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Abstract

Ibn Sina, a philosopher of 11th-century Persia, wrote of a ‘Floating Man’. This man
is floating through a void, without the use of his sight or touch or any of the senses
which make us human. Yet as he has a human brain this man, according to Ibn Sina,
is capable of imagining and reasoning with the capabilities of any other person.

With the development of Large Language Models the field of Artificial Intelligence
has come close to making a ‘Floating Man’ - or at least making a ‘Floating Man’ with
memories of more books than exist in the wildest dreams of the librarians of Alexandria
or Oxford. In this thesis, we question if the ‘floating man’ of AI could benefit from more
of his senses, reasoning that as humans a great deal of our experience is multimodal.

Our research aims to address the limitations of current NLP models that heavily rely
on textual information, often at the expense of multimodal cues. Such errors highlight
the critical need for multimodal approaches in many applications, of which we study
Visual Question Answering, Citation Recommendation, and Eye-Tracking Prediction,
where text alone can lead to biased, harmful, or simply incorrect outcomes, such as
mistaking a metal table for one made of wood due to textual biases.

Through our research, we aim to show the potential for Multimodality in enriching
the capabilities of Artificial Intelligence.
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Chapter 1

Introduction

Multimodal Artificial Intelligence refers to Artificial Intelligence (AI) approaches which
use more than one modality. Modalities are defined as a distinct type of perception or
experience (Baltrusaitis et al. 2019). Within AI, multimodal categories are typically
bound to the human sensory modalities such Vision, Sound, Touch with the exception
that Natural Language is seen as a distinct modality to Vision (Zhou and Shimada
2023).

In this thesis, we study how Multimodal Artificial Intelligence systems integrate
information from different modalities. We study modalities across what we term the
axis of knowledge density, the ratio of signal to noise inherent in each modality. We
study this dynamic across three multimodal AI tasks: Visual Question Answering,
Eye-Tracking Prediction, and Citation Prediction. Our process follows an ‘evaluation
cycle’ (Fig 1.6): we design a new model, and to understand these models, we design
datasets and a metric to better understand the model’s capabilities. We organise our
Research Questions and findings to align with these stages: (1) Multimodal modelling,
(2) Multimodal data, and (3) Evaluation of complex classification tasks.

1.1 Background

Multimodal AI dates back to MIT’s 1966 (not so) straightforward summer project of
“spend[ing] the summer linking a camera to a computer and getting the computer to
describe what it saw” (Papert 1966). Later work included incorporating visuals of
lip movements in Speech Recognition (Yuhas et al. 1989), and Multimedia Retrieval
(Yoshitaka and Ichikawa 1999). Recently, multimodal AI has had a renaissance due to
the capabilities offered by scaling Neural Network models with self-supervised learning
approaches across exponentially increasing computational and data resources (Nan
2023).

A focus on Language-only methods in AI has constituted a successful if roundabout
pathway to success (Brown et al. 2020). At the time of this Thesis, remarkable
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capabilities in text-based models have been achieved through neural network approaches,
model and data scaling, and self-supervised learning (Ericsson et al. 2022). These
models are revolutionising the workplace and the economy (The Economist 2023). The
successes of text-based models are the paying off of a bet made on the primacy of the
text modality which has existed throughout the history of the AI field. Even early ‘Good
Old Fashioned AI’ systems defined by formal logic considered text-based conversational
capacity to be the target to demonstrate high machine competence (Turing 1950). AI’s
perennial focus on text-based capability itself continues a much older philosophical
tradition which viewed language as a ‘primary modality’ (Harnad 1990; Grosz 2012).

This thesis seeks to gently push back against the AI-Philosophical consideration
that ‘text is all you need’. In many real-world tasks, the use of non-textual data is
necessary. In the Vision domain alone, these include Visual Question Answering (VQA)
(Antol et al. 2015; Malinowski and Fritz 2014; Gao et al. 2015; Yu et al. 2015; Ren
et al. 2015; Zhu et al. 2016; Wang et al. 2016; Johnson et al. 2016; Marino et al. 2019;
Hudson and Manning 2019a; Shah et al. 2019; Wang et al. 2017b; Sampat et al. 2021;
Schwenk et al. 2022), Visual Entailment (Xie et al. 2019), Image Captioning (Vinyals
et al. 2015), Multimodal Sentiment Analysis (Zadeh et al. 2016), Multimodal Machine
Translation (Elliott et al. 2015), and Cross-modal Retrieval (Srihari 1995).

To progress beyond this self-evident usefulness of other modalities, we ask: In which
tasks and sub-tasks is multimodal data useful, and to what degree, and is this constant?.

Answering this question requires the design and analysis of multimodal models,
datasets, and metrics with a focus on diversity, difficulty, and diagnosis. To sort
modalities and order our research, we introduce the concept of knowledge-density,
the amount of data in a modality versus the useful information to be extracted from
it, which we discuss in the Knowledge Density Section 1.3. We discuss these more
throughout in our Research Questions Section 1.6.

We give a three-part introduction to our Research below. Firstly, we outline the
modalities and modelling approaches thereof which we consider in this thesis: Images,
Text, KG, Citations, and Expert Linguistic Features. Secondly, we define knowledge
density and place the aforementioned modalities on this axis. Thirdly and finally, we
introduce the three multimodal tasks of External Knowledge Visual Question Answering,
Eye-Tracking Prediction, and Citation Recommendation which we develop in our study
of integrating multimodal data.



1.2. MODALITIES 4

1.2 Modalities

Images in a digital context are discretized representations of the Visual Modality
(sight). In standard formats, images are represented as rectangular grids of pixels, where
a pixel is a three-tuple of Red, Green, and Blue ‘channels’. The number of horizontal
and vertical pixels, (width and height) specifies the resolution of an image. The range
of intensities each of the Red, Green, and Blue channels can have is defined by the ‘bit
depth’ of an image, with 8-bit (28) values typical. Therefore, the size of an image is
defined by Resolution (= Width * Height ) multiplied by the bit depth.

Knowledge Graphs are structured representations of Knowledge defined by an
ontology and populated with nodes and edges representing entities and relations. The
first proposed computational Knowledge Graph [KG], the Semantic Net (Richens
1958), was created to reduce semantic loss during translation. Recent KG such as
Wikidata (Vrandečić and Krötzsch 2014) and DBpedia (Auer et al. 2007) represent
World Knowledge in a format accessible to symbolic querying. By convention, KGs
are node- and edge-attributed graphs where nodes are entities and edges are relations.
Formally, they are defined by an ontology OKG ⊆ E ×R× (E ∪L) (Hogan et al. 2021),
where:

• E represents the set of entities,
• R is the set of relations (or properties) between entities,
• L is the set of literals, such as numbers, strings, or dates,
• E × R × (E ∪ L) signifies the possible triples formed by entities and relations,

resulting in either another entity (E) or a literal (L).

Examples of E ×R× (E ∪ L) include:

• An entity-to-entity relation: < J. R. Firth, Studied at,University of Leeds >,

• An entity-to-literal relation: < J. R. Firth,Data of Birth, 17 June 1890 (Gregorian) >.

.

Citation Graphs are structured representations of Citations between academic
documents. They can be defined by the ontology OC ⊆ D × C ×D where:

• D is the set of documents.
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• C is the set of directed citations.

As citations can only be to other documents, D is both the origin and target.
We realise this ontology as a Citation Graph, where nodes are documents and

directed edges reflect citations.

Linguistic Features This section details the various linguistic and reading-specific
features.

• Part-of-speech (POS) information was incorporated, following the natural inclina-
tion of readers to fixate more on function words compared to open-class words.
This POS tagging was accomplished using the Spacy library.

• Sentence Position Indicators: Binary indicators were used to mark words as either
the first or last in their sentences.

• Frequency Measures: The analysis included raw and Zipf frequency measures of
words

• Concreteness Norms: These features describe the abstractness of a word. We use
the data from the human annotation in Brysbaert et al. (2014), mean, standard
deviation, and the % of participants familiar enough with the word to accurately
judge its concreteness.

• GECO Corpus Summary Statistics: type-level summary statistics for gaze features
were generated and from the GECO eye-tracking corpus.

• Multi-Word Expression Features: An MWE lexicon and related metrics were
created using the mwetoolkit annotations of the Wikitext-103 corpus (Cordeiro
et al. 2016):

– Binary indicators of MWE presence,

– categorization of MWEs by syntactic pattern,

– compositionality scores from MWEToolkit’s compositionality scoring func-
tion.

– Skip-Gram embeddings generated from joining component words of MWEs in
Wikitext-103 using underscores (i.e. climate change becomes climate_change)
(Mikolov et al. 2013b).
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1.3 Knowledge-Density of Modalities

The ratio of total information to useful information in each modality is not equal. In
this section, we propose a definition of a way of quantifying this dimension which we
term knowledge density, make calculations to quantify this property, and propose a
grouping of the modalities we study according to this criteria.

Entropy is an information-theoretic measure of the uncertainty of a random variable.
It is defined as:

H(X) = −
n∑
i

p(X = x) log2(p(X = x)) (1.1)

In order to simplify our presentation, we assume a uniform probability over all
values p(X = x). We refer to this as the ‘uniformity assumption’. In practice, certain
values for X will be more likely and the entropy of a modality will be lower.

Given p(x) is uniform, the uniformity entropy which we term HU can be written as:

HU(X) = −
n∑
i

1

n
log2(

1

n
) (1.2)

= −n · 1
n
log2(

1

n
) (1.3)

= − log2(
1

n
) (1.4)

= log2(n) (1.5)

That is, the log of the number of possible states.
In most data structures Multimodal AI encounters, there are a number of ‘features’

in each sample S: pixels, words, nodes. Assuming each feature F is independent, and
there are n possible states for each feature, the entropy over a complete sample is:

HU(S) = log2(nF ) (1.6)

= F log2(n) (1.7)

That is, given a feature, we can estimate the entropy of that feature as the product
of the number of features F (words, pixels, nodes) multiplied by the logarithm of the
possible states for each feature n.
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Image The number of features of an image is defined by the number of pixels multiplied
by the number of channels C. The number of pixels is the product of the width W

and height H in pixels. For colour images, there are typically three channels: Red,
Green, and Blue. The possible states per feature is the bit depth which is conventionally
expressed as a power of 2. A bit depth D of 8-bits = 28 values are typical for images.

Keeping our uniformity assumption, and taking the default Vision-Transformer
(Dosovitskiy et al. 2020) input image size of 224x224, this gives a uniformity Shannon
Entropy of:

HU(Image) = log2(DW×H×C)

= W ×H × C × log2(D)

= 224× 224× 3× log2(28)

≈ 1, 200, 000

(1.8)

1.2 million is an extremely high value for entropy, which reflects the fact that even
a relatively small image has a large amount of information.

Text For text the uniformity assumption means that (a) all words are equally likely
and (b) each word is independent of any preceding words, which is known as the unigram
assumption. We let the sentence length L equal 10 and set the word vocabulary V

be 10,000, meaning LV possible sentences. In this case, a sentence has a uniformity
Shannon Entropy of:

HU(Text) = log2(V L)

= L log2(V )

= 10 log2(10, 000)

≈ 133

(1.9)

Knowledge Graph We consider a Knowledge Graph (KG) with 100k nodes N and
100 relation types R.

We consider a ‘Sample’ to be a triple of <Node, Edge, Node> taken from a KG.
This may be considered as two nodes each with states drawn from N possible nodes and
a connecting edge drawn from R possible states gives a uniformity Shannon Entropy of:
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HU(KG) = log2(N2 ×R1)

= 2 log2(N) + log2(R)

= 2 log2(100, 000) + log2(100)

= 2 log2(100, 000) + log2(100)

≈ 40

(1.10)

HU(KG) = 40 is a lower value, reflecting the higher knowledge density of the KG.
This presents an opportunity for multimodal systems to obtain high-quality and clear
information without having to learn how to model exceptionally complex distributions
seen in Images and Text.

This may be illustrated through quantifying the x saying ‘An image is worth x
words’ (given our uniformity assumption). Taking the HU(Image) of 1.2 million, we
consider what length of sentence would be required to have the same uncertainty given
the same uniform vocabulary of 10,000 as before:

log2(V L) = 1, 200, 000

L log2(10, 000) = 1, 200, 000

L =
1, 200, 000

log2(10, 000)
≈ 90, 000

(1.11)

Therefore an image is ‘worth’ 90,000 words in terms of Entropy under the uniformity
assumption.

Next, we consider how large a Knowledge Graph must be for each triple to match
the entropy of either a text sentence or an image. We do not include edge relations in
our calculations as these make an insignificant contribution. First, we consider how
many nodes are required for a triple from a KG to match a 10-word sentence with a
uniform vocabulary of size 10,000:

log2(N2) = 10, 000

2 log2(N) = 10, 000

log2(N) = 5, 000

N = 25,000 ≈ 1.41× 101,505

(1.12)

Now we consider an image of the size, channels, and bit depth we discussed above:
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log2(N2) = 1, 200, 000

2 log2(N) = 1, 200, 000

log2(N) = 600, 000

N = 2600,000 ≈ 9.94× 10180,618

(1.13)

These large numbers give an indication of the size of the change in complexities
between modalities. This in turn suggests that approaches in multimodal AI should be
sensitive to the challenges of highly-expressive data such as images and the opportunities
of highly-structured data such as KG.

In real-world data, the entropies will be lower. By (A) assuming uniform distributions
and (b) independence for all possible states within a data structure we have provided
upper bounds on the entropy. However, the general trend of Image � Text � KG
holds.

3.
KG

Linguistic
Citations

2.
Text

1.
Image

Increasing Knowledge
Density

Figure 1.1: Relationship Between Modalities and Knowledge Density

Using the values obtained in these calculations, we group all of the modalities across
our Research in Fig 1.1. Citation Graphs are similar to KG, where each node represents
a paper and each edge represents a citation. Linguistic Features categorical variables
representing certain properties of each word in a sentence, and may be considered as
sentences with extremely restricted vocabulary (V=100).

1.4 Research Directions

In this thesis, we quantify the interaction of modalities across the knowledge-density
dimension, from the dense: Knowledge Graphs (Schneider et al. 2022), Linguistic
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Annotations (Chakrabarty et al. 2020), and Citations (Ostendorff et al. 2022), to the
medium: Text, to the sparse: Images.

We consider these features in the context of real-world AI tasks. External Knowl-
edge Visual Question Answering (Antol et al. 2015) (KG, Text, Images), Eye-Tracking
Prediction (Hollenstein et al. 2021b) (Linguistic Features, Text), and Citation Recom-
mendation (Färber and Jatowt 2020) (Citations, Text). We explore how text-based
architectures and models perform on these tasks when additional modalities are provided
as an additional signal.

The challenge is to make a model that can use very heterogeneous data where
information is distributed across all modalities. In an ideal world, text could suffice for
all tasks. However, many times it is inconvenient or even unreasonable to represent a
task as text. Therefore, the ability to take information from less plentiful modalities is
crucial to performance.

A crucial dimension in the development of AI systems with novel capabilities is their
evaluation. Careful consideration of the triple factors: (I) dataset design (Sparck Jones
1994), (II) sample annotation (DeYoung et al. 2020), and (III) the evaluation metric
(Blagec et al. 2022) are required to ensure a fair and informative test for a system under
evaluation.

We are also concerned with how to quantify model performance. There has been
research into the failings of Accuracy, (Ben-David 2007), and proposed possible alterna-
tives without these issues (Brodersen et al. 2010; Valverde-Albacete and Peláez-Moreno
2014). Furthermore, we investigate how better datasets can support these better metrics
to permit separable analysis of model capabilities.

1.5 Description of Multimodal Tasks

In this thesis, we study tasks which involve integrating structured knowledge to NLP
systems. We target tasks which require at least two classes from Figure 1.1. We
choose three tasks with activate research in Multimodal AI:External Knowledge Visual
Question Answering, Eye-tracking Prediction, and Citation Prediction. We outline
these tasks in Table 1.1 and discuss them further below.
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Task External Knowledge
Visual Question Answering Eye-Tracking Prediction Citation Prediction

Input Modalities Image (1), Text (2), KG (3) Text (2), Linguistic Features (3) Text (2), Citations (3)
Output Answer/Classification Eye Movements/Regression Is Cited/Classification

Example

”What is the Alma Mater
of the person wearing a
Mortarboard?”
+
+ KG

What proportion of time did an
average reader spend on the word
“company” in the sentence “You
shall know a word by the company
it keeps”?
+ Linguistic Features

Does (Devlin et al. 2019b)
cite (Firth 1957)?
+ Titles, Abstracts
+ Citation Graph

Table 1.1: Multimodal Tasks Considered in this Thesis

1.5.1 External Knowledge Visual Question Answering

Visual Question Answering (VQA) is the task of answering a text question about an
image given a Question and Image pair (Antol et al. 2015). It has uses for accessibility
(Gurari et al. 2018), education (Kembhavi et al. 2017), content moderation, and
healthcare (Hasan et al. 2018).

Whilst this task is conceptually simple, a number of orthogonal factors increase
the task complexity (Goyal et al. 2019; Shah et al. 2019). These are: Question Priors
(Goyal et al. 2019; Hudson and Manning 2019a), Fact Compositionality (Johnson et al.
2016; Zhang et al. n.d.), Knowledge Obscurity (Wang et al. 2016; Wang et al. 2017b),
and Image Comprehension (Thrush et al. 2022)

In this thesis, we consider the VQA subtask External Knowledge Visual Ques-
tion Answering (EKVQA), which is Visual Question Answering which requires the
use of knowledge which can not be learned from the training set (Marino et al. 2019).

We illustrate EKVQA with a sample from our SynthVQA dataset in Figure 1.2.
Given the image, the task is to answer ‘What in this image was invented in the 1870s?’.
The World Knowledge that the metal detector was invented in 1870s is not learnable
from a general VQA train set (Shah et al. 2019), and so a source of External Knowledge
is required to provide this fact. We illustrate this by providing the fact, although in
practice a system will have to retrieve the relevant fact itself.
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Figure 1.2: SynthVQA Example from our Paper V.
Question: What in this image was invented in the 1870s?

Fact: <Metal Detector, time of discovery or invention, 1874>
Answer: Metal Detector

Whilst models which can answer Vision-Language problems are a topic of intensive
research (Chen et al. 2020; Lu et al. 2019; Radford et al. 2021; Li et al. 2023), the
incorporation of Knowledge-Graph facts is far less studied and straightforward (Schwenk
et al. 2022). Such systems use all three modalities: Vision, Text, and KG, and face the
challenge of coordinating the information within these disparate data types to drive a
prediction (Chen et al. 2021).

1.5.2 Eye-tracking Prediction

Eye-tracking Prediction is the task of predicting the path of the human gaze over
the content of interest. Eye tracking data may be used either to understand human
cognition or as an inductive bias for computational models (Hollenstein et al. 2021b).
For computational models, they have been shown to enhance Named Entity Recognition
(NER) (Hollenstein et al. 2019), Sarcasm Detection (Mishra et al. 2016), and Question
Answering (Sood et al. 2020a). Studies have shown that human gaze duration is
inversely correlated to the likelihood of a word given its context (Ehrlich and Rayner
1981).
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Figure 1.3: Eye-tracking Example from the Task in our Paper II

1.5.3 Citation Prediction

Citation Prediction is the task of predicting whether a given source paper cites a given
target paper (Färber and Jatowt 2020). It is designed to provide suggestions to paper
authors on what to cite. In Global Citation Prediction, a model is provided with a
singular representation of source and target papers, typically a subset of text, abstract,
full-text, and other citations. Recent research has focused on models which input Title
and Abstract text and optimise metric-based losses over samples of the citation graph.
We also consider other citations.
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Firth 1957

Allen 1953

Conant 1951

von Mises 1951

Devlin et al 2018

Vaswani et al 2017

Peters et al 2018

Kiros et al 2015

?

Figure 1.4: Citation Prediction Sample from our Paper IV

1.5.4 Task Modalities

Image

Text

KG
Linguistic
Citations

Regression

Classification

EKVQA
Eye-tracking Prediction
Citation Prediction

Figure 1.5: Tasks and Modalities

Each of these tasks requires the integration of different modalities across varying
data scales and with unique targets. Importantly, each gives us a different view of the
classes defined in Figure 1.1. We outline the modalities of each task and their densities
in Figure 1.5. External Knowledge Visual Question Answering requires systems to
reason over all Knowledge Densities: Images (level 1), text (level 2), and KG (level 3)
to predict from a large set of answer classes. Eye Tracking Prediction uses Text (level
2) and expert Text features (level 3) to predict continuous features capturing human
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gaze movements. Citation Prediction has text (level 2) and other citations (level 3) as
input and targets a binary classification as to whether two papers cite each other.

1.6 Research Aims and Objectives

As discussed in Section 1.4 we conduct our study of multimodality in Artificial In-
telligence through the VQA, Eye-tracking Prediction, and Citation Prediction tasks.
We organise our Research Questions by the three dimensions of Model Development,
Dataset Creation, and Evaluation Metrics. As Fig 1.6 indicates, these are mutually
informing and reinforcing, and our work responds to limitations in one with novel
research in another.

RQ1: Model

RQ3: Evaluation
RQ2: Data

Figure 1.6: Research Questions

This thesis asks the following Research Questions:

1. RQ1: How can we incorporate both knowledge-dense data structures
(KG, Citations, Linguistic Annotations) and noisy modalities (Images)
into text models? In this Research Question, we ask what approaches can be
used to build effective and robust systems which integrate multimodal data of
different knowledge densities.

We address this question in Paper I with our Vision-Language-KG REUNITER
model, a novel architecture for solving External Knowledge Visual Question
Answering datasets. We show that this approach beats the prior state of the
art on the Knowledge Aware VQA (KVQA) dataset by 19%. To gauge the
contribution of each modality, we perform train and test time ablations of each
modality. We are limited in our ability to fully categorise its reasoning performance
by noise in the sub-task divisions the dataset.

We further address Modality Integration in Paper II where we train models
for predicting human gaze patterns. We compare Text features from a fine-
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tuned Language Model and a set of Linguistically motivated features through
Permutation Feature Importance.

Finally, in Paper IV we evaluate the contribution of Text and Citation Graph
features to the Citation Prediction task. We compare a state-of-the-art Text-based
model with a Citation Graph-based model as the size of the Training Citation
Graph grows. Finally, we consider strategies for combining Text and Citation
features and find that this is dependent on the properties of both the train- and
test-set.

2. RQ2: How can we create multimodal datasets which are diverse, diffi-
cult, and diagnostic? Our second research question explores the creation of
novel multimodal datasets for probing the integration of modalities.

We address the sparsity of existing External Knowledge VQA (EKVQA) datasets
by adapting techniques from Knowledge-Based Question Answering to EKVQA
with our GRAVITY pipeline and the SynthVQA dataset it produces. We show
that this approach generates diverse, difficult, and diagnostic samples which have
a wide variety of underlying reasoning types and structures required to answer the
questions. We benchmark several state-of-the-art VQA models on our SynthVQA
and find they lack World Knowledge found in KG compared to text-only Language
VQA models.

Furthermore, we create a novel Citation Prediction dataset to determine if there is
a crossover point between knowledge-rich citation-based methods and text-based
methods in this task. Furthermore, we speculate that there is a further task
dynamic which has been elided in previous datasets which is the time dimension.

3. RQ3: How can we improve the evaluation of classification models on
datasets with diverse and imbalanced class distributions? Many tasks
in Multimodal AI are classification-based: given a set of possible options, a
model must select the most plausible. Evaluation with ‘standard’ metrics such as
Accuracy and F1-Macro does not report the true performance level of the systems
and may lead to wrong interpretation of the results. Furthermore, if the number
or distribution of answers changes, then it becomes even more challenging to
compare capabilities. This is because the prior probability of a correct guess is a
function of the distribution of the possible answers. At the same time, in reality,
different question types have different answer distributions. For instance ‘What
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is the table made of’ has fewer plausible answers than ‘How old is the person on
the stage’? Furthermore, these distributions are uneven: ‘What is the table made
of’ will be answered correctly by ‘wood’ more than ‘marble’ (Goyal et al. 2019).
Therefore, we promote a debiased Informedness metric, to allow comparison
between questions with different distributions, and use this to reevaluate our
findings from RQ1 and RQ2.

1.7 Thesis Overview: Publications and Contribu-
tions

Here we list the publications and datasets which resulted from the research undertaken
in this thesis. The thesis itself is a Thesis by Publication, so these papers constitute
the main body of the document where each publication is given a chapter. Here we list
the publications in chronological order, giving an overview of how they interrogate the
Research Questions and their high-level findings. In all papers, Peter Vickers was the
sole First Author, except for paper II, where he was the joint First Author.

Publication 1:
In Factuality: Efficient Integration of Relevant Facts for Visual Question
Answering
In this work we develop a new approach for applying knowledge-graph features to
Vision-Language models. Our contributions are as follows:

1. A new method for adding Knowledge Graph facts to Vision-Language models.
2. Training and evaluation on the Knowledge Visual Question Answering dataset,

beating the state of the art by 19%.
3. The first full-scale ablation study over KVQA dataset, finding which reasoning

tpes are problematic for our model.

This work was published in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing Vickers et al. (2021a).

The authors, in order as in the publication are: Peter Vickers, Dr. Nikolaos Aletras,
Emilio Monti, Dr. Loïc Barrault
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My contributions to this paper: research, idea development, methodology, model
development, testing, and paper writing.

Publication 2:
Blending Cognitively Inspired Features with Transformer-based Language
Models for Predicting Eye Tracking Patterns
In this study, we examined the integration of cognitively and linguistically inspired
features within transformer-based language models, specifically XLNet, to predict eye
tracking patterns. Our key findings are as follows:

1. The investigation into the utility of linguistic and cognitive information, predicted
by eye-tracking features, for the enhancement of eye-tracking prediction models.

2. The demonstration that a smaller pre-trained model (XLNet-base) can outperform
a larger one (XLNet-large) in this context, challenging common assumptions about
model size and performance.

3. The exploration of multi-word expressions (MWEs) in improving model predic-
tions, finding limited benefits despite known cognitive processing advantages.

4. Detailed experimentation with a range of features, including word length, part-of-
speech tags, and concreteness norms, revealing nuanced influences on prediction
accuracy.

5. The employment of a Random Forest Regressor and ElasticNetCV for feature-
rich and XLNet models respectively, with a comprehensive evaluation of feature
importance and model performance.

This work was published in Proceedings of the Workshop on Cognitive Modeling and
Computational Linguistics Vickers et al. (2021c).

The authors, in order as in the publication are: Peter Vickers, Rosa Wainwright,
Dr. Harish Tayyar Madabushi, Prof Aline Villavicencio

My contributions to this paper: mentorship of Master’s students, research, idea
development, methodology, model development, testing, and paper writing.

Publication 3:
We Need to Talk About Classification Evaluation Metrics in NLP
In this comprehensive study, we delve into the evaluation metrics utilized in Natural Lan-
guage Processing (NLP) classification tasks, such as topic categorization and sentiment
analysis. Our investigation reveals significant biases in widely-used metrics, prompting
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a reevaluation of how model performance is measured. This work was motivated by
our difficulties in Paper 1 with using existing classification metrics to compare across
models and subtasks. Our key contributions include:

1. A critical comparison of standard classification metrics against more nuanced
measures, advocating for the use of the Informedness metric as a more accurate
baseline for evaluating task performance.

2. An extensive empirical analysis across a broad spectrum of NLP tasks, demon-
strating that Informedness more effectively captures model generalizability and
allows for fairer comparisons between models.

3. The release of first Python implementation of the Informedness and Normalized
Information Transfer metrics, adhering to the SciKitLearn classifier format, to
facilitate its adoption in future research.

This work was published in Proceedings of the 13th International Joint Conference
on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics Vickers et al. (2023).

The authors, in order as in the publication are: Peter Vickers, Dr. Loïc Barrault,
Emilio Monti, Prof Nikolaos Aletras

My contributions to this paper: metric development, research, idea development,
methodology, metric implementation, data gathering, and paper writing.

