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Abstract

In this thesis we investigate various questions concerning rational points

on curves defined over number fields. Faltings’ finiteness theorem [Fal91]

asserts that a curve defined over a number field K of genus greater than 1

has only finitely many points defined over K. This powerful result is inef-

fective and thus it is an interesting problem to determine all points on a

curve defined over a fixed number field. In Chapter 3 we study the Fermat

equation over real biquadratic fields, and moreover provide a complete res-

olution over the smallest (with respect to the discriminant) real biquadratic

field. In Chapter 4 we study primitive algebraic points on curves defined

over low degree number fields, and prove several sufficient sets of conditions

for a curve to have finitely many primitive points of a fixed degree.
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CHAPTER 1

Introduction

Let C be a curve defined over a number field K; by which we mean a smooth projec-

tive geometrically irreducible variety defined over K of dimension 1. There are many

directions one can take in the practice of studying points on a curve C; we outline two

of these below.

(a) We can try to determine all points on C defined over a fixed number field.

(b) We can try to determine all points on C defined over all number fields of a fixed

degree.

Each half of this thesis addresses questions related to each of these two directions.

Perhaps the most recognised curve is the one defined by the equation

x2 + y2 = z2. (1.1)

If (a : b : c) ∈ P2(Q) satisfy (1.1) then (a, b, c) is known as a Pythagorean triple. It is
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well-known that all such Pythagorean triples satisfy

a = m2 − n2, b = 2mn, c = m2 + n2,

where m,n ∈ Q and at least one of m,n is non-zero. Thus there are infinitely many

rational solutions to (1.1), and we have a parameterisation for these solutions. Let us

increase the exponent of each variable in (1.1) by 1; this yields the equation

x3 + y3 = z3.

After some inspection, it is relatively straightforward to spot the solutions

(a, b, c) = (−1, 1, 0), (a, b, c) = (0, 1, 1), (a, b, c) = (1, 0, 1).

In fact, using elementary techniques, Euler proved that these are the only rational

solutions [Dic66, pp. 545-546].

The Fermat equation over totally real fields. Let K be a number field, and let

n ≥ 3 be an integer. The Fermat equation over K with exponent n is given by

xn + yn = zn, x, y, z ∈ K. (Fn)

The Fermat curve of degree n is the curve defined by the Fermat equation with

exponent n. Note that the genus of the Fermat curve is given by

(n− 1)(n− 2)

2
.

In particular the Fermat curve of degree n ≥ 4 has genus ≥ 3; thus, by Faltings’ famous

finiteness theorem [Fal91], the Fermat curve of degree n has only finitely many points

defined over K.

A solution (a, b, c) to (Fn) is trivial if abc = 0, and non–trivial otherwise. In the

17th century, Fermat claimed that if (a, b, c) ∈ Q3 satisfy (Fn) then abc = 0. That is,

the only solutions to (Fn) over Q are the trivial ones. This statement became known

as Fermat’s Last Theorem from then on. In the late 20th century, Wiles [Wil95]

became the first to provide a complete proof of Fermat’s claim.
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Wiles’ approach to showing that Fermat’s Last Theorem holds over Q became known

as the modular approach, and gave rise to a new method in the resolution of certain

Diophantine equations. Jarvis and Meekin [JM04] were the first to extend the work

of Wiles to a number field, and showed that there are no non-trivial solutions to (Fn)

over Q(
√

2) for all integers n ≥ 4. One obstacle in extending the work of Wiles to more

real quadratic fields (and, in general, totally real number fields) was the absence of a

level-lowering mechanism analogous to Ribet’s level-lowering theorem over Q [Rib90].

This was formulated by Freitas and Siksek [FS15c, Theorem 7] by combining previous

work of Fujiwara, Jarvis, and Rajaei; we discuss this in Chapter 2, and give an overview

of the modular approach over totally real fields. This led to the resolution of (Fn) over

some more real quadratic fields by Freitas and Siksek [FS15b] and Michaud-Jacobs

[MJ22]. Kraus [Kra19] provided a partial resolution of (Fn) over various totally real

number fields of degrees ≤ 8. By a partial resolution we mean for all prime exponents

n > BK , where BK is a constant depending only on K. We prove the following result

in Chapter 3 using the modular approach.

Theorem (Khawaja and Jarvis). Let K = Q(
√

2,
√

3). There are no non-trivial solu-

tions to (Fn) over K for integers n ≥ 4.

There are several novel obstacles that arise in the study of (Fn) over real biquadratic

fields. We highlight some of these below.

Another important ingredient in Wiles’ proof of Fermat’s Last Theorem over Q is

Mazur’s isogeny theorem [Maz78] which asserts that the mod p Galois representation

associated to any elliptic curve over Q is irreducible for all primes p > 167. A result

of Freitas and Siksek [FS15a, Theorem 2] gives an explicit bound B such that the

mod p Galois representation associated to an elliptic curve (satisfying certain technical

assumptions) defined over a totally real Galois number field is irreducible for all primes

p > B. Furthermore, under the assumption of the Generalised Riemann Hypothesis,

Banwait [Ban23] and Banwait and Derickx [BD22] have provided analogous results for

certain quadratic and cubic fields. However there is still not an unconditional equivalent
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result to Mazur’s theorem over any number field. In our setting, the elliptic curve in

question has good or multiplicative reduction at p. This allows us to apply work of

Kraus [Kra96] to bound p through making use of a class field theory argument inspired

by Freitas and Siksek [FS15b] and Kraus [Kra07], as well as work of Derickx, Kamienny,

Stein and Stoll [Der+23] on the primes arising as the orders of points on elliptic curves

over low degree number fields.

With respect to low degree points on Fermat curves of small composite degree, the

quadratic points on the Fermat curve of degree 4 have been completely determined by

Aigner [Aig34] and Mordell [Mor67], and the quadratic points on the Fermat curves of

degrees 6 and 9 have been completely determined by Aigner [Aig57]. However there are

currently no analogous results for quartic points on the Fermat curves of these degrees.

Recall that the Fermat curve of degree 4 is isomorphic to the modular curve X0(64).

Moreover the modular curve X0(64) has infinitely many quartic points, arising from

a degree 2 map to the elliptic curve with Cremona label 64a1, and it is not currently

known whether this is the sole source of infinitely many quartic points. To work around

this complication, we extend work of Mordell [Mor67] to determine all quartic points

on the Fermat curve of degree 4 lying in a quadratic extension of Q(
√

2). To rule out

solutions to (Fn) for n = 6 and 9 we work with a degree n hyperelliptic curve obtained

from the Fermat curve of degree n. For n = 6 we achieve this by studying the map from

the aforementioned degree n hyperelliptic curve to the elliptic curve E′ with Cremona

label 432b1, as well as the Mordell–Weil group of E′ over K. For n = 9 we achieve this

through studying the Jacobian of the aforementioned degree n hyperelliptic curve.

Primitive algebraic points on curves. The study of low degree points on curves has

long been an active area of research; see e.g. [AH91], [DF93], [DK94], [Fre94], [HS91],

[KV22], [SV22] for results on general curves, and [Ad23], [Box22], [BD22], [BGG23],

[BN15], [DNS20], [FLHS15], [Fre86], [NV23], [OS19] for results on certain families of

modular curves. In particular we highlight two classical results due to Harris and

Silverman [HS91] and Abramovich and Harris [AH91].
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Harris and Silverman [HS91] showed that a curve C defined over a number field K of

genus ≥ 2 has infinitely many points defined over degree d = 2 extensions of K if and

only if C admits a degree d = 2 morphism to P1 or an elliptic curve defined over K̄. In

recent work, Kadets and Vogt [KV22, Theorem 1.3] showed that this morphism is in

fact defined over K. Abramovich and Harris [AH91] extended the result of Harris and

Silverman to points of degree 3, as well as points of degree 4 on curves of genus 6= 7.

Abramovich and Harris [AH91, pg. 229] conjectured that a more general statement

might be true. However, Debarre and Fahlaoui [DF93, pp. 248-249] constructed several

examples that disprove this conjecture for d ≥ 4.

Given that a curve has infinitely many points of a fixed degree, one can ask whether

there is a Galois-theoretic description of these points. It seems, however, that this

question has received comparatively less attention. The following observation (Theorem

65) supports the need to explore this question further.

Theorem (Khawaja and Siksek). Let C be a hyperelliptic curve defined over Q with

genus 2 or 3. Let J be the Jacobian of C and suppose that J(Q) is trivial. Then there

are no quartic points on C with Galois group A4 or S4. However, there are infinitely

many quartic points on C with Galois group contained in D4.

In light of this observation, we recall the following definitions. Let K be a number field.

We say K is primitive if K has no proper subfields i.e.

Q ⊆ L ⊆ K ⇒ L = K or L = Q,

and imprimitive otherwise. Let C be a curve defined over Q. Analogously we say an

algebraic point P ∈ C(Q) is primitive if Q(P ) is a primitive number field, and im-

primitive otherwise. Let K̃ denote the Galois closure of K and write G = Gal(K̃/Q).

By a well-known correspondence, K is primitive if and only if G is a primitive group

(see e.g. Lemma 41 for a proof). Going back to the above theorem, the groups A4

and S4 are primtive whilst the group D4 is imprimitive. Thus the theorem describes a

setting under which a curve has infinitely many imprimitive quartic points and yet no

primitive quartic points.
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In Chapter 4, we prove several sets of conditions under which a curve has only finitely

many primitive points of a fixed degree. We make use of the notion of P1-isolated

points as introduced in [Bou+19]. A degree d point P ∈ C(Q) is P1-isolated if P does

not lie in the pre-image of a non-constant degree d morphism C → P1 defined over Q.

Write m for the Q-gonality of C. Observe that if d < m then any degree d point on

C is P1-isolated. We provide several sets of conditions under which a primitive degree

d point is P1-isolated even when d ≥ m. In the other direction, we see that if d is big

enough (with respect to the genus of C) then the existence of a single primitive degree

d point guarantees the existence of infinitely many (Theorem 60).

We point out that our results are effective. To demonstrate the utility of our results,

through the use of the computer algebra system Magma [BCP97], we compute all low

degree primitive points on the modular curve X0(N) for N = 46, 47, 59, 60, 62 and 71.
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CHAPTER 2

The modular approach over totally real fields

2.1 The modular approach

Let K be a number field. Let n ≥ 3 be an integer. Consider the degree n Fermat

equation

xn + yn = zn (Fn)

defining the n-th Fermat curve. Recall the following breakthrough result of Wiles

[Wil95].

Theorem 1 (Wiles). Let n ≥ 3 be an integer. If (a, b, c) ∈ Q3 is a solution to (Fn)

then abc = 0.

We give a naive sketch of the proof of Theorem 1.

Let p ≥ 5 be a prime. Suppose (a, b, c) ∈ Q3 is a non-trivial solution (abc 6= 0) to (Fn)

with n = p. As noted by Frey and Hellegouarch [Hel74], we can associate the elliptic
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curve (Frey curve)

E : y2 = x(x− ap)(x+ bp)

to this solution. The discriminant of E is given by 16(abc)2p; note that this is non-zero

precisely when (a, b, c) is non-trivial.

• Modularity. Without loss of generality, we can suppose a, b and c are coprime

and

(a, b, c) ∈ Z3, 2 | b, ap ≡ −1 (mod 4),

after possibly scaling or reordering (a, b, c). It then follows that E is semistable,

and work of Wiles [Wil95] and Taylor–Wiles [TW95] shows that E is modular.

• Irreducibility. Let ρ̄E,p be the mod p Galois representation associated to E.

Since E is semistable, Mazur’s isogeny theorem [Maz78] asserts that ρ̄E,p is irre-

ducible.

• Level-lowering. As E is modular and ρ̄E,p is irreducible, Ribet’s level-lowering

theorem [Rib90] now guarantees the existence of a newform of weight 2 and level

2 associated to ρ̄E,p.

• Contradiction. There are no newforms of weight 2 and level 2 contradicting the

existence of (a, b, c).

We note, in particular, that applying the modular approach over totally real fields calls

for a level-lowering result analogous to Ribet’s level-lowering theorem. Thankfully one

is readily available for us due to a combination of work done by Fujiwara, Jarvis, and

Rajaei. Before stating this result, we give a brief overview of the background closely

following the survey [KS24c].

2.2 Modularity of elliptic curves over totally real fields

The newforms referred to in the previous subsection are classical modular forms, and

Hilbert modular forms are the corresponding objects over totally real fields. We treat
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Hilbert modular forms as black-boxes, and collect some key facts using Dembélé and

Voight [DV13] as a reference in place of defining them.

Let K be a totally real number field of degree d, with ring of integers OK . Let k =

(k1, k2, . . . , kd) be a list of positive integers of equal parity and length d. For an ideal

N of OK , the space Sk(N ) consists of Hilbert cusp forms of weight k and level N . In

particular, if the ki are all equal, say to k, then we say f ∈ Sk(N ) has parallel weight

k. We note that the Hilbert cusp forms that we will be concerned with are of parallel

weight 2. Note that every Hilbert modular form has an associated character. However,

we omit any mention of this character henceforth since the Hilbert modular forms that

we will be concerned with have trivial character.

The space Sk(N ) is acted on by a family of linear operators (Hecke operators), and this

leads to the notion of Hecke eigenforms. There is also a notion of newforms of weight

k and level N . These are simultaneous eigenvectors to all the Hecke eigenforms that

are “new” to the space Sk(N ) in the sense that they do not arise from levels dividing

N .

Every Hilbert modular form admits a Fourier expansion, where the Fourier coefficients

an are indexed by ideals n of OK . Moreover, for every newform f ∈ Sk(N ), the Hecke

eigenvalues of f lie in the ring of integers of some number field (which we denote by

Qf). In particular there is an associated L-function and Galois representation to every

newform f ∈ Sk(N ).

There are only finitely many Hilbert newforms f of a fixed weight and level. As of date,

the LMFDB [LMF24] is home to a database of approximately 360, 000 Hilbert newforms

over 400 totally real fields of degrees at most 6. More generally, there are effective

algorithms for computing Hilbert newforms as well as the Hecke eigenfield Qf. We refer

the reader to [DV13] for a survey of these algorithms, and note, in particular, that

these algorithms have been implemented in Magma [BCP97].

Definition 2. Let E be an elliptic curve over a totally real field K of conductor N .

Then E is modular if there is a Hilbert newform f over K of parallel weight 2 and
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level N with rational Hecke eigenvalues such that L(E, s) = L(f, s).

If K = Q then a Hilbert newform over Q is the same as a classical newform over Q, and

the modularity of elliptic curves over Q was established by Wiles [Wil95], Taylor and

Wiles [TW95], and Breuil, Conrad, Diamond, and Taylor [Bre+01]. In the last decade

or so, there has been significant progress in establishing the modularity of elliptic

curves over totally real number fields of low degree, namely, due to work of Jarvis

and Manoharmayum [JM08], Freitas, Le Hung and Siksek [FLHS15], Thorne [Tho16],

Kalyanswamy [Kal18], Derickx, Najman and Siksek [DNS20], and Box [Box22].

2.3 Irreducibility of ρ̄E,p

Let K be a field, and write GK for the absolute Galois group of K. Let N ≥ 2 be an

integer coprime to the characteristic of K. Let E be an elliptic curve over K. Recall

that E[N ] ∼= Z/NZ×Z/NZ (see e.g. [Sil09, Corollary 6.4]). Note that GK acts linearly

on E[N ]. Then σ ∈ GK induces an automorphism

ρ̄E,N (σ) : E[N ]→ E[N ], P 7→ σ(P )

which gives us the group representation

ρ̄E,N : GK → Aut(E[N ]).

Moreover, let P and Q be a basis for E[N ]. Then, to each σ ∈ GK , we can associate

the matrix

ρ̄E,N (σ) =

aσ bσ

cσ dσ


where aσ, bσ, cσ, dσ ∈ Z/NZ are such that

σ(P ) = aσP + cσQ, σ(Q) = bσP + dσQ.

Suppose τ ∈ GK . Then ρ̄E,N (στ) = ρ̄E,N (σ)ρ̄E,N (τ). In particular it follows that

ρ̄E,N (σ) ∈ GL2(Z/NZ), by taking τ = σ−1. This gives us a representation

ρ̄E,N : GK → GL2(Z/NZ)
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which we say is the mod N Galois representation associated to E.

The following result is well-known; we give a proof as we are unable to find a reference

for a complete proof.

Theorem 3. Let E be an elliptic curve over a field K, let N ≥ 2 be an integer

coprime to the characteristic of K, and let ρ̄E,N denote the mod N Galois representation

associated to E. The following statements are equivalent.

(a) E has a cyclic K-rational isogeny of degree N .

(b) ρ̄E,N ∼

θ ∗

0 θ′

, where θ, θ′ : GK → (Z/NZ)∗ are characters satisfying θθ′ =

χN , and χN denotes the mod N cyclotomic character.

Proof. (b) =⇒ (a). Let P, Q be the basis for E[N ] with respect to which

σ(P ) = aσP, σ(Q) = bσP + dσQ

where θ(σ) = aσ, θ
′(σ) = dσ. Then 〈P 〉 is a cyclic subgroup that is stable under the

action of GK .

(a) =⇒ (b). Let φ : E → E denote the cyclic K-rational isogeny of degree N . It follows

that the kernel of φ is cyclic of order N (see e.g. [Sil09, Theorem 4.10]). In particular

we can write ker(φ) = 〈P 〉, for some element P ∈ E[N ] of order N . Let σ ∈ GK .

Choose Q ∈ E[N ] such that P, Q is a basis for E[N ]. Then

σ(P ) = aσP + cσQ, σ(Q) = bσP + dσQ,

for some aσ, bσ, cσ, dσ ∈ Z/NZ. Since the isogeny φ is K-rational it follows that the

subgroup 〈P 〉 is stable under the action of GK . Thus cσ = 0. Let θ, θ′ : GK → (Z/NZ)∗

be given by θ(σ) = aσ, θ′(σ) = dσ.

One consequence of the properties of the so called Weil pairing is that det(ρ̄E,N ) = χN .

