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Abstract

Wireless network traffic prediction (NTP) is regarded as one of the most significant techniques

for alleviating network resource pressure. However, existing methods struggle to balance

the prediction accuracy, interpretability, and computational efficiency when dealing with

aggregate-level wireless network traffic data. Additionally, existing NTP methods are

inadequate in effectively addressing the nonroutine traffic caused by nonroutine events.

Furthermore, there is a lack of specialized hyper-parameter optimization method for deep

learning models when applied to cell-level wireless network traffic data. To address these

challenges, this thesis proposes three key contributions, each corresponding to one of the

aforementioned motivations. While all of these contributions focus on the domain of NTP,

each targets a different application scenario and collectively addresses specific gaps in the

field from various perspectives.

In Work 1, a novel user-behavior-based (UBB) NTP method is proposed for aggregate-

level wireless network traffic data. Based on the analysis of overall user behavior, we

utilize three traffic components to construct the daily NTP model with high interpretability.

In addition, the initial parameter selection strategy of the UBB NTP method is discussed.

The numerical results indicate the method has a high level of computational efficiency and

prediction accuracy in comparison with traditional statistics-based and machine learning-

based methods.

Work 2 addresses the special case of aggregate-level network traffic data, focusing

on traffic that has been influenced by nonroutine events. Specifically, some nonroutine

events have a strong impact on user behavior and then trigger the nonroutine network traffic.

Therefore, we propose an innovative nonroutine network traffic prediction (NNTP) method



viii

and then propose the soccer game (SG)-NNTP model as a case study in both single-step and

multi-step prediction modes. Experimental results indicate the NNTP method is well-suited

to this scenario, and far superior to benchmark methods in terms of interpretability, prediction

accuracy, and computational efficiency.

In Work 3, we propose a meta-learning based framework for optimizing hyper-parameters

in deep neural network-based NTP models when processing cell-level wireless network traffic

data. The cell-level wireless network traffic data tends to exhibit a high degree of complexity

due to the limited coverage, number of users, and mobility of users. Therefore, it poses a high

demand on the learning capacity of NTP models. We propose an attention based deep neural

network (ADNN) for the cell-level wireless NTP, namely the base-learner, in Work 3. More

importantly, we propose a meta-learning based hyper-parameter optimization framework, i.e.,

the meta-learner. It can automatically provide proper hyper-parameters to match newly-given

base-learners. Experimental results demonstrate the innovative meta-learner can further

enhance the potential of the base-learner, and is robust for other deep learning-based models.



List of Publications

[1]. L. Wang, J. Zhang, Z. Zhang and J. Zhang, “Analytic network traffic prediction based on

user behavior modeling,” in IEEE Networking Lett., vol. 5, no. 4, pp. 208-212, Dec. 2023.

[2]. L. Wang, H. Zhu, J. Zhang, Z. Zhang and J. Zhang, “Interpretable nonroutine network

traffic prediction with a case study,” in IEEE Trans. Green Commun. Networking, (Under

Review).

[3]. L. Wang, J. Zhang, Y. Gao, J. Zhang, G. Wei, H. Zhou, B. Zhuge and Z. Zhang,

“Hyper-parameter optimization for cell-level wireless network traffic prediction with a novel

meta-learning framework,” in IEEE Internet Things J., (Under Review).

[4]. L. Wang, C. Chen, C. Fischione, and J. Zhang, “Learning-based joint antenna selection

and precoding design for cell-free MIMO networks,” in IEEE Trans. Commun., (Under

Review).





Table of contents

List of Publications ix

List of figures xv

List of tables xix

Abbreviations xxi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 NTP Technology and Evolution . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 NTP Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Evolution of NTP Technology . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11

2.1 Classical Statistics-based NTP Models . . . . . . . . . . . . . . . . . . . . 11

2.1.1 ARMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Deep Learning-based NTP Models . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



xii Table of contents

2.2.2 MLP Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 LSTM Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Related Works of NTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Statistics-based NTP . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Shallow Learning-based NTP . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Deep Learning-based NTP . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Analytic Network Traffic Prediction Based on User Behavior Modeling 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The Proposed UBB NTP Method . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Analysis for Daily Behavior . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Analysis for Traffic Data . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Initial Parameter Selection Strategy . . . . . . . . . . . . . . . . . 32

3.3 Evaluation with Real-world Traffic Data . . . . . . . . . . . . . . . . . . . 38

3.3.1 Performance of the UBB NTP Method . . . . . . . . . . . . . . . . 40

3.3.2 Comparison with Benchmark Methods . . . . . . . . . . . . . . . 40

3.3.3 Analyses and Discussion . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Interpretable Nonroutine Network Traffic Prediction with a Case Study 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 The Proposed NNTP Method with a Case Study . . . . . . . . . . . . . . . 48

4.2.1 Analysis of Nonroutine Traffic . . . . . . . . . . . . . . . . . . . . 48

4.2.2 The Proposed NNTP Method . . . . . . . . . . . . . . . . . . . . . 49

4.2.3 Dataset for Nonroutine Traffic . . . . . . . . . . . . . . . . . . . . 51

4.2.4 The Case Study: SG-NNTP Model . . . . . . . . . . . . . . . . . 52

4.2.5 Multi-step Prediction of SG-NNTP . . . . . . . . . . . . . . . . . 55

4.2.6 Single-step Prediction of SG-NNTP . . . . . . . . . . . . . . . . . 58



Table of contents xiii

4.3 Evaluation with Real-world Traffic Data . . . . . . . . . . . . . . . . . . . 59

4.3.1 Performance Comparison Between the SG-NNTP Model and the

Benchmark Models in Multi-step Prediction Mode . . . . . . . . . 61

4.3.2 Performance of the SG-NNTP Model and Benchmark Models in

Single-step Prediction Mode . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Analyses and Discussion . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Hyper-parameter Optimization for Cell-level Wireless Network Traffic Predic-

tion with A Novel Meta-Learning Framework 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Dataset and Preliminary Analyses . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Cell-level Wireless Network Traffic Records . . . . . . . . . . . . 74

5.2.2 Preliminary Analyses of Hyper-parameter Selection . . . . . . . . 75

5.3 The Proposed Cell-level Wireless NTP Framework . . . . . . . . . . . . . 78

5.3.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 Base-learners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.3 The Proposed Meta-learner . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Numerical Results of the Proposed Framework . . . . . . . . . . . . . . . 88

5.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Effectiveness of the KNN Learning Method . . . . . . . . . . . . . 91

5.4.3 Influence of Key Parameters in the Advanced Genetic Algorithm . . 93

5.4.4 Prediction Accuracy of the Proposed Framework and Benchmark

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.5 Computational Time of the Proposed Framework . . . . . . . . . . 99

5.4.6 Robustness Analyses of Algorithm 2 . . . . . . . . . . . . . . . . 101

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusions and Future Work 105

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



xiv Table of contents

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References 109



List of figures

1.1 Mobile subscriptions in 2023 and 2029 predicted by Ericsson. . . . . . . . 3

2.1 Modelling process for the ARMA model. . . . . . . . . . . . . . . . . . . 12

2.2 Modelling process for ARIMA model. . . . . . . . . . . . . . . . . . . . . 14

2.3 The structure of the neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The structure of the MLP network. . . . . . . . . . . . . . . . . . . . . . . 16

2.5 The structure of the LSTM memory cell. . . . . . . . . . . . . . . . . . . . 17

3.1 Description of the two adopted datasets. . . . . . . . . . . . . . . . . . . . 27

3.2 Traffic distribution and the components in the morning, afternoon and evening. 28

3.3 J varies with the number of iterations. . . . . . . . . . . . . . . . . . . . . 31

3.4 The clusters and centroids generated by the K-means clustering algorithm. . 33

3.5 The three traffic components corresponding to Cluster 1,2, and 3. . . . . . . 34

3.6 The comparison between the real-world traffic data on weekday and the

traffic profile associated with the initial parameters derived from the K-means

clustering based approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 The three traffic components corresponding to Paw, Paw, and Paw with the

minimum Eerror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 The comparison between the real-world traffic data on weekday and the

traffic profile derived from the analytical calculations approach. . . . . . . . 38

3.9 The prediction results of UBB NTP method for Guangzhou. . . . . . . . . 39

3.10 The prediction results of UBB NTP method for Milan. . . . . . . . . . . . 40



xvi List of figures

3.11 The prediction performance of the proposed UBB NTP method and the

benchmark methods for Guangzhou SMS dataset. . . . . . . . . . . . . . . 42

3.12 The prediction performance of the proposed UBB NTP method and the

benchmark methods for Milan SMS dataset. . . . . . . . . . . . . . . . . . 43

3.13 The elapsed time of the proposed UBB NTP method and the benchmark

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The daily traffic and the additive nonroutine traffic. . . . . . . . . . . . . . 49

4.2 Cellular network traffic data in Milan published by Telecom Italia. . . . . . 50

4.3 The information of the soccer games hosted by the San Siro Stadium in

December 2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 SMS data for the soccer games held at the San Siro stadium in December. . 52

4.5 The imitative effect of SG-NNTP model for the soccer game: Inter-Milan vs.

Sampdoria kicks off at 16:00 December 1, 2013. . . . . . . . . . . . . . . . 55

4.6 The imitative effect of SG-NNTP model for the soccer game: Inter-Milan vs.

Trapani kicks off at 22:00 December 4, 2013. . . . . . . . . . . . . . . . . 55

4.7 The imitative effect of SG-NNTP model for the soccer game: Inter-Milan vs.

Parma kicks off at 21:45 December 8, 2013. . . . . . . . . . . . . . . . . . 56

4.8 The imitative effect of SG-NNTP model for the soccer game: AC-Milan vs.

Ajex kicks off at 21:45 December 11, 2013. . . . . . . . . . . . . . . . . . 56

4.9 Linear regression between Rsg and attendance. . . . . . . . . . . . . . . . . 57

4.10 Prediction results for SG-NNTP model in multi-step prediction mode. . . . 60

4.11 Prediction results for the 5-Layer MLP model in multi-step prediction mode. 60

4.12 Prediction results for the 5-Layer LSTM model in multi-step prediction mode. 61

4.13 The accuracy of the SG-NNTP model and the benchmark models in multi-

step prediction mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.14 The elapsed time of the SG-NNTP model and the benchmark models in

multi-step prediction mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.15 Prediction results for the 5-layer MLP model in single-step prediction mode. 64

4.16 Prediction results for the 3-layer LSTM model in single-step prediction mode. 64



List of figures xvii

4.17 Prediction results for the ARMA(1,2) model in single-step prediction mode. 65

4.18 Prediction results for the ARIMA(3,1,1) model in single-step prediction mode. 65

4.19 Prediction results for the SG-NNTP model. . . . . . . . . . . . . . . . . . 66

4.20 The accuracy of the SG-NNTP model and the benchmark models in single-

step prediction mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.21 The elapsed time of the SG-NNTP model and the benchmark models in

single-step prediction mode. . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 The MSE performance of prediction models with different hyper-parameter

selection strategies for mobile cell 1595. . . . . . . . . . . . . . . . . . . . 75

5.2 The MSE performance of prediction models with different hyper-parameter

selection strategies for mobile cell 2535. . . . . . . . . . . . . . . . . . . . 76

5.3 The MSE performance of prediction models with different hyper-parameter

selection strategies for mobile cell 3040. . . . . . . . . . . . . . . . . . . . 76

5.4 The information entropy and the conditional entropy (CE) of the best values

of each kind of hyper-parameters. . . . . . . . . . . . . . . . . . . . . . . 78

5.5 The proposed cell-level wireless NTP framework with meta-learning. . . . 80

5.6 The structure of the base-learner. . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 The schematic diagram of the multi-head attention mechanism. . . . . . . . 83

5.8 a) The structure of Gated Residual Network; b) The framework of GRN

module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.9 The average after-training MSE and R2 performance achieved by base-

learners when each base-learner adopts the conditionally optimal hyper-

parameter selection strategy provided by the KNN learning algorithm versus

the neighbor number K under different scales of S meta. . . . . . . . . . . . 92

5.10 The average after-training MSE and R2 performance achieved by base-

learners when each base-learner adopts the conditionally optimal hyper-

parameter selection strategy provided by the KNN learning algorithm versus

the scale of S meta with different values of K. . . . . . . . . . . . . . . . . 93



xviii List of figures

5.11 The base-learner’s after-training MSE performance with the currently opti-

mal hyper-parameter selection strategy output by Algorithm 2 for mobile

cell 1635 versus Algorithm 2’s processing time under different value combi-

nations of prem and pmut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.12 The base-learner’s after-training MSE performance with the currently opti-

mal hyper-parameter selection strategy output by Algorithm 2 for mobile

cell 4004 versus Algorithm 2’s processing time under different value combi-

nations of prem and pmut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.13 Predicted traffic loads of the conventional ADNN and our framework as well

as the ground true traffic loads generated in mobile cell 785. . . . . . . . . 97

5.14 Predicted traffic loads of the conventional ADNN and our framework as well

as the ground true traffic loads generated in mobile cell 6708. . . . . . . . . 98

5.15 Predicted traffic loads of the conventional ADNN and our framework as well

as the ground true traffic loads generated in mobile cell 9106. . . . . . . . . 98

5.16 The average on-line computational time of the considered hyper-parameter

optimization methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.17 MSE performance achieved by the considered hyper-parameter optimization

methods when base-learners adopt other deep learning algorithms rather than

ADNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.18 R2 performance achieved by the considered hyper-parameter optimization

methods when base-learners adopt other deep learning algorithms rather than

ADNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.19 The average on-line computational time of the considered hyper-parameter

optimization methods when base-learners adopt other deep learning algo-

rithms rather than ADNN. . . . . . . . . . . . . . . . . . . . . . . . . . . 103



List of tables

3.1 The symbols corresponding to the 9 traffic components. . . . . . . . . . . . 30

3.2 Parameters of UBB NTP method in Guangzhou. . . . . . . . . . . . . . . . 41

3.3 Parameters of UBB NTP method in Milan. . . . . . . . . . . . . . . . . . . 41

4.1 The symbols corresponding to the 9 traffic components. . . . . . . . . . . . 53

4.2 The parameters corresponding to the first 4 soccer games in December. . . . 57

5.1 The hyper-parameters’ selection range. . . . . . . . . . . . . . . . . . . . . 90

5.2 The performance of the proposed framework and the benchmark methods . 97





Abbreviations

4G Fourth Generation

5G Fifth Generation

ADNN Attention-based Deep Neural Network

AGA Advanced Genetic Algorithm

AIC Akaike Information Criterion

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

BIC Bayesian Information Criterion

CNN Convolutional Neural Network

DBNG Deep Belief Network and Gaussian

DNN Deep Neural Network

EB Exabyte

ES Exhaustive Searching

ESN Echo-State Network



xxii Abbreviations

FFNN Feed-Forward Neural Network

GA Genetic Algorithm

GARCH Generalized Auto-Regressive Conditional Heteroskedasticity

GLU Gated Linear Units

GNN Graph Neural Network

GP Gaussian Process

GRN Gated Residual Network

GRU Gate Recurrent Unit

GSM Grid Spectral Mixture

GSMA Global System for Mobile Communications Association

IoE Internet of Everything

KNN K-Nearest Neighbor

LR Linear Regression

LSTM Long Short-Term Memory

MA Moving Average

MAE Mean Absolute Error

MIMO Multiple Input Multiple Output

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Square Error



Abbreviations xxiii

NNTP Nonroutine Network Traffic Prediction

NTMA Network Traffic Monitoring and Analysis

NTP Network Traffic Prediction

PSO Particle Swarm Optimization

QoS Quality of Service

R2 Coefficient of Determination

ReLU Rectified Linear Unit

RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SARIMA Seasonal Autoregressive Integrated Moving Average

SG Soccer Game

SG-NNTP Soccer Game Nonroutine Network Traffic Prediction

SMS Short Message Service

SVM Support Vector Machine

SVR Support Vector Regression

Tanh Hyperbolic Tangent

UBB User Behavior Based

VR Virtual Reality





Chapter 1

Introduction

1.1 Background

Over the past few decades, the number of mobile subscribers and networked devices, along

with the network traffic usage per device, has grown explosively. By the end of the third

quarter of 2023, the global wireless network traffic data reached an impressive 143 exabyte

(EB) [1]. Therefore, network resource management faces severe challenges.

Since the official commercialization and global deployment of fifth generation (5G)

mobile communication system in 2019, 5G mobile subscriptions have increased rapidly.

According to the statistics of Ericsson, by 2023, the number of global mobile subscriptions has

reached 8.5 billion, of which 1.4 billion are 5G subscriptions [1]. Both Ericsson and Global

System for Mobile Communications Association (GSMA) forecast that the 5G technology

will overtake the fourth generation (4G) technology, and become the dominant mobile

technology in 2029 [1][2]. GSMA predicts that the 5G subscriptions will take up 54% of all

subscriptions, approximately 5.29 billion in 2030 [2], while Ericsson forecasts that it will

surpass 5.3 billion by 2029. According to Ericsson’s report [1], the 5G mobile subscriptions

are predicted to increase by a factor of 3.79, and take up 58% of all subscriptions, as shown

in Fig. 1.1.

Moreover, numerous new networking paradigms have emerged, such as millimeter wave

communication, massive Multiple Input Multiple Output (MIMO) network, ultra-dense
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network, promoting the rapid development and deployment of numerous technologies such

as virtual reality (VR) and Internet of everything (IoE) [3]. These technologies will generate

extremely large amounts of wireless network traffic while providing users with high-quality

network services. Following Ericsson’s forecast, the global monthly wireless network traffic

data will reach 56 G per smartphone by the end of 2029 [1]. In addition to smartphones,

various other network devices, such as smart home devices, smart city settings, etc., also

contribute to the huge volume of global wireless network traffic. As per Ericsson’s report,

the number of cellular IoT connections will reach 6.1 billion and the global wireless network

traffic data will reach around 563 EB per month by 2029 [1].

Such a huge volume of wireless network traffic data poses severe challenges to network

resource management. To address these challenges, wireless network traffic prediction (NTP)

has gained considerable attention from both industry and academia [4] [5] [6].

1.2 NTP Technology and Evolution

1.2.1 NTP Technology

NTP technology plays an important role in network traffic monitoring and analysis (NTMA)

[6] [7] [8]. By analyzing and learning historical wireless network traffic data, NTP models

are able to extract the traffic patterns and then precisely predict future traffic demands. NTP

is an essential foundation of resource provisioning and congestion control. For instance,

based on future traffic load prediction, an optimal sleeping strategy can be implemented for

multiple cooperative access points to reduce their energy consumption [9]. In addition, many

of the emerging intelligent architectures for cellular networks [10] rely on accurate cell-level

wireless network traffic prediction to further enhance network performance.

NTP performance encompass accuracy, computational efficiency, and interpretability. Ac-

curate traffic prediction enables more precise alignment with resource requirements, thereby

preventing both over-allocation and under-allocation of resources. Computational efficiency

is crucial for reducing computation time and resource consumption, ensuring timely re-

sponses and rapid resource adjustments. In the context of network management, interpretable
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prediction models provide operators with a clearer understanding of the underlying factors

driving the predicted outcomes, facilitating more informed and rational decision-making.

NTP has been widely modeled as a time-series forecasting problem, in which wireless

network traffic data points are arranged in chronological order and future wireless network

traffic is inferred based on the correlation among data points in historical data. NTP usually

consists of the following steps:

• Data Acquiring and pre-processing: Collect historical wireless network traffic data and

process missing values and outliers.In addition, some works perform the operations

such as decomposition and clustering on the traffic data [4].

• Model Selection: Select the proper models for NTP tasks, such as the traditional

statistics-based methods and machine learning (ML)-based methods.

• Data Fitting: Adjust model parameters so that the NTP model can fit historical wireless

network traffic data well.

