energy is E = K + P , which thus obeys:

d

dt
E = I + 2WB −Dν −Dκ = I + 2WB −D, (2.71)

where D = Dν +Dκ is the total dissipation rate. In a steady state, i.e. no change in time

of the total energy, it is expected that the (time-averaged value of the) energy injected

together with the buoyancy work balances the total dissipation. Because of the presence

of the buoyancy work term, the total dissipation cannot be used directly to infer tidal

dissipation rates. However, the energy injected by the tide must be dissipated if a steady

state is to be maintained. Therefore, to interpret the tidal energy dissipation rate we

examine the tidal energy injection rate I. If we instead consider stable stratification, i.e.

Ra < 0, we must multiply Eq. (2.17) by −PrRaθ, such that it has the same sign as PrRaθ

when the Rayleigh number is positive. Upon averaging over the box we obtain:

d

dt
P = −WB −Dκ, (2.72)

where we have redefined the mean thermal energy P and the mean thermal dissipation

rate Dκ as:

P ≡ −PrRa
1

2
⟨θ2⟩, Dκ ≡ PrRa⟨θ∇2θ⟩. (2.73)

Note the minus sign differences compared to the definitions in Eq. (2.70), which ensure

that thermal energy and thermal dissipation rate maintain the same sign as before. As a

result the energy is maintained as a positive definite quantity. We have not redefined the

buoyancy work term WB so as to maintain consistency with the kinetic energy equation

in Eq. (2.68). The total energy is again E = K + P , which thus obeys:

d

dt
E = I +WB −WB −Dν −Dκ = I −D, (2.74)

thus we are only left with I and D in Eq. (2.74), such that in steady state I ≈ D.

The quantity I is therefore of tremendous interest to the determination of the tidal

dissipation due to the elliptical instability. As a result, we wish to derive at least some

estimates regarding how this quantity should scale with the parameters in the system.

To this end we can first consider the saturation of the elliptical instability as involving

a single most unstable mode whose amplitude saturates when its growth rate balances

its non-linear cascade rate (Barker & Lithwick, 2013). We can think of the growth rate

(ignoring viscosity) as the inverse of a growth timescale:

1

tgrow
∼ σΩϵ ∼ γϵ. (2.75)

We have used the knowledge that σΩ is proportional to γ as can be readily inferred from
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Eq. (2.51). Equally, we can define a damping timescale, or rather a cascade timescale due

to secondary instabilities, according to:

1

tdamp
∼ ku, (2.76)

where k is again the wavenumber magnitude and u is the velocity amplitude. If the

instability is saturated, this would imply that the growth and damping timescales are the

same, and thus:

u ∼ ϵγ/k. (2.77)

The total dissipation rate D therefore scales as:

D ∼ u2/tdamp ∼ ϵ3γ3k−2. (2.78)

Thus, in such a statistically steady state the dissipation and energy injection rate are

expected to scale as:

D = I ∝ ϵ3, (2.79)

which is consistent with some local and global simulations (Barker & Lithwick, 2013;

Barker, 2016a) as well as the scaling found for related instabilities like the precessional

instability with its own small parameter (Barker, 2016b; Pizzi et al., 2022). We are

interested in exploring whether convection could lead to a different result, and potentially

change this steep ϵ scaling.

Since we know both the elliptical instability (Barker & Lithwick, 2013) and convec-

tion (e.g. Guervilly et al., 2014) in isolation can produce geostrophic flows such as vortices,

we want to introduce further diagnostics to analyse these flows and the roles they play in

the simulations. To do this, we decompose the total energy injection from the background

flow into:

I = I2D + I3D, (2.80)

where we have defined I2D = −⟨u2DAu2D⟩ and I3D = −⟨u3DAu3D⟩. I2D and u2D are

defined to include all (geostrophic) modes where the wavevector has only non-vanishing

x and y components, with kz = 0, and I3D and u3D includes all the modes with kz ̸= 0.

Thus we have decomposed the total energy injection rate into energy injection into the

barotropic (kz = 0) and baroclinic (kz ̸= 0) flow.

One can also think of this decomposition as one into geostrophic vortex modes (I2D)

and waves (I3D). A pure inertial wave with kz = 0 would have zero frequency, i.e. it is not

a wave, so any energy injection into inertial waves would thus automatically be contained

within I3D. In convectively unstable simulations, which is the main focus of this work, the

inertia-gravity waves with kz = 0 also cannot exist, and therefore one can again crudely

think of all energy injected into such inertia-gravity waves being contained within I3D.

In the case of stable stratification inertia-gravity waves could exist with kz = 0. In these
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stably stratified cases some of the energy injection into waves is contained within I2D,

but the majority will still be injected into the inertia-gravity waves, i.e. I3D. Any modes

which are not waves, such as the geostrophic, i.e. vertically invariant, vortex modes must

by definition have kz = 0 and thus any energy injected by the elliptical instability directly

into these modes is contained within I2D. Finally, convective eddies are expected to have

vertical variation and therefore energy injected into these by interaction with the tidal

flow, i.e. essentially the interaction of the convective flow with the tides as a turbulent

viscosity, will also fall under the I3D component.

It was found previously that the time-averaged energy input into the vortical motions

I2D is approximately zero or small (Barker & Lithwick, 2013), but that the input into the

waves I3D is on average non-zero (which it must be when the elliptical instability operates)

and clearly demonstrates any bursty behaviour observed. The total kinetic energy K is

also split up into a 2D and 3D component in a similar manner by defining K2D and K3D,

so as to allow us to determine which components dominate the flow:

K = K2D +K3D. (2.81)

To be able to study the turbulent effective viscosity we need to convert the energy

injection rates I and I3D to the energy dissipated by such a turbulent effective viscosity,

which we dub νeff and νeff,3D respectively. In particular, this is a useful comparison to

quantify the rate at which turbulent convection could damp our tidal flow, if this inter-

action behaves like a turbulent viscosity. This is a scalar representation of the turbulent

effective viscosity, instead of the tensor representation employed in Penev et al. (2009a,

2009b). It was found in Penev et al. (2009a) that the effective viscosity is only mildly

anisotropic, and hence subsequent works (Ogilvie & Lesur, 2012; Duguid et al., 2019,

2020; Vidal & Barker, 2020a, 2020b) have examined the turbulent effective viscosity using

the scalar representation. For consistency with these studies we have also opted to use the

scalar representation of the effective viscosity throughout this thesis. These studies were

however conducted in the absence of rotation, and in our rapidly rotating system with an

anisotropic LSV, it is possible that the effective viscosity should instead be treated as an

anisotropic tensor. Analysing such a tensor effective viscosity is left to future work. To

define the effective viscosity, we equate the work done by the tidal flow on the convective

flow with the viscous dissipation rate of the tidal flow, assuming this is due to a constant

kinematic viscosity νeff , following Goodman and Oh (1997), Ogilvie and Lesur (2012),

Braviner (2015), Duguid et al. (2019), and Vidal and Barker (2020b). The work done by

the tidal flow is given by our energy injection term I. We also define the strain rate tensor

for the tidal flow as e0ij ≡ 1
2(∂iU0,j + ∂jU0,i):

e0 = −γϵ

sin(2γt) cos(2γt) 0

cos(2γt) − sin(2γt) 0

0 0 0

 , (2.82)
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such that the rate at which energy is dissipated is given by:

2νeff
V

∫
V
e0ije

0
ij dV = 4νeffγ

2ϵ2. (2.83)

Upon equating this expression to I we can define the effective viscosity according to:

νeff = I/(4γ2ϵ2). (2.84)

Because the effective viscosity is expected to be independent of ϵ (for small enough ϵ), this

implies that, if the interaction of turbulence acting on the tidal flow can be parametrised

as a turbulent effective viscosity, it should scale as (for small enough ϵ):

D = I ∝ ϵ2. (2.85)

The different scaling laws of the energy injection with ϵ in Eq. (2.80) and Eq. (2.85)

have immediately provided us with a good diagnostic for the sources of energy injection

into the flow. If the energy injection in the simulations appears to scale as ϵ2, it implies

that the dominant dissipation mechanism is like that of the convection interacting with

the tidal flow like an effective viscosity. If we however see a scaling with ϵ3, this implies

that the elliptical instability is likely to be the dominant mechanism in the simulations.

It is possible that both mechanisms are operating at the same time, at which point the

interaction may be some combination of ϵ2 and ϵ3 behaviour. The second diagnostic we

can use in the simulations to tell the difference lies in the time series of the energy injection

itself in a single simulation. If there is bursty behaviour present, the elliptical instability

has maintained the same kind of behaviour as before the introduction of convection. If,

however, the simulations show continuous energy injection, that may be the result of tur-

bulence acting like an effective viscosity. An alternative option would be that the elliptical

instability behaviour has significantly changed upon the introduction of convection, like it

was upon the introduction of magnetic fields (Barker & Lithwick, 2014).

One final note on the energy injection: the injection terms represent energy being

transferred from the background flow to the perturbations or vice versa. This, by defi-

nition, impacts the energy in these flows. The evolution of the tidal flow U0, however,

is not explicitly accounted for in our model; we treat it as a fixed (but time-dependent)

background flow. The tidal flow possesses much more energy than the perturbations, so

we treat it as an infinite reservoir in our simulations. These results therefore give us only

a snapshot at a certain point in time of the evolution of the astrophysical system, which

is reasonable because tidal evolutionary processes usually occur very slowly relative to

convective or rotational timescales.

Finally, because the convective LSVs impact the heat transport in the simulations,

it is possible that the vortex generated by the elliptical instability would also affect the

heat transport. Therefore we wish to study the heat transport in our simulations. To this
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end we compute the Nusselt number, which we define as:

Nu = 1 + RaPr⟨θuz⟩. (2.86)

The Nusselt number is a commonly studied quantity to investigate heat transport. It is the

ratio of the total heat flux to the conductive flux, and is one by definition in the absence of

any flow (i.e. heat transported purely by conduction). In essence, if the flow is convecting

heat, than this quantity will be larger than one; the larger the Nusselt number the more

important the flow is at transporting heat. We would thus expect that the introduction

of strong vortices due to the elliptical instability will hinder heat transport, and therefore

reduce the Nusselt number.

2.2 The Snoopy code

The simulations of the interactions of the elliptical instability and convection are executed

using an adapted version of the Snoopy code (Lesur & Longaretti, 2007). Snoopy im-

plements a Fourier pseudo-spectral method in a Cartesian box. It was originally designed

for local models of accretion disks, in which the Keplerian velocity profile was represented

as a background shear flow. To accommodate this background shear flow the code was

set up with so-called shearing waves. For this reason the Snoopy code is – after suitable

modifications – also well-equipped to study our system with a background tidal flow in a

local box.

2.2.1 Shearing waves

The Fourier pseudo-spectral method that is utilised within the code uses a series of Fourier

modes (i.e. sines and cosines) as its basis to expand the relevant parameters in the simu-

lation, namely the velocity field, pressure and temperature perturbation. A single Fourier

mode with associated velocity, pressure and temperature perturbation is given by:

u = Re[(ûx(t) cos(kzz), ûy(t) cos(kzz), ûz(t) sin(kzz))
T eik⊥(t)·x],

p = Re[p̂(t) cos(kzz) e
ik⊥(t)·x],

θ = Re[θ̂(t) sin(kzz) e
ik⊥(t)·x],

(2.87)

where k⊥(t) = (kx(t), ky(t), 0) is the horizontal part of the wavevector. Summing over all

Fourier modes returns the total velocity field, pressure and temperature perturbations in

the simulations. The vertical dependence of these quantities is expressed using sines or

cosines to satisfy the relevant boundary conditions on the walls at the top and bottom

(Cattaneo et al., 2003).

The horizontal wavevectors are time-dependent in this setup, which is an approach

referred to as shearing waves. This is a necessity to be able to use the horizontally periodic

boundary conditions in tandem with our background flow (Waleffe, 1990; Kerswell, 2002).

Shearing waves allow us to automatically follow the stretching and rotation of waves due
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to a background flow, such as the equilibrium tide in our simulation. The idea is simply

this, the term:

U0 · ∇u = −γϵ[(Sx+ Cy)∂x + (Cx− Sy)∂y]u, (2.88)

contains both the x and y coordinate. Therefore, because we have opted for periodic

boundary conditions in the horizontal, these terms will have discontinuities on the bound-

aries. This leads to a numerical, but not physical, issue in the simulation. Fortunately,

by utilising shearing waves, one can cancel this term, at the cost of needing to take into

account the time-evolution of the wavevectors. This is readily seen by considering the

consequence of time-dependent wavevectors in the momentum equation, as it modifies the

time derivative term by introducing a second term according to the product rule:

∂u

∂t
=
∂û

∂t
eik⊥(t)·x + û

∂

∂t

[
eik⊥(t)·x

]
. (2.89)

The former term is unchanged compared to non-shearing wave descriptions, but the latter

term arises precisely because of the introduction of shearing waves. We will equate the

latter term to the term in Eq. (2.88) to eliminate both:

−ik̇⊥(t) · x u = −γϵ[(Sx+ Cy)∂x + (Cx− Sy)∂y]u. (2.90)

Because we want to eliminate the term in Eq. (2.88), we have introduced a minus sign

on the LHS of Eq. (2.90). Equating coefficients in x, y, z reveals that k̇z = 0 and as

such kz is independent of time. This is an important realisation as it allows us to satisfy

the boundary conditions on the walls at the top and bottom using the choice of sines and

cosines in Eq. (2.87). For kx, ky we find:

ik̇x = γϵ(iSkx + iCky),

ik̇y = γϵ(iCkx − iSky),

(2.91)

(2.92)

which can be presented in a neat and concise way by writing:

k̇⊥ = −ATk⊥, (2.93)

with A as defined in Eq. (2.2). This is a system of coupled ODEs. For ease of calculation

we will again employ asymptotic analysis, writing k(t) = k0 + ϵk1(t). The equations at

O(1) are trivial and tell us that k0 is constant. The equations at O(ϵ) read:

k̇x1(t) = γ(Skx0 + Cky0),

k̇y1(t) = γ(Ckx0 − Sky0).

(2.94)

(2.95)
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Solving this is straightforward and we find for the wavevector to O(ϵ):

k(t) =

kx,0 +
ϵ
2(−Ckx,0 + Sky,0)

ky,0 +
ϵ
2(Skx,0 + Cky,0)
kz,0

 . (2.96)

This description of the shearing waves also works for the temperature perturbation and

eliminates the U0 ·∇θ term in the heat equation. This is the same basis of shearing waves

as those used in Barker and Lithwick (2013).

Originally, the Snoopy code was set up for a triply periodic system but this is

easily converted to a system with walls in one direction when using the Fourier basis by

implementing a sine-cosine decomposition. The idea behind the simplest implementation

of this sine-cosine decomposition is to double the domain in the direction that the walls

are imposed in as shown in Fig. 2.2. The solid box indicates the Cartesian model we wish

to study, while the dotted rectangle with double the domain in z is what we simulate when

employing the sine-cosine decomposition. Using this double domain one can utilise the

same triply periodic code, but only use the results of the bottom half of the domain. The

chosen boundary conditions are then automatically enforced in the part of the domain we

study because of the choice of sines and cosines in Eq. (2.87). The sines, depicted in blue

on the left-hand side of the schematic, employed in the z-direction in the expressions for uz

and θ automatically enforce the impermeable and fixed temperature boundary conditions,

as the sines are by definition zero on the boundaries. This holds true not only for the

doubled rectangular domain, but also the square domain we wish to study. Additionally,

by making this choice the system is no longer periodic, as there is no flow through the

boundaries by definition, and thus the two halves of the rectangle can be considered in

isolation. Note that by necessity of satisfying the boundaries no cosines are employed in

the expressions for uz and θ. Equally, the cosines, depicted in grey on the right-hand

side of the schematic, employed in the z-direction in the expressions for ux, uy and p

automatically satisfy the stress-free conditions on the boundaries, as their derivatives go

to zero. An alternative approach to the sine-cosine decomposition, using sine and cosine

transforms directly, can also be employed (Cattaneo et al., 2003).

In practical terms, this means the vertical resolution of the simulation is effectively

halved, as we only consider one half of the domain. The vertical resolutions reported

in this work represent the effective vertical resolution of the domain which we wish to

simulate, not that of the full double domain. A 3rd-order explicit Runge-Kutta scheme is

used for the time-stepping of all terms except the diffusion term, which is dealt with by

using an integrating factor. The Courant-Friederichs-Lewy (CFL) safety factor is used to

ensure the timesteps are small enough to accurately capture non-linear effects, usually set

to 1.5 (which is smaller than the stability limit of
√
3). The de-aliasing in the code uses

the standard 2/3 rule (Boyd, 2001).

Since our flow is likely to be rotationally dominated due to our choice of Ekman

56



2.2 The Snoopy code

Figure 2.2: Schematic of the sine-cosine decomposition employed in the Snoopy code. We
wish to study the solid-black square with impermeable stress-free walls at the top and bot-
tom and so we need to double the domain to the dotted-black rectangle in the direction in
which we employ the sine-cosine decomposition. The sines (in blue) in the expressions for
uz and θ automatically satisfy the fixed temperature, impermeable boundary conditions,
while the cosines (in grey) in ux, uy,p automatically satisfy the stress-free conditions.

number and computationally feasible Rayleigh numbers, a default box size of Lx = Ly = 4,

Lz = 1 was chosen that would capture this LSV. The box size in this work is always the

default, unless otherwise specified. The question remains however what effect changing

the aspect ratio of the box would have on the interactions presented, as the aspect ratio

L/d (the ratio of horizontal length of the box to its vertical length) influences the ratio of

the vertical to total kinetic energy (e.g. Guervilly et al., 2014).

2.2.2 Benchmarking

To verify that Snoopy is capturing the instabilities correctly, we calculate the growth

rate of the kinetic energy in our simulations and compare it to the predicted growth rate

given in Eq. (2.60). Since we have adopted the RRBC setup with impermeable walls in z,

we must determine how this affects the growth rate of instability, although we expect it

remains unchanged as we have demonstrated analytically. Hence, we performed multiple

test simulations analysing the linear growth rates of both the elliptical and convective

instabilities. We initialised them with random noise and the non-linearities were switched

off, thus leading to a continuous exponential growth, allowing for easy extraction of the

growth rate. Fits were performed to the mean kinetic energy on a log-scale to determine

σ, by noting that if velocity components grow as exp(σt), then K ∝ exp(2σt).

The results, along with the theoretical growth rate predictions for both instabilities,

are plotted in Fig. 2.3. The top panel shows the growth rate of the elliptical instability

as a function of ϵ (when n = 0), where we have adopted a time unit γ−1, equivalent

to using γ = 1, for the purposes of this figure. It can be concluded that the modelling
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Figure 2.3: Growth rates of the elliptical instability and convection studied in isolation.
Top left: growth rate of the elliptical instability (σ with time units of γ−1) showing
simulations compared with the theoretical prediction based on Eq. (2.51), as a function
of ϵ (n = 0, γ = Ω = 1) with and without the reduction of viscosity, and Eq. (2.51)
as a function of Ω (keeping γ = 1) in the top right panel. The simulations are in good
agreement, with a slight reduction due to the combined effects of viscosity and de-tuning.
Bottom: growth rate of rotating convection, compared with the theoretical prediction of
RRBC for the fastest growing mode (σ in thermal time units) with Ek = 5 · 10−5.5.
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of the inviscid growth rate is approximately correct. We also accounted for the leading

effects of viscous damping by including the viscous decay rate so that the total growth

rate is σ − νk2 (where k is the wavevector magnitude of the mode), which is in excellent

agreement with our simulations. We obtain values that are very slightly smaller than the

theoretical prediction though, even when taking into account viscosity, which is likely due

to the de-tuning effect discussed previously (i.e. that the mode does not precisely satisfy

kz/k = 1/2). In numerical simulations this de-tuning arises because of the finite number of

grid points, which, in addition to a chosen aspect ratio, prohibits the waves from precisely

satisfying the resonance conditions. However, because this condition does not stipulate

the size of the wavenumbers, instead stipulating their ratio, and as such direction, the

fastest growing mode that dominates the volume-averaged energy will be as large-scale as

possible while still adequately satisfying the resonance condition in order to reduce the

viscosity correction. This means that it should be unaffected by resolution, instead being

controlled by the aspect ratio of the box. The effect on the growth rate of this de-tuning

in these benchmark tests is represented by the difference between the markers and the

viscosity corrected growth rate. At the aspect ratio corresponding to the top panel of

Fig. 2.3 and the other simulations in this work, with γ = Ω = 1, the maximum absolute

value reduction of the growth rate is determined numerically to be ≈ 0.002, which is small.

The growth rate of the elliptical instability as a function of Ω, keeping γ = 1 and

fixing ϵ = 0.1, is shown in the middle panel of Fig. 2.3, and also follows the theoretical

prediction well, but is again slightly lower for the same reasons. The viscosity correction is

based on the mode that best satisfies the resonance conditions at Ω = 1. The growth rate

of the convective instability for Ek = 5 · 10−5.5 is shown in the bottom panel of Fig. 2.3,

now using thermal time units, and this is also in very good agreement with the linear

convective growth rate for the fastest growing mode as expected. We can therefore be

confident that both instabilities have been captured correctly.

2.2.3 Parameter variations

To examine our quantities of interest, namely the kinetic energy, energy injection and heat

transport, the latter of which is represented by the Nusselt number, we will execute a large

parameter sweep. We will vary the Rayleigh number, Ekman number and ellipticity to be

able to independently vary the convective driving, rotational constraint and driving of the

elliptical instability.

Some simulations will be performed with Rayleigh numbers in the stably stratified

regime, i.e. with Ra < 0. The values of the Rayleigh number are typically reported as

R = Ra/Rac for clarity, where Rac is the onset critical Rayleigh number (determined

numerically by solving Eq. (2.54)) and R is the supercriticality. The range of this ratio

studied at Ek = 5 · 10−5.5 is R ∈ [2, 20] and R ∈ [−10, 0.8], in the convectively unstable

and stable regimes, respectively. We consider ellipticities in the interval ϵ ∈ [0.01, 0.20]

and Ekman numbers in the interval Ek ∈ [5 · 10−4.5, 5 · 10−6]. When varying the Ekman

number we either fix the Rayleigh number itself to be Ra = 1.3 · 108, corresponding to
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Table 2.1: Table of resolutions used in the Snoopy simulations to study the elliptical
instability with different Rayleigh numbers, Ekman numbers, and horizontal box size
Lx = Ly = 4 (unless otherwise specified). The same resolution was used for all ellipticities.
The square brackets indicate all entries within are multiplied by the factor 5 in front.

Ek = 5 · 10−5.5 nx, ny nz
R = −6,−4,−3,−1,−0.8, 0.3, 0.8, 2, 3, 4, 5, 6 256x256 96

R = 7, 8 256x256 128

R = −10, 9, 10, 11, 12, 15 256x256 160

R = 20 256x256 224

Ra = 1.3 · 108 nx, ny nz
Ek = 5 ·

[
10−5.6, 10−5.7, 10−5.8, 10−5.9

]
256x256 96

Ek = 5 · 10−5.4 256x256 128

Ek = 5 ·
[
10−5.2, 10−5.3

]
256x256 160

Ek = 5 ·
[
10−5, 10−5.1

]
256x256 196

Ek = 5 ·
[
10−4.5, 10−4.6, 10−4.7, 10−4.8, 10−4.9

]
256x256 128

R = 6 nx, ny nz
Ek = 5 ·

[
10−5.6, 10−5.7, 10−5.8, 10−5.9, 10−6

]
256x256 96

Ek = 5 ·
[
10−5.0, 10−5.1, 10−5.4

]
256x256 128

Ek = 5 ·
[
10−5.2, 10−5.3

]
256x256 160

R = 6, ϵ = 0, Lx = 2 (to determine lc) nx, ny nz
Ek = 5 ·

[
10−5, 10−5.1, ..., 10−5.8, 10−5.9, 10−6

]
512x512 128

Ra = 1.3 · 108, ϵ = 0, Lx = 2 (to determine lc) nx, ny nz
Ek = 5 ·

[
10−4.5, 10−4.6, ...., 10−5.8, 10−5.9, 10−6

]
512x512 128

R = 6 at Ek = 5 · 10−5.5, or we fix it to R = 6.

A table of the parameters in our simulations, as well as the associated resolution of

the simulations is given in Table 2.1. High Rayleigh number simulations were carried out

with higher vertical resolutions, so as to ensure the heat flux is fully resolved. Simulations

with higher ellipticities in the range we considered were not found to require higher reso-

lutions. In addition, in some simulations it is our aim to resolve the heat flux spectrum in

excess of the very smallest-scale fluctuations, where we opted to use a 2-by-2-by-1 (L = 2)

box without the elliptical instability, as indicated in the bottom two columns of Table 2.1.

2.3 Summary

We have discussed the elliptical instability and convective instability in rotating systems.

Our linear stability analysis of the elliptical instability indicates that the introduction of

walls does not modify the inviscid growth rate of the elliptical instability.

Furthermore, from the non-dimensionalised governing equations, with Pr = 1, we

have found both the parameters that we can vary within our simulations, namely the

ellipticity, ϵ, Ekman number, Ek and Rayleigh number, Ra, as well as the quantities

which we wish to analyse, namely the kinetic energy, K, Nusselt number, Nu, and energy

injection rate from the tidal flow, I. We can decompose the energy injection and kinetic

energy into its geostrophic (or vortex) modes with kz = 0, referred to as I2D and K2D,
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and waves and eddies with kz ̸= 0, referred to as I3D and K3D. In previous work (Barker

& Lithwick, 2013) it was shown that the energy injection rate I is rapidly oscillating as

a function of time in the simulations. The I2D component of this energy injection rate is

responsible for these rapid oscillations, which were found to cancel on average. The I3D

component of the energy injection rate does not cancel on average however, and it is this

component which is responsible for the energy injection into the inertial waves. Therefore

we will the I3D term instead of the full energy injection rate I.

We have found – using a crude argument which considers the saturation of a single

mode – that this energy injection term may scale with the ellipticity parameter ϵ according

to I ∝ ϵ3 if the elliptical instability operates. If however the energy injection or tidal

dissipation of the flow is by action of the convective turbulence on the tidal flow like an

effective viscosity, independent of ϵ, it was found that the energy injection should scale as

I ∝ ϵ2. These two different scalings are a useful way to examine which mechanism is likely

to be active in the flow, both being motivated by prior work. If both tidal dissipation

mechanisms are operating at the same time it might be expected that the energy injection

could be a combination of the two scalings.

We have detailed the Snoopy code used to execute our simulations, as well as

deriving the shearing waves necessary to accommodate the background tidal flow with

periodic boundary conditions. We have verified that the code captures both the instabili-

ties properly by examining the growth rate of the kinetic energy in linear test simulations,

comparing these growth rates with the theoretical predictions and finding good agreement.

Now that we have demonstrated that Snoopy accurately reproduces the instabilities

in our setup we can be confident moving on to analyse non-linear simulations of the

elliptical instability and Rayleigh-Bénard convection.
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Chapter 3

Interactions of the elliptical

instability and convection

In the following two chapters we will explore the interactions of the elliptical instability

and convection. In this chapter we will examine the overall behaviour of the interactions,

without deriving quantitative scaling laws, which we will do in Ch. 4. All simulations

considered in this chapter were executed with fixed Ek = 5 · 10−5.5. We will first look at

some snapshots of the flow in these simulations as well as the patterns in the time series

of the kinetic energy, energy injection and Nusselt number. Afterwards, we will study

the interaction by analysing the flow in both real and spectral space. Finally, we study if

and how the growth rate of the elliptical instability in our simulations is modified by the

presence of a convective large-scale vortex (LSV).

3.1 Time series analysis of the interactions

3.1.1 Qualitative analysis of illustrative simulations

We will begin our discussion of the simulation results by presenting the z-averaged vertical

vorticity ⟨ωz⟩z of the flow in Fig. 3.1. The snapshot of the flow in the left-hand panel was

taken at t = 0.08 (in thermal diffusion times) in a simulation with ϵ = 0.1, Ra = 0. At

these parameters only the elliptical instability and its associated non-linear dynamics are

present. A snapshot at time t = 0.08 was chosen such that the flow has evolved far beyond

the initial saturation of the instability and an LSV has formed. This LSV is generated

by non-linear interactions between the inertial waves linearly excited by the elliptical

instability. The cyclonic vortices that emerge in this and subsequent snapshots have been

centred for clarity. A smaller and weaker anticylonic vortex emerges at the corners in this

snapshot, but note our periodic boundaries. This anticyclonic vortex emerges because the

vertical vorticity of the flow is conserved.

In the right-hand panel of Fig. 3.1 we present a snapshot of a simulation with ϵ = 0.1,

Ra = 6Rac, in which both the elliptical instability and the convective instability, as well
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Figure 3.1: The vertical vorticity averaged over z (⟨ωz⟩z) of the flow at t = 0.08 (in thermal
diffusion times). The cyclonic vortex is centred for clarity in both images. Left: elliptical
instability in isolation with ϵ = 0.1, Ra = 0. Right: elliptical instability and convection
with ϵ = 0.1, Ra = 6Rac.

Figure 3.2: Kinetic energy of simulations of the elliptical instability in isolation (left) with
ϵ = 0.1, Ra = 0 and convection in isolation (right) with ϵ = 0, Ra = 4Rac. The 2D (blue)
and 3D (green) components of the energy represent the energy in the vortical motions,
and the waves and convective eddies, respectively. The total kinetic energy is plotted as
the black line.

as their associated non-linear dynamics, are present. This snapshot, like the one in the

left-hand panel, was taken at t = 0.08. In this simulation the convection dominates the

flow and as such a single cyclonic convective LSV arises, with a primarily anticyclonic

background. The vorticity in the centre of this vortex is larger than the vorticity in the

centre of the one in the left-hand panel. In the right-hand panel, small-scale convective

eddies are present throughout the box, making the flow appear much noisier compared to

the elliptical instability in isolation. Note that with our chosen aspect ratio and Ekman

number the convective LSV emerges when Ra ≳ 3Rac. Thus it emerges at a similar value

of the Rayleigh number as the convective LSV in Guervilly et al. (2014), which is readily

seen from their criterion to indicate when the LSV emerges: R̃a = RaEk4/3 ≳ 20. Using

the expression for the critical Rayleigh number in the rapidly rotating regime in Eq. (2.59):

Rac ≈ 8.7Ek−4/3, this can be rewritten as: Ra ≳ 20Ek−4/3 ≈ 2.5Rac.
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Turning our attention to the time-evolution of the quantities of interest, we study the

volume-averaged kinetic energy of a simulation with the elliptical instability in isolation, as

well as a simulation with the convective instability in isolation, in Fig. 3.2. The left-hand

panel of Fig. 3.2 shows the former simulation with ϵ = 0.1, Ra = 0. The vortex observed

previously in a 1-by-1-by-1 box by Barker and Lithwick (2013) dominates the flow to an

even greater extent in the 4-by-4-by-1 box, as we can see by the dominance of the energy

in the 2D component of the flow (K2D) at all times after the initial saturation. The 2D,

or geostrophic, modes have energies much larger than the inertial waves (quantified by the

energy in the 3D modes, K3D), but the inertial waves undergo transient bursts temporarily

increasing their energy, though K2D remains dominant unlike in the 1-by-1-by-1 case in

Barker and Lithwick (2013). Each burst in the 3D energy later results in an increase in

the 2D energy, indicating energy transfers from inertial waves to vortices. The vortex

slowly decays viscously. The bursts of inertial wave energy are sufficient to compensate

this lost energy, enhancing it further until a quasi-steady state is reached after t ∼ 0.1.

Meanwhile, the right-hand panel of Fig. 3.2 shows the clear dominance of the LSV in a

purely convective simulation with ϵ = 0, Ra = 4Rac, as the 2D energy of the LSV, and by

extension the LSV itself, continuously grows for all times plotted. The LSV will continue

to grow until it reaches either the horizontal box scale, its growth is balanced by viscous

dissipation, it has back reacted on the flow in such a way to inhibit its further growth,

or possibly some combination of these. A steady level of 3D energy is present in this

simulation after the initial saturation, representing the energy in the convective eddies,

which appears to be only weakly affected by the growing LSV.

The interaction of convection and the elliptical instability varies according to the

parameters chosen. Here, we start by presenting a simulation with weak convection but

strong ellipticity in Fig. 3.3, with ϵ = 0.1 and Ra = 4Rac. The convection in this simulation

leads to an LSV which results in continuous growth of the 2D modes. This however does

not inhibit the elliptical instability, and a multitude of bursts is observed. The elliptical

instability in fact enhances the energy in the 2D modes by at least one order of magnitude

compared to the purely convective simulation in the right-hand panel of Fig. 3.2, as the

bursts input more energy into the LSV. There is a continuous decrease of the 2D energy,

from t = 0.1 to t = 0.17. In this period of time neither the bursts, weakened by the

strong vortex, nor the convective eddies, provide enough energy to compensate the viscous

dissipation. From t = 0.17 onwards the energy in the LSV seems to stabilise and bursts

of the elliptical instability reappear from t = 0.21, once the LSV has been sufficiently

weakened.

In the right-hand panel of Fig. 3.3 the energy injection corresponding to the simula-

tion of the elliptical instability in isolation in the left-hand panel of Fig. 3.2 with parameters

ϵ = 0.1, Ra = 0 is plotted in black. The increase in 3D energy in the left-hand panel of

Fig. 3.2 is a result of a direct energy injection into those modes. The 2D injection (I2D, not

shown) is oscillatory in sign and has a small average value consistent with 0. The energy

injection corresponding to the simulation in the left-hand panel of Fig. 3.3 is also plotted
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Figure 3.3: Kinetic energy (left) of the elliptical instability and convection interacting with
ϵ = 0.1, Ra = 4Rac. The 2D (blue) and 3D (green) components are plotted in addition
to the total kinetic energy. The energy injection (right) of both simulations with ϵ = 0.1,
Ra = 0 (black) and ϵ = 0.1, Ra = 4Rac (green).

in the right-hand panel of Fig. 3.3 in green and roughly matches the energy injection of

the purely elliptical simulation, although it is initially maintained at a higher value. From

t = 0.11 onwards, when the LSV has reached its strongest value, the behaviour gradually

changes from bursts to an almost continuous energy injection. From t = 0.21, once the

LSV has been sufficiently weakened, bursts in the energy injection rate are again observed,

as expected from the time-evolution of the kinetic energy.

3.1.2 Varying the strength of convective driving and the ellipticity

Next we vary the strength of the convective driving and ellipticity to study what the

effects these (and their combination) have on the behaviour in the simulations. In Fig. 3.4

and Fig. 3.5 we present results for a range of values of ϵ and Ra/Rac. The figures on the

left show the time-evolution of the kinetic energy components, and those on the right the

energy injection term I3D. Fig. 3.4a and Fig. 3.4b show a simulation with ϵ = 0.2 and

Ra = 2Rac. Barker and Lithwick (2013) observed a change in behaviour at ϵ ≳ 0.15, seeing

a sharp increase in the frequency and strength of the elliptical instability bursts. The 3D

component of the kinetic energy is maintained at a higher level in this case compared

to previous cases, but is still lower than the energy in the 2D component. The energy

injection features many bursts in a short timeframe, with multiple bursts injecting energy

at the same rate as the initial burst in linear growth phase. The increased burst frequency

also leads to a continuous energy injection throughout the simulation. There appears to

be a secondary transition around t = 0.045 where the energy injection increases steeply

and maintains a significant energy injection much larger than the initial burst. We observe

a correspondingly higher minimum level of the 3D component of the energy during this

simulation.

The kinetic energy in Fig. 3.4c shows that increasing the Rayleigh number, i.e.

making the convection stronger compared to the elliptical instability, results in fewer

visible bursts of energy injection into the 3D component in the first half of the simulation

66



3.1 Time series analysis of the interactions

(a) K of the simulation with ϵ = 0.2, Ra =
2Rac.

(b) I3D of the simulation with ϵ = 0.2, Ra =
2Rac.

(c) K of the simulation with ϵ = 0.1, Ra =
6Rac.

(d) I3D of the simulation with ϵ = 0.1, Ra =
6Rac.

Figure 3.4: Kinetic energy (left) and the energy injection contribution I3D (right) for
two simulations with an operating elliptical instability. Convection results in a sustained
energy input into the flow from the tidal flow, allowing for sustained tidal dissipation in
addition to the bursts of the elliptical instability.
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(a) K of the simulation with ϵ = 0.05, Ra =
6Rac.

(b) I3D of the simulation with ϵ = 0.05,
Ra = 6Rac.

(c) K of the simulation with ϵ = 0.1, Ra =
20Rac.

(d) I3D of the simulation with ϵ = 0.1, Ra =
20Rac.

Figure 3.5: Kinetic energy (left) and the energy injection contribution I3D (right) for
two simulations without an operating elliptical instability. The convection is sufficiently
strong in these simulations compared to the elliptical instability, so that it can suppress
the bursts leaving only the sustained energy injection.

compared with the left-hand panel of Fig. 3.3, and the total kinetic energy is further

dominated by the 2D component. The increased convection strength, and therefore (for

our parameters) stronger LSV, drowns out most of the bursts from the elliptical instability.

The reduced presence of the elliptical instability is also clearly visible from the I3D term in

Fig. 3.4d, showing considerably fewer bursts in the first half of the simulation, decreasing

the tidal dissipation. On the other hand, a “floor value” corresponding to a non-zero

continuous energy injection arises, which is most clearly visible in between bursts. This

sustained energy injection arises from the interaction between the convection and the

equilibrium tidal flow.

Fig. 3.5a and especially Fig. 3.5b confirm this sustained injection occurs as the con-

vection is strengthened relative to the elliptical instability. The ellipticity has been reduced

to ϵ = 0.05, thus weakening the elliptical instability (whose growth rate is proportional to

ϵ). As a result, the bursts from the elliptical instability have vanished, with only a short

initial burst remaining, after which a continuous injection arises. These simulations sug-

gest there is a point at which the convection, with both its LSVs and its resulting action

to damp the inertial modes, overpowers the elliptical instability such that the bursts are
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completely suppressed.

Increasing the Rayleigh number to Ra = 20Rac and maintaining ϵ = 0.1 instead of

decreasing ϵ in Fig. 3.5c and Fig. 3.5d leads to similar behaviour, with no bursty behaviour

for the elliptical instability and instead a sustained energy injection. Thus, increasing the

Rayleigh number inhibits bursts even if they were present at lower values of Ra with the

same ellipticity. Additionally, the sustained injection term has increased by a factor of

about 20 compared to Fig. 3.5b. The sustained energy injection therefore increases with Ra

and ϵ. Thus, introducing convection has two effects: 1) the bursts of elliptical instability

are suppressed by the convective LSV, the extent of which increases as the strength of

convection increases relative to the strength of the elliptical instability, and 2) a sustained

energy injection arises from the interaction between convection and the background tidal

flow.

3.1.3 Heat transport modification by elliptical instability

A further effect of the elliptical instability is to modify heat transport. The inertial

waves excited by the elliptical instability are capable of transporting heat in the system

(Cébron et al., 2010; Lavorel & Le Bars, 2010). Because the elliptical instability can

occur in both stably stratified and convectively unstable fluids (see Eq. (2.60)), it is of

interest to study how the heat transport is modified as the Rayleigh number is varied. We

start by studying the heat transport in a simulation with stable stratification in Fig. 3.6a

with ϵ = 0.1, Ra = −4Rac in red, compared to the result with ϵ = 0, Ra = −4Rac in

black. In the absence of the elliptical instability in a stably stratified fluid no heat is

transported except by conduction, and thus the Nusselt number equals one by definition.

If the elliptical instability is operating, here represented by the simulation in red, the

inertia-gravity waves excited during bursts of the elliptical instability will transport heat,

and therefore the Nusselt number intermittently exceeds one. In those same bursts the

elliptical instability can also transport heat in the opposite direction to the conduction

state, reducing the Nusselt number below one.

In the convectively unstable simulation in Fig. 3.6b, with ϵ = 0.1, Ra = 2Rac in

red and ϵ = 0, Ra = 2Rac in black, heat is transported by convection regardless of the

presence of the elliptical instability and thus the black line is maintained above Nu = 1.

The bursts of the elliptical instability contribute on top of this heat transport, and in

general increase the Nusselt number and therefore enhance the heat transport. They can

however temporarily decrease the heat transport compared to the purely convective case.

The simulation in Fig. 3.6c with ϵ = 0.1, Ra = 6Rac in red and ϵ = 0, Ra = 6Rac

in black shows a secondary effect of the elliptical instability on the heat transport. The

bursts increase heat transport, temporarily increasing the Nusselt number. The enhanced

cyclonic vortex, as a result of the elliptical instability, on the other hand, slightly decreases

the heat transport compared to the purely convective case. A similar reduction is observed

in the presence of purely convective LSVs by Favier et al. (2014b) and Guervilly et al.

(2014), which they proposed occurs because cyclonic vortices act to effectively increase
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(a) Nu of the simulation with ϵ = 0 (black)
and ϵ = 0.1 (red), Ra = −4Rac.

(b) Nu of the simulation with ϵ = 0 (black)
and ϵ = 0.1 (red), Ra = 2Rac.

(c) Nu of the simulation with ϵ = 0 (black)
and ϵ = 0.1 (red), Ra = 6Rac.

(d) Nu of the simulation with ϵ = 0 (black)
and ϵ = 0.1 (red), Ra = 20Rac.

Figure 3.6: Nusselt number as a function of time at various Rayleigh numbers with the
background tidal flow with ϵ = 0.1 (red) and without the background tidal flow (black).
Inertial (or inertia-gravity for Ra < 0) waves excited during bursts of the elliptical insta-
bility transport heat and therefore temporarily increase the heat transport. The increased
energy in the vortex modes suppresses the heat transport further compared to the simu-
lations with ϵ = 0.

the rotation in a significant fraction of the domain, thus further constraining the vertical

motions, and as a consequence the heat transport, according to the Taylor-Proudman

theorem (e.g. Currie et al., 2020).

Finally, no bursts of the elliptical instability appear present in the simulation in

Fig. 3.6d with ϵ = 0.1, Ra = 20Rac in red and ϵ = 0, Ra = 20Rac in black. In fact,

there seems to be a slight reduction of the Nusselt number in the simulation with ϵ = 0.1.

The sustained energy injection from the interaction of convection and the equilibrium flow

slightly enhances the 2D energy of the vortex, which slightly diminishes the total heat

transport.