This is a well-known fact; see e.g. [KS24c, pg. 12-13] for a proof.
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Definition 4. Let p be a prime. We say ρ̄E,p is reducible if there exists some non-zero

P ∈ E[p] such that σ(P ) = aσP for all σ ∈ GK , and irreducible otherwise.

In particular by Theorem 3, ρ̄E,p is reducible if and only if we can write

ρ̄E,p ∼

θ ∗

0 θ′

 ,

where θ, θ′ : GK → (Z/pZ)∗ are characters satisfying θθ′ = χp, and χp denotes the mod

p cyclotomic character. This is a fundamental formulation that we will make crucial

use of later on.

Relationship to the modular curve X0(N)

It is often the case that the irreducibility of ρ̄E,p needs to be proved separately for a

handful of primes. In our setting, these primes are p = 13 and p = 17. Since these

primes are small, it will be convenient for us to show that ρ̄E,p is irreducible through

the use of the family of modular curves X0(N).

We give an outline of this relationship. We denote the upper-half plane by

H = {x+ iy : x, y ∈ R, y > 0}

Recall that the linear transformationa b

c d

 · τ =
aτ + b

cτ + d

describes a group action of SL2(Z) on H. For an integer N ≥ 1, let

Γ0(N) =


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)

 .

The quotient Γ0(N)\H is a non-compact Riemann surface, which turns out to be isomor-

phic to the set of complex points Y0(N)(C), where Y0(N) is a (non-compact) algebraic

curve defined over Q. Let E1, E2 be elliptic curves defined over C and let C1, C2 be
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cyclic subgroups of order N on E1 and E2, respectively. Recall that the pair of elliptic

curves (E1, C1) and (E2, C2) are isomorphic if there is an isomorphism φ : E1 → E2

such that φ(C1) = C2. There is a one-to-one correspondence

Y0(N)(C) ∼= Γ0(N)\H↔ {isomorphism classes of pairs (E/C, C)}

where E is an elliptic curve over C and C is a cyclic subgroup of order N on E. We

let X0(N) be the compactification of Y0(N). We denote the extended upper-half

plane by H∗ = H ∪Q ∪ {∞}. Then,

X0(N)(C) ∼= Γ0(N)\H∗.

The set of cusps of X0(N) is given by X0(N)(C)−Y0(N)(C). See e.g. [DS05, Sections

1,2] for a more thorough construction of the modular curve X0(N).

Let E be an elliptic curve over K. Suppose ρ̄E,p is reducible. Recall (from Definition

4) that ρ̄E,p is reducible if and only if there is a non-zero point P ∈ E[p] such that

σ(P ) = aσP for all σ ∈ GK . In particular the cyclic subgroup H = 〈P 〉 is stable under

the action of GK . This gives us a non-cuspidal point (E,H) on the modular curve

X0(p) defined over K. Furthermore, if E has a K-rational point of order 2, this gives

a non-cuspidal point on the modular curve X0(2p) defined over K.

2.4 Level-lowering

We are now ready to state the level-lowering result analogous to Ribet’s level-lowering

theorem. This was observed by Freitas and Siksek [FS15c, Theorem 7], and is a com-

bination of work due to Fujiwara [Fuj06], Jarvis [Jar04], and Rajaei [Raj01].

Theorem 5 (Fujiwara, Jarvis, and Rajaei). Let K be a totally real field. Let p ≥ 5

be a prime. Suppose Q(ζp)
+ * K. Let E be an elliptic curve over K with conductor

N . Suppose E is modular and ρ̄E,p is irreducible. Denote by ∆q the discriminant for

a local minimal model of E at a prime ideal q of K. Let

Mp :=
∏
q‖N ,

p|vq(∆q)

q, Np :=
N
Mp

.
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Suppose the following conditions are satisfied for all prime ideals q | p:

(i) E is semistable at q;

(ii) p | vq(∆q);

(iii) the ramification index satisfies e(q/p) < p− 1.

Then, ρ̄E,p ∼ ρ̄f,$ where f is a Hilbert eigenform of parallel weight 2 that is new at

level Np and $ is a prime ideal of Qf that lies above p.

Proof. See [FS15c, p. 1402].

We briefly mention the existence of alternative level-lowering results whilst noting that

Theorem 5 is sufficient for our purposes. For example, work of Billerey, Chen, Dieulefait

and Freitas [Bil+24] on the generalised Fermat equation x11 + y11 = zn, where n ≥ 2

is an integer, makes use of a level-lowering result due to Breuil and Diamond [BD14,

Theorem 3.2.2]. For more general and precise results on level optimisation, we refer

the reader to work of Gee [Gee11].
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CHAPTER 3

Fermat’s Last Theorem over Q(
√

2,
√

3)

This chapter is based on the paper [KJ23] which was written in collaboration with

Frazer Jarvis, and is due to appear in the journal ‘Algebra & Number Theory’. We

add some more details to this version. All computations were performed in Magma, and

the scripts can be found in the following public GitHub repository: https://github.

com/MaleehaKhawaja/Fermat.

As in [FS15c] we say the Asymptotic Fermat’s Last Theorem holds over a totally

real field K if there is a constant BK such that there are no non-trivial solutions to

the Fermat equation (Fn) over K for all primes n > BK . Freitas and Siksek [FS15c]

associate the solution of a certain S-unit equation over a totally real field to a putative

solution of the Fermat equation. Using this approach, they prove that Asymptotic

Fermat’s Last Theorem holds for five-sixths of real quadratic fields. Freitas, Kraus and

Siksek [FKS20] subsequently proved that Asymptotic Fermat’s Last Theorem holds

for several infinite families of totally real number fields. For example they prove the

following result [FKS20, Corollary 1.5].
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Theorem 6 (Freitas, Kraus and Siksek). Let K = Q(
√

2,
√
`) where ` ≡ 3 (mod 8) is

a prime. Then the Asymptotic Fermat’s Last Theorem holds over K.

We prove the following theorem in this chapter using the modular approach surveyed

in Chapter 2.

Theorem 7. Let K = Q(
√

2,
√

3). There are no non-trivial solutions to the Fermat

equation

xn + yn = zn (Fn)

over K for integers n ≥ 4.

3.1 Applying level-lowering

Let K = Q(
√

2,
√

3). Let p ≥ 5 be a prime. Suppose (a, b, c) is a non-trivial solution

to (Fn) with n = p defined over K. Recall that the traditional Frey curve associated

to (a, b, c) is the elliptic curve

y2 = x(x− ap)(x+ bp).

Our Frey curve will be a quadratic twist of this elliptic curve by a well-chosen unit

ε ∈ O∗K (see Section 3.4). We write

E = Ea,b,c,ε : y2 = x(x− εap)(x+ εbp). (3.1)

The reason for allowing twists by units is to reduce the number of possibilities for the

conductor of the Frey curve. We apply Theorem 5 to E in order to contradict the

existence of (a, b, c). Thanks to the following theorem of Box [Box22, Theorem 1.1], we

know that E is modular.

Theorem 8 (Box). Let K be a totally real quartic field not containing
√

5. Every

elliptic curve over K is modular.

We turn to the question of how to show conditions i) and ii) of Theorem 5 are sat-

isfied. Let Cl(K) denote the class group of K. Let H = Cl(K)/Cl(K)2. We can
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assume, without loss of generality, that any non-trivial solution (a, b, c) to (Fn) is inte-

gral. By [FS15b, Lemma 3.1], a, b, c are coprime away from a small set of primes, i.e.,

gcd(a, b, c) = m ·τ2, where m lies in a chosen set of representatives of H and τ 6= m is an

odd prime ideal. We recall the following result of Freitas and Siksek [FS15b, Lemma

3.3].

Lemma 9 (Freitas and Siksek). Let K be a totally real field. Let S denote the set of

primes of K above 2. Let q be a prime ideal of K such that q /∈ S ∪ {m}. Then E is

semistable at q and p | vq(∆q).

A quick check in Magma reveals that, in our case, the class group Cl(K) is trivial. Thus

Lemma 9 implies that conditions i) and ii) of Theorem 5 are satisfied for p ≥ 5. Note

that the elliptic curve referred to in Lemma 9 is the traditional Frey curve. However,

since our Frey curve is a quadratic twist of this elliptic curve by a unit, the set of primes

dividing the conductor remains the same.

3.2 Small prime exponents

The Mordell–Weil group of the Jacobian of the Fermat curves of degrees 5, 7 and 11 is

finite. This allows for the study of points on these Fermat curves over number fields of

low degree.

Klassen and Tzermias [KT97] have classified all points on the Fermat quintic defined

over number fields of degree at most 6. Using this classification, Kraus [Kra18, Theorem

2] has provided an algebraic description of all quartic points on the Fermat quintic.

Theorem 10 (Kraus). Let K be a quartic number field. If there is a non-trivial

solution to the Fermat quintic

x5 + y5 = z5

defined over K then either K is the cyclic field K = Q(α) with 31α4 − 36α3 + 26α2 −

36α+ 31 = 0 or the Galois closure of K has Galois group D4.

25



Tzermias [Tze98, Theorem 1] has determined all points on the Fermat septic defined

over number fields of degree at most 5.

Theorem 11 (Tzermias). Write F7 for the Fermat equation of degree 7. Let ζ denote a

primitive 6-th root of unity, and write ζ̄ for its complex conjugate. Let K be a number

field of degree at most 5. Then

F7(K) ⊆ F7(Q) ∪ {(ζ, ζ̄, 1), (ζ̄, ζ, 1)}.

Gross and Rohrlich [GR78, Theorem 5.1] have determined all points on (Fn) with

exponent n = 11 over number fields of degree at most 5.

Theorem 12 (Gross and Rohrlich). Let p = 3, 5, 7 or 11. Suppose K is a number field

of degree at most (p − 1)/2. Let ζ denote a primitive 6-th root of unity, and write ζ̄

for its complex conjugate. Write Fp for the Fermat equation of degree n. Then

Fp(K) ⊆ Fp(Q) ∪ {(ζ, ζ̄, 1), (ζ̄, ζ, 1)}.

3.3 Outline of the proof

Throughout, unless otherwise specified, let K = Q(
√

2,
√

3) and write OK for the ring

of integers of K. We can suppose p ≥ 13 by Theorems 10, 11 and 12. In order to prove

Theorem 7 we need to complete the following steps.

1. Determine the reduction type of E at 2. In Section 3.4, we determine the

reduction type of E at 2 using techniques outlined in [FS15b] in combination with

Tate’s algorithm [Sil94, Pages 364-368].

2. Prove that ρ̄E,p is irreducible for p ≥ 13. In Section 3.5, we prove that

ρ̄E,p is irreducible for p ≥ 13. For p = 13 and 17, we prove this by studying

the parameterisation of the map X0(2p) → E′, where E′ is an elliptic curve of

conductor 2p. For p ≥ 19, we use work of Derickx, Kamienny, Stein and Stoll

[Der+23] and Kraus [Kra07] to obtain a contradiction if ρ̄E,p is reducible.
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3. Eliminate the Hilbert newforms arising as a result of level lowering.

We apply a standard image of inertia argument in Section 3.6 to achieve this.

4. Rule out solutions to (Fn) for n = 4, 6 and 9. In Section 3.8, we rule out

solutions for certain small integer exponents. To treat n = 9 and n = 6, we study

the hyperelliptic curves obtained from the Fermat curve of degree n. To treat

n = 4, we extend work of Mordell [Mor67] to determine all quartic points on the

Fermat quartic lying in a quadratic extension of Q(
√

2).

In Section 3.9, we give a brief overview of some obstacles that arise when extending

our method to some other real biquadratic fields.

3.4 Computing the lowered level

Write Nε for the conductor of the Frey curve E (3.1) above. We note that 2OK = P4,

and OK/P = F2. Thus P divides exactly one of a, b, c, since gcd(a, b, c) = 1. Without

loss of generality, we suppose P | b.

Lemma 13. Suppose that either p ≥ 17 or p = 13 and ordP(b) ≥ 2. There exists a

unit ε ∈ O∗K such that one of the following holds.

(i) Either E has multiplicative reduction at P,

(ii) or E has additive potentially multiplicative reduction at P, and ordP(Nε) = 4.

Proof. Write c4, c6, ∆ and j for the usual invariants attached to the model (3.1). A

straightforward computation shows that

c4 = ε2 · 16 · (c2p − apbp), ∆ = ε6 · 16 · (abc)2p, j = c3
4/∆.

We recall that P | b. Write t = ordP(b). Then,

ordP(j) = 3 ordP(c4)− ordP(∆) = 32− 2pt. (3.2)
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Under the assumptions of the lemma, we have ordP(j) < 0, thus we have potentially

multiplicative reduction at P (irrespective of the choice of ε).

The rest of the lemma is a consequence of [FS15b, Lemma 4.4]. We give some of the

details. Let

b = P2 ordP(2)+1 = P9.

Consider the natural map

Φ : O∗K → (OK/b)∗/((OK/b)∗)2.

By an explicit computation in Magma, we find that the image of Φ has index 2 in the

codomain, and that λ1 = 1 and λ2 = −1+2µ are elements ofOK which represent the co-

kernel, where µ =
√

2+
√

3. Let ni = ordP(∆(Li/K)) where Li = K(
√
λi) and ∆(Li/K)

is the relative discriminant ideal for the extension Li/K. Clearly L1 = K, and thus

n1 = 0. Using Magma we find that n2 = 2. Thus, by the aforementioned lemma, there

is a unit ε ∈ O∗K such that ordP(Nε) = 1 or 4. The supporting computations can be

found at https://github.com/MaleehaKhawaja/Fermat/blob/main/levels.m.

In Lemma 13, we determined the conductor of the Frey curve E for all primes p ≥ 17,

and a suitable choice of ε ∈ O∗K . In particular, we prove that E either has multiplicative

reduction or additive potentially multiplicative reduction at P. This proof fails for

p = 13 in the case that ordP(b) = 1, and we treat this case in the remainder of the

section.

Lemma 14. Suppose p = 13 and ordP(b) = 1. Then there is a unit ε ∈ O∗K and

α ∈ OK such that

P6 | (εb13 − εa13 − α2),

where P - α.

Proof. Let

θ : O∗K → U/U2,
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where U =
(
OK/P6

)∗
. We checked that θ is surjective using a straightforward compu-

tation in Magma. Let β = b13 − a13. Note that P - β. As θ is surjective, there is some

γ ∈ O∗K such that θ(γ) = βU2. Thus β ≡ γα2 (mod P6) for some α ∈ OK \ P. Let

ε = γ−1 ∈ O∗K . Then εβ ≡ α2 (mod P6), which proves the lemma.

Let ε ∈ O∗K be as in Lemma 14. We begin by working with the Frey curve

E13, ε : y2 = x(x− εa13)(x+ εb13). (3.3)

We recall that, by Lemma 9, E13, ε is semistable away from P. Thus in order to

determine the conductor of E13, ε, it remains to determine the reduction type of E13, ε

at P.

Lemma 15. Suppose ordP(b) = 1. The Frey curve E13, ε has additive potentially good

reduction at P. Moreover ordP(N ) = 5, where N is the conductor of E13, ε.

Proof. Let α ∈ OK be as in Lemma 14. Recall that K has class number 1 and therefore

every ideal is principal. Let π be an generator for P. For example, we can take

π =
µ3 + µ2 − 9µ− 9

4
,

where µ =
√

2 +
√

3. We make the substitutions

x 7→ π6x, y 7→ απ6x+ π9y.

This yields the model

W : y2 +
2α

π3
xy = x3 +

(εb13 − εa13 − α2)

π6
x2 − ε2a13b13

π12
x

which is integral by Lemma 14, and has discriminant

∆(W ) =
∆(E13, ε)

π36
=

16ε6a26b26c26

π36
.

Note that ordP(∆(W )) = 6 < 12. Thus W is minimal at P. We use Tate’s algorithm

[Sil94, Pages 364-368] to compute the valuation of the conductor for W . Let a1, . . . , a6
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be the usual a-invariants for W given in the above model, and let b2, . . . , b8 be the

corresponding b-invariants:

b2 =
4(εb13 − εa13)

π6
, b4 = −2ε2a13b13

π12
, b6 = 0, b8 = −ε

4a26b26

π24
.

In particular, P | a3, a4, b2, and P2 | a6 and ordP(b8) = 2. Thus, by Step 4 of Tate’s

algorithm the reduction type for W at P is III and the valuation of the conductor at

P is

ordP(N ) = ordP(∆(W ))− 1 = 5.

3.5 Proving irreducibility of ρ̄E,p

In this section, we prove that ρ̄E,p is irreducible for p ≥ 13. In particular, we show

that one possible consequence of ρ̄E,p being reducible is that E has a K-rational point

of order p. In this instance, for p ≥ 19, we obtain a contradiction partly through

the application of the following result of Derickx, Kamienny, Stein and Stoll [Der+23,

Theorem 1.2].

Theorem 16 (Derickx, Kamienny, Stein and Stoll). For a positive integer d, let S(d)

denote the set of primes p such that there is an elliptic curve E defined over a degree

d number field K such that E has a K-rational point of order p. Then

S(4) = Primes(17);

S(5) = Primes(19);

S(6) = Primes(19) ∪ {37};

S(7) = Primes(23),

where Primes(x) denotes the set of primes less than or equal to x.

Thus we are required to prove that ρ̄E,p is irreducible for p = 13 and 17 using a separate

argument.
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Demonstrating the irreducibility of ρ̄E,13 and ρ̄E,17

Recall (from Section 2.3) that if ρ̄E,p is reducible there there is a non-cuspidal K-point

on the modular curve X0(p) and X0(2p).

We find it convenient to work with the modular curves X0(26) and X0(34). In particu-

lar, we show that X0(26)(K) = X0(26)(Q) and X0(34)(K) = X0(34)(Q), and we know

that all points in X0(26)(Q) and X0(34)(Q) are cuspidal by work of Kenku [Ken82].