• Prediction: Execute the NTP model and predict future traffic.
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• Model Evaluation: Evaluate the performance of NTP models in terms of prediction

accuracy, computational efficiency, and interpretability. Performance metrics for

prediction accuracy include Mean Square Error (MSE), coefficient of determination

(R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). Elapsed

time of a NTP model can be adopted as the performance metric for computational

efficiency.

However, to some extent, there is a certain conflict between the prediction accuracy and

interpretability of NTP. Specifically, simple NTP models usually possess high interpretability

and computational efficiency; however, their prediction accuracy is usually poor. On the

contrary, the complicated NTP models such as deep learning-based models, are designed for

higher prediction accuracy at the expense of interpretability and computational efficiency [11].

It is worth noting that the more complex a neural network becomes, the less interpretable it

is, often turning into a "black box", where understanding how decisions are made becomes

increasingly difficult. Meanwhile, complicated NTP models introduce some other tricky

problems like hyper-parameter selection.

1.2.2 Evolution of NTP Technology

NTP technology has experienced an evolution from traditional statistics-based methods to

machine-learning based methods. Traditional statistics-based methods are built on mathemat-

ical models or probability distributions with simple structure and relatively fewer parameters.

Moreover, these models generally rely on a priori assumptions, such as a certain distribution

of data, and there are certain correlation among variables, which makes the model clearer

and easier to understand. Most of these models are linear models, such as the Autoregres-

sive Moving Average (ARMA) model and the Autoregressive Integrated Moving Average

(ARIMA) model. Very few of these models focus on nonlinear characters of time-series

data such as the Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH)

model. The distinctive features of traditional statistics-based methods are that these models

are simple with small number of parameters. These features bring the advantages of high

interpretability and computational efficiency, but at the cost of prediction accuracy.
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With the exponential growth of wireless network traffic data and the rapid development

of ML technology, the data-driven ML-based NTP models emerge constantly and exhibit the

superiority in prediction accuracy. The application of multiple activation functions provides

ML-based NTP models with the capacity to understand complex nonlinear relationships. ML-

based NTP models include two categories, namely shallow learning-based NTP models and

deep learning-based NTP models [12][13]. Shallow learning-based methods were introduced

into NTP field earlier, and achieves improvement in prediction accuracy. However, these

models are relatively simple and can hardly predict wireless network traffic data accurately,

as their limited learning abilities may hinder the effective utilization of ample training data.

In the past few years, the deep learning in NTP filed has gained much attention. Deep

learning-based NTP models empowered by deep neural networks (DNNs) perform well in

terms of prediction accuracy. Equipped with multiple layers of neural networks, DNNs are

able to capture the correlation in the wireless traffic data. On the other hand, each layer of

the hierarchical structure performs non-linear transform of the input data, which makes the

mapping relation more blurry. The complicated structure and non-linear transform enhance

the prediction accuracy, in the meantime sacrifice the interpretability as well as computational

efficiency. In addition, deep learning-based models involve numerous hyper-parameters such

as the learning rate, the number of neural layers, the number of neurons in each layer, etc. In

general, the deep learning-based methods have now become the dominant research direction

in NTP.

1.3 Motivation and Contribution

1.3.1 Motivation

Recently, NTP has been extensively studied in the academia. However, there are still some

open questions, such as the balance among interpretability, accuracy as well as computational

complexity, the inspiration of user behavior, the impact of nonroutine events, and the hyper-

parameter selection of deep learning-based NTP models. The motivations of this thesis are

summarized as follows.



6 Introduction

• As mentioned above, the existing works on NTP field fail to achieve a balance among in-

terpretability, prediction accuracy, and computational complexity. Traditional statistics-

based methods perform well in interpretability but poorly in prediction accuracy. In

contrast, deep learning-based methods have high prediction accuracy but low inter-

pretability.

• In the NTP field, the existing works focus only on historical wireless network traffic

data, but have not taken into account user behavior [11]. These works have primar-

ily applied traditional statistics-based or machine learning (ML)-based time series

forecasting models to wireless NTP tasks, without fully considering and utilizing

the user behavior characteristics that dominate wireless network traffic patterns. The

NTP model constructed on the basis of user behavior can enhance the fitness of

the model to the specific data, i.e., wireless network traffic data, and improve the

model’s performance including prediction accuracy, computational efficiency, as well

as interpretability.

• In users’ daily lives, certain events that affect user behavior will subsequently trigger

nonroutine traffic, which will severely limit the performance of the NTP model. The

nonroutine traffic is less frequent and does not have a regular recurring cycle. Thereby,

it is difficult to extract accurate traffic patterns from only historical traffic data, both

for traditional statistics-based and ML-based methods.

• It is hard to extract local users’ overall behavior from the cell-level wireless network

traffic data. This is because a mobile cell serves limited users with a small coverage

area, and the users in the coverage area have strong mobility. Therefore, user behavior

analysis cannot be utilized to construct NTP models that simultaneously enhance pre-

diction accuracy, interpretability, and computational efficiency in this context. Among

the remaining approaches, deep learning-based models demonstrate the highest pre-

diction accuracy. Therefore, adopting deep learning techniques is the most suitable

option to ensure superior prediction accuracy. Commonly used deep neural networks

in NTP field include multilayer perceptron (MLP) network, recurrent neural network
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(RNN), long short-term memory (LSTM) network, etc. RNN suffers from the vanish-

ing/exploding gradient issue [14]. While LSTM addresses the vanishing/exploding

gradient issue, its sequential processing mechanism hinders its performance. Thus, a

novel deep learning-based NTP model is required.

• In addition, deep learning-based methods face the challenge of hyper-parameter selec-

tion. Deep learning-based cell-level wireless NTP models involve numerous hyper-

parameters such as the learning rate, the number of neural layers, the number of neurons

in each layer, etc. Unfortunately, how to efficiently optimize the hyper-parameters

has not been well studied and is still an open question to the best of our knowledge.

Furthermore, the access points in the 5G or beyond wireless networks are ultra-densely

deployed and there are tens of thousands of mobile cells in large-scale radio access

networks [15][16]. Hence, it is impractical to optimize the hyper-parameters for each

mobile cell manually, and an efficient is required.

1.3.2 Contribution

To address the aforementioned challenges encountered in NTP filed, this thesis focuses

on improving NTP models in three aspects including prediction accuracy, computational

efficiency, and interpretability. Then, we summarize the main contributions of this thesis as

follows.

• First, this thesis classifies traffic data into aggregate-level and cell-level categories

and focuses on designing or enhancing different NTP methods tailored to the unique

characteristics of each data type to improve prediction performance. The key distinction

between these two data types lies in their inherent characteristics: cell-level traffic,

generated by a single cell, involves a small geographic area and a limited number

of users, leading to traffic patterns that exhibit significant randomness and frequent

fluctuations. In contrast, aggregate-level traffic is generated by multiple neighboring

cells, covering a larger area and serving a greater number of users, which results in

more regular traffic patterns and smoother curves.
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• Second, for aggregate-level wireless network traffic data, this thesis incorporates user

behavior analysis into the construction of the NTP model and proposes a novel user

behavior-based (UBB) NTP method. The structure of the UBB NTP model is clearer

and easier to understand compared with existing works. The parameters of the proposed

model are concise and have corresponding physical meanings, thus greatly improving

the interpretability. The traditional statistics-based and deep learning-based methods

are considered as benchmark schemes. Experiment results indicate that the proposed

UBB NTP method outperforms benchmark methods in terms of overall performance.

More specifically, the efficiency of the proposed method is approximately 12 times

that of the ARMA model and 28 times that of the LSTM network.

• Third, this thesis takes the lead in defining and systematically analyzing the nonroutine

traffic, and evaluates its impact on the benchmark methods in terms of prediction

accuracy, computational efficiency and interpretability. Based on the observation

that nonroutine traffic is closely related to the corresponding nonroutine event, this

thesis proposes a novel nonroutine network traffic prediction (NNTP) method which

takes full advantage of the nonroutine event’s information to construct the NTP model

with high interpretability. In addition, taking the real-world event as a case study,

this thesis builds the soccer game (SG)-NNTP model following the NNTP method

and tests both single-step and multi-step prediction mode. In the multi-step mode,

the NTP model directly predict the traffic values for the next m (step size) moments,

while the single-step one only focuses on the next one moment. In comparison with

benchmark methods, the proposed NNTP method achieves the best prediction accuracy

and computation efficiency in both single-step and multi-step prediction modes.

• Finally, this thesis proposes a novel attention based deep neural network for cell-

level wireless NTP tasks. More importantly, to solve the common challenge of deep

learning-based NTP models, i.e., hyper-parameter optimization, this thesis develops an

innovative meta-learning based framework that selects the optimal hyper-parameters for

cell-level NTP tasks automatically by analyzing and utilizing the correlations between
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the target NTP tasks and meta-samples. Finally, extensive simulations demonstrate

that the proposed meta-learning based framework is more effective compared to the

traditional hyper-parameter optimization methods and is robust across different base

learners with various deep learning algorithms.

1.4 Structure of the Thesis

The content of this thesis is organized as follows.

Chapter 2: Literature Review

This chapter is a comprehensive review of the existing works on NTP field. We first

review the traditional statistics-based NTP model and introduce two typical statistics-based

methods, i.e. ARMA model and ARIMA model. Subsequently, the basic concepts and

theories of ML are introduced. The widely used ML-based models are described, such as the

MLP network and the LSTM network. Finally, this chapter reviews the state of the art deep

learning-based NTP models and their merits and shortcomings.

Chapter 3: Analytic Network Traffic Prediction Based on User Behavior Modeling

This chapter analyzes the overall user behavior patterns of a certain region, and studies

the relationship between the user behavior patterns and local wireless network traffic patterns.

An UBB NTP method is proposed and the mathematical model is formulated. Finally, we

evaluate the proposed UBB NTP method in comparison with ARMA model, ARIMA model,

MLP network, and LSTM network.

Chapter 4: Nonroutine Network Traffic Prediction with A Case Study

This chapter focuses on nonroutine network traffic and analyzes the flaws of the existing

NTP models in the face of nonroutine network traffic. Then, utilizing the correlations

between the nonroutine network traffic and the nonroutine event, we propose a novel NNTP

method with high interpretability, computational efficiency, and prediction accuracy. Taking

the real-world soccer-games as a case study, we construct a SG-NNTP model with both

multi-step and single-step prediction modes. Simulation results show that the NNTP method

fits well with the nonroutine traffic data in both multi-step and single-step prediction modes.
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Chapter 5: Hyper-parameter Optimization for Cell-level Wireless Network Traffic

Prediction with A Novel Meta-Learning Framework

In the case where the overall user behavior is difficult to obtain, this chapter designs

an attention based deep neural network for cell-level wireless NTP task. Furthermore,

considering hyper-parameter selection problem, this chapter proposes an innovative meta-

learning based hyper-parameter optimization framework. Finally, the performance and

robustness of the proposed framework is validated by simulations.

Chapter 6: Conclusion and Future Work

This chapter summaries the thesis and gives the prospect of the future works.



Chapter 2

Literature Review

Overview
This chapter consists of two sections. The first one introduces statistics-based and deep

learning-based NTP models, respectively, which are commonly used in existing works and

also serve as the benchmark models in this thesis. We start from the statistics-based NTP

models including the ARMA and ARIMA models. Then, we clarify some key concepts of

deep learning and introduce two typical models in detail: the MLP and LSTM networks.

In the second section, we conduct a comprehensive review of the literature on traditional

statistics-based models, shallow learning-based models, and deep learning-based models,

respectively, and their challenges and limitations are also summarized.

2.1 Classical Statistics-based NTP Models

In this chapter, we first introduce two representative statistics-based models, ARMA model

and ARIMA model, which are widely used in time series forecasting problems.

2.1.1 ARMA Model

The ARMA(p, q) model is regarded as a linear combination of p-order autoregressive (AR)

model and q-order moving average (MA) model, and is suitable for stationary time series

data [17][18]. If p = 0, the ARMA model degrades into an MA model, and if q = 0, the
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ARMA model degenerates into an AR model [19]. Specifically, the AR part in the ARMA

model depicts the correlation between current data values and past values, while the MA part

represents the influence of the aggregated random errors from previous time points on the

current observation. Hence, ARMA model is able to capture the statistical characteristics of

the time series data accurately. The ARMA (p,q) model is formulated as:

φ (B)Yt = θ (B)εt , (2.1)

φ (B) = 1−φ1B−φ2B2 −·· ·−φpBp, (2.2)

θ (B) = 1−θ1B−θ2B2 −·· ·−θqBq, (2.3)

where Yt and εt represent observation and white noise in moment t, respectively, while B is

the back-shift operator [18] and is expressed as follows

BiYt = Yt−i,

Biεt = εt−i.
(2.4)
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The modelling procedure of the ARMA model mainly includes 5 steps as shown in Fig.

2.1. The first step is stationary test, since the ARMA model requires stationary time series

data as its input. Secondly, model identification is performed to obtain preliminary values of

AR p and MA order q. On the basis of acquiring p and q, the ARMA model’s parameters,

φ j, j ∈ [1, p] and θk,k ∈ [1,q], can be estimated by methods like maximum likelihood and

least squares [20]. In the fourth and fifth steps, the ARMA model is fitted into the input data

with the estimated parameters, and then it is necessary to validate that whether the residual

sequence meets the white noise assumption. What is more, the goodness of fit can be tested

according to Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC).

The model with minimum AIC or BIC values is selected as the best model. When the model

passes the adequacy validation, it can be used to perform prediction task, otherwise backing

to model identification and repeating the modelling process to obtain an appropriate model.

2.1.2 ARIMA Model

The ARIMA model, referred to as the Box-Jenkins model, stands as a prominent paradigm

within statistical models for time-series forecast [6]. Similar to the ARMA model, the ARIMA

model also consists of the AR model and the MA model. The most significant difference is

that compared with the ARMA model, the ARIMA model introduces a difference-stationary

process, which enables the prediction of non-stationary time sequences [21][22]. Due to the

existence of the difference-stationary process, the prediction results of the ARIMA model

need to be restored through an inverse difference process. Fig. 2.2 illustrates the modelling

process of the ARIMA model where the yellow boxes emphasize the difference between the

ARIMA model and ARMA model. The following equations formulate the ARIMA model.

φ (B)∇
dYt = θ (B)εt , (2.5)

where ∇d = Yt −Yt−d , represents the d-order difference, and the parameters φ ,θ ,B,ε are the

same as the parameters in ARMA model.
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In general, both the ARMA model and the ARIMA model aim to minimize the residual

sequence by adjusting φ j, j ∈ [1, p] and θk,k ∈ [1,q], thereby making the model fit the

historical data well and accurate for prediction task.

2.2 Deep Learning-based NTP Models

Compared to traditional statistical-based methods, ML-based methods represented by deep

neural networks show superior performance in terms of prediction accuracy [24]. Multiple

activation functions enable the learning of complex nonlinear relationships. This section starts

form the basic concepts like neuron, and then reviews two representative deep learning-based

methods, the MLP network and the LSTM network.
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2.2.1 Basic Concepts

The neuron is a fundamental concept and was first proposed by McCulloch and Pitts in 1943

[25], and can be expressed as

y = f

(
n

∑
i=1

wixi +b

)
, (2.6)

where xi and wi represent the i-th input and the corresponding weight, b and f (·) refer to

the bias function and activation function, respectively, and y is the output of the neuron. As

shown in Fig. 2.3, the neuron computes a weighted sum of input signals and bias, then passes

the weighted sum through an activation function to get the final output. Each neuron has its

own weights and bias, and these parameters are learned and adjusted gradually during training

process, thereby improving the performance of the model. In addition, the activation function

f is vital, which introduces nonlinear transformation, and thus enables neural networks to

capture complex nonlinear features of historical data.

The commonly used activation functions include the sigmoid function, rectified linear

unit (ReLU) function, and hyperbolic tangent (Tanh) function, which are represented as the

following equations [26][27][28].



16 Literature Review

𝑥1

𝑥2

𝑥𝑛

𝑦1

𝑦2

𝑦𝑛

…

… …

…

…

Input layer

Hidden layers

Output layer

Fig. 2.4 The structure of the MLP network.

• Sigmoid function:

f (x) =
1

1+ e−x . (2.7)

• ReLU function [29]:

f (x) =

x, x > 0

0, otherwise
. (2.8)

• Tanh function:

f (x) =
sinhx
coshx

=
ex − e−x

ex + e−x . (2.9)

2.2.2 MLP Network

The MLP network is a classical model, which possesses a relatively simple structure in

comparison with other deep learning-based methods like LSTM network and Transformer

network. As shown in Fig. 2.4 [30], the MLP network consists of an input layer, an output

layer, and multiple hidden layers. Each hidden layer contains a number of neurons, and each

neuron is connected to all of neurons in the neighboring layers. By means of this hierarchical

structure, the neuron, as well as the activation function, the MLP network performs feature
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extraction on the input data layer-by-layer following forward propagation, then the error back

propagation is utilized to minimize the loss function [31], thereby updating weight matrix

and biases of the network.

2.2.3 LSTM Network

The LSTM network is an improvement of RNN, and was first proposed by Hochreiter and

Schmidhuber in 1997 [32]. The LSTM memory cell structure is designed to help the network

avoid the vanishing gradient problem [33]. As shown in Fig. 2.5, the LSTM cell contains

three gate structures, i.e., a forget gate, an input gate, and an output gate [34][35][36].

The forget gate is the most important component in the LSTM cell [37], and determines

what information needs to be discarded from cell state at the previous moment. The forget

gate is formulated as

ft = σ
(
Wf · [ht−1,xt ]+b f

)
, (2.10)

where xt and ht−1 are the inputs of the forget gate at moment t, denoting the input vector at

time t and the hidden state at the previous time t −1, respectively. W(·) and b(·) represent
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the corresponding weight matrices and bias vectors, respectively. The forget gate adopts the

sigmoid activation function σ(·) to output a vector of values within [0,1], which indicates

the degree of information retention of the previous cell state Ct−1. The input gate shares a

similar structure with the forget, and can be expressed as

it = σ (Wi · [ht−1,xt ]+bi) . (2.11)

The input gate determines what information need to be added into the current cell state.

Hence, the output of the input gate is acting on the candidate cell state C̃t . It is defined as

C̃t = tanh(WC · [ht−1,xt ]+bC) . (2.12)

With ft , Ct−1, it , and C̃t , the current cell state Ct is updated as

Ct = ft ⊙Ct−1 + it ⊙C̃t , (2.13)

where ⊙ is the element-wise Hadamard product. The output gate is formulated as

ot = σ (Wo · [ht−1,xt ]+bo) . (2.14)

Then the current hidden state can be updated.

ht = ot ⊙ tanh(Ct) . (2.15)

By utilizing the memory cell, the LSTM network is able to learn long-term dependencies.

Nowadays, the LSTM network and its variants have been widely applied in many research

areas such as IoT [38] and natural language processing [39].
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2.3 Related Works of NTP

NTP technology has a great potential to improve the network resource efficiency, while the

extent to which its potential can be realized depends on its prediction performance [40].

Over the past few decades, the academia has made great effort in the NTP field, and the

mainstream of NTP technology has undergone an evolution from the statistics-based method

to the ML-based method [4] [5] [6] [41].

2.3.1 Statistics-based NTP

In traditional statistics-based models, historical network traffic data is fitted into some

statistics or probability distributions to extract traffic patterns and attributes, such as the α-

stable model, the ARMA model, the ARIMA model, the Seasonal Autoregressive Integrated

Moving Average (SARIMA) model, etc.

Authors in [42] focused on the self-similar network traffic and utilized the the theory of

α-stable processes to extract the traffic patterns in mobile network. What is more, as the

representation for traditional statistics-based models, the ARMA and ARIMA model are

often used to extract linear features from historical traffic data [6]. As mentioned above,

the ARMA model is suitable for stationary sequences. L. Tang et al. employed the ARMA

model to predict the future load state of virtual networks, and then proposed a dynamic

resource allocation scheme for virtual networks based on the prediction results [43]. While

the ARIMA model fits non-stationary sequences well by adding a difference-stationary

process [21]. In [22], the ARIMA model was used to predict the normal traffic in the next

minute to identify DoS and DDoS attacks.