The effects of the elliptical instability on heat transport can be further quantified

using time-averages of the Nusselt number shown in Fig. 3.7, for simulations performed

with ϵ = 0 and ϵ = 0.1. Due to the absence of bursts of the elliptical instability, there

is no observable enhancement to the heat transport when the convection is strong. The

inhibition of the heat transport as a result of the more energetic LSV is possibly supported
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Figure 3.7: Time-average of the Nusselt number with (orange) and without (blue) the
elliptical instability. The elliptical instability results in heat transport when it operates,
even in the stably stratified regime (Ra < 0). When it does not operate the enhanced
energy in the convective LSV results in reduced heat transport for Ra > 0, see inset.
Nu = 1 means there is no net heat transport by fluid motions (black dashed line).

by the inset at Ra = 15Rac and Ra = 20Rac, where the Nusselt number is slightly reduced

in the ϵ = 0.1 case compared to the ϵ = 0 case. At low positive Rayleigh numbers, the

elliptical instability plays a major role in enhancing or hindering the heat transport as a

function of time. For very weak convection, in which there is no convectively-generated

LSV, the elliptical instability enhances the net heat transport strongly, while at stronger

convective driving it cancels or slightly decreases the heat transport. Finally, the elliptical

instability does indeed produce heat transport in stably stratified fluids, although the ad-

ditional heat transport is highly variable in time, only occurring during a burst in energy

injection of the elliptical instability, and decreases as the stratification increases (i.e., −Ra

increases). This is represented by the Nusselt number tending towards one on average as

the fluid becomes more stably stratified, where we note that the elliptical instability is

linearly unstable in all plotted cases. Hence the elliptical instability could potentially play

a role in heat transport in regions of planets that are nearly neutrally stratified.

3.2 Analysis of the sustained tidal energy injection

We have found that the elliptical instability can be inhibited by the convective LSV in

our simulations, instead allowing a sustained energy injection to arise within the flow.

Therefore, it is of interest to test at which parameter values this occurs and to make an
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attempt to identify the leading cause of this effect. We will examine the 3D component

of the flow in both real and spectral, i.e. Fourier, space. To this end we have performed

a range of simulations in which ϵ and Ra are varied, again at constant Ek = 5 · 10−5.5 to

determine when sustained energy injection (versus burstiness) is obtained.

3.2.1 Parameter regime for sustained tidal energy injection

First, a “phase diagram” was created based on these simulations, plotted in Fig. 3.8,

which indicates in which simulations we observe bursts of the elliptical instability, and

in which we observe sustained energy injection. Simulations containing any bursts of the

elliptical instability – even when it is a solitary burst at the start of the simulation – have

been labelled “bursty” (orange markers), while simulations containing no such bursts

have been labelled “sustained” (blue markers). Bursty simulations may still feature a

sustained energy injection, however, in the interests of determining where the bursts of

the elliptical instability still exist we have classified them as bursty here. Some of the

simulations are very difficult to tell by eye whether they are bursty or sustained, and have

therefore been labelled as “uncertain” (yellow markers). The transition between the two

“phases” is likely situated close to these markers. Finally, one point has been labelled

“neither”, namely the point corresponding to the simulation with ϵ = 0.02, Ra = 2Rac.

This simulation features no bursts as the elliptical instability is too weak to operate at

this level of convection. However, it also does not display any sustained energy injection.

Of further note is that at this supercriticality (Ra/Rac) the LSV is absent, which was also

observed by Guervilly et al. (2014), and they observed this absence to be independent of

Ekman number. Clearly the suppressive effects of the convective LSV are very important

to the elliptical instability in the local box model, as the elliptical instability in simulations

with ellipticities up to ϵ = 0.1 can be suppressed by relatively low supercriticalities, at

this chosen Ekman number. The suppressive effects of the LSV in the phase diagram

appear most important at low ellipticity, as the “phase transition” seems to follow a sub-

linear curve. One explanation for this sub-linear curve could be the relative importance

of viscous effects at low ellipticity. The growth rate of the elliptical instability is low,

and therefore any applied viscous effects are comparatively more important than at high

ellipticity. As such the reductive effects the convective LSV might have are exacerbated

at these low ellipticities.

To explain the absence of bursts of elliptical instability we investigate the 3D modes

in the flow in both real space and Fourier space. The 3D modes should contain only

the inertial waves excited by the elliptical instability and convective eddies. By studying

these modes we should be able to identify whether the elliptical instability has ceased

operation completely or the sustained energy injection obfuscates the bursts of the elliptical

instability instead.
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Figure 3.8: “phase diagram” showing the observed behaviour in our simulations. Simu-
lations where sustained behaviour but no bursts of elliptical instability are observed are
marked in blue, those with clear bursts of the elliptical instability (and possible additional
sustained behaviour) are marked in orange. The “uncertain markers” represent simula-
tions close to where the regime transition is likely situated. The case ϵ = 0.02, Ra = 2Rac
is marked in purple, as it shows neither sustained injection nor bursts of elliptical insta-
bility.

3.2.2 Velocity magnitude analysis

In real space we employ a method akin to the one used in Favier et al. (2019) to determine

the 3D flow. The 3D velocity components are obtained by taking the difference between

the total velocity and the z-averaged horizontal (or 2D) velocity components:

ux,3D = ux − ⟨ux⟩z,

uy,3D = uy − ⟨uy⟩z,

uz,3D = uz.

(3.1)

Here, ⟨ux⟩z,⟨uy⟩z are the depth-averaged x and y components of the velocity, respectively,

i.e. the horizontal velocity components. From this, the magnitude of the 3D velocity,

|u3D|, is calculated. Favier et al. (2019) showed that the convective LSV suppresses 3D

motions, resulting in a region with lower 3D velocities inside the vortex. Since we observe

similar LSVs, such a suppression of 3D modes might contribute to the suppression of the

elliptical instability.

First, we examine a case of convection in isolation using this method in Fig. 3.9a,

with parameters ϵ = 0, Ra = 6Rac. We show results for |u3D| at t = 0.1 at the mid-plane

(z = d/2). The convective LSV is centred in the figure. The 3D velocity magnitude is

reduced under the convective vortex compared to the edges of the figure. Thus our results
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(a) t = 0.1, ϵ = 0, Ra = 6. (b) t = 0.05, ϵ = 0.1, Ra = 0.

(c) t = 0.04, ϵ = 0.1, Ra = 6. (d) t = 0.1, ϵ = 0.1, Ra = 6.

Figure 3.9: The magnitude of the 3D velocity, |u3D|, showing its localisation within the
vortices. (a) Elliptical instability in isolation. (b) Convection in isolation. (c) Elliptical
instability and convection in the absence of a burst. (d) Elliptical instability and convection
in the presence of a burst. The convective LSV suppresses 3D motions. If the elliptical
instability is operating, the energy in the 3D motions is concentrated in the vortex core.
The vortices are centred for clarity.
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agree with those of Favier et al. (2019).

Next, we examine a case of the elliptical instability in isolation using this method

in Fig. 3.9b, with parameters ϵ = 0.1, Ra = 0. The time-evolution of the kinetic energy of

this simulation can be found in the left-hand panel of Fig. 3.2. We show results at t = 0.05

during a burst of instability, after vortices have formed following initial saturation. The

largest velocities during a burst are located in the vortex core, as expected for the elliptical

instability (Leweke et al., 2016). The 3D velocity magnitudes are much larger than those

in the purely convective case, because the elliptical instability transfers large amounts of

energy to inertial waves.

In Fig. 3.9c we show a result from a simulation with both the elliptical instability

and convection, using the parameters ϵ = 0.1, Ra = 6Rac, the kinetic energy of which is

given in Fig. 3.4c. This snapshot was taken at t = 0.04, which corresponds to the absence

of a burst, as well as having been a significant amount of time since the initial burst.

However, the sustained energy injection has been operating during the entire simulation,

as was shown in Fig. 3.4d. Indeed, as there is no burst of the elliptical instability, the

figure is very similar to that of the purely convective simulation in Fig. 3.9a.

Finally, in Fig. 3.9d, we show a result from the same simulation with the elliptical

instability and convection, using the parameters ϵ = 0.1, Ra = 6Rac during a burst of

the elliptical instability at t = 0.1. We again observe that the highest velocities are

concentrated in the centre of the vortex, but the energy appears to be more spatially

spread out than in the simulation with the elliptical instability in isolation.

Bursts of the elliptical instability are thus primarily concentrated in the centre of

the cyclonic portion of the LSVs. The LSV is therefore expected to have a strong effect

on the growth of the elliptical instability, as the free inertial waves existing within these

vortices will differ from those of the original flow, thus acting as a constraint to potentially

de-tune the elliptical instability. Furthermore, one might expect that if no concentration

of excess energy is observed inside the vortex core in a simulation, like in our simulations

which show only sustained energy injection and no bursts, then the elliptical instability is

not, or is only very weakly, operating in said simulation.

3.2.3 Frequency-wavenumber spectrum analysis

We now present further analysis of our simulations using the approach devised by Le Reun

et al. (2017) by computing the frequency-wavenumber spectrum of the flow to identify the

inertial waves and the convection. This Fourier space analysis shown in Fig. 3.11 uses two

properties of the elliptical instability to be able to identify its operation in the spectrum:

1) the excited inertial waves have a preferred direction (wavevector orientation) and 2)

the dispersion relation of the inertial waves relate each direction to a particular frequency.

Analysis in Fourier space is done by considering the power or squared amplitude of

each Fourier mode instead of examining the power at a physical location in the flow, as

in the previous section. To this end, we use the Fourier transformed versions of the flow
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fields above. We define the direction of a Fourier mode as the angle the wavevector makes

with the rotation axis, which we denote by θ. This angle can then be determined from the

ratio kz/k = cos θ. The power in each velocity component, i.e. ux, uy, uz, associated with

a specific wavevector can be put into a bin corresponding to its angle and wavenumber

(wavevector magnitude) at every output timestep in the simulation. We use 60 bins for

the angle θ, with θ = [0, π/2]; likewise we have chosen bins of size π/2 for the k-bins and

enough of these to cover all values allowed by the spatial resolution of the simulation. By

binning like this we produce a 2D contour plot of power in each wavevector bin versus

angle, and by outputting this data at every output timestep in the simulation we generate

a θ − k − t matrix.

We are, however, predominantly interested in obtaining a spectrum as a function of

the frequency and angle, because this allows us to compare to the dispersion relation of

inertial waves and thus identify if (and which) inertial modes are excited in the simulation.

Therefore we sum over the k-bins, resulting in the total power per velocity component in

each wavevector angle bin, at each timestep. Equal timesteps of size 10−6 are used, such

that the highest frequency inertial waves, with periods π ·10−4.5 can be properly captured.

The Fourier transform in time of all three velocity components produces the frequency

spectrum of each velocity component. We then multiply the transformed velocities with

their complex conjugates and add all three components to obtain the energy in each ω

and θ bin. We consider the interval of wavenumber bins [2, 50], i.e the wavenumbers

k ∈ [π, 25π], to avoid the contribution of small-scale motions which contain little energy.

The geostrophic modes with θ = π/2 strongly dominate the energy, so for clarity we set

the rightmost column at θ = π/2 to zero on these plots since we wish to analyse the waves.

We want to identify the inertial modes in our simulations, and so we plot the disper-

sion relation of inertial waves on the θ − ω energy spectra. We opt to plot the dispersion

relation of pure inertial waves given in Eq. (1.45) (in the absence of vortices and strat-

ification) as a solid black line on all θ − ω energy spectra. This choice is suitable for

the Rayleigh numbers plotted, because convection tends to reduce the magnitude of the

buoyancy frequency in the bulk of the box, leading to an effective buoyancy frequency:

N2
eff > N2 (keeping in mind that N2 is negative). This is most readily seen by considering

the horizontally-averaged temperature profile in a simulation.

In Fig. 3.10 the conduction profile, T , as given by Eq. (2.10), is plotted in dashed-

grey, corresponding to a simulation with ϵ = 0.1, Ra = 4Rac. Allowing the temperature

perturbation, θ, to evolve in these simulations results in the partial homogenisation of

the temperature profile. The horizontally-averaged total temperature profile, represented

by the sum of the conduction profile and the temperature perturbation, at time t = 0.1,

is plotted in the same figure in solid-black. The profile in the bulk as a function of z

has become less steep, but thermal boundary layers at the top and bottom of the simu-

lation domain have appeared. Upon plotting an effective temperature profile in the bulk

in solid-red, we find that it is well represented by an effective temperature gradient of

∆Teff ∝ 1.5Rac. In this simulation the effective buoyancy frequency, and thus effective
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Figure 3.10: The horizontally-averaged temperature profile of the simulation in Fig. 3.3
with ϵ = 0.1,Ra = 4Rac at t = 0.1. The background conduction state profile is plotted in
dashed-grey, while the partially homogenised total temperature profile is plotted in solid-
black. The temperature gradient in the bulk has decreased, while the boundary layer
temperature profile is steeper. The effective temperature gradient in the bulk has been
approximated as roughly ∆Teff = 1.5Rac, plotted in solid-red.

Rayleigh number, are therefore adjusted to N2
eff = −Raeff ≈ −1.5Rac. At the other ex-

amined Rayleigh numbers of Ra = 6Rac and Ra = 8Rac the respective effective buoyancy

frequencies are: N2
eff ≈ −2.5Rac and N

2
eff ≈ −3Rac. This implies that N2

eff/Ω
2 ∼ O(10−2)

at the Rayleigh numbers used in these simulations; thus the second term in the dispersion

relation of inertia-gravity waves in Eq. (1.52) is close to zero, only affecting the dispersion

relation around θ ≈ π/2. We conclude that the usage of the pure inertial waves dispersion

relation is a good approximation.

The initial bursts of the elliptical instability on the θ − ω energy spectra are ex-

pected to be located at their preferred angle of θ = arccos(1/2) = π/3 (when γ = Ω).

Combined with the dispersion relation, the fastest growing mode of the elliptical insta-

bility is expected to be located at θ = π/3, ω = Ω on these figures. An example where

we can clearly identify these inertial modes excited by the elliptical instability is given

in Fig. 3.11a, computed from the linear growth phase of the simulation with ϵ = 0.05,

Ra = 0. All modes with non-negligible energy during the linear growth phase are shown

to be centred on this point, as well as at θ = π/3, ω = 3Ω, where the latter result from

secondary “non-linear” interactions between the background tidal flow with frequency 2Ω

(and wavenumber zero) and the dominant modes at ω = Ω, θ = π/3.

The spectrum of the same simulation as Fig. 3.11a directly after the linear growth

phase is shown in Fig. 3.11b. Most of the power is concentrated around the initial fastest

growing modes, however the energy is also spread throughout the figure, away from the

dispersion relation, i.e. the resulting energy is no longer solely contained in inertial waves.

This is likely to represent the turbulent motions arising after the collapse of inertial waves.
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(a) Linear growth phase of the simulation
with ϵ = 0.05, Ra = 0.

(b) Inertial wave breakdown of the simula-
tion with ϵ = 0.05, Ra = 0.

(c) t = 0.11 − 0.13 of the simulation with
ϵ = 0, Ra = 6Rac.

(d) t = 0.11 − 0.13 of the simulation with
ϵ = 0.05, Ra = 6Rac.

Figure 3.11: Various θ − ω energy spectra obtained by Fourier transforming the t − θ
spectrum, where ω is given in units of Ω. The interval of wavenumber bins used is:
[2, 50], i.e. k ∈ [π, 25π]. The black solid line shows the dispersion relation for free inertial
waves. For visibility the rightmost column containing the geostrophic modes which would
otherwise dominate is set to zero.
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(a) Linear growth phase of the simulation
with ϵ = 0.05, Ra = 0.

(b) Inertial wave breakdown of the simula-
tion with ϵ = 0.05, Ra = 0.

(c) t = 0.11 − 0.13 of the simulation with
ϵ = 0, Ra = 6Rac.

(d) t = 0.11 − 0.13 of the simulation with
ϵ = 0.05, Ra = 6Rac.

Figure 3.12: Same as Fig. 3.11, except the interval of wavenumber bins is reduced to
[2, 12], i.e. k ∈ [π, 6π]. This removes most convective modes from the RHS of the figure,
allowing for clearer visibility of the inertial waves. The black solid line is the dispersion
relation. The geostrophic modes which dominate the flow are set to zero for visibility of
other modes.

There is also energy in the geostrophic modes (θ ∼ π/2, omitted for clarity) as well as the

“mirrored dispersion relation”, given by: ω = −2Ω cos θ+2Ω, from secondary non-resonant

interactions of the waves with the tidal flow (Le Reun et al., 2017).

Fig. 3.11c shows the spectrum of a simulation of rotating convection without the

elliptical instability, with ϵ = 0, Ra = 6Rac from t = 0.11 to t = 0.13. Convection is

shown to introduce modes at high values of θ. This can be understood from linear growth

rate predictions, where we can show that convective instability of the conduction state

requires θ ≈ [1.4, π/2] for n = 1 modes at this Rayleigh number. The dominant modes are

indeed concentrated in convective modes at θ ≈ [1.4, π/2] in this figure. Convective modes

at onset are steady, so they should have ω ∼ 0 and be concentrated at the bottom of

this figure. Instead, it appears that a host of convective eddies with non-zero frequencies

are generated. Some of these eddies have frequencies below the rotational frequency, as

we would expect because the convective turnover frequency is smaller than the rotational

frequency. On the other hand, a significant number of eddies are generated with frequencies
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that are larger than the rotational frequency, indicating numerous shorter-lived eddies in

the convectively unstable simulations. The power away from these modes, i.e. outside

the range θ ≈ [1.4, π/2], broadly follows the dispersion relation. We might therefore

speculate that the turbulence generated by convection is swept up by rotation into inertial

waves, explaining the frequency of these modes. Inertial waves in rotating convection are

expected to arise from oscillatory convective modes if Pr < 1 (technically for Pr < 0.677)

(Chandrasekhar, 1961), and have previously been observed in simulations (Lin, 2021) at

Pr < 1. Supporting our argument for inertial waves arising due to rotating convection at

Pr ≥ 1 is the detection of inertial waves at Pr > 1 in spherical shell simulations of rotating

convection (Bekki et al., 2022).

Spectra featuring both the elliptical instability and convection would be expected to

look like a combination of these features, although it is likely to be difficult to distinguish

the turbulent phases of the elliptical instability from the convective motions. However, the

location of the elliptical instability bursts should shed some light on whether the sustained

energy injection contains a weak (overshadowed) burst or whether the elliptical instability

is absent entirely. The spectrum of the simulation with ϵ = 0.05, Ra = 6Rac analysed from

t = 0.11 to t = 0.13 is shown in Fig. 3.11d. This shows the expected convective modes, but

no enhanced power at the expected location of the elliptical instability. Similar spectra

produced at other times in the simulation produce similar results. Thus we conclude

that the operation of the elliptical instability has been inhibited by convection at these

parameters.

Convective motions are expected to be small-scale motions, based on the visible fluc-

tuations in Fig. 3.1, Fig. 3.9d and on the linear theoretical analysis of convection, which

at these parameters predicts unstable modes in the interval of wavenumber bins [30, 50].

Meanwhile, the energetically dominant inertial waves are likely to be large-scale. This is

a direct consequence of the elliptical instability being directional, and therefore scale-free,

and thus choosing the mode with the smallest viscous effects (the largest possible modes,

which also have the longest non-linear cascade times). Therefore we have reproduced the

plots in Fig. 3.11 with the limited range of wavenumber bins [2, 12], i.e. k ∈ [π, 6π], in

Fig. 3.12. One effect of the limited wavenumber range, combined with our finite grid, is

that a number of columns on the right will contain no energy. Only higher wavenumbers

can have these angles. The limited range of k does not affect the linear growth spectrum in

Fig. 3.12a as the power is concentrated in wavenumbers within our adopted range. During

the inertial wave breakdown in Fig. 3.12b we can clearly see the power concentrated along

the inertial wave dispersion relation, as well as the mirrored dispersion relation represent-

ing the secondary non-resonant interactions between the waves and the background tidal

flow (Le Reun et al., 2017). In the convective simulations in the bottom two panels there

is indeed power along the dispersion relation where inertial waves are expected, providing

another tentative hint for inertial waves in rotating convection. There is however still no

clear energy located at the location where we would expect energy injection if the elliptical

instability is operating in Fig. 3.12d.
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Figure 3.13: Energy in each wavenumber as a function of θ on the dispersion relation, i.e.
all wavenumbers have a frequency ω which satisfies ω = 2Ωcos θ. The solid black curves
are given by k = nzπ/cos θ, for nz = 1, 2, 3, 4, 5, 6. The finite vertical resolution implies
power must be along one of these curves. Left: during the linear growth phase for ϵ = 0.05,
Ra = 0. Right: t = 0.11− 0.13 for ϵ = 0.05, Ra = 6Rac.

Using the Fourier spectrum we can determine the wavenumbers that contain the

most energy in the simulation as a function of θ at a given ω. To this end, we do not

sum over all wavenumbers k, but instead construct a θ − k spectrum in Fig. 3.13. We

are interested in the wavenumber magnitudes that are active on the pure inertial wave

dispersion relation. Therefore we have done a Fourier transform on the original θ − k − t

matrix, resulting in a θ − k − ω matrix. Slices of this matrix on the dispersion relation

were taken by considering the energy in all k-values at a combination of ω and θ that

satisfy the dispersion relation.

The left-hand panel of Fig. 3.13 shows the same simulation as Fig. 3.11a, i.e. pure

elliptical instability during its linear growth phase. The power here is concentrated along

various black solid curves defined by the relation between θ, the vertical wavenumber,

kz = nzπ, and total wavenumber, k: θ = arccos(kz/k). Each curve has a different integer

vertical wavenumber nz, with nz = 1 the lowest curve, nz = 2 the one above, etc. The

curves with nz = 1, 2, 3, 4, 5, 6 are plotted. In this simulation the energy of the elliptical

instability burst is concentrated in modes with nz = 2, k = 4π. The mode corresponding

to this with horizontal wavenumber integers nx = ny is the (5, 5, 2) mode. This method of

analysis is powerful as it clearly shows which inertial modes are growing in the simulation.

In the right-hand panel of Fig. 3.13 this method is applied to the same simulation as

in Fig. 3.11d of both convection and the elliptical instability in the sustained regime.

This panel shows that there is less power on the (5, 5, 2) mode. Instead, we see power

concentrated on the nz = 1 curve, and concentrated towards higher wavenumbers and

higher angles, as we would expect of convective motions. So indeed, we observe no clear

sign of the elliptical instability during this simulation, but do observe convective eddies

which are inertial wave-like.

To examine the effect of different box sizes, we have run the simulation of the

elliptical instability on its own in a 1-by-1-by-1 box. To accommodate the smaller box
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Figure 3.14: Energy in a θ − ω spectrum and θ − k spectrum on the dispersion relation
in a 1-by-1-by-1 box during the linear growth phase. Left: the location of the energy in
the inertial waves is unchanged, as expected. Right: The smaller box size results in larger
horizontal wavenumber and thus larger vertical wavenumbers to satisfy the resonance
condition. The larger wavenumber results in a stronger reduction of the growth rate due
to viscosity.

size, the wavenumber bin size has been increased to 2π, and we again consider the interval

of wavenumber bins [2, 50]. The left-hand panel of Fig. 3.14 shows the θ − ω spectrum

of the energy of a simulation with parameters ϵ = 0.1, Ra = 0. This simulation captures

the behaviour during the linear growth phase of the elliptical instability. The reduced

horizontal box size changes the available modes, but the power is still concentrated at the

expected value of θ = π/3, ω = Ω. The right-hand panel of Fig. 3.14 shows the θ − k

spectrum on the dispersion relation of the same simulation. These are the linearly most

unstable modes. The dominant k modes lie on lines of n = 4 and n = 5. These larger

values of k imply larger decay rates −νk2, and therefore a decreased growth rate due to

viscosity. This suppresses the elliptical instability for larger ϵ when the box is smaller. The

suppression of the elliptical instability is thus artificially enhanced (reduced) by the choice

of a smaller (larger) box. Upon extrapolating this effect to a full planet, and assuming that

a planet-scale mode is excited, one might expect the viscosity suppression of the elliptical

instability to be weak.

Finally, we are interested in analysing further the energy injection term I3D. The 3D

component is any component that is not in the rightmost column of these θ − ω spectra

(since that column has θ = π/2, implying that nz = 0). Therefore to study I3D we

just set the rightmost column to zero, which was already done for visibility in the above

plots. I3D is calculated from the Reynolds stress components uxuy, u
2
x and u2y. After

calculation, this quantity is Fourier transformed, and its real part is then plotted here.

The colourbar minimum has been increased compared to previous figures to reduce the

impact of convective noise on the figure. In the panel on the left of Fig. 3.15 we show

just the elliptical instability, for the same simulation as Fig. 3.11a with Ra = 0, ϵ = 0.05,

during the linear growth phase. We see that the energy injection is into the resonant

inertial waves during this initial burst. It seems two frequency bins in particular contain
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Figure 3.15: The θ−ω I3D spectrum obtained by calculating I3D and taking the real part
of the Fourier transform of the θ − t spectrum; ω is given in units of Ω. The interval of
wavenumber bins is [2, 50]. The black solid line is the dispersion relation. For visibility
the rightmost column containing the geostrophic modes which dominate the flow is set to
zero. Left: linear growth phase of ϵ = 0.05, Ra = 0. Right: t = 0.11 − 0.13 of ϵ = 0.05,
Ra = 6Rac.

the majority of the energy injection, one of these bins is located on the dispersion relation

and the other on the mirrored dispersion relation. To compare, I3D of the same simulation

as Fig. 3.11d with Ra = 6Rac, ϵ = 0.05 is plotted in the right-hand panel of Fig. 3.15.

Energy injection is present predominantly in the range θ ≈ [1.4, π/2] and is no longer

concentrated along the dispersion relation, suggesting the energy injection is primarily

into convective motions, instead of the inertial waves of the elliptical instability. This

would be consistent with treating the energy transfer between tidal and convective flows

as being interpretable as a turbulent effective viscosity from the convective motions.

3.2.4 The elliptical instability on a convective background

Based on the real space analysis in Sec. 3.2.2 we concluded that the convective flow and

its resulting LSV modifies subsequent growth of the elliptical instability, similar to the

modification of the LSV resulting from the elliptical instability. Furthermore, based on

the Fourier space results in Sec. 3.2.3 we found that the elliptical instability is largely

inhibited by the convective flow (and its LSV) for lower values of ϵ.

To further examine the effects of convection on the elliptical instability, we analyse

the growth rate of bursts of the elliptical instability on a convective background. First

we measured the growth rates in simulations without convection (Ra = 0) as a reference.

We split the results of each simulation into the initial burst and any further bursts. The

initial burst should then be close to the linear prediction, although it is likely that for

large values of ϵ the non-linear saturation, and thus end of the linear growth phase, is

reached before the theoretical largest linear growth rate is achieved. Subsequent bursts

are affected by non-linear effects, such as the LSV, and thus are expected to have reduced

growth rates. The growth rate of the bursts of the elliptical instability is obtained from

(half) the growth rate of K3D, and our results after normalisation with γϵ are shown in
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Figure 3.16: Growth rate of the initial burst and further bursts of the elliptical instability
measured in simulations without convection Ra = 0 (blue and orange), and simulations
restarted from a turbulent purely convective state (with an LSV) at Ra = 4Rac (yellow
and purple) and Ra = 8Rac (green and cyan). The theoretical prediction for the inviscid
linear growth rate without convection is plotted as a blue line, while predictions assuming
an effective viscosity (with damping rate −νeffk2) from convection at Ra = 4Rac and
Ra = 8Rac are plotted as purple and cyan lines, respectively. This figure implies that
the reduction in the growth rate originates from something other than a simple effective
viscosity, as the prefactor of the growth rate is changed, indicated by the growth rates
tending to a value lower than 9/16 as ϵ is increased.

Fig. 3.16. The growth rates of the initial burst without convection (blue diamonds) lie

close to the linear theoretical prediction, (9/16)ϵγ, plotted as the solid blue line. Further

bursts of these simulations (orange diamonds), however, substantially deviate from this

prediction. A large reduction of the growth rate is found, likely due primarily to the LSV

created by the initial burst. Note that these growth rates reduce further as the simulation

continues and the energy in the LSV grows.

To compare these with similar results in the presence of convection, we ran new

simulations which have been initialised with the flow and temperature fields from a purely

convective simulation long after saturation of the initial instability. We started several

simulations with various ellipticities ϵ > 0.05 from our simulation with Ra = 4Rac, ϵ = 0,

and several with ϵ > 0.1 from our simulation with ϵ = 0, Ra = 8Rac. These results are

shown in Fig. 3.16 using yellow circles for the initial burst and purple circles for further

bursts at Ra = 4Rac and green and cyan squares at Ra = 8Rac, respectively. Focusing first

on Ra = 4Rac, we see that the suppression of the initial burst of the elliptical instability

occurs for ϵ ≲ 0.07. Our previous results and phase diagram (Fig. 3.8) indicated bursts of

instability for ϵ ≳ 0.05. These results also show that the growth rate is strongly affected

by the convection, as the markers are substantially below the theoretical growth rate. The

further bursts show a wide spread of growth rates. The highest measured growth rates

overlap with those of the simulations of the pure elliptical instability. This implies that

the convective LSV inhibits the elliptical instability in the same way as the LSV generated
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by the elliptical instability itself, but can inhibit it even more strongly.

Our results for the case of more turbulent convection with Ra = 8Rac show higher

growth rates than at Ra = 4Rac, particularly at ϵ > 0.14. This is possibly indicative of a

reduced suppression of the elliptical instability or an enhancement of the growth rate as the

convection becomes stronger. A possible explanation for the enhanced growth rate could

lie in the linear growth rate of the elliptical instability presented in Eq. (2.60). Increasing

the Rayleigh number increases −N2 for the conduction state. However, at Ra = 8Rac

the growth rate is only increased by a factor of ≈ 1.13 compared to Ra = 0, and even at

Ra = 20Rac the increase is only a factor of ≈ 1.3 compared to Ra = 0. Furthermore, this

factor is likely to be less important than this would predict, as convection acts to reduce

−N2 as we have shown in Fig. 3.10, and the efficiency of rotating convection increases

with the Rayleigh number (Currie et al., 2020).

We compare these results with predictions for the linear growth rate in Fig. 3.16 after

subtraction of the viscous damping rate. To this end, we first identify other simulations we

have run with equal Rayleigh number to those under consideration in Fig. 3.16 but with

sufficiently low ellipticity so that only sustained energy injection arises in the simulation.

We then convert the sustained energy injection I3D from these simulations to an effective

viscosity νeff using Eq. (2.84). The effective viscosity obtained in this way is strictly

parametrising the action of convection on the tidal flow rather than the inertial waves,

but is at this moment the best estimate of the effective viscosity acting on the inertial

waves. We add this effective viscosity to the fluid viscosity ν to obtain the “total viscosity”,

which is used to compute a viscous damping rate −(ν+νeff)k
2. Predictions for the growth

rate after introduction of an effective viscous damping rate corresponding with Ra = 4Rac

and Ra = 8Rac are plotted in purple and cyan lines, respectively, assuming the dominant

wavenumbers and resonance conditions are unchanged. Incorporating the microscopic

viscosity and/or effective viscosity decay rates are both inconsistent with the numerically-

obtained growth rates. Indeed, results from simulations with just the elliptical instability

imply that the suppression by an LSV is much stronger than would be predicted by

this effective viscosity. Furthermore, the slope of the growth rate as a function of ϵ for

simulations initialised on a convective background deviates from the 9/16 prediction in a

similar manner with and without the convective background. To modify this 9/16 value

there must be some change in the resonance conditions and the dominant wavenumbers,

due to either de-tuning as previously remarked upon in this work, or the phases of the

inertial waves, to explain the bursty behaviour.

We investigate the dominant wavenumber in each simulation, to examine if weaken-

ing of the elliptical instability occurs because the LSV changes this dominant wavenumber,

using the approach described in Sec. 3.2.3. The θ−k spectrum for inertial modes following

the dispersion relation is shown with ϵ = 0.15 for two values of the Rayleigh number in

Fig. 3.17. This shows that there is indeed a modification of the dominant wavenumber

of the initial burst when initialising on a convective background. The θ − k spectrum

in the left-hand panel shows the first elliptical instability burst in the simulation with
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Figure 3.17: Same as Fig. 3.13 for simulations initialised from a convective simulation.
Left: initial burst of ϵ = 0.15, Ra = 4Rac, initiated from ϵ = 0, Ra = 4Rac. Right: initial
burst of ϵ = 0.15, Ra = 8Rac, initiated from ϵ = 0, Ra = 8Rac.

ϵ = 0.15, Ra = 4Rac. The energetically dominant wavenumber is no longer the (5, 5, 2)

mode satisfying the ideal resonance condition without convection, and instead the power

is concentrated at nz = 1 with θ close to but larger than the ideal value θ = π/3. In the

right-hand panel of Fig. 3.17 we show the same for the first elliptical instability burst, but

with ϵ = 0.15, Ra = 8Rac. At both values of the Rayleigh number the subsequent inertial

wave breakdown results in power in larger wavenumbers, including the (5,5,2) mode, which

is viscously dissipated but otherwise maintained until the next burst. The availability of

the (5,5,2) mode in the subsequent bursts results in higher growth rates compared to the

initial burst, but still far below the ideal linear prediction. However, we observe power

at the expected kz/k = 1/2 and ω = γ, therefore apparently arguing against the hypoth-

esis that de-tuning the dominant resonance is responsible for most of the reduction in

growth rate. This leaves the perturbed phase argument originally proposed by Barker and

Lithwick (2013) to potentially explain the observed change of the growth rate prefactor.

3.3 Conclusions

In this chapter we have investigated the interactions of the elliptical instability and rotating

Rayleigh-Bénard convection in a Cartesian model using pseudo-spectral hydrodynamical

numerical simulations involving horizontal shearing waves. First, we simulated the ellip-

tical instability without convection in wide boxes, and found the non-linear evolution of

the instability to produce geostrophic vortices that dominate the flow to an even greater

extent than in cubical boxes. The introduction of convection leads to a suppression of the

elliptical instability that we find to be primarily the result of the convectively-generated

LSV. It also gives rise to a sustained energy injection into the flow (i.e. transfer from the

elliptical/tidal flow), which can be interpreted as the convection operating as an effective

viscosity (approximately independent of ϵ, as we will show in Ch. 4) in damping the tidal

flow.

Finally, we also found that the inertial waves excited by the elliptical instability can
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transport heat; when the elliptical instability is weak relative to convection or suppressed

this has little effect on the Nusselt number, but when the elliptical instability is comparable

in strength to convection, it can significantly enhance transport. If the elliptical instability

is suppressed however, the sustained energy injection from the tidal flow into the system

results in a more energetic LSV, which then acts to suppress the heat transport. The

Nusselt number therefore appears to be reduced at strong convective driving. The elliptical

instability can also result in heat transport in stably stratified regimes, but this weakens

as the stratification becomes stronger until the elliptical instability is no longer linearly

unstable due to the stabilising effects of the stratification.

The suppression of the elliptical instability by convection was investigated in de-

tail using numerous approaches. Measuring the 3D motions, which are weakened by the

LSV, we found that during a burst of the elliptical instability the largest 3D velocities

are found in the centre of the vortex. If the elliptical instability cannot operate, the

vortex instead reduces the 3D velocities. We also presented a detailed analysis of the

frequency and wavenumber Fourier spectra of the energy in our simulations to clearly

identify inertial modes and convective flows. We observed that the elliptical instability

(and energy injection into inertial modes more generally) is indeed inhibited by convective

flows. Furthermore, we have found that rotating convection also weakly excites inertial

modes, which are identified as power in modes along the dispersion relation, in the absence

of the elliptical instability.

When initialising simulations of the elliptical instability from a convective turbulent

state including an LSV it was found that this LSV reduces the growth rate of the elliptical

instability compared with the inviscid or viscous growth rate prediction. It is also reduced

compared with the prediction modified by crudely adopting the effective turbulent viscos-

ity. The reduction of the growth rate by the LSV indicates that the dominant resonances

are de-tuned by it or that there are significant perturbations in the phases of the waves by

the LSV. Our Fourier space analysis showed that the identity of the fastest growing mode

is unaltered by the presence or absence of an LSV for all bursts of elliptical instability.

Because the fastest growing mode is unchanged from before, this should not result in a

de-tuning effect for free inertial waves. The perturbation of the phases of the inertial

waves by the convective vortex might therefore be more applicable as an explanation.
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Chapter 4

Scaling laws for the elliptical

instability and effective viscosity

In Ch. 3 we focused on exploring the fluid dynamical interactions of the elliptical instability

and convection. Here we will quantify the tidal dissipation that arises from the elliptical

instability, as well as the effective viscosity of the convection acting on the equilibrium

tide.

The simulations studied in this work necessarily use dimensionless parameters that

are far from the astrophysical ones, except perhaps for ϵ for the hottest of Hot Jupiters,

for which the values we use are appropriate. Hence, we wish to obtain scaling laws for

the energy injection due to the elliptical instability, as long as it operates, as well as the

effective viscosity of convection acting on the equilibrium tide. For the latter we will

use mixing-length theory and rotating mixing-length theory to interpret key convective

quantities such as the vertical convective velocity, lengthscale and frequency and combine

these to find an expression for the effective viscosity. We will attempt to verify that these

quantities agree with our simulation results as well as testing whether they can be used to

retrieve the three empirically-obtained regimes for the effective viscosity in Duguid et al.

(2020). To ensure that our scalings are indeed applicable for the relevant dimensionless

parameters, we extend the range of parameters surveyed by varying the Ekman number

in addition to the Rayleigh number and ellipticity.

4.1 Scaling laws for the energy injection

When the flow is sufficiently turbulent and is not dominated by large-scale vortices that

inhibit wave driving, the time-averaged value of the energy injection rate into the 3D

modes, I3D, due to the elliptical instability on its own scales consistently with ϵ3 (Barker

& Lithwick, 2013, 2014). However, the energy injection we observe in our simulations does

not result from the elliptical instability alone. In fact, because the simulations indicate

that the elliptical instability is inhibited by the convective LSV, we expect regions of

parameter space where the energy injection is not the result of the elliptical instability
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but rather solely the result of the convection interacting with the tidal flow. In Fig. 4.1

the time-averaged value of the energy injection I3D as a function of ϵ for various values of

Ra with fixed Ek = 5 · 10−5.5 is plotted. The error bars on these data points are obtained

by calculating the standard deviation of these time series. These standard deviations

tend to be large because the bursty behaviour of the elliptical instability results in large

differences in the energy injection as a function of time, sometimes even resulting in

a standard deviation that is larger than the time-average. Furthermore, at very small

ellipticities the energy injection is so small such that even the fluctuations present in the

sustained energy injection are larger than the time-average, again resulting in standard

deviations that are larger than the time-averages. We have plotted the full error bars on

the burgundy circles to illustrate which simulations display these fluctuations in the time

series, but omitted the downward part of the other markers for clarity.

Fig. 4.1 can be divided into two regimes by a vertical dashed line. To the left of this

line, the elliptical instability is absent, and only the action of turbulent convection on the

tidal flow is responsible for energy injection and thus tidal dissipation. To the right of this

line the elliptical instability is present, possibly modified by the convection, in addition

to the interaction of turbulent convection with the background tidal flow. In the figure

this vertical dashed line is located at ϵ = 0.08, corresponding to the transition for the

arbitrarily chosen value of Ra = 6Rac, the energy injection of which is represented by the

burgundy data points. If the Rayleigh number is lower (higher) – and thus the convective

driving is weaker (stronger) – this line is expected to move to smaller (larger) values of ϵ.

We know that the energy injection associated with the effective viscosity scales with

the Rayleigh number from comparing the time series in Fig. 3.4d and Fig. 3.5d. Therefore

we choose to fit the energy injection at a fixed Rayleigh number, in this case the arbitrarily

chosen Ra = 6Rac, using an ϵ2 scaling. The data agrees very well with this scaling for ϵ to

the left of the vertical dashed line, i.e. below the transition value of ϵ, indicating that the

energy injection can indeed be interpreted as an effective viscosity that is independent of ϵ

here. Moreover, the effective viscosity fit is expected to move up or down proportional to

the chosen fitted Rayleigh number because the energy injection scales with the Rayleigh

number. We will justify both of these observations further in Sec. 4.2.1.

The simulations corresponding to data points on the right of the vertical dashed

line feature bursts of the kinetic energy and energy injection rates, indicating that the

elliptical instability operates in this regime. The operation of the elliptical instability

appears to be in addition to the effective viscosity resulting from convective turbulence,

but the energy injection rate due to the elliptical instability is much larger, as is illustrated

by the strong departure of these points from the black ϵ2 line. We fit these data points

with our (naive) theoretically predicted ϵ3 fit (solid-blue line), and an ϵ6 fit (solid-red line,

as previously observed in Barker & Lithwick, 2013). Both fits are consistent with the data

on the right hand side (over a narrow range of ϵ), and are inconsistent with data on the left.

Furthermore, the data and fits are consistent at all values of Ra, indicating that this scaling

is likely independent of the Rayleigh number, particularly further from the transition line.
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Figure 4.1: Time-averaged values of the energy injection rate (into 3D modes) I3D as a
function of ϵ for various Rayleigh numbers. The vertical dashed line at ϵ = 0.08 marks the
transition at Ra = 6Rac between sustained behaviour on the left, and bursts in addition to
sustained behaviour on the right. The large error bars on the right are introduced because
the strong fluctuations in the energy injection, due to the burstiness of the elliptical
instability, lead to a large variance. We have included the full error bars for the burgundy
circles to illustrate this, but omitted the downward part of the error bars of all other
markers for clarity. Three lines are fitted to the data at Ra = 6Rac. The sustained
behaviour is consistent with an ϵ2 scaling for ϵ ≲ 0.08, represented by the black line.
Bursts of the elliptical instability contribute on top of this sustained energy injection,
resulting in a much larger energy injection for larger ϵ. The energy injection at larger ϵ
featuring both bursts and sustained behaviour is fitted using an ϵ3 fit in blue, and an ϵ6

fit in red.

Upon extrapolating the energy injection rate of the elliptical instability with an ϵ3 scaling

we find that it is greater than that of the effective viscosity due to convection for ϵ ≳ 0.01,

at the fixed Ekman number and Rayleigh number of Ek = 5 · 10−5.5 and Ra = 6Rac

respectively.

Following Barker and Lithwick (2014), we use the theoretical prediction in Eq. (2.79)

to obtain a proportionality “factor” χ from our fit to the data shown in Fig. 4.1 such that

I3D ≡ χϵ3γ3. The reasoning for introducing this proportionality factor is the intermittent

and imperfect operation of the elliptical instability. In theory, if the elliptical instability

were operating continuously, and exciting box-scale modes, this proportionality factor

would be of order unity, but because it is only operating some of the times, it needs to

be reduced. The proportionality factor can therefore also be thought of as an efficiency

factor for a particular large-scale mode, which is selected by the box aspect ratio.

We find χ ≈ 0.044 for the plotted blue line, with χ ≈ 0.18 as an upper estimate

when fitting to the top right clump of data points. If instead we follow the previously

observed fit with ϵ6 in Barker and Lithwick (2013) we can naively define I3D ∝ χ2ϵ
6γ3;

we obtain χ ≡ χ2ϵ
3 ≈ 22.45 · ϵ3. To illustrate the (in)efficiency of this ϵ6 scaling we insert
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Figure 4.2: Same as Fig. 4.1, but showing time-averaged values of I3D for different box
sizes. For clarity we have omitted the downward part of the error bars on all markers
except the burgundy circles. Changing the box size has no impact on the sustained energy
injection. Smaller boxes do result in the elliptical instability being suppressed at larger
values of ϵ; larger wavenumbers are required to satisfy the resonance condition in these
smaller boxes and thus the suppressive effects of viscosity are more important.

the highest-inferred ellipticity of a Hot Jupiter, ϵ = 0.06, and find χ = 4.8 · 10−3. Hence,

the elliptical instability is considerably weaker if this steeper scaling applies in realistic

astrophysical objects. The ϵ3 scaling can thus be viewed as an “upper bound” on the

energy transfer rates resulting from the elliptical instability for small ϵ.

