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Abstract

Dry salt lakes are striking geological features, displaying patterns consisting of

flat polygons bounded by raised ridges. They are found in semi-arid regions

of the world, with the patterns typically being one to a few metres across, a

characteristic of dry lakes that can be observed worldwide. The groundwater in

the porous soil beneath dry lakes collects salts as it flows towards these terminal

valleys, and despite the intense environment, the water table can often be found

close to the surface. As the water evaporates, salt is left behind, forming a

crust, allowing the ridges to grow and develop into an intricate network.

To balance the evaporation of water from the surface, a throughflow is present

in the porous soil, which transports the dissolved salts to the surface. As the

groundwater evaporates, heavier saltier water overlies lighter fresher water and

the competition between the upward advection and the downward diffusion of

salt gives rise to a natural steady state. This state may become unstable,

resulting in buoyancy-driven convection within the porous soil beneath the

lake. This results in spatial variation of the salt transport to the surface,

which may aid the growth of the crust in some places and hinder it in others.

This provides a possible explanation for the emergence of the surface pattern

observed at dry lakes: the polygonal pattern is a surface expression of the

subsurface fluid dynamics.

In this thesis, the linear instability resulting from the natural steady state is

analysed, showing that an instability can only occur when the throughflow is

sufficiently weaker than the opposing buoyancy effects. The convection result-

ing from this initial instability is investigated through numerical simulation.

Patterns in the salinity transport to the surface are observed, providing evi-

dence that this may be a significant contributor to the crust pattern observed

at dry lakes. The net rate of salinity transport and the overall pattern scale

are analysed as the lake conditions are changed, showing agreement with ob-

servations taken from the field.
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Chapter 1

Introduction

1.1 Dry Lakes, Crusts and Patterns

Salt lakes are spectacular geological features, displaying breathtaking patterns on their sur-

face. These lakes emerge in semi-arid regions of the world making them one of the most in-

hospitable environments on the planet. Salt lakes (also referred to as playa (Briere, 2000))

are found in terminal valleys, from which water mainly leaves by evaporation (Briere,

2000; Lowenstein & Hardie, 1985). Dry salt lakes form when the water evaporates at a

rate faster than it can be replenished (Yechieli & Wood, 2002). However, elevated ter-

rain surrounding these endorheic basins prevents direct precipitation on the valley floor

(Hollett et al., 1991), and the majority of the inflow is from precipitation on the adjacent

mountains, which can make its way to the basin by runoff (Briere, 2000).

When the average rate of evaporation exceeds that of precipitation, a flow of water through

the soil must be present to balance the evaporative losses, and this groundwater flow also

acts as a route for transporting salt. As water evaporates from the lake, the ground surface

may become exposed to the atmosphere and, as salts precipitate, a superficial crust can

grow on the surface (Eugster & Hardie, 1978) while fluid continues to flow in the soil

beneath. As shown in Figure 1.1, the salt crust that develops under these conditions

often displays an intricate network of polygons, typically one to a few metres across, a

characteristic length scale that can be observed worldwide (Krinsley, 1970; Lasser et al.,

2023; Nield et al., 2015). Huge amounts of tourists flock to these fascinating locations

every year, especially Salar de Uyuni (Bolivia), which was used to film a scene in the

movie ‘Star Wars: The Last Jedi’ (Star Wars: The Last Jedi, 2017), shown in Figure 1.2.

1



1. INTRODUCTION

Figure 1.1: Images of crust patterns in dry salt lakes at (a), (b) Badwater Basin, California,
(c) the Skeleton Coast, Namibia, and (d) Owens Lake, California. Images courtesy of Lucas
Goehring.

Figure 1.2: Image from the film ‘Star Wars: The Last Jedi’ (Star Wars: The Last Jedi,
2017) displaying the surface pattern at Salar de Uyuni.
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1.1 Dry Lakes, Crusts and Patterns

Crust patterns emerge on the surface of dry salt lakes all over the world and in vastly

different environments. For example, in North America, Owens Lake is located at 1084m

above sea level and Badwater Basin is located at 86m below sea level. On the other

hand, the largest dry lake in the world, Salar de Uyuni, Bolivia (Sanchez-Lopez, 2021),

is located at 3656m above sea level. In Africa, there are violent precipitation events, yet

dry lakes can still be found, for example, the Makgadikgadi Pans in Botswana (Eckardt

et al., 2008; Nield et al., 2015), Chott el Djerid in Tunisia (Wadge et al., 1994) and the

Skeleton Coast in Namibia. Dry lakes can also be found in Asia: the Dead Sea, located

in Israel (Talbot et al., 1996), the Kavir Desert, lying in the Iranian Plateau (Krinsley,

1970) and Dalangtan Playa in China (Dang et al., 2018). Similar features can also form

when groundwater collects near enough to the surface to evaporate over long periods, for

example in the coastal sabkhas of Abu Dhabi (Sanford & Wood, 2001). Across these

locations, the patterns that emerge in the surface crust are remarkably similar, with the

size of the polygons being quite robust at one to a few metres across, independent of

seemingly important external factors. For example, the crust composition varies greatly:

some crusts are predominantly sodium chloride, such as those at Badwater Basin (Death

Valley), while other sites including Owens Lake (California), are covered by crusts rich in

hydrated sodium sulfate (Lasser et al., 2020). Flooding events (Bryant & Rainey, 2002)

can also dissolve the crust pattern periodically, allowing the polygonal pattern to restart

its growth which subsequently appears with a similar pattern wavelength (Nield et al.,

2015).

The patterns observed in the salt crust have been attempted to be explained by the crack-

ing of the crust (Dellwig, 1968; Tucker, 1981) or the buckling of the crust (Christiansen,

1963; Lokier, 2012). These studies attempt to explain the development of polygons in the

salt crust due to the compressional stresses from salt precipitation, salt crystal growth

and the increased summer temperatures. The stresses are thought to cause the salt crust

to fracture in the observed polygonal pattern, with initial fractures starting at the weak

points in the crust which subsequently spread laterally at a given angle. In addition, the

size of polygons resulting from the cracking of a thin layer has been attributed to the

strength and thickness of the layer (Goehring, 2013), leading to a prediction that the pat-

tern wavelength is proportional to the crust thickness. Figure 1.3 shows observations of

the crust thickness and wavelength of the surface pattern from sites at Badwater Basin and

Owens Lake (Lasser et al., 2020). These observations show that, at these lakes, the crust

thickness ranges from a few centimetres to tens of centimetres while the polygons express
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Figure 1.3: Crust thickness and polygon wavelength at various sites at Badwater Basin
and Owens Lake (Lasser et al., 2020), showing the data concentrating around one to a
few metres for the wavelength. Ellipses represent one standard deviation about each data
point.

a wavelength of one to a few metres across. In addition, other observations (Krinsley,

1970; Lowenstein & Hardie, 1985) have found crusts ranging from millimetres to several

tens of centimetres in thickness. Thus, these theories fail to explain why the pattern size

is consistent in dry lakes around the world.

1.2 Importance

Owens Lake, situated near Los Angeles, is among the deepest valleys in the United States

and experiences minimal precipitation. Surrounded by mountains, clouds struggle to reach

the valley resulting in very little rainfall and for approximately three-quarters of the years

between 1934 and 1985, Lone Pine, a neighbouring town, recorded an annual rainfall of

less than 100mm (Hollett et al., 1991). Despite this, rainfall from the Sierra Nevada

mountains can find its way into Owens Lake, carrying dissolved solids with it (Pretti

& Stewart, 2002). This groundwater flow not only replenishes the lake but also offsets

evaporative losses. However, since the construction of the Los Angeles Aqueduct in 1913,

water has been redirected to the city and Owens Lake has suffered from a negative water

balance. This led to its gradual desiccation, resulting in complete dryness by 1926. As

the lake dried, the surface has become coated with a notable concentration of sodium,

calcium, and silicon (Gill et al., 2002), along with toxic elements like lead and arsenic
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(Gill et al., 2002; Ryu et al., 2002), as well as significant levels of sulphates (Ryu et al.,

2004).

Winds sweeping across Owens Lake (Zhong et al., 2008) continuously erode the surface

crust, transporting dust and minerals away from the valley. Consequently, Owens Lake

became North America’s primary source of atmospheric dust (Reynolds et al., 2007). The

presence of sulphates and arsenic in the air due to this phenomenon poses a significant air

pollution challenge (Gill, 1996), with numerous studies linking particulate air pollution to

adverse health effects (Aghababaeian et al., 2021). Owens Lake serves as a prime example,

illustrating how dry salt lakes substantially contribute to atmospheric dust and its envi-

ronmental impact. Understanding these primary dust sources is important for improving

current atmospheric dust models (Washington et al., 2003) and understanding their im-

pact on global climate dynamics (Prospero et al., 2002). In addition, the formation of

salt crusts on dry lake surfaces alters their erosive characteristics. The surface roughness

increases when ridges are present, which may interact with prevailing winds (Nield et al.,

2016; Raupach et al., 1993), increasing the rate of dust production from the surface. Con-

sequently, there remains significant uncertainty surrounding the amount of dust emitted

by dry salt lakes (Marticorena & Bergametti, 1995). The fine sand particles emitted from

these lakes can ascend easily and act as aerosols, influencing cloud formation (Koehler et

al., 2007) and potentially impacting global temperatures. Specifically, when the average

radius of dust particles surpasses a critical threshold, their greenhouse effect outweighs

the albedo effect, leading to global warming (Lacis et al., 1992). Conversely, events like

volcanic eruptions release aerosols that can lower surface temperatures (Robock & Mao,

1995), demonstrating the uncertainty in the effect that aerosols have on the global climate.

Moreover, dust originating from dry lakes facilitates mineral transport to the oceans (Fung

et al., 2000; Prospero et al., 2002), further illustrating the importance of dry lakes in the

Earth’s systems.

In recent decades, the significance of dry lakes in shaping global climate dynamics has

become more apparent. The presence of a crust on these lakes’ surfaces can significantly

impact evaporation rates, dependent on the characteristics of the underlying porous soil.

Continuous salt crusts tend to decrease evaporation rates compared to fragmented ones

(Eloukabi et al., 2013). Moreover, in certain instances, these salt crusts can detach and

rise above the porous soil, further dampening evaporation (Li & Shi, 2021). Consequently,

dry salt lakes are an important aspect in climate modelling, as their salt crusts influence

evaporation, moisture, and heat fluxes into the atmosphere, motivating their inclusion in
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global energy balance calculations (Bryant & Rainey, 2002; Nield et al., 2015; North et al.,

1981; Pitman, 2003).

After the Los Angeles Aqueduct was built and Owens Lake dried up, the hazardous salt

crust now has to be carefully managed to mitigate the effects of the dust emission that

would be a severe health hazard for the population of Los Angeles. Owens Lake is subse-

quently subject to huge efforts to reduce the dust emission potential of the dry lake bed

(David, 2005). Several methods to control the dust emission are used, including flooding

(Groeneveld & Barz, 2013), where the lake is flooded with a shallow layer of fresh water.

However, this is not efficient as the amount of freshwater needed to cover the dry lake

and the surrounding areas exceeds 108m3 per year (Groeneveld & Barz, 2013), but would

achieve 99% dust control with a 75% coverage of flooding. Another method to control dust

emission is to cover the lake with vegetation (Nicholas & Andy, 1997) as this increases

the wind velocity needed to induce erosion. Dust emission is eliminated when the vege-

tation coverage is at least 15% (Nicholas & Andy, 1997) but, just like shallow flooding,

large amounts of fresh water are needed to irrigate the land so that the vegetation can

grow. Methods that use a large amount of freshwater need also to be minimised due to the

scarcity of fresh water in California. Alternatively, gravel may be used to cover the ground

(David, 2005), physically stopping dust from being caught by the wind and escaping into

the atmosphere. Again, this strategy is expensive to implement due to the large amount

of gravel needed to cover the lake and additionally, it needs to be regularly cleaned (Los

Angeles Department of Water and Power, 2013). Flooding the lake with brine is another

possible mitigation strategy, which forms an artificial floating crust that reduces the evap-

oration to less than the precipitation (Groeneveld et al., 2010). This method ensures that

the ground surface is wet at all times and thus reduces the dust emission potential of the

lake. This provides a method to reduce the dust emission from the surface of the lake

without the need for large amounts of freshwater that other strategies need.

Salar de Uyuni stands out as a significant salt lake, primarily due to its distinction as

one of the world’s largest lithium reserves. The vast expanse of a dry surface crust holds

considerable economic promise, particularly amidst the worldwide shift towards renewable

energy sources. The soaring demand for lithium-ion batteries, driven notably by advance-

ments like electric vehicles, highlights its pivotal role in modern technology. However, the

prospect of harnessing its resources through large-scale mining operations raises questions

regarding environmental impact and sustainability. Therefore, understanding the impor-

tance of Salar de Uyuni is crucial not only for the transition to green energy but also for
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ensuring its adherence to principles of environmental stewardship and responsible resource

management (Flood, 2024; Graham, 2023).

The Great Salt Lake in Utah has emerged as an important geological feature over the last

few years, serving as a significant habitat for a wide range of bird species as it provides

an essential breeding environment. The lake also supports industries like tourism, mineral

extraction, and recreational activities, which helps support and generate revenue for the

local communities. However, the decline in water levels at the lake has been attributed

to human activities such as water diversion, contributing to the shrinking of the lake

(Wurtsbaugh et al., 2017). Such a collapse would have serious consequences for the wildlife

dependent on the lake and the communities dependent on its resources. This highlights

the need for intervening conservation action to preserve the lake and to prevent ecological

degradation for future generations (Safdie, 2023; Siegler, 2024; Singh, 2023).

1.3 Convection

Dry lakes consist of a porous soil, which acts as a medium for groundwater to flow. Even

in semi-arid environments, where there are strong evaporation rates (Tyler et al., 1997),

the water table is often found very close to the surface (Bryant, 2003; Reynolds et al.,

2007), allowing the water to connect to the surface through capillary action. To a good

approximation, this means that the soil beneath dry lakes can be considered as being

fully saturated with water. As this water evaporates, a crust forms from the precipitating

salts and a throughflow is present to balance the evaporative losses, fuelled by a back-

ground reservoir of fresher water, which is located deep below the surface of the dry lake

(Wooding, Tyler, & White, 1997). The fluid in contact with the crust is fully saturated

with salt, leading to a situation where heavier saltier water overlies the lighter fresher

water deeper in the lake. These dissolved salts contribute to fluid density, which may then

lead to buoyancy-driven flows, or convection, within the porous soil (Wooding, Tyler, &

White, 1997; Wooding, Tyler, White, & Anderson, 1997). Field-based resistivity measure-

ments made by Stevens et al. (2009) and Van Dam et al. (2009) show evidence of such

salinity-driven convection in groundwater at coastal sabkhas or tidal flats. These studies

independently confirmed the presence of unstable inverted density gradients in these envi-

ronments and made clear observations of high salinity plumes interleaved with less dense,

rising fluid. Salinity profiles have also been measured at various salt lakes (Badwater

Basin, Owens Lake and Sua Pan) which have revealed the presence of high salinity plumes
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underneath the surface crust (Lasser, 2019; Lasser et al., 2023).

Similar to Rayleigh–Bénard convection (Bénard, 1900; Rayleigh, 1916), early studies of

convection driven by density changes due to temperature in porous media typically focused

on the onset of instability. When there is no fluid flow, heat is transported by conduction

only and the temperature profile is linear. When the density gradient of this state exceeds

a critical value, convection may occur (Horton & Rogers, 1945; Lapwood, 1948) and heat

is additionally transported by advection. This theory was later complemented by numer-

ics (Wooding, 1957) and broadened to the case of solute-driven flows (Wooding, 1969).

The stability of a density-stratified liquid rising through a porous medium was initially

explored by Wooding (1960), in the thermally-driven case of a geyser. The stability of

this flow was explained in terms of the Rayleigh number of the system, a parameter that

measures the strength of buoyancy effects relative to the background flow. A steady, con-

stant throughflow is only stable when this number is less than a critical value. Theoretical

considerations by Homsy and Sherwood (1976), accounting for viscosity variations due to

temperature, found a convective instability, provided that a similar Rayleigh number ex-

ceeded a critical value. Experimental and numerical studies of thermally-driven convection

in a porous medium have also been performed in two dimensions by Elder (1967). In this

case, steady-state convection cells were found for a variety of boundary conditions, includ-

ing fluid discharge forced through patches on the upper or lower surface of the domain.

In the context of salinity-driven flow, convective motion can be generated naturally un-

der conditions representative of the aquifers present beneath salt lakes (Wooding, Tyler,

& White, 1997). They demonstrated that surface evaporation can form a near-surface

boundary layer of water that is enhanced in salt and determined a critical Rayleigh num-

ber for the onset of convection. The further evolution of salt plumes that develop from

an unstable boundary layer was then explored both numerically and experimentally in

Hele-Shaw cells with a narrow gap acting as the porous medium (Wooding, Tyler, White,

& Anderson, 1997). A subsequent stability analysis carried out by Duijn et al. (2002) is

in good agreement with these results, and was further verified through more detailed two-

dimensional numerical computations. Wooding (2007) extended this analysis to higher

values of the Rayleigh number, in contrast with the near-critical conditions explored pre-

viously. The typical modelling approaches for the most common setup of Rayleigh–Bénard

convection have been extensively studied (Hewitt, 2020) and numerical simulations have

been carried out both in two (Hewitt et al., 2012; Otero et al., 2004; Slim, 2014) and three

dimensions (Hewitt et al., 2014). Additionally, the resulting patterns in the convective
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structures exhibited by this system have been studied (De Paoli et al., 2022; Fu et al.,

2013).

Buoyancy-driven convection serves as a crucial mechanism in the area of carbon seques-

tration, in which CO2 may be stored in rock formations by dissolution. Many studies aim

to contribute to the development of strategies for carbon storage, helping to reduce the

impact of CO2 in the atmosphere and hence mitigate the effects of anthropogenic climate

change (Metz et al., 2005; Neufeld et al., 2010; Slim et al., 2013; Slim & Ramakrishnan,

2010). Much like how buoyancy forces drive fluid motion beneath the crust of dry salt

lakes, similar phenomena occur beneath the surface of the Earth in carbon storage forma-

tions. In both scenarios, variations in density gradients induce a convective flow and thus

parallels can be drawn between buoyancy-driven convection processes and the dynamics

beneath dry salt lakes. Furthermore, the study of convection in CO2 dissolution offers

valuable insights into the behaviour of fluids in porous media. However, it is essential

to recognise the distinctions between these systems. While the physics present in both

situations are the same, the geological and environmental contexts differ significantly. Dry

salt lakes, for instance, are subject to a background throughflow, differing from carbon

storage reservoirs. Thus, while using similar methods from the study of CO2 dissolution,

care must be taken when directly comparing the results to those of dry salt lakes.

The connection between subsurface convection and the surface patterns at dry lakes has

recently been explored in two dimensions (Lasser, 2019; Lasser et al., 2021) using a model

of solutal convection in a porous medium. This allows the prediction of groundwater flows

in domains that are much deeper than the dynamics present near the surface. When this

process is modelled, the wavelength of the convective cells that develop is in good agree-

ment with that of the patterns observed at dry lakes (Lasser, 2019; Lasser et al., 2021).

The presence of convection introduces spatial variation to the transport of salt to the

surface, which may aid the growth of a crust in some areas and hinder it in others (Lasser

et al., 2023). Numerical simulations were used to investigate the dynamics occurring in

the system on finite, but thick, domains. These simulations showed how small-amplitude

perturbations grow and interact, eventually leading to chaotic dynamics. However, these

models have so far been largely restricted to simulations of dry lakes on two-dimensional

domains. Nevertheless, this model provides a possible explanation for the presence of

polygonal patterns observed at dry salt lakes: crust patterns are a surface expression of

the subsurface convective dynamics.

9



1. INTRODUCTION

1.4 Overview

This thesis aims to expand the model of dry lakes presented by Lasser et al. (2021) to three

dimensions, allowing the surface expression of the domain to be two-dimensional. The

addition of this extra dimension has already aided in predicting the qualitative nature of

the surface patterns observed at dry lakes and some of the simulations presented here have

contributed to the work published by Lasser et al. (2023). This allows for an improved

prediction of the pattern wavelengths that are observed in the field. In addition, the

depth of dry lakes has not been fully explored. Dry lakes can be as deep 150m (Güler &

Thyne, 2004) and modelling them as infinitely deep provides insight through analytical

calculations. However, imposing a finite depth adds the flexibility of studying different

depth lakes via an extra parameter. Moreover, when dry lakes are simulated numerically,

a bottom boundary condition must be imposed regardless and acknowledging the finite

depth in the modelling reduces the inconsistencies between the theory and the numerics.

Using this model, the convective instabilities that result from the natural steady-state of

the system will be explored. The system will be simulated numerically, using key quantities

such as the average salinity transport to the surface and the typical scales that arise in

the surface flux to investigate whether the emerging patterns compare to what is observed

in the field. Agreement between real-world data and numerical simulations may indicate

that the subsurface dynamics is likely a main contributor to the surface crust patterns

observed at dry salt lakes.

The system that shall be used to model the three-dimensional dry lakes is formulated in

Chapter 2, followed by a description of the numerical methods in Chapter 3. In Chapter 4,

the results are presented, including those from the linear stability analysis, the early-time

nonlinear behaviour and the transition to a late-time regime. The effect of varying the

Rayleigh number and lake depth are also discussed here as well as a comparison to data

obtained from dry lakes such as Badwater Basin and Owens Lake. Finally, in Chapter 5,

the work is concluded with a discussion and suggestions for future work.
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Chapter 2

Theory

To model dry salt lakes, the relevant physics must be incorporated into the modelling

assumptions, governing equations and boundary conditions. The ground that makes up

dry salt lakes is a porous soil, allowing the domain to be modelled as a porous medium and

a constant porosity is assumed. Since the water table is close to the surface (Bryant, 2003;

Reynolds et al., 2007), the porous soil beneath a dry lake can be considered as being fully

saturated with water. As fluid is transported from the terrain surrounding dry lakes, it

may collect salts, causing the fluid to have a nonzero salt concentration. This fluid acts as

a source of both water and salt, located in a background reservoir, deep below the surface.

Fluid flow within the porous medium is driven by evaporation applied at the surface,

resulting in an upward throughflow beneath. When water evaporates at the surface, salt

is left behind, forming a crust, which grows above the surface. This causes the fluid at the

surface of the dry lake to be fully saturated with salt and is thus subject to the buoyancy

force caused by the increased density. The competing effects of the evaporation-driven

throughflow and the buoyancy of the fluid give rise to an incompressible fluid flow. The

equations governing fluid flow and the coupling to a solute will be discussed here and the

system that will be used to model dry lakes will be constructed, the results of which will

be discussed further in Chapter 4.
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2. THEORY

2.1 Establishing the Governing Equations

The fluid flow v̂ of a Newtonian fluid with density ρ and dynamic viscosity µ, subject to

a body force f̂ , is governed by the Navier–Stokes equations:

ρ

(
∂v̂

∂t̂
+ v̂ · ∇̂v̂

)
= −∇̂p̂+ µ∇̂2v̂ + ρf̂ , (2.1)

where p̂ is the pressure of the fluid and t̂ is time. This is a statement of momentum

conservation arising from Newton’s second law. If the flow has a typical velocity scale V ,

length scale L and time scale T = L/V , the nondimensional variables may be defined as:

v =
v̂

V
, x =

x̂

L
, t =

t̂

T
. (2.2)

The nondimensional Navier–Stokes equations can then be written as:

Re

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇2v + f , (2.3)

where Re = ρV L/µ is the Reynolds number. A typical length for the pore scale is L =

O
(
10−5m

)
(Lasser et al., 2023) and for fluid flow driven by evaporation, a characteristic

velocity is V = O
(
10−8ms−1

)
. This gives a Reynolds number Re = O

(
10−7

)
, allowing

the left-hand side of (2.3) to be neglected, resulting in the Stokes equation:

−∇̂p̂+ µ∇̂2v̂ + ρf̂ = 0. (2.4)

Porous media are materials that contain a network of structures that allow fluids to move

through. These spaces are typically called pores and the material separating them is

referred to as the solid matrix. The presence of an interface between the fluid and the solid

matrix introduces extra shear stresses that must be considered in the momentum balance

of the fluid. The viscous stress on the fluid is approximated to be a linear function of the

velocity (Hall, 1956) and thus the Stokes equation becomes:

−∇̂p̂− ϕ
µ

κ
v̂ + ρf̂ = 0, (2.5)

where ϕ is the porosity of the porous medium, the fraction of the total volume that the

fluid can occupy, κ is permeability of the porous medium, a measure of a fluid’s ability to

flow through the pores and v̂ is now the interstitial fluid velocity, the velocity of the fluid
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accounting for it navigating the solid matrix. For a body force consisting of gravity only,

oriented in the positive ẑ direction, f = gez, (2.5) becomes:

û = −κ
µ

(
∇̂p̂− ρgez

)
, (2.6)

where û = ϕv̂ is the Darcy velocity, the volume of fluid per unit area travelling through

the porous medium, not necessarily equal to the velocity at which the fluid is travelling.

Conservation of mass must hold in a porous medium: the mass of fluid in a volume V

changes due to the Darcy flux across the boundary:

d

dt̂

∫
V
ϕρ dV = −

∫
∂V
ρû · ndS , (2.7)

where ∂V is the boundary of the volume V , n is the outward pointing normal on ∂V , dV

is a volume element in V and dS is a surface element on ∂V . This results in the continuity

equation:

∂

∂t̂
(ϕρ) + ∇̂ · (ρû) = 0, (2.8)

which simplifies to:

ϕ
∂ρ

∂t̂
+ û · ∇̂ρ+ ρ∇̂ · û = 0, (2.9)

in the case that the porosity is independent of time. When the density is constant, the

Darcy velocity satisfies the incompressibility condition:

∇̂ · û = 0. (2.10)

To describe how a solute moves through a porous medium, the salt mass fraction C is

introduced. This is the mass of dissolved salt compared to the total mass of the fluid

containing the salt, written as:

C =
mass of salt

mass of fluid
. (2.11)

Since the density increases with the amount of dissolved salt in the fluid, the fluid density

and salt content are related by:

ρ = ρ0 [1 + β (C − C0)] , (2.12)
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where β is a constant and ρ0 = ρ (C0) is some reference density. The volume fraction of

salt in a volume V of the porous medium with porosity ϕ is then:

∫
V
ϕC dV . (2.13)

This may change due to a salt flux q̂ across the boundary of V :

d

dt̂

∫
V
ϕC dV = −

∫
∂V

q̂ · ndS , (2.14)

where n is the outward pointing normal on the boundary ∂V , dV is a volume element in

V and dS is a surface element on ∂V . Applying the divergence theorem to the right-hand

side of (2.14), the continuity equation for the mass fraction C is obtained:

ϕ
∂C

∂t̂
+ ∇̂ · q̂ = 0. (2.15)

The salt flux q̂ consists of an advective component, Cû, and a diffusive component,

−ϕD∇̂C:

q̂ = Cû− ϕD∇̂C, (2.16)

where D is the diffusivity of the dissolved salt and û is the Darcy velocity. Thus, upon

simplification and using (2.10), the continuity equation (2.15) becomes:

ϕ
∂C

∂t̂
+ û · ∇̂C = ϕD∇̂2C. (2.17)

2.2 Dry Lake Equations

Buoyancy-driven convection of an incompressible fluid with variable salt concentration in

a three-dimensional porous medium is modelled by a Cartesian domain, constructed so

that the x- and y-axes span the horizontal directions and the z-axis is vertical. The porous

medium has depth H and is assumed to have constant permeability κ and porosity ϕ. In

reality, dry lakes can be as deep as H ≈ 150m (Güler & Thyne, 2004) and for the world’s

largest dry lake, Salar de Uyuni, the horizontal area is approximately 9, 000 km2 (Borsa

et al., 2008). Fluid flow is governed by Darcy’s law and the incompressibility condition:

û = −κ
µ

(
∇̂p̂− ρgez

)
, (2.18)
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Figure 2.1: Sketch of a dry lake showing the porous soil located below the surface where
evaporation drives an incompressible flow, in competition with buoyancy effects created
by the salinity gradient. The crust (not shown here) is located above the porous soil and
is responsible for the unstable salinity gradient.