In addition, the variants of the ARIMA model are also widely used in NTP field. For

example, the SARIMA model considered the seasonal correlations in the variations of

network traffic stream [44]. F. Xu et al. in [45] adopted the SARIMA to forecast the seasonal

components in cellular traffic data. Besides, some nonlinear models were proposed for

nonlinear features, such as the GARCH model [46]. To further improve the performance,

an ARIMA prediction model aided with entropy theory was proposed in [47]. Besides the
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above models, the ON-OFF model [48], the Kalman function [49], the covariance function

[50], and the Holt-Winter’s exponential smoothing model [51] were also introduced to fit the

temporal-spatial characteristics of mobile traffic data.

Although traditional statistics-based models have the advantage of low computational

complexity and do not involve the complicated hyper-parameter optimization problem, in

general, they do not perform very well in prediction accuracy in comparison to ML-based

models. In [24], the authors compared the ARIMA model with the LSTM network, and

concluded that the LSTM network outperforms the ARIMA model. Similar conclusion was

made in [23] that the artificial neural network is superior to the linear models like the ARMA

model and the Holt-Winters algorithm.

2.3.2 Shallow Learning-based NTP

Shallow learning is a concept opposite to deep learning [52], which mainly refers to traditional

ML algorithms such as gaussian process (GP), linear regression (LR), and support vector

machine (SVM) [53]. Numerous shallow learning algorithms, like support vector regression

(SVR) [54] [55] [56], LR [57] [58], GP [59] [60] [61], and principal component analyses

[62] were proposed to conduct NTP.

SVR, a variant of SVM, is an application of SVM to the regression task [63]. Authors in

[54] proposed a platform for collecting and predicting the real-time cellular traffic data, where

the SVR algorithm was used for real-time cellular traffic prediction. Moreover, the authors

utilized the grid search to optimize the hyper-parameters of the SVR model in consideration

of the fact that hyper-parameters have a huge impact on the generalization performance of

the SVR model. In [55], the SVR model was used for the prediction of telephone traffic, and

an improved grid search method was used for hyper-parameter selection. In [56], Y. Zhang

et al. proposed a SVR model to predict the voice traffic data of the base stations in global

system for mobile communications networks. Historical traffic data generated by the target

base station and neighbouring base stations were used as inputs to the SVR model, which

improved the prediction accuracy. Finally, the particle swarm optimization (PSO) algorithm

was adopted to optimize the SVR model’s hyper-parameters.
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In [57], a hybrid LR-based traffic prediction model was proposed for the real-world traffic

data provided by Deutsche Telekom AG, Germany,and the effect of window size on model

performance was investigated. Based on the prediction results, a power management system

was proposed to automatically turn on/off base stations to minimize energy consumption

while ensuring quality of service (QoS). Authors in [58] proposed a joint NTP model

combining LR and Random Forest (RF) for backbone optical networks. The experimental

results proved that the joint NTP model has higher prediction accuracy than the standalone

models.

Authors in [59] proposed a GP-based NTP model for the cloud radio access network

and utilized the alternating direction method of multipliers to optimize the model’s hyper-

parameters. In [60], a GP-based model with the grid spectral mixture (GSM) kernel function

was used for 5G traffic prediction, and an adaptive GSM kernel learning algorithm was

proposed to obtain the corresponding kernel configuration. Authors in [61] adopted three

shallow learning-based models, SVM, Gaussian Process Regression and Robust Linear

Regression to predict the key parameters in LTE networks, and validated the feasibility of

these NTP models through experiments.

In general,these shallow learning-based methods outperform the statistics-based methods

in prediction accuracy, since they are better able to capture linear and nonlinear features in

network traffic data and have stronger learning capabilities. However, these methods are not

as interpretable as statistics-based methods because their parameters cannot be used directly

to interpret the prediction results. In addition, these shallow learning-based methods have

already involved hyper-parameter selection problem.

2.3.3 Deep Learning-based NTP

In recent years, the deep learning technology has been leveraged in wireless NTP. In com-

parison to the shallow learning-based methods, the deep learning-based methods include

more layers (typically more than 3 layers) and introduce a more complex structure like gate

structure and self-attention mechanism, thereby exhibiting significantly enhanced learning

capacity.
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L. Nie et al. in [64] proposed a deep belief network and Gaussian models (DBNG) to

predict the cell-level wireless network traffic loads. In [66], a multi-scale deep echo-state

network (ESN) based prediction model was proposed to learn the trends and characteristics

of network traffic at different temporal scales. Z. Wang et al. [65] integrated the network

spatial information with the cell-level wireless network traffic load series and proposed a

graph neural network (GNN) based NTP model.

Authors in [67] conducted both single-step and multi-step prediction for mobile traffic in

LTE base stations, and conclude that the prediction error increases versus prediction step size.

Moreover, in comparison with the ARIMA model and feed-forward neural network (FFNN),

LSTM network proved to be the most effective model. Similar conclusion was made in [68],

and the authors compared the LSTM network, FFNN, and ARIMA model, then validated

that the LSTM network possess higher prediction accuracy and faster convergence speed.

Z. Wang et al. in [69] utilized generative adversarial networks to generate traffic data for

privacy protection while increasing prediction accuracy, and the LSTM network was adopted

to realize the multi-step prediction.

Authors in [70] considered the temporal and spatial correlations between neighbouring

base stations, and proposed a hybrid deep learning model for LTE networks of China Mobile

at Suzhou, where the LSTM networks and autoencoder-based deep models are used for

temporal and spatial modeling, respectively. Experimental results indicated that the hybrid

deep learning model is the most effective compared to the SVR and ARIMA models. In

[71], C. Qiu et al. proposed a multi-task learning approach based on the LSTM network

to improve the model’s prediction accuracy by exploring the similarities and differences

of traffic patterns among neighbouring mobile cells. With reduced connection probability

between neurons, a random connectivity LSTM network based traffic prediction model was

proposed in [72] to decrease the model’s training complexity.

Regarding historical traffic loads generated in multiple base stations as the inputs, the

CNN and convolutional LSTM network based NTP models were proposed in [73] and [74],

respectively. C. Zhang et al. in [75] proposed a densely connected convolutional neural

network (CNN) combined with a parameter matrix-based scheme to predict the traffic of



2.3 Related Works of NTP 23

short message service (SMS) and Call service in Milan, 2013. In [76], a spatial-temporal

cross-domain neural network model based on convolutional LSTM is proposed for predicting

SMS, call and internet service data in Milan, 2013. Furthermore, based on transfer learning,

a fusion transfer strategy is proposed to share parameters among different models to improve

the prediction accuracy. Authors in [77] proposed to decompose the network traffic load

series into several product function components using the local mean decomposition method,

each of which is then predicted with a bidirectional LSTM network model.

Y. Hu et al. [78] proposed to utilize attention mechanism to depict the spatial-temporal

characteristics of wireless traffic patterns and presented a transformer based prediction model.

By combining attention and convolution mechanisms into traffic analysis, a multi-view

spatial-temporal graph network based prediction model was proposed in [79] to learn diverse

global spatial-temporal dependencies of cellular traffic loads.

These research works exploited the DL technology to mine the hidden characteristics

of wireless network traffic patterns and achieved the state-of-the-art accuracy performance.

However, they mainly focused on designing elaborate prediction models/algorithms for

different NTP tasks and simply mentioned the hyper-parameter settings they used without

providing an explanation of the reasons for the settings. Moreover, they ignored how to find

the optimal hyper-parameters for each predict model based on the corresponding prediction

task’s intrinsic characteristics or hyper-parameter selection experience accumulated from

other prediction tasks. In [80], the authors made some initial attempts to elevate a new

cell-level traffic prediction model’s performance by providing it the proper initial weight

vector on the basis of initial weight vector selection strategies of previous prediction mod-

els. Nevertheless, optimizing the prediction models’ hyper-parameters has also not been

addressed.

2.3.4 Conclusion

Overall, traditional statistics-based models are not specifically designed for NTP tasks,

and their limited learning capacity often results in inferior predictive accuracy. Shallow

learning-based models, while capable of capturing some nonlinear relationships, are similarly
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constrained by their limited learning capacity, making it challenging to achieve the most

accurate predictions. In contrast, deep learning-based models excel in feature extraction and

generally deliver high predictive accuracy. However, they involve high computational costs,

and lack interpretability.



Chapter 3

Analytic Network Traffic Prediction

Based on User Behavior Modeling

Overview
In this chapter, an interpretable UBB NTP method is proposed. Based on user behavior,

a weekly traffic demand profile can be naturally sorted into three categories, i.e., weekday,

Saturday, and Sunday. For each category, the traffic pattern is divided into three components

which are mainly generated in three time periods, i.e., morning, afternoon, and evening.

Each component is modeled as a normal-distributed signal. Numerical results indicate the

UBB NTP method matches the practical wireless traffic demand very well. Compared with

existing methods, the proposed UBB NTP method improves the computational efficiency

and increases the predictive accuracy.

3.1 Introduction

AS mentioned in chapter 1, the explosive growth in users’ network traffic demand leads to a

severe challenge in network efficiency. As one of the most promising NTMA technologies

to improve network resource allocation, NTP has garnered widespread attention within the

academic community.
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It has been found that traffic patterns are closely related to land use types, such as

commercial and residential areas [81][82][83]. However, the state-of-the-art relevant to

NTP only focuses on historical traffic data and does not take into account the connection

between traffic data and the real world regardless of the statistics-based methods and the ML-

based methods. This strategy affects the performance of statistics-based methods in terms

of prediction accuracy and significantly constrains the interpretability and computational

efficiency of ML-based method.

It is vital to note that traffic patterns are present in historical traffic data and, more

importantly, that user behavior dominates the patterns. The state-of-the-art is built on

the former and overlooks the latter. They extract an aggregation of traffic patterns from

historical data and store it with a specific model, which is comprehensible for computer,

but meaningless and invisible for human being. Generally, they lack explanatory power

regardless of how accurate and complicated they are. This work jumps out of the shackle

of existing works. To enhance the overall performance, user behavior characteristics is

employed in the UBB NTP framework. Overall traffic profile is regarded as the superposition

of several normal-distributed signals and the specific parameters are extracted from real-

world traffic data. Numerical results show that it is a simple, efficient, accurate, and highly

interpretable method to discover traffic patterns.

In general, the proposed method effectively utilizes the principal status of user behavior,

and achieves the advantages as follows:

1) Compared with existing methods, our method provides an interpretable NTP solution

which is visual and comprehensible.

2) Our method has a significant advantage in terms of computational efficiency.

3) Our method establishes a correspondence between model parameters and user habits.

The compatible expression of model parameters provides an opportunity to compare

traffic patterns in different regions.

The rest of the chapter is structured as follows. Section 3.2 details the key points of the

UBB NTP method and establish the mathematical model. Section 3.3 simulates the UBB
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Dataset 1 Location Start time End time Items

Short message service Guangzhou, China 01/03/2019 (Friday) 31/03/2019 1,521,005 records

Description: Unicom China is the source of these records. Timestamp and data volume are included for each record.

Dataset 2 Location Start time End time Items

Short message service Milan, Italy 01/11/2013 (Friday) 30/11/2013 160,108,003 records

Description: Telecom Italy provides the dataset, with Milan split into 10,000 grids, each representing a sub-dataset.

Timestamp and data volume are included for each record.

Fig. 3.1 Description of the two adopted datasets.

NTP method and benchmark methods, and performs a comparative analysis. Finally, the

conclusions and future plans are drawn in Section 3.4.

3.2 The Proposed UBB NTP Method

There are two approaches to gather user habits: one is from daily behavior, and the other is

through real-world traffic data. Based on these habits, we build the mathematical model.

3.2.1 Analysis for Daily Behavior

Generally, people are accustomed to being active during the day and sleeping at night. In

addition to sleeping hours, every day includes three main periods, i.e., morning, afternoon,

and evening. Most people carry out their daily activities throughout these three periods. For

example, every morning and afternoon on weekdays are generally working hours, whereas

every evening is typically for recreation. These three periods thus correlate to the busiest

times for network services and the traffic pattern fits well with the daily routine of users [84].

Hence, we divide the daily traffic into three traffic components, corresponding to the three

time periods.

Furthermore, in the absence of prior information, we conceive that the peak time of

each traffic component represents the time preference of users to use network. Due to

various subjective or objective factors, some users’ traffic demands deviate from the time

preference. The greater the magnitude of traffic deviation, the lower the probability of

occurrence. This assumption is well-founded because procrastination is prevalent in the
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Fig. 3.2 Traffic distribution and the components in the morning, afternoon and evening.

population [85][86][87]. Statistically, the prevalence of procrastination is as high as 20-25%

in the general population [86] and 15% of adults suffer from severe procrastination [87].

Correspondingly, there will be some users who like to finish their tasks in advance. In

addition, outside the three main periods, the traffic caused by users’ whims takes up a tiny

percentage. For simplicity, all of the traffic outside the three main periods is regarded as an

extension of these traffic components.

3.2.2 Analysis for Traffic Data

The datasets are collocted from Guangzhou, China, and Milan, Italy. The specifics of these

datasets are shown in Fig. 3.1. Meanwhile, Dataset 1 is purchased and not publicly accessible,

while Dataset 2 is available [88]. Although SMS data may constitute only a small portion

of current network traffic, studying SMS traffic remains of significant importance. Firstly,

SMS services are widely used globally, particularly in emergency communications. Even in

today’s world of surging data traffic, SMS remains a crucial component of many essential

communication services. Secondly, SMS traffic significantly impacts the stability and

reliability of network infrastructure. By researching SMS traffic, we can ensure that networks
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operate reliably during peak periods or emergencies. Thirdly, SMS services have a wealth of

historical data. This data can be utilized to analyze communication patterns, predict traffic

trends, and provide valuable insights for network optimization. Finally, studying SMS traffic

lays the groundwork for more complex traffic management in the future. Understanding

and optimizing simpler types of traffic is instrumental in developing more efficient network

management techniques and strategies.

In both Datasets 1 and 2, the network traffic has a periodic variation during a week, which

is consistent with the common sense that the week is a natural cycle of human activity. In

addition, the traffic data on weekdays show a similar trend. It is mainly because the bulk of

the urban populations leads a highly repetitive life on weekdays. The representative groups

include students, teachers, enterprise employees, government officers, and so on. Hence,

the workdays are characterized by the same traffic components. Moreover, the employees

in several occupations, like express industry, food service, etc., work seven days a week.

Therefore, a portion of people maintains the pace of life on weekends. However, the traffic

trends on Saturday and Sunday are different. Saturday is the end of the workweek for

most users, prompting participation in social activities, shopping, entertainment, or personal

hobbies. As the first day of the weekend, activities on Saturday often extend into the evening,

with a greater inclination towards outings and gatherings. In contrast, although Sunday is

also a non-working day, its proximity to the upcoming workweek encourages rest, household

chores, or preparation for the week ahead. The social and business environment also plays a

role. For instance, many stores have extended hours on Saturdays to accommodate shoppers,

while shorter Sunday hours contribute to variations in activities between the two days.

Consequently, Saturday and Sunday tend to exhibit different traffic patterns. Therefore, we

build dedicated models for Saturday and Sunday, respectively.

As shown in Fig. 3.2, we adopt three categories to represent the traffic on weekdays,

Saturdays, and Sundays, respectively. Combined with the three main periods mentioned

above, a total of nine traffic components are required to construct the UBB NTP method. The

abbreviations in Table 3.1 represent these components. The overall traffic is the superposition

of all traffic components. It is crucial to note that daily traffic could be represented by more
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Table 3.1 The symbols corresponding to the 9 traffic components.

Weekday Saturday Sunday
Morning mw msa msu

Afternoon aw asa asu
Evening ew esa esu

or fewer components if there are sufficient social science data to back it up. It is a reflection

of the scalability of the UBB NTP method.

3.2.3 Mathematical Model

We adopt the SMS data in Guangzhou and Milan to extract parameters for mathematical

model, respectively. As shown in Fig. 3.2, the daily traffic curve is converted into three

components. The red curve represents the traffic component distributed on the entire time

axis with morning traffic as the main body. Similarly, the blue and green ones correspond to

the afternoon and evening components, respectively.

As some users prefer to finish their work a little early, while others tend to procrastinate,

it is assumed that the time preferences of different users follow an independent identically

distribution (i.i.d.). According to the central-limited theorem, the average time preference fol-

lows a normal distribution. Therefore, the distribution of users with different time preferences

can be approximately characterized by a Gaussian signal. The morning traffic component on

a certain workday is expressed as:

Gmw(t) = Rmw,pexp

(
−
(
t − tmw,p

)2

2σ
2
mw

)
, (3.1)

where tmw,p is the time when each message is expected to be sent, σ2
mw is the variance and

Rmw,p is the peak value. Similarly, each traffic component can be represented by:

Gc(t) = Rc,pexp

(
−
(
t − tc,p

)2

2σ
2
c

)
, (3.2)
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Fig. 3.3 J varies with the number of iterations.

in which t is in a 24-hour format, c ∈ {c1,c2,c3}, represent weekday, Saturday and Sunday,

respectively, and c1 ∈ {mw,aw,ew}, c2 ∈ {msa,asa,esa}, c3 ∈ {msu,asu,esu}. These ab-

breviations are shown in Table 3.1. Therefore, the hourly traffic at time t, the kth day of a

week, can be represented as:

Yk(t) = ∑
nw



5
∑

nd=1
∑
c1

Gc1 (t +24(k−nd)+168nw)

+∑
c2

Gc2 (t +24(k−6)+168nw)

+∑
c3

Gc3 (t +24(k−7)+168nw)

, (3.3)

with the index of the day k ∈{1,2,3,4,5,6,7}, the index of the week number nw ∈ (−∞,+∞),

the index of the weekday nd. After exchanging the sum order, we have:

Yk(t) = ∑
c1

5
∑

nd=1
∑
nw

Gc1 (t +24(k−nd)+168nw)

+∑
c2

∑
nw

Gc2 (t +24(k−6)+168nw)

+∑
c3

∑
nw

Gc3 (t +24(k−7)+168nw) ,

(3.4)
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Yk(t) = ∑
c1

Rc1,p
5
∑

nd=1
∑
nw

exp
(
−(t+24(k−nd)−tc1 ,p+168nw)

2

2σ
2
c1

)
+∑

c2

Rc2,p∑
nw

exp
(
−(t+24(k−6)−tc2 ,p+168nw)

2

2σ
2
c2

)
+∑

c3

Rc3,p∑
nw

exp
(
−(t+24(k−7)−tc3 ,p+168nw)

2

2σ
2
c3

)
,

(3.5)

where nw is the domain of Gaussian signal. For simplicity, we restrict the range of nw to [-1,

1]. Then, we have:

Yk(t)≈ ∑
c1

Rc1,p
5
∑

nd=1

+1
∑

nw=−1
exp
(
−(t+24(k−nd)−tc1 ,p+168nw)

2

2σ
2
c1

)
+∑

c2

Rc2,p
+1
∑

nw=−1
exp
(
−(t+24(k−6)−tc2 ,p+168nw)

2

2σ
2
c2

)
+∑

c3

Rc3,p
+1
∑

nw=−1
exp
(
−(t+24(k−7)−tc3 ,p+168nw)

2

2σ
2
c3

)
.

(3.6)

Thus, the parameter estimation problem becomes an optimization problem:

minimise
Rc,p, tc,p,σ2

c

c ∈
{ mw,aw,ew,

msa,asa,esa,
msu,asu,esu

}
J, (3.7)

where J = ∥Yk(t)−Ymeas∥2 and Ymeas refers to the vector consisting of traffic measurements.