We additionally wish to test the effects of different box sizes on energy transfers.

To this end, we ran multiple sets of simulations with different box sizes; in each set of

simulations we fixed the Rayleigh and Ekman numbers at Ra = 6Rac and Ek = 5 · 10−5.5

respectively, while varying the value of ϵ. We have plotted I3D as a function of ϵ with

different markers denoting different box sizes in Fig. 4.2. The blue, green, yellow and

burgundy markers represent results in 1-by-1-by-1, 2-by-2-by-1, 3-by-3-by-1 and 4-by-4-

by-1 boxes respectively. The time-averaged energy injection in the sustained regime is

shown to be independent of box size, and all markers follow the same ϵ2 scaling. The

main difference between the box sizes resides in the value of ϵ at which the elliptical

instability is able to operate. The simulations in the 4-by-4-by-1 box become bursty at

ϵ ≥ 0.08. Simulations with smaller horizontal box sizes do not become bursty at this value;

simulations in the 3-by-3-by-1 box only indicate burstiness at ϵ ≥ 0.1, while the flows in

2-by-2-by-1 and 1-by-1-by-1 boxes remain in the sustained regime beyond ϵ = 0.1.

The enhanced suppression of the elliptical instability can be explained by the vari-

ation of the allowed values of k⊥ as the box size is varied. For smaller horizontal box
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sizes at the same resolution, the values of k⊥ and hence k that fit in the box increase,

while the values of kz that fit in the box are maintained at the same value. The increasing

wavenumber effect from choosing a larger box is compounded by the requirement to satisfy

the resonance with kz/k ≈ ±1/2; the discreteness of the method forces the instability to

select larger values of both k and therefore also larger values of kz (even if smaller ones

are available) to achieve resonance, as was seen in the right-hand panel of Fig. 3.14. The

increased values of k then result in a stronger suppression of the elliptical instability by

viscosity at a chosen value of ϵ, which – in tandem with the suppressive effects of the LSV

– results in stronger inhibition of the elliptical instability in smaller boxes. The effects

of viscosity must consequently become less important in larger boxes for fixed Ek. One

might then expect that the effects of viscosity can be considered as unimportant when

extrapolating to planets.

4.2 Scalings of the effective viscosity

We have found that turbulent convection acts to damp the equilibrium tidal flow like

an effective viscosity (independently of ϵ). The three regimes of the effective viscosity

were previously presented in Eq. (1.60), as obtained from Duguid et al. (2020), and are

reproduced below for convenience:

νeff =


5uclc

|ω|
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1
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(
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) 1
2 |ω|
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25√
20
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ω

)2 |ω|
ωc

≳ 5.

(4.1)

These scalings depend on the convective velocity uc, the convective lengthscale lc and

the ratio of the tidal frequency ω = ω2,2,2 = 2γ, for this tidal component, to the con-

vective frequency ωc. The reported (upper-bound by-eye fit) numerical coefficients from

Duguid et al. (2020) were reproduced in Eq. (4.1), but the introduction of rotation and

our different background flow might modify these, even if the scaling laws themselves hold.

More importantly, the choice of scaling laws for the convective quantities uc, lc and ωc

will depend on properties of the system like rotation (and perhaps magnetic fields etc.).

Therefore, before we can apply the above scalings, we must derive appropriate scaling laws

for these quantities depending on which regime the flow is in and verify that these regimes

apply in our numerical simulations. To this end we will use mixing-length theory (MLT,

Prandtl, 1925; Böhm-Vitense, 1958).

4.2.1 Scalings of convective quantities using mixing-length theory

In non-rotating simulations, it is reasonable to think of the appropriate convective length-

scale as the vertical size of the box, and therefore set lc = d, pretending that d is the

Boussinesq equivalent of a pressure scale height (or mixing-length, which is usually taken

as a multiple of the pressure scale height). One should then consider the vertical veloci-
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ties of the parcel when deriving an expression for the convective velocity. However, it is

not clear whether this is appropriate for rapid rotation. Rapidly rotating Rayleigh-Bénard

convection is confined to thin columns or vortices, and the width of these is thought to rep-

resent the dominant convective lengthscale. Therefore, the shorter horizontal lengthscale

for lc might be more appropriate than the vertical size of the box in the rapidly rotat-

ing regime. One might then also consider the horizontal velocity instead of the vertical

velocity to represent the convective velocity. Choosing a shorter lengthscale and altered

velocity will affect the turbulent viscosity, but how strong these effects are will depend

on the regime the effective viscosity is in. Finally, the appropriate arguments and thus

scalings may change with the intended application, because the effective viscosity is not a

property of the fluid, but rather a way to model the interaction between a particular fluid

flow and convective flow. Nevertheless, we will apply mixing-length theory to predict the

scaling laws of convective properties such as convective velocities, lengthscales, frequen-

cies and effective viscosities. MLT has been applied to non-rotating cases previously (e.g.

Zahn, 1966; Duguid et al., 2019, 2020) and verified in simulations, but our cases are suf-

ficiently rapidly rotating that we must account for modifications of convective properties

by rotation as outlined above. To do so, we use rotating mixing-length theory (RMLT;

Stevenson, 1979) to predict scaling laws for rotating convection, following the approach of

e.g. Barker et al. (2014), Mathis et al. (2016), and Currie et al. (2020), who have verified

the applicability of RMLT in Boussinesq simulations.

Within RMLT the horizontal convective velocity on the relevant scales (i.e. for

the modes that dominate heat transport) is expected to be roughly equal to the vertical

convective velocity (Stevenson, 1979) and is given by:

uc ∼ d1/5F 2/5Ω−1/5, (4.2)

where F is the vertical heat flux (more specifically a buoyancy flux with units of L2T−3).

We may write this in terms of the standard dimensionless numbers by relating the vertical

heat flux to the Rayleigh number via the Buoyancy frequency:

Ra ∼ N2d4ν−1κ−1 ∼ F 2/5d8/5κ−1ν−1/5Ek−4/5, (4.3)

since N2 ∼ F 2/5Ω4/5d−4/5 according to RMLT. Converting to the Rayleigh number (based

on a fixed temperature gradient orN2) from the fixed heat flux F entails a switch from flux-

based scalings to temperature-based (and by extension N2-based) scalings. This switch is

necessary as the simulations are executed using a constant temperature difference in the

model, i.e. they are temperature-based rather than flux-based. After this switch, RMLT

predicts for the dimensional convective velocity:

uc ∼ RaEk
κ

d
. (4.4)
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Furthermore, the dominant horizontal lengthscale of convection is predicted to scale as:

lc ∼ Ω−3/5F 1/5d3/5 ∼ Ra1/2Ek

Pr1/2
d. (4.5)

Finally, the convective turnover frequency (based on the horizontal lengthscale) according

to RMLT is:

ωc ∼
uc
lc

∼ Ra1/2Pr1/2
κ

d2
. (4.6)

These are the RMLT scalings written in terms of Rayleigh, Ekman and Prandtl num-

bers. These scalings agree with those found in Guervilly et al. (2019) and Aurnou et al.

(2020), and with many others, indicating that the results found from the Coriolis-Inertia-

Archimedean (CIA) balance are in agreement with the predictions of RMLT following

Stevenson (1979). The three effective viscosity scaling laws in Eq. (4.1) can be written

using these predictions from RMLT as:

νeff ∝


Ra3/2Ek2Pr−1/2κ low frequency,

Ra7/4Ek2Pr−1/4κ3/2d−1ω−1/2 intermediate frequency,

Ra5/2Ek2Pr1/2κ3d−4ω−2 high frequency.

(4.7)

The first of these regimes occurs when the tidal frequency is low, while the rotation rate

is high (so that we use RMLT rather than MLT). Naively, this situation seems counter-

intuitive because the tidal frequency is related to the rotation rate, but it can occur if the

body is close to spin-orbit synchronisation. We have not supplied ranges of ω/ωc for which

these apply as we will determine these based on our simulations. Instead we elect to refer

to these regimes qualitatively as the low, intermediate and high frequency regimes, where

the frequency in question is the tidal frequency (compared with the convective frequency).

The low frequency regime can be thought to correspond to the “slow tides” and the high

frequency regime to the “fast tides”. Note that these regimes have not been previously

verified with simulations of rotating convection interacting with tidal flows (unlike in the

non-rotating case).

We can use the expressions in Eqs. (4.4), (4.5) and (4.7) to analyse our results as a

function of both Rayleigh and Ekman numbers, in regimes attainable by simulations. To

analyse our simulation results in terms of the Ekman number we use two approaches: fixing

the Rayleigh number and fixing the supercriticality R = Ra/Rac. The second approach

modifies the power of the Ekman number scaling, because the critical Rayleigh number

scales as Rac ≈ 3(π2/2)2/3Ek−4/3 for rapid rotation, which results in uc ∼ REk−1/3κd−1

and lc ∼ R1/2Ek1/3Pr−1/2d. This leads to the following changes to νeff scalings:

νeff ∝


R3/2Ek0Pr1/2κ low frequency,

R7/4Ek−1/3Pr−1/4κ3/2d−1ω−1/2 intermediate frequency,

R5/2Ek−4/3Pr1/2κ3d−4ω−2 high frequency.

(4.8)

95



4. SCALING LAWS FOR THE ELLIPTICAL INSTABILITY AND
EFFECTIVE VISCOSITY

For completeness, since some of our simulations might enter the regime where ro-

tation is no longer rapid, we include here the scalings of the relevant quantities using

non-rotating MLT, in the temperature-based formulation, i.e. in terms of Rayleigh and

Prandtl numbers:

uc ∼ Ra1/2Pr1/2
κ

d
, (4.9)

and the relevant lengthscale in this regime is likely to be comparable with the vertical

lengthscale d:

lc = d. (4.10)

It follows that:

ωc ∼ Ra1/2Pr1/2
κ

d2
, (4.11)

which is the same scaling obtained previously using RMLT. The three regimes we expect

for the effective viscosity using MLT are then:

νeff ∝


Ra1/2Pr1/2κ low frequency,

Ra3/4Pr3/4κ3/2d−1ω−1/2 intermediate frequency,

Ra3/2Pr3/2κ3d−4ω−2 high frequency.

(4.12)

The high frequency regime within non-rotating MLT is unlikely to occur in our simulations

as that regime only applies when the tidal frequency is high, yet the rotation rate is low.

It is however likely to be important in reality, for example inside spun-down Hot Jupiter

host stars, due to for example magnetic braking (e.g. Benbakoura et al., 2019). If a Hot

Jupiter host star is spun down, and is thus slowly rotating, but there is a large orbital

frequency due to the short-period Hot Jupiter companion, the tidal frequency is also high

(and in the fast tides regime), indicating that this regime is relevant there (e.g. Barker,

2020; Duguid et al., 2020).

It should be noted at this point that all the scalings obtained in this regime are

in fact diffusion-free, i.e. the microscopic viscosity and thermal diffusivity drop out of

the obtained expressions when writing them out in full instead of using dimensionless

numbers. We have, however, written them using the standard dimensionless numbers for

ease of understanding and comparison to previous works.

From the multitude of obtained scalings a new question arises: for a given system,

which scalings (if any!) are the correct ones? This question in reality consists of two

separate questions. The first part of the question is related to whether MLT or RMLT (or

neither) predictions should be used, and the second part relates to which tidal frequency

regime is applicable. One of our key aims is to test these scalings and to determine

the appropriate ones for astrophysical extrapolation. We can start by quantifying the

transition from MLT to RMLT using the convective Rossby number:

Roc ≡
(

uc
2Ωlc

)
=
( ωc

2Ω

)
, (4.13)
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which is based on the spin of the planet, and the convective velocities and frequencies.

Fortunately, using these temperature-based definitions, regardless of whether the regime in

question is MLT or RMLT, the expression for the Rossby number in terms of the diffusion-

free scalings is the same because ωc has the same form in both regimes. This useful result

was also found previously (e.g. Aurnou et al., 2020), and leads to the expression for the

convective Rossby number:

Roc ∼ Ra1/2Pr−1/2Ek. (4.14)

On the other hand, the transitions between the different frequency regimes for νeff depend

on the ratio ω/ωc, which we can write as:

ω

ωc
=

ω

uc/lc
=

1

2

2ωlc
uc

≡ 1

2
Ro−1

ω . (4.15)

We have defined this quantity as a “tidal convective Rossby number”, Roω. The two

Rossby numbers are related via the factor Ω/ω. In this work, the two Rossby numbers

differ by a factor of 1/2, because Ω = γ = 1
2ω is set for the simulations with a given Ek.

The regime transitions are thus expected to occur at roughly the same value of the rotation

rate. Using the tidal frequency transitions obtained in Duguid et al. (2020), where the

transition from intermediate to high frequency regimes occurs around ω
ωc

≈ 5, this may

be expected to occur here at Roω ≈ 0.1. The transition from MLT to RMLT on the other

hand is likely to start at Roc ≈ 0.1 (e.g. Fig. 4 of Barker et al., 2014).

4.2.2 Verification of rotating mixing-length theory scaling laws

To verify the usage of the RMLT scaling laws we will compare the observed values of the

convective velocity and lengthscale in the simulations with our predictions. We choose

parameters predominantly in the strongly rotationally-constrained regime, which are, be-

cause of the model setup with Ω = γ, generally located in the fast tides regime. We

expect to observe the RMLT scalings for the convective frequency and lengthscale in our

simulations, and the high frequency regime of the effective viscosity. We will also justify

this regime as being the most relevant in Hot Jupiters in Ch. 7.

In this section we explore further the regime where the energy injection scales as ϵ2

that we have identified, and we will demonstrate that it results from convective turbulence

damping the background tidal flow. First, we fit the convective velocities as a function of

Rayleigh number in the left-hand panel of Fig. 4.3 to verify our predictions based on RMLT.

The data is obtained from simulations with fixed Ek = 5 ·10−5.5, and with such values of ϵ

that only sustained energy injection is present without visible bursts of elliptical instability

(which tend to produce larger vertical velocities when they occur). These values of ϵ that

contain no visible bursts of the elliptical instability vary with Rayleigh number as stronger

convective driving results in stronger suppression of the elliptical instability; for example

at Ra = 4Rac ≈ 0.9 · 108 values up to ϵ = 0.04 are used, while at Ra = 10Rac ≈ 2.2 · 108

we use up to ϵ = 0.075, and at Ra = 20Rac ≈ 4.4 · 108 we use up to ϵ = 0.1. The

same values of ϵ are used for all subsequent figures as a function of Ra in this chapter.
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Figure 4.3: Scaling of the vertical convective velocity compared with the predictions of
MLT and RMLT. Left: Scaling of the vertical convective velocity with fixed Ek = 5·10−5.5.
Only those simulations with sufficiently small ellipticities are used such that no bursts of
the elliptical instability are present, as indicated by the orange data points. At these
ellipticities the vertical velocity is negligibly impacted by the ellipticity. We observe the
RMLT scaling with Ra in solid-red, and a hint for the non-rotating MLT scaling for larger
Ra with Ra1/2 in solid-black. Right: Scaling of the vertical convective velocity with fixed
Ra = 1.3 · 108 and ϵ ∈ [0.02, 0.05] as a function of Ω = (1/2)Ek−1. The blue data points
correspond to simulations with bursts of the elliptical instability. We retrieve the RMLT
scaling in solid-red at large Ω, and find that the scaling tends to the MLT prediction,
i.e. to become independent of rotation rate, as Ω becomes small, here illustrated by the
solid-black line, which follows Ω−0.2. At smaller rotation rates we expect the convective
velocity to become fully independent of the rotation rate, as MLT predicts.

In this and subsequent figures, orange circles represent simulations without bursts of the

elliptical instability and blue circles represent those in which there are visible bursts. We

plot the best fit RMLT scaling in solid-red and for stronger convection (i.e. relatively

weaker rotation), we fit the non-rotating MLT scaling in solid-black. The RMLT scaling

is in very good agreement with our data for Ra ≲ 3 · 108, indicating that RMLT is the

appropriate description of strongly rotationally-constrained convection in our simulations.

We separately fit the convective velocities as a function of the rotation rate Ω in the

right-hand panel of Fig. 4.3 at constant Ra = 1.3 · 108 at ϵ ∈ [0.02, 0.05]. These values of

ϵ are used in all subsequent figures with fixed Ra. We have elected to plot the results in

Fig. 4.3 and in the rest of this chapter as a function of Ω, measured in inverse viscous times,

instead of the Ekman number because Ω has a more direct relation to the tidal frequency

ω than the Ekman number, particularly in real bodies where ν, d ̸= 1. In these simulations

we have set ν = d = 1, however, so Ω = (1/2)Ek−1. The simulations at high rotation rate

do feature bursts of the elliptical instability, because the associated high tidal frequency

strengthens the elliptical instability whilst weakening the convective driving because the

Rayleigh number is fixed. The data points at strong rotation, Ω ≥ 104.4, fit the RMLT

prediction of Ω−1 well. The data points at weaker rotation rates become more weakly

dependent on Ω as they begin to approach the non-rotating MLT prediction. The black-
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solid line fitted to the left-most data points scales only weakly as Ω−0.2. It is expected that

at even smaller rotation rates, or larger Rayleigh numbers, this scaling would become fully

independent of rotation. This figure indicates that the transition from MLT to RMLT is

indeed gradual, instead of abrupt. From both figures we find – according to RMLT – that

the convective velocity is well-described by

uc = 0.28RaEk
κ

d
, (4.16)

for rapid rotation, and for weaker rotation it approaches the non-rotating MLT scaling

uc = 7.1 · 10−2Ra1/2Pr1/2
κ

d
. (4.17)

Next we obtain the horizontal lengthscale from simulations with fixed Rayleigh num-

ber Ra = 1.3 · 108 and with fixed supercriticality R = 6 as a function of Ω. We use two

different methods to calculate a dominant lc, illustrated here using the heat flux spectrum

F (k⊥) = Re(ûzT̂
∗) as a function of horizontal wavenumber k⊥ =

√
k2x + k2y. Hats indicate

a 2D (kx, ky) Fourier transform. We have averaged over the inner vertical 1/3 of the box,

i.e. between z = 1/3 and z = 2/3, and subsequently summed up the contribution from all

modes within an integer bin of k⊥. The first prescription was used by Barker et al. (2014)

and Currie et al. (2020):

lc = 2π

(∫
k⊥F (k⊥) dk⊥∫
F (k⊥) dk⊥

)−1

, (4.18)

and the second was used by Parodi et al. (2004):

lc = 2π

∫
(k⊥)

−1F (k⊥) dk⊥∫
F (k⊥) dk⊥

. (4.19)

In our simulations both methods agree very well when based on the same quantity. How-

ever, vastly different results are obtained if the energy spectrum (as used by Parodi et al.,

2004) is used instead of F (k⊥) (as used by Barker et al., 2014; Currie et al., 2020). In

Fig. 4.4 the convective lengthscales calculated using the heat flux according to Eq. (4.18)

are plotted in solid (and dashed) lines. The lengthscales according to Eq. (4.19), but for

the vertical kinetic energy spectrum Ez(k⊥) =
1
2 |ûz|

2 instead of F (k⊥), are plotted in dot-

ted lines. We have opted to calculate lengthscales based on the “vertical kinetic energy”

spectrum Ez(k⊥) in the latter instead of the total kinetic energy spectrum because the

total kinetic energy spectrum is strongly dominated by the large-scale horizontal motions

of the LSV. This forces the power to be concentrated on the largest scales, while these

horizontal motions are unlikely to contribute substantially to heat transport or provide

the dominant contribution to the effective viscosity. The spectra from cases with the most

extreme parameters we considered are displayed; those at the largest Ekman number,

Ek = 5 ·10−4.5, with fixed Ra = 1.3 ·108 are plotted in solid-blue and dotted-purple, those

at the smallest Ekman number, Ek = 5 · 10−6, with fixed Ra = 1.3 · 108 are plotted in

solid-yellow and dotted-burgundy, and those at the smallest Ekman number with fixed
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R = 6 are plotted in solid-green and dotted-orange. The heat flux spectra at small Ekman

number contain dashed parts, indicating negative heat flux for these k⊥.

Figure 4.4: The heat flux F (k⊥) (solid and dashed lines) and the vertical kinetic energy
Ez(k⊥) (dotted lines) spectra as a function of horizontal wavenumber k⊥. The spectra are
plotted at the most extreme values of the surveyed parameter space in Ekman number.
The spectra at the largest Ekman number, Ek = 5 · 10−4.5, with fixed Ra = 1.3 · 108
are plotted in solid-blue and dotted-purple. The spectra at the smallest Ekman number,
Ek = 5 · 10−6, with fixed Ra = 1.3 · 108 are plotted in solid-yellow and dotted-burgundy,
and those at the smallest Ekman number with fixed R = 6 are plotted in solid-green and
dotted-orange. Dashed parts of the heat flux spectra indicate negative heat flux for these
scales.

At the largest Ekman number considered in solid-blue and dotted-purple the ma-

jority of the heat flux appears concentrated towards small horizontal wavenumbers, i.e.

large scales. This is in agreement with the behaviour of the vertical velocity in the right-

hand panel of Fig. 4.3, which indicates that this simulation is close to the MLT regime,

in which the lengthscale of the heat flux should agree with that of vertical box size, i.e.

k = 2π. The heat flux distribution is however broad, and we observe that the smaller

scales also contribute to the heat transport. Turning our attention to the simulation with

Ek = 5 · 10−6, Ra = 1.3 · 108 in solid-yellow and dotted-burgundy, we see that a strong

peak emerges. This simulation is executed at a Rayleigh number very close to the critical

Rayleigh number, with corresponding R ≈ 1.3, and therefore we expect the contribut-

ing wavenumbers to strongly follow the linear onset wavenumber. We do indeed observe

that the peak is located exactly at the most linearly unstable wavenumber of k⊥ ≈ 76,

indicating that this simulation is dominated by onset dynamics, i.e. affected by viscosity.

Finally, the simulation with Ek = 5 · 10−6, R = 6, which corresponds to Ra = 6.1 · 108, in
solid-green and dotted-orange shows that the heat flux in this simulation is the result of a
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broad distribution at larger wavenumbers, corresponding to a smaller convective length-

scale, as we expect from RMLT predictions. There is a slight discrepancy between the

heat flux and the vertical kinetic energy spectrum; the heat flux appears peaked around

k⊥ ≈ 100, while the kinetic energy appears peaked around k⊥ ≈ 50, with the dominant

contributing modes concentrated towards lower wavenumbers. Furthermore, because the

simulation is now no longer close to onset, more scales are involved in heat transport, and

the linear onset scale is no longer the most dominant.

We conclude that the locations of the peaks of the heat flux spectra are indeed

located at large scales when we expect the simulation to be in the MLT regime and small

scales when we expect the simulation in the RMLT regime, as long as the simulations are

far enough removed from onset such that viscous effects are weak on the relevant scales

and the simulations are no longer dominated by the onset scale. Thus we will use the heat

flux spectra to obtain the convective lengthscale. We can also draw a conclusion on the

well-resolvedness of these results: the conventional rule of thumb that the power in the

peak of the spectrum must be a factor of at least 103 larger than at the de-aliasing scale

is maintained in the kinetic energy spectra as well as the heat flux spectra. This indicates

that our simulations are therefore likely to be spatially converged in the horizontal plane.

We now show the obtained horizontal lengthscales in our simulations in Fig. 4.5

and Fig. 4.6. The lengthscales calculated using the heat flux according to Eq. (4.18) are

plotted in orange diamonds. For completeness the lengthscales according to Eq. (4.19)

for the vertical kinetic energy spectrum Ez(k⊥) are plotted in yellow diamonds and the

lengthscale obtained from the temperature fluctuation spectrum, i.e. |θ̂(k⊥)|2, is also

plotted in green diamonds. Furthermore, we have added the lengthscale corresponding to

the highest peak of the heat flux spectrum as a proxy for the dominant lengthscale in blue

squares. The lengthscales corresponding to the peaks in the vertical kinetic energy and

temperature perturbation spectra are omitted, because they tend to be located at the box

scale, likely due to influence of the LSV, and then rapidly decrease and eventually align

with the linear onset scale for Ω ≳ 104.6. Finally, fits to the data are included, with the

RMLT prediction fit in solid-red and the linear onset lengthscale in dashed-purple.

In Fig. 4.5 we display lc as a function of Ω with fixed Ra = 1.3 · 108, on the same

interval of Ω as the right-hand panel of Fig. 4.3. We find that the blue squares, i.e. the

peaks of the heat flux spectrum, follow a fit proportional to Ω−1 in solid-red. Note that

the blue squares do not agree with this fit when Ω ≳ 104.5, which is probably because the

simulations are not turbulent enough to follow RMLT and instead lie more closely to the

linear onset lengthscale. In terms of the lengthscales as obtained from the integrals there

are substantial differences between those calculated based on different quantities. All three

quantities match together close to linear onset for the three right-most data points, which

have supercriticalities of R = [2.4, 1.8, 1.3] from left to right, but they diverge for Ω ≲ 104.8,

coinciding with the generation of the LSV as the supercriticality of the system increases.

The lengthscale corresponding with squared temperature perturbations in green diamonds

stays close to the linear onset scale, i.e. it scales as roughly Ω−1/3. The lengthscale based
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Figure 4.5: The horizontal convective lengthscale as a function of rotation rate with fixed
Ra = 1.3 · 108, calculated using the integration methods in Eqs. (4.18) and (4.19), which
agree well. Data points are calculated based on the heat flux (orange diamonds), vertical
kinetic energy (yellow diamonds) and the squared temperature perturbations (green dia-
monds). The peaks of the heat flux spectrum are included in blue squares. The solid-red
fit is the RMLT prediction of Ra1/2Ω−1 (Eq. (4.20)), and the dashed-purple line is the
linear onset lengthscale. The peaks of the heat flux agree well with the RMLT prediction.
The steepest fit to the heat flux lengthscale is plotted in dashed-burgundy, which proba-
bly differs from the RMLT prediction in solid-red because of the modest supercriticalities
involved. The linear onset scaling is plotted in dashed-purple, which only agrees with our
data for the three right-most points with the smallest supercriticalities.

Figure 4.6: Same as Fig. 4.5, but with fixed supercriticality R = 6. The heat flux data
agree well with the RMLT prediction in solid-red, which is the same fit as the solid-red
line in Fig. 4.5. The linear onset scaling is plotted in dashed-purple, and differs from our
simulation results.
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on the kinetic energy is much larger than the other two, but also follows a scaling roughly

similar to Ω−1/3 (fit not shown) in the interval Ω ∈ [103.5, 104.6]. These two scalings do not

match our predictions according to RMLT and also do not display a transition to become

independent of rotation when Ω ≲ 104.4. The lengthscale calculated using the heat flux

on the other hand is steeper than the other two in the range Ω ∈ [104.3, 104.6]. RMLT is

expected to apply in this range because the flow is turbulent and strongly rotationally-

constrained. The slope fitted within this range in dashed-burgundy scales as Ω−0.6, which

should be compared with the temperature-based RMLT scaling as Ω−1. This disagreement

is likely to arise from the narrow range of Ra considered and because these simulations

are not turbulent enough to match the RMLT scaling fully. However, it is much steeper

than the result obtained from the other two quantities, and the data points taper off at

small Ω as expected.

In Fig. 4.6 we demonstrate that with fixed supercriticality R, our results are consis-

tent with the RMLT prediction, based on the supercriticality, of lc ∝ Ω−1/3 regardless of

which quantity or method is used to compute the lengthscale. The solid-red line, with the

same parameters as the solid-red line in the left-hand panel matches the heat flux data

well. The lengthscale obtained from the temperature fluctuations is slightly larger, and

the lengthscale obtained from the vertical kinetic energy is much larger. Interestingly, the

peaks in blue squares do not follow the solid-red RMLT prediction as closely as they do in

Fig. 4.5. We attribute this difference to fluctuations in the spectrum causing the peak to

shift around, particularly as the spectrum near the peak of the heat flux is quite broad as

was observed in Fig. 4.4, so the lengthscale based on integrals may be better suited here.

Furthermore, while these data superficially seem to follow the linear onset scaling, each of

these follows a distinct scaling with a different prefactor than the onset scaling. Note that

when the supercriticality is fixed (equivalent to plotting results as a function of RaEk4/3)

instead of the Rayleigh number, the predictions of RMLT have the same dependence on

Ω as the linear onset scaling, but this does not imply that the lengthscale is controlled by

viscosity.

Based on these results, we use the lengthscale obtained from the integral heat flux

method in Fig. 4.6 in the rest of this work, i.e. the dark orange diamonds, and use the

solid-red RMLT fit whenever it is expected to apply. From the solid-red fit in both Fig. 4.5

and Fig. 4.6, if we reintroduce Ra using the definition Rac ≈ 8.7Ek−4/3, we obtain:

lc = 0.63Ra1/2EkPr−1/2d. (4.20)

Using this scaling together with Eq. (4.16) we also obtain a scaling law for the convective

frequency

ωc ≈ 0.44Ra1/2Pr1/2
κ

d2
. (4.21)

Thus we conclude that indeed the RMLT prescriptions agree well with our simulations,

and show that the majority of our simulations are indeed in the rapidly-rotating regime

as expected.
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4.2.3 Effective viscosity verification using rotating mixing-length theory

Having verified the RMLT prescriptions in our simulations we now examine the scaling

of the effective viscosity with convective driving (Ra) in Fig. 4.7 for simulations with

Ek = 5 · 10−5.5. Only results from simulations with sustained energy injection are plotted

in this figure. There is a minimum value of Ra ≈ 2.5Rac for which using an effective

viscosity according to RMLT reasonably approximates the data. This minimum also

corresponds to the threshold value above which the convective LSV appears (Favier et al.,

2014b; Guervilly et al., 2014).

We apply these theoretically-predicted and empirically-fitted scaling laws to deter-

mine an effective viscosity in Fig. 4.7. The effective viscosity portrayed in this figure is

derived from the time-averaged values of I3D, and as such it is given by νeff,3D, but it is

equal to νeff because the time-averaged values of I and I3D are the same. The blue line

corresponds to the low frequency regime in Eq. (4.7), the black line corresponds to the

intermediate frequency regime, and the red line to the high frequency regime, with orange

data points indicating the simulations. Varying Ra in this figure also means varying the

ratio of tidal to convective frequencies, which can change which regime might be predicted

in Eq. (4.7). The low and intermediate frequency predictions agree well with the simula-

tions at high Ra, where ωc is larger and thus the ratio of the tidal to convective frequencies

is lower than at low Ra. At low Ra the simulations agree with the high frequency pre-

diction, though there is a departure for the smallest Ra for which the simulations are no

longer sufficiently turbulent, as noted previously.

The left-hand panel of Fig. 4.8 shows instead the effective viscosity as a function of

the rotation rate Ω with fixed Ra = 1.3 · 108. Because Ra is fixed we expect the effective

viscosity to rapidly decrease as the rotation rate increases. Since we set γ = Ω in these

simulations the tidal frequency is ω = 2γ = 2Ω. The scalings of the effective viscosity

obtained using RMLT according to Eq. (4.7) in terms of Ω are then respectively Ω−2, Ω−2.5

and Ω−4 in the low, intermediate and high tidal frequency regime. In the left-hand panel

of Fig. 4.8 we over-plot these low, intermediate and high frequency regime scalings, which

are in good agreement with the simulation results. Based on our results for the convective

lengthscale from the simulations there is some uncertainty around the solid-red fit of Ω−4.

According to the simulation data this should possibly scale as Ω−3.6 instead, as the scaling

obtained for the convective lengthscale goes as Ω−0.6 instead of Ω−1. The difference in

the results is negligible however, and for consistency with the RMLT prediction for the

effective viscosity we opted to keep instead the Ω−4 scaling in the plot.

In the right-hand panel of Fig. 4.8 we fixed R = 6 at ϵ ∈ [0.02, 0.05], which are the

values of ϵ used for all subsequent results with fixed R. We examined the variation of the

effective viscosity with Ω. Again, we observe a decrease as the rotation rate is increased,

though this is a weaker trend than we found when fixing Ra. We also observe two possible

scaling regimes. When we compare with those expected by RMLT we again find good

agreement with our simulation results. We find that even when fixing the convective

supercriticality, we obtain bursts of elliptical instability for sufficiently large Ω. This may
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Figure 4.7: Effective viscosity as a function of Ra with fixed Ek = 5 · 10−5.5. Only
simulations featuring sustained energy injection are plotted. In addition, all three scaling
law regimes predicted using RMLT are plotted. All three scaling laws agree well with the
data in the appropriate regimes, the intermediate and low frequency scaling laws agree at
high Ra. The high frequency regime agrees at low Ra, except for the smallest values of
Ra.

be caused by a diminished suppressive effect of convection on the elliptical instability

for larger Ω because the effective viscosity is lowered, while the increased rotation rate

enhances the growth rate of the elliptical instability (relative to the viscous damping rate).

In this section we have generally found good agreement with both the predictions of

RMLT for convective velocities and lengthscales, and with their application to the scaling

laws for the effective viscosity acting on (tidal) oscillatory shear flows in Duguid et al.

(2020). Based on our fits of RMLT scaling laws to the data in Figs. 4.7 and 4.8, we find

the following effective viscosity regimes:

νeff =


6.4 · 10−3Ra3/2Ek2Pr−1/2κ low frequency,

0.012Ra7/4Ek2Pr−1/4κ3/2d−1ω−1/2 intermediate frequency,

0.11Ra5/2Ek2Pr1/2κ3d−4ω−2 high frequency.

(4.22)

4.2.4 Analysis of regime transitions

The previous section tentatively suggests we can use MLT and RMLT and the tidal fre-

quency regimes observed in simulations to interpret (and make predictions for) the effective

viscosity. However, to understand the full picture, one would need to understand when
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(a) Fixed Ra (b) Fixed R (supercriticality)

Figure 4.8: Effective viscosity as a function of the rotation rate with fixed Rayleigh number
and supercriticality. Left: Effective viscosity with fixed Rayleigh number Ra = 1.3 · 108
and ϵ ∈ [0.02, 0.05] as a function of rotation rate, together with all three predictions based
on RMLT and the scalings obtained in Duguid et al. (2020). Right: Same as above but
at constant supercriticality R = 6 and ϵ ∈ [0.02.0.05].

transitions between different regimes occur. As described in Sec. 4.2.1, by virtue of set-

ting Ω = γ in our simulations, the values of the Rossby number at which these transitions

are likely to occur are similar to each other. Therefore, the occurrence of these combined

transitions (MLT/RMLT and the different tidal frequency regimes) makes it unclear which

regimes of the effective viscosity are observed in Fig. 4.7 and Fig. 4.8. One way to separate

these two transitions is to first consider the quantity ω/ωc, which is important because it

controls the regime transitions of the effective viscosity. However, it is also controlled by

the transition from MLT to RMLT, because ωc depends on uc and lc.

In Fig. 4.9 the ratio ω/ωc is plotted as a function of the Rayleigh number at constant

Ek = 5 ·10−5.5. We calculate ωc using the convective velocities obtained from simulations,

whilst basing the convective lengthscale on Eq. (4.5). In addition, the prediction of ω/ωc

according to RMLT simulation results, with ωc given by Eq. (4.21), is plotted in solid-red.

By forcing the convective lengthscale to follow the RMLT prediction, i.e. lc ∼ Ra1/2, ωc

will no longer scale as Ra1/2 when uc deviates from the RMLT prediction, i.e. when its

scaling changes from uc ∼ Ra to uc ∼ Ra1/2. This in turn forces the scaling of ωc to

go from ωc ∼ Ra1/2 to ωc ∼ Ra0. Examining where this transition occurs allows us to

identify at what value of ω/ωc the change from MLT to RMLT occurs. In the figure,

the change of scaling laws is manifested by the data points deviating from the solid-red

prediction as their slope decreases when Ra ≳ 2 · 108, in accordance with what is observed

in Fig. 4.7. Thus, by using the RMLT scaling to obtain the convective lengthscale, but

using the simulation data for the convective velocity, we can easily identify at what values

of ω/ωc this transition from RMLT to MLT occurs. We find the transition at ω/ωc ≈ 10,

or a convective Rossby number Roc ≈ 0.1.

In Fig. 4.10 we show the ratio ω/ωc as a function of Ω at constant Ra = 1.3 · 108
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Figure 4.9: Ratio of the tidal to convective frequencies as a function of Ra compared
with the RMLT prediction with fixed Ek = 5 · 10−5.5. The data for uc is obtained from
simulations, while lc is calculated using Eq. (4.5). The predicted result based on Eq. (4.21)
is plotted in solid-red. The change from the RMLT to MLT scaling occurs around Ra ≈
2 · 108 in the left-hand panel of Fig. 4.3, which matches the departure observed here and
occurs at ω/ωc ≈ 10, i.e. Roc ≈ 0.1.

using orange and blue (with elliptical instability bursts) circles, which is computed in the

same way as in Fig. 4.9. In addition, ω/ωc is calculated using the simulation data directly

for both uc and lc in purple and burgundy squares. Purple squares indicate simulations

without the elliptical instability, and burgundy squares indicate simulations with bursts

of the elliptical instability. The prediction for ω/ωc in the RMLT regime is again plotted

in solid-red. The deviation of the orange data points from this solid-red line occurs for

Ω ≲ 104.4 as in the left-hand panel of Fig. 4.8. Furthermore, this deviation coincides with

ω/ωc ≈ 10, as was found in Fig. 4.9.

The convective frequency calculated directly using the simulation results for both uc

and lc in the purple and burgundy squares illustrates how the transition from RMLT to

MLT occurs in our simulations. First of all, the purple squares and some of the burgundy

squares in the range Ω = [104.5, 105] match the dashed-black fit of ω/Ω−0.4 ∼ Ω1.4,

illustrating that indeed according to simulations ωc ∼ uc/lc ∼ Ω−1/Ω−0.6 ∼ Ω−0.4. The

purple squares in the interval Ω = [103.5, 104.4] do not deviate as much from the solid-red

prediction as the pure RMLT convective lengthscale results in orange on the same interval.

The convective velocity and lengthscale therefore appear to become independent of Ω at

roughly the same value of Roc. As a result ωc is maintained to be almost independent

of Ω, which is indicated by scaling as ωc ∼ Ω0.2 according to the dashed-blue fit. Note

also that the value of ω/ωc using simulation results decreases to ≈ 1, suggesting that

the effective viscosity in this range should transition from the high tidal frequency to the

intermediate tidal frequency regime, but not to the low tidal frequency regime, according
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Figure 4.10: Ratio of the tidal to convective frequencies as a function of Ω with fixed
Ra = 1.3 · 108, calculated in the same way as in Fig. 4.9 in orange and blue circles. Using
this calculation the change from MLT to RMLT occurs around Ω ≈ 104.5, like in Fig. 4.8,
corresponding to ω/ωc ≈ 10, and Roc ≈ 0.1. The purple and burgundy squares represent
ωc calculated using both uc and lc, which stays closer to the prediction of ωc independent
of the rotation rate, and therefore attains lower values than the RMLT prediction, crossing
below the ω/ωc = 5 threshold.

to the transition found in the non-rotating simulations of Duguid et al. (2020), if these

hold here.

Both Fig. 4.9 and Fig. 4.10 indicate that care must be taken to first identify the

regime of rotational influence on the convection (i.e. MLT vs RMLT) to predict the value

of ωc before calculating the ratio ω/ωc, and thus determining which frequency regime

is relevant for the effective viscosity. The deviation from the RMLT prediction for these

quantities in both figures occurs roughly when Ro−1
c ≈ 10, so we conclude that when Roc <

0.1, RMLT is the correct prescription for the rotating convection, and that Roc ≈ 0.1 is

where the transition from RMLT to MLT begins and the rotational influence diminishes

for increasing Roc.

To fully disentangle and interpret the effective viscosity and its dependence on Ω and

ω separately, we should also calculate the effective viscosity as a function of the ratio ω/ωc.

To this end we use values of ωc obtained from the simulations, i.e. corresponding to the

square markers in Fig. 4.10. The results for νeff,3D are plotted in Fig. 4.11. These figures

are closely related to Fig. 4.8, but are specifically designed to explore the ω/ωc dependence.

In the left-hand panel of Fig. 4.11, we show results with fixed Ra = 1.3 · 108, while in the

right-hand panel simulations with fixed R = 6 are plotted. The effective viscosity is divided

by the factor of uclc which is present in all expressions for this quantity. By eliminating

this factor the dependence of the effective viscosity on the ratio of ω/ωc is therefore directly

measured. It is important to note that due to the transition from MLT to RMLT in the
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(a) Fixed Ra (b) Fixed R (supercriticality)

Figure 4.11: The effective viscosity divided by uclc as a function of ω/ωc. Left: Effective
viscosity with fixed Rayleigh number Ra = 1.3 · 108. The high frequency prediction is
plotted in solid-red, and the intermediate frequency prediction is plotted in black. The
vertical dashed-black line indicates the transition between these regimes at ω/ωc = 5 found
previously (without rotation by Duguid et al., 2020), which matches the transition in our
data well. Right: The same with fixed supercriticality R = 6; only the high frequency
regime is present in the data.

left-hand panel and the choice of fixed supercriticality in the right-hand panel, ω/ωc in

general depends on the Ekman number. In the left-hand panel both the intermediate and

high frequency regimes are observed. The high frequency regime is plotted in solid-red

line, while the intermediate frequency regime is plotted in solid-black. Both scalings agree

well with simulation data. The transition from the high frequency to the intermediate

frequency regime found previously at ω/ωc ≈ 5 (without rotation in Duguid et al., 2020)

is plotted using a vertical dashed line in the left-hand panel. The location of this transition

agrees remarkably well with our data. In the right-hand panel, only the high frequency

regime is observed. We thus conclude that we have not observed the low tidal frequency

regime in our simulations. Moreover, we find that the intermediate regime in Duguid et al.

(2020) is reproduced and the transition to this from the high frequency regime seems to

occur at the same value of ω/ωc, even when the convective velocity and lengthscale are

influenced by rotation. The prefactors of the intermediate and high frequency regime are

however different from those found in Duguid et al. (2020), both lower by approximately

a factor of two. Reproducing Eq. (4.1) with these altered prefactors:

νeff =


5uclc

|ω|
ωc

≲ 10−2,

0.25uclc

(
ωc
ω

) 1
2 |ω|

ωc
∈ [10−2, 5],

3uclc

(
ωc
ω

)2 |ω|
ωc

≳ 5.

(4.23)

In summary, to correctly interpret and make predictions for the effective viscosity,

one must first determine whether or not the convection is strongly influenced by rotation
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(i.e. whether RMLT or MLT is an appropriate description) using the convective Rossby

number. Then the ratio of ω/ωc, i.e. the “tidal Rossby number”, can be used to determine

which of the low, intermediate or high tidal frequency regimes are appropriate. Upon

substituting the results for uc and lc from Eq. (4.16) and Eq. (4.20) into Eq. (4.23) we

finally arrive at:

νeff =


0.88Ra3/2Ek2Pr−1/2κ |ω|

ωc
≲ 10−2,

0.029Ra7/4Ek2Pr−1/4κ3/2d−1ω−1/2 |ω|
ωc

∈ [10−2, 5],

0.10Ra5/2Ek2Pr1/2κ3d−4ω−2 |ω|
ωc

≳ 5.