∇̂ · û = 0, (2.19)

where hatted variables are dimensional, û = (û, v̂, ŵ) is the Darcy velocity, p̂ the pressure

and ∇̂ = (∂/∂x̂ , ∂/∂ŷ , ∂/∂ẑ ). Fluid is subject to a gravitational acceleration gez,

directed in the positive ẑ direction, given by the unit vector ez. The fluid viscosity µ

is constant and the density ρ depends on the amount of salt dissolved in the fluid. The

system is sketched in Figure 2.1.

The relative salinity is defined by

S =
ρ− ρ0
ρ1 − ρ0

=
ρ− ρ0
∆ρ

, (2.20)

where ρ0 is a reference density of fluid far from the surface of the dry lake, ∆ρ = ρ1 − ρ0

and ρ1 is the density of the fluid at the surface, which is in direct contact with the salt

crust and assumed to be fully saturated with salt. The (relative) salinity can be related

to the salt mass fraction using (2.12):

S =
ρ0β

∆ρ
(C − C0) , (2.21)

and since it is a linear function of the salt mass fraction C, it also obeys the advection-
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diffusion equation:

ϕ
∂S

∂t̂
+ û · ∇̂S = ϕD∇̂2S, (2.22)

where D is the diffusivity of salt, assumed to be constant. Equation (2.20) can be used to

express the density in terms of the salinity:

ρ = ρ0 +∆ρS, (2.23)

so that Darcy’s law can be written as:

û = −κ
µ

[
∇̂ (p̂− ρ0gẑ)−∆ρgSez

]
, (2.24)

and the term ρ0gẑ can then be absorbed into the pressure through the transformation:

p̂ 7→ p̂+ ρ0gẑ. (2.25)

Thus, the dimensional system of equations governing the dynamics in dry salt lakes is:

û = −κ
µ

(
∇̂p̂−∆ρgSez

)
, (2.26)

∇̂ · û = 0, (2.27)

ϕ
∂S

∂t̂
+ û · ∇̂S = ϕD∇̂2S. (2.28)

Taking the divergence of (2.26) and using (2.27), a Poisson equation for the pressure is

obtained:

∇̂2p̂ = ∆ρg
∂S

∂ẑ
. (2.29)

The thermal contributions to the density in these equations have been ignored as they

are small compared to the solutal contributions (Lasser et al., 2021). In particular, if the

diurnal temperature variation is assumed to be approximately 10◦C, the density variation

due to temperature is approximately ∆ρT ≈ 1 kgm−3. This, compared to the change in

density due to salt, approximately ∆ρS ≈ 200 kgm−3, is a factor of 200 times smaller.

Hence, the ratio of the magnitude of the thermally-driven flows to the solute-driven flows

is:

magnitude of thermally-driven flows

magnitude of solute-driven flows
=

∆ρT
∆ρS

≈ 1

200
, (2.30)
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and so double-diffusive effects can be ignored in the system.

The definition of relative salinity, (2.20), naturally imposes Dirichlet boundary conditions

on the relative salinity, S. The evaporation rate driving the throughflow imposes a constant

value for the vertical velocity at the surface. This is equivalent to imposing a constant

value for the vertical pressure gradient as it is related to the vertical velocity via Darcy’s

law (2.26). Thus, equations (2.26)–(2.28) are accompanied with the boundary conditions:

S = 1, ŵ = −E at ẑ = 0, (2.31)

S = 0 at ẑ = H. (2.32)

These boundary conditions are not mathematically sufficient: to determine p̂, two condi-

tions on ŵ (equivalently ∂p̂/∂ẑ ) must be provided. However, the model being used does

not prescribe any other conditions on ŵ at ẑ = H and the system must be left underde-

termined. Thus, an extra condition must be chosen to be imposed at the bottom of the

domain. This is chosen to be:

⟨ŵ⟩xy = −E at ẑ = H, (2.33)

where ⟨f⟩xy denotes the average of the function f(x, y, z, t) over the two horizontal direc-

tions. This is imposed in order to satisfy global mass conservation when the horizontal

directions are assumed to be periodic (see Section 3.2). However, this boundary condition

is not fully well-posed: it does not constrain the solutions enough to give a unique solution.

This is discussed further in Section 3.2.

The system (2.26)–(2.28) along with the boundary conditions (2.31) and (2.32) admits a

horizontally homogeneous steady state solution, given by:

Sb(ẑ) =

exp

(
−Eẑ

ϕD

)
− exp

(
−EH
ϕD

)
1− exp

(
−EH
ϕD

) , (2.34)

û = (0, 0, −E) . (2.35)

The length scale appearing in the exponential terms in Sb, ϕD/E, is the length over which

the upward advection (driven by evaporation) balances the downward diffusion of salt.
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2.3 Scalings

Defining a characteristic velocity, V , and a characteristic length, L, and a characteristic

time T = ϕL/V , the nondimensional variables may be defined as:

u =
û

V
, x =

x̂

L
, t =

t̂

T
. (2.36)

With these variables, Darcy’s law becomes:

V u = −κ
µ

[
∇̂ (p̂− ρ0gẑ)−∆ρSgez

]
=⇒ V u = − κ

µL
∇ (p̂− ρ0gẑ) + VBSez, (2.37)

where VB = κ∆ρg/µ is the buoyancy velocity, the speed at which a fully saturated fluid

parcel falls when surrounded by fresh fluid. The nondimensional modified pressure is

defined as:

p =
κ

µLV
(p̂− ρ0gẑ) . (2.38)

This results in the nondimensional Darcy’s law:

u = −∇p+
VB

V
Sez. (2.39)

The advection-diffusion equation for the relative salinity, (2.28), becomes:

∂S

∂t
+ u · ∇S =

ϕD

LV
∇2S, (2.40)

and the boundary conditions become:

S = 1 w = −E
V

at z = 0, (2.41)

S = 0 at z =
H

L
. (2.42)

The equations (2.39)–(2.42) contain four nondimensional groups:

VB

V
,

ϕD

LV
,

E

V
and

H

L
, (2.43)

18



2.3 Scalings

The presence of the evaporation rate gives a natural characteristic velocity and so V = E,

leaving the remaining three groups:

VB

E
,

ϕD

LE
and

H

L
. (2.44)

The most appropriate length scale for the system is the length over which advection bal-

ances diffusion, rather than the lake depth, H, and so L = ϕD/E. This is the length scale

appearing in the dimensional base state (2.34). This leaves two nondimensional groups,

VB/E and H/L, which are denoted as the Rayleigh number, Ra, and the nondimensional

lake depth, h:

Ra =
VB

E
=
κ∆ρg

µE
, (2.45)

h =
H

L
=
HE

ϕD
. (2.46)

The Rayleigh number is the ratio of the buoyancy velocity to the evaporation rate, which

controls the strength of the buoyancy forces compared to the background throughflow.

The nondimensional lake depth is the location of the lower boundary of the domain. In

their nondimensional form, the governing equations are:

u = −∇p+RaSez, (2.47)

∇ · u = 0, (2.48)

∂S

∂t
+ u · ∇S = ∇2S. (2.49)

The Poisson equation for the pressure is:

∇2p = Ra
∂S

∂z
, (2.50)

which will be used in the numerics, further described in Chapter 3. The equations are

accompanied by the nondimensional boundary conditions:

S = 1, w = −1, at z = 0, (2.51)

S = 0, ⟨w⟩xy = −1 at z = h. (2.52)
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Imposing a Dirichlet condition on the vertical velocity corresponds to imposing a Neumann

condition on the pressure since w and ∂p/∂z are related through Darcy’s law:

w = −∂p
∂z

+RaS. (2.53)

This system has two parameters, the Rayleigh number, Ra, and the lake depth, h. Equa-

tions (2.5)–(2.50) along with boundary conditions (2.51) and (2.5) make up the dry lake

system, which will be solved numerically. The numerical method will be described in

Chapter 3 and the results will be discussed further in Chapter 4.

2.4 Parameter Values

Evaporation rates at dry salt lakes are typically of the order of 1 mm day−1 (Lasser et al.,

2023), corresponding to a speed of approximately E ≈ 10−8 m s−1. The diffusivity of

salt is estimated to be approximately D ≈ 10−9m2 s−1 which gives a characteristic length

L = O (10 cm). Data from Badwater Basin (Death Valley), Owens Lake (California) and

Sua Pan (Botswana) (Lasser et al., 2023) shows values for the permeability in the range

0.03 × 10−11m2 ≤ κ ≤ 27.42 × 10−11m2 and observed Rayleigh numbers in the range

48 ≤ Ra ≤ 310939. The corresponding pattern wavelengths were observed to be in the

range 0.41m ≤ λ ≤ 3.02m. This data is summarised in Table 2.1.

minκ
(
m2
)

maxκ
(
m2
)

minRa maxRa minλ (m) maxλ (m)

Badwater Basin 3.1× 10−11 7.39× 10−11 5692 103415 0.55 1.42

Owens Lake 0.03× 10−11 27.42× 10−11 48 310939 0.87 3.02

Sua Pan 0.13× 10−11 0.2× 10−11 117 2456 0.41 0.95

Table 2.1: Minimum and maximum values for the data collected at Badwater Basin (Death
Valley), Owens Lake (California) and Sua Pan (Botswana) (Lasser et al., 2023) for the
permeability (κ), Rayleigh number (Ra) and the pattern wavelength (λ).
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2.5 Linear Stability

2.5 Linear Stability

To investigate the fluid dynamics occurring in dry lakes, an initial condition must be

chosen, from which an instability may grow. To observe an instability, heavier fluid must

overlie lighter fluid, which is naturally enforced by the boundary conditions. The simplest

case for an initial condition is zero salinity everywhere, except at the surface where the

boundary condition S = 1 is applied instantaneously at t = 0. This initial condition could

describe a situation where there is a sudden change in the conditions at the surface of a

dry lake, such as a flooding of brine (Lasser et al., 2021). For a horizontally homogeneous

solution and early times, (2.49) can be approximated by pure diffusion:

∂S

∂t
=
∂2S

∂z2
, (2.54)

since the magnitude of the diffusive term is much larger than that of the nonlinear term,

due to the large vertical salinity gradient arising from the Dirac-like initial condition.

Equation (2.54) can be solved via the use of the similarity variable η = zt−1/2/2 and when

the bottom boundary is assumed to be at z = ∞, it has the solution (Slim et al., 2013):

S(z, t) = 1− erf

(
z

2
√
t

)
, (2.55)

where erf(x) is the error function of x. On the infinite domain, [0, ∞), and for moderate

times, t ∼ 1, there is a similar transient solution (Lasser et al., 2021; Wooding, Tyler, &

White, 1997) when advection enters the dominant balance in (2.49):

S(z, t) = e−z/2
[
1

2
e−z/2erfc

(
z − t

2
√
t

)
+

1

2
ez/2erfc

(
z + t

2
√
t

)]
, (2.56)

where erfc(x) = 1− erf(x) is the complementary error function. A linear stability analysis

of this transient state has been carried out by Lasser et al. (2021).

The horizontally homogeneous stationary solution to the system – is a more natural choice

than (2.56) to investigate the development of any instability that may occur. This is

referred to as the base state and in its nondimensional form, it is:

Sb(z) =
e−z − e−h

1− e−h
, (2.57)

ub = (0, 0, −1) , (2.58)

21



2. THEORY

pb(z) = z +
Ra

1− e−h

(
1− e−z − ze−h

)
, (2.59)

where the constant of integration in the base state pressure has been chosen so that pb(0) =

0. This state corresponds to the balance between the evaporation-driven throughflow and

the downward diffusion of salt. To investigate the stability of the base state, (2.57)–(2.59),

infinitesimally-small perturbations are added to the fields of the form:

S = Sb(z) + ϵ S′(x, y, z, t), (2.60)

u = ub(z) + ϵu′(x, y, z, t), (2.61)

p = pb(z) + ϵ p′(x, y, z, t), (2.62)

where ϵ≪ 1 and primed quantities are at most O(1). Substituting (2.60) and (2.61) into

(2.49), the equation for the salinity perturbation becomes:

ϵ
∂S′

∂t
+
(
ub + ϵu′

)
· ∇

(
Sb + ϵ S′

)
= ∇2Sb + ϵ∇2S′

=⇒ ϵ
∂S′

∂t
+ ϵub · ∇S′ + ϵu′ · ∇Sb + ϵ2 u′ · ∇S′ = ϵ∇2S′. (2.63)

Neglecting the term which is of size O(ϵ2), the first order balance is:

∂S′

∂t
+ ub · ∇S′ + u′ · ∇Sb = ∇2S′. (2.64)

Similarly, substituting (2.60)–(2.62) into (2.5) and (2.50), the equation for the pressure

and velocity perturbations are:

∇2p′ = Ra
∂S′

∂z
, (2.65)

u′ = −∇p′ +RaS′ez. (2.66)

The base state variables can then be substituted into (2.64) as well as using (2.66) to

eliminate the velocity in favour of the pressure to obtain:

∂S′

∂t
− ∂S′

∂z
− e−z

1− e−h

(
RaS′ − ∂p′

∂z

)
= ∇2S′. (2.67)
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It is assumed that S′ and p′ take the forms:

S′(x, y, z, t) = Ŝ(z) exp (ık · xH + σt) , (2.68)

p′(x, y, z, t) = p̂(z) exp (ık · xH + σt) , (2.69)

for functions Ŝ and p̂, wavevector k = (kx, ky), growth rate σ ∈ C, xH = (x, y) and ı

is the imaginary unit. Substituting (2.68) and (2.69) into (2.65) and (2.67), a system of

coupled linear equations is obtained:

d2Ŝ

dz2
− k2Ŝ +

dŜ

dz
+

e−z

1− e−h

(
Ra Ŝ − dp̂

dz

)
= σŜ, (2.70)

d2p̂

dz2
− k2p̂ = Ra

dŜ

dz
, (2.71)

where k = |k|=
√
k2x + k2y is the magnitude of the wavevector. Since the equations are

isotropic, the dependence on k only appears via the magnitude, k. It is thus sufficient to

only consider two-dimensional perturbations with k = (k, 0). The boundary conditions

for the salinity are S = 1 at z = 0 and S = 0 at z = h. The salinity perturbation must

then vanish at both boundaries and homogeneous Dirichlet boundary conditions are used:

Ŝ = 0 at z = 0, h. (2.72)

The boundary condition on the vertical velocity at the surface is w = −1 at z = 0 but

to complete the problem, a boundary condition on w must be specified at z = h. A

uniform flow is also imposed at z = h, which is assumed to be far away from the unstable

surface layer (Lasser et al., 2021). Dirichlet boundary conditions on the vertical velocity

are equivalent to Neumann boundary conditions for the pressure, and so homogeneous

Neumann boundary conditions for the pressure perturbation are used:

dp̂

dz
= 0 at z = 0, h. (2.73)

Equations (2.70) and (2.71) are solved numerically with boundary conditions (2.72) and

(2.73), which is described in Chapter 3. The results from this will be described further in

Chapter 4.
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2.6 Other Convection Systems

In the absence of any external forcing, systems governing buoyancy-driven convection in

porous media may be characterised as either two-sided or one-sided systems (Hewitt, 2020).

In the former case, the lower and upper boundaries of the domain provide a positive and

negative source of buoyancy respectively, but in the latter case, only one of the boundaries

has a significant impact on the dynamics.

When both boundaries provide a source of buoyancy and the domain is of depth H, the

boundary conditions impose a constant salinity at the upper boundary and a lower salinity

at the bottom boundary:

S = 1 at ẑ = 0, (2.74)

S = 0 at ẑ = H. (2.75)

The dimensionless system of equations is obtained by using the domain depth H as the

characteristic length, the buoyancy velocity for the characteristic velocity and the advective

time scale. These equations are:

u = −∇p+ Sez, (2.76)

∇ · u = 0, (2.77)

∂S

∂t
+ u · ∇S =

1

RaTSC
∇2S, (2.78)

complemented by no normal flow imposed at z = 0 and z = 1. The Rayleigh number,

RaTSC = HVB (ϕD)−1, is the only free parameter in this system which takes the form

of an inverse diffusivity, controlling the relative magnitude of the diffusive term in the

advection-diffusion equation. This system has been extensively studied (Nield & Bejan,

2017) and it has been shown that a horizontally homogeneous steady state exists, for which

the salinity is a simple linear profile in depth (Lapwood, 1948). For Rayleigh numbers

below a critical value, which can be shown to be RaTSC = 4π2 (Horton & Rogers, 1945),

the conductive state is stable due to the large dissipative effects of diffusion and there is

no fluid flow. For RaTSC > 4π2, an instability may occur, consisting of convective rolls,

enhancing the transport of solute via fluid flow.

When only one of the boundaries provides a source of buoyancy, and the upper boundary
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is held at a constant concentration, the lower boundary is initially of little importance.

It thus makes sense to use the length over which advection balances diffusion as the

characteristic length, L = ϕD/VB. The dimensionless equations are then found to be:

u = −∇p+ Sez, (2.79)

∇ · u = 0, (2.80)

∂S

∂t
+ u · ∇S = ∇2S, (2.81)

complemented by the boundary conditions (Hewitt, 2020):

S = 1 at z = 0, (2.82)

∂S

∂z
= 0 at z =

H

L
. (2.83)

In this case, there is no free parameter in the equations and instead, the Rayleigh number

appears through the nondimensional location of the lower boundary:

z = RaOSC =
H

L
=
HVB

ϕD
. (2.84)

This system is thus more applicable to physical situations such as CO2 sequestration,

as it more effectively models the convective dissolution of a dense solute from the up-

per boundary. Although this is the same Rayleigh number as in two-sided convection

(RaOSC = RaTSC), it now controls the relative distance that the bottom boundary is

away from the surface, H, compared to the natural length scale, ϕD/VB. Thus, for one-

sided convection, the flow regimes occur as the system evolves in time (Slim, 2014). This

makes it clear that the dynamics will be mostly independent of the Rayleigh number until

downwelling plumes feel the presence of the lower boundary. One-sided systems progress

through various regimes, evolving toward a ‘shutdown’ regime where downwelling plumes

reach the bottom of the domain and the system begins to transition toward a statistically

steady end-state.

When a throughflow is present, driven by evaporation applied at the surface, another choice

for the characteristic velocity is available through the magnitude of this flow, leading to

a second free parameter. The throughflow also leads to a nonhomogeneous boundary
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condition for the vertical velocity at the surface, as fluid leaves the domain. To relate the

system used to model dry lakes with those described above, a transformation may be used

to obtain a system with homogeneous boundary conditions on the vertical velocity. The

original dry lake system in nondimensional variables is:

u = −∇p+
VB

V
Sez, (2.85)

∇ · u = 0, (2.86)

∂S

∂t
+ u · ∇S =

ϕD

LV
∇2S, (2.87)

where L is the characteristic length and V is the characteristic velocity. The boundary

conditions are:

S = 1, w = −E
V

at z = 0, (2.88)

S = 0 at z =
H

L
. (2.89)

Instead of using the scalings described in Section 2.3, the same scalings as two-sided

convection can be chosen: the characteristic velocity is taken to be the buoyancy velocity

and the characteristic length is taken to be the domain depth:

V =
ϕD

VB
, L = H, T =

ϕD

V
. (2.90)

This results in the system:

u = −∇p+ Sez, (2.91)

∇ · u = 0, (2.92)

∂S

∂t
+ u · ∇S =

1

RaTSC
∇2S, (2.93)

with boundary conditions:

S = 1, w = − 1

Ra
at z = 0, (2.94)

S = 0 at z = 1. (2.95)
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Two parameters appear in this system. Firstly, the Rayleigh number of dry lakes,

Ra =
VB

E
, (2.96)

appears in the vertical velocity boundary condition. Secondly, the two-sided Rayleigh

number appears as an inverse diffusivity:

RaTSC =
HVB

ϕD
. (2.97)

These two Rayleigh numbers are related through another parameter, defined to be the

Péclet number:

Pe =
HE

ϕD
, (2.98)

which controls the strength of the advective transport rate to the diffusive transport rate.

This allows the Rayleigh number of two-sided convection to be written as:

RaTSC =
HVB

ϕD
=

VB

E

HE

ϕD
= RaPe. (2.99)

Finally, the transformation:

U = u−
(
0, 0,− 1

Ra

)
, (2.100)

P = p− 1

Ra
z, (2.101)

can be used to transform the equations so that the vertical velocity boundary condition

at the surface is homogeneous:

U = −∇P + Sez, (2.102)

∇ ·U = 0, (2.103)

∂S

∂t
+U · ∇S =

1

RaPe

(
∇2S + Pe

∂S

∂z

)
, (2.104)

S = 1, W = 0 at z = 0, (2.105)

S = 0 at z = 1. (2.106)

This transformed system may now be compared to the two-sided case above but with an

extra source term, proportional to the vertical salinity gradient. This system is discussed
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further in Section 5.3.
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Chapter 3

Numerics

In Chapter 2, the equations governing the nonlinear dynamics and those of the linear

instability of the base state were derived. If the depth of the lake is assumed to be infi-

nite, an analytical linear stability analysis can be produced via the use of hypergeometric

functions (Lasser et al., 2021). When the depth of the lake is finite, the linear stability

analysis must be carried out numerically, and a Chebyshev collocation method is used.

This chapter will develop the numerical schemes that will be used to solve the equations

discussed in the previous chapter, starting first with the linear stability analysis and then

moving on to the full nonlinear dynamics. The numerical code for the latter was developed

by C. Beaume (for further details, see Beaume (2024)). In each case, the numerical scheme

will be validated.

3.1 Linear Stability

To analyse the linear stability of the base state, an eigenvalue problem must be solved for

the growth rates and eigenfunctions described in Section 2.5. Given a Rayleigh number Ra

and wavenumber k, the coupled linear equations that are to be solved for the eigenfunctions

Ŝ(z) and p̂(z) are:

(
d2

dz2
− k2 +

d

dz

)
Ŝ +

e−z

1− e−h

(
Ra Ŝ − dp̂

dz

)
= σŜ, (3.1)

(
d2

dz2
− k2

)
p̂ = Ra

dŜ

dz
. (3.2)
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The boundary conditions to be used are:

Ŝ = 0 at z = 0, h, (3.3)

dp̂

dz
= 0 at z = 0, h. (3.4)

The domain [0, h] is discretised using N + 1 Chebyshev collocation points:

zk =
h

2

(
1− cos

kπ

N

)
, k = 0, . . . , N, (3.5)

and a differentiation matrix D with entries (Trefethen, 2000):

D00 =
2

h

(
2N2 + 1

6

)
, DNN = −2

h

(
2N2 + 1

6

)
, (3.6)

Djj =
2

h

(
−zj

2(1− z2j )

)
, j = 1, . . . , N − 1, (3.7)

Dij =
2

h

(
ci
cj

(−1)i+j

zi − zj

)
, i ̸= j, i, j = 0, . . . , N, (3.8)

where

ci =


2 i = 0 or N

1 otherwise

. (3.9)

To solve (3.1) and (3.2) as a coupled system, p̂ is written in terms of Ŝ:

p̂ = RaM−1DŜ, (3.10)

where

M = D2 − k2I, (3.11)

and I is the identity matrix. To invert the matrix M, the pressure boundary conditions

are used: the first and last rows of M are replaced with those of D. The right-hand side

of (3.10) must also be modified to impose dp̂/dz = 0, and so the matrix D has its first

and last rows replaced with zeros. To denote these modifications, (3.10) is written as

p̂ = RaM̃−1D̃Ŝ, (3.12)
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and substituted into (3.1):

[
D2 − k2I +D +

Ra

1− e−h
C
(
I −DM̃−1D̃

)]
Ŝ = σŜ (3.13)

=⇒ LŜ = σŜ, (3.14)

where C is a diagonal matrix with entries Cii = exp(−zi). This equation must account for

the boundary conditions for the salinity. Since homogeneous Dirichlet boundary conditions

are used, the matrix L is stripped of its first and last rows and columns and the resulting

reduced matrix is denoted by L̃. The right-hand side has its first and last entries removed.

The eigenvalues σ and eigenfunctions vk of L̃ can then be computed, where

vk = Ŝ(zk). (3.15)

These eigenvalues are ordered based on the real part of their growth rate, λ = Re(σ).

Further analysis of this eigenvalue problem is left for Chapter 4.

3.1.1 Linear Stability Validation

To solve the eigenvalue problem numerically, the minimum number of collocation points

must be determined to ensure the accuracy of the results is sufficient. The number of

points to use must also depend on the lake depth: for larger values of h, more points must

be used to maintain the desired accuracy. To determine this for h = 10, the eigenvalue

problem is solved for N = 20, . . . , 150 and the growth rates

λi = Re (σi) , i = 0, . . . , N (3.16)

are computed. In particular, the largest growth rate,

λ(N) = maxλi (3.17)

is saved for each N . The superscript (N) denotes the number of collocation points used in

the computation of the associated growth rate. The relative error against the growth rate

for the highest number of points, |λ(N) − λ(150)|/λ(150), is plotted in Figure 3.1(a). The

relative error decreases exponentially with the number of collocation points until reaching

a limit from where machine precision prevents any further decrease. This demonstrates
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Figure 3.1: (a): Relative error of the growth rate, λ at Ra = 100, for k = 3 and h = 10.
The dashed line represents a relative error of 10−12. (b): Number of collocation points
needed as a function of h to obtain a relative error of less than 10−12. A power law may
be fitted to this data which is approximately N ∼ h0.4955. The rule used in practice is

N =
⌈
20

√
h
⌉
.

spectral convergence, hence validating the scheme used. Assuming that the growth rate

computed with 150 collocation points is the exact value, the number of collocation points

to be used is selected by determining the smallest N such that the relative error is less

than 10−12:

|λ(N) − λ(150)|
λ(150)

≤ 10−12. (3.18)

This procedure is repeated for increasing values of h, thereby determining the number of

collocation points needed as a function of h, which can be seen in Figure 3.1(b). A power

law may be fitted, N ∼ hb for some constant b, resulting in an approximately square root

law, where the multiplicative constant is increased to maintain a conservative rule for each

h:

N =
⌈
20
√
h
⌉
, (3.19)

where ⌈x⌉ denotes the ceiling function, which rounds a real number x up to the nearest

integer.