There are many ways to solve this problem. This work adopts a simple gradient descent

method. As shown in Fig. 3.3, J gradually decreases and converges as the number of

iterations increases.

3.2.4 Initial Parameter Selection Strategy

The initial parameter set of the proposed UBB NTP method is vital to its performance,

and contains the parameters of nine normal-distributed signals related to the nine traffic

components listed in Table 3.1.

As discussed in section 3.2, the daily traffic is regarded as a superposition of three traffic

component corresponding to the three time periods of a day. Then traffic related to weekday

Gweekday can be represented by
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Fig. 3.4 The clusters and centroids generated by the K-means clustering algorithm.

Gweekday(t) = Gmw(t)+Gaw(t)+Gew(t), (3.8)

where Gmw(t), Gaw(t), and Gew(t) refer to the three traffic components of the weekday

corresponding to morning, afternoon, and evening, respectively. Gweekday(t) contains 24

data points as the time granularity is one hour. Each data point p = [a, b], where a denotes

the time t and b = Gweekday(t) denotes the traffic value at time t. Different data points have

varying degrees of impact on the three traffic components, and this section aims to calculate

the initial parameters of each traffic component.

In this section, we propose two approaches to solve the initial parameter selection problem.

The first one is a K-means clustering based approach. The second approach is the one we

designed specifically for the initial parameter selection problem of the UBB NTP model,

referred to as analytical calculations.

The K-means clustering is a common unsupervised learning algorithm to automatically

divide the data points into different clusters. It minimizes the variance of the data points

within clusters. In this process, each data point is assigned to the cluster where the nearest

cluster’ centroid is located. Thus, the automatic clustering of data points is completed. Fig.

3.4 shows the result of the K-means clustering algorithm targeting Rweekday. Different colors
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Fig. 3.5 The three traffic components corresponding to Cluster 1,2, and 3.

represent different clusters, and the "X" marks denote the centroids of these clusters. Cluster

v can be represented by Cv = {p1, p2, . . . , ps}, where the character s is the cardinality of the

subset Cv and pi = [ai, bi], ∀i ∈ [1,s]. Then the initial parameters of the traffic component

regarding Cv can be calculated as

tv =
1
s

s

∑
i=1

(ai) , (3.9)

σ
2
v =

1
s

s

∑
i=1

(ai − tv)
2 , (3.10)

Rv =
1
s

s

∑
i=1

biexp

(
(ai − tv)

2

2σ
2
v

)
. (3.11)

Then the initial parameters of Cluster 1, 2, and 3 are obtained with the above approach. Fig.

3.5 shows the traffic components corresponding to Cluster 1, 2, and 3. Fig. 3.6 plots the

superposition of these traffic components. As shown in Fig. 3.6, there is a huge gap between

the superposition and the real-world traffic data, which means the K-means clustering based

approach is not well aligned with the problem of initial parameter selection.
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Fig. 3.6 The comparison between the real-world traffic data on weekday and the traffic profile
associated with the initial parameters derived from the K-means clustering based approach.

Hence, we proposed the analytical calculations in the context. Since there is a clear

chronological sequence between the daily traffic components in the UBB NTP model. Then

we have tmw,p < taw,p < tew,p. Furthermore, for the network traffic prior to moment tmw,p, the

earlier the traffic arises, the greater the contribution to Gmw(t). After the moment tew,p, the

later the traffic arises, the greater the contribution to Gew(t). The network traffic between the

moments tmw,p and tew,p is likely to be affected by the Gmw(t), Gaw(t), and Gew(t), together.

Therefore, we constructed two subsets, labeled as Subsetm and Subsete, containing data

points from two time periods, morning and evening, respectively, based on the general

definition of morning and evening. Subsetm = {pm1, pm2, . . . , pmα} consists of α data points

occurring before 13:00 and pmi = [ami,bmi], ∀i ∈ [1,α], while Subsete contains β points after

18:00. Since Gmw(t) is primarily influenced by the data points in Subsetm, we have the

following approximation relation:

bmi ≈ Rmexp

(
−(ami − tm)

2

2σ
2
m

)
. (3.12)

By applying the natural logarithm to both sides of Formula 3.12, we obtain
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ln(bmi)≈ ln(Rm)−
(ami − tm)

2

2σ
2
m

. (3.13)

Three data points are chosen from Subsetm, resulting in
(

α

3

)
possible selections. Iterating

over the
(

α

3

)
possible selections and using (am1,bm1), (am2,bm2), (am3,bm3) to denote the

three randomly selected data points, we have

ln(bm1)≈ ln(Rm)−
(am1 − tm)

2

2σ
2
m

, (3.14)

ln(bm2)≈ ln(Rm)−
(am2 − tm)

2

2σ
2
m

, (3.15)

ln(bm3)≈ ln(Rm)−
(am3 − tm)

2

2σ
2
m

. (3.16)

Subtracting Formula 3.14 from Formula 3.15 yields

ln
(

bm2

bm1

)
≈ 1

2σ2
m
(am1 −am2)(am1 +am2 −2tm) . (3.17)

Subtracting Formula 3.15 from Formula 3.16 yields

ln
(

bm3

bm2

)
≈ 1

2σ2
m
(am2 −am3)(am2 +am3 −2tm) . (3.18)

Dividing Formula 3.18 by Formula 3.17 results in

[ln(bm3)− ln(bm2)] (am1 −am2)

[ln(bm2)− ln(bm1)] (am2 −am3)
≈ am2 +am3 −2tm

am1 +am2 −2tm
. (3.19)

Let constant C represent the left-hand side of Formula 3.19. The initial parameter tm can be

calculated as

tm ≈ Cam1 +(C−1)am2 −am3

2C−2
. (3.20)

Substituting tm into Formula 3.17, the initial parameter σ2
m is given by
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σ
2
m ≈ (am1 −am2)(am1 +am2 −2tm)

2ln(bm2)−2ln(bm1)
. (3.21)

Substituting tm and σ2
m into Formula 3.14, the initial parameter Rm is given by

Rm = bm1exp

(
(am1 − tm)

2

2σ2
m

)
. (3.22)

Thus, we can obtain a total of
(

α

3

)
initial parameter sets for Gmw(t). Furthermore, the practical

significance of tm requires that tm > 0. In addition, according to the 3-sigma rule of normal

distribution, we have 6σm ≤ 24, which simplifies to σm ≤ 4. Then we screen these initial

parameter sets according to these constraints and obtain the candidate initial parameter set

Pmw for Gmw(t). With the same method, the candidate initial parameter set Pew associated

with Gew(t) can be required.

By iterating over all combinations of elements from sets Pmw and Pew, all the possible

initial traffic components in morning and evening can be obtained, refer to as Ĝmw(t) and

Ĝew(t). Then the remaining traffic can be represented as

Gremain(t) = Gweekday(t)− Ĝmw(t)− Ĝew(t), (3.23)

which is used to derive the initial parameter sets Paw for Gaw(t) with the same method.

What is more, the estimation error of the initial parameters can be expressed as

Eerror = Gremain(t)− Ĝaw(t), (3.24)

where Ĝaw(t) is the afternoon traffic component corresponding to the initial parameter set

in Paw. As shown in Figs. 3.7 and 3.8, the analytical calculation approach has achieved

excellent result and greatly reduced the estimation error of the initial parameters in com-

parison with the K-means clustering based approach. Then, the model built with the initial

parameters serves as a suitable starting point for further parameter adjustments, with the goal

of continuously reducing the gap and ultimately arriving at the model parameters that yield

the best performance.
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Fig. 3.7 The three traffic components corresponding to Paw, Paw, and Paw with the
minimum Eerror.
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Fig. 3.8 The comparison between the real-world traffic data on weekday and the traffic profile
derived from the analytical calculations approach.

3.3 Evaluation with Real-world Traffic Data

This section primarily compares the predictive accuracy and computational efficiency of the

proposed UBB NTP method with benchmark methods. Predictive accuracy is measured by

MSE, RMSE, MAE, and R2, which can be clearly defined by the following formulas:
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Fig. 3.9 The prediction results of UBB NTP method for Guangzhou.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (3.25)

RMSE =
√

MSE, (3.26)

MAE =
1
n

n

∑
i=1

|yi − ŷi| , (3.27)

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 , (3.28)

where n represents the number of predicted samples, yi represents the actual value, ŷi

represents the predicted value, and ȳ denotes the mean value of yi. Computational efficiency

is represented by the elapsed time including training and prediction time.

A fully-connected neural network with five hidden layers and a LSTM network with 3

hidden layers are selected to represent ML-based methods. The ARMA model and ARIMA

model are selected to represent statistics-based methods. According to the result of the BIC,

the parameters are determined to be ARMA(4,2) for processing Dataset 1 and ARMA(3,1) for
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Fig. 3.10 The prediction results of UBB NTP method for Milan.

processing Dataset 2. Following the same steps, the ARIMA models are set to ARIMA(2,1,3)

and ARIMA(1,1,1) for Dataset 1 and Dataset 2, respectively.

3.3.1 Performance of the UBB NTP Method

This work adopts the SMS data from the first two weeks to build the proposed mathematical

model and the data from the last two weeks to evaluate its performance. As shown in

Tables 3.2 and 3.3, there are two parameter sets extracted from Dataset 1 and Dataset 2,

respectively. Then, the Guangzhou and Milan datasets are employed to perform the NTP

task. The proposed UBB NTP method exhibits excellent performance in terms of prediction

accuracy, as shown in Figs. 3.9 and 3.10. To some extent, it has verified that our assumptions

regarding user behavior are realistic.

3.3.2 Comparison with Benchmark Methods

This section first compares the performance of the UBB NTP method with all benchmark

methods on the Guangzhou SMS data by the metrics of MSE, RMSE, MAE and R2. As

shown in Fig. 3.11, the UBB NTP method, which achieves the highest R2 and the lowest
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Table 3.2 Parameters of UBB NTP
method in Guangzhou.

Rc,p σ2
c tc,p

mw 4626 3.10 12.14
aw 3839 3.91 17.35
ew 2136 6.63 22.18
msa 3612 2.89 12.09
asa 2989 3.14 16.55
esa 2356 5.78 21.60
msu 2866 2.81 11.95
asu 2759 4.13 16.47
esu 2252 6.39 22.15

Table 3.3 Parameters of UBB NTP
method in Milan.

Rc,p σ2
c tc,p

mw 2942 0.88 9.45
aw 6613 6.51 11.80
ew 7327 13.91 18.72
msa 3297 2.98 10.68
asa 3684 9.92 13.87
esa 4654 11.69 20.16
msu 3720 5.29 11.43
asu 3187 8.90 16.41
esu 3843 8.59 21.36

MSE and RMSE, slightly outperforms the LSTM network and is superior to the statistics-

based methods. Fig. 3.12 shows the prediction accuracy of each method on the Milan SMS

data. As shown in Fig. 3.12, the UBB NTP method and the LSTM network have almost the

identical MSE, RMSE and R2. Regardless of ARMA and ARIMA models, statistics-based

methods do not perform very well in terms of accuracy. Since the UBB NTP method is

designed with user behaviours, it matches the practical wireless traffic demand very well.

Fig. 3.13 demonstrates the surprising superiority of the proposed UBB NTP method in

terms of elapsed time. Take Dataset 1 as an example, our method completes both the training

task and prediction step in only about 8.7 seconds. The efficiency is approximately 12 times

the most efficient benchmark method, i.e., the ARMA model, and 28 times the most accurate

benchmark method, i.e., the LSTM network. Although the multi-step mode saves some time

for prediction, this time represents only a tiny fraction of the elapsed time. The key reason

for the efficiency improvement is the reduced training time. Compared with benchmark

methods, there is no need for offline training in the proposed UBB NTP method.

Overall, the proposed UBB NTP method obtains the best overall performance in both

Datasets 1 and 2, which means this method is well adapted to traffic data from different

regions.
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Fig. 3.11 The prediction performance of the proposed UBB NTP method and the benchmark
methods for Guangzhou SMS dataset.

3.3.3 Analyses and Discussion

It is worth noting that the most significant advantage of the UBB NTP method is inter-

pretability. It could be a link between traffic patterns and the field of social sciences. These

parameters imply users’ habits of using network traffic. In Tables 3.2 and 3.3, Rc,p denotes

the peak of the traffic component, while tc,p denotes the corresponding time in a 24-hour

format, measured in hours. Take the parameter set of Guangzhou as an example. According

to the 3-sigma rule in the normal distribution, 68% of morning traffic occurs between 10:15

am and 1:55 pm, 68% of traffic demand in every afternoon occurs between 2:30 pm and 7:20

pm, and 68% of traffic demand in every evening occurs from 7:10 pm to 0:45 am the next

day. On both weekdays and weekends, the morning has the highest traffic demand, followed

by the afternoon, and the evening has the lowest.

Moreover, σ2
c indicates the magnitude of traffic deviation; the higher the σ2

c , the more

dispersed the distribution. In both Tables 3.2 and 3.3, we can observe that σ2
c at night are

higher than those during the day. It is mainly caused by the changes in users’ state. As the

day progresses, users gradually change from a working state to a leisure state. After that,

users generate traffic whenever and wherever they want just for their individual needs, such
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Fig. 3.12 The prediction performance of the proposed UBB NTP method and the benchmark
methods for Milan SMS dataset.

as chatting, ordering take-out, etc. The distribution is, therefore, more dispersed at night. As

shown in Table 3.3, σ2
ew and Rew,p means a large number of users are active during the period.

What’s more, the leisure users dominate.

By comparing Milan and Guangzhou, the traffic curves in the two cities in Figs. 3.9 and

3.10 are comparable. To some extent, it verifies that urban users have similar living habits.

Furthermore, both Milan and Guangzhou have highly developed tertiary industries [89][90],

which could be one of the main reasons for the similar traffic curves. On the other hand,

Tables 3.2 and 3.3 demonstrate that users in Guangzhou and Milan have various preferences.

The distribution of peak times of the three traffic components is more even in Guangzhou,

and they are all spaced about five hours apart. While in Milan, the first two traffic components

are close in time and farther apart from the one representing evening.

3.4 Conclusion

In this chapter, a novel UBB NTP method has been proposed, which exhibits higher overall

performance when compared to existing machine-learning-based and statistics-based meth-
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Fig. 3.13 The elapsed time of the proposed UBB NTP method and the benchmark methods.

ods. The method’s parameters are concise, possess practical significance, and provide an

interpretable NTP solution. Furthermore, the standardized parameter set enables comparing

traffic patterns across different regions. Hence, the proposed UBB NTP method may be

considered a promising aspect in the combination of communication and social science.

In the next chapter, we will focus on the nonroutine traffic caused by the nonroutine

events. Based on analyzing the traffic pattern, variation trend and corresponding user behavior,

we will propose the NNTP method for nonroutine traffic in the next chapter, which is an

extension of the UBB NTP method in a particular context. Its prediction performance will be

validated through a case study.



Chapter 4

Interpretable Nonroutine Network

Traffic Prediction with a Case Study

Overview
This work pioneers a NNTP method to prospectively provide a theoretical basis for avoiding

large-scale network disruption by accurate prediction of bursty traffic. Certain events im-

pacting user behavior subsequently trigger the nonroutine traffic, which would significantly

constrain the performance of NTP model. By analyzing nonroutine traffic and the correspond-

ing events, the NNTP method is pioneered to construct interpretable NTP model. Based

on the real-world traffic data, the network traffic generated during soccer games serves as a

case study to validate the performance of the NNTP method. The numerical results indicate

that our prediction closely fits the traffic pattern. In comparison to existing researches, the

NNTP method is at the forefront of finding a balance among interpretability, accuracy, and

computational complexity.

4.1 Introduction

According to analyzing and modeling of user behaviour, the previous chapter proposed

the UBB NTP method, which highly matches with the real-world network traffic data

aggregated in certain regions like Milan city. However, user behavior not only contains
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regular daily behavior but also can be impacted by some special events. This work discovers

the phenomenon that certain events can bring about significant changes in cellular network

traffic by impacting user behavior. This kind of traffic, referred to as nonroutine traffic,

poses a great challenge to the state-of-the-art NTP models in terms of prediction accuracy,

computational efficiency, and interpretability. This chapter attempts to construct a NNTP

method to solve the problem along the trajectory of analyzing and modeling of user behaviour.

It is worth noting that the problem caused by nonroutine traffic, overlooked in academia,

carries significant potential consequences. Specifically, the degradation in NTP performance

is anticipated to result in a decline in QoS, consequently leading to a deterioration in customer

satisfaction [91] and the reputation of the operator [92]. Ultimately, this may culminate in

severe repercussions, including compromised future profitability [92].

The state-of-the-art NTP models exhibit inherent limitations like prediction accuracy

of statistics-based models, interpretability of machine-learning-based models and so on. In

addition, experimental results in this chapter indicate that these limitations are exacerbated

when it encounters nonroutine traffic data. The underlying cause lies in the inability of these

models to take user behaviour into consideration [11]. Specifically, the statistics-based and

shallow-learning-based models have limited learning capacity [16]. The nonroutine traffic

data will further hinder their performance. Although the deep-learning-based model could

understand the complex temporal-spatial correlations [80], it is still difficult to extract the

traffic pattern accurately when confronted with nonroutine traffic data. It is because the

nonroutine data only takes up a relatively small proportion of the overall data. Meanwhile,

it requires not only a large amount of nonroutine traffic data, but also an increase in the

parameters and complexity of the model. This can further increase the difficulty of hyper-

parameters’ selection and the risk of overfitting, as well as introduce longer computation time.

Moreover, ML-based models have poor interpretability for nonroutine traffic data, because

its parameters do not have practical significance [11]. Consequently, the state-of-the-art NTP

models perform poorly in the presence of nonroutine traffic data.

To achieve a leap from 0 to 1 in the context of nonroutine network traffic, the work in this

chapter pioneers a novel NNTP method. Specifically, using the the real-world traffic data
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generated during soccer games as a case study, this work initially analyzes the underlying

causes of the nonroutine traffic. It subsequently reveals the correlation between user behavior

and traffic pattern. Finally, it formulates a dedicated model, referred to as the SG-NNTP

model, for such nonroutine events. The model constructed based on the NNTP method is

analytical and interpretable. In addition, numerical results show that the NNTP method

performs excellently in prediction accuracy and computational efficiency.

The main contributions of this chapter are summarized as follows:

1) This work takes the lead in systematically analyzing and researching nonroutine traffic,

i.e. network traffic caused by nonroutine event which differs significantly from regular

traffic patterns.

2) Based on the analysis of nonroutine traffic, this work pioneers the NNTP method to

construct the NTP model. Compared with the existing works, the proposed method

is specifically designed for nonroutine traffic, takes into account the impact of the

nonroutine events on the wireless network traffic patterns, and utilizes the information

of nonroutine events to construct the NTP model, which achieves the optimal prediction

accuracy, computational efficiency, and interpretability. The NNTP method is an

important inspiration for future research on nonroutine traffic.

3) Following the NNTP method, this work formulates the SG-NNTP model as a case

study. Compared with benchmark models which do not take nonroutine traffic into

consideration, the NNTP method improves the prediction accuracy, both in multi-step

and single-step prediction mode. What is more, the NNTP method decreases the

elapsed time and improves the computational efficiency a lot. In addition, the NNTP

method has outstanding interpretability and is easy to migrate to similar situations.

The rest of the chapter is structured as follows. Section 4.2 offers the definition and

categorization of nonroutine traffic. It subsequently introduces the key points of the NNTP

method and formulates the SG-NNTP model as a case study. In addition, Subsection 4.2.5

and 4.2.6 discuss the multi-step and single-step prediction mode, respectively. In Section

4.3, the predictions of the SG-NNTP model and benchmark models are performed, and the
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performance of these models is evaluated in both multi-step and single-step prediction mode.

Finally, this chapter concludes this work in Section 4.4.