(4.24)

These scalings are likely to be more robust than the scalings in Eq. (4.22), because the

numerical coefficient of the scaling for the low frequency regime is based on a measured

result in Duguid et al. (2020) and the scaling for the intermediate frequency regime is no

longer unclear because the two transitions are occurring at the same time.

4.3 Conclusions

We have found the elliptical instability to provide time-averaged tidal dissipation rates

consistent with an ϵ3 scaling when it operates (consistently with Barker & Lithwick, 2013,

2014; Barker, 2016a). We have defined an efficiency factor χ, such that D ≡ χϵ3γ3, to

represent the intermittent and imperfect operation of the elliptical instability. We observed

this efficiency to be χ ≈ 0.05, with an upper bound of χ ≲ 0.18. Furthermore, the efficiency

factor seems to be independent of the convective driving (Rayleigh number) as long as the

elliptical instability operates. Some of our results are also consistent with a steeper ϵ6

scaling, which, if robust, would significantly weaken tidal dissipation for realistic values

of ϵ, restricting the effectiveness of this mechanism except for the very shortest orbital

periods.

We have also found a sustained energy injection rate scaling as ϵ2 in our simulations

for smaller values of ϵ than those for which the elliptical instability is observed. This

can be interpreted as an effective viscosity arising from the interaction between rotating

convection and the equilibrium tidal flow that is independent of ϵ (as would be predicted by

a linear tidal mechanism). On the other hand, this effective viscosity is observed to depend

on the convective velocity, lengthscale and tidal frequency. We have obtained scaling

laws for convective velocities and lengthscales, which are used to find predictions for the

convective frequency and the effective viscosity, using both (temperature-based) MLT and

RMLT prescriptions. We find very good agreement between the predictions of RMLT and

our simulation data. Our simulations confirm the applicability of the diffusion-free scalings

of RMLT (e.g. Stevenson, 1979; Barker et al., 2014; Aurnou et al., 2020; Currie et al., 2020)

to describe sufficiently turbulent rapidly rotating convection. We observe the transition

from RMLT to MLT to begin around Roc ≈ 0.1 as in Barker et al. (2014), and find

RMLT is the appropriate description of (sufficiently turbulent) convection for Roc ≲ 0.1.

Furthermore, these scaling laws, which we have confirmed using temperature-based RMLT,
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match those obtained from Coriolis-Inertial-Archimedean (CIA) triple balance arguments

(e.g. Ingersoll & Pollard, 1982; Aubert et al., 2001; Jones, 2015; Gastine et al., 2016;

Guervilly et al., 2019; Aurnou et al., 2020; Bouillaut et al., 2021, and many others)

and the applicability of these temperature-based scalings reinforce the applicability of the

diffusion-free flux-based scalings.

Finally, we find that the scaling laws for the effective viscosity as a function of

convective velocity, lengthscale and frequency – when the rotational modification of these

quantities is accounted for – previously found in non-rotating simulations (Duguid et al.,

2020) largely hold true in our rotating simulations. Our results support the frequency-

reduction of the effective viscosity for fast tides (ωc/ω)
2 when ω ≫ ωc. We also confirm

the presence of the intermediate frequency regime of (ωc/ω)
−1/2, as found in Duguid et al.

(2020) and Vidal and Barker (2020b), in our simulations, and that the transition to this

regime from the high frequency regime occurs at a similar ratio of ω/ωc ≈ 5.

We will discuss the astrophysical applications of our results in Ch. 7. To this end we

will generate models of the interiors of giant planets, to which we will apply the scaling laws

we have obtained for the elliptical instability, as well as the predictions for the effective

viscosity.
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Chapter 5

Theoretical background of the

precessional instability and

convection

In the next two chapters we will turn our attention to the precessional instability and its

interaction with convection. The precessional instability is similar in mechanism to the

elliptical instability and therefore most of the concepts introduced in Ch. 2 are applicable

here. Indeed we will again start by discussing the form of the background precessing

flow and summarising the findings of the previously performed linear stability analysis

of the precessional instability in isolation. We will once again derive the quantities of

interest in this system. From here we will detail the dedalus (Burns et al., 2020) and

nek5000 (Fischer et al., 2008) codes we employ to study these interactions. We verify

that we accurately captured both the precessional and convective instabilities in isolation

in both codes. After confirming the instabilities in isolation are properly captured, we

will perform a new linear stability analysis of the precessional instability in the presence

of stratification and attempt to verify this using both codes. Finally, we will once again

detail the parameters we will vary in this study as well as the resolutions we will employ

in our simulations.

5.1 The precessional instability

5.1.1 The background precessional flow

The precessional instability is an instability of axially precessing flows. Tidal forces from

the secondary can induce axial precession in the primary if the spin axis of the primary

is not aligned with the orbital angular momentum vector of the system, such that the

obliquity of the body is non-zero. Such a process is important for example for the Earth,

whose spin axis gradually precesses in space due to tidal forcing from the Moon and Sun.

The relevant tidal component that results in the axial precession is part of the “obliquity
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tide”, namely the l = 2, m = 1, n = 0 component of the tide. The rotation rate of

this flow is tied to the tidal frequency of this component, which is ω2,1,0 = −Ωs. This

component gives rise to the Poincaré solution in a full homogeneous fluid body (Poincaré,

1910) in the absence of viscosity. We consider the full Poincaré solution in the precessing

frame, as depicted in the schematic in Fig. 1.10. In the precessing frame the body spins

around its own axis, while this whole system rotates around a secondary axis called the

precession axis, i.e. it precesses, according to an observer that is located in space. We

choose the direction of the spin-axis to be the z̃-axis. Tildes denote quantities defined in

the precessing frame. In this frame the spin of the body is generally much faster than

the precession, and the precession forces the whole body to rotate. The component of the

precessional vector that is parallel to the body’s rotation is unimportant to the precessional

instability, so we choose to set it to zero. The precession vector can therefore be assumed to

take the form Ω̃p = PoΩx̂ (Kerswell, 1993), with Po = Ωp/Ω the Poincaré number. This

setup is shown on the left-hand side of Fig. 5.1. The Poincaré number fulfils the same role

in the precessional instability as the ellipticity ϵ does in the elliptical instability, and one

can see numerous parallels between these two quantities in the rest of this chapter. The

Poincaré number is, like the ellipticity, a small parameter in most astrophysical systems.

On Earth, for example, the precessional period is ≈ 26000 yrs, such that Po ≈ 10−7.

Even so, Kerswell (1996) estimated that the maximum possible energy injected by the

precessional instability could be sufficient to power the geodynamo. In Hot Jupiters, with

both larger oblateness and closer proximity to the tide raising body and therefore stronger

torques, these values are more likely to be on the order of Po = O(10−4 − 10−3). Thus

these values are small, but still of such a size that the precessional instability is thought

to be relevant for aligning the spins and orbits of such Hot Jupiters (Barker, 2016b). Note

that the frequency of the precessional flow and the frequency of the precession differ. In

the precessing frame, ignoring the effects of viscosity and stratification, the precessing flow

that satisfies the incompressible equations of motion is (Kerswell, 1993):

Ṽ0 = Ω

0 −1 0

1 0 −(1 + η)µ

0 µ 0

 x̃, (5.1)

where x̃ represents the position vector from the centre of the body, η is the oblateness

of the body and µ is the ratio of the ellipticity of the streamlines to the shearing of the

streamlines in Fig. 1.10. In this geometry this ratio is given by µ = 2Po/η. We are

interested in just the shearing effects, as these are thought to be more important than the

ellipticity of the streamlines. In this case one can start from Eq. (1.1) in Kerswell (1993)

instead, ignoring any term involving µ2. The precessing flow then reduces to (Kerswell,

1993):

Ũ0 = Ω

0 −1 0

1 0 −2Po

0 0 0

 x̃. (5.2)
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Figure 5.1: Schematic of the frames employed when studying the precessional instability.
On the left we show the precessing frame. In this frame the observer is located in space
and watches the body spin around its axis with spin vector Ω̃, pointing in the z̃-direction,
while the whole body precesses due to the precession vector Ω̃p, pointing in the x̃-direction.
On the right we show the boundary frame or mantle frame, where the observer is located
on the body. The body spins around its axis with spin vector Ω, pointing in the z-
direction. Because the observer is located on the body and is therefore spinning around,
the precession vector lies in the equatorial plane and rotates around – indicated by the
dashed lines – with precession vector Ωp, such that the direction of the precession vector
is time-dependent.

This background flow takes the form of a uniform rotation about ˆ̃z with a vertical shear

given by −2PoΩz ˆ̃y. It is this shear which allows for the excitation of inertial waves and

thus the operation of what is referred to as the precessional instability, although it is also

referred to as the inertial instability by e.g. Tilgner and Busse (2001).

The above two prescriptions for the precessing flow are given in the precessing frame,

however, it is often preferred to work in the boundary frame. In this frame the flow inside

the body appears to precess according to an observer located on the boundary of the body,

i.e. in the case of Earth the observer is located on the mantle and is observing the pre-

cessing flow within the Earth’s liquid core. This frame is therefore sometimes also referred

to as the “mantle frame”. In this frame the spin axis points in the z-direction, rotating

at rate Ω, while the precession vector is given by Ωp = PoΩ(cos(Ωt),− sin(Ωt), 0)T . The

precession vector thus rotates around the body in the equatorial plane in this frame. A

schematic of this frame is shown on the right-hand side of Fig. 5.1. It is generally pre-

ferred to work in the boundary frame, as the background flow U0 reduces to an easier

form, becoming translationally invariant in x and y:

U0 = Ax = −2PoΩ

0 0 sin(Ωt)

0 0 cos(Ωt)

0 0 0

x, (5.3)

where x now represents the position vector from the centre of the body which is rotating

with the body. The precessing flow in this frame takes the form of a shear in z, whose
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direction is rotating in the x, y-plane. Alternatively, this can be interpreted as a rotation

which is sheared in z, as we expect from the schematic in Fig. 1.10.

5.1.2 Governing equations and setup of the problem

We once again choose to work in a local Cartesian model, building on the previous works of

Kerswell (1993), R. Mason and Kerswell (2002), Wu and Roberts (2008), Barker (2016b),

and Pizzi et al. (2022), to study the interaction of the precessional instability with con-

vection, with a focus on studying the resulting tidal dissipation. We use stress-free im-

permeable walls in the z-direction, such that we build upon the setup in which R. Mason

and Kerswell (2002) studied the precessional instability, a setup that was also employed

by Wu and Roberts (2008) to study the precessionally-driven dynamo. This setup al-

lows us to again study convection using the Rayleigh-Bénard prescription. We adopt a

box with dimensions [d, d, d], i.e. a box where Lx = Ly = Lz. We choose to work in

a box with aspect ratio one because the introduction of walls modifies the way the pre-

cessional instability operates, and therefore the results in the absence of convection – as

obtained in Barker (2016b) – should first be explored with these new boundary condi-

tions as well. We will defer studying different aspect ratios to later work. In this setup

gravity points in the vertical direction, g = gẑ, and as a result it is (anti-)aligned with

the rotation axis, which implies that we are examining flow near the poles. The bound-

ary conditions are the same as those in Sec. 2.1.2, but for completeness we repeat them

here. The boundary conditions in the horizontal directions are periodic, while in the

vertical direction the walls are impermeable, uz(z = 0) = uz(z = d) = 0, stress-free,

∂zux(z = 0) = ∂zux(z = d) = ∂zuy(z = 0) = ∂zuy(z = d) = 0, and perfectly conducting,

θ(z = 0) = θ(z = d) = 0.

Convection is again modelled using Rotating Rayleigh-Bénard Convection, hence

the choice of impermeable walls to avoid “homogeneous convection”. In the literature the

precession vector is often rewritten as ϵ(t) = Po(cos(Ωt),− sin(Ωt), 0)T . This precession

vector adds a second Coriolis-like term to the momentum equation, as well as an additional

term that is sometimes referred to as the Poincaré force. The governing equations for the

total velocity U , temperature Ttot and pressure Ptot are as given in Kerswell (1993),

R. Mason and Kerswell (2002), with the addition of the temperature terms and heat

equation using the Boussinesq approximation:

DU

Dt
+ 2Ω (ẑ + ϵ(t))×U = − 1

ρ0
∇Ptot + αgTtotẑ + 2zΩ2ϵ(t) + ν∇2U , (5.4)

DTtot
Dt

= κ∇2Ttot, (5.5)

∇ ·U = 0, (5.6)

where
D

Dt
≡ ∂

∂t
+U · ∇. (5.7)
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The background temperature profile is the same as in the previous three chapters;

the conduction state profile that depends only on z:

T (z) = T0 −
∆T

d
z. (5.8)

We decompose the velocity, temperature and pressure profile into a background state and

a perturbation as before: U = U0 + u, Ttot = T (z) + θ and Ptot = P (z) + p. Applying

these decompositions and non-dimensionalising the governing equations by scaling lengths

with the vertical domain size d, times with d2/κ, velocities with κ/d, temperatures with

∆T and pressures with ρ0κ
2/d2 we obtain:

Du

Dt
+ u · ∇U0 +

Pr

Ek
(ẑ + ϵ(t))× u = −∇p+RaPrθẑ + Pr∇2u, (5.9)

∇ · u = 0, (5.10)

Dθ

Dt
− uz = ∇2θ, (5.11)

where
D

Dt
≡ ∂

∂t
+U0 · ∇+ u · ∇. (5.12)

The Ekman number, Prandtl number and Rayleigh number are defined as before. We will

fix Pr = 1 in this and the following chapter.

5.1.3 Known properties of the precessional instability

Using the above governing equations one can perform a linear stability analysis of the

precessional instability. This has already been done in the absence of convection, with

walls in the vertical direction, in R. Mason and Kerswell (2002). We summarise their

most important results here.

As in Sec. 2.1.3 the inertial modes considered are those derived in the ordinary case

between two stress-free impermeable walls given in Eq. (2.28) (Greenspan, 1968). Like

the elliptical instability, these two modes denoted by A and B, need to satisfy a number

of resonance conditions to be able to grow. The origins of these resonance conditions will

be explained in more detail in Sec. 5.3. For now, the most important of these resonance

conditions, and one that is changed with respect to the elliptical instability, is the condition

on the frequencies of the two waves λB and λA, which satisfy the inertial wave dispersion

relation in Eq. (1.45), reproduced here:

λ = ±2Ωkz
k

. (5.13)

In the case of the precessional instability the two waves must satisfy λB = λA ± Ω

since the precessing flow has frequency magnitude Ω; without loss of generality we choose

λB = λA + Ω. A second resonance condition on the vertical wavenumbers, given by
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kz = nπ with integer n, arises from the boundary conditions. This resonance condition

states that (nB − nA) mod 2 = 1, i.e. the difference between nA and nB must be odd.

This contrasts with the elliptical instability, where the resonance condition required that

nB = |nA|. This, in combination with the requirement that k⊥,B = k⊥,A, where k⊥ is

again the horizontal wavenumber, leads to very different conditions on the perpendicular

wavenumber. Instead of one k⊥ per value of n as in the case of the elliptical instability,

there is a value of k⊥ that satisfies the resonance conditions on the frequency for every

combination of nA and nB. The precessional instability, with stress-free walls, therefore

has a characteristic size for each mode pair. We refer to this as the “mode selection

constraint”. The particular value of k⊥ for every mode pair is however a function of Po

as well, as is illustrated in Fig. 3 of R. Mason and Kerswell (2002).

The resonance condition that the two modes have odd parity in the vertical wavenum-

ber appears because of the impermeable boundary conditions in z, and is therefore not

present in the triply periodic calculations and simulations of Kerswell (1993), Naing and

Fukumoto (2011), and Barker (2016b). It however appears to some extent in simulations

of precessing spheroidal cavities (see Fig. 9 and Fig. 10 of Lorenzani & Tilgner, 2001),

where the unstable modes come in pairs, one symmetric and one anti-symmetric with re-

spect to the equator of the spheroid. This provides an indication that this mode selection

constraint has some physical basis in the geometries that we are trying to model using the

local approximation, as opposed to being a purely mathematical constraint introduced by

our specific choice of boundary conditions.

The inviscid growth rate σ of two modes nA and nB is determined by first calculating

the k⊥ that satisfies the resonance condition and then calculating the growth rate (see

Eq. (4.11)-(4.15) of R. Mason & Kerswell, 2002). Some example inviscid growth rates and

associated values of k⊥ are found in Table 1 of R. Mason and Kerswell (2002). The largest

inviscid growth rates are found when considering modes where |nB − nA|= 1 and nA, nB

are large. However, in our simulations, these modes with large nA and nB do not produce

the largest growth rates due to the damping effects of viscosity. As nA and nB increase, so

do the k⊥ that satisfy the frequency resonance condition, and thus these modes are more

strongly damped by viscosity. As a result, those modes with the largest growth rate in

our simulations are often those with nA = 1, nB = 2. Finally, the growth rate vanishes

identically when either nA or nB is equal to zero, such that these modes should be unable

to grow in purely precessional simulations.

In the case of nA = 1, nB = 2, the velocity field – in the absence of stratification

and viscosity – grows according to (R. Mason & Kerswell, 2002):

u = (A0uAe
−iλAt +B0uBe

−iλBt)e0.3547PoΩt. (5.14)

The growth rate of the instability is thus proportional to Po, with a proportionality

constant that is smaller than 1. More specifically, the maximum theoretically attained
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value for this proportionality constant is ≈ 0.385, which is a factor of 2/π smaller than in

the triply periodic case (R. Mason & Kerswell, 2002). The introduction of walls therefore

decreases the growth rate of the precessional stability, unlike for the elliptical instability

as shown in Ch. 2.

5.1.4 Energetic analysis of simulations

To analyse the flow we will again derive a kinetic energy equation by taking the scalar

product with u of Eq. (5.9) and then averaging over the box. We define the averaging

operation on a quantity X as ⟨X⟩ = 1
L2d

∫
V X dV , which is the same as the one defined in

Sec. 2.1.5. We then obtain:

d

dt
K = −⟨u · (u · ∇U0)⟩ − ⟨u · (U0 · ∇u)⟩+WB −Dν . (5.15)

The term associated with the Coriolis-like force due to the precessional rotation has van-

ished for the same reason as the Coriolis term: both terms do no work. Using the same

arguments as in Sec. 2.1.5 we recover the same kinetic energy equation as before:

d

dt
K = I +WB −Dν , (5.16)

with the definitions as before in Eqs. (2.62)-(2.65). Note that the evaluation of I is changed

compared to the one in Sec. 2.1.5 however, because the form of the background flow is

different.

The heat equation is unaltered, and therefore the equation for the thermal (potential)

energy is the same. When the stratification is convectively unstable, i.e. Ra > 0:

d

dt
P =WB −Dκ, (5.17)

with definitions as before in Eq. (2.70). The total energy is again E = K +P , which thus

obeys:

d

dt
E = I + 2WB −Dν −Dκ = I + 2WB −D, (5.18)

where again D = Dν +Dκ is the total dissipation rate. When stably stratified, we obtain

I = D instead in steady state, because the WB terms cancel, like in Ch. 2. We will

therefore consider the tidal energy dissipation rate by examining the tidal energy injection

rate I based on the same arguments as before.

To obtain a scaling argument for the precessional instability we will use the same

heuristic approach based on a single dominant mode as before, by considering the growth

rate as the inverse of a growth timescale:

1

tgrow
∼ σPoΩ ∼ PoΩ. (5.19)
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We also define a non-linear damping timescale according to:

1

tdamp
∼ ku, (5.20)

where k is the wavenumber magnitude and u is the velocity amplitude. The instability is

expected to saturate when the growth and damping timescale are equal, giving:

u ∼ PoΩ/k. (5.21)

The total dissipation rates therefore scales as:

D ∼ u2/tdamp ∼ Po3Ω3k−2. (5.22)

We retrieve the now familiar scaling for the energy injection rate, which can be compared

with Eq. (2.79) for the elliptical instability:

D = I ∝ Po3. (5.23)

This scaling is consistent with some local simulations (Barker, 2016b; Pizzi et al., 2022)

at sufficiently (but still Po < 1) high values of the Poincaré number. An energy injection

rate that is consistent with a scaling closer to Po2 at low values of the Poincaré number is

also retrieved by Barker (2016b). A theoretical basis for such a scaling was not identified,

but we will still examine if it also arises in our simulations.

Based on our studies in Ch. 3 of the elliptical instability and rotating convection,

we expect to observe the non-linear creation of large-scale geostrophic flows from both the

convective instability as well as the precessional instability. We again define a decomposi-

tion into a 2D z-invariant flow and 3D z-dependent flow. We will, however, use different

definitions for these compared to the definitions in Sec. 2.1.5 for reasons that will become

clear later. In this case, we define the energy of the z-invariant flow K2D as:

K2D =
1

2V

∫∫ (∫
ux dz

)2

dy dx+
1

2V

∫∫ (∫
uy dz

)2

dy dx. (5.24)

We have chosen not to include uz in the definition of K2D because the z-invariant vertical

velocity must be zero due to the impermeability boundary condition. This choice is made

so that the decomposition is similar to that in Sec. 2.1.5, in that the kz = 0 mode cannot

contribute to K2D. The definition of K3D then follows as:

K3D = K −K2D. (5.25)

Furthermore, we can expand the energy injection using the definition of the background

flow:

I = 2PoΩ (⟨uxuz⟩ sin(Ωt) + ⟨uyuz⟩ cos(Ωt)) . (5.26)
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We can see that, by definition, I2D must be zero, because every term in Eq. (5.26) contains

the vertical velocity. Thus, the decomposition of I into I2D and I3D is unfortunately no

longer available to us as a useful diagnostic tool.

Finally, we can use the same technique as in Sec. 2.1.5 to obtain an estimate of the

turbulent effective viscosity due to the convection acting on the precessional flow, which

we have strong reason to believe will arise in these simulations as well. In this case the

strain rate tensor e0ij ≡ 1
2(∂iU0,j + ∂jU0,i) is given by:

e0 = −PoΩ

 0 0 sin(Ωt)

0 0 cos(Ωt)

sin(Ωt) cos(Ωt) 0

 , (5.27)

such that the rate at which energy is dissipated is given by:

2νeff
V

∫
V
e0ije

0
ij dV = 4νeffPo

2Ω2. (5.28)

Upon equating this expression to I we can define the effective viscosity according to:

νeff = I/(4Po2Ω2). (5.29)

The effective viscosity might be expected to be independent of Po; this implies that, if

the interaction of turbulence acting on the precessional flow can be parametrised as a

turbulent effective viscosity, it should scale as:

D = I ∝ Po2. (5.30)

Finally, we will also study the heat transport in these simulations, to see if we observe

the same kind of modification as we found with the elliptical instability. The definition of

the Nusselt number is unaltered from the one presented in Eq. (2.86).

5.2 Numerical setup

We will use two codes in tandem to study the precessional instability interacting with

convection, namely the dedalus and nek5000 codes. We are forced to step away from

the normally well-suited Snoopy code because the employed sine-cosine decomposition is

incompatible with the precessional vertical background shear flow. We choose to use these

two codes together to ensure that we are capturing the dynamics in the system accurately,

as they are based on different numerical methods.

5.2.1 The dedalus code

Firstly, we will discuss the dedalus code (Burns et al., 2020). dedalus implements a

pseudo-spectral method like the Snoopy code, but is more versatile than Snoopy because
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it allows to easily switch between different geometries – for example: plane layer, box, disk,

spherical shell and full sphere – and different basis functions. Of particular relevance is

the possibility to utilise Chebyshev polynomials instead of a Fourier series as a basis.

Chebyshev polynomials can be used to construct an orthogonal basis like Fourier

series. This however consists of polynomials instead of sines and cosines and is therefore

not inherently periodic. This inherent aperiodicity is ideally suited when considering

impermeable walls in one or multiple directions of the system. Chebsyhev polynomials in

z are what allows us to avoid using the sine-cosine decomposition in the dedalus code,

and thus to simulate this problem. Additionally, we employ a so-called “real” Fourier

basis, like the sine-cosine decomposition in Ch. 2, which means we use sines and cosines

instead of exponentials in the x and y directions. An arbitrarily chosen single mode in

this basis is given by:

ux = Re[ûx(t)Tn(z) sin(kxx) cos(kyy)],

uy = Re[ûy(t)Tn(z) cos(kxx) sin(kyy)],

uz = Re[ûz(t)Un−1(z) cos(kxx) cos(kyy)],

p = Re[p̂(t)Tn(z) cos(kxx) cos(kyy)],

θ = Re[θ̂(t)Un−1(z) cos(kxx) cos(kyy)],

(5.31)

with kx and ky the wavenumbers in the x and y-directions respectively, which satisfy

k2⊥ = k2x + k2y, and Tn(z) = cos [n arccos [(z + 1)/2]], Un(z) = sin [(n+1) arccos [(z+1/2)]]
sin [arccos [(z+1/2)]] the

n-th Chebyshev polynomials of the first kind and second kind respectively, both defined on

the interval z = [0, 1] with n ∈ [0, nz − 1]. The other modes that exist in the real Fourier

basis are obtained by exchanging one or both of the cosines in these expressions for sines

and vice versa. There are therefore four different modes in this basis per given kx and ky

such that the maximum achieved horizontal wavenumbers are kx,max, ky,max = πnx
Lx
,

πny

Ly
,

with nx, ny the resolution in the x and y-direction. Note also the absence of kz in

the Chebyshev polynomials. Multiple Chebyshev polynomials are needed to construct a

single sine or cosine with a given kz, and thus multiple polynomials together are needed

to satisfy the boundary conditions. This is also the reason for the alternative definition of

K2D in Eq. (5.24). As mentioned, dedalus employs a pseudo-spectral method such that

it converges exponentially with resolution for smooth solutions (Boyd, 2001). Another

advantage of Chebyshev polynomials is that the associated grid points in real space are

non-uniformly distributed in space, being clustered towards the boundaries, which avoids

the Runge phenomenon. This is also useful to more easily resolve boundary layers.

Another important point to note is the absence of time-dependence in the perpendic-

ular wavenumbers compared to Eq. (2.87). Shearing waves have previously been applied

to the precessional instability in a periodic domain, like with the elliptical instability.

The introduction of walls has made these shearing waves redundant. The background

flow only violates periodicity in the vertical direction, and with walls this periodicity is
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automatically removed. This does however imply that the term:

U0 · ∇u = −2PoΩz(sin(Ωt)∂x + cos(Ωt)∂y)u, (5.32)

needs to be implemented explicitly by the code instead of evolving the wavenumbers in

time, which adds computational time, mainly by ensuring this term is resolved accurately

in time.

We employ a two-stage second order Runge-Kutta timestepping scheme, identified in

dedalus as RK222 (described in Sec. 2.6 of Ascher et al., 1997). In this scheme the non-

linear terms, advection terms between the background flow and the velocity perturbations

and the Coriolis-like term that arises due to the precession are explicitly calculated, while

the other terms – including the usual Coriolis term – are calculated implicitly. We employ

a CFL safety factor set to 0.5 to ensure that the timesteps are small enough to accurately

capture the dynamics. For de-aliasing purposes the resolution is expanded with a factor

3/2 when calculating the non-linear terms, so as to satisfy the standard 3/2 rule (Boyd,

2001).

5.2.2 The nek5000 code

In addition to the pseudo-spectral method of dedalus we also employ the nek5000 code

(Fischer et al., 2008), which utilises a spectral element method instead of pseudo-spectral

method. In spectral element methods (and also in finite element methods) the domain is

first split up into a number of elements E . Inside each element the velocity, temperature

and pressure fields are then expanded using a chosen basis. The basis functions in a

spectral element method are comprised of orthogonal polynomials. In nek5000 Legendre

polynomials are used, which fulfil a similar role as the Chebyshev polynomials in dedalus.

The polynomials in each element of nek5000 are of much lower order N than those in

dedalus, as they only need to provide sufficient resolution inside each element, instead of

the entire domain. The associated grid points to these polynomials are calculated using

the Gauss-Legendre-Lobatto quadrature points, such that the edges of the elements are

included in the grid points. The number of grid points inside each element is given by

(N + 1)3. Due to overlapping grid points on the boundaries of the elements the total

number of grid points in a simulation is given by EN 3.

Using a finite element or spectral element method generally has two advantages.

First, the elements allow for constructing arbitrary meshes, and thus allow for geometries

that are impossible to use with pseudo-spectral methods. In our setup we are considering

a Cartesian box and as such this advantage does not provide any assistance currently, but

can be useful when one would want to consider for example the precessional instability

in a spheroidal model, taking into account the oblateness of the body. Second, because

the calculations are split up into elements, the code can be very efficiently parallelised,

which is the case with nek5000. A spectral element method furthermore combines the

versatility of the element method with the speed and accuracy of spectral methods by
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making the calculations inside of each element fast, in particular, no matrix inversions

are required when calculating the time derivatives due to the orthogonal property of the

Legendre polynomials. It follows that, like in dedalus, there is no possibility to implement

shearing waves and thus we are forced to calculate the term in Eq. (5.32) in nek5000 as

well.

We work in a Cartesian box with sides of equal length, such that the obvious choice

for the number of elements in every direction is E1/3, and we typically use E = 1000

elements. In addition, nek5000 is most efficient with polynomials of order N ∈ [5, 10] in

every direction inside each element, such that it is often preferable to increase the number

of elements instead of the order of the polynomials to increase resolution. We set N = 9

unless otherwise specified. Due to the element method in nek5000 the grid is irregular in

all three directions. We have therefore opted to interpolate to a regular grid to calculate

K2D, and so this quantity is susceptible to interpolation errors. We will interpolate to a

1003 regular grid for such integrations unless specified otherwise.

Finally, we timestep using an implicit second order backwards difference scheme for

the pressure and diffusion terms, and a second order characteristics-based method to evolve

the non-linear, buoyancy and Coriolis terms, as well as the Coriolis-like term due to the

precession and the advection terms of the background flow and the velocity perturbation.

We employ a CFL safety factor set to 0.3 to ensure small enough timesteps, although

note that characteristics-based timesteppers are allowed to exceed this value while still

guaranteeing accuracy when integrating the advective non-linear terms. De-aliasing is

dealt with by increasing the order of the polynomials inside the elements when calculating

the non-linear terms, with a factor that approximately satisfies the 3/2 rule (Boyd, 2001).

We choose to use nek5000 in addition to dedalus precisely because the utilised

methods are different. Any results that are produced by both codes are then code inde-

pendent and are therefore more robust, because the methods of obtaining said results are

different. This allows for an additional check on the results we obtain.

5.2.3 Benchmarking

We once again perform benchmarking tests to ensure that the precessional and convective

instabilities in isolation are both properly computed in the simulations. To this end we

performed numerous simulations with the perturbation non-linearities switched off in both

dedalus and nek5000. We have fitted the kinetic energy in the simulations K = 1
2⟨|u|

2⟩,
where the brackets represent a volume-average. The growth rate of the velocity can then

be found by taking half of the growth rate of the kinetic energy. We compare the growth

rates from the simulations to those from the theoretical predictions given in Eq. (5.14)

and obtained by numerically solving the cubic dispersion relation in Eq. (2.54) for the

precessional and convective instabilities respectively.

The results of the benchmarking simulations of both instabilities in isolation, along

with the theoretical predictions, are plotted in Fig. 5.2. The dedalus simulations por-
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Figure 5.2: Benchmark simulations of the linear growth rate of the precessional instability
and convective instability, each in isolation at Ek = 5 · 10−5 in a 1-by-1-by-1 box using
both nek5000 (black) and dedalus (red). Left: The growth rate of the precessional
instability. The most unstable mode pair, after taking the viscous reduction into account,
is nA = 1, nB = 2. The theoretical prediction for small Po for this mode is given in blue.
The simulation data obtained using both codes match each other and the theoretical
prediction well in the interval Po ∈ [0.1, 0.15] and accurately predict the critical value of
Po for inhibition of the instability by viscosity. Deviation from the predicted maximum
growth at higher Po partly arises from higher order Po effects. In addition, the most
unstable horizontal wavenumber changes as Po is increased, see Fig. 3a in R. Mason
and Kerswell (2002), and therefore the mode becomes increasingly more de-tuned. Right:
Benchmark simulations of the linear growth rate of convection in isolation at Ek = 5 ·10−5

in a 1-by-1-by-1 box. The growth rates in the simulations match each other and the
theoretical growth rate of convection well.

trayed in this figure are executed in a 1-by-1-by-1 box, with a resolution of 323. The

nek5000 simulations are executed in a 1-by-1-by-1 box with a resolution of 103 elements,

each with a polynomial of order 4. Thus the total number of grid points is 403.

The predicted most unstable modes of the precessional instability with the smallest

horizontal wavenumber according to R. Mason and Kerswell (2002) are the modes with

nA = 1, nB = 2 and k⊥ =
√
k2x + k2y ≈ 18.059. In the 1-by-1-by-1 box the modes with

nx = ny = 2 ⇒ kx = ky = 4π have k⊥ ≈ 17.77, so the modes with these horizontal

wavenumbers almost satisfy the perpendicular wavenumber requirement of the most un-

stable modes. Thus we expect these modes to match the theoretically predicted growth

rate well, except for a small discrepancy which can be attributed to de-tuning. The un-

stable horizontal wavenumber changes with the chosen value of Po however, and for this

particular mode decreases as Po increases (see Fig. 3a in R. Mason & Kerswell, 2002).

According to this figure, the unstable horizontal wavenumber of these modes satisfies

k⊥ = 17.77 around Po ≈ 0.1.

As detailed in Sec. 5.1.3, this particular mode is only the most unstable mode when

viscosity is taken into account. Modes with larger wavenumbers have larger growth rates,

but they are more strongly inhibited by viscosity, reducing the growth rate by approxi-

mately −νk2. Note that we ignore the secondary effects of viscosity in shifting the reso-

nances, which is expected to be much weaker than the damping we consider. The growth
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Figure 5.3: Comparison of simulations executed using dedalus (left) and nek5000 (right)
at the same parameters of Ek = 5 · 10−6, Po = 0.02. The K3D component dominates
the growth, but clearly a growing K2D is produced by both simulations, while this is
not possible according to the linear inviscid analysis. Because this is reproduced by two
different codes with different numerical schemes we conclude this effect is real.

rate of this particular mode is given by: 0.3547PoΩ − νk2. This theoretically predicted

growth rate, where we have chosen k2 = k2⊥ + n2Bπ
2, is plotted in solid-blue in the left-

hand panel of Fig. 5.2 along with the simulation data plotted in black (nek5000) and

red (dedalus) markers. The growth rates obtained from both simulations executed with

both dedalus and nek5000 match each other very well. They match the theoretically

predicted growth rate very well on the interval Po ∈ [0.1, 0.15], where the most unstable

wavenumber very strongly matches the one available within the box, and additionally pre-

dicts the range of Poincaré numbers at which the instability is inhibited by viscosity very

well. The simulation data starts deviating again from the theoretically predicted growth

rate at higher values of Po as the most unstable mode changes away from what is possible

in the box. The discrepancy here can thus, at least partially, be attributed to de-tuning.

Higher order effects at large Po may also play a role in this discrepancy; see for example the

higher order correction to the precessional instability growth rate in Naing and Fukumoto

(2011), albeit in a triply periodic box. Therefore we conclude that we capture the growth

of the precessional instability in isolation in both codes, and that we have reproduced the

previously obtained results of simulations with stress-free impermeable walls at the top

and bottom of the local box.

We have also run multiple simulations to ensure the convective instability is captured

accurately in the simulations. The theoretical prediction as well as the simulation data at

the same Ek = 5 ·10−5 in a 1-by-1-by-1 box are plotted in the right-hand panel of Fig. 5.2.

To calculate the theoretical maximum growth rate we solved the dispersion relation for

rotating convection with stress-free impenetrable walls. The simulation data from both

codes agree well with each other and the theoretically predicted growth rates.

Thus we conclude that both the precessional instability and the convective instability

in isolation are both captured well by the two codes, and the codes produce the same

results.
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Figure 5.4: Two linear simulations of the precessional instability, both initialised with the
most unstable modes nA = 1 and nB = 2 satisfying the incompressibility condition. These
initial conditions have zero K2D. In the left-hand panel Po was set to 0, so that there is
no instability and indeed the energy is decaying while the energy in the K2D component
is maintained at a value corresponding to zero (within machine precision). The right-
hand panel is the exact same simulation with Po = 0.015, which does not allow growth
according to the linear stability analysis. The total energy is decaying at a slower rate
compared to the simulation on the left. The K2D component initially jumps up and then
starts oscillating with a decaying trend, indicating that the origin of this signal is separate
from the precessional instability.

5.2.4 The K2D signal as obtained from simulations

According to the derivation in R. Mason and Kerswell (2002) the “exceptional inertial

wave” with nz = λ = 0 is explicitly forbidden from growing. This exceptional inertial

wave is by definition part of K2D, and thus we examine if this mode does indeed not grow

in linear simulations by calculating the growth of K2D, which we would then expect to

decay due to viscosity. In dedalus K2D is calculated directly according to the method

given in Eq. (5.24). The same method is utilised in nek5000, but ux and uy are first

interpolated to a regular grid for ease of analysis before this integration is performed. The

value of K2D in nek5000 is thus sensitive to this interpolation. The resolution in these

simulations is 403; we have interpolated to a regular grid of 503. In Fig. 5.3 the simu-

lations of the precessional instability alone (i.e. without the convective instability) with

parameters Ek = 5 ·10−6, Po = 0.02 executed in dedalus (left-hand panel) and nek5000

(right-hand panel) are shown. The value of K2D is growing in these simulations, implying

growth of kinetic energy in vertically-invariant geostrophic flows, in contrast to the linear

inviscid analysis of R. Mason and Kerswell (2002) that predicts nz = 0 to be unable to

grow. This result is present in all test simulations that were run to explore this effect. The

value of K2D grows as the unstable modes grow, and the ratio K2D/K depends on the

value of Po, increasing with increasing Po. This result is robust to changes in timestep,

timestepping scheme and spatial resolution. Finally, this effect is reproduced by two sep-

arate codes utilising different numerical methods, effectively ruling out the possibility of

a numerical error as the cause of this effect.

To determine whether this results from the precessional instability or some other
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source we tested the behaviour of K2D when the precessional instability is unable to grow.

We have executed a pair of test simulations in dedalus with parameters such that the

suppressive effects of viscosity on the modes are stronger than the destabilising effects

from the instability itself. When initialising simulations without power in the modes

contributing to K2D, the K2D signal should not be able to grow and thus should remain

at zero, instead of being present alongside the K3D signal. The simulation presented in

the left-hand panel of Fig. 5.4 at Ek = 10−5, Po = 0.0 is initialised with the two most

unstable modes, i.e., those with nz = 1 and nz = 2, as initial conditions, satisfying the

incompressibility condition. No meaningful K2D is present in this simulation initially, and

when executing the simulation K2D indeed does not grow. In the panel on the right the

same simulation is shown, except we have set Po = 0.015. In this simulation power is

transferred to the flow components with nz = 0 as indicated by the sudden increase in

K2D after one timestep. This then starts to oscillate, but never grows beyond this initial

increase, and in fact decays alongside the decay of the two input modes. This leads us to

the conclusion that this behaviour is not part of an instability.

Instead we hypothesise that the origin of non-zero K2D, i.e. the 2D modes obtaining

power, most likely resides in a boundary layer effect. We suspect that all three terms

introduced by the precessional background flow in the momentum equation violate the

stress-free conditions because they all contain some z-dependence which does not satisfy

∂z(of those terms) = 0. This would therefore require a boundary layer to ensure that

the solutions in the bulk can match the boundary conditions at the boundaries. Such a

boundary layer effect would be consistent with the power being transferred into the nz = 0

modes instead of it being part of the precessional instability, and thus allowing power to

arise in simulations where the precessional instability does not grow. Indeed it is also

consistent with the Po-dependence of the ratio K/K2D: if Po is smaller, than these terms

are smaller, and therefore less energy will be transferred to the K2D modes. We suspect

that this effect was present in the simulations of R. Mason and Kerswell (2002) but not

identified by them, perhaps because they were interested in measuring different quantities.

Nevertheless, after identifying this effect we will not study it further because it is

not our primary focus, and because it is generally a weak effect for the parameters we will

explore with simulations.

5.3 The precessional instability modified by stratification

Following on from the benchmarking of the precessional and convective instabilities in

isolation, we now wish to derive growth rates of the precessional instability taking into

account the stable or unstable stratification. The growth rate for this problem was pre-

viously derived in a different setup in Benkacem et al. (2022). Although they considered

an infinite cylinder instead of a Cartesian box, we might expect some similarities to the

current problem. In their model, they found that stable stratification inhibits the linear

growth of the precessional instability, while unstable stratification, i.e. in convectively

unstable systems, enhances the linear growth of the precessional instability at weak con-
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vective driving, but again inhibits it at strong convective driving. We will attempt to see

if this general behaviour is reproduced in our geometry.

5.3.1 Analytical derivation for the linear growth rate

To derive the growth rate in our setup we will perform a new linear stability analysis

building upon the one in R. Mason and Kerswell (2002). We start from the governing

equations for linear perturbations prior to non-dimensionalising. In essence, we start from

the same governing equations as in R. Mason and Kerswell (2002), but add a buoyancy

term to the momentum equation, and add the heat equation:

∂u

∂t
+ 2Ωẑ × u+∇p− θẑ − ν∇2u = Po[eiΩtL+ e−iΩtL∗]u, (5.33)

∂θ

∂t
+ uzN

2 − κ∇2θ = Po[eiΩtF + e−iΩtF∗]θ, (5.34)

∇ · u = 0. (5.35)

We have defined:

L ≡ Ω

z(∂y − i∂x) 0 −2i

0 z(∂y − i∂x) 2

i −1 z(∂y − i∂x)

 , (5.36)

and

F ≡ zΩ(∂y − i∂x). (5.37)

We have set α, g and d to 1, such that: N2 = −∆T . The terms on the left-hand

side of Eq. (5.33) and Eq. (5.34) are the same as in the ordinary rotating Rayleigh-

Bénard problem, and would result in a dispersion relation corresponding to the convective

instability, for negative N2. The terms on the right-hand side of these equations however,

are the terms that originate from precession, as is clearly indicated by the presence of

the Poincaré number in these terms. Like in R. Mason and Kerswell (2002), these terms

couple the inertial waves – in the absence of buoyancy – together and allow the precessional

instability to operate. In the presence of buoyancy, these terms instead couple inertia-

gravity waves when these exist. The dispersion relation and normal mode prescriptions of

these inertia-gravity waves can be obtained by considering the inviscid rotating Rayleigh-

Bénard problem, which in these equations can also be denoted as the inviscid equations

at O(1). The inertia-gravity wave dispersion relation in this formulation is given by:

λ2 =
4Ω2k2z +N2k2⊥

k2
, (5.38)
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with corresponding normal modes of the form:
ux

uy

uz

θ

p

 =


k2(kxλ− 2Ωiky) cos(kzz)/4Ω

2k2⊥
k2(kyλ+ 2Ωikx) cos(kzz)/4Ω

2k2⊥
− ikzλ

−N2+λ2 sin(kzz)
kzN2

−N2+λ2 sin(kzz)

cos(kzz)

 ei(kxx+kyy+λt). (5.39)

Following R. Mason and Kerswell (2002), we write down a linear combination of

inertia-gravity waves with λA ̸= λB for both the velocity fields and temperature per-

turbation. We introduce a slow timescale τ = Po t, where we consider Po as the small

parameter, and a fast timescale t0. As in Ch. 2 the time derivative then becomes:

∂

∂t
=

∂

∂t0
+ Po

∂

∂τ
. (5.40)

We can then write for the velocity and temperature:

u = A(τ)uA(x)e
iλAt +B(τ)uB(x)e

iλBt + Pou1(x, t) +O(Po2),

θ = A(τ)θA(x)e
iλAt +B(τ)θB(x)e

iλBt + Po θ1(x, t) +O(Po2).