3.2 Fully Nonlinear Dynamics

The complete set of equations to model the fluid dynamics of dry lakes is:

u = −∇p+RaSez, (3.20)
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∇ · u = 0, (3.21)

∂S

∂t
+ u · ∇S = ∇2S, (3.22)

where S is the salinity, u is the velocity field, p is the pressure and t is time. The Rayleigh

number, Ra, is a free parameter controlling the relative strength of the buoyancy forces

to the evaporation rate. Since the velocity is given in terms of the other state variables

explicitly, this is only a system for the salinity and the pressure. Equations (3.20) and

(3.21) are written as

∇2p = Ra
∂S

∂z
, (3.23)

which is a Poisson equation for the pressure and equations (3.20), (3.22) and (3.23) make

up the system of equations that are solved numerically. The boundary conditions in the

vertical direction are:

S = 1, w = −1 at z = 0, (3.24)

S = 0 at z = h. (3.25)

Assuming the salinity is specified at the surface and at the bottom of the domain, Dirichlet

boundary conditions on the vertical velocity correspond to Neumann boundary conditions

for the pressure via Darcy’s law. The horizontal extent of dry lakes is much larger than

their depth and so when they are simulated, the horizontal domain sizes must be restricted

to a smaller region, denoted by Γx and Γy. Periodic boundary conditions are then used

for the two horizontal directions to model the large horizontal domain sizes. The dry lake

system provides boundary conditions for the velocity at the surface only and so an extra

condition is required, which is chosen so that global mass conservation is satisfied. Since

the periodic boundary conditions in the horizontal direction imply that fluid leaving the

domain via one horizontal boundary enters through the other, the boundary condition at

the bottom of the domain is chosen so that the horizontally averaged vertical velocity at

the bottom of the domain balances the throughflow at the surface. This results in the

global mass conservation condition:

⟨w⟩xy = −1 at z = h, (3.26)

where ⟨f⟩xy denotes the average of the function f(x, y, z, t) over the two horizontal di-

rections. The vertical component of Darcy’s law (3.20) is used to write the boundary
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conditions for the pressure by using the known values of the salinity and the vertical

velocity:

∂p

∂z
= RaS − w. (3.27)

Thus at the surface, where S = 1 and w = −1,

∂p

∂z
= Ra+ 1 at z = 0, (3.28)

and at the bottom, where S = 0 and ⟨w⟩xy = −1,

〈
∂p

∂z

〉
xy

= 1 at z = h. (3.29)

However, when the solution is expanded in a Fourier–Galerkin expansion (see Section 3.4),

(3.29) only constrains the constant mode as the nonzero wavenumber modes average to

zero. As a result of this, the boundary condition (3.29) is not fully well-posed.

To summarise, the equations and boundary conditions to be solved numerically are:

∂S

∂t
+ u · ∇S = ∇2S, (3.30)

∇2p = Ra
∂S

∂z
, (3.31)

u = −∇p+RaSez, (3.32)

S = 1,
∂p

∂z
= Ra+ 1 at z = 0, (3.33)

S = 0,

〈
∂p

∂z

〉
xy

= 1 at z = h. (3.34)

The process of solving these equations sequentially is described in Section 3.3.3. Simula-

tions are initialised with a salinity profile of the form:

S = Sb(z) +Bθ(x, y, z)E(z), (3.35)

where B ≪ 1 (typically B = 10−4), θ (x, y, z) is a random number drawn from a uniform

distribution on [−1, 1] at each mesh point (x, y, z) and E(z) is a function that ensures

the perturbation to the base state decays faster than the base state itself. The exact

form of the function E(z) will be discussed further in Chapter 4. Using the perturbation
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given by (3.35), there is a possibility that the salinity will take values greater than 1 at the

surface and less than 0 at the bottom. Nothing is done to prevent this, as the perturbation

amplitude is small and values greater than 1 or smaller than 0 will be corrected by the

boundary conditions at the following time step.

3.3 Temporal discretisation

Time is discretised with a constant time step ∆t and an index n ≥ 0,

tn = n∆t. (3.36)

The value of a function f at time tn is denoted by

f(tn) = f(n∆t) = fn. (3.37)

The aim is to compute the solution at the next time step, knowing the solution at the

current and previous time steps. The advection-diffusion equation is written as:

(
∂S

∂t

)n+1

+ (u · ∇S)n+1 =
(
∇2S

)n+1
, (3.38)

and each term will need to be approximated as a linear sum of the fields at previous time

steps, except for the Laplacian, which is kept implicit to aid with the stability of the

numerical scheme. The extrapolation of the time derivative and the nonlinear term will

be of the same order.

3.3.1 Time Derivative

To approximate the time derivative in the advection-diffusion equation, the salinity at

time step n−m is expressed in a Taylor expansion:

Sn−m = Sn + (−m)∆t
∂S

∂t

n

+
(−m)2∆t2

2!

∂2S

∂t2

n

+
(−m)3∆t3

3!

∂3S

∂t3

n

+O
(
∆t4

)
(3.39)

for m = 0, 1, . . .. The trivial expansion Sn = Sn is included here since it will become part

of the linear operator when the salinity equation is solved. For a scheme of order s, the

equations for i = 0, ..., s are combined to solve for the first time derivative. This results
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s ∆tα0 ∆tα1 ∆tα2 ∆tα3

1 1 −1 0 0
2 3/2 −2 1/2 0
3 11/6 −3 3/2 −1/3

Table 3.1: Time derivative scheme coefficients multiplied by the time step for a scheme
order s.

in the expansion:

∂S

∂t

n+1

=
s∑

m=0

αmS
n−m+1 +O(∆ts), (3.40)

where the constants αm can be determined by solving the system:

s∑
m=0

αm = 0, (3.41)

s∑
m=0

mαm = − 1

∆t
, (3.42)

s∑
m=0

mj

j!
αm = 0, j = 2, . . . , s. (3.43)

The coefficients αm can be seen in Table 3.1 for s = 1, 2 and 3. For example, at order

s = 1, the system to solve for is:

α0 + α1 = 0, (3.44)

α1 = − 1

∆t
, (3.45)

which has solution α0 = 1/∆t, α1 = −1/∆t. Hence

∂S

∂t

n+1

=
Sn+1 − Sn

∆t
+O(∆t) (3.46)

gives the scheme at first-order.

3.3.2 Nonlinear Term

Using (3.39), instead with the nonlinear term N = u ·∇S, the equations for m = 1, . . . , s

(this time excluding m = 0 to keep the nonlinear term explicit) are combined:

Nn+1 =
s∑

m=1

βmN
n−m+1 +O(∆ts), (3.47)
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s β1 β2 β3
1 1 0 0
2 2 −1 0
3 3 −3 1

Table 3.2: Nonlinear term scheme coefficients for the scheme order s.

where the coefficients βm satisfy:
s∑

m=1

βm = 1, (3.48)

s∑
m=1

mj

j!
βm = 0, j = 1, . . . , s. (3.49)

The coefficients βm can be seen in Table 3.2 for s = 1, 2 and 3. Again, with s = 1, the

expansion results in

(u · ∇S)n+1 = (u · ∇S)n +O(∆t), (3.50)

giving the first-order scheme.

3.3.3 Method of Solution

Utilising the approximations (3.40) and (3.47), the discretised system is then written as:

(
α0 −∆t∇2

)
Sn+1 = −

s∑
m=1

αmS
n−m+1 −∆t

s∑
m=1

βm (u · ∇S)n−m+1 (3.51)

∇2pn+1 = Ra
∂S

∂z

n+1

, (3.52)

un+1 = −∇pn+1 +RaSn+1ez, (3.53)

and is solved in this order at each time step. Given the fields Sn, . . . , Sn−s+1, un, . . . ,un−s+1:

1. The salinity Sn+1 is computed by inverting the operator α0 −∆t∇2 in (3.51) with

Dirichlet boundary conditions Sn+1(z = 0) = 1 and Sn+1(z = h) = 0.

2. The value for the pressure boundary condition is computed via b(x, y) = −wn+c for

a constant c such that ⟨b⟩xy = 1. In theory, wn should already satisfy ⟨wn⟩xy = −1

so this step is redundant, but done anyway. This is a first-order extrapolation of

the vertical velocity and is done rather than a second-order extrapolation to avoid

a scheme instability.

3. The pressure pn+1 is computed by solving the Poisson equation (3.52) (inverting ∇2)
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with Neumann boundary conditions ∂p/∂z (z = 0) = Ra + 1 and ∂p/∂z (z = h) =

b(x, y). This boundary condition only constrains the zero wavenumber mode and

the nonzero wavenumbers thus take the value they had at the previous time step.

4. The velocity un+1 is evaluated using Sn+1 and pn+1 via (3.53).

3.4 Horizontal Discretisation

In the dry lake system described in Chapter 2, no horizontal boundaries are considered.

For numerical means, the horizontal domain is restricted to be of size Γx×Γy and periodic

boundary conditions are used, allowing the solution to be discretised using a Fourier–

Galerkin expansion. When the salinity and pressure are solved for, Fourier transforms are

used to eliminate the two horizontal directions, leaving a one-dimensional problem for the

vertical direction for each pair of horizontal wavenumbers. This is done by the use of the

Fast Fourier Transform (FFT) (Frigo & Johnson, 2005), an algorithm that computes the

Discrete Fourier Transform (DFT) in O(N logN) operations (with N being the number

of mesh points) as opposed to O(N2) operations that would be used by simply applying

the definition of the DFT.

3.4.1 Fourier Discretisation in One Dimension

The domain [0, Γ] is discretised using M equidistributed points:

xi =
Γi

M
, i = 0, . . . ,M − 1, (3.54)

where the last point has been omitted since f(Γ) = f(0) for a Γ-periodic function f(x).

An example mesh can be seen in Figure 3.2 for Γ = 4 and M = 8. The Fourier transform

f̂(k) of a function f(x), x ∈ R, is defined by:

f̂(k) =

∫ ∞
−∞

f(x) exp (−ıkx) dx , (3.55)

Figure 3.2: Fourier mesh for Γ = 4 and M = 8. The mesh point at x = 4 (for M = 8) is
omitted since any Γ-periodic function with period M = 8 has f(x8) = f(x0).
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3.4 Horizontal Discretisation

Figure 3.3: Functions cos (2πx/Γ) and cos (18πx/Γ) along with the values these functions
take on the grid given by Γ = 4, M = 8. The dots, representing the locations and values
of the two functions coincide, indicating that if the continuous representation of the two
functions were omitted, they would be indistinguishable from each other.

where ı is the imaginary unit. The quantity f̂(k) is the complex amplitude of the function

f projected onto the wavenumber k. The inverse Fourier transform is given by:

f(x) =
1

2π

∫ ∞
−∞

f̂(k) exp (ıkx) dk . (3.56)

When the value of x is discretised, the wavenumber k will be restricted to lie in an interval

of length 2πM/Γ. This is due to aliasing and can be demonstrated by considering two

complex exponentials:

f1(x) = exp (ık1x) , f2(x) = exp (ık2x) . (3.57)

These are unequal if k1 ̸= k2 but when evaluated on the discretised mesh:

f1(xi) = exp (ık1xi) , f2(xi) = exp (ık2xi) , (3.58)

they are equal whenever k1 and k2 differ by an integer multiple of 2πM/Γ:

f2(xi) = exp

[
ı

(
k1 + n

2πM

Γ

)
xi

]
= exp (ık1xi) exp (2πıni)

= exp (ık1xi) , (3.59)

where n ∈ Z. It is thus sufficient to only consider wavenumbers in an interval [−πM/Γ, πM/Γ].

Introducing the integer wavenumber m so that k = 2πm/Γ, it is equivalent to only con-

sider modes in an interval [−M/2, M/2]. Figure 3.3 demonstrates the aliasing of the

functions cos (k1x) and cos (k2x) (k1 = 2π/Γ, k2 = 18π/Γ) on the mesh given by Γ = 4,

M = 8.
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The Fourier transform restricted to the mesh is given by the DFT:

f̂m =
1

M

M−1∑
i=0

f(xi) exp

(
−ı2π
M
mi

)
, m = −M/2 + 1, . . . ,M/2, (3.60)

for which its inverse is given by:

fi = f(xi) =

M/2∑
m=−M/2+1

f̂m exp

(
ı
2π

M
mi

)
, i = 0, . . . ,M − 1. (3.61)

Dividing by the normalisation factor of M , here written in (3.60), can be carried out

in either the forward or the backward transform. Aliasing then implies that a mode

n projects onto a mode m when n ≡ m (mod M). This is the reason for the limited

summation range of m in (3.61): all the information is contained in the band of integer

wavenumbers [−M/2 + 1, M/2].

A phenomenon called frequency folding is also present, where the energy from one mode

is redistributed to another mode. For an integer l < M/2, the mode m = M/2 + l ‘folds’

onto the mode m =M/2− l:

exp

[
ı

(
M

2
+ l

)
i
2π

M

]
= (−1)i exp

(
−ıli2π

M

)∗
= exp

[
ı

(
M

2
− l

)
i
2π

M

]∗
,

(3.62)

(3.63)

where the Fourier coefficient is complex conjugated. The mode M/2 is called the Nyquist

frequency and modes above this value are incorrectly represented. The solution to this is

described in Section 3.4.2. Expanding (3.61) into two sums and writing the first and last

terms explicitly:

fi = f̂0 +

−1∑
m=−M/2+1

f̂m exp

(
ı
2π

M
mi

)

+

M/2−1∑
m=1

f̂m exp

(
ı
2π

M
mi

)
+ f̂M/2 (−1)i (3.64)
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=⇒ f(xi) = f̂0 +

M/2−1∑
m=1

[
f̂m exp

(
ı
2π

M
mi

)

+ f̂∗m exp

(
−ı2π
M
mi

)]
+ f̂M/2 (−1)i , (3.65)

where f̂−m = f̂∗m since f(x) is real-valued function: the Fourier coefficient for mode −m is

the complex conjugate of the Fourier coefficient for mode m. This allows for the omission

of the wavenumbers −M/2 + 1 ≤ m ≤ −1. The forward transform is then written as:

f̂m =
1

M

M−1∑
i=0

fi exp

(
−ı2π
M
mi

)
, m = 0, . . . ,

M

2
, (3.66)

and the inverse transform is written as:

fi = f̂0 +

M/2−1∑
m=1

[
f̂m exp

(
ı
2π

M
mi

)
+ f̂∗m exp

(
−ı2π
M
mi

)]
+ f̂M/2 (−1)i , (3.67)

for i = 0, . . . ,M − 1, provided f(x) is a real-valued function.

3.4.2 De-aliasing

In addition to the mode m = M/2 + l ‘folding’ onto the mode m = M/2 − l, a further

redistribution can occur when functions that are decomposed into complex exponentials

are multiplied together. For example, for m, n ∈ Z:

exp

(
ı
2π

Γ
mx

)
exp

(
ı
2π

Γ
nx

)
= exp

[
ı
2π

Γ
(m+ n)x

]
, (3.68)

giving a complex exponential with a wavenumber that is the sum of the two individual

wavenumbers. If a complex exponential with wavenumber k is multiplied by itself η ∈ Z

times, the result will be a complex exponential with wavenumber ηk. Thus, a nonlinearity

of order η redistributes the energy contained in the mode with wavenumber k to a mode

with wavenumber ηk. Furthermore, if the Fourier mesh does not contain enough mesh

points, energy will be redistributed into modes with lower wavenumbers. To prevent this

from happening, a Fourier filter can be used that zeros out wavenumbers above a threshold

value. This threshold value is chosen such that when the nonlinearity redistributes the

energy of the largest acceptable mode, k, to the higher mode ηk, it folds around the mode

M/2 to the smallest value strictly greater than the threshold wavenumber k. Specifically,
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Figure 3.4: Modes project onto themselves up until m ≤M/2 and from there on, a mode
with m = M/2 + l ‘folds’ around M/2 to a mode with m = M/2 − l. The threshold
wavenumber k is chosen so that when the nonlinearity of order η redistributes the energy
in the mode with wavenumber k to the mode with wavenumber ηk, it folds around M/2
to the smallest value m > k.

the wavenumber ηk, which can be written as:

ηk =
M

2
+ l, (3.69)

for some l, is folded over to the wavenumber

m =
M

2
− l. (3.70)

This implies that:

m+ ηk =M, (3.71)

and since it is desired that m > k must lie as close as possible to k, the wavenumber k

must satisfy:

k < M − ηk

=⇒ k <
M

η + 1
, (3.72)

which is illustrated in Figure 3.4. This implies that the Fourier filter should zero out the

wavenumbers

k ≥ M

η + 1
, (3.73)

which, in the case of a second-order nonlinearity, the largest wavenumber to remain unfil-

tered is:

k =

⌊
M

3

⌋
, (3.74)

where ⌊x⌋ denotes the largest integer less than or equal to x ∈ R.
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3.4.3 Fourier Discretisation in Two Dimensions

For a horizontal domain of size Γx × Γy, the Fourier mesh is defined as

xi =
Γxi

M
, i = 0, . . . ,M − 1, (3.75)

yj =
Γyj

N
, j = 0, . . . , N − 1, (3.76)

where M and N are the number of points in the x-direction and y-direction respectively.

The Fourier transform of a two-dimensional real field f(x, y) is defined as:

f̂mn =
1

MN

M−1∑
i=0

N−1∑
j=0

f(xi, yj) exp (−ıkmxi) exp (−ılnyj) , (3.77)

where ı is the imaginary unit and

km =
2π

Γx
m, m = 0, . . . ,

M

2
, (3.78)

ln =
2π

Γy
n, n = −N

2
+ 1, . . . ,

N

2
, (3.79)

are the wavenumbers in the x- and y-directions respectively. When written as:

f̂mn =
N−1∑
j=0

{
M−1∑
i=0

f(xi, yj) exp (−ıkmxi)

}
exp (−ılnyj) , (3.80)

the two-dimensional transform can be seen to be the Fourier transform of the field f(x, y)

first in the x-direction, then in the y-direction. Consequently, only the summation over

the wavenumbers in the x-direction may be reduced to the positive range. The inverse

transform is then:

fij = f(xi, yj) =

N/2∑
n=−N/2+1

exp (ılnyj)

[
f̂0n

+

M/2−1∑
m=1

(
f̂mn exp (ıkmxi) + f̂∗mn exp (−ıkmxi)

)
+ f̂M

2
n (−1)i

]
(3.81)

When solving the dry lake equations numerically, the operators (the left-hand sides of
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(3.51) and (3.52)) that need to be inverted are both of the form

ϕ1∇2 + ϕ2, (3.82)

for some constants ϕ1 and ϕ2. For the salinity operator, ϕS1 = −∆t, ϕS2 = α0 and for the

pressure operator, ϕp1 = 1, ϕp2 = 0. To solve the equation

(
ϕ1∇2 + ϕ2

)
u = f, (3.83)

in two dimensions for a general field u(x, y) and forcing f(x, y), Fourier transforms are

first taken: [
−ϕ1

(
k2m + l2n

)
+ ϕ2

]
ûmn = f̂mn (3.84)

=⇒
[
−4π2ϕ1

(
m2

Γ2
x

+
n2

Γ2
y

)
+ ϕ2

]
ûmn = f̂mn, (3.85)

so that each mode (km, ln) = (2πm/Γx, 2πn/Γy) has been decoupled from the others and

solving for the Fourier coefficients ûmn amounts to dividing by a constant for each pair

(m, n). The inverse transform is then taken to obtain the solution in physical space.

3.5 Vertical Discretisation

The vertical direction is bounded and Dirichlet boundary conditions are used for the

salinity and Neumann boundary conditions are used for the pressure. The vertical domain

[0, h] is divided into Ne equally spaced elements, each of size h/Ne. Each element then

spans the subdomain [zlmin, z
l
max], where l = 1, . . . , Ne and zlmin and zlmax denote the

endpoints for the lth element:

zlmin = (l − 1)
h

Ne
,

zlmax = l
h

Ne
.

(3.86)

(3.87)

Each element contains Nz + 1 collocation nodes, which are determined via the use of the

Legendre polynomials:

zlk =


zlmin k = 0

zlmin +
zlmax − zlmin

2
(1 + ζk) k = 1, . . . , Nz − 1

zlmax k = Nz

. (3.88)
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Figure 3.5: First four Legendre polynomials. At the endpoints, the polynomials satisfy
LN (1) = 1 and LN (−1) = (−1)N .

The value ζk is the kth root of L′Nz
(ζ) (ζ ∈ [−1, 1]), the first derivative of the Legendre

polynomial of degree Nz. The Legendre polynomials can be determined via the recurrence

relation:

L0(ζ) = 1,

L1(ζ) = ζ,

Lk+1(ζ) =
2k + 1

k + 1
ζ Lk(ζ)−

k

k + 1
Lk−1(ζ),

(3.89)

(3.90)

(3.91)

and the first four polynomials can be seen in Figure 3.5. The equations will be solved using

a weak formulation and a Gaussian quadrature will be used to approximate the integrals:

∫ zlmax

zlmin

f(z) dz ≈
Nz∑
k=0

ρlkf(z
l
k), (3.92)

where ρlk, k = 0, . . . , Nz, l = 1, . . . , Ne are the weights. Using the weak formulation along

with the quadrature (3.92) provides an advantage because it computes integrals with high

accuracy and, in particular, (3.92) is exact when f(z) is a polynomial of degree 2Nz − 1.

The weights ρlk are given by (Canuto et al., 1988):

ρlk =
zlmax − zlmin

Nz (Nz + 1)LNz(ζk)
2
, (3.93)

where k = 0 . . . , Nz, l = 1, . . . , Ne. Each element spans the same distance, meaning the

weights are independent of the element index and so:

ρk =
h

NeNz (Nz + 1)LNz(ζk)
2
. (3.94)

Since the Legendre polynomials are used to determine the nodes and weights, this quadra-

ture is referred to as the Gauss–Lobatto–Legendre quadrature.
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The process of solving a Helmholtz problem on the vertical domain will first be described

in the case of only one element and will be expanded to multiple elements afterwards (see

Section 3.5.1). Similar to the horizontal directions, Helmholtz problems are of the form:

(
χ1

d2

dz2
+ χ2

)
u(z) = f(z), (3.95)

for z ∈ [zmin, zmax] and χ1 and χ2 constants. To solve (3.95), it is first multiplied by a set

of test functions, chosen to be the Lagrange functions:

ψi(z) =
∏
l ̸=i

z − zl
zi − zl

, i = 0, . . . , Nz, (3.96)

and then integrated over the domain to yield Nz + 1 equations:

χ1

∫ zmax

zmin

ψi(z)
d2u

dz2
dz + χ2

∫ zmax

zmin

ψi(z)udz =

∫ zmax

zmin

ψi(z)f(z) dz , i = 0, . . . , Nz.

(3.97)

Integration by parts is used on the first term which yields a term that is only evaluated

at the endpoints:

χ1

[
ψi(z)

du

dz

]zmax

zmin

− χ1

∫ zmax

zmin

dψi

dz

du

dz
dz + χ2

∫ zmax

zmin

ψi(z)udz =

∫ zmax

zmin

ψi(z)f(z) dz .

(3.98)

The solution, u(z), and the right-hand side, f(z), are written as a sum of the Lagrange

functions ψi(z):

u(z) =

Nz∑
k=0

ukψk(z), (3.99)

f(z) =

Nz∑
k=0

fkψk(z), (3.100)

and using the property that ψi(zk) = δik, the coefficients uk and fk satisfy

uk = u(zk), fk = f(zk). (3.101)
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Thus,

χ1

[
ψi(z)

du

dz

]zmax

zmin

− χ1

∫ zmax

zmin

dψi

dz

Nz∑
k=0

uk
dψk

dz
dz + χ2

∫ zmax

zmin

ψi(z)

Nz∑
k=0

ukψk(z) dz

=

∫ zmax

zmin

ψi(z)

Nz∑
k=0

fkψk(z) dz . (3.102)

All integrals are then approximated using the quadrature (3.92),

χ1

[
ψi(z)

du

dz

]zmax

zmin

− χ1

Nz∑
l=0

ρl
dψi

dz

Nz∑
k=0

uk
dψk

dz
+ χ2

Nz∑
l=0

ρlψi(zl)

Nz∑
k=0

ukψk(zl)

=

Nz∑
l=0

ρlψi(zl)

Nz∑
k=0

fkψk(zl), (3.103)

and terms are simplified using the property ψi(zl) = δil:

χ1

[
ψi(z)

du

dz

]zmax

zmin

− χ1

Nz∑
l=0

ρl
dψi

dz

Nz∑
k=0

uk
dψk

dz
+ χ2ρi

Nz∑
k=0

ukψk(zi)

= ρi

Nz∑
k=0

fkψk(zi), (3.104)

and ψk(zi) = δki:

χ1

[
ψi(z)

du

dz

]zmax

zmin

− χ1

Nz∑
l=0

ρl
dψi

dz

Nz∑
k=0

uk
dψk

dz
+ χ2ρiui = ρifi. (3.105)

Dividing by ρi, evaluating the boundary term and rearranging, this becomes

−χ1

ρi

Nz∑
l=0

ρl
dψi

dz

Nz∑
k=0

uk
dψk

dz
+ χ2ui = fi −

χ1

ρi

[
du

dz
(zmax) δiNz −

du

dz
(zmin) δi0

]
. (3.106)

To evaluate the derivatives, the differentiation matrix associated with the Gauss–Lobatto–
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Legendre quadrature is used:

dzkl =



2LNz(zk)

(zmax − zmin) (zk − zl)LNz(zl)
k ̸= l

Nz (Nz + 1)

2 (zmax − zmin)
k = l = 0

− Nz (Nz + 1)

2 (zmax − zmin)
k = l = Nz

0 otherwise

. (3.107)

This allows the derivatives to be written as

dψi

dz
=

Nz∑
j=0

dzlj ψi(zj) = dzli (3.108)

and

du

dz
=

Nz∑
j=0

dzlj u(zj) = dzlj uj . (3.109)

Thus,

−χ1

ρi

Nz∑
k=0

Nz∑
l=0

ρl dzli dzlk uk + χ2ui = fi −
χ1

ρi
(dzNzj ujδiNz − dz0j ujδi0) . (3.110)

This is a linear system of equations, which can be written in matrix form:

Mu = f + B, (3.111)

where

Mij = χ1Aij + χ2δij ,

Aij = − 1

ρi

Nz∑
k=0

ρk dzki dzkj ,

(3.112)

(3.113)

and the boundary term B is given by

Bi = −χ1

ρi

[
du

dz
(zmax) δiNz −

du

dz
(zmin) δi0

]
= −χ1

ρi
(dzNzj ujδiNz − dz0j ujδi0) , (3.114)

48



3.5 Vertical Discretisation

which is only nonzero for the i = 0 and i = Nz entries. If Neumann boundary conditions

are used, the right-hand side can be simplified by substituting the value of the boundary

condition directly. For example, if:

du

dz
(zmin) = a,

du

dz
(zmax) = b, (3.115)

then

Bi = −χ1

ρi
(bδiNz − aδi0) . (3.116)

If Dirichlet boundary conditions are to be used, the equations for i = 0 and i = Nz are

unnecessary and are removed. There is then no contribution from the boundary term Bi.

