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Abstract

The main objective of this thesis is to create robust deep learning applications in the

context of Human-Robot Collaboration (HRC) which is an important topic in manu-

facturing. It covers three distinct topics related to the application of deep learning and

artificial intelligence in manufacturing, human-robot interaction, and neural network

performance monitoring.

In the context of Industry 5.0, the integration of Digital Twins and artificial intelligence

techniques, particularly deep learning, enhances flexibility and efficiency in smart man-

ufacturing. This thesis introduces a deep learning-enhanced Digital Twin framework

capable of detecting and classifying human operators and robots during the manu-

facturing process which is described in Chapter 3. The framework, developed using

Unreal Engine 4 and compliant with the Robotics Operating System, demonstrates

improved performance through a semi-supervised detector, ensuring safety and relia-

bility. Evaluation results with a Universal Robot 10 in various scenarios highlight the

framework’s accuracy and reliability, with the data and a semi-automated annotation

tool being made publicly available.

Furthermore, this thesis presents a framework for real-time 3D (three dimensional) hu-

man upper-body motion tracking and kinematic estimation in Chapter 4, essential for

applications involving physical human-robot interaction, trajectory planning, and user

safety. The proposed framework combines a Kalman filter with a deep Convolutional

Neural Network (CNN-KF) to accurately infer joint positions from optical images, fa-

cilitating kinematic modeling and motion estimation. Evaluation experiments show
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robust performance even in the presence of occlusions, with above 90% segment accu-

racy, with Root Mean Square Error and Mean Average Error reported below 0.05m in

the presence of occlusions.

Lastly, this thesis explores the performance of deep neural networks in Chapter 5,

specifically faster Region-Based Convolutional Neural Networks (R-CNNs), when tested

with data significantly different from the training set. It introduces a framework to

monitor neuron activation patterns within a faster R-CNN, using Kullback-Leibler di-

vergence to calculate distances between activation pattern distributions. This enables

real-time monitoring of the classifier’s behavior when confronted with noisy and diver-

gent data, as demonstrated on publicly available datasets, MNIST and PASCAL.

Overall, this research spans multiple areas of artificial intelligence and deep learning,

showcasing their applicability and effectiveness in HRC and manufacturing.
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Chapter 1

Introduction

The advent of Artificial Intelligence (AI) in manufacturing signifies a transformative

leap in the industrial sector, heralding the onset of what can be termed as the Fifth in-

dustrial revolution or Industry 5.0 [1]. The integration of AI into manufacturing brings

about a period of unparalleled efficiency, adaptability, and enhancement in quality.

This positions AI as a crucial force in transforming production landscapes on a global

scale.

AI plays a crucial role in the manufacturing industry, encompassing a range of areas

such as predictive maintenance, quality control, supply chain management, and design

optimisation [2]. By leveraging its capacity to rapidly process and analyse large volumes

of data, AI enables predictive maintenance, which minimises downtime and extends the

lifespan of machinery. Additionally, AI enhances quality control by identifying defects

and inconsistencies that human inspectors may overlook [3]. In the realm of supply

chain management, AI offers valuable insights into demand forecasting and inventory

optimization, resulting in more efficient production schedules and decreased waste.

An additional important use of AI in the manufacturing industry is in robotics. Instead

of being simple machines that can be programmed, robots now have AI algorithms that

make them adaptive and intelligent [4]. This allows them to learn and improve their
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CHAPTER 1. INTRODUCTION

actions. These intelligent robots can work together with humans, which has led to

the development of collaborative robots, also known as ’cobots’ [5]. This collaboration

enhances the interaction between humans and robots, making it safer and more efficient,

and also creates new opportunities for manufacturing tasks.

Deep Learning, a branch of machine learning, has brought about a revolutionary change

in data analysis and interpretation [6]. It has empowered machines to carry out intricate

tasks with remarkable precision and effectiveness. When combined with CV, which

facilitates the interpretation and processing of visual data, these technologies have

paved the way for new possibilities in manufacturing.

The significance of Deep Learning in manufacturing lies in its ability to process large

datasets, learning patterns and features that are often too intricate for traditional

algorithms [7]. This capability has been instrumental in various applications, from

predictive maintenance and quality control to complex assembly tasks [8]. CV, on the

other hand, has enabled machines to interpret visual data, facilitating tasks such as

defect detection, product sorting, and real-time monitoring of manufacturing processes.

In the context of Industry 5.0, the integration of Deep Learning and CV signifies a

move towards more intelligent, automated, and efficient manufacturing systems. These

technologies are at the forefront of creating smart factories where machines can analyze,

decide, and act with minimal human intervention.

Nonetheless, there are obstacles to overcome when incorporating these sophisticated

technologies into the manufacturing sector. Ensuring the dependability of machine

learning models, acquiring extensive and varied datasets for training purposes, and

seamlessly integrating AI systems into existing manufacturing infrastructure pose sub-

stantial challenges. Moreover, as these technologies continue to advance, it becomes

increasingly important to address ethical concerns and consider the impact on the

workforce [9].

Deploying AI models in manufacturing faces several challenges. These include inte-
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CHAPTER 1. INTRODUCTION

grating AI with existing infrastructure, requiring significant upgrades or redesigns [10].

Data quality and quantity are critical, as AI models need large, diverse datasets for

training. Nonetheless, the process of data collection is often a resource-intensive en-

deavor, particularly in terms of financial cost, time, and human effort. This complexity

arises from the need to gather large volumes of data, which is essential for ensuring

accuracy and reliability, especially in fields that rely heavily on data-driven decisions

[11]. One approach to addressing data problem in manufacturing is the generation

of synthetic data in simulated environments, subsequently used to train AI models.

However, the disparity between simulated conditions and actual manufacturing en-

vironments poses significant challenges, a phenomenon known as the ’Simulation to

Reality’ (Sim2Real) problem [12]. This discrepancy often hampers the AI model’s

performance in real-world scenarios, indicating the need for strategies that effectively

bridge the gap between simulated training and practical application.

Safety in human-robot Collaboration (HRC) within manufacturing environments is a

critical area of focus, aimed at ensuring the well-being of human workers alongside

efficient and reliable robot operations [13, 14, 15]. It encompasses the development

and implementation of various safety measures, protocols, and technologies to minimize

risks associated with robot operation. Key aspects include the design of robots with

safety features, the establishment of safety zones and barriers, regular safety training

for employees, and the integration of advanced sensing and control systems to detect

and prevent potential hazards [16]. The continuous advancement of AI and robotics

further contributes to developing more intuitive and responsive systems, enhancing

safety in dynamic and collaborative workspace.

1.1 Aims and Objectives

The purpose of this thesis is to investigate and strengthen the robustness of Deep

Learning applications in HRC in manufacturing settings. The following are the primary

3



CHAPTER 1. INTRODUCTION

objectives of this research:

• Build and leverage Digital Twin technology for generating robust datasets to

train Deep Learning models in HRC scenarios.

• Explore and bridge the gap between simulated environments and real-world man-

ufacturing settings using the Digital Twin system.

• Examine the ability of physical HRC to remain effective in the presence of ob-

structions, which can be enabled by the use of Deep Learning methods.

• Investigate the utilisation of real-time activation pattern tracking and the char-

acterisation of uncertainty in image categorisation, with a particular emphasis

on the robustness and dependability of Deep Learning models in HRC scenarios.

1.2 Thesis Outline

The thesis is organised into six chapters. A brief overview of each chapter and the

corresponding contributions is given below.

Chapter 1: This chapter presents the thesis topic and its objectives, highlighting the

structure and principal contributions of each chapter. Author’s relevant publications

are listed in the last section of this chapter.

Chapter 2: This chapter provides an overview of the utilisation of Deep Learning

and CV in manufacturing. It covers common tasks such as classification and object

detection. With respect to the the training of a Deep Learning model, it can be

classified as fully-supervised and semi-supervised. The related works are reviewed.

Chapter 3: This chapter discusses the integration of Digital Twins and Deep Learning

in Industry 5.0 to enhance smart manufacturing, particularly focusing on HRC. It

introduces a Deep Learning-enhanced Digital Twin framework to improve safety and

reliability in collaborative tasks. This framework, developed using Unreal Engine 4 and
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complying with the Robotics Operating System, enables detection and classification of

human and robot actions, facilitating autonomous robot decision-making. It includes

a fully-supervised detector trained on synthetic data and a semi-supervised detector

for bridging the gap between simulated and real environments. The effectiveness of

this framework is validated in various scenarios, with its data and a semi-automated

annotation tool made publicly available for research and operational use.

Chapter 4: This chapter describes a framework for tracking 3D human body mo-

tion and updating kinematic models in real-time, vital for physical HRC. It utilizes a

Kalman filter fused with a deep Convolutional Neural Network (CNN-KF) for inferring

joint locations from optical images. The framework employs an inverse kinematic solver

with the Levenberg-Marquardt method for accurate motion estimation. Its effective-

ness is demonstrated through dressing experiments in a motion capture lab, showing

high accuracy in human posture estimation even in the presence of occlusions.

Chapter 5: This chapter examines the performance of Deep Neural Networks (DNNs),

particularly focusing on faster region-based convolutional neural networks (R-CNNs),

in scenarios where testing data significantly differs from training data. It introduces

a framework to monitor neuron activation patterns within a faster R-CNN, using

Kullback-Leibler divergence to calculate distances between these patterns. This ap-

proach helps observe the network’s behavior in challenging conditions, such as noisy

or atypical data. The effectiveness of this framework is validated using the MNIST

and PASCAL datasets, demonstrating its utility for real-time monitoring of supervised

classifiers.

Chapter 6: In this chapter, a summary of all the methods proposed in the thesis is

provided, along with an analysis of the corresponding results. Subsequently, directions

and ideas for future work are presented based on these findings.
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1.3 Research Contributions

Chapter 3: This chapter focuses on Deep Learning methods and Digital Twin to

improve safety and reliability in HRC:

• A semi-supervised framework for the detection of humans and robots in manufac-

turing environments is proposed by adopting a faster region-based convolutional

network [17]. It further minimises the gap between the simulation and the real

world environment.

• A Digital Twin of an actual HRC system is developed based on Unreal Engine 4.

This twin is capable of generating synthetic robot data, which can then be used

to train Deep Learning models for the purpose of monitoring human-robot col-

laborative behaviours.

• The accuracy of the Digital Twin system that was developed is assessed using

both simulated and actual data sets. The results show that the system can

effectively identify and analyse human-robot behaviours to ensure safety. As

part of the research, datasets created by the Digital Twin of a Universal Robot

10 (UR10) robot are made publicly accessible. Additionally, a semi-automated

annotation tool is also developed.

Chapter 4: This chapter focuses on Deep Learning methods for human pose estima-

tion in HRC:

• A framework, that is robust to occlusions and environmental disruptions, that

uses a single camera to retrieve three dimensional (3D) joint location for a human

arm.

• A robust online solution to the Inverse Kinematics (IK) problem that takes esti-

mated hand positions from the CNN-KF and estimates user motion. This solves

the IK problem for a hand position, finding an updated model configuration in

joint space that satisfies kinematic constraints.
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• Evaluation of the accuracy of the CNN, CNN-KF and the IK solution using

the mean-squared error analysis, where the ground truth for the hand pose was

provided by a VICON motion capturing system.

Chapter 5: This chapter focuses on the decision-making of Deep Learning methods:

• The neuron activation patterns are determined by computing the Hamming dis-

tance between the current activation pattern and the central activation pattern.

Afterwards, the similarity of these distributions is described using Kullback-

Leibler divergence.

• Monitoring zones are created through the process of decision making, where pat-

terns with their respective probability values are considered and any changes in

these patterns are visually represented.

• The monitoring framework’s effectiveness is showcased through the use of MNIST [18]

and PASCAL [19] datasets.

1.4 List of Peer Reviewed Publications

The author’s publications with relevance to this thesis are listed as follows:

Journal Papers

[J1] S. Wang, J. Zhang, P. Wang, J. Law, R. Calinescu and L. Mihaylova, “A Deep

Learning-enhanced Digital Twin Framework for Improving Safety and Relia-

bility in Human–robot Collaborative Manufacturing”, Robotics and Computer-

integrated Manufacturing, 2024, 85: 102608. Impact Factor 9.1.

[J2] Y. Rafiq, S. Wang, M. Al-Nuaimi, R. Hieron, L. Mihaylova and S. Dogramadzi,

“Deep Learning-Enabled Resilience to Occlusion for Physical Human-Robot In-

teraction”, To be submitted to a journal.

Conference Papers
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[C1] S. Wang, P. Wang, L. Mihaylova, et al. “Real-time Activation Pattern Monitoring

and Uncertainty Characterisation in Image Classification,” In Proc. of 2020 IEEE

23rd International Conference on Information Fusion (FUSION ), 2021, pp. 1-7,

doi: 10.23919/FUSION49465.2021.9627071.

[C2] T. Zhang, S. Wang, N. Bouaynaya, R. Calinescu and L. Mihaylova, “Out-

of-distribution Object Detection through Bayesian Uncertainty Estimation,” In

Proc. of 2023 IEEE 26rd International Conference on Information Fusion (FU-

SION ), 2023, pp. 1-8, doi: 10.23919/FUSION52260.2023.10224150.

Datasets

[D1] S. Wang, J. Zhang, L. Mihaylova, and J. Law, “Human-Robot Video Data from a

Manufacturing Factory”, [Online], Available on: https://doi.org/10.15131/shef.data.19299539.v1.

[Accessed: 13-Jul-2023].

[D2] J. Zhang, S. Wang, P. Wang, L. Mihaylova, and J. Law, “A vision data repository

for human-ur10 robot interactions in manufacturing”, [Online], Available on:

https://doi.org/10.15131/shef.data.16669315.v1. [Accessed: 13-Jul-2023]

Contribution to the Body of Knowledge in Robotics and Autonomous Sys-

tems

[K1] P. Wang, S. Wang, J. Zhang, J. Law and L. Mihayova, “2.6.1 – Monitor-

ing RAS Operation”, CSI Cobot Demonstrator Project, [Online], Available on:

https://www.york.ac.uk/assuring-autonomy/guidance/body-of-knowledge/implementation/2-

6/2-6-1/cobots/
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Chapter 2

Literature Review

This chapter of the thesis presents a comprehensive literature review on the intersection

of Deep Learning and CV, crucial components of modern AI research. It begins with

foundational knowledge in the field, followed by an exploration of how Deep Learn-

ing enhances CV tasks such as classification and object detection. The review delves

into both fully-supervised and semi-supervised approaches, along with an analysis of

uncertainty and activation pattern monitoring in Deep Learning. It further examines

human pose estimation, covering 2D and 3D approaches and addressing the challenges

of occlusions. The chapter concludes with insights into HRC, discussing the transition

from simulation to reality, the role of Digital Twin in enhancing safety and resilience

in manufacturing, and the specific application of robot-assisted dressing. This intro-

duction sets the stage for a detailed exploration of these pivotal areas in AI research.

0
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2.1 Background and the Development of Deep Learn-

ing and Computer Vision in Manufacturing

The field of CV, a vital subset of AI, has witnessed remarkable advancements in recent

years. These developments have significantly enhanced the ability of machines to pro-

cess and interpret visual data, leading to widespread applications in varied sectors such

as healthcare, autonomous vehicles, robotics, and security [20]. The integration of CV

in these domains not only represents a technological leap but also marks a paradigm

shift in how industries operate and innovate.

For over four decades, the exploration of CV techniques in the manufacturing industry

has been extensive. Its application spans diverse sectors including food, pharmaceu-

ticals, automotive, aerospace, railway, semiconductor, electronic components, plastics,

rubber, paper, and forestry [21]. Of particular interest in this exploration has been

vision-based industrial inspection, which has become a critical component in the qual-

ity assurance and process optimisation of manufacturing operations [22].

The initial applications of CV in commercial manufacturing were somewhat limited,

primarily due to the restricted computing capabilities that persisted until the 1990s [23].

This scenario, however, has dramatically transformed with advancements in semicon-

ductor technology and computing power, which have consequently accelerated AI re-

search and applications, especially in the last few years [24].

In image-based metrology, CV technologies have revolutionized measurement method-

ologies, transitioning from manual and error-prone approaches to automated, accurate,

and reliable systems. This shift has notably enhanced quality assurance, reduced waste,

and improved efficiency across various manufacturing sectors. Regarding manufactur-

ing process interpretability, the integration of CV has facilitated real-time process

monitoring and analysis. This advancement enables predictive maintenance, efficient

fault detection, and optimized manufacturing processes, thereby enhancing overall op-
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erational efficiency. In the realm of material structure analysis, CV has brought about

a significant improvement in detecting and analyzing material defects that were pre-

viously undetectable by the human eye, thus ensuring higher product quality and

reliability.

The continuous evolution of CV technologies is leading to their deeper integration into

manufacturing processes, making them more pervasive and essential for modern man-

ufacturing operations. This ongoing development is not just refining existing manufac-

turing capabilities but is also paving the way for innovative, efficient, and sustainable

manufacturing practices.

In conclusion, this section underscores the transformative role of CV in the manu-

facturing sector and emphasizes the importance of ongoing research and development

in this dynamic field. The future prospects of AI and CV in manufacturing promise

increased automation, enhanced quality control, and the advent of intelligent manu-

facturing systems that are adaptive, efficient, and sustainable, which is critical for the

continued evolution and competitiveness of the manufacturing industry.

2.2 Deep Learning and Computer Vision

The objective of a CV system is to create a symbolic representation of the objects

present in a given scene. This representation encompasses an understanding of the

scene and can subsequently be utilised to guide the subsequent operations of a robotic

system. The CV field encompasses various tasks and algorithms, including detection,

recognition, segmentation, and 3D reconstruction. In this section, an overview of the

current advances in several significant CV techniques is presented.

2.2.1 Image Classification

Recognition task in CV refers to the process of identifying and categorising objects

or patterns within images or videos. It involves training a machine learning model

11



CHAPTER 2. LITERATURE REVIEW

to recognise specific objects or classes of objects based on their visual features. The

goal of recognition tasks is to enable computers to understand and interpret visual

information in a similar way to humans [20]. Accuracy, recall, precision, F1 Score, and

ROC/AUC curves are commonly employed as evaluation metrics for recognition.

Class recognition does not focus on identifying a particular object. Instead, it aims

to identify the presence of an instance belonging to a specific category of objects,

such as cars or pedestrians. In class recognition problems, the input is an image, and

the output is the classification of that image into one of the predefined categories.

Class recognition is commonly approached as a classification problem, where machine

learning algorithms, particularly convolutional neural networks (CNNs), are used to

learn and classify images into different classes.

The advancement of CNNs has played a significant role in the progress of CV technolo-

gies. This breakthrough has led to the development of numerous CNN models, which

have been widely used in classification problems. Over time, these models have become

increasingly deeper. Some popular CNNs, listed in chronological order, include LeNet-

5. [18], AlexNet [25], VGG-16 [26], R-CNN [27], Fast R-CNN [28], inception networks,

ResNet-50 [29].

ResNet-50 [29] is a type of residual network that employs a unique structure that utilises

residual connections or skip connections. This architectural innovation has led to

significant improvements in Deep Learning models, particularly in complex tasks such

as image classification. Prior to the introduction of ResNet-50, most CNN architectures

focused on increasing the number of layers in the network, along with other necessary

modifications to improve performance. However, this approach had a limitation in that

the model’s accuracy would plateau and then decline rapidly as the network became

deeper. To address this issue, ResNet-50 introduced shortcut connections within its

deep model. In the following years, ResNet and its variants have become one of the

most important backbone for extracting features from images in the object detection

networks. These connections allow inputs to bypass one or more layers and be added
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back to the output of a layer further down the network. This design helps to address

the vanishing gradient problem by facilitating the training of deeper networks. The

core idea is that these skip connections enable the network to learn identity functions,

ensuring that deeper models do not perform worse than their shallower counterparts.

2.2.2 Object Detection

Compared to image classification, object detection involves the identification and lo-

calisation of objects in an image or video. The goal is to not only classify the objects

but also determine their precise locations by drawing bounding boxes around them.

Object detection is widely used in various applications, including autonomous driving

[30], surveillance systems [31], image and video analysis [32], and augmented reality

[33]. It plays a crucial role in understanding and interpreting visual data by enabling

machines to recognise and locate objects of interest.

One of the most famous series of object detection models is region-based CNN networks.

RCNN stands for regions with CNN features. It is a landmark object detection model

proposed in 2014 by R. Girshick [27]. RCNN introduced a two-stage approach to object

detection. It starts by generating a set of object proposals using a selective search. Each

proposal is then resized to a fixed size and fed into a pre-trained CNN model (such as

AlexNet [25]) to extract features. Finally, linear SVM classifiers are used to predict

the presence of an object within each region and recognise object categories.