Publication 4:
Comparing Edge-based and Node-based Methods on a Citation Prediction
Task
In this dataset and benchmarking paper, we release a new citation prediction benchmark
which tests models to perform on high scale data and against forecasting dynamics
inherent in academic literature. Our contributions are as follows:

1. A new benchmark for citation prediction emphasizing scale and forecasting.
2. Empirical demonstration that larger graphs favor edge-based methods.
3. Empirical evidence that performance improves with t (larger training sets) and

degrades with h (forecasting horizon).
4. We distribute the benchmark, evaluation code, and embeddings.

This work was a part of the 2023 JSALT Better Together Text+Content Summer
Workshop and was submitted to ACL Rolling Review (ARR).
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The authors, in order as in the publication are: Peter Vickers, Dr. Kenneth W.
Church.

My contributions to this paper: idea development, research, dataset development,
model evaluation, and paper writing.

Publication 5:
SynthVQA: Automating Visual Question Answering Creation
In this work, we address the complexity and bias inherent in Visual Question Answering
(VQA) datasets by introducing a novel VQA question generation pipeline. Our approach
leverages deep question structure graph isomorphisms, making it highly expressive and
relation-agnostic. Our contributions are as follows:

1. Development of a VQA Question generation pipeline that operates over deep
question structure ‘graph isomorphisms,’ enabling the creation of highly expressive
and relation-agnostic questions.

2. Creation of the SynthVQA dataset, a proof of concept dataset that is diverse,
difficult, and diagnostic, allowing for in-depth analysis of what facts, relations,
and isomorphisms are challenging for VQA models.

3. Demonstration that state-of-the-art VQA models lack factual knowledge from
Wikidata compared to text-only models, highlighting the importance of external
knowledge in improving VQA performance.

This work was submitted to ACL Rolling Review (ARR).
The authors, in order as in the publication are: Peter Vickers, Dr. Loïc Barrault,

Emilio Monti, Prof Nikolaos Aletras
My contributions to this paper: idea development, research, pipeline coding, dataset

development, model testing, and paper writing.

Chapter 7 summarizes our research findings and indicates future research directions.



Publication I: In Factuality: Efficient
Integration of Relevant Facts for Vi-
sual Question Answering

2.1 Introduction

Visual Question Answering (VQA) is a popular multi-modal task of answering a question
about an image. It tracks both inter-modal interactions and reasoning capabilities of
models (Wang et al. 2017b; Marino et al. 2019). Recent studies have tested compositional
reasoning (Johnson et al. 2016; Hudson and Manning 2019a) and the integration of
external knowledge (Wang et al. 2017b; Wang et al. 2016; Shah et al. 2019; Marino
et al. 2019) for VQA. In this paper, we address Knowledge-aware VQA (KVQA) (Shah
et al. 2019)1 , defined as a VQA task where it is not reasonable to expect a model
without access to a knowledge base to be able to answer the questions in the test set.

In a uni-modal textual context, both synthetic dataset (Kassner et al. 2020) and task-
driven (Ding et al. 2020) studies of neural models have shown significant competence at
symbolic reasoning. This is encouraging, as neural pretrained Language Models such as
BERT (Devlin et al. 2019a) achieve state-of-the-art results in a wide range of natural
language inference tasks and benchmarks such as Natural Language Inference (Bowman
et al. 2015). (Rajani et al. 2019) uses pretraining on a domain-specific dataset to
improve CommonsenseQA by 10% absolute accuracy. Tamborrino et al. (2020) develop
an improved training objective to improve COPA by 10% absolute accuracy.

Bouraoui et al. (2020) find that BERT is capable of relational induction, whilst
Broscheit (2019) and Petroni et al. (2020) find that BERT stores non-trivial world-
knowledge.

Previous work has argued that restriction to a uni-modal context may itself impair
reasoning performance (Barsalou 2008; Li et al. 2020). In a bi-modal Vision + Language
(V+L) context, datasets such as CLEVR and GQA allow for the evaluation of both
model reasoning and language grounding. Within this setting, Ding et al. (2020) and
Lu et al. (2020) show that appropriate neural models trained on large quantities of

1For data, examples, and licence information, please see https://malllabiisc.github.io/re-
sources/kvqa/

https://malllabiisc.github.io/resources/kvqa/
https://malllabiisc.github.io/resources/kvqa/


2.2. RELATED WORK 22

data can exhibit accurate reasoning.
In this paper, we propose a new method of applying a massively pretrained V+L

BERT model (Chen et al. 2020) to the KVQA task (Shah et al. 2019). Our method is
able to learn a set of reasoning types (confirming findings in Ding et al. (2020)) but can
increase performance even more by incorporating external factual information. KVQA
answers require attending to a knowledge base, allowing us to quantify the contribution
of both explicit and implicit knowledge extracted from supervised training data. We
also quantify the degree to which corpus bias makes certain question types harder, and
outline how future datasets may be better balanced.

Our contributions are as follows:

• We perform factual integration into a V+L BERT-based model architecture VQA,
leading to 19.1% accuracy improvement over previous baselines on KVQA.

• We evaluate our model’s reasoning capabilities through an ablation study, propos-
ing explanations for poor performance on certain question types as well as high-
lighting our model’s strong preference for text and facts over the image modality.

• We conduct a bias study of the KVQA dataset, revealing both strengths and
potential improvements for future VQA datasets.

2.2 Related Work

VQA tasks explicitly encourage grounded reasoning (Antol et al. 2015), with emphasis
on a variety of sub-domains, such as commonsense (Zellers et al. 2019), compositionality
and grounding (Suhr et al. 2020), factual reasoning (Wang et al. 2017b) or external
knowledge reasoning (Wang et al. 2016; Marino et al. 2019; Shah et al. 2019). External
knowledge reasoning modifies the VQA task by requiring various forms of symbolic
inference across natural language, making the task more similar to that performed in
Neural Reasoning Diagnostics.

This immediately raises concerns about bias, a known problem within VQA tasks
(Goyal et al. 2019), which require active intervention from dataset designers to avoid
(Hudson and Manning 2019a). Indeed, as supervised machine learning algorithms learn
from annotated data only, if the data is heavily biased towards certain answer types,
then answering less frequent question types is made even more complex. Whilst all of
the four External Knowledge VQA datasets that we are aware of: FVQA (Wang et al.
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2016), KB-VQA (Wang et al. 2017b), KVQA Shah et al. (2019), and OK-VQA (Wang
et al. 2016) advertise intractability to current neural models, only FVQA evaluates
both symbolic and neural systems, finding that the best neural system achieves 43.1%,
whilst a hybrid system achieves 52.6%. Concerns around the out-of-domain robustness
of neural models has led to a preference towards hybrid Neuro-Symbolic (Garcez and
Lamb 2020) approaches (Hudson and Manning 2019b; Yi et al. n.d.). A paradigm
has emerged where tasks needing explicit, compositional reasoning are best solved by
Neuro-Symbolic systems, and those requiring implicit, commonsense reasoning are best
solved by Neural systems (Zellers et al. 2019; Chen et al. 2020).

State-of-the-art systems for external knowledge VQA are based on Memory networks
(MemNet, (Weston et al. 2014)). In Shah et al. (2019), the facts are extracted from the
Knowledge Graph (KG) by considering the visual (from image) and eventually textual
(from Wikipedia caption) entities. They are then embedded using a Bi-LSTM encoder
and fed into the memory. After the question is embedded in a similar way, the resulting
representation is used to query the memory by soft attention. Several stacked memory
layers are used to better model multi-hop facts.

Wang et al. (2016) and Wang et al. (2017b) introduce two datasets, KB-VQA and
FVQA respectively, and address the task with systems that perform searches in a visual
knowledge graph formed from the image and a KB. The question is first mapped to a
query of the form 〈visual object, relationship, answer source〉, which is then used to
extract the supporting facts from the KB. They report improved results when compared
to systems using LSTM, SVM and hierarchical co-attention (Lu et al. 2016).

In Marino et al. (2019), the OK-VQA is presented with some baseline results
obtained with MUTAN (Ben-younes et al. 2017), a multimodal tensor-based Tucker
decomposition which models interactions between visual (from CNN) and textual (from
RNN) representations. Those systems exhibit rather low performance compared to
those obtained on standard VQA, demonstrating that the corpus requires external
knowledge to be solved correctly.

Similar datasets KB-VQA (Wang et al. 2017b), OK-VQA (Marino et al. 2019),
FVQA (Wang et al. 2016) are smaller, put also present tasks requiring a knowledge
base + describe systems (globally).

Recent work has introduced methods to incorporate visual information to create
Vision+Language BERT models through joint multimodal embeddings (Chen et al.
2020; Su et al. 2019; Lu et al. 2019). First, image and text are embedded into the same
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space, and then Transformer networks are applied as in the standard BERT model
(Devlin et al. 2019a).

Our work is most similar to that of Shah et al. (2019) since the same preprocessing
pipeline is used. However, our system does not use a memory network, and instead
relies on on a BERT-based model (UNITER, see section 2.3) to model the relationship
between question, facts, and image with self-attention layers.

2.3 Methodology

To answer KVQA with Neural models, we first take the V+L BERT model UNITER
(Chen et al. 2020) with the highest score on the commonsense VQA task, VCR (Zellers
et al. 2019).

In order to allow UNITER to accept external KG facts, we cast these facts to a
textual form ‘Entity1 Relation Entity2’. To keep the input facts count small, we perform
a conditional search of the KG. The KVQA task consists in finding a∗:

a∗ = argmax
a∈A

p(a|q, i,K) ≈ argmax
a∈A

p(a|q, i, ki,q) (2.1)

where a∗ is the correct answer out of candidate set A; and q, i, and K are a question,
image and knowledge base, respectively. As shown, we may reduce the KG through a
conditional search to find the relevant subset of facts ki,q.

To define the subset ki,q, we follow Shah et al. (2019) in extracting all facts from
the knowledge base that are up to two hops from any entities detected by the textual
entity linking or the face detection.

Our model, as presented in section 2.2 consists of two stages: preprocessing, which
implements relevant fact extraction, and reasoning, which selects an answer from the
question, facts, and image features.

2.3.1 Preprocessing Stage

For preprocessing and fact acquisition, we broadly reproduce the fact and feature
extraction process used in Shah et al. (2019). We perform object detection with the
Faster R-CNN network (Ren et al. 2017). A seven-dimensional normalised size and
location vector is concatenated with the Faster R-CNN features.
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Figure 2.1: Our Model
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For person detection, we use MTCNN (Zhang et al. 2016) and Facenet (Schroff et al.
2015) models, pretrained on the MS-celeb-1M (Guo et al. 2016) dataset, to generate
128-dimensional embeddings. We predict names by nearest-neighbour comparison with
the KVQA reference dataset, which contains photos of celebrities linked to their entry
in the Wikidata Knowledge Graph. Note, that we only consider identification and
retrieval of facts about human entities in this task, as both the dataset and our method
only consider features which identify humans. We treat the name identification as a
multi-class classification problem, achieving a Micro-F1 of 0.539. We follow (Shah et al.
2019) them in also using the REL textual entity linker (Hulst et al. 2020) to predict
persons from the image captions. Each image in KVQA is sourced from Wikipedia, and
the community-sourced captions are retained in the final dataset. REL accepts a string
and returns 0-n links to Wikidata entities. Since this is lower than reported in Shah
et al. (2019), we follow them in applying a textual entity linker (Hulst et al. 2020) over
supplied image descriptions. This setup increases our a per-image+caption Micro-F1 to
0.686.

We use the names of identified entities to query the (Shah et al. 2019)’s reduced
Wikidata graph (Vrandečić and Krötzsch 2014) contained as part of the KVQA dataset.
The reduced graph has a total of 18K Entities, and 164K Facts. The linked (human)
entities are used as head entities to query one and two hop triples. Tail entities are
the entity or qualification string of Wikidata. For instance, ‘Hillary Clinton, spouse,
Bill Clinton’ has an entity as the tail, and this will lead to a further hop. Meanwhile
‘Hillary Clinton, date of birth, 1947-10-26’ has a qualifier as a tail, and will not lead to
a further hop. The extracted facts are finally cast to the form ‘subject relation object’.
We sort one-hop facts before two-hop ones in the context passed to the UNITER. For
any individual entity in the reduced Wikidata graph, the mean number of facts is 6.9
with a standard deviation of 4.5. Considering retrieved facts per image in KVQA, the
minimum number of KG facts retrieved is 0 (person not identified), whilst the maximum
is 81 (6 people identified). Additionally, normalised image location facts are generated
from these detections, such as ‘Barack Obama at 42 78’, which would indicate that the
centre bounding box for Barack Obama is at normalised (0-100) position x=42, y=78
of the image. This adds one fact per detected person.

We do not consider predicates in the question: for instance the query ’Who is the
father of the person on the left?’ would be passed directly to our model along with the
‘image location facts’ and ‘entity facts’. We rely on the model’s own reasoning ability
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Hop 1 2 1 2 1
Person Hillary Clinton Bill Clinton Shahrukh Khan Gauri Khan Francis Condon

occupation

autobiographer (1)
diplomat (2)
lawyer (3)
politician (4)
research assistant (5)
university teacher (6)
writer (7)

politician (1)
statesperson (2)

actor (1)
film actor (2)
film producer (3)
presenter (4)
screenwriter (5)
singer (6)
television presenter (7)

film producer
judge (1)
lawyer (2)
politician (3)

place of birth Edgewater Hospital Hope Purna New Delhi Central Falls
date of birth 1947-10-26 1946-08-19 1965-11-02 1970-10-08 1891-11-11

alma mater

Maine East High School (1)
Maine South High School (2)
Wellesley College (3)
Yale Law School (4)

Edmund A. Walsh School of Foreign Service (1)
Georgetown University (2)
Hot Springs High School (3)
University College (4)
Yale Law School (5)

Jamia Millia Islamia University of Delhi Georgetown University Law Center

spouse Bill Clinton Hillary Clinton Gauri Khan Shahrukh Khan
sex female male male female male
is member of Republican Party Democratic Party Democratic Party

knows language English English (1)
German (2) English

native language English English
religion Methodism Baptist Islam Hindu
work started 1988-01-01
date of death 1965-11-23
place of death Boston

Table 2.1: All facts retrieved from the KVQA Wikidata Release for the Samples in
Figure 2.2. In the case of multiple tail values for a given head and relation, the values
are numbered on subsequent lines.

to select the correct facts.

2.3.2 Example KAVQA Samples with Facts

We illustrate two examples from the KVQA datasets in 2.2. The figure shows the
Wikidata Image, the Question, and the facts retrieved from the KVQA Wikidata dump.
In each case, we highlight the facts relevant to answering the question, and the total
1-hop and 2-hop facts. We detail all facts for these samples in 2.1. Note that we
implicitly indicate which entities are present in the image through the location fact (see
above). We mark image entities and their relevant facts in bold.

2.3.3 Reasoning Stage

The neural model we use, UNITER, is pretrained on MS COCO (Lin et al. 2014),
Visual Genome (Krishna et al. 2016), Conceptual Captions (Sharma et al. 2018), and
SBU Captions (Ordonez et al. 2011). It is a multi-task system that is trained on
performing Masked Language Modeling, Image-Text Matching, and Masked Region
Modeling (Chen et al. 2020).
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Question: For how many years did
the person in the image live?

1-Hop Facts 11

Francis Condon
date of birth
1981-11-11

Francis Condon
date of death
1965-11-23

2-Hop Facts 0

(a) Exemplar KVQA Question: Francis Condon’s Lifespan

Question: Do all the people in the
image have a common occupation?

1-Hop Facts 19

Hillary Clinton
occupation
politician

2-Hop Facts 16
(Bill Clinton)

1-Hop Facts 14

Aamir Khan
occupation
film actor

2-Hop Facts 11
(Gauri Khan)

(b) Exemplar KVQA Question: Common Occupation of Clinton and Khan

Figure 2.2: Exemplar KVQA Questions with Relevant Wikidata Facts and Totals.

2.4 Experimental Setup

We select the KVQA dataset for two reasons: to our knowledge, it is the largest external
knowledge dataset (with 183k questions), and the questions are annotated with their
reasoning types. We use accuracy as the evaluation metric and provide results over both
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the entire dataset and also for each question type as provided in the KVQA dataset.
The baseline systems for KVQA are those presented in (Shah et al. 2019) and

discussed in section 2.2. The first baseline is a stacked BLSTM encoder, operating over
question and facts. This system has an overall accuracy of 48.0% . The second is the
MemNet architecture and has the previously highest performing baseline accuracy at
50.2%.

We use the UNITER_BASE pretrained model available at the ChenRocks GitHub
repository2 with custom classification layers (MLP +softmax output layer). For task
training, we merge retrieved facts with the question, dividing each statement with the
‘[SEP]’ token, following research that indicates that this token induces partitioning and
pipelining of information across attention layers (Clark et al. 2019). The textual input
stream is tokenised with the HuggingFace ‘bert-base-uncased’ tokeniser (Wolf et al. 2020).
We set the maximum WordPiece sequences length to 412, the maximum visual objects
count to 100, the learning rate to 8 × 10−5 and use AdamW (Loshchilov and Hutter
2017) as optimizer. Once preprocessing is completed, we train the UNITER model with
the cross-entropy objective function for 80,000 iterations, which we empirically found
to guarantee convergence.

2.5 Results

Table 2.2 shows the results of our system (UNITER), using a question label break-down
similar to Shah et al. (2019). Overall, we observe that our system outperforms the
previous baseline MemNet setting (see ‘World+WikiCap+ORG’ in Shah et al. (2019))
with an absolute improvement of 19%.

Our results show that UNITER is learning to perform reasoning more accurately
than MemNet in all but two cases. In the question types involving multiple entities
(‘Multi-Entity’, ‘Multi-Hop’, ‘Multi-Relation’), the increase is the greatest, suggesting
that UNITER is able to robustly learn these reasoning here. We speculate that stacked
self-attention layers in BERT are able to better attend to the many involved entities
than MemNet.

We now discuss the performance of our model on its weakest categories, namely
‘Subtraction’ and ‘Spatial’. The poor performance on ‘Subtraction’ questions confirms
previous results that BERT-like models require specialised pretraining for numerical

2https://github.com/ChenRocks/UNITER

https://github.com/ChenRocks/UNITER
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Model

Question Type MemNet UNITER Entropy
(Base 2)

1-Hop 61.0 65.7 7.8
1-Hop Counting - 78.0 1.4
1-Hop Subtraction - 28.6 4.3
Boolean 75.1 94.6 1.1
Comparison 50.5 90.4 2.1
Counting 49.5 79.4 2.3
Intersection 72.5 79.4 1.2
Multi-Entity 43.5 77.1 3.3
Multi-Hop 53.2 87.9 3.7
Multi-Relation 45.2 75.2 7.1
Spatial 48.1 21.2 11.5
Subtraction 40.5 34.4 6.0
Overall 50.2 69.3 7.6

Table 2.2: Results in terms of % accuracy of the considered systems break down into
question types along with the question types distribution (last column).

reasoning tasks (Geva et al. 2020). In the case of our model specifically, we note the
lack of numerical reasoning tasks in UNITER’s pretraining regime. ‘Spatial’ is the
model’s least accurate question type (21.4%) and the biggest absolute decrease from
MemNet (-26.7%). This question type requires two-hop reasoning where the second hop
is a numerical operation of the form argmin

y
(xi − yi). Both of these have been shown to

be problematic for BERT (Kassner et al. 2020; Geva et al. 2020).

2.6 Analysis

UNITER performs well at the reasoning tasks in general, with the most surprising result
being that it apparently does better at multi-hop reasoning than one-hop. We believe
that this can be explained by the presence of unbalanced distribution of answer types
in the dataset perturbing the results (see Table 2.2). We discuss this in Section 2.6.1.

In order to better understand the reasoning capability of our model and the impact
of each input modality, we perform an inference time ablation study, presented in
Table 2.3.

Ablation of Image features (column ‘Q+F’) does not change the performance,
suggesting that the model is not attending to image features. To confirm this hypothesis,
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Question Type Q+F+I Q+F Q+I F+I Q F I
1-Hop 65.7 65.7 32.4 3.9 32.4 3.8 4.5
1-Hop Counting 78.0 78.0 30.3 0.0 30.3 0.0 0.0
1-Hop Subtraction 28.9 28.6 28.8 0.8 30.3 0.6 6.5
Boolean 94.6 94.6 55.2 1.3 55.2 1.0 10.5
Comparison 90.4 90.4 38.7 1.0 38.7 0.9 10.7
Counting 79.4 79.4 66.1 0.6 65.9 0.4 1.4
Intersection 79.4 79.4 61.0 0.4 60.6 0.3 0.0
Multi-Entity 77.1 77.1 41.3 0.8 41.2 0.7 6.4
Multi-Hop 87.9 87.9 29.0 0.8 28.9 0.8 0.0
Multi-Relation 75.2 75.2 25.1 3.0 25.0 3.0 2.5
Spatial 21.2 21.2 0.0 13.0 0.0 13.0 0.0
Subtraction 34.4 34.4 1.3 1.0 0.9 0.7 0.0
Overall 69.3 69.3 31.6 3.1 31.5 3.0 3.6

Table 2.3: Ablation Study of Information. Q=Question, I=Image, F=Facts. Image
refers to the Image feature stream. Results are expressed as % accuracy by question
type.

we performed an experiment with adversarial images, obtaining very similar results for
each question type and the same overall score (69.30%). We explain this behaviour by
the fact that the preprocessing pipeline extracts all the required information as explicit
facts which the model prefers over the more ambiguous visual features. We leave a
deeper analysis for further work.

An interesting case is the ‘Spatial’ questions, where facts alone are able to correctly
answer 13% of the questions. This is likely the result of the answers to this question
type being entities present in the facts. Again, we observe that the model is not able to
learn this information from the visual features.

2.6.1 Bias Studies

We briefly discuss the corpus bias, a well-known concern in VQA (Goyal et al. 2019).
We consider question difficulty across three parameters: reasoning difficulty, task design,
and corpus bias. Certain question types are inherently more complex, as discussed
in Section 2.5. Additionally, the task may have different numbers of answer classes
per task, effectively weakening any priors models might form (see Entropy column
in Table 2.2). Finally, an unbalanced dataset may cause certain reasoning types to
be underrepresented, making it harder for models to learn for them. ‘Spatial’ and
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Train Ablation Adversarial Modality*
Question Type Q+I Q I F
1-Hop 47.09 38.5 65.9 31.3
1-Hop Counting 66.1 61.5 75.2 50.5
1-Hop Subtraction 29.4 29.7 28.1 26.2
Boolean 83.9 67.3 94.1 57.5
Comparison 83.4 60.3 90.6 47.8
Counting 75.4 75.2 78.9 70.2
Intersection 67.6 67.9 76.8 61.2
Multi-Entity 69.4 57.2 76.4 47.6
Multi-Hop 56.5 50.2 87.9 38.4
Multi-Relation 47.3 38.9 75.2 28.3
Spatial 3.3 1.2 21.1 0.0
Subtraction 2.1 2.6 39.2 1.6
Overall 47.0 40.8 69.3 32.8

Table 2.4: Further Ablation and Adversarial Studies. *Adversarial Modality indicates
that the sample from that modality was randomly assigned from the entire data split

‘Substraction’ questions are among the least represented in the training dataset, which
increase their difficulty for the model.

Unseen answer classes are also an issue. For ‘Spatial’ questions, only 54.2% of the
test answers (output classes) are actually seen during training, placing an upper bound
on accuracy. We find 98.4% of ‘Spatial’ questions the model answered correctly and
95.7% of ‘Spatial’ question the model answered incorrectly were supplied with adequate
facts by the preprocessing pipeline.

Training time ablation and adversarial experiments To further probe the task,
we perform a training time ablation with first facts, and then facts and images removed
(see Table 2.4). In this we seek to exhibit the capability of our model to leverage the
available modalities and to compensate for the missing ones.

Through comparing the training time and inference time ablations, we can better
understand the importance of a modality to solving the task.

Through comparing train and inference ablation of facts (‘Q+I’ column of Table 2.4
and of Table 2.3) we observe that when facts are unavailable at train time, the model
attends to images to obtain 47.0% accuracy, which is 15.4% more than the 31.6%
obtained by the corresponding inference time ablation. This indicates that the visual
modality can provide useful information for this task.
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We observe a similar trend in the fact and image ablation setting (‘Q’ column of
Table 2.4 and of Table 2.3) that the model is able to greater leverage questions to make
accurate predictions when additional modalities are never available.

We also perform adversarial checks, where random images or facts from the data
split are presented at inference time. These align closely with the ablation study, with
adversarial images (Column ‘I’ of Table 2.4) performing within 0.1% of blanked images
(Column ‘Q+F’ of Table 2.4) and adversarial facts (Column ’F’ of Table 2.4) performing
within 1% of blanked facts (Column ‘Q+I’ of Table 2.4). These results confirm the
importance of factual data and the unimportance of raw image features to a model
trained on the full data.

2.7 Conclusion and Future Work

We evaluated our model and found that it improves on the previous state of the art by
a substantial margin (19.1%). An ablation study revealed the specific strengths and
weaknesses of our model on certain question categories when evaluated on the KVQA
dataset. We show that the UNITER model is not actually using the visual input.3

In the future, we seek to create a large external knowledge dataset designed following
KVQA with more entities besides persons to encourage grounded reasoning, and better
calibration of answer types. We will also consider pretraining our model on closely
related tasks. This will help to form a model capable of learning robust reasoning with
a high degree of spatial specificity and entity discrimination.
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was used for this research and the UNITER model is language agnostic, which tends to
suggest that this could generalize to other languages. We will make our code publicly
available to ensure the reproducibility of our experiments.4

4https://github.com/petervickers/UNITER-experiments

https://github.com/petervickers/UNITER-experiments


Publication II: Blending Cognitively
Inspired Features with Transformer-
based Language Models for Predict-
ing Eye Tracking Patterns

3.1 Introduction and Motivation

Many researchers now agree that eye movements during reading are not random
(Rayner 1998); as a result, eye-tracking has been used to study a variety of linguistic
phenomena, such as language acquisition (Blom and Unsworth 2010) and language
comprehension (Tanenhaus 2007). Readers do not study every word in a sentence
exactly once, so following patterns of fixations (pauses with the eyes focused on a word
for processing) and regressions (returning to a previous word) provides a relatively non-
intrusive method for capturing subconscious elements of subjects’ cognitive processes.

Recently, cognitive signals like eye-tracking data have been put to use in a variety of
NLP tasks, such as POS-tagging (Barrett et al. 2016), detecting multi-word expressions
(Rohanian et al. 2017) and regularising attention mechanisms (Barrett et al. 2018): the
majority of research utilising eye-tracking data has focused on its revealing linguistic
qualities of the reading material and/or the cognitive processes involved in reading.
The CMCL 2021 Shared Task of Predicting Human Reading Behaviour (Hollenstein
et al. 2021a) asks a slightly different question: given the reading material, is it possible
to predict eye-tracking behaviour?

Our ability to quantitatively describe linguistic phenomena has greatly increased
since the first feature-based models of reading behaviour (i.e. Carpenter and Just
(1983)). Informed by these traditional models, our first model tests ‘simple’ features
that are informed by up-to-date expert linguistic knowledge. In particular, we investigate
information about multi-word expressions (MWEs) as eye-tracking information has
been used to detect MWEs in context (Rohanian et al. 2017; Yaneva et al. 2017), and
empirically MWEs appear have processing advantages over non-formulaic language
(Siyanova-Chanturia et al. 2017).

Our second model is motivated by evidence that Pre-trained Language Models
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(PLMs) outperform feature based models in ways that do not correlate with identi-
fiable cognitive processes (Sood et al. 2020b). Since many PLMs evolved from the
study of human cognitive processes (Vaswani et al. 2017) but now perform in ways
that do not correlate with human cognition, we wished to investigate how merging
cognitively inspired features with PLMs may impact predictive behaviour. We felt this
was a particularly pertinent question given that PLMs have been shown to contain
information about crucial features for predicting eye tracking patterns such as parts of
speech (Chrupała and Alishahi 2019; Tenney et al. 2019) and sentence length (Jawahar
et al. 2019).