The known terms from the left-hand side are moved to the right-hand side and the reduced

system is formed:

Mijuj = fi −Mi0u0 −MiNzuNz , (3.117)

where the summation is now over i, j = 1, . . . , Nz − 1. In either case, determining the

solution is done by inverting the matrix M which is most efficient if it is diagonalised.

First, the linear system is written as:

Mu = F , (3.118)

where

Fi =


fi −Mi0u0 −MiNzuNz for Dirichlet BCs,

fi + Bi for Neumann BCs.

(3.119)

The matrix A is diagonalised:

A = PΛQ, (3.120)

where Λ is diagonal, the entries of which are the eigenvalues of A, P is the transfer matrix,

which has the eigenvectors of A as its columns and Q = P−1. Thus,

(χ1PiµΛµνQνj + χ2δij)uj = Fi. (3.121)

The Gauss–Lobatto–Legendre transform is then defined as

û = Qu = P−1u, (3.122)

49



3. NUMERICS

where û is the spectral representation of u, where vectors are expressed in the basis of

eigenvectors of the matrix A. Multiplying by the forward transform, P−1, (3.121) becomes

χ1P
−1
ki PiµΛµνQνjuj + χ2P

−1
ki ui = P−1ki Fi, (3.123)

for which P−1ki Piµ = δkµ, Qνjuj = ûν , P
−1
ki ui = ûk and P−1ki Fi = F̂k. This simplifies to

χ1Λkν ûν + χ2ûk = F̂k (3.124)

and hence

(χ1Λ + χ2I) û = F̂ . (3.125)

Determining the solution û amounts to dividing by the eigenvalues:

ûi =
Fi

χ1λi + χ2
, (3.126)

where λi = Λii are the individual elements of the diagonal matrix Λ. Obtaining the

solution back in physical space uses the inverse Gauss–Lobatto–Legendre transform:

u = Pû. (3.127)

For a one-dimensional problem of the form (3.95), obtaining the solution involves trans-

forming the right-hand side to spectral space, dividing by the eigenvalues and transforming

back to physical space. Transforming to spectral space and back involves multiplication

by the appropriate matrix.

3.5.1 Spectral Elements

The use of a single element to span the whole domain is suited to small domains in the

vertical direction. The two length scales present in the system are the size of the solutal

boundary layer and the overall domain depth. When these lengths are not comparable,

the use of a single element is not ideal. As either the Rayleigh number or lake depth is

increased, more mesh points are needed to either resolve the finer scale dynamics or to

span in the increased size of the vertical domain. However, increasing the number of mesh

points results in large differences between the density of mesh points at the boundaries and

in the middle of the domain, leading to an unnecessarily large mesh density at the bottom

of the domain, where the dynamics are mostly diffusive. In addition, when salinity plumes
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Figure 3.6: Example of the spectral element mesh using Ne = 3, Nz = 10 on a domain
with depth h = 3.

descend into the middle of the domain, the large salinity gradients that are present at the

plume tips still need to be accurately resolved. Increasing the number of mesh points to

satisfy the accuracy in the middle of the domain contributes to an increased computational

cost, as more mesh points are placed at the boundaries relative to where they are desired.

To resolve this, multiple elements are used to span the vertical direction, allowing a better

distribution of mesh points throughout the whole domain.

As previously stated, the domain [0, h] is divided into Ne equally spaced elements, each of

size h/Ne, in which each element uses an identical Gauss–Lobatto–Legendre quadrature.

An example domain with h = 3, Ne = 3 and Nz = 10 is visualised in Figure 3.6. This

distributes the mesh points more evenly although a higher density of mesh points occurs

near the interfaces of neighbouring elements. Meshing the vertical domain in this way

allows larger domains to be used and a better distribution of mesh points over the whole

domain.

Each element is identical and so the same weights ρk and the same differentiation matrix

dz are used for all elements. The same procedure for the Helmholtz problem is followed

as before, but the equation is instead multiplied by a test function given by:

ψl
i(z) =


∏
j ̸=i

z − zlj

zli − zlj
if z ∈ [zlmin, z

l
max]

0 otherwise

, (3.128)

where i = 0, . . . , Nz and l = 1, . . . , Ne and after integrating by parts, a similar equation is

obtained:

χ1

[
ψl
i(z)

du

dz

]h
0

− χ1

∫ h

0

dψl
i

dz

du

dz
dz + χ2

∫ h

0
ψl
i(z)udz =

∫ h

0
ψl
i(z)f(z) dz . (3.129)
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The integrals can be split up into their contributions from each element:

−χ1

Ne∑
l=1

∫ zlmax

zlmin

dψl
i

dz

du

dz
dz + χ2

Ne∑
l=1

∫ zlmax

zlmin

ψl
i(z)udz =

Ne∑
l=1

∫ zlmax

zlmin

ψl
i(z)f(z) dz

−χ1

[
du

dz

(
zNe
Nz

)
δiNzδlNe −

du

dz

(
z10
)
δi0δl1

]
, (3.130)

for i = 0, . . . , Nz. As ψl
i(z) ≡ 0 when z /∈ [zlmin, z

l
max], this can be decomposed further to

obtain an equation on each element:

−χ1

∫ zlmax

zlmin

dψl
i

dz

du

dz
dz + χ2

∫ zlmax

zlmin

ψl
i(z)udz =

∫ zlmax

zlmin

ψl
i(z)f(z) dz

−χ1

[
du

dz

(
zNe
Nz

)
δiNzδlNe −

du

dz

(
z10
)
δi0δl1

]
,

(3.131)

(3.132)

where i = 0, . . . , Nz and l = 1, . . . , Ne and the quadrature may be used again to approxi-

mate integrals:

−χ1

Nz∑
k=0

ρk
dψl

i

dz

(
zlk

) du

dz

(
zlk

)
+ χ2

Nz∑
k=0

ρkψ
l
i

(
zlk

)
ulk =

Nz∑
k=0

ρkψ
l
i

(
zlk

)
f lk

−χ1

[
du

dz

(
zNe
Nz

)
δiNzδlNe −

du

dz

(
z10
)
δi0δl1

]
.

(3.133)

(3.134)

The solution u(z) and right-hand side f(z) are again expanded in terms of the Lagrange

functions:

u(z) =

Nz∑
k=0

Ne∑
l=1

ulkψ
l
k(z), (3.135)

f(z) =

Nz∑
k=0

Ne∑
l=1

f lkψ
l
k(z), (3.136)

giving:

−χ1

ρi

Nz∑
k=0

ρk dzki dzkj u
l
j + χ2δiju

l
j = f li + Bl

i. (3.137)

This gives a linear problem on each element:

Mlul = f l + Bl, l = 1, . . . , Ne, (3.138)

where

Ml
ij = χ1Aij + χ2δij , (3.139)

which is independent of the element l due to the Helmholtz problem being identical over
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all elements. The boundary term is now

Bl
i = −χ1

ρi

[
du

dz

(
zNe
Nz

)
δiNzδlNe −

du

dz

(
z10
)
δi0δl1

]
, (3.140)

which is again only nonzero at the boundaries of the domain.

The linear problems (3.138) each have dimension Nz + 1. A larger linear problem of

dimension Ne (Nz + 1) may be defined by joining each individual problem in (3.138) into

a larger matrix. This yields a block-diagonal matrix:



M1 0 . . . 0

0 M2
...

...
. . . 0

0 . . . 0 MNe





u1top

u1R

u1btm

u2top

u2R

u2btm

...

uNe
top

uNe

R

uNe

btm



=



f1top

f1R

f1btm

f2top

f2R

f2btm

...

fNe
top

fNe

R

fNe

btm



+



Btop

0

0

0

0

0

...

0

0

Bbtm



. (3.141)

Here, the solution u and the forcing f + B have been separated into interface values and

interior vectors. The interface values are denoted by ultop and ulbtm and the interior vector

is denoted by ulR with a similar notation used for f . The boundary term B is only nonzero

on the first and last elements, for which it is only nonzero for the first and last entries,

taking values Btop = B1
0 and Bbtm = BNe

Nz
respectively. Since neighbouring elements share

an interface mesh point, there are two equations for each element interface. Thus, (3.141)

is modified by taking the average of these equations. The interface variables are defined

as:

ulI =
ulbtm + ul+1

top

2
, (3.142)

f lI =
f lbtm + f l+1

top

2
, (3.143)

for l = 1, . . . , Ne − 1. The equation involving the last row of Ml,

Ml
Nz0u

l
top +Ml

Nzju
l
R,j +Ml

NzNz
ulbtm = f lbtm, (3.144)
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has the same right-hand side as the equation involving the first row of Ml+1,

Ml+1
00 u

l+1
top +Ml+1

0j u
l+1
R,j +Ml+1

0Nz
ul+1
btm = f l+1

top , (3.145)

since f lbtm = f l+1
top . These two equations also both involve the interfacial value

ulI = ulbtm = ul+1
top , (3.146)

and so the average is taken,

Ml
Nz0

2
ultop +

Ml
Nzj

2
ulR,j +

Ml
NzNz

+Ml+1
00

2
ulI

+
Ml+1

0j

2
ul+1
R,j +

Ml+1
0Nz

2
ul+1
btm = f l+1

I , (3.147)

which couples all interfaces of adjacent elements. To visualise this coupling more clearly,

a new notation is introduced and the matrix Ml is decomposed in the following manner:

Ml =



Ml
↖ Ml

↑ Ml
↗

Ml
← Ml

RR Ml
→

Ml
↙ Ml

↓ Ml
↘


, (3.148)

where Ml
↖, Ml

↗, Ml
↙ and Ml

↘ are scalars, Ml
↑ and Ml

↓ are row vectors of size Nz − 1,

Ml
← andMl

→ are column vectors of sizeNz−1 andMl
RR is a matrix of sizeNz−1 × Nz−1.

The operator then has the structure:



. . .

Ml−1
↘ +Ml

↖
2

Ml
↑

2

Ml
↗
2

Ml
← Ml

RR Ml
→

Ml
↙
2

Ml
↓

2

Ml
↘ +Ml+1

↖
2

Ml+1
↑
2

Ml+1
↗
2

Ml+1
← Ml+1

RR Ml+1
→

Ml+1
↙
2

Ml+1
↓
2

Ml+1
↘ +Ml+2

↖
2

. . .



, (3.149)

for l = 2, . . . , Ne − 2. This reduces the size of the problem slightly, from Ne (Nz + 1) ×
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Ne (Nz + 1) to (NeNz + 1)× (NeNz + 1), i.e. Ne − 1 rows and columns are removed.

3.5.2 Schur Decomposition

Since neighbouring elements only couple to each other by their interface points, the entries

can be reordered: 

u1top

u1R

u1btm

u2top

u2R

u2btm

...

uNe
top

uNe
R

uNe
btm



−→



u1R

u2R

...

uNe
R

utop

u1I

...

uNe−1
I

ubtm



. (3.150)

Once this is done, the system can be written as:



M1
RR 0 . . . 0 M1

RI

0 M2
RR 0 M2

RI

...
. . .

...

0 0 . . . MNe
RR MNe

RI

M1
IR M2

IR . . . MNe
IR MII





u1R

u2R
...

uNe
R

uI


=



f1R

f2R
...

fNe
R

fI


+



0

0
...

0

BI


, (3.151)

where Ml
RR are defined as in (3.148), Ml

RI are matrices of size (Nz − 1)× (Ne + 1) and

have nonzero entries in their lth and (l+1)st columns which are Ml
← and Ml

→ respectively.

The matrices Ml
IR are of size (Ne + 1) × (Nz − 1) and have nonzero entries in their lth

and (l + 1)st rows which are Ml
↑/2 and Ml

↓/2 respectively. Finally, the matrix MII is
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tridiagonal:

MII =



M1
↖ M1

↗ 0 . . . 0 0

M1
↙
2

M1
↘ +M2

↖
2

M2
↗
2

0

0
M2
↙
2

M2
↘ +M3

↖
2

. . .
...

...
. . .

. . . 0

0 0
MNe−1
↘ +MNe

↖
2

MNe
↗
2

0 0 . . . 0 MNe
↙ MNe

↘


. (3.152)

The vectors uI and fI are of size Ne + 1 and consist of the boundary and interface values

of u and f respectively. The vector BI , of size Ne + 1, also only contains the interface

values of B, which in this case are nonzero at the boundaries, with values Btop and Bbtm.

Equation (3.151) can then be written as a system of matrix equations:

Ml
RRu

l
R +Ml

RIuI = f lR, l = 1, . . . , Ne, (3.153)

Ne∑
l=1

Ml
IRu

l
R +MIIuI = fI + BI . (3.154)

Once this rearrangement is done, the system must be adapted for Dirichlet or Neumann

boundary conditions by modifying (3.154). If Neumann boundary conditions are used,

nothing is changed since BI already contains the boundary conditions. If Dirichlet bound-

ary conditions are used, the first and last rows of the right-hand side of (3.154) are replaced

with the values of the boundary conditions. In addition, the first and last rows of the ma-

trices on the left-hand side of (3.154) are modified accordingly: the first and last rows

of Ml
IR are replaced with zeros for l = 1, . . . , Ne and the first and last rows of MII are

replaced with those of the identity matrix.

The interior solution values can be written in terms of solution values at the interfaces:

ulR =
(
Ml

RR

)−1 (
f lR −Ml

RIuI

)
. (3.155)

Substituting this into (3.154), an equation for the interface values is obtained:

[
MII −

Ne∑
l=1

Ml
IR

(
Ml

RR

)−1
Ml

RI

]
uI = fI + BI −

Ne∑
l=1

Ml
IR

(
Ml

RR

)−1
f lR, (3.156)

56



3.5 Vertical Discretisation

which can be solved by inverting the matrix on the left-hand side. Defining the matrices:

SL = MII −
Ne∑
l=1

Ml
IR

(
Ml

RR

)−1
Ml

RI , (3.157)

S l
R = Ml

IR

(
Ml

RR

)−1
, l = 1, . . . , Ne, (3.158)

this becomes

SLuI = fI + BI −
Ne∑
l=1

S l
Rf

l
R, (3.159)

and then the interior values are determined by (3.155). The matrix SL is tridiagonal. This

can be seen by writing each of the terms in the sum explicitly, using the fact that Ml
IR is

only nonzero in its lth and (l + 1)st rows and Ml
RI is only nonzero in its lth and (l + 1)st

columns: (
Ml

IR

)
ij
= δila

l
j + δi(l+1)b

l
j , (3.160)

(
Ml

RI

)
ij
= cliδjl + dliδj(l+1), (3.161)

for some vectors al, bl, cl and dl. Thus, when multiplied together, they yield four similarly

structured matrices:

(
δila

l
k + δi(l+1)b

l
k

)[(
Ml

RR

)−1]
km

(
clmδjl + dlmδj(l+1)

)
= δilγ

l
1δjl + δilγ

l
2δj(l+1) + δi(l+1)γ

l
3δjl + δi(l+1)γ

l
4δj(l+1),

(3.162)

(3.163)

where

γl1 = alk

[(
Ml

RR

)−1]
km

clm, (3.164)

γl2 = alk

[(
Ml

RR

)−1]
km

dlm, (3.165)

γl3 = blk

[(
Ml

RR

)−1]
km

clm, (3.166)

γl4 = blk

[(
Ml

RR

)−1]
km

dlm, (3.167)

are scalars for each l = 1, . . . , Ne. It can then be seen that each of the four matrices in

(3.163) are only nonzero in exactly one entry for each l, where the row number and column

number of the nonzero entry may differ by a maximum value of one. The addition of all

these matrices then results in a tridiagonal matrix, and since MII is also tridiagonal, so
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Matrix Rows Columns Saved? Total saved Name

SL Ne + 1 Ne + 1 No s schur lhs
L Ne + 1 1 Yes Ne + 1 s schur lhs lower
U Ne + 1 2 Yes 2 (Ne + 1) s schur lhs upper

S1
R Ne + 1 Nz − 1 Yes (Ne + 1) (Nz − 1) ↑
...

...
...

...
... s schur rhs mat

SNe
R Ne + 1 Nz − 1 Yes (Ne + 1) (Nz − 1) ↓

MRR Nz − 1 Nz − 1 No
λ Nz − 1 1 Yes Nz − 1 s glllap eig

P Nz − 1 Nz − 1 Yes (Nz − 1)2 s glllap tr

P−1 Nz − 1 Nz − 1 Yes (Nz − 1)2 s glllap tr inv

M1
RI Nz − 1 Ne + 1 Yes (Nz − 1) (Ne + 1) ↑
...

...
...

...
... s glllap ri

MNe
RI Nz − 1 Ne + 1 Yes (Nz − 1) (Ne + 1) ↓

Table 3.3: Number of rows and columns for each matrix (associated with the vertical
direction) computed at the start of any simulation and whether it needs to be saved. The
final column denotes the total number of real (double precision) numbers needed to store
each matrix. Since both the salinity and the pressure are needed to be solved for, there will
be two of each matrix described here, one for each of the respective Helmholtz problems.
(For the ‘Name’ column, the pressure matrices have the first letter ‘s’ replaced with ‘p’.)

is SL. At the start of a simulation, the matrices S l
R, SL, Ml

RR and Ml
RI are computed.

The LU-factorisation of the matrix SL is computed:

SL = LU, (3.168)

and since SL is tridiagonal, the lower matrix L can be saved with only Ne + 1 entries

and the upper matrix U can be saved with 2 (Ne + 1) entries. The matrices Ml
RR are

independent of the index l, since all the elements are identical, and so only one is needed

to be saved, denoted by MRR. This matrix is then diagonalised and the eigenvalues, λ,

are saved along with the transfer matrix, P , and its inverse, P−1. Table 3.3 lists the size

and number of each of these matrices that are required to be saved at the start of any

simulation. The accuracy used to save these matrices is double precision, where each real

number needs a total of 64 bits (8 bytes) of memory. Solving a vertical Helmholtz problem

can be summarised as follows:
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3.6 Solving the Dry Lake Equations

1. Compute the terms in the right-hand side of (3.159) by multiplying each f lR by S l
R,

involving O
(
NzN

2
e

)
operations. Also compute fI (size Ne + 1) and BI (size Ne + 1,

of which only two entries are nonzero).

2. Multiply the right-hand side of (3.159) by (SL)
−1 to determine uI . This uses an LU

factorisation of a tridiagonal matrix and so only involves O(Ne) operations.

3. For each l, compute ulR using (3.155):

(a) Compute Ml
RIuI , involving O (NzNe) operations, and f

l
R.

(b) Transform to spectral space, involving O
(
N2

z

)
operations.

(c) Invert Ml
RR in spectral space by dividing by its eigenvalues, involving O(Nz)

operations.

(d) Transform back to physical space, involving O
(
N2

z

)
operations.

This step thus involves O (NzNe (Nz +Ne)) operations.

Since a vertical Helmholtz problem must be solved for each wavenumber pair, the num-

ber of operations associated with vertical problems scales like NxNyNzNe (Nz +Ne). In

addition, to arrive at this, a forward Fourier transform has to be taken, the number of

operations of which scales like Nx logNxNy logNyNzNe. The total number of operations

at each time step thus scales like:

Noperations ∼ NxNyNzNe (logNx logNy +Nz +Ne) . (3.169)

(This can be verified by summing the size of the ‘for’ loops in the numerical code and

taking the leading order contributions.)

3.6 Solving the Dry Lake Equations

The equations and boundary conditions that are solved when simulating dry lakes are:

∂S

∂t
+ u · ∇S = ∇2S, (3.170)

∇2p = Ra
∂S

∂z
, (3.171)

u = −∇p+RaSez, (3.172)
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S = 1,
∂p

∂z
= Ra+ 1 at z = 0, (3.173)

S = 0,

〈
∂p

∂z

〉
= 1 at z = h. (3.174)

The domain is discretised using a Fourier mesh in each of the horizontal directions:

xi =
Γxi

Nx
, i = 0, . . . , Nx − 1, (3.175)

yj =
Γyj

Ny
, j = 0, . . . , Ny − 1, (3.176)

where Nx and Ny are the number of mesh points in the x- and y-direction respectively. The

vertical direction is discretised using Ne uniform elements, each using a Gauss–Lobatto–

Legendre discretisation with Nz + 1 points per element:

zlk =
(l − 1)h

Ne
+ z̃k, k = 0, . . . , Nz, l = 1, . . . , Ne, (3.177)

where the points z̃k are the nodes of the Gauss–Lobatto–Legendre discretisation on the

first element, [0, h/Ne]:

z̃k =
h

2Ne
(1 + ζk) , (3.178)

where ζk is the kth root of L′Nz
(z). This uses a total of Ne (Nz + 1) mesh points in the

vertical direction. The salinity is discretised as:

Sijkl = S(xi, yj , z
l
k) =

Nz∑
q=0

Ny/2∑
n=−Ny/2+1

ψl
q(z

l
k) exp

(
ı
2π

Ny
nj

){
S̃0nql

+

Nx/2−1∑
m=1

[
S̃mnql exp

(
ı
2π

Nx
mi

)
+ S̃∗mnql exp

(
−ı 2π
Nx

mi

)]

+ S̃Nx
2

nql (−1)i
}
, (3.179)

where i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1, k = 0, . . . , Nz and l = 1, . . . , Ne. The

coefficients S̃mnql are complex numbers and denote the solution in spectral space. The

Lagrange polynomials are defined as

ψr
q(z) =


∏
s ̸=q

z − zrs
zrq − zrs

if z ∈ [zrmin, z
r
max]

0 otherwise

(3.180)
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3.6 Solving the Dry Lake Equations

for q = 0, . . . , Nz, r = 1, . . . , Ne. Fourier transforms are first taken, resulting in (Nx/2 +

1)×Ny decoupled equations for the salinity and pressure:

∂

∂t
Ŝmn + N̂mn =

[
∂2

∂z2
− 4π2

(
m2

Γ2
x

+
n2

Γ2
y

)]
Ŝmn, (3.181)

[
∂2

∂z2
− 4π2

(
m2

Γ2
x

+
n2

Γ2
y

)]
p̂mn = Ra

∂

∂z
Ŝmn, (3.182)

where N̂ is the Fourier transform of u · ∇S. The Taylor expansions of Section 3.3 are

applied to the time derivative and the nonlinear term:

{
α0 −∆t

[
∂2

∂z2
− 4π2

(
m2

Γ2
x

+
n2

Γ2
y

)]}
Ŝt
mn = −

s∑
i=1

αiŜ
t−i∆t
mn −∆t

s∑
i=1

βiN̂
t−i∆t
mn , (3.183)

[
∂2

∂z2
− 4π2

(
m2

Γ2
x

+
n2

Γ2
y

)]
p̂tmn = Ra

∂

∂z
Ŝt
mn, (3.184)

where ∆t is the time step, s is the order of the time stepping scheme, αi, i = 0, . . . , s are

the coefficients for the time derivative expansion (see Section 3.3.1) and βi, i = 1, . . . , s

are the coefficients for the extrapolation of the nonlinear term (see Section 3.3.2). First,

the salinity is solved for via:

HS
mnŜ

t
mn = −

s∑
i=1

αiS
t−i∆t
mn −∆t

s∑
i=1

βiN̂
t−i∆t
mn , (3.185)

where

HS
mn = α0 −∆t

[
∂2

∂z2
− 4π2

(
m2

Γ2
x

+
n2

Γ2
y

)]
(3.186)

is the Helmholtz operator for the salinity. The boundary conditions used are:

St = 1 at z = 0, (3.187)

St = 0 at z = h. (3.188)

Once St is known, the pressure is solved for via:

Hp
mnp̂

t
mn = Ra

∂

∂z
Ŝt
mn, (3.189)
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where

Hp
mn =

∂2

∂z2
− 4π2

(
m2

Γ2
x

+
n2

Γ2
y

)
(3.190)

is the Helmholtz operator for the pressure. The boundary conditions for the pressure are:

∂pt

∂z
= Ra+ 1 at z = 0, (3.191)

∂pt

∂z
= −wt−∆t −

〈
−wt−∆t

〉
+ 1 at z = h. (3.192)

The physical fields St and pt are recovered via the inverse Fourier transform for which then

the velocity field is directly evaluated since it is given explicitly in terms of the pressure

and the salinity:

ut = −∇pt +RaStez. (3.193)

3.7 Validation

To simulate dry lakes, the Rayleigh number, Ra, lake depth, h, and horizontal domain

sizes, Γx and Γy, must be set at the start of the simulation. Along with these physical

parameters, the parameters governing the temporal and spatial discretisations must be

chosen. That is, the time step, ∆t, and the number of mesh points in each direction: Nx,

Ny, Nz and Ne. These parameters must be chosen to ensure sufficient accuracy for the

simulation, ensure numerical stability of the time stepping scheme and to be not too small

or too large that simulations are overly costly to run on the hardware available. This

highlights the need for certain rules to be used to help design individual simulations. The

choices used in subsequent simulations will be discussed here and justified by means of

numerical validations.

3.7.1 Horizontal Directions

As the Rayleigh number is increased, smaller scale dynamics need to be resolved by simu-

lating higher wavenumbers. Since the maximum wavenumbers modelled in the numerical

simulations are directly related to the number of mesh points in the horizontal directions,

there is a need to increase Nx and Ny as Ra is increased (and as the horizontal domain

sizes Γx and Γy are increased). The number of mesh points is determined by aiming to

model all wavenumbers up to the point when they have a relative power below a certain
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threshold. Thus, a relation between the mesh density, defined as

ρx =
Nx

Γx
, ρy =

Ny

Γy
, (3.194)

and the Rayleigh number is sought. To do this, a criterion is constructed that determines

the maximum wavenumber to model as a function of the energy in each wavenumber.

Firstly, the energy contained in the wavenumber pair (k, l) at depth z and time t is

defined as:

E (k, l, z, t) = |F {S} (k, l) |2, (3.195)

where F denotes the Fourier transform over the two horizontal directions. A wavenumber

pair (k, l) is chosen to be ignored at time t if:

E(k, l, z, t)

E(0, 0, z, t)
≤ 10−M ∀z ∈ [0, h], (3.196)

where M ≥ 0 is the threshold number. This states that a wavenumber pair (k, l) should

be ignored if its energy is less than 10M times smaller than the energy of the constant

mode at that particular time. The energy of the constant mode is used to provide a

reference energy (at each depth z and time t) to compare all higher modes to. From this

definition, it is anticipated that, for higher values of M , more mesh points are needed in

the horizontal directions to model the increasingly higher wavenumbers. The threshold

energy at depth z and time t is then defined to be

EM (z, t) = 10−M E(0, 0, z, t). (3.197)

To determine Nx and Ny, the energy E(k, l, z, t) is saved at specified times. At all depths

z and time t, the condition E(k, l, z, t) ≥ EM (z, t) is evaluated, which can be seen in

Figure 3.7. The minimum distance from (0, 0) is then computed for which all wavenumber

pairs (k, l) beyond this distance have energy less than the threshold energy. This distance

is denoted by d(z, t) and is visualised by the white arcs in Figure 3.7. The number of

mesh points required is then

NM (z, t) = 2

⌈
3d(z, t)

2

⌉
, (3.198)

where the factor of 3 comes from the Fourier filter threshold frequency (resulting from a

second-order nonlinearity) and the ceiling function ensures NM is even (as required by the
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Figure 3.7: Example of the threshold criterion using M = 8. Yellow (resp. blue) pixels
denote the integer wavenumber pairs (i, j) that have energy greater (resp. lower) than
the threshold energy. The white arc shows the minimum distance d(z, t) for which all
wavenumber pairs (k, l) outside this radius have energy less than the threshold energy.

