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Abstract

Parkinson’s Disease (PD) is a progressive neurodegenerative disorder characterised by both

motor impairment and non-motor symptoms, including cognitive impairment. PD presents

significant challenges for reliable diagnosis and accurate symptom assessment. The current

“gold standard” clinical assessments rely on visual judgement, introducing subjectivity. This

thesis aims to mitigate these limitations by applying objective machine learning methodolo-

gies to two distinct types of movement data, simple hand motor tasks and neuropsychological

graphmotor assessments, with the objective of modeling motor severity and a potential for a

more granular approach for assessing cognitive impairment for people with PD.

For the hand motor tasks, end-to-end time series classification models were used to analyse

positional data collected from 47 healthy controls and 148 PD patients. These models were

applied for the diagnosis of PD and for the detection of clinically slight bradykinesia. After

employing a 5-fold nested cross-validation strategy, the top-performing models achieved an

accuracy rate of 84% for PD diagnosis and 82% for bradykinesia detection. These models

provide an agile, objective, and rapid framework for hand kinematic assessments, negating

the need for domain-specific knowledge. They have the potential to serve as essential tools

for preliminary research in the field of kinematic evaluations.

For the drawing assessments, the structural components of the Benson Complex Figure were

identified with a top accuracy rate of 96%, following the novel investigation of encoding

pen-dynamics. This enables the extraction of cognitive features related to the organisational

strategy employed by the subjects.

Collectively, these findings introduce promising new data-driven approaches for the modeling

of PD diagnosis and cognitive states. Importantly, the research is designed with the aim of in-

tegrating these methodologies into routine clinical practice and aligning with current research

interests, thus laying the groundwork for future domain-specific studies in PD assessment.
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Chapter 1

Introduction

1.1 Clinical Motivation

PD has emerged as a pressing healthcare issue, as evidenced by its rapidly growing prevalence

and associated societal burden. According to the Global Burden of Disease study spanning

1990 to 2016 [57], neurological conditions have become the leading cause of disability world-

wide. Within this spectrum of disorders, PD has shown the most significant increase in

age-standardised prevalence, disability, and mortality rates. Dorsey et al. extend this obser-

vation by characterising the escalating trend in PD as resembling a pandemic. They identify

multiple factors potentially responsible for this rise, including aging populations, increased

life expectancy, declining rates of smoking, and industrialisation by-products. These factors,

either singly or in a combinatory fashion, may underlie the growing number of individuals

diagnosed with PD [51]. Given this, the underlying pathological causes of PD are still not

fully understood [153].

What is known however, is that symptoms arise from the progressive loss of dopaminer-

gic neurons in the substantia nigra of the midbrain, resulting in the depletion of dopamine

in the basal ganglia [72]. This biochemical imbalance, of which is also seen in dopamine

antagonist drugs [170], manifests as the cardinal motor symptoms, collectively referred to

as Parkinsonisms. These include akinesia and bradykinsia (loss and slowness of movement,

respectively), tremor, and rigidity. People with Parkinson’s Disease (PwPD) may also expe-

rience additional motor deficits such as gait disturbance, impaired handwriting, grip force,

and quieter speech [81]. In addition to motor symptoms, PD is also associated with vari-

ous non-motor symptoms, including urinary dysfunction, fatigue, depression, sleep disorders,

and cognitive impairments [108]. Mild Cognitive Impairment (MCI), the stage between the
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expected decline in cognition due to aging and dementia, is common even in de novo PD;

present in 25% to 30 % of non-demented patients with PD. Additionally, the transition from

MCI to dementia is common (nearly 80%)[23]. Current treatments do not offer a cure for

PD or cognitive dysfunction; however, early interventions for motor symptoms and cogni-

tive decline have been correlated with improved patient outcomes [121, 23]. Furthermore,

with no definitive test for identifying PD or MCI, diagnosis relies on clinically administered

assessments [101].

The Movement Disorder Society - Sponsored Revision of the Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS) is the “gold standard” for comprehensive evaluation of both

motor and non-motor symptoms associated with PD [61]. The outcomes derived from this

assessment are pivotal in clinical trials focused on the exploration of new treatments [10, 26].

Among these outcomes, upper-limb tests such as finger tapping are used to elicit bradykinesia

symptoms. However, it should be noted that these assessments, although comprehensive, have

limitations. They are largely subjective in nature, relying on clinician observation, and yield

only moderate interrater reliability [197]. It should be noted for an assessment of MCI, it is

recommended that supplementary neuropsychological evaluations be conducted to obtain a

comprehensive cognitive profile of the patient [102].

The Rey-Osterrieth Complex Figure Test (ROCF) [151] is a widely used neuropsychological

graphmotor (drawing) assessment, discussed further in Chapter 5, which can be summarised

as assessing the following cognitive domains:

• Visuospatial Abilities : The test requires the individual to draw a complex figure,

thereby assessing spatial perception and organisation. Using the figure it has been

shown that individuals with autism have an atypical pattern of visual processing [93].

• Memory : The test often includes a delayed recall phase, reproducing the figure from

memory.

• Executive Functioning : The task involves elements of planning and organizational

skills, as the individual needs to decide how to approach drawing the complex figure.

• Attention : Completing the figure requires sustained attention to detail and the ability

to focus on the task at hand.

• Motor Skills: Though not a primary domain of assessment, the act of drawing the

figure also involves fine motor skills.

This test has specific relevance for PD, especially when considered in light of the ’dual syn-
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drome’ hypothesis [85]. According to this hypothesis, two cognitive subtypes can be dis-

tinguished in Parkinson’s Disease Mild Cogntive Impairment (PD-MCI). A frontostriatal

subtype characterised by deficits in attention and/or executive functions and a posterior

cortical subtype primarily exhibiting impairments in visuospatial skills, memory, and/or

language. The latter subtype has been associated with a higher risk of developing dementia.

However, the standard scoring methods applied do not quantify the process or how the task

was completed which could reveal deficits in domains relevant to each subtype.

The United Kingdom faces a notable shortage of consultant neurologists, which leads to ex-

tended waiting periods for PwPD to receive proper assessments [128]. The limitations of

current diagnostic methods further compound the issue; clinician-based diagnoses may ini-

tially exhibit accuracy rates as low as 75-80% [154], although these rates typically improve

with subsequent follow-up appointments [107]. This scarcity of specialised medical profes-

sionals, coupled with the inherent inadequacies of traditional scoring systems and diagnostic

challenges, underscores the urgent need for a more efficient and reliable assessment method-

ology. To address this gap, the thesis applies digital sensors and data-driven models as a

means to augment the objectivity and utility of clinical assessments.

1.2 Research Interest and Objectives

Recent advances in computer vision technologies have been increasingly recognised within

the medical community for their capabilities in quantifying hand kinematics through video

data [172]. Traditional machine learning approaches designed to objectively evaluate motor

severity and for disease diagnosis, require domain-specific expertise to derive features of

clinical relevance. Typically, high-dimensional hand kinematic data is often reduced to a

one-dimensional signal. For example, the amplitude between the finger and the thumb is

commonly used. However, this reduction inherently narrows the search space, potentially

missing valuable data. It is noteworthy that only recently has the field begun to explore the

extraction of features from 3D positional data in the context of the finger-tapping test [99].

Other motor tasks remain to be explored, highlighting that there is a need to establish which

tasks are the most clinically relevant before domain-specific analysis occurs.

Deep learning, is an approach from which feature extraction is automatically performed, and

has demonstrated comparable results to domain specific approaches [207]. Recent algorithmic

advances in the space of multivariate time series have produced end-to-end algorithms that

do not rely on gradient based optimisation, and are very fast to train even on a CPU [45].
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With the ease of data collection, and the ease of training end-to-end classification algorithms

with minimal pre-processing, makes the possibility of applying this technique to a broader

range of hand kinematic studies, of clinical interest.

Thus, as addressed in Chapter 4, the objective is to:

Evaluate the performance of end-to-end multivariate time-series classification algorithms for

the prediction of PD, and motor severity within standard upper limb assessments

Digital graphics tablets have historically been employed for the objective assessment of PD,

as expectedly motor symptoms manifest in graphmotor tasks [203, 31]. However, the typical

tests applied do not directly relate to cognitive domains. For tasks like the ROCF, manual

approaches to recording organisation and strategy have long existed, although similarly to

upper limb assessment, the granularity in which organisation and planning can be objectively

recorded is limited. Recent investigations into the semantic evaluation of these tasks are

promising [139], although they are limited in their practical applicability due to the requisite

manual segementation of strokes.

Thus, as addressed in Chapter 5 the objective is to:

Develop an approach for the automatic segmentation of neuropsychological drawings

Subsequent to this primary focus, a supplementary line of inquiry emerged, investigating

feature representations that enable the inclusion of pen-dynamics within these segmented

drawings.

The overarching hypothesis of this work is then:

”Machine learning methodologies can serve as effective tools in improving diagnostic utility

of standard clinical assessments in Parkinson’s Disease”

This aligns with the broader goal of developing objective, efficient, and cost-effective diagnos-

tic tools that can improve the diagnostic utility of routine clinical assessments. The research

question will be revisited in the conclusion, leveraging the empirical results.
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1.3 Structure of Thesis

Chapter 2 provides a background to PD and clinical assessments. Chapter 3 details the

evaluation methods utilised during the later chapters. Chapter 4 provides the first evalu-

ation of recent timeseries classification methods for the diagnosis of PD and bradykinesia,

using positional data collected from three distinct upper limb assessments. Chapter 5 details

the proposed approach for digital drawing segmentation, with the investigation on whether

encoding pen dynamics will assist in segmentation. Finally Chapter 6 concludes the thesis,

reviewing the rationale and work conducted, the key findings and outlining future work.
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Chapter 2

Parkinson’s Disease: Clinical

Presentation and Assessment

The objective of this chapter is to provide the reader with an overview of PD, including its fun-

damental characteristics and relevant assessment methods. Firstly, the signs and symptoms

of PD, treatments available, along with challenges in its diagnosis, particularly in relation

to other similar conditions, will be explored. Secondly the “gold standard” assessment tools

used in the diagnosis and assessment of PD, emphasising their clinical relevance and scoring

systems employed will be outlined. This section will offer insights into the most reliable and

widely accepted methods for evaluating the disease.

2.1 Clinical Presentation of Parkinson’s Disease

References to symptoms resembling those of PD can be found in ancient texts, substantiating

the disease’s longstanding impact on human health [206, 132]. It was James Parkinson’s

seminal work “An Essay on the Shaking Palsy” published in the early 19th century which

laid the foundation for the contemporary understanding of the disease named in his honour.

Parkinson defined the condition as:

“Involuntary tremulous motion, with lessened muscular power, in parts not in action and

even when supported; with a propensity to bend the trunk forwards, and to pass from a

walking to a running pace: the senses and intellects being uninjured” [135]
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Main Symptoms (often referred to as Parkinsonisms)
* Tremor - Uncontrollable shaking or trembling; usually begins in the hand or arm when

relaxed and resting

* Rigidity (muscle stiffness) - tension in the muscles, impeding mobility and can result in
painful muscle cramps (dystonia)

• Bradykinesia (slowness of movement) - physical movements are distinctively slowed,
resulting in a shuffling gait

* Postural instability - balance problems, increasing the likelihood of falls and injuries

Physical Symptoms

* Constipation

* Excessive production of saliva

* Dysphagia (problems swallowing)

* Insomnia
• Anosmia (loss of sense of smell) - may occur in the prodomal phase, many years before
the onset of symptoms

• Nerve pain

• Urinary incontinence

• Sexual dysfunction

• Dizziness, blurred vision or fainting - caused by a sudden drop in blood pressure

• Hyperhidrosis (excessive sweating)

Cognitive and Psychiatric Symptoms

• Depression and anxiety

• Mild cognitive impairment - slight memory problems and problems with activities that
require planning and organisation

• Dementia - a group of symptoms, including more severe memory problems, personality
changes, seeing things that are not there (visual hallucinations) and believing things
that are not true (delusions)

Table 2.1: Symptoms of Parkinson’s Disease adapted from NHS guidelines [126]. A * denotes
symptoms originally identified by James Parkinson [135].
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Parkinson’s observations encompass several primary symptoms that have remained central

to diagnosis today, as detailed in Table 2.1. Much of the historical and current diagnos-

tic framework has focused on the motor manifestations of the disease. One such refinement,

from Jean-Martin Charcot in the late 19th century was the identification of Bradykinesia [30].

This symptom, defined as the “slowness of initiation of voluntary movement with progressive

reduction in speed and amplitude of repetitive actions”, is particularly notable as it must be

present (in addition to one other primary Parkinsonism symptoms) to meet the UK Parkin-

son’s Disease Society Brain Bank diagnostic criteria [35]. These criteria aim to maximise

diagnostic accuracy during a patient’s lifetime and are particularly useful for standardising

the classification of subjects in research settings. The overarching aim of these guidelines is

to approximate, through clinical means, the conclusive neuropathological diagnosis that can

only be confirmed via post-mortem tissue examination [74]. In achieving this, the criteria

affords clinicians the opportunity to initiate timely and precise interventions. However, early

diagnosis of PD remains challenging, with misdiagnosis rates reported at 25% [154], largely

owing to the fact that a number of other conditions share the cardinal symptoms, illustrated

by Figure 2.1.

Neuropathological hallmarks of PD include structural changes such as the loss of dopamin-

ergic cells within the substantia nigra, and the buildup of alpha-synuclein proteins, forming

structures known as Lewy bodies and Lewy neurites inside nerve cells. By the time PD

symptoms manifest clinically, a large number of these dopamine-producing cells have already

been lost; Toss et al. [159] report a 50% loss. The main motor symptoms are attributed

to the death of nerve cells in the substantia nigra, a section of the midbrain critical for

the production of the neurotransmitter dopamine. The reduction in overall dopamine levels

negatively impacts the communication ability of the basal ganglia, “a group of sub-cortical

nuclei responsible primarily for motor control, as well as other roles such as motor learning,

executive functions and behaviours and emotions” [95]. The underlying pathology for this cell

loss remains unclear, but it is associated with the aforementioned buildup of alpha-synuclein

and formation of Lewy bodies and neurites.

Ultimately, PD is neurodegenerative, as neurons gradually die or diminish in their function,

new symptoms emerge and existing ones often intensify. For instance, initial motor symptoms

generally occur asymmetrically, affecting one side of the body more than the other. As it

progresses, the motor symptoms may become bilateral, but one side of the body often remains

more affected than the other [50]. Introduced in 1967, the Hoehn and Yahr scale [69], was the

first objective measure for assessing the progression of the disease. This scale consists of five

stages, ranging from mild to severe, based on the degree of functional impairment and the

presence of bilateral involvement. The modified Hoehn and Yahr stage is detailed in Table
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Parkinsonism

An umbrella term of syndromes with cardinal
motor symptoms of Parkinson’s disease, often
abbreviated by the features: TRAP (Tremor,
Rigidity, Akinesia/Bradykinesia, Postural insta-
bility) [55].

Idiopathic Parkinson’s Disease

Accounts for most Parkinsonism cases, com-
monly reported as 80% of cases (65% according
to [168]). Characterised by the absence of an
identifiable secondary cause.

Parkinson-Plus syndromes

Forms of atypical parkinsonism, often marked
by poor or no response to levodopa. Including:

• Progressive Supranuclar Palsy (PSP)

• Corticobasal Degeneration (CBD)

• Multiple System Atrophy (MSA)

• Dementia with Lewy bodies (LBD)

Figure 2.1: Overview of Parkinsonism and related disorders

2.2.

Although the Hoehn and Yahr scale provides a clinical framework for assessing disease pro-

gression, the underlying pathological mechanisms remain less clear. The Braak hypothesis

has gained attention for its attempt to address this gap [14]. Braak hypothesised that an

unknown pathogen in the gut could be the cause of PD. The system divides the disease into

six stages based on the distribution of Lewy bodies. Stages 1 - 2 focus on the olfactory

structures and the vagus nerve, reflecting the intitial impact on smell. Stages 3-4 involve

the spread to the midbrain and basal ganglia, affecting movement, while stages 5-6 reach

the cortical regions impacting cognitive functions. Higher Braak stages were associated with

cognitive decline and dementia [37].

Despite James Parkinson’s insights into non-motor symptoms, much of the historical and

current diagnostic framework has centered on the motor manifestations of the disease. In a

recent survey, 48% of people with PD reported that non-motor symptoms presented a greater

challenge for quality of life than motor symptoms [68].

Parkinson’s Disease Dementia (PD-D) is a cognitive impairment that can develop in individ-

uals diagnosed with PD. It is characterised by a decline in cognitive functions that is more

pronounced than what might be expected from normal aging or the typical progression of PD

itself. PD-D often manifests as deficits in attention, executive function, memory, and visu-
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ospatial abilities. These impairments can affect daily living activities and reduce the quality

of life. In a systematic review, the point prevalence of dementia was found to be 24-31% [1].

PD-D is closely related to Lewy Body Dementia (LBD). The distinction between the two

is that cognitive issues are more prevalent earlier on in LBD. However, it should be noted

that the association between cortical Lewy body pathology and dementia is not consistently

observed in all cases.

MCI is an increasingly recognised non-motor symptom of Parkinson’s disease. Similar to

PD-D, PD-MCI affects the ability to perform the activities of daily living but is less severe.

People with PD-MCI are at a greater risk of transitioning to dementia. Alterations to lifestyle

may play important roles in preventing of slowing down this conversion; however, no current

treatments slow down or halt the progression of PD.

Stage Description

1.0 Unilateral involvement only.
1.5 Unilateral and axial involvement.
2.0 Bilateral involvement without impairment of balance.
2.5 Mild bilateral involvement with recovery on retropulsion (pull) test.
3.0 Mild to moderate bilateral involvement, some postural instability but physi-

cally independent.
4.0 Severe disability, still able to walk and to stand unassisted.
5.0 Wheelchair bound or bedridden unless aided.

Table 2.2: Modified Hoehn and Yahr Stages [59]

It was through the work of Nobel laureate Arvid Carlsson, whereby the vital link between

dopamine and Parkinson’s disease was first discovered, and from which the most effective

treatment for Parkinson’s disease is derived [25]. Carlsson’s experiments in the late 1950s

demonstrated that dopamine is a neurotransmitter in the brain and that it plays a crucial role

in controlling movement. He showed that animals deprived of dopamine became immobile,

but their movement could be restored with the amino-acid Levodopa (L-DOPA), a precursor

to dopamine. When administered it is able to cross the blood-brain barrier and is then

converted to dopamine in the brain. The restoration of dopamine significantly alleviates many

of Parkinson’s diseases motor symptoms. Today, oral L-DOPA is now the “gold standard”

treatment, dramatically improving many patients quality of life. However it is not a cure,

and can also lead to similar motor complications referred to as Levodopa-induced Dyskinesia

(LID), that also worsens time.

An alternative treatment is an invasive surgical procedure called Deep Brain Stimulation

(DBS) [36]. The procedure involves the insertion of two probes into the brain. They are then

attached by wires to an impulse generator under the skin in the chest. The impulse generator

emits signals to the probes which helps override the mechanical effects of PD. The reason
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why this overrides the tremors is not yet fully understood. Similar to LID, stimulators and

medications should be optimised for the patient. People with underlying conditions who do

not respond well to L-DOPA or who are simply too old, are not offered this treatment. An

additional exclusion criteria is those with significant cognitive impairment [115]. Tritation

for medication and for DBS can prove extremely challenging and time consuming.

2.2 Clinical Assessments

Concurrent with the advancements in treatments for PD, clinical assessments employed to

validate their efficacy have also evolved. The advent of oral L-DOPA necessitated a robust

measurement system; the Hoehn and Yahr scale fulfilled this role, providing a quantifiable

means to assess the treatment’s impact. In a similar vein, the Unified Parkinson’s Disease

Rating Scale (UPDRS) served as a critical instrument for the validation of DBS as a ther-

apeutic intervention. These assessment tools not only validate the efficacy but also offer a

standard against which the safety and patient outcomes can be evaluated. The subsequent

sections delineate the most widely adopted assessment instruments in PD.

2.2.1 Motor

The MDS-UPDRS [61] serves as the current “gold standard” for assessing the severity and

progression of Parkinson’s disease. Established in 1985, the Movement Disorder Society

(MDS) is a professional organisation comprised of clinicians, scientists and healthcare profes-

sionals specialising in movement disorders. The society plays a pivotal role in establishing clin-

ical guidelines, integrating contemporary research and expert consensus. The MDS-UPDRS

is well validated as a whole [144] and comprehensive, comprising four sections:

1. Non-Motor Experiences of Daily Living (13 questions) - This section consists

of a combination of self reported and clinically derived measures that evaluate mood,

cognition, behaviour and sleep quality. It aims to capture the non-motor symptoms

often overlooked but significantly impacting the quality of life in PwPD.

2. Motor Experiences of Daily Living (13 questions) - Self reported measures of

pertaining to complications with motor tasks in daily living such as dressing, eating

and walking.

3. Motor Examination (33 scores based on 18 questions with several right, left or other
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body distribution scores) - Clinically scored measures of motor function, including stan-

dardised assessments for tremor, rigidity and bradykinesia.

4. Motor Complications (6 questions) - Clinically scored measures of complications

arising from dopaminergic therapy, such as motor fluctuations of dyskinesia.

In total, the MDS-UPDRS includes 65 scored measures, each rated on a scale between 0

(normal) to 4 (severe). Part III carries the most significance in the scoring system, key

elements include:

• Rigidity (3.3) - Assessed by manually moving the patient’s limbs and neck. The

clinician evaluates resistance to passive movement and may also assess cogwheel rigidity

(ratchet like movement).

• Bradykinesia (3.4 - 3.8) - This involves tests like finger tapping, hand movements,

and rapid alternating movements. The clinician scores the patient based on speed,

amplitude, rhythm and hesistations during the task.

• Postural and Gait (3.9 - 3.13) - This includes evaluations on the patient’s posture,

stability and ability to walk.

• Tremor Assessment (3.15 - 3.18) - Evaluates postural (against gravity), resting and

kinetic (performed with an action) tremors.

Significantly (in relation to PD diagnosis), items pertaining to bradykinesia demonstrate the

lowest reliability [67]. This is due in part to the inherent subjectivity in visual assessment,

as well as the requirement to simultaneously aggregate several movement attributes (speed,

amplitude, rhythm, hesitations) into a single score. This is most evident when the severity

is slight or mild [60]. Further insights into the reliability of finger-tapping tests are provided

by the study conducted by Stefan et. al. [197]. In this twenty one movement disorder

neurologists were presented with an eleven second finger tapping video, and asked to rate the

severity, critically without any cues from additional examination history. As noted in their

conclusion, “even experts show considerable disagreement about the level of bradykinesia on

finger tapping, and frequently see bradykinesia in the hands of those without neurological

disease” [197].
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2.2.2 Cognitive

The evaluation of cognitive symptoms, particularly milder manifestations, in PD remains in-

adequately addressed by the single cognitive item within the MDS-UPDRS. To provide a more

nuanced understanding, the MDS has introduced specific guidelines for diagnosing PD-MCI.

The guidelines are stratified into two levels of assessment that vary in comprehensiveness.

Level I Assessments, such as the Montreal Cognitive Assessment (MoCA) [123], offer a rapid

global evaluation of cognitive function. In contrast, Level II Assessments provide a more

granular exploration of cognitive domains, including attention, executive function, language,

and visuospatial abilities.

Among the tools employed for these assessments, constructional tasks, such as the reproduc-

tion of a 3D cube or interlocking pentagons, are widely favored. These tasks serve the dual

purpose of evaluating motor coordination as well as cognitive function, particularly executive

and visuospatial abilities. Simple tasks like the interlocking pentagons have demonstrated

utility in identifying cognitive decline in PD [84].

As detailed in Table 2.3, various assessments utilise multiple scoring schemes, and none

account for the copy strategy employed by the patient.

Test/Battery Graphomotor Assessment Relevant Metrics

GPCOG [18] Clock Drawing Test Numbers (0-1), Hands (0-1)
Mini-cog [13] Clock Drawing Test Pass/Fail
MMSE [92] Interlocking Pentagons Pass/Fail
ACE-III [11] Various Tasks Infinity Diagram (0-1), Wire Cube (0-2), Clock (0-5)
MoCA [123] Various Tasks Pentagons (0-1), Cube (0-1), Clock (0-3)

NACC UDS [116] Benson Figure Copy and Recall Accuracy and placement (0-17)

Table 2.3: Summary of graphmotor tasks within standard cognitive assessments

2.3 Current Application of Digital Sensors

In alignment with the NHS’s overarching digital initiatives [4], the growing utilisation of dig-

ital sensors, capable of capturing a wide array of human movement, signifies a transformative

shift in disease assessment methodologies. The National Institute for Health and Care Ex-

cellence (NICE) has already endorsed the use of five specific inertial sensors for home-based

monitoring of PD [127].

These sensors are aimed with objective to monitoring bradykinesia, and LID in the home.

Several of these devices employ machine learning algorithms to analyse extracted movement

features [155, 7], estimating severity of dyskinesia and bradykinesia for medication titra-
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tion purposes. However, it is crucial to note that the effectiveness of these technologies is

contingent upon a prior clinical diagnosis.

2.4 Summary

• A timeline of key advancements in the progression of PD is presented in Figure 2.2.

• Current treatments cannot slow or stop the progression of the disease, but they can ease

symptoms, and help people continue a good quality of life. As a result early diagnosis

and accurate diagnosis is a crucial first step to successful monitoring of the disease in

addition to providing appropriate treatment.

• Bradykinesia, the key symptom, it is assessed in the part III of the MDS-UPDRS.

Scoring for these tasks is subjective.

• Visuoconstruction assessments play a role in the many global cognitive assessments.

The scoring for each assessment is usually crude, and does not reflect all aspects of

drawing.
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1817

Parkinson’s disease is established in the
medical literature. The cardinal symptoms
are first systematically described in James
Parkinson’s ’Essay on the Shaking Palsy’
[135]. Charcot further refined the clinical
symptoms, noting that tremor was not neces-
sarily a component of the disease, and distin-
guished bradykinesia as a separate cardinal
feature [30].