SPPNet [34] introduced a Spatial Pyramid Pooling (SPP) layer, which allows a CNN to

generate a fixed-length representation regardless of the size of the input image or region

of interest. This eliminates the need to rescale the image or compute convolutional

features repeatedly. By using SPPNet for object detection, the feature maps can be

computed from the entire image only once, and fixed-length representations of arbitrary

regions can be generated for training the detectors. SPPNet achieved a detection speed

over 20 times faster than RCNN without sacrificing any detection accuracy, with a mean

Average Precision (mAP) of 59.2% on the VOC07 dataset.
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Fast RCNN [28] is a detector that was proposed as a further improvement of RCNN

and SPPNet. It introduced several advancements in object detection. Fast RCNN

allows simultaneous training of a detector and a bounding box regressor under the

same network configurations. Instead of feeding multiple parts of the image into the

CNN, Fast R-CNN processes the entire image with the CNN only once to create a

feature map. From this map, it extracts fixed-size features from region proposals using

a technique called ROI (Region of Interest) pooling. Fast RCNN achieved a detection

speed over 200 times faster than RCNN.

Further, Faster RCNN [17] is developed as a two-stage object detection framework

that combines a RPN with Fast RCNN. The main contribution of Faster RCNN is

the introduction of the RPN, which generates region proposals in a nearly cost-free

manner. The RPN shares convolutional layers with the Fast RCNN network, allowing

for efficient computation. By integrating the proposal generation and object detection

stages into a unified framework, Faster RCNN achieves a detection speed over 200

times faster than RCNN, with a mean Average Precision (mAP) of 70.0% on the

VOC07 dataset. Faster RCNN has become a milestone in the development of object

detection algorithms and has paved the way for further improvements in the field.

2.2.3 Fully-supervised and Semi-supervised Deep Learning for

Object Detection

Numerous fully-supervised algorithms for object detection have been proposed, with

one well-known series being the region-based convolutional neural networks, also known

as two-stage detectors. This series includes R-CNN [27], Fast R-CNN [28], and Faster

R-CNN [17]. In these two-stage approaches, the initial stage involves extracting image

features using backbone networks such as ResNet [29]. The second stage generates

region proposals for the subsequent localisation and classification of objects. Over

time, the computation costs of region proposal generation in region-based convolutional

neural networks have significantly decreased, transitioning from selective search [35] to
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the RPN in Faster R-CNN [27]. The RPN offers real-time performance and has achieved

notable improvements in detection accuracy.

The previously discussed object detection algorithms are classified as fully-supervised

algorithms, which means that they require a large amount of labeled data for training.

On the other hand, semi-supervised algorithms utilize a combination of labeled and

unlabeled data, or pseudo-labeled data, to reduce the amount of required labeled data.

Pseudo-label based approaches employ a teacher-student model, where a teacher model

is first trained to generate pseudo-labels. These pseudo-labeled data, along with the

unlabeled data, are then used to train the target student model. In the FixMatch

algorithm proposed by Sohn [36], weakly-augmented data is used to generate pseudo-

labels, and the same strongly-augmented images are used to predict whether they

match the weakly-augmented ones. In another work by Sohn [37], pseudo-labels are

generated using data augmentation, resulting in higher efficiency compared to the

fully-supervised faster R-CNN algorithm [27]. Xu et al. [38] propose a soft teacher

model that performs pseudo-labeling on weakly augmented data. The teacher model is

updated using the student model, which employs an exponential mean average (EMA)

strategy.

Prior research on semi-supervised methods [39] has shown that in order to train an

effective detector, data pre-processing and data augmentation techniques are necessary.

Furthermore, these methods typically focus on a single domain, where both labeled

and unlabeled data are sourced from the same domain. However, this approach may

lead to a decline in detection accuracy, particularly in unfamiliar environments. In

contrast, the proposed semi-supervised object detection approach in Chapter 3 takes

into account both the physical environment and simulation domains, enabling us to

achieve satisfactory performance in novel real-world environments.
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2.2.4 Uncertainty and Activation Pattern Monitorings

The importance of uncertainty in deep neural networks (DNNs) becomes evident when

they are used in safety critical tasks. DNNs exhibit a surprising sensitivity to even

minor variations in the input data, such as adversarial attacks, the presence of unseen

objects, and occlusions. Such variations have the potential to cause failures in accurate

and dependable decision making.

Several methods have been proposed to address decision making, such as Bayesian

approaches [40, 41, 42], which aim to determine the most probable outcome based

on probability. These approaches quantify uncertainty by generating an ensemble or

using dropout during operation. While these methods overcome the challenges of

directly implementing Bayesian inference, they are computationally expensive and do

not perform well in real-time applications. Therefore, it is impractical to use Bayesian

approaches in scenarios that require fast response times, such as autonomous driving

and real-time tracking.

Verification problems of neural networks have been the focus of several works [43].

These works employ runtime verification algorithms to monitor the violation of cor-

rectness properties. Specifically, a series of methods have been proposed for monitoring

activation patterns of neural networks [44, 45, 46, 47]. Cheng introduced a boolean

abstraction method for monitoring deep neural networks (DNNs), where only the ac-

tivation patterns of the final layers with respect to the ReLU activation function were

considered. They were able to construct an efficient monitor using boolean logic oper-

ations and a binary decision diagram (BDD), which resulted in low computation costs

for the MNIST dataset. The key idea behind monitoring activation patterns at run-

time is the creation of a γ-comfort zone, which collects a sufficient number of activation

patterns with correct predictions as the ground-truth. However, as the number of pat-

terns, monitored neurons, and the abstraction parameter γ increase, storing patterns

and monitoring computational costs become challenging, particularly in the context

of object detection. In Chapter 5, this thesis focuses on addressing the issue of DNN
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monitoring from the perspective of pattern distribution. Unlike Cheng’s approach of

abstracting patterns using the Hamming distance, the Hamming distance is directly

implemented as a distance metric to avoid storage issues and reduce the computational

complexity associated with large ground-truth activation patterns.

2.3 Human Pose Estimation

Human pose estimation is a popular research topic in the field of CV. It involves

predicting the joint locations of a human body from a single image or a sequence of

images. This task has a wide range of potential applications, making it an active

area of research. Recent advances in Deep Learning and the availability of large-scale

datasets have enabled significant progress in 2D human pose estimation. However,

3D human pose estimation has not seen the same level of success, likely due to the

lack of sufficient 3D in-the-wild datasets. Several methods [48, 49] have been proposed

to address this issue, but there is still much room for improvement. The task has a

wide range of applications, including tracking human movement and analyzing and

detecting illegal or inappropriate behavior. In sports analysis, pose estimation can be

used to automatically track and assess the accuracy of human movement. It is also a

fundamental tool in fields such as human-computer interaction and augmented reality.

In the field of CV, there is a significant distinction between 2D and 3D pose estimation.

The objective of 2D pose estimation is to predict the coordinates of body keypoints

in a two-dimensional space. In simpler terms, the model determines the X and Y co-

ordinates for each joint location. On the other hand, 3D pose estimation goes a step

further by incorporating an additional Z-axis to infer the spatial position of the joints.

Generally, 3D pose estimation is more challenging compared to its 2D counterpart.

The development of an accurate and robust method for 3D pose estimation involves

dealing with various limitations, including noisy background scenes, clothing, lighting

conditions, small and barely visible joints, occlusions, and other factors that can sig-

17



CHAPTER 2. LITERATURE REVIEW

nificantly alter the appearance of the body joints. This section aims to explore both

the 2D and 3D human pose estimation fields.

2.3.1 2D (Two-Dimensional) Human Pose Estimation

2D human pose estimation refers to the task of detecting and localizing the key points

or joints of a human body in a 2D image. It involves identifying the positions of

body parts such as the head, shoulders, elbows, wrists, hips, knees, and ankles in the

image. The goal is to accurately estimate the pose or body configuration of a person

in the 2D space. This information can be used for various applications such as activity

recognition [50], gesture recognition [51], HRC [52], and virtual reality [53]. Deep

Learning techniques, particularly convolutional neural networks, have been widely used

for 2D human pose estimation due to their ability to learn complex algorithms.

The challenge in 2D human pose estimation is to develop algorithms that are both

highly accurate and efficient. High accuracy is important to ensure precise detection

of human body information, which is crucial for downstream tasks such as 3D human

pose estimation [54] and action recognition [55]. However, achieving high accuracy is

challenging due to various factors. In real-world scenes, detection can be hindered by

issues such as over- or under-exposure and the entanglement of people and objects [56].

Furthermore, the human body’s ability to move in a variety of ways and the occlusion

of poses, including self-occlusion, make it difficult to accurately detect keypoints using

visual features. Motion blur and video defocus in videos also reduce the accuracy of

pose detection.

On the other hand, high efficiency is desired to enable real-time computing on different

devices such as desktops and mobile phones [57]. However, there is often a trade-off

between accuracy and efficiency. High accuracy models tend to be deeper, requiring

increased computational and storage resources. This poses challenges in achieving

real-time pose estimation, even with powerful GPUs.
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There are two main frameworks in 2D human pose estimation: top-down and bottom-

up. Top-Down Framework [58, 59, 60]: In the top-down framework, the approach

starts by detecting human bounding boxes using an object detector. Then, a pose

estimator is used to detect the keypoint locations within each bounding box. This

framework relies on the accuracy of the object detector and the pose estimator. The

object detector determines the performance of human proposal detection, while the

pose estimator directly determines the accuracy of pose estimation. The top-down

framework is scalable and can be improved with advancements in object detectors and

pose estimators. Bottom-Up Framework [61, 62, 63]: In the bottom-up framework,

the approach directly performs keypoint estimation in the original image without rely-

ing on human detection. This reduces computational overhead. However, a challenge

in the bottom-up approach is determining the identities of the estimated keypoints.

In this chapter, Top-Down frameworks are mainly reviewed, focusing on their method-

ologies, key innovations, and applications in the field of 2D human pose estimation.

This section begins by exploring the fundamental principles behind top-down ap-

proaches, including the initial step of human detection in images or video frames using

advanced object detection algorithms. Various neural network architectures commonly

employed in these frameworks are introduced, such as CNNs and R-CNNs, highlighting

their roles in accurately identifying and localising human figures in diverse and complex

environments.

2.3.2 3D (Three-Dimensional) Human Pose Estimation

The task of estimating the 3D locations of human body joints, known as 3D human

pose estimation, can be approached as a regression problem. The goal is to predict

the 3D coordinates of these joints from an image. Because it only requires an image

as input, it faces challenges due to the absence of depth information.

The most straightforward approach for estimating the 3D pose is through direct meth-

ods, which involve training neural networks to estimate the 3D locations of human
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body joints. In these methods, a likelihood heat map is predicted for each joint, and

the joint location is determined by the maximum likelihood. Pavlakos et al. [64] pro-

posed a method that predicts the voxel-wise likelihood for each joint in the 3D space

and directly regresses the joint locations. Another approach by Luvizon et al. [55] uses

a volumetric heat map to predict both 2D and 3D poses. The spatial designs of these

heat maps, including their sizes and channels, play a crucial role in the accuracy of

the predictions. However, they also significantly increase the computational cost and

memory consumption.

Previous works [54, 65, 66] have taken 2D poses as inputs and predicted 3D poses.

Zhao et al [67] introduced a graph convolutional network (GCN) that learnt local

and global node relationships where a human pose skeleton can be represented by a

graph. Typically, these approaches have a simple architecture and fast inference speed.

However, their performance relies on the accuracy of the initial 2D pose estimation.

SMPL-based methods apply a skinned multi-person linear (SMPL) model to predict 3D

human joints. Such methods consider extra human body shape, providing more knowl-

edge than traditional skeleton-based methods. Bogo et al [68] proposed a framework

called SMPLify that applies a network to estimate 2D key points and maps the SMPL

model to the predicted key points. Kanazawa et al. [69] proposed a network to map

image pixels with SMPL models without auxiliary 2D key points. Likewise, Omran

et al. [70] fitted 12 semantic parts of the human body from a semantic segmentation

network to the SMPL models.

2.3.3 Occlusions in human pose detection

The presence of occlusion poses a significant challenge to the accuracy of Deep Learning

methods, particularly when the object or person of interest is obstructed by another

individual or object.

One method for dealing with occlusions is to make use of temporal data. In their study,

Gu et al. [71] utilised a temporal regression network combined with a gated convolu-
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tion module. This network is proficient in converting 2D joints to 3D and recovering

occluded joints. Additionally, a localisation strategy is employed to transform the nor-

malised pose into a global trajectory. In a similar vein, Cheng et al. [72] utilised the

PoseFlow Tracker [73] to address the inconsistencies caused by occlusion, particularly

in scenes with a moderate number of individuals. Ghafoor and colleagues [74] proposed

a method for occlusion guidance that utilises binary values to indicate the absence of

joints or joints with low confidence during 2D pose estimation. In the process of 3D

pose estimation, the system takes into account both the 2D joints and occlusion guid-

ance. In contrast, Liu et al. [75] divided pose estimation into two parts: detecting

visible keypoints and understanding the reasoning behind occluded keypoints. They

introduced the Deeply Supervised Encoder Distillation (DSED) network as a solution

for occlusion reasoning. The DSED network boasts a dual-encoder structure: one

encoder adopts a mentorship role, cherry-picking the most salient information requi-

site for the reconstruction of occluded joints, while its counterpart is trained to cull

analogous information from observable cues. Evidently, the DSED network exhibits

superior prowess in discerning occluded joints relative to the rudimentary hourglass

model. Crucially, undertaking occlusion reasoning at the feature stage—prior to pose

compilation—enhances the technique’s aptitude for multi-person contexts.

The techniques mentioned above partially neglect an essential aspect: the human body

can be seen as a quasi-rigid structure, with strong mechanical connections between each

joint.

2.4 Human-Robot Collaboration

Human-Robot Collaboration (HRC) is a multidisciplinary field at the intersection of

computer science, engineering, social science, and psychology [76]. It focuses on un-

derstanding, designing, and evaluating robotic systems for use by or with humans.

The emergence of HRC as a distinct field reflects the increasing sophistication and

21



CHAPTER 2. LITERATURE REVIEW

variety of robots and their integration into human environments, from industrial au-

tomation to assistive companions. This introduction establishes the context for HRC,

addressing the technical challenges, human-centered design considerations, and ethical

implications associated with the coexistence and collaboration of humans and robots.

2.4.1 From Simulatuion to Real (Sim2Real)

Collecting and annotating large amounts of data for training Deep Learning models

can be a costly endeavor. This is particularly true when it comes to training models

in new environments, such as manufacturing settings, where there is a need for a Deep

Learning-based detector to identify robots and humans in HRC (human-robot collab-

oration). Unfortunately, there is currently no publicly available dataset specifically

designed for training Deep Learning models in such scenarios. However, one potential

solution to this problem is the use of Digital Twin technology. By simulating various

scenarios in a digital system, Digital Twin can generate a significant amount of labeled

data, which can then be used for training purposes [77, 78]. The data generated can

be utilised for training Deep Learning models and implemented in real-world settings.

Techniques referred to as Sim2Real [79, 80, 81] can be employed in these tasks. More-

over, they allow for the utilisation of solely the (simulated) virtual environment during

the training, validation, and testing phases of the deep neural network (DNN) mod-

els. Nevertheless, there are instances where these models tend to exhibit inaccuracies

when evaluated in real-world applications, primarily due to the disparities between the

simulated virtual world and the actual world.

The primary aim of the study conducted by Tobin et al. [82] is to identify objects on

a table in a real-world setting and determine their positions. In order to ensure the

applicability of the trained model from the simulator to the physical environment, To-

bin et al. [82] introduced randomisation in terms of distractors, objects, backgrounds,

and lighting conditions. The model was directly trained on the simulator and achieved

accurate estimation of the position of different objects with shape-based characteristics
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on the table in the real world. In the domain of object detection, Tremblay et al. [83]

utilized similar approaches as those presented in [82] for the purpose of identifying real

objects within intricate backgrounds. In contrast to the technique proposed in [82], they

introduced a novel element known as flying distractors, which enhances the precision

of detection.In addition, the significance of each randomisation parameter was inves-

tigated by Tremblay et al. In their study, the simulation model uniformly randomises

environment parameters during the training process. However, the complexity of the

samples increases as the number of randomisation parameters increases [82, 84, 83].

Identifying the causes of failures during this randomization process proves to be chal-

lenging. To address these issues, Mehta et al. [85] determine the most informative

variations in the environment within the given range of randomisation parameters.

In this thesis, the proposed Digital Twin utilises Domain Randomisation in its digital

system. A straightforward and effective method is employed to generate the synthetic

dataset. The digital system closely resembles the physical system, with the exception

of the randomisation parameters. Additionally, while previous studies focused solely

on synthetic data, the approach also incorporates unlabelled real data to reduce the

disparity in Sim2Real [79, 80, 81].

Although DNNs have achieved state-of-the-art results in tasks like object detection

and segmentation [86], they are often criticised for their reliance on data and compu-

tational resources. Popular public datasets such as COCO [87], PASCAL VOC [88],

and ImageNet [89] have been designed specifically for tasks like object detection and

semantic segmentation. DNNs trained on these datasets have even outperformed hu-

mans in tasks like object recognition. However, when DNNs are presented with objects

that are not included in these datasets, their performance can significantly deteriorate.

One possible solution to mitigate this problem is to expand the datasets, but this ap-

proach is inefficient as it requires manual data preparation. Alternatively, researchers

can leverage powerful simulation platforms like Unity3D [90] to automatically generate

the required data. This approach, known as ”Sim2Real” techniques, has gained signif-
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icant attention and holds promise for efficient and flexible data preparation for Deep

Learning.

By incorporating simulation within the iteration, it becomes feasible to generate a

significant volume of data that includes annotation information, as needed. Moreover,

this approach allows for exclusive reliance on the simulated virtual environment to

train, validate, and test DNN models. Promising outcomes have been demonstrated

by some studies when transferring these models, trained in the virtual realm, to real-

world applications [79]. Nonetheless, there are instances where these models exhibit

subpar performance when evaluated in real-world scenarios, primarily due to disparities

between the simulated virtual environment and the actual physical world.

Bridging the gap between physics simulators and the real world poses a significant

challenge. The objective of the Sim2Real problem is to transfer virtual models into

real-world scenarios. Currently, numerous research efforts are dedicated to addressing

this reality gap. One approach involves the use of high-quality rendering simulators

such as Unity3D [90], Unreal Engine 4 [91], and OpenGL [92]. These simulators can

generate realistic simulated images that closely resemble data from the physical world.

Additionally, two other strategies, namely Domain Randomisation (DR) and Domain

Adaptation, have been proposed to tackle this challenge.

A domain is defined as D, where a feature space X ⊂ Rd with d dimensions, along with

a marginal probability distribution P (X). In this domain, T is defined as a task. Given

a training set X = {x1, . . .xn} ∈ X and its corresponding labels Y = {y1, . . .yn} from

the label space Y , the conditional probability distribution is denoted as P (Y | X).

It is assumed that there are two domains: the source domain, represented by a simulator

Ds = {X s, P (Xs)}, with a task T s = {Ys, P (Ys | Xs)}, and the target domain,

represented by the physical world Dt = {X t, P (Xt)}, with its corresponding task

T t = {Y t, P (Yt | Xt)}.
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Domain Randomisation

Tobin et al. [82] introduced a technique for training models on simulated images,

specifically in the source domain Ds. The key idea is that by randomising rendering

in the simulator, the model can be adapted to real images in the target domain Dt.

The authors assume that a set of randomisation parameters can be controlled in the

simulator. If the variability of the simulator is diverse enough, the physical world can be

seen as another variation in the simulator, i.e. Dt ⊂ Ds and P (Yt | Xt) ⊂ P (Ys | Xs).

As a result, the model trained in the simulator can generalise to the physical world

without the need for additional adjustments during training.

The primary objective of Tobin et al. [82] is to identify objects on a physical table

and estimate their positions. The authors demonstrate the use of simulated data

randomisation during the training process. In order to ensure the transferability of the

trained model from the simulator to the physical world, Tobin et al. [82] implemented

randomisation in various aspects such as distractors, objects, backgrounds (including

the table, floor, and robot), and lighting conditions. The model was directly trained on

the simulator and successfully estimated the positions of objects with different shapes

on the table in the physical world. In the context of object detection, Tremblay et

al. [83] employed similar strategies as Tobin et al. [82] to detect real objects in more

complex backgrounds. In addition to Tobin et al.’s method, they introduced a new

component, flying distractors, which improved the accuracy of detection. Furthermore,

they investigated the significance of each randomisation parameter. Sadeghi and Levine

[84] combined deep reinforcement learning with their approach. They trained a vision-

based control model for a quadrotor entirely in simulation, as a trial-and-error learning

process is challenging in the physical world. The network successfully produced a

collision-free flight.