We therefore had the goals of providing a competitive Shared Task entry, and
investigating the following hypotheses: A) Does linguistic/cognitive information that can
be predicted by eye-tracking features prove useful for predicting eye-tracking features?
B) Can adding cognitively inspired features to a model based on PLMs improve
performance in predicting eye tracking features?

3.2 Task Description

The CMCL 2021 Shared Task of Predicting Reading Behaviour formulates predicting
gaze features from the linguistic information in their associated sentences as a regression
task. The data for the task consists of 991 sentences (800 training, 191 test) and their
associated token-level gaze features from the Zurich Cognitive Language Processing
Corpora (Hollenstein et al. 2018; Hollenstein et al. 2020). For each word, the following
measures were averaged over the reading behaviour of the participants: FFD (first
fixation duration, the length of the first fixation on the given word); TRT (total reading
time, the sum of the lengths of all fixations on the given word); GPT (go past time,
the time taken from the first fixation on the given word for the eyes to move to its
right in the sentence); nFix (number of fixations, the total quantity of fixations on a
word, regardless of fixation lengths) and fixProp (fixation proportion, the proportion of
participants that fixated the word at least once). Solutions were evaluated using Mean
Absolute Error (MAE). For more details about the Shared Task, see Hollenstein et al.
(2021a).
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3.3 Related Work

Transformer architectures Bidirectional Encoder Representations from Transform-
ers (BERT) (Devlin et al. 2019c) is a Language Representation model constructed
from stacked Neural Network attention layers and ‘massively’ pre-trained on large
Natural Language Corpora. In contrast with traditional language models, BERT is
pre-trained in two settings: a ‘cloze’ task where a randomly masked word is to be
predicted, and next sentence prediction. BERT or derivative models have been used
to achieve state-of-the-art baselines on many NLP tasks (Devlin et al. 2019c; Yang
et al. 2019). Analysis studies have shown that BERT learns complex, task-appropriate,
multi-stage pipelines for reasoning over natural language, although there is evidence of
model bias. XLNet (Yang et al. 2019) is an autoregressive formulation of BERT which
trains on all possible permutations of contextual words, and removes the assumption
that predicted tokens are independent of each other.

Similar studies To our knowledge, studies that attempt to predict cognitive signals
using language models are fairly few and far between. Djokic et al. (2020) successfully
used non-Transformer word embeddings to decode brain activity recorded during
literal and metaphorical sentence disambiguation. Since RNNs may be considered
more ‘cognitively plausible’ than Transformer based models, Merkx and Frank (2020)
compared how well these two types of language models predict different measures
of human reading behaviour, finding that the Transformer models more accurately
predicted self-paced reading times and EEG signals, but the RNNs were superior for
predicting eye-tracking measures.

In a slightly different task, Sood et al. (2020b) compared LSTM, CNN, and XLNet
attention weightings with human eye-tracking data on the MovieQA task (Tapaswi
et al. 2016), finding significant evidence that LSTMs display similar patterns to humans
when performing well. XLNet used a more accurate strategy for the task but was less
similar to human reading.

Though these studies may indicate that Transformer models are not the most suited
to eye-tracking prediction, they are still considered State of the Art in creating broad
semantic representations and general linguistic competence (Devlin et al. 2019c). As
such, we hoped they would allow us to investigate Carpenter and Just’s speculation
that the dominance of word length and frequency for predicting eye-tracking behaviour
may reduce “as the metrics improve for describing higher-level factors” like semantic



3.4. EXPERIMENTAL DESIGN 38

meaning (1983, p. 290).

3.4 Experimental Design

We pursued both feature engineering and deep learning approaches to the task; though
both methods performed well independently, there was little improvement in predictive
capability when combining their features (see Table 3.1). As such, we developed and
submitted two models: Model 1 (Feature Rich) and Model 2 (XLNet). Additional details
about the feature combinations used in our final models can be found in Appendices
3.8 and 3.10. 1

3.4.1 Linguistic Features

Each word in the training vocabulary was encoded as a one-hot vector. Since function
words are more likely to be fixated than open class words (Carpenter and Just 1983),
we included POS information generated by Spacy (Honnibal et al. 2020) (honouring
the tokenisation in the training data). We included a a binary indicator for whether a
word was the first or last in its sentence to incorporate the knowledge that first and
last fixations on a line are 5-7 letter spaces from the two respective ends (Rayner 1998).
We generated raw frequencies (proportion per million words) and Zipf frequencies (Van
Heuven et al. 2014).

Finally, concreteness norms (a measure of how ‘abstract’ a given word is) were
included as features (mean, standard deviation, and the % of participants familiar
enough with the word to accurately judge its concreteness; Brysbaert et al. (2014)). We
specifically tested concreteness due to the unusually large coverage of the norms.

3.4.2 Reading Specific Features

Word length has been empirically demonstrated as a very good predictor of gaze features
in many studies (i.e. Rayner and McConkie (1976) and Carpenter and Just (1983).
Duration of fixation is observed to increase for words that exceed the mean saccade
length (7-9 letters), and probability of fixation is reduced for words shorter than half the
mean saccade length (Rayner and McConkie 1976). Therefore, as features we included

1For reproducibility purposes, our program code (including details of hyperparameters) is available
here:https://github.com/petervickers/CogNLP-Sheffield-CMCL-2021

https://github.com/petervickers/CogNLP-Sheffield-CMCL-2021
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both the raw word lengths, and categorical variables representing word length as a
proportion of a mean saccade length.

Since readers may store information about adjacent words (Rayner 1975; Rayner
1998; Barrett 2018), we also experimented with supplying features from previous and
future words to each target word.

3.4.3 Type Summary Statistics from GECO

Following Barrett et al. (2016), we used the monolingual data from the GECO corpus
(Cop et al. 2017) to generate type-level summary statistics for each word. Specifically,
we averaged the gaze features across the 12 participants who completed the reading
task, and normalised these features to reflect the normalisation of the Shared Trask
training data. We then averaged these values again at the type (word) level. For words
present in the task training data but not the GECO data, we estimated the values using
means for words in the GECO data of a similar frequency (according to the wordfreq).

3.4.4 Multi-word Expression Features

We generated an MWE lexicon and summary metrics using the Wikitext-103 corpus
(Merity et al. 2016) and mwetoolkit (Ramisch 2012). We chose Wikitext-103 since it
provided a large variety of possible MWEs in a similar context to the ZuCo reading
material (Hollenstein et al. 2020). We produced two indicator features for the presence
of MWEs: a binary indicator, and a categorical variable summarising the syntactic
pattern of the MWE, motivated by Yaneva et al.’s evidence that MWEs of different
syntactic patterns display different eye-tracking characteristics (2017).

Following the method of Cordeiro et al. (2019), we joined component words of MWEs
in Wikitext-103 using underscores (i.e. climate change became climate_change) and
then generated Skip-gram word embeddings (Mikolov et al. 2013a) for all single words
and MWEs identified in Wikitext-103. Using the feat_comp function in mwetoolkit
(Ramisch 2012), these MWE embeddings were used to compute compositionality scores
and weights (Cordeiro et al. 2019). 2

MWEs identified in the training data were assigned MWE embeddings and composi-
tionality information as features, and non-MWEs were assigned single word embeddings

2The score represents the degree to which the meaning of the MWE can be worked out from the
meanings of its constituent words (i.e. ‘climate change’ has high compositionality, ‘cloud nine’ has low
compositionality), and the weights estimate the semantic contribution of each word in the expression.
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and zero values for compositionality.

Figure 3.1: XLNET Feature Prediction Model

3.4.5 XLNet

In order to obtain Massively Pre-trained Language Model features we used XLNet. We
finetuned a model that was pre-trained on BooksCorpus (Zhu et al. 2015), English
Wikipedia, Giga5 (Courtney Napoles 2012), ClueWeb 2012-B (Callan et al. 2009),
and Common Crawl text (Crawl 2019). For predictions, we took the final hidden
representation of the first sub-word token encoding of each word. We concatenated this
feature with an integer representing the total word length in characters to encourage
the model to explicitly attend to word length. We tested the effectiveness of sub-word
aggregation but found this reduced the model’s accuracy by an average of 0.04 MAE,
which we speculate is due loss of information in the pooling operation whilst head sub-
word units already contain contextual information. We then passed the concatenated
sub-word and word-length features to a 3-layer dense Neural Network which was used
to predict the Shared Task’s five target features. This 3-layer multi-feature Network
was found to be optimal through experimentation. For stability, we used the Huber
loss objective, which approximates L2 loss for small values and L1 loss for large values.
We trained using the AdamW optimiser and with learning rates and training duration
chosen through grid search across 3-fold cross-validation, obtaining an optimal learning
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rate of 0.00001 and 800 epochs.

3.4.6 Regressors

To form predictions for the Feature Rich model we used a Random Forest Regressor
implemented by scikit-learn (Pedregosa et al. 2011) with parameters [max_depth =

7, n_estimators = 100, max_features = None]. For the XLNet model, we collected
the XLNet final state embeddings (identical to those fed into the DNN in Figure
3.1) along with the features [word-len, CAT-pos, zipf-frequency, Is-EOS, Is-SOS].
We then trained scikit-learn's ElasticNetCV for 5-fold validation with parameters
[max_iter = 10000, l1_ratio=[0.1,0.3,0.5,0.7,1], cv=5].

3.5 Results

In Table 3.1 we present the MAE on validation splits of the training data. This
information informed our choice of model submissions alongside a preference for models
using more cognitive features.

Model/Split 1 2 3 Mean
ElasticNet(XLNet + ALL Features ) 3.918 3.927 3.891 3.912
Feature Rich/Model 1 4.017 4.023 3.981 4.007
BERT-base-cased 4.030 4.045 3.977 4.012
ElasticNet(BERT-base-cased) 3.986 4.024 3.969 3.993
XLNet-base-cased 3.988 3.956 3.935 3.959
XLNet-base-cased (random init) 4.608 4.722 4.695 4.675
XLNet-large-cased 3.929 4.039 3.960 3.976
ElasticNet(XLNet-base-cased)/Model 2 3.921 3.924 3.896 3.914

Table 3.1: Model MAE on Development Splits

We submitted two sets of predictions from Model 2 ( ElasticNet(XLNet-base-cased))
and one set of predictions from Model 1 (Feature Rich). Table 3.2 shows the ranking
of Models 1 and 2 in the overall task. Our overall standing is shown to be 5th, with
an MAE delta of 0.143 behind the best model. Whilst a prediction which combined
Models 1 and 2 was slightly more accurate (see Table 3.1), we regard this improvement
as within margin of error. We therefore focussed on Models 1 and 2 separately since
this allowed for clearer comparisons between the two approaches.
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Figure 3.2: Feature Importance by Target for Model 1 (Left) and Model 2 (Right).

We give a brief outline of all approaches in Table 3.2. We use two finetuned language
models, BERT and XLNet. BERT is a transformer-encoder model trained on a ‘cloze’
task and next sentence prediction. XLNet is trained on a permuted language modelling
objective. The task is to predict a selected tokens given all possible combinations of
previous tokens in the sentence. Both encoder models are trained for the CMCL task
through the addition of three layer Feed-Forward Neural Networks to the final hidden
state of each token. The final network layer has a hidden dimension of 5, which is
trained with a Huber loss against the eye-tracking statistics for each word. As words
my have multiple sub-tokens, we only train and infer values for the first token of
each word. ElasticNet(XLNet + ALL Features) is a Linear Regression model with
L1 and L2 regularization. Features from XLNet are the final hidden states of the
first sub-word token of each word form the finetuned model described above. Feature
Rich/Model 1 is SciKitLearn’s RandomForestRegressor over the features outlined in
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Rank Team (model) MAE

1 LAST 3.8134
2 TALEP 3.8328

…

5 CogNLP@Sheffield
(XLNet/Model 2)

3.9565

…

7 MTL782_IITD 4.0639

-
CogNLP@Sheffield
(Feature
Rich/Model 1)

4.0689

…
- MEAN BASELINE 7.3699
13 IIIT_DWD 9.7615

Table 3.2: Ranking on the CMCL Shared Task Test Data.

Subsections 3.4.1-3.4.4 and fully defined in Section 3.10.

3.6 Analysis and Discussion

Our results (Table 3.1) support both our hypotheses introduced in Section 3.1.
We did not anticipate that XLNet-base would outperform XLNet-large, which had

more pre-training data and layers. This is possibly due to the limited amount of training
data specific to the task for fine-tuning, resulting in the larger model under-fitting.
We are able to confirm that the knowledge XLNet learns through massive pre-training
crucial to its performance in this arena - removal of this knowledge through weight
randomisation increases MAE from 3.959 to 4.675. Hence we believe that both structure
and pre-training of XLNet-base contribute to its success in this task.

We use normalised permutation feature importance (see Appendix 3.9) to better
understand the value of different features and present it on a per-target basis for each
model in Figure 3.2.

The most interesting outcome of our experiments was the fact that XLNet embed-
dings subsume information contained across most features except word length (especially
in predicting nFix). It may be that the use of word-pieces obfuscate word length infor-
mation thus requiring the explicit addition of that information. While the usefulness
of features such as word length is consistent with the literature, we were surprised
by the relative unimportance of MWE information given that many neurocognitive
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studies have demonstrated differences in how they are processed (Siyanova-Chanturia
et al. 2011; Siyanova-Chanturia et al. 2017; Cacciari and Tabossi 1988). An additional
surprise is that even though the Skip-gram embeddings provide semantic information
about single words as well as MWEs, the Feature Rich models make little use of them.
Many of the Feature Rich models utilize the GECO features, which may be because
they provide approximate guidance about the distributions of the various gaze features
that would be difficult to learn directly given the sparsity of the training data.

3.7 Conclusion and Future Work

This work describes our submissions to the 2021 CMCL Shared Task: we contributed
a Feature Rich model inspired by cognitive and linguistic information, and model
predominantly based on contextual XLNet-base embeddings. We find that only a
limited subset of the cognitive features (such as word length) are helpful in the XLNet
model. To our surprise, neither XLNet-large embeddings nor MWE features provide
performance improvements. However, we believe this indicates a need for further research
into MWE representations as opposed to suggesting that MWEs are unimportant for
creating effective cognitive models.
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3.8 Features Used

We use the following features for each model. +N and +P indicate that associated data
for the two next and two preceding words were included, respectively.

3.8.1 Model One Features

[CAT-pos+N+P, CAT-word+N+P, Conc-M+N+P, Conc-SD+N+P, Is-EOS+N+P, Is-SOS+N+P,
Percent-Known+N+P, comp-score+N+P, comp-weights+N+P, geco-FFD-mean+N+P, geco-
FFD-std+N+P, geco-GPT-median+N+P, geco-GPT-std+N+P, geco-TRT-mean+N+P, geco-
fixProp-mean+N+P, geco-fixProp-std+N+P, geco-nFix-median+N+P, geco-nFix-
std+N+P, is-mwe+N+P, is-strange+N+P, mwe-cat+N+P, saccade-cat+N+P, saccade-
cat-binary+N+P, w2v-embedding+N+P, word-frequency+N+P, word-len+N+P, zipf-
frequency+N+P]

3.8.2 Model Two Features

[XLNET-embed, CAT-pos, Is-EOS, Is-SOS, word-len, zipf-frequency]

3.9 Permutation Feature Importance

We use permutation feature importance (Breiman 2001) to better understand the impact
of different features on each of the different models. This method measures the base
error of the model against the error when one feature is randomly permuted, allowing
for quantification of importance. That is for feature i:

FIi = Ebase − Epermi

We note that permutation methods have a tendency of attributing higher importance
to correlated features (Nicodemus et al. 2010), whilst still being informative. Alternatives
include per-feature retraining (Lei et al. 2016; Mentch and Hooker 2016) which was
computationally intractable within the timeframe of the CMCL task duration.
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3.10 Description of features

Feature (generated at the
word-level unless specified) Description Data and tools used

CAT_word One hot word encoding
CAT_pos Categorical encoding of Part-of-Speech tag Honnibal et al. (2020)
Is_EOS Binary variable indicating if word is the last in its sentence
Is_SOS Binary variable indicating if word is the first in its sentence

Conc_M
Mean concreteness norm assigned to the lemmatized form of the word.
Words not covered by the dataset of norms were given a’neutral’ score
of 3 (concreteness rated on a Likert scale from 1-5)

Brysbaert et al. (2014)

Conc_SD
Standard deviation of concreteness values assigned to lemmatized form
of word. Words not covered by the dataset of norms were assigned the
mean of Conc_SD for all other words

Brysbaert et al. (2014)

Percent_Known
Proportion of participants asked to estimate concreteness norms that
were familiar enough with the word to judge its concreteness. Words
not covered by the dataset of norms were assigned a value of 1

Brysbaert et al. (2014)

word_len Number of characters in the word

saccade_cat
Categorical representation of number of characters in relation to average
saccade length (categories were 1-3, 4-7, 8-10 and 11+ letters)

saccade _cat_binary
Binary categorical representation of number of characters in relation to
average saccade length (categories were 1-3 letters and 4+ letters)

word_frequency Frequency of word per million words Speer et al. (2018)
zipf_frequency Frequency of word per million words on the zipf scale Speer et al. (2018)

NEXT_n_FEAT
Attaches FEAT for the next n words to the current word
(i.e. NEXT_1_Is_EOS attaches Is_EOS for the next word to the
current word)

PREV_n_FEAT Attaches FEAT for the previous n words to the current word

geco_FEAT_mean
Mean average of all measurements of FEAT for this word in GECO. If
the word was not present in GECO, the mean of means for words with
comparable frequency in natural language was used

Cop et al. (2017)

geco_FEAT_median
Median average of all measurements of FEAT for this word GECO. If
the word was not present in GECO, the mean of medians for words with
comparable frequency was used

Cop et al. (2017)

geco_FEAT_std
Standard deviation of all measurements of FEAT for this word in GECO.
If the word was not present in GECO, mean of standard deviations for
words with comparable frequency was used

Cop et al. (2017)

is_mwe Binary indicator showing if word is part of an MWE in this context Ramisch (2012)

mwe_cat
Categorical representation of whether the word is part of an MWE in this
context, where categories are based on syntactic patterns (i.e. adjective
noun compound, verb + preposition phrase)

Ramisch (2012)
Loper and Bird (2002)

w2v_embedding

300 dimensional Skip-gram embedding for the word or MWE. If the
word is part of an MWE in this context, the Skip-gram embedding trained
for the MWE is used instead. Embeddings are trained using the
Wikitext-103 corpus, where multiword expressions are reformatted to be
concatenated using underscores (i.e. multiword_expression)

Ramisch (2012)
Mikolov et al. (2013a)
Rehurek and Sojka (2011)
Merity et al. (2016)

comp_score
Compositionality score for the MWE calculated using mwetoolkit.
Words not part of MWEs are assigned a value of 0

Ramisch (2012)
Cordeiro et al. (2019)

comp_weights
Weights used for each word to calculate the comp_score for the MWE
(certain words may contribute more semantic meaning to an MWE than
others). Words not part of MWEs are assigned a value of 0

Ramisch (2012)
Cordeiro et al. (2019)

is_strange
Binary indicator of non-standard formatting or non-alphanumeric
characters in the current word (generated using regular expressions)



Publication III: We Need to Talk
About Classification Evaluation Met-
rics in NLP

4.1 Introduction

Some of the most widely used classification metrics for measuring classifier performance
in NLP tasks are Accuracy, F1-Measure and the Area Under the Curve - Receiver
Operating Characteristics (AUC-ROC). For example, seven out of nine tasks of popular
NLP benchmark GLUE (Wang et al. 2018) use either Accuracy or F1.

Such metrics reduce the full collection of true classes y and predicted classes ŷ to a
single scalar value. For instance accuracy, the most common classification metric, is
equal to the proportion of predicted classes which match true classes. Whilst capturing
all the qualities of a classifier in any single scalar value is rather impossible (Chicco et al.
2021), the quality of the heuristic rule (Valverde-Albacete et al. 2013) influences both
the overall ranking of models and the intra-task understanding of model capability.

It is difficult to evaluate true model ability with Accuracy due to the ‘Accuracy
Paradox’ (Ben-David 2007): simply guessing the most common class can reward a
score equal to that class’s prevalence in the test set. We expand this paradox into two
phenomena: (1) the reward given to models that predict more classes which appear
more often (are more prevalent) (Lafferty et al. 2001); and (2) the probabilistic lower
bound for accuracy being much greater than zero for random guessing models in most
realistic scenarios, a phenomenon we term baseline credit (Youden 1950).

F1-Measure (Manning and Schütze 1999) is the harmonic mean of precision and
recall and so represents a balance of two desirable characteristics of classifiers. F1 is
defined against a single class, and so within even a binary classification case its value
changes if the classes are reversed. Additionally, the weighting of precision and recall is
a function of the model itself (Hand and Christen 2018), making it a poor metric for
ranking models. In order to handle the multi-class case, macro- and micro- averaging
strategies have been proposed. In the single-label case we consider, micro averaging is
reduced to Accuracy, whilst macro-averaging is equivalent to averaging the F1 score
across all classes. Therefore, F1-Macro retains both the biases of F1 in the single class
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case and introduces a further heuristic in weighting all classes equally regardless of class
prevalence.

An alternative to the F-Measure, the Receiver Operating Characteristic (ROC)
curve visually presents the trade-off between Recall and Precision as a function of the
decision threshold. The Area Underneath the ROC Curve (AUC) is a metric which
integrates the ROC curve to return a scalar value. As Hand (2009) has shown, AUC is
effectively applying a cost function dependent on the False Positive Rate of the specific
classifier, so systems cannot be compared if they have different False Positive Rates.

In this paper we perform an extensive empirical analysis of various classification
metrics in synthetic and real settings. We advocate for using Informedness, an unbiased
and cognitively plausible multi-class classification metric (Powers 2003; Powers 2013)
for comparing classification performance of different models instead of common metrics
such as accuracy and F1. This metric avoids crediting modes exhibiting guessing or
bias which distort the comparability of mainstream classification models. Informedness
reports the proportion of the time a classifier makes an informed decision; that is, a
decision better than bias exploitation strategies. Finally, it allows comparison between
tasks of different bias or complexity, and negates the need for dataset re-balancing to
‘fit the metric’.

Our main contributions are as follows:

• A definition of Informedness as a classification metric suited to NLP applications

• Synthetic and real task comparisons of Informedness against an extensive list of
classification metrics

• An in-depth analysis on how the use of different metrics can affect model ranking
and within task understanding of model capabilities

• Python implementation of Informedness and Normalised Information Transfer to
encourage further study within the community

4.2 Classification Evaluation Metrics

We begin by defining various classification metrics and discussing their strengths and
limitations.
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Metrics operate over a set of classifications, where a true class y and a predicted
class ŷ are the two elements in each classification. Both y and ŷ are indications of a
class from out of a set of classes C. The full classification output

{y = C0, ŷ = C0},
{y = C1, ŷ = C0},
{y = C1, ŷ = C1},

...


is unwieldy, so a metric is used to reduce the set more compact form, typically a single
scalar value. First, the set of classifications may be considered as a Confusion Matrix
(or contingency table), which is an N × N matrix with the columns by convention
indicating the true class and the rows indicating the predicted class. Cells are assigned
the number of classification events for the given actual and predicted class. In most
NLP cases, creating a classification matrix is a non-destructive operation as the only
information lost is the order of the classifications.

As part of our definitions, we introduce the per-class contingency table:

Class of Interest c Other Class Real Class
Class of Interest c TPc FPc
Other Class FNc TNc
Predicted Class

Table 4.1: Classification Contingency Table

We define this table for a class of interest c. In the binary case, this would be one of
two classes and hence two tables could be created, each the 180° rotation of the other.
In the multi-class case, there will be c such matrices.

From this table we also introduce Class Prevalence: the proportion of all samples
which have a given real class, and Class Bias: the proportion of all samples which have
a given predicted class. Prevalence is (TP+FN)/(TP+FN+TN+FN). Prediction Bias
is (TP+FP)/(TP+FN+TN+FN).

Since an N×N is considered too complex to compare models, a further simplification
is often used to produce a single scalar value. As this reduction is an information-
destructive operation (Chicco et al. 2021), the heuristic rule (Valverde-Albacete et al.
2013) which the metric applies to obtain a single value will determine what that metric
considers be a ‘good’ model.
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Accuracy: It is defined as the proportion of correctly identified samples out of a
total set of evaluation samples. Accuracy encodes the heuristic that the best model
will have the most correctly predicted instances. This prior allows for the ‘accuracy
paradox’ where an uninformed model may guess the most common class artificially
overestimating the generalizability score.

Accuracy =
1

S

C∑
c=0

TPc (4.1)

where C is the number of classes, TPc is the number True Positives for class c and S is
the total number of samples.

Balanced Accuracy: This is a variant designed to counteract the class-frequency-
weighted nature of accuracy (Brodersen et al. 2010). As shown by Chicco et al. (2021),
the binary case is equivalent to a re-scaled Informedness (see below).

F-Measure: This metric is defined as the harmonic mean of the Precision and Recall
of a binary classifier.

F1-Macro =
1

C

C∑
c=0

TPc

TPc +
1

2
(FPc + FNc)

(4.2)

where TPc, FPc, FNc denote True Positives, False Positives and False Negatives for
each class c. In the multi-class case (3+ classes), those are computed for each class in
turn. F1-Macro encodes the heuristic that the average of F1-Measure for all classes is a
good representation of model performance. However, this has no intuitive interpretation.
Additionally, as the number of negative samples increases, the number of samples which
are misclassified as positive will also increase. As F1 is independent of the total number
of samples, it ignores this important component of model assessment. F-Measure
may be generalised to multi-class classification through micro or macro averaging.
Micro-averaging sums the True Positives, False Positives, and False Negatives when
calculating Precision and Recall, and is equivalent to accuracy in the uni-label case.
Macro-averaging takes the arithmetic mean over Precision and Recall for every class.
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Kappa: This is a family of metrics which calculate the inter-annotator reliability
between annotators, rather than the performance of a classifier on a task. However,
they account for the probability of chance agreement. Given annotators a0, a1 they take
the general form:

k =
Accuracy(a0, a1)− Chance Agreement(a0, a1)

1− Chance Agreement(a0, a1)
(4.3)

Kappa metrics differ in how they estimate from how the chance agreement is
calculated (Cohen 1960). It is possible to use Kappa as a metric for classification
systems by defining the system and the true labels as annotators (Ben-David 2007).
However, Powers (2012) has shown that Kappa is unfair to models in cases where the
rates of true classes and predicted classes are unequal.

Informedness: This metric treats classification evaluation as an ‘odds game’, where
a model with no predictive capability is unable to gain any credit through either
label bias or baseline credit. It was first proposed in the binary case as Youden’s
J-statistic (Youden 1950) and was generalised to the multi-class case in Powers (2003).
Informedness is defined as the proportion of samples for which the model guesses better
than random chance. The expected value of a model which is always correct is 1, and
the expected value of a model which predicts correctly x% of the time, and guesses
from the prevalence 100-x% of the time is x.

For a class with an empirical probability (prevalence) of p(y = c), the gain (or loss)
i for a single prediction is computed as:

i(y, ŷ) =


1

p(y = c)
if ŷ = c

− 1

1− p(y = c)
if ŷ 6= c

(4.4)

where p(y = c) is the empirical probability of class c, calculated from the test set.
Scores are aggregated across the whole classification set as:

I =
C∑
c=0

p(ŷ = c)

N

∑
y

1(y = c)i(y, ŷ) (4.5)

Where 1(y = c) is an indicator function which takes 1 when y = c and 0 otherwise.
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Mathew’s Correlation Coefficient (MCC): MCC is a measure of the correlation
of the predicted classes ŷ with the true classes y. Whilst its definition ensures that
random guessing will score 0, for any model better than random guessing, it will not
report the possibility of random chance. MCC is dependent on the relative frequencies
of classes in the test set, which makes comparison between models evaluated on different
datasets impossible (Chicco et al. 2021). Formally, MCC is defined as:

MCC =
Cov(ŷ, y)
σŷ · σy

(4.6)

Normalized Information Transfer (NIT): This information-theoretic measure
reports the degree to which the classifier reduces the uncertainty of the input distribution
by considering the information transfer through the classifier. It was introduced by
Valverde-Albacete et al. (2013). Formally, NIT is defined as:

NIT = 2MIŷ,y−HUy (4.7)

Where MIŷ,y is the Mutual Information of the Real and Predicted Classes, whilst
HUy is the Entropy of the Real Classes if they come from a uniform distribution.