4.2 The Proposed NNTP Method with a Case Study

This section proposes the NNTP method to enhance the performance of the NTP model in

the presence of nonroutine traffic data. Following this method, we formulate the SG-NNTP

model with the real-world traffic data gathered during soccer games.

4.2.1 Analysis of Nonroutine Traffic

In a specific geographical area, the daily activities of local users typically exhibit a high

degree of cyclical and repetitive pattern. The network traffic that determined by user behavior

demonstrates a similar variation trend. Therefore, the UBB NTP model can quickly and

accurately capture the daily traffic pattern [11].

However, the incidence of nonroutine events in the region may influence user behavior

or the quantity of user, subsequently exerting a substantial impact on the traffic pattern [93].

When the region hosts significant events, such as sports games and concerts, it tends to draw

a considerable influx of short-term users. In this context, short-term users refer to individuals

who arrive in this region specifically for the event and stay there during its duration. The

traffic generated by these short-term users is significantly different from the daily traffic. This

type of nonroutine traffic is defined as additive nonroutine traffic. As the name suggests, in

this case, the overall traffic in the area can be regarded as a superposition of the daily traffic

generated by resident users and the nonroutine traffic generated by short-term users.

Similarly the quantity of resident users or the overall user habits in the region is also

expected to change due to certain factors, which in turn leads to other kind of nonroutine

network traffic rather than the additive nonroutine traffic. The causes of these situations are

more complex and difficult to collect data, and will be the direction of our future research.

Following a progression from simplicity to complexity, this chapter focuses on the processing

of additive nonroutine traffic.
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Fig. 4.1 The daily traffic and the additive nonroutine traffic.

4.2.2 The Proposed NNTP Method

Based on the analysis of nonroutine traffic, this chapter proposes the NNTP method. In simple

terms, the NNTP method involves analyzing and summarizing the traffic data corresponding

to the nonroutine events, and formulating specific NTP models for similar events.

Many events in the daily lives of users could make the daily traffic pattern change

abnormally. The occurrences of these events are often scheduled rather than completely

random and unexpected, such as fairs, ball games, concerts, carnivals, and so on. Some of the

information related to these scheduled events is available in advance, referred to as advanced

information, such as the commencement time, the event duration, the expected attendance

or ticket sales, and the type of the event. Relying solely on historical traffic data to acquire

these advanced information is difficult and demanding.

While, it would be a shortcut to directly utilize these easily accessible advanced infor-

mation to construct NTP models corresponding to these nonroutine events. Meanwhile,

with today’s data explosion, effective multi-source data application is becoming an essential

research. Hence, the efficient utilization of multi-source data is also one of the innovations
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Dataset Location Start time End time

Cellular traffic data Milan, Italy 01/12/2013 (Sunday) 31/12/2013

Description: Telecom Italy provides the dataset, with Milan split

into 10,000 grids, each representing a sub-dataset. Timestamp and

data volume are included for each record.

Fig. 4.2 Cellular network traffic data in Milan published by Telecom Italia.

of the NNTP method. Specifically, this chapter decomposes the total traffic during the non-

routine event into a superposition of the daily traffic and the additive nonroutine traffic. As

shown in Fig. 4.1, the solid green line depicts the daily traffic, the solid blue one depicts the

additive nonroutine traffic, and the solid red one represents the total traffic. It is worth noting

that the horizontal axis in Fig. 4.1 represents time in hours. The values of the horizontal axis

should not exceed 23; any values greater than or equal to 24 should be attributed to the next

day. However, for the sake of axis continuity, a representation beyond 23 has been adopted

in this chapter.

Algorithm 1: the Proposed NNTP Method
Input: S, AI = [h, d, g, m, ...]

1: Dividing the historical traffic data S into two parts: Sα and Sβ

2: Construct the Module.UBB NTP based on Sα

3: Sβ ,daily = Module.UBB NTP(h, d) % Predict the daily traffic component in Sβ

4: Sβ ,nonroutine = Sβ −Sβ ,daily
5: for i = 1 : lenth(AI) do
6: Get AI[i]
7: Infer the connection C[i] between Sβ ,nonroutine and AI[i]
8: end for

Output: Construct the specific NNTP model based on C and Sβ ,nonroutine

Next, the pseudo-code Algorithm 1 is used for introducing the proposed NNTP method.

In Algorithm 1, S represents the historical traffic data. S is categorized into two groups, i.e.

Sα and Sβ , depending on the occurrence of nonroutine events. Sα represents the total traffic

data generated on days when the nonroutine events do not occur, while Sβ represents the total

traffic data generated on days when the nonroutine events take place. Then, we construct the

UBB NTP model that relies on Sα and forecast the the daily traffic component Sβ ,daily in Sβ .
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Match Name
Inter-Milan VS

Sampdoria

Inter-Milan VS

Trapani

Inter-Milan VS

Parma

AC-Milan VS

Ajax

AC-Milan VS

AS-Roma

Inter-Milan VS

AC-Milan

Type Italy-Serie A Coppa Italia Italy-Serie A
Champions

League
Italy-Serie A Italy-Serie A

Date 01/12/2013 04/12/2013 08/12/2013 11/12/2013 16/12/2013 22/12/2013

Kick Off at 16:00 22:00 21:45 21:45 21:45 21:45

Attendance 43607 12714 33732 61744 37987 79311

Fig. 4.3 The information of the soccer games hosted by the San Siro Stadium in December
2013.

Thus, the nonroutine traffic component Sβ ,nonroutine in Sβ can be obtained. AI represents the

advanced information, including but not limited to the commencement time h, the duration

d, the type g, and the attendance m of the nonroutine events. By conducting a thorough

analysis of nonroutine traffic, we can extract the relationship C between Sβ ,nonroutine and

AI. Finally, the specific NNTP model can be constructed. Next, this chapter will detail the

process through a case study.

4.2.3 Dataset for Nonroutine Traffic

This chapter adopts the real-world network traffic data, as shown in Fig. 4.2, published by

Telecom Italia, a large European telecommunications service operator [88]. In the spatial

dimension, Milan city is covered by 10,000 grids of size 235×235 meters. Each data point

within every grid represents the cellular traffic data generated by local users during the time

interval between two consecutive timestamps.

By searching the grids surrounding the G.MEAZZA SAN SIRO, we obtained traffic data

in the vicinity of the San Siro stadium. The time granularity is set at one hour, which means

that there are 24 data samples each day. Then, this chapter researches the information of the

soccer game hosted by the San Siro Stadium in December 2013, as shown in Fig. 4.3.

Authors in [94] demonstrates that the traffic data, including Short Message Service (SMS),

calls, internet, etc., is directly related to the soccer games and contains similar nonroutine

traffic pattern. Take SMS data as an example, Fig. 4.4 plots the curves of the traffic data

corresponding to all of the soccer games in Fig. 4.3. Visual inspection reveals an alignment



52 Interpretable Nonroutine Network Traffic Prediction with a Case Study

0 5 10 15 20 25

Time(hour)

0

500

1000

1500

S
M

S
 T

ra
ff

ic

Data: 01/12

Data: 04/12

Data: 08/12

Data: 11/12

Data: 16/12

Data: 22/12

Fig. 4.4 SMS data for the soccer games held at the San Siro stadium in December.

between the time of peaks and the period of the soccer game, which is consistent with the

conclusion given by F. Botta et al. in [94].

4.2.4 The Case Study: SG-NNTP Model

Based on the above analysis, the traffic brought by soccer games belongs to the additive

nonroutine traffic. To extract the nonroutine component, the initial step is to obtain the daily

traffic component with the UBB NTP method. There are three dedicated daily traffic models

designed for weekday, Saturday, and Sunday, respectively [11]. As shown in Fig. 4.1, any of

the daily traffic model represented by solid green line is a superposition of yellow, purple,

and black dashed lines which represent the traffic components with the morning, afternoon

and nighttime traffic as the main body, respectively [11]. Therefore a total of nine traffic

components are required for a whole week. The abbreviations of these traffic components

are listed in Table 4.1. Each traffic component is modeled as a Gaussian signal that can be

expressed as

Gc(t) = Rcexp

(
−(t − tc)

2

2σ
2
c

)
, (4.1)
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Table 4.1 The symbols corresponding to the 9 traffic components.

Weekday Saturday Sunday
Morning mw msa msu

Afternoon aw asa asu
Evening ew esa esu

where t is in a 24-hour format, tc and σ2
c denote the mean value and variance of the Gaussian

signal, respectively. Rc is the peak value of the traffic component. c ∈ {c1,c2,c3}, represent

weekday, Saturday and Sunday, respectively, and c1 ∈ {mw,aw,ew}, c2 ∈ {msa,asa,esa},

c3 ∈ {msu,asu,esu}. Therefore, the hourly traffic at time t, the kth day of a week, can be

represented as

Yk(t) = ∑
c1

Rc1

5
∑

nd=1
exp
(
−(t+24(k−nd)−tc1)

2

2σ
2
c1

)
+∑

c2

Rc2exp
(
−(t+24(k−6)−tc2)

2

2σ
2
c2

)
+∑

c3

Rc3exp
(
−(t+24(k−7)−tc3)

2

2σ
2
c3

)
.

(4.2)

with the index of the day k ∈ {1,2,3,4,5,6,7}, the index of the weekday nd. The optimal

parameter set of the daily traffic can be obtained by optimizing the following equation:

minimise
Rc, tc,σ2

c

c ∈
{ mw,aw,ew,

msa,asa,esa,
msu,asu,esu

}
7

∑
k=1

24

∑
t=1

∥Yk(t)−Ymeasure(t)∥2, (4.3)

where Ymeasure(t) refers to the traffic measurement at the moment t. This chapter uses the

gradient descent approach to tackle the minimization problem.

According to the observation of Fig. 4.4, it is obvious that the practical traffic data caused

by the soccer games are similar to a bell-shaped curve. We assume that the behavior of

attendances using cellular network services obeys an independent identically distribution,

which is a logical general assumption. Then according to the central limit theorem, the prior

distribution of the additive nonroutine traffic is naturally constructed as a Gaussian signal,

which is consistent with the observation. Hence, the the additive nonroutine traffic can be
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represented as

Yadditive(t) = Pexp

(
−
(
t − tsg

)2

2σ
2
sg

)
, (4.4)

P =
Rsg

σsg
√

2π
, (4.5)

where the granularity of time t is an hour. P is the peak value of the nonroutine traffic. Rsg

represent the amplitude parameter. tsg and σ2
sg are the mean and the variance of the Gaussian

signal, respectively. As shown in Fig. 4.4, the horizontal coordinates of the peaks have a

strong connection with the commencement time of the soccer games.

The traffic volume generated on the day when the soccer game occurs is equal to the

daily component plus the additive nonroutine component, which is given by

Ytotal(t) = Ydaily(t)+Yobject(t), (4.6)

where Yobject(t) is ideal for the additive nonroutine component at the moment t. Since the

daily traffic component Ydaily(t) can obtained by UBB NTP method as mentioned above,

Yobject(t) can be obtained according to Equation 4.6. The least squares method is then used

to minimize the difference between Yobject and Yadditive, which is formulated as

minimise
Rsg, tsg,σ

2
sg

∑∥Yadditive(t)−Yobject(t)∥2, (4.7)

and thus, the parameters, i.e. tsg, Rsg, and σsg corresponding to each soccer game, are

obtained.

Figs. 4.5, 4.6, 4.7, and 4.8 illustrate the fitting performance of the SG-NNTP model for

the first 4 soccer games in December 2013 at San Siro stadium, Milan. Approximating tsg to

the commencement time of the soccer games simplified the problem and led to successful

outcomes. The parameters of the simulation are shown in Table 4.2.
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Fig. 4.5 The imitative effect of SG-NNTP model for the soccer game: Inter-Milan vs.
Sampdoria kicks off at 16:00 December 1, 2013.
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Fig. 4.6 The imitative effect of SG-NNTP model for the soccer game: Inter-Milan vs. Trapani
kicks off at 22:00 December 4, 2013.

4.2.5 Multi-step Prediction of SG-NNTP

One of the major advantages of the analytical model is that it can efficiently and accurately

perform multi-step predictions. It requires the ability to estimate the initial parameters of the

SG-NNTP model in advance based on the advanced information of the event. The first four
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Fig. 4.7 The imitative effect of SG-NNTP model for the soccer game: Inter-Milan vs. Parma
kicks off at 21:45 December 8, 2013.
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Fig. 4.8 The imitative effect of SG-NNTP model for the soccer game: AC-Milan vs. Ajex
kicks off at 21:45 December 11, 2013.

soccer games hosted by the San Siro Stadium in December 2013 are then used as a training

set in this chapter to derive the relationships between attendance and the initial parameters.
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Table 4.2 The parameters corresponding to the first 4 soccer games in December.

Date Dec. 01 Dec. 04 Dec. 08 Dec. 11
tsg 15 21 20.75 20.75
σsg 1.263 1.176 1.011 1.155
Rsg 829.8 349.8 769.7 2059.8
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Fig. 4.9 Linear regression between Rsg and attendance.

The data volume of additive nonroutine traffic can be expressed as the integral of Yadditive

over (−∞,+∞), exactly as Rsg, which is given by

∫ +∞

−∞

Rsg

σsg
√

2π
exp

(
−
(
t − tsg

)2

2σ
2
sg

)
= Rsg. (4.8)

The Pearson correlation coefficient (r) between initial parameter Rsg j and attendance A j is

calculated as

r =
∑

n
j=1(Rsg j − R̄)(A j − Ā)√

∑
n
j=1(Rsg j − R̄)2 ·

√
∑

n
j=1(A j − Ā)2

, (4.9)

where n = 4 denotes the four soccer games, Rsg j and A j denote the attendance and initial

amplitude parameters corresponding to the jth soccer game, respectively. After calculation,

the value of r is 92.2%, which means there is a strong positive correlation between Rsg and
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attendance. With a sample size of only 4, there is little benefit in constructing complicated

correspondence between Rsg and attendance. Hence, this chapter applies the simplest

linear regression approach to determine the correspondence as shown in Fig. 4.9. The

correspondence is expressed as

Rsg j = A j ×0.03323−258.85. (4.10)

The parameter σsg characterizes the habits of all attendance in using cellular network traf-

fic during the soccer game period. σsg has a complex relationship with external information

such as attendance, type of game, the popularity, the intensity, etc. The implicit relationship

between σsg and external information cannot be fully corroborated due to the small amount

of samples. Therefore, this chapter adopts the average value to represent σsg of SG-NNTP

model. With the ability to estimate the initial parameters, consequently our model is able to

perform multi-step prediction.

4.2.6 Single-step Prediction of SG-NNTP

The single-step mode predicts the forthcoming traffic value by utilizing the actual traffic data

at the present moment. Compared to multi-step prediction that focuses on the overall trend,

single-step prediction is only concerned with the traffic value at the next moment. With the

support of real time data entered at each time step, single-step prediction produces more

accurate results.

The proposed SG-NNTP model also possesses the capability to execute single-step

prediction, thereby achieving outstanding performance. The parameters of the model are

constantly updated based on real-time practical input data. We adopt the least squares

method to minimize the following equation to achieve the update of the parameters, which is

formulated as

minimise
Rsgi,σ

2
sgi

ti

∑
t1
∥Yadditive(ti)−Yobject(ti)∥2. (4.11)
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Then Rsgi and σsgi are used to predict the traffic at the moment ti+1, where the predicted

values at the initial moment are obtained from the initial parameters.

In addition, to reduce the impact of initial parameters on the prediction performance, a

least squares optimization method with multiple initial values has been adopted. In each

step of the update, multiple sets of initial parameters are selected for optimization and the

smallest MSE counterpart is used for predicting the next moment traffic.

4.3 Evaluation with Real-world Traffic Data

This section primarily evaluates the prediction accuracy and computational efficiency of the

proposed SG-NNTP model in comparison to benchmark models. The evaluation indexes of

prediction accuracy are MSE, RMSE, MAE, and R2, which are defined as follows

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (4.12)

RMSE =
√

MSE, (4.13)

MAE =
1
n

n

∑
i=1

|yi − ŷi| , (4.14)

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 , (4.15)

where n denotes the size of test data. yi and ŷi denote the truth values and the predicted values

of the test data, respectively. ȳ represents the mean value of yi. The total elapsed time of the

corresponding model is used to measure the computational efficiency, including the training

and prediction periods.

Deep MLP network and classic recurrent neural networks (i.e. LSTM network), are

chosen to construct the benchmark models which represent the ML-based NTP model.

Meanwhile, the ARMA and ARIMA models are also used to represent the classic statistics-
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Fig. 4.10 Prediction results for SG-NNTP model in multi-step prediction mode.
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Fig. 4.11 Prediction results for the 5-Layer MLP model in multi-step prediction mode.

based NTP model. According to BIC, the parameters of ARMA and ARIMA models are

determined to be ARMA (1,2) and ARIMA (3,1,1). Traffic data from December 1st to 15th

is used as the training set for all models, and the data from December 16th to 22th is used as

the test set. As shown in Fig. 4.3, the training set contains four pieces of additive nonroutine

traffic corresponding to four soccer games and the test set contains two.
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Fig. 4.12 Prediction results for the 5-Layer LSTM model in multi-step prediction mode.

4.3.1 Performance Comparison Between the SG-NNTP Model and the

Benchmark Models in Multi-step Prediction Mode

The capacity to predict many time steps reflects NTP models’ understanding of overall trends

of cellular network traffic. The longer the processing step, the higher the level of difficulty,

and the higher the likelihood that prediction accuracy will be compromised. In this chapter,

the time step is set to one hour. When the prediction step size is set to 168 time steps, i.e.,

directly predicting the traffic for a whole week, the proposed SG-NNTP model exhibits

excellent performance in terms of prediction accuracy with the R2 coefficient of 86.4%, as

shown in Fig. 4.10. As benchmark models, this chapter selects 5-layer MLP network and

5-layer LSTM network to represent ML-based NTP model, and the ARMA and ARIMA

models to represent statistics-based models. Experimental results demonstrate that these

benchmark models can not effectively extract the traffic pattern when the prediction step size

is too long. Therefore, we lower the level of difficulty by shortening the prediction step size

of the benchmark models to 24 time steps. At this point, the statistics-based ARMA and

ARIMA models still cannot work well. While ML-based models are superior to statistics-
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Fig. 4.13 The accuracy of the SG-NNTP model and the benchmark models in multi-step
prediction mode.

based models, it is significantly inferior to the SG-NNTP model. The prediction results of

the MLP and LSTM networks are shown in Figs. 4.11 and 4.12, respectively.

As can be seen from Figs. 4.10, 4.11, and 4.12 in the presence of the nonroutine event,

the benchmark models can not effectively extract the traffic pattern and understand the

overall trend of network traffic from the historical data. In the case of reduced prediction

difficulty of benchmark models, i.e., shorter prediction step size, the benchmark models are

still far inferior to the proposed SG-NNTP model, both in terms of prediction accuracy and

computational efficiency. As shown in Fig. 4.13, the SG-NNTP model achieves the highest

R2 which is about 3.7 to 12.5 times higher than the R2 of the benchmark models. Meanwhile,

the proposed SG-NNTP model decreases the MSE, MAE, and RMAE coefficients by 82.3%,

50.6%, and 57.9%, respectively, in comparison to the LSTM models which is the best

performing of the benchmark models. From the perspective of computational efficiency, as

shown in Fig. 4.14, our model is 16.5 times more efficient than the 5-layer LSTM network

and 23 times more efficient than the 5-layer MLP network.
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Fig. 4.14 The elapsed time of the SG-NNTP model and the benchmark models in multi-step
prediction mode.

4.3.2 Performance of the SG-NNTP Model and Benchmark Models in

Single-step Prediction Mode

The state-of-the-art regarding NTP mainly focuses on single-step prediction mode. This

mode reflects NTP model’s ability to capture localized characteristics of the traffic data.