1912

Fredrich Lewy identifies ‘spherical neuronal
inclusions’ in brain regions outside of the
substantia nigra, in a post-mortem study of
a Parkinson’s patient [98]. The significance
of Lewy bodies in the disease remained a
mystery, especially since they were not found
in all Parkinson’s patients. In 1976 Lewy
bodies are linked to cognitive issues; demen-
tia with lewy bodies is first described [89].

1960

Arvid Carlsson demonstrates the role of
dopamine as a neurotransmitter, being crit-
ical for motor function; suggesting its defi-
ciency as a key factor in the pathogenesis of
Parkinson’s disease [190]. Carlsson was later
awarded a Nobel prize in 2000 for “discov-
eries concerning signal transduction in the
nervous system”.

1961

Birkmayer and Hornykiewicz show remark-
able, albeit temporary alleviation of Parkin-
son’s symptoms using levodopa (a precursor
to dopamine) [12]. After Cotzias developed
an adequate dose regimen in 1967 [41], and
FDA approval in 1975, levodopa rapidly be-
came the “gold standard” for treatment of
Parkinson’s disease.

2002

Deep brain stimulation, is approved by the
FDA for the treatment of Parkinson’s dis-
ease, after being in development since the
mid 1980s [36]. Involving a highly invasive
surgical procedure in which electrodes are
implanted into specific regions of the brain.
It is used to manage some of the symptoms
of Parkinson’s that cannot be adequately
controlled by medications.

2011

The Movement Disorder Society releases
guidelines for the identification of mild cog-
nitive impairment in Parkinson’s disease,
highlighting an evolving understanding of
the condition [102]. This recognition con-
trasts sharply with Parkinson’s initial obser-
vation that the ”intellects [are] uninjured,”
[135] underscoring the broader complexities
of the disease beyond physical symptoms.

Figure 2.2: Timeline of key advancements in Parkinson’s Disease research and treatment.
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Chapter 3

Supervised Machine Learning

3.1 Introduction

Machine learning constitutes the ability for algorithms to determine discriminative patterns

from data. It is comprised of three broad categories: unsupervised learning, reinforcement

learning, and supervised learning. Supervised learning is differentiated by the use of labels.

The process of supervised learning involves training a model to make predictions by providing

it with a set of features and their corresponding target labels. As depicted in Figure 3.1, an

input is provided to a trained classifier, which then generates a prediction. The efficacy of

these models lies in their ability to generalise from the training data to unseen instances,

thereby making accurate predictions on new data.

Input Classifier Prediction

Figure 3.1: From input to prediction via a classifier.

There are two general tasks, regression and classification. In the case of regression tasks, the

model attempts to predict continuous values, such as forecasting temperature or body height.

In contrast, classification tasks, which are the focus of this work, involve predicting discrete

labels, such as whether an email is ’spam’ or not spam’.

Supervised learning algorithms have been successfully deployed in the field of healthcare for

disease detection and diagnosis. In the context of Parkinson’s disease, we can treat the

diagnosis task as a binary classification task, where the two labels are ’Parkinson’s’ and
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’healthy’.

As illustrated in Figure 3.2, most supervised learning algorithms employ a training loop to

optimise internal parameters. The classifier generates predictions based on the input and

current internal parameters; the predictions generated by the estimator are compared to the

actual values to calculate a loss or error. The parameters of the estimator are then updated

in a way that minimally reduces the loss. This iterative process continues until the model’s

predictions are as close as possible to the actual targets, or until further training no longer

improves the model’s performance.

Inputs Parameters

Classifier

PredictionsTargets

Loss
Update

Figure 3.2: Training loop for machine learning algorithm.
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3.2 Evaluation of Classifiers

This section will detail standard metrics used to assess machine learning classifiers in binary

classification tasks as well as multi-class tasks, the latter is evaluated by breaking them

down into a series of binary tasks using either the One-vs-One (OVO) or One-vs-Rest (OVR)

strategy, followed by aggregation.

3.2.1 The Confusion Matrix, its Measures and Derived Metrics

Predicted Positive
Predicted
Negative

Actual Positive TP FN

Actual Negative FP TN

Figure 3.3: The Confusion Matrix, visualising four measures. The number of True Positives
(TP) , False Negatives (FN), False Positives (FP), True Negatives (TN)

The confusion matrix (Fig 3.3), visualises the output from a binary classifier. From which

one of the two classes is chosen to be the positive class. In a medical context, this generally

refers to the presence of a condition, disease or attribute that the classifier aims to detect or

predict. The positive class should be made explicit to ensure correct interpretation of results

derived from the confusion matrix. The four possible measures are the following:

• True Positives (TP): The number of positive cases predicted correctly.

• True Negatives (TN): The number of negative cases predicted correctly.

• False Positives (FP): The number of positive cases incorrectly predicted as positive.

A False Positive is also known as a Type I error.

• False Negatives (FN): The number of negative cases incorrectly predicted as nega-

tive. A False Negative is also known as a Type II error, and is more important medical

diagnostic purposes, as failing to identify a disease may delay treatment.
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The following metrics are derived from the confusion matrix measures, higher scores indicate

better performance.

3.2.1.1 Accuracy

Accuracy =
TP + TN

TP + FN + FP + TN
(3.1)

The ratio of correctly identified cases over the total number of cases, generally reported as a

percentage. While being the most easily interpretable metric, it has two major shortcomings

that should be considered. First and foremost, is the accuracy paradox [188], whereby in a

imbalanced dataset, high accuracy can be acheived by simply predicting the majority class

for all instances. Second, all correct predictions are considered equally, irrespective of class,

and does not distinguish between false positives and false negatives.

3.2.1.2 Precision, Sensitivity (Recall) and Specificity

Precision =
TP

TP + FP
(3.2)

Also known as the positive predictive value, precision measures the proportion of actual

positive instances that are correctly identified by the model. Important in contexts where

minimising false positive errors is crucial.

Sensitivity =
TP

TP + FN
(3.3)

Also known as the true positive tate (TPR) or recall, sensitivity quantifies the ability

of a classifier to correctly identify positive cases from all positive cases. High sensitivity is

crucial in healthcare diagnostics to correctly identify most individuals with a condition, albeit

with at the risk of a higher false positive rate (abbreviated as FPR, is the proportion of

negative instances that are incorrectly identified as positive).

Specificity =
TN

TN + FP
(3.4)

Also known as the true negative rate, specificity measures the proportion of actual negative
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instances that are correctly identified by the model. The FPR, is given as 1 - Specificity.

3.2.1.3 F1-Score

F1-score = 2× Precision×Recall

Precision+Recall
(3.5)

Often used in lieu of accuracy, the F1-score is defined as the harmonic mean of precision

and recall. It provides a balance between both measures, which are weighted equally. The

F1-score ranges between 0 and 1, where a score of 1 indicates perfect precision and recall, and

0 indicates the worst possible score. The F1-score is independent to the number of samples

correctly classified as negative, and thus with precision and recall, varies based on the positive

class.

3.2.1.4 Matthew’s Correlation Coefficient

MCC =
TP × TN − FP × FN√

(TP + FN).(TP + FN).(TN + FP ).(TN + FN)
(3.6)

The Matthew’s Correlation Coefficient (MCC) is recommended over the F1-Score for binary

classification evaluation, since it takes into account all four measures of the confusion matrix

[34, 33]. The MCC treats the actual class and predicted class as two variables and computes

their correlation coefficient, making it a robust metric for imbalanced datasets. The MCC

returns a value between -1 and 1. A value of 1 represents a perfect prediction, 0 represents a

random prediction, and -1 indicates total disagreement between predicted values and actual

values.

3.2.1.5 The Receiver Operating Characteristic (ROC) Area Under the Curve

(AUC)

In binary classification, classifiers often output the predicted probability for the positive

class. As a standard, a threshold of 0.5 is used, but it can be tuned to improve sensitivity or

specificity but not both (for less than perfect models). The Receiver Operating Characteristic

(ROC) is a graphical representation of varying the threshold as presented by Figure 3.4.

The Area Under the Curve (AUC) quantifies the classifiers overall ability to discriminate

between positive and negative classes.

43



Figure 3.4: ROC curves for four simulated classifiers demonstrating different levels of dis-
crimination ability based on their AUC scores (following rule of thumb from Hosmer and
Lemeshow [97]).

3.2.2 Metrics for the Semantic Segmentation of Images

The goal of semantic segmentation is to understand the contents of images. Specifically

pixel-level classification of images, where each pixel is assigned to a specific class. Recently,

deep learning methods, in particular Convolutional Neural Networks (CNNs), have achieved

significant improvements in this field [103].

The dataset of line drawings, such as that presented in Figure 3.5 in this thesis have am

additional consideration when calculating performance metrics. Given that the background

class dominates the image, as discussed in Section 3.2.1.1, this will give a misleading estimate

of accuracy. Thus performance evaluations in this work exclude the background class.

Figure 3.5: Semantic segmentation example, whereby each component of the image has been
labelled.
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3.2.2.1 Jaccard Similarity Coefficient

J(A,B) =
|A ∩B|
|A ∪B|

(3.7)

Also known as the Intersection over Union (IoU) score, the Jaccard similarity coefficient

quantifies the extent of overlap between the predicted segmentation and the ground truth

segmentation.

3.2.3 Generalisability

For any classification task, we assume that there is some hidden process that is generating

the data. Thus, the goal of a machine learning classifier is to predict well on sampled set of

data from this hidden distribution. Real world data often includes some form of noise, as

illustrated in Figure 3.6.

Figure 3.6: The left panel illustrates the true underlying distribution of the data (make
moons synthetic dataset from sci-kit learn [136]). In right panel shows 1000 data points that
sampled from this distribution, with the addition of Gaussian noise (standard deviation =
0.1) to simulate irreducible error. Kernel Density Estimation (KDE) with a Gaussian kernel
and bandwith of 0.2 is employed to estimate the density of each class (on a larger sampled
set of 10,000 data points), the contours of which represent the probability density of each
class.

The generalisability of models is viewed through the lens of bias and variance. Bias refers

to the systemic deviations of the model’s predictions from the actual values, often a result

of oversimplified assumptions and leading to underfitting. Conversely, variance reflects the

model’s sensitivity to fluctuations in the training data, causing overfitting when high. The

tension between these two aspects is captured by the bias-variance trade-off, which requires

a balancing the model’s complexity [64].

Cross-validation serves as an effective technique for assessing a model’s generalisation per-

formance, thereby mitigating the risks associated with overfitting. In k-fold cross-validation,
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Figure 3.7: This figure shows the decision boundaries (black line) for three classifiers with
varying hyperparameters that introduce increasing complexity. From 1,000 data points 500
were used to train the classifier, and the remaining 500 unseen data samples are plotted to
visualise the model’s performance on new data. The classifier in the left panel suffers from
high bias (overly simplistic assumptions), and is failing to capture the underlying structure
of the data. The classifier in the middle panel presents a well balanced model and offers
the most generalisable performance. Whereas the classifier on the right is showing higher
variance, capturing noise in the dataset.

data is partitioned into k subsets. The model is trained k times, using k − 1 subsets for

training and one for validation, with the average performance metric indicating generalisa-

tion capability. Nested cross-validation further refines this by including an inner loop for

hyperparameter tuning and an outer loop for model assessment. The inner loop performs

k-fold cross-validation for each hyperparameter set, and the best-performing set is chosen.

This process is independent for each outer fold, ensuring unbiased evaluation. The outer loop

then averages the performance measures, giving an unbiased estimate of model generalisa-

tion. Examples of cross-validation and nested cross-validation is given in Figures 3.8 and 3.9

respectively.

Figure 3.8: 5-fold cross validation example
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Figure 3.9: Nested cross validation with 5 outer folds and 3 inner folds
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3.3 Traditional Machine Learning Techniques

3.3.1 Linear Regression

Linear regression is one of the most fundamental and widely used statistical methods in data

analysis and machine learning. Dating back to the early 19th century, it has stood the test of

time due to its simplicity, interpretability, and effectiveness in modeling relationships between

variables [179].

At its core, linear regression aims to model the relationship between a dependent variable

and one or more independent variables by fitting a linear equation to observed data. The

basic form of this equation is:

y = β0 + β1x1 + β2x2 + ...+ βnxn (3.8)

Where y is the dependent variable, x1, x2, ..., xn are independent variables (features), β1, ..., βn

are the coefficients (model weightings for each feature) and β0 is the model intercept. [64].

The model’s parameters are typically estimated using the Ordinary Least Squares (OLS)

method, which minimizes the Mean Squared Error (MSE) between the predicted and actual

values:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.9)

Where n is the number of observations, yi are the actual values, and ŷi are the predicted

values.

Linear regression’s simplicity and interpretability make it a popular choice for many appli-

cations, but it has limitations. The model assumes a linear relationship between variables,

which isn’t always accurate. For example, compound interest grows exponentially rather

than linearly because it accumulates on both the principal and previously earned interest.

Additionally, linear regression is sensitive to outliers and can be affected by multicollinearity

among independent variables [80].

To address some of these limitations, regularisation techniques have been developed. Ridge
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regression (L2 regularisation) adds a penalty term proportional to the sum of squared co-

efficients [70], while Lasso regression (L1 regularisation) uses the sum of absolute values

of coefficients [186]. These methods help prevent overfitting and can improve the model’s

generalisation capabilities.

3.3.2 Logistic Regression

Logistic regression, developed in the mid-20th century [64], extends the principles of linear

regression (a specialized form of generalised linear models) to binary classification tasks.

Input features are mapped to probabilities using the logistic function, also known as the

sigmoid function:

σ(x) =
1

1 + e−x
(3.10)

for the independent variable x. A logistic regression model is defined as:

P (Y = 1 | x) = σ(xTβ + β0) (3.11)

Here, P (Y = 1 | x) represents the probability of the binary outcome Y being 1 given the

input features x. The vector of input features is denoted as x, the vector of model coefficients

as β, and the intercept term as β0. The logistic function, σ(·), is defined in Equation 3.10.

The coefficients (β) in logistic regression have a meaningful interpretation. For a given

feature, the exponential of its coefficient (eβ) represents the change in odds of the outcome for

a one-unit increase in that feature, assuming all other features remain constant. A positive

coefficient indicates that an increase in the feature is associated with an increase in the

probability of the positive class, while a negative coefficient indicates the opposite.

The coefficients β are estimated using the method of Maximum Likelihood Estimation (MLE).

In this approach, the parameter values that maximize the likelihood function, representing

the probability of observing the given set of data, are found:

L(β) = p(y | β) =
N∏
i=1

p(xi)
yi(1− p(xi))

1−yi (3.12)
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where p(xi) = σ(xT
i β+β0), σ(z) =

1
1+e−z , yi is the observed binary outcome for the ith sample,

and xi is the feature vector for the ith sample. The log-likelihood, which is maximised in

practice, is given by:

logL(β) =
n∑

i=1

[
yi log σ(x

⊤
i β) + (1− yi) log(1− σ(x⊤

i β))
]

(3.13)

The performance of the logistic regression model is quantified using the Cross-Entropy Loss

function, also known as Log Loss. This function measures the difference between the true

labels and the predicted probabilities, and is defined as:

Cross-Entropy Loss = − 1

n

n∑
i=1

[yi log p(xi) + (1− yi) log(1− p(xi))] (3.14)

Minimisation of this loss function during training aligns with the maximisation of the log-

likelihood, ensuring that the model’s predicted probabilities closely match the actual data

distribution.

As in linear regression, it is assumed that there is a linear relationship between the features

and the log-odds of the outcome. Additionally, L1 and L2 regularisation techniques can be

used to prevent overfitting.

3.3.2.1 Decision Trees

Conceptually, decision trees are among the simpler techniques for modelling non-linear dis-

tributions, in contrast to the linear models discussed previously. These hierarchical models

partition data using conditional if . . . then . . . else rules, consiting of:

1. Root node: The initial split of the dataset.

2. Internal nodes: Subsequent decision points.

3. Leaf nodes: Terminal nodes with final predictions.

Figure 3.10 illustrates this structure in regards to PD classification. The root node (UPDRS

score) brances into internal nodes (Tremor Severity, Age), leading to leaf nodes with final
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classifications (Positive/Negative). This structure allows for intuitive interpretation of the

model’s decision-making process, tracing logic from root to leaf.

The tree’s depth (longest root-to-leaf path) and breadth (nodes per level) influence mode

complexity and its capacity to capture non-linear patterns in the data.

UPDRS Score > 30

Tremor Severity > 2

Positive Age > 60

Positive Negative

Tremor Severity > 1

Age > 50

Positive Negative

Negative

Figure 3.10: Illustrative decision tree model for Parkinson’s classification based on UPDRS
score, tremor severity, and age.

The construction of a decision tree involves selecting the best feature and threshold for

splitting the data at each node. This selection is guided by impurity measures, which quantify

the homogeneity of the target variable within the subsets. Common impurity measures

include:

• Entropy and Information Gain: A measure developed by Claude Shannon [169],

entropy quantifies the average “surprise” or uncertainty in the data. For binary clas-

sification, it’s calculated as H = −p1log2(p1) − p2log2(p2), where p1 and p2 are class

probabilities. This sum represents the weighted average of information content for each

class. Lower entropy is optimal, indicating that the subsets each have similar class la-

bels. Conversley, information gain, calculated as 1− Entropy, measures the reduction

in uncertainty achieved by a split. The Iterative Dichotomiser 3 (ID3) algorithm, in-

troduced by Quinlan in 1986 [150], pioneered the use of information gain as a splitting

criterion. However, it tends to favour features with many unique values, leading to the

development of C4.5.

• Gain Ratio: To address the limitation of the ID3 algorithm, Quinlan’s C4.5 [163]

algorithm uses gain ratio instead of information gain. Gain ratio normalises information

gain by the entropy of the feature itself, reducing bias towards multi-valued features.

• Gini index: Measures the probability of misclassification if an item were randomly

labelled according to the class distribution in the subset. For binary classification,

Gini = 1− (p21 + p22), where p1 and p2 are the proportions of each class. A Gini index

of 0 represents perfect purity, while 1 indicates maximum impurity. The Classification
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and Regression Trees (CART) algorithm, introduced by Breiman et al. in 1984 [17],

uses the Gini index for classification tasks.

The aim is to maximise the reduction in impurity (or information gain) with each split (vice

versa for entropy), recursively building the tree until a stopping criterion is met.

Decision trees, despite their interpretability and versatility, face several key limitations:

• Overfitting: Deep trees often capture noise in training data, leading to poor gener-

alization. Pruning techniques, such as those implemented in C4.5 and CART (cost-

complexity pruning), help mitigate this issue. However, finding the optimal tree size

remains challenging.

• Instability: Small variations in training data can result in significantly different tree

structures, affecting model interpretation and consistency. This makes decision trees

sensitive to outliers and noisy data.

• Feature bias: Trees tend to favor features with more levels or continuous variables,

potentially leading to suboptimal splits. While algorithms like C4.5 address this to

some extent with gain ratio, the issue persists in many implementations.

• Limited decision boundaries: Trees struggle with capturing complex, non-axis-

parallel decision boundaries, often resulting in step-like decision surfaces that may not

accurately represent the underlying data distribution.

• Computational complexity: For large datasets, considering all possible splits during

tree construction can be computationally expensive.

• Imbalanced data handling: Trees may not perform well on imbalanced datasets,

tending to favor the majority class. Techniques like weighted classes or sampling meth-

ods are often necessary to address this limitation.

These limitations have driven the development of ensemble methods like Random Forests

and boosting algorithms, which aim to overcome some of these challenges while retaining the

interpretability and flexibility of decision trees.

3.3.2.2 Random Forest

Random Forests, introduced by Breiman in 2001 [16], are an ensemble learning method that

addresses many limitations of individual decision trees. This algorithm constructs multiple
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decision trees and combines their outputs to improve prediction accuracy and model robust-

ness.

The core principles of Random Forests are bagging (bootstrap aggregating) and feature ran-

domness. In bagging, each tree is trained on a random subset of the training data, sampled

with replacement. This process creates diverse trees that capture different aspects of the

data. Feature randomness further enhances diversity by considering only a random subset

of features at each node split, typically
√
p features for classification or p/3 for regression,

where p is the total number of features.

Predictions in Random Forests are made by aggregating results from all trees. For classifica-

tion tasks, a majority vote is used, while for regression, the average prediction is taken. This

ensemble approach significantly reduces overfitting and improves generalisation compared to

single decision trees.

Despite these benefits, Random Forests have limitations. They are less interpretable than

single decision trees and can be computationally intensive, especially for large datasets.

3.4 Artificial Neural Networks

An Artificial Neural Network (ANN) consists of a network of interconnected nodes organised

in layers, inspired by the function and structure of biological neural networks in the brain.

The Perceptron, which models a single neuron’s behaviour, serves as a foundational building

block of ANNs.

The Perceptron model consists of several key components, illustrated in Figure 3.11. It

receives inputs (x1, x2, . . . , xn), analogous to dendrites receiving synaptic signals from other

neurons. These inputs are associated with weights (w1, w2, . . . , wn), representing the strength

of connections between neurons. A summation function computes the weighted sum of these

inputs. The result is then passed through an activation function (f), which determines the

neuron’s output, similar to an axon firing in a biological neuron. A typical activation function

used in early perceptrons was the step function, which outputs 1 if the input is above a certain

threshold, and 0 otherwise. A bias term (b0 or w0) is used to adjust the activation threshold.

Mathematically, the perceptron’s output is expressed as:

ŷ = f(b0 +wTx) (3.15)
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Where f is the activation function, b0 is the bias, w is the weight vector, and x is the input

vector.

Activation
function

∑
w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 3.11: Structure of a perceptron, showing inputs, weights, summation, and activation
function.

The concept of the perceptron was introduced by Frank Rosenblatt in 1958 [157]. It builds

upon the earlier work of McCulloch and Pitts [110], who proposed a simplified neuron model

with weighted binary inputs and produces a binary output based on an adjustable threshold

value. Rosenblatt also developed a supervised learning algorithm for binary classification us-

ing a single layer of perceptrons, the simplest feed-forward neural network. This algorithm,

inspired by Hebbian learning (”neurons that fire together, wire together”), iteratively adjusts

the weights of a perceptron to minimize classification errors. It updates the weights based

on the difference between predicted and actual outputs, but crucially, only when a misclas-

sification occurs. For each misclassified data point, the algorithm modifies the weights in a

way that reduces the error, refining the model’s accuracy over time. Throughout the 1960s,

Widrow and Hoff made several developments [196, 195], including: the Least Mean Squares

(LMS) algorithm for updating weights and the Adaptive Linear Nueron (ADALINE) .

Despite initial enthusiasm, ANN research stagnated following the 1969 publication of Minsky

and Papert’s book ”Perceptrons” [113], which demonstrated that single-layer networks could

not solve non-linearly separable problems (e.g., the XOR function). This limitation high-

lighted the need for more complex architectures, which were limited by the computational

performance of the time. Accordingly, the dramatic increase of available computational power

has been accompanied by an rise in NN usage. This recently found popularity has given rise

to many new NN models being proposed, most notably including the invent of deep learning.

In modern machine learning, ”deep learning” refers to a range of neural network architec-

tures with multiple hidden layers (layers that sit between the input and output layers). These

include Multi-Layered Perceptrons, Convolutional Neural Networks, Recurrent Neural Net-

works, and Transformers. These architectures have demonstrated remarkable success across
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various domains, from image and speech recognition to natural language processing and be-

yond, solidifying ANNs as a cornerstone of contemporary artificial intelligence research and

applications. This thesis uses models based on Convolutional Neural Networks but [165]

provides and overview of a broad range of current NN architectures.

3.4.1 Deep Neural Networks

The Multilayer Perceptron (MLP) architecture extends the basic perceptron model by stack-

ing multiple layers of interconnected perceptrons [141]. This architecture, combined with

non-linear activation functions, allows MLPs to learn and model complex non-linear relation-

ships in data, overcoming the limitations of single layer perceptrons highlighted by Minsky

and Papert [113].

An MLP model consists of three structural components, illustrated in Figure 3.12. The first

is the input layer which receives the initial data features. The last is the output layer, which

produces the final classification. Nested between the input layer and output layer are one or

more intermediate layers, collectively referred to as the hidden layers, the number of which is

the model’s depth. Networks with multiple hidden layers are considered ”deep” and form the

foundation of deep learning. The popularity and success of deep learning can be attributed in

part to an unexpected phenomenon: the remarkable improvement in performance as networks

grow deeper. This scaling effect has led to deep learning models becoming state-of-the-art

in numerous fields. However, exploring and leveraging this relationship between depth and

performance has only become feasible with the advent of modern computational resources,

particularly Graphics Processing Units (GPUs).

In a fully connected MLP model, each perceptron in each layer is connected to every percep-

tron in the following layer (See Figure 3.12). As information propagates through an MLP,

each successive hidden layer is thought to abstract and transform features from the previous

layer. This hierarchical feature extraction allows the network to learn increasingly complex

representations of the input data. However, it’s worth noting that the exact nature of these

abstractions can be difficult to interpret, especially in very deep networks, making them a

‘black box’.

While fully connected networks are powerful, they can be prone to overfitting, especially

when dealing with limited training data. To address this, various regularisation techniques

have been developed. One such technique, particularly relevant to the network structure, is

dropout [177]. Dropout is a regularisation method that randomly ”drops out” (i.e., temporar-

55



ily removes) a proportion of neurons and their connections during training. This process can

be visualised as temporarily creating a sparser version of the network for each training itera-

tion. Dropout helps prevent co-adaptation of neurons and reduces overfitting, often leading

to better generalisation. During inference, all neurons are used, but their outputs are scaled

to compensate for the higher number of active units compared to training.

Figure 3.12: MLP network, adapted from [125]

Backpropagation and gradient descent form the foundation of neural network training [161].

Backpropagation efficiently computes gradients of the loss function with respect to all network

weights by leveraging the chain rule and reusing intermediate calculations as it propagates

error backwards through the network. This process involves a forward pass to compute

activations and loss, followed by a backward pass to calculate gradients. Gradient descent

then uses these gradients to iteratively update weights, aiming to minimize the loss function.

The basic weight update equation is:

W ′ = W − η∇J(W )

Where W
′
represents the updated weights, W represents the current weights, η (eta) is the

learning rate, ∆W denotes the gradient with respect to W , and J(W ) is the loss function.

The learning rate η is a crucial hyperparameter controlling the step size at each iteration.