(5.41)

(5.42)

We must combine the heat equation and the momentum equation into a single

equation such that we take into account all of the background flow forcing terms in these

equations. Next we take a similar approach as we did when deriving the dispersion relation

of inertia-gravity waves, and take the z-component of the curl of the momentum equation

to eliminate the pressure gradient. This results in the vorticity equation:

∂ωz

∂t
− 2Ω

∂uz
∂z

= Po ẑ · (∇× Gu), (5.43)

where we have defined the operator:

G ≡ [eiΩtL+ e−iΩtL∗]. (5.44)

Writing the vorticity equation at O(1) and order O(Po):

∂ωz,0

∂t0
− 2Ω

∂uz,0
∂z

= 0,

Po
∂ωz,1

∂t0
+ Po

∂ωz,0

∂τ
− 2PoΩ

∂uz,1
∂z

= Po ẑ · (∇× Gu0).

(5.45)

(5.46)

We perform the same decomposition into an equation at O(1) and one at O(Po) for the

heat equation:
∂θ0
∂t0

= −uz,0N2,

Po
∂θ1
∂t0

+ Po
∂θ0
∂τ

= −Pouz,1N
2 + PoHθ0,

(5.47)

(5.48)
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where we have defined the operator:

H ≡ [eiΩtF + e−iΩtF∗]. (5.49)

Then, we take the z-component of the curl of the curl of the momentum equation:

−∂∇
2uz
∂t

− 2Ω
∂ωz

∂z
+∇2

⊥θ = Po ẑ · (∇×∇× Gu), (5.50)

with ∇2
⊥ = ∇2 − ∂2z the horizontal Laplacian. Again, we decompose this into order O(1)

and order O(Po):

−∂∇
2uz,0
∂t0

− 2Ω
∂ωz,0

∂z
+∇2

⊥θ0 = 0,

−Po
∂∇2uz,1
∂t0

− Po
∂∇2uz,0
∂τ

− 2PoΩ
∂ωz,1

∂z
+ Po∇2

⊥θ1 = Po ẑ · (∇×∇× Gu0).

(5.51)

(5.52)

The first of these equations leads to the dispersion relation of inertia-gravity waves when

we seek normal mode solutions. The equation at O(Po) is what we will use to derive

the growth rate of the precessional instability. We drop all mentions of Po and take the

derivative only with respect to t0 so as to maintain the equation at O(Po):

−∂
2∇2uz,1
∂t20

− ∂2∇2uz,0
∂t0∂τ

− 2Ω
∂2ωz,1

∂t0∂z
+∇2

⊥
∂θ1
∂t0

= ẑ · ∂(∇×∇× Gu0)

∂t0
. (5.53)

Substituting in the heat equation Eq. (5.48) and vorticity equation Eq. (5.46) at O(Po),

after some algebra, results in:

−∂
2∇2uz,1
∂t20

− 4Ω2∂2zuz,1 −∇2
⊥uz,1N

2 =
∂2∇2uz,0
∂t0∂τ

− 2Ω
∂2ωz,0

∂z∂τ
+∇2

⊥
∂θ0
∂τ

+ 2Ωẑ · ∂(∇× Gu0)

∂z

−∇2
⊥Hθ0 + ẑ · (∇×∇× Gu0)

∂t0
. (5.54)

Following the same reasoning as MK02, we can define the inner product under which

the inertia-gravity waves are orthogonal:

⟨u,v⟩ ≡ lim
L→∞

1

4L2

∫ L

−L

∫ L

−L

∫ 1

0
u∗ · v dz dy dx. (5.55)

We use this definition to obtain amplitude equations as in R. Mason and Kerswell (2002)

by considering ⟨uAze
iλAt, (5.54)⟩. This produces the same requirements as in the derivation

with the precessional instability in isolation, and we obtain: λB = λA ± Ω. Without loss

of generality we choose λB = λA + Ω. Equally, we consider ⟨uBze
iλBt, (5.54)⟩. After

satisfying the resonance condition on the frequencies we obtain two equations for Aτ = dA
dτ
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and Bτ = dB
dτ :

B⟨uAz ,−2Ωẑ · ∂(∇×L∗uB)

∂z
+∇2

⊥F∗θB − ẑ · ∂(∇×∇×L∗uB)

∂t0
⟩ =

Aτ ⟨uAz ,
∂∇2uAz

∂t0
− 2Ω

∂ωAz

∂z
+∇2

⊥θA⟩,

A⟨uBz ,−2Ωẑ · ∂(∇×LuA)

∂z
+∇2

⊥FθA − ẑ · ∂(∇×∇×LuA)

∂t0
⟩ =

Bτ ⟨uBz ,
∂∇2uBz

∂t0
− 2Ω

∂ωBz

∂z
+∇2

⊥θB⟩.

(5.56)

(5.57)

Assuming there exist growing solutions of the form (A,B) = (A0, B0)e
σPoΩt with growth

rates σΩ we can combine the above equations to obtain:

σ2Ω2 =
AB
CD

, (5.58)

with

A =

〈
uAz ,−2Ωẑ · ∂(∇×L∗uB)

∂z
+∇2

⊥F∗θB − ẑ · ∂(∇×∇×L∗uB)

∂t0

〉
,

B =

〈
uBz ,−2Ωẑ · ∂(∇×LuA)

∂z
+∇2

⊥FθA − ẑ · ∂(∇×∇×LuA)

∂t0

〉
,

C =

〈
uAz ,

∂∇2uAz

∂t0
− 2Ω

∂ωAz

∂z
+∇2

⊥θA

〉
,

D =

〈
uBz ,

∂∇2uBz

∂t0
− 2Ω

∂ωBz

∂z
+∇2

⊥θB

〉
.

(5.59)

(5.60)

(5.61)

(5.62)

This derivation does not take into account the finite Poincaré number effects on

either the horizontal wavenumber or the value of σ, since we have assumed Po is small

and only considered leading order effects. We expect that the derivation is valid at small

values of Po and becomes progressively more inaccurate as Po becomes larger.

5.3.2 Results of the linear stability analysis

We utilise Mathematica to calculate the growth rate of a given pair of nA and nB.

Prior to calculating σ we must first find the solution for k⊥ as a function of the buoyancy

frequency using the resonance condition on the frequencies:√
4Ω2k2Bz

+N2k2⊥
k2B

= −

√
4Ω2k2Az

+N2k2⊥
k2A

+Ω. (5.63)

The most general solution is the one portrayed above, where λB > 0, λA < 0, but the other

solutions with λB > 0, λA > 0 or λB < 0, λA < 0 can also satisfy the resonance conditions

for the right combinations of nB, nA or the right values of N2 and Ω. In general, we first

find k⊥ for a given Ω and N2, and then calculate the associated growth rate. The script

to obtain both k⊥ and σ is provided in Appendix A.
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Figure 5.5: The horizontal wavenumber k⊥ of the unstable mode and growth rate σ as
a function of the Rayleigh number with various values of Ω with fixed nA = 1, nB = 2.
Left: The horizontal wavenumber. Stable stratification increases the unstable horizontal
wavenumber, while unstable stratification decreases it. Larger values of Ω decrease the
slope. Right: σ without viscous reduction. Stable stratification reduces the growth rate,
unstable stratification first increases the growth rate and then rapidly decreases it. A
secondary lobe of instability exists at larger Ra/Rac, corresponding to the λB > 0, λA > 0
alternative solution.

In the left-hand panel of Fig. 5.5 we display the values of k⊥ that satisfy the frequency

resonance condition in Eq. (5.63) with nA = 1, nB = 2 with fixed Ω = [103, 104, 2 ·
104, 105], where Ek = 1

2Ωd2
. The viscous reduction of the growth rate, with Pr = 1,

is expected to be −νk2 (R. Mason & Kerswell, 2002). Therefore, we can apply this

reduction after calculating the inviscid linear growth rate to obtain the linear growth rate

as if the linear stability analysis in Sec. 5.3.1 included viscosity. For this reason, and for

consistency with later simulation results, we also plot the values of k⊥ and σ as a function

of Ra/Rac = −αgN2νκ/Rac. In this figure we set all parameters α = g = ν = κ = 1.

We calculate Rac by numerically solving the convective dispersion relation in Eq. (2.58).

First we note that when Ra = 0, i.e. in the absence of stratification, we retrieve the same

value as R. Mason and Kerswell (2002) for k⊥. This value of k⊥ is independent of Ω in the

absence of stratification, and is in this figure easily identified by the intersection of all four

curves. In the convectively unstable regime, i.e. at Ra > 0, the horizontal wavenumber

is smaller than in the absence of buoyancy. Larger values of Ω reduce the slope of this

reduction. Equivalently, with stable stratification the wavenumber is increased until it

hits the asymptotic value where the resonance condition can no longer be satisfied. The

further modification of the most unstable horizontal wavenumber due to larger values of

Po has not been taken into account in this calculation, so these results are only accurate

at small values of Po.

We can use the obtained values of k⊥ to calculate the values of σ as given in

Eq. (5.58), noting that these values do not yet include a viscosity correction. We plot

these inviscid values of σ in the right-hand panel of Fig. 5.5. Once again, at Ra = 0 we

retrieve the growth rate as found in R. Mason and Kerswell (2002). This growth rate

is again independent of Ω in the absence of stratification and is thus easily identified as

the intersection of all four curves. The introduction of unstable stratification results in
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Figure 5.6: Same as Fig. 5.5, but varying the vertical wavenumbers nA, nB with fixed
Ω = 2 · 104. Left: The horizontal wavenumber. Larger values of nA and nB result in
larger values of the unstable horizontal wavenumber, the overall behaviour is the same at
all values, but the curves are steeper at larger values of nA and nB. Right: σ without
viscous reduction. Larger values of nA and nB result in slightly larger maximum values of
σ and steeper curves. The secondary lobe also moves to larger values of Ra/Rac at larger
nA and nB.

a small increase of the growth rate followed by a rapid decrease as the Rayleigh number

is increased, until the precessional instability is stabilised. This occurs at all values of Ω

but again the slopes are reduced at larger values of Ω. The curves indicate a secondary

lobe of instability with much larger growth rate at even larger values of the Rayleigh

number, which is the result of the resonance condition on the frequencies being satisfied

with λB > 0, λA > 0 instead of λB > 0, λA < 0. Finally, stable stratification inhibits

the instability, until the resonance condition can no longer be satisfied, as indicated by k⊥

going to infinity in the left-hand panel of Fig. 5.5.

We have also examined the horizontal wavenumber of the most unstable mode and

the growth rate at different values of nA, nB with fixed Ω = 2 · 104 in Fig. 5.6. As was

found previously in Table 1 of R. Mason and Kerswell (2002) larger values of nA, nB result

in larger horizontal wavenumbers and larger values of σ in the absence of stratification.

Our script exactly reproduces the values of both k⊥ and σ found in their Table 1 in

the absence of stratification for each pair considered. We have opted to only examine

those combinations where |nA − nB|= 1 as these have the largest growth rates in the

absence of stratification. We find the same qualitative behaviour for all combinations of

nA and nB; larger values of nA and nB appear to result in steeper curves for both the

horizontal wavenumber and growth rate. Furthermore, the growth rates go to zero at

lower Ra/Rac for the initial lobe in the regime of unstable stratification when considering

large wavenumbers. Perhaps more interestingly, the secondary lobe with λA > 0, λB > 0

moves to larger and larger values of the Rayleigh number at larger values of nA and nB.

5.3.3 Comparison to simulations

To test our results we performed several linear simulations using the dedalus code. We

start by examining the case with Po = 0.06, Ω = 2 · 104, and thus Ek = 2.5 · 10−5.
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We set the box size of these simulations such that the largest modes that fit into the

box exactly satisfy the predicted k⊥ for nA = 1, nB = 2, as portrayed in the solid-blue

line in Fig. 5.6. These simulations were initialised with random noise. Furthermore, for

the simulations we have set the resolution to nx = ny = 4, nz = 32. By using this

very low horizontal resolution we avoid the appearance of the convective instability. The

horizontal wavenumbers of the modes that are convectively unstable, obtained by solving

the cubic dispersion relation, are not available in the simulation domain. Other mode

combinations of the precessional instability are also not available in the simulation for

the same reason. The linear growth rates obtained using these simulations are portrayed

using purple circles in Fig. 5.7. We compare this with the theoretical prediction of σ, with

the viscous reduction of the growth rate, given by −νk2, applied. The viscous reduction

changes the overall shape of the curve, as the suppressive effects are stronger in the regime

of stable stratification where k⊥ is large, whereas its suppressive effect is weaker in the

regime of unstable stratification because k⊥ is small. We have plotted two theoretical

curves, one with k2 = k2A = k2⊥ + π2 in solid-blue, and the other with k2 = k2B = k2⊥ +4π2

in solid-orange. We plot both as we expect the true value of the growth rate after the

reduction due to viscosity to lie in between both of these, since the two modes involved

have nA = 1 and nB = 2.

Figure 5.7: The growth rate of the precessional instability in the presence of buoyancy with
Ω = 2 ·104, Po = 0.06 and Ek = 2.5 ·10−5. The theoretical predictions for the precessional
instability with nA = 1, nB = 2 in solid-blue and solid-orange correspond to the growth
rate after viscous reduction with −νk2A = −ν(k2⊥+n2Aπ2) and −νk2B = −ν(k2⊥+n2Bπ2). We
compare these predictions to simulations executed using dedalus. These simulations are
executed with a horizontal resolution of nx = ny = 4, such that the convective instability
cannot operate even when Ra > Rac. The growth rates of these simulations is plotted
in purple circles. The data and theoretical predictions agree well when Ra < 2Rac; for
larger Rayleigh numbers the growth rate in the simulations is larger than the theoretical
prediction.
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We find good agreement between our theoretical prediction and the data in the range

Ra ∈ [0, 2Rac], but the data deviates from the theoretical prediction at larger values of

the Rayleigh number. The growth rates are larger than what is theoretically predicted

for larger Ra, and does not appear to decrease sharply when the theory predicts that it

should. To examine this deviation more closely we have lowered the viscosity and thermal

diffusivity to ν = κ = 0.1, still maintaining Pr = 1 and Ω = 2·104, and thus Ek = 2.5·10−6,

in thermal timescales. To achieve this, we have executed our simulations using rotational

timescales, i.e. Ω = 1, and so ν = 5 · 10−6, instead of thermal timescales, and converted

the obtained growth rates to thermal timescales for consistency with Fig. 5.7. Lowering

the viscosity has a number of consequences; firstly, the difference between the two viscous

reductions is much smaller. Thus the two linear prediction curves will be much closer

together. Secondly, we can employ smaller values of Po, such that any effects of finite Po

should be reduced. Finally, because the viscosity and thermal diffusivity are lowered, if

this departure results from a boundary layer effect, for instance, it will also be weakened.

As a result of lowering the viscosity we have increased the value of the Rayleigh number at

a given value of N2 by a factor of ν−2. Furthermore, because we have lowered the Ekman

number, we have increased the value of Rac by a factor of ≈ ν−4/3. Thus we have widened

the theoretically predicted curves by a factor ν−2/3 as can be seen in Fig. 5.8, where we

set Po = 0.02. Moreover, the two theoretically predicted curves have almost collapsed

onto each other due to the reduced viscosity, as desired.

The growth rates obtained from the simulations – following the same procedure as

for the data in Fig. 5.7 – executed using dedalus are plotted in purple circles. Again we

notice good agreement when Ra ≲ 6Rac, and also find good agreement in the regime of

stable stratification. We still observe departure when the Rayleigh number is large and

positive, but the departure appears much less significant. We suspect that this discrepancy

may arise from a modification of the linear stability analysis due to viscosity or thermal

diffusivity or perhaps be because the convective instability itself is modified by precession,

which is not included in our analysis. Preliminary work using a Floquet method indicates

that the discrepancy might arise because one should consider more than two daughter

waves in this linear stability analysis; it appears a number of waves might be excited and

growing together instead of just two, resulting in a larger growth rate.

We have also performed a number of simulations at nx = ny = 16 such that the

convective instability can operate in the simulations; the growth rates of these simulations

is plotted using yellow circles in Fig. 5.8. We retrieve the same growth rates when Ra <

Rac, as expected. However, when Ra > Rac we find growth rates that are much larger

than those of the precessional instability. In the non-linear simulations this instability will

thus dominate over the precessional instability, and as such the theoretical growth rate of

the precessional instability when Ra > Rac does not matter as much. When Po becomes

sufficiently large such that the growth rate of the precessional instability does equal that

of the convective instability, the horizontal wavenumber will be significantly modified due

to finite Po effects and as such this derivation is no longer valid. Furthermore, this violates
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the starting assumption of the derivation that Po is small.

Figure 5.8: Same as Fig. 5.7, but with ν = κ = 0.1, Po = 0.02 and Ek = 2.5 · 10−6. The
lowered viscosity reduces the difference between the two theoretical curves. In this figure
we also compare the theoretical predictions to simulations executed using the dedalus
code. The purple circles once again correspond to simulations that are executed with a
horizontal resolution of nx = ny = 4, such that the convective instability cannot operate
even when Ra > Rac. The data and theoretical predictions agree well when Ra ≲ 6Rac
and also agree well for the simulations in the stably stratified regime. For larger Rayleigh
numbers however the growth rate in the simulations is again larger than the theoretical
prediction. We have also executed the same simulations with a horizontal resolution of
nx = ny = 16. The growth rates in these simulations are plotted using yellow circles.
They produce the same growth rate when Ra < Rac, but the convective instability has a
much larger growth rate than the precessional instability when it does operate.

In summary, we have performed a new derivation for the growth rate of the pre-

cessional instability in the presence of stratification that can be applied to every mode

combination of the precessional instability using the Mathematica script provided in

Appendix A. This derived expression is valid when the Poincaré number is small and

it matches the growth rates from simulations well in the regime where the precessional

instability is important, i.e. when Ra/Rac ≲ O(1).

5.4 Parameter variations

To examine the quantities of interest, namely the kinetic energy, energy injection and

heat transport, the latter of which is represented by the Nusselt number, we will execute a

large parameter sweep. We will vary the Rayleigh number, Ekman number and Poincaré

number to be able to independently vary the convective driving, rotational constraint and

driving of the precessional instability.

The values of the Rayleigh number are typically reported as R = Ra/Rac for clar-
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ity, where Rac is the onset critical Rayleigh number (determined numerically by solving

Eq. (2.54)) and R is the supercriticality. The range of this ratio studied at Ek = 2.5 ·10−5

is from R ∈ [0, 15]. We examine the interval of Po ∈ [0.01, 1.10], allowing the likely as-

trophysically irrelevant but fluid dynamically interesting case that the precession is faster

than the regular rotation. Finally, we performed simulations with three different values of

the Ekman number: Ek = [5 · 10−5, 2.5 · 10−5, 10−5]. When varying the Ekman number

we fix the Rayleigh number to 0, i.e. there is no convective instability in this set of these

simulations.

We have opted to use the faster nek5000 code to perform most of the parameter

sweeps, while executing selected simulations for interesting cases in dedalus. dedalus

provides more accurate values of K2D and allows for accurate creation of horizontal power

spectra without any need for interpolation, but was found to run these simulations much

more slowly than nek5000, hence this division of labour between the two codes. We have

checked that the two codes also produce the same results in select non-linear simulations

with the same parameters. This will be shown in the figures in Ch. 6.

A table of the parameters in the simulations performed in dedalus, as well as the

associated resolution of those simulations, is given in Table 5.1. We have verified that

the quantities computed here are independent of the resolution chosen, such that for the

reported quantities the simulations are all well resolved. The reported resolutions show the

number of grid points in the simulations. Because we utilise a real Fourier basis, however,

we only have wavenumber modes up to nx/2, ny/2 in the x and y directions. The grid is

expanded by a factor of 3/2 for de-aliasing purposes. Likewise, a table of the parameters

in the simulations performed in nek5000, as well as the associated resolutions of those

simulations, is given in Table 5.2. We utilise polynomials of order N = 9 in all directions,

inside 10 elements in all directions, thus resulting in a resolution of 903. For de-aliasing

purposes we increase the polynomial order to 14 when calculating the non-linear terms,

satisfying the 3/2 rule.

Table 5.1: Table of resolutions used in the dedalus simulations to study the precessional
instability with different Rayleigh numbers, Ekman numbers, and box size Lx = Ly =
Lz = 1. The resolutions we report are the resolutions prior to expanding the grid with a
factor 3/2 for de-aliasing.

dedalus

Ek = 2.5 · 10−5, R = 0 nx, ny, nz
Po = 0.15, 0.17, 0.18, 0.20, 0.25 96, 96, 96

Ek = 2.5 · 10−5, R = 2 nx, ny, nz
Po = 0.25 96, 96, 96

Ek = 2.5 · 10−5, R = 0 nx, ny, nz
Po = 0.0, 0.10, 0.15, 0.25, 0.40 96, 96, 96

Ek = 2.5 · 10−5, R = 6 nx, ny, nz
Po = 0.25 96, 96, 96
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Table 5.2: Same as Table 5.1 for the nek5000 simulations. The given resolutions are
obtained by using polynomials of order 9 in all directions in a cube of 10 elements in all
directions. We expand the polynomials to order 14 for de-aliasing purposes.

nek5000

Ek = 2.5 · 10−5, Po = 0.04 nx, ny, nz
R = 0, 1.5, 2, 3, 4, 5, 6, 8, 10, 15 90, 90, 90

Ek = 2.5 · 10−5, Po = 0.10 nx, ny, nz
R = 0, 1.5, 2, 3, 4, 5, 6, 8, 10, 15 90, 90, 90

Ek = 2.5 · 10−5, Po = 0.25 nx, ny, nz
R = 0, 1.5, 2, 3, 4, 5, 6, 8, 10, 15 90, 90, 90

Ek = 5 · 10−5, R = 0 nx, ny, nz
Po = 0.12, 0.14, 0.15, 0.16, 0.18, 0.20, 0.22, 0.24, 0.25, 0.26, 90, 90, 90

0.28, 0.30

Ek = 2.5 · 10−5, R = 0 nx, ny, nz
Po = 0.06, 0.08, 0.10, 0.12, 0.14, 0.15, 0.16, 0.17, 0.18, 0.20, 90, 90, 90

0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.80, 1.00, 1.10

Ek = 10−5, R = 0 nx, ny, nz
Po = 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.11, 0.12, 0.13, 0.14, 90, 90, 90

0.15, 0.16, 0.18, 0.20, 0.25, 0.30

Ek = 2.5 · 10−5, R = 2 nx, ny, nz
Po = 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.15, 90, 90, 90

0.16, 0.18, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50

Ek = 2.5 · 10−5, R = 4 nx, ny, nz
Po = 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.25, 90, 90, 90

0.30, 0.35, 0.40, 0.45, 0.50

Ek = 2.5 · 10−5, R = 6 nx, ny, nz
Po = 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.25, 90, 90, 90

0.30, 0.35, 0.40, 0.45, 0.50

5.5 Summary

In this chapter we have discussed the precessional instability and convective instability

in rotating systems with impermeable walls in the vertical direction. From the non-

dimensionalised governing equations, with Pr = 1, we have found the parameters that

we can vary within our simulations, namely the Poincaré number, Ekman number, and

Rayleigh number. We have detailed the known properties of the precessional instability

without convection in our setup, as previously found in R. Mason and Kerswell (2002). We

have also derived expressions for the quantities which we wish to analyse in simulations,

namely the kinetic energy, K, Nusselt number, Nu, and energy injection rate from the

precessional flow, I. These expressions turn out to be the same as in Ch. 2, except for the

evaluation of I.

We have also decomposed the kinetic energy into its geostrophic (or vortex) modes

represented by the z-invariant part of the kinetic energy K, referred to as K2D, and waves

and eddies represented by the z-dependent part of K, referred to as K3D. This choice

together with the boundary conditions implies that uz is not part of K2D. As a result, the

energy injection I cannot be split into 2D and 3D components, as it contains uz. Unlike
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the elliptical instability case, the energy injection rate due to the precessional instability

is by definition solely part of the 3D component.

We have found – using a crude argument which considers the saturation of a single

mode – that this energy injection term might be expected to scale as I ∝ Po3 if the

precessional instability operates in a sufficiently turbulent regime. If however the energy

injection or tidal dissipation of the flow is by action of the convective turbulence on the

precessional flow like an effective viscosity, independent of Po, it was found that the

energy injection should scale as I ∝ Po2, while still depending on the Rayleigh number as

we observed previously.

We have detailed the dedalus and nek5000 codes used to execute our simulations.

We have verified that each code captures both instabilities accurately by examining the

growth rates of the kinetic energy in linear test simulations, comparing these growth rates

with the theoretical predictions for both instabilities and finding good agreement. We have

also found that modes with nz = 0, i.e. modes that contribute to K2D, arise in the linear

simulations of the precessional instability. These modes are not able to grow according

to the inviscid linear stability analysis. Despite this, they appear in simulations executed

using both the dedalus and nek5000 codes. Therefore we conclude that the signal of

these modes is real as it is produced by both codes. We hypothesise that it might arise

from boundary layer effects, and does not arise from the linear instability.

Finally, we have also derived an expression for the growth rate of the precessional

instability in the presence of stratification. The theory matches the simulations well in the

regime of stable stratification and weak unstable stratification, but deviates significantly

when the unstable stratification is sufficiently strong. We suspect that this discrepancy

arises due to the influence of the viscosity and thermal diffusivity or modification of con-

vection by precession. In our simulations with 1-by-1-by-1 boxes the discrepancy however

does not matter as the growth rate of the convective instability, possibly affected by the

precession, is much larger at these values of the Rayleigh number and Ekman number.

Now that we have demonstrated that both codes accurately reproduce both instabil-

ities we can be confident to move on to analyse non-linear simulations of the precessional

instability and Rayleigh-Bénard convection and to study their interactions.
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Chapter 6

Interactions of the precessional

instability and convection

In this chapter we will explore the interactions of the precessional instability and con-

vection. We start with the behaviour of individual simulations, examining snapshots of

the flow as well as time series of the quantities that we wish to study. We will try to

explain the behaviours we observe in simulations using analysis of the horizontal energy

spectra. Afterwards, we will take time-averages of the quantities that we are interested

in and attempt to verify the scalings postulated in Sec. 5.1.4. We examine whether the

interactions of convection with the precessional instability impact the operation and effi-

ciency of the precessional instability. In particular, we want to study whether this impact

is the same as the one convection has on the operation of the elliptical instability in Ch. 3.

All simulations in this chapter are executed with Pr = 1 and in a 1-by-1-by-1 box since

these are less computationally demanding at our chosen Ra and Ek. As a result of the

smaller box size we expect that the LSV is not as energetically dominant as in Ch. 3 and

Ch. 4 because it is forced to stop growing at the smaller box scale, and thus lower energies.

Because the LSV is not as dominant, we also expect the suppressive effects of the LSV to

be lessened compared to those in Ch. 3 and Ch. 4.

6.1 Analysis of illustrative simulations

6.1.1 Snapshots of the vertical vorticity

We will begin our discussion by presenting snapshots of the vertical vorticity ωz as obtained

from the simulations using nek5000 with Ek = 2.5 · 10−5 in Fig. 6.1. This is the same

Ekman number as utilised in R. Mason and Kerswell (2002) in the strongly precessing case,

after correcting for the factor of two which is present in our definition of the Ekman number

and absent in theirs. The top two snapshots are taken from a simulation studying the

precessional instability, in the absence of convection, with Po = 0.1, Ra = 0. Based on the

previous results in R. Mason and Kerswell (2002), Barker (2016b), and Pizzi et al. (2022)

we expect the flow in these simulations to be bursty in nature, similar to the elliptical
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instability. More specifically, R. Mason and Kerswell (2002) identified three branches

of non-linear behaviour in their three-dimensional simulations. The simulation at this

value of Po is situated in the region of parameter space where their branch B emerges,

displaying bursty behaviour. R. Mason and Kerswell (2002) have found that branch B

contains primarily the most unstable linear modes and modes with frequencies λ = 0.5Ω

and λ = 1.5Ω, as well as featuring small amounts of energy in many other modes with

different frequencies, which most likely results from secondary wave-wave interactions.

We do indeed observe the bursty behaviour of this branch in the snapshots of the flow

at these parameters plotted in the top panels of Fig. 6.1. In Fig. 6.1a we plot the vorticity

at time t = 0.344, given in thermal time units. This coincides with a burst in energy

injection and kinetic energy of the precessional instability. These bursts are associated

with the most unstable linear modes, with a horizontal planform consisting of two full

sinusoids in both horizontal directions and a combination of the modes with nz = 1 and

nz = 2 in the vertical direction. After the burst in energy injection has occurred the most

unstable linear modes break down and instead a large-scale flow emerges. This large-scale

flow is portrayed in a snapshot taken at t = 0.37 in Fig. 6.1b. It does not look like the

vortices we normally expect from inertial wave breakdown; instead it appears a large-scale

sheared flow has formed, the direction of which oscillates in time, likely related to the

rotating shear introduced by the background flow. This large-scale flow inhibits growth of

the most unstable linear modes of the precessional instability all the same however, and

continues to do so until it has been slowly viscously dissipated. The most unstable linear

modes will then arise again in the flow and the cycle starts anew; the flow is maintained

in this fashion throughout the entirety of the simulation.

If instead we consider the flow with Po = 0.2, Ra = 0 in the middle panels of

Fig. 6.1 we observe much stronger vorticities than in the more laminar simulation with

Po = 0.1, Ra = 0. Note the changed colour scale in the middle and bottom panels

compared to the one in the top panels. In Fig. 6.1c we plot a snapshot taken at t = 0.06,

after the initial instability has saturated. We observe the formation of vortices in this

simulation as opposed to the more layer-like large-scale flow in Fig. 6.1b. The main

vortex, however, appears to dominate the flow less than in similar cases of the elliptical

instability we examined in Ch. 3. In these simulations a “secondary transition” occurs as

the values of the vorticity, and associated with it the kinetic energy and energy injection,

suddenly increase. This is visible in the massively increased values of the vorticity in the

snapshot in Fig. 6.1d, taken at t = 0.072. The vortex in this snapshot appears to dominate

the flow more than in Fig. 6.1c. When examining the vertical vorticity as a function of

depth it might appear that the vortex does not extend all the way down to the bottom of

the box. As it turns out, the vortex does extend to the bottom, but it is sheared, as we

might expect from the precessional shear, and the bottom of the vortex is located towards

the middle of the horizontal plane in this particular snapshot. The direction of this shear,

which we might consider to be the vortex axis, is precessing in time, on a timescale slightly

longer than the precession period in this simulation. As a result, the strong vortex is not
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(a) t = 0.344, Po = 0.1, Ra = 0. (b) t = 0.37, Po = 0.1, Ra = 0.

(c) t = 0.062, Po = 0.2, Ra = 0. (d) t = 0.07, Po = 0.2, Ra = 0.

(e) t = 0.05, Po = 0.1, Ra = 2Rac. (f) t = 0.05, Po = 0.1, Ra = 6Rac.

Figure 6.1: Snapshots of the vertical vorticity ωz of the flow in simulations executed using
nek5000 with Ek = 2.5 · 10−5. The top left and top right panels, both obtained from the
same simulation, show snapshots taken during a burst of the energy injection and during
the period of large-scale flow after the burst, respectively. The middle panels, both taken
from a simulation with stronger precessional driving than the top panels, show vortices
in the flow instead. A rapid “secondary transition” appears to occur in this simulation,
indicated by a large increase in vorticity and kinetic energy from the panel on the left
to the one on the right. The bottom left panel shows a simulation with weak convective
driving; the bursty behaviour of the precessional instability appears absent and instead
the convection appears to dominate this flow. In the bottom right panel a snapshot of the
simulation with stronger convective driving is shown. This flow strongly resembles that
of the middle right panel, but it is unclear whether the vortex is driven by convection or
precession.
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completely z-invariant, such that the 2D energy according to our definition does not fully

capture the energies in these vortices. We expect that the observed secondary transition

may be associated with branch C reported in R. Mason and Kerswell (2002). This branch

appears in their simulations after a transition from the initial state at branch B. Branch C

is associated with the emergence of modes with frequencies λ which are multiples of 0.5Ω,

in addition to the absence of the most unstable linear modes and much larger energies

compared to branch B.

We will now use these snapshots to get an idea how convection modifies the behaviour

of the flow. We start by examining a snapshot of the simulation with Po = 0.1, Ra = 2Rac

in Fig. 6.1e. This snapshot was taken at t = 0.05, after saturation of the initial instability

and transients have died down. The flow in this snapshot is representative of the flow at all

times. The flow in this simulation is very different from all previously observed behaviours,

showing large-scale up and down flows, which appear somewhat sheared in the horizontal

directions, and very small-scale but not vortex-like behaviour in the horizontal plane.

These small-scale features appear, by eye, to be consistent with the size of the convectively

unstable linear modes. We attribute this behaviour to the convective motions, but note

that this close to onset the convection is unable to form a convective large-scale vortex

both with and in the absence of precession, as observed in Ch. 3 and previously observed

in Guervilly et al. (2014). The precessional instability appears to be weak or absent

compared to these convective motions, as there is no clear evidence of its operation in the

flow.

Finally, we turn to even stronger convective driving in Fig. 6.1f, with Po = 0.1, Ra =

6Rac taken at t = 0.05. Again the initial transients have died down at this point in the

simulation. The flow has saturated in a way that is very similar to the one in Fig. 6.1d.

We observe again a vortex in the flow, but the areas around the vortex appear to be

more noisy as we have come to expect from convective simulations. This noisiness is

presumably associated with the convective eddies present in the simulation. It is unclear

whether the vortex is of a convective nature or generated by the precessional instability

or both. We will examine the time series of the energy injection, as in the case of the

elliptical instability, to examine whether the precessional instability is operating in these

simulations with strong convection present.

We wish to briefly discuss what appears to be signatures of the grid scale present

in both Fig. 6.1d and Fig. 6.1f. These are prominent here, but are much less pronounced

and usually absent in the velocity snapshots that we have used to compute these vorticity

snapshots. The prominence of the features here is likely an artefact of how we have com-

puted the vorticity on this grid, and the colour scale we have used to plot these snapshots.

To ensure that these simulations executed in nek5000 are well-resolved however, without

resorting to interpolating the data to generate energy spectra, we will check if the following

criterion:

kmaxld > 1, (6.1)
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with

ld = (ν3/Dν)
1/4, (6.2)

is satisfied. The quantity ld represents the Kolmogorov lengthscale, the scale at which

viscosity dominates the flow, while kmax = 2π/Lxnx is the maximum wavenumber in one

direction available in the simulation. This is likely to be a conservative estimate because

the spectrum is steeper than the Kolmogorov spectrum, as we will show in Fig. 6.5 and

Fig. 6.6, with less power in smaller-scale modes near the dissipation scale. Wavevectors

are not employed in nek5000, and as such we will pretend it is a regular grid for the

purposes of this calculation, with nx = 90. We find for the simulations in Fig. 6.1d and

Fig. 6.1f that the ratios are 1.8 and 1.6 respectively. We have ensured that this condition

is also satisfied for all other simulations. Thus we conclude that these simulations are

indeed well-resolved, even though artefacts of the grid scale appear in the figures.

We will conduct a few further tests to ensure the well-resolvedness and validity of

our results. We will study the energy spectra obtained from the simulations executed in

dedalus, to confirm that they are well-resolved, such that the agreement between the

simulations in nek5000 and dedalus further demonstrates the validity of our time series

results.

6.1.2 Time series of quantities of interest

We clearly observe quite diverse flow behaviours when looking at the flow snapshots, even

when considering just the non-linear evolution of the precessional instability in isolation.

To better understand the differences between these flows, we now turn to the time series of

our quantities of interest, K, K2D, I and uz. The latter of these is obtained by calculating

the rms vertical velocity. These time series, obtained using nek5000, are portrayed in

Fig. 6.2. The snapshots in Fig. 6.1 taken from these simulations have been marked with

vertical dotted-black lines at the times that they were taken. All these simulations have

been executed with Ek = 2.5 · 10−5. In Fig. 6.2a the simulation with Po = 0.1, Ra = 0 is

presented. This simulation corresponds to the snapshots in the top two panels of Fig. 6.1,

showing the bursty behaviour. The peaks of the kinetic energy and energy injection

correspond to flows that look similar to Fig. 6.1a, while those flows found in Fig. 6.1b

occur during the troughs. The linearly unstable modes are associated with bursts in both

total energy followed by bursts in the 2D energy with a slight delay. Furthermore, we

observe that the energy injection is also bursty, and primarily associated with the 3D

energy as one would expect. The vertical velocity appears to follow the kinetic energy

quite closely in all panels of this figure.

In Fig. 6.2b we plot the time series of the simulation executed with Po = 0.2, Ra = 0.

As we expect from the middle panels in Fig. 6.1, the bursty behaviour is absent. Instead,

the simulation goes through a regime of lower kinetic energy and energy injection from t =

0.03−0.06 and then the flow goes through a rapid secondary transition into a regime with

the kinetic energy, energy injection and vertical velocity maintained at strongly elevated

levels. We will denote this regime as the “continuously turbulent” regime, in contrast to
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(a) Po = 0.1, Ra = 0. (b) Po = 0.2, Ra = 0.

(c) Po = 0.1, Ra = 2Rac. (d) Po = 0.2, Ra = 2Rac.

(e) Po = 0.1, Ra = 6Rac. (f) Po = 0.2, Ra = 6Rac.

Figure 6.2: Time series of the precessional instability and convection with Ek = 2.5 ·10−5,
executed using nek5000. Vertical dotted-black lines correspond to the times at which
the snapshots in Fig. 6.1 are taken. The top left and right panels show the precessional
instability in isolation. The simulation in the top left panel produces the expected bursty
behaviour, while the top right panel with stronger precessional driving features a secondary
transition to a continuously turbulent state. The introduction of convection inhibits the
bursty behaviour in the figure on the middle left, displaying a continuous energy injection
instead. The simulation on the middle right with stronger precessional driving than the
one on the middle left shows similar behaviour to the panel on the top right. The simu-
lation on the bottom left with strong convective driving shows evidence for a secondary
transition that is more gradual than in the top right panel, so convection might allow the
precessional instability to become continuously turbulent at lower values of the Poincaré
number. Finally, the simulation on the bottom right also shows the secondary transition,
but stronger convective driving appears to allow the transition to occur sooner.
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the bursty regime at lower values of the Poincaré number. As stated before, we suspect

this corresponds to the transition from branch B to branch C as reported in R. Mason

and Kerswell (2002). We do not however observe a transition from branch C back down

to branch B, like they do, in any of our simulations. This continued presence of branch C

might be because of the increased resolution in our simulations, as the length of time we

run the simulations for is similar to or exceeding those in R. Mason and Kerswell (2002).

We now turn to examine the modification of these flows and corresponding time

series due to the introduction of convection. In Fig. 6.2c the time series of the simulation

with Po = 0.1, Ra = 2Rac is shown. This simulation indeed shows the absence of the

bursty behaviour, but has a kinetic energy roughly on the same order of magnitude as

the one above. The precessional instability appears to not be operating in this figure, as

we concluded from the snapshot. Comparing this simulation to those where the elliptical

instability was absent in Ch. 3, and the energy injection was instead due to the convection

acting on the background flow like an effective viscosity, we see very similar behaviour.

We therefore attribute this behaviour to the convection acting like an effective viscosity in

damping the precessional flow as well. In Fig. 6.2d we show the simulation with parameters

Po = 0.2, Ra = 2Rac. Even though the convection is present we again observe the

secondary transition, likely indicating the operation of the precessional instability in this

simulation. The kinetic energy and energy injection appear to saturate at slightly lower

values compared to Fig. 6.2b.

The time series corresponding to the simulation with Po = 0.1, Ra = 6Rac is

shown in Fig. 6.2e. We observe a mixture of the convective energy injection behaviour

and the precessional instability secondary transition. A transition akin to the precessional

secondary transition does arise, but it is much more gradual. So neither from the snapshot

of the flow nor from the time series can we properly conclude whether this is due to the

precessional instability or a property of convection modified by precession. If it is indeed

the precessional instability then the convection allows for the secondary transition to

appear at smaller values of the Poincaré number. This can potentially enhance the energy

injection and thus dissipation significantly, and is therefore important to examine further.

Finally, we examine the time series of the simulation with Po = 0.2, Ra = 6Rac in Fig. 6.2f.

We again notice a secondary transition, which occurs much faster than in the case of the

top right and middle right panels, even though the Poincaré number of all three simulations

is the same. The energy and energy injections prior to this transition are larger due to

the convective driving. We thus conclude that the convective driving does not disrupt

the operation of the precessional instability; instead it appears that convection allows the

precessional instability to attain its continuously turbulent regime at lower values of the

Poincaré number. This is possibly caused by the increased value of the energy or 2D

energy – and thus presence of a vortex in the flow – due to convection.
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6.1.3 Examination of the 2D energy using dedalus

If we do indeed wish to attribute the secondary transition to the large-scale vortices, then

one way to probe them is by studying the values of K2D. To this end we will turn to the

K2D obtained using dedalus simulations. Of particular interest would be to see if and

how the convective instability allows the precessional instability to attain the continuously

turbulent regime at lower values of the Poincaré number. We again note that the vortices

in the snapshots in Fig. 6.1 appear to not be z-invariant, and thus K2D does not fully

capture the energy in these vortices. To be able to better compare and study the values

of K2D and its importance in these simulations relative to K we plot normalised values of

the total kinetic energy K, the 2D energy K2D as well as their ratio in Fig. 6.3. We have

normalised all these simulations by the same value, namely the largest value of the total

kinetic energy reached in this set of six simulations, which is found in the simulation with

Po = 0.2, Ra = 0.