As with Informedness, NIT considers prevalence, forcing classifiers to add Shannon
Information, that is, to correctly classify samples, in order to increase the metric score.

4.3 Experiment 1: Metric Evaluation on a Toy Set-
ting

We first compare the metrics outlined in Section 4.2 on a toy setting, aiming to unveil
the main differences between them. We assume a simulated model as follows:

• First, we sample from a uniform distribution [0,1] and then pick the correct label
if the sample is smaller than model predictive power;

• Otherwise, we randomly sample from the class-prevalence weighted output distri-
bution.

• We score a simulated model with a fixed probability of making a correct classifi-
cation
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(a) Binary classification case

(b) Multi-class classification case

Figure 4.1: Accuracy, Balanced Accuracy, F1-Macro, Informedness, MCC, and NIT
of the same binary (top) or multi-class (bottom) classifier as a function of the class
distribution and the model’s prediction capability from 0% (Random Guess) to 100%
(Perfect).

We believe this is an acceptable representation of how a reasonably designed and trained
neural network would behave.

Figure 4.1 shows the performance of a binary (top) and multi-class (bottom) classifier
as a function of the class distribution and the model’s predictive capacity from random
guess to perfect.

In the binary case, we first observe that Accuracy becomes more distored as the
prevalence of either class increases. On the other hand, Balanced Accuracy and F1-
Macro score are robust against prevalence, but are susceptible to random chance
exploitation. Surprisingly, the NIT is superficially similar to accuracy. This can be
explained by the fact that when one class is far more probable than the others, the
Mutual Information between a random distribution sampled from the same prior is
high.

In both binary and multi-class cases MCC-Macro appears to behave exactly as
Informedness. This only holds in the case where the classification ability of the model
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Single Sentence Similarity and Paraphrase Natural Language Inference
Model (Metric) CoLA SST-2 MRPC QQP STS-B MNLI-M MNLI-MM QNLI RTE WNLI All

DistillBERT (Acc.) 79.7 90.5 84.2 77.4 51.8 81.4 81.6 88.6 57.6 56.3 74.9
DistillBERT (Inform.) 57.0 81.0 69.4 77.4 41.6 72.1 72.5 77.2 14.7 -43.1 52.0
Random Guess (Acc.) 58.1 51.4 56.7 53.5 18.3 33.5 33.6 50.0 49.9 51.8 45.7
Random Guess (Inform.) 01.2 02.8 -01.1 00.0 01.0 00.1 00.5 00.0 -00.3 02.0 00.6

∆ Accuracy 21.6 39.1 27.5 23.9 33.5 47.9 48.0 38.6 07.7 04.5 29.2
∆ Informedness 55.8 78.2 70.5 77.4 40.6 72.0 72.0 77.2 15.0 -45.1 51.4

Table 4.2: GLUE Results. See Wang et al. (2018) for tasks details and evaluation
metrics. All values are scaled by 100. ‘All’ is a uniform weighted mean of the individual
metric scores as in https://gluebenchmark.com/leaderboard.

is constant across classes (Chicco et al. 2021). We simulate model ability as a function
of prevalence, so our figures do not capture this dynamic of the MCC-Macro. However,
we do show that in this case Informedness correctly identifies the underlying probability
of the model making an informed decision.

4.4 Experiment 2: Metric Evaluation on Natural
Language Understanding Tasks

Next, we compare metrics across a range of NLU tasks and show that the metric choice
affects the model ranking. First, we test on the GLUE Multi-Task Natural Language
Understanding Benchmark. GLUE is a suite of nine NLP tasks representing a range of
domains, biases, and difficulties (Wang et al. 2018). Interestingly the GLUE employs
different metrics across tasks, i.e. Accuracy, MCC, Pearson Correlation and Spearman’s
Correlation. MCC is a discretised version of the Pearson correlation and Spearman’s
Correlation is the Pearson Correlation calculated on the Rank transformation of the
values. To make the continuous [0, 5] STS-B task values tractable for classification
metrics, we discretize into [0, 5] ∩ Z by rounding to the nearest integer.

We experiment with following two approaches:

• Random Guess: A ‘most likely’ guesser, which chooses the most common class
from training;

• DistilBERT: We also finetune DistilBERT (Sanh et al. 2019) for five epochs on
each sub-task.

Table 4.2 shows model performance across models, metrics and tasks. For the sake
of clarity, the last two lines show the difference between DistilBERT and Random Guess

https://gluebenchmark.com/leaderboard
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scores. The ‘All’ column is a uniform-weighted mean of the metric scores across the
GLUE tasks. In the case of informedness, it represents the average probability of an
informed decision across all nine tasks. The use of Informedness across the GLUE tasks
allows for direct comparison with the knowledge that bias is discounted.

First, we note that sampling classes according to their prior probability (see Guess
rows) produces high accuracy scores for many tasks whilst Informedness remains very
close to 0. This fact makes it clear that Informedness provides a more interpretable
metric when it comes to evaluating model capability. For all tasks, we observe a lower
Informedness than Accuracy. This is expected due to the properties of the metrics
shown in Figure 4.1. For unbalanced tasks (CoLA, MRPC, WNLI), the gap between
accuracy and Informedness is increased as Informedness removes the label bias gain.
In the three-class tasks (MNLI-M and MNLI-MM), the delta between accuracy and
Informedness is reduced but still pronounced.

WNLI is the most interesting result. DistilBERT accuracy (56.3) is a small amount
(4.5) larger than random guessing which suggests a weakly predictive model. However,
Informedness is strongly negative (-43.1), which suggests that the model is underper-
forming the prior class distribution to a large degree. We hypothesise this is because
the WNLI task is adversarial. We quote the GLUE authors: ‘Due to a data quirk,
the development set is adversarial: hypotheses are sometimes shared between training
and development examples, so if a model memorizes the training examples, they will
predict the wrong label on corresponding development set example.’ (Wang et al. 2018)
Here accuracy suggests a weak model, whilst Informedness reports the real behaviour.

Another advantage of Informedness is the possibility of direct comparison between
tasks with varying bias (e.g. CoLA and SST-2) and varying classes (e.g. CoLA and
MNLI) without the need to correct for prevalence. Because MCC gives each class
equal weight, it cannot be used to compare across tasks with varying class distributions
(Chicco et al. 2021). Informedness and NIT support comparison between tasks, but
NIT may be confusing for task comparison as it awards credit for guessing.

4.5 Experiment 3: Metric Evaluation in Visual Ques-
tion Answering

Visual Question Answering (VQA) is the task of answering a question about an image
and is often cast as a classification task which requires selecting a correct answer from
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(a) Unbalanced dataset (b) Balanced dataset

Figure 4.2: Metrics on GQA Unbalanced (left) and Balanced (right) validation splits.
Error-bars show the standard deviation across five runs. Numbers after the question
category are (question count) and [answer class entropy].

a large set of candidate classes (Antol et al. 2015). Due to the real-world imbalances
(for instance, more tables are made of wood than marble), VQA datasets have high
tendencies to inherent biases, making accuracy a poor metric to use.

In this work, we consider two VQA datasets: (1) GQA (Hudson and Manning 2019a)
and (2) KVQA (Shah et al. 2019)

4.5.1 GQA

We select GQA for the high variance in class count and prevalence across question
types. It provides ‘unbalanced’ and ‘balanced’ versions. ‘Unbalanced’ is the default
dataset and features a strong prevalence skew due to real world biases towards certain
classes. ‘Balanced’ is a resampled version of dataset where the class distributions have
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Dataset Metric
Question type Classes Entropy Accuracy F1-Macro Informedness MCC-Macro NIT

1-Hop 5336 7.4 66.9 10.8 64.6 10.8 25.8
1-Hop Count. 5 1.1 79.3 38.9 58.1 31.5 58.1
1-Hop Subtr. 66 4.1 26.5 03.0 18.8 02.9 17.3
Boolean 2 1.0 94.9 63.2 89.7 89.7 81.9
Comparison 11 2.1 91.1 37.0 90.2 47.3 84.9
Counting 9 2.1 80.9 56.1 75.4 56.2 61.2
Intersect. 2 1.0 79.5 78.5 56.3 59.5 62.1
Multi-Ent. 81 3.2 78.0 10.8 76.1 12.0 56.5
Multi-Hop 119 3.6 87.9 34.8 87.0 43.9 68.9
Multi-Relat. 4104 6.8 75.4 11.7 73.7 12.1 38.1
Spatial 1260 10.0 19.9 07.4 18.6 09.2 16.3
Subtract. 93 5.9 39.8 36.6 45.9 34.3 08.6

Table 4.3: Model performance on KVQA across metrics.

been resampled to reduce the class imbalance.
With GQA, we perform an intra-dataset comparison. Such a comparison is a common

step in model and dataset analysis when researchers wish to compare the relative
capabilities of a model on different sub-tasks. We provide a model with a predictable
behaviour by simulating a 50% probability of choosing the correct answer and a 50%
probability of sampling from the class prevalence within a question type. For clarity,
we only examine the low-frequency categories ‘company’, ‘dir’ and ‘typeChoose’ and
the high-frequency categories ‘relO’, ‘exist’, and ‘existRel’. Results for a representative
sub-set of the question types are shown in Figure 4.2. Refer to Appendix 4.9 for the
full dataset results.

First, we have many cases where Accuracy, Balanced Accuracy and F1-Macro are
75% on binary questions. This baseline credit makes it hard to compare between model
performance, which is calibrated to be uniform, across dataset sub-tasks. Practically, we
are not able to use Accuracy, F1-Macro, or NIT to look at ‘typeChoose’ questions and
see if the model is as strong as on ‘existRel’. Meanwhile, MCC-Macro and Informedness
converge on the correct value (0.5) even with the 46 samples in ‘dir’ question type.
The ‘dir’ case demonstrates how the deletion of samples to create a more uniform
prevalence is not required with sophisticated metrics. That is, Informedness and MCC
are closer to the true value for ‘dir’ with the unbalanced sample than with the balanced
one. Meanwhile, the balanced dataset has only a minor effect on accuracy and F1-
score, with ‘dir’ and ‘typeChoose’ questions being slightly closer to an unbiased score.
This reinforces our hypothesis that dataset balancing is not the correct approach to
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evaluation.
For the questions with many samples (‘relO’, ‘exist’, and ‘existRel’), all metrics

have low variance. For ‘exist’, and ‘existRel’, F1-Macro and Accuracy converge on 0.75,
which reflects correctly predicting a binary task half the time, and randomly guessing
the other half. For the ‘relO’ question class, Accuracy and F1-Macro tend to the true
proportion of the time the model is predicting the correct answer, but this can be
attributed to the higher entropy for this class of questions. The same behaviour can be
observed for additional question types in section 4.9.

These experiments show that that Informedness automatically accounts for preva-
lence imbalance and provides a better assessment of the model capability. Whilst MCC
appears similar, it over-punishes classifiers which have variable per-class performance
(Chicco et al. 2021), which we do not believe is in line with desired characterises of
classifiers in NLP.

4.5.2 KVQA

Having established metric characteristics through controlling model performance, we
now move to model evaluation in the wild. First, the KVQA dataset (Shah et al. 2019)
provides multiple question type attributes for each question. The task requires reasoning
over retrieved knowledge graph facts as well as arithmetical operations. For modelling,
we select ‘REUNITER’, a simple yet effective transformer based model (Vickers et al.
2021b), and re-evaluate it with informedness.

We are interested in this case for the opportunity to have a metric which allows
comparison within a dataset between subsections with different class distributions. We
present results across unbiased metrics Informedness, MCC-Macro and NIT (Powers
2003; Chicco et al. 2021; Valverde-Albacete and Peláez-Moreno 2014) along with
accuracy grouped by question type in Table 4.3.

The ‘1-Hop’ category is a superset of many question types requiring a single KG
fact to answer. This question type is scored very differently across all metrics but the
difference between Informedness (64.6%), MCC-Macro (10.8%) and NIT (25.8%) is
especially striking given the agreement between Informedness and NIT in the synthetic
case from Section 4.5.1. This range indicates the model is doing well in general: if it
were guessing from a prior, it would have an Informedness of zero. The difference can
be explained by the different dynamics of Informedness and MCC raised above. The
model is much better than random chance at predicting certain popular classes, but
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struggles with low-frequency obscure classes. This is supported by a high accuracy
at the same time as a low F1-Macro (12.9). In this case, F1-Macro, MCC, and NIT
harshly and unfairly penalize the model.

Looking at the ‘Intersection’ type, we see the opposite behaviour. Accuracy and
F1-Macro are all fairly high (78.5 and above) while Informedness is rather low (56.3).
This means that Accuracy and F1-Macro exaggerate the predictive power of the model
for this type of question. The similar score of MCC-Macro (59.5%) to Informedness
indicates that the model has even performance across classes.

Interestingly, accuracy reports that the model is poor at ‘subtraction’ questions,
which Informedness is much higher (45.9). We hypothesise this is because (1) transformer
models are not good at arithmetic without extensive task-specific pretraining and (2)
the high number of output labels will have lower baseline credit.

Through the use of Informedness, we come to a different conclusion of the relative
strengths of the model. We find that the model has better mathematical ability than
accuracy indicated, whilst the ability to reason over intersectional facts is much poorer
than accuracy reports. For example, this could lead to focus on improving this sub-task
in the future.

Meanwhile, we have the issue that both Informedness and NIT are proposed as
suitable metrics for reporting the cross-task capability of different classifiers, but they
report divergent scores and sub-task rankings. This is because both metrics target
different criteria: NIT the transmission of information from the true labels to the
predicted labels, and Informedness the probability of an informed decision. We propose
that Informedness is a more intuitive measure for NLP, and refer to Section 4.3 for a
toy example demonstration.

4.6 Experiment 4: Metric Evaluation on Formality
Control for Spoken Language Translation

In the last set of experiments, we consider a contextual task involving machine transla-
tion (MT). The Special Task on Formality Control for Spoken Language Translation
(Anastasopoulos et al. 2022) evaluates an MT model to correctly express the desired
formality (either formal or informal) in its translation hypotheses. Focusing on the
English-to-German language pair, we use the winning system proposed by Vincent
et al. (2022). The model is trained to recognise a formality token to generate adequate
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Off-the-shelf MT Formality-aware MT

Accuracy 50.0 95.4
Balanced Accuracy 50.0 95.3

F1-Macro 49.2 95.4
Informedness 00.0 91.8

Table 4.4: Metric scores on Formality Control for Spoken Language Translation (En-De)
between off-the-shelf and formality-aware MT systems.

translations, and an off-the-shelf formality-unaware MT model on the test set provided
by the organisers. We report accuracy, Balanced accuracy, F1-Macro and Informedness
on the English-to-German test set.

Table 4.4 displays metric scores between off-the-shelf and formality-aware MT
systems. We see that the model with no knowledge of the formality is still able to
achieve accuracy and F1-score of around 0.5, which seems to mean that the model is able
to correctly produce a translation with correct formality 50% of the time. Meanwhile,
Informedness drops to zero. As the dataset is balanced, this is a product of Informedness
removing baseline credit making it a more suitable choice as an evaluation metric.

Overall, Informedness provides a better and more interpretable measure of the
system capability to model the task. This demonstrates that Informedness can be used
as an effective tool for comparing two different systems.

4.7 Discussion

4.7.1 Limitations of current metrics

The results obtained across all experiments highlight that widely-used metrics (e.g.
Accuracy, F1-Macro) for classification evaluation in NLP feature biases which suggest
higher performance than either intuitive reasoning or information theory support.
Importantly, this bias makes comparing classifiers across tasks with different class
distributions impossible.

Additionally, through the analysis of a real model on the KVQA task, we showed
that traditional metrics are not suited to intra-dataset analysis when evaluating a single
model’s performance across various sub-tasks. This is highly problematic, as knowing if
a model is better at a particular sub-task such as the sub-tasks of addition or syntactic
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parsing is crucial for model analysis.

4.7.2 Improving Evaluation of Classification Tasks in NLP

Across all experiments, we found that Informedness better captures model generalizabil-
ity than all other metrics. Given this finding and the main limitation of popular metrics
such as Accuracy and F1 across different NLP tasks, we encourage the community and
practitioners to consider reporting Informedness alongside metrics such as Accuracy
and F1 in future experiments and analyses.1

4.8 Conclusion

We have presented an extensive empirical analysis of various classification metrics across
a wide range of tasks including NLU, VQA and MT with controlled formality. Our
experiments demonstrated that the use of a class-invariant metric, Informedness, allows
for a fairer ranking and understanding of model generalization capacity.

Whilst we find that Informedness is the most intuitive metric, we also found that it
is also the fairest in driving inter and intra-model comparisons.

Finally, we provide sklearn.metrics style implementations of both NIT and
Informedness, previously unavailable in Python

We hope that our work is the first step towards rethinking the way NLP classification
systems are evaluated in the future and will raise awareness to the community.

1For a discussion of the limitations of Informedness, see Limitations section.
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Limitations

Informedness cannot fully represent all of the characteristics of a classification system
within a single scalar value. It assumes that the distribution of classes in the training
and test set are identical. This assumption is used to determine the loss and gain for
a particular class according to the distribution in the test set. However, we allow for
train class distributions to be passed to our implementation of Informedness.

In this work, we further assume that an uninformed model will reproduce the
training distribution. In the case that models are poorly parameterised, or the testing
set is very small, this may not be the case. This could lead to models which are not
using the input data to have Informedness scores other than zero. Likewise, systems
which use strategies such as ‘guess the most common’ may have Informedness scores
other than zero.

Informedness is sensitive to the number of evaluation samples, which may result in
less stable estimation of model’s performance in situations with low numbers (< 50) of
examples. We consider that all metrics are subject to this and that it is reasonable to
expect that evaluation is performed on sizeable test sets.
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4.9 GQA Full Comparison

Figure 4.3: Metrics on GQA Unbalanced. Questions are grouped by reasoning type
annotation on the X axis and sorted by count. X axis labels gives the reasoning type,
the number of samples, and the entropy of the answer class distribution
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Figure 4.4: Metrics on GQA Balanced. Questions are grouped by reasoning type
annotation on the X axis and sorted by count in GQA Unbalanced for comparison. X
axis labels gives the reasoning type, the number of samples, and the entropy of the
answer class distribution



Publication IV: Comparing Edge-based
and Node-based Methods on a Cita-
tion Prediction Task

5.1 Introduction

Citation Prediction is the task of predicting whether a given paper cites a target paper
(Färber and Jatowt 2020). Imagine the scenario where an author is writing a paper
and is open to suggestions about what to cite. Consider a recommender system which
will suggest papers in Semantic Scholar (S2)1 (Ammar et al. 2018), a collection of
200 million academic papers from many fields.2 Recommendations can be based on
whatever is available in the input draft, including both text and references.

In order to make progress toward this ambitious goal, we introduce a new Citation
Prediction task with an emphasis on the time dimension, and evaluate both a node-based
model and an edge-based model on this task. The node-based model focuses on titles
and abstracts, and the edge-based model focuses on citations.

These models have not been previously compared with one another on graphs of
different sizes, especially in a forecasting scenario. Standard benchmarks such as Open
Graph Benchmark (OGB)3 (Hu et al. 2020; Hu et al. 2021) and SciRepEval (Singh
et al. 2023) evaluate models such as Graph Neural Networks (GNNs)4 (Scarselli et al.
2009; Zhou et al. 2018; Wu et al. 2019) and Specter (Cohan et al. 2020) on various
academic document modelling tasks including citation prediction.

Unfortunately, most benchmarks are too small to see the region where edge-based
methods overtake node-based methods. We expect citations (edges) to outperform text
(nodes) when the graph is large enough because of network effects.

These scaling and forecasting issues are important for citation tasks because the
1https://www.semanticscholar.org/product/api
2Medicine (45M), Chemistry (13M), Computer Science (13M), Biology (13M), Materials Science

(10M), Engineering (8M), Physics (7M), Psychology (7M), Mathematics (5M), Political Science (4M),
Business (4M), Sociology (3M), Geography (3M), Economics (3M), Environmental Science (3M),
Geology (3M), History (2M), Art (2M), Philosophy (1M).

3https://ogb.stanford.edu/docs/lsc/
4https://web.stanford.edu/class/cs224w/

https://www.semanticscholar.org/product/api
https://ogb.stanford.edu/docs/lsc/
https://web.stanford.edu/class/cs224w/
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Figure 5.1: Random Splits (top) vs Proposed Causal Split (bottom) for Table 5.1. Train
split in green, test in blue. The bottom plot with the train-test cut-off in 2010 gives a
temporally consistent split.

Paper Year Title
1 2018 [...] Photograment imaging
2 2016 Convenient probe of S(1D2)[...]
3 2005 Megapixel ion imaging [...]
4 2003 Direct current slide imaging [...]
5 1995 profiles of CI(2Pj) photoframents [...]
6 1988 Adiabatic dissociation of [...]

Table 5.1: 1 cites 2, 2 cites 3,..., 5 cites 6

literature is growing exponentially, doubling every 9 years5 (Wade 2022; Kinney et al.
2023). This growth rate is shown in Figure 5.2 for a collection of more than 200 million
papers in Semantic Scholar (S2).

The scaling properties mentioned above are somewhat similar to Metcalfe’s Law
(Metcalfe 2013). Metcalfe’s Law applies when benefits scale with edges (n2) and costs
scale with vertices (n). In a telephone network, costs scale with subscribers (n), and
benefits scale with connections between subscribers (n2). These network effects are often
cited6 for the success of businesses such as telephones (AT&T), web search (Google)
and social media (Facebook).

Our contributions are as follows:

1. A new benchmark for citation prediction emphasizing scale and forecasting.
2. Empirical demonstration that larger graphs favor edge-based methods.
5https://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.

html
6https://en.wikipedia.org/wiki/Metcalfe%27s_law

https://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
https://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
https://en.wikipedia.org/wiki/Metcalfe%27s_law
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Figure 5.2: The literature doubles every nine years. Observations are denoted by circles
and predictions by red lines.
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3. Empirical evidence that performance improves with t (larger training sets) and
degrades with h (forecasting horizon).

4. We will distribute the benchmark, evaluation code and embeddings.7

5.2 Related Work

Citation Prediction is situated within the broader context of recommendation systems.
Recommendation systems may model the content ‘Content-based’ (Bhagavatula et al.
2018a) or the preferences of other users ‘Collaborative’ (Resnick and Varian 1997).
Citation Prediction the feature of study (citations) may be regarded as both content-
based (Caragea et al. 2013), or collaborative (McNee et al. 2002). This is because
citations are both significant features of academic documents (content-based) and a
representation of the preferences of the document authors (collaborative), so systems
may take either approach (Liang and Lee 2023).

In their study of the related topic of Paper Recommendation Systems (Beel et al.
2016) found that 55% of approaches are content-based, whilst collaborative filtering
applied to 18%, and graph-based to only 16%. The remaining approaches were hybrids
of there or expert systems.

When creating a Citation Prediction model, prior citations may be either be
researched as a tool to meet the information need Wilson (1997) of researchers Strohman
et al. (2007) and Bethard and Jurafsky (2010a), or as a feature to improve academic
document representations in general Cohan et al. (2020) and Yasunaga et al. (2022).

Methodologies Citation Recommendation is subdivided into two sub-categories:
Global Citation Recommendation and Local Citation Recommendation. Global Citation
Recommendation identifies papers which are cited by a paper given a general or ‘global’
representation of a paper such as the title and abstract. Meanwhile, Local Citation
Recommendation identifies papers based on a local text passage such as ‘Citing Sentence’
(Färber and Jatowt 2020). In this paper, we study Global Citation Recommendation.

Within the Content-Based approach for Global Citation Recommendation there are
two high-level methodologies: Text-based and Citation-based (Liang and Lee 2023).
Text-based methods are Content-Based establish a measure between two papers based
on a (sub)set of their textual content (Bhagavatula et al. 2018a). Citation-based

7https://anonymous.4open.science/r/nacl-forecasting-DD3C/

https://anonymous.4open.science/r/nacl-forecasting-DD3C/
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methods establish a measure between two papers based on a (sub)set of their citations
(McNee et al. 2002; Liang and Lee 2023).

Datasets Datasets in Citation Prediction are derived from Paper Repository sources
such as the ACL Anthology or Open Academic Graph. Landmark papers in the field
have released static datasets based on sub-sampled snapshots of these repositories, and
these have formed benchmarking targets. However, as we discuss, these datasets are (a)
small, domain-specific, and not time-attributed. We therefore follow Färber and Jatowt
(2020) in detailing potential repositories for deriving Citation Prediciton datasets which
meet these requirements.

The CiteSeer dataset Nallapati et al. (2008) contains 3,312 scientific publications
with 4,732 citation links from the Citeseer collection. The CiteSeerX dataset contains
2M papers Caragea et al. (2014), but contained many duplicated papers, and a cleaned
version was released Wu et al. (2017).

ACL Anthology Network (AAN) dataset offers a contains 10,921 papers from ACL
Computational Linguistics venue (Bethard and Jurafsky 2010b).

The ogbl-citation2 dataset (Roy 2017), a medium-sized collection of 2.9 million
nodes and 30.5 million edges, is designed specifically for link prediction tasks in citation
networks.

Which not a formal citation recommendation dataset, a 1M subset of SemanticScholar
has been used to train and evaluate the Specter and SciNCL document representation
models Cohan et al. (2020) and Ostendorff et al. (2022). The evaluation portion is
termed SciDocsCohan et al. (2020).

The SciRepEval Singh et al. (2023) benchmark contains an expanded 6M citation
recommendation data alongside additional tasks, and was used to train the Specter2
model.

Resources The ACM Digital Library contains 2.4 million publications and 9.7
million citations datasets derived from ACM. Datasets derived from this resource
accounted for 22% of such citation prediction studies according to (Beel et al. 2016).

DBLP, another comprehensive computer science bibliography, encompasses over 3
million papers and 25.2 million citation relationships, and is likewise highly popular for
citation recommendation experiments, accounting for 33% of citation datasets according
to (Beel et al. 2016).

As potential resources, the Open Academic Graph (OAG), an integration of the
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Microsoft Academic Graph (Sinha et al. 2015) and AMiner (Tang et al. 2008), contains
over 200 million papers and their citations.

The CORE database, while not yet widely used in recommendation systems (Färber
and Jatowt 2020), contains 306 million scholarly resources.

The Semantic Scholar (S2) project provides 200M papers with 1.2B Citations. They
make their data available through an API or a dump. Semantic Scholar is a an academic
paper recommendation tool. The owners make the underlying paper repository available,
which includes identifiers and metadata, including citations.

Evaluation Citation Recommendation are almost always evaluated offline against a
gold standard dataset, which are held-out citations from the network (Beel et al. 2016;
Färber and Jatowt 2020). We are not aware of Online Studies, although it would be
possible for Paper Recommendation services such as Google Scholar or S2 to conduct
them. User Studies are encountered in twice in the literature to our knowledge (McNee
et al. 2002; Gori and Pucci 2006).

Offline evaluation involves the creation of a labelled evaluation dataset ahead of
time. In the context of Citation Recommendation, this is simply a separate split of
the Citation Network data used to train the model, and may be termed §citation
re-prediction’ Färber and Jatowt (2020). There are two settings for evaluating the
offline datasets. First is as a classification task between cited and uncited papers, where
precision, recall, F1 score are used. Second is as a retrieval problem of ranking the
cited paper(s) above uncited ones, where the Mean Averaged Precision (MAP), Mean
Reciprocal Rank (MRR), and normalized Discounted Cumulative Gain (nDGC) are
used. nDGC is proposed in cases where the score may be other than 0 (for non-cited
papers) and 1 (for cited papers), such as with (He et al. 2010) where co-cited papers
are given some credit.