This update process is repeated for multiple passes through the entire dataset, with each

complete pass called an epoch. The number of epochs is another important hyperparameter,

as too few may result in underfitting, while too many can lead to overfitting. Advanced

optimisers like Adam [88] adapt learning rates for each parameter, and techniques like the
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one-cycle policy [174] (used in the fast.ai library employed in this thesis) dynamically adjust

the learning rate during training. While classic gradient descent updates weights based on

the entire dataset per epoch, stochastic gradient descent [87] uses mini-batches for improved

efficiency and noise injection within each epoch. The interplay between backpropagation and

these optimisation techniques enables neural networks to learn complex, non-linear mappings

from input to output across multiple epochs.

A constraint when using gradient descent is that activation functions must be differentiable.

The following are some of the common activation functions used in deep learning:

• Hyperbolic Tangent Function (tanh): Defined by tanh(x) = ex−e−x

ex+e−x , tanh outputs

values in the range [−1, 1]. Similar to the sigmoid but with a broader output range, it

also suffers from vanishing gradient problems in deep networks.

• Rectified Linear Unit (ReLU): Introduced in [122], given by f(x) = max(0, x),

ReLU is computationally efficient and serves as the default activation function for many

types of neural networks. However, it is sensitive to outliers and can suffer from ”dying

ReLU” problem [105], where neurons never activate.

• Leaky Rectified Linear Unit (Leaky ReLU): Introduced in ,a variant of ReLU,

defined as f(x) = max(αx, x), where α is a small constant. This function aims to solve

the ”dying ReLU” problem by allowing a small gradient when x < 0.

• Softmax: Often used in the output layer of a classifier to represent probabilities, Soft-

max normalises the input into a probability distribution over multiple classes. Math-

ematically, given input vector x ∈ RK , the Softmax function is defined as S(x)j =

exj∑K
k=1 e

xk
for j = 1, ...,K.

The efficacy of gradient descent and backpropagation heavily relies on the choice of acti-

vation functions used in the neural network. Activation functions introduce non-linearity

into the network, allowing it to learn complex patterns. Crucially, these functions must be

differentiable to enable the calculation of gradients during backpropagation.

Early neural networks often used sigmoid or hyperbolic tangent (tanh) functions. However,

these functions can lead to the vanishing gradient problem in deep networks, where gradients

become extremely small as they propagate backwards, slowing down or halting learning. This

issue arises because the derivatives of these functions approach zero for very large or small

inputs.
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To address this, modern neural networks often employ the ReLU activation function, defined

as f(x) = max(0, x). ReLU and its variants (such as Leaky ReLU) have several advantages.

First they are computationally efficient. ReLU has no upper bound for positive inputs like

sigmoid or tanh functions do. As a result, the gradient is not reduced to near-zero values

during backpropagation. With ReLU, perceptrons output zero for all negative inputs, leading

to sparse activations in the network. Sparse activations limit the number of pathways through

which gradients can flow. This means that only a subset of perceptrons are active at any

given time, leading to less complex gradient updates, and reduces the risk of large, unstable

gradients that can cause exploding gradients. However with this, ReLU can suffer from the

”dying ReLU” problem, where neurons can get stuck in an inactive state. This has led to

the development of variants like Leaky ReLU [106] and Parametric ReLU [66].

3.5 Convolutional Neural Networks

3.5.1 Convolution operator and kernels as feature detectors

In digital image processing, the discrete convolution operator is a mathematical approach

that can emphasise specific features within an image, such as edges, textures and patterns.

As such the output of the operation is also an image (often referred to as a feature map).

The discrete convolution operator for 2D images can be defined as:

(I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n) ·K(m,n)

Where i and j are the co-ordinates of the output feature map, and m and n are the co-

ordinates within the kernel. A convolution operation is identical to determining the cross-

correlation between a signal and a kernel except for that in convolution the kernel has been

time-reversed. The kernel is generally a small matrix that slides over the input matrix, per-

forming element-wise multiplication and summation to produce each element of the output.

Figure 3.13, illustrates this.

The Sobel filter [175] is a type of image gradient operator used to detect edges in images. It

consists of two 3x3 kernels, which are convolved with the input image to compute approxi-

mations of the derivatives in the vertical and horizontal directions.

The Sobel Vertical Kernel (Gx) detects horizontal edges by highlighting vertical changes in
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Figure 3.13: The input matrix I is convolved with the kernel K to produce the result matrix
I * K. The highlighted cells in the input show the current receptive field of the kernel, and
the corresponding output in the result matrix is highlighted. Adapted from [124]

intensity and is given by:

Gx =


−1 0 1

−2 0 2

−1 0 1

 (3.16)

Similarly, the Sobel Horizontal Kernel (Gx) detects vertical edges by highlighting horizontal

changes in intensity:

Gy =


−1 −2 −1

0 0 0

1 2 1

 (3.17)

The results from both kernels can be combined to produce a gradient magnitudes image,

revealing edges in all directions.

G =
√

G2
x +G2

y (3.18)

This can also be done for the orientation of the gradients.

In CNNs, the network learns its own kernels during training, rather than using predefined

kernels like the Sobel filter. These learned kernels can detect a wide variety of features,

from simple edges and textures in early layers to more complex patterns in deeper layers.

In [91], the authors demonstrated that kernels in the first layer learned to detect edges and
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Figure 3.14: Demonstration of edge detection using the Sobel operator applied to binary
(top) and greyscale (bottom) images. Note that the binary image maintains a gradient of 1,
while in the greyscale image, the magnitude varys in intensity. From left to right the columns
illustrate: (1) The original image, (2) The feature map resulting from the Gx convolution,
(3) The feature map resulting from the Gy convolution, (4) Magnitude of Gx and Gy feature
maps.

color blobs, as illustrated in Figure 3.15. This highlights a fundamental difference between

convolutions in traditional image processing and those in CNNs. Mathematically, in image

processing, operations like Gaussian blur are typically applied to each channel of an RGB

image independently and then concatenated. In CNNs, kernels operate across all input

channels simultaneously, computing a sum over all channels for each spatial position. This

multi-channel convolution allows CNNs to capture inter-channel relationships, enabling the

detection of more complex features that combine information across channels. Conceptually,

this means CNN kernels can learn to respond to specific color-edge combinations or other

cross-channel patterns, rather than treating each color channel in isolation.

Figure 3.15: Visualisations of convolutional filters in the first layer of AlexNet [91].
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3.5.2 Architecture

A standard CNN architecture comprises an input layer, convolutional layers, activation layers,

pooling layers, fully connected layers, and an output layer [204]. Each type of layer serves

a specific purpose in feature extraction and transformation. This standard architecture is

illustrated in Figure 3.16.

The input to a CNN is typically a multi-dimensional tensor. For image data this is usually

a 3D tensor with dimensions representing width, height, and depth (often corresponding to

colour channels). This structure can be extended to handle more complex inputs, such as

video data, which might include an additional time dimension [83].

The convolutional layers form the core of the CNN architecture. Each convolutional layer

contains a set of learnable filters or kernels. The number of kernels in each layer is an

architectural choice and can vary depending on the complexity of the task. The output of

each convolutional layer is a set of feature maps. Each feature map is the result of applying a

specific kernel across the entire input, capturing different aspects of the input data. As data

progresses through the convolutional layers, there’s often a reduction in spatial dimensions

(width and height), while the depth (number of feature maps) typically increases. The same

kernel is applied across the entire input, allowing for efficient parameter sharing and the ability

to detect features regardless of their position in the input. Each neuron in a feature map is

connected only to a local region of the input, rather than to all input neurons, significantly

reducing the number of parameters compared to fully connected layers.

It’s important to note that activation functions are typically applied after each convolutional

operation. Immediately after the convolution operation, the activation function is applied

element-wise to this pre-activation feature map. This means that the activation function is

applied independently to each element of the feature map.

Pooling layers are often interspersed between convolutional layers. They help to reduce the

spatial dimensions of the feature maps, making the network more computationally efficient

and helping to achieve some degree of translational invariance.

The final part of the CNN architecture typically consists of one or more fully connected layers,

essentially forming an MLP network. These layers take the high-level features extracted by

the convolutional layers and use them for tasks such as classification. The number of neurons

in the final layer usually corresponds to the number of classes in the classification task.
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Figure 3.16: CNN Architecture, adapted from [125]

3.6 Deep Learning Based Semantic Segmentation

3.6.1 U-Net

The U-net architecture is a deep learning model that was proposed by Ronneberger et al.

in 2015 [156]. It was specifically designed for semantic segmentation tasks, where the goal

is to assign a label to each pixel in an image. The U-net architecture falls under the class

of Fully Convolutional Networks (FCNs). It consists of two main parts, an encoder and

a decoder. The encoder is responsible for capturing the high-level features of the input

image, while the decoder is responsible for generating the segmentation map. The U-Net

architecture incorporates skip connections between the encoder and the decoder, allowing

for more precise localization by concatenating high-resolution features from the encoder with

upsampled output from the decoder. This is particularly beneficial for tasks where the spatial

context is crucial. Additionally, the U-Net model is often enhanced by employing Residual

Networks (ResNets) as a backbone, which allows for the training of deeper networks by

mitigating the vanishing gradient problem [65]. Utilising pretrained ResNets can further

improve the model’s performance through transfer learning, where knowledge gained from

one task is applied to another. This is particularly useful when labeled data may be scarce.

3.7 Convolutional Based Time Series Classification Algorithms

Multivariate time series classification models deal with time series data where multiple vari-

ables or channels are observed at each time point. Each channel may represent different

features or sensors. These models are designed to classify sequences into predefined classes
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Figure 3.17: U-Net architecture [156]

based on temporal patterns across multiple channels. A recent review on multivariate time-

series classification approaches recommended InceptionTime, and Rocket [160].

3.7.1 InceptionTime

InceptionTime is a specialised deep learning architecture tailored for time series classification.

The model was proposed by Ismail Fawaz et al. in 2020 and employs an ensemble of five

deep learning models [78]. As illustrated in Figure 3.18, each module is organized into

blocks, which themselves are composed of Inception modules (shown in Figure 3.19). These

Inception modules make use of one-dimensional convolutions to capture complex temporal

features at various scales. The architecture also incorporates batch normalisation and residual

connections to expedite training convergence and improve generalisation performance.

Figure 3.18: A diagram of the Inception network [78]
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Figure 3.19: A diagram of the Inception module [78]

3.7.2 Rocket

RandOm Convolutional KErnel Transform (Rocket) introduced in 2019 [44], represents a con-

trasting approach to time series classification. Unlike InceptionTime, Rocket is not inherently

a machine learning model. It is a feature extraction method that employs a large number of

randomly generated kernels to transform the original time series data. Subsequently, a linear

classifier is used for the actual classification task. The method is computationally efficient

and can be paired with a variety of classifiers, such as Logistic regression or Ridge regression.

MiniRocket is a streamlined variant of Rocket introduced a year later in 2020 [45], designed

for even faster feature extraction while maintaining comparable accuracy. Given its compu-

tational efficiency and performance, the authors suggest it as the default variant of Rocket.

MultiRocket, introduced in 2022 [182], extends the capabilities of MiniRocket by incorpo-

rating multiple pooling operators and transformations to diversify the generated features.

Specifically, it applies first-order differences to transform the original series and utilises con-

volutions on both the raw and transformed series. Four distinct pooling operators are then

applied to the outputs of these convolutions, enhancing the robustness and expressiveness of

the feature set.
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Chapter 4

Diagnosing Parkinson’s Disease and

Clinically Slight Bradykinesia From

Raw Positional Data

PD is typically diagnosed and monitored through assessments of motor function, which in-

clude upper limb tasks such as finger tapping, hand opening/closing, and pronation-supination.

While these evaluations are well-established, they rely on visual assessment, leading to scoring

criteria that are necessarily broad to account for the inherent limitations of human observa-

tion. As a result, these tasks are challenging to judge consistently, even for expert clinicians,

who often only achieve moderate inter-rater agreement.

The need for a more objective, consistent, and data-driven approach to assessing motor

impairment has led to growing interest in the application of machine learning models to

complement traditional clinical assessments. This chapter focuses on recent advancements

in multivariate time-series classification models to address two key questions: first, whether

these models can accurately replicate clinician judgments by distinguishing between normal

and impaired performance; and second, whether they can differentiate between individuals

with PD and healthy controls, even in cases where visible impairment is subtle or absent.

To investigate these questions, the performance of state-of-the-art end-to-end time-series clas-

sification models—InceptionTime [78], MiniRocket [45], and MultiRocket [182] are evaluated

in diagnosing PD and identifying subtle motor impairments during these upper limb assess-

ments. These models offer the potential to go beyond traditional feature engineering by

directly learning from raw positional data, identifying patterns and subtleties that may not
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have been captured or explicitly defined in previous methods. This capability is particularly

relevant given evidence that expert clinicians often recognise features or cues beyond estab-

lished scoring systems, suggesting that valuable information remains unquantified. Although

this study does not include detailed explainability analyses, it represents an initial exploration

into the application of these models.

4.1 Background

The measurement of hand kinematics in motor tasks typically involves tracking key points on

the subject’s hand. This can be achieved using either wearable tracking sensors or markerless

pose estimation from video. Wearable sensors, such as accelerometers, gyroscopes, and elec-

tromagnetic trackers, have been widely utilised for this purpose. Several studies have explored

the application of these sensors in hand tracking for PD movement analysis [178, 94, 56, 120].

In recent years, markerless methods using consumer-grade devices have gained popularity

due to their low cost and ease of use. The Leap Motion controller, for instance, has been

employed in several studies exploring hand tracking in the context of PD [19, 117, 90, 20, 53].

Additionally, advancements in computer vision driven by deep learning have enabled software

solutions like DeepLabCut [109] to perform precise pose estimation, as demonstrated in recent

work [114].

The conventional approach to applying machine learning in these assessments involves first

extracting features from the raw recordings. Typically, this process begins by reducing the

dimensionality of the hand key points into a one-dimensional time series. For instance, finger

tapping is often represented by the amplitude between the index finger and thumb. Feature

extraction is then conducted in two stages: first, by calculating statistics for each cycle (e.g.,

each tap), and then by aggregating these statistics into a single score for the entire recording.

In their work, the authors of [114] group features based on clinically relevant aspects of the

signal, such as speed, amplitude, hesitations, and fatigue (e.g., decrementing amplitude).

Common cycle-level statistics include maximum and minimum amplitude, velocity, and ac-

celeration, with additional segmentation by phases of the movement, such as opening velocity

[200]. These features are typically aggregated using metrics such as mean, range, and co-

efficient of variation, while for fatigue assessment, the slope of the regression line through

peak amplitudes is often used. It is important to reiterate that these studies apply machine

learning models such as (SVM’s [19], Random Forest [114], Logistic Regression [200]), after

the signal has been first reduced and constrained to researcher defined measures from a 1D
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signal.

While this feature-based approach has proven effective, it may overlook more complex pat-

terns in the data. A study by Williams et al. [197], highlighted this limitation, revealing

that expert clinicians’ overall impressions of PD in finger tapping videos were not strictly

aligned with formal bradykinesia criteria. This discrepancy suggests the existence of subtle,

yet unquantified, patterns that experienced clinicians intuitively recognise, underscoring the

need for more comprehensive measures of movement impairment in PD.

Given these challenges, recent research has focused on end-to-end machine learning ap-

proaches that can learn directly from raw data without extensive feature engineering. These

methods, including convolutional neural networks [130, 199], echo-state networks [94], and

Cartesian Genetic Programming (CGP) [120, 56], offer the potential to capture more nuanced

aspects of movement impairment.

The present work builds upon these advancements by exploring models from the field of

Time Series Classification (TSC). Specifically, InceptionTime [78], MiniRocket [46], and Mul-

tiRocket [182] have been selected for their strong performance on limited datasets [160], a

common constraint in clinical research. By applying these models to upper limb assessments

in PD, this study aims to evaluate their effectiveness in distinguishing between PD patients

and controls, as well as identifying subtle motor impairments that may be overlooked in

traditional assessments.

4.2 Data Collection

4.2.1 Subjects

The dataset used in this study originates from the clinical caseload managed by Dr. Gao

at Ruijin Hospital. The dataset encompasses 148 individuals diagnosed with PD, and a

control group of 47 age and gender matched Healthy Controls (HCs) (or Normal Controls

(NCs)), who were recruited from patient’s spouses and companions. It should be noted that

the presence of the swallow tail sign [15] was a supporting feature in all PD patients. All

participants are right-hand dominant, the selection process did not apply exclusion criteria

based on medication status (either OFF or ON) or cognitive condition, given that these

aspects were not the focal point of investigation. All procedural frameworks of the study

secured approval from the Ethics commitee of Ruijin Hospital, affiliated with the Shanghai

68



Jiao Tong University School of Medicine. Furthermore, all participants engaged in the study

engaged in their consent through written agreements, adhering to ethical research guidelines.

NC PD

Age, years 59.1± 6.3, (47.0-70.0) 59.9± 10.2, (35.0-80.0)

Disease duration, years - 3.1± 2.8, (0.08− 20.0)

Hoehn-Yahr stage - 1.83± 0.57, (1, 3)

MMSE 28.9± 0.9, (27.0-30.0) 25.9± 4.1, (6.0-30.0)

Gender, M:F 4:5 16:21

Number of subjects 47 148

Table 4.1: Demographics and clinical characteristics of the study participants, with mean,
standard deviation and range.

4.2.2 Protocol

The dataset consists of three exercises for the following MDS-UPDRS [61] tasks:

• 3.4 Finger tapping: The patient is instructed to tap the index finger on the thumb

ten times as quickly and as big as possible.

• 3.5 Hand movements: The patient is instructed to open and close the hand ten times

as quickly and as big as possible.

• 3.6 Pronation-Supination movement of the hands: The patient is instructed to

extend the arm out in front of their body with the palms down, and then to turn the

palm up and down alternately ten times as fast and fully as possible.

Each task was scored on a scale from 0 to 4 using the MDS-UPDRS scoring criteria, with

higher scores indicating increased severity. Each of the tasks contain similar marking criteria,

which is provided in Table 4.2. Visual representations of the tasks are provided in Figure 4.1.
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Figure 4.1: Each row depicts the following tasks, (a) finger tapping, (b) hand open and close,
(c) pronation-supination movement of the hand. Each movement is periodic, oscillating
between two states, for the duration of the assessment.
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Score Category Description

0 Normal No problems.

1 Slight Any of the following: a) the regular rhythm is broken with
one or two interruptions or hesitations of the movement; b)
slight slowing; c) the amplitude decrements near the end of
the task.

2 Mild Any of the following: a) 3 to 5 interruptions during the
movements; b) mild slowing; c) the amplitude decrements
midway in the task.

3 Moderate Any of the following: a) more than 5 interruptions dur-
ing the movement or at least one longer arrest (freeze) in
ongoing movement; b) moderate slowing; c) the amplitude
decrements starting after the 1st sequence.

4 Severe Cannot or can only barely perform the task because of slow-
ing, interruptions, or decrements.

Table 4.2: MDS-UPDRS Task Scoring Criteria (slightly adapted to be more general for all
three tasks) [61].
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4.2.3 Equipment

Hand kinematics were recorded using the Polhemus Patriot M Electromagnetic (EM) tracking

system [140], from which a pair of sensors were attached to the subjects index finger and

thumb as shown in Figure 4.2. With the system, a source is placed in front of the subject

that transmits an electromagnetic dipole field, each sensor contains three orthogonal receiver

coils in which voltage is induced from the field, resulting in the measurements that are used

to reconstruct the pose (six degrees of freedom) of the sensor. The position and orientation of

each sensor is sampled at a frequency of 60 Hz. The accuracy of the sensor is within 1.5mm of

Cartesian coordinates (x,y,z) and 0.4 degrees for orientation (yaw, pitch and roll)1, providing

that the distance between the transmitter and receiver is less than 76 cm. Only positional

data is used in this study.

Figure 4.2: The positional sensors were attached on top of the nailbeds of the index finger
and thumb.

This EM approach is free from alignment, lighting and occlusion issues common with opti-

cal approaches, and avoids drift errors typical in gyro, accelerometers and magnetometers.

Nonetheless, it remains sensitive to disturbances to other magnetic fields or conductive ma-

terials.

4.3 Noise Analysis

An investigation was conducted to investigate the frequency content of the signals and the

resulting impact of applying a smoothing filter in effort to reduce noise in the dataset.

1Intrinsic.
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4.3.1 Raw Data

Let S be the set of sensors, where S = {1, 2}. Sensor 1 is placed on the index finger, and

sensor 2 is placed on the thumb.

The positional coordinates of each sensor s ∈ {1, 2} at timestamp ti are given by xs(ti), ys(ti),

and zs(ti). These Cartesian coordinates represent the positions of the sensors in relation to

the magnetic source. The units of measurement are in cm. Let Ps(ti) be the positional vector

of the s-th sensor at time ti.

The orientation of each sensor s ∈ {1, 2} at timestamp ti is given by three Nautical Euler

angles: azimuth αs(ti), elevation βs(ti), and roll γs(ti). These angles are intrinsic rather than

extrinsic, meaning that the angles are defined in terms of rotations around the sensor’s local

axes, rather than the axes of the magnetic source. The units of measurement are degrees.

4.3.2 Extracted Signals

For this analysis a uni-variate signal was extracted from the raw data for each task. This

resulted in a signal V = (v1, . . . , vi, . . . , vn), where vi is the value of the i-th sample.

4.3.2.1 Finger Tapping and Hand Open-Close

Given the hand-key points available, the best uni-variate approximation of the movement is

given by the Euclidean distance between the two sensors. This is typical for finger tapping,

as the Euclidean distance can be used to find the amplitude of a tap [94, 19, 77, 21, 118, 117,

119, 164, 181].

Mathematically, the Euclidean distance between the two sensors at time ti can be represented

as the distance between P1(ti) and P2(ti), calculated as:

d(ti) =
√
(x1(ti)− x2(ti))2 + (y1(ti)− y2(ti))2 + (z1(ti)− z2(ti))2

or using positional vectors:
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d(ti) = ∥P1(ti)−P2(ti)∥

4.3.2.2 Pronation-Supination

The movement involves repeated rotation between the wrist’s pronated and supinated posi-

tions. The ideal placement for capturing this motion would be a sensor on the wrist. Since

the sensors are placed on the index finger and thumb, the roll of the index finger (γ1(ti)) is

used instead. This should be satisfactory, as the finger is stretched out and collinear with

the wrist.

4.3.3 Deriving Frequency From Manual Annotation

The peaks of the extracted signals were manually annotated using a bespoke tool. This

annotation tool is discussed in more detail in Appendix B; the peaks were also considered

for a data driven approach to segmenting the signals. This resulted in a set of peak indices

P = {p1, p2, . . . , pn} for each recording. Thus, segments of the signal (e.g., a tap including

both the closing phase and opening phase) were bounded by the following (pm : pm+1) for

m < n and begins at 1. This results in n− 1 segments per recording.

The frequency of movement from manual annotation (FM ) of a signal is given by the number

of segments divided by the duration between the first and last peak:

FM =
n− 1

pn − p1
·
(

1

fs

)

Where, fs is the sampling rate.

Figure 4.3, shows the distribution of frequencies per task type. None of the recordings exceed

4 Hz.

4.3.4 Filter Selection

A fourth-order Butterworth [22] filter with a cutoff frequency of 5 Hz was selected as an

appropriate filter. This choice was informed by several key considerations. Firstly, the cutoff
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Figure 4.3: Distribution of frequencies per task type.

frequency was set at 5 Hz because the frequency of movement for all tasks remained below this

threshold. This setting ensures the preservation of relevant movement data while effectively

attenuating higher frequency noise. Secondly, the fourth-order filter was chosen for its roll-off

steepness. While higher order filters can provide sharper cutoffs, a fourth-order filter offers

a suitable balance for this application. Lastly, Butterworth filters are renowned for their

maximally flat frequency response in the passband, a characteristic that aids in preserving

the shape of signal components below the cutoff frequency.

The filtering process can be mathematically described as follows: Let V = [v1, v2, . . . , vn] be

the original signal. The filtered signal Vf is obtained by applying the Butterworth filter to

V. In the frequency domain, the magnitude response of the Butterworth filter is given by:

|H(ω)|2 = 1

1 +
(

ω
ωc

)2N

Where ω is the angular frequency, ωc is the cutoff frequency ( 2π × 5 Hz) and N is the filter

order (4).

The filtered signal Vf is obtained by convolving V with the impulse response of the Butter-

worth filter in the time domain.
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4.3.5 Signal to Noise Ratio

4.3.5.1 Approach for Smoothing the Pronation-Supination Signal

The pronation-supination task, which measures rotational movement of the forearm, utilises

Euler angles to represent orientation in three-dimensional space. However, these Euler angles

present unique challenges in signal processing due to their inherent discontinuities. Specifi-

cally, when an angle transitions from 359° to 0° (or vice versa), it creates an artificial jump

in the timeseries that does not reflect the true continuous nature of the rotational move-

ment. This discontinuity can lead to significant errors in subsequent analyses if not properly

addressed. To address these challenges, a specialised three-step approach was implemented:

1. Angular Velocity Calculation: Angular velocity was derived from the raw Euler

angle data using a custom shortest-angle algorithm. This step is crucial because Euler

angles are bounded within a range of 2π radians, leading to discontinuities when an

angle exceeds this value (e.g., transitioning from 359° to 0°). The shortest-angle algo-

rithm ensures that the true rotational motion is captured without introducing artificial

jumps in the signal. It calculates the smallest angular difference between two angles,

considering the circular nature of angular measurements. The core principle can be

expressed mathematically as:

∆θ = ((θ2 − θ1 + 180◦) mod 360◦)− 180◦

Where θ1 and θ2 are the two angles being compared and, ∆θ is the shortest angular

difference.

This process ensures that the calculated angular difference always represents the short-

est path between the two angles, regardless of which side of the discontinuity they lie on.

By employing this algorithm, the true rotational velocity can be accurately calculated,

even when the Euler angles cross the discontinuity boundary.

2. Velocity Signal Filtering: The calculated angular velocity was then filtered using

the selected fourth-order low-pass Butterworth filter with a cutoff frequency of 5 Hz.

By filtering the velocity rather than the raw angle data, complications associated with

the discontinuities in the angle signal are avoided.