Figure 3.8: Maximum number of mesh points required as a function of time during a
simulation with Ra = 60 to ignore all wavenumbers of energy less than the threshold
energy. Values of the threshold used are M = 2, . . . , 10.

Fourier mesh). The number of mesh points, NM , is then maximised over z to determine

the minimum number of mesh points needed at time t to satisfy the criterion (3.196). This

can be seen in Figure 3.8 for various values of M . For example, it can be seen that the

most demanding time at Ra = 60 is at t = 1.6, needing Nx = Ny = 184 mesh points in

the horizontal directions to satisfy (3.196) with a threshold ofM = 10. It can also be seen

that for larger M , more mesh points are needed and simulations will have an increased

accuracy. However, if more mesh points are used in simulations, the computational cost

will be increased, so a balance between the accuracy of the solution and the time and

resources used to obtain it needs to be found. Since the dynamics of the system are

chaotic, it is difficult to reproduce a nonlinear solution using the same initial condition to

a high accuracy. The value of M chosen is M = 6, which is conservative, but not overly

so to not penalise speed. The final number of mesh points needed can be determined by

finding the maximum needed over the times that have been plotted (see Figure 3.8). With
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Figure 3.9: Required mesh density as a function of Ra using threshold values M = 6 and
M = 8. Linear fit (black line) to be used to determine mesh density in further simulations.

a threshold M = 6, Ra = 60 requires Nx = Ny = 96 (at t = 1.8) mesh points for a domain

of size Γx = Γy = 8π, leading to a required mesh density of approximately ρx = ρy ≈ 3.8.

The most constraining value Nx = Ny = 96 at t = 1.8 was found to be close to the

surface, at z ≈ 0.35, which is due to the dynamics being driven by the surface boundary

condition and any small-scale structures present near the boundary will diffuse as they

descend downwards. Repeating this process over a range of Rayleigh numbers, a relation

is obtained, which can be seen in Figure 3.9. For 60 ≤ Ra ≤ 120, a linear fit is computed

that ensures wavenumbers are kept that have energy above a threshold of M = 6. The

mesh densities in the horizontal directions can then be computed as

ρx = ρy = 0.05Ra+ 1. (3.199)

3.7.2 Vertical Direction

The parameters for the vertical mesh must also be determined and two methods for doing

this will be shown here. The first method matches the vertical mesh spacing to the

horizontal mesh spacing. The second method uses a small nonlinear simulation that is

converged to a steady-state and the error made compared to an over-resolved choice of

mesh parameters is analysed.

As the horizontal mesh density has already been determined, the number of elements

and the number of mesh points per element in the vertical direction could be chosen by

matching the vertical mesh spacing to the horizontal mesh spacing. Since the Gauss–

Lobatto–Legendre mesh has non-uniform mesh spacing, a choice must be made whether

the horizontal mesh spacing is matched to the minimum, maximum or average mesh

spacing in the vertical direction. Figure 3.10 shows how the maximum and minimum
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Figure 3.10: Maximum and minimum vertical mesh densities as a function of the number
of mesh points in the vertical direction, Nz.

mesh densities scale with the number of points per element, Nz. On each element, the

minimum mesh density occurs at the centre of each element where the mesh density scales

linearly with the number of mesh points (see the red line in Figure 3.10):

min ρz ∼
NeNz

h
as Nz → ∞. (3.200)

The maximum mesh density occurs at the boundary of each element where the mesh

density scales with the square of the number of points (see the blue line in Figure 3.10):

max ρz ∼
NeN

2
z

h
as Nz → ∞. (3.201)

Finally, the average density is the total number of points used divided by the distance

over which those points are distributed:

⟨ρz⟩ =
NeNz

h
, (3.202)

which follows the same scaling as the minimum density. If the minimum vertical mesh

density is matched to the horizontal mesh density, min ρz ∼ ρx, the number of mesh points
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in the vertical direction would scale linearly with Ra:

Nz ∼ Ra, (3.203)

assuming the number of elements remains constant. This results in a large number of mesh

points needed in the vertical direction, vastly increasing the computational cost. Instead,

if the maximum mesh density is matched to the horizontal mesh density, max ρz ∼ ρx, the

number of mesh points in the vertical direction will scale as

Nz ∼
√
Ra, (3.204)

which is a weaker dependence on Ra than (3.203). Another consequence of matching the

maximum mesh density in the vertical direction to the mesh density in the horizontal

directions is that mesh cells will have an aspect ratio of one at the boundaries of the

elements. Thus the vertical mesh spacing is equal to the horizontal mesh spacing at

the surface, where it matters most, as the dynamics are driven by the surface boundary

condition. The trade-off of sacrificing a higher mesh density in the centre of elements for

decreased resource usage is acceptable due to the chaotic nature of the system. The mesh

spacing ∆z is then defined to be the minimum mesh spacing in the vertical direction:

∆z = min
k,l

∆zk,l = ∆z1,1, (3.205)

where ∆zk,l = |zk,l − zk−1,l| is the mesh spacing between the kth and the (k − 1)st mesh

point in the lth element. Since the mesh spacing ∆z is linear in h/Ne and is expected to

scale with N−2z for large Nz, a scaling is sought:

∆z = a
h

Ne
N b

z , (3.206)

where a > 0 and b are constants to be determined. It is expected that b will tend to 2 as

Nz is increased, but is kept general here so it can be determined for the practical range of

Nz. The constants a and b are determined numerically by calculating the minimum mesh

spacing (3.205) for 10 ≤ Nz ≤ 30 and fitting a law of the form (3.206) using Matlab’s

nonlinear least squares algorithm. Fitting this law gives a ≈ 2.772 and b ≈ −1.923, but
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are rounded to yield the approximation:

∆z ≈ 3
h

Ne
N−2z , (3.207)

which approximately determines the minimum mesh spacing. If the horizontal mesh spac-

ing is chosen to match the vertical, a relationship is obtained:

NeN
2
z = 3h (0.05Ra+ 1) , (3.208)

which may be used to compute Nz and Ne for the given parameters Ra and h. For

example, at Ra = 100 and h = 10, if Ne = 5 elements are used, each element would need

Nz = 6 to have the required mesh density.

The error made when using these parameters can be analysed by running two-dimensional

simulations at Ra = 100, h = 10 for a fixed value of Ne and a range of Nz. These

simulations are initialised with a perturbation that projects only onto the most unstable

mode, k∗, of the base state using a domain size that exactly fits this mode:

S = Sb(z) +B Ŝ(z)eık
∗x, (3.209)

where Ŝ(z) is the eigenfunction of the most unstable wavenumber, B ≪ 1 and the hori-

zontal domain size is Γx = 2π/k∗. This initial condition is simulated until a steady-state

is reached, determined by

〈[
1

h

∫ h

0

(
∂S

∂t

)2

dz

]1/2〉
xy

≤ 1× 10−6. (3.210)

Once this condition is met, the average salinity is computed:

ΣNz =
1

h

〈∫ h

0
S dz

〉
xy

, (3.211)

where the subscript Nz denotes the number of mesh points per element used in the sim-

ulation. The relative error compared to the most resolved case, Nz = 30, is computed

and shown for selected values of Ne in Figure 3.11(a). To obtain an error less than 10−10,

Nz = 19 must be used for Ne = 5, a value larger than what was initially chosen by

matching the vertical mesh spacing to the horizontal mesh spacing. Thus, determining

the vertical mesh parameters will be done via this second method, as opposed to the first.
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Figure 3.11: (a) Relative error in the average salinity against the most resolved case
for Ne = 3, 5 and 10 after the solution has converged to a steady-state (see (3.210))
for Ra = 100 and h = 10. (b) The number of mesh points per element to be used is
determined so that the relative error is less than 10−10.

Figure 3.11(b) shows the value of Nz as a function of Ne, determined to be the smallest

value that obtains an error (shown in Figure 3.11(a)) of less than 10−10 for the given value

of Ne. Full nonlinear simulations (with a large number of time steps and fixed ∆t) are

then run with these pairs to a given time and timed. The time that a simulation takes

may depend on the architecture being used to run the simulation on since a machine with

a larger number of computational cores will perform better in the routines that make

use of parallelisation. Additionally, there will be fluctuations in the time each individual

simulation takes due to the need to share memory across individual cores (which can

behave differently depending on the total load over all the cores). Also, physical reasons

such as temperature management of the cores being used may impact the time taken for a

simulation. The quickest of these simulations then determines which pair is used and for

the computational hardware used here (typically 8 or 16 cores), Ne = 5 and Nz = 19 is

the fastest. Maintaining a scaling where Nz ∼
√
Ra (to keep the number of mesh points

per element reasonably small for larger Ra), the relationship is sought:

3
h

Ne
N−2z =

c

Ra
, (3.212)

where c = 2 is determined by imposing the result that Nz = 19, Ne = 5 at Ra = 100,

h = 10 is needed to obtain a satisfactory error. Using the condition (3.212) and choosing

Ne = h/2 so that Ne = 5 for h = 10, the vertical mesh is determined for parameters Ra

and h as follows:
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Figure 3.12: Vertical mesh density as a function of Ra for h = 10.

1. Compute

Nz =
⌈√

3Ra
⌉
. (3.213)

2. If Nz > 30,

Nz = 30, Ne =

⌈
3

2
hRaN−2z

⌉
(3.214)

Otherwise,

Nz =
⌈√

3Ra
⌉
, Ne =

⌊
h

2

⌋
. (3.215)

For 20 ≤ Ra ≤ 500, the resulting mesh density from this algorithm is plotted in Figure

3.12, showing the discontinuity at Ra ≈ 300 when Nz exceeds 30 and more elements are

preferable to more points per element. This is because if too many points per element

are used, a similar problem to the one described previously is encountered, where large a

difference in the mesh density at the boundaries and in the middle of the elements arises.

3.7.3 Time Step

To motivate the choice of the time step, the Courant–Friedrichs–Lewy condition (Courant

et al., 1928) is used to provide an upper bound for the time step. The Courant number
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in the ith direction is defined as

Ci =
Ui∆t

∆xi
, (3.216)

where Ui = max ui is the maximum velocity in the ith direction, ∆t is the time step and

∆xi is the mesh spacing in the ith direction. A choice must be made for the mesh spacing

in the z-direction and the average spacing is used so that ∆x3 = h/NzNe. The total

Courant number is then the sum:

C =
3∑

i=1

Ci. (3.217)

The Courant number in the vertical direction is used to determine an upper bound on the

time step:

C3 ≤
1

2
, (3.218)

where the value of 1/2 is chosen so that C3 is certainly less than one, but is not too small

that it imposes an unnecessarily small maximum allowed time step. Since the vertical

velocity scales with Ra, the time step is chosen to satisfy

∆t ≤ h

2RaNzNe
. (3.219)

This choice aims to keep the time step small enough to avoid a scheme instability but

large enough that simulations do not take an unreasonable amount of time. The 1/Ra

factor in (3.219) as well as the Ra dependence in both Nz and Ne mean that the time step

has a strong dependence on Ra. This means that the range of Ra that can be simulated

in a reasonable amount of time is smaller than what would be ideal. Nevertheless, using

values such as Ra = 100 produces interesting dynamics, which will further be discussed

in Chapter 4.

The mesh studies presented in Section 3.7 were performed on an older version of the

numerical code that is currently used. The changes that were made since the validations

were performed focused on performance (Beaume, 2024) and should not affect the accuracy

of the simulations that were used to determine the required mesh parameters and the time

step. It is thus a reasonable assumption that the validations apply to the current version

of the numerical code. However, the speed of the simulations will be significantly different,

resulting in differing simulation times to those found in Section 3.7.2.
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Chapter 4

Results

In this chapter, the dynamics of salt lakes will be discussed. Starting in Section 4.1, a

brief overview of the dynamics will be presented, both in two and three dimensions. The

two-dimensional dynamics (also see Lasser et al. (2021)) illustrate the formation of high-

salinity plumes and are included to complement the description of the three-dimensional

dynamics. In Section 4.2, the results from the linear stability analysis will be presented,

which describe the initial growth of plumes from the high salinity boundary layer. This

is done by considering one horizontal direction only, as it directly applies to the linear

stability analysis for the full three-dimensional system. Then, in Section 4.3 and Section

4.4, the first nonlinear effects will be discussed as the linear instability saturates. The

dynamics from three-dimensional simulations for Ra = 100 and h = 10 will be presented

and the additional features that the extra dimension introduces will be discussed. Then, in

Section 4.5, the dependence on the depth and Rayleigh number will be explored. Finally,

in Section 4.6, these results will be compared to field observations taken from Badwater

Basin, Owens Lake and Sua Pan.

4.1 Overview of Dynamics

Previous simulations of dry salt lakes have largely been restricted to two dimensions

(Lasser, 2019; Lasser et al., 2021). These simulations capture the convective dynamics

resulting from the unstable density gradient and can predict the wavelength of the sur-

face pattern arising on the (one-dimensional) surface of the domain. However, the surface

pattern observed at dry lakes is inherently two-dimensional, which can only be simulated

if the domain is three-dimensional. Nevertheless, two-dimensional simulations provide a
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strong starting point before the full three-dimensional simulations are analysed.

Starting from the base state, a random perturbation is added:

S = Sb(z) +B θ(x, y, z)E(z), (4.1)

where Sb(z) is the base state salinity:

Sb(z) =
exp (−z)− exp (−h)

1− exp (−h)
, (4.2)

B ≪ 1 (typically B = 10−4), θ (x, y, z) is a random number drawn from a uniform

distribution on [−1, 1] and E(z) is a vertical profile chosen so that the perturbation to the

base state decays faster than the base state itself. For the following simulations presented

in this chapter, the vertical profile is chosen to be:

E(z) = E1(z) = exp
(
−z2

)
, (4.3)

but an alternate profile is discussed in Section 4.2.2.

To understand how the subsurface fluid dynamics of dry salt lakes influences the surface

pattern, the salinity flux to the surface is tracked, defined by:

J = −ez · (Su−∇S) |z=0

= 1 +
∂S

∂z

∣∣∣∣
z=0

. (4.4)

The orientation of the surface flux is chosen so that positive values of J correspond to

salinity transport upward and into the surface (hence driving the growth of a crust) and

negative values denote salinity transport away from the surface. The advective compo-

nent of the salinity flux is constant and positive due to the boundary condition, whereas

its diffusive counterpart is always negative, as the salinity must decrease away from its

surface value. Figure 4.1 and Figure 4.2 show snapshots of an illustrative two-dimensional

simulation at Ra = 100 and h = 10. The surface flux of salinity is plotted above each

salinity field, displaying the horizontal variation in the salinity transport to the surface.

Figure 4.1(a) displays the system at the end of the linear regime, where downwelling

plumes start to become visible. The downwelling plumes continue to grow, seen in Figure

4.1(b) and begin to move laterally while falling and potentially merging with neighbouring
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Figure 4.1: Snapshots at (a) t = 0.5, (b) t = 0.9 and (c) t = 1.4 of a two-dimensional dry
lake simulation. The surface flux (positive flux to the surface in red, negative flux away
from the surface in blue) is plotted above the salinity field to provide a visual representation
of the magnitude of the flux. Local maxima of the surface flux correspond to regions of
downwelling fluid while negative surface fluxes correspond to regions of upwelling fluid.
Other parameters are Ra = 100, h = 10 and Γx = 12π.
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Figure 4.2: Continuation of Figure 4.1, with snapshots at (a) t = 1.7, (b) t = 2.5 and (c)
t = 10.
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Figure 4.3: Streamlines at t = 1.5 illustrating the two-dimensional flow over the whole
domain (panel (a)) and the region 4π ≤ x ≤ 8π, 0 ≤ z ≤ 1 (panel (b)). Other parameters
are Ra = 100, h = 10 and Γx = 12π.

plumes, as seen in Figure 4.1(c). When the plumes reach the bottom, as seen in Figure

4.2(a), fluid leaving the domain initiates upwelling plumes from the bottom boundary (to

maintain ⟨w⟩xy = −1), which rise upwards, shown by Figure 4.2(b). From this point on-

wards, the system begins to transition to a statistically steady end-state, shown by Figure

4.2(c). In addition, Figure 4.3 displays streamlines indicating the direction of fluid flow

for a two-dimensional simulation. Figure 4.3(a) displays the streamlines for the whole

domain, illustrating the large-scale convective rolls of rising upwellings and descending

downwellings. On the other hand, Figure 4.3(b) shows the streamlines in a region close

to the boundary (z ≤ 1). This shows that the induced buoyancy velocities are far more

prominent than those caused by evaporation: the streamlines within the salinity boundary

layer are primarily horizontal, showing that the horizontal velocity driven by convection

outweighs the upward flow induced by evaporation.

Simulating dry salt lakes in three dimensions results in the surface being two-dimensional,
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Figure 4.4: Snapshot of a three-dimensional dry lake simulation at t = 1.3. The top face
displays the surface flux (positive flux in red, negative flux in blue) and the side faces
display the salinity field (darker colours correspond to saltier fluid). Other parameters are
Ra = 100, h = 10 and Γx = Γy = 24π.

allowing more complex patterns to develop in the surface flux of salinity. Figure 4.4

shows a snapshot of a three-dimensional dry lake simulation, displaying the surface flux

on the top face and the salinity field on the side faces. Similar to the two-dimensional

simulation, Figure 4.4 displays the surface flux taking positive values above downwelling

regions of fluid and negative values above upwelling regions. Figure 4.5 shows the pattern

in the surface flux at four representative times during a typical simulation with Ra = 100,

h = 10 and Γx = Γy = 12π. The nature of the two-dimensional patterns occurring on

the surface of three-dimensional dry lake simulations transitions through various stages.

The linear instability gives rise to small regions of weakly positive and negative salinity

flux into the surface (see Figure 4.5(a)). The surface flux initially takes values that are

approximately distributed symmetrically around the base state but, as nonlinear terms

enter the dominant balance, the growth of the small-wavelength pattern produced by

the linear instability slows down and the surface flux pattern becomes biased: regions

of negative salinity flux dominate over those of positive flux (see Figure 4.5(b)). As

downwelling plumes merge, the pattern coarsens, seen by the increase in the size of the

areas of negative flux in Figure 4.5(c) and Figure 4.5(d).
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Figure 4.5: Snapshots of the surface salinity flux J at different times t for a representative
simulation with Ra = 100, on a domain of depth h = 10 and of horizontal size 12π× 12π.
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4.2 Linear Stability

In Chapter 2, the coupled linear equations were obtained:

d2Ŝ

dz2
− k2Ŝ +

dŜ

dz
+

e−z

1− e−h

(
Ra Ŝ − dp̂

dz

)
= σŜ, (4.5)

d2p̂

dz2
− k2p̂ = Ra

dŜ

dz
. (4.6)

These equations govern the eigenfunctions Ŝ(z) and p̂(z) along with their corresponding

growth rate σ ∈ C for a perturbation with wavenumber k and Rayleigh number Ra.

When this system is solved numerically, N solutions are found, where N is the number

of collocation points used in the Chebyshev discretisation. Amongst these solutions, the

one of most interest is that which has the largest growth rate, λ = Re (σ), (the real part

of the eigenvalue σ) since this mode dictates the dominant behaviour of the system and

will trigger any instability first. The system is solved for each pair (k, Ra) and the growth

rate is saved to generate a two-dimensional field λ (k, Ra), which can be seen in Figure

4.6. For each wavenumber k, there is a value of the Rayleigh number, Ran, such that for

Ra < Ran, the growth rate is negative and perturbations with this wavenumber decay.

For Ra > Ran, the growth rate is positive and perturbations with this wavenumber grow.

The boundary, Ran(k), is the neutral stability curve where the growth rate is zero. The

smallest value of Ran is denoted by Rac, the critical Rayleigh number, the minimum value

of the Rayleigh number that an instability may occur. The value of the wavenumber that

the critical Rayleigh number occurs at is denoted by k = kc, the critical wavenumber.

For h = 10, the critical values are kc ≈ 0.7590 and Rac ≈ 14.3518. For Ra < Rac, the

system is stable and a linear instability is never observed. For Ra > Rac, there is a band

of wavenumbers for which the growth rate is positive and the wavenumber at which the

maximum growth rate is located at is the most unstable mode, denoted as k∗. Figure

4.7(a) shows the growth rates for the band of unstable wavenumbers at various choices

of the Rayleigh number. As Ra is increased, k∗ increases, leading to the emergence of

finer structures during this instability. The growth rate associated with k∗ also increases,

resulting in faster dynamics for higher values of Ra. The eigenfunction corresponding

to the most unstable wavenumber is shown in Figure 4.7(b). These eigenfunctions take

their maximum value of 1 close to the surface and the location of the maximum becomes

progressively closer to the surface as Ra is increased. The eigenfunctions also decay

rapidly with depth, demonstrating that the instability is most prominent near the surface
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Figure 4.6: Growth rate λ at wavenumber k and Rayleigh number Ra for h = 10. The
solid black line is the neutral stability curve, Ran(k), denoting the modes that have a zero
growth rate (λ = 0). Stable modes (λ < 0) lie beneath the neutral stability curve, shown
in blue while unstable modes (λ > 0) lie above the neutral stability curve, shown in red.
The critical Rayleigh number, Rac ≈ 14.3518 denotes the minimum value of the Rayleigh
number that an instability may be observed, occurring at the critical wavenumber, kc ≈
0.7590. The black dashed denotes the most unstable mode, k∗, for each Rayleigh number
above the critical point.

Figure 4.7: (a) Growth rates λ as a function of the wavenumber k for several values of
Ra and h = 10. The black circles denote the most unstable wavenumber, k∗, occurring at
the maximum of the curves. (b) Most unstable eigenfunctions for h = 10. Eigenfunctions
take their maximum value close to the surface and decay rapidly with depth. As Ra is
increased, the maximum value becomes closer to the surface.
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Figure 4.8: (a): Neutral stability curves (solid lines) and most destabilising eigenmode
(dashed lines) for h = 2, h = 4, h = 6, h = 10 and h = 20. Stable eigenmodes lie below
the neutral stability curves, and unstable modes lie above them. (b): Most unstable
eigenmodes at Ra = 100 for several values of h.

and instabilities will arise in the solutal boundary layer.

Lasser et al. (2021) and Wooding (1960) approached the linear stability analysis with

an infinite lake depth and the latter study also focused on the special case of neutral

stability (λ = 0). In this limit, the eigenfunctions may be expanded in terms of four

hypergeometric functions (Lasser et al., 2021). To investigate the effect of the finite

depth, the eigenvalue problem is solved for various values of h and the neutral stability

curves and the wavenumber of the most unstable modes are plotted in Figure 4.8(a).

The critical Rayleigh number decreases as h is increased, resulting in a less stable system

due to the reduced spatial constraint imposed by the bottom boundary. In addition, the

critical wavenumber and the wavenumber of the most unstable mode (for a given Ra) are

smaller for these deeper lakes. The most destabilising eigenmodes for Ra = 100 and a

variety of domain depths h are represented in Figure 4.8(b). This shows that the most

unstable eigenmodes decay nearly exponentially away from the surface and only differ

from each other near the bottom of the domain where the eigenfunctions depart from

their bulk behaviour to match the boundary condition. Figure 4.9 shows the relative error

between the critical values and the infinite depth case, for which the critical values are

k∞c ≈ 0.758867, Ra∞c ≈ 14.35219121494 (Lasser et al., 2021). The error for Rac levels

off around 10−12, reflecting the precision with which the critical values for an infinitely
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Figure 4.9: Relative error between the critical values and the infinite depth case as the
domain thickness is increased. The infinite lake values were obtained from Lasser et al.
(2021).

deep lake have been calculated (which is larger than machine precision). The error for

kc is larger, saturating at around 10−6, owing to the quadratic behaviour of the neutral

stability curve in the vicinity of the critical point. Observing the same results as Lasser

et al. (2021) and in particular, the convergence of these results to the infinite depth case,

provides validation for the model used.

4.2.1 Linear Regime

The random component in the initial condition (4.1) results in a numerical transient

before the system exhibits the characteristic exponential growth associated with the linear

instability. To illustrate the exponential growth away from the base state, the departure

from the base state is computed, given by:

A =
1

ΓxΓyh

∫ Γx

0

∫ Γy

0

∫ h

0
|S − Sb|dx dy dz . (4.7)

This quantity is plotted in Figure 4.10(a). Since a small perturbation is added to the base

state, A is initially nonzero but small and the initial decrease in A is due to the stable

modes from the random perturbation decaying at a faster rate than the unstable modes.

Once the stable modes have decayed, the unstable modes have a stronger contribution to

A, and the characteristic exponential growth can be seen, shown by the approximately

linear relation log A ∼ t for times t ≲ 0.4 displayed in Figure 4.10(a). The gradient of
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Figure 4.10: (a) Departure from the base state, A and the average flux of salinity to
the surface, q0, for Ra = 100 and h = 10. The departure from the base state grows
approximately linearly, log A ∼ 21.7 t, for times 0.1 ≲ t ≲ 0.4. This differs from the
value predicted by the linear stability analysis by 5%. (b) Most unstable eigenfunction for
Ra = 100 and h = 10 and the horizontal average of the salinity at t = 0.3 with the base
state subtracted.

this line is approximately 21.7173, which has a percentage error of 5% compared to value

predicted by the linear instability of 22.9793. Figure 4.10(a) also shows the average salinity

flux to the surface, defined by:

q0 = ⟨J⟩xy . (4.8)

As the instability grows, small-amplitude patterns in the surface flux emerge (seen in

Figure 4.5(a)). These do not have an impact on the average surface flux because the

horizontal average of the perturbation is zero. Thus, the average surface flux remains

unchanged:

q0 = qb ≈ 0, (4.9)

where

qb = − e−h

1− e−h
(4.10)

is the average salinity flux to the surface associated with the base state. Figure 4.10(b)

shows the most unstable eigenfunction for Ra = 100 and h = 10 along with the hori-

zontal average of the salinity at t = 0.3 with the base state subtracted. This indicates

that the departure of the salinity from the base state closely matches the most unstable

eigenfunction at shallow depths.