In Fig. 6.3a the simulation with Po = 0.1, Ra = 0 is plotted. The expected bursty

behaviour is again evident in the values of K, and the behaviour closely resembles that of

the simulation executed using nek5000 in Fig. 6.2a. The 2D energy follows closely behind

the burst in total kinetic energy, and is maintained more strongly after the burst than the

3D energy, such that after the burst the ratio of the total to the 2D energy attains the

largest values, while during the bursts this ratio dips. The 2D energy appears to peak at

normalised values of order O(10−3) in this simulation. In Fig. 6.3b the simulation with

Po = 0.17, Ra = 0 is plotted; this simulation was found, when examining the nek5000

simulations (not shown), to transition into the continuously turbulent regime after many

rotation times in the lower energy turbulent state and we observe the same here. Prior

to the secondary transition the bursty behaviour has clearly disappeared. It has been

replaced by the flow containing a vortex, like the one in Fig. 6.1c. K2D keeps growing in

this simulation, and we observe the secondary transition to start once K2D has attained

a normalised value of ≈ 10−2. The final state appears to have a ratio of K2D to K that

is somewhat larger than this pre-turbulent state, but unlike the Po = 0.1, Ra = 0 case

with bursty behaviour the K2D does not achieve a dominant state in these simulations.

In Fig. 6.3c we plot the simulation with Po = 0.18, Ra = 0. This simulation goes through

the secondary transition faster, because the K2D energy increases faster and more steadily

than in the Po = 0.17, Ra = 0 case. The transition again appears to happen roughly when

the normalised value of K2D exceeds 10−2. Next, in Fig. 6.3d we plot the simulation with

Po = 0.2, Ra = 0; the K2D energies attain large values more rapidly then the simulations

at lower values of the Poincaré number, and again the transition happens faster than at

lower values of Po. We also note that the final saturation energies increase with increasing

Poincaré number, because the energy injection increases with Po.

Thus we conclude that it is likely that the secondary transition into the continuously

turbulent regime for the precessional instability in isolation is mediated by the presence

of vortices and their energy K2D. A sufficiently large amount of energy in these vortices is

needed, which is paired to sufficiently large values of the Poincaré number and suppression
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(b) Po = 0.17, Ra = 0.
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(c) Po = 0.18, Ra = 0.
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(d) Po = 0.2, Ra = 0.
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(e) Po = 0, Ra = 4Rac.
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(f) Po = 0.1, Ra = 4Rac.

Figure 6.3: Normalised energy time series of the precessional instability and convection
with Ek = 2.5 · 10−5, executed using dedalus. Vertical dotted lines correspond to the
ends of the intervals of the spectra shown in Figs. 6.4, 6.5 and 6.6. The energies are
normalised by the largest energy attained in this group of six simulations, which occurs
in the simulation in the middle right panel. The expected bursty behaviour is observed
in the top left panel, as well as dominance of K2D in the absence of the bursts of the
precessional instability. The top right panel features an absence of bursty behaviour and a
very gradual increase in energy until the secondary transition is reached. The middle left
panel, with stronger precessional driving than the top right panel, attains the secondary
transition faster, and the deciding factor when the secondary transition occurs appears
to be the value of K2D. The precessional driving in the simulation in the middle right
panel is even stronger, such that the secondary transition is achieved very rapidly. In the
bottom left panel a purely convective simulation is shown, which achieves rapid saturation
with much fewer fluctuations compared to the precessional cases, and a clear dominance of
the K2D energy. In the convective and precessional simulation in the bottom right panel
the energy far exceeds that of the convective simulation and the precessional instability
in isolation with Po = 0.1; thus the combination indeed allows for larger energies to be
achieved.
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of the bursty behaviour. This is in stark contrast to the elliptical instability case, where

the vortices instead suppressed the instability.

Next we examine these same quantities in the presence of convection in the bottom

panels of Fig. 6.3. In Fig. 6.3e the simulation with Po = 0, Ra = 4Rac is plotted; we

can see that the energies saturate rapidly at values around the required transition value,

with K2D dominating the flow from the start as we would expect. The flow saturates

and attains its final statistically steady state very rapidly. Furthermore, it displays much

fewer high frequency fluctuations than the cases where the precession is present. Finally,

we examine Fig. 6.3f in which we have plotted the simulation with Po = 0.1, Ra = 4Rac.

A much higher energy state is achieved in this simulation compared to both simulations

with precession and convection in isolation for these same parameters. The transition

to the high energy state again appears more gradual than the secondary transitions of

the precessional instability in isolation. This gradual transition arises roughly when the

normalised value of K2D exceeds 10−2. The ratio of K2D to K is maintained at a larger

value compared to the purely precessional simulations that have gone through a turbulent

transition, although the value is smaller than the one of the purely convective case. Thus

we conclude that if the convection reaches a certain energy, and the precessional instability

is able to operate, then the convection assists the precessional instability in achieving the

continuously turbulent regime.

This cannot, however, be the full picture, as this would imply that once a certain

K2D energy is reached the precessional instability will always be able to achieve the con-

tinuously turbulent state. As a result even the smallest values of Po would reach this state

in convective simulations that are sufficiently strongly driven. When examining these sim-

ulations we still observe the dominance of convection acting as an effective viscosity for

a majority of the lower values of Po. Thus there must be a secondary part to explain

this phenomenon. To this end, we will examine the spectra of these flows, both before

and after the transition, as well as in the presence of convection. In addition, and for

completeness, we examine the spectra of a simulation displaying bursty behaviour.

6.1.4 Horizontal energy spectra of the flow

We start by examining the horizontal energy spectra of the bursty simulation with Po =

0.1, Ra = 0 in Fig. 6.4, corresponding to Fig. 6.3a. These horizontal energy spectra are

obtained at the mid-plane of the simulation, i.e. z = 0.5. They are captured over one

burst and decay period, in Fig. 6.3a denoted by the interval between the vertical dotted

lines from t = 0.106 to t = 0.140. We have averaged these spectra every five output steps,

with a time between outputs of t = 0.001. The times corresponding to each spectrum

are shown in the legend. Energy is preferentially injected by the precessional instability

into the modes near k⊥ = 18.059, which in these energy spectra is contained within the

bin centred at k⊥ = 6π ≈ 18.85. In all the averaged energy spectra in this figure this

injection is represented by the large spike in energy. The period under study starts with a

significant fraction of the kinetic energy in the K2D modes compared to the total energies,
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which is represented in the energy spectrum in blue by the bin with the lowest horizontal

wavenumber containing comparable energy to the wavenumbers where energy is injected.

As the simulation evolves the energy increases due to a burst in energy injection. This is

represented by a large increase in the energy located in the primary energy injection spike

in both the orange and green spectra, also adding energy in the smallest wavenumber

bin corresponding to the large-scale flow. Towards the end of the burst energy is being

transferred to smaller and smaller scales as indicated by the wider green spectrum. After

the burst finishes the energy starts decreasing again in the red, purple, brown and pink

spectra. It should be noted that the energy in the smallest wavenumber bins has increased

in the red spectrum compared to the green spectrum. Once these energies have decayed

sufficiently another burst can occur again and the cycle starts anew. Finally, we have

plotted the turbulent Kolmogorov scaling of k
−5/3
⊥ in a dashed-black line in the figure, but

we note that no parts of the spectra agree with this line, as we expect, since the flow does

not appear turbulent at any stage from the snapshots.

Next we turn our attention to the spectra of the simulation with Po = 0.2, Ra = 0

in Fig. 6.5, corresponding to the interval between the vertical dotted lines in Fig. 6.3d

from t = 0.013 to t = 0.026, in which we capture the final stages of the initial instability

followed by the secondary transition. We have averaged the spectra in this figure over two

output steps, again with a time between outputs of t = 0.001. During the linear instability

we again retrieve the primary peak of the most unstable linear modes at k⊥ = 6π, as well

as a secondary peak at k⊥ = 12π. As the instability saturates in the orange spectrum,

energy is moved to smaller and smaller scales, as well as into the largest-scale modes. The

energy starts aligning to a more traditional turbulent shape while the energy in the lowest

wavenumber bin keeps growing in the green spectrum; the clear peak in the linear modes

vanishes from the green to the red spectrum, and the K2D starts to dominate the flow in

all subsequent spectra. This seems to allow the secondary transition to occur, with energy

subsequently being distributed across the scales. We have again plotted the Kolgomorov

scaling as k
−5/3
⊥ in dashed-black. It appears that the intermediate scales in this simulation

agree well with this prediction. Thus we can be reasonably justified in calling this regime

the continuously turbulent regime. We can use these energy spectra to examine the well-

resolvedness of the flow, using the rule of thumb that the largest energy in one bin must

be at least a factor of 103 larger than the energy at the de-aliasing scale, which is clearly

satisfied in these spectra. As the simulation continues evolving it eventually achieves a

statistically steady state, with spectra resembling the pink spectrum in Fig. 6.5. The

energy in the smallest wavenumber bin in these spectra is of order O(107) and the one in

the largest wavenumber bin of order O(102). Therefore, we conclude that this simulation

is well-resolved.

Finally, we turn to the effect convection has on these flows by examining the energy

spectra of the simulation with Po = 0.1, Ra = 4Rac in Fig. 6.6. The time we examine is

denoted by the interval between the start of the simulation and the vertical dotted-black

line in Fig. 6.3f, from t = 0 to t = 0.027. We average the spectra over four output steps,
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Figure 6.4: Horizontal energy spectra taken at z = 0.5 of the simulation with Po = 0.1,
Ra = 0 from t = 0.106 to t = 0.140, corresponding to the interval between the vertical
dotted lines in Fig. 6.3a. The simulation goes through a burst and decay period in this
interval. In the spectra this is indicated by the increase and subsequent decrease in the
main energy injection spike in the wavenumber bin with k⊥ = 6π, while the 2D energy,
here located in the smallest wavenumber bin, lags slightly behind this spike. The spectra

clearly do not match the Kolmogorov scaling as k
−5/3
⊥ in dashed-black, implying it is not

turbulent, as we would expect from the snapshots of this simulation.

152



6.1 Analysis of illustrative simulations

Figure 6.5: Horizontal energy spectra taken at z = 0.5 of the simulation with Po = 0.2,
Ra = 0 from t = 0.013 to t = 0.026, corresponding to the interval between the vertical
dotted lines in Fig. 6.3d. The simulation goes through the end of the linear growth phase
and the short low-energy turbulent phase followed by the secondary transition. The energy
at the end of the linear growth phase, in the blue and orange spectra, is predominantly
located in the bin with the linearly most unstable wavenumbers as well as integer multiples
of this bin, possibly pointing to triadic resonances. K2D increases just before the secondary
transition in the green spectrum, and then the secondary transition makes the simulation

continuously turbulent, agreeing well with the Kolmogorov scaling as k
−5/3
⊥ in dashed-

black at intermediate wavenumbers for the times indicated by the red, purple, brown and
pink spectra.
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with an output step every t = 0.001. The spectra appear turbulent from the start of the

simulation, as we would expect from sufficiently strongly driven convection. There is a hint

of energy injection by the precessional instability into the bin containing the precessionally

unstable wavenumbers in the blue spectrum, because it is the bin with the most energy

in this particular spectrum. As the simulation evolves the energy goes up predominantly

in the smallest wavenumber bin and maintains roughly the same shape. Interestingly, it

appears that the spectrum has actually become more concentrated towards larger scales

in the orange spectrum compared to the initial blue spectrum, possibly due to the decay

of the initial transient “burst” before non-linear saturation, and has subsequently started

widening again over time. We again plot the Kolmogorov scaling in dashed-black, to which

the intermediate scales of the spectra again agree reasonably well.

The spectrum shows that this simulation is also well-resolved. As the simulation

evolves and achieves a statistically steady state, the spectra resemble the pink spectrum

in Fig. 6.6, with the energy in the smallest wavenumber bin saturating at O(107), but with

lower energies than the simulation in Fig. 6.5, while the energy in largest wavenumber bin

saturates at O(100). We have also compared the energy spectra of this simulation with

the ones of the purely convective simulation with Po = 0, Ra = 4Rac. These spectra look

very similar to the ones in Fig. 6.6, such that we have decided not to plot them. There is

however one crucial difference, the energy in the purely convective spectra stops growing.

Most notably, the energy in the smallest wavenumber bin does not grow like in Fig. 6.6,

instead stagnating at an energy of ≈ 106, i.e. this bin saturates at lower energies.

We conclude that the energy spectra support the hypothesis that the 2D energy is at

the very least related to the secondary transition to the continuously turbulent regime. We

also find that convection assists in achieving this energy in a rapid manner in originally

bursty simulations in the absence of convection, such that even simulations with small

values of the Poincaré number can achieve the continuously turbulent regime. However,

the precessional instability must also be sufficiently strong to achieve this growth, as

otherwise the precessional instability appears erased in favour of the turbulent effective

viscosity regime. The increase in precessional growth rate by the convective driving as

seen in the linear simulations in Fig. 5.7 and Fig. 5.8 could be an explanation as to why

the precessional instability is still sufficiently strong to achieve the continuously turbulent

regime in these simulations. This implies that, as the convective driving is increased,

the continuously turbulent regime is attainable at lower and lower values of the Poincaré

number in these simulations.
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Figure 6.6: Horizontal energy spectra taken at z = 0.5 of the simulation with Po = 0.1,
Ra = 4Rac from t = 0.0 to t = 0.027, corresponding to the interval between the start of the
simulation and the vertical dotted line in the Fig. 6.3f. The simulation goes through the
linear growth phase and the gradual transition to a higher energy state. No clear evidence
of the precessional instability is present. Note the decrease of energy at smallest scales
from the start of the simulation in the blue spectrum to the latter parts of the simulation,
possibly due to the decay of the initial transient “burst” before non-linear saturation.

Again we find good agreement with the Kolmogorov scaling as k
−5/3
⊥ in dashed-black for

the intermediate wavenumbers.

155



6. INTERACTIONS OF THE PRECESSIONAL INSTABILITY AND
CONVECTION

6.2 Scaling laws of the quantities of interest

We now turn to obtain scalings laws for the quantities of interest. We will attempt to

constrain the scaling of the time-averaged value of the energy injection, I, rms vertical

velocity, uz, and Nusselt number, Nu, as a function of the Rayleigh number, Ekman

number and Poincaré number. We time-average these quantities starting from a suitable

time in the simulations after a steady state has been reached. Because the continuously

turbulent regime appears to be the final steady state in all simulations which feature it,

we have taken time-averages only over this part of such simulations, neglecting any part

of these simulations prior to the secondary transition.

6.2.1 Scaling laws as a function of the Poincaré number

We have identified three different qualitative regimes as a function of Po and Ra, and

examined the transitions and reasons for them. In the absence of convection and at low

Poincaré numbers the flow is laminar, alternating between the most unstable mode and

the z-invariant large-scale flow. The results in Barker (2016b) indicate that the energy

injection associated with this behaviour might be consistent with a scaling as Po2, as they

appear to scale similarly to the laminar dissipation of the background flow U0; see the

bottom left panel of Fig. 7 in Barker (2016b). Note that their measured dissipation, and the

energy injection in our setup, does not include the laminar dissipation however, such that

this only gives a tentative indication how the energy injection in our simulations might scale

with the Poincaré number in the laminar regime, without explaining the mechanism behind

it. If however convection is present at low Poincaré number the flow appears much more

turbulent due to convective action. The bursty behaviour has disappeared, reminiscent

of the suppression of the elliptical instability by convection. Instead a continuous energy

injection is present because of the action of turbulent convection on the precessional flow.

We would expect to see this behaviour scale as Po2 also and, more importantly, also

depend on the Rayleigh number based on the results in Ch. 4. Finally, regardless of the

presence of convection these simulations indicate a continuously turbulent regime at high

Poincaré number. We would expect the energy injection in this regime to scale as Po3.

Even stronger convection might also suppress this regime or result in an effective viscosity,

whose energy injection overshadows that of the precessional instability.

The time-averaged values of the energy injection rate I as a function of Po with

fixed Ek = 2.5 · 10−5 are plotted in Fig. 6.7. In this figure numerous parameter sweeps

at different values of the Rayleigh number are plotted; the runs executed using nek5000

are plotted using circles, while the runs executed using dedalus are plotted using dia-

monds. As stated previously, the majority of these simulations have been executed using

nek5000. But the simulations we have executed using dedalus always show very good

agreement with their nek5000 counterparts, thus validating the results obtained using

both codes. The simulations executed at Ra = 0 in blue circles start at Po = 0.06 because

the precessional instability is not unstable below this value of the Poincaré number with

this value of the Ekman number. Out of interest for the results we have also run this
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parameter sweep out to the likely astrophysically irrelevant value of Po = 1.1.

For clarity and to highlight the different regimes we have split the figure into two

panels in Fig. 6.7. The top panel of Fig. 6.7 shows the data on the interval of Po =

[0.01, 0.12], thus capturing the effective viscosity as well as the laminar regime of the

precessional instability in detail. The bottom panel on the other hand shows the data

on the interval Po = [0.1, 1.1], highlighting the transition between the two regimes and

the continuously turbulent regime. The influence of convection on the occurrence of the

secondary transition, as well as the action of convection on the energy injection in the

continuously turbulent regime are also visible. Note the overlap between these two figures,

which was chosen deliberately so that the departure from certain behaviours and associated

scaling laws are more clearly illustrated. Note also the different vertical axes between the

two panels. The legend for both panels of the figure is the same, and as such has only been

included in the bottom panel. We will fit the data points where applicable using either of

the obtained Po2 or Po3 scalings. As in the case of the elliptical instability, we will define

D ≡ ζΩ3Po3 and Dlam ≡ ΥΩ2Po2, with ζ and Υ the proportionality or efficiency “factors”

of both scaling laws respectively. We have defined Dlam for the dissipation scaling as Po2

reported in Barker (2016b) and Pizzi et al. (2022). Note that we reserve the proportionality

factor Υ for the precessional laminar scaling laws exclusively, and will not use this factor

when fitting the effective viscosity. Furthermore, we have chosen an arbitrary scaling of

this laminar energy injection as Ω2 for ease of comparison with the energy injection due

to the effective viscosity, but, since there is no theoretical basis for this scaling, we will

allow Υ to depend on Ω. Lastly, ζ can also depend on the Rayleigh number.

In the top panel of Fig. 6.7 the data points obtained with different values of the

Rayleigh number agree well with the Po2 scaling. Indeed, even the dataset obtained at

Ra = 0 agrees with this crude scaling with Υ = 3.5, which we have plotted in dashed-black.

Although it should be stressed that this parameter sweep primarily agrees with this scaling

law for a different reason than those parameter sweeps where convection is present. The

energy injection rate at Ra = 2Rac, represented with yellow circles and fitted in solid-red,

is lower than at Ra = 0; the convection has prevented the precessional instability from

operating, even though the energy injection from the convection acting on the background

flow is actually lower than that of the precessional instability in isolation with Ra = 0.

We also observe that the energy injection in this regime increases with convective driving,

as fully expected from our previous results for the effective viscosity. A final point of note

is that both the purple circles with Ra = 4Rac, with fit in solid-grey, and the light blue

circles with Ra = 6Rac, with solid-blue fit, deviate from their respective fits as Po2 for

Po ≥ 0.10 and Po ≥ 0.06 respectively. Instead, they then seem to agree with a fit as Po3

in solid-black, providing a tentative hint for the continuously turbulent scaling we have

predicted previously. Finally, the two burgundy circles with Ra = 15Rac with associated

solid-pink fit, do not agree with the solid-black fit. This is possibly because the energy

injection due to the convection interacting with the background flow is larger than the

solid-black fit on this interval of Po, because the convective driving for these parameters
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Figure 6.7: Time-averaged energy injection I with fixed Ek = 2.5 · 10−5. The figure has
been split into two panels, with a slight overlap to highlight the different regimes. Note
the different vertical axes. The legend for both figures is placed in the lower panel. The
simulations executed using nek5000 are presented with circles, the ones executed using
dedalus with diamonds. The top panel shows the low Poincaré number regimes, i.e. the
laminar dissipation regime scaling as Po2 in the absence of convection and the effective
viscosity regime also scaling as Po2 for simulations with convection present. The bottom
panel instead shows the transition regime of the purely precessional case around Po = 0.16.
The continuously turbulent regime that all simulations agree with at large values of Po
has been fitted with a solid-black line scaling as Po3. Note that as the Poincaré number
is increased beyond Po ≈ 0.35 the energy injection plateaus and eventually appears to
decrease.
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is quite strong.

Moving on to the second half of the figure in the bottom panel of Fig. 6.7, we

have retained all the fits of the top panel of the figure for continuity purposes, although

it is clear that the majority of the simulations with Po ≳ 0.15 do not agree with these

fits anymore. Indeed we observe a strong jump in energy injection in both the purely

precessional simulations with Ra = 0 and the simulation with the weakest convective

driving considered with Ra = 2Rac. Both of these scalings first deviate weakly from their

Po2 fits, associated with the turbulent state without a secondary transition. Then, when

the secondary transition does present itself in the simulations, the energy injection jumps

up abruptly as a function of Po and instead aligns with the solid-black fit scaling as Po3.

This abrupt jump again occurs at different values of the Poincaré number, as previously

observed in the Ra = 4Rac and Ra = 6Rac parameter sweeps. The abrupt jump occurs at

Po = 0.16 for the Ra = 2Rac parameter sweep and at Po = 0.17 for the Ra = 0 parameter

sweep. Thus we also observe in this figure that the secondary transition to the turbulent

state is facilitated by the convection such that it occurs at lower Po for larger Ra.

Once the turbulent scaling has been reached all simulations are, within the error

bars, consistent with the solid black fit scaling as Po3 with ζ = 0.09 up to and including

Po ≈ 0.35. At larger values of the Poincaré number higher order effects seem to arise,

and the energy injection seems to plateau or possibly decrease slightly as a function of Po,

deviating from the solid-black fit. At even larger values of Po > 0.5 the energy injection

does again increase a little bit, but the specific reason for this is unclear. It could be due

to, for example, further higher-order effects, boundary layer effects, or possibly even the

horizontal wavenumber decreasing sufficiently, as Po is increased, such that it is now no

longer de-tuned as it selects a different mode available in the simulation. Finally, although

all data points are consistent with the solid-black fit within error bars a trend does appear

to arise as a function of the Rayleigh number. The energy injection rate decreases as

the Rayleigh number is increased, which we will show in more detail in Fig. 6.12. This

decrease is expected to continue with increasing values of the Rayleigh number until the

turbulent energy injection of the precessional instability is overshadowed by the energy

injection due to the effective viscosity. This has already happened to the burgundy circle

with Ra = 15Rac at Po = 0.25 where the energy injection agrees with the Po2 fit in

solid-pink, even though it is in the continuously turbulent regime and visual inspection of

the time series of this simulation (not shown) reveals the secondary transition.

Having examined the time-averaged energy injection we can also examine the vertical

velocity and the Nusselt number, although the latter only in the simulations with Ra ̸= 0.

We examine the time-averaged vertical velocity uz in Fig. 6.8. The velocities largely

follow the same patterns as the energy injection; since we have examined these patterns

thoroughly already we opt not to split the figure here. At low Poincaré numbers the

convection dominates and the vertical velocity is therefore independent of Po. The vertical

velocities instead scale with the Rayleigh number as we observed for the convective velocity

in Ch. 4. As the precessional driving is increased these values start deviating from the
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Figure 6.8: Same as Fig. 6.7, instead showing the time-averaged rms vertical velocity
uz. The vertical velocity in the absence of convection agree with two different fits in the
laminar, plotted in dashed-black, and continuously turbulent regimes, plotted in solid-
black. Both fits are consistent with a scaling as Po. The velocities in the presence of
convection agree with the convective velocity, until the continuously turbulent precessional
regime arises in the simulation, at which point they align with the continuously turbulent
scaling. The vertical velocity plateaus around Po ≈ 0.30.

purely convective result, with clearly noticeable departure from Po ≳ 0.06 for Ra = 4Rac

and Ra = 6Rac. At even larger values of Po these data points instead start aligning with

what appears to be a scaling with Po in solid-black. This scaling was predicted in our

theoretical arguments to derive the energy injection rate in Sec. 5.1.4. The solid-black fit

again tends to agree with the results in the continuously turbulent regime after the abrupt

jump at all values, up until Po ≈ 0.30 after which it appears to plateau again. Note

that the burgundy data points corresponding to the parameter sweep with Ra = 15Rac

only agree in the continuously turbulent regime; in the convectively dominated regime the

velocities of this sweep are much larger than predicted by our Po scaling in solid-black.

The purely precessional results in blue data points at Ra = 0 do however present one

additional interesting characteristic: the velocities are consistent with a different fit, still

scaling as Po, prior to the jump. We have plotted this fit in dashed-black. It should be

noted that vertical velocities associated with this fit are about one order of magnitude

smaller than those in the continuously turbulent regime.

Finally, we can examine the value of the Nusselt number in the convective, Ra ̸= 0,

simulations we have executed. For these convective parameter sweeps the Nusselt number

follows the same general behaviour as the vertical velocity. The Nusselt number starts at

the convective value, and then remains almost constant until it starts to transition into

the continuously turbulent precessional regime. In the continuously turbulent precessional

regime the Nusselt number is higher than in the absence of precession for most of the
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Figure 6.9: Same as Fig. 6.7, instead showing the time-averaged Nusselt number Nu.
The parameter sweep with Ra = 0 has not been plotted as the Nusselt number is one
by definition. The Nusselt number appears to decrease slightly in the effective viscosity
regime as the 2D energy gets stronger with stronger precessional driving for the Ra = 2Rac
case. Then it jumps or increases to meet the continuously turbulent regime, where the
Nusselt number appears to collapse onto a scaling consistent with Po like the vertical
velocity. The Nusselt number plateaus around Po ≈ 0.35.

Rayleigh numbers we have probed, as also found in Wei and Tilgner (2013). In the case of

Ra = 4Rac and particularly in the case of Ra = 6Rac this transition is very gradual. The

parameter sweep with Ra = 2Rac prior to the transition does however show an interesting

effect. As the simulations become more turbulent at larger precessional driving, but have

not yet attained sufficiently large values of the Poincaré number to attain the secondary

transition to the continuously turbulent regime, the Nusselt number exhibits a downward

trend. This is likely a result of the large-scale flow forming a vortex and becoming more

energetic in these simulations as the Poincaré number is increased. After the abrupt jump

the results seem to agree roughly with a scaling as Po in the solid-black fit, just like

the convective velocity. The Nusselt number once again deviates from this scaling from

Po ≈ 0.35 onwards. Note that the results obtained at Ra = 15Rac do not agree with the

solid-black fit, as the inherent Nusselt number due to convection is larger than any effects

of the precessional instability in this parameter sweep. It is likely that the inherent heat

transport of the convection forces the Ra = 6Rac data points to agree with the solid-black

fit only from Po = 0.25 until Po = 0.35. We suspect that the convective velocity, and as a

result the convective heat transport, is increased because the convection is inhibited less

by rotation due to the introduction of precession. The reasoning is as follows: in our setup,

the introduction of precession adds a secondary rotation – with rotation axis perpendicular

to the spin axis of the body – to the system, which results in the precessional Coriolis-like

term in the momentum equation. This additional rotation and its resultant Coriolis-like

term result in an effective rotation axis that is no longer parallel to the direction of gravity.
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The direction of the effective rotation axis deviating from the one of gravity in this setup

possibly results in a decreased inhibition of convection as the Taylor-Proudman theorem

becomes less and less relevant with increased precessional driving.

We thus clearly observe several scaling regimes with Po for the energy injection and

rms vertical velocity, including those we predicted in Sec. 5.1.4, and also fitted a scaling

law for the Nusselt number. Therefore, we will now turn to the scalings as a function of

the rotation rate Ω and the Rayleigh number for the energy injection, as that is the main

quantity of interest in this work.

6.2.2 Scaling laws as a function of the rotation rate

To start our examination of the effects of the rotation rate on the precessional insta-

bility, in the absence of convection, we have performed parameter sweeps as a func-

tion of the Poincaré number with three different values of the Ekman number, Ek =

[5 ·10−5, 2.5 ·10−5, 10−5], which we have achieved by varying the rotation rate. The results

are plotted in the top panel of Fig. 6.10. In addition to these three parameter sweeps

indicated in blue, orange and purple triangles we have also added the dedalus simula-

tions we have performed in yellow diamonds. The energy injection increases as the Ekman

number decreases, but the same general behaviour is maintained across all three parame-

ter sweeps. All three parameter sweeps feature a laminar energy injection that appears to

be consistent with a fit scaling as Po2. We have reproduced the dashed-black laminar fit

from Fig. 6.7. The energy injection of all three parameter sweeps starts deviating slightly

from the laminar scaling and then abruptly jumps to an energy injection that appears

to be consistent with a fit scaling as Po3. We also reproduce the solid-black fit from

Fig. 6.7. The value of the Poincaré number at which this abrupt jump occurs decreases

with decreasing Ekman number.

In the bottom panel of Fig. 6.10 we have attempted to rescale the x-axis of the

top panel in such a way that the jump occurs at roughly the same value for all three

parameter sweeps at different values of the Ekman number. We have found the best

agreement (by eye) by rescaling the x-axis as Ek−4/10Po. This rescaling seems to indicate

that the continuously turbulent regime of the precessional instability appears to emerge

when Ek−4/10Po ≳ 9. We have tested both changing the viscosity and Ω to alter the

Ekman number in these simulations, and have found that indeed it is the Ekman number

that governs this transition, finding the same location of the transition independently of

varying the viscosity or rotation rate. The energy injection rate itself is however affected

solely by the rotation rate and not by the Ekman number, because it is the rotation rate

that represents the tidal frequency. In astrophysical systems, with values of the Poincaré

number that are not too small and very small values of the Ekman number, we might

thus expect to be in the continuously turbulent regime for the precessional instability in

isolation.

Next we wish to test our scaling of the energy injection as a function of both the

Poincaré number and rotation rate Ω in Fig. 6.11. In this figure we have not rescaled the
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Figure 6.10: The time-averaged energy injection I as a function of the Poincaré number
at different values of the Ekman number, in the absence of convection. The chosen values
of the Ekman number are Ek = [5 · 10−5, 2.5 · 10−5, 10−5] in blue, orange and purple
triangles respectively. The dedalus results are plotted in yellow diamonds. We have
reproduced the continuously turbulent scaling in solid-black and the laminar scaling in
dashed-black from Fig. 6.7. The top panel shows that the transition to the continuously
turbulent regime decreases with increasing Po, while the energy injection itself increases
with increasing Ω. In an attempt to find how the Ekman number affects the transition
we have rescaled the x-axis with Ek−4/10 in the bottom panel and find good agreement of
the location of the transition in all three cases.
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Figure 6.11: Same as Fig. 6.10, after rescaling the energy injection with the rotation rate.
As in Fig. 6.10 the chosen values of the Ekman number are Ek = [5 · 10−5, 2.5 · 10−5, 10−5]
in blue, orange and purple triangles respectively. The dedalus results are plotted in
yellow diamonds. In the top panel we have rescaled the y-axis with Ω3 instead, and find
that all three parameter sweeps collapse to the solid-black fit of the continuously turbulent
regime. In the bottom panel we rescale with Ω5/2 instead and find that now the parameter
sweeps collapse to the laminar scaling in dashed-black.
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x-axis. In the top panel we have scaled the energy injection rate of all three parameter

sweeps by dividing each by their respective rotation rate cubed, which is the predicted

scaling of the energy injection in the continuously turbulent regime. We find that the data

points which are located in the continuously turbulent region do indeed collapse and agree

remarkably well with the fit of the energy injection rate in the continuously turbulent

regime in solid-black as given in Fig. 6.7, with ζ = 0.09. The data points located in

the laminar regime in this panel do not collapse under this rescaling, and as such we

have omitted the dashed-black fit corresponding to the laminar regime. Finally, in the

bottom panel of Fig. 6.11 we have rescaled the energy injection by dividing by Ω5/2 for

each parameter sweep. This differs from our arbitrary choice in which the energy injection

in the laminar regime scales as Ω2. However, we find that the data points collapse more

uniformly and better agreement with the fit in dashed-black is possible when we rescale

by Ω5/2 instead, and thus we choose to plot this. We choose to maintain our original

definition in which the energy injection scales as Ω2 in the laminar regime and thus find

the proportionality factor to be Υ = 0.025Ω1/2. Indeed all three parameter sweeps in the

laminar regime agree very well with the Po2 fit in dashed-black. We conclude that the

energy injection rate associated with the precessional instability in isolation, in this setup,

scales as:

I =

 0.025Ω5/2Po2 for Ek−4/10Po ≲ 9,

0.09Ω3Po3 for Ek−4/10Po ≳ 9.
(6.3)

6.2.3 Scaling laws as a function of the Rayleigh number

Our final aim is to constrain the impact the convective driving has in decreasing the

turbulent energy injection as well as constraining the energy injection due to the turbulent

effective viscosity of convection acting on the precessional flow. To this end we have

plotted the results we have obtained in three large parameter sweeps as a function of the

Rayleigh number with Po = [0.04, 0.10, 0.25]. The fitting of the precessional instability

is complicated by the convection acting on the tidal flow like an effective viscosity and

extracting energy from the precessional flow in our simulations, such that at high values of

the Rayleigh number we expect the energy injection of the effective viscosity to overshadow

that of the precessional instability.

We start by examining the behaviour of the three parameter sweeps presented as a

function of the Rayleigh number in Fig. 6.12. We immediately notice the clear difference

between the parameter sweeps at Po = 0.04, 0.10 and the one at Po = 0.25. The energy

injection in the former two increases as the Rayleigh number is increased, while the en-

ergy injection in the latter appears to decrease as the Rayleigh number is increased. This

behaviour is expected from Fig. 6.7; in the effective viscosity regime we see that larger

Rayleigh numbers increase the energy injection, whereas in the continuously turbulent

regime larger Rayleigh numbers decrease the energy injection. We expect that the pa-

rameter sweep with Po = 0.04 in blue squares portrays only the effective viscosity as the
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precessional instability is expected to be unable to operate at this value of the Poincaré

number, unless the convective driving is very strong, in which case the precessional insta-

bility is likely to be overshadowed by the effective viscosity regardless. Therefore we have

fitted this parameter sweep using the now familiar scalings of the effective viscosity in

Eq. (4.7). In particular we have used the scalings of the high and intermediate frequency

regime in solid-red and solid-black respectively, continuing the colour scheme from Ch. 4.

We once again observe that the energy injection agrees well with the high frequency pre-

diction when Ra ≳ 3Rac, until the convective driving becomes too strong, such that the

simulations enter the intermediate frequency regime, agreeing well with the solid-black fit

instead of the solid-red fit. From the fits we have obtained the following scalings for the

intermediate and high frequency regimes:

νeff =

 0.091Ra7/4Ek2Pr−1/4κ3/2d−1ω−1/2 intermediate frequency,

0.380Ra5/2Ek2Pr1/2κ3d−4ω−2 high frequency,
(6.4)

with ω = ω2,1,0 = Ω. We will assume that the fits for uc and lc as obtained in Ch. 4 still

apply. This is a valid assumption in the absence of precession, but as seen in Fig. 6.8,

the convective velocities do increase as Po is increased. Upon reproducing both the low

frequency regime scalings from Eq. (4.1) for completeness, since we do not observe it here,

and reproducing the frequencies at which these regimes apply, we find that the effective

viscosity in these simulations is described by:

νeff =


5uclc

|ω|
ωc

≲ 10−2,

0.78uclc

(
ωc
ω

) 1
2 |ω|

ωc
∈ [10−2, 5],

11.5uclc

(
ωc
ω

)2 |ω|
ωc

≳ 5.

(6.5)

It appears that the scalings are fairly consistent between the elliptical and precessional

background flows, but the specific flow appears to introduce different prefactors, even

when its form is already taken into account in the definition of the effective viscosity in

Eq. (5.29).

Next we turn our attention to the parameter sweep with Po = 0.10 in orange squares.

It is much more complicated to determine the behaviour in this parameter sweep and as

such we have not performed any fits to this set. Instead we have plotted two vertical dotted

lines to indicate the boundaries between the three regimes that appear to be present in

this sweep. In the leftmost third of the figure the sweep follows the effective viscosity,

when the convection is unstable, following the exact same pattern as the sweep in blue

squares. In the middle third the energy injection no longer follows the same behaviour as

the blue squares and instead appears to be decreasing with increasing Rayleigh number.

This agrees with the observations in Fig. 6.7; the convective driving has allowed the

precessional instability to achieve the continuously turbulent regime. The orange squares

in this middle third between the two dashed lines follow the same behaviour as that of the
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Figure 6.12: The time-averaged energy injection I as a function of the Rayleigh number at
different values of the Poincaré number. The parameter sweeps executed using nek5000
with Po = [0.04, 0.10, 0.025] are plotted in blue, orange and yellow squares respectively.
The dedalus results at Po = 0.25 are plotted in purple diamonds. The agreement be-
tween the results obtained using both codes is very good. The results at Po = 0.04 portray
the effective viscosity for all simulation values plotted, and we have therefore fitted them
using the prescriptions of the effective viscosity given in Eq. (4.7) in the high and interme-
diate frequency regimes in solid-red and solid-black respectively. We again observe good
agreement for Ra > 3Rac. The parameter sweep with Po = 0.10 is split into three parts by
the vertical dotted-black lines. In the left third, when Ra ̸= 0 the results follow the same
pattern as the blue squares, and thus portray the effective viscosity. In the middle third
the results instead follow the same pattern as the yellow squares and thus portray the
convectively enabled continuously turbulent regime. Finally in the right third the energy
injection due to the effective viscosity is larger than that of the continuously turbulent pre-
cessional instability and thus the results portray the effective viscosity again. The results
with Po = 0.25 show that the convection does indeed decrease the energy injection due to
the continuously turbulent precessional instability, which is fitted in the solid-burgundy
line.
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parameter sweep with Po = 0.25 in yellow squares. Finally, the energy injection due to

the convection acting as an effective viscosity on the background flow overtakes the energy

injection of the continuously turbulent precessional instability in the right-most part of

the figure, and the two orange squares again follow the same trend as the blue squares.

Finally, we examine the energy injection in the parameter sweep with Po = 0.25

plotted in the yellow squares, as well as purple diamonds from the same simulations exe-

cuted using dedalus. We again find good agreement between the dedalus and nek5000

results. In this continuously turbulent regime we notice a continuous downward trend

until Ra = 15Rac, where the energy injection of the turbulence acting like an effective vis-

cosity again overtakes the precessional turbulence. We have fitted all yellow squares bar

this last datapoint, by modifying the fit obtained for the continuously turbulent regime in

Eq. (6.3). The easiest way to modify this fit is according to:

I = 0.09Ω3Po3(1 + ΞRaPr−1Ek2)−1, (6.6)

with Ξ the fit parameter to be determined. We have opted for RaPr−1Ek2 instead of Ra

to maintain the essence of N2/Ω2 in this fit, which is the ratio that most often arises in

the linear stability analysis. The proportionality factor ζ = I/Ω3Po3 thus depends on

the convective driving, here represented by the Rayleigh number. Upon fitting this to the

data we find:

I = 0.09Ω3Po3(1 + 14RaPr−1Ek2)−1. (6.7)

This fit is plotted in solid-burgundy in Fig. 6.12. No clear theoretical basis for this prescrip-

tion has been identified yet, but it agrees very well to the data. Moreover, the parameter

sweep is narrow, and hindered by the presence of the effective viscosity in the simulation.

We therefore caution the reader that this prescription may not be the correct one out-

side of the explored parameter regime. It, however, clearly demonstrates the qualitative

result that the energy injection due to the continuously turbulent precessional instability

decreases as the convective driving is increased.

6.3 Conclusions

We have simulated the precessional instability in a local Cartesian model and its interac-

tion with rotating Rayleigh-Bénard convection in this chapter. The precessional instability

in isolation in our setup displays two main types of behaviour. We observe the expected

bursty behaviour in simulations with small values of the Poincaré number, consisting of al-

ternating periods of energy injection into the most unstable linear modes and periods where

oscillating large-scale flows dominate. No formation of large-scale vortices is observed in

these flows. Meanwhile, at larger values of Po we observe a slightly more turbulent state

with a large-scale vortex forming, which, when sufficiently powerful, allows a rapid sec-

ondary transition to a continuously turbulent state in which the flow itself is characterised
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by (sheared) vortices. We expect that this transition has been seen before in the works

of R. Mason and Kerswell (2002) using the same setup, who describe a strongly energetic

branch C arising from 3D simulations at large enough values of Po. This phenomenon

therefore appears to be important in this local model of the precessional instability.

We have furthermore identified that the introduction of convection replaces these

two regimes. At small values of Po a predominantly convective regime is found, where the

energy injection rate resembles that associated with the effective viscosity in Ch. 4. For

sufficiently large Poincaré numbers, an abrupt secondary transition to the continuously

turbulent regime of the precessional instability is again observed. However, the presence

of convection lowers the Poincaré number that is required to achieve the continuously

turbulent regime, in which case the secondary transition is much more gradual. On the

other hand, the convection also reduces the energy injection in the continuously turbulent

regime, resulting in lower energy injection with increasing Ra. It thus allows for a slightly

weakened version of the continuously turbulent regime to be reached at lower values of

Po.

We have examined the 2D energy of various simulations as well as the horizon-

tal energy spectra of some of these simulations. To achieve the continuously turbulent

regime of the precessional instability it appears that a certain value of K2D needs to be

reached. This may explain why convection allows the precessional instability to become

continuously turbulent faster, as convection is likely to generate sufficiently large values

of K2D. However, this cannot be the full explanation, as it would imply that simulations

with precession surpassing a certain convective driving strength always enter the contin-

uously turbulent regime, which is not the case. Instead, we suspect that modification of

the growth rate of the precessional instability due to the stronger convective driving also

plays a role, requiring a sufficiently large growth rate to achieve the continuously turbulent

regime, as well as a sufficiently large value of K2D.

We fit the energy injection scalings of the precessional instability in isolation as

functions of Po. We have found the energy injection rate in the laminar regime scales

as the arbitrarily chosen ΥΩ2Po2, with proportionality factor Υ = 0.025Ω1/2. In the

continuously turbulent regime we find that the energy injection rate scales as ζΩ3Po3,

with ζ = 0.09. Note that these scalings for the energy injection rate depend on the

rotation rate Ω, as it represents the tidal frequency, and not the Ekman number, i.e. not

on viscosity. The scaling law as Ω3Po3 was also identified for the precessional instability

in the triply periodic box (Barker, 2016b; Pizzi et al., 2022). We find that in simulations

with the precessional instability in isolation, the condition to achieve the continuously

turbulent regime can be described by Ek−4/10Po ≳ 9. This condition does depend on

the Ekman number, rather than solely on Ω. Based on this condition we might expect

that the continuously turbulent regime is the correct one in Hot Jupiters, with very small

values of the microscopic Ekman number and not too small values of the Poincaré number.

When considering the presence of convection the laminar regime is replaced by the energy

injection rate of the convection acting like an effective viscosity scaling as 4Ω2Po2, which
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also depends on the Rayleigh number.

We find that in the continuously turbulent regime as well as in the laminar regime the

vertical velocity scales linearly with Po, although with different proportionality factors, and

the velocities are enhanced over the convective velocities in the absence of precession. We

have also found that the Nusselt number is enhanced by the precession (this was previously

observed in a different model by Wei & Tilgner, 2013), except at very small Rayleigh

number. We find that the Nusselt number scales linearly with Po in the continuously

turbulent regime, as long as the inherent heat transport of the convection is not too large

to overshadow this scaling. A possible explanation for the enhancement of the convective

velocity and heat transport in our simulations, before the continuously turbulent regime of

precession is achieved, is the secondary Coriolis-like term introduced by precession. In our

setup, this term together with the Coriolis-term itself results in an effective rotation axis

that is no longer parallel to the direction of gravity, and thus acts to inhibit the convective

motions less.