Applications Citation Prediction has a number of downstream applications. Firstly,
it aids authors in identifying relevant works to cite, enhancing the quality of their
references. For researchers, it facilitates the discovery of relevant literature (Beel et al.
2015; Steinert 2017). It has been used to assist matching reviewers to papers for
conference reviewing based on their expertise and publication history (Dumais and
Nielsen 1992; Yarowsky and Florian 1999; Mimno and McCallum 2007; Zhang et al.
2023). Similarly, it can be used in expert identification (Yimam-Seid and Kobsa 2003;
Maybury 2006; Tu et al. 2010).
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Existing Approaches As we discuss above, the literature covers a diverse range of
modeling techniques, from collaborative filtering and hand-crafted feature-based models
to graph-based methods and deep learning approaches (Jiang et al. 2018). This diversity
allows for different tradeoffs in terms of complexity, interpretability, and performance.
Simpler feature-based models and some graph-based methods, have shown promise in
handling large-scale citation networks and document collections (Brack et al. 2021).

However, these approaches face several limitations.

1. Evaluation challenges persist, as most evaluations use a ’citation re-prediction’
approach with offline metrics, which may not fully capture the quality or usefulness
of recommendations (Färber and Jatowt 2020).

2. There is a significant lack of user studies and online evaluations with real users
(Beel et al. 2016; Färber and Jatowt 2020; Pillai and Deepthi 2022).

3. Furthermore, many methods struggle with the cold start problem, recommending
newly published papers with few or no citations (Bhagavatula et al. 2018b).

4. Temporal aspects are often overlooked, as citation patterns change over time
Hall et al. (2008), but most models do not explicitly account for the temporal
dynamics of citation networks. The only approach we are aware is Local Citation
Recommendation, not Global, and divides data into two-year periods from 2007-
2016, creating just five time segments for analysis (He and Chen 2018).

5. Most methods focus on relevance, potentially leading to echo chambers, with only
a few approaches explicitly considering recommendation diversity (Noordeh et al.
2020).

6. Cross-lingual and cross-discipline limitations are evident, as the majority of work
focuses on English-language papers and specific fields like computer science (Jiang
et al. 2018).

7. Data limitations, such as limited access to full-text papers, often force systems to
rely only on metadata or abstracts (Färber and Jatowt 2020; Pillai and Deepthi
2022).

8. Ethical considerations, such as the potential for automated systems to perpetuate
or introduce new biases in citation practices, are not fully addressed in current
research (Liang and Lee 2023).
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Our approach seeks to specifically address (4): the temporal nature of academic
literature, and, by extension, citations. We argue that due to the temporal nature of
citations, the partitioning needs to be conducted along time dimension, and importantly,
that the time duration t of the training data and the forecast horizon h must be
considered. We implicitly address (3), as we evaluate the performance of models
on recent forecasting horizons (low h). Our ProNE method addresses (6) by being
language-agnostic.

5.3 Methodology

5.3.1 Forecasting Citation Prediction

The Citation Prediction Task is simple: predicting whether paper vk and vl cite one
another i.e. (vk, vl) ∈ E. We define the distance d(vk, vl) as the length of the shortest
path between vertices vk and vl in the citation graph. To make the task harder, we
sample relatively challenging negatives, where vk and vl are 2-4 hops from one another,
i.e., 2 ≤ d(vk, vl) ≤ 4.

Given the full Semantic Scholar citation graph G, we begin by taking random walks
of up to 11 hops. These walks are then filtered with BFS to retain only those walks
where 1 ≤ d(vk, vl) ≤ 4. Verified walks are added to our evaluation dataset, structured
as: < vk, vl, d(vk, vl), bin >, where vk and vl are two papers in a verified walk, and
bin is max(bin(vk), bin(vl)), the bin of the more recent of the two papers. Binning is
discussed in more detail in the next section.

5.3.2 Graph Partitioning

We construct a citation graph, G, based on data from S2. S2 maintains a dataset of
around 200 million academic documents dating from 1684 CE up to the current time.
Each entry has a primary document id. Document ids are often associated with a title,
abstract and citations, though these values can be missing (and incorrect). Figure 5.3
shows that many papers have abstracts, A, and many papers have links in the citation
graph, L, but relatively few have both. By construction, random walks are based on L

and therefore, the proposed benchmark is a subset of L (papers with links).
To build a causal forecasting task we require a view of the graph which respects

the time-dynamics of academic literature (Kuhn 1962; Hall et al. 2008). To do this, we
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Figure 5.3: There are many missing values. Many papers have abstracts (99M) and
many have links in the citation graph (111M), but only 65M (31%) have both.

split the citation graph evolution into 100 chronological sub-graphs.
First, we construct a citation graph G = (V,E), where:

• V is the set of vertices, {v1, v2, ...}, where vi is a document id
• E is the set of edges. An edge is a pair of document ids, (vi, vj), where document

vi cites document vj.

Each vertex, vi ∈ V , has a publication date.8 We use these dates to partition the
200 million total documents in V into the 100 equal-sized bins: V0, V1, V2, ...V99. Each
bin contains approximately two million documents. Let bin(vk) indicate the bin for
paper vk. That is, if vk ∈ Vb, then bin(vk) is b. bin(vk) is a number between 0 and 99.
The bin of an edge, bin((vi, vj)), is max(bin(vi), bin(vj)), which is usually bin(vi) since
edges are usually causal. That is, papers typically cite papers in the past, and rarely
cite papers in the future.

Due to the exponential pace of paper publications in Figure 5.2, the first bin, V0,
encompasses papers from 1684 to 1936 CE, while the final bin, V99, encapsulates papers
from 2022 to 2023. More details are presented in Appendix 5.9.

For each bin, Vi, we construct a subgraph Gτ ⊂ G, where Gτ = (Vτ , Eτ ). τ is a bin
(the max bin of nodes and edges in Gτ ). That is, Gτ consists of nodes, Vτ , and edges,
Eτ , where Vτ are the documents in bin τ , and Eτ are citations from papers in Vτ to

8In fact, there are many missing values (and incorrect values). The set of papers, V , is limited to
papers with (non-missing) publication dates.
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papers in Vi≤τ . In other words, we allow citations from papers in the current bin (bin
τ) to papers in the current bin or in previous bins.

With this partitioning we may set the train-test splits to be between any two
subsequent bins. Firstly, this allows us to adjust the size of the training graph to study
the effects of scale. Secondly, it allows us to associate test predictions with a time bin.
This allows for analysis of test performance as a forecasting task with a forecasting
horizon of h. That is, if we train a model on bins up to t, how does the performance of
the model on bin t + 1 compare with the performance on bin t + 5? In general, the
task becomes more difficult with larger horizons h.

Let G(τ) be a cumulative graph:

G(τ) =
τ∑

i=0

Gi (5.1)

That is G(τ) = (Vi≤τ , Ei≤τ ), where Vi≤τ are documents in the current bin or previous
bins, and Ei≤τ are citations from these papers to papers in the current bin or previous
bins.

Thus, G(τ) is the union of all single-bin subgraphs graphs up to and including Gτ .
We will refer to the vertices and edges in G(τ) as V (τ) and E(τ), respectively.

5.3.3 Dataset Balancing

Within our raw Citation Prediction dataset, we find a non-constant ratio of 1-hop to
[2,4] hop labels across different bins. On average, 1-hop labels constitute 28.9%. The
accuracy paradox (Valverde-Albacete and Peláez-Moreno 2014) means that bins with
a higher prevalence of [2,4] hops will be easier to obtain higher scores on. To rectify
this, we down-sample the more-than-average prevalence class until the 28.9% rate is
achieved. This adjustment results in the deletion of 7.6% samples. More details can be
found in Appendix 5.9.

5.3.4 Representation Models

We use our dataset to compare both node-text and edge-citation representation models.
Text: Specter is an academic document model designed to accept paper titles and

abstracts as input. Specter is initialized to the SciBERT model (Beltagy et al. 2019), a
variant of BERT trained through masked text denoising of academic documents. Specter
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Figure 5.4: Histogram of query papers by bin. Specter is trained on triples: <
query, pos, neg >, where the query paper cites the pos. The distribution of neg
(random negatives) is similar to query, though pos predates query.

is further trained to minimise a triplet loss across a query paper, a positive paper, and
a negative paper. The positive paper is cited by the query, whilst the negative paper is
not. The underlying training goal is to ensure the [CLS] token representation of the
positive paper is closer (in L2 distance) than that of the negative paper. We use the
more recent Specter2 model release.9 Specter2 is trained over an approximately 2M
paper portion of the S2 corpus. Figure 5.4 shows the distribution of Specter’s training
data across our time bins. Discounting the 0.7% of papers for which the publication
date is unavailable, 99.8% of Specter2 training papers appear in bins [0-85], which span
1684-2019. We therefore call the Specter release Specter(85).

Citations: There are a number of methods such as Node2Vec (Grover and Leskovec
2016), DeepWalk (Zhuoren et al. 2014) and ProNE (Zhang et al. 2019b) that take
the citation graph as input and apply techniques such as spectral clustering to return
an embedding for each paper (vertex). As discussed in section 4.1.1. of (Cai et al.
2018), these methods produce embeddings where cosines can be interpreted in terms of
the input graph. If two vectors have a large cosine, then the corresponding nodes are
relatively close to one another in the input graph, though details depend on methods
and hyperparameters.

We used the nodevector10 implementation of ProNE to generate embeddings. We
refer to the ProNE model trained on the S2 citation graph as: ProNE-S. In our experi-
ments, the bottleneck is the SVD of the citation graph. Time and space requirements

9https://huggingface.co/allenai/specter2
10https://github.com/VHRanger/nodevectors

https://huggingface.co/allenai/specter2
https://github.com/VHRanger/nodevectors
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for SVD grow non-linearly with the size of the graph. Our SLURM cluster allows us to
request 2 TBs of RAM and 5 days of runtime per job. The larger graphs consumed
about half of these resources. We will need to replace the SVD with an approximation
if the literature grows faster than our cluster.

ProNE is a transductive model, meaning it generates embeddings only for doc-
uments in the training set, but not for other documents. We introduce a centroid
approximation to estimate vectors for other documents. The centroid approximation is:

vec(vk) ≈
∑

vl∈fanout(vk)

vec(vl) (5.2)

where vec(v) is the embedding for document v, and fanout(v) is the set of papers
that are reachable in one step from v (i.e. cited and citing papers). When evaluating
ProNE-S embeddings, we prefer the original transductive embeddings and fallback with
the centroid assumption when necessary.

We are interested evaluating two scaling effects:

1. The effect of graph scale on representation quality (size of τ)
2. The impact of time duration between train data and evaluation data (forecast

horizon)

To evaluate these scaling effects, we train ProNE on each cumulative subgraph, G(τ), τ ∈
[0, 99], resulting in 100 ProNE-S(τ) models. ProNE-S(τ) is trained on G(τ), and maps
documents in V (τ) to vectors.

5.3.5 Evaluation Task

We evaluate both ProNE-S and Specter models on our Forecasting Citation Prediction
dataset. Similar to cumulative graphs, we use the notation M (τ) to indicate the
maximum graph partition which a model is trained on. We report results for all bins,
but like (Färber and Jatowt 2020), we are particularly interested in predictions for
papers published after the training set: bins > τ . Results for bin ≤ τ are less interesting
because those bins were used for training.

As discussed in Section 5.1, we are interested in measuring trends in forecasting
capability: how does accuracy depend on the interval between training time and
evaluation time? Consistent with research in other domains (and common sense), we
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Figure 5.5: Results on ProNE-S(50) (trained on G(50)) and tested on T (k) for k ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90}; dashed lines compare with Specter.

expect the task to become more challenging when the evaluation is based on papers
that are published well after the papers in the training split.

5.3.6 Evaluation Implementation

We perform classification by taking the cosine similarity of model’s representations of
papers A and B and evaluating against a learn-able threshold. For each model, we use
the first 1/6th of the data as a validation split to find this threshold, and evaluate on
the remaining 5/6th of papers.

Missing Values: In the case of missing values for either paper, we predict by
sampling from a Bernoulli distribution parameterised by the train distribution of the
overall rate of 1 vs [2,4] hops (28.9%).
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Figure 5.6: Performance improves with larger training sets: ProNE-S(60) > ProNE-S(50)

> ProNE-S(40)

5.4 Results and Analysis

Figure 5.5 shows the performance of ProNE-S50 (labeled ‘5’) on every tenth evaluation
bin. Accuracy is better over the training set (left of the verticle line). Accuracy
suddenly decreases moving into the first forecasting bin (h=1) and then slowly decreases
further into the future. These results confirm our Forecast Dynamics assumption,
that as time into the future increases, the model’s performance degrades. We plot
the Specter(85) (labeled ‘S’) for comparison. Despite having more recent training data,
Specter underperforms ProNE-S(50).

Figure 5.6 is like Figure 5.5, but Figure 5.6 shows performance of three ProNE-
S models, trained on ProNE-S(40) (blue/4), ProNE-S(50) (black/5) and ProNE-S(40)

(red/6), respectively. Note that the red line is consistently above the black line, and the
black line is consistently above the blue line (ProNE-S(60) > ProNE-S(50) > ProNE-S(40))
because training on more bins is better than training on fewer bins. Figures 5.5-5.6
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ProNE-S Test Bin
Train Bins 0 10 20 30 40 50 60 70 80 90 Mean

0-0 0.543 0.573 0.557 0.559 0.566 0.563 0.561 0.562 0.561 0.558 0.560
0-10 0.701 0.706 0.662 0.670 0.663 0.663 0.665 0.659 0.659 0.659 0.663
0-20 0.736 0.724 0.725 0.709 0.703 0.700 0.698 0.693 0.690 0.686 0.699
0-30 0.701 0.701 0.701 0.700 0.703 0.703 0.699 0.698 0.697 0.693 0.703
0-40 0.751 0.729 0.731 0.731 0.730 0.721 0.719 0.714 0.715 0.710 0.724
0-50 0.772 0.732 0.736 0.735 0.735 0.731 0.724 0.723 0.723 0.719 0.733
0-60 0.756 0.732 0.732 0.736 0.735 0.734 0.732 0.726 0.724 0.725 0.738
0-70 0.726 0.726 0.733 0.734 0.734 0.735 0.735 0.737 0.726 0.730 0.743
0-80 0.731 0.732 0.736 0.736 0.737 0.733 0.734 0.735 0.733 0.730 0.745
0-90 0.736 0.731 0.737 0.733 0.736 0.736 0.735 0.740 0.739 0.740 0.750

Specter 0.569 0.661 0.695 0.696 0.695 0.702 0.702 0.700 0.704 0.707 0.701

Table 5.2: Accuracy of 10 ProNE-S models and Specter on citation prediction forecasting
task. Lines indicate the train-test divide.

show that accuracy is better when tested on the training set, and declines the more we
predict into the future.

Figures 5.5-5.6 are based on Table 5.2, which reports results for every tenth ProNE-S
model and for Specter(85) in Table 5.2. These expanded results confirm the two results
of note for ProNE-S model:

1. Accuracy degrades with h (forecast horizon), as shown in Figure 5.7. This
observation is validated by OLS regression analysis, where accuracy drops by
0.0009 (coefficient: -0.0009, t-value: -41.246, p-value: <0.0001).

2. Accuracy improves with t (size of training set). For every additional training
bin, accuracy improves by 0.0009 (coefficient: 0.0009, t-value: 12.280, p-value:
<0.0001). This supports the use of very large training graphs.

Appendix 5.9 shows the full results for all cumulative 100 ProNE-S models and
results on each 100 evaluation bins.

5.5 Citation Prediction

We rerun our experiments on Citation Prediction from Section 5.4 using the Informedness
metric from Paper III. As stated in Section 5.3.2 we segment the evaluation set by
the maximum time bin of either citing or cited paper. The exact ratio of non-citing
to citing pairs was not constant: mean 0.288, but a standard deviation of 0.084. In
order to avoid the Accuracy Paradox from introducing noise into our results, we first
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Accuracy Test Bin
Train Bins 0 10 20 30 40 50 60 70 80 90 Mean

0-0 0.782 0.528 0.530 0.544 0.553 0.556 0.557 0.558 0.562 0.570 0.574
0-10 0.709 0.701 0.623 0.627 0.639 0.651 0.657 0.665 0.670 0.679 0.662
0-20 0.405 0.611 0.648 0.646 0.672 0.683 0.685 0.696 0.705 0.712 0.646
0-30 0.304 0.553 0.602 0.624 0.664 0.680 0.687 0.702 0.713 0.723 0.625
0-40 0.434 0.629 0.667 0.679 0.703 0.705 0.708 0.717 0.728 0.737 0.671
0-50 0.491 0.653 0.683 0.693 0.712 0.718 0.716 0.726 0.733 0.743 0.687
0-60 0.507 0.664 0.687 0.698 0.715 0.722 0.725 0.730 0.733 0.745 0.692
0-70 0.520 0.667 0.693 0.700 0.716 0.724 0.728 0.740 0.735 0.748 0.697
0-80 0.471 0.650 0.681 0.692 0.713 0.721 0.726 0.738 0.744 0.751 0.689
0-90 0.533 0.669 0.696 0.699 0.717 0.726 0.728 0.742 0.748 0.756 0.701

Informedness 0 10 20 30 40 50 60 70 80 90 Mean
0-0 0.328 0.033 0.015 0.029 0.030 0.023 0.024 0.014 0.018 0.024 0.054
0-10 0.390 0.399 0.167 0.124 0.102 0.093 0.089 0.080 0.072 0.070 0.159
0-20 0.125 0.140 0.140 0.083 0.076 0.063 0.052 0.043 0.042 0.036 0.080
0-30 0.000 0.000 0.000 0.000 0.011 0.013 0.016 0.013 0.014 0.012 0.008
0-40 0.162 0.187 0.197 0.185 0.181 0.140 0.128 0.113 0.109 0.088 0.149
0-50 0.236 0.250 0.256 0.245 0.240 0.219 0.195 0.185 0.173 0.149 0.215
0-60 0.250 0.280 0.277 0.270 0.266 0.250 0.241 0.229 0.210 0.189 0.246
0-70 0.249 0.290 0.301 0.288 0.283 0.272 0.265 0.271 0.241 0.232 0.269
0-80 0.196 0.239 0.251 0.240 0.240 0.226 0.222 0.221 0.212 0.196 0.224
0-90 0.284 0.294 0.305 0.288 0.285 0.277 0.265 0.276 0.268 0.259 0.280

Table 5.3: Accuracy and Informedness of 10 ProNE-S models on our Citation Prediction
forecasting task. Lines indicate the train-test divide.

calculated the ratio of non-citing to citing pairs across the entire dataset. We then
ensured this ratio was found in each of the 100 time-segmented bins by down-sampling
the more-than-globally prevalent class. This resulted in the exclusion of 215,000 samples,
which is 7.56% of the dataset.

5.5.1 Results with Informedness

We rerun the experiment with no down-sampling but the Informedness metric introduced
in III.

The results over the full data in Table 5.3 confirm those in Paper III. We note the
following differences: The lack of citations in early bins allows models to report higher
accuracy scores without being any better at prediction. This is observed through the
accuracy score of 0.782 for the model trained only on bin 0 evaluated only on bin 0.
Meanwhile, the Informedness for the same setting is 0.328 - much lower and reflecting
the lower power of this model. We are also able to discern that the model trained on
bins 0-30 is broken, and is merely sampling the prior probability of classes in each bin.
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Figure 5.7: ProNE-S Accuracy Across Forecast Horizons

This is very hard to identify with accuracy as the rate of prevalence of each classes
changes through time. Informedness, however, is in the range 0.000-0.016 for all bins,
which makes analysis much more straightforward. Finally, we note that the best scores
are around 0.27 Informedness, which is quite low. This suggests a much larger headroom
for future improvements than the accuracy score indicates.

5.5.2 Early and Late Bins

Early bins (Bins 0-5) and late bins (Bins 95-99) produce outliers in our evaluation
with both Specter and ProNE-S models, although the effect is most noticeable with
Specter. We speculate that two effects are in play: (1) Specter’s training set is skewed
towards more recent papers (see Figure 5.4) and (2) older papers and newer papers
have relatively noisy metadata due to issues such as OCR noise and preprints. OCR is
more common for older papers and preprints are more common for newer papers.
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Figure 5.8: ProNE-S–Specter Crossover: Metcalfe’s Law favors larger citation graphs
(more than 82M papers).

5.5.3 Comparisons and Combinations

The next two subsections will discuss:

1. Comparisons: As suggested above, larger t (training data) favors ProNE-S, but
where is the cross-over point?

2. Combinations: Ensembles of ProNE-S and Specter can be better than either by
itself.

Comparing Text and Context (Citations)

As previously discussed, we train 100 ProNE-S models times on increasing cumulative
graphs from G0 to G99. There is only a single Specter model, trained by S2 on papers
published up to 2019, corresponding to our bin 85.11 In Table 5.2 ProNE-S overtakes
Specter at around bin 40, but it is not possible to make a precise determination from
looking at every tenth bin.

11https://github.com/allenai/specter

https://github.com/allenai/specter


5.5. CITATION PREDICTION 83

0 10 20 30 40 50 60 70 80 90 100
Forecast Horizon (Bins Forward)

0.000

0.025

0.050

0.075

0.100

0.125

0.150
Ac

cu
ra

cy
 U

pl
ift

Figure 5.9: Hybrid Accuracy Uplift from φp to φ p
s
across all ProNE-S versions

According to our time binning, Specter2 is Specter(85), so we evaluate both ProNE-S
and Specter on bins 86 to 99. For ProNE-S(τ), we use all models where τ ≤ 85 as later
iterations can access the test the citations during training. As we seek to compare
models, we average the accuracy over all forecasting bins rather that considering them
individually. Figure 5.8 shows the averaged forecasting accuracy across for each model
across bins 86 to 99. Specter outperforms the smaller ProNE-S models (left side of
plot), whilst ProNE-S is better for larger graphs (right side of plot). The crossover
point is around ProNE-S(41), which has about 82 million papers.

It is remarkable that ProNE-S(41) has comparable accuracy with Specter(85), given
the large difference in t (training data). ProNE-S(41)’s training data ends at bin 41
(2007), 11 years before the beginning of the test set (2018).

Combining Text and Context

We have evaluated the forecast capabilities of individual models and compared two
different types of models, text and citation. A further area of evaluation is combining the
predictions of the two different model types. Certain document representation models
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such as GNNs use both text and citations (nodes and edges) as input features. However,
these methods may not apply to the case of missing values, which Figure 5.3 shows is
more than half of S2. Additionally, we have shown that text- and citation-based models
have different forecast characteristics. In a real world application, it may be desirable
to optimise performance for papers published this year, given models trained on much
older papers. This is somewhat equivalent to optimising for a particular evaluation bin.
We show that under these conditions the optimal combination policy will change over
time. To show this, we evaluate several strategies for ensembling Specter and ProNE-S
models.

More formally: consider a scenario with N models Mi, each providing a forecast
Fi(t) at time t. The objective is to devise a combination policy φ that maximizes
the forecast accuracy Ai(t) for a given evaluation set. We will show that the optimal
combination policy φ is not consistent across:

1. Different forecast horizons
2. Model variants with different train data (bins)

To make our study as clear as possible, we pick a straightforward hybrid system,
which is to use ProNE-S citation embeddings when available, and otherwise, fall back
to Specter text embeddings. We term this φPτ

S
, (where τ indicates the max train bin

of the ProNE-S model). We run this policy across all ProNE-S(τ) models, recording
results as distances from the test-train split (i.e. for ProNE-S(n), predictions on bin
n+ 3 count as a 3 bin forecast). Results are shown in Figure 5.9. This hybrid system
improves performance, especially on extreme-range forecasting for the undertrained bin
ProNE-S(τ) models where τ < 40.

In Section 5.5.3, we observed that the relative performance of ProNE-S and Specter
depend on t (size of training set) and h (forecast horizon). We therefore compare φPτ

S

to two ‘no-op’ baselines: (1) ProNE-S only: φPτ and (2) Specter only: φS.
We evaluate all three policies on three ProNE-S variants: ProNE-S(0), ProNE-S(10),

and ProNE-S(30). We choose these small τs to explore the region where Specter and
ProNE-S have similar accuracy. The miss rate for for ProNE-S(0) is 89.5%, for ProNE-
S(10) 40.0%, and for ProNE-S(30), it is 8.8%. We show that no single policy dominates
over all forecasting horizons h. That is, there are regions where φPτ

S
is best, and other

regions where φPτ is best, and regions where φS is best, as indicated by the color bars in
Figure 5.10. The color bars also show that ensembling is often effective. Note that there
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is more green (ensembling) in Figure 5.10 than red (Specter only) and blue (ProNE-S
only).
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Figure 5.10: Hybrid Forecast Accuracy (with 5-point Moving Average) for φPτ
S

with
ProNE-S(0), (10), (30) and Specter. The color bars indicate which line has the best accuracy.
Differences between bars suggest the policy for combining text and context depends on
the size of the training set (t) and forecasting horizon (h).
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We start with the least trained ProNE-S(0) : φP0
S
. This ensemble uses ProNE-S

when ProNE-S is able to form embeddings, and falls back to Specter otherwise. We plot
the φP0

S
vs φP0 vs φS in the top plot of Figure 5.10. To highlight which φ is performing

best at a given time-period, we shade above the graph the color of the best policy.
We observe that with ProNE-S(0), φS outperforms the hybrid system φP0

S
for the

first 8 bins, before converging for later forecast horizons. Convergence over latter bins
is due to Specter dominating the hybrid system as ProNE-S has little coverage so far
out from the training data. In φP10

S
(middle plot) we see again that the under-trained

ProNE-S system adds noise to short-range forecasts (bins 11-30), where φS – the Specter
system alone – performs best. Finally the bottom plot of φP30

S
shows that φP30

S
becomes

the optimal policy for forecasting near term (bins 31-70), whilst Specter remains more
accurate for long range forecasting (bins 71-80). In short:

1. The optimal policy φ varies over models and time horizons. This can be seen
through the color of best φ changing across each version of ProNE-S we plot in
Figure 5.10.

2. By modelling Text and Citations separately, we are able to change the feature com-
bination policy φ for different forecast horizons, which produces higher accuracy
overall.

The hybrid system increases coverage from 96.0% to 99.0% for bin 50. We also find
an uplift in prediction performance of 3.91% on average in forecasting bins, however,
this varies by forecast distance and number of ProNE-S training bins. Further, we
find that there is more opportunity for ensembling when there are more missing bins.
Benefits for ensembling decrease when there is more training data.

5.6 Conclusion

We produced a link-prediction benchmark based on Semantic Scholar (S2) to measure
forecasting capability of document models at scale. We then evaluated 100 ProNE-S
models and Specter on data binned by time. Forecasting is important because science
evolves over time. We found:

1. Performance improves as t increases (more training data over more time), and
2. Performance degrades as h increases (predictions further and further into the

future).
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Metcalfe’s Law suggests edge-based methods such as ProNE-S should be relatively
effective for larger graphs. We found that that was correct, with a cross-over point
around 82 million papers, much larger than the training set for Specter.

Since ProNE is transductive (and does not generate embeddings for novel papers),
we introduced the centroid assumption, so ProNE-S can generate embeddings for papers
that cite known papers. This extended version of ProNE-S performed well on our
forecasting benchmark, especially when trained on larger graphs.

We further investigated the relationship of text and context models through an
analysis of model combination strategies. First, we found that simply using Specter as
a fallback for missing values in ProNE-S boosts long-horizon predictions significantly.
Secondly, through evaluation over 100 cumulative ProNE-S models, we found the
optimal model combination policy for combining Specter and ProNE-S depends on
forecast horizon, h.

In practical applications, h � 0, since we typically train models once, and then
use them much later for inference. Retraining more often will reduce h, and improve
predictions at inference time. If we plan to combine models such as Specter and
ProNE-S, the combination should be reevaluated more often since combinations also
depend on h.

Finally, we will make our benchmark, embeddings and scripts available for further
research and experimentation.

5.7 Ethics

It is good for society to make the scientific literature more accessible. There is no
sensitive data in this work. All of data we use for creating our benchmark is freely
available through Semantic Scholar. The Specter2 model is available on Huggingface.
We make the ProNE-S and Specter embeddings available on Globus. We release our
benchmark on our project GitHub along with our evaluation code. Both embeddings
and code are available under the MIT license.