NTP models which adopt single-step prediction mode tend to have higher accuracy, due to

the support of real-time traffic data at each time step. As shown in Figs. 4.15, 4.16, 4.17,

4.18, and 4.19, both the SG-NNTP model and the benchmark models show an intuitive

improvement in terms of prediction accuracy when adopting the single-step prediction mode.

Figs. 4.15, 4.16, 4.17, 4.18, and 4.19 represent the prediction results of the benchmark

models and the proposed SG-NNTP model. In comparison with the benchmark models, it is

obviously that the proposed SG-NNTP model achieves prominent advantage in prediction

accuracy as shown in Fig. 4.19. More intuitively, Fig. 4.20 quantifies their performance

with the evaluation indexes of prediction accuracy. Among the benchmark models, the

LSTM network achieves the best performances in terms of MSE, RMSE, and R2 coefficient,

while the MLP network possesses the minimum MAE. However, there is still a considerable
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Fig. 4.15 Prediction results for the 5-layer MLP model in single-step prediction mode.
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Fig. 4.16 Prediction results for the 3-layer LSTM model in single-step prediction mode.

gap between the benchmark models and the SG-NNTP model. As shown in Fig. 4.20, the

SG-NNTP model achieves the R2 coefficient as high as 98.2%, while decreasing the the MSE

and RMSE coefficients by 81.8% and 56%, respectively, in comparison to the LSTM network.

Furthermore, the SG-NNTP model reduces the MAE coefficient by 45.3% compared with

the MLP network. Fig. 4.21 demonstrates the performances of all models in terms of elapsed
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Fig. 4.17 Prediction results for the ARMA(1,2) model in single-step prediction mode.
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Fig. 4.18 Prediction results for the ARIMA(3,1,1) model in single-step prediction mode.

time. Our model also has the highest computational efficiency which is about 33 times that

of the MLP network and about 31 times that of the LSTM network as shown in Fig. 4.21.
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Fig. 4.19 Prediction results for the SG-NNTP model.

4.3.3 Analyses and Discussion

Due to the diversity of event types, occurrence times, durations, and user behaviors during

events, NTP models built entirely on historical traffic data suffer from low prediction ac-

curacy, computational efficiency, and interpretability. In contrast, the prediction accuracy

and computational efficiency of the proposed SG-NNTP model outperform those of the

benchmark models, both in single-step prediction mode and multi-step prediction mode.

Meanwhile, the SG-NNTP model is an analytical NTP model constructed according to the

novel NNTP method based on the analysis of user behavior. Therefore, this model possesses

highly interpretability. As with pure analytical models, the model parameters are concise,

and practically meaningful, which can be efficiently and accurately applied to similar events.

Mutually, excellent prediction performance and generalization abilities also indirectly proves

that the novel NNTP method is reasonable and consistent with network traffic pattern.

More importantly, the NNTP method pioneers the correspondence between infrequent

events and specific NTP model, provides an approach to analysis and process the network

traffic caused by nonroutine events, and is an inspiration for subsequent research on non-

routine traffic. If the NNTP method can be widely used, various NTP models related to

different nonroutine events will be developed to construct a comprehensive database, which
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Fig. 4.20 The accuracy of the SG-NNTP model and the benchmark models in single-step
prediction mode.
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Fig. 4.21 The elapsed time of the SG-NNTP model and the benchmark models in single-step
prediction mode.

is valuable for interdisciplinary study in the fields of communication and social science. The

database can be used to identify the classification of newly given nonroutine traffic, discover

the nonroutine events behind the traffic data, infer user behaviors, etc. In addition, analyzing
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the causes of formation and trends of nonroutine traffic can be very helpful for accurate and

efficient network resource allocation.

What is more, the proposed NNTP method is essentially an efficient synthesis of multi-

variate data, which makes a recommendation for data collection and storage in the context of

cellular network traffic. Specifically, additional information, such as regional events, number

of users, etc, could be collected and stored with traffic data, which will be very beneficial

for future research of nonroutine traffic. Similar events can potentially be further subdivided

based on more detailed event information. In this way, more accurate NTP models with

more reliable implicit relationships can be discovered. In fact, it is found that there exists

some implicit relation between the parameter σsg and the number of attendances for all

soccer games belonging to the Italian Serie A type. This relation is really helpful to initial

parameter estimation and enable the model to achieve more accurate multi-step prediction

results. However, due to the limitation of sample size, the implicit relationship has not been

fully validated and therefore was not applied in current SG-NNTP model.

4.4 Conclusion

This chapter has raised the problem about nonroutine traffic, and pioneered a novel NNTP

method to analyze and process nonroutine traffic. Subsequently, this chapter has constructed

the SG-NNTP model for the additive nonroutine traffic caused by soccer games as a case

study to validate the performance of the NNTP method. Experimental results show that the

NNTP method outperforms the benchmark models in prediction accuracy, both in single-step

and multi-step prediction mode. Also, the computational efficiency is greatly improved. In

addition, the model constructed by the NNTP method is an analytical NTP model based on

user behaviour analysis with outstanding interpretability. In our future research, we aim to

integrate the NNTP model with information collection models to automate the gathering

of imformation data of nonroutine events. The NNTP model will then process this data to

achieve automatic prediction.
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In general, both the UBB NTP method and the NNTP method are appropriate for the

aggregate-level wireless network traffic data generated in larger regions rather than the

cell-level wireless network traffic data, because the overall pattern of user behavior can be

precisely extracted when the region contains sufficient users. Otherwise, the user behavior

will exhibit apparent randomness. In this scenario, there is no choice but to employ ML-

based model to perform cell-level NTP task. The next chapter focuses on the optimization of

ML-based models in this scenario.





Chapter 5

Hyper-parameter Optimization for

Cell-level Wireless Network Traffic

Prediction with A Novel Meta-Learning

Framework

Overview

In this chapter, we propose a novel cell-level wireless NTP framework, where an attention-

based deep neural network (ADNN) is adopted as the prediction model, i.e., base-learner,

for each cell-level mobile NTP task, namely base-task, and a meta-learner is employed

to automatically generate the optimal hyper-parameters for a new base-learner according

to the corresponding base-task’s intrinsic characteristics or properties, i.e., meta-features.

Based on the observation from real-world traffic records that base-tasks possessing similar

meta-features tend to favour similar hyper-parameters for their base-learners, the meta-

learner exploits the K-nearest neighbor (KNN) learning method to obtain a set of candidate

hyper-parameter selection strategies for a new base-learner, which are then utilized by an

advanced genetic algorithm with intelligent chromosome screening to finally acquire the best

hyper-parameter selection strategy. Extensive experiments demonstrate that base-learners in
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the proposed framework have high potential prediction ability for cell-level mobile NTP tasks

and the meta-learner can enormously elevate the base-learners’ performance by providing

them the optimal hyper-parameters.

5.1 Introduction

The previous two chapters have introduced two frameworks for daily and nonroutine wireless

NTP tasks, respectively. However, the traffic patterns in cell-level wireless NTP tasks tends

to exhibit a high degree of complexity due to the limited coverage area and the amount

of users, as well as the mobility of users. Therefore, it poses a high demand on the NTP

model’s learning capacity. The deep learning-based NTP models possess the capacity to

understand complex nonlinear relationships with the help of multiple activation functions,

and thus match well with the cell-level wireless NTP tasks. However, the model’s complexity

is increased rapidly with its capacity. As a result, the hyper parameter selection of deep

learning-based models is becoming a tricky problem.

Hyper-parameter selection involves numerous hyper-parameters including the learning

rate, the number of neural layers, the number of neurons in each layer, etc., which have

a significant influence on the models’ after-training performance. Unfortunately, how to

efficiently optimize the hyper-parameters for a cell-level mobile NTP model has not been

well studied. As the state-of-the-art hyper-parameter optimization methods are general-

purpose algorithms such as Genetic Algorithm (GA), PSO, and Bayesian Optimization.

They lack specificity for NTP models. Consequently, when applied to NTP models, they

face a significant trade-off between efficiency and performance, often requiring extensive

computational time to achieve satisfactory results. Not to mention taking exhaustive searching

method or a manual approach with expert experience. Furthermore, in the 5G or beyond

mobile networks, the access points are ultra-densely deployed and there are tens of thousands

of mobile cells to be considered in large-scale radio access networks [15] [16]. The large

number of mobile cells significantly exacerbates these challenges.
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With the objective of addressing the hyper-parameter optimization problem for NTP

models, this work proposes a meta-learning framework for cell-level wireless NTP tasks

to automatically optimize the hyper-parameters of a newly given cell-level NTP model

based on the corresponding prediction task’s intrinsic features (meta-features). The primary

contributions of this chapter are summarized as follows:

• Using real-world cell-level mobile network traffic records generated in Milan, we

statistically analyze the optimal hyper-parameter selection strategies of deep learning-

based prediction models related to different cell-level traffic prediction tasks. By

analyzing the information entropy of various hyper-parameter selections and the

conditional entropy of hyper-parameter selection under various intrinsic characteristics

or properties of prediction tasks, we conclude that these intrinsic characteristics or

properties, i.e., meta-features, indeed have a significant influence on the distribution of

optimal hyper-parameter selection strategies.

• A novel hyper-parameter optimization method is proposed for cell-level wireless NTP

with a meta-learning framework. In the proposed framework, a cell-level wireless NTP

task is seen as a base-task and an ADNN is introduced as the prediction model (base-

learner) to address each base-task. We define finding the optimal hyper-parameters

for the base-learner of each base-task as the meta-task. We present a meta-learner

to handle the meta-task, which can automatically optimize the hyper-parameters of a

base-task’s base-learner according to the base-task’s meta-features.

• The meta-learner exploits a KNN learning method to obtain a set of candidate hyper-

parameter selection strategies for a new base-learner with the assistance of meta-

knowledge accumulated from previous well-solved base-tasks. Then an advanced

genetic algorithm with intelligent chromosome screening is presented to finally search

the best hyper-parameter selection strategy by setting those candidate hyper-parameter

selection strategies as partial of its first-generation chromosomes. Specifically, in order

to elevate the modified genetic algorithm’s computational efficiency, a sophisticated
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gated residual network (GRN) based deep neural network is presented to precisely

evaluate the fitness value of each son chromosome.

• Compared with existing traffic prediction methods, the proposed framework has the

following advantages. First, the proposed ADNN for cell-level wireless NTP can

extract complex features and patterns from historical traffic data and thus has the

potential to improve the model’s prediction accuracy. Second, unlike the conventional

deep learning-based NTP models whose hyper-parameters are provided randomly

or through manual trial, the meta-learner in the proposed framework will generate

the optimal hyper-parameters for each base-learner leading to the best after-training

performance. We examine the performance of our framework through real-world

cell-level traffic prediction tasks. Extensive experiments demonstrate that the meta-

learner can elevate the base-learners’ after-training prediction accuracy enormously by

providing them with proper hyper-parameters.

The rest of this chapter is organized as follows. Existing research works on mobile NTP

is reviewed in Section II. Section III introduces the real-world mobile network traffic records

used in this chapter, followed by our statistically analysis about the prediction models’

optimal hyper-parameter selection strategies. In Section IV, we describes the proposed

meta-learning based cell-level traffic prediction framework in detail. Performance of our

framework is evaluated in Section V. Finally, this chapter is concluded in Section VI.

5.2 Dataset and Preliminary Analyses

5.2.1 Cell-level Wireless Network Traffic Records

In this chapter, the wireless network traffic data in the "Telecom Italia Bia Data Challenge"

from 01/11/2013 to 01/01/2014 in Milan [88] serves as the dataset. In the spatial dimension,

Milan city is covered by 10000 grids, each of which possesses a size of 235m×235m. Each

traffic record in the dataset includes details regarding the occurrence time and volume of

the network traffic, as well as the grid ID. As the coverage of a urban base station is close
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Fig. 5.1 The MSE performance of prediction models with different hyper-parameter selection
strategies for mobile cell 1595.

to the size of the grid, we refer to each grid to a mobile cell [88]. The considered time

span of the dataset is divided into 89,28 time intervals with the duration of ten minutes.

Traffic load of the p-th cell (p = 1, ..., 10000) during the t-th time interval (t = 1, ..., 89,28)

can be acquired as Lp[t] while the traffic load series of mobile cell p can be denoted as

Lp = (Lp[1], Lp[2], ..., Lp[89,92]). Specifically, in order to analyze the characteristics of

traffic load series generated in different cells with a uniform scale, we normalize the elements

in Lp into the range of [0,1] using the max-min normalization method as follows

L̃p[t] =
Lp[t]−min(Lp)

max(Lp)−min(Lp)
, (5.1)

where max(Lp) and min(Lp) are the largest and smallest elements in Lp, respectively.

Accordingly, the normalized traffic load series of mobile cell p is denoted as L̃p.

5.2.2 Preliminary Analyses of Hyper-parameter Selection

In this work, we regard forecasting a mobile cell’s traffic load during a future time interval

based on the loads in a number (step number) of previous time intervals as a cell-level
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Fig. 5.2 The MSE performance of prediction models with different hyper-parameter selection
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Fig. 5.3 The MSE performance of prediction models with different hyper-parameter selection
strategies for mobile cell 3040.

wireless NTP task. We apply a sliding window with size of the step number to split cell p’s

normalized traffic load series and generate samples for cell-level wireless NTP task p by

labeling each split segment of traffic load series with the traffic load in the next time interval.

We first adopt four representative deep learning-based algorithms, i.e., the MLP network,

the LSTM network, the gate recurrent unit (GRU) network, and the ADNN, to respectively
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construct the prediction model for each cell-level traffic prediction task and assess the

impact of the hyper-parameter selection strategies on the prediction models’ after-training

performance. For different algorithms, the kinds of hyper-parameters and their selection

ranges are listed in Table 5.1 and the hyper-parameters of ADNN is detailed in Section 5.3.2.

Figs. 5.1, 5.2, and 5.3 show the MSE values of the well-trained prediction models related to

three cell-level wireless NTP tasks (cells 1595, 2535, and 3040) over their testing samples

when these models are with different algorithms and different hyper-parameter selection

strategies. In Figs. 5.1, 5.2, and 5.3 the best or worst hyper-parameter selection strategy of

each prediction model is acquired with the exhaustive searching method. From Figs. 5.1, 5.2,

and 5.3, we make the following observations.

Observation 1: Adopting the best hyper-parameter selection strategies, the ADNN based

prediction models seem to achieve a higher accuracy performance than prediction models

with the other three learning algorithms over various prediction tasks. This may be explained

by the fact that the ADNN can efficiently extract the complex temporal correlations among

cell-level wireless network traffic loads generated in different time intervals.

Observation 2: Hyper-parameter selection strategies indeed have a great influence on

the performance of prediction models. Furthermore, even with the same algorithm, the best

hyper-parameter selection strategies vary a lot among prediction models related to different

cell-level wireless NTP tasks.

We then test whether some intrinsic characteristics or properties of the cell-level wireless

NTP tasks are correlated with the corresponding prediction models’ best hyper-parameter

selection strategies. We select the ADNN as those prediction models’ learning algorithm and

find the prediction models’ best hyper-parameter selection strategies using the exhaustive

searching method. Choosing candidate set of intrinsic characteristics or properties for a

prediction task listed in Fig. 5.4, we calculate the conditional entropy of the best values of

each kind of hyper-parameters over the prediction models with respect to each kind of intrinsic

characteristics or properties [95], which is demonstrated in Fig. 5.4. As a comparison, the

information entropies of the best values of different kinds of hyper-parameters over the

prediction models are also provided. From Fig. 5.4, we have got the following observations.
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Step number Learning rate Layer Head D-model
Information Entropy 1.513 1.449 1.522 1.971 1.980 
CE wrt. Mean 1.173 1.040 0.932 1.363 1.259 
CE wrt. Median 1.154 1.040 0.932 1.344 1.240 
CE wrt. Range 1.162 0.906 1.099 1.162 1.090 
CE wrt. Variance 1.353 1.276 1.387 1.769 1.698 
CE wrt. Standard Deviation 1.239 1.211 1.235 1.586 1.304 
CE wrt. Coefficient of Variation 0.552 0.659 0.840 0.590 0.752 
CE wrt. Waverate 0.786 0.608 0.760 0.879 0.608 
CE wrt. Skewness 0.748 0.560 0.779 0.977 0.829 
CE wrt. Kurtosis 0.847 0.763 0.766 0.966 0.885 
CE wrt. Trend 0.578 0.478 0.459 0.628 0.609 
CE wrt. Seasonality 0.625 0.407 0.807 0.775 0.675 

Fig. 5.4 The information entropy and the conditional entropy (CE) of the best values of each
kind of hyper-parameters.

Observation 3: Compared to the information entropy of the best values of each hyper-

parameter, the conditional entropies with respect to different kinds of intrinsic characteristics

or properties generally have smaller values, which demonstrates that these intrinsic char-

acteristics or properties indeed possess obvious correlations with the prediction models’

best hyper-parameter selection strategies and that cell-level wireless NTP tasks with similar

intrinsic characteristics or properties tend to prefer similar hyper-parameters.

Observation 4: Different kinds of intrinsic characteristics or properties seem to have

diverse importance on the distribution of the optimal hyper-parameter selection strategies of

cell-level wireless NTP models.

5.3 The Proposed Cell-level Wireless NTP Framework

This section will give an overview of the proposed meta-learning based cell-level wireless

NTP framework, followed by introduction of base-learners dealing with the cell-level wireless

NTP tasks and the meta-learner, which can provide the best hyper-parameter selection

strategies for different base-learners.
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5.3.1 Framework Overview

Fig. 5.5 gives the diagram of our proposed cell-level wireless NTP framework. In the

framework, each cell-level wireless NTP task is regarded as a base-task and ADNN based

prediction models are presented as base-learners to hand various base-tasks. For a base-

learner related to a specific base-task, there are several hyper-parameters, as listed in Table

5.1. According to the meta-learning theory [96], the hyper-parameter selection strategy

determines a base-learner’s hypothesis space comprised of all the hypothesis functions this

base-learner can represent and how the training process will find a hypothesis function in

this hypothesis space. A base-learner will have the potential to achieve high after-training

prediction accuracy for a base-task when 1) its hypothesis space contains the hypothesis

functions approaching the target function that perfectly fits the base-task’s learning samples;

and 2) a proper hypothesis function can be efficiently reached in the training process. As

a result, the hyper-parameter selection strategy will seriously influence a base-learner’s

performance and the base-learners related to different base-tasks prefer different hyper-

parameter selection strategies since these base-tasks possess diverse target functions and

quite training samples.

Based on Fig. 5.4 as well as Observations 3 and 4, we choose I intrinsic characteristics

or properties that most influence the optimal hyper-parameter selection strategies’ distribution,

i.e., introduce the lowest conditional entropies for various kinds of hyper-parameters, as each

base-task’s meta-features. In the proposed framework, we define the learning task of finding

each base-learner’s best hyper-parameter selection strategy according to the corresponding

base-task’s meta-features as the meta-task and present a meta-learner to solve it. We also

construct a set of meta-samples to help the meta-learner handle the meta-task. Some notations

used in the proposed framework are summarized as follows.

Notations in the proposed framework: S meta represents the set of randomly selected

meta-samples. What is more, S meta is also used to represent the set of base-tasks to construct

the meta-samples. smetap represents the meta-sample in S meta, which is generated by base-

task p corresponding to p-th mobile cell. S
basep

train denotes the training set of base-samples

for base-task p, while S
basep

valid is base-task p’s validation set of base-samples to evaluate the
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Fig. 5.5 The proposed cell-level wireless NTP framework with meta-learning.

fitness of different hyper-parameter selection strategies for base-learner p. For base-task

r /∈ S meta, the testing set of base-samples, S baser
test , will also be constructed to examine its

base-learner’s after-training performance.