Let E′ be an elliptic curve defined over Q. By the famous modularity theorem due

to [Wil95], [TW95] and [Bre+01], there is a rational map π : X0(N) → E′ for some

positive integer N which we say is the modular parameterisation of E′. Let F be a

number field. Note the inclusion π(X0(N)(F )) ⊆ E′(F ). Suppose that E′(F ) = E′(L),

for a subfield L of F . In this scenario, an explicit parameterisation of π can be used to

extract more information about X0(N)(F ).

p = 13

Suppose P ∈ X0(26)(K). Let L = Q(
√

3). We prove that one of the following holds.

(a) P ∈ X0(26)(L);

(b) C(L) is non-empty, where C is a certain genus 2 hyperelliptic curve.

In case (a) it follows from work of Bruin and Najman [BN15] that P ∈ X0(26)(Q). In

case (b) we show that C(L) is empty using an elementary local argument.

Lemma 17. Let K = Q(
√

2,
√

3). Let E be an elliptic curve over K. Then ρ̄E,13 is

irreducible.

Proof. We prove that X0(26)(K) = X0(26)(Q). We work with the model

X0(26) : y2 = x6 − 8x5 + 8x4 − 18x3 + 8x2 − 8x+ 1 (3.4)
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given in Magma. Let

E′ : y2 + xy + y = x3 − x2 − 3x+ 3.

Then E′ is the elliptic curve with Cremona label 26b1. Suppose P = (a, b) ∈ X0(26)(K).

Note that if a = 1 then b2 = −16, i.e., P /∈ X0(26)(K). We henceforth assume that

a 6= 1. Using Magma, we find the explicit parametrisation

π : X0(26) −→ E′

(a, b) 7−→
(
−(a+ 1)2

(a− 1)2
,
−2b+ 2a(a− 1)

(a− 1)3

)
.

Let L = Q(
√

3). Using Magma we found that the Mordell–Weil group of E′ over K is

given by

E′(K) = (−1,−2) · Z/7Z⊕ (−2
√

3 + 5, 8
√

3− 14) · Z.

Thus E′(K) = E′(L). It immediately follows that(
a+ 1

a− 1

)2

∈ L.

Let

σ : K → K, σ(
√

2) = −
√

2, σ(
√

3) =
√

3.

Then

σ

(
a+ 1

a− 1

)
=
a+ 1

a− 1
or σ

(
a+ 1

a− 1

)
= −a+ 1

a− 1
.

Thus there are two cases to consider:

(1) (a+ 1)/(a− 1) ∈ L;

(2) (a+ 1)/(a− 1) ∈
√

2 · L.

Case (1) In this case, we have a ∈ L, and it immediately follows from the parame-

terisation of π that b ∈ L. Observe that X0(26) has infinitely many quadratic points

of the form (r,
√
f(r)), where r ∈ Q. Such points are called non-exceptional and all

other quadratic points are called exceptional.
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Case (1.1) If a ∈ L\Q then P is an exceptional quadratic point on X0(26). Bruin and

Najman [BN15, Table 3] have given an explicit description of all quadratic points on

X0(26). In particular they find that all exceptional quadratic points are defined over

Q(
√
d) for d = −1,−3,−11 and −23.

Case (1.2) If a ∈ Q then b2 ∈ Q. Then P is a non-exceptional quadratic point on

X0(26) defined over L. Moreover P corresponds to a rational point on the quadratic

twist X3 of X0(26) over L given by

X3 : y2 = 3x6 − 24x5 + 24x4 − 54x3 + 24x2 − 24x+ 3.

We checked using Magma that the curve X3 has no points defined over Q3. Thus X3(Q)

is empty.

Case (2) In this case we have (a+ 1)/(a− 1) ∈
√

2 · L, i.e.,

a+ 1

a− 1
=
√

2α, for some α ∈ L. (3.5)

Note the following identity:(
a+ 1

a− 1

)2

− 1 =
(a+ 1)2 − (a− 1)2

(a− 1)2
=

4a

(a− 1)2
=

4a(a− 1)

(a− 1)3
. (3.6)

From the parametrisation of π and (3.6), we see that

b

(a− 1)3
∈ L.

Note the following identity

16

(
a6 − 8a5 + 8a4 − 18a3 + 8a2 − 8a+ 1

(a− 1)6

)
= −4

(
a+ 1

a− 1

)6

− 3

(
a+ 1

a− 1

)4

+ 10

(
a+ 1

a− 1

)2

+ 13. (3.7)

By combining (3.4) and (3.7), we obtain(
4b

(a− 1)3

)2

= −4

(
a+ 1

a− 1

)6

− 3

(
a+ 1

a− 1

)4

+ 10

(
a+ 1

a− 1

)2

+ 13.

After making the substitutions β = 4b/(a− 1)3 and (3.5), we obtain

β2 = −32α6 − 12α4 + 20α2 + 13.

33



Thus (α, β) is a L-rational point on the curve

C : y2 = −32x6 − 12x4 + 20x2 + 13.

Write OL for the ring of integers of L. Then 13OL = p1p2. We checked using Magma

that there there are no points on C defined over the completion of L at p1. Thus C(L)

is empty.

Remark 18. Note that there are infinitely many quartic points on the modular curve

X0(26) arising from the pullback of a quadratic point on the elliptic curve E′ with

Cremona label 26b1. The proof of Lemma 17 outlines a sufficient set of conditions under

which X0(26)(F ) = X0(26)(Q) where F = Q(
√

2,
√
d) for squarefree d 6= −1,−3,−11

or −23. Namely, if:

• E′(F ) = E′(L), where L = Q(
√
d) or Q(

√
2d);

• there are no rational points on the quadratic twist over X0(26) over L;

• there are no points on the hyperelliptic curve y2 = −32x6 − 12x4 + 20x2 + 13

defined over L

then X0(26)(F ) = X0(26)(Q). Moreover the steps outlined above involve the de-

termination of rational or certain quadratic points on curves which is generally less

computationally challenging than determining quartic points on a curve.

p = 17

Suppose P ∈ X0(34)(K). Let L = Q(
√

2). We prove that one of the following holds.

(a) P ∈ X0(34)(L);

(b) C(L) is non-empty, where C is the quadratic twist of X0(34) over Q(
√

3).

In case (a) it follows from work of Ozman and Siksek that P ∈ X0(34)(Q). In case (b)

we show that C(L) is empty using an elementary local argument.
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Lemma 19. Let K = Q(
√

2,
√

3). Let E be an elliptic curve over K. Then ρ̄E,17 is

irreducible.

Proof. We prove that X0(34)(K) = X0(34)(Q). We work with the model

X0(34) : x4 − y4 + x3 + 3xy2 − 2x2 + x+ 1 = 0 (3.8)

given in Magma. Making the change of variables x 7→ x, y 7→ y2 yields the curve

C ′ : x4 − y2 + x3 + 3xy − 2x2 + x+ 1 = 0.

We checked using Magma that there is an isomorphism

C ′ → E′, (x, y) 7→
(
2(x2 − 2x+ y), 4x(x2 − 2x+ y)

)
(3.9)

where

E′ : y2 + xy + 2y = x3 − 4x

is the elliptic curve with Cremona label 34a1. This gives the parametrisation

π : X0(34) −→ E′

(x, y) 7−→
(
2(x2 − 2x+ y2), 4x(x2 − 2x+ y2)

)
.

Let L = Q(
√

2). Using Magma we found that the Mordell–Weil group of E′ over K is

given by

E′(K) = (0, 1) · Z/6Z⊕ (
√

2,−1) · Z.

It immediately follows that E′(K) = E′(L). Suppose P = (a, b) ∈ X0(34)(K). Since

2(a2 − 2a+ b2), 4a(a2 − 2a+ b2) ∈ L,

it follows that either a2 − 2a + b2 = 0 or a ∈ L. Suppose b2 = 2a− a2. We substitute

this into (3.8) to find that 2a3 +a+1 = 0. Thus a 6∈ K. Thus, a ∈ L and hence b2 ∈ L.

Either b ∈ L or b =
√

3β for some β ∈ L.

If b ∈ L then P ∈ X0(34)(L). Ozman and Siksek [OS19] have determined all quadratic

points on X0(34), and found that there are no real quadratic points on X0(34). Thus

P ∈ X0(34)(Q) in this case.
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Suppose b =
√

3β for some β ∈ L. Thus, (a, β) is an L-rational point on the curve

C : x4 − 9y4 + x3 + 9xy2 − 2x2 + x+ 1 = 0.

Note that 3 is inert in L. We checked using Magma that there there are no points on C

defined over the completion of L at 3OL. Thus C(L) is empty.

Remark 20. The proof of Lemma 19 outlines a sufficient set of conditions under which

X0(34)(F ) = X0(34)(Q) where F = Q(
√

2,
√
d). Namely, if:

• E′(F ) = E′(L), where L = Q(
√

2);

• there are no L-rational points on the curve

x4 − d2y4 + x3 + 3dxy2 − 2x2 + x+ 1 = 0

then X0(34)(F ) = X0(34)(Q).

p ≥ 19

We let E = Ea,b,c,ε where ε ∈ O∗K is chosen so that one of the two possibilities in

Lemma 13 holds. Suppose ρE,p is reducible. Then

ρE,p ∼

θ ∗

0 θ′


where θ, θ′ are characters GK → F∗p. Recall that χp = det(ρE,p) = θθ′ where χp

denotes the mod p cyclotomic character (see Theorem 3). We let Nθ and Nθ′ denote

the conductors of θ and θ′, respectively. We shall require the following result of Freitas

and Siksek [FS15b, Lemma 6.3].

Lemma 21 (Freitas and Siksek). Let E be an elliptic curve defined over a number field

K with conductor N . Let p ≥ 5 be a prime, and let q - p be a prime of K. Suppose

ρ̄E,p is reducible. Let θ and θ′ be defined as above. Then

ordq(Nθ) = ordq(Nθ′) =


0 if E has good or multiplicative reduction at q;

ordq(N )

2
∈ Z if E has additive reduction at q.
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Lemma 22. Let p ≥ 19 be a prime. Let E be the Frey curve as in (3.1). Then ρE,p is

irreducible.

Proof. Suppose ρ̄E,p is reducible. The only primes that ramify in K are 2 and 3, and

thus p is unramified in K. Recall that E has good or multiplicative reduction at p | p

by Section 3.1, and E has additive or multiplicative reduction at P by Lemma 13. Thus

a result of Kraus [Kra96, Lemma 1] asserts that both characters θ, θ′ are unramified

away from P and the primes above p, and moreover, for any p | p, precisely one of the

characters θ, θ′ is ramified at p.

We first suppose that either of θ, θ′ is unramified at all p | p (and thus the other is

ramified at all p | p). We note that replacing E by a p-isogenous elliptic curve, if

necessary, allows us to swap θ and θ′ – this is true for elliptic curves in general. Thus

we may suppose that θ is unramified at all the primes above p and hence θ is unramified

away from P.

We shall use Lemma 21 to determine Nθ. Suppose we are in case (i) of Lemma 13,

and E has multiplicative reduction at P. Then by Lemma 21, we have ordP(Nθ′) =

ordP(Nθ) = 0. Suppose now that we are in case (ii) of Lemma 13, and E has additive

reduction at P. Then by Lemma 21, we have

ordP(Nθ) = ordp(Nθ′) =
1

2
ordP(Nε) = 2.

Hence either Nθ = 1 or P2. Let ∞1, . . . ,∞4 denote the four real places of K. Let

m∞ = ∞1 · · ·∞4 and m = P2 · m∞. Let L be the field fixed by the kernel of θ. A

result of Kraus [Kra07, Proposition 2] asserts that L is a subfield of the ray class field

Km∞ in the first case, and a subfield of the ray class field Km in the second case. Using

Magma we find that Km∞ = Km is a quadratic extension of K. Thus [L : K] ≤ 2 and

the order of θ divides 2. If θ is trivial then E has a K-rational point of order p. In the

case that θ has order 2, let E′ be the quadratic twist of E by θ. Then

ρE′,p ∼

θ2 ∗

0 θθ′

 =

1 ∗

0 χp

 .
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Thus E′ has a K-rational point of order p. In both cases, we obtain an elliptic curve

with a point of order p defined over K. By Theorem 16, we have p ≤ 17. We obtain a

contradiction since p ≥ 19.

Fix p0 to be a prime ideal of OK above p. Let G = Gal(K/Q). Then G acts transitively

on the primes p | p. Let S be the set of τ ∈ G such that θ is ramified at τ(p0). We

know from the above that S is a proper subset of G, i.e., S 6= ∅ and S 6= G. For a

prime ideal q of OK we write Iq for the inertia subgroup of GK corresponding to q.

Thus θ|Iq = 1 for all

q /∈ {P} ∪ {τ(p0) : τ ∈ S}.

By Lemma 13, E has potentially multiplicative reduction at P. Thus by the theory of

the Tate curve [Dav12, Proposition 1.2] we have θ2|IP = 1. Let φ = θ2. Then φ|Iq = 1

for all

q /∈ {τ(p0) : τ ∈ S}.

Recall that θ′ is unramified at q ∈ {τ(p0) : τ ∈ S}. Since θθ′ = χp, we conclude that

φ|Iq =


χ2
p|Iq q ∈ {τ(p0) : τ ∈ S}

1 otherwise.

(3.10)

Let u ∈ O∗K . We define the twisted norm of u attached to S to be

NS(u) =
∏
τ∈S

(τ(u))2.

We claim that

p0 | (NS(u)− 1). (3.11)

We assume that the claim holds and finish the proof. Let µ =
√

2 +
√

3, and let

u1 = µ, u2 = −
√

2 + 1, u3 = (µ3 − µ2 − 9µ+ 5)/4;

this is a basis for O∗K/{±1}. Then, p | BS where

BS = Norm

(
3∑
i=1

(NS(ui)− 1) · OK

)
.
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We used Magma to compute BS for all non-empty proper subsets S of G = Gal(K/Q).

In all cases we found that if p | BS then p = 2 or 3. Thus we obtain a contradiction. It

remains to prove (3.11). We note the existence of similar claims in the literature; see

e.g. [Dav12, Proposition 2.6], [FS15a, Proposition 2.2]. The proof of our claim is an

application of a class field theory argument due to Kraus [Kra07, Appendice A]; see

also [AS16, Proposition 2.1] for a translated sketch of Kraus’ proof. We give some of the

details. Let L be the field fixed by the kernel of θ. We can view θ as a homomorphism

θ : Gal(L/K) → F∗p since Gal(L/K) = GK/ ker(θ) ∼= Im(θ) E F∗p. Denote by MK the

places of K. For ν ∈ MK , let Θν : K∗ν → Gal(L/K) be the local Artin map. Then by

Artin reciprocity ∏
ν∈MK

Θν(u) = 1 ∈ Gal(L/K)

for any u ∈ K∗. Thus ∏
ν∈MK

θ(Θν(u)) = 1̄ ∈ F∗p

for any u ∈ K∗. Denote by M∞K the infinite places of K and denote by M0
K the finite

places of K. Fix u ∈ O∗K . Since u2 is positive under all embeddings of K, it follows

that Θν(u2) = 1 for all ν ∈ M∞K . Now let ν ∈ M0
K . Then by local class field theory

Θν(u) ∈ Iν. First suppose ν ∈ M0
K \ {τ(p0) : τ ∈ S}. Then by (3.10), θ2|Iν = 1, and

in particular θ(Θν(u2)) = θ2(Θν(u)) = 1̄ ∈ F∗p. Now suppose ν = p ∈ {τ(p0) : τ ∈ S}.

Then

θ(Θp(u
2))

= θ2(Θp(u))

= χ2
p(Θp(u)) by (3.10)

= χp(Θp(u
2))

= NormFp/Fp
(u2 mod p)−1 by [Kra07, Proposition 1, Appendice A].

On the other hand, from above we see that∏
p∈{τ(p0) : τ∈S}

θ(Θp(u
2)) = 1̄ ∈ F∗p.

This completes the proof.
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3.6 Eliminating Hilbert newforms

Let

N0 =


P if we are in case (i) of Lemma 13;

P4 if we are in case (ii) of Lemma 13;

P5 if p = 13 and ordP(b) = 1.

Applying level lowering (i.e. Theorem 5) we obtain

ρE,p ∼ ρf,p

where f is a Hilbert newform of parallel weight 2 and level N0, and p is some prime

above p in Qf, the Hecke eigenvalue field of f. Using Magma we find that there are no

newforms with parallel weight 2 and level P or level P5, obtaining a contradiction in

these cases.

We thus suppose we are in case (ii) of Lemma 13. For the level P4 we find that there

are two newforms f1, f2 and for both the corresponding Hecke eigenvalue field is Q. Let

E1/K, E2/K be the following elliptic curves:

E1 : y2 +(µ+1)xy = x3 +
1

4
(−µ3−µ2−3µ+5)x2 +

1

2
(−µ3−5µ)x+

1

4
(µ3 +7µ2−9µ−3)

E2 : y2 +
1

4
(µ3 + µ2 + 3µ+ 3)y = x3 +

1

2
(−µ2 − 1)x2 + µ2x+

1

4
(−3µ3 − 17µ2 − µ+ 1),

where µ =
√

2 +
√

3. These elliptic curves have conductors P4 and were found using

the Magma command EllipticCurveSearch. These are non-isogenous as aq(E1) = 6

and aq(E2) = −6 where 3OK = q2. By the work of Box [Box22], E1, E2 are modular

and thus correspond to the two Hilbert newforms f1, f2 of parallel weight 2 and level

P4. Thus ρE,p ∼ ρEi,p where i = 1 or 2. To obtain a contradiction we shall use a

standard image of inertia argument (see e.g. [FS15c, Lemma 3.5]).

Let j be the j-invariant of the Frey curve E. By (3.2) we have ordP(j) < 0 and

p - ordP(j). Thus, p | #ρE,p(IP) [Sil94, Proposition 6.1, Chapter 5]. However, we find

that E1, E2 have j-invariants

j1 = 0 and j2 = −853632µ3 + 7682688µ+ 2417472,
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respectively. As ordP(ji) ≥ 0, we have that E1, E2 have potentially good reduction at

P. It follows that #ρEi,p(IP) | 24 from the work of Kraus [Kra90, Introduction]. As

ρE,p ∼ ρEi,p, for i = 1 or 2, we obtain p | 24 giving a contradiction.

Thus we have so far shown that there are no non-trivial solutions to (Fn) over K for

all primes n ≥ 5.