5.8 Limitations

Scientific literature is growing quickly, and our benchmark will need to be updated
frequently to stay relevant. Training ProNE-S over a 200 million paper benchmark
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requires significant compute resources (2+ days on a 2TB RAM HPC machine). Ci-
tations are not recorded as accurately for non-English language papers. Specter will
likely not perform well for non-English language text and abstracts.
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Figure 5.11: Full ProNE-S Cumulative Forecasting Results

5.9 ProNE-S Forecast Heatmap
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5.10 ProNE-S Forecast Table

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Max Train Bin

0 0.548 0.574 0.557 0.559 0.577 0.554 0.568 0.547 0.565 0.550 0.563 0.567 0.555 0.557 0.554 0.559 0.554 0.562 0.559 0.559
1 0.624 0.606 0.569 0.613 0.604 0.583 0.598 0.587 0.601 0.601 0.597 0.595 0.598 0.599 0.603 0.593 0.592 0.593 0.593 0.596
2 0.614 0.640 0.664 0.602 0.605 0.593 0.610 0.607 0.622 0.615 0.610 0.616 0.614 0.616 0.611 0.618 0.610 0.603 0.607 0.604
3 0.655 0.647 0.652 0.664 0.596 0.597 0.621 0.614 0.629 0.624 0.623 0.626 0.623 0.637 0.635 0.631 0.627 0.616 0.621 0.624
4 0.645 0.638 0.657 0.674 0.651 0.611 0.624 0.620 0.631 0.635 0.634 0.648 0.628 0.635 0.640 0.642 0.639 0.631 0.621 0.627
5 0.716 0.671 0.677 0.720 0.701 0.696 0.657 0.654 0.663 0.676 0.668 0.666 0.657 0.663 0.662 0.653 0.657 0.650 0.646 0.646
6 0.711 0.664 0.683 0.719 0.702 0.704 0.701 0.669 0.658 0.682 0.666 0.676 0.668 0.667 0.664 0.661 0.664 0.652 0.657 0.647
7 0.716 0.671 0.673 0.713 0.699 0.700 0.700 0.713 0.668 0.679 0.667 0.678 0.673 0.675 0.668 0.666 0.666 0.671 0.653 0.658
8 0.711 0.685 0.678 0.739 0.706 0.716 0.711 0.731 0.715 0.697 0.679 0.690 0.684 0.685 0.685 0.675 0.684 0.679 0.671 0.674
9 0.736 0.697 0.691 0.747 0.718 0.714 0.721 0.730 0.721 0.743 0.696 0.706 0.695 0.698 0.697 0.690 0.686 0.684 0.679 0.682
10 0.695 0.642 0.650 0.705 0.682 0.684 0.686 0.697 0.698 0.714 0.706 0.675 0.676 0.667 0.668 0.669 0.669 0.660 0.660 0.659
11 0.695 0.666 0.658 0.704 0.688 0.693 0.701 0.701 0.702 0.715 0.711 0.720 0.680 0.679 0.682 0.678 0.675 0.668 0.669 0.666
12 0.756 0.709 0.699 0.732 0.717 0.724 0.724 0.723 0.729 0.735 0.736 0.738 0.739 0.709 0.708 0.700 0.700 0.694 0.693 0.689
13 0.721 0.694 0.669 0.713 0.677 0.703 0.698 0.701 0.702 0.714 0.715 0.720 0.724 0.722 0.691 0.681 0.678 0.677 0.676 0.669
14 0.726 0.709 0.685 0.730 0.691 0.705 0.709 0.706 0.710 0.722 0.725 0.725 0.732 0.730 0.728 0.694 0.685 0.685 0.683 0.678
15 0.751 0.723 0.703 0.743 0.709 0.717 0.714 0.717 0.720 0.732 0.733 0.738 0.736 0.737 0.736 0.726 0.699 0.693 0.699 0.693
16 0.797 0.709 0.720 0.735 0.703 0.711 0.717 0.718 0.721 0.731 0.729 0.737 0.734 0.740 0.728 0.727 0.726 0.698 0.701 0.696
17 0.777 0.704 0.719 0.745 0.716 0.718 0.726 0.725 0.730 0.736 0.733 0.740 0.737 0.741 0.739 0.734 0.728 0.730 0.714 0.709
18 0.777 0.711 0.703 0.738 0.717 0.725 0.729 0.727 0.732 0.738 0.736 0.737 0.739 0.742 0.738 0.735 0.732 0.731 0.733 0.710
19 0.741 0.723 0.717 0.730 0.723 0.727 0.723 0.725 0.729 0.733 0.732 0.729 0.732 0.740 0.740 0.730 0.727 0.728 0.731 0.729
20 0.731 0.723 0.719 0.725 0.724 0.728 0.718 0.725 0.723 0.730 0.724 0.724 0.725 0.734 0.732 0.722 0.726 0.724 0.728 0.724
21 0.736 0.718 0.719 0.726 0.723 0.729 0.719 0.721 0.722 0.729 0.724 0.724 0.721 0.734 0.732 0.722 0.726 0.725 0.727 0.724
22 0.736 0.716 0.716 0.713 0.719 0.721 0.719 0.715 0.717 0.722 0.716 0.721 0.714 0.723 0.721 0.716 0.719 0.717 0.722 0.716
23 0.741 0.718 0.714 0.716 0.720 0.721 0.719 0.718 0.719 0.727 0.719 0.720 0.717 0.728 0.727 0.719 0.722 0.719 0.722 0.718
24 0.701 0.706 0.706 0.702 0.707 0.711 0.709 0.705 0.708 0.711 0.708 0.710 0.706 0.713 0.709 0.708 0.711 0.709 0.711 0.710
25 0.736 0.713 0.713 0.714 0.717 0.720 0.715 0.714 0.717 0.724 0.717 0.720 0.715 0.722 0.720 0.717 0.719 0.718 0.721 0.719
26 0.746 0.715 0.716 0.728 0.724 0.722 0.722 0.730 0.727 0.730 0.728 0.725 0.723 0.736 0.737 0.729 0.727 0.728 0.731 0.732
27 0.726 0.708 0.716 0.728 0.728 0.721 0.724 0.726 0.723 0.729 0.725 0.724 0.720 0.733 0.734 0.724 0.727 0.724 0.727 0.726
28 0.726 0.718 0.713 0.722 0.720 0.721 0.722 0.721 0.722 0.724 0.719 0.721 0.720 0.728 0.727 0.721 0.722 0.723 0.724 0.722
29 0.701 0.699 0.699 0.699 0.700 0.700 0.701 0.700 0.701 0.700 0.701 0.700 0.700 0.700 0.701 0.701 0.700 0.701 0.701 0.701
30 0.690 0.701 0.699 0.699 0.700 0.700 0.701 0.701 0.701 0.700 0.701 0.700 0.700 0.700 0.701 0.701 0.700 0.701 0.701 0.701
31 0.701 0.701 0.700 0.699 0.701 0.702 0.701 0.701 0.701 0.701 0.701 0.701 0.701 0.702 0.702 0.701 0.701 0.701 0.702 0.702
32 0.736 0.728 0.721 0.734 0.725 0.727 0.726 0.728 0.725 0.738 0.733 0.732 0.736 0.740 0.737 0.731 0.734 0.733 0.741 0.735
33 0.746 0.727 0.719 0.732 0.725 0.725 0.724 0.727 0.725 0.737 0.735 0.731 0.733 0.741 0.737 0.732 0.735 0.732 0.742 0.735
34 0.746 0.720 0.730 0.733 0.724 0.725 0.723 0.731 0.724 0.739 0.737 0.731 0.732 0.741 0.739 0.731 0.735 0.732 0.743 0.733
35 0.761 0.718 0.717 0.738 0.729 0.726 0.721 0.731 0.726 0.738 0.737 0.730 0.736 0.743 0.739 0.734 0.734 0.730 0.742 0.734
36 0.761 0.709 0.712 0.737 0.727 0.729 0.726 0.731 0.724 0.741 0.733 0.730 0.733 0.741 0.738 0.730 0.735 0.732 0.739 0.732
37 0.766 0.721 0.707 0.738 0.729 0.728 0.729 0.731 0.730 0.743 0.735 0.730 0.733 0.740 0.737 0.732 0.733 0.733 0.740 0.730
38 0.741 0.711 0.710 0.737 0.731 0.728 0.724 0.731 0.729 0.740 0.730 0.727 0.729 0.737 0.737 0.729 0.733 0.731 0.737 0.729
39 0.756 0.709 0.710 0.733 0.729 0.728 0.729 0.732 0.728 0.740 0.731 0.727 0.732 0.736 0.735 0.729 0.732 0.733 0.736 0.729
40 0.751 0.713 0.717 0.742 0.729 0.728 0.728 0.731 0.730 0.739 0.729 0.727 0.729 0.735 0.733 0.728 0.732 0.732 0.733 0.728
41 0.772 0.716 0.706 0.740 0.727 0.727 0.723 0.732 0.728 0.745 0.731 0.730 0.731 0.738 0.735 0.731 0.732 0.733 0.738 0.729
42 0.761 0.718 0.712 0.741 0.727 0.731 0.727 0.731 0.731 0.739 0.730 0.727 0.729 0.738 0.732 0.730 0.734 0.733 0.736 0.730
43 0.761 0.716 0.710 0.738 0.725 0.729 0.725 0.732 0.727 0.742 0.730 0.729 0.729 0.742 0.736 0.733 0.732 0.732 0.740 0.731
44 0.766 0.721 0.714 0.738 0.725 0.728 0.730 0.735 0.730 0.741 0.729 0.730 0.731 0.740 0.735 0.732 0.733 0.734 0.739 0.728
45 0.756 0.720 0.709 0.738 0.727 0.726 0.724 0.735 0.728 0.742 0.732 0.730 0.730 0.739 0.734 0.733 0.732 0.734 0.738 0.731
46 0.772 0.706 0.712 0.743 0.728 0.723 0.726 0.728 0.727 0.741 0.731 0.730 0.731 0.740 0.735 0.732 0.732 0.733 0.740 0.731
47 0.756 0.718 0.707 0.741 0.731 0.729 0.721 0.732 0.725 0.742 0.731 0.730 0.731 0.739 0.736 0.734 0.733 0.734 0.740 0.731
48 0.772 0.720 0.702 0.738 0.728 0.725 0.722 0.728 0.719 0.742 0.732 0.730 0.733 0.742 0.734 0.732 0.733 0.733 0.740 0.731
49 0.766 0.718 0.707 0.739 0.728 0.726 0.720 0.727 0.723 0.741 0.733 0.729 0.731 0.743 0.733 0.733 0.734 0.734 0.739 0.730
50 0.766 0.718 0.705 0.741 0.733 0.722 0.723 0.730 0.724 0.741 0.732 0.728 0.730 0.742 0.733 0.732 0.735 0.731 0.738 0.730
51 0.756 0.718 0.697 0.741 0.730 0.726 0.720 0.728 0.723 0.741 0.735 0.730 0.731 0.743 0.732 0.733 0.732 0.732 0.740 0.731
52 0.746 0.715 0.700 0.745 0.731 0.724 0.720 0.728 0.719 0.744 0.731 0.732 0.731 0.743 0.733 0.732 0.735 0.732 0.739 0.730
53 0.746 0.718 0.703 0.743 0.728 0.728 0.729 0.730 0.722 0.743 0.733 0.732 0.733 0.744 0.732 0.732 0.736 0.732 0.739 0.731
54 0.772 0.718 0.709 0.743 0.724 0.725 0.720 0.730 0.719 0.742 0.731 0.735 0.731 0.741 0.733 0.732 0.732 0.732 0.739 0.731
55 0.761 0.716 0.710 0.747 0.727 0.725 0.723 0.729 0.718 0.742 0.730 0.733 0.731 0.743 0.729 0.732 0.734 0.730 0.737 0.732
56 0.751 0.725 0.703 0.747 0.728 0.724 0.722 0.728 0.719 0.740 0.732 0.732 0.732 0.742 0.731 0.732 0.735 0.731 0.738 0.732
57 0.751 0.718 0.703 0.744 0.731 0.726 0.720 0.726 0.719 0.743 0.730 0.733 0.731 0.741 0.732 0.732 0.736 0.731 0.736 0.730
58 0.756 0.727 0.710 0.747 0.728 0.729 0.724 0.728 0.719 0.741 0.731 0.734 0.735 0.740 0.732 0.732 0.734 0.730 0.738 0.731
59 0.761 0.715 0.702 0.744 0.728 0.722 0.720 0.728 0.715 0.741 0.731 0.731 0.733 0.741 0.732 0.732 0.734 0.731 0.738 0.730
60 0.751 0.723 0.705 0.747 0.726 0.721 0.721 0.726 0.715 0.742 0.732 0.732 0.732 0.740 0.732 0.733 0.736 0.730 0.737 0.731
61 0.741 0.723 0.698 0.741 0.727 0.731 0.727 0.727 0.725 0.742 0.732 0.737 0.733 0.741 0.735 0.736 0.736 0.732 0.738 0.732
62 0.751 0.720 0.700 0.743 0.730 0.722 0.725 0.727 0.722 0.741 0.731 0.738 0.735 0.741 0.735 0.735 0.734 0.733 0.737 0.729
63 0.741 0.718 0.703 0.747 0.733 0.727 0.722 0.728 0.723 0.741 0.731 0.737 0.734 0.743 0.735 0.735 0.734 0.733 0.737 0.732
64 0.741 0.718 0.698 0.744 0.732 0.730 0.724 0.729 0.724 0.738 0.732 0.736 0.734 0.743 0.732 0.736 0.736 0.735 0.738 0.730
65 0.746 0.721 0.702 0.744 0.728 0.721 0.722 0.726 0.717 0.740 0.730 0.734 0.736 0.742 0.731 0.734 0.735 0.732 0.736 0.731
66 0.741 0.720 0.702 0.747 0.728 0.722 0.722 0.728 0.717 0.740 0.729 0.733 0.735 0.741 0.731 0.734 0.735 0.730 0.737 0.732
67 0.746 0.725 0.705 0.743 0.723 0.718 0.720 0.723 0.714 0.739 0.730 0.730 0.734 0.740 0.731 0.736 0.736 0.730 0.735 0.731
68 0.746 0.720 0.705 0.752 0.729 0.718 0.720 0.726 0.716 0.740 0.730 0.735 0.735 0.740 0.730 0.736 0.737 0.730 0.735 0.733
69 0.746 0.728 0.700 0.746 0.725 0.717 0.719 0.723 0.714 0.741 0.728 0.733 0.734 0.743 0.731 0.734 0.735 0.731 0.735 0.731
70 0.736 0.720 0.703 0.745 0.721 0.718 0.718 0.723 0.714 0.738 0.727 0.731 0.734 0.742 0.729 0.733 0.736 0.730 0.735 0.731
71 0.756 0.725 0.701 0.750 0.727 0.722 0.719 0.725 0.717 0.738 0.727 0.730 0.735 0.740 0.730 0.733 0.735 0.732 0.735 0.730
72 0.746 0.725 0.700 0.750 0.725 0.721 0.718 0.725 0.714 0.741 0.728 0.734 0.736 0.741 0.730 0.733 0.737 0.730 0.736 0.731
73 0.726 0.720 0.703 0.746 0.718 0.721 0.719 0.724 0.715 0.740 0.728 0.732 0.734 0.740 0.729 0.734 0.736 0.729 0.737 0.732
74 0.726 0.713 0.703 0.741 0.719 0.721 0.720 0.721 0.711 0.739 0.728 0.731 0.734 0.739 0.728 0.733 0.736 0.729 0.734 0.731
75 0.741 0.727 0.703 0.744 0.729 0.725 0.727 0.726 0.723 0.741 0.730 0.736 0.735 0.739 0.733 0.737 0.738 0.732 0.738 0.730
76 0.751 0.723 0.710 0.748 0.729 0.728 0.726 0.729 0.724 0.741 0.732 0.736 0.735 0.740 0.733 0.737 0.738 0.733 0.737 0.733
77 0.741 0.732 0.702 0.746 0.727 0.724 0.730 0.726 0.723 0.741 0.730 0.738 0.734 0.740 0.734 0.739 0.738 0.731 0.739 0.732
78 0.736 0.728 0.701 0.747 0.728 0.726 0.727 0.726 0.723 0.740 0.731 0.738 0.735 0.740 0.734 0.737 0.736 0.731 0.738 0.732
79 0.731 0.727 0.710 0.743 0.731 0.727 0.732 0.728 0.728 0.740 0.731 0.737 0.734 0.738 0.735 0.737 0.735 0.732 0.739 0.730
80 0.731 0.728 0.705 0.743 0.728 0.728 0.734 0.727 0.725 0.740 0.732 0.740 0.735 0.738 0.734 0.738 0.737 0.732 0.740 0.732
81 0.736 0.727 0.709 0.752 0.727 0.728 0.731 0.726 0.724 0.740 0.732 0.737 0.736 0.739 0.735 0.737 0.737 0.730 0.739 0.730
82 0.736 0.720 0.706 0.743 0.715 0.715 0.719 0.715 0.713 0.738 0.726 0.727 0.729 0.735 0.727 0.732 0.735 0.727 0.733 0.727
83 0.716 0.720 0.702 0.741 0.720 0.715 0.716 0.725 0.713 0.739 0.725 0.730 0.732 0.736 0.726 0.734 0.734 0.727 0.736 0.727
84 0.726 0.723 0.707 0.748 0.717 0.717 0.720 0.718 0.711 0.736 0.724 0.727 0.729 0.734 0.726 0.730 0.733 0.726 0.735 0.728
85 0.721 0.713 0.699 0.745 0.713 0.714 0.720 0.718 0.706 0.734 0.724 0.727 0.730 0.733 0.726 0.729 0.732 0.726 0.733 0.727
86 0.731 0.739 0.714 0.744 0.724 0.722 0.723 0.723 0.717 0.740 0.731 0.734 0.735 0.738 0.728 0.736 0.737 0.728 0.737 0.730
87 0.736 0.732 0.708 0.747 0.722 0.724 0.719 0.720 0.719 0.741 0.730 0.732 0.736 0.737 0.731 0.736 0.737 0.730 0.738 0.731
88 0.741 0.732 0.707 0.746 0.720 0.721 0.723 0.721 0.714 0.740 0.728 0.734 0.732 0.737 0.729 0.735 0.736 0.726 0.740 0.731
89 0.731 0.735 0.716 0.741 0.718 0.720 0.721 0.722 0.717 0.739 0.730 0.733 0.732 0.736 0.727 0.734 0.735 0.728 0.737 0.730
90 0.731 0.734 0.709 0.751 0.724 0.720 0.720 0.721 0.719 0.741 0.731 0.735 0.732 0.737 0.730 0.735 0.738 0.729 0.736 0.730
91 0.731 0.732 0.715 0.751 0.717 0.723 0.718 0.723 0.715 0.740 0.731 0.734 0.728 0.735 0.727 0.734 0.734 0.723 0.735 0.730
92 0.711 0.728 0.727 0.756 0.724 0.720 0.718 0.723 0.718 0.742 0.731 0.735 0.728 0.737 0.728 0.736 0.736 0.725 0.735 0.731
93 0.741 0.728 0.722 0.752 0.720 0.724 0.717 0.722 0.718 0.742 0.730 0.735 0.731 0.736 0.729 0.733 0.736 0.726 0.734 0.730
94 0.726 0.730 0.719 0.754 0.720 0.724 0.718 0.720 0.720 0.741 0.732 0.737 0.730 0.738 0.727 0.737 0.736 0.728 0.737 0.733
95 0.746 0.723 0.719 0.744 0.721 0.721 0.718 0.721 0.715 0.739 0.729 0.731 0.729 0.731 0.728 0.735 0.735 0.725 0.738 0.731
96 0.746 0.734 0.720 0.754 0.726 0.722 0.724 0.720 0.720 0.742 0.735 0.740 0.731 0.737 0.731 0.738 0.737 0.730 0.738 0.733
97 0.726 0.728 0.726 0.756 0.724 0.718 0.724 0.720 0.721 0.742 0.734 0.739 0.733 0.737 0.731 0.737 0.737 0.728 0.737 0.731
98 0.736 0.728 0.717 0.752 0.723 0.722 0.727 0.720 0.722 0.740 0.734 0.742 0.732 0.740 0.733 0.739 0.736 0.728 0.739 0.734