5.3.2 Base-learners

According to Observation 1 that the attention mechanism can help prediction models extract

temporal characteristics of cellular traffic patterns, we design the base-learner for each base-

task as an ADNN as shown in Fig. 5.6. The ADNN is composed of an encoder and a decoder,

which will be introduced in detail as follows.

Encoder

In a base-learner, the encoder contains Le sequential encoder blocks with the same structure

[97]. The input of the first encoder block is a NS ×Dmodel matrix, where the NS row vectors

represents a mobile cell’s traffic loads generated in NS continuous time intervals and the

Dmodel is the dimension of the hidden layers of neural networks in encoder blocks and decoder
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blocks. In the Position Encoding layer, an additional dimension Dmodel is incorporated into

the input matrix. Each encoder block possesses two sub-blocks. The first sub-block is the

Multi-Head Attention layer. There are He Self-Attention structures in this layer and the key

(K ), query (Q), and value (V ) matrices in each Self-Attention structure can be calculated as

K = E
(le)

in ·WK ,

Q = E
(le)

in ·WQ,

V = E
(le)

in ·WV ,

(5.2)

where E
(le)
in is the input matrix of the le-th encoder block, WK , WQ, and WV are parameter

matrices with the same dimension, which the model need to learn [97]. Fig. 5.7 shows the

structure of each Self-Attention structure. The second sub-block is the Feed-Forward network

consisting of two fully-connected layers of neural networks. The activation functions of the

neurons in these two fully-connected layers take the ReLU function and the Linear function,

respectively. Following each sub-block, the residual connection and batch normalization

are appended sequentially. The output of each encoder block is a matrix with the size of

NS ×Dmodel and will be seen as the input of the next encoder block. Specifically, we denote

the output matrix of the last encoder block, E
(Le)
out , as the encoded matrix.

Decoder

As shown in Fig. 5.6, the decoder is constituted of Le decoder blocks with the same structure

[97]. The decoder block in our meta-learner contains three sub-blocks, i.e., Multi-Head Self-

Attention layer, Multi-Head Encoder-Decoder Attention layer, and a Feed-Forward network,

as shown in Fig. 5.6. The Multi-Head Self-Attention layer takes the same input matrix of the

encoder as its input. It has He Self-Attention structures, each of which processes the input

matrix using the same method as any Self-Attention Structure in an encoder block. We denote

the output matrix of the Multi-Head Self-Attention layer as D . D has the same dimension

with the input matrix of the encoder. The Multi-Head Encoder-Decoder Attention layer

takes both E
(Le)
out and D as the inputs. It has a similar structure with the former Multi-Head
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Fig. 5.6 The structure of the base-learner.

Attention layer. However, query (Q) matrix is generated by D , while the key (K ) and value

(V ) matrices are generated by E
(Le)
out with the following equations:

K = E
(Le)

out ·WK ,

Q = D ·WQ,

V = E
(Le)

out ·WV .

(5.3)

Finally, the Feed-Forward network takes the same structure as that in any encoder block.

Also, the residual connection and batch normalization are appended following each sub-block

in the decoder block.
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Fig. 5.7 The schematic diagram of the multi-head attention mechanism.

The fully-connected layer then transforms the output matrix of the decoder block into a

vector and the neurons in this layer take the ReLU function as their activation functions. The

output layer of the decoder consists of only one neuron representing the prediction result for

the mobile cell’s traffic load in next time interval.

For each base-learner, we define Le, NS, Dmodel , He, and the learning rate in the training

process, c, as its hyper-parameters.

5.3.3 The Proposed Meta-learner

Based on Observation 3 that base-tasks with similar meta-features prefer similar hyper-

parameters, we design a two-stage meta-learner, which finds a set of high-quality candidate

hyper-parameter selection strategies for the base-learner of a newly considered base-task

with the KNN learning method in the first stage and then achieves the base-learner’s optimal

hyper-parameter selection strategy using an advanced genetic algorithm with intelligent

chromosome screening module in the second stage.
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KNN Learning Method

In order to leverage the KNN learning algorithm, a set of meta-samples, S meta, is constructed

with |Smeta| randomly selected base-tasks. |Smeta| is the cardinality of set S meta. For each

meta-sample smetap in S meta, we build it by labeling base-task p’s meta-features with the best

hyper-parameter selection strategy of its base-learner, which is acquired with the exhaustive

searching method.

Since different meta-features have different levels of importance in the hyper-parameter

selection, it is inappropriate to directly use the Euclidean distance between feature vectors to

represent the distance from base-task p to base-task r. Hence, we introduce an MLP network

to perform linear and nonlinear processing of the meta-feature vectors of smetar and smetap to

obtain the distance Dp−to−r between smetar and smetap . While their real distance RDp−to−r

is represented as the performance achieved when the smetar adopts the meta-label vector of

smetap . Finally, the MLP network is trained by minimizing the error between Dp−to−r and

RDp−to−r.

For a newly considered base-task r, the KNN learning method finds K meta-samples

from S meta, whose meta-feature vectors are with the shortest distances with that of base-task

r. Since the K hyper-parameter selection strategies related to the K picked meta-samples are

expected to provide good after-training performance for base-learner r, they will be regarded

as candidate hyper-parameter selection strategies for base-learner r, which will also be set as

first-generation chromosomes in the following advanced genetic algorithm.

Advanced Genetic Algorithm with Intelligent Deep Learning Assisted Chromosome

Screening

Obviously, the hyper-parameter selection space for each base-learner is quite huge and it is

almost impossible to establish a close-form mapping between the base-learner’s after-training

performance and the hyper-parameter selection strategy. Inspired by the fact that the genetic

algorithm can efficiently search the solution spaces of complex optimization problems and

requires no information about the forms of objective functions [98], we propose an advanced
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Fig. 5.8 a) The structure of Gated Residual Network; b) The framework of GRN module.

genetic algorithm to finally find the best hyper-parameter selection strategy for base-learner

of the newly considered base-task r /∈ S meta (base-learner r).

Specifically, the advanced genetic algorithm regards each kind of hyper-parameters as a

fragment of one chromosome (gene) and regards each possible hyper-parameter selection

strategy of a base-learner as one chromosome. A chromosome’s fitness value is defined as

the reciprocal of base-learner r’s generalization error over S baser
valid when base-learner r adopts

the hyper-parameter selection strategy provided by this chromosome and is well-trained with

S baser
train . Besides the K hyper-parameter selection strategies generated by the KNN learning

method, the advanced genetic algorithm also generates M −K chromosomes, in each of

which the value of any gene is randomly assigned over the corresponding hyper-parameter’s

selection range with a uniform distribution, as its first-generation chromosomes.

The advanced genetic algorithm reaches its final solution through N generations of

chromosomes and there will be M chromosomes surviving in each generation. We denote the

M remaining chromosomes in the n-th (n = 1, ...N −1) generation as ζ
(n)
1 , ..., ζ

(n)
M , whose

fitness values are f (n)1 , ..., f (n)M , respectively. Based on these M chromosomes, W (W >> M)

son chromosomes are built. In these W son chromosomes, prem ·W ones are obtained by

directly duplicating prem ·W parent chromosomes from ζ
(n)
1 , ..., ζ

(n)
M with the highest fitness
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values. The other (1− prem) ·W son chromosomes are hybrid ones, genes of each of which

are inherited and crossed from two parent chromosomes selected randomly from ζ
(n)
1 , ...,

ζ
(n)
M . In order to prevent the algorithm from falling into a local optimum, any gene of every

hybrid son chromosome possesses a probability of pmut to mutate into a random value in its

selection range with a uniform distribution. Specifically, all the parent chromosomes have

the same probability to be chosen as one of a hybrid son chromosome’s parent chromosomes.

To conquer the challenge that calculating the fitness values of W son chromosomes for

each chromosome generation (training base-learner r W times with different hyper-parameter

selection strategies) is quite computationally complex, an intelligent deep learning assisted

chromosome screening scheme is proposed for the advanced genetic algorithm to find the

M (n+1)-th generation surviving chromosomes. The advanced genetic algorithm utilizes a

sophisticated GRN based deep neural network [99] as shown in Fig. 5.8 to evaluate fitness

values of the W son chromosomes and selects τ ·M son chromosomes with the highest

evaluated fitness values, where τ is a constant larger than 1. After that, fitness values of only

those τ ·M son chromosomes are calculated and the M ones with the largest actual fitness

values survive as the next-generation chromosomes. Please note that since τ ·M ≪W , the

novel intelligent deep learning assisted chromosome screening scheme will improve the

advanced genetic algorithm’s computational efficiency tremendously.

As shown in Fig. 5.8 (b), the proposed GRN based deep neural network takes base-task

r’s meta-features and hyper-parameter selection strategy related to a son chromosome as its

inputs while outputs the evaluated fitness value for this son chromosome. With motivation of

giving the deep neural network flexibility to apply linear processing and non-linear processing

of its inputs only where needed, the GRN structure is presented in Fig. 5.8 (a) as a building

block of the deep neural network. A GRN block ω takes in an input vector i and yields

GRNω (i) = LayerNorm(i+GLUω (η1)) , (5.4)

η1 = O1,ωη2 +b1,ω , (5.5)
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η2 = ELU (O2,ω i+b2,ω) , (5.6)

where ELU is the exponential linear unit activation function [99]; LayerNorm is a standard

normalization layer; η1 and η2 are intermediate layer outputs. Taking η1 as the input, the

gated linear units (GLU) module generates

GLUω (η1) = σ (O3,ωη1 +b3,ω)⊙ (O4,ωη1 +b4,ω) , (5.7)

where σ (·) is the sigmoid activation function, ⊙ is the element-wise Hadamard product.

In equations (5-7), O(·) and b(·) are the neuron connection weight matrix and neuron bias

vector, respectively. The GLU module allows a GRN block to control the extent to which

the non-linear processing of the input vector i contributes to the output vector, e.g., the GLU

outputs could be close to 0 in order to suppress the nonlinear contribution.

The GRN based deep neural network demonstrated in Fig. 5.8 (b) contains three sub-

networks: the meta-feature processing sub-network, the gene processing sub-network, and

the fusion sub-network. The meta-feature processing sub-network takes base-task r’s meta-

features as its input vector and applies linear and non-linear processing for the inputs via

GRN blocks, generating the transformed meta-features. Due to the facts that different kinds

of meta-features have diverse ranging scales and diverse importance on base-learner r’s

performance, we also introduce an automatic importance evaluation mechanism for the meta-

features in this sub-network. Specifically, taking base-task r’s meta-features as the inputs, an

importance vector is generated through a GRN block and a Softmax layer. The meta-feature

processing sub-network then takes the Hadamard product between the transformed meta-

features and the importance vector as its outputs. The gene processing sub-network takes

the genes determined by a son chromosome as its inputs and yields the transformed gene

values via multiple GRN blocks. Finally, the fusion sub-network conducts linear as well

as non-linear processing for the outputs of the former two sub-networks via a GRN block,
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and yields the evaluated fitness values of a son chromosome for base-learner r through a

full-connection neural network.

We train the GRN based deep neural network with learning samples generated from

base-tasks in S meta. For any base-task p ∈ S meta, since the fitness values of all the possible

hyper-parameter selection strategies have been tested for base-learner p, numerous learning

samples can be built related to this base-task for the GRN based deep neural network by

labeling each hyper-parameter selection strategy as well as base-task p’s meta-features with

the corresponding fitness value.

Finally, we present pseudo codes in Algorithm 2 to illustrate the meta-learner’s operating

process in detail.

5.4 Numerical Results of the Proposed Framework

This section will first introduce our experimental settings and the performance metrics we

use. Then, we numerically prove effectiveness of the KNN learning method adopted in

the proposed meta-learner and how the key parameters will influence the advanced genetic

algorithm’s performance. After that, prediction accuracy and computational complexity of

the proposed framework is compared with several benchmark methods. At last, robustness of

Algorithm 2 is analyzed.

5.4.1 Experimental Settings

In the adopted dataset, traffic load records of some mobile cells during a number of time

intervals are missing due to collection failure or storage error. When we have not got the

actual traffic load of a mobile cell during a certain time interval, we will fill it based on a

widely used method [100] where the missing value is completed with the average traffic load

of the target cell’s eight surrounding cells during the same time interval.

We compare the performance of our framework with several representative cell-level

wireless NTP methods. These methods include the SVR, the Gaussian processing, and

conventional deep learning-based methods like the MLP network, the LSTM network,
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Algorithm 2:
Input: S meta, prem, pmut ,base-task r

1: Get meta-feature vector of base-task r;
2: Obtain K neighbouring meta-samples from S meta whose meta feature vectors have the

smallest distances with the meta-feature vector of base-task r with the KNN learning
algorithm;

3: Generate K first-generation chromosomes (K hyper-parameter selection strategies for
base-learner r) with the labels of the K selected meta samples;

4: Generate M−K first-generation chromosomes randomly;
5: Construct the set of M first-generation chromosomes based on the outputs of steps 3 and

4;
6: Calculate the fitness value of each first-generation chromosome;
7: for n = 1 : N do
8: Select prem ·W chromosomes in the n-th generation ones with the largest fitness

values as the son chromosomes;
9: for w = 1 : (W − prem ·W ) do

10: Select two chromosomes in the n-th generation ones randomly with the uniform
selecting probability;

11: Generate a son chromosome by inheriting and crossing the genes of the two above
selected chromosomes;

12: Mutate each gene of the son chromosome with a probability of pmut into a random
value in the gene’s selection range;

13: end for
14: Construct the set of W son chromosomes for the n-th generation ones based on the

outputs of steps 10-12;
15: Evaluate the fitness values of the W son chromosomes with the proposed GRN deep

neural network;
16: Select τ ·M son chromosomes with the largest evaluated fitness values;
17: Calculate the actual fitness values of τ ·M son chromosomes and obtain M son

chromosomes with the largest actual fitness values as the survived ones (n+1)-th
generation chromosome;

18: end for
Output: The chromosome having the largest fitness value within N generations of

chromosomes



90
Hyper-parameter Optimization for Cell-level Wireless Network Traffic Prediction with A

Novel Meta-Learning Framework

Table 5.1 The hyper-parameters’ selection range.

Step number (NS) Learning rate (c) Layer (Le)
ADNN (6, 12, 18) (0.01, 0.001, 0.0001) (1, 2, 3)

Step number Learning rate Layer
GRU (6, 12, 18) (0.01, 0.001, 0.0001) (2, 3, 4)

LSTM (6, 12, 18) (0.01, 0.001, 0.0001) (2, 3, 4)
MLP (6, 12, 18) (0.01, 0.001, 0.0001) (2, 3, 4)

Head (He) Dmodel
ADNN (2, 4, 6, 8) (8, 16, 32, 64, 128, 256, 512)

Neure
GRU (256, 512, 768)

LSTM (32, 64, 128, 256)
MLP (128, 256, 512)

the GRU network, and the ADNN as shown in Fig. 5.6. In order to test how the meta-

learning technology in the proposed framework can improve the base-learners’ after-training

performance by providing the proper hyper-parameters, the conventional deep learning-based

methods are with randomly selected hyper-parameters for the related prediction models in

handling each base-task, where the hyper-parameters’ selection ranges are listed in Table

I. For the ADNN based base-learners, we also test their performance when their hyper-

parameters are provided by the meta-learner presented in Algorithm 2, the GA with no deep

learning assisted chromosome screening, the advanced genetic algorithm with deep learning

assisted chromosome screening but randomly selected fist-generation chromosomes (AGA),

and the genetic algorithm with fist-generation chromosomes selected by the KNN learning

method but with no deep learning assisted chromosome screening (GA+KNN), as well as

when their hyper-parameters are optimized by the exhaustive searching method (ES).

We randomly select 160 mobile cells in our dataset to construct the set of meta-samples

for the proposed framework, S meta, and regard the remaining mobile cells as the testing base-

tasks. For mobile cell p ∈ S meta, the training set and validation set of its base-learner are

constructed by base-samples generated in range of 01/11/2013-30/11/2013. For mobile cell

r /∈ S meta, the training set and validation set are constructed by base-samples generated in

range of 01/11/2013-30/11/2013, while the testing set is composed of base-samples generated
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in range of 01/12/2013-03/12/2013. With the aim of fair comparison, training samples for

learning models of the considered conventional deep learning-based prediction methods

related to each testing base-task are generated in range of 01/11/2013-30/11/2013.

Base-learners in the proposed framework as well as the deep learning-based prediction

models are optimized with a stochastic gradient based optimization technique, AdamW [101],

which is widely adopted in ML domain. The MSE is chosen as the loss function in the

learning models’ training process. To evaluate the prediction methods’ accuracy performance,

two metrics, i.e., MSE and R2, are adopted in our experiments. Specifically, R2 will measure

the fitting degree between the prediction and ground true values.

5.4.2 Effectiveness of the KNN Learning Method

This subsection will experimentally verify the effectiveness of the KNN learning method

adopted by the meta-learner in deriving high-quality fist-generation chromosomes.

For the testing base-tasks, Fig. 5.9 presents the average after-training MSE and R2

performance achieved by their base-learners over the validation sets when each base-learner

adopts the best hyper-parameter selection strategy from the candidate strategies provided by

the corresponding base-task’s neighbor meta-samples in S meta versus the neighbor number

K in the KNN learning algorithm under different scales of S meta. Specifically, a smaller

MSE or a larger R2 reflects that the KNN learning algorithm in the meta-learner can provide

better candidate hyper-parameter selection strategies for the base-learners of testing base-

tasks. We can observe from Fig. 5.9 that under a given S meta size, performance of the

KNN learning algorithm upgrades transparently as K augments. This is because when we

consider more neighbor meta-samples for a testing base-task, the KNN learning will have

a larger probability to obtain the competent hyper-parameter selection strategy from these

meta-samples’ labels for the corresponding base-learner to achieve higher after-training

prediction accuracy. An interesting phenomenon in Fig. 5.9 is that as K gets large from 3 to

10, the KNN learning algorithm’s performance with a certain scale of S meta will improves

swiftly at first and then become stable. Specifically, when K exceeds 8, further augment of K

only introduces little performance rising for the KNN learning algorithm.
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Fig. 5.9 The average after-training MSE and R2 performance achieved by base-learners
when each base-learner adopts the conditionally optimal hyper-parameter selection strategy
provided by the KNN learning algorithm versus the neighbor number K under different scales
of S meta.

Fig. 5.10 shows performance of the KNN learning algorithm versus the scale of S meta

with different values of K. Fig. 5.10 demonstrates that under a certain selection of K, the

KNN learning algorithm will always perform better when S meta contains more meta-samples.

This can be explained as when more base-tasks are solved and more meta-knowledge is

accumulated, it will be easier for the KNN learning algorithm to find meta-samples possessing

similar meta-features with any given testing base-task. As a result, these meta-samples tend

to provide more satisfactory hyper-parameter selection strategies for the related testing base-

learner according to Observation 4 that base-tasks with similar meta-features are likely to

prefer similar hyper-parameters. Moreover, as illustrated in Fig. 5.10, we can observe that

the KNN learning algorithm’s effectiveness will gradually flatten out after S meta’s scale

is larger than 140, which imply that it seems not necessary to acquire excessively much

meta-knowledge to guarantee the performance of the KNN learning algorithm.

In the rest of our experiments, we will set K and S meta’s scale as 8 and 160, respectively,

to balance the framework performance and the calculation complexity.
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Fig. 5.10 The average after-training MSE and R2 performance achieved by base-learners
when each base-learner adopts the conditionally optimal hyper-parameter selection strategy
provided by the KNN learning algorithm versus the scale of S meta with different values of
K.

5.4.3 Influence of Key Parameters in the Advanced Genetic Algorithm

Proportion of parent chromosomes remaining in the W candidate son chromosomes, prem,

and mutation probability of genes, pmut , are two key parameters of the proposed advanced

genetic algorithm in the meta-learner. This subsection will test how these two parameters

influence the advanced genetic algorithm’s performance when part of its first-generation

chromosomes are generated with assistance of the KNN learning method.