3.7 Divisors on curves

In this subsection, we briefly recall some important facts about divisors on curves that

we shall need in Section 3.8 as well as throughout Chapter 4.

Let C be a curve defined over Q. When we speak of divisors on C we in fact mean

rational divisors.

Definition 23. Let C be a curve defined over Q. A divisor D on C is a finite formal

integral linear combination D =
∑
aiPi of algebraic points Pi that is stable under the

action of Gal(Q/Q).

• We say D is effective and write D ≥ 0 if and only if ai ≥ 0 for all i.

• An irreducible divisor is an effective divisor that cannot be written as the sum

of two non-zero effective divisors.

• Suppose there is a degree d point P ∈ C(Q) such that D = P1 + P2 + · · · + Pd

where {P1, . . . , Pd} is the Galois orbit of P . We say that D is the irreducible

divisor corresponding to P .

For a divisor D on C we denote by L(D) the corresponding Riemann–Roch space

defined by

L(D) = {0} ∪ {f ∈ Q(C)× : div(f) +D ≥ 0},

and we let `(D) = dimL(D). We make frequent use of the Riemann–Roch theorem

which we recall now (see e.g. [Sil09, Section II, Theorem 5.4]).
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Theorem 24 (Riemann–Roch). Let C be a curve defined over Q. Let D be a divisor

on C. Then

`(D)− `(KC −D) = deg(D)− g + 1;

where KC is any canonical divisor on C, and g is the genus of C.

Recall that deg(KC) = 2g − 2. Therefore, if deg(D) ≥ 2g − 1 then KC − D has

negative degree and cannot be linearly equivalent to an effective divisor. In that case

`(KC −D) = 0 (see e.g. [Sil09, Corollary 5.5]).

We shall also require Clifford’s theorem [Har77, Theorem IV.5.4] on special effective

divisors.

Definition 25. Let C be a curve defined over Q. Let D be a divisor on C. We say D

is special if `(KC −D) > 0, and we say i(D) := `(KC −D) is the speciality index

of D.

Theorem 26 (Clifford). Let D be an effective special divisor on a curve C. Then

`(D) ≤ deg(D)

2
+ 1.

Moreover, equality occurs if and only if D = 0, or D is a canonical divisor, or C is

hyperelliptic and D is a multiple of a hyperelliptic divisor.

Recall that a hyperelliptic curve C is equipped with a degree 2 morphism π : C → P1;

a hyperelliptic divisor on C is π∗(α) for any α ∈ P1.

3.8 Small composite exponents

We have thus far shown that there are no solutions to (Fn) over K for prime n = p ≥ 5.

In order to complete the proof of Theorem 7, it remains to rule out solutions to (Fn)

for n = 4, 6, 9.

Recall that the Fermat cubic is isomorphic to the elliptic curve E3 with Cremona label

27a1. A quick search on Magma yields that the elliptic curve E3 has rank 2 over K. We
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find that there are points that are defined over K, and not over a quadratic subfield;

e.g. (
1

2
(−9
√

2− 3
√

6 + 24),
1

2
(−27

√
2 + 54

√
3− 27

√
6 + 8)

)
∈ E3(K).

n = 9

The purpose of this section is to prove the following result. We thank Samir Siksek for

useful conversations that lead to the proof of this theorem.

Theorem 27. Let K = Q(
√

2,
√

3). There are no non-trivial solutions to (Fn) over K

for n = 9.

Write F9 for the Fermat curve of degree 9. Suppose P ∈ F9(K). Let L = Q(
√

3). We

first show that P corresponds to an L-rational point on C, where C is some hyperelliptic

curve. We then show that C(L) only consists of the point at infinity, from which it

easily follows that P is a trivial point.

We find it convenient to let

F9 : x9 + y9 + z9 = 0.

Lemma 28. Let K = Q(
√

2,
√

3) and let L = Q(
√

3). Let

C : y2 = 2(−4x9 + 1)

and denote the point at infinity by ∞. If F9(K) consists of a non-trivial point then

{∞} ( C(L).

Proof. We recall that 2OK = P4 and that K has class number 1. Suppose P = (α :

β : γ) ∈ F9(K) with γ 6= 0. We may suppose that α, β, γ ∈ OK and that they are

coprime. We recall that OK/P = F2 and

F9(F2) = {(1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1)}.
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Hence, by permuting α, β, γ appropriately, we may suppose (α : β : γ) ≡ (1 : 1 : 0)

(mod P). Thus

P | γ, P - αβ. (3.12)

Observe the identity

γ18 − (α9 − β9)2 = (α9 + β9)2 − (α9 − β9)2 = 4(αβ)9.

After making the substitutions

u =
αβ

γ2
, v =

α9 − β9

γ9
, (3.13)

we see that Q1 = (u, v) ∈ C1(K) where

C1 : y2 = −4x9 + 1.

Let

E1 : y2 = 4x3 + 1.

Let π1 denote the corresponding map i.e.

π1 : C1 → E1, (x, y) 7→ (−x3, y).

The elliptic curve E1 has minimal Weierstrass model

E′1 : z2 + z = x3

which is obtained from E1 by the substitution y = 2z+1. This has Cremona label 27a3.

In particular E′1 has good reduction away from 3. LetR1 = π1(Q1) = (−u3, v) ∈ E1(K).

Then R1 corresponds to the point

S1 = (−u3, (v − 1)/2) ∈ E′1(K).

Let σ : K → K be the automorphism satisfying

σ(
√

2) = −
√

2, σ(
√

3) =
√

3.
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Note that the fixed field of σ is L = Q(
√

3). Thus S1 + Sσ1 ∈ E′1(L). We checked using

Magma that E′1 has rank 0 over L, and indeed

E′1(L) = {O, (0, 0), (0,−1)} ∼= Z/3Z. (3.14)

Thus S1 + Sσ1 is one of these three points. However, ordP(u) < 0 by (3.12) and (3.13).

It follows that

S1 ≡ O (mod P).

Hence

Sσ1 ≡ Oσ = O (mod Pσ).

However, P is a totally ramified prime, so Pσ = P. Thus Sσ1 ≡ O (mod P), and

S1 + Sσ1 ≡ O (mod P).

By (3.14) and the injectivity of torsion upon reduction modulo primes of good reduction

(see e.g. [Sil09, Chapter VII, Proposition 3.1.]) we conclude that

S1 + Sσ1 = O.

Hence

R1 +Rσ1 = O.

Hence

(−u3)σ = −u3, vσ = −v.

As the only cube root of 1 in K is 1, we have uσ = u and so u ∈ L. Moreover,

v2 = −4u9 + 1 ∈ L and vσ = −v, so v = w/
√

2 where w ∈ L. Hence (u,w) ∈ C(L)

where C is the hyperelliptic curve given by

C : y2 = 2(−4x9 + 1).

Lemma 29. Let

C : y2 = 2(−4x9 + 1).

Let L = Q(
√

3). Then C(L) = {∞}.
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By Lemma 28, if C(L) = {∞} then F9(K) only consists of trivial points thus proving

Theorem 27. We shall prove Lemma 29 through studying J(Q) where J is the Jacobian

of C.

Proof. Let

E : y2 = x3 + 2,

which is the elliptic curve with Cremona label 1728a1. Let

π : C → E, (x, y) 7→ (−2x3, y), ∞ 7→ ∞. (3.15)

We find using Magma that E has zero torsion and rank 1 over Q and that, in fact, we

have

E(Q) = Z · (−1, 1).

We write Pic0(E) for the group of rational degree 0 divisor classes on E/Q and Pic0(C)

for the group of rational degree 0 divisor classes on C/Q. We recall the standard

isomorphism [Sil09, Proposition III.3.4]

E(Q) ∼= Pic0(E), P 7→ [P −∞], (3.16)

where [D] denotes the linear equivalence class of a divisor D. Thus

Pic0(E) = Z · Q, Q = [(−1, 1)−∞].

We also recall the standard isomorphism J(Q) ∼= Pic0(C), and we will represent ele-

ments of the Mordell–Weil group J(Q) as elements of Pic0(C). We first compute the

torsion subgroup J(Q)tors of J(Q) using the standard fact that J(Q)tors injects into

J(Fp) when p is a prime of good reduction (see e.g. [Kat81, Appendix]). Using Magma

we find that J has good reduction away from 2 and 3 and furthermore

J(F5) ∼= Z/6Z× Z/126Z, J(F13) ∼= Z/19Z× Z/31Z× Z/73Z.

As these two groups have coprime orders we conclude that J has trivial torsion over

Q. We now want to determine the rank of J over Q. Using Magma, we find that J has
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2-Selmer rank 1 over Q, so J has rank at most 1 over Q. The morphism π in (3.15)

has degree 3 and induces the homomorphisms

π∗ : Pic0(C)→ Pic0(E),
[∑

aiPi

]
7→
[∑

aiπ(Pi)
]
,

and

π∗ : Pic0(E)→ Pic0(C),
[∑

bjQj

]
7→

∑ bj
∑

P∈π−1(Qj)

eπ(P ) · P


where eπ(P ) denotes the ramification degree of π at P (see [Sil09, Section II.3]). In

particular since Q ∈ Pic0(E), we have π∗(Q) ∈ Pic0(C). Let

P = π∗(Q) = [(1/
3
√

2, 1) + (ω/
3
√

2, 1) + (ω2/
3
√

2, 1)− 3∞] ∈ Pic0(C) ∼= J(Q)

where ω is a primitive cube root of 1. Since J(Q)tors is trivial, the point P has infinite

order on J(Q). Thus J has rank exactly 1 over Q. Therefore J(Q) = Z · P ′, for some

P ′ ∈ J(Q) = Pic0(C). Hence

P = kP ′

where k is a non-zero integer. Applying π∗ to both sides we obtain

kπ∗(P ′) = π∗(P) = 3Q.

However, π∗(P ′) ∈ Pic0(E) = Z · Q, so

π∗(P ′) = ` · Q

for some ` ∈ Z. Hence k` = 3, so k = ±1 or ±3. We checked using Magma that the

image of P under the composition

J(Q)→ J(F5)→ J(F5)/3J(F5)

is non-zero. Thus k 6= ±3, so k = ±1, hence

J(Q) = Pic0(C) = Z · P.

47



Suppose P ∈ C(L). Let τ : L→ L be the non-trivial automorphism. Then [P + P τ −

2∞] ∈ Pic0(C). Thus

[P + P τ − 2∞] = n · P = n · π∗(Q) = π∗(n · Q)

for some integer n. We claim that n = 0. Suppose otherwise, then n ·Q ∈ Pic0(E)\{0}

and by the isomorphism in (3.16) we have n · Q = [Q −∞] where Q ∈ E(Q) \ {O}.

Write Q = (a, b) ∈ E(Q) with a, b ∈ Q. Then

[P + P τ − 2∞] = π∗([(a, b)−∞]) = [D − 3∞]

where

D = P1 + P2 + P3, Pj =
(
−ωj−1 3

√
a/2 , b

)
, j = 1, 2, 3.

Hence

D ∼ D′, D′ = P + P τ +∞

where ∼ denotes linear equivalence on C. Write |D| for the complete linear system of

effective divisors of C linearly equivalent to D. Let r(D) = dim|D|. Note that D′ ∈ |D|

and D′ 6= D, therefore r(D) ≥ 1. By Riemann–Roch (Theorem 24),

r(D)− i(D) = deg(D)− g = −1,

where i(D) ≥ 0 is the speciality index of D, and g = 4 is the genus of C. It follows that

i(D) > 0, and therefore that D is a special divisor. By Clifford’s theorem on special

divisors (Theorem 26) we have

r(D) ≤ deg(D)

2
=

3

2
.

Hence r(D) = 1. Thus the complete linear system |D| is a g1
3. In particular as C is

hyperelliptic, by [Arb+85, page 13], we have |D| = g1
2 + p where p is a fixed base point

of the linear system. In particular, every divisor in |D| is the sum of p and two points

interchanged by the hyperelliptic involution. We apply this to D itself. Thus two of

the points P1, P2, P3 are interchanged by the hyperelliptic involution. However, they
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all have the same y-coordinate b, so b = 0. But (a, b) ∈ E(Q), so a ∈ Q and a3 = −2

giving a contradiction. Hence n = 0, and so

P + P τ ∼ 2∞.

Thus P , P τ are interchanged by the hyperelliptic involution. We recall that we want

to show that P =∞. Suppose otherwise. Then we can write P = (c, d) where c, d ∈ L

and cτ = c, dτ = −d. Thus c ∈ Q, and d = e/
√

3 with e ∈ Q. Thus P ′ = (c, e) ∈ C ′(Q)

where

C ′ : y2 = 6(−4x9 + 1).

Let J ′ be the Jacobian of C ′, and

E′ : y2 = 6(4x3 + 1).

Using Magma we find that E′(Q) = Z · (1/2, 3). Let Q′ = [(1/2, 3) −∞] ∈ Pic0(E′), so

Pic0(E′) = Z · Q. Let

π′ : C ′ → E′, (x, y) 7→ (−x3, y).

Using Magma we find that J ′ has trivial torsion and 2-Selmer rank 1, and following

the same steps as before show that J ′(Q) = Pic0(C) = Z · P ′, where P ′ = (π′)∗(Q).

Now [P ′ − ∞] = nP ′ where n is an integer, and must be non-zero as P ′ 6= ∞. Let

(f, g) = n · (1/2, 3) ∈ E′(Q) \ {O}. As before, we find that

P ′ + 2∞ ∼ P ′1 + P ′2 + P ′3, P ′j = (−ωj−1 · 3
√
f , g).

Following the same steps as before, it follows that g = 0, so f3 = −1/4 contradicting

f ∈ Q. We can thus conclude that if P ∈ C(L) then P =∞. This completes the proof

of Lemma 29 and therefore Theorem 27.

n = 6

We write F6 for the Fermat curve of degree 6. The curve F6 is of genus 10 and we avoid

working with it directly. We use an identity to work with a genus 2 curve instead.
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Theorem 30. Let K = Q(
√

2,
√

3). There are no non-trivial solutions to (Fn) over K

for n = 6.

Proof. Consider the Fermat curve of degree 6 given by

F6 : x6 + y6 = z6.

We will prove that F6(K) = {(0 : −1 : 1), (−1 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1)}, i.e., F6(K)

consists only of trivial solutions. Suppose (α : β : γ) ∈ F6(K) is a non-trivial solution.

We may suppose that α, β, γ ∈ OK and that they are coprime. Similar to the proof of

Theorem 27, note that

γ12 − (α6 − β6)2 = (α6 + β6)2 − (α6 − β6)2 = 4(αβ)6.

Let

a =
αβ

γ2
, b =

α6 − β6

γ6
.

Then P = (a, b) ∈ C(K) where

C : y2 = −4x6 + 1.

Let

E : y2 = x3 − 4.

This is the elliptic curve with Cremona label 432b1. Let

π : C → E, (x, y) 7→
(

1

x2
,
y

x3

)
, (0,±1) 7→ ∞E , ±∞C 7→ (0,±2i).

We checked using Magma that E has rank 1 over K (and Q) and that

E(K) = E(Q) ∼= Z · (2, 2).

Since π(P ) ∈ E(Q), it immediately follows that a2 ∈ Q and hence b2 ∈ Q. We remark

that a and b are necessarily defined over the same quadratic subfield of K since b/a ∈ Q.

Thus either a ∈ Q and hence b ∈ Q or

a =
a′√
d
, b =

b′√
d
, for d ∈ {2, 3, 6}, a′, b′ ∈ Q.
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If a, b ∈ Q then P ∈ C(Q). The Jacobian of C has rank 1 over Q. Using the Chabauty

implementation in Magma, we find that C(Q) = {(0, ±1)}. If a = 0 then it’s clear that

(α : β : γ) is a trivial solution. Thus (a′, b′d) ∈ Cd(Q) where

Cd : y2 = −4x6 + d3.

Suppose d = 3 or 6. We checked using Magma that there are no points on Cd defined

over Q2. Thus C3(Q) = C6(Q) = ∅. It remains to determine C2(Q). We work with the

model

C2 : y2 = −x6 + 2. (3.17)

Note that on this model of C2, we have (a′, b′) ∈ C2(Q). The curve C2 has genus 2.

Using Magma, we find that the rank of the Jacobian of C2 over Q is 2. We are therefore

are unable to determine C2(Q) using the method of Chabauty. Instead, we used Bruin’s

elliptic curve Chabauty method [Bru03] to do so as we now demonstrate.

Let θ = 6
√

2, and note that θ is a root of the hyperelliptic polynomial for C2 given in

(3.17). Let L = Q(θ). Consider the map

ϕ : C2(Q)→ L∗/(L∗)2, (x, y)→ (x− θ) · (L∗)2.

The method of two-cover descent, due to Bruin and Stoll [BS09], uses sieving informa-

tion to determine a small finite set containing the image of ϕ. This is implemented in

Magma, and applying it we find that

ϕ(C2(Q)) ⊆ {(1 + θ) · (L∗)2, (1− θ) · (L∗)2}.

Thus for a rational point (x, y) ∈ C2(Q) we have

x− θ = (1± θ)β2 (3.18)

with β ∈ L∗. Now let F = Q( 3
√

2), and note that x2− 3
√

2 = NormL/F (x− θ). Observe

that

NormL/F (1± θ) = (1− θ)(1 + θ) = 1− 3
√

2.
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Taking norms in (3.18) gives

x2 − 3
√

2 = (1− 3
√

2)w2, w = NormL/F (β) ∈ F ∗.

Note the factorisation

C2 : y2 = −x6 + 2 = −(x2 − 3
√

2)(x4 +
3
√

2x2 +
3
√

2
2
).

Thus for (x, y) ∈ C2(Q) we have

x4 +
3
√

2x2 +
3
√

2
2

=
−y2

x2 − 3
√

2
=

−1

(1− 3
√

2)
· y

2

w2
.