3. Angular Position Reconstruction : The angular position signal was reconstructed

through numerical integration of the filtered velocity signal.
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4. Centering : Finally, the mean was subtracted from the reconstructed signal, to center

it on the x-axis.

Figure 4.4: Comparison of raw and filtered signals for pronation-supination task. Top panel:
Angular velocity over time, showing raw (solid line) and filtered (dashed line) velocities.
Bottom panel: Rotation over time, displaying initial rotation (solid line) and reconstructed
filtered rotation (dashed line). The filtered signals were obtained using a fourth-order But-
terworth low-pass filter with a 5 Hz cutoff frequency. This approach addresses the challenges
of Euler angle discontinuities by first calculating angular velocity, applying the filter, and
then reconstructing the angular position through integration.

4.3.5.2 Spectral Analysis

Spectral analysis was performed on the movement data to quantify the frequency composition

and Signal to Noise Ratio (SNR) of the recorded signals. The Fast Fourier Transform (FFT)

[38] was applied to the preprocessed positional data for finger tapping and hand opening-

closing tasks, and to the angular position data for pronation-supination task.

The power spectrum was calculated as the square of the magnitude of the FFT, normalized by

the signal length. Signal power was quantified as the cumulative power within the frequency

range of 0-5 Hz, which encompasses the primary movement frequencies observed in the tasks.

Noise power was considered as the sum of power above 5 Hz. The SNR was calculated as the
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Figure 4.5: Comparison of FFT spectra for raw and filtered angular velocity signals. The
plot shows the magnitude of the FFT against frequency for both the raw (solid line) and
filtered (dashed line) angular velocity data.

ratio of signal power to noise power and expressed in decibels, providing a logarithmic scale

that better represents the wide range of power ratios encountered in the data. The maximum

frequency component within the 0-5 Hz range was designated as the characteristic movement

frequency.

The application of the filtering process resulted in a minimum improvement of 10 dB in the

signal-to-noise ratio across all tasks, as demonstrated in Figure 4.6. This substantial enhance-

ment in SNR indicates a significant reduction in high-frequency noise, thereby improving the

reliability of subsequent analyses.

4.4 Tracking Errors

A limitation of the Polhemus Patriot M is that only half of the total spatial sphere surrounding

the source is practically usable at any given moment. Measurement ambiguities, typically

manifesting as sign flips in the X, Y, Z measurements, occur when sensors traverse between

hemispheres. This issue arises due to the symmetry of the magnetic fields generated by

the source, resulting in two mathematical solutions to each set of sensor data processed.

No ambiguity exists if the sensors operate solely within one hemisphere at a time. This

parameter, termed the ’Hemisphere of Operation’, can be set by the user.

The dataset in this study utilises the default Hemisphere of Operation, which is the positive
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Figure 4.6: Signal to noise ratio for each task.

X or ”forward” hemisphere. In this configuration, the system does not report negative X

measurements. Instead, when sensors are moved to the negative X side of the source, the Y

and Z measurements are inverted.

Exploratory data analysis revealed that the experimental protocol did not sufficiently enforce

this constraint. Some subjects were observed performing tasks in excessive proximity to the

source, leading to boundary crossings and consequent measurement errors. This phenomenon

was initially identified through unexpected fluctuations in the derived Euclidean distance.

The documentation highlights [140] that the ambiguity of the position usually results in the

flipping of Y and Z coordinates. This was investigated with the following steps:

1. A function was defined that given a 1-D signal array, will return a Boolean mask the

same length, in which a value is true if the current sign of the value has changed since

the previous value, otherwise false.

2. For each sensor, two masks were generated for the y channel and z channel respectively.

The logical AND operator was used to find samples for which both the y channel and

z channel signs had flipped compared to the previous sample.

3. Any recordings for which this was true for any samples was marked as ‘potential hemi-
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sphere switching’.

4. The distribution of maximum Euclidean distance vs. minimum x position for each

recording was used to select and appropriate value to exclude recordings which showed

this behaviour.

Figure 4.7 shows a pronation-supination recording, with samples annotated for each sensor

that displayed YZ switching.The figure presents three subplots: from top to bottom, the

Euclidean distance between the two sensors, the x position of sensor 1, and the x position of

sensor 2.

The example in Figure 4.9 demonstrates that many of the points showing large spikes in

Euclidean distance are accompanied by Y-Z inversions from one or both sensors. However,

this is not universally the case. Therefore, this method is not indicative for all instances

of larger than expected Euclidean distance. Additionally, the possibility exists that the

trajectory of a sensor has moved it from the negative y and z quadrant to the positive y

and z quadrant, not representing a case of hemisphere switching. Given these considerations,

records that have any Y-Z inversion detections have been labeled as “potential hemisphere

switching”.

Figure 4.7: YZ flip detection for pronation supination movement.

Figure 4.9 illustrates the distribution of maximum Euclidean distance vs minimum x posi-

tion for each recording. This graph is utilised to demonstrate that recordings with large

spikes in the Euclidean distance tend to occur closer to the x-axis boundary. This was con-

firmed through the development of a visualisation application (Figure 4.8). Although not all

recordings near the x-axis boundary exhibit these spikes, and some show spikes that are not

necessarily near the x-axis boundary, it is possible that hemisphere crossing is not the only
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tracking issue within the dataset. Ferro-magnetic objects placed near the source can distort

the magnetic field, which would also result in tracking issues.

Figure 4.8: An application was developed in Python using the PyQt5 and PyQTGraph
libraries to display real time and recorded Polhemus Patriot M data. The purpose of this
application was to investigate artefacts found in a substantial amount of the recordings.
Within the application window a 3D visualisation is presented. The orange sphere in the
center of the window denotes the magnetic source, the camera position can be zoomed and
panned around this point. Each sensor is represented by an ellipsoid, and translated and
rotated according to its current pose. This image depicts the hemisphere switching issue.

Figure 4.9: YZ flip distribution.

The investigation did not yield a wholly reliable and robust method for detecting these

tracking anomalies. Various signal characteristics were examined, including the maximum

velocity of each sensor, the maximum displacement (in a single timestep) of each sensor, and

the minimum x position. However, these parameters did not provide distributions that offered
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a clear indication of the root cause of the issues. The most informative insight, which aligns

with the description in the equipment manual, is that recordings in closer proximity to the

x-boundary demonstrated a higher likelihood of sign flips and Euclidean distances exceeding

plausible limits. Based on the distribution observed in Figure 4.9, an upper threshold of 25cm

was established for the Euclidean distance between sensors. Consequently, any recordings

exhibiting a Euclidean distance surpassing this threshold were excluded from further analysis

to maintain data integrity. This has resulted in 110 (≈10%) recordings being removed from

the dataset.

With these issues highlighted, greater focus should be given to the equipment setup. To the

best of the author’s knowledge, this is the first time the issue of hemisphere switching has

been raised in similar studies using the Polhemus. It should be noted that the Patriot M

also provides hemisphere tracking, a feature whereby Patriot M can continuously modify its

operating hemisphere, given that it is started in a known valid hemisphere. It is advised that

this mode be used in future studies. Additionally, it should also be noted that the magnetic

source should be mounted in a fixed position to a non-metallic stand to minimise potential

interference.

4.5 Data Preprocessing

Each recording comprises coordinate positions denoted as (xit, yit, zit) captured over time

steps labelled as t = 1, 2, 3...N for sensors identified by i in the set i ∈ {1, 2}. These coordi-

nates representing the distance in meters from the source, are first pre-processed before being

used as inputs for the machine learning algorithms.

The preprocessing pipeline is designed to enhance the quality and consistency of the data

set, comprising a sequence of steps aimed at noise reduction, outlier removal, trimming, data

normalisation, positional calibration and windowing:

1. Noise Reduction: Each recording undergoes a smoothing process employing a 4th-

order Butterworth filter with a cutoff frequency of 5Hz as outlined in Section 4.3.4

2. Outlier Removal: As outlined in Section 4.4 any recordings exceeding a separation

distance of 0.25 m, due to assumed hemisphere switching. Figure 4.10 illustrates this

issue again but with a finger-tapping recording.

3. Trimming: Transient behaviour is observed in the beginning of most recordings. This

is removed by setting a velocity threshold, that once exceeded by either sensor de-
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notes the beginning of the recording. This process is illustrated in Fig 4.11, which

demonstrates the trimming of a finger tapping task. The velocity of each sensor is

derived by first calculating the euclidean distance between each sensor and the source

dit =
√
x2it + y2it + z2it, followed by the first order derivative vit =

dit−di(t−1)

∆T , where ∆T

represents the time difference between two samples (for a sampling rate of 60 Hz this

is 16.667ms).

4. Data Normalisation: To normalise these coordinates, they are scaled to fall within

the range of [−1, 1] by multiplying each axis by 0.5, effectively mapping each axis of

the coordinate positions into a cube with side length of 2 meters centered around the

origin. This scaling is sufficient for encompassing the tracking range of the Polhemus

Patriot M.

5. Positional Calibration: Initially, the raw data is oriented with respect to a magnetic

source located 0.8 meters in front of the subject. To mitigate potential positional

bias, this reference point is redefined to be the initial position of sensor 1 (j = 0 in the

trimmed recording). Whereby all data points are translated based on this new reference

position.

6. Windowing: The machine learning approaches used require the input data to be of a

fixed length. In this aspect, the recordings in the dataset varied in length considerably.

Ranging from 2 seconds to 35 seconds, with a mean of 12.2 seconds and a standard

deviation of 4.6 seconds. To retain as many of the recordings as possible, the window

length was set to 5 seconds, resulting in a further 28 recordings removed from the

dataset that were shorter than this threshold.
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Figure 4.10: This figure presents an example of erroneous positional data. The separation
between the sensors exceeds the separation threshold of 0.25 m, indicating that the sensor
has been identified in the incorrect hemisphere of the Polhemus Patriot M.

Figure 4.11: The figure displays a plot of the positional velocities from both sensors during
a finger tapping recording. A threshold velocity of 0.2 m/s, was used to remove transient
behaviour not associated with the task from the data.
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4.6 Dataset Generation

4.6.1 Input Timeseries

Following data preprocessing, each sample was transformed into a 2D array with the shape

(6, 300). This shape encapsulates information from two sensors, each providing three channels

of spatial coordinates (x, y, z). These measurements were recorded over a span of 5 seconds,

sampled at a rate of 60 Hz, yielding 300 data points per channel. Figure 4.12 exemplifies

the data input for a pronation-supination task, illustrating the variations in MDS-UPDRS

severities.

Figure 4.12: Data input example for a pronation-supination task, and varying MDS-UPDRS
severities.

4.6.2 Data Augmentation

In the process of preparing the data for model training it was observed that the distribution

of data for the bradykinesia targets was sufficiently balanced across task types (Table 4.3).

However, for distinguishing between PD and NC the dataset showed a considerable imbalance

between different task types (as expected due to the larger number of PD subjects). This

necessitated a strategy to improve the parity between the two groups to ensure a more reliable

and generalised training process.
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Task Type Bradykinesia Count

Pronation-supination
Present 180
Absent 150

Hand opening and close
Present 180
Absent 177

Finger tapping
Present 194
Absent 163

Table 4.3: Distribution of data representing bradykinesia classes across different task types.

To address this, a windowing technique was used on control recordings, wherein each recording

was segmented into a series of overlapping windows with 60% overlap. Additionally, this was

also only applied to healthy controls, as the effects of fatigue wasn’t expected to impact

them. This was limited to four windows per recording to prevent over-representation of any

one subject. Table 4.4, shows the notable improvement in class balance due to this approach.

Task Type Diagnosis Count Augmented Count

Pronation-supination
PD 271 271
NC 59 202

Hand opening and close
PD 281 281
NC 76 247

Finger tapping
PD 279 279
NC 78 259

Table 4.4: Distribution of PD and NC groups for different task types before and after data
augmentation.

4.7 Model Implementation and Training Strategy

4.7.1 Experimental Setup

The study utilised Python 3.9.13 and the tsai library [129] (version 0.3.7) for model imple-

mentations. The tsai library was chosen for its specialised focus on time series analysis and its

integration with PyTorch (version 2.0.0, cuda 11.7) and fastai API (version 2.7.12), offering a

robust foundation for implementing state-of-the-art time series classification models. These

were the ’Plus’ implementations of MiniRocket, MutliRocket and InceptionTime. Experi-

ments were conducted on a system featuring an AMD Ryzen 9 3900 CPU, an Nvidia 3080

GPU with 10GB VRAM, and 32GB of RAM.

4.7.2 Cross-Validation Strategy

To assess model performance and generalisation, a nested cross-validation procedure was

implemented. Nested cross-validation was chosen to provide a more robust estimate of model
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performance and to avoid overfitting during hyperparameter tuning [104]. The dataset was

partitioned into 5 outer folds and 3 inner folds, striking a balance between computational

efficiency and robust validation. This nested structure is crucial as it prevents information

leakage between outer folds during hyperparameter tuning, thus avoiding biased performance

estimates.

The StratifiedGroupKFold function from the scikit-learn library [137] was employed for par-

titioning. This approach ensures each subject appears exactly once in the test set across

folds while attempting to preserve the original dataset’s sample distribution. To maintain

consistency, identical splits were generated for each target and task across all models.

4.7.3 Model Parameters and Hyperparameter Optimisation

Model parameters are outlined in Table 4.5. For hyperparameter optimisation, Bayesian opti-

misation was implemented using the Optuna library [2]. Bayesian optimisation was employed

for its efficiency in exploring complex hyperparameter spaces, allowing for a more intelligent

search than grid or random search methods. A total of 50 trials were executed to explore the

hyperparameter space systematically.

In each trial, a unique combination of hyperparameters was sampled from a predefined search

space (Table 4.6). These hyperparameters were then evaluated within the nested cross-

validation framework. For each inner fold, a loss metric was computed, and these losses were

averaged to produce a single scalar value representing the overall performance for the given

hyperparameters.

Initially, internal model parameters in Table 4.5 were included in this search. However, as

results were significantly poorer compared to default values (perhaps the number of trials

was not enough given the search space), they were left unchanged for this experiment and

reserved for future investigation.

4.7.4 Training Process

The training process leveraged the one-cycle learning rate scheduler proposed by Smith [173],

implemented as the fit once cycle method. The one-cycle scheduler was chosen for its ability

to achieve faster convergence and better generalisation. Categorical Cross-Entropy was em-

ployed as the loss function. To address class imbalance, weights were adjusted using inverse
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Parameter MiniRocket MultiRocket InceptionTime
Number of features/filters 10,000 50,000 32
Batch normalisation True True True
Custom head None None None
Dropout rate for fully connected layer 0.0 0.0 0.0
Max dilations per kernel 32 32 -
Kernel size 9 9 -
Maximum number of channels None None -
Maximum number of kernels 84 84 -
Same number of features per kernel stride False False -
Long Short-term Attention Z-Pool False False -
Zero weight initialisation True True -
Calculate first order derivative - True -
Output Flattened - - False
Concatenated Pooling - - False
Output Value Range - - None
Depth - - 6

Table 4.5: The default model parameters for MiniRocket, MultiRocket, and InceptionTime.

Hyperparameter Search Space

Learning Rate [10−5, 10−1] (log space)
Number of Epochs {16, 32, 64}
Batch Size {10, 11, 12, 13, 14, 15}

Table 4.6: Hyperparameter search space

frequency weights.

The Adam optimizer [88] was used with a learning rate of 0.001, β1 = 0.9, β2 = 0.99, epsilon

= 1 × 10−5, and weight decay = 0.01. These are the default parameters in fastai and were

chosen based on their proven effectiveness in similar deep learning applications [62].

4.8 Statistical Analysis

For each test, a p-value less than or equal to the significance level (α ≤ 0.05) is considered

statistically significant.

4.8.1 Model Performance

A critical difference diagram (CCD) [47], commonly used in timeseries classification literature

for comparing model performance. will be generated for each target and task. The nested

splits generated are identical. In this approach, each outer fold is treated as an observation,

and accuracy is compared between each model. CCD’s in two steps. First the Friedman

test (non-parametric one way repeated analysis of variance by ranks) is computed, which

indicates whether there is any significant difference between the models. If the test rejects

this hypothesis, then the Wilcoxon signed rank test is used to determine whether each pair of
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models exhibits a significant difference. Given that multiple pariwise compairsons are made,

the Wilcoxon test is adjusted using Holm’s method.

One limitation of this approach is that, treating each fold as a separate dataset violates the

assumption of independence of observations, as the test data used is included in four folds for

training. This violation increases the probability of Type I errors [49]. Thus, caution must

me given when interpreting these results.

4.8.2 Misclassification Analysis

Investigating the factors influencing false positives and negatives is vital in ensuring that the

trained models exhibit expected behaviour, and in understanding their potential limitations.

A critical variable in this context is the UPDRS severity score. It is anticipated that an

increase in the UPDRS severity score would consequently decrease the occurrence of false

negatives for both targets. This hypothesis is grounded in the understanding that higher

severity scores, indicative of pronounced bradykinesia symptoms, should facilitate a more

accurate classification. For each target, the following subgroups are identified, in which this

association will be tested:

• Diagnosis prediction: The subgroup encompasses PD samples, in which true pos-

itives are samples being correctly predicted as PD, and false negatives are instances

where a sample is misclassified as healthy control.

• Bradykinesia prediction: The subgroup comprises samples with a UPDRS score

greater than zero, in which true positives are samples being correctly predicted as

having a score greater than zero, and false negatives are instances where a sample is

misclassified a score equal to zero.

The Cochran-Armitage test is suitable for establishing the significance of this relation, whereby

associations between a binary variable (true positives, false negatives) and an ordinal variable

(UPDRS severity score, having five distinct levels) [8].

Additionally, for experiments where UPDRS severity is the target, the distribution of di-

agnoses in false positives (predictions that surpass the score of zero for samples that were

assigned a score of zero) was examined. This analysis aimed to determine whether a signifi-

cant discrepancy exists between misclassifications of healthy controls and PD samples. Such
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an investigation could potentially reveal the model’s capability to detect early, subtle signs of

PD that might lead to misclassifications. Pearson’s chi-squared test was employed to establish

whether the number of misclassifications between PD and HC groups were independent.

Given that distinct subgroups are identified for statistical tests regarding experiments in

which UPDRS severity is the target, the multiple comparisons problem is not applicable,

negating the necessity for corrections.

4.9 Results

Results are reported as mean ± standard deviation, computed across the 5 outer folds of

the nested cross-validation. This approach provides a robust estimate of model performance

while accounting for variability across different data partitions. Table 4.8 presents the results

for each task and model when the target is diagnosis, while Table 4.10 shows the results when

the target is bradykinesia (present vs. absent).

To visualise the effect of MDS-UPDRS severity on model performance, Figure 4.14 illustrates

the relationship between severity and false negatives for each task and model when the di-

agnosis is PD. Similarly, Figure 4.17 demonstrates the effect of MDS-UPDRS severity on

misclassifications for each task and model from the severity prediction task.

ROC curves are plotted for each target, with Figures 4.13 and 4.16 representing diagnosis

and bradykinesia, respectively.

4.9.1 PD vs. Healthy Controls

To provide context for the subsequent analyses, the distribution of UPDRS severity levels

across different task types and diagnoses is presented in Table 4.7.

Task Type Diagnosis UPDRS Severity
0.0 1.0 2.0 3.0 4.0

Hand opening and closing
NC 245 2 - - -
PD 102 97 60 20 2

Pronation-supination
NC 198 4 - - -
PD 92 90 59 28 2

Finger tapping
NC 259 - - - -
PD 85 97 71 26 -

Table 4.7: Distribution of UPDRS severity levels across different task types and diagnosis for
the augmented dataset.
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Model Accuracy Precision Recall F1 score MCC AUC (ROC)

Pronation-Supination

InceptionTime 0.84 ± 0.05 0.86 ± 0.11 0.88 ± 0.06 0.87 ± 0.04 0.69 ± 0.10 0.93 ± 0.04

MiniRocket 0.80 ± 0.05 0.82 ± 0.10 0.87 ± 0.09 0.83 ± 0.05 0.62 ± 0.09 0.90 ± 0.04

MultiRocket 0.82 ± 0.06 0.82 ± 0.12 0.90 ± 0.06 0.85 ± 0.05 0.65 ± 0.11 0.93 ± 0.03

Hand Opening and Closing

InceptionTime 0.77 ± 0.05 0.75 ± 0.10 0.87 ± 0.05 0.80 ± 0.06 0.55 ± 0.07 0.86 ± 0.03

MiniRocket 0.79 ± 0.05 0.77 ± 0.09 0.86 ± 0.04 0.81 ± 0.05 0.58 ± 0.10 0.87 ± 0.04

MultiRocket 0.81 ± 0.04 0.79 ± 0.08 0.88 ± 0.06 0.83 ± 0.05 0.63 ± 0.08 0.89 ± 0.03

Finger Tapping

InceptionTime 0.75 ± 0.07 0.73 ± 0.11 0.85 ± 0.07 0.78 ± 0.06 0.49 ± 0.15 0.80 ± 0.10

MiniRocket 0.78 ± 0.07 0.75 ± 0.11 0.84 ± 0.11 0.79 ± 0.09 0.54 ± 0.11 0.85 ± 0.06

MultiRocket 0.81 ± 0.08 0.77 ± 0.11 0.89 ± 0.06 0.83 ± 0.08 0.61 ± 0.13 0.87 ± 0.06

Table 4.8: Comparative performance of InceptionTime, MiniRocket and MultiRocket in dis-
tinguishing between PD and healthy controls on three distinct motor tasks. The results
represent the mean values derived from 5 outer folds of a nested cross-validation method,
with the standard deviation also presented. Metrics encompass accuracy, precision, recall,
F1 score, Matthews Correlation Coefficient (MCC) and Area Under the Reciever Operating
Characteristic Curve (AUC-ROC). Bold values indicate the best performance across models
for each task in the respective metric column.

In the pronation-supination task, the InceptionTime model demonstrated superior perfor-

mance across most metrics, with MultiRocket slightly outperforming it in recall. To assess

whether these differences were statistically significant, the Friedman test was employed. This

non-parametric test was chosen because it does not assume normality of the data and is

suitable for comparing multiple related samples. The test did not reject the null hypothesis

(p = 0.07), indicating that despite the observed differences, there was no statistically sig-

nificant variation in model performance. This result suggests that all three models perform

comparably well for this task.

Similar patterns were observed for the hand opening and closing task, where MultiRocket

led in all metrics, and the finger tapping task, where MultiRocket again dominated. In

both cases, the Friedman test failed to find significant differences (p = 0.25 and p = 0.33,

respectively). These consistent findings across tasks suggest that while there are observable

differences in performance metrics, all three models are similarly capable in differentiating

PD from healthy controls across various upper limb tasks.

To investigate the relationship between disease severity and model performance, the Cochran-

Armitage test for trend was employed. This test was chosen because it can detect a linear

trend in binomial proportions across ordinal categories, making it ideal for examining how

false negative rates change with increasing UPDRS severity. Significant ordinal associations

were found for all models across all tasks, with p-values ranging from < 0.001 to 0.05.

These results suggest that as UPDRS severity increases, the models become more accurate

in identifying PD cases. This finding aligns with clinical expectations, as more severe cases
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typically exhibit more pronounced symptoms that are easier to detect.

Figure 4.13 showcases the mean ROC curves alongside the variability observed across the 5

outer folds of the nested cross-validation method for each task and model. The gray shaded

area enveloping the mean ROC curve represents the standard deviation of the true positive

rate, providing insight into the stability of the models’ performance across different data

partitions.

Figure 4.14 illustrates the distribution of false negatives for the positive case (PD), grouped

by UPDRS severity levels for each task. This visualisation aids in understanding how the

ordinal severity scores affect the predictive accuracy of each model, further supporting the

findings from the Cochran-Armitage test.
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Figure 4.13: The plot showcases the mean ROC curves alongside variability observed across
5 outer folds of a nested cross-validation method, for each task and model. Each model
is trained to distinguish between healthy controls and PD for each given task. The gray
shaded area enveloping the mean ROC curve represents the standard deviation of the true
positive rate. The chance level is distinctly marked to facilitate a comparison against a model
operating at a level equivalent to random guessing. For context, an AUC 0.70 to 0.80 are
’acceptable’, 0.80 to 0.90 ’excellent’ and 0.9 or above ’outstanding’ [97].
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Figure 4.14: Bar plots illustrating The number of false negatives for the positive case (PD),
grouped by UPDRS severity levels for each task. This visualisation aids in understanding
how the ordinal severity scores effects the predictive accuracy of each model (denoted by
different coloured bars). It is important to note that the data represents an aggregation of
all false positives accumulated from each fold of the nested cross-validation. Additionally the
finger tapping dataset lacked samples with severity level equal to 4.

94



4.9.2 Identifying Clinically Slight Bradykinesia

In this analysis, the focus shifted to a more challenging task: distinguishing between nor-

mal (UPDRS score of 0) and any level of bradykinesia (UPDRS score > 0). This binary

classification is particularly relevant for early detection and monitoring of PD progression.

Table 4.9 presents the distribution of UPDRS severity levels across different task types and

diagnoses for the original dataset, providing context for the subsequent analyses of slight

bradykinesia detection.

Table 4.10 shows the comparative performance of InceptionTime, MiniRocket, and Multi-

Rocket in distinguishing between severity equal to 0 or greater than 0 for the three distinct

motor tasks. The results are presented using the same set of performance metrics as in the

previous analysis.

Task Type Diagnosis UPDRS Severity
0.0 1.0 2.0 3.0 4.0

Hand opening and closing
NC 75 1 - - -
PD 102 97 60 20 2

Pronation-supination
NC 58 1 - - -
PD 92 90 59 28 2

Finger tapping
NC 78 - - - -
PD 85 97 71 26 -

Table 4.9: Distribution of UPDRS severity levels across different task types and diagnosis for
original dataset.