In the training process, the environment parameters are randomly assigned in sim-

ulation. However, as the number of randomisation parameters increases, the sample

complexity also increases [82, 84, 83]. Additionally, it is difficult to determine the exact
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cause of failure when the transfer does not work. To address these issues, Mehta et

al. [85] propose Active, which identifies the most informative environment variations

within a given range of randomisation parameters.

In their work, James et al. [93] introduced an alternative approach called Randomised-

to-Canonical Adaptation Networks (RCANs) to address the issue of increasing sample

complexity. They utilized a cGAN, which is an image-conditional generative adversarial

network, to convert random simulated images into a canonical form. Additionally,

the generator component of the cGAN was able to transform real-world images into

the canonical form after training. The researchers trained a vision-based closed-loop

grasping reinforcement learning agent in a canonical simulator and then transferred it

to the physical world.

Peng et al. [94] explored the concept of randomisation in dynamic systems of robots, in

addition to randomising scene properties in simulators. Unlike high-fidelity rendering

in simulation, they achieved success in developing a Sim2Real policy using low fidelity

simulations. The parameters that were randomised include the mass of the robot’s

links, damping of joints, gains for controllers, and noise of observation, among others.

This policy demonstrated the ability to adapt to various physical dynamics.

Domain Adaptation

According to Pang and Yang [95]’s classifications of transfer learning, Domain Adap-

tation can be regarded as a transductive transfer learning solution in which a set of

labelled data is trained in source domain Ds to learn a model to classify the unseen

data in a target domain Dt [96]. Base on the definition of transfer learning in [95],

target of target domain Dt is the same as that of source domain Ds, i.e. T t = T s,

while Ds 6= Dt. When it comes to label space, they shared the same label space, i.e.

Ys = Y t = Y in a classification task.

Domain Adaptation has been proved as a successful method in bridging the reality gap.
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One way to bridge the gap is to adopting a adversarial-based deep Domain Adaptation

approach [97] which is based on generative adversarial networks (GANs) [98]. GAN

is constructed by a generative model G and a discriminative model D. G extracts

the data distribution, while D outputs a label whether a sample is from G or training

datasets.

The GAN framework is trained with a mini-max function, and the generative model

G is optimised to gain minimum loss while the discriminative model D can be trained

to maximise the probability of the correct label:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

where x is the input of D and z is the input of G.

Liu et al. [99] put forward a coupled framework CoGAN to generate target data which

are coupled with synthetic source ones.

It illustrates the coupled framework of coGAN: GAN1 generates source data while

GAN2 produces target data. The weights is shared in some layers of G and D which

provide constraints for realising a a domain-invariant feature space with no supervision.

Aiming to use the shared labels of synthetic target data to train the target model, the

input noise should be adapted by a train coGAN to paired synthetic images from the

two distributions and the labels also be shared.

Currently, generating synthetic data with annotations as the source that resemble the

target data have been an interesting field of research. Yoo et al. [100] presented a

synthetic data generation model based on pixel-pixel level adaptation in the GAN

framework. They employed a real/fake discriminator to supervise the generation of

realistic targets while the discriminator penalises an unrealistic target. Besides, a

domain-discriminator is designed to ensure a generated target is associated to a source.

A Simulated+Unsupervised (S+U) learning is proposed by Shrivastava et al. [101] to

reduce the gap between synthetic and real image domains. In their model, unlabelled
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real data are used to improve realism of simulator. Rather than directly using GANs

framework, they introduced an adversarial network which inputs synthetic data rather

random vectors. To improve realism, a refiner network is trained with optimising

a combination of an adversarial loss and a self-regularisation loss. The advantages

of [101] are avoiding artifacts and stabilising training. Different from some works

where the generator is constrained by a noise vector or source images, Bousmalis et

al. [102] presented a framework that the output of the generator G are conditioned

on synthetic source data and a noise vector. Decoupled from classification task, the

classifier T independently assigns a label to an image aside from the process of domain

adaptation, while the discriminator D identifies real and fake images. Considering

prior knowledge about low-level image adaptation process, they tried to maintain the

generated images have similar foregrounds and different backgrounds from the source.

With G, D and T , their optimisation becomes

min
G,T

max
D

V (D,G) = αLd(D,G) + βLt(T,G) + γLc(G) (2.2)

where α, β, and γ are parameters that control the trade-off between the losses and

Lc(G) decides the similarity described above, named the content–similarity loss.
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2.4.2 Digital Twin for HRC Safety and Resilience in Manu-

facturing

Figure 2.1: A Digital Twin process facilitates the transfer of knowledge

between Digital and Physical entities. The model is validated prior to the

deployment of the physical asset in the actual environment. Moreover, feed-

back from the Physical asset contributes to the optimization of the entire

process. The Digital Twin is also capable of tracking the performance of

the physical asset.

29



CHAPTER 2. LITERATURE REVIEW

A Digital Twin is a virtual model of a physical entity that exists parallelly in the

real world as shown in Fig 2.1. It is created by using real-world data to simulate

and predict the behavior of the physical object. Digital Twin have applications in

various industries such as manufacturing, healthcare, and smart cities [103]. In the

field of medicine and public health, Digital Twin technology can transform traditional

electronic health records and enable personalised treatments and interventions [104].

Digital Twin are both a digital shadow reflecting the status of the physical twin and a

digital thread recording its evolution over time [105]. They can be used to understand

complex systems, conduct in silico experiments, and support evidence-backed decision-

making [106]. However, the development of Digital Twin faces challenges such as data

communication, lack of standardised methodologies, and the need for interdisciplinary

collaboration [107].

Simulation models have various functions in industry, including product design, testing,

and delivery. However, the dynamic nature of demands, the requirement for real-time

process monitoring, and the need for cost-effective production present new obstacles for

simulation techniques [108]. Digital Twin have gained considerable interest from indus-

try and academia, as they go beyond traditional simulation methods by incorporating

real-time and historical data from their corresponding physical systems [109, 110]. This

is particularly relevant in the context of production lines where humans and robots

share workspace. Digital Twin have the ability to integrate both cyber and physical

data throughout the entire lifespan of a product. They are widely acknowledged as a

highly promising tool for the design, maintenance, and monitoring of smart manufac-

turing processes [109]. With the advancements in artificial intelligence, cyber-physical

systems, big data, information fusion, and advanced sensing, the field of Digital Twin

technology is rapidly evolving and transforming the manufacturing industry towards

intelligent human-robot collaboration [111].

Sudhakar et al. [12] Investigate a method for utilising data generated by a Digital Twin

to train a CV model. and they discuss the challenges of using synthetic data in training
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CV models and aims to understand the critical aspects of the authoring process that

impact model performance. The authors create a novel YCB-Real dataset by captur-

ing images of YCB objects and a corresponding synthetic dataset, YCB-Synthetic, to

study the effects of various artifacts on model performance. They analyse the trade-

offs between artist time for fixing artifacts and model accuracy, providing insights

on prioritising efforts in synthetic data generation. In contrast to the conventional

approach of manual labeling, which is frequently laborious and time-consuming, this

method greatly speeds up data collection by automating the labeling process. The Dig-

ital Twin enables faster gathering and processing of extensive datasets, making data

management more efficient and scalable across a range of applications.

Malik and Brem [112] present a framework that utilises a Digital Twin to enhance

industrial assembly systems. By incorporating the human presence, the Digital Twin

effectively captures the system’s adaptability and dynamics, leading to enhanced safety

in HRC. In their work, they tackle the growing complexity of contemporary manufac-

turing settings that urgently require adaptability, flexibility, and economic efficiency.

The paper criticises existing automation technologies for their lack of human compati-

bility and their inability to co-exist harmoniously with humans, resulting in a continued

heavy reliance on the human workforce for many operations. They further investi-

gated the interaction between humans and robots via a Digital Twin, facilitating more

instinctive communication methods, including hand gestures and smartwatches. This

strategy improves safety by accurately predicting possible collisions and assists in high-

variety, low-quantity production by allowing the robot to quickly adjust to changes in

task performance without hindering human tasks. The authors of [113] suggest the

use of a Digital Twin with machine learning capabilities as a testbed for evaluating a

Deep Learning model for path planning. This approach is especially advantageous in

situations where human validation is necessary, as any unresolved problems could pose

a risk of harm to individuals. Moreover, the integration of Deep Learning techniques

into an immersive AR setting allows for the mapping of virtual and physical objects
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during interactive multi-functional tasks, resulting in enhanced visualisation of target

objects [114]. Park and colleagues [115] have developed a hands-free interaction system

in mixed reality environments, leveraging a Digital Twin for assistance.

Unlike previous research, the proposed Digital Twin has the capability to support the

training of Deep Learning models by producing training datasets alongside testing and

validating the model. This improves the efficiency of training the Deep Learning model

in terms of both time and labor expenses.

2.4.3 Robot-assisted dressing

In the past few years, there has been significant interest in the area of robot-assisted

dressing. This interest has been mainly motivated by the need to address challenges

such as a shortage of nursing staff and the increasing number of elderly people. Various

techniques have been developed that employ force sensors to enable robots to assist

with dressing tasks. Erickson et al. [116] proposed a deep recurrent neural model that

aims to predict the forces applied by a piece of clothing on the human body. This

prediction is based on observations of haptic and kinematic data collected from the

robot’s end effector. In a similar vein, Clegg et al. [117] combined haptic feedback

control and deep reinforcement learning to facilitate robot-assisted dressing. They

utilised physics simulations to emulate different types of human impairments, which

formed the basis for training control policies for both humans and robots.

On the other hand, visual sensors provide a cost-effective and easy-to-implement solu-

tion. Many research studies have utilised RGB or RGB-D cameras to determine points

of contact and describe the interactions between humans and objects. [118, 119, 120].

Pignat et al. [121] introduced a significant advancement by proposing a hidden semi-

Markov model. This model combines sensory data from the human user and motor

commands from the robot to create a joint representation. In order to assist the robot

in learning from human-led dressing demonstrations, the researchers utilised an AR

tag to track the movement of the human hand.
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2.5 Conclusions

This chapter is a review of the literature that focuses on the intersection of Deep Learn-

ing and CV, crucial components of modern AI research. It starts with foundational

knowledge in the field and then explores how Deep Learning enhances CV tasks such

as classification and object detection.

Table 2.1 summaries perception research associated with HRC, it reviews different

kinds of method for better detection results both in accuracy and speed. However,

though these methods had already achieved strong performance on public datasets,

there still exists a significant gap between research and the real HRC environment. For

example, challenges such as unseen objects, unfamiliar environments, new requirements

for detection, and the ability to generalise across various real-world scenarios remain

pressing issues. Additionally, the complexity of integrating these methods into existing

HRC systems and ensuring they meet industry standards for reliability and safety adds

further layers of difficulty.

The review delves into both fully-supervised and semi-supervised approaches, along

with an analysis of uncertainty and activation pattern monitoring in Deep Learning. It

also examines human pose estimation, covering 2D and 3D approaches and addressing

the challenges of occlusions.

In table 2.1, it also summarises 2D and 3D human pose estimation methods. For 3D

human pose estimation, though direct estimation solutions can achieve 3D prediction

from images directly, the performance is not satisfying. Although SMPL-based meth-

ods can provide accurate predictions, they require huge computational resources and

it is hard to achieve a real-time performance. In Chapter 4, the estimation of the 3D

human pose is achieved by lifting the 2D human pose. Chapter 4 explores a post-

processing scheme without involving temporal information during training stage but

still can achieve strong prediction when occlusion occurs.

With respect to the gap between simulation and real environment in Digital Twin,
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several methods have been summarised in 2.2, Domain Adaptation relies on training

additional transfer Deep Learning model to achieve the knowledge transform between

simulation and real environment which can be regarded as an indirect solution. How-

ever, Domain Randomisation learns directly from the simulation environment without

extra transfer models. Morevoer, powerful Digital Twin can provide photo-realistic

simulation enironment, it can naturely minise the gap between simulation and real

environment.

The chapter concludes with insights into HRC, discussing the transition from simula-

tion to reality, the role of Digital Twin in improving safety and resilience in manufac-

turing, and the specific application of robot-assisted dressing.
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Table 2.1: Summary of perception research under HRC

Perception in HRC Application Types Methods Method Descriptions

Detection

Image Classification
LeNet [18], AlexNet [25], VGG [26] Multiple layers

ResNet [29] Residual Network that utilises residual connections or skip connections

Object Detection

RCNN [27]
Region-based CNN network;

Linear SVM classifiers are used to predict the presence of an object

SPPNet [34] Spatial Pyramid Pooling layer

Fast RCNN [28] ROI (Region of Interest) pooling

Faster RCNN [17] Combines a RPN with Fast RCNN.

2D Human Pose

Top-down Framework

PoseWarper [58] Learns temporal pose estimation from sparsely annotated videos

RMPE [59]

Symmetric Spatial Transformer Network (SSTN) to extract high-quality dominant human proposals;

Parametric Pose Non-Maximum Suppression (NMS) to eliminate redundant pose estimations;

Pose-Guided Proposals Generator (PGPG) to handle inaccurate bounding boxes and redundant detections

Liu et al. [60]

Pose Temporal Merger for encoding keypoint spatiotemporal context;

Pose Residual Fusion module for computing weighted pose residuals in dual directions;

Pose Correction Network for refining pose estimations effectively

Bottom-Up Framework

Cao et al. [61] Part Affinity Fields (PAFs) to associate body parts with individuals in an image.

higherHRNet [62] High-resolution feature pyramids for scale-aware representation learning.

Luo et al. [63]
Scale-adaptive heatmap regression (SAHR) method to adjust the standard deviation for each keypoint;

Weight-adaptive heatmap regression (WAHR) to balance the fore-background samples

3D Human Pose

Direct Estimation
Pavlakos et al. [64]

A fine discretization of the 3D space;

A coarse-to-fine prediction scheme

Luvizon et al. [55]
A multitask framework for joint 2D and 3D pose estimation;

Differentiable Soft-argmax for joint pose estimation

2D to 3D Lifting

SimpleBaseline3D [54] A deep end-to-end framework for 3D pose estimation from 2D joint detections

PoseFormer [122] A spatial-temporal transformer-based approach for 3D human pose estimation

Graformer [66] A novel transformer architecture combined with graph convolution

SemGCN [67] Semantic Graph Convolutional Networks (SemGCN) for regression tasks with graph-structured data

SMPL-based

SMPLify [68] An interpenetration term that is differentiable concerning shape and pose

Kanazawa et al. [69] An interpenetration term that is differentiable concerning shape and pose

Omran et al. [70] A statistical body model integrated within a CNN for 3D human pose estimation from 2D images

Occlusions in

Human Pose

Estimation

Temporal Fusion Gu et al. [71] A temporal regression network with a gated convolution module to transform 2D joints to 3

Optical-flow Cheng et al. [72] An occlusion-aware deep-learning framework for 3D human pose estimation in videos

Pose-flow PoseFlow [73] An efficient pose tracker based on pose flows.

Occlusion-guided;

Temporal
Ghafoor [74]

An occlusion-guided framework for 3D human pose estimation;

Temporal dilated CNNs to handle severe occlusions effectively

Skeleton-guided Liu et al. [75] A Skeleton-guided human Shape Fitting (SSF) method for generating accurate occlusion labels
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Table 2.2: Summary of Sim2Real research under Digital Twin

Sim2Real in Digital Twin Methods Method Descriptions

Domain Randomisation

Tobin et al. [82] Non-realistic random textures in a simulator for training a robust real-world object detector

Tremblay et al. [83] randomizing simulator parameters like lighting, pose, and object textures

Sadeghi and Levine [84] Domain Randomisation with 3D CAD models in Reinforce Learning environment

Mehta et al. [85] Active Domain Randomisation for selecting the most informative environment variations

James et al. [93] RCANs translate randomized rendered images into non-randomized canonical versions

Peng et al. [94] Randomisation scheme during training process

Domain Adaptation

Ganin et al. [97] A GAN-based framework transfering knowledge from the source domain to the target domain

Liu and Tuzel [99] Coupled Generative Adversarial Network (CoGAN) for learning a joint distribution of multi-domain images

Yoo et al. [100]
An image-conditional image generation model for knowledge transfer at a semantic level;

Generates the target image at a pixel level.

Bousmalis et al. [102] Unsupervised pixel-level domain adaptation using Generative Adversarial Networks (GANs)

36



Chapter 3

A Deep Learning-enhanced Digital

Twin Framework in HRC

3.1 Introduction

Collaborative robots (cobots) [123] are playing an increasingly important role in the

smart manufacturing and Industry 5.0 era, as they have the potential to boost produc-

tivity, ensure safety, and liberate humans from labor-intensive activities [124, 112, 125].

Benefiting from the desirable productivity and precision through a series of repetitive

tasks conducted by machines along with the flexibility of manual operations, cobots

have shown their great potential to realize smart manufacturing, including flexibility

and perform repetitive tasks. Examples include but are not limited to hazardous and

extreme working environments such as quality inspections, machine tending, material

handling, welding, and drilling.

The concept of HRC in Industry 5.0 is mostly conveyed by smart manufacturing where

cobots work alongside humans in close proximity in a shared workspace and they are

pre-programmed to interact with humans to carry out various tasks. However, human

safety is a key prerequisite for the deployment of such robots. Traditional approaches to
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(a) (b)

Figure 3.1: Fig 3.1(a) and 3.1(b) shows the configuration of an industrial

HRC process, where an operator exchanges components with a cobot at a

shared handover location. The robot cell is open on one side, allowing staff

to enter the cell under specific circumstances

ensure robot safety in manufacturing require deployment of cages, as shown in Fig 3.1.

Physical barriers, light gates, and laser rangefinders prevent direct contacts of cobots

and humans [126]. These safety measures protect human workers, but they are bulky,

inflexible (preventing true collaboration), and expensive.

In recent years significant research has been carried out to develop cage-free and

more flexible safety solutions. Collision avoidance based solutions have been proposed

in [127, 128, 129], where the pre-programmed trajectory of cobots are adapted to

avoid collisions with dynamic obstacles, e.g., humans and other objects in the shared

workspace. Unfortunately, these solutions lack the ability to distinguish ‘humans’ from
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other objects, which could subsequently cause severe consequences. In addition, these

solutions rely on the alignment of digital cobots designed by Computer-Aided Design

(CAD) tools [130] to re-built digital cobots from Red, Green, Blue plus Depth (RGB-

D) camera data. CAD models of cobots were combined with the data captured by

RGB-D sensors. This leads to an easy separation of robots from surrounding objects

and also from humans. The alignment between a CAD model and the caged cobot

is typically done with the assistance of hand-eye calibration [130, 131]. However, the

calibration quality is critical in determining the accuracy of alignment.

Besides CAD models, augmented and mixed reality techniques which integrate computer-

generated virtual information into real-world scenes can help users to enhance their

understanding and awareness to support safe interaction in HRC tasks [132, 133, 134].

Meanwhile, thanks to the rapid development of deep learning and CV techniques, a

series of modern approaches have been proposed [135, 136], demonstrating success in

scene understanding and visual perception, such as classification, object detection and

segmentation.

Furthermore, Digital Twin of cyber-physical systems provide a real-time digital repre-

sentation of physical collaborative manufacturing systems. This can greatly improve

the systems’ intelligence regarding design, production, operation, evaluation, health

management and performance optimization [125, 137]. Digital Twin can contribute

to a range of different aspects in challenging HRC systems [77], including to simula-

tion, modelling, performance analysis, process monitoring, data collection, data mining,

data fusion, interaction as well as cognitive service [111, 109]. This makes Digital Twin

and intelligent solutions promising in avoiding the complex calibration process and in

achieving identification of cobots and other objects in HRC without calibration at all.

Different definitions [111] of Digital Twin have been proposed and developed over

time. According to [110], a Digital Twin is a set of coupled computational models

and methods that evolve over time to persistently represent the structure, behaviour,

and context of a unique physical asset such as a component, system or process. A
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Digital Twin represents a real system, e.g. a city, cobot, aircraft, and acts as a coupled

duplicate of the real world. It has several important characteristics: i) it is universal

and can be applied to several domain areas, ii) it has a modular structure, which can

be updated, expanded and developed further, 3) it is connected with data - both

computer generated and from the real system. It can be used for a number of purposes

– design, increasing safety and autonomy, and others, including for new functionalities.