Let ε = −1/(1− 3
√

2) = 1+ 3
√

2+ 3
√

2
2 ∈ F ∗, and z = y/w ∈ F ∗. Then, for (x, y) ∈ C2(Q)

we have

x4 +
3
√

2x2 +
3
√

2
2

= εz2. (3.19)

Let

X = εx2 and Y = ε2xz. (3.20)

Then (X,Y ) ∈ E2(F ) where E2/F is the elliptic curve

E2 : Y 2 = X3 + ε
3
√

2X2 + ε2
3
√

2
2
X.

Using Magma we found that the Mordell–Weil group is given by

E2(F ) = (Z/2Z) · (0, 0)⊕ Z ·
(

1 +
3
√

2 +
3
√

2
2
, 5 + 4

3
√

2 + 3
3
√

2
2
)
.

We are interested in points (X,Y ) ∈ E2(F ) which satisfy (3.20) where (x, y) ∈ C2(Q).

In particular, to determine C2(Q), it is enough to find all points Q = (X,Y ) ∈ E2(F )

such that f(Q) ∈ Q, where f(X,Y ) = X/ε. Bruin’s elliptic curve Chabauty method

[Bru03] is one that can sometimes be used to provably determine all F -points Q on

an elliptic curve E defined over a number field F , such that f(Q) ∈ Q for a given

non-constant function f ∈ F (E), provided that the degree [F : Q] exceeds the rank of

E over F . In our situation, the degree is [F : Q] = 3 and the rank of E over F is 1. We

applied the implementation of elliptic curve Chabauty available in Magma to our E2/F

and f . This succeeded in showing that the only (X,Y ) ∈ E2(F ) with X/ε ∈ Q are

(X,Y ) = (0, 0),
(
ε, 5 + 4

3
√

2 + 3
3
√

2
2
)
,
(
ε, −5− 4

3
√

2− 3
3
√

2
2
)
.
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Thus X = 0 or ε, and hence if (x, y) ∈ C2(Q), then x = 0 or ±1. It immediately follows

that

C2(Q) = {(±1, ±1)}.

Thus, (a′, b′) ∈ {(±1, ±1)} and if P = (a, b) ∈ C(K) then P ∈ {(± 1/
√

2, ± 1/
√

2)}.

Recall that

b =
α6 − β6

γ6
,

where (α : β : γ) ∈ F6(K). It immediately follows that (b+ 1)/2 is a square in K. For

each b ∈ {±1/
√

2}, we check using Magma that (b+ 1)/2 is not a square in K. We have

reached a contradiction. This completes the proof.

n = 4

Points on the Fermat quartic over quadratic fields were first studied by Aigner [Aig34].

Somewhat later, Faddeev [Fad60] gave another proof which also classified the points

over cubic fields, using quite intricate algebraic geometry, and Mordell [Mor67] then

found an elementary proof of the same result.

Mordell starts with the knowledge that there are no non-trivial points on the Fermat

quartic over Q, and studies points over all quadratic extensions. We generalise his

method, observing that we can also classify points over quadratic extensions of certain

quadratic fields. More precisely, if L is any field for which there are no points on the

Fermat quartic, and if the two elliptic curves with Cremona labels 32a1 and 64a1 have

rank 0 over L, then we give a procedure to write down all the points on the Fermat

quartic over quadratic extensions of L.

We note that we require only that the elliptic curves with Cremona labels 32a1 and

64a1 have rank 0 over L. Of course this does not always hold. For example, let

L = Q(
√

3). Then the elliptic curve with Cremona label 64a1 has rank 1 over L (the

other has rank 0). Similarly, if L = Q(
√

6) then the elliptic curve with Cremona label

32a1 has rank 1 over L (and the other has rank 0).
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We previously conjectured that there are no points on the Fermat quartic over any real

biquadratic field. We thank Pedro José Cazorla Garcia for pointing out to us that the

point (
√

3, 2,
√

5) lies on the Fermat quartic over Q(
√

3,
√

5).

After the completion of this work, we were made aware that Ishitsuka, Ito and Ohshita

[IIO19, Theorem 7.3] have previously determined all points on the Fermat quartic lying

in a quadratic extension of Q(ζ8). Since Q(
√

2) ⊂ Q(ζ8), this is indeed stronger than

the statement of Theorem 31.

We note that the authors of the aforementioned work study the Jacobian of the Fer-

mat quartic over Q(ζ8) and that the proof of Theorem 31, extending work of Mordell

[Mor67], makes use of a different strategy.

Theorem 31. All points on the Fermat quartic lying in quadratic extensions of Q(
√

2)

are defined over one of the following number fields:

Q(
√

2, i), Q(
√

2,
√
−7), Q(

4
√

2), Q(
4
√

2i).

We remark that the points on the Fermat quartic defined over Q(
√

2, i) and Q(
√

2,
√
−7)

are in fact defined over the quadratic fields Q(i) and Q(
√
−7), respectively.

Proof. Let L = Q(
√

2), and let K be a quadratic extension of L. We shall determine

all points on the Fermat quartic

F4 : x4 + y4 = 1

in K. Let t = 1−x2
y2

, so that x2 + ty2 = 1. This gives a parameterisation

x2 =
1− t2

1 + t2
, y2 =

2t

1 + t2
.

Observe that if x, y ∈ K then t ∈ K.

Case (A). Suppose first that t ∈ L. Then x2, y2 ∈ L. In order for x and y to lie in the

same quadratic extension K of L, either x ∈ L, y ∈ L or x/y ∈ L. This means that

one of
1− t2

1 + t2
,

2t

1 + t2
or

2t

1− t2
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is a square in L. Equivalently, (1− t2)(1 + t2), 2t(1 + t2) or 2t(1− t2) is a square in L.

These correspond to L-rational points on one of the curves

u2 = (1− t2)(1 + t2), u2 = 2t(1 + t2), u2 = 2t(1− t2).

Both of the first two possibilities are isomorphic to E1 : y2 = x3 + 4x (the elliptic curve

with Cremona label 32a1) via the maps (t, u) 7→
(

2t+2
1−t ,

u
(1−t)2

)
and (t, u) 7→ (2t, 2u)

respectively, and the third to E2 : y2 = x3 − 4x (the elliptic curve with Cremona label

64a1) via (t, u) 7→ (−2t, 2u). We checked using Magma that E1 and E2 have rank 0 over

L. We find that

E1(L) = E1(Q) = {O, (0, 0), (2,±4)}

These points correspond on the first curve to t = ±1 and t = 0, and on the second to

t = 0, t = 1 and t =∞. These values of t give points

(x2, y2) = {(1, 0), (−1, 0), (0, 1), (0,−1)},

corresponding to points on F4 defined over Q or Q(i). Similarly,

E2(L) = {O, (−2, 0), (0, 0), (2, 0), (2 + 2
√

2,±(4 + 4
√

2), (2− 2
√

2,±(4− 4
√

2)},

and the rational points correspond to t = ±1 and t = 0, and the point at infinity to

t = ∞, as before. The points in E(L) \ E(Q) correspond to t = −1 ±
√

2, and these

give

(x2, y2) ∈ {(1/
√

2, 1/
√

2), (−1/
√

2,−1/
√

2)},

corresponding to solutions in the quadratic extensions of Q(
√

2) obtained by adjoining

4
√

2 or 4
√

2i. In particular, we recover the solutions

14 + 14 =
4
√

2
4
, 14 + 14 = (i

4
√

2)4,

and similar points obtained by negating one or more of the terms.

Case (B). We now suppose t ∈ K, t 6∈ L. We write F (t) = t2 + βt+ γ for the minimal

polynomial of t over L, so β, γ ∈ L. We let A = (1 + t2)xy and B = (1 + t2)y, so that

A2 = 2t(1− t2), B2 = 2t(1 + t2).
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Since A2, B2 ∈ K and K = L(t), we can write

A = λ+ µt, B = λ′ + µ′t, λ, µ, λ′, µ′ ∈ L.

Comparing the two expressions for A yields

(λ+ µt)2 = 2t(1− t2).

In particular, the equation

(λ+ µz)2 − 2z(1− z2) = 0

has a root z = t. As the equation is defined over L, the left-hand side is divisible by

the minimal polynomial F (z), and, as this is a cubic, we have

(λ+ µz)2 − 2z(1− z2) = F (z)(ρ+ σz),

a factorisation over L (where ρ, σ ∈ L). From comparing the coefficients of z3, we see

that σ = 2 i.e.

(λ+ µz)2 − 2z(1− z2) = F (z)(ρ+ 2z). (M1)

Then z = −ρ/2 is a solution to the right-hand side of (M1) defined over L. In particular,

we have a solution with z ∈ L to

Y 2 = 2z(1− z2) = −2z3 + 2z,

where Y = λ+µz ∈ L. Thus we get an L-point on the elliptic curve Y 2 = −2X3 + 2X,

which is isomorphic to the elliptic curve E2, and the points in E2(L) correspond to

z = ±1, z = 0 and z = −1±
√

2. In exactly the same way, looking at B2, we will get a

solution over L to

(λ′ + µ′z)2 − 2z(1 + z2) = F (z)(ρ′ − 2z), (M2)

and therefore a solution over L to Y 2 = 2z(1 + z2), which is isomorphic to E1. The

points in E1(L) correspond to z = 0 and z = 1.
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We will now consider all these cases, as in Mordell. We write (z1, z2) for the situation

where the equation (M1) is solved by z1 and equation (M2) is solved by z2. We result-

ingly obtain two expressions for F (z) (or G(z) · F (z), where G(z) is a specified linear

expression in z defined over L). Comparing these two expressions will then either lead

to a contradiction or to a value of t such that F (t) = 0. In the first case, the pair

(z1, z2) doesn’t correspond to a point on the Fermat quartic over K. In the second

case, we are lead to the point (x, y) ∈ F4(K) corresponding to the value of t for which

F (t) = 0. Although these calculations are elementary, we include all the details for

completeness.

1. (0, 0)

This is exactly the same as Mordell’s case (I). If z1 = 0, then λ2 = 0, so λ = 0, and

similarly z2 = 0 gives λ′ = 0. Moreover z1 = −ρ/2 = 0 and z2 = ρ′/2 = 0 imply that

ρ = ρ′ = 0. Now from equation (M1) we see that

F (z) =
µ2z − 2(1− z2)

2

and from equation (M2) we see that

F (z) = −µ
′2z − 2(1 + z2)

2
.

Comparing the constant term of both expressions for F (z) then leads to a contradiction.

2. (−1, 1)

This is Mordell’s case (VI). If z1 = −1 is a root of the left-hand side of (M1) then

λ = µ. Similarly, if z2 = 1 is a root of the left-hand side of (M2) then λ′ + µ′ = ±2.

Moreover since z1 = −ρ/2 = −1, we have ρ = 2. Then from equation (M1) we see that

F (z) =
λ2(1 + z)− 2z(1− z)

2
.

From z2 = ρ′/2 = 1, we see that ρ′ = 2. We rewrite equation (M2) as

2(1− z)F (z) = (λ′ + µ′z)2 − 2z(1 + z2).
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Recall that Y = λ′ + µ′ is the y-coordinate of an L-point on the elliptic curve E1. In

particular, this implies that we are free to choose the sign of λ′ + µ′, and we choose

λ′ + µ′ = 2. After making this substitution and dividing through by 2(1 − z) we see

that equation (M2) gives

F (z) =
2z2 + (2− µ′2)z + (2− µ′)2

2
.

From comparing the constant term of both expressions for F (z) we see that λ2 =

(2 − µ′)2, and from comparing the coefficient of z in both expressions for F (z) we see

that λ2−2 = 2−µ′2. All solutions to this system of equations are given by (λ, µ′) = (0, 2)

and (λ, µ′) = (±2, 0). Suppose (λ, µ′) = (0, 2). In this case F (z) = −z(1 − z). This is

a contradiction since F (t) = 0 and t 6∈ L. Suppose now that (λ, µ′) = (±2, 0). Then it

is straightforward to see that F (z) = z2 + z + 2. Thus t = −1±
√
−7

2 and K = L(
√
−7).

Moreover, these values of t correspond to the point

(x, y) =

(
1 +
√
−7

2
,
−1 +

√
−7

2

)
and similar points obtained by negation and conjugation.

3. (1, 0)

This is Mordell’s case (II). If z1 = 1 then (λ + µ)2 = 0, so λ + µ = 0. Furthermore

z1 = −ρ/2 = 1 implies that ρ = −2. Then from equation (M1) we see that

F (z) =
µ2(−1 + z) + 2z(1 + z)

2

and recall from case 1 that equation (M2) implies

F (z) =
−µ′2z + 2(1 + z2)

2
.

Comparing the constant term of both expressions yields µ2 = −2. This is a contradic-

tion since µ ∈ L.
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4. (−1, 0)

This is Mordell’s case (III). From case 2, we see that

F (z) =
λ2(1 + z)− 2z(1− z)

2
,

and from case 3, we see that

F (z) =
−µ′2z + 2(1 + z2)

2
.

Comparing the constant term of both expressions yields λ2 = 2. Then from comparing

the coefficient of z in both expressions, we see that µ′ = 0. Recall that λ′ = 0 from case

3. Then Y = λ′ + µ′t = 0. Recall that Y 2 = 2t(1 + t2). Thus t = 0. This contradicts

the assumption that t 6∈ L.

5. (−1 +
√

2, 0)

From z1 = −ρ/2 = −1 +
√

2, we see that ρ = 2 − 2
√

2. Thus we can write equation

(M1) as

F (z)(2− 2
√

2 + 2z) = (λ+ µz)2 − 2z(1− z2).

Recall from case 1 that

F (z) =
−µ′2z + 2(1 + z2)

2

which yields

F (z)(2− 2
√

2 + 2z) = −(1−
√

2 + z)µ′2 + 2(1−
√

2 + z)(1 + z2).

after multiplying by 2−2
√

2+2z. From comparing the constant term of both expressions

for F (z)(2− 2
√

2 + 2z), we see that λ2 = 2(1−
√

2) < 0. This is a contradiction since

λ ∈ L.
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6. (−1−
√

2, 0)

From z1 = −ρ/2 = −1 −
√

2, we see that ρ = 2 + 2
√

2. Then we can write equation

(M1) as

F (z)(2 + 2
√

2 + 2z) = (λ+ µz)2 − 2z(1− z2).

Recall from case 1 that

F (z) =
−µ′2z + 2(1 + z2)

2

from which we see that

F (z)(2 + 2
√

2 + 2z) = −(1 +
√

2 + z)µ′2z + 2(1 +
√

2 + z)(1 + z2)

after multiplying by 2+2
√

2+2z. By comparing the constant term of both expressions

for F (z)(2+2
√

2+2z), we see that λ2 = 2(1+
√

2). This is a contradiction since λ ∈ L.

7. (0, 1)

This is Mordell’s case (IV). Recall that equation (M1) yields the expression

F (z) =
µ2z − 2(1− z2)

2

from case 1. We recall from case 2 that equation (M2) yields

F (z) =
2z2 + (2− µ′2)z + (2− µ′)2

2

Comparing the constant term in both expressions for F (z) implies that (µ′−2)2 = −2.

This gives a contradiction since µ′ ∈ L.

8. (1, 1)

This is Mordell’s case (V). Recall from case 3 that in this case equation (M1) becomes

F (z) =
µ2(−1 + z) + 2z(1 + z)

2
,
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and recall that

F (z) =
2z2 + (2− µ′2)z + (2− µ′)2

2

from case 2. From comparing the constant term in each expression for F (z), we see

that −µ2 = (2 − µ′)2. Thus µ′ = 2 and µ = 0 since −1 is not a square in L. If µ = 0

then F (z) = z(1 + z). This is a contradiction since F (t) = 0 and t 6∈ L.

9. (−1 +
√

2, 1)

Recall from case 2 that that equation (M1) yields the expression

F (z)(2− 2
√

2 + 2z) = (λ+ µz)2 − 2z(1− z2).

From case 5 we see that equation (M2) implies that

F (z)(2− 2
√

2 + 2z) = (2z2 + (2− µ′2)z + (2− µ′)2)(1−
√

2 + z)

Comparing the constant terms for both expression for F (z)(2− 2
√

2 + 2z) yields λ2 =

(1−
√

2)(2−µ′)2. This implies µ′ = 2 as otherwise λ2 < 0. If µ′ = 2 then F (z) = z2−z.

This is a contradiction since F (t) = 0 and t 6∈ L.

10. (−1−
√

2, 1)

From case 6, recall that if z1 = −1−
√

2 then

F (z)(2 + 2
√

2 + 2z) = (λ+ µz)2 − 2z(1− z2).

From case 2, we see that equation (M2) implies that

F (z)(2 + 2
√

2 + 2z) = (2z2 + (2− µ′2)z + (2− µ′)2)(1 +
√

2 + z)

Comparing the constant terms for both expressions for F (z)(2 + 2
√

2 + 2z) yields

λ2 = (1 +
√

2)(2− µ′)2. This implies that µ′ = 2 since 1 +
√

2 is not a square in L. If

µ′ = 2 then F (z) = z2 − z. This leads to a contradiction since F (t) = 0 and t 6∈ L.

This completes the proof of Theorem 7.
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3.9 Some more real biquadratic fields

We give examples of obstacles that arise in generalising the proof of Theorem 7 to some

other real biquadratic fields. By Section 3.2, we can assume p ≥ 13. As in the proof

of Theorem 7, we apply level-lowering (Theorem 5) to the Frey curve (3.1) for p ≥ 17

and E13,ε for p = 13.

K = Q(
√

2,
√

5)

In order to apply level-lowering (Theorem 5), one needs to demonstrate the modularity

of the Frey curve over K. It has not yet been proven that elliptic curves over totally

real quartic fields containing
√

5 are modular; see [Box22, Section 7.1] for a discussion

concerning this problem. We remark however that establishing the modularity of the

Frey curve over this particular field K may be possible through the application of

[FLHS15, Theorem 7].

K = Q(
√

2,
√

7)

Write OK for the ring of integers of K. A straightforward computation in Magma

returns that K has class number 1, and 2OK = P4. A straightforward generalisation

of Lemmata 13, 14 and 15 returns that the lowered level is Pt where t = 1, 5, 8 or 16.

In particular, the dimension of Hilbert newforms of parallel weight 2 and level P16 is

40960 making the elimination step currently computationally infeasible in this case.