Model Accuracy Precision Recall F1 score MCC AUC (ROC)

Pronation-Supination

InceptionTime 0.80 ± 0.05 0.82 ± 0.05 0.81 ± 0.06 0.81 ± 0.04 0.59 ± 0.11 0.89 ± 0.05

MiniRocket 0.82 ± 0.06 0.87 ± 0.09 0.80 ± 0.04 0.83 ± 0.05 0.65 ± 0.13 0.90 ± 0.07

MultiRocket 0.82 ± 0.06 0.84 ± 0.07 0.83 ± 0.06 0.83 ± 0.06 0.63 ± 0.12 0.90 ± 0.05

Hand Opening and Closing

InceptionTime 0.74 ± 0.05 0.75 ± 0.12 0.75 ± 0.06 0.74 ± 0.04 0.49 ± 0.10 0.83 ± 0.06

MiniRocket 0.79 ± 0.05 0.78 ± 0.11 0.82 ± 0.08 0.79 ± 0.05 0.58 ± 0.10 0.86 ± 0.04

MultiRocket 0.80 ± 0.05 0.81 ± 0.11 0.80 ± 0.07 0.80 ± 0.06 0.61 ± 0.11 0.87 ± 0.04

Finger Tapping

InceptionTime 0.71 ± 0.06 0.74 ± 0.15 0.74 ± 0.07 0.73 ± 0.07 0.43 ± 0.11 0.77 ± 0.06

MiniRocket 0.70 ± 0.02 0.75 ± 0.11 0.68 ± 0.07 0.71 ± 0.04 0.42 ± 0.04 0.79 ± 0.02

MultiRocket 0.70 ± 0.05 0.74 ± 0.12 0.69 ± 0.10 0.71 ± 0.07 0.41 ± 0.10 0.81 ± 0.02

Table 4.10: Comparative performance of InceptionTime, MiniRocket and MultiRocket in
distinguishing between severity equal to 0 or greater than 0 for three distinct motor tasks.
The results represent the mean values derived from 5 outer folds of a cross-validation method,
with the standard deviation also presented. Metrics encompass accuracy, precision, recall,
F1 score, Matthews Correlation Coefficient (MCC) and Area Under the Reciever Operating
Characteristic Curve (AUC-ROC). Bold values indicate the best performance across models
for each task in the respective metric column.

For the pronation-supination task, MiniRocket exhibited the best average performance for
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most metrics, but was surpassed by MultiRocket for recall. The drop in AUC (ROC) scores

for fold 1 as illustrated in Fig 4.16 is particularly notable in comparison to the other folds,

suggesting that recordings from other subjects do not generalise as well to the ones in the test

set. Overall, the performance between all models for this task are very similar. Expectedly,

the Friedman test did not find a significant difference in the performance of the different

models (p = 0.82).

For the hand opening and closing task, MultiRocket had the best average performance for

all metrics except for recall. Here, the Friedman did find a significant difference in model

accuracies (p=0.02). To further investigate these differences, pairwise Wilcoxon signed-rank

tests with Holm correction were conducted. These tests were chosen for their ability to

compare paired samples without assuming normality, with the Holm correction accounting for

multiple comparisons. Surprisingly, despite the significant Friedman test result, no pairwise

comparisons reached statistical significance. This is visually represented in Fig 4.15, which

displays a critical difference diagram summarising the statistical analysis.

Figure 4.15: The critical difference diagram depicts a comparative analysis of model accuracy
in bradykinesia detection for the hand opening and closing task. The Friedman test was used
to rank the models across all folds. MultiRocket and MiniRocket achieved a tied average rank
of 1.5, surpassing InceptionTime with a rank of 3. Subsequent post-hoc analysis with pairwise
Wilcox signed-rank tests with Holm correction, reveled no statistical distance between any
models. Delineated by the line connecting all models.
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For the finger tapping task, InceptionTime showed the best performance over most tasks,

except for recall and ROC AUC. Again, the Friedman test did not find a significant difference

in the performance of the different models (p=0.33).

The Cochran-Armitage test was again employed to examine the relationship between UPDRS

severity and false negatives, revealing significant ordinal associations for all models and tasks

(all reported, p < 0.001). This consistent finding across both classification tasks (PD vs.

Healthy Controls and identifying slight bradykinesia) underscores the strong relationship

between low severity scores and worse model accuracy.

Finally, to explore potential biases in misclassification, Pearson’s chi-squared tests were used

to examine the distribution of diagnoses in false positives (when a subject performed the

task with no abnormalities, but were classed as abnormal). This test was chosen for its

ability to assess independence between categorical variables. The results varied across tasks

and models, with one showing a significant difference MultiRocket in finger tapping, (p =

0.002) and others showing no significant difference. These findings don’t majorly significantly

support the idea that misclassification patterns may differ between PD and healthy control

groups due to subtle, early signs of PD that the models might be detecting.
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Figure 4.16: The plot showcases the mean ROC curves alongside variability observed across
5 outer folds of a nested cross-validation method, for each task and model. Each model
is trained to distinguish between healthy controls and PD for each given task. The gray
shaded area enveloping the mean ROC curve represents the standard deviation of the true
positive rate. The chance level is distinctly marked to facilitate a comparison against a model
operating at a level equivalent to random guessing. For context, an AUC 0.70 to 0.80 are
’acceptable’, 0.80 to 0.90 ’excellent’ and 0.9 or above ’outstanding [97].
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Figure 4.17: Dual bar plots delineating the distribution of false negatives and false positives
predictions. The plot on the left shows false negatives (UPDRS greater than 0) grouped by
diagnosis. The plot on the right shows false positives (UPDRS equal to 0). This visualisation
aids in understanding how diagnosis and ordinal severity scores effect the predictive accuracy
of each model (denoted by different coloured bars). It is important to note that the data
represents an aggregation of all false positives accumulated from each fold of the nested cross-
validation. Additionally the finger tapping dataset lacked samples with severity level equal
to 4.
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4.10 Discussion

4.10.1 Model Performance

This study evaluates the effectiveness of InceptionTime, MiniRocket and MultiRocket in

categorising two key clinical parameters pertinent to movement recordings: diagnostic status

as either PD or HC, and the severity of updrs scores. In this regard the presence or absence

of bradykinesia, as defined by the MDS-UPDRS scoring criteria (bradykinesia is considered

to range from slight to severe). The methods were evaluated based on five criteria: (1)

comparative performance between tasks; (2) performance across three distinct tasks; (3)

the correlation between severity scores and misclassification of PD; (4) the distribution of

diagnoses in instances of misclassified no bradykinesia recordings; and (5) the relationship

between MDS-UPDRS severity scores and instances where bradykinesia was misclassified as

present.

Statistical analysis revealed no significant differences between InceptionTime, MiniRocket,

and MultiRocket models at both the target and task level. This lack of statistically signifi-

cant variation in performance suggests that all three models demonstrate comparable efficacy

in analysing upper limb movement data for PD diagnosis and the detection of slight bradyki-

nesia. The lack of statistical difference may be due in part in how fundamentally each model

seeks to generate convolutional kernels that extract discriminatory features within the time-

series data, albeit varying in their approach. InceptionTime, as a deep learning method, can

learn and adapt its kernels during training. In contrast MiniRocket, on the other hand, em-

ploys a predefined set of kernels, while MultiRocket expands on this with additional pooling

operations and the computation of first-order derivatives from the input time series, resulting

in five times the number of features.

The performance of models was largely comparable across task types and model architectures,

with one notable exception. The identification of bradykinesia in finger tapping recordings,

showed a significant decline in accuracy and MCC metrics compared to other tasks. This

is evident in the misclassification analysis, where a larger proportion of recordings with a

severity score of 1 were incorrectly classified as having a severity score of 0. This observation

may be linked to challenges encountered in developing an approach for segmenting the 1-

D representation of the finger-tapping signal. During this phase, it was noted that it was

particularly difficult to visually distinguish between severity scores for finger tapping. It

appeared that subject tended to prioritise the “as fast as possible” instruction over the “as

wide as possible” instruction. With this, smaller amplitudes in finger tapping recordings
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were common, making the separation of a ‘tap’ from a hesitation or anomaly less distinct,

complicating segmentation using an algorithm. This phenomenon might explain the subtle

but consistent hierarchy observed in tasks, whereby pronation-supination and hand open-

close are more exaggerated movements that are less open to interpretation, demonstrated

superior discriminative performance.

4.10.2 Comparison with Expert Performance

The study by Williams et al. [197] provides valuable insights into expert diagnostic perfor-

mance based solely on finger-tapping recordings. In this study, 21 clinicians evaluated 133

videos, 73 from 39 individuals with idiopathic PD and 60 from 30 healthy controls. Impor-

tantly, the clinicians had no access to additional contextual information, minimising bias and

establishing a benchmark for Machine Learning (ML) models trained exclusively on hand-

kinematic data. The clinicians correctly identified the PD/control status in 70% of cases.

Notably, all three ML models outperformed the human experts, with the MultiRocket model

achieving the highest average accuracy of 81%.

These findings suggest that ML models can surpass expert performance, given these con-

straints. However, it is important to note that the comparison is not direct, as the datasets

and assessment conditions differ between this work and the study conducted by Williams et

al. Future research could explore whether this performance advantage holds when ML models

and human experts are evaluated on the same dataset. Such studies could also investigate

scenarios that progressively limit the information available to clinicians, such as using digi-

tal reconstructions of hand movements or focusing solely on fingertip and thumb positions,

mirroring the input data used by the ML models.

The Williams et al. study [197] also highlights potential biases in MDS-UPDRS severity

scoring. In which bias could stem from prior interactions with patients, potentially affecting

clinical studies where control subjects are often companions of PD patients. They found that

53% of control participant videos were given an MDS-UPDRS finger tapping score greater

than 0, and 25% of control participant hand videos were identified as having bradykinesia

following the Modified Bradykinesia Rating Scale (MBRS) specification. The authors infer

from this that finger-tapping bradykinesia may be a non-specific sign, potentially overlapping

with movement changes associated with normal aging, particularly when mild. In contrast,

the current study’s dataset showed a maximum of 2% of control recordings scored higher than

normal. However, the misclassification rates of UPDRS scores for control recordings were 26%

for InceptionTime, 19% for MiniRocket, and 18% for MultiRocket, which interestingly aligns
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more closely with the findings of Williams et al.

The moderate disagreement among experts viewing the same recording (ICC 0.53) reported

by Williams et al. [197] underscores the challenges in achieving consistent human assessments.

This variability, coupled with the common acceptance of ±1 as an ’acceptable’ accuracy in au-

tomated scoring, highlights an inherent limitation in the granularity of assessments, whether

performed by humans or ML models. These observations suggest that efforts to improve the

reliability and consistency of PD assessments should focus on reducing disagreement among

human assessors before further refinement of ML models. One potential approach could

involve incorporating digital measurements and video recording into standard clinical proce-

dure. This would allow clinicians to review more objective, quantitative data alongside their

visual assessments, potentially improving consistency and accuracy.

The challenges in achieving fine-grained, consistent assessments significantly influenced the

decision in the present study to focus on binary classification for severity scoring (normal vs.

abnormal). This particular target of (0) vs (1,2,3,4) represents a more challenging classifica-

tion task compared to the commonly investigated (0,1) vs (2,3,4) or multi-class classifications

with acceptable accuracy. As such, this specific binary classification is not well reported in

other studies, making direct comparisons challenging. The rationale behind this choice and

its implications are further explored in the next section in context of the work by Morinan

et al. [114].

4.10.3 Comparison with Feature-Based Methods

Morinan et al. employed a feature-based approach utilising a Random Forest model for

multi-class and binary classification of MDS-UPDRS severity. The multi-class classification

is representative of many methods in the field. Their methodology involves approximating

movements with a one dimensional time series signal, from which clinically relevant feature

pertaining to bradykinesia are extracted. A random forest model is then utilised to ob-

jectively quantify severity across various tasks (finger tapping, hand open-close, pronation-

supination, toe tapping, leg agility). The primary motivation behind their study was to

leverage the pose-estimation capabilities of advanced computer vision approaches, specifi-

cally DeepLabCut [109]. While this method offers advantages in terms of accessibility and

ease of implementation, it fundamentally measures hand kinematics, making it comparable

to the approach used in the current study.

A notable strength of Morinan et al.’s study is its large sample size, which addresses a
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common limitation in the literature. For instance Khan et al. [86] reported 94.5% accuracy

for PD/control classification, but their study only included 16 PD patients and 6 controls,

which gives uncertainty about the models ability to generalise. In contrast, Morinan et al.’s

study included 628 PD patients across five independent sites, with left and right sides for

each task, resulting in a comprehensive dataset of 10,823 ratings. This extensive dataset

significantly enhances the confidence in the generalisability and reliability of their findings.

Their multi-class models, where each MDS-UPDRS score is treated as a separate class,

achieved an ’acceptable accuracy’ of approximately 0.85 for each of the three upper limb

tasks. For their binary classification task, which distinguished between mild (0,1) and more

severe (2,3,4) cases, they reported AUC-ROC scores of 0.79, 0.81, and 0.75 for finger tapping,

hand open-close, and pronation-supination tasks, respectively.

While these AUC-ROC scores are comparable to or exceeded by the models in this work,

it is important to note that the classification targets differ. The present study focused on

distinguishing between normal (0) and any level of impairment (1,2,3,4), a more challenging

task than separating mild from more severe cases.

To facilitate a more direct comparison, performance metrics for the 0 vs. rest classification

were inferred from Morinan et al.’s multi-class confusion matrices:

1. Finger tapping: 15.22% of recordings were severity 0, with an F1-score of 0.83 and

MCC of 0.22

2. Hand open-close: 21.75% of recordings were severity 0, with an F1-score of 0.789 and

MCC of 0.21

3. Pronation-supination: 25.35% of recordings were severity 0, with an F1-score of 0.75

and MCC of 0.22

While the F1-scores are comparable to those achieved in the present study, the MCC scores

are notably lower than those of the best-performing models in this work (finger tapping

MCC: 0.43, hand opening and closing MCC: 0.61, pronation-supination MCC: 0.65). This

discrepancy can be attributed to the imbalanced nature of Morinan et al.’s dataset, of which

is accounted for by MCC metric.

103



4.10.4 Comparison to End-to-End Approaches

The study by Gao et al. [56] represents the current reported state-of-the-art in differentiating

PD patients from healthy controls HC using the finger-tapping task. Their approach achieved

remarkable AUC-ROC scores of 0.959 and 0.976 for the left and right hands respectively.

These results notably surpass the performance of the best model for finger-tapping in this

work, MultiRocket, which achieved an average AUC-ROC of 0.87 for the same classification

task.

Gao et al. employed Cartesian Genetic Programming, an evolutionary algorithm that gener-

ates a symbolic model applied to a 30-second 1-D acceleration time-series capturing finger-

thumb separation. The extended recording duration may better capture fatigue effects, con-

tributing to the improved performance compared to the 5-second recordings used in this

work. Moreover, the model was trained on a UK dataset and evaluated on a separate Chi-

nese cohort, providing empirical evidence of its generalisability—a key strength, while this

thesis relies on cross-validation for performance estimates.

Several methodological differences, however, may help explain the observed performance gap.

Firstly, the study utilises the larger of two scores from repeated tasks for each hand, which

may give an advantage in capturing more pronounced symptoms. Secondly, with many PD

subjects in early stages of the disease, where symptoms present unilaterally, and given that

all participants were right-handed, the right-hand performance is expected to be higher.

This may partly explain the stronger results observed for the right hand. Finally, the study

excluded 10 PD patients with zero bradykinesia scores to focus on differentiating varying

levels of bradykinesia severity. While this approach aligns with their objective, it contrasts

with this work’s inclusion of all cases, including those with zero severity scores, which are

more challenging to classify.

4.10.5 Limitations and Future Work

4.10.5.1 Comparison to Traditional ML Methods

This work would have benefited from a comparison to feature-based methods on this dataset.

Nevertheless, significant challenges arose in developing an approach to achieving this. The

segmentation of kinematic signals, such as identifying individual taps in a finger tapping

time-series, is a crucial step in the pre-processing pipeline for feature-based machine learning

studies in this field. Despite its importance, many published works that implement segmen-
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tation as part of their methodology provide limited details on their specific implementation of

peak finding algorithms. This lack of detailed reporting creates challenges for reproducibility

and standardisation in the field.

Notably, studies such as [94, 19, 77, 21, 118, 117, 119, 164, 181] mention the use of peak

detection algorithms in their methods but either do not provide comprehensive information

on algorithms used or do not justify parameters used. This gap underscores the necessity for

a more transparent and objective approach to signal segmentation in the context of MDS-

UPDRS motor assessments.

The subjective nature of the MDS-UPDRS motor assessments themselves may contribute to

this variability in implementation and reporting. For instance, in the finger tapping task,

subjects are instructed to ”tap the index finger on the thumb 10 times as quickly AND as big

as possible.” Examiners are expected to look for interruptions and decrements in amplitude,

but these criteria are not precisely defined, leaving room for interpretation in both clinical

and automated assessments.

The application presented in Appendix B aims to tackle these challenges by developing a

dataset to drive a data-driven method for optimizing the parameters of the find peaks signal.

This approach seeks to enhance the objectivity and reproducibility of kinematic signal analysis

in motor impairment assessments, addressing the variability in implementation and reporting

observed in previous studies.

4.10.5.2 Exploration of an Anti-Assessment

A recurring concern in applying machine learning models in clinical settings is the inherent

lack of transparency—often referred to as the ”black box” problem. This issue is particularly

pressing in healthcare, where decisions informed by models must be trusted by clinicians

and patients alike [138]. Researchers must also exercise caution when interpreting published

results, especially when the mechanisms behind model decision-making remain opaque [104].

One approach to enhancing trust and model robustness involves introducing a form of anti-

assessment. The objective of this anti-assessment would be to design tasks or conditions

where, theoretically, the model learns nothing of discriminatory value. Achieving this is es-

pecially challenging in the context of PD, given the disease’s hallmark motor impairments.

However, the remarkable phenomenon where PD patients can cycle effortlessly despite se-

vere gait disturbances, including freezing of gait [187], suggests that under certain highly
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constrained conditions, motor tasks can be performed with minimal manifestation of typical

impairments.

An upper-limb equivalent might involve developing a goal-oriented, highly structured task

with maximum sensory feedback, minimising observable motor differences between individ-

uals with PD and healthy controls. One potential task could involve subjects rhythmically

moving their arm like a metronome along a flat surface, pivoting on the elbow and oscillat-

ing between two fixed points. By integrating rich sensory feedback—both visual and audi-

tory—the task could ”normalise” movement to the extent that no meaningful discriminatory

features emerge.

The aim would be to assess the model’s performance under these conditions to determine if

it indeed learns nothing of value. If successful, this approach could enhance trust in models

by demonstrating their ability to distinguish between meaningful and non-meaningful tasks.

This could be especially relevant for tasks that have not yet been formally investigated,

such as the Luria test—a sequence of hand gestures used for identifying cognitive impair-

ment [194]—where, to the best of the author’s knowledge, no digitised approaches have been

published.

4.11 Conclusion

The results of this study demonstrate that end-to-end time series classification models, par-

ticularly InceptionTime, MiniRocket, and MultiRocket, are effective in analysing upper limb

movement data for PD diagnosis and detection of slight bradykinesia. These models achieved

performance comparable to, and in some cases surpassing, traditional feature-based ap-

proaches and human expert assessment, with the added advantage of not requiring extensive

feature engineering or domain expertise.

A key strength of these models lies in their ability to learn directly from raw positional data,

offering flexibility in adapting to various data sources and potentially identifying complex

patterns that might be overlooked by summary measures. This adaptability is particularly

valuable as wearable sensor technology advances and becomes more prevalent in healthcare

applications.

Future work should focus on further improving model interpretability to enhance clinical

applicability and potentially uncover new insights into PD manifestation and progression.

Additionally, investigating the models’ performance on larger, more diverse datasets and
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exploring their applicability to other movement disorders could further validate and extend

the utility of this approach in clinical settings.
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Chapter 5

Semantic Segmentation of

Neuropsychological Figures

Digitisation of traditional neuropsychological pen-and-paper assessments provides a means to

amplify their diagnostic utility. Features derived from the precise recording of temporal pen

dynamics (position, pose and pressure) have demonstrated significant promise as biomarkers

in PD diagnosis [203, 185, 201, 31, 52].

However, deriving features that characterise executive function, specifically related to organi-

sation and planning, requires the semantic labelling of strokes. Existing tools for the semantic

segmentation of the ROCF, a widely used tool for such analyses, remain suboptimal for rou-

tine clinical use. This is primarily due to the requirement for time-intensive manual labelling.

A similar problem has been addressed in the semantic segmentation of digital images, where

deep learning models perform the initial labelling, which is subsequently refined manually

[162].

In this chapter, a modified U-Net architecture [156] is evaluated for the automatic semantic

segmentation of a simplified ROCF figure. Central to this approach is the novel exploration of

feature embeddings, where pen dynamics such as pressure, time and tilt, are represented via

pixel intensities while retaining their spatial position. This multidimensional representation

of pen dynamics aims to further improve segmentation of digital drawings.
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5.1 Background

The Rey-Osterrieth Complex Figure [151, 131], composed of hierarchically structured ab-

stract geometric shapes, serves as a prominent non-verbal tool in neuropsychology [171].

Reproduction of the figure from example and recall, provides a cognitive snapshot of visu-

ospatial constructional ability, visuospatial memory, and processing speed [111]. Since it’s

introduction in the 1940’s the notion and utility of complex figures has been expanded upon.

With alternatives such as the Taylor figure that mitigates practise effects [183], and simpler

versions such as the Benson Figure or Geriatric Figure for cognitively impaired and elderly

populations [143, 142].

Figure 5.1: Rey-Osterietth Complex Figure [131] (A) and simplified versions, the Benson
Figure [143] (B), the OCS-plus figure [43] (C), and the simplified Taylor-Figure [42] (D).

The conventional method for scoring the ROCF is based on the Osterietth system [131]. In

this, the figure is divided into into 18 components, which are individually assessed based on

three criteria: accuracy, completeness and placement. This method is straightforward and

allows for post-hoc evaluation, but does not provide information regarding the organisational

strategy employed during the drawing process.

To address the limitations of the Osterietth method, the Boston Qualitative Scoring System

(BQSS) [180] was developed. This system introduces five scores related to executive func-

tioning (planning, fragmentation, neatness, preservation, and organisation), derived from

hierarchical groupings of the figure (configurable, clusters and details). A study by Scarpina

et al. [166] utilised the BQSS to differentiate between PD patients and healthy controls. The
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results indicated that lower planning and neatness scores associated with PD patients were

associated with executive function deficits, notably in planning and impulsivity, rather than

impaired visuospatial constructional ability. However, despite the utility of the BQSS, it is

constrained by administration challenges and trade-offs.

Two strategies are employed for the recording of pen strokes, the flowchart method and

pen-switching method [176]. In the flowchart method, the examiner annotates a reference

figure, with arrows to indicate the direction of each stroke, and numbers to show the order.

In comparison, the pen-switching method, suggested by Rey [152], denotes the ordering of

strokes via different coloured pens. In this, pens are switched at predefined intervals, usually

when a subject has completed a section of the drawing. Somerville found that although the

administration time for both methods was the same, the flow-chart method took longer to

score [176]. Overall, a trade-off must be made between the granularity of detail captured and

labour required from the examiner.

The recent study by Petilli et al. [139] signifies a notable advancement in this domain.

Their Tablet-based Rey Complex Figure copy task (T-RCF) offers a comprehensive digital

solution, that fulfils the objectives previously targeted by the pen switching and flowchart

method. By extracting a wide range of indices, including spatial, procedural and kinematic

aspects, the digital methodology affords a more nuanced and complete evaluation of drawing

abilities. However, this is contingent upon the manual segmentation of the image, a limitation

highlighted by the authors, and one which this work aims to address.

Previous automated segmentation approaches of complex figures have focused on the task

of automated scoring. Early work by Canham et al. [24], used algorithms to search for the

identification of basic shapes (triangles, rectangles, prisms and simple lines), representing an

offline drawing as an attributed relational graph (this facilitated the representation of collinear

lines in the geometric shapes). While the method could identify only 6 basic patterns, their

method achieved 99.3% accuracy, in locating these sections. More recently Webb et al. [193],

have also found success with similar heuristics for the OCS Figure Copy Task, although

noted that generalisability to other figure tasks is not guaranteed without further algorithmic

development.

In the context of sketch segmentation literature (as well as the broader domain of computer

vision), deep learning approaches have emerged as state of the art [100, 198, 148, 147],

surpassing conventional heuristic methods. Notably the approach by Li et al. [100], is through

the rasterisation of digital drawings followed by the application of a slightly modified U-Net

architecture.
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U-Net is a convolutional neural network architecture tailored for semantic segmentation tasks

[156]. The efficacy of U-Net is attributed its encoder-decoder structure, with skip connections

to preserve information that may otherwise be lost of during the encoding process. In this

methodology a digital image serves as the input, and the network outputs a mask, whereby

each pixel is classified according to its semantic content. This rasterisation and U-Net based

approach has been applied to other neuropsychological drawing tasks, such as the clock draw-

ing test [134], and the interlocking pentagon task [133]. In these applications, the generated

mask facilitates automated scoring.

Similar to the post-hoc scoring methods used for the ROCF, the rasterisation of the drawing

used in previous approaches fails to capture pen dynamics. Allisa et al. [5] addressed this gap

by encoding pressure information via pixel intensities in greyscale digitisations of interlocking

pentagons and necker cubes. Their approach improved the classification performance in

discriminating between PD and healthy controls. Specifically, they extended the conventional

binary (black and white) representation to a greyscale image. The grey information was

generated by scaling the pressure values of [0, 1] to [0 − 254]. In addition in air trajectories

were considered, in this the grey value was set to 0, 255 was used to indicate the absence of

pen data. They found that the additional encoding improved the accuracy and stability of

the classifiers training.