Fu et al. [111] point out four stages in the development of Digital Twin, with an

increasing usage of data in the last two stages, including remotely, when data could

be stored on a cloud and accessed via the IoT technologies. The surveys [138, 139]

systematically review the recent developments of artificial intelligence-driven Digital

Twin in the areas of cutting-edge robotics and smart manufacturing. Besides, multi-

access edge computing was incorporated into Digital Twin, facilitating manufacturing

processes towards smart and flexible [140, 141].

Having in mind these recent trends [142, 78], one can identify several gaps between

the research in Digital Twin techniques and their applications in industry: i) Digital

Twin need further developments in order to represent manufacturing systems in a wide

range of complex environmental conditions and diverse production stages, ii) in the

majority of cobot systems, safety is guaranteed via caged environments or additional

safety sensors when the cobots are operated at higher speeds so as to meet production

demands of end users, iii) the level of autonomy varies across different applications

and is on the increase thanks to recent developments in intelligent sensing, CV and

artificial intelligence techniques.
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Figure 3.2: A HRC cell is available in the Sheffield Robotics Lab at the

University of Sheffield, UK. An HRC cell is shown in this picture, where

there is an operator desk in front of the cobot and the operator exchanges

components with the cobot on the desk. A Kinect sensor is mounted on the

top of the cell to monitor the HRC operation.

Aiming at contributing towards bridging these gaps, this chapter proposes an intelli-

gent Digital-Twin-based safe human-robot collaboration framework. A Digital Twin is

built to simulate the physical HRC system which is shown in Fig 3.2. A communication

framework is further designed so that the Digital Twin can be synchronised with the

physical HRC platform with the support of the Robot Operating System (ROS) [143].

Consequently, information including robot poses and kinematics can be shared between

the digital and the physical systems flexibly and in a real-time manner. Owing to the

Digital Twin’s ability to create photo-realistic digital cobots and maintaining holistic

cobot parameters, a diverse amount of synthetic cobot data with accurate labels are

generated by the digital system. These data combined with human data from the

COCO repository [87], are used to train deep learning models to monitor interactive
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operations of robots and humans. The challenges stemming from the simulated Digi-

tal Twin environment and the real environment are addressed by further proposing a

semi-supervised deep learning detector. The Digital Twin system is applied to analyse

and validate how the environment, e.g. the lighting conditions, affect the performance

of the deep-learning action-recognition system. With the proposed deep learning detec-

tor, humans and robots are monitored in the physical environment to ensure their safe

separation. Therefore, by adopting a Deep Learning-enhanced Digital Twin Frame-

work, this work contributes toward cost-effective and flexible systems for intelligent

sensing and decision making.

The main contributions of this work are as follows: i) a semi-supervised framework

for object detection is proposed by adopting a Faster region-based convolutional net-

work [17]; ii) a Digital Twin of a physical HRC system is developed that generates

synthetic robot data to train deep learning models for monitoring human-robot col-

laborative behaviors. iii) the performance of the developed Digital Twin system is

validated and evaluated over both synthetic and real data sets, demonstrating that it

can achieve accurate recognition of human-robot behaviors for safety assurance. Re-

search outputs include publicly available datasets generated by the proposed Digital

Twin of a Universal Robot 10 (UR10) robot, and a semi-automated annotation tool.

The remainder of this chapter is organised as follows. Section 3.2 describes the devel-

oped framework for safe and reliable HRC in detail. Section 3.3 describes the real and

synthetic datasets along with the semi-automated annotation tool used in this work.

Section 3.4 presents evaluation and validation of the detection and classification results

under different lighting conditions, whilst explaining safety criteria for decision making

and demonstrating how to implement or adopt the proposed framework into practical

cases. Finally, Section 3.5 summarises the results and make a conclusion.
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3.2 The Deep Learning-enhanced Digital Twin Frame-

work

Traditional solutions to prevent hazardous human activities with cobots include physi-

cal safety barriers, proximity sensors, and light gates, which have major disadvantages

of big size, difficult maintenance, inability to adapt under various operating conditions,

and sometimes high cost [144, 145]. To meet the high requirements for cobots towards

safety and reliability, this chapter proposes an intelligent and flexible deep learning-

enhanced Digital Twin framework for monitoring the human-robot collaboration with

a high level of autonomy in manufacturing.

The performance of the proposed framework is demonstrated and evaluated on a Uni-

versal Robots UR10 platform using a Microsoft Kinect V2 sensor as shown in Fig 3.2.

The framework does not require any complicated and time-consuming sensor calibra-

tion.
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Figure 3.3: Theoretical framework of using deep learning and Digital Twin

techniques for monitoring Cobots towards safety and reliability. The frame-

work is comprised of three layers: i) Digital Twin layer, ii) deep learning

layer, and iii) real data generation layer. Digital Twin layer illustrates the

Digital Twin in which a ROS-based communication system is designed for

information transmission including robot pose, the orientation and posi-

tion of the camera, etc. between the digital and the physical system. Deep

learning layer represents how the synthetic dataset with accurate annota-

tions is generated, then the detector is trained with the dataset. The detec-

tor is applied to monitor humans and the cobot in the physical system. In

the meanwhile, it also illustrates how a semi-supervised detector is trained

which will be explained in Section 3.2.4. In the real data generation layer,

a deep learning-based annotation tool is developed to assist to collect and

annotate real data.

Fig. 3.3 shows the Digital Twin including the proposed deep learning model which

consists of three layers: i) Digital Twin layer, ii) deep learning layer, and iii) real
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data generation layer. In the Digital Twin layer, a virtual robot in the digital system

captures the pose of the physical robot in the physical space during the working process

via the ROS, so that the virtual robot performs in the same way as the physical robot.

The virtual visual sensor in the digital system has a different function - to capture

synthetic data of the robot with random position and orientation. The data annotation

information is also generated automatically along with the collection of the synthetic

data. During the synthetic data preparation, Domain Randomization as described in

Section 3.2.2 is applied to the digital system with the aim of bridging the reality gap

between the real world and the simulation.

In the Deep Learning layer, the synthetic data from the digital system is provided

for training a Faster R-CNN detector. The detector combined with the deep learning

annotation tool is applied to collect the annotated real data in the Real Data Gener-

ation layer. With the real data, a semi-supervised method described in Section 3.2.4

is implemented to train a new detector. This semi-supervised detector monitors the

interactions between humans and robots in the physical system of the Digital Twin

layer to achieve a safe HRC.

This framework provides a cost-efficient solution to generate data with accurate anno-

tations and other types of sensor information such as mask, bounding boxes, RGB, and

depth information. A semi-supervised deep learning model is presented to narrow the

gap between the digital system and the physical system. Consequently, the detector

proposed in this work can achieve more accurate detection, compared to those fully

supervised detectors which are purely trained with real or synthetic data.

3.2.1 Communication Design of the Digital Twin

In traditional simulators, e.g., Gazebo [146] and CoppeliaSim [147], all designs, simu-

lations and experiments are finished in such a closed environment without connecting

to any other physical systems. However, a Digital Twin requires not only simulation

but also a physical test. Consequently, to satisfy this requirement, a data transmission
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framework is needed.

In the proposed Digital Twin, bidirectional data transmission is enabled between the

physical system and the digital system, which should be capable of performing mul-

tiple processes in a real-time manner. UnrealCV [148] built a file transfer protocol

(FTP)-based communication system that only listens to a single socket and the one-

way transmission allows only one pack of control data during the whole transmission.

Consequently, it cannot support a multi-user control at the same time, i.e., the camera

and the cobot cannot be controlled in parallel. A higher level communication design

is required to meet the synchronous data transmission between the digital system and

the physical system in the Digital Twin.

Kinect

Robot

Lidar

Kinect

Robot

Lidar

Physical System Digital System

Figure 3.4: A ROS based communication framework is designed for the

Digital Twin. In this framework, cameras, cobots and users are regarded as

nodes. In a ROS framework, nodes communicate with each other through

topics, services, and actions provided by ROS.

ROS has been used to facilitate the implementation of the overall system. ROS is a
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distributed system where a synchronous data transmission can be achieved when the

digital system and physical system do not need distant communication. A ROS based

communication framework is built for the Digital Twin to achieve data transmission

among multiple clients. Fig. 3.4 shows how the communication framework is imple-

mented in the Digital Twin. Clients such as cameras, cobots and users are regarded

as nodes. Different nodes communicate with each other through topics, services, and

actions provided by ROS. For instance, a node can publish defined messages (data)

onto a topic, and other nodes subscribing to the topic can receive the message. In this

case, joint angles of the physical cobot in the physical system are published, and joint

angle data are subscribed by the digital cobot in the digital system (see Fig. 3.3). As a

result, both physical and digital cobots move synchronously and keep the same poses.

In the meantime, the digital robot can also publish verified robot poses and trajectories

to the physical system so that the physical robot can implement specific task without

further tests and trials.

3.2.2 A Digital Twin for Synthetic and Real Data Acquisition

Data Acquisition and Data Types

Unreal Engine 4 (UE4) [91] is a powerful gaming engine that has the capability to sim-

ulate a physical world realistically. To some extent, the usage of UE4 can minimize the

reality gap due to its photorealism. The developed Digital Twin framework uses UE4

as a digital system environment to generate the synthetic data with annotation infor-

mation for training the developed Faster R-CNN [27] and validating its performance

for detection of the areas of the human and of the cobot and making decisions on

whether the safety standards are satisfied. With the assistance of the communication

framework in the Digital Twin, users can control the camera mounted on the top of

the physical robot cell and the physical robot in the physical system to collect the real

data as well. In the physical system, to capture images of how the robot carry out its

task, the robot arm is moving from one pose to another. At the same time, users can
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control the camera to collect data from frame to frame. The size of collected images

is 1920 x 1080. Although higher resolutions can bring more accurate detection results,

it sacrifices inference speed. This resolution is a common standard in cameras, which

can provide rich features for training the model and also ensure a reasonable inference

speed. Furthermore, with the trained detector and an annotation tool described in

Section 3.3.1, can collect and annotate the raw data efficiently and effectively reduce

manual labeling time compared to traditional manual data acquisition and annotation.

(a) RGB image (b) Depth image

(c) Object mask (d) Object mask with different compo-

nents

Figure 3.5: The Synthetic data including different types of sensing infor-

mation of the cobot generated from the Digital Twin

Compared to in stock sensors such as RGB cameras that provide specific types of data,

the Digital Twin system is more efficient and flexible in obtaining various sensing
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information with the help of UE4. Fig 3.5 displays examples of different types of

sensing information generated by UE4. UE4 renders objects with their original colors

to generate RGB images as shown in Fig 3.5 (a) and it also provides depth information

in Fig 3.5 (b). Depth information gives rich 3D information which is of benefit to get

the location and orientation of objects. With additional user-defined color information,

UE4 can also render an object with a defined single color. Consequently, the annotation

of the object can also be obtained with the defined color. The accurate annotation,

as demonstrated in Fig 3.5 (c) and (d), is useful for instance segmentation and object

detection.

(a) RGB of the cobot (b) Cobot (c) Base (d) Shoulder

(e) Elbow (f) Wrist 1 (g) Wrist 2 (h) Wrist 3

Figure 3.6: (a) represents a RGB image of the cobot, while the masks of

the cobot and its components are illustrated from (b) to (c). The digital

system can generate different component masks which is defined by users.

The cobot mask can be separated into different components and components

can be combined as the one. Consequently, users can obtain masks based

on their requirements to meet different tasks.

Different from UnrealCV [148], the proposed Digital Twin framework provides more

flexibility for users in how the annotation of an object is represented. In Unre-
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alCV [148], masks of different objects can be obtained when the specific color is known.

For instance, the blue color often represents the background, the green is the robot

and the orange is the ground floor in Fig 3.5 (c). However, it is impossible for users to

get component masks of an object, because their mask rendering solution only queries

from object to object when rendering an object mask scene. This means that the com-

ponents of the object are not queried during rendering and they cannot be rendered as

different colors. Fig 3.5 (c) illustrates that the robot is rendered with single color. In

the proposed digital system, the rendering logic is different from the UnrealCV [148]

where the digital system both queries what objects exist in a scene but also checks the

components of the objects during rendering of a mask scene. Consequently, it can ren-

der the components with defined colors which are specified by users when generating

mask annotation in which the components of the cobot is rendered with different colors

as shown in Fig 3.5 (d), compared to Fig 3.5 (c). Furthermore, different components

can be identified in one object and the component masks can be obtained once the

colors are known as shown in Fig. 3.6.

Through the proposed Digital Twin, it is easy and efficient to get these types of in-

formation which are expensive in traditional manual annotation. The flexibility of the

data generation in the proposed Digital Twin is able to meet different tasks including

robot detection, robot grasping, pose estimation, etc.

Domain Randomization

UE4 [91] is a powerful and widely-used game engine developed by Epic Games. It is

known for its high-quality graphics, robust physics engine, and versatile development

tools. UE4’s advanced rendering capabilities allow for the creation of highly realistic

simulations. This realism is essential for training machine learning models and testing

algorithms in environments that closely mimic the real world. UE4 includes a robust

physics engine that can simulate real-world dynamics with high accuracy. This is

particularly important for robotics and autonomous systems, where understanding and
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predicting physical interactions is crucial.

Bridging the reality gap between the physics simulators and the real world is challeng-

ing. The aim of the Sim2Real tool is to transfer the virtual models to the real world

situations. One approach to generating high quality realistic virtual images is to deploy

high-quality rendering simulators such as Unity3D [90], UE4 [91] and OpenGL [92].

In the next paragraphs, the main mathematical notations and concepts are introduced

that are needed for the description of the DNN model.

In the proposed framework, Domain Randomization is applied in the digital system to

generate abundant samples with the aim of bring the simulated images close to the real

ones. It is demonstrated that the model trained over the synthetic data with Domain

Randomization has accurate performance under different lighting conditions which will

be illustrated in Section 3.4. The Domain Randomization helps improving the deep

learning detector and its ability to work under a variety of conditions. Advantages

of the digital system are its flexibility, ability to annotate images accurately and to

diversify inputs in the feature space. Limitations exist in generating a real dataset

with respect to sample diversity. These limitations are linked to a number of factors

such as the fixed orientation and position of sensors, unchanged lighting conditions

and unchanged backgrounds. These limitations may cause inadequate generalizations

and lack of model adaptation in new environments. However, these limitations can

be regarded as changeable variations with respect to randomization parameters in the

simulators. The randomization parameters considered in the digital system are the

following: strength and color of the direct light, position and orientation of the direct

light, position and orientation of the camera, images of backgrounds which are from the

COCO dataset [87] along with poses of the robot. With these randomization param-

eters, different kinds of samples can be easily generated, with different appearances,

Consequently, the generated dataset can be diverse enough to help the source domain

(simulation) to get closer to the target domain (real). It is difficult to collect such

different kinds of samples in the real world system due to device limitations.
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3.2.3 A Digital Twin for Intelligent Sensing and Machine Vi-

sion Tasks in Changeable Environments

The Digital Twin framework proposed in this chapter adopts the Faster R-CNN [17] as

a detector to verify the performance of the model trained with different synthetic and

real data, under different lighting conditions. The architecture of the considered Faster

R-CNN [27] is presented in Fig 3.7. The Faster R-CNN [27] consists of two stages: 1)

feature extraction from the input image, and 2) generation of potential region proposals

where the location of the object of interest is, calculated with a RPN. As shown in [17],

Faster R-CNN can achieve accurate detection in real-time performance. By using the

Non-Maximum suppression operation [149], proposals with low confidence are filtered.

The remaining proposals and feature maps are refined by the next layer for the Region

of Interest (RoI) Pooling stage. The corresponding proposals are classified as different

objects as well as their bounding boxes are predicted.

2022/4/9 05:35 faster rcnn

1/1

Region Proposal Network

ResNet50 Feature
Map

Conv Anchor
Generator

Object
Classification

Bounding box
Prediction

RoI Pooling  FC

Classification

Bounding Box

NMS

Figure 3.7: Architecture of the Faster R-CNN. ResNet-50 extracts feature

maps from the input image. In Region Proposal Network, regions of inter-

est are generated. RoI Pooling processes the regions of interest and their

corresponding feature maps to get new feature maps with fixed size. The

FC (Fully connected layer) predicts the classes and the bounding boxes for

these feature maps.

The architecture of Faster R-CNN [17] includes ResNet-50 [29] for extracting features
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from images. The residual block is defined as

y = F (x, {Wi}) + x, (3.1)

where x is the input image for the residual block, y is the output image feature map

which is coming out of the residual block. The function F represents the residual

mapping and {Wi} denote the weights of layers in the residual block. The detector

block includes two sub-tasks: object classification and bounding box regression for

object detection. In the two-stage detector, both loss functions in the RPN and the

final Region of Interests (RoI) results are considered.

In the RPN [17], the loss function LRPN of the RPN is defined as:

LRPN ({pi} , {ti}) =
1

Ncls

∑
i

Lcls (pi, p
∗
i )

+λ
1

Nreg

∑
i

p∗iR (ti − t∗i ) ,
(3.2)

where pi is the predicted probability of the i-th anchor, which is a binary result char-

acterising whether the anchor is an object or not, and ti is the corresponding bounding

box prediction, Ncls is the normalized parameter for the classification. The classifica-

tion loss in RPN is denoted as Lcls, and p∗i is the corresponding ground-truth, whose

value is 1 (positive) or 0 (negative). The balanced parameter is denoted as λ while the

Nreg are normalized parameters of the regression. The bounding box is optimized with

the smooth L1 regression loss function R, and t∗i is the ground-truth of the bounding

box of anchor i. The Smooth L1 function, also known as the Huber loss or Smooth L1

loss, is a loss function that combines the properties of L1 loss (mean absolute error)

and L2 loss (mean squared error) [28]. The smooth L1 loss function R is defined in the

form:

R (ti − t∗i ) =


0.5 (ti − t∗i )

2 if |ti − t∗i | < 1

|ti − t∗i | − 0.5 otherwise.

(3.3)

For the classification loss function in the RPN, a binary cross entropy loss is adopted

Lcls = p∗i log(1− pi) + (1− p∗i ) log(pi). (3.4)
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In the final RoI area, the cross entropy loss Lroi
cls for object classification and the smooth

L1 loss Lroi
bbox for bounding box regression are introduced, so the total loss function L

required to be minimized is

L = LRPN + Lroi
cls + Lroi

bbox, (3.5)

where bbox denotes the bounding box regression.

3.2.4 A Semi-supervised Teacher-student Detector for Sim2Real

2022/5/25 05:01 ssl
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Teacher  Training

Synthetic data with the ground-
truth for training teacher model

Unlabeled real data

Student TrainingTesting

Real data with filtered pseudo
labels

Teacher provides pre-trained weights 

Teacher Student

Figure 3.8: Framework of the semi-supervised method applied to train a

detector. A teacher model is firstly trained with the synthetic data. The

unlabeled real data is fed to the teacher model and the teacher model gener-

ates pseudo labels for the unlabeled real data during the testing mode. The

pseudo labels are further filtered. Next a student model is trained with the

real data with filtered pseudo labels.

A detector trained with the synthetic data can achieve an effective performance in the

real world environment. It still needs to be validated whether the detector using both

synthetic and real data would have accurate performance within the Digital Twin. A

semi-supervised solution is proposed to train a detector of human actions and the whole

framework is shown in Fig. 3.8. The proposed semi-supervised method is based on the
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Faster R-CNN [17] framework. The proposed solution consists in a teacher-student

model to train a student model through semi-supervised training. The teacher model

is trained with synthetic data Dsyn = {Xsyn,Ysyn}. Once the teacher model is trained,

the real data is input without the ground-truth Xreal to the teacher model during the

testing mode Then the model will give predicted labels of Xreal, which is denoted as Ỹ.

However, the real data with its predicted labels
{

Xreal, Ỹ
}

cannot be used to train

the student model directly, because some redundant and low-quality results exist in

its prediction Ỹ. To filter these redundant and low-quality results, the Non-Maximum

suppression operation [149] is implemented. The Faster R-CNN predicts objects in an

image with their bounding boxes and classes with confidence which are regarded as

the predicted label Ỹ for an input Xreal. In the Non-Maximum suppression operation,

the bounding boxes of each class are ranked by their confidence. The bounding boxes

of each class with the highest confidence are remained which are Ŷ while the rest are

filtered. After Ỹ being filtered, pseudo labels Ŷ are obtained.

In the next step, the real data with its pseudo labels Dpseudo =
{

Xreal, Ŷ
}

is applied

to train the student model. The weight of the teacher model will be frozen as a pre-

trained for training the student model. The student model is the final model that is

applied to monitor the interactions between the robots and humans in the physical

system. It achieves more accurate and more robust results under changing lighting

conditions compared to the fully-supervised Faster R-CNN. The performance of the

proposed framework is evaluated in Section 3.4.