5.10. PRONE-S FORECAST TABLE 91

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Max Train Bin

0 0.554 0.559 0.553 0.567 0.563 0.562 0.557 0.560 0.553 0.561 0.560 0.558 0.565 0.563 0.568 0.562 0.560 0.565 0.556 0.565
1 0.601 0.602 0.598 0.598 0.603 0.597 0.594 0.598 0.596 0.593 0.598 0.592 0.599 0.599 0.598 0.597 0.593 0.593 0.598 0.596
2 0.609 0.604 0.612 0.604 0.606 0.604 0.606 0.601 0.604 0.611 0.605 0.607 0.614 0.613 0.610 0.609 0.612 0.605 0.606 0.609
3 0.631 0.631 0.623 0.624 0.623 0.620 0.627 0.620 0.619 0.627 0.620 0.624 0.630 0.625 0.624 0.622 0.628 0.623 0.622 0.623
4 0.630 0.634 0.632 0.634 0.627 0.634 0.635 0.636 0.628 0.631 0.633 0.634 0.630 0.633 0.631 0.634 0.630 0.626 0.631 0.637
5 0.642 0.646 0.650 0.643 0.646 0.657 0.649 0.645 0.641 0.646 0.644 0.643 0.649 0.641 0.647 0.641 0.643 0.647 0.645 0.647
6 0.653 0.655 0.656 0.651 0.652 0.652 0.660 0.652 0.650 0.654 0.648 0.652 0.648 0.650 0.651 0.651 0.654 0.647 0.650 0.652
7 0.654 0.660 0.661 0.665 0.658 0.657 0.659 0.658 0.655 0.651 0.654 0.654 0.659 0.654 0.656 0.655 0.655 0.658 0.655 0.657
8 0.668 0.673 0.668 0.664 0.668 0.668 0.668 0.661 0.666 0.661 0.666 0.665 0.666 0.662 0.665 0.662 0.668 0.659 0.664 0.661
9 0.677 0.685 0.681 0.679 0.676 0.677 0.679 0.675 0.676 0.669 0.674 0.673 0.677 0.666 0.673 0.670 0.675 0.672 0.669 0.669
10 0.663 0.663 0.659 0.667 0.658 0.668 0.670 0.659 0.670 0.661 0.670 0.671 0.671 0.664 0.668 0.668 0.665 0.673 0.670 0.665
11 0.669 0.673 0.667 0.666 0.668 0.672 0.670 0.667 0.672 0.669 0.676 0.673 0.673 0.670 0.674 0.667 0.671 0.674 0.673 0.671
12 0.696 0.697 0.687 0.690 0.687 0.688 0.687 0.685 0.688 0.680 0.686 0.691 0.686 0.681 0.686 0.682 0.684 0.685 0.685 0.680
13 0.672 0.673 0.673 0.676 0.677 0.680 0.678 0.675 0.677 0.673 0.678 0.681 0.679 0.677 0.679 0.678 0.682 0.681 0.681 0.675
14 0.679 0.684 0.677 0.681 0.684 0.690 0.685 0.682 0.685 0.679 0.683 0.682 0.687 0.681 0.687 0.684 0.689 0.686 0.685 0.683
15 0.694 0.697 0.690 0.692 0.696 0.697 0.694 0.693 0.697 0.688 0.688 0.691 0.697 0.688 0.693 0.694 0.693 0.691 0.693 0.689
16 0.697 0.700 0.691 0.697 0.697 0.697 0.699 0.694 0.702 0.692 0.692 0.696 0.700 0.697 0.693 0.695 0.697 0.693 0.691 0.693
17 0.708 0.709 0.699 0.706 0.707 0.707 0.707 0.703 0.707 0.702 0.698 0.700 0.705 0.701 0.702 0.702 0.706 0.700 0.699 0.700
18 0.712 0.712 0.703 0.707 0.708 0.713 0.709 0.705 0.708 0.702 0.705 0.703 0.708 0.702 0.701 0.707 0.705 0.704 0.699 0.704
19 0.716 0.717 0.712 0.717 0.715 0.715 0.712 0.713 0.715 0.709 0.707 0.708 0.711 0.706 0.707 0.708 0.706 0.707 0.705 0.705
20 0.725 0.716 0.712 0.712 0.716 0.716 0.713 0.711 0.714 0.711 0.709 0.707 0.712 0.707 0.708 0.709 0.709 0.709 0.706 0.706
21 0.726 0.725 0.711 0.711 0.711 0.714 0.713 0.712 0.716 0.711 0.709 0.709 0.712 0.709 0.709 0.711 0.709 0.710 0.707 0.709
22 0.719 0.718 0.715 0.711 0.709 0.714 0.710 0.711 0.713 0.711 0.708 0.711 0.712 0.709 0.710 0.707 0.709 0.711 0.708 0.709
23 0.722 0.723 0.718 0.717 0.710 0.716 0.713 0.713 0.716 0.713 0.711 0.711 0.712 0.710 0.710 0.709 0.711 0.711 0.709 0.711
24 0.712 0.712 0.708 0.710 0.710 0.709 0.707 0.708 0.710 0.707 0.705 0.709 0.709 0.706 0.708 0.707 0.707 0.708 0.708 0.706
25 0.719 0.721 0.717 0.717 0.715 0.722 0.713 0.712 0.716 0.711 0.711 0.709 0.712 0.711 0.711 0.710 0.712 0.711 0.711 0.711
26 0.730 0.731 0.724 0.726 0.724 0.733 0.729 0.718 0.722 0.718 0.713 0.715 0.718 0.716 0.718 0.716 0.717 0.716 0.716 0.715
27 0.728 0.729 0.721 0.724 0.722 0.730 0.725 0.725 0.721 0.717 0.713 0.715 0.716 0.716 0.716 0.714 0.717 0.716 0.715 0.715
28 0.722 0.726 0.720 0.722 0.719 0.727 0.722 0.721 0.724 0.713 0.714 0.714 0.714 0.712 0.716 0.713 0.716 0.716 0.714 0.713
29 0.700 0.701 0.700 0.700 0.700 0.700 0.701 0.700 0.700 0.701 0.702 0.703 0.703 0.703 0.703 0.704 0.703 0.703 0.703 0.702
30 0.701 0.701 0.700 0.700 0.700 0.700 0.701 0.700 0.700 0.700 0.700 0.702 0.702 0.702 0.703 0.702 0.703 0.703 0.704 0.703
31 0.703 0.703 0.701 0.703 0.702 0.702 0.702 0.702 0.702 0.701 0.702 0.702 0.703 0.703 0.704 0.704 0.704 0.704 0.705 0.704
32 0.738 0.744 0.729 0.733 0.736 0.743 0.741 0.739 0.741 0.739 0.737 0.736 0.739 0.722 0.723 0.722 0.725 0.720 0.726 0.727
33 0.738 0.746 0.731 0.735 0.737 0.743 0.743 0.742 0.740 0.739 0.735 0.736 0.740 0.737 0.724 0.723 0.726 0.721 0.726 0.727
34 0.740 0.747 0.731 0.736 0.737 0.744 0.744 0.744 0.745 0.740 0.738 0.738 0.744 0.741 0.736 0.725 0.726 0.721 0.726 0.728
35 0.740 0.746 0.730 0.736 0.736 0.745 0.743 0.744 0.744 0.741 0.738 0.737 0.742 0.740 0.736 0.738 0.727 0.723 0.727 0.727
36 0.735 0.744 0.728 0.736 0.736 0.742 0.740 0.741 0.741 0.739 0.737 0.738 0.739 0.737 0.736 0.738 0.738 0.725 0.726 0.727
37 0.739 0.745 0.730 0.735 0.735 0.742 0.741 0.739 0.742 0.738 0.736 0.736 0.740 0.736 0.737 0.737 0.738 0.737 0.726 0.727
38 0.734 0.739 0.727 0.735 0.730 0.740 0.736 0.737 0.739 0.736 0.732 0.734 0.735 0.734 0.735 0.734 0.735 0.734 0.731 0.725
39 0.734 0.740 0.727 0.735 0.733 0.741 0.737 0.737 0.740 0.735 0.734 0.735 0.736 0.735 0.734 0.735 0.736 0.735 0.733 0.736
40 0.731 0.738 0.727 0.734 0.730 0.739 0.737 0.735 0.740 0.733 0.731 0.734 0.735 0.734 0.733 0.732 0.735 0.735 0.731 0.734
41 0.737 0.742 0.729 0.738 0.735 0.742 0.740 0.738 0.742 0.737 0.735 0.737 0.739 0.736 0.737 0.736 0.738 0.736 0.734 0.738
42 0.733 0.740 0.728 0.735 0.731 0.740 0.739 0.736 0.741 0.735 0.732 0.735 0.736 0.734 0.735 0.735 0.737 0.734 0.733 0.735
43 0.735 0.742 0.730 0.737 0.733 0.742 0.740 0.738 0.744 0.735 0.734 0.736 0.740 0.736 0.739 0.736 0.740 0.738 0.735 0.737
44 0.735 0.742 0.729 0.736 0.733 0.742 0.741 0.737 0.741 0.735 0.733 0.738 0.739 0.735 0.738 0.736 0.739 0.737 0.734 0.737
45 0.738 0.742 0.730 0.738 0.732 0.742 0.741 0.737 0.742 0.737 0.735 0.737 0.739 0.736 0.739 0.737 0.740 0.738 0.736 0.737
46 0.737 0.742 0.731 0.737 0.733 0.744 0.742 0.738 0.742 0.736 0.735 0.737 0.740 0.737 0.739 0.740 0.741 0.738 0.735 0.738
47 0.736 0.745 0.731 0.738 0.736 0.744 0.740 0.738 0.744 0.735 0.735 0.737 0.742 0.737 0.739 0.741 0.743 0.738 0.736 0.740
48 0.736 0.744 0.730 0.739 0.737 0.744 0.741 0.740 0.745 0.736 0.736 0.737 0.743 0.736 0.739 0.740 0.743 0.739 0.735 0.741
49 0.737 0.746 0.731 0.737 0.737 0.744 0.742 0.740 0.745 0.737 0.735 0.739 0.745 0.737 0.742 0.740 0.742 0.739 0.736 0.741
50 0.735 0.744 0.731 0.738 0.735 0.742 0.740 0.740 0.744 0.737 0.735 0.737 0.742 0.736 0.740 0.739 0.743 0.739 0.735 0.740
51 0.737 0.745 0.730 0.738 0.735 0.743 0.741 0.740 0.744 0.738 0.735 0.737 0.742 0.736 0.741 0.740 0.742 0.739 0.734 0.740
52 0.735 0.745 0.730 0.737 0.736 0.744 0.742 0.740 0.745 0.737 0.736 0.737 0.742 0.735 0.740 0.740 0.743 0.740 0.735 0.742
53 0.736 0.744 0.731 0.739 0.735 0.744 0.743 0.739 0.745 0.737 0.736 0.738 0.742 0.735 0.740 0.739 0.743 0.739 0.735 0.741
54 0.734 0.744 0.729 0.737 0.735 0.744 0.740 0.740 0.745 0.736 0.736 0.737 0.742 0.736 0.740 0.740 0.743 0.739 0.735 0.741
55 0.734 0.744 0.729 0.739 0.734 0.742 0.742 0.738 0.744 0.737 0.736 0.737 0.744 0.735 0.739 0.741 0.743 0.738 0.735 0.742
56 0.734 0.744 0.730 0.738 0.734 0.743 0.742 0.738 0.745 0.736 0.736 0.738 0.743 0.734 0.739 0.739 0.744 0.740 0.734 0.742
57 0.734 0.743 0.729 0.738 0.736 0.742 0.740 0.740 0.744 0.735 0.736 0.737 0.741 0.735 0.738 0.740 0.743 0.739 0.735 0.742
58 0.732 0.746 0.731 0.738 0.735 0.743 0.741 0.739 0.746 0.737 0.737 0.738 0.741 0.736 0.739 0.740 0.743 0.739 0.735 0.741
59 0.733 0.744 0.731 0.738 0.735 0.742 0.740 0.740 0.746 0.736 0.736 0.738 0.742 0.736 0.740 0.741 0.744 0.739 0.735 0.741
60 0.732 0.743 0.732 0.738 0.734 0.743 0.741 0.739 0.746 0.735 0.736 0.737 0.741 0.736 0.739 0.740 0.743 0.739 0.735 0.742
61 0.735 0.745 0.733 0.739 0.735 0.744 0.740 0.739 0.743 0.737 0.736 0.737 0.741 0.734 0.741 0.740 0.742 0.738 0.735 0.740
62 0.734 0.746 0.733 0.739 0.735 0.743 0.739 0.739 0.745 0.735 0.734 0.737 0.743 0.734 0.739 0.741 0.743 0.740 0.735 0.742
63 0.734 0.746 0.733 0.740 0.736 0.742 0.740 0.740 0.747 0.736 0.736 0.738 0.744 0.736 0.740 0.740 0.743 0.739 0.735 0.742
64 0.733 0.745 0.734 0.741 0.736 0.745 0.740 0.740 0.744 0.737 0.735 0.739 0.742 0.735 0.739 0.740 0.741 0.739 0.736 0.742
65 0.733 0.744 0.731 0.739 0.735 0.742 0.740 0.739 0.748 0.736 0.736 0.736 0.744 0.735 0.739 0.740 0.744 0.739 0.737 0.742
66 0.734 0.746 0.735 0.738 0.736 0.743 0.740 0.738 0.747 0.737 0.736 0.737 0.743 0.735 0.738 0.740 0.743 0.739 0.735 0.742
67 0.733 0.745 0.732 0.739 0.735 0.742 0.739 0.738 0.747 0.737 0.735 0.737 0.743 0.736 0.737 0.740 0.744 0.738 0.737 0.742
68 0.734 0.746 0.732 0.738 0.736 0.741 0.739 0.738 0.747 0.735 0.735 0.735 0.744 0.736 0.738 0.740 0.743 0.739 0.736 0.743
69 0.733 0.745 0.732 0.740 0.734 0.740 0.738 0.739 0.746 0.736 0.735 0.736 0.744 0.734 0.737 0.740 0.743 0.738 0.736 0.742
70 0.733 0.745 0.732 0.739 0.734 0.741 0.741 0.737 0.747 0.734 0.735 0.736 0.744 0.733 0.738 0.741 0.744 0.738 0.736 0.742
71 0.732 0.744 0.733 0.740 0.733 0.742 0.739 0.737 0.746 0.735 0.735 0.738 0.743 0.735 0.739 0.740 0.744 0.737 0.736 0.741
72 0.733 0.744 0.733 0.740 0.734 0.742 0.738 0.738 0.746 0.735 0.735 0.736 0.743 0.734 0.739 0.740 0.744 0.736 0.735 0.742
73 0.734 0.742 0.732 0.737 0.733 0.741 0.739 0.737 0.746 0.734 0.735 0.737 0.743 0.734 0.737 0.740 0.744 0.737 0.736 0.742
74 0.734 0.741 0.730 0.736 0.733 0.740 0.738 0.737 0.744 0.735 0.733 0.736 0.742 0.735 0.736 0.740 0.741 0.738 0.735 0.741
75 0.735 0.743 0.734 0.740 0.735 0.743 0.738 0.739 0.746 0.735 0.735 0.738 0.740 0.735 0.741 0.740 0.743 0.737 0.737 0.741
76 0.737 0.745 0.735 0.740 0.735 0.743 0.740 0.739 0.747 0.734 0.736 0.739 0.742 0.735 0.740 0.740 0.742 0.737 0.736 0.743
77 0.736 0.743 0.735 0.740 0.736 0.744 0.739 0.738 0.745 0.734 0.736 0.737 0.741 0.734 0.741 0.740 0.742 0.738 0.736 0.742
78 0.736 0.744 0.734 0.738 0.737 0.743 0.740 0.740 0.746 0.735 0.735 0.738 0.740 0.735 0.742 0.740 0.743 0.737 0.735 0.742
79 0.734 0.741 0.733 0.739 0.734 0.742 0.739 0.737 0.743 0.736 0.735 0.736 0.739 0.734 0.740 0.738 0.740 0.738 0.734 0.740
80 0.736 0.743 0.735 0.741 0.734 0.742 0.739 0.739 0.744 0.734 0.735 0.736 0.741 0.735 0.742 0.738 0.742 0.739 0.736 0.741
81 0.736 0.743 0.735 0.740 0.735 0.743 0.741 0.738 0.746 0.735 0.735 0.739 0.740 0.735 0.741 0.738 0.742 0.737 0.734 0.741
82 0.733 0.740 0.728 0.735 0.730 0.738 0.738 0.735 0.743 0.732 0.732 0.737 0.738 0.733 0.734 0.737 0.741 0.735 0.734 0.739
83 0.734 0.740 0.730 0.737 0.731 0.738 0.738 0.737 0.745 0.731 0.732 0.738 0.739 0.734 0.735 0.738 0.742 0.736 0.734 0.739
84 0.731 0.740 0.728 0.735 0.731 0.739 0.739 0.733 0.742 0.731 0.731 0.737 0.739 0.732 0.735 0.738 0.742 0.735 0.734 0.739
85 0.731 0.738 0.728 0.733 0.727 0.738 0.738 0.734 0.743 0.728 0.730 0.736 0.737 0.733 0.734 0.737 0.740 0.734 0.733 0.738
86 0.738 0.742 0.734 0.739 0.733 0.741 0.739 0.739 0.743 0.735 0.734 0.737 0.741 0.735 0.739 0.739 0.743 0.738 0.735 0.742
87 0.736 0.741 0.732 0.737 0.732 0.741 0.739 0.738 0.746 0.732 0.734 0.736 0.740 0.734 0.738 0.739 0.743 0.738 0.735 0.743
88 0.737 0.741 0.733 0.737 0.730 0.741 0.740 0.737 0.745 0.733 0.733 0.737 0.738 0.734 0.737 0.738 0.741 0.737 0.736 0.741
89 0.735 0.738 0.732 0.740 0.731 0.738 0.740 0.738 0.745 0.732 0.734 0.738 0.738 0.734 0.736 0.738 0.742 0.737 0.735 0.741
90 0.737 0.739 0.734 0.739 0.731 0.740 0.740 0.738 0.743 0.733 0.733 0.738 0.739 0.735 0.738 0.738 0.742 0.739 0.735 0.741
91 0.733 0.737 0.728 0.736 0.729 0.737 0.739 0.735 0.744 0.731 0.733 0.736 0.739 0.733 0.736 0.738 0.741 0.736 0.732 0.741
92 0.734 0.740 0.730 0.738 0.731 0.738 0.738 0.737 0.745 0.734 0.733 0.738 0.740 0.734 0.738 0.738 0.743 0.737 0.735 0.741
93 0.735 0.740 0.730 0.737 0.730 0.737 0.737 0.735 0.744 0.732 0.732 0.736 0.739 0.735 0.736 0.738 0.742 0.737 0.733 0.742
94 0.736 0.740 0.731 0.739 0.732 0.738 0.739 0.737 0.745 0.732 0.732 0.738 0.740 0.735 0.738 0.739 0.742 0.737 0.733 0.741
95 0.734 0.739 0.728 0.736 0.730 0.738 0.737 0.733 0.745 0.730 0.732 0.737 0.739 0.734 0.737 0.738 0.741 0.738 0.733 0.741
96 0.738 0.740 0.733 0.742 0.731 0.739 0.740 0.736 0.746 0.733 0.734 0.737 0.740 0.735 0.739 0.739 0.743 0.739 0.734 0.742
97 0.736 0.738 0.731 0.741 0.733 0.737 0.739 0.737 0.745 0.733 0.734 0.737 0.739 0.735 0.740 0.739 0.743 0.740 0.733 0.742
98 0.737 0.740 0.732 0.742 0.732 0.739 0.739 0.736 0.744 0.734 0.735 0.738 0.739 0.733 0.740 0.738 0.743 0.739 0.734 0.742



5.10. PRONE-S FORECAST TABLE 92

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
Max Train Bin

0 0.566 0.563 0.555 0.559 0.563 0.557 0.561 0.564 0.559 0.562 0.557 0.565 0.564 0.563 0.562 0.560 0.558 0.563 0.565 0.557
1 0.592 0.595 0.596 0.596 0.597 0.593 0.601 0.598 0.599 0.591 0.599 0.595 0.596 0.598 0.593 0.590 0.598 0.596 0.592 0.594
2 0.602 0.606 0.606 0.605 0.606 0.603 0.613 0.610 0.605 0.605 0.608 0.607 0.609 0.608 0.607 0.604 0.607 0.608 0.606 0.611
3 0.620 0.627 0.617 0.625 0.624 0.620 0.625 0.621 0.617 0.626 0.621 0.622 0.618 0.622 0.618 0.619 0.619 0.618 0.619 0.619
4 0.620 0.631 0.625 0.634 0.634 0.633 0.632 0.628 0.626 0.629 0.630 0.629 0.632 0.632 0.626 0.631 0.630 0.628 0.630 0.630
5 0.638 0.642 0.637 0.643 0.643 0.642 0.647 0.640 0.639 0.638 0.643 0.639 0.638 0.644 0.641 0.640 0.641 0.640 0.640 0.639
6 0.647 0.650 0.642 0.653 0.646 0.648 0.651 0.646 0.643 0.644 0.648 0.647 0.644 0.648 0.643 0.647 0.647 0.645 0.646 0.646
7 0.646 0.660 0.649 0.655 0.650 0.653 0.654 0.650 0.649 0.651 0.647 0.653 0.652 0.652 0.649 0.654 0.654 0.646 0.652 0.651
8 0.657 0.660 0.656 0.665 0.659 0.657 0.666 0.656 0.657 0.657 0.658 0.659 0.655 0.656 0.656 0.658 0.658 0.655 0.656 0.654
9 0.671 0.670 0.667 0.668 0.670 0.667 0.668 0.666 0.665 0.670 0.662 0.663 0.662 0.662 0.663 0.663 0.668 0.660 0.663 0.659
10 0.664 0.669 0.667 0.667 0.668 0.667 0.668 0.665 0.661 0.666 0.666 0.665 0.661 0.663 0.659 0.665 0.665 0.663 0.664 0.664
11 0.667 0.670 0.668 0.671 0.670 0.666 0.674 0.669 0.664 0.670 0.672 0.667 0.666 0.670 0.664 0.665 0.667 0.663 0.669 0.670
12 0.678 0.681 0.679 0.683 0.676 0.678 0.684 0.676 0.676 0.673 0.676 0.674 0.675 0.675 0.669 0.674 0.676 0.671 0.673 0.678
13 0.673 0.677 0.675 0.680 0.673 0.677 0.680 0.673 0.672 0.674 0.675 0.675 0.677 0.673 0.670 0.674 0.676 0.670 0.672 0.675
14 0.683 0.681 0.682 0.682 0.679 0.683 0.686 0.676 0.680 0.681 0.682 0.678 0.679 0.676 0.671 0.679 0.684 0.673 0.677 0.680
15 0.688 0.692 0.689 0.690 0.687 0.688 0.692 0.687 0.686 0.689 0.689 0.688 0.687 0.684 0.679 0.683 0.689 0.680 0.685 0.681
16 0.691 0.692 0.690 0.692 0.687 0.692 0.692 0.687 0.686 0.688 0.689 0.688 0.689 0.688 0.683 0.686 0.692 0.684 0.686 0.686
17 0.696 0.697 0.697 0.694 0.696 0.694 0.696 0.695 0.693 0.693 0.696 0.693 0.692 0.693 0.689 0.692 0.696 0.687 0.693 0.692
18 0.700 0.698 0.699 0.699 0.698 0.699 0.699 0.697 0.698 0.695 0.695 0.695 0.695 0.696 0.692 0.693 0.697 0.689 0.694 0.694
19 0.703 0.704 0.703 0.700 0.701 0.702 0.702 0.700 0.700 0.698 0.699 0.699 0.697 0.697 0.695 0.697 0.698 0.695 0.695 0.697
20 0.703 0.706 0.704 0.702 0.702 0.703 0.704 0.702 0.699 0.700 0.700 0.701 0.698 0.698 0.699 0.698 0.696 0.697 0.696 0.700
21 0.705 0.705 0.707 0.703 0.704 0.704 0.705 0.703 0.705 0.700 0.703 0.703 0.700 0.699 0.701 0.700 0.698 0.700 0.699 0.699
22 0.706 0.705 0.707 0.704 0.703 0.703 0.706 0.703 0.704 0.703 0.703 0.702 0.700 0.700 0.700 0.700 0.701 0.701 0.699 0.699
23 0.707 0.708 0.709 0.707 0.708 0.706 0.707 0.706 0.706 0.705 0.706 0.704 0.705 0.701 0.701 0.702 0.701 0.703 0.702 0.702
24 0.705 0.706 0.707 0.705 0.705 0.702 0.706 0.705 0.704 0.704 0.705 0.703 0.703 0.701 0.700 0.702 0.700 0.702 0.701 0.701
25 0.709 0.711 0.710 0.708 0.707 0.705 0.708 0.708 0.707 0.704 0.706 0.706 0.705 0.705 0.704 0.703 0.703 0.706 0.704 0.704
26 0.714 0.714 0.713 0.714 0.712 0.712 0.713 0.712 0.711 0.710 0.709 0.711 0.710 0.708 0.704 0.708 0.710 0.708 0.707 0.706
27 0.713 0.714 0.714 0.714 0.713 0.713 0.713 0.712 0.711 0.711 0.709 0.712 0.710 0.710 0.707 0.709 0.710 0.708 0.706 0.705
28 0.713 0.714 0.714 0.714 0.711 0.712 0.713 0.710 0.709 0.710 0.708 0.711 0.710 0.710 0.705 0.710 0.709 0.708 0.707 0.706
29 0.703 0.702 0.703 0.703 0.703 0.702 0.703 0.702 0.702 0.701 0.703 0.701 0.701 0.703 0.700 0.701 0.701 0.701 0.701 0.701
30 0.703 0.703 0.702 0.703 0.703 0.702 0.703 0.703 0.703 0.703 0.703 0.701 0.703 0.702 0.702 0.701 0.701 0.702 0.701 0.701
31 0.704 0.704 0.703 0.705 0.706 0.704 0.705 0.704 0.704 0.705 0.704 0.703 0.705 0.703 0.703 0.703 0.702 0.703 0.703 0.703
32 0.719 0.721 0.722 0.720 0.715 0.722 0.722 0.718 0.716 0.718 0.719 0.722 0.719 0.718 0.716 0.718 0.716 0.714 0.716 0.713
33 0.720 0.721 0.723 0.722 0.714 0.721 0.722 0.719 0.718 0.719 0.719 0.723 0.719 0.719 0.718 0.717 0.719 0.714 0.718 0.714
34 0.721 0.722 0.723 0.723 0.716 0.723 0.724 0.720 0.719 0.721 0.719 0.724 0.720 0.722 0.719 0.718 0.719 0.718 0.718 0.716
35 0.721 0.722 0.725 0.723 0.716 0.725 0.724 0.721 0.719 0.721 0.720 0.725 0.719 0.719 0.720 0.717 0.720 0.717 0.720 0.715
36 0.721 0.723 0.725 0.724 0.716 0.726 0.724 0.719 0.720 0.721 0.720 0.726 0.720 0.720 0.720 0.719 0.722 0.718 0.720 0.716
37 0.725 0.725 0.726 0.724 0.717 0.726 0.723 0.720 0.721 0.721 0.722 0.727 0.720 0.720 0.719 0.720 0.721 0.718 0.722 0.717
38 0.722 0.722 0.724 0.724 0.717 0.724 0.723 0.722 0.721 0.719 0.720 0.726 0.719 0.719 0.718 0.721 0.721 0.718 0.719 0.717
39 0.723 0.725 0.724 0.724 0.717 0.726 0.722 0.721 0.722 0.719 0.721 0.726 0.720 0.722 0.720 0.720 0.721 0.716 0.720 0.718
40 0.730 0.724 0.722 0.724 0.718 0.725 0.721 0.719 0.721 0.720 0.720 0.725 0.719 0.719 0.719 0.720 0.722 0.717 0.721 0.718
41 0.733 0.736 0.725 0.725 0.719 0.726 0.724 0.722 0.723 0.720 0.723 0.729 0.719 0.722 0.720 0.722 0.722 0.719 0.722 0.719
42 0.731 0.733 0.734 0.725 0.720 0.725 0.722 0.721 0.722 0.722 0.722 0.727 0.720 0.722 0.720 0.721 0.723 0.719 0.722 0.718
43 0.733 0.738 0.736 0.735 0.720 0.725 0.723 0.723 0.724 0.721 0.723 0.729 0.721 0.723 0.722 0.724 0.724 0.718 0.723 0.720
44 0.733 0.737 0.736 0.735 0.730 0.723 0.723 0.721 0.723 0.721 0.723 0.729 0.722 0.723 0.722 0.723 0.725 0.718 0.722 0.720
45 0.733 0.737 0.736 0.735 0.730 0.733 0.723 0.722 0.724 0.722 0.723 0.730 0.720 0.723 0.723 0.725 0.725 0.720 0.723 0.721
46 0.735 0.738 0.737 0.736 0.731 0.734 0.733 0.723 0.724 0.723 0.725 0.730 0.722 0.724 0.722 0.723 0.725 0.720 0.723 0.721
47 0.736 0.739 0.737 0.736 0.733 0.736 0.735 0.734 0.723 0.722 0.725 0.732 0.723 0.725 0.724 0.724 0.725 0.720 0.724 0.720
48 0.736 0.740 0.739 0.738 0.733 0.737 0.736 0.736 0.735 0.724 0.724 0.731 0.725 0.725 0.723 0.723 0.726 0.720 0.724 0.722
49 0.735 0.740 0.740 0.738 0.733 0.738 0.736 0.736 0.736 0.734 0.723 0.731 0.724 0.726 0.724 0.723 0.726 0.721 0.724 0.722
50 0.735 0.740 0.738 0.738 0.734 0.737 0.735 0.735 0.736 0.735 0.731 0.729 0.724 0.726 0.724 0.724 0.726 0.722 0.723 0.723
51 0.735 0.739 0.738 0.738 0.733 0.736 0.736 0.735 0.735 0.735 0.731 0.738 0.724 0.727 0.725 0.724 0.729 0.721 0.724 0.724
52 0.735 0.739 0.739 0.738 0.734 0.738 0.737 0.735 0.735 0.734 0.732 0.739 0.735 0.727 0.724 0.725 0.727 0.721 0.725 0.725
53 0.735 0.740 0.739 0.738 0.734 0.737 0.737 0.735 0.735 0.735 0.731 0.738 0.733 0.732 0.724 0.725 0.727 0.720 0.725 0.725
54 0.735 0.741 0.740 0.739 0.735 0.739 0.737 0.736 0.736 0.735 0.733 0.738 0.735 0.734 0.733 0.724 0.728 0.721 0.725 0.724
55 0.735 0.740 0.740 0.739 0.735 0.738 0.737 0.736 0.736 0.735 0.733 0.738 0.735 0.734 0.734 0.733 0.728 0.722 0.725 0.726
56 0.734 0.740 0.739 0.739 0.735 0.738 0.737 0.736 0.735 0.736 0.733 0.740 0.735 0.733 0.733 0.734 0.735 0.722 0.726 0.726
57 0.735 0.739 0.739 0.740 0.735 0.740 0.737 0.736 0.735 0.737 0.732 0.738 0.734 0.735 0.734 0.734 0.736 0.731 0.725 0.727
58 0.735 0.738 0.740 0.740 0.735 0.739 0.737 0.736 0.735 0.737 0.734 0.738 0.736 0.735 0.735 0.734 0.737 0.730 0.733 0.725
59 0.734 0.739 0.740 0.741 0.735 0.740 0.736 0.738 0.735 0.738 0.734 0.741 0.735 0.735 0.735 0.736 0.736 0.732 0.735 0.735
60 0.735 0.739 0.739 0.741 0.735 0.740 0.738 0.739 0.736 0.736 0.734 0.740 0.735 0.736 0.735 0.734 0.736 0.732 0.733 0.734
61 0.735 0.739 0.737 0.738 0.736 0.738 0.737 0.737 0.736 0.737 0.732 0.740 0.735 0.734 0.734 0.735 0.737 0.732 0.733 0.734
62 0.735 0.740 0.740 0.739 0.735 0.739 0.737 0.737 0.737 0.737 0.733 0.740 0.735 0.735 0.735 0.736 0.738 0.732 0.733 0.733
63 0.735 0.740 0.739 0.739 0.736 0.739 0.738 0.737 0.736 0.738 0.733 0.741 0.736 0.736 0.736 0.736 0.737 0.733 0.735 0.735
64 0.734 0.740 0.740 0.740 0.735 0.738 0.737 0.737 0.736 0.738 0.733 0.740 0.735 0.735 0.735 0.735 0.738 0.732 0.734 0.734
65 0.736 0.740 0.740 0.741 0.734 0.740 0.738 0.740 0.736 0.737 0.734 0.741 0.736 0.737 0.735 0.737 0.739 0.732 0.735 0.735
66 0.737 0.740 0.739 0.741 0.734 0.738 0.737 0.739 0.736 0.736 0.733 0.742 0.736 0.737 0.735 0.737 0.739 0.733 0.734 0.736
67 0.734 0.741 0.740 0.742 0.734 0.739 0.738 0.740 0.737 0.737 0.735 0.741 0.738 0.737 0.736 0.736 0.739 0.732 0.735 0.736
68 0.735 0.741 0.741 0.742 0.734 0.740 0.738 0.739 0.737 0.737 0.735 0.742 0.736 0.737 0.735 0.737 0.738 0.733 0.735 0.737
69 0.736 0.739 0.741 0.742 0.734 0.740 0.739 0.739 0.736 0.738 0.735 0.742 0.736 0.738 0.735 0.737 0.738 0.733 0.735 0.737
70 0.734 0.740 0.739 0.741 0.734 0.739 0.738 0.738 0.736 0.737 0.735 0.741 0.736 0.737 0.736 0.738 0.739 0.734 0.736 0.738
71 0.735 0.740 0.741 0.742 0.733 0.739 0.739 0.738 0.737 0.737 0.735 0.741 0.737 0.737 0.735 0.736 0.739 0.732 0.736 0.736
72 0.734 0.740 0.739 0.741 0.733 0.739 0.738 0.739 0.737 0.738 0.735 0.741 0.735 0.738 0.735 0.736 0.738 0.734 0.736 0.737
73 0.733 0.739 0.740 0.741 0.733 0.739 0.737 0.738 0.736 0.737 0.735 0.741 0.736 0.737 0.735 0.736 0.738 0.734 0.736 0.737
74 0.733 0.739 0.739 0.741 0.732 0.740 0.737 0.737 0.735 0.738 0.736 0.741 0.736 0.738 0.735 0.735 0.739 0.734 0.735 0.738
75 0.737 0.738 0.739 0.740 0.735 0.739 0.737 0.738 0.736 0.739 0.734 0.741 0.736 0.736 0.735 0.736 0.737 0.733 0.735 0.734
76 0.736 0.738 0.739 0.740 0.735 0.739 0.738 0.738 0.737 0.739 0.734 0.741 0.738 0.735 0.735 0.736 0.738 0.733 0.735 0.735
77 0.737 0.738 0.738 0.739 0.735 0.740 0.738 0.737 0.737 0.739 0.735 0.741 0.737 0.736 0.736 0.735 0.738 0.734 0.736 0.734
78 0.736 0.738 0.739 0.739 0.735 0.739 0.736 0.738 0.737 0.739 0.735 0.741 0.737 0.735 0.735 0.736 0.738 0.733 0.736 0.735
79 0.736 0.737 0.736 0.739 0.734 0.738 0.734 0.737 0.734 0.739 0.732 0.740 0.736 0.734 0.734 0.735 0.736 0.733 0.733 0.733
80 0.737 0.737 0.738 0.739 0.735 0.739 0.735 0.739 0.736 0.739 0.734 0.742 0.737 0.735 0.734 0.736 0.737 0.733 0.736 0.734
81 0.737 0.738 0.740 0.740 0.735 0.740 0.736 0.738 0.735 0.739 0.734 0.741 0.736 0.736 0.734 0.735 0.738 0.734 0.736 0.735
82 0.733 0.735 0.738 0.739 0.730 0.737 0.735 0.738 0.735 0.736 0.736 0.741 0.735 0.737 0.735 0.735 0.739 0.734 0.735 0.736
83 0.734 0.736 0.738 0.741 0.732 0.739 0.735 0.738 0.736 0.737 0.736 0.740 0.736 0.737 0.733 0.736 0.739 0.734 0.734 0.736
84 0.732 0.734 0.738 0.738 0.730 0.736 0.735 0.736 0.736 0.736 0.736 0.740 0.735 0.737 0.734 0.735 0.739 0.734 0.734 0.736
85 0.732 0.734 0.736 0.737 0.730 0.737 0.734 0.736 0.735 0.735 0.735 0.739 0.735 0.736 0.734 0.735 0.738 0.734 0.733 0.735
86 0.735 0.737 0.738 0.740 0.735 0.738 0.737 0.739 0.739 0.739 0.737 0.742 0.736 0.737 0.736 0.736 0.739 0.733 0.734 0.737
87 0.735 0.737 0.739 0.741 0.733 0.739 0.737 0.740 0.738 0.737 0.736 0.741 0.737 0.736 0.736 0.736 0.739 0.734 0.735 0.736
88 0.734 0.737 0.738 0.740 0.734 0.738 0.736 0.739 0.738 0.738 0.736 0.741 0.737 0.737 0.735 0.736 0.739 0.735 0.735 0.737
89 0.736 0.738 0.739 0.741 0.733 0.738 0.736 0.738 0.737 0.738 0.736 0.740 0.736 0.737 0.735 0.736 0.738 0.735 0.734 0.736
90 0.736 0.738 0.739 0.741 0.733 0.739 0.736 0.740 0.738 0.739 0.736 0.741 0.738 0.738 0.735 0.736 0.738 0.735 0.735 0.736
91 0.735 0.736 0.738 0.739 0.732 0.738 0.734 0.737 0.737 0.738 0.737 0.740 0.735 0.738 0.734 0.736 0.738 0.734 0.734 0.734
92 0.736 0.737 0.739 0.741 0.733 0.738 0.735 0.739 0.739 0.740 0.737 0.740 0.737 0.737 0.736 0.737 0.738 0.735 0.735 0.736
93 0.735 0.736 0.738 0.740 0.732 0.738 0.734 0.738 0.738 0.738 0.738 0.741 0.736 0.737 0.735 0.737 0.739 0.735 0.733 0.735
94 0.736 0.738 0.738 0.742 0.735 0.738 0.735 0.740 0.737 0.740 0.738 0.741 0.737 0.737 0.736 0.737 0.738 0.735 0.734 0.735
95 0.734 0.736 0.736 0.738 0.731 0.738 0.734 0.737 0.737 0.738 0.737 0.741 0.735 0.737 0.734 0.736 0.739 0.734 0.734 0.735
96 0.737 0.737 0.738 0.742 0.735 0.739 0.735 0.739 0.739 0.741 0.738 0.742 0.737 0.737 0.737 0.736 0.739 0.735 0.735 0.737
97 0.736 0.738 0.738 0.742 0.734 0.739 0.736 0.738 0.738 0.740 0.738 0.742 0.738 0.737 0.736 0.737 0.738 0.735 0.735 0.735
98 0.737 0.738 0.738 0.740 0.735 0.738 0.736 0.738 0.738 0.740 0.737 0.742 0.737 0.737 0.735 0.738 0.738 0.736 0.735 0.736