The objectives of this present work are twofold. The first is to evaluate the U-Net architecture

for the semantic segmentation of a simplified complex figure task, thereby laying the ground-

work for future application to the ROCF and other complex figures, without the requirement

for handcrafted heuristics. The second objective is accompanied with a specific hypothesis,

that the encoding of pen dynamics, as done by Allisa et al. [5], extended to three dimensions

to also include tilt and temporal information, will be more effective than a binary represen-

tation for semantic segmentation tasks. This is based on the presumption that providing

additional information about pen dynamics will enhance the models ability to discriminate

between overlapping strokes, a task that becomes particularly challenging in a binary images

where, no information is retained about occluded sections, and in lower resolutions where the

boundaries between lines becomes increasingly difficult to discern. Figure 5.2 is provided to

illustrate this encoding, and give context towards the structure of the methodology.
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Figure 5.2: Multi-channel representation of a pen-dynamics from a digital drawing, illus-
trating the individual contributions of y-axis tilt (Red channel), time (Green channel) and
pressure (Blue channel), alongside the resulting image obtained from concatenating these
channels. Each subplot is displayed in greyscale, and the merged image

5.2 Methodology

The semantic segmentation of the Benson Complex Figure, a simplified version of the ROCF

developed by Frank Benson M.D., is investigated. Possin et al. [143] found that the copy

task was adequate to elicit differences between subjects with Alzheimer’s disease and the

behavioural variant of Frontotemporal dementia. Similiar to Webb [193], a simplified figure

serves as an exploration into automated segmentation techniques that can then be applied

to the ROCF, and thus the Benson Figure is an appropriate starting point. The goal is to

classify each element of the figure, described by the National Alzheimer’s Coordinating Center

- Uniform Data Set (NACC-UDS) [116]. The NACC-UDS provides standardised assessment

tools for Alzheimer’s disease research.

Figure 5.3 presents the elements and scoring criteria for the Benson Complex Figure, taken

from the NACC scoring criteria. The eight elements of the figure correspond to their respec-

tive number found in the scoring criteria.

5.2.1 Dataset Acquisition

The digital drawings used in this work, are sourced from the study “A novel diagnostic devices

for the objective diagnosis of Parkinson’s disease with and without dementia” [39]. The

dataset comprises information acquired from 58 patients diagnosed with PD, as per the Queen

Square Brain Bank Criteria, by specialist consultants in neurology clinics. Additionally, the

dataset includes 29 age-matched healthy controls, who were either spouses or friends of the
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Figure 5.3: Elements and scoring criteria for the Benson Complex Figure, taken from the
NACC, scoring criteria.

PD patients. All data were collected by clinicians at Leeds Teaching Hospitals NHS Trust

(LTHT). The study received National Regional Ethics Service approval (10/H1308/5), and

local and research and development approval from LTHT (UI10/9232).

Future work will investigate how non-semantic cognitive features compare with features that

correspond to organisation. Cognitive features from [145] include number of strokes, sketching

time, stroke distance, dureation, average pressure, average velocity, velocity variation, number

of pauses, average pause duration, the ratio between sketching duration and pausing duration,

and average lift duration. Organisational features from [139] include:

1. The level of priority given to the most relevant unit of the figure (i.e. the base rectangle).

2. The level of priority given to the less relevant unit of the figure (i.e., the inner details,

with the first feature they can give a global vs local measure)

3. The number of time the reproduction of a component of the figure was interrupted to

reproduce elements belonging to other units.

These features will later be applied to discriminating between levels of cognitive impairment.

Together with this segmentation approach, they will facilitate a comprehensive solution for

the quick extraction of clinically relevant features.
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5.2.1.1 Protocol

Subjects were instructed to copy the Benson Complex Figure based on a reference image,

without any time constraint. Subsequent scoring was conducted by trained assessors post-

hoc, evaluating both the accuracy and placement of each element. The maximum attainable

score was 17 points. [39].

For data capture, the Wacom Intuos5 Touch L PTH850 graphics tablet was selected due to

its non intrusive nature in recording graphmotor data. When overlaid with a sheet of paper,

the inking stylus provides an experience equivalent to a traditional pen. Figure 5.4 illustrates

the experimental setup.

Figure 5.4: The wacom graphics tablet, with overlaid assessment sheet

Wacom graphics tablets operate using the principle of Electromagnetic Resonance (EMR)

[192], whcih allows for precise stylus tracking without the need for batteries or wires in the

stylus. At a sampling rate of 200Hz, the tablet is able to locate the position of the stylus to

an accuracy of ±0.25 mm and the a tilt measurement in ±60◦, on the x and y axes. Moreover,

the stylus is able to report 2048 discrete pressure values and button presses. The active area
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of the tablet is 32.5 x 20.3 cm, comparable to the size of a A4 sheet of paper. One notable

feature of EMR technology is the ability to measure the position of the stylus while hovering

above the surface of the tablet. This also permits the integration of an LCD screen.

The JTablet 2.0 API was used in the data acquisition software. For each sample, normalised

x and y positions, x and y tilt and pressure values were recorded. Timestamps were appended

upon receiving each sample.

5.3 Data Preprocessing

5.3.1 Raw Sketch Data

The following notation will be used for the pen data:

px, py : coordinates (5.1)

tx, ty : tilt angles (5.2)

pr : pressure (5.3)

ts : timestamp (5.4)

The raw drawing data D, comes in the form of multivariate time series data.

D =


px0 py0 tx0 ty0 pr0 ts0

px1 py1 tx1 ty1 pr1 ts1
...

...
...

...
...

...

pxn−1 pyn−1 txn−1 tyn−1 prn−1 tsn−1

 (5.5)

Where xi represents the x coordinate of the ith sample point within the drawing, with 0 ≤

i ≤ n. The ith sample can be referenced by si, which corresponds to (pxi, pyi, txi, tyi, pri, tsi).
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5.3.2 Sample Segmentation

The graphics tablet is event driven, as such it cannot be assumed that samples are received

are at regular intervals. This irregularity is illustrated in Fig 5.5, where linear interpolation

between non-continuous samples results in sharp, erroneous trajectories.

Figure 5.5: A naive recreation of the drawing, plotting the coordinates of each sample and
linearly interpolating between neighbouring samples.

To achieve a more accurate representation, samples are grouped into down strokes (periods

where the pen is in contact with the surface) and air strokes (periods where the pen is not

in contact). This grouping necessitates the inference of two types of events from the data:

1. Contact Events: Characterised by transitions between stylus contact and non-contact

states on the tablet surface.

• Pen Up Event: pri = 0 and pri−1 > 0

• Pen Down Event: pri > 0 and pri−1 = 0

2. Proximity Events: Governed by stylus entry or exit of the tablet’s active area or

hover range. This event is inferred when the time elapsed between neighbouring samples

exceeds a threshold.

• Exiting Event: tsi+1 − tsi ≥ threshold

• Entering Event: tsi − tsi−1 ≥ threshold

For this work the threshold is set to 30ms (experimentally chosen), as discussed in Section

5.3.2.1 the precision to which missed samples can be inferred is hindered by the recording
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software. It should be noted that Wacom tablets do emit proximity events, and it is recom-

mended that future work utilises this event instead.

A stroke is defined as a temporally contiguous sequence of samples where the pen is either

continuously in contact with the surface of the tablet (down stroke) or hovering above it (air

stroke). Specifically:

• Down stroke: Begins with either the first sample of the drawing, a pen down event,

or an entering event. It ends with either the last sample of a drawing, a pen up event

or an exiting event.

• Air stroke: Begins with either a pen-up event or an entering event. It ends with a

pen down event or exiting event.

In this study, strokes with a length less than 0.1 cm were deemed unlikely to represent

relevant movements in the reproduction of the Benson Figure. Consequently, these strokes

were classified as noise and excluded from further analysis. Given these grouping and the

removal of noise, an accurate representation of the data is presented in Figure 5.6.

Figure 5.6: Drawing with samples segmented into strokes. Down strokes are are assigned a
unique colour. Air strokes, are represented by transparent black lines.

The limited height range of the tablet results in frequent entering and exiting events when

the stylus is hovering. Notably, previous studies utilising air strokes in their analyses have

not addressed the role of proximity events in their methodologies [201, 158, 5]. While this

omission may have less impact on analyses of handwriting or simpler figures, where the stylus

is expected to be in close proximity to the surface of the tablet; for the current dataset, the

detection of these proximity events has been crucial for correcting an error in the timestamps.
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5.3.2.1 Timestamps

A noticeable discrepancy in the calculated sampling rate of the recorded timestamps was

observed, as shown in Figure 5.7. The sampling rate of down strokes was much lower than the

expected 200 Hz and varied considerably across strokes. This variation was not as prominent

in air strokes. Analysis of the acquisition software revealed that for each sample received,

the software added a timestamp based on the current system clock, and for samples received

during a down stroke, a new frame was rendered, introducing a delay which compounds over

the length of the stroke. In contrast, air strokes did not encounter this issue, as they were

not rendered.

Figure 5.7: Boxplot illustrating the average time differences between samples for both down
strokes (pen in contact with the surface) and air strokes (pen off the surface, but still in
range) for a recording. The red dashed line indicates the expected average time difference of
5 ms at a sampling rate of 200 Hz. This visualisation aims to exhibit how rendering affects
the latency in capturing timestamps.

In an attempt to correct this inconsistency, it was first assumed that the buffer was sufficient

to prevent data loss, thus with each stroke constantly reporting events a constant sampling

rate of 200 Hz was also assumed for each stroke. For each lift event, if an exiting event was

detected, the time gap until the next entering event was calculated and then added to all

subsequent timestamps, including the entering event itself. This adjustment ensures that the

timing aligns with the expected sampling rate despite delays introduced during down strokes.

This correction was required as the timestamps of the samples is encoded in the rasterised

image. Accurate timing is also crucial for the analysis of drawing speed, hesitations, and

other temporal features that may be indicative of cognitive function in neuropsychological
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assessments.

5.3.3 Stroke segments

Any single stroke can be arbitrarily complex, and may correspond to multiple elements of the

Benson figure. For instance, it could be possible that the entire figure is drawn with a single

stroke. This presents an annotation challenge, as any stroke may have to be split into stroke

segments, in order to assign correct labels. For the current dataset, approximately 30% of

the drawings contained strokes that met this criterion. Petelli et al. addresses this in their

T-RCF software through the use of manually added break points to a stroke [139].

The current work explores an automated solution to this challenge. The Ramer-Douglas-

Peucker (RDP) algorithm, a polyline simplification technique, has been utilised to achieve

this goal 1. The RDP algorithm recursively reduces the number of samples in a stroke until a

specified threshold, ϵ is met. The pseudocode for this algorithm is presented in Appendix A.

Points within a stroke are grouped between these remaining points. Consequently, all points

within a stroke segment belongs to the same class.

A primary limitation of this method is the necessity for empirical determination of the epsilon

value. The optimal value is dependent on the relative size and level of detail in the drawing,

which may introduce variability in the segmentation process. An epsilon value of 10 was

deemed appropriate. This value was applied after scaling the drawings: the x-axis was scaled

to meet the width of a 1:1 aspect ratio square, denoted as W , and the y-axis was multiplied

by the same scalar ( W
original width) to preserve the original drawing’s aspect ratio. This scaling

and segmentation process is illustrated in Figure 5.8.

5.3.3.1 Sketch Annotation

Due to the absence of suitable existing tools for sketch annotation meeting the specifications

required for this research, a bespoke sketch annotation interface was developed. This custom

Graphical User Interface (GUI) was developed specifically for this purpose, as illustrated in

Figure 5.9, not only serves the immediate requirements of this thesis but also contributes a

novel utility to the broader academic field.

The GUI allows for efficient and precise data annotation by rendering sketch data on an

1This approach is used in [193], albeit not for the purpose of specifically labelling segments
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Figure 5.8: Before and after polyline simplification using the Ramer-Douglas-Puecker algo-
rithm. The top panels displays the original down strokes with all of the recorded samples.
The bottom panel shows the line segments constructed from the points selected, (just 1% of
the original points).

Figure 5.9: Custom-developed sketch labelling software employed for stroke segment classifi-
cation.

interactive canvas. The interface facilitates the selection and categorical labeling of individual

stroke segments. The labels can be modified by the user, but for this work are derived from

the eight elements within the NACC-UDS Benson Figure scoring criteria 5.3.

Within this interface, each stroke segment can be selected and categorically labelled. However,
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not all stroke segments align neatly with these criteria; segments that defy classification are

accordingly labelled as ”UNKNOWN”, effectively expanding the label set to nine distinct

categories.

To facilitate the annotation process, two selection modalities have been integrated into the

GUI:

1. Picker Tool: Allows for individual selection of stroke segments for manual classifica-

tion.

2. Shape Tool: Enables bulk selection of stroke segments within a defined geometric

boundary, either rectangular or elliptical in shape.

The software was implemented in Python [189], leveraging the PyQT GUI framework [146]

for GUI implementation and Matplotlib [76] for rendering the sketch data on the canvas.

5.4 Dataset Generation

5.4.1 Rasterisation Process and Segmentation Map Generation

The rasterisation process converts the timeseries stroke data into a 3D RGB image format.

This format was chosen for its compatibility with pre-trained models and its ability to encode

multiple features simultaneously, making it convenient to work with the chosen machine

learning library fastai [73]. The procedure encompasses the following steps:

5.4.1.1 Input Image Rasterisation

The rasterisation process converts the timeseries stroke data into a image format for the

neural network. This was chosen as a 3D RGB image, as it is convenient to work with

the chosen machine learning library fastai [73], which has pre-trained models for this image

format. The procedure encompasses the following steps:

1. Initialisation of Array: An square array is initialised with zeros, with dimensions

corresponding to the desired resolution (e.g. 512x512 or 128x128). Pixel values of zero

are reserved for the background class.
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2. Coordinate Scaling: The coordinates of the drawing are normalised such that the

largest axis (uniformly the x-axis in this study) spans a range [0 to 1]. The secondary

axis is subsequently translated to be centrally aligned, and scaled to the range [0, 1]

such that the aspect ratio of the original drawing is preserved.

3. Padding Addition: A padding of 5% is applied to all sides of the image. This is

implemented by first scaling to fit the image within 90% of the image dimensions and

then centering the image. This ensures that there is no clipping at the edges.

4. Feature Scaling: Characteristics such as pressure, tilt, and timestamps are linearly

scaled to fit within the integer range [1, 255].

5. Stroke Rasterisation: Each stroke is drawn on the image in chronological order using

the following process:

(a) Each sample point in the stroke is represented by its spatial coordinates, a thickness

value, and a pixel value (corresponding to pressure, tilt, timestamp or constant).

For this study, the thickness is set to 1 pixel, resulting in thin lines. Larger

thickness values would create disks, resulting in thicker strokes .

(b) Between each neighbouring two points a line is drawn. This is done through linear

interpolation. Additionally, the value assigned to each pixel is also interpolated

along the line. As such for dynamic features, the intensity varies along the stroke.

(c) When strokes overlap, the most recent stroke takes precedence, mimicking the

natural layering effect of drawing.

6. Channel Assignment: Features are assigned individually to one of the three channels

of the output image based on the specific representation being generated (as per Table

5.1).

7. Image Generation: The three channels are combined into a single RGB image for

input to the U-Net model.

This rasterisation process effectively translates the time-series stroke data into a spatial image

representation. It preserves both the visual characteristics of the strokes and encodes the

dynamic information of the drawing process, providing a rich input for subsequent analysis

or machine learning tasks.
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5.4.1.2 Segmentation Map Generation

Alongside the input image, a corresponding segmentation map is generated. This map serves

as the ground truth for training the model and evaluating its performance, enabling the

model to learn the correspondence between pen dynamics and figure elements. The process

includes:

1. Initialisation of Array: A zero-filled array matching the input image dimensions is

created.

2. Stroke Segment Mapping: Each stroke segment is assigned a unique identifier.

3. Label: Each stroke segment is labelled according to the element of the Benson Figure

it represents. This is done via manual annotation.

4. Rasterisation: Similar to the input image process, stroke segments are rasterised

onto the segmentation map. The same coordinate scaling and 5% padding are applied.

Instead of feature values, each pixel is instead assigned the label of the corresponding

stroke segment.

5. Background and Unknown Labelling: Pixels not covered by any stroke segment are

labelled as background. Stroke segments manually labelled as ”UNKNOWN” during

the annotation process retain this label in the segmentation map.

This dual process of input image rasterisation and segmentation map generation creates

paired data suitable for training and evaluating the semantic segmentation model. The input

images encode both spatial and dynamic information about the drawing process, while the

segmentation maps provide the ground truth labels for each pixel.

Additionally, another segmentation map that corresponds to the unique segment identifier for

each pixel is also generated. This follows the same process as previously described, with the

exception that the segment identifier isn’t swapped out for a class label. This additional map

is used after inference for recovering the predictions over the entire stroke segment, which are

later used for making a single prediction for that stroke segment. This in turn recovers the

original annotation made.
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5.5 Evaluation of Pen Dynamics

To assess the importance of different pen dynamics in the semantic segmentation task, four

distinct three-channel input image data representations were evaluated, see Table 5.1. These

combinations were carefully selected to explore various aspects of the drawing process and

their potential impact on segmentation performance.

Combination Channel 1 Channel 2 Channel 3

Base Comparison constant constant constant

Combination 1 x tilt y tilt pressure

Combination 2 x tilt y tilt time

Combination 3 pressure time constant

Table 5.1: Summary of Pen Dynamic Permutations

The selection of permutations for pen-dynamics aims to examine the relative importance of

potential synergies between the pen-dynamics and the components of the Benson Figure.

Each combination was designed to capture different aspects of the drawing process:

• Base comparison: A constant value across all three channels serves as a control, rep-

resenting the spatial information of the drawing without any additional pen dynamics.

• Combination 1: This combination captures the three-dimensional interaction of the

pen with the drawing surface. Tilt information may help discriminate between close

stroke segments. For example the sides of the base rectangle will differ in orienta-

tion that the other elements. The force applied during different parts of the drawing,

indicates where a stroke started and ended.

• Combination 2: By replacing pressure with time, this combination allows for a more

granular image of how pen orientation changes throughout the drawing process.

• Combination 3: This combination isolates pressure and time, potentially revealing

patterns in the intensity and pacing of drawing strokes. The constant value in the third

channel serves as a control.

By comparing the performance of these different combinations, it can be assessed whether

certain pen dynamics are more informative for the segmentation task, and also if this varies

with image resolution.
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5.6 Evaluation of Resolution

Notably, rasterisation is an inherently lossy procedure. While it transforms stroke data into a

form suitable for computational models, this discretisation may result in a loss of fine-grained

information present in the original, much higher resolution data. Consequently, a trade-off

exists between memory requirements and stroke segment representation, as illustrated by

Figure 5.10.

Figure 5.10: Distributions of non represented stroke segments over the data set for various
resolutions

Among the 80 images in the dataset, when rendered at 512 x 512 resolution, only 2 images

have stroke segments that are not represented. Conversely, images rendered at 128x128

resolution begin to lose significant stroke segment representation. To address this issue, a

method must be developed to infer the class of these missing segments, ensuring a complete

classification of all stroke segments regardless of resolution.

Additionally, crucial spatial details are lost at the lower 128x128 resolution. This loss of

detail could have a more significant impact on more intricate figures such as the ROCF.

Figure 5.11 visually demonstrates the impact of resolution on image quality and information

retention. The comparison between 128x128 and 512x512 resolutions illustrates the trade-

off between computational efficiency and detail preservation, highlighting the importance of

resolution selection in maintaining the integrity of the original drawing’s features.

The choice between 128x128 and 512x512 resolutions for this study was made to explore this

trade-off, with the higher resolution potentially preserving more information at the cost of

increased computational demands.
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Figure 5.11: Comparison of resolution and encoding effects. Drawings in the first column
are rendered at a resolution of 128x128, while those in the second are at 512x512. The pixel
intensities of the top row are augmented by pen dynamics, while the bottom row shows binary
representations.

5.7 Model Implementation and Training Strategy

The dataset comprises 80 reproductions of Benson Figure Copy drawings. From each drawing,

four distinct feature representations were extracted. Due to the limited dataset size, a 5-fold

cross-validation scheme was employed to provide robust performance and generalisability

estimates. There was only one reproduction per subject, so there was no potential for data

leakage.

For the segmentation task, a U-Net architecture was selected, specifically the Dynamic U-

Net variant implemented via the fastai deep learning library [73]. The Dynamic U-Net allows

for the integration of a pretrained encoder, which is crucial given the limited dataset size.

The encoder chosen is a ResNet-34 [65], pretrained on the ImageNet dataset [48]. Pretraining

allows the model to leverage prior knowledge; the model has already learned low-level features

like edges, shapes and contours, which is particularly appropriate for simple figures such as

the Benson Figure. Preliminary experiments showed that utilising this pretrained model led

to faster convergence and improved generalisation compared to training from scratch.

The training process leveraged transfer learning through the fine tune method provided by

fastai. Initially, all layers except the final ones were frozen, preventing updates to their

parameters during the early training stages. This strategy helps retain the beneficial features

learned during pretraining while allowing the model to gradually adjust to the new task.

The model was first trained using the fit one cycle method for one epoch, incorporating the

1cycle learning rate policy proposed by Leslie Smith [173], which is known for facilitating

more efficient training and better performance.

Following this initial phase, all layers were unfrozen, and fit one cycle was applied for an

additional 10 epochs. This two-stage approach allows the model to progressively adapt to

the specific task while minimising the likelihood of forgetting the pretrained features.
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A batch size of 2 had to be used due to out of memory errors with larger batch sizes. The

GPU used had 10 GB VRAM, which should be capable of larger batch sizes, but this was

unable to be resolved.

The Adam optimiser [88] was used with a learning rate of 0.001, β1 = 0.9, β2 = 0.99, epsilon

= 1 × 10−5, and weight decay = 0.01. These are the default parameters in fastai and were

chosen based on their proven effectiveness in similar deep learning applications [62].

All experiments were conducted on a system equipped with an AMD Ryzen 9 3900 CPU and

an Nvidia 3080 GPU with 10GB VRAM and 32GB of RAM.

5.7.1 Post-Processing

The model’s output requires further processing to derive meaningful stroke segment labels

from pixel-level predictions. To address this, a two-step post-processing methodology is

applied.

First, an additional stroke segment ID mask is created for each generated image, where each

pixel value corresponds to a unique segment ID. This allows for the aggregation of probability

predictions for individual stroke segments. For each stroke segment, the class with the highest

mean probability is allocated as the predicted label.

Secondly, a label propagation method accounts for stroke segments not represented in the

rasterised drawing. Labels for these missing segments are inferred using a forward fill opera-

tion followed by a backward fill, grouped by each stroke. Strokes without any representation

are assigned the “UNKOWN” class.

Through this two step approach, the model’s pixel level proababilistic outputs are effectively

transformed into stroke segment labels.

5.8 Results

The semantic segmentation performance of the U-Net architecture was evaluated on digital

reproductions of Benson Figures at two resolutions: 128x128 and 512x512 pixels. Four dif-

ferent representations of pen dynamics were tested: a Base Comparison (constant values in

all channels) and three combinations of pen dynamics (Combination 1: x tilt, y tilt, pressure;
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Combination 2: x tilt, y tilt, time; Combination 3: pressure, time, constant). Performance

metrics were calculated at both the pixel level and the stroke segment level.

5.8.1 Overall Performance

The U-Net architecture demonstrated high performance across all configurations, with accu-

racies ranging from 93% to 96%. Generally, stroke segment-level metrics were slightly higher

than pixel-level metrics, suggesting that the post-processing step effectively improved overall

performance.

5.8.2 Performance at 128x128 Resolution

Table 5.2 presents the performance metrics for the 128x128 resolution experiments.

At this resolution, the Base Comparison (constant values in all channels) outperformed all

other combinations across all metrics. For pixel-level classification, it achieved an accuracy

of 95%± 4%, precision of 94%± 5%, recall of 95%± 4%, F1 score of 93%± 5%, and Jaccard

score of 90% ± 7%. At the stroke segment level, performance was slightly higher, with an

accuracy of 96%± 5%.

Other combinations also performed well, with accuracies ranging from 93% to 94%, but

consistently below the Base Comparison.

Figure 5.12 shows the normalised confusion matrices for pixel classification at 128x128 reso-

lution.
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Representation Accuracy Precision Recall F1 score Jaccard score

Pixel (% ± std)

Base Comparison 0.95 ± 0.04 0.94 ± 0.05 0.95 ± 0.04 0.93 ± 0.05 0.90 ± 0.07

Combination 1 0.93 ± 0.03 0.93 ± 0.05 0.93 ± 0.03 0.92 ± 0.05 0.88 ± 0.06

Combination 2 0.94 ± 0.04 0.93 ± 0.06 0.94 ± 0.04 0.93 ± 0.05 0.89 ± 0.07

Combination 3 0.93 ± 0.03 0.93 ± 0.05 0.93 ± 0.03 0.92 ± 0.05 0.88 ± 0.06

Stroke segment (% ± std)

Base Comparison 0.96 ± 0.05 0.95 ± 0.06 0.96 ± 0.05 0.94 ± 0.06 0.92 ± 0.08

Combination 1 0.95 ± 0.04 0.94 ± 0.05 0.95 ± 0.04 0.93 ± 0.06 0.90 ± 0.08

Combination 2 0.95 ± 0.05 0.94 ± 0.07 0.95 ± 0.05 0.94 ± 0.06 0.91 ± 0.09

Combination 3 0.95 ± 0.04 0.93 ± 0.07 0.95 ± 0.04 0.94 ± 0.06 0.90 ± 0.08

Table 5.2: Comparative performance of digital drawing representations for semantic seg-
mentation in digital reproductions of Benson Figures, at a resolution of 128x128. Metrics
encompass accuracy, precision, recall, F1 score and Jaccard score. Results presented are the
weighted mean of all classes, from 5-fold cross-validation, with the standard deviation also
presented. The “Pixel” section pertains to scores derived from the mask generated by the
model, while “Stroke segment” metrics relates to scores derived from stroke segment labels
recovered back from the mask. The background class is ignored. Strokes with an unknown
class are included. Bold values indicate the best performance in the respective metric column.
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Figure 5.12: Normalised confusion matrices for pixel classification for 128x128 resolution.

131



5.8.3 Performance at 512x512 Resolution

Table 5.3 presents the performance metrics for the 512x512 resolution experiments. At this

higher resolution, Combination 2 (x tilt, y tilt, time) performed best across all metrics. For

pixel-level classification, it achieved an accuracy of 94%± 4%, precision of 93%± 6%, recall

of 94% ± 4%, F1 score of 93% ± 5%, and Jaccard score of 89% ± 7%. Stroke segment-level

performance was again slightly higher, with an accuracy of 95%± 5%.

Other combinations, including the Base Comparison, performed slightly worse but still achieved

high scores, with accuracies ranging from 93% to 94%.

Figure 5.13 shows the normalised confusion matrices for pixel classification at 512x512 reso-

lution.