3.2.5 Relevance to the Standards and Regulations for HRC

Digital Twin technology provides an enormous potential for incorporating health and

safety regulations into cobot systems and vice versa, the Digital Twin can impact

the standards and regulations towards higher safety and reliability of these systems.

Some of the main safety regulation documents [144, 145, 150], especially applicable

to manufacturing, do not consider various levels of autonomy for the needs in different
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industrial applications. A part of the technical challenge is to identify and assess

the underlying hazards and risks of these cobot systems when not being operated in

power and in force limiting (PFL) mode. Particularly, this is especially important

in highly automated manufacturing industry which employs intelligent sensing and

artificial intelligence systems. In the considered UR10 cobot system, traditional sensors

were used for which the current standards and regulations [144, 145] have well specified

safety rules. These safety rules include proximity and light gates, to avoid hazardous

humane-robot collisions.

This work proposes an autonomous decision-making framework utilizing vision cam-

eras, with the advantage of being able to rapidly adapt to dynamic environments.

Additionally, in consideration of the physical reconfiguration of safety sensors as robot

movements are reprogrammed for conducting different tasks, the positioning and in-

stallation of vision sensors are relatively easy to achieve, compared with light gates and

physical fences.

According to the relevant sensing standards [151] which illustrate the requirements

for equipment using vision based sensors, several environmental factors should be con-

sidered when implementing such sensors into real industrial applications, including

optical occlusion, various ambient temperatures and lighting conditions. Due to prac-

tical considerations of complex industrial conditions, the proposed detector for actions

recognition of human-robot interactions is tested under different lighting conditions in

terms of the accuracy of object detection as depicted in Section 3.4. In practice, the

proposed detector can be embedded both in a Digital Twin platform and in the con-

trol algorithms of a cobot system. Accordingly, if dangerous scenarios such as unsafe

interactions or abnormal operations are detected successfully, the operator would be

alerted by relevant warnings whilst brake signals would be sent to the controller to

delay or stop the robot movements for guaranteeing safety.
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3.3 Datasets

Datasets
Full Semi- Semi- Full

Total
light light dark dark

Real Data 4,861 2,877 2,977 3,211 13,926

Synthetic Data - - - - 20,823

Table 3.1: Numbers of Images in different datasets. To guarantee the

real data that contains different light factors, the data is collected under

different lighting conditions: full light, semi-light, semi-dark and dark where

the lighting condition is changing from light to dark. With respect to the

Synthetic data, the data is generated without identifying lighting conditions.

To build a deep learning-based detector, two different datasets for training and testing

are required. Table 3.1 gives details about the two different datasets used: the syn-

thetic dataset for training and the real dataset for testing, described in Section 3.4.2.

Benefiting from the efficient synthetic data generation, a synthetic dataset along with

the annotation information is created within the digital system of the Digital Twin for

model training purpose. With respect to the testing data, real datasets are collected

from the physical system of the Digital Twin under the real working environment.

With the assistance of the semi-automated annotation tool, the process of annotating

the raw RGB data can be speed up for constructing the real dataset.

3.3.1 Semi-automated Annotation Tool

It is usually time-consuming and labour-intensive to annotate real data for each sin-

gle image. Several commercial annotation tools are available, such as V7 [152] and

Labelbox [153], supply AI functions to aid in data annotation. However, one major

drawback is that these pre-defined AI models usually only work well in very limited

scenarios, for example, detecting cars and humans for autonomous driving tasks. It
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cannot meet various demands of annotating specific objects such as the robot UR10,

and is not applicable to diverse industrial scenes.

The deep learning model in this framework is working with a semi-automated anno-

tation tool which is developed based on Labelme [154]. The Digital Twin generates

synthetic data and then the deep learning model is trained and tested using these

data. Furthermore, the deep learning model is deployed with the annotation tool for

acquisition and annotation of the real data from the physical system.

3.3.2 Real Data

(a) (b)

(c) (d)

Figure 3.9: Images with annotation information in the real dataset. From

(a) to (d), the whole process of human-robot collaboration is captured from

the Kinect V2 sensor mounted on the top of the UR10.
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In order to validate this framework, a real dataset is acquired by a Kinect V2 sensor

based on a UR10 platform and the dataset is publicly. To simulate a real HRC scenario,

three operators dressed in different clothes took part in the test whilst the Kinect V2

camera was mounted horizontally on the ceiling, looking down over the workspace. In

this case, the field of view of the camera can capture one or two operators at the same

time. Fig. 3.9 depicts that when a robot is working in a cell, an operator is moving

into the cell and then interacting with the robot.

The real data was collected under various experimental conditions, by changing illu-

mination levels and operators (humans). There are 4 different illuminat ion levels and

2700 images were recorded respectively at each illumination level. Besides, 1653 images

were saved with different operators. Totally this real dataset contains 12453 images.
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3.3.3 Synthetic Data

(a) (b)

(c) (d)

Figure 3.10: Images with annotation information in the synthetic dataset.

(a) and (b) shows human images from COCO dataset, while (c) and (d)

are robot images generated from the digital system of the Digital Tiwn.

The synthetic datasets include robot images that are generated using the proposed

Digital Twin technique whilst operator data is gathered from the COCO database [87].

Fig. 3.10 shows people with different appearances and robot images that are fed into

training a detector. With respect to the robot images generated from the digital system,

Domain Randomization techniques such as different lighting conditions and different

robot poses are applied during the data generation. To make the synthetic robot data

looks similar to the physical system, the background of the synthetic data is captured
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from the physical system.

The reason for merging human samples with annotation information from COCO

data [87] with the robot data is that COCO [87] is a public dataset for object de-

tection research and has collected abundant human images. It brings the advantage

that the detector can learn diverse human actions from the training data set to improve

its generalization. The detector is also capable of detecting different operators with

different appearance. This is irrespective of how many operators get into the robot cell

since it has learnt enough human data during the training process. Consequently, it

can be considered as an effective way to construct a training dataset for HRC scenario

without extra data collection and annotation. This synthetic dataset is randomly split

into two parts, including 20823 images for training and 5206 images for validation. The

image database used in this research is shared online, including the real dataset as well

as the synthetic dataset.

3.4 Performance Evaluation and Validation

3.4.1 Evaluation Metrics

The performance of the proposed framework has been evaluated and validated over

synthetic and real data under different lighting conditions.

The Average Precision (AP) [88] is adopted as the main evaluation metric, which is

defined as

AP =

∫ 1

0

p(r)dr, (3.6)

where p denotes the precision function and r is the recall function [155, 156]
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Precision p =
TP

TP + FP
,

Recall r =
TP

TP + FN
,

(3.7)

where TP represents the true positive values, FP is the false negative and FN is the

false negative [88].

The average precision (3.7) represents the area under the precision-recall curve. The

average precision has a high value when both precision and recall are high, and it has a

small value when either of precision or recall is small. While the average precision AP

is calculated for each class, the mean average precision (mAP) is calculated by taking

the average of average precision across all the considered classes.

The IoU is defined as follows [155, 156]

IoU =
A ∩B
A ∪B

, (3.8)

where A is the predicted bounding box of an object and B is the corresponding ground-

truth bounding box.

The mean AP (mAP), AP at the Intersection over Union (IoU) over 50% (AP50) and

the AP at the IoU over 75% (AP75) [87] are used to evaluate the performance of the

CNN trained over different datasets and under different lighting conditions.

There are several reasons why mAP is the primary evaluation metric. In this frame-

work, the camera is the only sensor that captures the robot and humans in HRC. The

performance that the famework can classify and locate the objects is mainly evaluated

in this chapter. mAP combines both precision and recall into a single metric, offering

a balanced view of the model’s performance. Precision measures how many of the

detected objects are correct, while recall measures how many of the actual objects are

detected. By considering both, mAP provides a more comprehensive evaluation. In

the meanwhile, object detection not only requires correctly classifying objects but also
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accurately localising them. The IoU threshold used in mAP calculations ensures that

both aspects are considered. If the predicted bounding box is not sufficiently close to

the ground truth, it is not counted as a true positive.

3.4.2 Experiment Setting

The Digital Twin is an excellent physical-virtual integrated system which can be used to

study the impact of different environmental conditions, including the potential factors

which may affect object detection, human action recognition and decision making.

This Section 3.4.2 presents results over real and synthetic data with the Faster R-

CNN described in Section 3.2.3. Two Faster R-CNN models are trained with different

datasets: one is trained only with real data, the other is trained only with synthetic

data. Then the performance of the proposed semi-supervised model is also evaluated

which is described in Sub-section 3.2.4 which considers both the real data without the

ground-truth and the synthetic data with the annotation. The teacher block within

the the semi-supervised model is firstly trained with the synthetic data and next the

student model is trained with real data without the ground-truth. These models are

trained on four Tesla V100 GPUs. The three models have been trained with the same

strategy, with a stochastic gradient descent (SGD) algorithm.

For the distributed training, 16 samples per GPU are selected with a total of 64 batch

size and the overall convergence of the stochastic gradient process takes up to 7 hours.

The model trained by real data takes less than a half an hour. linear warmup, a

learning rate schedule, is applied for training with an initial learning rate of 0.08

and the learning rate rises linearly after 500 iterations. Together with the stochastic

gradient, a technique called momentum is used. Instead of using only the gradient of

the current step in the search, the momentum uses the gradient of the past steps to

determine the next direction to move. A weight decay of 0.0005 and momentum of 0.9

are applied during the training process.
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3.4.3 Performance Evaluation of Detection

Four lighting conditions are considered in the experiment for evaluating the three mod-

els. Two Faster R-CNN models trained with two different datasets and the proposed

semi-supervised model are evaluated under different lighting conditions.

The first evaluation is within a steady manufacturing environment, where a robot re-

peats the same routine with pre-defined program in the robot cell. The detection

algorithm can achieve accurate and steady results by learning from similar scenes to

the robot cell, i.e., the training dataset should be diversified to cover as many scenes

as those in the robot working routine. Several environmental factors in real manufac-

turing scenes may affect the performance of a deep learning-based detector negatively,

such as image noise, illumination, unseen objects [157, 158]. Among these factors in the

robot cell, the room illumination has the greatest influence on the performance of the

detection algorithm. The change of illumination may results from the sunlight or the

lighting conditions of the factory which are unpredictable. Several solutions try to elim-

inate the negative effects of varying illumination including Data Augmentation [159],

data collection [160], image preprocessing [161], etc. These kinds of solution aim to

increase the diversity of the training data, making the model more robust to different

scenarios it may encounter in real-world applications. In this section, the performance

of semi-supervised solution trained with synthetic data in varying illumination will be

discussed.
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Full light Semi-light Semi-dark Dark

mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75

Real 0.692 0.98 0.781 0.661 0.974 0.841 0.645 0.965 0.742 0.605 0.968 0.674

Synthetic 0.789 0.978 0.913 0.773 0.965 0.93 0.585 0.844 0.677 0.608 0.904 0.712

Semi-supervised 0.781 0.993 0.924 0.768 0.989 0.928 0.679 0.966 0.804 0.701 0.972 0.817

Table 3.2: Results under different lighting condition, mAP, AP50 and

AP75 is utilized to evaluate three object detection models. Real represents

the Faster R-CNN model trained with the real data. Synthetic represents

the Faster R-CNN model trained with the synthetic data. Semi-supervised

is the semi-supervised model.

Table 3.2 shows that the semi-supervised solution achieves the best performance com-

pared to those trained only with the real or synthetic data under four lighting con-

ditions. From Tables 3.2 and 3.3, it is evident that when the lighting condition is

becoming worse, the APs of the three models decline demonstrates that the lighting

conditions is a critical factor that affects the performance of Faster R-CNN. Compared

to the model trained with the real data, the model trained with the synthetic data and

the semi-supervised model have better performance when the lighting is sufficient (full

light) which are roughly 10% better than the model trained with real data. Especially

in good lighting conditions (full light and semi-light), both the model trained with

synthetic data and the semi-supervised model achieves over 76% mAP.
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Full light Semi-light Semi-dark Dark

mAPUR10 mAPhuman mAPUR10 mAPhuman mAPUR10 mAPhuman mAPUR10 mAPhuman

Real 0.689 0.695 0.648 0.673 0.596 0.694 0.625 0.586

Synthetic 0.864 0.714 0.835 0.711 0.693 0.477 0.708 0.509

Semi-supervised 0.79 0.773 0.768 0.768 0.7 0.659 0.792 0.611

Table 3.3: mAP results at UR10 and Human under different lighting con-

ditions. Real represents the Faster R-CNN model trained with the real data.

Synthetic represents the Faster R-CNN model trained with the synthetic

data. Semi-supervised is the semi-supervised model.

With respect to AP50 and AP75, AP75 gives closer matching between the predicted

bounding box and the ground-truth compared to the AP50 metric. From what AP50

and AP75 of these model in full light and semi-light is illustrated, the Faster R-CNN

trained with the synthetic data and the semi-supervised model are above 91%, while

the Faster R-CNN trained with the real data in the full light condition only has 78%

AP75 in full light and 84% in semi-light. The performance of the model trained with

the real data drops over 10% from AP50 to AP75, while the other two show smaller

reduction in the average precision which means that the predicted bounding boxes of

these models are more accurate and closer to the ground-truth bounding boxes.

However, when the lighting is insufficient (semi-dark and dark), the model trained

on synthetic data shows a significant reduction in its performance. The APs of the

semi-supervised model drop less compared to the model trained with synthetic data,

when the lighting conditions change. The semi-supervised model also outperforms the

Faster R-CNN model trained with the real data. Hence, the semi-supervised solution

is robust to changes in the lighting conditions.

Table 3.3 gives the results for the mAP of UR10 robot and human under different light-

ing conditions. The Faster R-CNN trained with the synthetic and the semi-supervised

model also achieves better performance than the network trained on real data with
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good lighting conditions (full light and semi-light). However, mAPs with respect to

both UR10 and humans declines when the lighting is reduced.

Even when the Faster R-CNN is purely trained with the synthetic data, it achieves

a remarkable mAPUR10 under full and semi-lighting conditions. The semi-supervised

model shows more robust behavior when the lighting conditions are changing. Fur-

thermore, with respect to mAPhuman, the semi-supervised algorithm has the best score

compared to those models that are only trained with the real or the synthetic data.

The mAPhuman is above 77% under full lighting and also achieves 61% under the dark

situation.

The proposed semi-supervised solution demonstrates robust performance across various

lighting conditions. This robustness ensures reliable and consistent results, making it

a viable option for real-world applications where lighting can vary significantly.

3.4.4 Decision Making for Safe HRC

The detection algorithm is implemented on a laptop with Nvidia RTX 2070 GPU.

When monitoring the robot and the operator in the physical system, it can achieve

the detection speed at about 20 frames-per-second (fps), which meets the real-time

monitoring requirement in this case. However, the cumulative time delay due to data

transmission and model inference time may lead to negative effects on the monitoring

a safe HRC. In the meanwhile, some detection failures cannot be ignored, even though

it rarely happens.
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(a) Safe (b) Potential (c) Dangerous

Figure 3.11: Three safety criteria for safety decision making.

To enhance the reliability and the safety of the HRC, three decision making criteria are

defined to minimize the negative effects described above. A Faster R-CNN detector

has the capability to detect objects of interest and their locations in an image. Because

the camera used to monitor the interaction between operators and robot is mounted

on the top of a HRC cell, it provides a horizontal two-dimensional vision space. With

such a spacial relationship between camera frame and the world frame, the detection

information (bounding boxes) can indicate how close between the operator and the

robot and help to make a safe decision making. The safety decision making criteria

can be defined as: i) Safe: Only the robot is detected and no operator enters the robot

cell, the robot moves at normal moving speed as shown in Fig. 3.11 (a). ii) Potential:

In Fig. 3.11 (b), the operator enters the robot cell and the bounding boxes of both

the operator and the robot are detected and two bounding boxes do not overlap. And

the robot reduces its speed to the half of the original speed. iii) Dangerous: If two

bounding boxes overlap as shown in Fig. 3.11 (c), it means the operator is quite close

to the robot. Therefore, the robot should stop immediately to avoid collision with the

operator.

With different robot arm movement speed settings based on the safety decision making

criteria, the detection algorithm can efficiently reduce the risk of the collision when the

operator is getting close to the robot. In normal situations, the robot works at his

preset full speed without any operator involement. When the operator need to get
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closer to the robot and interact with the robot, the robot firstly can be aware of

the presence of the operator. Then the robot reduces its speed based on the safety

decision making criteria. When an overlap between the bounding boxes surrounding

the human and the robot end-effector occurs, the robot stops immediately. This allows

the operator to have enough reaction time to potential danger due to the the movement

of the robot arm, ensuring that any unforeseen movements or errors do not result in

harm. By incorporating these safety measures, the system not only enhances the

safety of the operator but also improves the overall efficiency and reliability of the

robotic operations. The adaptive speed settings and immediate stop mechanism act

as critical safeguards, providing a robust framework for human-robot interaction in

various industrial environments.

By calibrating the camera parameters, the camera is positioned at 3 meters height from

the ground. The horizontal distance between the operators and the robot is about 20

cm when their bounding boxes are overlapping at the beginning. In the proposed

work, the human can keep a safe distance to the robot with the designed criteria

based on the bounding box information. This is a different solution compared to the

approach proposed by Liu and Wang [162] which is a collision-free HRC approach,

requiring the position information for both the human and robot. The approach of Liu

and Wang [162] requires extra sensor-robot coordinate calibration for the purpose of

collision sensing which is not necessary in the proposed case.

Inspired from [163], the Kalman filter and Hungarian matching method are used here

to improve the reliability of the inference process. The state of each detection box

is defined as x = [µ, ν, s, η, µ̇, ṅu, ṡ]T , where (µ, ν) is the center of the bounding box

in an image, s is the scale parameter and the η is the ratio of the height to width

of the bounding box. The other variables µ̇, ν̇, ṡ denote the respective speeds of the

center coordinates and scale of the bounding box. When a bounding box is detected

by the detector, it is applied to update its corresponding target state with the Kalman

filter. The IoU distance between the detected and predicted box of an existing target
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that is tracked, is calculated. The assignment between the current and predicted box

is performed by the Hungarian matching algorithm. To reduce the delays from the

inference time of the detector, the frequency of detection is reduced to detect an image

every 4 frames. It significantly improve the speed from 20 fps to 100 fps by sampling

detection results when updating the states of the tracking with this post-processing.

A detector may fail to detect objects in some frames which may reduce the reliability

of the monitoring process and could raise risks of danger in HRC. Thanks to the

Kalman filter, the negative effects of such detection failures can be eliminated to a

great extent. For example, the detection result plays a role as “observation” in Kalman

filter to update the estimated state. Even though some observation points are missed,

the Kalman filter can skip the update step and rely solely on the prediction step to

estimate the current state. This robustness is one of its key strengths. For the multi-

object tracking problem [163], occlusions are also key factors that could reduce the

quality of tracking performance. Thanks to the monitoring camera mounted on the

top of the robot cell, some occlusions can be avoided.

Although in [134], a similar deep learning approach is proposed, it applies the Mask

R-CNN [86] to extract mask information. The mask information helps to reconstruct

3D relationship between the human and the robot in order to calculate the direct

distance for safe decision making. The proposed inference speed outperforms the speed

reported in [86]. Mask R-CNN [29] which is an extension version of Faster R-CNN [17]

requires extra computation cost to predict mask information. It would be difficult to

achieve a real-time performance without extra post-processing, even though a real-

time calculation is reported in [29]. In this case, the Kalman filter has improved the

inference speed to 100 fps, which is regarded as real-time performance. Ensuring real-

time performance is crucial for the framework when monitoring both the robot and

the operator in HRC. Any delays could potentially lead to danger when the operator

approaches the robot, as the system must account for quick and accurate decision-

making to avoid collisions or hazardous interactions. In a HRC environment, ensuring
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the operator’s safety requires real-time monitoring and prompt responses to dynamic

changes in their positions.

3.4.5 Discussion

From the analysis presented above, several advantages of the proposed framework are

evident. First, it is easy to setup and deploy the proposed framework in manufacturing.

Within the proposed Digital Twin, users can simply build a Digital Twin of the physical

manufacturing workspace by introducing CAD models of real objects into the Digital

Twin. The communication between the physical and digital systems can be established

by the ROS.

Traditional deep learning application in manufacturing usually requires huge data col-

lection and expensive manual annotation work. However, these can be avoided in

the proposed framework by implementing efficient data generation and with semi-

supervised method using the Sim2Real technique.