K = Q(
√

2,
√

11)

Write OK for the ring of integers of K. Using Magma, we find that K has class number

1, and 2OK = P4. By a direct generalisation of the techniques outlined in Section 3.5

it is straightforward to see that ρ̄E,p is irreducible for p ≥ 13.

A straightforward generalisation of Lemmata 13, 14 and 15 returns that the lowered
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level is Pt where t = 1, 4 or 5. As is true for Q(
√

2,
√

3), there are no Hilbert newforms

of parallel weight 2 and level P over K. There are 44 Hilbert newforms of parallel

weight 2 and level P4 and 76 Hilbert newforms of parallel weight 2 and level P5 over

K. In order to get a contradiction, we make use of the standard method of eliminating

newforms given by the following lemma [FS15b, Lemma 7.1].

Lemma 32 (Freitas and Siksek). Let K be a totally real field, and let p ≥ 5 be a

prime. Let E be an elliptic curve over K of conductor N , and let f be a newform of

parallel weight 2 and level Np. Let q - Np be a prime ideal of OK and let

Aq = {a ∈ Z : |a| ≤ 2
√

Norm(q) , Norm(q) + 1− a ≡ 0 (mod 4)}.

If ρ̄E,p ∼ ρf,$ then $ divides the principal ideal

Bf,q = Norm(q)((Norm(q) + 1)2 − aq(f)2)
∏
a∈Aq

(a− aq(f)) · OQf
.

Proof. See [FS15b, pp. 890–891].

We briefly explain how to apply Lemma 32. Let

Bf =
∑
q∈T

Bf,q,

where T is a small set of chosen prime ideals q of K such that q - Np. Let Cf =

NormQf/Q(Bf). Then Lemma 32 asserts that p | Cf. We wrote a short program to

implement Lemma 32 in Magma with Np = P4 or P5 and T equal to the set of prime

ideals q 6= P of K with norm less than 90. From this implementation we found that if

ρ̄E,p ∼ ρ̄f,$, where E is our Frey curve and f is a newform of level Np then p = 2 or 3

which gives us the desired contradiction.

We remark that the proofs of Theorems 27 and 30 do not readily generalise to K. This

leads to the following result.

Theorem 33. Let K = Q(
√

2,
√

11). There are no non-trivial solutions to (Fn) over

K for all primes n ≥ 5.
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CHAPTER 4

Primitive algebraic points on curves

This chapter is based on joint work with Samir Siksek [KS24b] and has been published

in the journal ‘Research in Number Theory’.

Let C be a curve defined over Q. Throughout this chapter we assume that C has genus

≥ 2. As discussed in the Introduction (Chapter 1), in this chapter, we will prove several

sufficient conditions under which C has only finitely many primitive points of a given

degree. We begin by recalling the integral notion of a primitive number field.

Definition 34. We say a number field K is primitive if

Q ⊆ L ⊆ K ⇒ L = K or L = Q,

and imprimitive otherwise. In other words, a number field is primitive if it has no

proper subextensions. Analogously, we say a point P ∈ C(Q) is primitive if the

number field Q(P ) is primitive, and imprimitive otherwise.

Example 35. Let K be a number field.
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Q

Q(
√
b)

Q(
√
a,
√
b)

Q(
√
a) Q(

√
ab)

Figure 4.1: The number field Q(
√
a,
√
b) is imprimitive.

• Suppose [K : Q] = `, where ` is prime. Then K is primitive. This is an immediate

consequence of the Tower Law for field extensions.

• Suppose [K : Q] = d and Gal(K̃/Q) = Ad or Sd, where K̃ is the Galois closure

of K. Then K is primitive (see Section 4.1).

• Let K = Q(
√
a,
√
b) where a, b are square-free integers. Then K is imprimitive

(see Figure 4.1).

4.1 Primitive permutation groups

Let K be a number field, and let K̃ denote its Galois closure. In this section, we

demonstrate that if [K : Q] = d and Gal(K̃/Q) = Ad or Sd then K is primitive. This

result is well-known. We give proofs of some of the intermediate results as we are

unable to find convenient references.

Let X be a non-empty set, and let G be a group acting transitively on X.

Definition 36. The trivial partitions of X are {X} and {{x} : x ∈ X}. A partition

P of X is said to be G-stable if σ(Z) ∈ P for all σ ∈ G and Z ∈ P.

Observe, as the action of G on X is transitive, that G also acts transitively on any G-

stable partition P, and that any two elements of P therefore have the same cardinality.
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Definition 37. We say that G acts imprimitively on X if X admits a G-stable

non-trivial partition. If X does not have a G-stable non-trivial partition then we say

that G acts primitively on X.

The following lemma is an immediate consequence of this definition.

Lemma 38. Let G be a group acting transitively on a set X. Let G′ be a subgroup of

G and suppose that G′ acts primitively on X. Then G acts primitively on X.

Proof. Suppose X has a G-stable non-trivial partition P. Then

σ(Z) ∈ P, for all σ ∈ G and Z ∈ P.

In particular

σ(Z) ∈ P, for all σ ∈ G′ and Z ∈ P,

i.e., X admits a G′-stable non-trivial partition.

Lemma 39. Let G be a group acting transitively on a set X. The action is imprimitive

if and only if there is a proper subset Y of X, with at least two elements, such that

∀σ ∈ G, if σ(Y ) ∩ Y 6= ∅ then σ(Y ) = Y . (4.1)

Proof. See e.g. [Mil21, Proposition 4.43]. Suppose G acts imprimitively on X, and let

P be a G-stable non-trivial partition of X. We can take Y to be any element of P. As

P is a partition, Y clearly satisfies (4.1), and as P is non-trivial, Y is a proper subset

of X with at least two elements.

Conversely, suppose Y is a proper subset of X containing at least two elements and

satisfying (4.1). We easily check that P = {τ(Y ) : τ ∈ G} is a G-stable non-trivial

partition.

Lemma 40. Let G be a finite group acting transitively on a non-empty finite set X.

Let x ∈ X, and write Stab(x) for the stabilizer of x in G. The action of G on X is

imprimitive if and only if Stab(x) is a non-maximal proper subgroup of G.
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Proof. This lemma is a straightforward consequence of Lemma 39. See e.g. [Mil21,

Theorem 4.45]. Let x ∈ X and assume the existence of a subgroup Stab(x) ( H ( G.

Let Y = {τ(x) : τ ∈ H}. Then, #Y = [H : Stab(x)] and so 2 ≤ #Y < [G : Stab(x)] =

#X. Moreover, suppose σ ∈ G and z ∈ σ(Y )∩Y . Then there are τ1, τ2 ∈ H such that

στ2(x) = z = τ1(x). Thus τ−1
1 στ2 ∈ Stab(x) ⊆ H. Hence σ ∈ H, and so σ(Y ) = Y .

Therefore (4.1) is satisfied and so the action is imprimitive.

Conversely, suppose the existence of a proper subset Y of X with at least two elements

satisfying (4.1). As the action is transitive, we may in fact suppose that x ∈ Y . Let

H = {σ ∈ G : σ(Y ) = Y }. As G is transitive, H is a proper subgroup of G. Moreover,

Stab(x) is contained in H. Let x′ ∈ Y , x′ 6= x. Then there is some σ ∈ G such that

σ(x) = x′. Thus σ(Y ) = Y , and so σ ∈ H but σ /∈ Stab(x). It follows that Stab(x) is

a proper subgroup in H, and so is non-maximal as a subgroup of G.

Lemma 41. Let K = Q(θ) be a number field and let K̃ be its Galois closure. Let

G = Gal(K̃/Q). Let d = [K : Q] and let θ1, . . . , θd ∈ K̃ be the Galois conjugates of θ.

Then G acts primitively on {θ1, . . . , θd} if and only if the extension K/Q is primitive.

Proof. Let X = {θ1, . . . , θd}. Then G acts transitively on X. We let x = θ ∈ X and

note that the stabilizer Stab(θ) is in fact Gal(K̃/K). By the Galois correspondence, K

is imprimitive if and only if the subgroup Gal(K̃/K) is proper and non-maximal in G,

which by Lemma 40 if equivalent to the action of G being imprimitive.

The following result is well-known. We thank Fred Diamond for the following proof.

Lemma 42. Let C be a curve defined over Q. Let d ≥ 3 be an integer and let P be a

degree d point on C with Galois group Sd or Ad. Then P is primitive.

Proof. It is easy to check the statement for d = 4. We henceforth suppose d = 3 or

d ≥ 5. Thus Ad is a simple group. Let K = Q(P ). Suppose Gal(K̃/Q) = Ad. By

Lemma 41, Gal(K̃/Q) is a primitive permutation group if and only if K is a primitive

number field. We show that K is a primitive number field. Suppose L is a subfield
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of K. By the Galois correspondence, Gal(K̃/L̃) corresponds to a normal subgroup of

Gal(K̃/Q). The only normal subgroups of Ad are {1} and Ad. Thus either L̃ = Q or

L̃ = K̃. If L̃ = Q then L = Q. If L̃ = K̃ then L = K. Thus K is primitive, as required.

The statement for Sd now follows immediately from Lemma 38.

4.2 P1-isolated points

The following definition was first introduced in [Bou+19].

Definition 43. Let C be a curve defined over Q. We say a degree d point P ∈ C(Q)

is P1-isolated if P does not lie in the pre-image of a non-constant degree d morphism

C → P1 defined over Q.

In this section, we prove several sets of sufficient conditions under which all primitive

points on C of low degree (with respect to the genus) are P1-isolated. We make use of

the classical Castelnuovo–Severi inequality which we state below.

Theorem 44 (Castelnuovo–Severi inequality). Let k be a perfect field, and let X,

Y , Z be curves over k. Denote the genera of these curves by g(X), g(Y ) and g(Z)

respectively. Let πY : X → Y and πZ : X → Z be non-constant morphisms defined

over k, having degrees m and n respectively. Suppose

g(X) > m · g(Y ) + n · g(Z) + (m− 1)(n− 1). (4.2)

Then there is a curve X ′ defined over k, and a morphism X → X ′ also defined over k

and of degree > 1 through which both πY and πZ factor.

Proof. See e.g. [KS24b, p. 6].

The following well-known lemma illustrates how Theorem 44 can be used to extract

useful information about the arithmetic of a curve. Recall that a curve C over a field
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k is bielliptic if the genus of C is at least 2 and, furthermore, C admits a degree 2

morphism C → E, defined over k, where E is an elliptic curve defined over k.

Lemma 45. Let C be a hyperelliptic curve of genus g defined over a perfect field k. If

g ≥ 4 then C is not bielliptic.

Proof. Suppose g ≥ 4. Let

π : C → P1

be the (degree 2) hyperelliptic morphism. Suppose C is bielliptic and let

b : C → E

denote the corresponding (degree 2) morphism. Suppose π and b don’t factor through

a non-trivial morphism. Then by the Castelnuovo–Severi inequality (Theorem 44),

g ≤ 2 · 0 + 2 · 1 + (2− 1)(2− 1) = 3.

Thus there is a non-trivial factorisation as demonstrated in the following commutative

diagram.

C

P1 Y E

π
f b

Observe that deg(f) | deg(π) = 2. On the other hand, deg(f) > 1 since the factorisation

is non-trivial. Thus deg(f) = 2. It immediately follows that Y is isomorphic to P1 and Y

is isomorphic to E. We have reached a contradiction. Therefore C is not bielliptic.

Before stating the main results of this subsection, we recall the following definition.

Definition 46. Let C be a curve defined over a field K. The K-gonality of C is the

minimum degree of a non-constant morphism from C to P1 defined over K.

For example, a hyperelliptic curve defined over a field K has K-gonality equal to 2.
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Theorem 47. Let C be a curve defined over Q with genus g and Q-gonality m ≥ 2.

Let d ≥ 2 be an integer satisfying

d 6= m, d < 1 +
g

m− 1
. (4.3)

Let P ∈ C(Q) be a degree d point on C that is not P1-isolated. Then Q(P ) contains a

subfield of index d′ satisfying

1 < d′ < d, d′ | gcd(d,m).

In particular, the following hold.

(i) If gcd(d,m) = 1 or d is prime then any degree d point P ∈ C(Q) is P1-isolated.

(ii) If P ∈ C(Q) is a primitive degree d point then P is P1-isolated.

Proof. Let P ∈ C(Q) be a degree d point. Suppose P is not P1-isolated. By definition,

P lies in the pre-image of a non-constant degree d morphism f : C → P1 defined over

Q. Write f(P ) = α, where α ∈ P1(Q). Recall that m denotes the Q-gonality of C;

let π : C → P1 be the corresponding degree m morphism defined over Q. Since m

and d satisfy (4.3), the Castelnuovo–Severi inequality (Theorem 44) asserts that f and

π factor through a non-trivial morphism of curves as demonstrated in the following

commutative diagram.

C

P1 Y P1

f
h

π

u v

(4.4)

Write d′ = deg(h) > 1. Note that d′ | d = deg(f) and d′ | m = deg(π). Thus

d′ | gcd(d,m). Note that if gcd(d,m) = 1 then d′ = 1. This contradicts the fact that

d′ > 1. Thus if gcd(d,m) = 1 then P is P1-isolated. Suppose d′ = d. Then d | m. By

the minimality of π, we have m ≤ d. Thus m = d; this contradicts the assumption

in (4.3). Therefore, 1 < d′ < d. We note it also follows that if d is prime then P is

P1-isolated. Let Q = h(P ) ∈ Y . We point out that f−1(α) consists precisely of the

Galois orbit of P . Since Gal(Q̄/Q) acts transitively on f−1(α), it acts transitively on

70



u−1(α). Hence Q has degree deg(u) = d/d′ and Q(Q) ⊆ Q(P ). Thus the field Q(P ) of

degree d contains the subfield Q(Q) of index d′. This completes the proof.

We now prove a variation of this result.

Theorem 48. Let π : C → C ′ be a morphism of curves defined over Q of degree m ≥ 2.

Write g and g′ for the genera of C and C ′ respectively, and suppose g′ ≥ 1. Let d ≥ 2

be an integer satisfying

d < 1 +
g −mg′

m− 1
. (4.5)

Let P ∈ C(Q) be a degree d point on C that is not P1-isolated. Then Q(P ) contains a

subfield of index d′ satisfying

1 < d′ < d, d′ | gcd(d,m).

In particular, the following hold.

(i) If gcd(d,m) = 1 or d is prime then any degree d point P ∈ C(Q) is P1-isolated.

(ii) If P ∈ C(Q) is a primitive degree d point, then P is P1-isolated.

Proof. The proof is almost identical to the proof of Theorem 47; we include some details

for completeness. Let P ∈ C(Q) be a degree d point. Suppose P is not P1-isolated. By

definition, P lies in the pre-image of a non-constant degree d morphism f : C → P1

defined over Q. Write f(P ) = α, where α ∈ P1(Q). Recall that m ≥ 2 is the degree of

the cover π : C → C ′. Since m and d satisfy (4.5), the Castelnuovo–Severi inequality

(Theorem 44) asserts that f and π factor through a non-trivial morphism of curves as

demonsrated in the following commutative diagram.

C

P1 Y C ′

f
h

π

u v

(4.6)

Write d′ = deg(h) > 1. If deg(u) = 1 then Y ∼= P1; we have thus reached a contradiction

since we are assuming g′ ≥ 1. Therefore deg(u) > 1 and 1 < d′ < d. The remainder of

the proof is now identical to that of Theorem 47.
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4.3 Finite decomposition of C(d)(Q)

We denote the d-th symmetric power of C by C(d). Recall that C(d)(Q) can be identified

with the set of effective degree d divisors on C. Let D be an effective divisor on C.

Recall from the proof of Lemma 29 that |D| denotes the complete linear series

containing D given by

|D| = {D + div(f) : f ∈ L(D)},

where L(D) is as defined in Section 3.7. In other words, |D| is the set of effective

divisors linearly equivalent to D. The purpose of this section is to prove the following

proposition.

Proposition 49. Let C be a curve over Q of genus g ≥ 2, and let J be the Jacobian

of C. Let d be a positive integer. Suppose either of the following two conditions hold:

(a) J(Q) is finite;

(b) or d ≤ g − 1 and J is simple over Q.

Then there are finitely many effective degree d divisors D1, D2, . . . , Dn such that

C(d)(Q) =
n⋃
i=1

|Di|. (4.7)

The proposition is a consequence of the following famous theorem due to Faltings

[Fal94].

Theorem 50 (Faltings). Let B be an abelian variety defined over a number field K,

and let V ⊂ B be a subvariety defined over K. Then there are a finite number of

abelian subvarieties B1, . . . , Bm of B, defined over K, and a finite number of points

x1, . . . , xm ∈ V (K) such that the translates xi +Bi are contained in V , and, moreover,

such that

V (K) =
m⋃
i=1

xi +Bi(K). (4.8)
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Proof of Proposition 49. If C(d)(Q) = ∅ then there is nothing to prove. Now suppose

C(d)(Q) 6= ∅ and fix D0 ∈ C(d)(Q). Let Wd(C) be the image of C(d) under the Abel–

Jacobi map

ι : C(d) → J, D 7→ [D −D0].

We claim that Wd(C)(Q) is finite. This is trivially true if (a) holds, so suppose (b).

In particular d ≤ g − 1 and so Wd(C) is birational to C(d) (e.g. [Mil86, Theorem 5.1])

and so has dimension d. Thus Wd(C) is a proper subvariety of J . Moreover since J is

simple over Q, the only abelian subvarieties of J defined over Q are {0} and J . In the

notation of Theorem 50 with B = J and V = Wd(C), we have Bi = {0} for all i. Thus

Wd(C)(Q) is finite by Theorem 50, proving our claim.

LetWd(C)(Q) = {R1, . . . , Rn} and chooseD1, . . . , Dn ∈ C(d)(Q) mapping toR1, . . . , Rn

respectively. If D ∈ C(d)(Q) then ι(D) = Ri for some i, and so [D −D0] = [Di −D0].

Hence [D −Di] = 0, so D ∈ |Di|. This completes the proof.