For two randomly selected testing base-tasks (mobile cells 1635 and 4004), Figs. 5.11

and 5.12 show the corresponding base-learners’ after-training accuracy performance with

the currently optimal hyper-parameter selection strategies provided by the advanced genetic

algorithm versus the algorithm’s processing time when prem and pmut have some certain

values. Specifically, results of each curve in Fig. 5.11 or Fig. 5.12 are averaged over 10

random tests of the algorithm. From these two figures, we can observe that the algorithm

will have faster converging speed but lower after-convergence performance when prem

possesses a larger value or pmut possesses a smaller value. Reasons behind this phenomenon
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Fig. 5.11 The base-learner’s after-training MSE performance with the currently optimal hyper-
parameter selection strategy output by Algorithm 2 for mobile cell 1635 versus Algorithm
2’s processing time under different value combinations of prem and pmut .

can be explained as follows. When prem is large and pmut is small, more high-quality

parent chromosomes and advantageous genes will be preserved in the next-generation

chromosomes. As a result, the algorithm can rapidly find out a proper solution of the

hyper-parameter optimization problem for each testing base-task. Moreover, as more parent

chromosomes remain in the set of survived next-generation chromosomes, the algorithm

can avoid calculating their fitness values in this iteration, which costs enormous processing

time to train the base-learner with various hyper-parameter selection strategies, since these

values have been obtained previously. However, due to the fact that the algorithm tends to

utilize existing chromosomes and genes with a larger prem or a smaller pmut , it may be stuck

at a local optimum and not output a satisfactory solution. On the other hand, Figs. 5.11 and

5.12 show that the advanced genetic algorithm obtains better solutions with lower converging

speed when prem is small and pmut is large. This is because exploring the solution space

more extensively in each iteration increases the likelihood of finding global optimums, albeit

at the cost of longer searching time.
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Fig. 5.12 The base-learner’s after-training MSE performance with the currently optimal hyper-
parameter selection strategy output by Algorithm 2 for mobile cell 4004 versus Algorithm
2’s processing time under different value combinations of prem and pmut .

Even with different values of prem and pmut , we can observe from Figs. 5.11 and 5.12 that

the proposed advanced genetic algorithm will further optimize the hyper-parameter selection

strategies generated by the KNN learning method and converge with acceptable processing

time. Specifically, we select a relatively small prem and a relatively large pmut (prem = 10%,

pmut = 20%) to elevate the algorithm’s after-convergence performance.

5.4.4 Prediction Accuracy of the Proposed Framework and Benchmark

Methods

We compare the after-training accuracy performance of the proposed framework and the

benchmark methods. The MSE and R2 values of the considering prediction methods in

handling four randomly selected testing base-tasks as well as averaged over all the testing

base-tasks are demonstrated in Table 5.2.

As shown in Table 5.2, the shallow learning-based methods, SVR and Gaussian process-

ing, exhibit relatively low prediction accuracy, though they have the ability of extracting

the nonlinearities in time series. This can be explained as cell-level wireless network traffic
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patterns contain complex auto-correlations in the temporal domain, which might exceed the

learning capacity of the shallow learning-based methods. As numbers of coefficients can

be tuned in SVR and Gaussian processing are quite limited, it is hard for them to present

the cell-level wireless network traffic characteristics. Consequently, SVR and Gaussian

processing will face the under-fitting problem and not obtain satisfactory accuracy perfor-

mance. The complex learning models and the huge numbers of parameters which need to

be adjusted in the conventional deep learning-based methods, i.e., MLP network, LSTM

network, GRU network, and ADNN, make them possess huge potential to explore deep

dependencies among cell-level wireless network traffic loads in different time intervals. As

a result, these conventional deep learning-based methods achieve lower average MSE and

higher average R2 over the testing base-tasks than SVR and Gaussian processing. We can

also observe from Table 5.2 that the conventional deep learning-based methods present quite

unstable after-training accuracy performance in dealing with different base-tasks, e.g., the

MLP network introduces large prediction error for base-task 6035 while the ADNN intro-

duces large prediction error for base-task 9106. This is because as shown in Observation 2,

hyper-parameter selection strategies highly influence the deep learning models’ performance

and inappropriate hyper-parameter selection strategies may hinder their prediction accuracy

seriously.

Our proposed framework achieves very high prediction accuracy and performs stably

in handling the testing base-tasks. Reasons behind this phenomenon can be explained in

two folds. First, base-learner of each base-task in the proposed framework is designed as an

ADNN, which has the potential of learning and extracting the complex temporal correlations

and nonlinearities hidden in cell-level wireless network traffic load series. Second, unlike

the conventional deep learning-based prediction models, whose hyper-parameters are fixed

or randomly selected for various base-tasks, meta-learner in the proposed framework will

provide the appropriate hyper-parameter selection strategy for base-learner of each testing

base-task according to the base-task’ meta-features, making the base-learner’s hypothesis

space contain proper hypothesis functions similar to the considered base-task’ target function
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Table 5.2 The performance of the proposed framework and the benchmark methods

Benchmark methods without hyper-parameter optimization
cell 6035 cell 6036 cell 8417 cell 9106 Mean

MSE R2 MSE R2 MSE R2 MSE R2 MSE R2

SVR 5.12 41.58% 61.14 22.02% 122 46.22% 58.62 20.64% 36.21 44.96%

GP 6.45 26.34% 50.02 36.21% 148.1 34.71% 31.48 57.38% 41.27 40.37%

GRU 3.52 59.86% 66.05 15.76% 81.31 64.16% 15.65 78.81% 24.71 62.6%

LSTM 5.33 39.13% 49.24 37.19% 96.58 57.43% 22.66 69.32% 28.68 52.39%

MLP 5.8 33.82% 67.83 13.48% 78.13 65.56% 19.04 74.22% 26.2 55.71%

ADNN 4.28 51.14% 42.95 45.22% 88.25 61.1% 37.36 49.43% 23.98 64.79%

Traditional Hyper-parameter Optimization method
GA 4.32 50.74% 34.8 55.62% 84.7 62.66% 13.8 81.31% 20.3 71.72%

Bayesian 3.86 55.94% 34.2 56.36% 82.1 63.8% 12.9 82.52% 19.9 72.64%

PSO 3.84 56.22% 37.2 52.52% 80.5 64.5% 13.9 81.22% 20.2 71.95%

The Proposed Hyper-parameter Optimization method
AGA 4.26 51.32% 36.7 53.24% 83.6 63.15% 13.4 81.91% 20.6 71.28%

GA+KNN 3.4 61.17% 30.11 61.6% 74.34 67.23% 12.46 83.13% 18.09 74.78%

Our method 3.43 60.89% 30.11 61.6% 74.75 67.05% 12.46 83.13% 18.17 74.67%

ES 3.37 61.53% 30.11 61.6% 73.74 67.5% 12.46 83.13% 17.94 75.03%
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Fig. 5.13 Predicted traffic loads of the conventional ADNN and our framework as well as the
ground true traffic loads generated in mobile cell 785.

and letting these proper hypothesis functions be efficiently found in the base-learner’s training

process.
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Fig. 5.14 Predicted traffic loads of the conventional ADNN and our framework as well as the
ground true traffic loads generated in mobile cell 6708.
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Fig. 5.15 Predicted traffic loads of the conventional ADNN and our framework as well as the
ground true traffic loads generated in mobile cell 9106.

Compared with Bayesian optimization, PSO, GA, and AGA, meta-learner in the proposed

framework can always obtain better hyper-parameter selection strategies for the testing base-

learners. This can be attributed to the fact that the presented KNN learning algorithm in the

meta-learner derives high-quality first-generation chromosomes, i.e., initial searching points
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of each hyper-parameter optimization problem, and makes it much easier for the following

advanced genetic algorithm to find a satisfactory solution in the problem’s huge solution

space. From Table 5.2, we also see that hyper-parameters provided by GA+KNN or even

ES can hardly further enhance the base-learners’ after-training performance in comparison

with our framework. These results demonstrate that the proposed meta-learner can efficiently

generate appropriate solution for each hyper-parameter optimization problem which is very

close to the theoretically optimal one, and also indicate that the adopted GRN based deep

neural network in the advanced genetic algorithm can effectively screen out high-quality

son chromosomes in each generation even though the practical fitness values of those son

chromosomes are not calculated.

Figs. 5.13, 5.14, and 5.15, show the predicted traffic loads of the conventional ADNN

and our proposed framework, as well as the ground true traffic loads generated in three

randomly selected testing mobile cells, i.e., mobile cells 785, 6708, and 9106, respectively.

It is obvious that the proposed framework can help the base-learners adapt to different

base-tasks and predict cell-level wireless network traffic loads accurately supported by the

suitable hyper-parameter selection strategies. On the other hand, the conventional ADNNs

with randomly selected hyper-parameters for cells 785 and 6708 have considerable prediction

errors even though they are well trained, which emphasizes the importance of hyper-parameter

optimization for traffic prediction models and the importance of this research work.

5.4.5 Computational Time of the Proposed Framework

Fig. 5.16 shows the average on-line computational time of the considered hyper-parameter

optimization methods, i.e., the proposed framework, GA, AGA, GA+KNN, and ES, over the

testing base-tasks.

From Fig. 5.16, we can see that the ES consumes the most on-line computational time.

This is because the ES must calculate the fitness value of each hyper-parameter selection

strategy for the base-learner of every testing base-task and thus train the base-learner the

same number of times as the amount of all the possible hyper-parameter selection strategies.

Obviously, when the hyper-parameter optimization problem possesses a huge solution space,



100
Hyper-parameter Optimization for Cell-level Wireless Network Traffic Prediction with A

Novel Meta-Learning Framework

Method
0

10

20

320

330

340

T
im

e
(h

)

8.38
10.14

18.07
16.31

333.27
// //

Our framework

AGA

GA+KNN

Conventional GA

ES

Fig. 5.16 The average on-line computational time of the considered hyper-parameter opti-
mization methods.

the ES may not be practical due to its enormous computational complexity. Thanks to the

novel deep learning assisted chromosome screening scheme, the proposed framework and

AGA can quickly pick out the survived son chromosomes from all the generated ones without

figuring out their exact fitness values in each iteration (chromosome generation). As a

result, the proposed framework and AGA have much less on-line computational complexities

compared with GA and GA+KNN. Conceivably, the computational complexity advantage of

the proposed framework and AGA over GA and GA+KNN will further increase if the ratio

between W and M augments. An interesting phenomenon we can also observe from Fig. 5.16

is that the proposed framework has smaller computational complexity than AGA in solving

the hyper-parameter optimization problems even though they both adopt the intelligent

chromosome screening scheme. This is because owing to the high-quality first-generation

chromosomes provided by the KNN learning method, son chromosomes duplicated from the

high-quality parent ones will have higher probabilities to survive at initial stage of Algorithm

2, avoiding considerable computational time in calculating these chromosomes’ fitness values

in the following iterations.
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Fig. 5.17 MSE performance achieved by the considered hyper-parameter optimization meth-
ods when base-learners adopt other deep learning algorithms rather than ADNN.

Please note that the proposed framework needs relatively long computational time to

construct the set of meta-samples for its meta-learner. However, since these meta-samples

will be obtained off-line and the meta-knowledge only needs to be prepared once for the

proposed framework, this extra off-line computational complexity can be justified by the

improved after-training prediction accuracy of base-learners.

5.4.6 Robustness Analyses of Algorithm 2

We evaluate the robustness of Algorithm 2 if base-learners adopt other deep learning-based

models for cell-level wireless NTP.

Specifically, when each base-learner is designed as an LSTM network, or a GRU network,

and the corresponding hyper-parameter selection ranges are listed in Table I, Fig. 5.17 and

Fig. 5.18 show how the considered hyper-parameter optimization methods can elevate base-

learners’ after-training prediction accuracy in terms of the average MSE and R2 coefficient

over the testing base-tasks by providing them proper hyper-parameter selection strategies.

Fig. 5.19 demonstrates the on-line computational time of Algorithm 2 in comparison to other

hyper-parameter optimization methods. Please note that for each deep learning algorithm, we
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Fig. 5.18 R2 performance achieved by the considered hyper-parameter optimization methods
when base-learners adopt other deep learning algorithms rather than ADNN.

construct identical set of meta-samples for Algorithm 2 and each chromosome in Algorithm

2 represents a feasible hyper-parameter selection strategy of the base-learner related to this

deep learning algorithm. From these three figures, we can observe clearly that compared

with randomly selected hyper-parameters, Algorithm 2 will always significantly decrease

base-learners’ average MSE, increase base-learners’ average R2, and possess acceptable

on-line computational time no matter what deep learning algorithm these base-learners

adopt. Moreover, compared with ES, Algorithm 2 can always provide base-learners hyper-

parameter selection strategies making them achieve after-training prediction accuracies very

similar to those achieved with the theoretically optimal hyper-parameter selection strategies.

Figs. 5.17, 5.18, and 5.19 demonstrate that Algorithm 2 is robust to deep learning algorithms

the base-learners are with.

5.5 Conclusion

In this chapter, a novel hyper-parameter optimization method has been proposed for cell-

level wireless NTP with a meta-learning framework. In the framework, the ADNN is

adopted as the base-learner to perform each cell-level wireless NTP task, i.e., base-task.
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Fig. 5.19 The average on-line computational time of the considered hyper-parameter op-
timization methods when base-learners adopt other deep learning algorithms rather than
ADNN.

What is more, we have defined finding the optimal hyper-parameters for the base-learner

of each base-task according to the base-task’s meta-features as the meta-task, and proposed

a novel meta-learner to solve it. Based on our observation from real-world traffic records

that base-tasks possessing similar meta-features tend to favour similar hyper-parameters

for their base-learners, the meta-learner has exploited a KNN learning method to obtain a

set of high-quality candidate hyper-parameter selection strategies for a new base-learner

with the assistance of meta-knowledge and then utilized an advanced genetic algorithm

with intelligent deep learning assisted chromosome screening to finally search the optimal

solution of the hyper-parameter optimization problem. We have examined the performance

of our framework through real-world cell-level wireless NTP tasks. Extensive experiments

demonstrate that our framework can significantly elevate the base-learners’ after-training

prediction accuracy by providing them near optimal hyper-parameter selection strategies.

Moreover, we have also revealed that the proposed meta-learner is robust to deep learning

algorithms adopted by base-learners.





Chapter 6

Conclusions and Future Work

6.1 Conclusion

This dissertation focuses on the NTP technology and considers the overall performance of

the NTP model including prediction accuracy, computational efficiency and interpretabil-

ity. In this dissertation, wireless network traffic has been divided into two categories, i.e.

aggregate-level and cell-level wireless network traffic, based on whether or not overall user

behavior patterns can be constructed from historical traffic data. Then we have researched the

wireless network traffic patterns in various scenario, and proposed corresponding methods to

construct specific NTP models. In comparison to benchmark methods, the proposed methods

significantly improve overall prediction performance.

Chapter 3 and Chapter 4 focus on the aggregate-level wireless network traffic. The

emphasis of Chapter 3 is regular aggregate-level wireless network traffic without special

events. In Chapter 3, we have considered the connections between the user behavior and

the corresponding wireless network traffic pattern, inventively utilized the user behavior

into the construction of the NTP models, and laid the foundation of the following works

in Chapter 4. In comparison with the benchmark models including the ARMA model, the

ARIMA model, the MLP network, and the LSTM network, the proposed UBB NTP method

in Chapter 3 significantly improves the interpretability and computational efficiency. In terms

of prediction accuracy, the UBB NTP method and the LSTM network are comparable and
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far superior to other benchmark models. Furthermore, the standardized parameter set enables

comparison of traffic patterns in different regions. Hence, this method is also valuable in the

combination of communication and social science.

In Chapter 4, we have taken into account the nonroutine wireless network traffic which

poses a severe challenge to existing NTP methods including the traditional statistics-based

and the ML-based methods in terms of prediction accuracy, computational efficiency and

interpretability. Thus, we have proposed the NNTP method in Chapter 4, and then constructed

the SG-NNTP model as a case study of the NNTP method on the basis of real-world soccer-

game events. Meanwhile, the corresponding single-step and multi-step prediction modes

have been explained in detail. Similarly, the ARMA model, the ARIMA model, the MLP

network, and the LSTM network are chosen as comparison models. By comparing the

performance of the NNTP method with that of the benchmark methods, the NNTP method

exhibits excellent results in prediction accuracy, computational efficiency and interpretability.

Even in term of prediction accuracy where the deep learning-based NTP methods excel, the

proposed NNTP method still achieves significant advantages.

Chapter 5 focuses on cell-level wireless network traffic data in which it is hard to extract

the overall user behavior patterns due to its extreme complexities. We have chosen several

models for cell-level wireless NTP tasks, including the ARIMA model, the SVR, the GP, the

GRU network and the ADNN, and evaluated their prediction accuracy. Numerical results

indicate that the deep learning-based models possess obvious advantages in comparison

with the traditional statistics-based and the shallow learning-based models. Hence, in this

context, deep learning-based models should be chosen to maximize the prediction accuracy.

Furthermore, experiments in Chapter 5 have verified the huge impact of hyper-parameter

selection strategies on these deep learning-based models. To develop the full potential of

the deep learning-based models, we have investigated the hyper-parameter optimization

problem and proposed a novel meta-learning based framework to solve the problem. In this

framework, cell-level wireless NTP is regarded as the base-task corresponding a base-learner,

and its hyper-parameter selection is the meta-task solved by a meta-learner. More specifically,

the meta-learner utilizes the KNN algorithm to match a new base-learner with a set of high-
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quality hyper-parameter selection strategies which are then used in a GA algorithm as its

initial chromosomes. To further improve the execution efficiency, we have introduced a GRN

module to assist the chromosome screening. The experimental results in Chapter 5 shows

that the proposed meta-learning based framework can significantly develop the base-learner’s

potential and improve its prediction accuracy with great execution efficiency. In addition, the

robustness of the proposed meta-learning based framework has been validated as well.

6.2 Future Works

This thesis has investigated the aggregated-level NTP tasks and proposed interpretable NTP

methods, i.e., the UBB NTP method and the NNTP method. For cell-level NTP tasks, we

have proposed an attention-based deep neural network with a novel meta-learning based

hyper-parameter optimization framework. These works can be extended in the following

directions.

• Similar to the common challenge encountered in related works, most of the wireless

network traffic data is regarded as sensitive data by the operators, and only very little

and outdated wireless network traffic data is available to the public for academic

research. In this thesis, the traffic datasets we used are those that took place in Milan

in 2013 and those that took place in Guangzhou in 2017, which are outdated as well.

In our future work, we will analyze the latest real-world wireless network traffic data

from diverse regions with our interpretable methods.

• This thesis mainly focuses on the short-term trend of the wireless network traffic data,

and has not taken the long-term trend and the seasonality into consideration, which

is also due to the constrain of wireless network traffic datasets. The time span of the

traffic datasets we used in this thesis ranges from a maximum of two months. In the

future, we will investigate the long-term trend and the seasonality in the datasets with

long time span to further enrich the proposed methods.
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• As the preliminary research for NNTP, Chapter 4 just provides one case study. In

the future, we will collect more nonroutine events and the corresponding traffic data.

Subsequently, we will develop a method to capture the dependence between the events

and the corresponding traffic data, and construct specific NNTP models for various non-

routine events. Finally, these NNTP models will be stored into a database, and a novel

framework will be introduced to identify the nonroutine traffic and match it with suit-

able NNTP models. In addition, we will also consider the identification, classification

and prediction of the nonroutine traffic in the absence of advance information.

• For cell-level wireless NTP model, our current proposed hyper-parameter optimization

framework relies heavily on meta-knowledge. In other words, the meta-sample set

must first be constructed. In future work, we will investigate whether the meta-task

considered in this work can be solved with deep reinforcement learning technology in

the absence of meta-knowledge.
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