Finally, we have fitted the sustained energy injection in the laminar regime in con-

vective simulations as a function of the Rayleigh number and retrieved good agreement

with the intermediate and high frequency regimes of the effective viscosity damping the

background precessional flow. The prefactors of these regimes are very close to those

found previously for the background elliptical flow in Ch. 4. Furthermore, we have at-

tempted to fit the modification of the energy injection due to the presence of convection

in the continuously turbulent regime. We find that a proportionality factor that depends

on the convective driving as ζ = 0.09(1 + 14RaPr−1Ek2)−1 is consistent with the data,

but caution that no theoretical basis for this modification has yet been shown. However,

we do conclude that the convective driving slightly reduces the energy injected by the

precessional instability. We will attempt to quantify how much this modification impacts

the efficiency of the precessional instability as a tidal dissipation mechanism using interior

models in Ch. 7.
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Chapter 7

Astrophysical applications

In this final chapter we will use the scaling laws that we have obtained in Ch. 4 and Ch. 6 for

the elliptical instability, precessional instability, as well as the turbulent convection acting

on their respective background flows like an effective viscosity, to derive estimates of the

resulting tidal dissipation. We will apply our scaling laws to obtain simple estimates for Q′

due to the elliptical instability, which contributes to Q′
2,2,2, and the precessional instability,

contributing to Q′
2,1,0. Using these tidal quality factors we will obtain timescales for spin-

orbit synchronisation, orbital circularisation and spin-orbit alignment. We will also obtain

simple estimates for the effective viscosity in all three regimes based on estimates of the

interior parameters for Jupiter.

Next, we will generate interior models of a Jupiter-like planet and a Hot Jupiter-like

planet, using the mesa code, to obtain estimates whether such planets would be in the

fast tides regime or not. We subsequently compute the effective viscosity as a function

of radius inside these planets. Finally, we will compare the values of Q′ computed for

all three dissipation mechanisms as a function of tidal period so that we can determine

their astrophysical significance. We will also compare these dissipation mechanisms to

the tidal dissipation due to linearly-excited inertial waves. Thus, using the simulations

performed in the previous chapters combined with the interior models we will determine

which of these tidal dissipation mechanisms results in the lowest tidal quality factor, and

can therefore be thought of as resulting in the fastest tidal evolution, in giant planets.

7.1 Simple estimates of the tidal dissipation

We start by reporting parameter estimates from the literature for Jupiter in Table 7.1.

These parameters were obtained using models before (Guillot et al., 2004, hereafter

GSHS04) and after (Gastine & Wicht, 2021, hereafter GW21) the Juno mission (e.g.

Bolton et al., 2017). We will use these parameters later when computing our simple

estimates.

Now we will attempt to obtain simple estimates for the tidal quality factors due to
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Table 7.1: Table of dimensional and non-dimensional parameters in Jupiter. Parameters
reproduced from Guillot et al. (2004) (GSHS04), Gastine and Wicht (2021) (GW21).

GSHS04 GW21 GW21
R = 0.196RJ R = 0.98RJ

uc (m s−1) 0.1 0.01− 0.1 1

Ω (s−1) 1.75 · 10−4 1.75 · 10−4 1.75 · 10−4

d (m) 3 · 106 5.5 · 107 5.5 · 107
ν (m2 s−1) 10−6 2.66 · 10−7 3.92 · 10−7

κ (m2 s−1) 10−5 2.7 · 10−5 1.32 · 10−6

Pr 0.1 0.01 0.3

Ek 10−15 10−18 10−18

Ra 1025 1028 1031

the elliptical instability and the precessional instability using the scaling laws obtained

from Ch. 4 and Ch. 6. We will use the scaling as χϵ3 for the elliptical instability for an

upper bound on the dissipation, instead of the one scaling as χ2ϵ
6, because the latter

results in lower dissipation than the former. Furthermore, we choose the upper bound

value of χ = 0.18 that we have obtained, such that this scaling law truly represents the

upper bound on tidal dissipation due to the elliptical instability consistent with the bulk

of our simulations. We will use the scaling as ζPo3 for the precessional instability, as the

Ekman number in Table 7.1 indicates that the condition in Eq. (6.3) is likely satisfied if

we assume that the Poincaré number is indeed O(10−4) in Hot Jupiters. We first examine

the tidal dissipation due to the elliptical instability, for which we, after re-introducing

dimensional units, find:

D = χM1R
2
1γ

3ϵ3. (7.1)

We have made the rather crude choice to equate the size of our Cartesian box with the

planetary radius in this expression. This choice is tentatively supported by the results

in Barker (2016a), who studied the elliptical instability in isolation in global ellipsoidal

simulations, and found the tidal dissipation to be consistent with Eq. (7.1), with a pro-

portionality factor χ of O(10−2). It is unclear if it is valid to equate the planetary radius

with the size of our Cartesian box upon introducing convection, or when considering the

precessional instability. In the absence of global (ellipsoidal/spheroidal shell) simulations

with convection, however, we choose to equate them because it provides us with a first

estimate of tidal dissipation that is broadly consistent with the behaviour we observed in

our simulations. To continue our derivation of the tidal quality factor, we now define the

energy stored in the tidal response E0:

E0 ∼
GM2

1

R1
ϵ2, (7.2)

with G the gravitational constant. The stored energy is the same for both the elliptical and

precessional instabilities, and therefore we opt not to include subscripts. Note that this

results in the introduction of ϵ for the precessional instability. We remind the reader that

ϵ is a measure of the ellipticity in the context of the elliptical instability, but has broader
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application as the tidal amplitude, hence why it is introduced even for the precessional

instability. We apply Kepler’s third law to substitute the semi-major axis in the definition

of ϵ and find:

ϵ =
M2

M1

(
R1

a

)3

=

(
M2

M1 +M2

)(
Pdyn

Porb

)2

, (7.3)

with Porb the orbital period and Pdyn = 2π

√
R3

1
GM1

the dynamical or free-fall period of the

body. We can then use the definition of Ql,m,n given in Eq. (1.13) to write for Q′
2,2,2 due

to the elliptical instability (Barker & Lithwick, 2013):

Q′
2,2,2 ∼

3

2k2

γE0

D
≈ 1

χ

3

2k2

(
M1 +M2

M2

)
P 2
orbP

2
tide

P 4
dyn

, (7.4)

with Ptide the tidal period. We substitute in some characteristic values for the orbital

parameters as well as the dynamical period. For the Love number k2 we use the value

for Jupiter, k2 ≈ 0.56, obtained through observations of the Juno mission (e.g. Durante

et al., 2020) and theoretical calculations (Lai, 2021; Dewberry & Lai, 2022). The Love

number is further modified due to dynamical effects, the size of which depends on the

tidal frequency (Dewberry & Lai, 2022). We choose not to take this modification into

account, as the uncertainty introduced by the possibly different interior compositions of

Hot Jupiters compared to Jupiter is likely to already significantly alter the Love number,

although it is unclear by how much. We calculate the dynamical period for Jupiter and

find ≈ 2.8 hours and choose a 1 day orbit. We will assume that the tidal period is equal

to the orbital period. This is appropriate for circularisation of weakly eccentric orbits

in spin-synchronised planets, whilst still providing a representative value for estimates of

synchronisation tides with a circular orbit. Therefore we set the tidal period to be 1 day

in this estimate, and substitute all of this into Eq. (7.4) and obtain:

Q′
2,2,2 ≈ 8 · 104 0.18

χ

(
M1 +M2

M2

)(
Porb

1 d

)2(Ptide

1 d

)2(2.8 h

Pdyn

)4

. (7.5)

We once again remind the reader that this is an upper bound on the tidal dissipation, and

thus lower bound on the value ofQ′
2,2,2. To put the obtained value of the tidal quality factor

into context we can compute tidal spin-orbit synchronisation and tidal circularisation

timescales using Eq. (1.17) and Eq. (1.18) respectively. These equations depend on the

other orbital parameters, such that the Eqs. (1.16)-(1.19) should ideally be solved in

tandem throughout the evolution of the system. To keep our estimates simple, we will

instead treat all parameters on the right-hand side of these equations as fixed. We then

define a tidal timescale as an e-folding timescale, i.e. the time in which the quantity under

consideration decreases (or increases, depending on the sign of Q′
2,2,2, which depends on

the sign of the tidal frequency, and the sign in the relevant equation) by a factor of e. For
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the synchronisation timescale, τΩs , we find:

τΩs =
4

9

Q′
2,2,2

2π

M1

M2

(
M1 +M2

M1

)5/3 Ls

Lo

P
13/3
orb

P
10/3
dyn

, (7.6)

with

Ls

Lo
=
r2gM

2/3
1 (M1 +M2)

1/3

M2

P
4/3
dyn

P
1/3
orb Prot

(1− e2)−1/2; (7.7)

the latter expression represents the ratio of the spin angular momentum Ls to the orbital

angular momentum Lo, with rg the dimensionless radius of gyration, e the eccentricity

and Prot the rotation period of the primary. Combining these expressions we find:

τΩs =
4

9

Q′
2,2,2r

2
g

2π

(
M1 +M2

M2

)2 P 4
orb

ProtP
2
dyn

(1− e2)−1/2. (7.8)

One could express Eq. (7.8) in terms of just orbital parameters and the parameters of

the two bodies by substituting in Eq. (7.5). We are however interested in showing the

effect of different values of the tidal quality factor on the obtained timescales, as it is the

tidal quality factor that is often quoted in observational (and theoretical) studies. We

will therefore substitute in the values of the orbital parameters used to compute Eq. (7.5)

and set r2g ≈ 0.26, which is the value for Jupiter. Moreover, we set the eccentricity to

zero, set M1 = 0.001M2 (with M1 the Hot Jupiter’s mass, and the ratio of the masses

approximately equalling the mass ratio of Jupiter and the Sun) and a tidal quality factor

of Q′
2,2,2 = 105, to find for the tidal spin-orbit synchronisation timescale:

τΩs ≈ 9 · 102 yrs

(
Q′

2,2,2

105

)(
Porb

1 d

)4(10 h

Prot

)(
2.8 h

Pdyn

)2

. (7.9)

We thus find extremely rapid – compared to, for example, the main sequence lifetime of

Sun-like stars and their planets – synchronisation for this value of Q′
2,2,2 and small orbital

periods. We note that, in order to extrapolate to different orbital periods, when considering

the elliptical instability as the tidal dissipation mechanism, the strong dependence on

orbital and tidal period of Q′
2,2,2 should still be taken into account, such that the timescale

depends more strongly on the orbital and tidal period than Eq. (7.9) would suggest. We

will provide estimates of orbital periods at which the spin-orbit synchronisation timescale

is 1 Gyr based on the results obtained from MESA models in Table 7.2.

We can also define a circularisation timescale τe, for which we can obtain an expres-

sion starting from Eq. (1.18) using the same methods as before:

τe =
8

9

Q′
2,2,2

2π

M1

M2

(
M1 +M2

M1

)5/3 P
13/3
orb

P
10/3
dyn

. (7.10)
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Again, upon substituting characteristic values we find:

τe ≈ 5 · 106 yrs

(
Q′

2,2,2

105

)(
Porb

1 d

)13/3(2.8 h

Pdyn

)10/3

. (7.11)

The circularisation timescale is much longer than that of spin-orbit synchronisation, but

circularisation can still be achieved while the host star is on the main sequence for these

short orbital periods. We will also provide estimates of orbital periods at which the

circularisation timescale is 1 Gyr in Table 7.2.

We will now perform a similar computation to obtain the tidal quality factor due to

the precessional instability. To this end we exchange γ for Ω, ϵ for Po and χ for ζ in the

definition of D in Eq. (7.1), and find for Q′
2,1,0:

Q′
2,1,0 ∼

3

2k2

ΩE0

D
≈ 1

ζPo3
3

2k2

(
M2

M1 +M2

)2 P 2
dyn P

2
rot

P 4
orb

. (7.12)

The rotation period Prot is equal to the tidal period for this component of the tide. We

can find the Poincaré number using Po = Prot/Pp, where Pp is the precessional period

given by (e.g. Kopal, 1959; Eggleton & Kiseleva-Eggleton, 2001; Barker, 2016b):

Pp =
2r2g
k2

Prot P
2
orb

P 2
dyn

(
M1 +M2

M2

)
(1− e2)3/2

cos i
, (7.13)

with i the inclination or obliquity of the body’s spin axis to its orbital rotation axis. We

can use this expression to obtain an estimate for the precessional period, and thus Poincaré

number, in Hot Jupiters. We again substitute characteristic values for Jupiter: r2g ≈ 0.26,

the same Love number and dynamical period and an orbital and rotational period which

are both 1 day, to mimic spin-orbit synchronisation already having occurred. We find for

the precessional period:

Pp ≈ 0.2 yrs

(
Prot

1 d

)(
Porb

1 d

)2(2.8 h

Pdyn

)2(M1 +M2

M2

)
(1− e2)3/2

cos i
. (7.14)

We have chosen not to evaluate values of the eccentricity and inclination, but instead

include them in the expression for completeness. The precessional period is several orders

of magnitude smaller than Earth’s precessional period, which suggests the precessional

instability could be relevant in misaligned Hot Jupiters. We can constrain the importance

of the precessional instability further by examining the Poincaré number:

Po ≈ 0.01

(
1 d

Porb

)2( Pdyn

2.8 h

)2( M2

M1 +M2

)
cos i

(1− e2)3/2
, (7.15)

which is much larger than Earth’s Poincaré number, and of the same order of magnitude

as the tidal amplitude. For these values of the Poincaré number and the Ekman numbers

in Table 7.1 we indeed find that the continuously turbulent regime of the precessional
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instability is likely to be the appropriate one. Next we rewrite Eq. (7.12) by substituting

Po = Prot/Pp, using Eq. (7.13), to find:

Q′
2,1,0 ≈

1

ζ

3

2k2

(
2rg

2

k2

)3(
M1 +M2

M2

)
P 2
rot P

2
orb

P 4
dyn

(
(1− e2)3/2

cos i

)3

. (7.16)

Using any of the three parameter estimates in Table 7.1 we find that the convective mod-

ification of the precessional dissipation according to Eq. (6.7) is negligible. We substitute

the same characteristic values for Jupiter as before. The estimate for Q′
2,1,0 using these

parameters is:

Q′
2,1,0 ≈ 1 · 105 0.09

ζ

(
M1 +M2

M2

)(
Prot

1 d

)2(Porb

1 d

)2(2.8 h

Pdyn

)4
(
(1− e2)3/2

cos i

)3

. (7.17)

The tidal quality factor of the precessional instability is slightly larger than that of the

elliptical instability for similar parameters. The primary difference between these two tidal

quality factors therefore resides in their application. According to Eqs. (1.16)-(1.19), the

tidal dissipation due to the precessional instability solely contributes to the evolution of

the inclination, for which so we will define a spin-orbit alignment timescale τi. We can use

Eq. (1.19) to find an expression for this timescale:

τi =
8

9

Q′
2,1,0

2π

M1

M2

(
M1 +M2

M1

)5/3(
1 +

Lo

Ls

)−1 P
13/3
orb

P
10/3
dyn

. (7.18)

The orbital angular momentum of the planet is much higher than that of its spin, such

that the ratio Lo/Ls ≫ 1. We can therefore represent this timescale as approximately:

τi ≈
8

9

Q′
2,1,0r

2
g

2π

(
M1 +M2

M2

)2 P 4
orb

ProtP 2
dyn

(1− e2)−1/2. (7.19)

We substitute in characteristic values for Jupiter, the Sun, orbital parameters as we have

discussed, set the eccentricity to zero and Q′
2,1,0 = 105 to obtain:

τi ≈ 2 · 103 yrs

(
Q′

2,1,0

105

)(
Porb

1 d

)4(10 h

Prot

)(
2.8 h

Pdyn

)2

. (7.20)

The timescales for spin-orbit alignment of a Hot Jupiter thus appear very short, like those

for spin-orbit synchronisation. In reality, we expect them to be longer, because we have

not taken into account the starting misalignment i in the expression for Q′
2,1,0; planets

with i ≈ 90◦ will result in much larger values of Q′
2,1,0 and thus much longer alignment

timescales. Estimates of orbital periods at which the spin-orbit alignment timescale is 1

Gyr can also be found in Table 7.2.
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Both the elliptical and the precessional instabilities are non-linear tidal dissipation

mechanisms, such that their tidal dissipation strongly depends on the tidal amplitude, and

therefore the resultant values of Q′ depend on the tidal amplitude. Both Q′ have a strong

dependence on the orbital period Porb, and therefore increase rapidly with increasing

orbital period, increasing the associated tidal timescales. These timescales also increase

with increasing orbital period, further compounding the orbital period dependencies. Our

estimates therefore indicate that these mechanisms are only likely to be important in

short-period planets experiencing strong tidal effects.

Next, we can make estimates for the effective viscosity of convection acting on tidal

(or precessional) flows in a Jupiter-like body using the parameters in Table 7.1. First we

calculate the ratio of tidal to convective frequencies (ω/ωc). This ratio is found to be, in

the case of the background elliptical flow, upon again setting Ptide = Porb:

ω/ωc =



9.4 · 101
(

Porb

1 d

)−1

GSHS04,

3.7 · 102
(

Porb

1 d

)−1

GW21 at R = 0.196RJ ,

2.4 · 102
(

Porb

1 d

)−1

GW21 at R = 0.98RJ .

(7.21)

For the precessional instability we also set Ptide = Prot = Porb, again choosing a situa-

tion in which the spin and orbit are synchronised. As a consequence, the estimates in

Eq. (7.21) are also obtained when considering the precessional background flow. There-

fore, we conclude that we are firmly in the high-frequency tidal regime (ω/ωc ≫ 1) for

the orbital periods associated with Hot Jupiters, which is the regime explored in most of

our simulations. This is also likely to be the case in Jupiter due to tidal forcing from its

moons (e.g. Goldreich & Nicholson, 1977).

The effective viscosity can also be calculated using the parameters from Table 7.1.

To evaluate the different regimes, we assume the transitions from the low to intermediate

frequency regimes obtained by Duguid et al. (2020). Using data from the GSHS04 column

of Table 7.1 for the purposes of illustration, we find in the case of the elliptical flow:

νeff =


8.8 · 102 m2 s−1, |ω|

ωc
< 10−2,

3.6

(
Porb

1 d

)1/2

m2 s−1, |ω|
ωc

∈ [10−2, 5],

2.5 · 10−2

(
Porb

1 d

)2

m2 s−1, |ω|
ωc
> 5.

(7.22)

We have included the low frequency regime for completeness even though this has not
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been clearly probed with our simulations. Likewise, for the precessional flow we find:

νeff =


8.8 · 102 m2 s−1, |ω|

ωc
< 10−2,

1.1 · 101
(

Porb

1 d

)1/2

m2 s−1, |ω|
ωc

∈ [10−2, 5],

8.8 · 10−2

(
Porb

1 d

)2

m2 s−1, |ω|
ωc
> 5.

(7.23)

The effective viscosities for the precessional flow are close to those in Eq. (7.22) for the

elliptical flow, such that we conclude that the difference introduced by the background

flows is indeed small. We therefore opt to use the prefactors of the effective viscosities

found in Duguid et al. (2020), which we have reproduced in Eq. (4.1), instead of the ones

we have found in Ch. 4 and Ch. 6, for both background flows as their prefactors represent

a good middle ground between our results. These are therefore also the prefactors we will

use for the computation of both Q′
2,2,2 and Q′

2,1,0 due to the effective viscosity.

7.2 Detailed computations of the tidal dissipation

To provide a more detailed estimate of the tidal dissipation due to the elliptical and

precessional instabilities as well as the effective viscosity in a (Hot) Jupiter-like planet we

require models for its internal structure, i.e. profiles of pressure and density (and other

quantities) as a function of radius. To do so, we use a modified version of the test suite case

make planets of the Modules for Experiments in Stellar Astrophysics (mesa) code (Paxton

et al., 2011, 2013, 2015, 2018; Paxton et al., 2019; Jermyn et al., 2023) with the mesasdk

(Townsend, 2022) to generate 1D interior profiles. Such 1D interior models essentially

assume a spherically symmetric object, in which the quantities of interest only vary as a

function of spherical radius. These 1D interior profiles have a long history of being used

to model stars and stellar evolution, but can also be applied to giant planets, because it

is thought that much of giant planets’ interior physics should be relatively similar to that

of stars.

7.2.1 Planetary interior models using mesa

The mesa code has been previously used to generate a range of planetary models (e.g.

Müller et al., 2020; Müller & Helled, 2023). However, some caveats reside in the applica-

bility of this code to planets: since it is designed to model stars it uses equations of state

(EOS) based on H and He without heavy elements – unless the EOS are modified (Müller

et al., 2020) – necessary to generate for example a dilute core which is expected based

on Juno’s gravity field measurements of Jupiter (Stevenson, 2020; Helled et al., 2022).

Furthermore, it treats the core itself as rigid and omits the possibility of stable layers pro-

duced by helium rain as detailed in Sec. 1.3. These may be important for tidal dissipation

(e.g. Pontin et al., 2023; Dhouib et al., 2024; Pontin et al., 2024) but are outside the scope

of our study. The mesa code by default treats the convection using mixing-length theory

(MLT), for which we use the Cox prescription (Cox & Giuli, 1968), instead of rotating
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mixing-length theory (RMLT). We have chosen to maintain the mixing-length parameter

at the standard value of two, and intend to convert the obtained MLT values of these

models to RMLT values.

Our initial Jupiter model has a radius of 2RJ and a mass of 1MJ , of which 10

Earth-masses are located in an inert core with density 10 g cm−3. We have evolved the

model for 4.5 Gyr to mimic the age of Jupiter and we use a constant surface irradiation

of 5 · 104 erg cm−2 s−1, similar to what Jupiter receives from the Sun, which is deposited

at a column depth of 300 g cm−2 (about 0.7 bar). We also create a Hot Jupiter model

with the same parameters except that we increase the surface heating to represent the

irradiation of a one-day planet around a Sun-like star of 109 erg cm−2 s−1. Furthermore,

we incorporate additional interior heating with uniform rate 0.05 erg cm−3 s−1 throughout

the fluid envelope, which can be thought to represent the impact of tidal heating or Ohmic

dissipation (or other mechanisms) that could possibly inflate a number of Hot Jupiters.

In this way, whilst keeping all other parameters equal, we can determine the effects of the

increased radius (and stronger convection) of a puffy Hot Jupiter on the effective viscosity

and tidal dissipation rates. A summary of changes to the default inlists used to generate

these models is provided in Appendix B.

The convective velocities and lengthscales (mixing-lengths) obtained using mesa are

calculated using non-rotating MLT. Although the rotation rate – and thus the introduction

of RMLT – is expected to affect convective lengthscales and velocities, the effect on the

heat flux is likely to be negligible (Stevenson, 1979; Ireland & Browning, 2018). Therefore,

we assume that the heat flux is independent of rotation, and thus the same in both MLT

and RMLT. The temperature difference and the resulting buoyancy frequency, on the

other hand, are both expected to change under the influence of rotation, in order to

carry the same flux. Therefore we opt to use the flux-based scalings of MLT and RMLT

instead of the temperature-based scalings used in Ch. 4. In these flux-based scalings the

conversion from MLT to RMLT is defined differently to the temperature-based scalings;

in the temperature-based scalings the corrections introduced for both uc and lc involve

Roc linearly, while in the flux-based scalings the corrections are respectively:

uc = R̃o
1/5
c ũc, and lc = R̃o

3/5
c l̃c, (7.24)

where the quantities with a tilde are those calculated using non-rotating MLT. We have

also denoted the Rossby number in the above equations with a tilde (R̃oc = ũc/(2Ωl̃c))

because flux-based scalings imply Rossby numbers calculated using MLT and RMLT are

different, unlike for the temperature-based scalings where they are the same. In the low

frequency regime the effective viscosity must therefore be scaled by

νeff ∼ uclc ∼ ũc l̃cR̃o
4/5
c . (7.25)

This correction factor of R̃o
4/5
c was also employed by Mathis et al. (2016). In the high
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tidal frequency regime the effective viscosity is instead scaled by

νeff ∼ uclc

(
uc
lc

)2

∼ ũc l̃cR̃o
4/5
c

(
ũc

l̃c

)2

R̃o
−4/5
c ∼ ũc l̃c

(
ũc

l̃c

)2

. (7.26)

Combining these, we find according to RMLT:

νeff ∝



5ũc l̃cR̃o
4/5
c

|ω|
ωc

≲ 10−2,

0.5ũc l̃cR̃o
3/5
c

(
ũc/l̃c
ω

) 1
2 |ω|

ωc
∈ [10−2, 5],

25√
20
ũc l̃c

(
ũc/l̃c
ω

)2
|ω|
ωc

≳ 5.

(7.27)

Hence, while the effective viscosity in the low tidal frequency regime is strongly affected by

rotation, it is entirely unaffected by rotation in the high tidal frequency regime according

to RMLT (assuming a fixed flux independent of rotation). This follows when considering

the scaling laws in Eq. (4.7) in terms of flux-based RMLT:

νeff ∝


F 3/5Ω−4/5d4/5 low frequency,

F 7/10d3/5Ω−3/5ω−1/2 intermediate frequency,

Fω−2 high frequency.

(7.28)

The equivalent relations written using flux-based MLT would be:

ν̃eff ∝


F 1/3d4/3 low frequency,

F 1/2dω−1/2 intermediate frequency,

Fω−2 high frequency.

(7.29)

The scaling laws in the high tidal frequency regime with and without rapid rotation (i.e.

according to MLT or RMLT) are therefore identical when written using flux-based scalings.

However, the regime transitions may not be the same in both cases because the flux-based

scalings for ωc differ between MLT and RMLT. Convective frequencies are typically smaller

in MLT, and as such the high tidal frequency regime is generally entered for lower tidal

frequencies than in RMLT. This difference is however unlikely to be important for our

purposes.

We now present our results for Rossby numbers and the corresponding effective

viscosities – in both the fast tide and slow tide regimes, using both MLT and RMLT –

as a function of radius in our two planetary models. For these illustrative calculations we

set Porb = 1 day and Prot = 10 hrs for the Jupiter model, mimicking a planet similar to

Jupiter but orbiting its star with a period of 1 day. For the Hot Jupiter model we instead

set Porb = Prot = 1 day, representing spin-orbit synchronisation, and a tidal period of

Ptide = 1 day. Note that the Jupiter model is only depicting the ratio of ωc/ω when

considering the background elliptical flow; when considering the background precessional
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Figure 7.1: Flux-based MLT and RMLT Rossby numbers as a function of radius for a
Jupiter-like and Hot Jupiter-like planet. Left: The Jupiter-like planet with Prot = 10
hrs, Porb = Ptide = 1 day after evolving the model for 4.5 Gyr. This is much smaller
than one in the whole of the interior according to both prescriptions, i.e. the interior
is strongly rotationally constrained. The ratio of convective to tidal frequencies (“tidal
Rossby number”), is also much smaller than one for these parameters, indicating that
the planet is in the fast tides regime. Right: Same but for the inflated Hot Jupiter with
Prot = Porb = Ptide = 1 day. Convection is stronger in this model but the same regimes
(rapid rotation and fast tides) hold as in the left-hand panel. The ratio of ωc/ω is equal
to the convective Rossby number here, hence the lines overlap.

flow, the tidal period is 10 hrs instead of 1 day. The correct ratio of frequencies for this

background flow is however easily computed by multiplying the result obtained using the

Jupiter model by Prot/Ptide, which only serves to move the results further into the high

tidal frequency regime, and thus leaves the results qualitatively unmodified.

In Fig. 7.1 the Rossby numbers are plotted in the Jupiter model in the panel on the

left and the Hot Jupiter model in the panel on the right. The MLT Rossby number as

calculated from the data is plotted in solid-black; the one calculated from RMLT is plotted

in dashed-blue. The MLT Rossby numbers are clearly smaller, but even in RMLT they are

much smaller than one, indicating that the convection is strongly rotationally-constrained.

Note that the lower densities and stronger convection in the inflated Hot Jupiter model

produce larger Rossby numbers, but they are still much smaller than one. This justifies

the use of RMLT (over MLT) in giant planets.

The ratio of convective to tidal frequencies (ωc/ω) is also plotted as a function of

radius in Fig. 7.1. The MLT prediction for this “tidal Rossby number” is plotted in solid-

red and the RMLT prediction is plotted in dashed-magenta. Due to our choice of rotation

rate and tidal frequency in the Hot Jupiter model this tidal Rossby number is equal to

the Rossby number, i.e. ωc/ω = Roc. For both models Roc ≪ 1, such that RMLT is the

appropriate description for convection, and hence for the convective frequency. This figure

indicates that the fast tides regime is relevant inside both models (except for perhaps the

final percent or so of the radius where we approach the surface stable layer).

The effective viscosity as a function of radius is shown in Fig. 7.2 in both planetary

models. Note that this is again a crude application, because we have equated the vertical
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box size in our Boussinesq simulations with the mixing-length and assume that this process

acts like an isotropic kinematic viscosity in damping the tidal flow. In the left-hand panel,

we show the effective viscosity in the Jupiter model for our chosen rotational and tidal

periods. Again these are computed with Prot = 10 hrs, Porb = Ptide = 1 day, i.e. the

orbital and spin frequencies associated with the background elliptical flow. The effective

viscosities acting on the precessional flow, in the fast tides regime, would be further reduced

due to the increased tidal frequency of Prot = Ptide = 10 hrs. Regardless of the choice

of background flow, the effective viscosities obtained this way are much larger than the

microscopic viscosity (solid-black) for all predictions. To compute the kinematic viscosity

in Jupiter requires sophisticated calculations outside the scope of our models (and not

calculated within mesa), so we use the typical value obtained by French et al. (2012), of

ν = 3 · 10−7 m2 s−1, for reference in both panels of Fig. 7.2.

There are large differences between the various predictions for νeff in the left-hand

panel of Fig. 7.2. The MLT prediction in the slow tides regime in solid-blue predicts

νeff ≈ 106 m2 s−1, while the RMLT prediction in the same slow tides regime in dashed-

cyan only attains values of ≈ 102 m2 s−1. The MLT prediction for this regime decreases

slightly from the interior to the surface, because the convective lengthscale decreases faster

than the convective velocity increases from the core to the surface. On the other hand, the

RMLT prediction increases towards the surface, because the Rossby number rapidly in-

creases there. The fast tides regime prediction according to both RMLT and MLT (strictly

obtained using all three regimes in Eq. (7.27) and the uncorrected version respectively, but

the fast tides one is most relevant) are plotted in solid-green and dotted-red respectively.

The two lines overlap because the effective viscosity is independent of rotation according

to both theories, as we have demonstrated in Eq. (7.28) and Eq. (7.29). The effective

viscosity in the fast tides regime is however several orders of magnitude smaller still than

both predictions in the slow tides regime, with a value of only ≈ 10−2 m2 s−1 except

for close to the surface. This value is much larger than the microscopic viscosity, but is

probably negligibly small for damping tidal flows.

The right-hand panel of Fig. 7.2 shows the effective viscosity as a function of radius

for our inflated Hot Jupiter model. We observe that all values for νeff have shifted upwards

compared to our Jupiter model. However, even in this model we expect to be in the fast

tides regime throughout (almost) the entire planet, which would predict νeff ≈ 102 m2 s−1.

Thus the increased irradiation and internal heating introduced here results in significantly

larger effective viscosities, and will therefore result in smaller values of Q′.

7.2.2 Tidal dissipation rates in Jupiter and Hot Jupiters

Now that we have obtained radial profiles of νeff we can use these to compute the resulting

damping of the equilibrium tide and the associated tidal quality factors Q′ in our planetary

models. To this end we follow the approach described in Barker (2020), which follows many

other works (e.g. Ogilvie & Lin, 2004; Ogilvie, 2013, 2014). First we must compute the

perturbed gravitational potential of the planet Φ′ after the tidal potential has been imposed
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Figure 7.2: Effective viscosity as a function of radius for the Jupiter-like planet and Hot
Jupiter-like planet. We show the microscopic viscosity 3 · 10−7 m2 s−1 reproduced from
French et al. (2012) (solid-black) for reference, the MLT prediction in the low frequency
regime (solid-blue), the MLT prediction in the fast tides regime (solid-green), the RMLT
prediction in the slow tides regime (dashed-cyan) and the RMLT prediction in the fast
tides regime (dotted-red). The fast tides predictions overlap regardless of regime whereas
applying RMLT in the slow tides regime drastically reduces the effective viscosity. Left:
The Jupiter-like planet with Prot = 10 hrs, Porb = Ptide = 1 day after evolving the model
for 4.5 Gyr. Right: Same but for the inflated Hot Jupiter with Prot = Porb = Ptide = 1
day. The Hot Jupiter model has more efficient convection and larger effective viscosity in
all regimes.

by solving Eq. (1.30) using a Chebyshev collocation method based on interpolating the

obtained values of the pressure and density in the interior models. Once the perturbed

gravitational potential has been found this can be used to find the tidal displacement ξ.

This work applies to the convective regions of the planet, so we will use the non-wavelike

equilibrium tide ξnw in Eq. (1.43). We define this tidal displacement for a single tidal

component as:

ξnw = (ξr(r)r̂ + rξh(r)∇)Y m
l (θ, ϕ)e−iωl,m,nt, (7.30)

with ξr and ξh the radial and horizontal tidal displacement of the non-wavelike tide and

r̂ is the radial unit vector.

The dissipation of this tidal flow is computed assuming an effective viscosity that

acts like an isotropic microscopic kinematic viscosity but with a local value νeff(r) to damp

the equilibrium tide. To find the total dissipation in the convective regions of the planet

originating from this tidal dissipation mechanism we must thus integrate over the entire

radial extent of the convection zones of the body:

Dν =
1

2
ω2

∫
r2ρ(r)νeff(r)Dl(r) dr, (7.31)

with

Dl(r) = 3

∣∣∣∣dξrdr
− ∆l

3

∣∣∣∣2 + l(l + 1)

∣∣∣∣ξrr + r
d

dr

(
ξh
r

)∣∣∣∣2 + (l − 1)l(l + 1)(l + 2)

∣∣∣∣ξhr
∣∣∣∣2 , (7.32)

which represents the contribution to the dissipation from a single spherical harmonic
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component with a given l, m, with

∆l =
1

r2
d

dr
(r2ξr)− l(l + 1)

ξh
r
. (7.33)

This procedure was followed previously in Sec. 2.1 of Barker (2020), which follows e.g.

Ogilvie and Lin (2004). Note that only the degree l matters for this calculation, such that,

because we have chosen to use the same expressions for the effective viscosity regardless of

background flow, the tidal quality factor associated with the effective viscosity is the same

regardless of the value of the order m. We therefore only compute this quantity using

an imposed tidal potential given by Ψ2,2,2 and crudely apply this to find both Q′
2,2,2 and

Q′
2,1,0. The only modification compared to Barker (2020) here is that we account for the

rotational dependence of νeff and ωc as described above, otherwise we employ their Eq. 27

to obtain νeff(r) in the various different frequency regimes. The resulting tidal quality

factor is (Ogilvie, 2014):

Q′
l,m,n =

3(2l + 1)R2l+1
1

16πG

|ω||A|2

Dν
, (7.34)

where A ∝ ϵ is the amplitude of the tidal perturbation (so that the ratio Dν/|A|2 and

hence Q′
l,m,n is independent of tidal amplitude).

We have already determined expressions for Q′
2,2,2 and Q′

2,1,0 from the elliptical and

precessional instability respectively in Eq. (7.4) and Eq. (7.16). Once again, we wish

to stress that these expressions are crude, in the sense that we have extrapolated our

Cartesian box to a full planet, and therefore do not take into account any sort of core or

other interior structure. It does however account for non-linear evolution of the flow in

convective regions, which – in the case of the elliptical and precessional instabilities – are

of high importance.

To put our results in context, we also compute the tidal quality factor resulting from

the dissipation of linearly-excited inertial waves in convective regions in this planetary

model by applying the frequency-averaged formalism of Ogilvie (2013) to our planetary

models. The tidal dissipation due to the linearly-excited inertial wave response is very

strongly frequency-dependent, possibly differing by many orders of magnitude depending

on the tidal frequency; see for example Fig. 1 of Ogilvie (2013). As a result, it might

appear counter-intuitive to use a frequency-average, as it does not accurately represent

the tidal dissipation of one specific planet with a given tidal frequency at a given point in

its tidal evolution. On the other hand, we do not wish to make statements for a specific

planet, but rather provide a general measure of tidal dissipation in Hot Jupiters due to

linearly-excited inertial waves, and a frequency-average is well-suited to such a “population

study”, and this is how the frequency-average of tidal dissipation is generally employed

(e.g. Mathis, 2015; Bolmont & Mathis, 2016; Barker, 2020; Barker, 2022, and many oth-

ers). We follow the approach outlined in Section 3.1 of Barker (2020), fully accounting for

the planetary structure. To this end we define the quantityWw = Re[Wl(r)Y
m
l (θ, ϕ)]H(t),
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as the wavelike part of the quantity W defined in Eq. (1.25), with H(t) the Heaviside step

function, corresponding to an impulsive tidal forcing. The Wl component of this quantity

must then satisfy (Ogilvie, 2013):

1

r2
d

dr

(
r2ρ

dWl

dr

)
− l(l + 1)

r2
ρWl =

2imΩ

r

dρ

dr
Vl, (7.35)

subject to the boundary condition

dWl

dr
=

2imΩVl
r

, (7.36)

with Vl the radial dependence of the l component of the potential V that satisfies ξnw =

∇V . The boundary condition is nothing more than the requirement that the radial velocity

of the wavelike tide vanishes at the edges of the convection zone. The tidal quality factor

corresponding to the frequency-average of the tidal dissipation, ⟨Q′
l,m,IW⟩, for a given tidal

component with l,m is then given by (Ogilvie, 2013):

1

⟨Q′
l,m,IW⟩

=
32π2G

3(2l + 1)R2l+1|A|2
(El,m + El−1,m + El+1,m), (7.37)

where

El,m =
1

4

∫
ρr2(|al,m|2+l(l + 1)r2|bl,m|2) dr,

El−1,m =
1

4

∫
ρr2l(l − 1)r2|cl−1,m|2) dr,

El+1,m =
1

4

∫
ρr2(l + 1)(l + 2)r2|cl+1,m|2) dr,

(7.38)

(7.39)

(7.40)

and

al,m =
2imΩ

r
Vl −

dWl

dr
,

bl,m =
2imΩ

l(l + 1)r2

(
r
dVl
dr

+ Vl

)
− Wl

r2
,

cl−1,m =
2Ωql,m
r2

(
r
dVl
dr

+ (l + 1)Vl

)
,

cl+1,m = −
2Ωql+1,m

r2

(
r
dVl
dr

− lVl

)
,

ql,m =
1

l

(
l2 −m2

4l2 − 1

)1/2

.

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

This prediction for ⟨Q′
l,m,IW⟩ provides a tidal frequency-independent “typical level of dis-

sipation” due to inertial waves according to linear theory. This is thought to be repre-

sentative of the dissipation of inertial waves excited by linear tidal forcing, i.e. not via

elliptical instability (because that also excites inertial waves through what we have called

a non-linear tidal dissipation mechanism). This method necessarily ignores not only the

complicated frequency-dependence of the dissipation in linear theory, but also any possible

modifications by non-linear effects, convection, magnetic fields or differential rotation (e.g.

Ogilvie & Lin, 2004; Favier et al., 2014a; Lin & Ogilvie, 2017a; Astoul & Barker, 2022,
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2023). However, non-linear effects appear to not influence the found values of the tidal

quality factor corresponding to the frequency-averaged dissipation of the l = 2, m = 2

component, ⟨Q′
2,2,IW⟩, which is the most often studied component for modelling tidal evo-

lution, to a great extent (Astoul & Barker, 2023).

One could also produce a frequency-averaged estimate of the tidal dissipation and

associated tidal quality factor Q′
2,1,0 due to linearly-excited inertial waves for the obliquity

tides using the same method. There are however a number of considerations prevent-

ing us from directly using this approach. Firstly, when considering purely the l = 2,

m = 1, n = 0 component, a frequency-average is unnecessary, as there is only one pos-

sible tidal frequency. Still, a frequency-average could be useful, as for a given l,m these

frequency-averages apply to all values of n, so the same frequency-average would also be

applicable to Q′
2,1,2 as part of the obliquity tide. However, the tidal frequency of −Ω

also resonates with what is known as the spin-over mode (Ogilvie, 2013). This is a mode

that consists of a uniform rotation perpendicular to the spin axis of the body, and thus

introduces an effective tilt in the rotation axis of the fluid by an amount that depends

on its amplitude. This mode should not be dissipated viscously in a spherical body, even

though the frequency-averaged formalism predicts a large dissipation associated with the

spin-over mode resonance. The frequency-average of the tidal dissipation consequently

massively overestimates the resulting dissipation (Ogilvie, 2014); the corresponding value

of ⟨Q′
2,1,IW⟩ is several orders of magnitude smaller than ⟨Q′

2,2,IW⟩ calculated this way, un-

less very thin shells are considered, see Fig. 6 of Ogilvie (2013). Indeed, when shifting

into the precessing frame where this resonance vanishes, as in Lin and Ogilvie (2017b),

the associated viscous dissipation purely due to this mode also disappears. The tidal dis-

sipation associated with the l = 2, m = 1, n = 0 component calculated this way depends

on the size of the convective region, but generally turns out to be close to the same order

of magnitude as the frequency-averaged dissipation of the l = 2, m = 2, n = 2 component

(Lin & Ogilvie, 2017b). Therefore we opt not to plot ⟨Q′
2,1,IW⟩, as it is unreliable. Instead

we point to ⟨Q′
2,2,IW⟩, which we will denote as ⟨Q′

IW⟩ going forwards, to give an idea of

the magnitude of the frequency-averaged dissipation due to linearly-excited inertial waves

for the obliquity tide as well as for eccentricity and synchronisation tides.

We show Q′ in Fig. 7.3 as a function of tidal period for each of these mechanisms.

The spin frequency is fixed by setting Prot = 10 hr for the Jupiter model in the left-hand

panel and Prot = 1 day for the Hot Jupiter model in the right-hand panel. The only

exception to this is the precessional instability, where the tidal frequency is related to the

spin frequency, and as such the spin frequency is not fixed for this mechanism. Moreover,

we set e = 0, such that we consider a circular orbit, and cos i = 1 when considering the

precessional instability only. The latter implies that the spin and orbit are aligned, in

which case the precessional instability does not operate. In this scenario Q′ is infinite. We

still choose this value for two reasons. Firstly, at small inclinations cos i ≈ 1, such that

this computation is approximately representative of a small obliquity. Secondly, using

this approach the computation provides a lower bound on Q′
2,1,0 due to the precessional
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7.2 Detailed computations of the tidal dissipation

instability. For both the elliptical and precessional instabilities we provide two predictions,

one with Porb = 1 day and the other with Porb = 3 days. When considering the tidal

dissipation due to the effective viscosity acting on the precessional background flow in the

RMLT regime, i.e. when considering the Q′
2,1,0 for νRMLT, the tidal frequency is again

set by the spin frequency, and thus only one tidal frequency in this entire curve should

be considered for this background flow. We expect the various dissipation mechanisms to

scale differently as a function of the tidal frequency. When νeff is independent of tidal

frequency (in the low frequency regime), Dν ∝ ω2 ∝ P−2
tide and Q′ ∝ ω−1 ∝ Ptide, while

in the high frequency regime where νeff ∝ ω−2 ∝ P 2
tide, Dν is independent of ω and

Q′ ∝ ω ∝ P−1
tide. In addition, we expect Q′ due to elliptical and precessional instabilities to

scale as ω−2 ∝ P 2
tide and the frequency-averaged inertial wave prediction to be independent

of ω by definition.