Besides, flexibility is another significant advantage of the proposed framework. This

generative framework is not limited to detect humans and robot actions. It can also be

extended to other objects by introducing new objects through adding their CAD models

into the digital system. In the meanwhile, users also can specify annotation method to

meet their requirements described in 3.2.2. Moreover, Faster R-CNN can be replaced

with another detection model within the semi-supervised method. The adoption of

the efficient data transmission scheme between the digital and the physical systems,

together with the automatic annotation generation, can allow users to implement other

tasks, such as reinforcement learning [164] and AR [165] in HRC.

This chapter also evaluates and discusses the effect of one key environment factor,

lighting condition, on detection performance. Additionally, by introducing the Kalman

filter and the Hungarian algorithm, the detector is enhanced to avoid detection failures

whilst the inference speed is also improved. With these post-processing and decision
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making rules, the safety distance between the human and robot is maintained which

enhances the reliability of the HRC environment.

Digital Twin combined with artificial intelligence have a huge potential to make a

difference in smart manufacturing. This was also demonstrated in [166, 167]. Moreover,

the inclusion of cloud computing services in Digital Twin can lead to cyber-physical

cloud manufacturing systems [168]. Digital Twin can be served as a platform for

reinforcement learning training [169, 165], and meanwhile, reinforcement learning is

promising to lead the next generation of Digital Twin.

3.5 Conclusions

This chapter explores the feasibility of a Digital Twin in smart manufacturing. It

proposes a deep learning-enhanced Digital Twin for detecting and classifying human

and robot actions for enhancing safety in manufacturing systems. A Digital Twin is

designed for human-robot collaborations which generates synthetic data directly in the

digital system. This helps with the generation of real data in the physical system

with accurate annotation. The Digital Twin is an efficient tool for studying different

levels of safety and to design decision making and control algorithms for manufacturing

purposes.

The Robot Operating System is used to provide synchronous communication with,

and real-time control of, the robot. The Digital Twin corresponding to the physical

system is designed with the help of Domain Randomization and the powerful photore-

alistic Unreal Engine 4. Training of the developed deep learning algorithms is achieved

successfully with synthetic data. A fully-supervised detection algorithm is shown to

achieve successful detection results in the real environment. To ensure reliability of the

system under different lighting conditions, a semi-supervised detector is proposed to

take both synthetic and real data into the training and detection process, which helps

in bridging the gap between the two systems in detecting humans and robots.
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Chapter 4

Deep Learning-Enabled Resilience

to Occlusion for Physical

Human-Robot Interaction

4.1 Introduction

The integration of robots into human environments has led to an increasing need for

safe and efficient human-robot collaboration. Dressing is a basic activity of daily living

that does not benefit from assistive devices and can be challenging for those with

mobility issues. Much work has been done in recent years to address this gap using

robot assistance, with particular insights in safe human-robot interaction [170], motion

control [171], visual and haptic feedback [172, 173] and garment manipulation and

grasping [122].

In robot-assisted dressing, the robot continuously adapts its motion to the user’s move-

ments using visual feedback. Occlusions introduce significant challenges since they lead

to uncertainty regarding human pose estimation. This issue has previously been ex-

plored for recurrent neural networks and user arm occlusion caused by placing garments
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on a Kinect sensor [174]. In this chapter, occlusions that naturally occur during as-

sisted dressing by an occupational therapist is investigated. A Deep Learning approach

is trained based on data collected during human-human dressing trials, facilitated by

an experienced occupational therapist (OT).

The proposed framework consists of a CNN, IK solver, and a parametric multi-body

model. The CNN was trained using a large dataset of human poses to infer joint loca-

tions from a stream of RGB images. The estimated joint positions are input to the IK

solver, which provides a robust numerical solution based on the Levenberg-Marquardt

(LM) method. This method updates the parameters of the multi-body model to esti-

mate the human motion. The parametric multi-body model uses a 10 degree-of-freedom

(DoF) representation of the human arm. To evaluate the accuracy of the framework,

dressing experiments are conducted with healthy volunteers inside a motion capture

laboratory featuring a VICON system, subsequently used as the ground truth for the

volunteers’ hand pose estimation. Mean-squared error analysis results are reported to

demonstrate the convergence performance of the approach. The proposed framework

has the potential to improve the safety and comfort of human-robot collaboration, with

significant implications for the development of assistive robotics.

Three research questions are addressed. First, whether an IK solver can generate a

ground truth within the user’s ergonomic arm workspace that aligns with the VICON

data set in the absence of occlusion. Secondly, whether fusing CNN data with the

CNN-KF can improve robustness against occlusions is assessed. Lastly, whether the

CNN-KF is robust against spontaneous arm motions. The main contributions in this

chapter are:

• A framework, that is robust to occlusions and environmental disruptions, that

uses a single camera to retrieve 3D joint location for a human arm.

• A robust online solution to the IK problem that takes estimated hand positions

from the CNN-KF and estimates user motion. This solves the IK problem for a
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Figure 4.1: The Proposed framework for occlusion-robust and ergonomi-

cally safe physical human-robot interaction.

hand position, finding an updated model configuration in joint space that satisfies

kinematic constraints.

• Evaluation of the accuracy of the CNN, CNN-KF and the IK solution using

the mean-squared error analysis, where the ground truth for the hand pose was

provided by a VICON motion capturing system.

4.2 Proposed Framework

Figure 4.1 presents the proposed framework to simultaneously predict the user’s upper

limb movements and update the kinematic model during assisted dressing in real-time.

It adopts a CNN fused with a CNN-KF and robust numerical methods to solve the IK

problem. There are four main components: A) machine learning component CNN-KF,
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B) a parametric multi-body model of the human upper limb, C) a numerical inverse

kinematic solver. Component D) is used to validate the performance of the proposed

framework.

4.2.1 The CNN-KF model

The CNN was trained, using a large data set of human poses, to infer joint locations

from a stream of RGB images taken as input from the dressing scenario. The estimated

joint positions are then fused with the Kalman filter to regulate the learning model

and to remove outliers. The CNN-KF joint estimations are provided as input to the

inverse kinematic solver.

CNN

The CNN framework is Top-Down [175], with three stages being used to estimate 3D

pose: human detection, 2D pose estimation and lifting the pose to 3D. For human

detection, the detector used in this chapter follows the baseline of Faster R-CNN [27].

Given an image, the detector outputs bounding boxes which represent areas contain-

ing a human. Faster R-CNN [27] is a two stage detector which is comprised of feature

extraction network and a Region Proposal Network (RPN). The feature extraction

network takes an image as input and outputs feature maps, while RPN generates po-

tential object areas in images, called region proposals. The region proposals together

with their corresponding feature maps are processed by Region of Interest (RoI) Pool-

ing and feed forward network to get the final detection results: the bounding boxes.

HRNet [176] is then applied for 2D pose estimation. HRNet is a convolution-based

neural network that encodes a high resolution image in different scale features. With

respect to 2D human pose estimation, the network predicts K keypoints: the joints of

human body. Consequently, K heatmaps are predicted. For a groundtruth keypoint,

the groundtruth heatmap yi is generated with 2D Gaussian where the centre is the

location of the keypoint. To optimise the network, the mean square error (MSE) loss
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function is introduced,

L2dKeypoint =
1

K

K∑
i=1

(yi − ŷi)2 , (4.1)

where ŷi is the prediction of keypoint i. Once the 2D keypoints are detected, a 2D

human skeleton is formed and passed to the pose lift stage for lifting 2D to 3D pose.

In order to lift the 2D human pose to 3D, a SimpleBaseline3D model [54] is trained

to predict 3D human pose by taking 2D human pose as input.

Kalman filter fused CNN

The CNN signal is subject to noise mainly caused by occlusion and disturbances in the

environment. For an occlusion-robust approach, the CNN fuses with a Kalman Filter

(KF) to smooth a signal. The CNN-KF uses the traditional KF as defined in [177], to

detect and remove outliers. The state-space model of the system is defined and it is

assumed that the state vector is x = |ŷ| where the i-th element of ŷ is a signal acquired

from the CNN for the i-th joint location. The state equation describing the changes

from one image frame to another is:

xk = Axk−1 + wk−1, (4.2)

where k denotes the discrete time (image frame), A is the transition matrix that reflects

the change in the image-frame and wk−1 is vspace. vspace is white, Gaussian, with a

covariance matrix Q.

Furthermore, wk−1 is independent from the state xk−1. The measurement model can

be expressed as:

zk = HXk + vk, (4.3)

where H is an m × n matrix describing the relationship between CNN learned values

and state. vk is the noise associated with the measurement and is white, Gaussian,

with variance R. The magnitude for covariance matrix R is large, since it is expected

to change in measurement noise due to occlusions. It is noted that Q and R are

diagonal and are restricted to be positive definite. In the model the state vector
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xk = [xk, yk, zk, ẋk, ẏk, żk]T represents the 3D joint location [x, y, z] at image-frame k

and also the respective speed of the change in position in ẋ, ẏ and ż.

In the state and measurement equations (4.2)-(4.3) the respective A and H matrices

are in the form:

A =

I I ∗ t

0 I

 ,H =
[
I I ∗ t

]
, (4.4)

where I is a unit matrix, 0 is a zero matrix, t is the time between two consecutive

frames, and adheres to a 30 fps rate, identical to that of the camera. Furthermore,

the kinematic variable speed is constant because erratic upper limb motion patterns

from subject is not expected. As an iterative feedback loop algorithm, the KF achieves

optimality with the update step and the prediction step. In the prediction step, the

predicted state x
′

k and predicted covariance P
′

k of the current state, independent of the

current measurement are calculated:

x
′

k = Axk−1, (4.5)

P
′

k = APk−1A
T + Q. (4.6)

In the update step, the optimal Kalman gain Kk is computed and is used to estimate

the mean and covariance of xk, which also takes as input the observed measurement

zk:

Kk = P
′

kH
T (HP

′

kH
T + R)−1, (4.7)

xk = x
′

k + Kk(zk −Hx
′

k), (4.8)

Pk = (I−KkHk)P
′

k. (4.9)

The KF is also susceptible to outliers caused by behaviours that are not considered in

the model. The R and Q covariance matrices is manually adjusted to eliminate these

outliers. The state variable xk is then provided as the initial guess for the IK solver,

to search for a single solution in the arm workspace of the human subject.
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4.2.2 Parametric multi-body model

The model uses a 10 degree-of-freedom (DoF) representation of the human arm, based

on a set of rules from the Denavit-Hartenberg (DH) convention [178]. Figure 4.2

represents the human upper body model adapted from the Xsens MVN model [179],

as an articulated multi-body system. Furthermore, each link can only connect with a

1-DoF joint and so dummy links are used to create a higher DoF joint.

Figure 4.2: Human upper limb representation as a 10 DoF robotic arm

adapted from Xsens MVN model [179]; two kinematic chains: 1) Left-arm

and 2) Right-arm.

Finally, the human arm model is expressed within a Unified Robot Description (URDF)

format, and specify the joint constraints. The IK solver takes as input the parametric

model of the articulated multi-body, solves the IK problem and returns the updated

model configuration in joint space and the Dof model of upper body is also explained

in Table 4.1.

4.2.3 Inverse kinematic solver

A robust online numerical solver based on the Levenberg-Marquardt (LM) method is

developed as described in [180]. The LM solver is used to dynamically update the joint

angles of the parametric multi-body model based on run-time observations of the hand

position (end-link) received from the CNN-KF. Furthermore, if the estimated end-link

79



CHAPTER 4. DEEP LEARNING-ENABLED RESILIENCE TO OCCLUSION
FOR PHYSICAL HUMAN-ROBOT INTERACTION

State Description

Base {0} T8 Origin Frame

Clavicle {C1} Anterior and Posterior Rotations

Clavicle {C2} Elevation and Depression

Clavicle {C3} Protraction and Retraction

Shoulder

{S1}

Abduction and Adduction

Shoulder

{S2}

Flexion and Extension

Shoulder

{S3}

Pronation and Supination

Elbow {E1} Flexion and Extention

Elbow {E2} Pronation and Supination

Wrist {W2} Flexion and Extention

Wrist {W3} Radial/Ulnar Deviation

Table 4.1: Frames of the the upper limb 10 DoF model. Each link can

only connect with a 1-DoF joint and so the dummy links are used to create

a higher DoF joint.

lies beyond the workspace of the arm, the LM algorithm finds a solution, within the

arm workspace, that minimises the least squares error.

So, let the complete joint configuration of the multi-body system in Figure 4.2 be

specified by the vector of n joints q ∈ Ω, where q = [q1, . . . , qn]T and each qj is a joint

angle. Ω is the set of possible joint configurations and, typically, bounds each angle

to a range: q ∈ Ω ⇐⇒ qj ∈ [aj, bj] for aj ≤ bj. Links llha and lrha in Figure 4.2 are

end-links. The position of the i-th end-link is denoted si and is a function of the joint
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angles si(q). The target position for the i-th end-link is denoted ti. The IK problem

is to find values for q such that ti = si(q), for all i. The LM solver, uses an iterative

method to approximate a single best solution.

Finally, the LM solver calculates joint configurations (Ω) for a desired end-link pose

(e) based on a specified multi-body model (M). The values for the error tolerance

(δ), the damping constant (λ), and the maximum number of iteration (Nmax) are

set a-priori, before starting the computation. The LM solver will always return an

ergonomically safe solution, which will help the robot to avoid putting the human user

in uncomfortable positions, and enhance the human-robot interaction.

4.3 Experimental setup

4.3.1 Participants

The results of the trials involve a professional occupational therapist and three healthy

volunteers (1 female and 2 male), age range 22-32 years, height range 160-179 cm,

and weight range 62-96 kg. The volunteers were guided by the OT to mimic four

typical upper body spasticity patterns defined in [181], often observed in stroke patients

[182] with respect to the position of shoulder, elbow, forearm, and wrist joints. All

participants gave written informed consents to take part and the trials were approved

by the University of Sheffield Ethics Committee (043182). Table 4.2 presents Hefter’s

four spasticity patterns. 12 dressing trials are recorded, as a set of 4 trials pertaining

to the spasticity patterns in Table 4.2, between the OT-participanti dyad (1 ≤ i ≤ 3).

Each trial lasted approximately 10-12 minutes, with a 5 minutes break between trials

and 12000 data points are collected from each trial. In each trial the participant was

seated on a chair while the OT stood next to them. Each trial lasted approximately

7-9 minutes, followed by a 5-minute break. With respect to image data, 20,000 RGB

data points are collected from the video stream and 57,000 marker trajectory points

from the motion capture system. The input stream of RGB images were recorded by a
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12MP camera with auto-focus, f/1.8 aperture and optical image stabilisation, capable

of capturing 4K video, set to 30 fps.

4.3.2 Motion capture

In the experiments, the occupational therapist assisted the volunteer in donning a robe.

This process was initiated from the volunteer’s left ‘spastic’ arm, emulating a disabil-

ity scenario, subsequently transitioning to the left shoulder, and finally to their right

‘healthy’ arm. An eight-camera VICON motion capture system is operated, operating

at 120 Hz, to capture the 3D locations of markers. This allowed us to precisely monitor

the participants’ positional dynamics throughout the procedure. Markers were affixed

to discernible bony landmarks: at the base of both the left and right middle fingers,

and on each shoulder. Complementing this, two reflective markers were positioned at

the anterior aspect of the head, with an additional two markers at the posterior. Data

inconsistencies arising from marker occlusions were rectified using linear interpolation.

Data inconsistencies arising from marker occlusions during data collection were recti-

fied using built-in interpolation functions in the Vicon Nexus system. Post-collection,

the data was filtered using a 3rd order 20 Hz low-pass Butterworth filter. This VICON

dataset provided the ground truth, corroborating the efficacy of the numerical solution

addressing the IK challenge.

With respect to datasets for training CNN model for human pose estimation. The

human detector and 2D pose estimation model was trained with the MS COCO

dataset [87], which contains over 330,000 images, with more than 200,000 labeled im-

ages. There are 17 2D keypoints for each annotated human in the dataset. The 3D

human pose model, on the other hand, are trained using the Human3.6M dataset [183],

which includes about 3.6 million frames. The annotations for this dataset include 3D

joint positions for each labeled human.
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Segment
Pattern I Pattern II Pattern III Pattern IV

Shoulder Int.

Rot./Abd.

Int.

Rot./Abd.

Int.

Rot./Abd.

Int.

Rot./Abd.

Elbow Flexion Flexion Flexion Flexion

Forearm Supination Supination Neutral Pronation

Table 4.2: Upper limb spasticity patterns.

4.3.3 Planned disruptions

In each of the four dressing trials (see Table 4.2), a disruption is planned to elicit spon-

taneous movements from the participant. The planned disruptions were: a simulated

fire alarm (d1); a random call to the volunteer on their mobile phone (d2); the volunteer

randomly interacting with objects in the environment (d3); and a random obstruction

in the OT’s pathway (d4).

4.3.4 Rigid-body model parameters

The variables llcl, llua, llfa and llha in the kinematic chain (Figure 4.2) represent the

length from the left clavicle to the shoulder joint, the left upper arm, left forearm and

left hand lengths, respectively. These can be estimated from the subject’s height based

on bio-mechanics literature [184]: llcl = 0.129 ∗ H, llua = 0.186 ∗ H, llfa = 0.146 ∗ H

and llha = 0.108 ∗H.

Furthermore, in the proposed framework, each joint constraint (bounds) will be speci-

fied by a domain expert (i.e., Physiotherapist or an Occupational Therapist) and will

be adjusted according to the rehabilitation therapy plan for the user. However, partic-

ipants were healthy adults and the range of motion for the upper body internal degrees

of freedom were based on biomechanics literature for a healthy adult.
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4.3.5 LM solver parameters

The IK solver was built using MATLAB-Simulink 2023a. The inverseKinematics sys-

tem object was used to create the IK solver to calculate the joint configurations for the

desired end-link pose based on the multi-body model of the human upper limb. In order

to generate a suitable human-arm manipulator configuration, the solverAlgorithmProp-

erty is set to LevenbergMarquardt algorithm. The SolverParameters used were: final

error tolerance δ = 10−12; maximum iterations Nmax = 1500; MaxTime = 30s and

damping constant λ = 0.1. The parameters were set a-priori and all the other param-

eters were set as default. The simulation of the modules presented in the proposed

framework (Figure 4.1) was run on a Dell 11th Gen Intel Core i7, Windows laptop.

4.4 Results from User Trials

The first phase of the scenario in Figure 4.3, from k = 0 to k = 21 seconds, involves

the OT engaging participant p1 in conversation to see how they are feeling. During

this, p1’s right-hand (RHA) rests on his right leg and the left arm is held in spasticity

pattern II. In state 2, the OT pulls the garment over the left-hand (GoL ha); very

little motion is recorded in p1’s right-hand, by both the CNN and the VICON system.

Whereas in the left hand (LHA) there are oscillations, which are caused by occlusions.

In state 3, disruption (d3) is recorded, p1 receives a mobile phone call. In order for

p1 to answer the call, the OT stops the dressing, p1 pulls the mobile phone from his

righthand trouser pocket. This can be visualised in the first dip in the curve (region

[d], in Figure 4.3). p1 then raises the mobile phone to his right-ear to speak to the

caller, and keeps the right-hand in that position during the conversation. When the

call is over, p1 returns the mobile to the trouser’s pocket, visualised by the second dip

in the curve. In state 4, the OT pulls the garment over the left forearm (GoL fa).

Finally, in state 5, the OT holds the garment to the right shoulder (HG rsho), for p1

to put their healthy limb into the sleeve. The trial lasted 117 seconds.
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Figure 4.3: Participant p1 performing dressing trial for spasticity pattern

II.

Although the CNN performed well, as shown in Figure 4.3, it significantly deviated

from the VICON trajectory in the y-direction in region d. It seems likely that this is

simply the result of one camera not always providing enough information to estimate

3D locations. In practice, one could instead use a multi-camera setup to maximize
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Figure 4.4: World image [h] depicts CNN beging able to learn p1’s occluded

left wrist joint location from partially visible forearm. In [i]-[j], the CNN is

not able to learn p1’s wrist joint location correctly due to occlusion by the

garment.

coverage and to minimize occlusion. Importantly, however, Figure 4.3 shows that

when a Kalman Filter is applied to the CNN signal, adjusting the covariance matrices

(Q and R) to reduce the Kalman Gain, the result was similar to the VICON signal,

achieving results within the 85% CI. Regions [e-g] in Figure 4.3 show oscillations in the

CNN curve for the left-wrist joint. However, p1 had restricted movement in his left-arm

(see the VICON curve and IK solution IKVICON). The corresponding images [i, j], at

k = 35 and k = 42 seconds, and magnified in Figure 4.4 show that the oscillations are

caused by occlusion by the garment. The CNN mistakes the OT’s wrist joint for p1’s.