Mode selection during the linear phase of the instability can be visualised via the nor-
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malised power spectrum of the surface flux, P (k), where k = (k2x + k2y)
1/2 is now gener-

alised as the radial wavenumber. The power spectrum of the surface flux is computed first

in terms of the two horizontal wavenumbers:

P̂ (kx, ky) = |Ĵ (kx, ky) |2, (4.11)

where Ĵ is the Fourier transform of the surface flux. This field is then radially averaged

using a binning process, dividing the plane of wavenumber pairs into annuli of a given

thickness and averaging the values of the power that fall into each annulus. The thickness

of each annulus is defined to be

δk =
kmax

m
, (4.12)

where kmax is the maximum value of k =
(
k2x + k2y

)1/2
over the horizontal mesh and m is

the number of bins in the radial direction. This thickness is constant for each annulus and

the radial discretisation is constructed so that:

kl = lδk − δk

2
, l = 1, . . . ,m. (4.13)

The wavenumber pairs (kx;i, ky;j) are divided into the m bins by assigning its bin index,

Mij , which is chosen to be index l of the closest wavenumber given by (4.13):

Mij = argmin
l

∣∣∣kl −√k2x;i + k2y;j

∣∣∣ . (4.14)

The values of the power are then summed for each bin, and then divided by the area of

the associated annulus, giving the radially averaged power spectrum:

P (kl) = Pl =
1
2

∑
P̂ij

π
(
r2max − r2min

) , l = 1, . . . ,m, (4.15)

where rmin and rmax are the minimum and maximum radius of the associated annulus

and the sum is over the pairs (i, j) such that Mij = l. The radially averaged power

spectrum is shown in Figure 4.11 for the same simulation as in Figure 4.5. The random

initial perturbation projects energy onto a large range of k but, as the linear stage of

the instability progresses, the relative energy of the pattern is redistributed onto the

wavenumbers associated with the most destabilising modes. This is evidenced in Figure

4.11 by the progressive focusing of the power spectrum towards the region 2 ≲ k ≲ 4.5,

until t ≈ 0.4. The power spectrum can be further characterised by the wavenumber that
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Figure 4.11: Wavelength selection for the simulation and patterns presented in Figure 4.5.
The normalised radial power spectrum of the salinity flux to the surface P (k) is shown
in colour as a function of wavenumber k and time t, along with the average wavenumber
k̄ (white) and dominant wavenumber kM (black). The value of the average wavenumber
converges to k̄ ≈ 3.1011, which differs by approximately 3% from the wavenumber of the
most unstable mode predicted by the linear stability analysis. The dominant wavenumber,
kM ≈ 3.3293, differs by approximately 11%.

contains the highest spectral power, kM , and the average wavenumber (Hewitt et al.,

2014):

k̄ =

∫
kP (k) dk∫
P (k) dk

. (4.16)

In the case shown in Figure 4.11, during the growth of the linear instability, the average

wavenumber converges to k̄ ≈ 3.1011. This value differs by approximately 3% from the

wavenumber of the most unstable mode predicted by the linear stability analysis, k∗ ≈

3.0043. On the other hand, the dominant wavenumber is kM ≈ 3.3293 which differs by

approximately 11%.

4.2.2 Alternative Perturbation

Rather than perturbing the system using the vertical profile given by (4.3), the most

unstable eigenfunction may be used to design the perturbation in such a way as to trigger

the instability more naturally. As previously shown, the most unstable eigenfunction has a

maximum value of 1 close to the surface and beyond this depth, the decay is approximately

exponential:

Ŝ ∼ exp (−mz) . (4.17)
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Figure 4.12: Linear fit to the most unstable eigenfunction. (a) Most unstable eigenfunc-
tions for Ra = 20, 40, . . . , 400. Points marked on each eigenfunction indicate the location
where a linear fit is computed. (b) Gradient of the straight line computed along with a
power law fitted to the data.

Figure 4.12(a) shows the most unstable eigenfunctions for various values of Ra on a loga-

rithmic scale, which shows the approximate exponential behaviour for depths z ≳ 2. The

gradient of these curves may be approximated by a straight line drawn through the point

of the maximum and the intersection of z = 9. For curves where the value of the eigen-

function at z = 9 is less than 10−13, the intersection of Ŝ = 10−13 is used instead. Figure

4.12(b) shows the computed gradient of the approximate linear profile at each value of

Ra and a power law fit, showing that the gradient depends on the Rayleigh number in an

approximately square root fashion. The vertical profile for the salinity perturbation may

then be chosen as:

E(z) = E2(z) = exp
(
−0.4

√
Raz

)
. (4.18)

To compare the differences when using these vertical profiles, a set of ten simulations are

run, five using the vertical profile given by (4.3) and five using (4.18) and the departure

from the base state and average salinity flux into the surface are plotted in Figure 4.13.

For the simulations using E1, the quantities A and q0 depart from their base state values at

an earlier time than the corresponding simulations for E2, signifying that the perturbation

associated with E1 has a larger projection onto the unstable manifold than the perturbation

associated with E2. In particular, E2 is smaller than E1 for z < 0.4Ra1/2 and larger than

E1 for z > 0.4Ra1/2, illustrating that the perturbation associated with E1 injects more

energy closer to the surface, where the instability is most prominent. However, once the

linear instability saturates, the values for A and q0 from the two sets of simulations are

indistinguishable, implying that the form of the perturbation is not as important at later
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Figure 4.13: (a) Departure from the base state, A and (b) average salinity flux to the
surface for ten simulations, five using the vertical profile E1 and five using E2. The param-
eters used for these were Ra = 100 and h = 10.

times in the simulation.
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4.3 Emergence of Polygons

For Ra = 100, t ≈ 0.4 marks the time for which the dynamics become noticeably nonlinear,

and the salinity perturbations begin to develop asymmetrically. This is shown in Figure

4.14 for a two-dimensional simulation. Above the downwellings, the vertical gradient of

salinity is small and the salinity flux into the surface is controlled by advection rather than

diffusion and thus J takes positive values. On the other hand, upwelling flows are restricted

by a solutal boundary layer, where the salinity gradients are large. In these regions,

diffusion dominates the salinity flux into the surface leading to the injection of salinity

into the domain. The additional salinity is entrained by the horizontal flow at the top of the

convective cells and travels laterally before being redistributed into the lake by descending,

high-salinity plumes. The salinity flux has a natural upper bound, J = 1, which is

only approached near downwelling plumes, where the vertical salinity gradients are weak.

Above upwelling currents, however, the boundary layer can accommodate larger gradients,

and the flux reaches correspondingly larger magnitudes (although now negative, denoting

salinity transport into the lake). Owing to this asymmetry, as the initial perturbations

begin to saturate, a net flux of salinity from the surface into the lake is created: q0 < 0.

This bias can be seen in Figure 4.5(b) and is shown more explicitly in Figure 4.15.

At t ≈ 0.5, the average wavenumber of the surface flux, k̄, passes through a local minimum,

shown in Figure 4.11. Figure 4.16 explores the instability that underlies this effect, which

is due to the presence of short-lived, low-wavenumber modes. Before these modes grow,

up to t = 0.4, the pattern of the salinity flux J resembles that of the linear regime

(compare Figure 4.16(a) with Figure 4.5(a)). By t = 0.5, however, noticeable changes

have already taken place, as seen in Figure 4.16(b), with narrow, well-connected regions

of positive flux surrounding wide areas of negative flux. To identify the role of the low

wavenumber modes in the emergence of this pattern, a low-pass filter (k ≤ 1) is applied

to the salinity flux in Figure 4.16(b). The resulting long wavelength pattern is shown in

Figure 4.16(c) and highlights two important dynamical changes: the average salinity flux

to the surface is now negative (see also Figure 4.10) and the low wavenumber salinity flux

pattern shows a correlation with the full salinity flux field before the instability (Figure

4.16(a)). Specifically, the regions exhibiting the greatest spatial variations in salinity flux

before the instability are those characterised by the highest magnitude of low wavenumber

contribution. The growth of the low wavenumber modes consequently mainly alters the

regions where flux variations are initially strong by favouring the areas of negative flux
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Figure 4.14: Two-dimensional simulation demonstrating how the asymmetry of the bound-
ary layer leads to the formation of a salinity plume. The initial condition is the base state
perturbed only by the most unstable mode, k∗ ≈ 3.0043, at Ra = 100 and h = 10 and
horizontal domain Γx = 2π/k∗. Solid lines in (a) show the salinity contour S = 0.75 at
t = 0.55, 0.63 and 0.8, while the dashed line indicates the base state contour. Panels (b)–
(d) display the corresponding salinity fields with the S = 0.75 salinity contour overlaid in
white.

Figure 4.15: Time evolution of the average salinity flux into the surface, q0, and out of
the lake at z = h, qh, for the simulation presented in Figure 4.5. The solid black line at
t ≈ 1.1 indicates the first time that q′′h(t) attains a local maximum and the dashed line
indicates a time ≈ 3h/Ra after the solid line (see Section 4.5.1).
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Figure 4.16: Salinity flux to the surface at t = 0.4 (panel (a)), t = 0.5 (panel (b)) and
t = 0.6 (panel (d)) for the simulation presented in Figure 4.5, with Ra = 100, h = 10 and
Γx = Γy = 12π. The data of panel (b) was filtered to represent the contribution of the
large-wavelength components (k ≤ 1) in panel (c). For each panel, the left plot represents
the whole domain and the right panels correspond to enlargements of two square areas
indicated by the black squares on the left plot.
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which become broader and more intense. Between t = 0.5 and t = 0.6, the energy

contained in the low wavenumber modes decays as the average salinity flux continues to

grow away from 0. These integral changes are accompanied by a modification of the surface

flux pattern that is complementary to what is observed between t = 0.4 and t = 0.5. The

areas impacted by the first stage of this instability remain mostly unchanged but the areas

displaying smaller variations in surface flux catch up here to look similar to them. The

net result of the growth and decay of these low wavenumber modes, shown in the left

panel of Figure 4.16(d), is the emergence of a polygonal pattern displaying narrow regions

of salinity flux into the surface delimiting large areas where salinity is sent back into the

lake.

4.4 Late-Time Dynamics

Three-dimensional simulations reveal that the downwelling currents below a polygon ver-

tex are qualitatively different from those located below a polygon edge. Figure 4.17 shows

the flow structure at the surface, overlaid on top of the salinity flux. The upwellings drive

an excess mass to the surface that is redistributed horizontally. Due to mass conservation,

fluid accelerates as it gets further away from the centre of upwellings until it reaches the

boundary of a convective cell. The horizontal flows generated by neighbouring upwellings

meet at fairly straight boundaries, where the excess mass is evacuated by downwelling

currents. The resulting currents are referred to as salinity sheets owing to their horizon-

tal structure (white areas in Figure 4.17). Above them, a weak flow is driven along the

polygon edge toward its vertices (red areas in Figure 4.17) in such a way that the excess

mass at the vertices is greater than that at the top of salinity sheets. As a result, the

downwelling flows below polygon vertices are stronger and form typical salinity plumes

Figure 4.17: Regions of the surface flux of size 6 × 6 at times (a) t = 0.7, (b) t = 0.8
and (c) t = 0.9, taken from the simulation shown in Figure 4.5 (Ra = 100, h = 10 and
Γx = Γy = 12π). The horizontal velocity field is displayed by the vector field (black
arrows).
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Figure 4.18: Representation of the depth of penetration of the salinity contour S = 0.75
for a region of size 6π × 6π for Ra = 100, h = 10 and Γx = Γy = 12π. Times shown are
(a) t = 0.6, (b) t = 1, (c) t = 2 and (d) t = 7.

that reach greater depths than the salinity sheets connecting them. The structure of

the resulting salinity currents is shown in Figure 4.18 at a variety of times. At t = 0.6,

which approximately marks the end of the instability described in Section 4.3, the depth

of penetration between the salinity plumes beneath polygon vertices and edges can be

seen (Figure 4.18(a)). When the plumes or sheets are sufficiently large, they generate a

horizontal velocity field near the surface that has the potential to entrain other convective

structures. An example of such dynamics is shown in Figure 4.17, where the flow induced

along the edges of polygons end up pushing the four vertices located near the centre of

the represented region to merge. This process is evident from the plume and sheet profiles

shown in Figure 4.18(a) and Figure 4.18(b). Merging events take place on a large-scale,

leading to the decrease of the average and dominant wavenumber of the surface pattern

(see Figure 4.11) and an overall increase in the pattern scale, illustrated by the difference

in the size of the polygons in Figure 4.18(a) and Figure 4.18(b). From t ≈ 1, the rate
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at which the average wavenumber decreases slows down, seen by the relatively similar

pattern size in Figure 4.18(b) and Figure 4.18(c), and the smaller rate of change of the

average wavenumber in Figure 4.11.

As the surface pattern coarsens, the regions of upwelling fluid between the network of

downwelling fluid increase in size. The thickness of the boundary layer is controlled by the

competition between the throughflow and the buoyancy of the fluid, the relative strength of

these forces being controlled by Ra. When the boundary layer is too thin, it grows due to

diffusion (Slim et al., 2013), but when the boundary layer is too thick for the throughflow to

support it, it becomes unstable to small-scale plumes, shedding material and allowing the

boundary layer to decrease in thickness. These miniature plumes are named protoplumes

(Hewitt et al., 2012) which differ significantly in size from the developed megaplumes

that constitute the interior flow. When the excess mass from the boundary layer leaves

via a protoplume, it is subject to the background velocity field, forcing it to be swept

toward the nearest neighbouring downwelling. If the time taken for fluid to be advected

horizontally within the boundary layer is longer than the time taken for the perturbation

to grow to a macroscopic size, the protoplume may develop and grow to a comparable size

to a megaplume (Slim et al., 2013). This results in a merging process: protoplumes form

in between pre-existing plumes and subsequently merge with a neighbouring megaplume.

When protoplumes form, they may be isolated from the surrounding network (see Figure

4.18(c)) or they may connect two edges of the polygon that they form in, visible through

the ‘ribs’ that form in the interior of polygons (see Figure 4.5(d) and Figure 4.18(d)),

which are swept toward the nearest edge or vertex in the network, corresponding to the

nearest megaplume.

Figure 4.19(a) shows the average wavenumber of the salinity as a function of depth. For

example, at t = 10, this wavenumber is largest close to the surface and the bottom, where

it captures the small-scale dynamics of the protoplumes initiating from the boundaries,

and smallest around the midplane, z = h/2, where the convection mainly consists of

megaplumes. Figure 4.19(b) shows the evolution of the average wavenumber of the salinity

field at the midplane of the domain, z = h/2. The average wavenumber of the salinity

at the midplane remains smaller than the average wavenumber of the surface flux at all

times with smaller variations. This suggests that the large-scale convection imposes a

larger pattern size, since the surface is a footprint of the interior dynamics, and that the

average wavenumber of the midplane salinity may be more suitable to use as a metric for

the pattern scale.
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Figure 4.19: (a) Average wavenumber of the salinity as a function of the depth at time
t = 10. (b) Average wavenumber of the salinity at the midplane as a function of time.
The dashed line indicates the time that the profile in panel (a) is taken at.

When plumes reach the bottom, the average salinity flux leaving the domain through

z = h, defined by:

qh = −
〈
∂S

∂z

∣∣∣∣
z=h

〉
xy

, (4.19)

departs from 0 due to the sharp salinity gradients that are needed to satisfy the bottom

boundary condition. This departure is shown in Figure 4.15 through the solid line, marking

the first time, t = t1, at which q′′h(t) reaches a local maximum (t1 is the smallest value

of t such that q′′′h (t = t1) = 0), indicating the time at which the rate of growth of qh(t)

is growing the fastest. After this time, the dynamics on the whole domain no longer

represent that of an infinitely deep lake, but the surface pattern remains undisturbed.

The disturbance from the bottom boundary then travels back to the surface and the

pattern in the surface flux of salinity no longer represents that of an infinitely deep lake.

The dashed line in Figure 4.15 denotes the approximate time that the surface feels the

presence of the bottom boundary, and the determination of this time is discussed further

in Section 4.5. The presence of plumes at the bottom boundary increases the rate at

which fluid leaves the domain in these regions which is opposed by an increase in fluid

entering the domain (since ⟨w⟩xy = −1) via regions of upwelling fluid. Upwelling plumes

initiate from the bottom boundary which rise upwards and the system begins to approach

a statistically steady end-state.
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Quantities such as the average fluxes, q0, qh, and the average wavenumber, k̄, eventually

fluctuate around an end-state value. Figure 4.20 shows plots of the salinity versus its

time derivative at four randomly selected reference points near the surface of the lake for

105 ≤ t ≤ 135. Panels (a)–(d) in Figure 4.20 are in increasing order of depth. At z ≈ 0.02,

the salinity takes values very close to 1, meaning the trajectory of Figure 4.20(a) remains

close to (1, 0). As the depth of the reference point increases, the salinity decreases from

1 and the time derivative increases in magnitude, resulting in a wider range of values

obtained by ∂S/∂t, displaying the dynamic nature of the boundary layer. By z ≈ 0.5,

the salinity displays values over a much wider range but has smaller values of the time

derivative, suggesting that the slower behaviour of the megaplumes is being sampled here,

compared to that of the protoplumes at the shallower reference points. Figure 4.20(e)

shows the average surface flux and average wavenumber for the same simulation as panels

(a)–(d). Beyond t ≳ 20, the average wavenumber fluctuates around its smallest value

where the polygons in the surface pattern are at their largest. The values for q0 and k̄ are

proceeding toward their end-state values, but have not yet fully converged. However, in

this statistically steady end-state, the salinity entering the domain via the surface balances

the salinity leaving through the bottom and so it is expected that q0 ≈ −qh. The late-time

values of these quantities in relation to h and Ra are discussed further in Section 4.5.
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Figure 4.20: Transition towards a statistically steady end-state. (a)–(d): Salinity as a
function of its time derivative at four randomly selected points near the surface of the
lake. Trajectories have been plotted for 105 ≤ t ≤ 135. (e): Average surface flux and
average wavenumber for the whole simulation. The dashed line denotes the initial time of
the phase space portraits (t = 105).
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4.5 Parametric Study

In Section 4.3 and Section 4.4, the dynamics at Ra = 100 and h = 10 have been studied.

In Section 4.5.1 and Section 4.5.2, the effect of varying h and Ra will be explored and the

influence this has on the pattern wavenumber and the transport of salinity.

4.5.1 Dependence on the Lake Depth

During the linear regime, the lake depth has little effect on the dynamics due to the fast

convergence (as h is increased) of the results of the linear stability analysis. The eigen-

functions for different h differ close to the bottom of the lake, where the exponential tail

must transition to zero (see Figure 4.8(b)). After this stage, the effect of the location of

the bottom boundary is not felt until plumes have reached the bottom and when plumes

have descended deep enough to feel the effect of the bottom boundary condition, simu-

lations no longer resemble an infinitely deep lake. Figure 4.21 shows the average salinity

flux into the surface (panel (a)), the average flux out through the bottom of the domain

(panel (c)) and the average salinity leaving the domain (panel (e)) from simulations with

various values of h and a fixed Rayleigh number, Ra = 100. Initially, q0 reaches a local

minimum shortly after the saturation of the linear regime and a pattern in the surface

flux has emerged (see Section 4.3). From this minimum value, q0 increases, encounters a

local maximum and transitions toward chaotic behaviour at later times. When descending

plumes reach the bottom of the domain, the average salinity flux, qh, departs from zero,

as seen in Figure 4.21(c). This time is denoted as t = t1 (see Section 4.4) and is a reason-

able approximation to when downwelling plumes encounter the bottom boundary and it is

thus expected that this time will increase for lakes with larger h. The surface flux curves

then depart from those with larger h when the presence of the bottom boundary is felt

by the surface. This is shown in Figure 4.21(a) by the sequential and relatively sudden

increase in q0 from the bulk behaviour of the curves with larger values of h. This gives

a second important time during a simulation: the time at which the average surface flux

departs from the simulations with larger h, denoted as t = t2, and marks the time that

the surface pattern no longer represents that of an infinitely deep lake. Figure 4.21(e) also

shows this behaviour through the total salinity leaving the domain, q0+ qh. In particular,

these curves illustrate the early-time behaviour of q0 (since qh ≈ 0), which subsequently

transition to a statistically steady end-state, where q0 + qh ≈ 0. The time over which

this happens increases with h and can be seen through the approximate gradients of the

transition from the surface flux departure time to the time at which q0 + qh ≈ 0.
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Figure 4.21: (a) Average surface flux, (c) average bottom flux and (e) average total flux
(q0 + qh) for times 0 ≤ t ≤ 30 and depths h = 5, 10, 20, 30, 40, 50, 60, 80, 100, 120, 140,
160, 180 and 200 at Ra = 100. (b) Average surface flux, (d) average bottom flux and (f)
average total flux for times 0 ≤ t ≤ 30 and Rayleigh numbers Ra = 30, 40, 50, 60, 80, 100
and 120 at h = 10. The domain size is Γx = Γy = 12π.
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Figure 4.22: (a) Time at which surface flux curves depart from those for higher h, t ≈ t2,
(see Figure 4.21(a) for Ra = 100). (b) Maximum upwelling and downwelling speeds as
a function of (Ra − Rac)/Rac (Lasser et al., 2021) (h = 10), determined by taking the
minimum and maximum vertical velocities over the period 0 ≤ t ≲ T (Ra). The value of
T (Ra) is explained in the text.

The time at which the surface feels the effect of the bottom boundary, t ≈ t2, (taken from

Figure 4.21(a)) is plotted in Figure 4.22(a) for Ra = 60 and Ra = 100. The computation

of these times has not accounted for the initial phase of the instability caused by the

initial condition. However, this contributes very little to the overall time and the value

obtained here is a good approximation to when the surface pattern is impacted by the

bottom boundary. The time at which the surface flux curves peel away from those for

higher h appears to depend on h in an approximately linear fashion (within this range of

h).

Figure 4.23(a) shows the average surface flux at t = t1 and t ≈ t2. The behaviour of

q0(t = t1) for h < 40 captures the early-time dynamic behaviour of q0 for t ≲ 5 (see Figure

4.21(a)). As h is increased there is an increase in the average surface flux at both t = t1

and t ≈ t2. In addition, the average surface flux at t ≈ t2 is greater than at t = t1 (when

t ≈ t2 occurs after the early-time behaviour for h ≥ 20). Also seen in Figure 4.23(a) is

a late-time time averaged value of q0 and −qh. These values were obtained by averaging

the fluxes over 40 time units from the statistically steady end-state of a single simulation.

For deeper lakes, plumes have diffused more by the time they have reached the bottom,

resulting in a smaller vertical salinity gradient and hence a lower net flux out through the

bottom. Since the average surface flux approximately balances the flux of salinity leaving

the domain in the statistically steady end-state, there is a good agreement in the late-time

values of q0 and −qh for each h.
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Figure 4.23: (a) Average surface flux, q0, at the time plumes hit the bottom of the domain
(t = t1), average surface flux at the time it departs from those with larger h (t ≈ t2) and
a late-time time averaged value much later in the simulation. Error bars on q0 at t = t1
and t = t2 represent one standard deviation. (b) Average wavenumber, k̄, (solid blue line)
and the most dominant wavenumber, kM , (solid red line) at the same instant at t = t1.
Error bars on the quantities at t = t1 and t ≈ t2 represent one standard deviation. Ten
simulations were used for the averages for h = 5, . . . , 80, five for h = 100, 120 and two
for h = 140, . . . , 200. The blue and red dashed lines also show a late-time time averaged
value for the average and dominant wavenumbers respectively.

Figure 4.23(b) shows the values of k̄ and kM at the instant the plumes reach the bottom

of the domain (t = t1) and a late-time time-averaged value. As h is increased, both

the average and dominant wavenumbers at t = t1 decrease, tending towards their late-

time values. The late-time average wavenumber also consistently lies above the dominant

wavenumber. This can be seen in Figure 4.24 which displays the pattern of the salinity flux

to the surface at four different times during the statistically steady end-state. The surface

flux displays a large number of small-scale features, which contribute to the larger value

of the average wavenumber compared to the dominant wavenumber. For very small lake

depths, both the average and dominant wavenumbers take larger values. This corresponds

to smaller wavelengths which arise due to the increased spatial restriction of shallower lakes

and a tendency for them to avoid high aspect ratio convective rolls.

4.5.2 Dependence on the Rayleigh Number

As Ra is increased, convection becomes more vigorous, and plumes descend faster, reach-

ing the bottom in a shorter time. Lasser et al. (2021) introduced the quantity ε =

(Ra−Rac) /Rac to describe the distance that the system is from the critical point. A new

time may be defined as τ = ε t, which can be useful to compare the dynamics at different

Ra. Figure 4.25 shows the average surface flux and average flux through the bottom of
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Figure 4.24: Surface flux at t = 150 for (a) h = 10, (b) h = 20, (c) h = 50, (d) h = 100
for Ra = 100 and Γx = Γy = 12π.
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4.5 Parametric Study

Figure 4.25: (a) Average surface flux, q0, and (b) average flux through the bottom, qh, as
a function of the rescaled time, τ = ε t, for Ra = 60, 80, 100 and 120.

the domain against this rescaled time for selected values of Ra. Plotting the values of the

salinity fluxes against τ demonstrates the effect of the rescaling: q0 is seen to depart from

zero at roughly the same value of τ for the different Ra. In addition, the local minimum of

q0 occurs at approximately the same rescaled time, as well as the time at which qh departs

from zero. This allows comparisons between simulations with differing Ra to be made,

provided they are made at the same rescaled time.

Figure 4.21 shows the average surface flux (panel (b)), the average bottom flux (panel

(d)) and the average salinity leaving the domain (panel (f)) for simulations with varying

Ra at a fixed h = 10. As Ra is increased and the dynamics speed up, the minimum

in the average surface flux is reached sooner, where it also occurs at a larger absolute

value. In addition, as Ra is increased, the time at which the qh curves depart from zero

occurs earlier, demonstrating that the downwelling plumes travel faster for higher values

of Ra. Figure 4.22(b) shows the maximum upwelling and downwelling speeds as a function

of (Ra − Rac)/Rac (Lasser et al., 2021). These values were obtained by computing the

minimum and maximum vertical velocities over the period 0 ≤ t ≤ T (Ra), where

T ≈ 0.17h
100−Rac
Ra−Rac

. (4.20)

The values were computed over this range to avoid potentially smaller (and larger) values

of the minimum (and maximum) vertical velocity that could have arisen once the upwelling

plumes had reached the surface. From this, it can be seen that the downwellings travel

faster (|w| ≈ Ra/2) than the upwellings (|w| ≈ Ra/3). The surface flux departure time
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Figure 4.26: (a) Average surface flux, q0, at when the plumes have reached the bottom
of the domain (t = t1). (b) Average and dominant wavenumbers at the instant plumes
hit the bottom of the domain (t = t1) and the approximate time that the disturbance has
propagated back to the surface (t ≈ t2). Error bars represent one standard deviation. For
the data at t = t1, twenty simulations were used for the averages for Ra = 30, . . . , 100,
twelve for Ra = 120 and ten for Ra = 140, . . . , 200. For t ≈ t2, ten simulations were used
for Ra = 30, . . . , 100 and two for Ra = 120, . . . , 200.

may then be approximated as:

t2 ≈ t1 +
hRac

5.24 (Ra−Rac)
, (4.21)

which is the time it takes an upwelling to travel a distance h from t = t1 (when plumes

have reached the bottom).