The top panel of Fig. 7.3 demonstrates that convective damping of equilibrium

tides by an effective viscosity is indeed an inefficient tidal dissipation mechanism in giant

planets and leads to large Q′ and thus large tidal timescales. The low tidal frequency

regime in dashed-blue and dashed-magenta for MLT and RMLT, respectively, indicate

their strongest dissipation when the tidal frequency is large. Note that these predictions

are calculated using the classical prefactor of 1/3 for the effective viscosity for illustration.

These lines indicate that if RMLT applies, as is expected, Q′ is still O(109) if we neglect

the frequency-reduction of νeff , thus the dissipation (and resulting tidal evolution) is weak.

The combination of low, intermediate and high tidal frequency regimes for νeff with the

fitted prefactors in Eq. (4.1) dubbed νFIT in solid-blue and solid-red indicates that the high

tidal frequency regime impacts the effective viscosity significantly, particularly when Ptide

is small. These predictions approximately connect to the frequency-independent MLT and

RMLT predictions for large Ptide where there is a transition to the intermediate and low

frequency regimes. The prefactors obtained using fits to simulations are larger than the

dashed-magenta prediction, thus resulting in a slightly lower Q′ when transitioning into

the low tidal frequency regime. This is because the factor 1/3 often utilised, as plotted

here for the MLT and RMLT lines, is essentially arbitrary, unlike our numerical fits.

The elliptical and precessional instabilities on a 1 day orbit (solid-green and solid-

black) on the other hand are both efficient dissipation mechanisms, particularly when the

tidal frequency, and thus for the precessional instability the rotation rate of the planet,

is high. Note that according to our calculations both instabilities result in roughly the

same value of Q′. They are both significantly more effective than convective damping

of equilibrium tides according to each prediction for the entire range of tidal periods

considered. The elliptical and precessional instabilities on a 3 day orbit (dashed-green and

dashed-black) are weaker than the 1 day orbit prediction, but would still predict more

effective dissipation than the (irrelevant) slow tides MLT effective viscosity for almost all

of the parameter range considered. The most efficient mechanism in this model, except

for the very highest tidal frequencies, is the frequency-averaged dissipation due to inertial

waves shown in solid-cyan, which produces a Q′ = O(103) for our chosen rotation period.
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Figure 7.3: Tidal quality factor Q′ as a function of tidal period for a myriad of mechanisms.
Top: Jupiter model. Bottom: Inflated Hot Jupiter model. In both panels MLT and RMLT
predictions for Q′ due to convective damping of equilibrium tides using an effective vis-
cosity with no tidal frequency reduction (low frequency regime) are shown in dashed-blue
and -magenta respectively. The frequency-reduced effective viscosities in solid-blue and
-red for MLT and RMLT respectively indicate that the frequency reduction significantly
reduces the effectiveness of the dissipation. The elliptical instability in solid-green and
dashed-green lines and the precessional instability in solid-black and dashed-black for two
different orbital periods, and the (linear) frequency-averaged inertial wave dissipation in
solid-cyan, are also plotted. Note that the inertial wave mechanism only applies when
|ω|≤ |Ω|, such that this mechanism is only valid when Ptide ≥ Prot

2 . Inertial waves are con-
siderably more dissipative than equilibrium tide damping by turbulent viscosity, whether
they are linearly or non-linearly (i.e. via elliptical or precessional instabilities) excited.
The elliptical and precessional instabilities are predicted to be dominant for the shortest
tidal periods, and linear excitation of inertial waves is dominant for longer periods. The
Hot Jupiter model has smaller Q′ (hence more efficient dissipation) for all dissipation
mechanisms due to the larger radius and slower rotation.
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7.2 Detailed computations of the tidal dissipation

Since the rotation period is known, we would thus predict a typical value

Q′ ≈ 2 · 103
(
Prot

10hr

)2

, (7.46)

for tidal dissipation due to inertial waves. Note that the inertial wave mechanism only ap-

plies when |ω|≤ |Ω|, such that this mechanism is only valid when Ptide ≥ Prot
2 . Indeed, this

is sufficiently dissipative to explain tidal dissipation rates in Jupiter and Saturn (Lainey

et al., 2009; Lainey et al., 2012, 2017), without requiring any resonance-locking scenario

(e.g. Fuller et al., 2016).

The Hot Jupiter model in the bottom panel of Fig. 7.3 on the other hand has a

larger radius, stronger convection, and is rotating somewhat more slowly, so it has much

higher effective viscosities and is impacted to a lesser extent by rotation. As a result,

all mechanisms except the dissipation of (linear) inertial waves are more efficient. The

elliptical and precessional instabilities are predicted to be particularly efficient for short

orbital periods, e.g. 1 day orbit prediction for Q′ = O(103) when the tidal period – and

thus rotation period for the precessional instability – is 1 day. The increase in dissipation

here due to the elliptical and precessional instabilities stems from the large radius of the

Hot Jupiter, resulting in ϵ ≈ 0.095. Radius inflation and internal heating, as well as the

marginally decreased rotation rate, allows the convective damping of equilibrium tides to

operate more efficiently than in the Jupiter-like model in the top panel. However, once

again the inertial wave mechanisms are predicted to be substantially more dissipative

than effective viscosity acting on equilibrium tides. Linear dissipation of inertial waves

occurs with a similar order of magnitude to the Jupiter-like model, and is predicted to be

dominant for Ptide ≳ 2 days.

To further illustrate what these obtained values of the tidal quality factors for the

various tidal dissipation mechanisms represent we have made estimates of the orbital

periods at which the synchronisation, circularisation and alignment timescales in Eq. (7.9),

Eq. (7.11) and Eq. (7.20) respectively are 1 Gyr in Table 7.2. A 1 Gyr timescale is chosen

because it allows sufficient time for spin-orbit synchronisation, circularisation and spin-

orbit alignment of the Hot Jupiter to occur, and thus potentially be observable, while

its (Sun-like) host star is on the main sequence. We have obtained estimates for all four

tidal dissipation mechanisms we have considered previously: the elliptical instability (EI),

precessional instability (PI), effective viscosity of convection (eff. viscosity) and frequency-

averaged linearly-excited inertial waves (IW). When a tidal dissipation mechanism is not

applicable to a tidal timescale we have left the entry in the table blank.

We have produced these estimates for both the Jupiter-like and Hot Jupiter-like

model. For the computations for the former we have set Prot = 10 hrs, Ptide = 1 d, except

for the alignment timescale, where we have set Ptide = Prot = 10 hrs, and used Jupiter’s

dynamical period. For the Hot Jupiter-like model we have used Prot = Ptide = 1 d. The

dynamical period for the Hot Jupiter model is increased by a factor of ≈ 1.83/2 due to
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Table 7.2: Table of orbital periods in days at which the estimates of the synchronisation,
circularisation and alignment timescales in Eq. (7.9), Eq. (7.11) and Eq. (7.20) respectively,
in Jupiter-like or Hot Jupiter-like planets, are 1 Gyr. The tidal dissipation mechanisms are
the elliptical instability (EI), precessional instability (PI), effective viscosity of convection
(eff. viscosity) and frequency-averaged inertial waves (IW). When a tidal dissipation
mechanism does not contribute to a timescale we have left the entry blank. In the Jupiter-
like estimates we have used Prot = 10 hrs, Ptide = 1 d, except for the alignment timescale,
where we have to use Ptide = Prot = 10 hrs. For the Hot Jupiter-like model we have used
Prot = Ptide = 1 d. We have taken values of Q′ from Fig. 7.3 at the specified tidal periods.
For the computation of the alignment timescale we have set an initial inclination i = 30◦,
and we have set the eccentricity to zero in the computation of the synchronisation and
alignment timescales.

EI PI eff. viscosity IW

Jupiter synchronisation 10 d 0.32 d 86 d

Jupiter circularisation 2.3 d 0.05 d 8.3 d

Jupiter alignment 12 d 0.24 d 63 d

Hot Jupiter synchronisation 30 d 6.3 d 167 d

Hot Jupiter circularisation 6.8 d 0.80 d 17 d

Hot Jupiter alignment 24 d 4.6 d 123 d

the larger radius of the Hot Jupiter-like planet. We have taken values of Q′ from both

panels of Fig. 7.3 at the specified tidal periods for each of the four mechanisms. For the

computation of the alignment timescale we have set the inclination to be i = 30◦, and we

have set to eccentricity to zero in the computation of the synchronisation and alignment

timescales.

We stress that these estimates are obtained in a rather crude way by fixing rotational

and tidal periods, and are only for illustrative purposes. They do however indicate what

we expect from the tidal quality factors in Fig. 7.3. The orbital periods at which the

effective viscosity can achieve significant tidal evolution are extremely small, particularly

for the Jupiter-like planets. They are also much smaller than the estimates for the elliptical

and precessional instabilities, which can, for these tidal periods, potentially explain the

observations of circularisation of Hot Jupiters in Fig. 1.3. Finally, the frequency-averaged

inertial wave dissipation is the most effective mechanism. We caution that this mechanism

is most efficient when the rotation of the body is fast, such that the tidal dissipation

decreases as its spin and orbit synchronise for planets at larger orbital periods, and thus

complete tidal evolution, i.e. total spin-orbit synchronisation, circularisation or spin-orbit

alignment, due to the linearly-excited inertial waves mechanism at these large orbital

periods (compared to Hot Jupiter orbital periods) is less likely to be achieved than these

estimates indicate.

7.3 Conclusions

In this chapter we have used the scaling laws obtained in Ch. 4 and Ch. 6 to estimate

the tidal quality factors of the three considered tidal dissipation mechanisms, the elliptical
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and precessional instabilities and effective viscosity of convection in giant planets. We

have derived simple (but necessarily crude) predictions for the tidal quality factors Q′
2,2,2

and Q′
2,1,0 due to the elliptical and precessional instabilities respectively and have used

these to obtain estimates of tidal evolution timescales. Furthermore, we have used relevant

parameters in Jupiter to obtain estimates for the effective viscosity in Jupiter, and find

that it is practically the same irrespective of the considered (elliptical or precessional)

background flow.

Next we employed the mesa code to construct illustrative interior models of a

Jupiter-like and an inflated Hot Jupiter-like planet, subject to Jupiter-like irradiation and

Hot Jupiter-like irradiation plus artificial interior heating, respectively. We have computed

the rotational modifications of convective velocities and lengthscales in these models, as

well as the modifications of the effective viscosity to allow us to compute tidal dissipa-

tion resulting from convective damping of equilibrium tides according to the scaling laws

we have derived and verified with simulations. In both models (even in inflated short-

period Hot Jupiters), we find the convective Rossby numbers to be much smaller than

one, indicating that the convection is strongly affected by rotation, thus further motivat-

ing studying this regime. Furthermore, we find that, for almost all applications to giant

planets, the fast tides regime, in which the tidal frequency is much larger than the convec-

tive frequency, is highly likely to be the relevant one. In this regime the effective viscosity

scales as νeff ∝ (ωc/ω)
2. We also find that the origin of the background flow (whether

elliptical or precessional) does not matter for this qualitative result. The resulting tidal

quality factors Q′
2,2,2 and Q′

2,1,0 for equilibrium tide damping (computed following Barker,

2020) due to the convective turbulence acting on the background flow are estimated to be

in excess of 109 for tidal periods of interest, and this mechanism is therefore predicted to

be an ineffective one in giant planets.

On the other hand, we predict that the elliptical and precessional instabilities are

efficient for very short orbital and tidal periods (with Q′ ∼ 103 in Hot Jupiters for pe-

riods of order one day), but that their efficiencies fall off rapidly with increasing (tidal

and orbital) periods. We have also computed ⟨Q′
IW⟩ arising from the frequency-averaged

dissipation due to inertial waves in “realistic models” of giant planets (following Ogilvie,

2013; Barker, 2020). We compute the frequency-averaged dissipation and associated tidal

quality factor of the l = m = n = 2 tidal component only, and argue that this is also a good

indicator for the tidal quality factor due to the l = 2, m = 1, n = 0 tidal component, the

latter of which cannot be accurately computed using a similar frequency-average (Ogilvie,

2013, 2014; Lin & Ogilvie, 2017b). This mechanism assumes these waves to be excited

linearly by tidal forcing, as opposed to non-linearly (with respect to tidal amplitude) by

the elliptical or precessional instabilities. Inertial waves are by far the most efficient mech-

anism studied here, either those excited by the elliptical or precessional instabilities for

short orbital and tidal periods, or by the linear frequency-averaged dissipation. The latter

leads to Q′ ≈ 103(Prot/10hr)
2 for Jupiter-like rotation periods, which is consistent with

the efficient tidal dissipation rates required to explain the observed orbital migration of
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the moons of Jupiter and Saturn (e.g. Lainey et al., 2009; Lainey et al., 2012, where tidal

amplitudes are likely to be too small for the elliptical instability to operate effectively),

see also Dewberry (2023), Lin (2023), Dhouib et al. (2024), and Pontin et al. (2024).

All mechanisms except the frequency-averaged inertial wave mechanism are more

efficient in the inflated Hot Jupiter model due to its larger radius, weaker rotation and

stronger convective driving. This allows the elliptical and precessional instabilities to be

on par with or even be more efficient than linearly-excited inertial waves in the shortest-

period Hot Jupiters. We conclude that inertial wave mechanisms are probably the most

efficient ones for dissipating tidal energy in giant planets, at least those without extended

stable layers.
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Chapter 8

Conclusion

Tidal dissipation of the equilibrium tide in giant planets and stars is often thought to

explain certain aspects of their observed orbital evolution, among which are spin-orbit

synchronisation, orbital circularisation and spin-orbit alignment. In this thesis we have

examined the interaction of the equilibrium tide with convection and the resultant tidal

dissipation. In particular we consider the elliptical flow associated with the asynchronous

tide and the precessional flow associated with the obliquity tide. These give rise to two

tidal dissipation mechanisms: the elliptical instability, associated with the elliptical flow,

and the precessional (or inertial) instability associated with the precessional flow. These

two mechanisms are both parametric instabilities which excite inertial waves due to the

form of their respective background flows. Both require a finite amplitude tidal flow to

operate, represented by the ellipticity ϵ and Poincaré number Po respectively, and as such

we refer to these as non-linear tidal dissipation mechanisms. A third mechanism arises

specifically due to the interaction of convection with the background flows: sufficiently

turbulent convection can act on these flows like an effective viscosity, which can extract

energy from these flows and result in tidal dissipation. We refer to this as a linear tidal

mechanism instead, as there is no requirement on the amplitude of the tidal flow to allow

this mechanism to occur. We analyse how the elliptical and precessional instabilities and

their resultant tidal dissipation, in this thesis represented by the tidal energy injection

into the local system we consider, are affected by their interactions with convection. We

also analyse the tidal dissipation due to convection acting as an effective viscosity on these

flows.

8.1 Summary

In Ch. 3 and Ch. 4 we presented our study of the interactions of the elliptical instabil-

ity and rotating Rayleigh-Bénard convection in a Cartesian model using pseudo-spectral

hydrodynamical numerical simulations involving horizontal shearing waves. In Ch. 3 we

found that the introduction of convection leads to a suppression of the elliptical instability,

which is primarily the result of the convectively-generated large-scale vortex (LSV). Con-
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vection furthermore gives rise to a sustained energy injection into the flow (i.e. transfer

from the elliptical flow). Furthermore, we have found that the inertial waves excited by

the elliptical instability can transport heat in the presence of both stable and unstable

stratification. If the elliptical instability is suppressed however, the sustained energy injec-

tion from the tidal flow into the system results in a more energetic LSV, which then acts

to suppress the heat transport. In Ch. 3 we also found that a simulation initialised from

a convective turbulent state including an LSV reduces the growth rate of the elliptical

instability compared with the inviscid or viscous growth rate prediction. Using a detailed

analysis of the frequency and wavenumber Fourier spectra of the energy in our simulations

– which allows us to clearly identify inertial modes and convective flows – we observed

that the elliptical instability (and energy injection into inertial modes more generally) is

indeed inhibited by convective flows. We also found that the most unstable linear mode of

the elliptical instability, when it does operate, is unchanged due to the convective vortex,

and therefore this indicates that perturbation of the phases of the inertial waves by the

convective vortex may be the explanation for the reduced growth rate and inhibition of

the elliptical instability by the large-scale vortex.

In Ch. 4 we found that the elliptical instability provides time-averaged tidal dissipa-

tion rates approximately consistent with an ϵ3 scaling when it operates. We have defined an

efficiency or proportionality factor χ, such that the tidal dissipation is given by D ≡ χϵ3γ3,

to represent the imperfect and probably intermittent operation of the elliptical instability.

We observed the upper bound on this efficiency factor to be χ ≈ 0.18. Furthermore, this

efficiency factor seems to be independent of the convective driving. We have found that

the sustained energy injection rate observed in Ch. 3 scales as ϵ2 in our simulations when

the elliptical instability is suppressed. This sustained energy injection can therefore be

interpreted as an effective viscosity that is independent of ϵ. On the other hand, this

effective viscosity is observed to depend on the convective velocity, lengthscale and tidal

frequency. We have obtained scaling laws for convective velocities and lengthscales, which

we use to find predictions for the convective frequency and the effective viscosity, using

both (temperature-based) mixing-length theory (MLT) and rotating mixing-length theory

(RMLT) prescriptions. The agreement between the predictions of RMLT and our simula-

tion data is very good, hence our simulations confirm the applicability of the diffusion-free

scalings of RMLT to describe sufficiently turbulent rapidly rotating convection. Moreover,

they allow us to use RMLT to find predictions for the effective viscosity. Our simulation

data as a function of the tidal frequency ω and the convective frequency ωc support the

frequency-reduction of the effective viscosity for fast tides (ωc/ω)
2 when ω ≫ ωc. We also

confirm the presence of the intermediate frequency regime of (ωc/ω)
−1/2 in our simulations

(found by Duguid et al., 2020), and that the transition to this regime occurs at a ratio of

ω/ωc ≈ 5, consistently with Duguid et al. (2020).

In Ch. 5 and Ch. 6 we have simulated the precessional instability in a local Cartesian

model and its interaction with rotating Rayleigh-Bénard convection. In Ch. 5 we have

derived growth rates of the precessional instability in the presence of stable and unstable

194



8.1 Summary

stratification by extending R. Mason and Kerswell (2002), and found, together with linear

simulations, that the growth rate is typically reduced by stable stratification while the

growth rate is increased by unstable stratification. In Ch. 6 we observe the expected

bursty behaviour of the precessional instability in simulations with small values of the

Poincaré number. Meanwhile, at larger values of Po we observe a vortex forming, which,

when sufficiently powerful, seems to allow a rapid secondary transition to a continuously

turbulent state instead of a bursty state. When convection is introduced at low Po the

precessional instability disappears and instead a continuous energy injection resembling

that in Ch. 3 arises. At larger values of Po in the presence of convection we again retrieve

the continuously turbulent state. The energy injection rate is lowered due to the presence

of convection, but the secondary transition occurs at lower and lower values of Po as the

convective driving is increased. Again we find that the inertial waves generated by the

precessional instability can transport heat, and heat transport is enhanced by precession

regardless of Rayleigh number in the continuously turbulent regime, in strong contrast to

the heat transport due to the elliptical instability interacting with convection.

We fit the tidal dissipation scalings of the precessional instability in isolation as

functions of Po. In the continuously turbulent regime we find that the dissipation scales

as D ≡ ζΩ3Po3, with ζ = 0.09 in the absence of convection, again representing an upper

bound. The sustained energy injection we observed in these simulations at low values

of the Poincaré number scales as Po2, which means that this sustained energy injection

can again be thought of as an effective viscosity, that is independent of Po, acting on

the precessional flow. Again we observe this effective viscosity to depend on the Rayleigh

number, and we find good agreement between the simulation data and the fitted RMLT

predictions for intermediate and high frequency regimes of the effective viscosity damping

the background precessional flow. The prefactors of these regimes are very close to those

found previously for the background elliptical flow in Ch. 4, such that we conclude that

the form of the background flow has little influence on the value of the effective viscosity.

Finally, in Ch. 7 we have obtained estimates for the tidal quality factors Q′
2,2,2 and

Q′
2,1,0 due to the elliptical and precessional instabilities respectively, based on the scaling

laws that we have derived and approximately validated in Ch. 4 and Ch. 6. Using these

estimates we find that Hot Jupiters are expected to be in the continuously turbulent regime

of the precessional instability, and that the reduction of the tidal dissipation due to the

precessional instability interacting with convection for Hot Jupiter parameters is negligible.

Next we employed the mesa code to construct illustrative interior models of a Jupiter-

like and an inflated Hot Jupiter-like planet. We find that, for almost all applications

to giant planets, the fast tides regime, in which the tidal frequency is much larger than

the convective frequency, is highly likely to be the relevant one. We also find that the

origin of the background flow (whether elliptical or precessional) does not matter for this

qualitative result. The resulting tidal quality factors Q′
2,2,2 and Q′

2,1,0 for equilibrium tide

damping due to the convective turbulence acting on the background flow are estimated to

be in excess of 109 for tidal periods of interest, and this mechanism is therefore predicted
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to be an ineffective one in giant planets. On the other hand, we predict that the elliptical

and precessional instabilities are efficient for very short orbital and tidal periods (with

Q′ ∼ 103 in Hot Jupiters for periods of order one day), but that they fall off rapidly with

increasing (tidal and orbital) periods. We have also computed ⟨Q′
IW⟩ arising from the

frequency-averaged dissipation due to inertial waves in “realistic models” of giant planets.

This mechanism assumes these waves to be excited linearly by tidal forcing, as opposed to

non-linearly (with respect to tidal amplitude) by the elliptical instability. This mechanism

leads to Q′ ≈ 103(Prot/10hr)
2 for Jupiter-like rotation periods, which is consistent with

the efficient tidal dissipation rates required to explain the observed orbital migration of

the moons of Jupiter and Saturn where tidal amplitudes are likely to be too small for the

elliptical instability to operate effectively. All mechanisms except the frequency-averaged

inertial wave mechanism are more efficient in the inflated Hot Jupiter model due to its

larger radius, weaker rotation and stronger convective driving. This allows the elliptical

and precessional instabilities to be on par with or even be more efficient than linearly-

excited inertial waves in the shortest-period Hot Jupiters. We conclude that inertial

wave mechanisms are probably the most efficient ones for dissipating tidal energy in giant

planets.

8.2 Future work

Numerous avenues of research can be pursued to follow on from the results in this thesis. A

clear path is to study the interactions in this thesis in anelastic or even fully compressible

simulations, which means these simulations could perhaps be considered valid for whole

convective regions instead of single pressure scale heights. The results would then poten-

tially be more valid for stars and giant planets with large convection zones, as well as lend

more credibility to the extrapolation of the tidal dissipation to whole bodies. Finally, this

would allow for verification of (rotating) mixing length theory in these different approx-

imations, which would be very beneficial, not only for this work, but also for 1D stellar

modelling.

Below we will consider more specific avenues of future work, which are either related

to the tidal and precessional flows we have considered, or more generally to the setup we

have considered, the rotating mixing length theory we have used to describe convection,

the introduction of magnetic fields and finally how we have applied our scalings laws to

the generated mesa models.

Elliptical flow

On the topic of the elliptical instability, it would be of interest to perform simulations

varying γ and Ω, to fully disentangle the different dependencies on Roc and Roω. Changing

γ and Ω independently would allow the realistic scenario of a planet orbiting with a

non-zero orbital frequency in the inertial frame to be studied. This would likely impact

the strength of the elliptical instability as it changes its linear growth rate. This would

be expected to cause suppression of the elliptical instability for different strengths of
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convective driving (or for a different ϵ for fixed Ra). However, we do not expect any

of our conclusions will be substantially modified in this case. Still, this would perhaps

allow a clear quantification regarding what values of ϵ and convective driving suppress the

elliptical instability. Furthermore, it might shed more light on the mechanism by which

the large-scale vortices suppress the elliptical instability.

For both the elliptical tidal flow and the precessional flow it would be of interest

to continue exploring different parameters of our simulations, particularly by varying the

Prandtl number. In particular, low Prandtl number (Pr < 0.67) rotating convection itself

excites inertial waves (Chandrasekhar, 1961), which can subsequently interact through a

triadic resonance (Lin, 2021). These convectively created inertial waves might also be

unstable to the elliptical and precessional instabilities and could, due to their constant

generation by the oscillatory convection, result in another source of potentially continuous

tidal dissipation. Furthermore, if these convectively generated inertial waves instead result

in another LSV, or zonal flows, this might instead suppress the elliptical instability at

different values of the Rayleigh number, or modify the Poincaré number at which the

precessional instability transitions to the continuously turbulent regime.

Precessional flow

On the topic of the precessional flow, one avenue of future work that is certainly of interest

is a more complete study of the modification of convection by precession. A good place

to start would be the linear stability analysis of convection in the presence of precession,

as well as a continued investigation of the stability analysis of the precessional instability

in the presence of stratification. At the time of writing, this analysis is being undertaken

using a numerical Floquet method. Next, a more detailed analysis of convective quantities

such as the Nusselt number and convective velocity in non-linear simulations would be

interesting, to more clearly constrain the effect that precession has on convective motions,

although it appears that precession acts primarily to enhance convection in this setup.

A further avenue of exploration is studying local boxes with different aspect ratios,

which we have not used when studying the precessional instability due to finite compu-

tational time, but did explore when considering the elliptical instability. Boxes that are

larger in the horizontal direction allow larger energies in the convectively generated vor-

tices and possibly also in the precessional vortices. The continuously high energies in the

vortices appear to have been important to the suppression of the elliptical instability, but

their effects on the precessional instability is unclear. Furthermore, we have not probed

the effects of stable stratification in non-linear simulations. Our linear stability analysis

and linear simulations suggest that stable stratification stabilises the precessional insta-

bility. Nevertheless, for stable stratification – when the precessional instability can still

operate – the heat transport and tidal dissipation produced would be worth exploring.

Finally, a larger parameter sweep at larger values of the rotation rate and thus

smaller values of the Ekman number could prove useful. This would reduce the effective

viscosities, both because the tidal frequency would increase and the convective velocities
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and lengthscales would decrease. If the effective viscosity is less powerful, while the energy

injection is larger due to larger rotation rates, the energy injection can be probed at larger

Rayleigh numbers because it would no longer be overshadowed by the energy injection due

to the effective viscosity. This would allow the effects of convection on the energy injection

by the precessional instability to be constrained in a broader region of parameter space.

Transition to other latitudes

The Cartesian box in which we executed our simulations of both instabilities is situated

at the poles of the planet, with the gravity and rotation axis both pointing in the z-

direction. The latitudinal location of the box, and thus the relative directions of gravity

and the rotation axis could affect the resulting tidal dissipation. If the box is moved

to a lower latitude, the directions of gravity and the rotation axis will be misaligned,

causing convective motions subjected to rapid rotation to change angle (Novi et al., 2019;

Currie et al., 2020). At lower latitudes the vortices introduced by rotating convection

turn into zonal flows, which could modify dissipation due to the elliptical and precessional

instabilities as well as the effective viscosity of convection. In addition, Currie et al. (2020)

demonstrated that the predictions of RMLT hold from the poles to mid-latitudes, but at

low-latitudes deviations were observed due to the presence of both zonal flows and because

boundary conditions constrain the flow in the latitudinal direction. Hence, future work

should focus on obtaining a theoretical understanding of turbulent rotating convection and

of the effective viscosity at mid and low latitudes, in the presence of strong zonal flows.

Furthermore, global simulations that are sufficiently turbulent and rapidly rotating

to capture regimes similar to those we have explored would also be worthwhile, somewhat

along the lines of the previous laminar simulations presented in e.g. Cébron et al. (2010).

Following Barker (2016a), one could also study the interaction of the bursty non-linear

dynamics of the elliptical instability with convection. Another possibility is to study the

interactions of the precessional instability and convection like in Wei and Tilgner (2013),

specifically examining the resulting tidal dissipation. One advantage of global simulations

(in full ellipsoids or oblate spheroids) is that the inertial waves are no longer constrained

by the (artificial) aspect ratio of the box. Furthermore, one might find that the inertial

waves, excited by the precessional and elliptical instabilities, can lead to wave attractors

if one studies them in spherical shells (e.g. Hollerbach & Kerswell, 1995; Noir et al.,

2001), which can be thought of as mimicking a giant planet with a dilute core that is

sufficiently stably stratified. Again, low Prandtl number (Pr < 0.67) rotating convection

itself excites inertial waves (Chandrasekhar, 1961), which could possibly also result in wave

attractors (Lin, 2021), a possibility that would be interesting to study by itself. Finally,

the convective zonal flows might affect the paths of these wave attractors, and thus the

amount of dissipation they result in, in a similar manner to the non-linearly generated

zonal flows due to tidally excited inertial waves (Astoul & Barker, 2022). The resultant

effect of convection on tidal dissipation due to the inertial wave mechanisms should thus

be studied in these global models.
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Magnetic fields

There are strong magnetic fields present in Jupiter, and it is expected that Hot Jupiters

would also have strong fields. This expectation is supported by observations tentatively

inferring that a number of Hot Jupiters possess strong magnetic fields (Cauley et al.,

2019). Therefore it is important to study the effects of magnetic fields in our simulations,

as they could have significant effects on tidal dissipation. Magnetic fields may prevent LSV

formation (Mak et al., 2017) by the elliptical instability, and therefore allow a continuous

operation of the resulting energy transfers (Barker & Lithwick, 2014). It is likely that

they also prevent the formation of the convective LSV (e.g. Maffei et al., 2019), and if so

could allow continuous operation of the elliptical instability while convection is present in

the system, potentially allowing for enhanced tidal dissipation. The precessional instabil-

ity seems to achieve the continuously turbulent regime even at small values of Po when

magnetic fields are introduced (Barker, 2016b), but it would be interesting to see if this is

maintained if convection is also present. Furthermore, since our results point to a slight

reduction of the energy injected by the precessional instability in the presence of convec-

tion, but Barker (2016b) points to enhanced energy injection in the presence of magnetic

fields, it would be interesting to see if magnetic fields can act to remedy this weakening

of the precessional instability as a tidal dissipation mechanism. Furthermore, it would be

important to study the precessional instability as a dynamo mechanism (Malkus, 1968;

Kerswell, 1996; Tilgner, 2005; Wu & Roberts, 2008; Le Bars et al., 2015) with convection

present, to study if it is still efficient as a dynamo mechanism. On the other hand, our

results, like those of Wei and Tilgner (2013), also point to more vigorous convection in the

presence of precessional flow, and it would be useful to study if precession could possibly

act to enhance rotating convection as a dynamo mechanism.

In addition, sufficiently strong magnetic fields will modify the properties of the

convection and therefore the effective viscosity, and it remains to be seen how valid the

predictions of Stevenson (1979) would be in this case. Also on the topic of magnetic fields,

in a similar fashion to convection acting as an effective viscosity, an effective turbulent

magnetic resistivity might arise (Cattaneo & Tobias, 2013; Tobias & Cattaneo, 2013).

The turbulent magnetic resistivity has been explored previously in accretion discs (Lesur

& Longaretti, 2009), but not in the context of tidal dissipation. It is entirely unknown

whether an effective resistivity acting on a tidal flow features the same frequency-reduction

as the effective viscosity (as assumed by Wei, 2022), and whether it might be an effective

dissipation mechanism of the equilibrium tide for high tidal frequencies.

Applicability of the effective viscosity

Another question is whether effective turbulent diffusivities like the effective viscosity

and effective resistivity are applicable to other flows than the ones studied. The effective

viscosity as calculated here is purely representative of the interaction of rotating convection

with the considered background flows. It is unclear if, for instance, the interaction between

inertial waves generated by the elliptical and precessional instabilities (or more directly by
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tidal forcing) and convection can be modelled in the same way. Studying the interaction

of convection with inertial waves, and calculating whether (and if so how) this can be

modelled using an effective viscosity is an important topic for future work. In addition, the

possible role of alternative energy transfer routes for fast tides (Terquem, 2021), such terms

involving correlations between tidal flow components and gradients of the convective flow

(which identically vanish in our model), should be explored in global models to determine

if they are ever important, although the first work in this direction by Barker and Astoul

(2021) finds tidal dissipation that is much less relevant, by several orders of magnitude,

than claimed by Terquem (2021).

Calculation of dissipation rates

A final avenue of future work is related to the analysis of tidal dissipation rates using

planetary models. It would be worthwhile to modify the equation of state in a manner

akin to Müller et al. (2020), which would allow us to obtain an extended dilute core

and to measure the impact of such a core on tidal dissipation rates. Furthermore, a

stably stratified dilute core might provide an important additional contribution to tidal

dissipation by permitting the excitation of internal (inertia-)gravity waves (e.g. Fuller et

al., 2016; André et al., 2019; Pontin et al., 2020; Pontin, 2022; Dewberry, 2023; Lin,

2023; Pontin et al., 2023; Dhouib et al., 2024; Pontin et al., 2024) as well as modifying

the efficiency of inertial wave excitation in the overlying convective envelope (Pontin,

2022; Pontin et al., 2024). Finally, studying how Q′ evolves with planetary evolution for

each of these mechanisms would be worthwhile, research which has been started in the

investigation of Lazovik et al. (2023). For self-consistency, one might then consider also

evolving orbital parameters and irradiation fluxes in tandem with the structural evolution.
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Appendix A

The Mathematica script for

Precessional instability

Below is the Mathematica script used to compute the values of k⊥ and σ in Ch. 5. The

script computes σ according to Eq. (5.58) by first calculating the terms A, B, C and D from

the normal mode solutions of the inertia-gravity waves. The relevant input parameters

are nA, nB, ∆T and Ω, represented by nA, nB, DT, Omega in the script. Note that the

script uses ∆T instead of N2; the two quantities are related by ∆T = −N2 after setting

α = g = d = 1

To use the script one should set the desired nA and nB by modifying the definition of

kz and kzB in the script respectively. One can then change the desired value of Ω and run

the whole script. The script will calculate kx, ky and σ for all values of ∆T ∈ [−Ω2,Ω2].

The script automatically saves the values of kx, ky, Ω, ∆T, σ – in that order – to a CSV

text file, the name of which is set at the end of the script.

ClearAll["Global‘*"]

(* Define the L matrices here, explicitly define them after derivative *)

L = {{z (I ky + kx), 0, - 2 I}, {0, z (I ky + kx), 2}, {I, - 1,

z (I ky + kx)}};

Lconj = {{z (I ky - kx), 0, 2 I}, {0, z (I ky - kx), 2}, {-I, - 1,

z (I ky - kx)}};

(* Define the wavenumbers, change nA and nB here by changing kz and kzB *)

kz = 1*Pi; kzB = 2*Pi; kp = Sqrt[kx^2 + ky^2]; kpB=kp;

k = Sqrt[kp^2 + kz^2]; kB = Sqrt[kp^2 + (kzB)^2];

(* Define the frequencies *)
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lambdaA = - Sqrt[ (4 Omega^2 kz^2 - DT kp^2)/k^2]; lambdaB = lambdaA + Omega;

(* Define the normal modes of inertia-gravity waves of both mode A and B *)

uAx = (k^2 (kx lambdaA - 2 I ky Omega)/(4 Omega^2 kp^2)) Cos[ kz (z)];

uAy = (k^2 (ky lambdaA + 2 I kx Omega)/(4 Omega^2 kp^2)) Cos[ kz (z)];

uAz = (- I kz lambdaA/(DT+lambdaA^2) ) Sin[ kz (z)];

thA = (- kz DT/(DT + lambdaA^2)) Sin[ kz (z)];

uBx = (kB^2 (kx lambdaB - 2 I ky Omega)/(4 Omega^2 kpB^2)) Cos[kzB (z)];

uBy = (kB^2 (ky lambdaB + 2 I kx Omega)/(4 Omega^2 kpB^2)) Cos[kzB (z)];

uBz = (- I kzB lambdaB/(DT+lambdaB^2)) Sin[kzB (z)];

thB = (- kzB DT/(DT + lambdaB^2)) Sin[ kzB (z)];

uA = {uAx, uAy, uAz};

uB = {uBx, uBy, uBz};

(* Define the operators F and H acting on the modes A and B *)

FA = Omega (E ^ (I Omega t) E ^ (I (kx x + ky y))

E ^ (I lambdaA t) L.uA);

FB = Omega (E ^ (-I Omega t) E ^ (I (kx x + ky y))

E ^ (I lambdaB t) Lconj.uB);

HA = Omega (E ^ (I Omega t) E ^ (I (kx x + ky y))

E ^ (I lambdaA t) z (I ky + kx) thA);

HB = Omega (E ^ (-I Omega t) E ^ (I (kx x + ky y))

E ^ (I lambdaB t) z (I ky - kx) thB);

FA = Simplify[FA, {kx > 0, ky > 0, kz>0, z>0,Omega>0, DT>0}];

FB = Simplify[FB, {kx > 0, ky > 0, kz>0, z>0,Omega>0, DT>0}];

HA = Simplify[HA, {kx > 0, ky > 0, kz>0, z>0,Omega>0, DT>0}];

HB = Simplify[HB, {kx > 0, ky > 0, kz>0, z>0,Omega>0, DT>0}];

(* Calculate term A in Eq. 5.59, velocity part *)

termAu = Simplify[(-D[Curl[Curl[FB,{x,y,z}],{x,y,z}],t]

- 2 Omega D[Curl[FB,{x,y,z}],z]) /

(E ^ (I(kx x + ky y)) E ^ (I lambdaA t)),
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{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

(* Temperature part *)

termAth = Simplify[(D[D[HB,x],x] + D[D[HB,y],y]) /

(E ^ (I(kx x + ky y)) E ^ (I lambdaA t)),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

(* Put both parts together and perform integration over z *)

termA = Integrate[Simplify[Conjugate[uAz] (termAu[[3]] + termAth),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}], {z,0,1}];

(* Calculate term B in Eq. 5.60 *)

termBu = Simplify[(-D[Curl[Curl[FA,{x,y,z}],{x,y,z}],t]

- 2 Omega D[Curl[FA,{x,y,z}],z])/

(E ^ (I (kx x + ky y)) E ^ (I lambdaB t)),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

termBth = Simplify[(D[D[HA,x],x] + D[D[HA,y],y]) /

(E ^ (I (kx x + ky y)) E ^ (I lambdaB t)),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

termB = Integrate[Simplify[Conjugate[uBz] * (termBu[[3]] + termBth),

{kx > 0, ky > 0, kz>0, Omega>0, DT>0}], {z,0,1}];

(* Calculate term C in Eq. 5.61 *)

termCu = Simplify[(D[Laplacian[uA E ^ (I(kx x + ky y))

E ^ (I lambdaA t),{x,y,z}],t]

- 2 Omega D[Curl[uA E ^ (I(kx x + ky y))

E ^ (I lambdaA t),{x,y,z}],z]),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

termCth = Simplify[(D[D[thA E ^ (I(kx x + ky y))

E ^ (I lambdaA t),x],x]

+ D[D[thA E ^ (I(kx x + ky y))

E ^ (I lambdaA t),y],y]),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

termC = Integrate[Simplify[Conjugate[uAz] (termCu[[3]]+termCth) /

(E ^ (I(kx x + ky y)) E ^ (I lambdaA t)),
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{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}], {z,0,1}];

(* Calculate term D in Eq. 5.62 *)

termDu = Simplify[(D[Laplacian[uB E ^ (I(kx x + ky y))

E ^ (I lambdaB t),{x,y,z}],t]

- 2 Omega D[Curl[uB E ^ (I(kx x + ky y))

E ^ (I lambdaB t),{x,y,z}],z]),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

termDth = Simplify[(D[D[thB E ^ (I(kx x + ky y))

E ^ (I lambdaB t),x],x]

+ D[D[thB E ^ (I(kx x + ky y))

E ^ (I lambdaB t),y],y]),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}];

termD = Integrate[Simplify[Conjugate[uBz] (termDu[[3]]+termDth) /

(E ^ (I(kx x + ky y)) E ^ (I lambdaB t)),

{kx > 0, ky > 0, kz>0, z>0, Omega>0, DT>0}], {z,0,1}];

(* Code for generating text files of data depending on values of Omega *)

(* Set Omega here *)

Omega1=20000

(* Create list of DT to calculate with, ranges from -Omega^2 to Omega^2 *)

DTlist = Join[{-Omega1^2}, Reverse[PowerRange[Omega1,Omega1^2,10^(1/500)]],

-Reverse[PowerRange[1,Omega1,10^(1/10)]], {0},

PowerRange[1,Omega1,10^(1/10)],

PowerRange[Omega1,Omega1^2,10^(1/500)],{Omega1^2}] // N

(* Solve for kperp here, we set kx=ky here. *)

(* The Nsolve provides eight solutions total, most are imaginary wavenumbers *)

(* For |nA-nB|=/=1 sometimes provides different solutions, with own sigma *)

Do[replaclist=Append[replaclist, Join[NSolve[1 - Sqrt[

(4 kz^2 - DT/Omega^2 kp^2)/k^2] ==

Sqrt[ (4 kzB^2 - DT/Omega^2 kp^2)/kB^2]

&& kx==ky, {kx,ky}][[1]]

/. {Omega->Omega1, DT->i},{Omega->Omega1, DT->i}]],

{i,DTlist}]
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(* Calculate values of sigma, remove square root for values of sigma^2 *)

Do[sigmalist=Append[sigmalist,Re[Sqrt[{Re[termA termB /

( termC termD Omega^2)] /. i}]]],{i,replaclist}]

(* Create the output list, outputs kx, ky, Omega, DeltaT and sigma *)

finallistraw = {}

Do[finallistraw=Append[finallistraw, {kx,ky,Omega,DT}/. i],{i,replaclist}]

finallist = Join[finallistraw,sigmalist,2]

(* Save the calculated results as a CSV text file for post processing *)

Export["n1n2Omega2_10_4.txt", finallist, "CSV"]
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Appendix B

Parameters used in the mesa

inlists

The illustrative models in Ch. 7 are based on the mesa test suite case make planets. We

highlight here changes in the inlist files we used to obtain these models. Any parameters

not mentioned here are unchanged from the test suite default values. The inlist create

and inlist core are the same for both the Jupiter and Hot Jupiter model:

inlist create

max model number = 1020

initial Y=0.27

inlist core

dlg core mass per step=0.002d0

The differences between these models lies in inlist evolve ; for the Jupiter model:

max model number = 2500

irradiation flux = 50000.d0

inject uniform extra heat = 0.0d0

max age=4.5d9

and for the Hot Jupiter model:

max model number = 2500

irradiation flux = 1.d9

inject uniform extra heat = 0.05d0

max age=4.5d9 .
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