Representation Accuracy Precision Recall F1 score Jaccard score

Pixel (% ± std)

Base Comparison 0.93 ± 0.04 0.92 ± 0.05 0.93 ± 0.04 0.92 ± 0.05 0.88 ± 0.07

Combination 1 0.93 ± 0.04 0.92 ± 0.05 0.93 ± 0.04 0.92 ± 0.05 0.87 ± 0.07

Combination 2 0.94 ± 0.04 0.93 ± 0.06 0.94 ± 0.04 0.93 ± 0.05 0.89 ± 0.07

Combination 3 0.94 ± 0.04 0.92 ± 0.06 0.94 ± 0.04 0.93 ± 0.05 0.88 ± 0.07

Stroke segment (% ± std)

Base Comparison 0.95 ± 0.05 0.93 ± 0.07 0.95 ± 0.05 0.94 ± 0.06 0.91 ± 0.08

Combination 1 0.95 ± 0.04 0.94 ± 0.07 0.95 ± 0.04 0.94 ± 0.06 0.91 ± 0.08

Combination 2 0.95 ± 0.05 0.95 ± 0.07 0.95 ± 0.05 0.94 ± 0.06 0.92 ± 0.08

Combination 3 0.95 ± 0.05 0.94 ± 0.07 0.95 ± 0.05 0.94 ± 0.06 0.91 ± 0.08

Table 5.3: Comparative performance of digital drawing representations for semantic seg-
mentation in digital reproductions of Benson Figures, at a resolution of 512x512. Metrics
encompass accuracy, precision, recall, F1 score and Jaccard score. Results presented are the
weighted mean of all classes, from 5-fold cross-validation, with the standard deviation also
presented. The Pixel section pertains to scores derived from the mask generated by the model,
while Stroke segment metrics relate to scores derived from stroke segment labels recovered
back from the mask. The background class is ignored. Strokes with an unknown class are
included. Bold values indicate the best performance in the respective metric column.

5.8.4 Comparison between resolutions

A notable finding was the difference in optimal representations between resolutions: At

128x128 resolution, the Base Comparison performed best. At 512x512 resolution, Combi-

nation 2 (x tilt, y tilt, time) performed best.

Overall, performance metrics were slightly higher for 128x128 resolution compared to 512x512

resolution across all combinations.
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Figure 5.13: Normalised confusion matrices for pixel classification for 512x512 resolution.
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The confusion matrices (Figures 5.12 and 5.13) reveal generally good performance across all

classes. Notably, the ”UNKNOWN” class appears to have lower performance compared to

other classes, most likely due to its rarity in the dataset.

5.9 Discussion

The results demonstrate that the U-Net architecture achieves a high performance in seg-

menting the Benson Figure, with the best model reaching 96% accuracy, 95% precision, 96%

recall, and a 94% F1 score at 128x128 resolution without embedding pen dynamics. This

was an unexpected and intriguing finding, as it was expected that the occlusion would be

detrimental to the model’s performance.

This novel application of deep learning techniques to complex figure segmentation offers

promising implications for clinical practice. The model’s 96% accuracy in stroke segment

labelling means that only about 4% of the labels generated by the model would require

correction. This performance is comparable to those of hand-crafted segmentation approaches

[24] and [193].

These findings suggests potential significant time savings and reduced cognitive load for

clinicans compared to traditional flowchart method and pen-switching method. Additionally,

in combination with the applied polyline simplification algorithm applied, this would allow

for the seamless extraction of features pertaining to the BQSS [180], and those described

in the T-RCF [139]. The overarching aim of this work is to generate a method by which

clinicians would be able to extract features that have been highlighted as clinically relevant

in the past but were previously to cumbersome to obtain. In this regard, this work also

implies that good performance can be acquired will a small dataset, suggesting a potentially

rapid improvement in model performance as clinicians engage in the labeling process.

In this regard, this work also implies that good performance can be acquired with a small

dataset, suggesting a potentially rapid improvement in model performance as clinicians en-

gage in the labeling process. This could create a positive feedback loop: as more labeled

data is acquired through clinical use, the model’s performance could improve. In turn, this

improved performance could make the labeling process more efficient for clinicians.

However, it’s important to highlight that the model struggled with correctly classifying “UN-

KNOWN” segments, which were rarely present in the dataset. This highlights a potential

challenge in generalising to more varied or atypical drawings, such as those produced in recall
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tasks or by patients with severe cognitive impairments. This limitation could potentially be

addressed through the implementation of data augmentation techniques.

Data augmentation is an effective technique for maximising the utility of training data and

is commonly employed in computer vision tasks [6]. By generating altered versions of the

exisiting samples, the size of the training dataset can be artificially increased. This technique

is utilised to prevent overfitting and improve the model’s generalisation capabilities, thereby

ensuring that the model can effectively handle real-world variability.

For segmentation tasks, data augmentation techniques generally preserve the spatial relation-

ships within the image while introducing variations [6]. Geometric and affine transformations

are commonly employed. Translation, rotation, and flipping are used to increase invariance

to orientation changes. Scaling is applied to achieve invariance to different object sizes. More

advanced techniques include MixUp [205], which combines two images and their correspond-

ing masks by blending them with a ratio, and CutMix [202], which replaces patches of one

image with another.

Data-augmentation is particularly applicable in clinical context, where data is often limited.

In the works of Park et al., datasets of approximately a couple of hundred images were em-

ployed for the segmentation of two other neuropsychological assessments: the Clock-Drawing

Test [134] and Interlocking pentagon test [133]. To address this limitation, a U-Net pre-

trained on the ImageNet dataset was utilised, as was done in this work. Additionally, simple

geometric augmentations were applied.

In contrast to previous studies, this research incorporates pen dynamics encoded within the

images, introducing additional complexity to the application of data augmentation tech-

niques. For instance, the rotation augmentation would not be accurately reflected in tilt

encoding, as a drawing that has been rotated to an angle, would differ significantly from one

actually drawn at that angle. For this reason, no data-augmentation was utilised for this

work.

Given that encoding pen-dynamics did not demonstrate significant improvement in segmen-

tation performance, numerous opportunities for novel data augmentation techniques specific

to rasterised digital drawings remain unexplored. These arise from the fact that the images

can be generated with perturbations occurring at any point during the drawing.

Several potential augmentation techniques are proposed. Firstly, varying the order in which

strokes are drawn could be considered. This is especially relevant as some stroke segments
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may not be represented in the final drawing due to overlapping, depending on the resolution,

as discussed in 5.6. While this would not alter the input image in a binary representation

(the base case), it would change the associated associated stroke segment ID of the pixel in

the segmentation mask, and thus potentially the class label. This could potentially aid in

model generalisation.

Secondly, the omission of components, strokes and stroke segments could be explored; this

would be analogous to the random erasing approach [208]. This study is currently limited

by its use of only the Copy portion of the assessment rather than the Recall. While most

subjects can reproduce all elements of the figure in the Copy task, this is not guaranteed

in the Recall task where subjects may omit some components. As such this augmentation

technique could help generalise for these cases.

Thirdly, an expansion of the principles of CutMix to drawings could be implemented. This

would involve creating a palette of components drawn by all subjects and generating new

images based on this palette.

Finally, to address the lack of representation of UNKNOWN elements in the drawing, strokes

that don’t relate to any particular element, such as scribbles or lines, could be inserted into

a drawing at various points during the task completion.

5.9.1 Limitations

The dataset was labelled by the author, and not a clinician. While the intent during the

recall phase is obvious, subjectivity arises when elements of the figure are more vague. This

non-clinical labeling could potentially introduce bias or inconsistencies in the dataset. Future

work could address this limitation by involving multiple clinicians in the labeling process and

assessing inter-rater reliability.

Further studies are needed to validate the impact of these results on clinical efficiency and

effectiveness in real-world settings. Such studies should quantify the actual time saved, assess

the impact on the clinicians’ cognitive load and fatigue, and investigate how this AI assistance

affects the overall assessment and diagnosis process. Additionally, it would be valuable to

explore how the model performs with a more diverse set of drawings, including those from

patients with various levels of cognitive impairment.
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5.10 Conclusion

This chapter has demonstrated the successful application of deep learning techniques to the

automated segmentation of Benson Figure, a simplified complex figure used in neuropsycho-

logical assessments. The U-Net architecture achieved high accuracy in segmenting the figure’s

elements, demonstrating potential for significant time savings in clinical practice. While the

novel encoding of pen dynamics did not substantially improve segmentation performance as

initially hypothesized, this approach could potentially be more applicable to other computer

vision applications, such as PD diagnosis from graphmotor assessments. The creation of a

bespoke annotation tool establishes a foundation for extending this work to more complex fig-

ures like the Rey-Osterrieth Complex Figure. These results indicate promising directions for

enhancing the efficiency and objectivity of neuropsychological assessments. However, further

research is needed to validate the clinical impact of these findings, address current limita-

tions, and explore applications in diverse patient populations with varying levels of cognitive

impairment.
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Chapter 6

Summary and Conclusions

This thesis has examined a range machine learning methodologies aimed at the automatic,

objective and quantitative assessment of Parkinson’s disease. A substantial portion of this

work is dedicated to exploring innovative techniques designed to enhance the utility of dig-

itsed standard clinical assessments. This concluding chapter offers a summary of the key

findings and novel contributions made in each respective chapter. Additionally, it revisits the

hypothesis and research aims stated in Chapter 1.

6.1 End-to-End learning for the MDS-UPDRS Part III As-

sessments

6.1.1 Rationale and Work Conducted

The capabilities of computer vision and machine learning in evaluating the hand kinematics,

has been gaining interest. Traditional approaches have relied on feature engineering that

reduces high-dimensional data, potentially overlooking critical diagnostic features. Newer

techniques, such as deep learning and end-to-end multivariate time series algorithms, of-

fer automated feature extraction and quick training times, making them advantageous for

broader applications in medical diagnosis and severity assessment of motor conditions.
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6.1.2 Novelty and Contribution

This study shows the first application of state of the art multivariate timeseries classifica-

tion models, InceptionTime, MiniRocket and MultiRocket, to clinically standard upper limb

assessment tasks.

6.1.3 Key Findings

1. Using the study conducted by Williams et al.[197], it was found that the models trained

in this study performed exceeded the accuracy of neurologists ability to differentiate

between healthy controls and PD from finger tapping recordings.

2. The algorithms were found to be effective in developing classifiers for all three bradyki-

nesia tasks outlined in the MDS-UPDRS part III scale. The pronation-supination task

was found to be the most discriminating task for both PD vs. healthy control and

bradykinesia vs. no bradykinesia classification.

3. The ability of these algorithms to accept raw positional data facilitates an unbiased

search of the solution space.

4. Misclassification analysis indicated expectedly, slight severity scores were more likely

to result in false positives, as is seen in clinical experts.

6.1.3.1 Limitations

A significant and unfortunate limitation of this study was the necessary trimming/windowing

of recordings time to 5 seconds, although the results of the trained models are very promising

for future research, this is half the time required for the MBRS and half the time. Only

one neurologist the generalising capabilities and robustness of the automated assessment is

limited.

6.1.4 Practical Implications

The rising prominence of wearable devices in healthcare underscores the need for accurate

timeseries models. Although expert domain knowledge is ideal for model development, the

growing number of applications and pace of technological advancements necessitate auto-

mated approaches. This experiment substantiates that time-series classification models can
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provide accurate classification comparable to those requiring expert knowledge and pre-

processing time.

6.1.4.1 Future Directions

Given these findings, future work may focus on clincial assessments that have not be quantified

digitally, such as the Luria motor sequence, can be initially explored using this approach.

6.2 Semantic Segmentation of Neuropsychological Figures

6.2.1 Rationale and Work Conducted

The study aimed to mitigate the inherent limitations of existing neuropsychological assess-

ments that rely on manual methods for evaluating tasks like the ROCF. By employing digital

graphics tablets, 80 Benson Figure reproductions were collected from Parkinson’s Disease pa-

tients and age-matched healthy controls at Leeds Hospital. A software platform for manual

labelling was developed, featuring the Ramer-Douglas-Peucker (RDP) algorithm for sophis-

ticated stroke segmentation. A U-net model with a pretrained ResNet34 encoder was trained

to perform automated segmentation of these complex figures. Multiple experiments were

conducted to evaluate the effects of different resolutions and pen dynamic encoding.

6.2.2 Key Findings

The research yielded several important findings. Firstly, a binary encoding representation

resulted in the highest segmentation accuracy, at 96%. Secondly, adjustments to resolution

levels had minimal impact on stroke segment accuracy. Lastly, varying encoding parameters

related to pen dynamics did not significantly alter the segmentation performance compared

to the base representation.

6.2.3 Novelty and Contribution

This research presents an innovative approach for semantic segmentation of complex neu-

ropsychological figures, thereby alleviating the manual burden of stroke segmentation. This
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Figure 6.1: Quantifying organisational strategy.

automated process has the potential to capture more nuanced data in assessments, enhancing

diagnostic precision and patient management.

6.2.3.1 Limitations

The labelling of the dataset was conducted by the author. The RDP method will be slower

than labelling strokes entire strokes and adding manual breakpoints to begin with.

6.2.4 Practical Implications

The automated labelling method demonstrated here is feasible even with a small dataset. It

also allows for a positive feedback loop, as a neurologist manually labels data, the model can

be incrementally retrained to enhance its performance.

6.2.4.1 Future Directions

Initial investigations into the calculation of organizational features such as fragmentation have

begun, laying groundwork for further research in automated, nuanced neuropsychological

assessments.
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6.3 Overall Conclusions

Revising the hypothesis that,

Machine learning methodologies can serve as effective tools in improving diagnostic utility of

standard clinical assessments in Parkinson’s Disease

Given that an effective classifier has been trained to diagnose PD, with a greater accuracy

than that of clinicians, and a efficient approach for semantic labelling of psychological figures

has been proposed, we can conclude that they can.
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Appendix A

Algorithms

Algorithm 1: Ramer-Douglas-Pueker Algorithm for Polyline Simplification

1 function RDP (P, ϵ);
Input : List of points P = [p0, p1, . . . , pn], tolerance ϵ
Output: Reduced list of points

// Find the point with the maximum distance to the line segment

composed of p0 and pn
2 dmax ← 0;
3 index← 0;
4 for i = 1 to n− 1 do
5 d← PerpendicularDistance(pi, p0, pn);
6 if d > dmax then
7 index← i;
8 dmax ← d;

9 end

10 end

// If max distance is greater than epsilon, then recursively simplify

11 if dmax ≥ ϵ then
12 results1 ← RDP(P [0 : index], ϵ);
13 results2 ← RDP(P [index : n], ϵ);
14 return concatenate(results1, results2)

15 else
16 return [p0, pn]
17 end
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Appendix B

Application Development

B.1 Introduction

Data acquisition and labelling are foundational tasks in every supervised machine learning

study, providing the datasets needed for model training and evaluation. Throughout this

thesis, various tools were developed to facilitate these tasks. Acquisition tools were designed

to guide assessors through clinical protocols, capturing data from a diverse range of sensors,

including graphics tablets, EM positional tracking sensors, and eye-tracking glasses. These

were complemented by the development of annotation tools for labelling the collected time-

series data.

A key observation made during this process is that existing tools often fail to meet the specific

requirements of individual studies. Consequently, the ability to create adaptable, specialised

tools may prove invaluable for researchers. This appendix chapter highlights the design and

implementation of an annotation tool using Ignition, an integrated software platform for

Supervisory Control and Data Acquisition (SCADA) systems. SCADA systems are widely

utilised in modern society, ranging from industrial automation to national infrastructure,

to monitor and control physical processes through graphical interfaces. Despite its primary

use in industrial contexts, Ignition’s server-centric web deployment model and user-friendly

application development are worth highlighting, as they may prove relevant in further studies

that need to develop bespoke tooling.

147



B.2 Motivation

The motivation for this study, as presented in Chapter 4, involves the analysis of three hand

kinematic assessments utilised in the MDS-UPDRS to evaluate motor impairment. These

assessments were recorded using an glsem tracking system, which captured the position and

orientation of the index finger and thumb during each task. The three assessments - Finger-

Tapping, Pronation-Supination, and Hand Open-Close, are inherently periodic tasks and the

frequencies of the movements were investigated as part of this work. From each recording

a uni-variate signal was used as a proxy for the movement: Euclidean distance between the

finger and thumb for Finger Tapping, and Hand Open-Close, and roll of the index finger for

Pronation-Supination.

The dataset utilised in this thesis comprises recordings from Parkinson’s patients and healthy

controls. These recordings could serve as the basis for training feature-based machine learn-

ing models aimed to differentiate between PwPD and healthy individuals. One such model

employed by [114] is a Random Forest classifier, reliant on features that quantify the signal.

Extraction of these features necessitates segmentation of the signal into phases, achieved

through a peak detection algorithm. Tuning the parameters of this algorithm requires man-

ually labelling the peaks in each signal to calculate the error between the ground truth and

algorithm-detected peaks. Thus, there is a clear need for specialised software to facilitate

this manual labeling process.

B.3 Requirements

A distinction must be made between the recording file generated by the measurement sys-

tem and the metadata about the recording itself, as each has separate annotation require-

ments. For the recording file, individual samples may possess labels such as “start”, “end”,

“anomaly”, “peak”, or “trough”, either singularly or in combination. In contrast, a record

might include annotations such as “Exclude: Contains hemisphere switching” (an error ob-

served during the study) or “Exclude: No usable data”. From these distinctions, the following

requirements can be derived:

1. Separate views for database records and their contents: The application must

provide distinct interfaces for viewing and annotating both the overall records and the

individual data samples within each record.
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2. Multi-label support: Both records and samples should support multiple simultaneous

labels to accommodate complex annotation scenarios.

3. Efficient navigation: Given the large dataset (1567 files total, including 395 cali-

bration files, 391 Finger Tapping files, 391 Hand Open-Close files, and 390 Pronation-

Supination files), the application must provide an efficient means for users to navigate

through the files in the database.

4. Flexible data visualization: Different tasks yield different signals representing mo-

tion (Euclidean distance for finger tapping, hand-open close, and calibration; roll of the

index finger for Pronation-Supination). Therefore, users should be able to select which

channels from the raw multivariate time-series data are displayed at any given time.

5. Adaptability: The application should be flexible enough to accommodate different

types of kinematic assessments and annotation schemes, allowing for its use in various

research contexts.

6. Collaborative features: Given the volume of data to be annotated, the system should

support multiple users working concurrently, with appropriate mechanisms to track

progress and prevent conflicts.

B.4 Evaluation of Requirements Against Available Open-Source

Tools

Three applications were identified as potential solutions for this task:

1. Curve, Baidu [9]: is a JavaScript-based web application. It uses a three-column

Comma-Separated Value (CSV) file format where the first column represents the times-

tamp, the second the value, and the third the label. The labeling is binary, with 0 for

normal and 1 for abnormal. Curve lacks the ability to annotate records, support mul-

tiple labels, or handle multivariate time-series data.

2. TagAnomaly, Microsoft [112]: is an R-based project that, similar to Curve, deals

with univariate series. It does offer the option to assign more than two categories,

but only one category per sample is allowed. Files are in CSV format and must be

loaded individually. TagAnomaly also lacks support for record-level annotations and

integrated dataset navigation.

149



3. The Wearables Development Toolkit, Technical University of Munich [63]:

offers the most functionality among the three. This MATLAB-based application can

navigate between files (.mat format) in a dataset, and labels can be predefined. Users

can annotate events that occur at a specific moment in time or activities with a dura-

tion. The app also has the functionality to load and display videos alongside the data.

Additionally, multiple channels of a multivariate signal can be displayed simultaneously.

However, records themselves cannot be annotated, navigation between records is not

efficient and samples only support one annotation at a time.

While certain useful features are offered by each of these tools, the specific requirements of this

annotation task are not fully met by any of them. The primary limitations identified across

these tools include the lack of support for both record-level and sample-level annotations,

limited or no capability for multiple simultaneous labels, insufficient flexibility in handling

diverse data types and annotation schemes, and the absence of collaborative features for

multi-user annotation.

The need for a custom solution is underscored by these limitations. A bespoke tool, as

described in subsequent sections, is aimed at overcoming these limitations.

B.5 Design

The architecture consists of a single Ignition server instance (also known as the Gateway)

connected to an instance of MariaDB a relational database management system. With the

Gateway, multiple clients can access the application using devices (including movile devices)

that support a modern web browser. A visualisation of the diagram is given in Figure B.1.
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Figure B.1: A visualisation of the schema used in the application.
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B.5.1 Ignition

The selection of Ignition for this project was motivated by its comprehensive solution for

application development and deployment, a feature that otherwise from the ground up would

necessitate a high proficiency in software development and substantial time investment. This

aspect is especially advantageous in research environments where time and resources are often

constrained, and the primary focus should remain on the research itself rather than extensive

software development. Additionally, the software is free, Ignition has a non-commercial

licence that retains the functionality of the full commerical product.

B.5.1.1 Advantages in Development

The Ignition Designer serves as the primary interface for configuration and design work. It

is “low-code” integrated development environment, applications are built visually through a

drag-and-drop interface, the designer interface is shown in in Figure B.2. It is crucial to note,

however, that this does not mean that it is “no-code”. Ignition provides users with Python

scripting capabilities, enabling the implementation of complex functionality when required

1. An example of scripting is shown in Figure B.3. This dual approach of visual design and

scripting capabilities allows for a balance between accessibility and advanced functionality,

catering to the diverse skill sets often found in interdisciplinary teams.

Figure B.2: The Ignition Designer application. The image shows the view with the configured
table component for the application. This is a reusable view that can be embedded elsewhere
in the application.

1Ignition utilises the Jython interpreter (as opposed to CPython, which is synonymous with Python) to
execute Python code. Consequently, many standard Python libraries are not compatible, however there is a
community driven exchange available for sharing resources.
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A key component of Ignition is the Perspective module, which leverages JavaScript, HTML,

and CSS to create responsive and interactive user interfaces for modern browsers. Perspective

promotes object-oriented design patterns through its use of views, which are reusable com-

ponents that can be nested and parameterised. This approach encourages modular design

and reuse of created views, which can significantly speed up development and improve main-

tainability. Additionally, the Designer also includes a built-in view testing feature, allowing

developers to preview and interact with their designs in real-time without needing to deploy

the project. This immediate feedback loop is invaluable for rapid prototyping and iterative

development.

Furthermore, since Ignition is hosted on a server, projects can be worked on simultaneously

by multiple developers. This feature could facilitate collaboration between technical and non-

technical team members, allowing researchers with different skill sets to contribute effectively

to the project. For instance, a domain expert could focus on the logical flow and data

representation, while a more technically inclined team member could handle complex scripting

tasks.

Figure B.3: An example of scripting in ignition. This is an example of a transformation
binding on the data property of the table displaying all of the records in the database. A
python script is used to transform the output of the query to add an additional column, that
contains an array of decoded labels for the record.

B.5.1.2 Advantages in Deployment

The Ignition gateway handles many of the complex back-end operations. These include:
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• Security: Critical features include user authentication, data encryption (SSL/TLS

encryption for all network communications), audit trails, and session management.

These are particularly important in biomedical research contexts where data privacy

and integrity are paramount, and for complying with GDPR regulations.

• Client-Server architecture: The Ignition Gateway acts as a central server, clients

access the application through web browsers, without needing to install additional soft-

ware. The Gateway can serve multiple multiple clients simultaneously from different

locations. Each client will have access to the same data, as databases are only connected

to the Gateway.

• Data Connectivity: Ignition can communicate with and integrate data from multiple

diverse data sources. Ignition can connect to various types of databases (SQL, MySQL,

Oracle, etc., and example of this configuration is shown in Figure B.5), web services

and other systems using REST APIs and IoT devices using the MQTT protocol [149].

B.5.2 Database

The development of the application necessitated a choice in a data storage solution. While

traditional file-based storage methods like CSV files are commonly used in research contexts

due to their simplicity and portability, a relational database system was selected for this

project. This decision was driven by several key factors that aligned with the requirements

of the annotation process.

The multi-dimensional nature of the data, encompassing time-series sensor readings, partici-

pant information, and various annotation tags, naturally aligns with a structured, relational

model. Unlike flat file structures, a relational database enables efficient organisation of this

data into logical tables with defined relationships, facilitating more intuitive data manage-

ment and retrieval. The annotation process involves potential concurrent work by multiple

users on the same dataset. Relational databases excel in handling concurrent access, ensuring

data consistency and preventing conflicts that could arise in file-based systems. Additionally,

the use of SQL provides a standardised, powerful method for data manipulation and retrieval.

Furthermore, the choice of a relational database system ensures compatibility with Ignition.

In summary, while file-based storage methods have their merits, the selection of a relational

database for this project was driven by the need for structured data organisation, support for

concurrent access, powerful query capabilities, and compatibility with the chosen development

platform.
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Figure B.4: A screenshot of the current database configuration for the database used in the
application. This is accessed through the Ignition Gateway’s web client.

B.5.2.1 Schema

A core principle in the design of the application is that it should be adaptable to different

datasets. Consequently, the application dynamically adjusts labelling options, table columns,

and charted signals based on the database table contents. The database schema (illustrated

in Figure B.5) consists of the following structure and features:

• Core Annotation Tables: The record tags and sample tags tables store all possible

tags for records and individual data samples. The ’id’ field serves a dual purpose:

it acts as a primary key and determines the tag’s position in the one-hot encoded

representation. For instance, a tag with id=2 would be represented by the bit ’100’

in the encoded integer. The ’tag’ field contains the human-readable description of the
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annotation.

• Records: The records table contains metadata for each recording session. The re-

quired fields for this table are ’id’, ’tags’, and ’last viewed’. The ’id’ field uniquely

identifies each record, the ’tags’ field employs a 32-bit integer for one-hot encoding of

record-level annotations, and ’last viewed’ tracks user interactions with the record via

the application. Additional fields such as ’id number’, ’task type’, ’hand used’, and

’diagnosis’, are all specific metadata associated with this dataset’s recordings. These

columns facilitate filtering functionality, and decision making processes. For example,

depending on the ’task type’, the user would select different channels from the sensor

data to be displayed.

• Sensor Data Table: This table stores the actual time-series data, each row represents

a single sensor data sample. All sensor data is consolidated in this table, the ’record id’

column is used to group all samples from the same recording.