Figure 4.26(a) shows the mean value of q0 at t = t1. The average surface flux at t = t1

appears to decrease linearly for this range of Ra. While the throughflow transports salinity

to the surface at a fixed rate (the surface flux always has a constant advective component

of 1), the diffusive flux downward from the surface is determined by the vertical gradient

of the salinity at the surface (see (4.4)). This means that the diffusive flux is roughly

determined by the boundary layer thickness. In simulations presented by Lasser et al.

(2021), the thickness of the boundary layer appears to scale with 1/Ra and hence the

diffusive flux in the upwelling regions of fluid should scale with Ra. The proportion of

the surface that has a positive flux, denoted by α, will also contribute to the value of

q0 observed. The fraction of positive surface flux is shown in Figure 4.27(a) for various

values of Ra. From the random initial condition, there is a decrease in α which saturates

at α ≈ 0.5, illustrating the approximately symmetrical state during the linear regime

of the instability. Subsequently, a further decrease in α displays the net result of the

growth and decay of the low wavenumber modes described in Section 4.3 which resulted
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Figure 4.27: (a) Flux fraction, α, as a function of the rescaled time, τ . (b) Ensemble
average of the flux fraction at t = t1 and t ≈ t2. Error bars represent one standard
deviation. For the data at t = t1, ten simulations were used for the averages for Ra =
30, . . . , 100 and two for Ra = 120, . . . , 200. For t ≈ t2, ten simulations were used for
Ra = 30, . . . , 100 and two for Ra = 120, 140.

in a polygonal pattern of narrow region of positive flux delimiting larger areas of negative

salinity flux. As Ra is increased, the positive regions make up a smaller proportion of the

surface and the average salinity flux to the surface is dominated by the upwelling regions

of fluid. Figure 4.27(b) shows the average value of α at t = t1 and t ≈ t2, in addition

to the approximate exponential fit, displaying the decrease in the fraction of the positive

flux as Ra is increased. Thus, as Ra is increased, the magnitude of the diffusive flux away

from the surface dominates the advective flux into the surface and additionally, there is an

increase in area of negative flux regions. This results in the overall decrease in the average

surface flux shown by Figure 4.26(a).

Figure 4.26(b) shows the average and dominant wavenumbers at both the instant the

plumes reach the bottom of the domain (t = t1) and when the disturbance from the

bottom boundary has reached the surface (t ≈ t2). The average wavenumber at t = t1

and t ≈ t2 increases with Ra, illustrating the appearance of smaller scale structures as

the convection becomes more vigorous. The dominant wavenumber, which is consistently

smaller than the average wavenumber, displays a weaker increase with Ra with a larger

standard deviation in the measurements taken. However, the dominant wavenumber at

t ≈ t2 does not show a strong dependence on Ra for the range of Ra simulated here,

suggesting that the large-scale structure around t ≈ t2 remains approximately the same

as Ra is increased. Figure 4.28 displays patterns of the surface flux at various values of

Ra and τ ≈ 225, much later in the simulations than t ≈ t2. As Ra is increased, finer
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Figure 4.28: Surface flux at τ ≈ 225 for (a) Ra = 60, (b) Ra = 80, (c) Ra = 100, (d)
Ra = 120 for h = 10 and Γx = Γy = 12π.
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Figure 4.29: Time-averaged surface flux over 200 ≲ τ ≲ 250 for (a) Ra = 60 (157 frames),
(b) Ra = 80 (109 frames), (c) Ra = 100 (83 frames) and (d) Ra = 120 (68 frames) for
h = 10 and Γx = Γy = 12π.

structures can be seen in the surface flux, suggesting that the average wavenumber at

these later times also increases with Ra. On the other hand, the increase in the dominant

wavenumber can only vaguely be observed. Instead, a time average can be taken, centred

at the time shown in Figure 4.28, and covering approximately 50 τ units. These fields can

be seen in Figure 4.29. The fast-moving features that are seen in Figure 4.28 have been

removed in the time-averaging, allowing the decrease in the pattern size to be observed as

Ra is increased.

The simulations that were carried out here tended to diverge before the average salinity

fluxes and wavenumbers had fully converged to their end-state values. This was also more

evident for simulations with a higher Rayleigh number and the possible cause of this will

be discussed further in Chapter 5.

107



4. RESULTS

Figure 4.30: (a): Surface height maps provide data on the elevation of the crust ridges.
(b): Salinity profiles from a cross section of a polygon, intersecting two bounding edges.
(c): Exponential fits (see Lasser et al. (2023)) from horizontally-averaging the data in (b).
Figure taken from Lasser et al. (2023).

4.6 Comparison to Field Observations

The patterns seen in the three-dimensional simulations (for example, in Figure 4.29(d))

are qualitatively similar to what is seen in the field. Moreover, the simulations produce a

consistent pattern scale to the measured values, suggesting that the convective dynamics

are an important driving force in the formation of the crust patterns. In the field, Rayleigh

numbers can span an extensive range from O(10) to O(105) (Lasser et al., 2023). Dry

lakes can also extend to over 150m in depth (Güler & Thyne, 2004), corresponding to

a nondimensional depth of h ≈ 1000 (using an approximate value of L ≈ 15cm for the

characteristic length (Lasser et al., 2023)). Thus, the simulations presented previously have

a similar Rayleigh number to the lower end of the field observations but are significantly

shallower. This must be considered when predictions are made about the salinity fluxes

and the pattern scales.

Figure 4.30 shows the field observations from two sites at Owens Lake, consisting of surface

height maps and subsurface salinity profiles. Figure 4.30(a) shows two examples of the

surface height maps obtained from Owens Lake, displaying a pattern scale of approximately

a couple of metres. In addition, Figure 4.30(b) shows the salt concentration of the pore

fluid as it varies with depth and position relative to the ridges. This shows the depth of
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Figure 4.31: (a) Surface salinity flux for Ra = 100 and h = 10 at t = 5. Lines drawn
on the surface indicate the locations of the cross sections in (b) and (c) which show the
salinity profile beneath.

penetration of the salinity plumes, which descend to approximately ẑ ≈ 50 cm, equivalent

to a nondimensional depth of approximately z ≈ 3.3 (using L ≈ 15 cm as the characteristic

length, obtained using field data from Owens Lake (Lasser et al., 2023)). This may have

been deeper if the pore samples were taken along a line intersecting two vertices of the

crust pattern since the depth of penetration of the plumes beneath two intersecting edges

was found to be larger (see Figure 4.18). Figure 4.30(c) shows exponential fits to the

horizontal average of the field data from Figure 4.30(b) (for more details see Lasser et

al. (2023)). Cross sections of the salinity field that lie directly beneath two vertices of

the surface pattern can be computed and compared to the salinity field that lies directly

beneath two opposite edges. Figure 4.31 shows the surface flux and the salinity profiles at

selected cross-sections below two convective cells. When the cross-section intersects two

edges, like the field data shown in Figure 4.30(b), plumes do not penetrate as deep as

when the cross-section intersects two vertices, shown by Figure 4.31(c). Furthermore, the

plumes shown in Figure 4.31(b) descend approximately halfway into the domain, which is

the same order of magnitude as the distance the plumes in the field data have descended

in Figure 4.30(b). This is a key feature of three-dimensional dry lakes that is absent from

two-dimensional simulations.

The data obtained by Lasser et al. (2023) also provides the means to determine the length

scales of the polygons appearing at multiple locations at each dry lake, for which the

Rayleigh number was also computed. Figure 4.32 shows the linear stability diagram for

h = 10 from Section 4.2 with the field data overlaid. This is a reasonable approximation

since the results from the linear stability analysis converge quickly as h is increased and the

depth of the dry lakes is unknown but acknowledged to be as large as H ≈ 150m (Güler

& Thyne, 2004). The triangles show the field data collected from Owens Lake, Badwater

Basin and Sua Pan, all of which lie above Rac, indicating that the linear stability analysis
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Figure 4.32: Field data from Owens Lake, Badwater Basin and Sua Pan displaying the
observed wavenumbers at multiple sites at each dry lake along with values measured for
the average and dominant wavenumber from simulations with varying Ra.
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predicts an instability for these field conditions. In addition, the pattern wavenumbers

observed at the field sites are smaller than the most unstable wavenumber for each Ra.

The average wavenumber at t = t1 and t ≈ t2 for h = 10 (see Figure 4.26(b)) are shown

by the squares in Figure 4.32. The average and dominant wavenumbers have also been

time-averaged over 5 τ units, centred at both τ ≈ 30 and τ ≈ 60 for 30 ≤ Ra ≤ 120,

shown by the circles in Figure 4.32. This data shows that the average wavenumber has

decreased from t ≈ t2, with the value at τ ≈ 60 being smaller than the value at τ ≈

30, indicating the decrease in the average wavenumber as the simulations progress. The

dominant wavenumber has decreased further still, displaying the larger pattern scale that

the computation of the dominant wavenumber identifies. However, at τ ≈ 30 and τ ≈ 60,

the dominant wavenumber does not display a clear dependence on Ra as the average

wavenumber does, suggesting that later in the simulations, the Rayleigh number has a

weaker effect on the dominant wavenumber than at earlier times. To obtain data for

higher Ra, two-dimensional simulations are used to compute the time averaged dominant

wavenumber centred at τ ≈ 30 and τ ≈ 60 for 150 ≤ Ra ≤ 600, shown by the diamonds

in Figure 4.32. This data does not show any particular trend as Ra is increased, which

might be due to the poor performance of this metric on two-dimensional simulations. This

limitation is discussed further in Section 5.2.2. Again, the depth used for the simulations

was h = 10, which is recognised as not accurately reflecting the actual depth of dry lakes

in nature.

The corresponding pattern scale, λ = 2π/k, has also been computed and is shown on

the upper horizontal axis of Figure 4.32. From the field data (Lasser et al., 2023), the

pattern scales observed at Badwater Basin were in the range 0.55m ≤ λ ≤ 1.42m, at

Owens Lake they were in the range 0.87m ≤ λ ≤ 3.02m and at Sua Pan they were in the

range 0.41m ≤ λ ≤ 0.95m (see Table 2.1). For the dominant wavenumbers from the 3D

simulations, the corresponding pattern wavelengths all lie in the interval 1.1m ≤ λ ≤ 2.8m

(using a characteristic length of 15 cm (Lasser et al., 2023)). In addition, the dominant

wavenumber of the time averaged flux for Ra = 120 (see Figure 4.29(d)) is kM ≈ 0.64,

corresponding to a pattern scale of approximately 1.5m.
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Chapter 5

Discussion

5.1 Overview

The system presented in Section 2.2 models the competing effects of the evaporation-

driven throughflow and the buoyancy of the fluid due to the varying salt content. These

physical phenomena alone are enough to predict the emergence of dynamics that are

suggestive of the surface crust pattern observed at dry lakes worldwide. In Chapter 2,

a three-dimensional model for salt lakes was described, a natural extension to the two-

dimensional model presented by Lasser et al. (2021) with the addition of a finite depth.

This results in the system being controlled by two free parameters, the Rayleigh number

and the nondimensional lake depth. A steady-state solution exists, a balance of upward

advection driven by evaporation at the surface and the downward diffusion of salt. In

Section 4.2, the linear stability of the base state was analysed and for Rayleigh numbers

above a critical value, which was found to be Rac ≈ 14.35 for h = 10, this state is lin-

early unstable. This instability resulted in small-amplitude patterns in the surface flux of

salinity. The values of the critical Rayleigh number and the critical wavelength computed

in Section 4.2 were in good agreement with previous analyses (Homsy & Sherwood, 1976)

and converge to the critical values of the infinitely deep lake (Duijn et al., 2002; Lasser et

al., 2021; Wooding, 1960) as the lake depth increases. The saturation phase of the linear

instability leads to a secondary instability, characterised by the development of plumes

and chaotic dynamics. Subsequently, the pattern in the surface flux increases in ampli-

tude and polygons begin to emerge (see Section 4.3). The three-dimensional simulations

display complex dynamics as plumes descend and interact with each other. Simultane-

ously, protoplumes are created within the macroscopic network of downwelling currents
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and are attracted toward the larger megaplumes, resulting in a dynamic pattern in the

surface flux. Once the downwelling plumes reach the bottom of the domain, the system

transitions towards a statistically steady end-state and the values of the salinity flux and

wavenumbers fluctuate around a particular value. In Section 4.5.1, two important times

were identified. The first is the time at which downwelling plumes reach the bottom of the

domain, indicated by the growth of the average salinity flux out through the bottom of the

domain. This is the time at which the whole simulation no longer resembles an infinitely

deep lake. The second key time is when the disturbance from the bottom boundary reaches

the surface. This was computed from analysing several curves of the surface flux: when

the average surface flux curve of a particular h departs from the bulk behaviour of the

curves for larger values of h, the surface flux has been influenced by the bottom boundary.

The particular values of the average salinity fluxes and the wavenumbers were analysed at

these two times and their dependence on the lake depth was explored. In Section 4.5.2, the

effect of varying the Rayleigh number was investigated. The speed at which upwelling and

downwelling plumes travel was found to increase approximately linearly with Ra, demon-

strating how the dynamics occur on smaller time scales for larger Ra. In addition, as Ra is

increased, the wavenumbers of the surface pattern increase, resulting in a smaller pattern

scale. Finally, in Section 4.6, the results from numerical simulations were compared to the

data obtained in the field. The pattern scales of the surface flux of salinity exhibited by

the three-dimensional simulations were in excellent agreement with the scale of the crust

pattern observed at dry lakes such as Owens Lake, Badwater Basin and Sua Pan.

5.1.1 Comparisons

Although the system simulated in this thesis differs from the two-sided convection system,

the dynamics displayed here are qualitatively similar to other three-dimensional simula-

tions (De Paoli et al., 2022; Fu et al., 2013; Hewitt et al., 2014). However, the main

difference between the dry lake system and other systems that model convection in porous

media is the applied throughflow which takes into account the evaporation of water at

the surface. This gives rise to a Rayleigh number, the ratio of the buoyancy velocity to

the applied evaporation rate, which is not the same as the Rayleigh number appearing in

the two-sided convection system. To this extent, comparing how, for example, the aver-

age wavenumber depends on the Rayleigh number in both systems gives different results.

Another key quantity that two-sided convection studies utilise is the Nusselt number, Nu,

the ratio of the total solute (or heat) transfer compared to the conductive transfer. This
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measure is useful for systems without throughflow, where the base state consists of trans-

port via conduction only (Nu = 1) and the onset of convection causes the Nusselt number

to increase as the transport of solute is enhanced by fluid flow. For dry lakes, the solute

transport is best measured by the salinity transport to the surface, as this has physical

relevance to the salt available for crust growth. On the other hand, an important quantity

in one-sided convection is the dissolution flux (Slim, 2014), measuring the rate at which

solute is transported into the domain. This is relevant in the case of CO2 sequestration

since it directly measures the rate of CO2 dissolution and the impact the porous medium

is having at storing the greenhouse gas. This quantity is more comparable to the surface

flux of salinity in dry lakes as it measures the same phenomenon: the transport of the

dissolved quantity through the surface. In this context, the dry lake system is more similar

to the one-sided convection system. However, in contrast with one-sided systems, the dry

lake Rayleigh number measures how vigorous the convection is, and the Rayleigh number

appearing in one-sided convection is more comparable to the nondimensional lake depth,

h, since this is the parameter that measures how far the bottom boundary is from the

surface.

5.2 Limitations

5.2.1 Bottom Boundary Condition

In the results presented in Chapter 4, the bottom boundary condition used was the most

natural one:

⟨w⟩xy = −1, (5.1)

imposing only global mass conservation. This is the least constraining boundary condi-

tion for the vertical velocity (equivalently the vertical pressure gradient) at the bottom of

the domain. However, this boundary condition can lead to problems when downwelling

plumes reach the bottom of the domain. Since the mean upward flow through the bot-

tom of the domain must balance the evaporation through the surface, downwelling flows

that reach the bottom of the domain induce upwelling plumes initiating from the bottom

boundary, enhancing the local upflow. The strength of these flows scales with the Rayleigh

number, which, along with the Dirichlet boundary condition S = 0 at the bottom of the

domain, leads to large vertical gradients in the salinity, especially as the Rayleigh number

is increased. Figure 5.1(a) illustrates the large gradients that emerge when the boundary

condition (5.1) is used at Ra = 500 and h = 10. The close proximity of the upwelling
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Figure 5.1: Salinity field of two 2D simulations at t ≈ 10.1 for Ra = 500, h = 10 and
Γx = 4π. The bottom boundary conditions are (a) ⟨w⟩x = −1 at z = h and (b) w = −1
at z = h. The white dashed lines represent the positions of the vertical salinity profiles
shown in Figure 5.2.

regions of fluid with the downwelling regions of fluid also contributes to large horizontal

gradients. These large gradients demand a more refined mesh close to the bottom bound-

ary than what has already been constructed and therefore simulations have a tendency

to diverge. Alternatively, the bottom boundary condition can be changed to a uniform

upflow:

w = −1 at z = h. (5.2)

Figure 5.1(b) illustrates the same situation displayed in Figure 5.1(a) with the uniform

boundary condition (5.2). Visually, this boundary condition appears to prevent the large-

magnitude flows that are located at z = h, observed in Figure 5.1(a). In this case,

the salinity field is drastically different, appearing more symmetrical than before. As

the vertical velocity at z = h is now the same as the vertical velocity at z = 0, the

symmetry of the system is only broken by the presence of the throughflow. However, since

the strength of the throughflow is O(1), the convective flows, the strengths of which are

O(Ra), are dominant leading to an apparent symmetry for large Ra. Also, the vertical

salinity gradients in Figure 5.1(b) do not appear to be as large as those in Figure 5.1(a).

The boundary layer profiles of the salinity near z = h are plotted in Figure 5.2 for both

boundary conditions, showing the sharper boundary layer profile obtained for the natural

boundary condition. However, further enquiry is needed to determine the behaviour of

the salinity close to the boundary through the use of more mesh points.

In addition to the large velocities at the bottom boundary, the Dirichlet boundary condi-

tion S = 0 further reinforces the sharp boundary layer seen in Figure 5.1(a), as the salinity

must transition to zero where downwelling plumes touch the bottom of the domain. Modi-
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Figure 5.2: Vertical salinity profiles for Ra = 500, h = 10 and Γx = 4π at the bottom of
the domain for both boundary conditions, located at the white dashed lines in Figure 5.1.

fying this boundary condition may lead to more manageable salinity gradients, preventing

simulations from diverging. Adopting the boundary conditions:

∂S

∂z
= 0 at z = h, (5.3)

u = 0, v = 0 at z = h, (5.4)

may be the least invasive option, constraining the vertical gradient of the salinity and

imposing no horizontal flow but allowing the vertical velocity to be free. A piecewise

condition may also be imposed, enforcing the salinity to vanish where the vertical velocity

is negative and the vertical gradient of the salinity to vanish where the vertical velocity is

positive: 
S = 0 w ≤ 0

∂S
∂z = 0 w > 0

at z = h. (5.5)

However, this is difficult to implement with the current numerical method since the bound-

ary condition is spatially dependent on the sign of the vertical velocity.
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⟨w⟩xy (z = h) = −1 w (z = h) = −1

∆t = 1× 10−5 Diverged

∆t = 5× 10−6

Table 5.1: Two-dimensional simulations at Ra = 500, h = 10 and Γx = 4π run with
different time steps and bottom boundary conditions to test whether they diverge or not.
Simulations labelled with a checkmark remained bounded.

The simulation shown in Figure 5.1(a) can be continued from a previously saved time,

just before it diverged. This can be done for two different time steps and both boundary

conditions and Table 5.1 shows which of these simulations diverge. These observations

show that decreasing the time step with the natural boundary condition (5.1) can prevent

the simulation from diverging. On the other hand, using the uniform boundary condition

(5.2) avoids divergence for both values of the time step. This suggests that the natural

boundary condition has more demanding numerical requirements for the time step than

the uniform boundary condition does. Additionally, it would be of interest to investigate

whether the mesh spacing in both the horizontal and vertical directions can be increased

to avoid divergence.

Furthermore, in three dimensions, the salinity flux out through the bottom of the domain,

defined by:

Jh = − ∂S

∂z

∣∣∣∣
z=h

, (5.6)

is plotted for a late-time in Figure 5.3 for two simulations with the two different boundary

conditions. The natural boundary condition, shown in Figure 5.3(a), Jh displays larger

values than in Figure 5.3(b), which shows Jh for the uniform boundary condition. This

illustrates the larger vertical gradients in salinity displayed in the two-dimensional sim-

ulations shown in Figure 5.1(a). The more physically constraining boundary condition

(5.2) may help to avoid simulations diverging when downwellings reach the bottom of the

domain. The uniform boundary condition (Figure 5.3(b)) also mirrors what is seen at

the surface: polygons denoting the locations of now upwelling fluid delimiting regions of

heavier fluid impacting the bottom boundary. The upwelling fluid originating from the

edges of the polygons has zero salinity at z = h, and so the vertical gradients of the salinity

are weak, contributing to a small value of the flux. On the other hand, the heavier fluid
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Figure 5.3: Salinity flux out through the bottom of the domain, Jh = − ∂S/∂z , at t = 20
for Ra = 100 and h = 10. The natural boundary condition, ⟨w⟩xy = −1 at z = h, is shown
in panel (a) and the uniform boundary condition, w = −1 at z = h, is shown in panel (b).

impacting the bottom boundary contributes to larger salinity gradients and therefore a

positive flux through the bottom boundary. The similarity of this pattern to the surface

flux patterns owes itself to the approximate symmetry of the system when the uniform

boundary condition is used.

An alternative way to avoid this problem is to simulate dry lakes with a depth large

enough that downwelling flows will have diffused before they reach the bottom of the

domain. The distance between plumes deep in the lake is approximately λ ≈ 2π/kM ,

using the most dominant wavenumber from the surface flux, which need a time t ∼ λ2 to

merge via diffusion. As plumes descend at a speed proportional to Ra, the depth at which

this happens is z ∼ Ra/k2M . This motivates a domain depth that scales approximately

linearly with Ra, which gives rise to an increased computational requirement to avoid the

problems described above. As described in Section 2.6, the two-sided Rayleigh number is

equivalent to the dry lake Rayleigh number multiplied by the Péclet number:

RaTSC = RaPe = Ra
EH

ϕD
= Ra

H

L
= Rah. (5.7)

Requiring that h ∼ Ra then results in the two-sided Rayleigh number scaling like RaTSC ∼

Ra2, illustrating that simulating Ra = 100 for a dry lake is like simulating RaTSC = 104

for the two-sided system. This highlights the significant computational demands of large

Ra simulations.
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Figure 5.4: Dominant wavenumber for (a) a two-dimensional simulation and (b) a three-
dimensional simulation with Ra = 100, h = 10 and Γx = Γy = 12π.

5.2.2 Dominant Wavenumber

Since the dominant wavenumber is determined to be that which has the highest spectral

power, the allowed values are discretised. For two-dimensional simulations, the domi-

nant wavenumber is computed from the surface flux directly, since no radial average is

needed. This means that the dominant wavenumber is selected from ki = 2π i/Γx, for

i = 0, . . . , Nx/2. On the other hand, for three-dimensional simulations, the dominant

wavenumber is determined from P (k) and so is discretised to the values determined by

(4.13). Figure 5.4 shows the dominant wavenumber varying over time during a two- and

three-dimensional simulation. As a result, the dominant wavenumber does not smoothly

vary during a simulation and jumps from the allowed values. In particular, the range of

values for the two-dimensional simulation is much larger than the three-dimensional sim-

ulation and the minimum value taken by kM corresponds to a wavelength that spans the

whole domain: kM = 2π/L = 1/6. This highlights issues with the dominant wavenumber

when it is used as an indicator for the overall pattern scale.

From the two-dimensional simulation shown in Figure 5.4(a), the surface flux at t ≈ 6 is

plotted in Figure 5.5(a). This shows the structure of the upwelling and downwelling flows

through the salinity transport to the surface: peaks in the flux correspond to downwellings

and negative regions correspond to upwellings. In addition, the positive flux regions are

much thinner than the negative flux regions. Figure 5.5(b) shows the power spectrum of

the surface flux at this time as a function of the integer wavenumber. The solid red marker

indicates the integer wavenumber that has the largest power (ignoring the constant mode).
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Figure 5.5: (a) Surface flux, J(x), from a two-dimensional simulation (Ra = 100, h = 10
and Γx = 12π). (b) Power spectrum of the surface flux against the integer wavenumber.

Figure 5.6: (a) Surface flux, J(x), from a two-dimensional simulation (Ra = 100, h = 10
and Γx = 12π) that has had a threshold applied to it: values with J < −0.1 have been set
to J = −0.1. (b) Power spectrum of the surface flux against the integer wavenumber.

The power spectrum indicates that the i = 1 mode contains the most power, leading to a

dominant wavenumber of k ≈ 0.17. The surface flux shown in Figure 5.5(a) has a large

contribution from the upwelling regions of fluid which introduces bias to the dominant

wavenumber as it takes into account the structure of the upwelling flows. However, the

pattern scale is determined by the spacing of the positive flux regions. So, to provide a

better metric for the overall pattern scale, the surface flux may be post-treated by im-

posing a threshold on the negative values. For example, Figure 5.6(a) shows the surface

flux when values that are smaller than −0.1 are set to be equal to −0.1, eliminating the

contribution from the structure of the upwellings in the computation of the dominant

wavenumber. Again, the spectrum is shown in Figure 5.6(b), indicating that now the
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dominant wavenumber corresponds to the i = 5 mode, giving a value of k ≈ 0.83. This

post-treatment may provide not only more consistent results, avoiding the sporadic behav-

ior of the dominant wavenumber seen in Figure 5.4, but also more accurate measurements

of the overall pattern scale in the surface flux of salinity.

5.2.3 Crust Feedback

The modelling of dry lakes in this thesis has ignored the presence of a surface crust above

the porous soil. However, coupling between the convective dynamics and the growth of

the salt crust may contribute to a complex interplay between the presence of a crust

and the subsurface fluid dynamics. Studies have shown that salt precipitation reduces

the evaporation rate, acting as a barrier preventing moisture escaping from the surface

(Nachshon et al., 2018). In the three-dimensional simulations, the surface pattern displays

a tendency to slowly drift horizontally. This slow drift is expected to be due to the

translational symmetry in the system since the equations and boundary conditions are

invariant under the transformation:

x 7→ x+ x0, y 7→ y + y0, (5.8)

where x0 and y0 are constants. Introducing a crust-evaporation feedback would break this

symmetry, fixing the patterns in place and preventing the slow drift. This could be done by

introducing a quantity to model the presence of a crust and allowing the evaporation rate

at the surface to depend on this additional quantity. The effects of varying the evaporation

rate over the surface of the domain have been explored in two dimensions (Lasser et al.,

2021), but only by modulating the evaporation rate using a fixed wavenumber. The growth

of a crust above a one-dimensional dry lake is explored further in Appendix A.