4.4 Finitely many primitive points of low degree

In this section, we prove several sets of sufficient conditions under which a curve has

finitely many primitive points of a fixed degree. Before doing so we give an alternative

definition of a point being P1-isolated.

Let C be a curve defined over Q. We say the associated degree d divisor of a degree

d point P is the effective degree d divisor obtained by taking the sum of the Galois

conjugates of P .

The following lemma is well-known. We give a proof as we are unable to find a reference.

Lemma 51. Let C be a curve defined over Q. Let D be an irreducible degree d divisor

on C. The following are equivalent.

(a) dim|D| = 0 i.e. |D| = {D}.

(b) `(D) = 1.
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(c) If P ∈ C(Q) is in the support of D then P is P1-isolated.

Proof. (a)⇐⇒(b) Recall that |D| ∼= P`(D)−1(Q). Note that `(D) ≥ 1 since Q ⊆ L(D)

for any effective divisor D. In particular, |D| = {D} if and only if `(D) = 1.

(c) =⇒ (b) Suppose `(D) ≥ 2 and let f ∈ L(D) be such that 1 and f are linearly

independent over Q. Write div∞(f) for the divisor of the set of poles of D. Then

0 < div∞(f) ≤ D.

Since D is irreducible, we have D = div∞(f). We can view f as a degree d morphism

f : C → P1 defined over Q. Then f(P ) = α for some α ∈ P1(Q) i.e. P is not P1-isolated.

(b) =⇒ (c) Suppose P is not P1-isolated i.e. P is in the preimage of a non-constant

degree d morphism f : C → P1 defined over Q. After composing with an automorphism

of P1, we can suppose f(P ) = ∞. Thus P is in the support of div∞(f). Since D and

div∞(f) are Galois stable, we have D ≤ div∞(f). Therefore D = div∞(f) since both

divisors have degree d. Thus `(D) ≥ 2 since f ∈ L(D) is non-constant.

We are now able to state and prove the main results of this chapter.

Theorem 52. Let C be a curve defined over Q with genus g and Q-gonality m ≥ 2.

Let d ≥ 2 be an integer satisfying (4.3). Let J be the Jacobian of C. Suppose either of

the following hold:

(a) J(Q) is finite;

(b) or d ≤ g − 1 and J is simple over Q.

Then C has finitely many primitive degree d points. Moreover, if gcd(d,m) = 1 or d is

prime then C has finitely many degree d points.

Proof of Theorem 52. By Proposition 49, C(d)(Q) has a finite decomposition as in (4.7),

where D1, . . . , Dn are effective degree d divisors. Suppose `(Di) ≥ 2. By Lemma 51,

any degree d point in the support of Di is not P1-isolated. By Theorem 47, the divisor

74



Di is not the Galois orbit of a primitive point. Furthermore, by the aforementioned

theorem, if gcd(d,m) = 1 or d is prime then Di is not the Galois orbit of a degree d

point i.e. Di is reducible. If `(Di) = 1 then |Di| = {Di}. This completes the proof

since there are only finitely many Di.

We point out that by restricting Theorem 52 and its proof to m = 2 we obtain the

following result for hyperelliptic curves.

Corollary 53. Let C be a hyperelliptic curve defined over Q with genus g. Let J be

the Jacobian of C and let d be a positive integer. Suppose either of the following hold:

(a) 3 ≤ d ≤ g and J(Q) is finite;

(b) or 3 ≤ d ≤ g − 1 and J is simple over Q.

Then C has finitely many primitive degree d points. More precisely, the following hold.

(i) If d is odd, then C has finitely many degree d points.

(ii) If d is even, then for all but finitely many degree d points P on C, the field Q(P )

contains a subfield of index 2.

Proof of Corollary 53. Note that the Q-gonality of C is m = 2. Suppose either of

hypotheses (a), (b) of Corollary 53 is satisfied. Then C, g, m, d satisfy the hypotheses

of Theorem 52. In particular, if d is odd then C has finitely many degree d points.

Suppose d is even. By Proposition 49, we have that (4.7) holds where D1, . . . , Dn is a

finite collection of effective degree d divisors on C. Let P be a degree d point and let D

be the corresponding irreducible divisor. Then D ∈ |Di| for some i. Suppose D 6= Di.

Then `(D) ≥ 2 and so by Lemma 51 the point P is not P1-isolated. It follows from

Theorem 47 that Q(P ) contains a subfield of index d′ = 2. Thus, for all but finitely

many degree d points P we have that Q(P ) contains a subfield of index 2.
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In a similar fashion we can deduce the finiteness of primitive points of a fixed degree

upon replacing the gonality map with a covering.

Theorem 54. Let π : C → C ′ be a morphism of curves defined over Q of degree

m ≥ 2. Let g, g′ for the genera of C, C ′ respectively, and suppose g′ ≥ 1. Let d ≥ 2 be

an integer satisfying (4.5). Write J for the Jacobian of C and suppose J(Q) is finite.

Then C has finitely many primitive degree d points. Moreover, if gcd(d,m) = 1 or d is

prime then C has finitely many degree d points.

Proof of Theorem 54. The proof is almost identical to the proof of Theorem 52; we

include the details for completeness. By Proposition 49, C(d)(Q) has a finite decompo-

sition as in (4.7), where D1, . . . , Dn are effective degree d divisors. Suppose `(Di) ≥ 2.

By Lemma 51, any point in the support of Di is not P1-isolated. By Theorem 48, the

divisor Di is not the Galois orbit of a primitive point. Furthermore, by the aforemen-

tioned theorem, if gcd(d,m) = 1 or d is prime then Di is not the Galois orbit of a

degree d point i.e. Di is reducible. If `(Di) = 1 then |Di| = {Di}. This completes the

proof as there are only finitely many Di.

Similarly if we restrict Theorem 54 and its proof to m = 2 we obtain the following

result for bielliptic curves.

Corollary 55. Let C be a bielliptic curve defined over Q with genus g. Let J be the

Jacobian of C and suppose J(Q) is finite. Let 2 ≤ d ≤ g−2. Then C has finitely many

primitive degree d points. More precisely, the following hold.

(i) If d = 2 or d is odd, then C has finitely many degree d points.

(ii) If d ≥ 4 and even, then for all but finitely many degree d points P on C, the field

Q(P ) contains a subfield of index 2.

Proof of Corollary 55. We have a degree m = 2 morphism C → E defined over Q,

where E is an elliptic curve defined over Q. Suppose J(Q) is finite and 2 ≤ d ≤ g − 2.
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Then C, g,m, d satisfy the assumptions of Theorem 54. In particular if d = 2 or d is

odd then C has finitely many degree d points.

Suppose d ≥ 4 and even. By Proposition 49, we have that (4.7) holds where D1, . . . , Dn

is a finite collection of effective degree d divisors on C. Let P be a degree d point and

let D be the corresponding irreducible divisor. Then D ∈ |Di| for some i. Suppose

D 6= Di. Then `(D) ≥ 2 and so by Lemma 51 the point P is not P1-isolated. It follows

from Theorem 48 that Q(P ) contains a subfield of index d′ = 2. Thus, for all but

finitely many degree d points P we have that Q(P ) contains a subfield of index 2.

Remark 56. Let C and d satisfy the hypotheses of Theorem 52 or Theorem 54. Then

C(d)(Q) can be decomposed into a finite union of complete linear systems as in (4.7).

Suppose that we are able to explicitly compute the representatives Di in (4.7). Then

we have an effective strategy for computing all primitive degree d points. Indeed, if

`(Di) ≥ 2 then |Di| contains no primitive divisors by Theorem 47 or Theorem 48. We

are left to consider |Di| for `(Di) = 1. However, if `(Di) = 1, then |Di| = {Di} and

we simply need to test Di to determine if it is the Galois orbit of a primitive degree

d point. Moreover, if gcd(d,m) = 1 or d is prime then we can compute all degree d

points by a slight modification of the strategy: if `(Di) = 1 then simply test Di for

irreducibility.

We remark that the decomposition (4.7) can often be computed using symmetric power

Chabauty (e.g. [Sik09] or [BGG23]) provided r + d ≤ g where r is the rank of the

Mordell–Weil group J(Q).

4.5 A generalisation of Theorems 52 and 54

The following result is a straightforward generalisation of the proofs of Theorems 52

and 54 that was not included in the original article. In particular, we point out that we

do not assume that the Jacobian of the curve is simple or that it has finite Mordell–Weil

group.
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Theorem 57. Let C be a curve defined over Q with genus g and Q-gonality m ≥ 2. Let

J be the Jacobian of C. Let d ≥ 2 be an integer satisfying the following assumptions:

(a) d ≤ g − 1;

(b) d 6= m;

(c) d < 1 + g
m−1 ;

(d) d
2 < dim(A) for any proper abelian subvariety A of J defined over Q.

Then C has finitely many primitive points of degree d. Furthermore, if gcd(d,m) = 1

or d is prime then C has finitely many points of degree d.

Example 58. We consider the modular curve X0(239) which has genus g = 20 and

Q-gonality m = 6 (see [NO24, Table 3]). A straightforward computation in Magma

shows that the Jacobian J0(239) of X0(239) factors as

J0(239) ∼ A3 ×A17,

where A3 and A17 are abelian varieties of dimension 3 and 17, respectively. Thus the

hypotheses of Theorem 57 are satisfied for C = X0(239) with d = 2, 3 and 4, and we

conclude that X0(239) has finitely many quadratic, cubic and primitive quartic points.

In order to prove Theorem 57 we shall need the following result of Debarre and Fahlaoui

[DF93, Corollary 3.6]. Let C be a curve defined over Q. For integers d, r ≥ 0, let W r
d (C)

be the set of equivalence classes of degree d divisors D on C such that `(D) ≥ r + 1.

In particular W 0
d (C) = Wd(C).

Theorem 59 (Debarre and Fahlaoui). Let C be a curve defined over C with genus

g ≥ 1. Suppose W r
d (C) contains an abelian variety A, where d ≤ g − 1 + r. Then

dim(A) ≤ d
2 − r.

Proof of Theorem 57. We assume the existence of a point D0 ∈ C(d)(Q) as there is

nothing to prove otherwise. We recall the assumption that d ≤ g − 1. In particular,
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Wd(C) is a proper subvariety of J since d < g. We apply the theorem of Debarre and

Fahlaoui (Theorem 59) with r = 0. We recall the assumption

d

2
< dim(A),

for any proper abelian subvariety A of J . It then immediately follows from Theorem

59 with r = 0 that Wd(C) does not contain a proper abelian subvariety of J . Thus by

Faltings’ Theorem on abelian subvarieties (Theorem 50), Wd(C)(Q) is finite. As in the

proof of Proposition 49, it then follows that we have a finite decomposition

C(d)(Q) =

n⋃
i=1

|Di|.

The theorem now follows immediately from Theorem 47 as in the proof of Theorem 52.

4.6 Infinitely many primitive degree d points

The previous sections of this chapter are concerned with finiteness criteria for low

degree primitive points. In this section we focus on constructing a hyperelliptic curve

with infinitely many primitive points of a fixed degree. We make use of the following

theorem [KS24b, Theorem 12]. We give an overview of the strategy and refer the reader

to [KS24b, Section 7] for the proof.

Theorem 60. Let C be a curve defined over Q. Let d ≥ g + 1 where g is the genus

of C. Suppose there exists a primitive degree d point on C. Then there are infinitely

many primitive degree d points on C.

Proof of Theorem 60. Suppose P ∈ C(Q) is primitive of degree d ≥ g + 1, and let D

be the corresponding irreducible divisor. By Riemann–Roch (Theorem 24),

`(D) ≥ d− g + 1 ≥ 2.

It immediately follows from Lemma 51 and its proof that there is a degree d mor-

phism f : C → P1 defined over Q such that f∗(∞) = D. The theorem now follows
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from applying [KS24b, Proposition 23] with α = ∞ ∈ P1(Q) in the notation of that

proposition.

Let C be a curve defined over Q, and let d ≥ g+1 where g is the genus of C. Theorem 60

asserts the existence of infinitely many primitive degree d points on C provided there

is at least one. However, the existence of a primitive degree d point is not guaranteed,

as illustrated by the following lemma.

Lemma 61. Let g ≥ 2 be even. Let C be a degree 2g+ 1 genus g curve defined over Q

C : Y 2 = a2g+1X
2g+1 + a2gX

2g + · · ·+ a0.

Suppose J(Q) is trivial, where J is the Jacobian of C. Then C has no points of degree

g + 1.

Proof. Write∞ for the single point at infinity on the given model. Write D0 = (g+1)∞.

Let D be an effective degree g+ 1 divisor. Then D−D0 = div(f) for some f ∈ L(D0),

since J(Q) is trivial. Note thatX has a double pole at∞. Thus 1, X, . . . ,Xg/2 ∈ L(D0).

By Riemann–Roch (Theorem 24), we have

`(D0)− i(D0) = d− g + 1 = (g + 1)− g + 1 = 0,

where i(D0) is the speciality index of D0. Recall that `(D0) ≥ 1. Thus i(D0) ≥ 1

i.e. D0 is a special divisor. By Clifford’s theorem on special divisors (Theorem 26)

we have `(D0) ≤ (g/2) + 3/2. However, since g is even and `(D0) is an integer, we

have `(D0) ≤ (g/2) + 1. Therefore, 1, X, . . . ,Xg/2 is a Q-basis for L(D0). Thus,

f = α0 + α1X + · · · + αg/2X
g/2, for some α0, . . . , αg/2 ∈ Q. In particular f ∈ L(g∞).

Thus

D −∞ = D0 + div(f)−∞ = g∞+ div(f)

is effective. Hence D is reducible. It follows that C has no degree g + 1 points.

In a positive direction, we can use Theorem 60 to construct curves with infinitely many

primitive points.
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Lemma 62. Let g ≥ 2. Let d = g + 1. Then there is a hyperelliptic curve C/Q of

genus g with infinitely many primitive degree d points.

Proof. Let K = Q(θ) be any primitive number field of degree d. Let θ1, . . . , θd be the

conjugates of θ in a fixed Galois closure K̃ of K. Choose a rational number α such

that 2α 6= θi + θj for any pair 1 ≤ i, j ≤ d. Let φ = θ − α. The conjugates of φ are

φi = θi − α with 1 ≤ i ≤ d, and satisfy φi 6= ±φj for any pair i, j. Let f ∈ Q[X] be

the minimal polynomial of φ2. Since K is primitive, f is irreducible of degree d. Let

h = f(X2). The roots of h are ±φ1, . . . ,±φd which are pairwise distinct and hence h

is separable of degree 2d = 2g + 2. Let C be the genus g hyperelliptic curve

C : Y 2 = h(X).

Note that this has the primitive degree d point (φ, 0). Hence by Theorem 60 there are

infinitely many primitive degree d points on C.

4.7 Finiteness of low degree primitive points on some X1(N)

Mazur [Maz77] showed that all rational points on X1(p) are cuspidal for prime p ≥

11. Merel’s uniform boundedness theorem [Mer96] asserts that for prime p, and for d

satisfying (3d/2 + 1)2 ≤ p, the only degree d points on X1(p) are cuspidal. The exact

set of primes p such that X1(p) has degree d non-cuspidal points have been determined

by:

• Kamienny [Kam92] for d = 2;

• Parent [Par00],[Par03] for d = 3;

• Derickx, Kamienny, Stein and Stoll [Der+23] for 4 ≤ d ≤ 7;

• the author [Kha24] for d = 8.

Less is known about the low degree points on X1(N) for composite N , though several

authors consider the somewhat easier problem of determining the values of N such
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X1(N) has infinitely many degree d points for given small d (see for example [Bou+19]

and [DS17] for two different approaches to studying this problem).

In the following example, we illustrate how our results can be applied to modular curves

X1(N) provided the analytic rank of J1(N) is 0 and we have information about the

quotients or gonality of X1(N).

Example 63. Consider the modular curve X1(64). The LMFDB [LMF24] gives the

following information:

(a) X1(64) has genus 93;

(b) X1(64) is a degree 2 cover of a genus 37 curve;

(c) J1(64) has analytic rank 0.

It follows from a theorem of Kato [Kat04, Corollary 14.3] that the Mordell–Weil group

J(Q) is finite where J = J1(64), and so by Theorem 54, X1(64) has only finitely many

degree d points for

d = 2 and 3 ≤ d ≤ 19 such that d is odd,

and only finitely many primitive degree d points for

4 ≤ d ≤ 18 such that d is even.

We point out that the Q-gonality of X1(64) appears to be currently unknown; according

to the LMFDB it belongs to the interval 16 ≤ m ≤ 32. Moreover the application of

Theorem 52 to X1(64) and m in the range stated above yields a substantially weaker

finiteness statement than the one given by Theorem 54.

The LMFDB [LMF24] contains a database of modular curves X1(N) for 1 ≤ N ≤ 293.

The analytic rank of these curves has been computed for 1 ≤ N ≤ 70. For 61 of these

curves the Jacobian J = J1(N) has analytic rank 0. It follows from a theorem of Kato

[Kat04, Corollary 14.3] that the Mordell–Weil group J(Q) is finite. We are able to
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apply Theorem 54 to around half of these curves in order to deduce the finiteness of

primitive points of certain low degrees. We note that it is common for X1(N) to cover

multiple curves, and in these instances we apply Theorem 54 to the covered curve C ′

that gives the most generous range for d in inequality (4.5). We record the results in

Tables B.1.

4.8 Finiteness of low degree primitive points on some X0(N)

The computational study of quadratic points on modular curves is an active area of

research (see e.g. [Ad23], [BN15], [FLHS15], [NV23], [OS19], to name but a few works).

Comparatively less is known about points defined over number fields of higher degree.

Still, there is reason to be hopeful. Establishing the modularity of all elliptic curves

over totally real cubic fields [DNS20], and totally real quartic fields not containing
√

5

[Box22] required the study of cubic, and quartic points on certain modular curves.

Banwait and Derickx [BD22] have determined all cubic points on X0(N) for N ∈

{41, 47, 59, 71}. Box, Gajović, and Goodman [BGG23] have determined all cubic points

on X0(N) for N ∈ {53, 57, 61, 65, 67, 73}, and all quartic points on X0(65).