• Annotation Mechanism: Each element in the records or sensor data table needs the

capability to have one or more labels. Given MariaDB’s lack of an array datatype, a

one-hot encoding system is implemented. For example, if a record has tags with ids 1,

3, and 5, its ’tags’ field would contain the binary value 10101 (decimal 21). This system

allows for up to 32 different tags per record or sample.

• Schema Flexibility: While the current implementation includes specific fields in the

records and sensor data tables, the schema is designed for adaptability. The records

table can be modified to include different metadata fields relevant to the specific study.

Similarly, the sensor data table can be adjusted to accommodate various types and num-

bers of sensor channels, with only the ’id’, ’record id’, and ’tags’ fields being mandatory.

• Integration with the Application: The application dynamically reads the record tags

and sample tags tables to populate the available annotation options. When a user ap-

plies a tag, the corresponding bit in the ’tags’ field is set to 1. This design allows the

application to adapt to different annotation schemes without requiring code changes.
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Figure B.5: A visualisation of the schema used in the application. Created using dbdiagram.io
[71]
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B.6 Implementation

B.6.1 Application

The application as illustrated in Figure B.6 comprises five embedded views:

1. Table View: This component displays a table populated with data from the records table.

A key feature is the interactive tag component, which decodes and presents the tags

for each record. Each tag is accompanied by a removable ’x’ icon; when activated, it

triggers an update query to clear the corresponding tag’s bit. The table refreshes upon

each update, dynamically reflecting changes in tag visibility. Rows are selectable, with

selection prompting the display of the associated recording on the chart. Additionally,

each column supports sorting and filtering functionalities (Figure B.7).

2. Navigation View: This view incorporates two buttons for incrementing or decrement-

ing the selected row id in the table. Scripting is employed to ensure the resulting row

id remains within the table’s bounds.

3. Chart View: Two drop-down list components in this view facilitate the customization

of the time-series chart display. The “current chart columns” selector allows users to

choose which channels from the sensor data table are visualised. Each option can be tog-

gled, with the time-series chart dynamically adjusting its subplots to reflect the current

selection. Similarly, the “current chart tags” selector, populated from the sensor tags

table, controls the display of current annotations. Samples with tags corresponding to

the selected options are denoted by circles on the chart, with each unique sample tag

automatically assigned a distinct color.

4. Annotations View: This view presents two drop-down lists for selecting the user’s

current annotations for records and samples. These lists are dynamically populated

from queries to the record tags and sample tags tables. Updates to the currently se-

lected record can be executed from this view via an adjacent plus button, while sample

updates are made directly from the time-series chart view.

5. Time-Series Chart View: Occupying the right half of the application, this view

presents the time-series data. The displayed channels and annotations are controlled

via the aforementioned Chart View drop-down lists. Users can interact with the chart

through mouse wheel operations for zooming and panning. The current sample, indi-

cated by an X-trace (current position of the mouse on the chart), can have its annotation

set or cleared using the ’a’ and ’d’ keys respectively.
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Figure B.6: The time-series annotation application.

Figure B.7: Filtering functionality for table columns

B.6.2 Deployment

The deployment of the annotation tool utilizes Docker and Docker Compose, leveraging con-

tainerisation for a streamlined setup process. With just a single command (docker-compose

up) and the docker-compose file (Figure B.8), the entire application stack, including the

database and the Ignition server, can be launched without needing to manually install each

component locally. The application and configuration of the Gateway can be restored from

a backup file. Currently the main technical hurdle is that the database will need to be pop-

ulated by the user. Otherwise, this approach ensures that the application runs identically

across different systems.
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services:
# Define the Ignition Gateway service
gateway:
image: inductiveautomation/ignition:latest # Use the latest version
ports:
- 9088:8088 # Map external port 9088 to internal port 8088
- 9043:8043 # Map external port 9043 to internal port 8043

networks:
backend:
aliases:
- ignition # Alias for the service within the network

volumes:
- gw-data:/usr/local/bin/ignition/data # Mount volume for gateway data

environment:
- ACCEPT_IGNITION_EULA=Y
- GATEWAY_ADMIN_USERNAME=admin
- GATEWAY_ADMIN_PASSWORD=password
- IGNITION_EDITION=maker

command: >
-n ignition_gateway # Command to run the Ignition Gateway

# Define the database service
db:
image: mariadb:10.10.2 # Use the specified MariaDB version
ports:
- 3306:3306 # Map external port 3306 to internal port 3306

volumes:
- db-data:/var/lib/mysql # Mount volume for database data

networks:
backend:
aliases:
- main-db # Alias for the service within the network

environment:
- MARIADB_ROOT_PASSWORD=password
- MARIADB_DATABASE=ruijin
- MARIADB_USER=admin
- MARIADB_PASSWORD=password

# Define the network
networks:
backend:

# Define the volumes
volumes:
gw-data:
db-data:

Figure B.8: Docker Compose configuration for Ignition Gateway and MariaDB
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B.7 Conclusion

In this appendix chapter, an overview of a custom application developed for the manual

labelling of time-series data has been presented. The development of this application was

motivated by the limitations identified in existing open-source solutions, which were found

to be inadequate for the specific requirements of this study.

Several key contributions can be highlighted from this work:

1. A flexible database schema design has been proposed, which can be adapted to accom-

modate various types of time-series data and annotation schemes, allowing for adapt-

ability to different research contexts.

2. The utilization of a low-code platform (Ignition) for rapid application development

has been demonstrated. This approach illustrates how such tools can be leveraged in

research settings to create bespoke solutions efficiently.

3. An architecture supporting collaborative development and annotation has been imple-

mented, which may be particularly beneficial for interdisciplinary research teams.

While Ignition was used for this specific implementation, it should be noted that the prin-

ciples and architecture discussed here could be applied using other low-code platforms or

development frameworks. The approach taken emphasises the importance of creating tools

that are not only functional but also adaptable and conducive to team collaboration.

The potential benefits of investing in custom tool development in research contexts have been

highlighted, particularly when existing solutions are found to be inadequate. By sharing this

approach, it is hoped that other researchers will be inspired to consider similar strategies

when faced with unique data handling and annotation challenges in their own studies.

Future work could involve investigating the data acquisition capabilities of Ignition, particu-

larly its ability to handle higher frequency sampling rates. While tag changes are typically

expected to occur every second in the current implementation, the software’s performance

with more frequent data updates remains to be evaluated.
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Appendix C

Reach and Grasp Investigation

This appendix provides a summary of the research conducted on the assessment of cogni-

tive impairment through an upper limb prehension task. Due to data quality concerns and

COVID-19 pandemic, the work was not fully completed; however, a summary of the findings

is presented in this appendix.

The research was conducted in two stages:

1. Initially, further investigation was carried out on the dataset collected by Cosgrove et

al. [40], with a primary focus on the development of grasp formation during upper limb

prehension, as measured by a flexion glove sensor.

2. Subsequently, a new study was conducted in collaboration with Ruijin Hospital, exam-

ining potential abnormalities in visual attention during reach and grasp tasks.

C.1 Background

The literature on reaching and grasping movements in PD has consistently revealed impair-

ments in the coordination of reach (transport), and grasp (manipulation), as well as an in-

creased reliance on visual feedback. Seminal work by Castiello et al. [29] revealed that /glspd

patients exhibit a delayed initiation of the manipulation component relative to the transport

component, resulting in prolonged movement times. Subsequent studies from Castiello et al.

[27], expanded upon this finding, demonstrating that PD patients struggle to simultaneously

adapt both reach and grasp components when faced with unexpected perturbations in target

position or size. The role of the basal ganglia in coordinating these complex movements was
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highlighted by several researchers, including Teulings et al. [184], Alberts et al. [3], and

Gentilucci et al. [58]. Their work suggested that the basal ganglia dysfunction in PD leads to

difficulties in performing coordinated actions, resulting in disruptions in both temporal and

spatial domains of movement.

Building upon these findings, the role of visual feedback in reach and grasp movements for

PwPD have also beein investigated. In [28], Castiello et al. demonstrated that removing

visual feedback severly impairs the coupling between reach and grasp components in PD

patients. This finding was consistent with earlier work by Jeannerod et al. [82] and supported

by Jakobson et al. [79], who demonstrated that the absence of visual feedback leads to

increased hand opening and earlier peak aperture, likely as a compensatory mechanism.

Schettino et al. [167] further investigated this phenomenon, examining reach and grasp

performance under various visual conditions. Their results reinforced the understanding that

PD patients rely heavily on visual feedback to guide their movements, with performance

deteriorating significantly when visual information is limited or removed.

The study conducted by Cosgrove et al. [40], investigated the interaction between cognitive

decline and motor performance in PD. Their work examined reaching movements across dif-

ferent visual feedback conditions in PD patients with varying levels of cognitive impairment:

normal cognition (PD-NC), mild cognitive impairment (PD-MCI), and dementia (PD-D).

The study revealed that PD patients with dementia exhibited significantly slower reaction

times across all visual feedback conditions compared to other groups, indicating a more pro-

nounced deficit in movement planning. Furthermore, when visual feedback was removed, all

PD groups showed slower movement times compared to their performance with full visual

feedback. Crucially, this slowing was most pronounced in the PD-D group, suggesting that

substantial cognitive decline in PD exacerbates the dependence on visual feedback during

upper limb reaches. These findings demonstrate that cognitive decline not only affects tra-

ditional cognitive tasks but also significantly impacts motor performance, particularly when

visual guidance is limited.

The protocol used by Cosgrove et al. [40] also incorporated the use of a flexion glove, the

5DT data glove, which offers high-resolution measurements of individual finger flexion and

extension. This device potentially reveals differences in grasp formation and execution among

PD subgroups that have yet to be fully explored. A review of previous work investigating

this dataset revealed that the glove data had been incorrectly interpreted; the values were

being read as signed integers when they were actually unsigned integers. This presented

an opportunity for further investigation, particularly in exploring whether machine learning

techniques could be applied to generate models capable of differentiating between the various
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cognitive subgroups.

C.2 Data Collection

C.2.1 Subjects

The dataset for this study was derived from the research conducted by Cosgrove, titled ’A

novel diagnostic device for the objective diagnosis of Parkinson’s disease with and without

dementia’, received National Regional Ethics Service approval (reference code 10/H1308/5)

and local Research and Development approval from Leeds Teaching Hospitals NHS Trust

(LTHT) (reference code UI10/9232). Subjects were measured in Leeds, UK.

The dataset includes 58 PD patients recruited from neurology clinics at Leeds Teaching

Hospitals NHS Trust, and 29 healthy control subjects, primarily spouses and friends of /glspd

patients. Data collection occurred between February and October 2014.

Patients were categorised into three groups based on cognitive status using the MoCA and

Clinical Dementia Rating Scale (CDR) scales. Three patients with borderline scores were

excluded from specific cognitive categories, resulting in the following groups: PD with normal

cognition (PD-NC, n=22), PD with mild cognitive impairment (PD-MCI, n=23), and PD

with dementia (PDD, n=10).

The MDS-UPDRS Part 3 was used to assess motor symptoms in all participants. Table

C.1 provides a summary of the demographic details for each group, including age, gender

distribution, handedness, disease duration, and the number of subjects in each category.

Controls PD-NC PD-MCI PDD

Age, years 63.8 (7.9, 50-75) 66.5 (9.4, 44-84) 70.0 (8.0, 47-85) 72.6 (5.3, 64-83)
Gender, M:F 4:15 16:6 14:9 6:4
Handedness, R:L 15:4 20:2 20:3 8:2
Duration disease, years - 5.1 (3.7, 0.5-15) 5.7 (4.0, 0.5-15) 10.5 (6.4, 1.0-20)
Number subjects 29 22 23 10

Table C.1: Summary of the cognitive subgroups with demographic details (Standard devia-
tion, range).

C.2.2 Protocol

The experimental protocol involved a series of reach and grasp actions using a cylindrical

object. Participants were seated at a table with their hands in a semi-pronated position,
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little fingers aligned with specific table markings. A cylindrical object with an 8 cm diameter,

resembling a beaker, was positioned 30 cm anterior to the subject. The task comprised

reaching for the cylinder, grasping it, lifting it, and returning it to its original position. The

experimental setup is illustrated in Figure C.1

The experiment was conducted under four distinct conditions, each repeated five times with

both the dominant and non-dominant hand, resulting in a total of 40 repetitions per subject.

These conditions were as follows:

1. Self-guided reach at natural speed (NAT): Subjects were instructed to reach and

grasp the object as they would naturally do at home, initiating movement upon hearing

an auditory cue.

2. Visually cued reach (VIS): Performed in a darkened room, participants responded

to the cylinder being illuminated by a red light, accompanied by a simultaneous sound

cue.

3. Self-guided reach at maximum speed (MAX): Subjects were directed to reach

and grasp the object as quickly as possible following the sound cue.

4. Memory-guided reach (MEM): Participants closed their eyes before the task began

and maintained this throughout the reaching, grasping, and replacing of the cylinder,

only opening their eyes once the object was back on the table. As with the other

conditions, the initiation cue was an auditory signal.

C.2.3 Equipment

C.2.3.1 Polhemus Patriot M

The Polhemus Patriot M EM tracking system [140], was used to record wrist position. Two

sensors were attached to each wrist, as illustrated in Figure C.3. The magnetic transmitter,

was positioned five centimetres behind the target object. The magnetic source was orientated

such that the x-axis was facing the saggital plane of the subject, as depicted in Figure C.2

166



Figure C.1: Experimental setup

Figure C.2: Axis orientation from the perspective of the magnetic source (z axis has been
inverted).

C.2.3.2 5DT Data Glove

The 5DT Data Glove Ultra 5 (Figure C.4) measures average flexion between the knuckle and

first joint for each digit. This glove uses proprietary optical flex sensors, which in principle

consist of a flexible tube containing optical fibres, with a light source and a photosensitive

detector at opposing ends of the tube. The relative deflection of the sensor is derived from

the combination of detected, direct and reflected rays [54].
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Figure C.3: Left: Polhemus Patriot M sensor placed and attached under the glove’s Velcro
strap. Right: The experimental configuration, depicted in C.1

Figure C.4: 5DT Data Glove Ultra 5

The glove samples data at a rate of 60 Hz, returning a 12-bit unsigned integer for each digit.

A calibration process is required to map this arbitrary value to real word flexion. In this

process, the range of motion for all digits is acquired by opening and closing the hand (flat

to fist) several times, alternating the placement of the thumb inside and outside of the closed

hand. A larger value denotes an increase in flexion. The raw value is scaled using the lower

bound and dynamic range. The dynamic range is defined as the difference between the upper

and lower bounds of the collected values, as depicted in Figure C.5.

The raw sensor values are then scaled using the following equation:

Vs =
Vr − L

D

Where Vs represents the scaled (calibrated) flexion measurement, Vr is the raw sensor reading,

L is the lower bound determined during calibration, and D is the dynamic range.
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Figure C.5: Raw sensor graph, with respect to the upper and lower calibration bounds.

It is important to note that this calibration method relies on the subject’s ability to achieve a

full range of motion in all digits. Additionally, over time a glove may lose its factory hardware

calibration, reducing the dynamic range significantly. This may be the result of movement of

the opto-electronic transmitters and receivers, with respect to the fibres. In previous versions

of the glove this could be tuned using several accessible potentiometers [54].

C.3 Polhemus Patriot M Analysis

Based on the experimental setup, the following positional data were anticipated: The starting

x position was expected to be at minimum 38 cm, while the starting y position was predicted

to be approximately 20 cm for the left hand and -20 cm for the right hand. The initial z

position was anticipated to be near 0 cm. Given the setup, the minimum travel distance in

the x-y plane was calculated to be 25.39 cm, and the minimum height of the lifted cylinder

was expected to be 3 inches (7.62 cm).

Upon analysis of the data, it was observed that there existed two distinct distributions re-

garding the starting height of the hand, as depicted in Figure C.6. The experimental protocol

stipulated that the initial hand height should be approximately 0 cm. However, it was sur-

prising to discover that a significant number of recordings showed initial hand heights around

-35 cm.

Figures C.7 and C.8 illustrate reach trajectories from a sample of 20 patients in each pop-

ulation. The black marker indicates the starting position for each attempt. Notably, the

abnormal reaches exhibited an unexpected trajectory profile that did not correspond to the

intended experimental setup. Instead, this profile appeared to indicate that the reach origi-

nated from the participant’s lap, and that the source and cylinder were positioned closer to

the edge of the table than specified in the protocol.

Following the identification of divergent trajectory profiles, further analysis was conducted to

verify the consistency of these observations. It was confirmed that each participant’s record-
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Figure C.6: Kernel density estimate (KDE) plot showing the distribution of starting points
in the z-y plane.

Figure C.7: Reach trajectories from participants with normal initial z-axis positions.

Figure C.8: Reach trajectories from participants with abnormal initial z-axis positions.

ings were consistently categorised as either normal or abnormal. Moreover, it was observed

that all recordings from a given date exhibited the same classification. This anomaly affected

1099 recordings, representing 38% of subjects in the dataset who demonstrated abnormal

reach trajectories that deviated from the established protocol.
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C.4 5DT Data Glove analysis

The flexion sensors in both the left and right gloves exhibited significant deterioration over

the duration of the study, compromising data consistency and reliability. This deterioration

is clearly illustrated in Figure C.9, which depicts the maximum, minimum, and dynamic

range of the index finger and thumb sensors throughout the study period. The index finger

and thumb sensors were identified as the most critical for this analysis, given their role in

indicating grasp formation. The observed dynamic ranges were found to be substantially

lower than the 4096 possible values for the sensor, indicating a potential loss of measurement

granularity. Moreover, a clear trend of declining sensor performance was observed for both

gloves over the course of the study, as evidenced by the decreasing dynamic ranges. These

findings raise concerns regarding the reliability of the data collected and its suitability for

further analysis.

Figure C.9: The minimum, maximum and dynamic range of the index finger and thumb over
the duration of the study.

C.5 Ruijin Study

In light of the data quality issues encountered in the previous study, particularly the de-

terioration of flexion sensors and inconsistencies in reach trajectories, a proposal was made

to repeat the study following the same protocol. This repeated study was to be conducted

in collaboration with Doctor Shengdi Chen and Doctor Jiang Jingwen at Ruijin Hospital,

Shanghai JiaoTong University School of Medicine.

It was determined that the Polhemus Patriot M and 5DT data glove should be replaced with

an optical-based hand-tracking solution, the Leap Motion Controller (LMC). This change

was implemented to address the reliability concerns observed with the previous equipment.
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Additionally, a new eye-tracking modality, the Pupil Core, was incorporated into the study

design. The introduction of this eye-tracking technology was intended to directly quantify

visual feedback, providing a more comprehensive assessment of the participants’ motor and

cognitive processes during the reach and grasp tasks.

C.5.1 Leap Motion Controller

The LMC was selected as a replacement for the previously used hand-tracking equipment due

to its optical-based technology and potential for improved reliability. The LMC is a compact

device measuring 80mm x 30mm x 13mm, equipped with two near-infrared CCD cameras

and three infrared LEDs. The cameras, spaced 40 millimetres apart, operate at a resolution

of 640 x 240 pixels with a refresh rate of 120 Hz. Wide-angle lenses create an interaction

zone extending from 10cm to 60cm, with a 140°x120° field of view. Proprietary algorithms

are employed to generate mappings from the raw sensor data to 27 key points for each hand.

Since its initial release in 2013, the LMC has undergone significant software updates, im-

proving tracking capabilities and introducing additional features. While early versions were

optimised for desktop use, subsequent iterations have been developed for head-mounted de-

vices, specifically virtual reality headsets. The latter configuration was deemed more suitable

for upper limb reach and grasp studies, as it provides a top-down view of the hand.

A study by Vysocky et. al [191] was identified as particularly relevant to the current appli-

cation, as it evaluated the LMC’s capabilities in a similar context. However, their research

highlighted potential limitations, noting that “The LMC was not able to reliably separate

the hand from the background when the hand was too close to the table surface.”

To address these potential limitations, additional investigations were conducted as part of the

current study. These experiments focused on the LMC’s performance with different surface

materials and distances. The results indicated that rubber surfaces provided better contrast

for hand tracking, particularly at close range. These findings informed the experimental

setup, leading to the development of an optimised protocol for LMC use in the reach and

grasp tasks. Figure C.10 presents an extract from this protocol.
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Figure C.10: A extract of the protocol given to clinians in order for the leap motion to
function correctly.
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C.6 Pupil-Core

The incorporation of eye-tracking technology in this study was motivated by the emphasis

placed on visual feedback in previous studies, and by the potential for direct quantification

of visual attention to provide valuable insights into cognitive and motor processes in PD.

Previous research has demonstrated the utility of wearable eye-tracking sensors in analysing

visual behavior during complex tasks. Lavoie et al. [96] observed that participants predomi-

nantly fixate on task-relevant objects, with minimal time spent fixating on their own hands

during reaching tasks. Specifically, they found that participants’ eyes typically arrive at ob-

jects 0.5-0.9 seconds before their hands, indicating anticipatory visual behavior that likely

supports motor planning. This temporal coordination between eye and hand movements may

be altered in PD due to impairments in motor planning and execution.

Furthermore, Lavoie et al.’s finding that participants briefly fixate on objects when first

grasping them, but then rarely fixate on what they are holding during transport. In PD, where

proprioceptive deficits are common, this pattern might be disrupted, potentially leading to

increased visual monitoring of the hand and object during movement.

Eyetracking has been previously explored in terms of gait in PD. Hunt et al. found that

individuals with PD [75] exhibit more task-irrelevant fixations compared to controls during

walking, suggesting less efficient visual exploration of complex environments. This finding

aligns with the concept of the “Attentional Landscapes Theory” discussed by Lavoie et al.,

which posits that attention is automatically distributed to upcoming action locations. The

increased task-irrelevant fixations in PD could indicate a disruption in this attentional land-

scape, which may be exacerbated in cases of PD-MCI or PD-D.

The Pupil Core wearable eye-tracking system was selected for the oculomotor assessments

in this study. The system comprises several key components: infrared cameras for tracking

each eye, a monocular egocentric camera (world camera), a microphone, and an Inertial

Measurement Unit (IMU).

The infrared eye-tracking cameras operate at a high frame rate, capturing detailed movements

of each eye. The world camera, with its wide field of view, records the subject’s visual scene

at a resolution of 1088x1080px. The IMU, which includes an accelerometer and a gyroscope,

provides data on the subject’s head movements and orientation.

The system employs sophisticated algorithms to map the subject’s current gaze onto the
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world camera image at a rate of 120Hz. This process involves integrating data from the

eye-tracking cameras and the IMU to accurately project the gaze point onto the recorded

visual scene.

Two primary types of eye movements are captured by the Pupil Core system: fixations and

saccades. Fixations occur when the eyes are directed at a specific point in the environment

for a certain duration, while saccades are rapid movements where the eyes jump from one

fixation to the next. The system’s high temporal resolution allows for precise measurement

of these movements.

For the analysis of visual attention, it is proposed that segmentation algorithms, such as

those described by Cheng et al. [32], be utilised to mask out the object and the hand in the

world camera footage. This mask would be propagated throughout the video, generating a

time series of where the subject’s attention was directed throughout the task. By correlating

this attention data with the subject’s movements and task performance, relevant features can

be extracted regarding the visual strategies employed during object interaction. This process

is illustrated in Figure C.11.

Figure C.11: An illustration of the segmentation used to identify areas of interest in the Pupil
Core world camera. Note, the importance of hand visibility was subsequently reiterated using
Figure C.10.

C.6.1 Outcome

Unfortunately, the study was suspended due to Covid-19 lockdowns. Prior to the suspension,

data had been collected from 22 subjects with MCI. This sample size and cognitive profiles

were deemed insufficient to continue with the analysis.
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Future research may build upon the approach to analysing visual attention patterns outlined

in this study. Such investigations could potentially provide a more nuanced understanding of

how individuals with PD visually engage with their environment during upper limb prehension

tasks.
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List of Abbreviations

ACE-III Addenbrooke’s Cognitive Examination III.

AI Artificial Intelligence.

ANN Artificial Neural Network.

AUC Area Under the Curve.

CART Classification and Regression Trees.

CBD Corticobasal Degeneration.

CCD Critical Difference Diagram.

CDR Clinical Dementia Rating Scale.

CGP Cartesian Genetic Programming.

CNN Convolutional Neural Network.

CSV Comma-Separated Value.

DBS Deep Brain Stimulation.

EM Electromagnetic.

EMR Electromagnetic Resonance.

FCN Fully Convolutional Network.

FFT Fast Fourier Transform.

FN False Negatives.

FP False Positives.

GLMs Generalised Linear Models.

GUI Graphical User Interface.

HC Healthy Control.
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ID3 Iterative Dichotomiser 3.

IMU Inertial Measurement Unit.

L-DOPA Levodopa.

LBD Lewy Body Dementia.

LID Levodopa-induced Dyskinesia.

LMC Leap Motion Controller.

MBRS Modified Bradykinesia Rating Scale.

MCC Matthew’s Correlation Coefficient.

MCI Mild Cognitive Impairment.

MDS Movement Disorder Society.

MDS-UPDRS Movement Disorder Society - Sponsored Revision of the

Unified Parkinson’s Disease Rating Scale.

ML Machine Learning.

MLE Maximum Likelihood Estimation.

MLP Multilayer Perceptron.

MoCA Montreal Cognitive Assessment.

MSA Multiple System Atrophy.

MSE Mean Squared Error.

NC Normal Control.

NICE National Institute for Health and Care Excellence.

OLS Ordinary Least Squares.

OVO One-vs-One.

OVR One-vs-Rest.

PD Parkinson’s Disease.

PD-NC Parkinson’s Disease Normal Cognition.

PD-D Parkinson’s Disease Dementia.

PD-MCI Parkinson’s Disease Mild Cogntive Impairment.

PSP Progressive Supranuclar Palsy.

PwPD People with Parkinson’s Disease.

RDP Ramer-Douglas-Peucker.

ResNet Residual Network.
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RGB Red Green Blue.

ROC Receiver Operating Characteristic.

ROC-AUC Receiver Operating Characteristic Area Under the

Curve.

ROCF Rey-Osterrieth Complex Figure Test.

Rocket RandOm Convolutional KErnel Transform.

SCADA Supervisory Control and Data Acquisition.

SNR Signal to Noise Ratio.

TN True Negatives.

TP True Positives.

TSC Time Series Classification.

UPDRS Unified Parkinson’s Disease Rating Scale.
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