In contrast, in image [h] in Figure 4.3 and 4.4, at k = 28 seconds, the CNN can learn

the correct position of the left-wrist joint despite occlusion because p1’s forearm was
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partially visible. It is unsurprising that occlusion can lead to errors.

Pattern I Pattern II Pattern III Pattern IV
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Figure 4.5: Left-arm joint signals, in window W1 the participant p2 is

waiting to be assisted with dressing, there are no occlusions, in windows

W2 and W3 there are some occlusions, mainly caused by the occupational

therapist during assisted dressing.

Figure 4.5 gives the trajectories of the left-wrist (LWRS), left-elbow (LELB), and left-

shoulder (LSHO) across the four spasticity patterns with p2. In window W1, where

p2 awaits dressing assistance, there are no occlusions and the signals remain stable.

However, in LWRS window W2, occlusions arise as the OT pulls the garment over

p2’s hand segment and wrist joint. These occlusions cause the CNN to under-perform,

leading to oscillations in the CNN signal.

Applying a Kalman filter (KF) to the CNN’s 2D keypoints (CNN-KF2D) results in a

more dependable signal. Furthermore, by extending this to CNN’s 3D keypoints (CNN-
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KF3D) and adjusting the Q and R covariance matrix, where Q is decreased and R is

increased so the signal is significantly enhanced, effectively mitigating noise induced by

occlusions. It’s important to note that applying the KF to either the CNN’s 2D or 3D

keypoints doesn’t yield substantial differences; rather, it’s the fine-tuning of the Q and

R covariance matrices that yields a smoother curve. Additionally, integrating a KF

with a CNN that lifts 2D to 3D keypoints combines the depth-aware capabilities of pose

estimation, while the KF aids in refining these estimates over time, taking into account

the temporal dynamics and potential noise in the measurements. Future efforts will

focus on dynamically adjusting Q and R using weighted Mahalanobis Distance to filter

real-time noise outliers..

For the LSHO signal during W2, the OT is pulling the garment over the hand, forearm,

and upper-arm segments. Interestingly, there are relatively few occlusions observed

during this process. This is attributed to the OT’s positioning: initially standing

mostly in front of p2 while assisting with pulling the garment over the hand and forearm

segments, (consequently, more occlusions observed in W2 for LWRS and LELB signals),

and then moving to the left side of p2 when pulling the garment over the left upper

arm. As a result, the shoulder remains visible to the camera for the majority of the

time, minimising occlusions and ensuring clearer signal.

Figure 4.6, depicts the corresponding outcomes for the right arm joint signals of p2.

This arm represents the healthy limb and is less constrained by mobility issues. Com-

pared to the left arm, it experiences fewer occlusions from the OT, but is affected more

by environmental disruptions (Section ”Planned disruptions”). Specifically, during dis-

ruption d2, deviations between the CNNs and the ground truth signal IK are notable,

particularly in the RWRS and RELB signals. The deviation is likely due to single cam-

eras sometimes lacking sufficient information to estimate 3D locations. Although, the

CNN, was trained on multi-viewed data of the Human3.6M dataset, it may not have

fully represented the diversity of poses and activities encountered in real-world sce-

narios. To mitigate this, employing a multi-camera setup could improve coverage and
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Figure 4.6: Right-arm joint signals, where in window W1 there are no

occlusions or disruptions, in windows W2 and W3 there are some occlusions

and environmental disruptions.

reduce occlusions for more reliable signal estimation. Figure 1, in the Appendix, also

illustrates how the CNN under-performs because it is not able to adapt to information

from different viewpoints.

4.5 Analysis and Evaluation

Recall that the VICON system provided the ground truth for the hand location during

the trials. In this section, the results of the regression analysis are reported which

are conducted to assess the convergence performance and accuracy of the presented

approach.
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(a) Left hand (LHA) (b) Right hand (RHA)

Figure 4.7: Deviation of the hand pose estimation, between the IK so-

lution and the VICON marker trajectory, during dressing scenarios I-IV

with no/occlusion. The results represent the averages over three partici-

pants performing each dressing scenario.

4.5.1 Inverse kinematic solver

The evaluation of the IK solver based on four dressing trials with three participant is

presented. Figure 4.7.a shows the average deviation of IK solution from the VICON

data set, for the left hand (LHA), for all four spasticity patterns. The IK solver

successfully converges to the VICON trajectory marker with a median deviation below

0.047m when there were almost no occlusions. This concurs with the accuracy of above

98% across the scenarios, within 0.1m (Table 4.3) for the LHA with no occlusions; with

both the RMSE and MAE below 0.05m across the scenarios. When occlusions were

reported the median deviation increased with maximum upper whisker at 0.1454m and

accuracy of below 89% across the scenarios. Furthermore, when the VICON system

experienced occlusions, the deviation in the IK solution increased, resulting in outliers.

Outliers indicate cases where the estimated configuration is infeasible and the LM

solver aims to find a ‘best’ feasible solution.

The results for the right hand are similar. The IK solver achieved an accuracy of
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Dressing

scenario

Accuracy score % RMSE [m] MAE [m]

no occ. occ. no occ. occ. no occ. occ.

LHA RHA LHA RHA LHA RHA LHA RHA LHA RHA LHA RHA

I 100 98 74 86 0.025 0.026 0.049 0.034 0.033 0.013 0.092 0.044

II 99 99 89 62 0.009 0.013 0.032 0.053 0.035 0.010 0.054 0.079

III 98 97 57 84 0.046 0.025 0.066 0.059 0.024 0.016 0.094 0.045

IV 100 100 74 86 0.036 0.011 0.089 0.067 0.040 0.011 0.079 0.058

Table 4.3: Average performance across the four dressing scenarios based

on three participants performing each dressing trial.

above 97% across the scenarios when there were no disturbances, with a mean RMSE

below 0.026m. When disturbances were introduced, to illicit spontaneous arm motion,

the median deviation increased, with an accuracy of below 86% across the dressing

scenarios (Table 4.2).

The results indicate that the IK solver is consistent with the ground truth when there

are no occlusions. When there are occlusions, and so the VICON data is likely to be

incorrect, the IK solver returns a solution that is within the user’s workspace.

4.5.2 Handling occlusions with the CNN-KF

The dressing trajectory for the left upper limb consists of four waypoints: left-wrist

(LWRS), left-elbow (LELB), left-shoulder (LSHO) and right-shoulder (RSHO), respec-

tively.

In this section, the estimation of the upper limb joint locations of the CNN and the

CNN-KF is compared with the IK solution based on the VICON data set, for each

waypoint along the trajectory. Figure 4.8 visualises the average deviation of each

waypoint for both the CNN and CNN-KF from the IK solution, across all four scenarios

performed by three participants. The accuracy scores reported in Table 4.4 are based

on an error margin from the ground truth within 0.1m. Both the CNN and the CNN-
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Waypoint

Accuracy score % RMSE [m] MAE [m]

CNN CNN-KF CNN CNN-KF CNN CNN-KF

no occ. occ. no occ. occ no occ. occ. no occ. occ. no occ. occ. no occ. occ.

LWRS 99 55 100 96 0.044 0.158 0.038 0.053 0.039 0.118 0.036 0.045

LELB 98 83 99 90 0.042 0.082 0.039 0.063 0.038 0.065 0.036 0.052

LSHO 100 98 100 100 0.046 0.058 0.058 0.042 0.058 0.043 0.058 0.041

RSHO 100 98 100 100 0.056 0.048 0.059 0.048 0.055 0.042 0.059 0.044

RELB 100 82 100 88 0.039 0.090 0.039 0.070 0.035 0.072 0.036 0.059

RWRS 98 87 98 92 0.055 0.077 0.055 0.059 0.051 0.056 0.052 0.047

Table 4.4: Average performance index scores across the four dressing

trajectory waypoints for the left-right upper limb, based on three participants

performing the four dressing scenarios.

KF successfully converge to the IK solution with a median deviation below 0.042m

across all four waypoints when almost no occlusions are reported. The corresponding

high accuracy scores of above 98% for both CNN and CNN-KF, with RMSE and MAE

below 0.05m, concurs with these results. When occlusions are reported the median

deviation increases, notably more for the CNN, particularly for spasticity pattern IV,

with maximum median deviation of 0.128m for the lelbIV waypoint. This is due to

the induced disturbance d4 (random obstruction in OT’s pathway), which led to more

occlusions caused by the OT. Whereas, the other disturbances had less impact on the

left arm joint estimations because they elicited spontaneous motion patterns in the

right arm. In comparison, the results reported for the approach, the CNN-KF, show

robustness to occlusions, with median deviation reported below 0.05m and accuracy

scores above 96% across all four waypoints. Moreover, Table 4.4 also reports the

accuracy scores for the CNN and CNN-KF for the right arm joints, which were more

exposed to spontaneous arm motions but less occlusions from the OT.

The higher accuracy scores for the CNN-KF show the robustness of the approach to

both occlusions and to spontaneous motion. Likewise, the lower RMSE and MAE errors

for the CNN-KF, in comparison to the CNN, also indicate robustness. Nonetheless,
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the ground truth also includes outliers in the VICON data set, which may have some

negative impact on the results. Furthermore, the CNN operates at a fixed speed of 18

fps, the CNN-KF, achieves a faster speed of 30.4 fps by sampling frames selectively.

The speed tests were conducted using the Nvidia RTX 3090Ti GPU.
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Figure 4.8: Deviation of assisted dressing trajectory across all four spas-

ticity patterns, between CNN and CNN-KF from the IK solution. The

results are based on the averages of three participants performing all four

dressing scenarios.

4.6 Conclusions

A real-time tracking framework is introduced for human upper limb motion, specif-

ically tailored to spasticity patterns observed in stroke patients. By modelling the

problem as a partially observable dynamical system, 3D postures are inferred using

a CNN with Kalman filtering (CNN-KF3D). The evaluation compared these results

with hand poses estimated by VICON reflective markers, revealing that CNN-KF3D

exhibited less deviation and greater robustness to occlusions compared to the CNN

model alone. However, the approach under-performed during high-movement scenar-

ios, attributed to a lack of training on multi-view data. Additionally, leveraging the

Levenberg-Marquardt IK solver enhanced robustness by optimising solutions within
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the ergonomic arm workspace, particularly when the desired hand position was un-

reachable.
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Chapter 5

Real-time Activation Pattern

Monitoring and Uncertainty

Characterisation in Image

Classification

5.1 Introduction

DNNs have attracted increasing attention [185, 186, 187] both in academia and in-

dustry during the past decades. They have been intensively investigated in the fields

such as robotics [188, 189], autonomous driving [190] and manufacturing [191] which

require high levels of safety due to involvements of human. Especially the perfor-

mance of deep learning methods for image classification under uncertainties has been

investigated. The [192, 193] summarise the recent state-of-the-art and how different

uncertainties impact DNN methods. The quantification of uncertainties can be per-

formed by propagating a tensor normal distribution as a prior of a CNN [194]. The

mean and variance of the Gaussian distribution are propagated within a CNN frame-

95



CHAPTER 5. REAL-TIME ACTIVATION PATTERN MONITORING AND
UNCERTAINTY CHARACTERISATION IN IMAGE CLASSIFICATION

work called PremiUm-CNN developed in [194]. The variance is especially informative

and a small variance means accurate classification results. Another approach uses the

Hamming distance [195] which characterises well the difference and similarity between

binary strings.

Although there is a number of approaches that are able to quantify uncertainties in

CNNs, such as [196, 197, 198, 199], there is a necessity of expanding these studies with

different types of uncertainties - in the data: gradual and abrupt, due to environmental

changes, including lighting and meteorological conditions, camera motion and other

factors. Other effects can be intentionally introduced, such as adversarial attacks

and are aimed to cause CNNs to make mistakes. It is important to identify when

a trained CNN model performs inference correctly in order to provide a trustworthy

result [200, 46, 45]. Ideally, CNN models have highly reliable performance with those

inputs that have features similar to their training data sets. However, calculating

similarity between inputs and training sets directly is of high computational complexity

due to the reason that samples may have very high dimension.

This chapter develops a Faster R-CNN supervised classification framework able to

quantify the impact of data on the performance of the classifier. The network has

testing data that are not the same as the training data, hence the network is put

outside its ‘comfort zone’, i.e. a wrong decision could be made by the network. This

may results in potential hazards to human especially in those scenarios with human

involvements. Hence, inspired by ideas from [44], this work presents an improved

real-time activation pattern monitoring algorithm for monitoring the R-CNN features

representations for different image inputs. The patterns of the ‘neurons’ inside the

Faster R-CNN are monitored with different data. The approach uses the Hamming

distance to characterise the difference and similarity between binary strings and the

this is combined with the Kullback-Leibler divergence.

The main contributions of this work consist in the following: 1) distributions of the

neuron activation patterns are calculated using the Hamming distance between the
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current activation pattern and the central activation pattern. Next, the closeness of

these distributions is characterised based on Kullback-Leibler divergence; 2) Monitor-

ing zones are constructed based on decision making, by taking the patterns with the

corresponding probability values and the changes in the patterns are visualised; 3) The

efficiency of the monitoring framework is demonstrated over MNIST and PASCAL

datasets.

The remainder of this chapter is organised as follows. The methodology proposed is

elaborated in Section 5.2. Section 5.3 provides the experimental results and analysis,

and the chapter is concluded in Section 5.4.
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5.2 Methodology

Output: 0

Record activation patterns from the activation 

layer and store them as ground truth (GT)

Phase 1:Record activation patterns of training sets

Phase 2: Monitor the neural network

Output: 0

Compare the activation pattern of the predict 

result with GT of the same category

Wrong  Prediction!!!

Figure 5.1: Overview of real-time activation pattern monitoring. The

framework includes two phrases. In Phase 1, the activation patterns are

first recorded. the central activation pattern of each class is found based on

their similarities. In Phase 2, the network is monitored when a new image

is fed to the network and the activation situation is monitored.

5.2.1 Activation Pattern Representation

A DNN model is defined as y = F(θ,x) with the DNN hyperparameter θ where y

is the output of the model and x is the input of the model. The model can classify

{c1, . . . , cl} ∈ C classes and consequently, y ∈ C.

The common activation function applied in the activation layers of DNN models in this

chapter is the ReLU function that is in the form of
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σ(a) = max{a, 0}, (5.1)

where a is the input value of ReLU function.

In this chapter, a neuron in the activation layer is considered as activated when its

output is greater than zero. The output of the last activation layer in a DNN model is

denoted as {v1, . . . , vd}, with d the dimension of the last activation layer. The archi-

tecture of the proposed activation pattern monitoring approach is shown on Fig 5.1.

In Phase 1, activation patterns are systematically recorded. Subsequently, the central

activation pattern for each class is determined by assessing the similarities among the

recorded patterns. In Phase 2, the network undergoes real-time monitoring as new

images are introduced. This allows for the observation and analysis of the activation

responses within the network.

The binary activation pattern can be defined as follows:

Definition 1 (Binary Activation Pattern) Given the output of the last activation

layer {v1, . . . , vd}, the activation pattern of a certain class c is defined as

P c =
(
p(v1), . . . , p(vd)

)
, (5.2)

where p(·) defined in (5.3) is a function that maps a real number v ∈ R into binary

numbers:

p(v) =

 1 v > 0,

0 otherwise.
(5.3)
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Figure 5.2: Visualisation of activation layers (first row) and the corre-

sponding activation patterns (second row) of Number 1 in MNIST dataset.

The activation pattern becomes more abstract from left to right as the layer

in DNNs gets deeper.

For datasets such as MNIST and PASCAL, there are more than one class to be detected

and classified. For clarity, let T denote the training dataset, and Tc ⊆ T denote images

in the training dataset contain objects with a certain class c. The activation patterns

of Tc can then be organised as

Pc =

{
P c
0 , . . . , P

c
i , · · · , P c

n

}
, (5.4)

where n indicates the number of patterns of class c. Activation patterns of the whole

training dataset can be defined similarly and denoted as P , with Pc ⊆ P stands. Fig-

ure 5.2 show examples of different activation patterns from different layers of Number

1 in MNIST dataset [18].
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5.2.2 Central Activation Patterns

Given a class c, similar activation patterns for objects are expected to be contained

in various input images. It is able to accumulate activation patterns of class c during

the training process, and therefore find a central activation pattern that can represent

class c for further applications.

The central activation pattern P̃ c of class c is defined as

P̃ c , arg max
P

∑n
i=0 H (P, P c

i ) , P c
i ∈ Pc, (5.5)

where H(·, ·) indicates the Hamming distance between two binary patterns P and P c
i .

In this chapter, the Dynamic Programming (DP) algorithm [201] is exploited to solve

(5.5). In the following, the application of DP in this case is summarised.

Here minimum sum of Hamming distances are denoted as followed:

τ c[j] = min
∑

H (P [: j], P c
i [: j]) , (5.6)

where [: j] represents neurons from first to j-th in activation patterns and there are d

neurons in total. Since the neurons in the activation patterns are independent on each

other, the iterative update rule of τ c[j] is,

τ c[j] = τ c[j − 1] + min
∑

H
(
qcj , p

c
i(vj)

)
, (5.7)

where qcj ∈ {0, 1} is the j-th neuron and pi(vj) is j-th neuron of activation pattern P c
i .

By inferring qcj from 1 to d where d is also the dimension of activation patterns, that is

P̃ c[j] , arg min
qcj

∑
H
(
qcj , p

c
i(vj)

)
, (5.8)

the central activation pattern of class c:

P̃ c = (qc1, . . . , q
c
d) is finally obtained.
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5.2.3 Activation Pattern Distance Distribution

So far the central activation pattern P̃ c of Pc is obtained with the DP algorithm and

a set of activation patterns Pc is already recorded. They share the same class c. First

the Hamming distance between the central activation pattern P̃ c and every activation

pattern P c
i from the considered set is calculated. Then a set of results for the Hamming

distance is obtained. Then the Hamming distance is used to calculate sub-intervals.

While the central activation pattern P̃ c is representative for a certain class c, the

extraction of activation patterns and comparison with P̃ c remains a challenge for real

time activation pattern monitoring. The situation gets worse when the dimension

of the activation pattern increases. To cope with the challenge, this chapter further

propose the activation pattern distribution, which aims at distinguishing difference

classes efficiently.

Given Pc and P̃ c, the Hamming distances between P c
i ∈ Pc and P̃ c, with i = 0, · · · , n

are first calculated, which are denoted as Dc = {Dc
0, · · · , Dc

i , · · · , Dc
n}. Then the

interval [min(Dc),max(Dc)] is partioned into m sub-intervals evenly and calculate the

number of distances falling into each sub-interval. Let’s denote the results as N c =

{N c
0 , · · · , N c

j , · · · , N c
m}, then the activation pattern distribution α is defined as follows

α = N c/n =

{
N c

0/n, · · · , N c
j /n, · · · , N c

m/n

}
. (5.9)

With (5.9), the distribution of each class can be calculated. To distinguish different

classes, the Kullback-Leibler (KL) divergence is employed as a metric, which is defined

as

KL(α||β) =
∑
j

α(j) log

(
α(j)

β(j)

)
, (5.10)

where β represents a distribution where the classes between the central activation

pattern P̃ c and the activation pattern set Pc? are different between c and c?. In α the

Pc and P̃ c share the same class c.
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5.2.4 Choice of Thresholds and Monitoring Zones

In this chapter, two types of distance distributions of the neurones’ patterns are in-

vestigated compared to the central activation patterns. The first type is denoted as

‘Same’, which indicates that the activation patterns and the central patterns are from

the same object class. On the contrary, ‘Different’ is used to indicate that the ac-

tivation patterns are from objects of different class compared to that of the central

patterns. To distinguish the two pattern distance distributions, two thresholds S0 and

S0.05 are defined to build three monitoring zones: (0, S0), (S0, S0.05) and (S0.05, +∞).

The threshold S0 characterises the shortest distance between the central activation

pattern and activation patterns with different object class from the central activation

patterns, i.e., the very first recorded distance from 0 in ‘Different’ seen in Figure 5.3

and Figure 5.4.

The S0.05 threshold represents the distance where the accumulative probability from 0

of ‘Different’ distribution is 5%, i.e.,
∫ +∞
0

Dist‘Different′(x
′)dx′ = 0.05, and S0.05 = x′.