5.3 Perspectives

5.3.1 Evaporation Rate

The equations and boundary conditions that were solved in this thesis were:

u = −∇p+RaSez, (5.9)

∇ · u = 0, (5.10)
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∂S

∂t
+ u · ∇S = ∇2S, (5.11)

S = 1, w = −1 at z = 0, (5.12)

S = 0 at z = h. (5.13)

The advantage of this system is the explicit appearance of the lake depth, h. This ap-

proach enabled a direct investigation of the lake depth by adjusting the position of the

bottom boundary. However, the evaporation rate is present in both the Rayleigh number

and the characteristic length (ϕD/E), and thus investigating how the evaporation rate

impacts the dynamics would modify both Ra and h. The limit E → 0 would imply both

Ra → ∞ and h → 0, preventing any comparisons to two-sided convection. Alternatively,

the transformed system (see Section 2.6) may be used to study dry lakes instead. The

equations and boundary conditions for this system are:

U = −∇P + Sez, (5.14)

∇ ·U = 0, (5.15)

∂S

∂t
+U · ∇S =

1

RaPe

(
∇2S + Pe

∂S

∂z

)
, (5.16)

S = 1, W = 0 at z = 0, (5.17)

S = 0 at z = 1. (5.18)

This introduces some flexibility that the original dry lake system does not have since the

strength of throughflow can be modified by changing the value of Pe. Setting Pe = 0 is

allowed in this system because the product RaPe is equivalent to the Rayleigh number

of two-sided convection, RaTSC = HVB (ϕD)−1, which is independent of the evaporation

rate, and by doing this, the system given by (5.14)–(5.18) becomes the two-sided system

described in Chapter 2. This would allow the effect of the evaporation rate to be studied

by only changing the contribution of the extra source term on the right-hand side of (5.16)

without modifying the location of the lower boundary. This not only provides the means

to control the effect of the evaporation rate but also allows more direct comparisons to be

made with the two-sided convection system. Additionally, the dependence of the pattern

scale on the evaporation rate may be explored in more detail using this formulation and
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any further studies of dry lakes may want to adopt this system instead.

5.3.2 Patterns

In Section 4.4, the creation and dynamics of protoplumes were discussed. However, the

process of how the protoplumes form was not fully explored. These smaller features have

a large contribution to the surface pattern and cause it to change over a small timescale.

Protoplumes initiate from the surface and can form either isolated from the macroscopic

pattern or connecting two different edges of a cell. Once protoplumes have developed,

they merge with neighbouring macroscopic plumes and so they are only present near the

surface of the domain. Protoplumes contribute to the surface pattern, as they enhance the

local salinity flux to the surface, resulting in the surface pattern inheriting the complex

dynamics that the protoplumes display. The formation and dynamics of protoplumes

would be of interest for further work on dry lakes.

Throughout this study, patterns have been described qualitatively, but no further investi-

gation has been done to characterise the quantitative nature of the polygons that emerge

in the surface salinity flux. For example, what proportion of the surface pattern are

hexagons? What about squares? In the case of two-sided convection with no throughflow,

De Paoli et al. (2022) measured the areas of polygons observed close to the boundaries,

finding similar distributions of the areas of the polygons as the Rayleigh number is in-

creased. In addition, when the distribution of polygons is measured in terms of their

circularity parameter, C = 4πAΠ−2, (A is the area of the polygon and Π is the perimeter),

the most common value was found to be C ≈ 0.8, corresponding to nearly square cells. Fur-

ther to this, Domokos and Regős (2024) have constructed an evolution model for fracture

networks that involves discrete events where cells are split into two via the introduction of

a new edge in the network, followed by a rearrangement of the edges and nodes (Goehring,

2013). Dry lake simulations share some features of this dynamical system due to the na-

ture of the protoplumes dividing convective cells. However, they have extra dynamics due

to the merging events of the protoplumes and megaplumes, removing cells in the network

that the evolution model does not include. Characterising the distribution of polygons in

the simulated surface pattern and how the proportions of each type of shape evolve over

time would be interesting to investigate further, as well as obtaining the equivalent data

from dry lakes worldwide. This would allow further quantitative comparisons to be made

between simulations and field observations.
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5.3.3 Heterogeneous Porous Media

For a heterogeneous porous medium, where the porosity and the permeability may depend

on space, Darcy’s law is generalised to:

û = −κ

µ
·
(
∇̂p̂− ρf̂

)
, (5.19)

where the permeability is now a second-rank tensor. The equation for the conservation of

mass,

∂

∂t̂
(ϕρ) + ∇̂ · (ρû) = 0, (5.20)

is unchanged and incompressibility still holds (provided the porosity is independent of

time):

∇̂ · û = 0. (5.21)

However, the conservation of salt must be modified to:

ϕ
∂C

∂t̂
+ û · ∇̂C = D∇̂ ·

(
ϕ∇̂C

)
, (5.22)

assuming the diffusivity of salt remains constant. For homogeneous anisotropic porous

media, where the solid matrix has a different permeability in the vertical direction than

the two horizontal directions, the permeability tensor can be written as:

κ =


κh 0 0

0 κh 0

0 0 κv

 = κv


γ−1 0 0

0 γ−1 0

0 0 1

 , (5.23)

where κh and κv are the permeabilities in the horizontal and vertical direction respectively

and γ = κv/κh. In this case, Darcy’s law becomes:

û = −κh
µ

∂p̂

∂x̂

v̂ = −κh
µ

∂p̂

∂ŷ

ŵ = −κv
µ

(
∂p̂

∂ẑ
− ρg

)
.

(5.24)

(5.25)

(5.26)

This is useful in a situation where the porous medium has less resistance to flow in the

horizontal directions than the vertical direction (γ ≤ 1). De Paoli et al. (2016) showed

that, in a two-sided system, the solute transport was enhanced when γ < 1 compared

125



5. DISCUSSION

to the isotropic case (γ = 1). Flows in sedimentary rock typically exhibit anisotropic

permeability (Poulet et al., 2023), due to processes such as compaction that provide more

resistance to flow vertically than horizontally. Thus, with further field data, generalising

the dry lake system to an anisotropic porous medium may result in a more realistic model

if differing permeabilities are observed in the porous soil.
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Appendix A

One-Dimensional Crust Growth

A.1 Introduction

In the work presented in this thesis, the presence of the surface crust has been ignored.

To eventually arrive at a model that incorporates the crust, the growth of one must be

understood. In this chapter, the growth of a one-dimensional crust will be investigated,

ignoring the horizontal directions and therefore any convection that may be occurring in

the porous soil beneath the surface. A model will be proposed where a crust may grow

above the surface of the porous soil and the subsequent growth rate of the crust will be

investigated. This work was undertaken as part of a David Crighton Fellowship at the

Department of Applied Mathematics and Theoretical Physics, University of Cambridge

under the supervision of Grae Worster.

A.2 Model

The dry lake (porosity ϕ) will now assumed to be infinitely deep, occupying the region

0 ≤ z < ∞. A salt crust is allowed to develop above the dry lake (z < 0) surface and

grows as a porous structure itself, with solid fraction ξ (porosity 1− ξ) and grows due to

the precipitation of salt resulting from the evaporation of water at a rate E. This induces

a throughflow within the porous soil and the crust, denoted by V . The salt crust, which

has thickness η, is assumed to be fully saturated in brine since the water table lies close to

the surface (Bryant, 2003; Reynolds et al., 2007). The brine has a salt concentration equal

to the saturation concentration, Cs, and it is assumed that far away from the surface, the

concentration is the background salt concentration, C0. This set-up is sketched in Figure
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Figure A.1: Sketch of the initial 1D model. The lake occupies 0 ≤ z ≤ ∞ and the
overlying crust has a thickness η. An evaporation rate of magnitude E is applied at the
surface which results in a throughflow both in the porous soil (0 ≤ z ≤ ∞) and the crust
(−η ≤ z ≤ 0).

A.1. The salt profile in the lake is governed by the one-dimensional advection-diffusion

equation:

ϕ
∂C

∂t
− V

∂C

∂z
= ϕD

∂2C

∂z2
, 0 ≤ z <∞, (A.1)

where C is the concentration of salt, D is the diffusivity and V is the Darcy velocity of

the throughflow induced by the evaporation. The far-field boundary condition is:

C → C0 as z → ∞. (A.2)

In the crust, the salt concentration is constant:

C = Cs, −η ≤ z ≤ 0. (A.3)

128



A.2 Model

Figure A.2: Sketch of the initial lake–crust interface illustrating an inconsistent salt flux
across z = 0.

The salt profiles must be continuous at the lake–crust interface (z = 0) and so:

C = Cs at z = 0. (A.4)

However, by considering the fluxes of salt at the lake–crust interface, it is clear that there

is an inconsistency in the model. This is sketched in Figure A.2, The advective fluxes

balance, since the salt is continuous at the interface and the throughflow is identical in

the lake and the crust, but there is an additional diffusive flux arising from the gradient

of the salt profile in the lake. The increase in the downward transport of salt in the lake

must be balanced by the crust dissolving. Thus, an additional region of pure brine must

be considered in this set-up, which is assumed to lie above the porous soil, and the crust

is assumed to float above the brine. This is sketched in Figure A.3. The brine layer

has thickness b and occupies −b ≤ z ≤ 0 and the crust has thickness η and occupies

−b − η ≤ z ≤ −b. In Section A.4, the weight of the crust will be taken into account and

the effect of the crust sinking into the brine layer will be considered to develop the model

further. In addition to the advection and diffusion of salt in the porous soil of the lake

given by (A.1), the governing equation for the advection and diffusion of salt in the brine

layer is:

∂C

∂t
− V

∂C

∂z
= D

∂2C

∂z2
, −b ≤ z ≤ 0. (A.5)
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Figure A.3: Sketch of the 1D model. The lake occupies 0 ≤ z < ∞, the brine layer has
thickness b and the overlying crust has thickness η.
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The boundary and interfacial conditions that accompany these equations are:

C → C0 as z → ∞, (A.6)

C = Cs at z = −b. (A.7)

C continuous at z = 0, (A.8)

Salt flux continuous at z = 0, (A.9)

Conservation of water at z = −b− η, (A.10)

Conservation of salt at z = −b. (A.11)

A.2.1 Steady State Solution

The system (A.1)–(A.8) can be solved for a steady state, denoting Ci = C(z = 0). The

following profiles for the salt concentration are obtained:

C = C0 + (Ci − C0) exp

(
− z

ϕL

)
, (A.12)

C = Ci +
Cs − Ci

exp (b/L)− 1

[
exp

(
−z
L

)
− 1

]
, (A.13)

where L = D/V . The value of Ci can be determined by imposing (A.9), the continuity of

salt flux at z = 0:

−ϕD ∂C

∂z

∣∣∣∣
z=0+

= −D ∂C

∂z

∣∣∣∣
z=0−

, (A.14)

=⇒ Ci =
Cs + C0 [exp (b/L)− 1]

exp (b/L)
. (A.15)

Equation (A.15) can be rearranged into:

(Cs − Ci) exp

(
b

L

)
= (Cs − C0)

[
exp

(
b

L

)
− 1

]
, (A.16)

allowing the salt profile in the brine layer to be written as:

C = Ci +
Cs − C0

exp (b/L)

[
exp

(
− z

L

)
− 1
]
. (A.17)
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Figure A.4: In the frame of reference of the crust–air interface, fluid descends at speed
η̇ + ḃ in the crust, with mass (1− ξ) (1− Cs). Additionally, the throughflow transports a
mass of water (1− Cs) at speed V and water leaves by evaporation at rate E.

A.2.2 Conservation Equations

In addition to the governing equations and boundary conditions, the total amount of salt

and water must be conserved. Global salt conservation implies that salt entering the

bottom of the lake must be accommodated in the lake, the brine layer or the crust:

C0V =
d

dt

∫ ∞
0

ϕC dz +
d

dt

∫ 0

−b
C dz + C̄η̇ (A.18)

where C̄ = ξ+(1− ξ)Cs denotes the average salt concentration in the crust (solid fraction

and fluid fraction) and the dot over a variable indicates the full time derivative of that

variable: η̇ = dη/dt . Using (A.1)–(A.7), this condition becomes

C0V =

∫ ∞
0

∂

∂z

(
CV + ϕD

∂C

∂z

)
dz + Csḃ+

∫ 0

−b

∂

∂z

(
CV +D

∂C

∂z

)
dz + C̄η̇, (A.19)

=⇒ C0V = Csḃ+ C̄η̇. (A.20)

Global water conservation is equivalent to local water conservation at the surface of the

crust. At the crust–air interface, any difference in the flux of water across z = −b − η

must be accommodated in the growth of the crust. This situation is sketched in Figure

A.4. Thus, at the crust–air interface:

(1− Cs)V − E = (1− ξ) (1− Cs)
(
η̇ + ḃ

)
. (A.21)

Finally, at the crust–brine interface, any imbalance in the salt flux must be accounted for

in the movement of the interface:

(
C̄ − Cs

)
ḃ = −D ∂C

∂z

∣∣∣∣
z=−b

, (A.22)
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Figure A.5: In the frame of reference of the crust–brine interface, crust approaches at speed
ḃ with average concentration C̄ and brine moves away at speed ḃ with a concentration
profile given by (A.13).

=⇒ ξ (1− Cs) ḃ = (Cs − C0)V, (A.23)

and is sketched in Figure A.5.

A.2.3 Solution

A solution to the following system of equations is sought:

C0V = Csḃ+ C̄η̇, (A.24)

(1− Cs)V − E = (1− ξ) (1− Cs)
(
η̇ + ḃ

)
, (A.25)

ξ (1− Cs) ḃ = (Cs − C0)V. (A.26)

This system consists of three equations for the unknown variables V , η̇ and ḃ (assuming

E is known). Upon eliminating ḃ, two equations for η̇ in terms of V are obtained:

C̄η̇ =
C0C̄ − C2

s

ξ (1− Cs)
V, (A.27)

η̇ =
ξ (1− C0)− (Cs − C0)

ξ (1− ξ)
V − E

(1− ξ) (1− Cs)
. (A.28)
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Equations (A.27) and (A.28) represent two straight lines in the (V, η̇)-plane. For there to

be a solution with η̇ > 0, the gradient of both lines must be positive:

C0 >
C2
s

C̄
, (A.29)

ξ + (1− ξ)C0 > Cs. (A.30)

Additionally, as the η̇-intercept is negative, the gradient of (A.28) must exceed the gradient

of (A.27):

ξ (1− C0)− (Cs − C0)

ξ (1− ξ)
>

C0C̄ − C2
s

ξ (1− Cs) C̄
. (A.31)

A.3 Initial Value Problem

To explore how a crust grows from The natural starting point to explore how a crust grows

is zero crust (η = b = 0) and a uniform salt concentration in the lake (C = C0). This

initial value problem is described by the equations:

ϕ
∂C

∂t
− V

∂C

∂z
= ϕD

∂2C

∂z2
, (A.32)

C → C0 as z → ∞, (A.33)

C = C0 at t = 0, (A.34)

η = b = 0 at t = 0. (A.35)

The conservation of water gives a condition relating V to E and in the absence of a crust

and brine layer, this is

(1− C0)V − E =
d

dt

∫ ∞
0

ϕ (1− C) dz, (A.36)

and the conservation of salt implies

C0V =
d

dt

∫ ∞
0

ϕC dz. (A.37)
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Upon simplification, and using (A.1) to evaluate the integral, these conditions yield

V = E, (A.38)

CV + ϕD
∂C

∂z
= 0 at z = 0. (A.39)

Scaling lengths with L = D/E, time with T = L/E = D/E2, the non-dimensional

equation is

ϕ
∂C

∂t
− v

∂C

∂z
= ϕ

∂2C

∂z2
, z ∈ [0,∞), (A.40)

where v = V/E and with boundary conditions

C → C0 as z → ∞, (A.41)

Cv + ϕ
∂C

∂z
= 0 at z = 0. (A.42)

Once C(z = 0) = Cs, the growth of a crust and brine layer is permitted. Since the salt

concentration in the lake is not in a steady state, the analysis carried out in Section A.2

requires modification. The local conservation of salt at the surface of the crust still implies

that

(1− Cs) v − 1 = (1− ξ) (1− Cs)
(
η̇ + ḃ

)
, (A.43)

and the crust–brine interfacial condition must be kept at

(
C̄ − Cs

)
ḃ = − ∂C

∂z

∣∣∣∣
−b
, (A.44)

=⇒ ξ (1− Cs) ḃ = − ∂C

∂z

∣∣∣∣
−b
. (A.45)

Finally, the global salt conservation equation is:

C0v =
d

dt

∫ ∞
0

ϕC dz +
d

dt

∫ 0

−b
C dz + C̄η̇, (A.46)

=⇒ Csv = − ∂C

∂z

∣∣∣∣
−b

+ Csḃ+ C̄η̇. (A.47)
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Thus, the whole system can be written as:

ϕ
∂C

∂t
− v

∂C

∂z
= ϕ

∂2C

∂z2
, z ∈ [0,∞), (A.48)

∂C

∂t
− v

∂C

∂z
=
∂2C

∂z2
, z ∈ [−b, 0], (A.49)

C → C0 as z → ∞, (A.50)

C = Cs at z = −b, (A.51)

C continuous at z = 0, (A.52)

−ϕ ∂C

∂z

∣∣∣∣
0+

= − ∂C

∂z

∣∣∣∣
0−
, (A.53)

(1− Cs) v − 1 = (1− ξ) (1− Cs)
(
η̇ + ḃ

)
, (A.54)

ξ (1− Cs) ḃ = − ∂C

∂z

∣∣∣∣
−b
, (A.55)

Csv = − ∂C

∂z

∣∣∣∣
−b

+ Csḃ+ C̄η̇. (A.56)

A.3.1 Method of Solution

To solve this numerically on an infinite domain and a moving interface z = −b(t), two

transformations are used. The first is:

x = 1− exp (−z) , dx

dz
= exp (−z) = 1− x, (A.57)

which maps [0,∞) onto [0, 1]. The second is

x =
z

b
,

∂x

∂z
=

1

b
, (A.58)

which maps [−b, 0] onto [−1, 0]. The equation for the salt profile in the lake becomes:

ϕ
∂C

∂t
+ (ϕ− v) (1− x)

∂C

∂x
= ϕ (1− x)2

∂2C

∂x2
, x ∈ [0, 1], (A.59)
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and the equation for the salt profile in the brine layer becomes:

∂C

∂t
− 1

b

(
xḃ+ v

) ∂C
∂x

=
1

b2
∂2C

∂x2
, x ∈ [−1, 0]. (A.60)

Starting from a uniform salt concentration C0 in [0, 1] and no crust or brine layer, the first

stage is to solve for the salt concentration in [0, 1] with the zero salt flux condition:

Cv + ϕ
∂C

∂x
= 0 at x = 0. (A.61)

At t = ts, the time at which C(z = 0) = Cs, the crust and brine layer can begin to grow.

For a small brine layer thickness, b≪ 1, the salt profile satisfies

b2
∂C

∂t
− b

(
xḃ+ v

) ∂C
∂x

=
∂2C

∂x2
, (A.62)

=⇒ ∂2C

∂x2
= 0, (A.63)

to leading order. The boundary conditions are:

−ϕ ∂C

∂z

∣∣∣∣
0+

= − ∂C

∂z

∣∣∣∣
0−
, (A.64)

C = Cs at x = −1, (A.65)

and has solution:

C = ϕ
∂C

∂z

∣∣∣∣
0+

(z + b) + Cs = ϕb
∂C

∂x

∣∣∣∣
0+

(x+ 1) + Cs. (A.66)

Thus, for small b,

v = 1 +
Cs

ξ (1− Cs)
, (A.67)

η̇ =
1

ξ (1− Cs)

(
Cs + ϕ

∂C

∂x

∣∣∣∣
0+

)
= 0, (A.68)

ḃ =
−ϕ

ξ (1− Cs)

∂C

∂x

∣∣∣∣
0+
. (A.69)

For b ̸= 0, the conservation equations can be solved for v, η̇ and ḃ analytically (in terms

of the gradient at x = −1):

v = 1 +
Cs

ξ (1− Cs)
, (A.70)
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Figure A.6: Throughflow, v, crust thickness, η, brine thickness, b, and total thickness,
η + b, as functions of time, t. The jump in v occurs at t = ts ≈ 0.024 at which b grows
linearly from zero and η begins to grow, initially with η̇ = 0.

η̇ =
1

ξ (1− Cs)

(
Cs +

∂C

∂x

∣∣∣∣
−1

)
, (A.71)

ḃ =
−1

ξ (1− Cs)

∂C

∂x

∣∣∣∣
−1
. (A.72)

In the numerical simulations, a single time step (∆t = 10−3) provided enough time for the

brine layer thickness to grow to b ∼ 10−4, from which (A.60) is solved instead of (A.63).

A.3.2 Results

Figure A.6 displays the (non-dimensional) throughflow velocity, v and the thicknesses η, b

and η + b which denote the size of the crust layer, the brine layer and the total thickness

of the brine and crust respectively. Once a brine and crust layer is present, the value of

the throughflow jumps instantaneously to account for the extra fluid that is required to

be accommodated in the growing crust and brine layers. However, this is unphysical, and

highlights one problem with the model as it currently stands. The initial growth of the

brine layer is linear (ḃ ̸= 0) but the growth slows as the lake settles to a steady state. On

the other hand, the initial growth of the crust is slower to respond: η̇ = 0 at t = ts. Since

v and η̇ are determined algebraically (once the diffusive flux is known numerically), the

values of the growth rates η̇ and ḃ converge as the salt concentration in the lake approaches

the steady state. This results in linear growth of η and b at later times.
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A.4 A Sinking Crust

Since the crust is more dense than the brine layer, it will sink and displace fluid until it

is in contact with the underlying porous soil in the lake. To obtain an estimate for the

speed that the crust sinks, an infinitely deep layer of fluid may be considered with a crust

suspended in it. The crust will descend at a speed W∞ and in a frame of reference where

the crust is stationary, a fluid flow is present within the pore spaces of the crust. Using

Darcy’s law:

−W∞ = −κ
µ

(
∂p

∂z
− ρlg

)
, (A.73)

where κ is the permeability of the crust, µ is the viscosity of water, ρl is the density of

the liquid and g is the acceleration due to gravity. The pressure p is due to the mass of

the crust and liquid lying above it:

∂p

∂z
= [ξρs + (1− ξ) ρl] g. (A.74)

Thus,

W∞ =
κg

µ
ξ (ρs − ρl) ≈ 10−3m s−1, (A.75)

using κ ≈ δ2/100, δ ≈ 10−4m, g ≈ 10m s−2, µ ≈ 10−3 Pa s, ρs ≈ 2 g cm−3 and

ρl ≈ 103 kg m−3. Comparing this with the typical evaporation rates at salt lakes, E ≈

10−8m s−1, it is clear that the descent rate of the crust should be almost instantaneous

compared to the evaporation velocities. The descent rate of the crust will then be con-

trolled by the dissolution of salt from the interface in contact with the lake below.

The crust of the salt lake will now be allowed to sink at speed W into the lake below. The

advection-diffusion of salt still holds within the lake but the dissolution of the crust at

z = 0 induces a sink rate in the crust. The equations and boundary conditions governing

this system are:

ϕ
∂C

∂t
− V

∂C

∂z
= ϕD

∂2C

∂z2
, z ∈ [0,∞), (A.76)

C = Cs at z = 0, (A.77)

C → C0 as z → ∞, (A.78)

Conservation of salt at z = 0, (A.79)
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Figure A.7: Sketch of the 1D model for a sinking crust. The lake occupies 0 ≤ z <∞ and
the overlying crust is of thickness η.

Conservation of water at z = −η. (A.80)

A sketch of this system is shown in Figure A.7, which is indistinguishable from the sketch

in Figure A.1, except for the new throughflow in the crust layer. Since the crust is

descending, the volume flux of fluid must increase in the crust. The volume flux of solid

moving downwards is ξW , giving the Darcy velocity in the crust to be:

Vc = V + ξW. (A.81)

Salt must be conserved over the whole domain. This gives:

C0V =
d

dt

∫ ∞
0

ϕC dz +
d

dt

∫ 0

−η
C̄ dz, (A.82)

=⇒ CsV + ϕD
∂C

∂z

∣∣∣∣
0+

= C̄η̇. (A.83)
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At the lake–crust interface, salt must be conserved. Balancing salt fluxes, including the

advective flux in the fluid and the transport of salt due to the movement of the crust,

gives:

CsV + ϕD
∂C

∂z

∣∣∣∣
0+

= Cs (V + ξW )− ξW, (A.84)

=⇒ ξ (1− Cs)W = −ϕD ∂C

∂z

∣∣∣∣
0+
. (A.85)

At the crust–air interface, the mass of water must be conserved:

(1− Cs) (V + ξW )− E = (1− ξ) (1− Cs) η̇. (A.86)

Thus, a solution to the following system of equations is sought:

CsV + ϕD
∂C

∂z

∣∣∣∣
0+

= C̄η̇, (A.87)

ξ (1− Cs)W = −ϕD ∂C

∂z

∣∣∣∣
0+
, (A.88)

(1− Cs) (V + ξW )− E = (1− ξ) (1− Cs) η̇. (A.89)

The solution (in terms of the salt gradient at z = 0) is:

W = − ϕD

ξ (1− Cs)

∂C

∂z

∣∣∣∣
0+
, (A.90)

V = E +
1

ξ (1− Cs)

(
CsE + ϕD

∂C

∂z

∣∣∣∣
0+

)
, (A.91)

η̇ =
1

ξ (1− Cs)

(
CsE + ϕD

∂C

∂z

∣∣∣∣
0+

)
. (A.92)

A.4.1 Results

Figure A.8 shows the results for the modified model (with velocities scaled with E, and

lengths with L = D/E), including the sink rate of the crust. There is a similar growth in

η as before, initially with η̇ = 0 which then grows linearly at later times. The throughflow

is enhanced, similar to the case with the brine layer, but varies continuously rather than

jumping instantaneously. The values for the throughflow converges to its steady state

value as the salt profile in the lake converges to the steady state. A similar convergence

141



A. ONE-DIMENSIONAL CRUST GROWTH

Figure A.8: Throughflow, v, sink rate, w and crust thickness, η as functions of time, t.
The jump in v occurs at t = ts ≈ 0.025 at which η begins to grow, initially with η̇ = 0.

is observed for the sink rate, w, but decreases from its initial maximum value at t = ts.
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A.5 Discussion

In this chapter, a one-dimensional model for crust growth has been developed. The model

demonstrates that to maintain consistent salt fluxes across the lake-crust interface, a brine

layer forms between the lake and the crust. Initially, the salt crust was assumed to float

on the brine layer, but it was later allowed to sink and come into contact with the lake

surface, as the crust is denser than the brine. This change resulted in enhanced throughflow

within the crust. Additionally, simulations were conducted to assess the lake dynamics

and the growth rate of the crust’s thickness. The results indicate that, over time, the

crust’s thickness increases linearly as the salt concentration profile in the lake approaches

a steady state.

It may be of interest to couple this model with the convective dynamics previously ex-

plored. Solving the additional equations for the crust’s growth rate within the full non-

linear simulations presented in Chapter 4 is relatively straightforward. However, this

approach predicts indefinite crust growth. Therefore, modifications will be necessary to

limit crust growth when the thickness becomes large enough to hinder evaporation (e.g.,

when the crust becomes too thick for capillary action to connect groundwater to the crust

surface).
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