A famous theorem of Ogg [Ogg74] asserts that there are 19 values of N for which which

X0(N) is hyperelliptic. Of these, the only one for J0(N)(Q) is infinite is N = 37. The

remaining 18 values are

• genus 2: N = 22, 23, 26, 28, 29, 31, 50;

• genus 3: N = 30, 33, 35, 39, 40, 41, 48;

• genus 4: N = 47;

• genus 5: N = 46, 59;

• genus 6: N = 71.

For these N , the quadratic points on X0(N) have been determined by Bruin and

Najman [BN15]. It is straightforward to apply Corollary 53 to these curves and derive
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conclusions about algebraic points of degree 3 ≤ d ≤ g, where g is the genus of X0(N).

We illustrate this in the following example by giving some details of the computation

of all primitive degree 6 points on X0(71).

Example 64. By Corollary 53 we know that there are only finitely many points on

C = X0(71) of degrees 3 and 5, and finitely many primitive points of degrees 4 and 6.

We point out that we can in fact go further and compute these finite sets of points, as

sketched in Remark 56. We make use of information found in [BN15] concerning the

model and the Mordell–Weil group. A model for X0(71) is given by

X0(71) : Y 2 = X14 + 4X13 − 2X12 − 38X11 − 77X10 − 26X9 + 111X8

+ 148X7 +X6 − 122X5 − 70X4 + 30X3 + 40X2 + 4X − 11.

The only rational points are the two rational points at infinity which we denote by∞+

and ∞− (these are in fact the two cusps of X0(71)). Write

D0 =∞+ −∞−, D∞ =∞+ +∞−.

Then,

J(Q) = (Z/35Z) · [D0],

where J = J0(71) is the Jacobian of C. Let P be a primitive degree 6 point on

X0(71), and let D be the corresponding effective irreducible degree 6 divisor. Hence

[D − 3D∞] ∈ J(Q). It follows that

D ∈ |Da|, Da = a ·D0 + 3D∞, −17 ≤ a ≤ 17.

We find that `(Da) is 4 for a = 0, is 3 for a = ±1, is 2 for a = ±2 and is 1 for all other

values of a. If `(Da) ≥ 2 then, by Theorem 47, we know that |Da| does not contain

primitive divisors. Thus D ∈ |Da| for −17 ≤ a ≤ −3 or 3 ≤ a ≤ 17 whence `(Da) = 1.

For each of these values, L(Da) = Q · fa where fa is a non-zero function on X0(71).

Moreover, if D ∈ |Da| then D = Da + div(fa). We obtain 30 potential possibilities for

the divisor D. We find that for a = ±3, the divisor Da + div(fa) is reducible, and for

a = ±5, ±7, ±12, the divisor Da + div(fa) is the Galois orbit of an imprimitive point.
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The remaining 22 values of a yield the Galois orbit of a primitive degree 6 point. We

conclude that there are precisely 22 primitive degree 6 points on X0(71) up to Galois

conjugacy. All computations were performed in Magma.

We carried out similar computations for the hyperellipticX0(N) withN ∈ {46, 47, 59, 71},

and for degrees d in the range 3 ≤ d ≤ max(g, 6) where g is the genus of X0(N). The

outcome of these computations is summarized in Table 4.1. Here we were helped by

the fact that these values of N , the Mordell–Weil group J0(N)(Q) has been computed

by Bruin and Najman [BN15]. Furthermore, models for the curves are readily available

in Magma [BCP97] via the Small Modular Curve package.

In view of Corollary 55, it is natural to also consider bielliptic X0(N). Bars [Bar99]

shows that X0(N) is bielliptic for precisely 41 values of N . Of these, J0(N) has analytic

rank 0 for 30 of these values:

• genus 2: N = 22, 26, 28, 50;

• genus 3: N = 30, 33, 34, 35, 39, 40, 45, 48, 64;

• genus 4: N = 38, 44, 54, 81;

• genus 5: N = 42, 51, 55, 56, 63, 72, 75;

• genus 7: N = 60, 62, 69;

• genus 9: N = 95;

• genus 11: N = 94, 119.

Again, it is straightforward to apply Corollary 55 to these curves. We computed all

primitive points of certain low degrees on the genus 7 bielliptic curves X0(60) and

X0(62). For these two curves the size of the Mordell–Weil group has been computed

by Najman and Vukorepa [NV23]. We computed models for these curves and Mordell–

Weil generators using a Magma package developed by Ozman and Siksek [OS19], Adžaga,
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Number of primitive degree

N g J(Q) d points on X0(N)

d = 3 d = 4 d = 5 d = 6

46 5 Z/11Z× Z/22Z 2 4 88 −

47 4 Z/23Z 2 12 − −

59 5 Z/29Z 1 2 16 −

60 7 Z/4Z× (Z/24Z)3 0 0 120 −

62 7 Z/5Z× Z/120Z 2 0 0 −

71 6 Z/35Z 0 0 0 22

Table 4.1: This table gives the conclusions of our computations of primitive points on

X0(N) of certain low degrees d and for the values of N is the first column. Here g is

the genus of X0(N), and J(Q) is in fact the structure of the Mordell–Weil group where

J = J0(N). The table gives the number of primitive degree d points on X0(N) up

to Galois conjugacy. The symbol − indicates that our method is inapplicable for that

particular N and d.

Keller, Michaud-Jacobs, Najman, Ozman and Vukorepa [Ad23], and Najman and Vuko-

repa [NV23]. All computations were performed in Magma.

We summarize our results in Table 4.1, and refer the reader to

https://github.com/MaleehaKhawaja/Primitive

for the supporting code as well as a description of the points.

We also give a description of all effective degree d divisors D with `(D) = 1, and refer

the reader to Table 4.2 for this summary.

4.9 Primitive points on curves of low genus

Note that Theorems 52 and 54 allow us to deduce the finiteness of primitive points of

low degree (with respect to the genus) under certain additional assumptions. As such,
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N d = 3 d = 4 d = 5 d = 6

n3,p n3,r n4,p n4,i n4,r n5,p n5,r n6,p n6,i n6,r

46 2 20 4 10 42 88 128 − − −

47 2 2 12 2 6 − − − − −

59 1 2 2 0 4 16 8 − − −

60 0 364 0 22 1349 120 4440 − − −

62 2 28 0 0 58 0 100 − − −

71 0 2 0 0 2 0 2 22 6 2

Table 4.2: For each pair (N, d), the table gives a description of the effective degree d

divisors D with `(D) = 1 on the modular curve X0(N). We denote by nd,r the number

of such divisors that are reducible, nd,p the number of such divisors that are irreducible

and primitive, and nd,i the number of such divisors that are irreducible but imprimitive.

The symbol − indicates that we did not carry out the computation for the pair (N, d).

using these theorems, we are unable to make any conclusions about primitive points of

any degree on genus 2 curves. We are, however, able to obtain the following result.

Theorem 65. Let C be a hyperelliptic curve defined over Q with genus 2 or 3. Let

J be the Jacobian of C and suppose that J(Q) is trivial. Then there are no primitive

quartic points on C. However, there are infinitely many imprimitive quartic points on

C.

Example 66. Consider the genus 2 modular curve

X0(26) : y2 = x6 − 8x5 + 8x4 − 18x3 + 8x2 − 8x+ 1.

Bruin and Najman [BN15, Table 3] have determined that J0(26)(Q) ∼= Z/21Z, where

J0(26) is the Jacobian of X0(26). Let C be the quadratic twist of X0(26) over Q(
√

5)

given by

C : y2 = 5x6 − 40x5 + 40x4 − 90x3 + 40x2 − 40x+ 5.

A straightforward computation in Magma returns that C admits a degree 2 map to the

elliptic curve with Cremona label 650f1, as well the elliptic curve with Cremona label
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650h2. Thus C has multiple sources of infinitely many quartic points. A straightforward

computation in Magma returns that J(Q) is trivial, where J is the Jacobian of C.

Applying Theorem 65 we conclude that C has no primitive quartic points, and infinitely

many imprimitive quartic points.

Before diving into the proof of Theorem 65, we prove the following preliminary result.

Lemma 67. Let C be a hyperelliptic curve defined over Q. Let d ≥ 4 be an even

integer. Then C has infinitely many imprimitive degree d points.

Proof of Lemma 67. We may suppose C has an affine model

C : Y 2 = F (X) (4.9)

where F ∈ Q[X] is a squarefree polynomial. Let L be any number field of degree d/2

and choose θ ∈ L such that L = Q(θ). By Faltings’ theorem [Fal91], C(L) is finite.

Thus there are infinitely many a ∈ Q such that F (θ + a) is a non-square in L. For a

fixed value of a, let P = (θ + a,
√
F (θ + a)). This is a degree d point on C, and is

imprimitive as Q(P ) contains the index 2 subfield L.

We are now able to prove Theorem 65.

Proof of Theorem 65. Let C be as in the statement of Theorem 65. We may suppose

C has an affine model as in (4.9) where F ∈ Q[X] is a squarefree polynomial of degree

2g + 1 or 2g + 2. By Lemma 67, there are infinitely many imprimitive quartic points

on C. It remains to show that there are no primitive quartic points on C.

If deg(F ) = 2g + 1 we let ∞ be the single point at infinity on this model, and write

D0 = 4∞. If deg(F ) = 2g + 2 we let ∞+ and ∞− be the two points at infinity, and

write D0 = 2∞+ + 2∞−. In either case D0 is twice a hyperelliptic divisor.

Let P be a quartic point on C, and let D be the corresponding irreducible degree 4

divisor. Since J(Q) is trivial, D −D0 ∼ 0 where ∼ denotes linear equivalence on C.
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That is,

D = D0 + div(f),

where f ∈ L(D0). We claim that 1, X,X2 is a Q-basis of L(D0). Let us first assume

our claim and use it to complete the proof. We have f = a0 + a1X + a2X
2 for some

a0, a1, a2 ∈ Q. Moreover, f is non-constant as D 6= D0. Since P is a zero of f ,

the X-coordinate X(P ) of P satisfies the non-constant polynomial a0 + a1U + a2U
2 ∈

Q[U ]. Since Q(P ) = Q(X(P ), Y (P )) is a quartic field, and Y (P )2 = F (X(P )), we see

that Q(X(P )) is quadratic and contained in the quartic field Q(P ). Therefore P is

imprimitive.

It remains to prove our claim that 1, X,X2 is a Q-basis of L(D0). Note that X has a

double pole at infinity and no other poles if deg(F ) = 2g + 1; and also X has a simple

pole at ∞+ and ∞−, and has no other poles if deg(F ) = 2g + 2. Therefore, 1, X, X2

belong to L(D0), and so `(D0) ≥ 3. It is enough to show that `(D0) = 3. We now make

use of our assumption that g = 2 or 3. If g = 2 then Riemann–Roch (Theorem 24)

immediately gives `(D0) = 3. Suppose g = 3. Then Riemann–Roch tells us that D0 is

special, and then Clifford’s theorem (Theorem 26) gives the equality `(D0) = 3.
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APPENDIX A

Complete Fermat over a cubic field

Kraus [Kra19] rules out the existence of non-trivial solutions to the Fermat equation

(Fn) over several number fields K of degree ≤ 8 for prime n > BK , where BK is a

constant depending on K. Thus, as far as we know, Theorem 7 is the first instance of a

complete resolution of the Fermat equation over a number field of degree > 2. We make

the following observation, which is essentially due to Kraus [Kra19] with the addition

of a couple of elementary observations.

Theorem 68. Let K = Q(α) where α3 − α2 − 3α + 1 = 0. There are no non-trivial

solutions to (Fn) over K for integers n ≥ 3.

Proof. We first consider n = 3 i.e. the Fermat cubic. The Fermat cubic is isomorphic

to the elliptic curve E3 with Cremona label 27a1. It is straightforward to check using

Magma that E3(K) = E3(Q).

We now show that F4(K) = F4(Q), where F4 is the Fermat quartic. This was observed

in [KS24c, Section 29]; we repeat the argument here for the convenience of the reader.
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The Fermat quartic F4 is a cover of the elliptic curve

E4 : y2 = x(x2 − 4)

with Cremona label 64a1. The cover π : F4 → E4 is given by

π : F4 → E4 (x, y, z) 7→
(

z4

x2y2
,
z2(x4 − y4)

x3y3

)
.

It is straightforward to check using Magma that E4(K) = E4(Q) = {0E , (0, 0), (±2, 0)}.

Note the inclusion

π(F4(K)) ⊆ E4(K) = E4(Q),

from which it immediately follows that F4(K) = F4(Q).

Klassen and Tzermias [KT97] showed that there are no non-trivial cubic points on

F5, and Gross and Rohrlich (Theorem 12) showed that there are no non-trivial cubic

points on F7 and F11. Kraus [Kra19, Theorem 6] proved that there are no non-trivial

solutions to (Fn) over K for prime n = p ≥ 13. We give a brief sketch of Kraus’

proof. Let p ≥ 13 be a prime. Suppose (a, b, c) is a non-trivial solution to the Fermat

equation (Fn) over K for n = p. Let E : y2 = x(x − ap)(x + bp) be the usual Frey

curve associated to (a, b, c). Freitas and Siksek [FLHS15, Theorem 7] prove that if an

elliptic curve over a totally real field satisfies some local conditions then that elliptic

curve is modular. Kraus applies this criterion to show that E/K is modular. The

so-called narrow class group of K is trivial. Kraus uses this fact to show that if ρ̄E,p is

reducible then either E has a K-rational point of order p or p | DKRK , where DK is

the discriminant of K, and RK is a computable constant depending only on K. In the

first case, Parent’s bound [Par00; Par03] immediately asserts that p ≤ 13, and in the

second case Kraus uses ray class groups to assert the existence of an elliptic curve with

a K-rational point of order p. To prove that ρ̄E,13 is irreducible, Kraus demonstrates

that X0(52)(K) = X0(52)(Q). The modular curve X0(52) admits a degree 3 map to the

elliptic curve E52 with Cremona label 52a1. It is straightforward to check using Magma

that E52(K) = E52(Q) ∼= Z/2Z. It immediately follows that X0(52)(K) = X0(52)(Q)

since X0(52)(Q) consists of 6 points. Level-lowering (Theorem 5) then asserts the
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existence of a Hilbert newform of parallel weight 2 and level P, where P is the unique

prime above 2. This yields the desired contradiction since there are no Hilbert newforms

of parallel weight 2 and level P.
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APPENDIX B

The finiteness of low degree primitive points on certain X1(N)

This table summarises our conclusions upon applying Theorem 54 to C = X1(N) for

the values of N in the first column. Here g denotes the genus of X1(N); the integer m

denotes the degree of the morphism X1(N)→ C ′; g′ denotes the genus of C ′. The sixth

column gives the values of d furnished by the theorem for which there are only finitely

many points of degree d. The final column gives the values of d (not appearing in the

previous column) for which the theorem asserts that there are only finitely primitive

degree d points.

N g
C ′

(LMFDB label)
g′ m

X1(N) has

finitely many

degree d points

X1(N) has

finitely many

primitive

degree d points

19 7 19.120.1-19.a 1 3 d = 2 -

22 6 X1(11) 1 3 d = 2 -

94



24 5 24.192.1-24.dg.2.1 1 2 2 ≤ d ≤ 3 -

26 10 X1(13) 2 3 d = 2 -

27 13 27.216.1-27.a.1.1 1 3 2 ≤ d ≤ 5 -

28 10 28.288.4-28.d.1.1 4 2 d = 2 -

30 9 X1(15) 1 3 2 ≤ d ≤ 3 -

31 26 31.320.6-31.c.1.2 6 3 2 ≤ d ≤ 4 -

32 17 32.384.5-32.bu.1.1 5 2
2 ≤ d ≤ 7

d 6= 4, 6
d = 4, 6

34 21 X1(17) 5 3 2 ≤ d ≤ 3 -

36 17 36.288.3-36.c.1.1 3 3 2 ≤ d ≤ 4 -

38 28 X1(19) 7 3 2 ≤ d ≤ 4 -

39 33 39.448.9-39.a.3.1 9 3 2 ≤ d ≤ 3 -

40 25 40.576.9-40.bh.1.1 9 2
2 ≤ d ≤ 7

d 6= 4, 6
d = 4, 6

42 25 X1(21) 5 3 2 ≤ d ≤ 5 -

44 36 44.720.16-44.e.1.1 16 2 2 ≤ d ≤ 3 d = 4

45 41 45.576.9-45.a.4.1 9 3
2 ≤ d ≤ 7

d 6= 6
d = 6

46 45 X1(23) 12 3 2 ≤ d ≤ 5 -

48 37 48.768.13-48.nt.1.1 13 2
2 ≤ d ≤ 11

d 6= 4, 6, 8, 10
d = 4, 6, 8, 10

49 69 49.336.3-49.b.1.2 3 7 2 ≤ d ≤ 8 -

50 48 50.360.4-50.a.2.2 4 5 2 ≤ d ≤ 7 -

52 55 52.1008.25-52.p.1.1 25 2
2 ≤ d ≤ 5

d 6= 4
d = 4

54 52 54.648.10-54.a.1.1 10 3
2 ≤ d ≤ 11

d 6= 6, 9
d = 6, 9
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56 61 56.1152.25-56.bq.1.1 25 2
2 ≤ d ≤ 11

d 6= 4, 6, 8, 10
d = 4, 6, 8, 10

60 57 60.1152.25-60.eb.2.1 25 2
2 ≤ d ≤ 7

d 6= 4, 6
d = 4, 6

62 91 X1(31) 26 3
2 ≤ d ≤ 7

d 6= 6
d = 6

64 93 64.1536.37-64.ef.1.1 37 2
d = 2

3 ≤ d ≤ 19, odd d

4 ≤ d ≤ 18

even d

66 81 X1(33) 21 3
2 ≤ d ≤ 9

d 6= 6, 9
d = 6, 9

68 105 68.1728.49-68.ba.1.1 49 2
2 ≤ d ≤ 7

d 6= 4, 6
d = 4, 6

70 97 X1(35) 25 3
2 ≤ d ≤ 11

d 6= 6, 9
d = 6, 9

Table B.1: The table description is given before the table is

displayed.
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