Therefore, the interval (0, S0) can be defined as a comfort zone which means the

predicted result is trusted. When distances between prediction activation patterns and

central activation patterns are in (S0, S0.05), it will be considered as a ‘warning signal’

which requires extra attention (manual) to aid decision-making of neural networks. As

for distances in (S0.05, +∞), the predictions are taken as ‘not trust-able’.

5.2.5 The Activation Pattern Monitoring Algorithm

In the proposed monitoring algorithm, activation states of neurons from the close-to-

output layer of the DNN model is monitored. To accomplish this, a two-phase algorithm

is implemented as depicted in Fig. 5.1. The details are given in Algorithm 1. In Phase

1, the pre-trained model is fed with the training dataset again and the activation

patterns of training samples will be recorded and stored as the ground-truth (GT).

After Phase 1, when a new input comes to the model, the activation pattern and
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prediction of the model will be the output. In Phase 2, the activation pattern is

compared with the GT with the same label to find out their differences by calculating

their Hamming distances. If the distance is larger than a threshold, the prediction is

defined as a problematic decision that is unacceptable.
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Algorithm 1 Real-time Activation Pattern Monitoring

Phase 1: Record activation patterns of training set T

for Tc ⊆ T do

for x ∈ Tc do

y ← F(x) and P c is the activation pattern of x

if y = c then

Pc ← Pc ∪ P c

end if

end for

end for

/? Generate central patterns of different classes ?/

Phase 2: Monitor the Neural Network

y′ ← F(x′) and P ′ is the activation pattern of x′

for c ∈ C do

if y′ = c then

/? Calculate the shortest Hamming distance between P ′ and Pc ? /

Dist← H(P ′, Pc)

if Dist ∈ (0, S0) then

Print “y′ is trusted”

else if Dist ∈ (S0, S0.05) then

Print “Require Human Judgement”

else

Print “y′ is not trusted”

end if

end if

end for
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5.3 Experiments and Analysis

To verify the proposed algorithm, it is applied intp two tasks: 1) image classification

on the MNIST dataset; 2) object detection on the PASCAL dataset.

Image classification is a fundamental task in CV that involves assigning a label to an

entire image based on its content. The objective is to categorise the image into one

of several predefined classes [25]. while object detection is a more advanced task in

computer vision where the goal is to identify and locate multiple objects within an

image. This involves not only classifying objects but also drawing bounding boxes

around them to indicate their positions [27]. With respect to monitoring the activa-

tion pattern, implementing such an algorithm in object detection is more challenging.

Multiple objects in the same image may affect each other’s activation situation and

confuse the DNN. Consequently, the location of objects should be considered when

monitoring activation patterns.

5.3.1 Datasets and Implementation Details

Classification on MNIST Dataset

MNIST [18] dataset is a digital hand-written dataset which contains number 0-9, where

the training dataset contains 60,000 images while the testing dataset consists of 10,000

images In this chapter, activation patterns of the last activation layer with 40 neurons

are monitored.

Table 5.1 presents the classification results on MNIST datasets. Activation patterns

from those images with correct predictions on training set are treated as the ground-

truth activation patterns to generate central activation pattern P̃ of different classes.
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Datasets Correct Wrong Accuracy

Training 59,605 395 99.34%

Testing 9,881 119 98.81%

Table 5.1: Prediction Results on MNIST

Object Detection on the PASCAL Dataset

The PASCAL VOC 2007 dataset [19] contains 20 classes with around 10k images and

24k annotated objects. There are mainly four categories, i.e. Vehicles, Households,

Animals, and Person. Each category contains several object classes. They are listed

in Table 5.2 and numbered them to facilitate further descriptions [202].

Vehicles Households Animals Person

Aeroplane: 0 Bottle: 4 Bird: 2 Person: 14

Bicycle: 1 Chair: 8 Cat: 7

Boat: 3 Dining table: 10 Cow: 9

Bus: 5 Potted plant: 15 Dog: 11

Car: 6 Sofa: 17 Horse: 12

Motorbike: 13 TV/Monitor: 19 Sheep: 16

Train: 18

Table 5.2: PASCAL object classes

In classification tasks, the ground-truth activation patterns are simply from those acti-

vation patterns with correct classifications on training set. Different from classification

tasks, it is hard to extract the ground-truth activation patterns in object detection by

using the same strategy.

Faster R-CNN[17] is implemented for detecting and recognising PASCAL objects in this

chapter. Different from extracting the last activation layers only in the classification

task, objects are needed to be detected, i.e. determine labels and bounding boxes of the
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objects first, then the corresponding patterns in the close-to-output activation layers

are extracted.

In object detection, both predicted labels and intersection over union (IoU) between the

predicted bounding boxes and the ground-truth bounding boxes should be considered

and the IoU is defined as

IoU =
Area of Overlap

Area of Union
. (5.11)

The predictions with IoU > 0.5 are defined as True Positive (TP), while those with

IoU lower than 0.5 are defined as False Positive (FP) [19]. The number of TP/FP in

training set and testing set is shown in Table 5.3.

Datasets TP FP Accuracy

Training 12,411 26,429 32%

Testing 11,133 28,208 28%

Table 5.3: Numbers of TP&FP on PASCAL.

In this case, activation patterns of TP in the training set are treated as the ground-truth

patterns and apply them to generate central activation patterns for 20 classes.
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5.3.2 Validation Results and Analysis

(a) Class: 0 (b) Class: 1 (c) Class: 2

(d) Class: 3 (e) Class: 4 (f) Class: 5

(g) Class: 6 (h) Class: 7 (i) Class: 8

Figure 5.3: From (a) to (i) represent the activation pattern distributions

of digital number from 0 to 8 on MNIST dataset. ’Same’ represents the dis-

tribution which the central activation pattern is compared to the activation

patterns with the same class, while ’Different’ represents the distribution

which the central activation pattern is compared to the activation patterns

with different classes.
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(a) Class: Aeroplane (b) Class: Bird (c) Class: Bottle

(d) Class: Car (e) Class: Chair (f) Class: Dining table

(g) Class: Horse (h) Class: Person (i) Class: Sheep

Figure 5.4: From (a) to (i) represent the activation pattern distributions

of different classes on PASCAL dataset. ’Same’ represents the distribution

which the central activation pattern is compared to the activation patterns

with the same class, while ’Different’ represents the distribution which the

central activation pattern is compared to the activation patterns with dif-

ferent classes.

Fig. 5.3 and Fig. 5.4 show distributions of distances between the central patterns and

activation patterns. In both figures, The term ‘Same’ is used to represent activation

patterns with the same classes as the central activation patterns while ‘Different’ are

those patterns with different classes. From these two distributions under different

classes, activation patterns with the same classes as the central activation have shorter
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distances compared to those with different classes.

Each subplot from (a) to (i) in Fig. 5.3 corresponds to a digit class. The ’Same’ curve

(orange) shows the probability distribution of distances when comparing the central

activation pattern to other activation patterns of the same class. The ’Different’ curve

(blue) represents the distribution of distances when the central activation pattern is

compared to activation patterns of different classes. The ’Same’ distributions tend

to peak at lower distances, indicating a high similarity within the same class. In

contrast, the ’Different’ distributions are spread out, indicating greater variation and

less similarity when compared to patterns from different classes.

Similar to the MNIST dataset, these plots in Fig. 5.4 show the activation pattern

distributions for various object classes (e.g., Aeroplane, Bird, Car, etc.). Again, the

’Same’ distributions generally indicate smaller distances, suggesting that the activation

patterns are more similar within the same object class compared to different ones. The

PASCAL dataset plots show more variability in the ’Different’ distributions compared

to the MNIST dataset, which may reflect the higher complexity and variability in

real-world image data compared to the simpler handwritten digits of MNIST.

By analysing Hamming distance distributions of activation patterns as well as their

Kullback-Leibler divergences, it is confirmed that activation patterns with the same

class are clusterred to their corresponding central activation pattern. As for a class,

by using ‘Same’/‘Different’ distributions, three monitoring zones can be built for mon-

itoring the decision made by a neural network.
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Autonomous Manual Mis-

Dataset Correct Clas- Human classified

sification Decision

MNIST
Training 63.77% 35.56% 0.66%

Testing 62.62% 36.73% 0.65%

PASCAL
Training 60.16% 36.24% 3.60%

Testing 55.69% 38.99% 5.32%

Table 5.4: Monitoring Classification Results on MNIST and PASCAL.

Monitoring experiments are implemented on the MNIST and PASCAL datasets and

the results are shown in Table 5.4. As for a test image, the neural network outputs a

predicted result and its activation pattern. The distance between the pattern and its

corresponding central activation pattern is calculated and to which zone the distance

belongs to is also obtained. Table 5.4 presents the monitoring classification results in

different datasets. The term ‘Autonomous Correct Classification’ is used to represent

Faster R-CNN correct decisions - when the neural network works well. ‘Manual’ means

additional human involvement is made in the decision making. ‘Misclassified’ represents

that the proposed algorithm misclassifies the prediction made by the network. What

can be identified is that the proposed algorithm achieved low misclassified monitoring

results, i.e. over 99% accuracy of prediction in both training and testing sets of MNIST.

As for complicated object detection tasks, the monitoring process within Faster R-CNN

can also achieve a good performance with over 96% accuracy in the training phase and

94% accuracy during testing over PASCAL datasets.

These results are crucial for real-time monitoring of DNNs, particularly in determining

when a network may be making decisions that do not align well with what it learned

during training. By setting appropriate thresholds on these distributions, the system

can categorise the predictions into trusted, review-needed, or not-trusted, enhancing
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the safety and reliability of applications relying on DNNs. This mechanism is especially

valuable in applications like autonomous driving or medical image analysis, where

incorrect decisions can have serious consequences.

5.4 Conclusions

This chapter presents a real-time activation pattern monitoring algorithm of the Faster

R-CNN in image classification and object detection. The real-time activation pattern

monitoring algorithm is introduced to provide extra resilience in decision making for

DNNs based systems. First the Kullback-Leibler divergence is calculated to find how

different two distributions of the monitored patterns are. Next, the Hamming distance

is calculated for decision making purposes. It gives the distance between the activation

pattern of the current input and the corresponding central activation pattern. In this

way a monitoring zone is represented and gives a level of trust in the obtained results.

The proposed monitoring algorithm has been thoroughly verified over two different

computer vision tasks: image classification and object detection - with MNIST and

PASCAL data sets - and demonstrates its capacity and achieves very good monitoring

performances.
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Chapter 6

Conclusions and Future Works

This thesis has presented a comprehensive exploration of the integration of deep learn-

ing and computer vision in autonomous systems, particularly within the context of

manufacturing and Industry 5.0. The research underscored the pivotal role of arti-

ficial intelligence in revolutionising modern manufacturing processes, from predictive

maintenance and quality control to supply chain optimisation and human-robot col-

laboration.

In Chapter 1, it provides a thorough introduction to the integration of AI in man-

ufacturing, which is a significant advancement towards Industry 5.0. This chapter

discusses the vital role AI plays across various manufacturing processes. The chapter

also highlights the evolving nature of robotics in manufacturing, with a focus on the

development of cobots that work alongside humans to create safer and more productive

environments. Deep Learning, particularly when combined with CV, is emphasised as

crucial for enabling these advancements, allowing robots to perform complex tasks with

high precision. The chapter addresses challenges such as the need for robust machine

learning models, data acquisition for model training, and the integration of these sys-

tems into existing infrastructures. The objectives of the thesis are outlined, focusing

on improving the robustness of Deep Learning applications in HRC within manufac-
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turing settings. This involves leveraging Digital Twin technology to bridge the gap

between simulated environments and real-world applications, enhancing the effective-

ness of physical HRC, and ensuring the reliability of deep learning models through

real-time activation pattern tracking and uncertainty characterisation in image classi-

fication.

In Chapter 2, it presents a thorough examination of the literature on deep learning

and computer vision, which are crucial elements in contemporary AI research. It cov-

ers basic knowledge in the field and explores how deep learning enhances computer

vision tasks such as classification and object detection. The chapter delves into both

fully-supervised and semi-supervised approaches, addressing uncertainty and activa-

tion pattern monitoring in deep learning. It also examines human pose estimation,

discussing 2D and 3D approaches and challenges with occlusions, and concludes with

insights into human-robot interaction, focusing on the transition from simulation to

reality and the role of digital twins in manufacturing.

In Chapter 3, it discusses the development of a Digital Twin framework for enhancing

safety in manufacturing systems. The framework utilises deep learning techniques to

detect and classify human and robot actions. The Digital Twin allows users to build a

virtual representation of the physical manufacturing workspace by incorporating CAD

models of real objects. The communication between the physical and digital systems

is established using the ROS. One of the advantages of this framework is its flexibility.

Users can easily add new objects to the digital system by introducing their CAD

models, and they can specify annotation methods to meet their requirements. The

framework employs the Sim2Real technique, which enables efficient data generation and

semi-supervised learning, reducing the need for extensive data collection and manual

annotation. This chapter also discusses the impact of lighting conditions on detection

performance. It introduces the use of the Kalman filter and the Hungarian algorithm to

enhance the detector’s performance and maintain safety distances between humans and

robots. In general,the Digital Twin framework combined with deep learning techniques
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has the potential to improve safety and efficiency in smart manufacturing. Future work

may involve exploring the integration of cloud computing services and reinforcement

learning training in Digital Twins.

In Chapter 4, it explores the utilisation of deep learning techniques in the field of

human-robot interaction, with a specific focus on the application of these techniques

in robot-assisted dressing tasks. It presents a framework that combines a CNN-KF to

estimate the 3D human pose from a single camera, and a numerical inverse kinematic

(IK) solver to update the kinematic model of the human upper limb. The framework

is robust to occlusions and spontaneous movements of the user, and ensures ergonomic

and safe solutions for the robot motion planning. This chapter evaluates the precision

and performance of the framework using data collected from dressing experiments

with healthy volunteers and an occupational therapist. This chapter also discusses the

challenges and future directions of research.

In Chapter 5, it investigates the performance of DNNs, specifically faster R-CNNs, in

image classification when the testing data differ significantly from the training data.

This chapter proposes a framework for monitoring the activation patterns within a

faster R-CNN by representing distributions of neuron activation patterns and calcu-

lating corresponding distances between them using the Kullback-Leibler divergence.

This allows for the observation of the activation states of neurons within the network

when it is working with noisy and significantly different data. The proposed framework

is validated on publicly available datasets, MNIST and PASCAL, and demonstrates

real-time monitoring of supervised classifiers. This chapter also discusses the quantifi-

cation of uncertainties in CNNs and the importance of identifying when a trained CNN

model performs inference correctly. The monitoring algorithm is implemented in two

phases: recording the activation patterns of the training dataset and comparing the

activation patterns of new inputs with the ground-truth patterns. The chapter includes

experimental results and analysis on the MNIST and PASCAL datasets, showing the

effectiveness of the proposed algorithm in monitoring the decision-making of neural
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networks.

6.1 Future Work

• More challenging cases in manufacturing senarios can be considered.

Chapter 3 explores the monitoring of human-robot actions. However, it is impor-

tant to consider the complex manufacturing environment in future research. For

instance, future work will concentrate on more difficult scenarios involving multi-

ple robots and operators. In addition to object detection, gesture recognition and

pose estimation will also be taken into account to identify the actions of both hu-

man operators and robots. This will enable more sophisticated decision-making

and control, providing greater flexibility and enhancing the system’s resilience in

complex tasks.

• Integration of Multiple Sensors Fusion in Deep Learning Models for

Enhanced HRC Future research should explore the integration of multiple sen-

sors fusion in Deep Learning models to significantly enhance the robustness and

accuracy of HRC. By leveraging data from diverse sensors, such as cameras, Li-

DAR, microphones, and inertial measurement units, robots can achieve a more

comprehensive understanding of their environment and humans. This multi-

modal approach can help overcome the limitations of individual sensors, leading

to improved situational awareness and decision-making. Furthermore, advanced

fusion techniques, such as attention mechanisms and graph neural networks, can

be employed to effectively combine sensor data at various levels, ensuring real-

time processing and response. This integration is expected to not only enhance

task performance but also ensure safety and adaptability in dynamic and unstruc-

tured environments, paving the way for more intuitive and effective human-robot

interactions.

• Large language models [203] boost the development of HRC. A large
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language model is a type of AI system that is trained on a massive amount

of text data to understand and generate human language. These models have

gained significant attention and popularity for their ability to generate coherent

and contextually relevant text, making them useful for various applications in

fields like chatbots, virtual assistants, content generation, and even research in

natural language understanding and generation. Several challenges of leveraging

large language models (LLMs) for decision-making in robotic tasks has been

discussed [204]. While LLMs have a wealth of semantic knowledge, it has the

potential to transfer this kind of knowledge to train and teach the robot to finish

more complicated tasks and has the ability to understand human’s behaviour and

implement intelligent decision-making.

• Generative models bring the potential to bridge the gap between sim-

ulation to real in HRC. Vast dataset is a crucial element for the development

of AI. The availability of extensive and high-quality data significantly impacts

the performance and capabilities of AI models. Large datasets enable the train-

ing of more complex and accurate models, allowing for better generalization and

robustness in real-world applications [205]. The stable diffusion model, as exem-

plified by Zhang et al. [206], is capable of producing realistic and high-resolution

images. These models have been successfully employed to generate visually ap-

pealing images with diverse variations. Furthermore, they can generate images

based on textual inputs. In the field of robot learning, stable diffusion models

demonstrate a remarkable capacity for zero-shot training without the need for

additional data acquisition. In future research, these models could be utilized to

generate photorealistic images with a high level of semantic knowledge, thereby

enhancing the training of AI models in robot learning domains.

• Identify the differences between simulation and reality via activation

pattern monitoring. Chapter 5 presents an algorithm for monitoring activa-

tion patterns. The algorithm enhances the decision-making process in systems

118



CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

based on DNNs when the testing domain differs from the training domain. Addi-

tionally, the algorithm can be used to detect disparities between simulation and

reality in HRC. This helps robots make robust decisions and enhances safety in

manufacturing environments.
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G. Diamos, L. He, A. Parrish, H. R. Kirk et al., “Dataperf: Benchmarks for data-

144

https://github.com/lucas-swiniarski/Activation-Patterns


REFERENCE

centric ai development,” Advances in Neural Information Processing Systems,

vol. 36, 2024.

[206] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image

diffusion models,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2023, pp. 3836–3847.

145


	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Aims and Objectives
	Thesis Outline
	Research Contributions
	List of Peer Reviewed Publications

	Literature Review
	Background and the Development of Deep Learning and Computer Vision in Manufacturing
	Deep Learning and Computer Vision
	Image Classification
	Object Detection
	Fully-supervised and Semi-supervised Deep Learning for Object Detection
	Uncertainty and Activation Pattern Monitorings

	Human Pose Estimation
	2D (Two-Dimensional) Human Pose Estimation
	3D (Three-Dimensional) Human Pose Estimation
	Occlusions in human pose detection

	Human-Robot Collaboration
	From Simulatuion to Real (Sim2Real)
	Digital Twin for HRC Safety and Resilience in Manufacturing
	Robot-assisted dressing

	Conclusions

	A Deep Learning-enhanced Digital Twin Framework in HRC
	Introduction
	The Deep Learning-enhanced Digital Twin Framework
	Communication Design of the Digital Twin
	A Digital Twin for Synthetic and Real Data Acquisition
	A Digital Twin for Intelligent Sensing and Machine Vision Tasks in Changeable Environments 
	A Semi-supervised Teacher-student Detector for Sim2Real
	Relevance to the Standards and Regulations for HRC

	Datasets
	Semi-automated Annotation Tool 
	Real Data 
	Synthetic Data

	Performance Evaluation and Validation
	Evaluation Metrics
	Experiment Setting 
	Performance Evaluation of Detection 
	Decision Making for Safe HRC 
	Discussion 

	Conclusions

	Deep Learning-Enabled Resilience to Occlusion for Physical Human-Robot Interaction
	Introduction
	Proposed Framework
	The CNN-KF model
	Parametric multi-body model
	Inverse kinematic solver

	Experimental setup
	Participants
	Motion capture
	Planned disruptions
	Rigid-body model parameters
	LM solver parameters

	Results from User Trials
	Analysis and Evaluation
	Inverse kinematic solver
	Handling occlusions with the CNN-KF

	Conclusions

	Real-time Activation Pattern Monitoring and Uncertainty Characterisation in Image Classification
	Introduction
	Methodology
	Activation Pattern Representation
	Central Activation Patterns
	Activation Pattern Distance Distribution
	Choice of Thresholds and Monitoring Zones
	The Activation Pattern Monitoring Algorithm

	Experiments and Analysis
	Datasets and Implementation Details
	Validation Results and Analysis

	Conclusions

	Conclusions and Future Works
	Future Work

	Reference