5.10. PRONE-S FORECAST TABLE 93

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Max Train Bin

0 0.560 0.566 0.563 0.564 0.561 0.560 0.560 0.560 0.561 0.559 0.557 0.558 0.558 0.564 0.562 0.557 0.559 0.562 0.563 0.564
1 0.596 0.595 0.594 0.596 0.593 0.595 0.594 0.590 0.597 0.593 0.593 0.596 0.593 0.594 0.594 0.594 0.595 0.597 0.590 0.593
2 0.607 0.604 0.612 0.604 0.608 0.606 0.605 0.606 0.605 0.604 0.598 0.603 0.606 0.605 0.600 0.607 0.603 0.605 0.601 0.603
3 0.625 0.617 0.624 0.622 0.616 0.621 0.617 0.622 0.619 0.621 0.619 0.618 0.621 0.618 0.620 0.616 0.617 0.618 0.616 0.617
4 0.630 0.630 0.633 0.632 0.625 0.629 0.630 0.628 0.626 0.625 0.622 0.624 0.629 0.628 0.624 0.628 0.623 0.626 0.624 0.627
5 0.644 0.636 0.639 0.640 0.635 0.640 0.637 0.641 0.642 0.636 0.637 0.637 0.640 0.637 0.633 0.637 0.637 0.637 0.635 0.635
6 0.644 0.638 0.646 0.647 0.642 0.645 0.644 0.644 0.641 0.643 0.642 0.645 0.646 0.643 0.640 0.641 0.643 0.646 0.637 0.642
7 0.655 0.647 0.651 0.651 0.650 0.651 0.647 0.648 0.650 0.647 0.650 0.648 0.647 0.649 0.649 0.647 0.648 0.647 0.639 0.646
8 0.658 0.654 0.658 0.660 0.654 0.656 0.658 0.653 0.657 0.652 0.653 0.653 0.654 0.652 0.651 0.654 0.652 0.653 0.647 0.653
9 0.667 0.663 0.660 0.666 0.659 0.660 0.660 0.660 0.662 0.659 0.661 0.661 0.660 0.662 0.659 0.659 0.660 0.658 0.655 0.657
10 0.667 0.656 0.661 0.666 0.662 0.662 0.663 0.663 0.665 0.662 0.662 0.661 0.659 0.662 0.661 0.662 0.663 0.662 0.657 0.660
11 0.671 0.664 0.666 0.669 0.664 0.668 0.668 0.667 0.666 0.664 0.665 0.666 0.663 0.665 0.666 0.665 0.664 0.664 0.663 0.663
12 0.677 0.672 0.674 0.674 0.673 0.670 0.670 0.672 0.671 0.672 0.671 0.673 0.672 0.673 0.667 0.666 0.671 0.671 0.667 0.668
13 0.674 0.670 0.672 0.674 0.670 0.674 0.672 0.671 0.673 0.675 0.673 0.669 0.667 0.672 0.674 0.672 0.671 0.673 0.666 0.671
14 0.678 0.675 0.676 0.679 0.675 0.679 0.675 0.678 0.676 0.677 0.676 0.674 0.673 0.679 0.674 0.674 0.675 0.675 0.672 0.672
15 0.687 0.682 0.682 0.684 0.679 0.680 0.679 0.684 0.685 0.683 0.681 0.679 0.680 0.681 0.678 0.681 0.678 0.681 0.679 0.678
16 0.688 0.681 0.686 0.686 0.685 0.687 0.684 0.685 0.686 0.686 0.686 0.681 0.685 0.682 0.682 0.683 0.683 0.681 0.678 0.678
17 0.689 0.685 0.690 0.692 0.689 0.690 0.688 0.688 0.690 0.689 0.689 0.684 0.684 0.686 0.684 0.687 0.684 0.684 0.683 0.681
18 0.696 0.689 0.693 0.693 0.691 0.692 0.690 0.691 0.691 0.691 0.691 0.690 0.687 0.691 0.689 0.687 0.689 0.687 0.688 0.687
19 0.697 0.692 0.694 0.695 0.694 0.694 0.695 0.692 0.694 0.693 0.693 0.689 0.690 0.690 0.690 0.691 0.692 0.689 0.689 0.688
20 0.697 0.695 0.696 0.696 0.694 0.698 0.694 0.694 0.695 0.692 0.692 0.690 0.690 0.693 0.692 0.693 0.693 0.693 0.690 0.689
21 0.699 0.699 0.698 0.701 0.696 0.696 0.697 0.695 0.695 0.697 0.693 0.692 0.694 0.695 0.694 0.694 0.694 0.694 0.691 0.689
22 0.700 0.697 0.698 0.699 0.697 0.699 0.697 0.696 0.696 0.696 0.695 0.692 0.693 0.693 0.694 0.696 0.696 0.693 0.692 0.691
23 0.701 0.700 0.700 0.700 0.699 0.700 0.699 0.698 0.699 0.698 0.696 0.697 0.696 0.697 0.696 0.697 0.697 0.695 0.695 0.691
24 0.701 0.698 0.699 0.699 0.700 0.699 0.698 0.699 0.698 0.697 0.694 0.695 0.695 0.695 0.696 0.698 0.697 0.696 0.693 0.693
25 0.704 0.701 0.703 0.703 0.703 0.702 0.702 0.701 0.699 0.700 0.698 0.699 0.699 0.699 0.700 0.700 0.699 0.697 0.696 0.695
26 0.708 0.704 0.706 0.708 0.705 0.704 0.706 0.704 0.704 0.704 0.702 0.703 0.702 0.703 0.702 0.702 0.704 0.703 0.703 0.700
27 0.707 0.705 0.706 0.706 0.707 0.704 0.705 0.706 0.704 0.704 0.704 0.704 0.702 0.702 0.703 0.703 0.703 0.702 0.702 0.700
28 0.707 0.705 0.705 0.707 0.706 0.704 0.706 0.704 0.704 0.704 0.703 0.704 0.702 0.703 0.702 0.702 0.703 0.702 0.701 0.701
29 0.701 0.699 0.701 0.701 0.700 0.700 0.700 0.700 0.698 0.698 0.696 0.696 0.698 0.697 0.697 0.696 0.695 0.698 0.695 0.695
30 0.699 0.700 0.700 0.701 0.700 0.700 0.700 0.699 0.699 0.701 0.698 0.696 0.697 0.697 0.696 0.699 0.695 0.697 0.696 0.695
31 0.702 0.701 0.702 0.703 0.702 0.701 0.702 0.702 0.701 0.701 0.699 0.699 0.700 0.698 0.698 0.699 0.699 0.699 0.698 0.698
32 0.718 0.714 0.714 0.715 0.714 0.715 0.714 0.710 0.712 0.714 0.710 0.709 0.712 0.713 0.710 0.709 0.711 0.710 0.709 0.710
33 0.718 0.716 0.712 0.714 0.717 0.714 0.715 0.712 0.714 0.714 0.713 0.709 0.713 0.713 0.711 0.711 0.713 0.710 0.710 0.709
34 0.719 0.719 0.715 0.717 0.719 0.717 0.718 0.712 0.714 0.715 0.713 0.713 0.714 0.715 0.713 0.714 0.713 0.710 0.712 0.712
35 0.720 0.719 0.715 0.716 0.717 0.716 0.718 0.714 0.717 0.717 0.714 0.714 0.718 0.717 0.711 0.714 0.716 0.710 0.712 0.712
36 0.718 0.717 0.715 0.717 0.718 0.717 0.718 0.713 0.716 0.718 0.713 0.714 0.718 0.715 0.713 0.714 0.715 0.712 0.711 0.712
37 0.720 0.719 0.718 0.718 0.720 0.718 0.719 0.715 0.717 0.718 0.714 0.714 0.718 0.718 0.713 0.715 0.716 0.713 0.713 0.714
38 0.719 0.717 0.716 0.716 0.718 0.715 0.720 0.714 0.716 0.717 0.712 0.715 0.717 0.715 0.713 0.712 0.716 0.713 0.711 0.713
39 0.720 0.717 0.718 0.718 0.719 0.717 0.719 0.716 0.717 0.719 0.714 0.716 0.718 0.717 0.715 0.713 0.716 0.714 0.713 0.714
40 0.719 0.716 0.717 0.717 0.718 0.716 0.721 0.715 0.717 0.717 0.713 0.716 0.715 0.718 0.715 0.713 0.717 0.712 0.713 0.712
41 0.721 0.719 0.719 0.721 0.721 0.720 0.721 0.716 0.719 0.721 0.716 0.717 0.720 0.720 0.716 0.715 0.719 0.714 0.715 0.716
42 0.721 0.719 0.720 0.719 0.719 0.718 0.722 0.716 0.717 0.719 0.715 0.717 0.720 0.719 0.716 0.714 0.719 0.714 0.716 0.715
43 0.722 0.722 0.720 0.722 0.721 0.721 0.723 0.716 0.719 0.722 0.717 0.718 0.719 0.719 0.718 0.717 0.719 0.716 0.717 0.716
44 0.721 0.720 0.720 0.722 0.721 0.721 0.723 0.716 0.718 0.722 0.717 0.719 0.721 0.720 0.718 0.715 0.721 0.715 0.717 0.717
45 0.722 0.722 0.722 0.723 0.722 0.720 0.724 0.718 0.719 0.723 0.719 0.720 0.722 0.721 0.719 0.717 0.720 0.717 0.718 0.717
46 0.722 0.721 0.722 0.723 0.723 0.722 0.723 0.719 0.720 0.723 0.718 0.721 0.721 0.721 0.719 0.717 0.721 0.717 0.718 0.718
47 0.721 0.723 0.722 0.725 0.723 0.721 0.725 0.719 0.721 0.725 0.720 0.721 0.722 0.721 0.721 0.719 0.721 0.719 0.720 0.720
48 0.724 0.722 0.723 0.726 0.725 0.722 0.726 0.722 0.722 0.726 0.720 0.722 0.724 0.723 0.722 0.719 0.722 0.719 0.720 0.720
49 0.725 0.724 0.722 0.727 0.726 0.724 0.725 0.722 0.722 0.726 0.722 0.723 0.725 0.723 0.722 0.721 0.722 0.720 0.722 0.720
50 0.724 0.723 0.721 0.725 0.725 0.723 0.726 0.723 0.721 0.726 0.722 0.722 0.724 0.723 0.722 0.721 0.723 0.719 0.722 0.719
51 0.725 0.724 0.723 0.726 0.726 0.723 0.725 0.724 0.721 0.726 0.723 0.722 0.725 0.723 0.723 0.721 0.725 0.719 0.721 0.720
52 0.725 0.725 0.722 0.728 0.726 0.724 0.727 0.724 0.722 0.728 0.723 0.722 0.726 0.725 0.724 0.722 0.724 0.720 0.722 0.719
53 0.724 0.725 0.722 0.726 0.726 0.723 0.727 0.725 0.722 0.726 0.722 0.722 0.725 0.725 0.723 0.723 0.725 0.720 0.722 0.720
54 0.725 0.726 0.722 0.727 0.726 0.724 0.727 0.725 0.723 0.727 0.723 0.723 0.725 0.726 0.724 0.723 0.725 0.721 0.723 0.720
55 0.725 0.725 0.722 0.727 0.726 0.724 0.728 0.724 0.724 0.727 0.725 0.723 0.726 0.727 0.725 0.723 0.725 0.721 0.722 0.720
56 0.726 0.726 0.722 0.727 0.725 0.723 0.727 0.725 0.723 0.727 0.724 0.724 0.724 0.725 0.725 0.724 0.725 0.721 0.722 0.720
57 0.724 0.726 0.723 0.726 0.725 0.724 0.727 0.725 0.724 0.727 0.726 0.724 0.725 0.728 0.725 0.724 0.725 0.720 0.722 0.719
58 0.725 0.726 0.724 0.728 0.725 0.723 0.728 0.726 0.725 0.727 0.725 0.726 0.725 0.727 0.726 0.725 0.725 0.722 0.723 0.721
59 0.726 0.727 0.724 0.728 0.726 0.723 0.728 0.726 0.724 0.729 0.726 0.725 0.725 0.727 0.725 0.725 0.726 0.722 0.722 0.722
60 0.732 0.727 0.724 0.727 0.725 0.722 0.728 0.727 0.724 0.728 0.726 0.727 0.724 0.726 0.725 0.725 0.727 0.722 0.723 0.722
61 0.732 0.733 0.724 0.726 0.726 0.723 0.727 0.726 0.723 0.727 0.725 0.725 0.724 0.727 0.726 0.725 0.727 0.721 0.724 0.720
62 0.733 0.733 0.734 0.728 0.725 0.723 0.728 0.726 0.725 0.728 0.727 0.726 0.724 0.727 0.727 0.725 0.726 0.722 0.723 0.721
63 0.735 0.734 0.734 0.736 0.725 0.724 0.728 0.725 0.724 0.729 0.726 0.726 0.726 0.727 0.727 0.726 0.727 0.723 0.725 0.721
64 0.734 0.734 0.734 0.736 0.734 0.724 0.727 0.726 0.724 0.727 0.726 0.726 0.725 0.727 0.726 0.725 0.727 0.724 0.725 0.722
65 0.732 0.737 0.736 0.737 0.735 0.733 0.726 0.726 0.726 0.731 0.728 0.727 0.726 0.729 0.728 0.726 0.729 0.725 0.725 0.722
66 0.733 0.738 0.736 0.737 0.735 0.733 0.735 0.726 0.724 0.729 0.728 0.727 0.725 0.728 0.727 0.726 0.727 0.725 0.724 0.723
67 0.734 0.738 0.738 0.737 0.735 0.733 0.736 0.736 0.725 0.729 0.728 0.729 0.725 0.728 0.727 0.727 0.728 0.726 0.726 0.724
68 0.735 0.738 0.738 0.737 0.735 0.734 0.736 0.736 0.733 0.728 0.727 0.728 0.727 0.728 0.727 0.727 0.728 0.725 0.727 0.723
69 0.735 0.738 0.738 0.738 0.735 0.735 0.735 0.736 0.734 0.738 0.728 0.729 0.726 0.729 0.728 0.727 0.727 0.726 0.726 0.724
70 0.735 0.739 0.738 0.738 0.736 0.735 0.737 0.737 0.734 0.739 0.737 0.729 0.725 0.728 0.727 0.728 0.729 0.725 0.726 0.723
71 0.735 0.738 0.739 0.737 0.736 0.735 0.735 0.736 0.735 0.738 0.737 0.735 0.726 0.728 0.727 0.728 0.728 0.726 0.726 0.724
72 0.735 0.738 0.738 0.738 0.735 0.736 0.735 0.737 0.736 0.738 0.738 0.735 0.737 0.729 0.729 0.727 0.728 0.725 0.728 0.724
73 0.736 0.738 0.737 0.738 0.736 0.737 0.737 0.737 0.734 0.738 0.738 0.737 0.736 0.735 0.726 0.727 0.729 0.724 0.727 0.723
74 0.735 0.738 0.739 0.737 0.735 0.736 0.737 0.738 0.735 0.738 0.740 0.736 0.737 0.735 0.735 0.726 0.728 0.725 0.727 0.723
75 0.734 0.737 0.737 0.738 0.736 0.735 0.735 0.734 0.734 0.738 0.736 0.737 0.734 0.734 0.734 0.732 0.727 0.724 0.728 0.723
76 0.735 0.737 0.738 0.738 0.736 0.736 0.736 0.734 0.733 0.738 0.736 0.735 0.735 0.734 0.734 0.734 0.734 0.723 0.727 0.722
77 0.734 0.737 0.737 0.737 0.735 0.734 0.736 0.735 0.733 0.738 0.736 0.735 0.735 0.733 0.735 0.734 0.733 0.729 0.726 0.722
78 0.736 0.737 0.737 0.738 0.736 0.735 0.736 0.734 0.734 0.737 0.736 0.736 0.736 0.734 0.735 0.734 0.733 0.730 0.734 0.722
79 0.733 0.734 0.736 0.737 0.734 0.733 0.733 0.732 0.732 0.735 0.733 0.733 0.733 0.731 0.733 0.733 0.731 0.728 0.732 0.729
80 0.734 0.735 0.737 0.737 0.737 0.734 0.735 0.734 0.732 0.737 0.735 0.735 0.734 0.733 0.735 0.733 0.732 0.730 0.733 0.731
81 0.735 0.737 0.738 0.738 0.737 0.735 0.736 0.735 0.734 0.738 0.736 0.735 0.737 0.735 0.736 0.734 0.733 0.730 0.734 0.732
82 0.734 0.738 0.738 0.736 0.737 0.735 0.738 0.738 0.737 0.737 0.738 0.736 0.736 0.736 0.737 0.736 0.737 0.732 0.733 0.734
83 0.735 0.739 0.739 0.737 0.737 0.736 0.739 0.737 0.737 0.738 0.739 0.738 0.737 0.735 0.737 0.735 0.736 0.732 0.735 0.734
84 0.734 0.738 0.739 0.736 0.737 0.734 0.738 0.737 0.736 0.738 0.738 0.736 0.737 0.736 0.737 0.735 0.737 0.732 0.736 0.734
85 0.734 0.737 0.738 0.736 0.737 0.735 0.738 0.737 0.736 0.739 0.739 0.735 0.737 0.736 0.738 0.735 0.738 0.732 0.735 0.734
86 0.735 0.739 0.738 0.738 0.737 0.736 0.738 0.736 0.737 0.740 0.741 0.738 0.738 0.736 0.737 0.736 0.736 0.733 0.735 0.735
87 0.736 0.739 0.739 0.738 0.737 0.735 0.739 0.736 0.738 0.740 0.739 0.739 0.737 0.737 0.738 0.736 0.737 0.733 0.736 0.734
88 0.735 0.739 0.739 0.738 0.738 0.737 0.739 0.737 0.738 0.740 0.740 0.738 0.738 0.737 0.738 0.736 0.736 0.733 0.735 0.734
89 0.734 0.738 0.737 0.738 0.738 0.737 0.740 0.737 0.738 0.739 0.740 0.738 0.737 0.736 0.738 0.736 0.737 0.733 0.736 0.736
90 0.735 0.739 0.738 0.738 0.738 0.737 0.739 0.736 0.737 0.739 0.740 0.738 0.738 0.738 0.739 0.736 0.737 0.734 0.736 0.735
91 0.734 0.738 0.739 0.737 0.738 0.735 0.738 0.737 0.737 0.739 0.742 0.737 0.738 0.737 0.738 0.736 0.738 0.733 0.736 0.736
92 0.735 0.738 0.739 0.738 0.738 0.737 0.738 0.736 0.738 0.740 0.741 0.738 0.737 0.737 0.739 0.736 0.737 0.733 0.736 0.736
93 0.736 0.737 0.739 0.738 0.738 0.737 0.738 0.736 0.738 0.740 0.741 0.738 0.738 0.737 0.739 0.737 0.737 0.734 0.736 0.736
94 0.735 0.738 0.739 0.739 0.738 0.737 0.739 0.736 0.738 0.740 0.740 0.737 0.737 0.736 0.739 0.736 0.738 0.733 0.737 0.736
95 0.734 0.737 0.739 0.738 0.738 0.736 0.739 0.736 0.737 0.739 0.741 0.738 0.738 0.738 0.739 0.737 0.737 0.733 0.737 0.737
96 0.735 0.737 0.738 0.740 0.739 0.737 0.739 0.736 0.738 0.740 0.740 0.738 0.738 0.736 0.739 0.736 0.737 0.734 0.738 0.736
97 0.737 0.738 0.739 0.738 0.739 0.737 0.738 0.736 0.739 0.741 0.740 0.738 0.737 0.735 0.739 0.737 0.736 0.733 0.737 0.736
98 0.736 0.737 0.739 0.739 0.738 0.736 0.737 0.736 0.737 0.741 0.740 0.737 0.737 0.737 0.739 0.737 0.736 0.733 0.739 0.736



5.10. PRONE-S FORECAST TABLE 94

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
Max Train Bin

0 0.562 0.558 0.559 0.560 0.560 0.560 0.559 0.556 0.560 0.559 0.562 0.559 0.560 0.556 0.563 0.560 0.557 0.553 0.568 0.562
1 0.593 0.592 0.594 0.593 0.592 0.592 0.593 0.594 0.590 0.591 0.591 0.593 0.594 0.592 0.592 0.586 0.588 0.587 0.580 0.597
2 0.605 0.605 0.604 0.602 0.602 0.602 0.602 0.603 0.601 0.602 0.603 0.603 0.601 0.606 0.601 0.600 0.597 0.602 0.598 0.583
3 0.619 0.612 0.619 0.617 0.615 0.614 0.617 0.615 0.615 0.617 0.617 0.617 0.616 0.615 0.616 0.614 0.612 0.611 0.610 0.642
4 0.628 0.627 0.624 0.624 0.622 0.627 0.621 0.626 0.627 0.620 0.625 0.625 0.626 0.623 0.623 0.624 0.618 0.623 0.619 0.618
5 0.631 0.638 0.635 0.635 0.633 0.634 0.634 0.636 0.637 0.631 0.634 0.635 0.637 0.632 0.634 0.633 0.630 0.628 0.628 0.632
6 0.640 0.636 0.641 0.638 0.637 0.638 0.638 0.641 0.641 0.637 0.639 0.641 0.642 0.636 0.637 0.638 0.636 0.636 0.623 0.665
7 0.646 0.646 0.643 0.646 0.643 0.641 0.642 0.643 0.643 0.641 0.643 0.643 0.645 0.643 0.640 0.644 0.635 0.638 0.641 0.668
8 0.653 0.648 0.651 0.650 0.649 0.648 0.648 0.650 0.651 0.645 0.650 0.651 0.653 0.645 0.648 0.648 0.644 0.641 0.640 0.652
9 0.662 0.657 0.656 0.657 0.654 0.654 0.654 0.656 0.656 0.654 0.654 0.658 0.659 0.654 0.654 0.654 0.651 0.647 0.653 0.669
10 0.661 0.658 0.660 0.660 0.657 0.659 0.657 0.660 0.659 0.657 0.658 0.660 0.661 0.653 0.656 0.656 0.653 0.649 0.650 0.646
11 0.662 0.660 0.660 0.663 0.662 0.661 0.659 0.663 0.659 0.661 0.661 0.662 0.664 0.656 0.661 0.657 0.656 0.653 0.650 0.641
12 0.667 0.665 0.665 0.665 0.667 0.665 0.665 0.666 0.667 0.666 0.665 0.665 0.666 0.661 0.663 0.662 0.659 0.656 0.652 0.661
13 0.671 0.670 0.670 0.670 0.671 0.668 0.667 0.668 0.668 0.668 0.668 0.669 0.668 0.664 0.665 0.664 0.661 0.662 0.665 0.668
14 0.674 0.673 0.671 0.672 0.674 0.670 0.669 0.673 0.671 0.672 0.669 0.673 0.671 0.671 0.671 0.669 0.666 0.664 0.678 0.655
15 0.679 0.679 0.675 0.678 0.678 0.674 0.674 0.675 0.676 0.675 0.676 0.676 0.677 0.672 0.676 0.673 0.670 0.668 0.668 0.686
16 0.680 0.680 0.677 0.678 0.678 0.679 0.677 0.676 0.678 0.677 0.677 0.677 0.678 0.677 0.677 0.675 0.673 0.671 0.683 0.697
17 0.682 0.684 0.682 0.681 0.682 0.677 0.678 0.679 0.682 0.679 0.680 0.682 0.681 0.680 0.678 0.679 0.676 0.674 0.681 0.692
18 0.687 0.688 0.684 0.683 0.683 0.682 0.682 0.684 0.682 0.683 0.682 0.684 0.682 0.680 0.681 0.680 0.677 0.677 0.678 0.676
19 0.690 0.689 0.687 0.685 0.686 0.683 0.684 0.682 0.685 0.684 0.683 0.686 0.684 0.682 0.682 0.683 0.677 0.675 0.670 0.687
20 0.690 0.690 0.688 0.687 0.686 0.684 0.687 0.684 0.686 0.685 0.685 0.687 0.686 0.683 0.683 0.684 0.679 0.679 0.682 0.697
21 0.691 0.691 0.689 0.689 0.689 0.687 0.687 0.687 0.686 0.689 0.687 0.688 0.687 0.686 0.684 0.687 0.680 0.681 0.675 0.703
22 0.692 0.693 0.689 0.689 0.689 0.689 0.688 0.688 0.689 0.690 0.686 0.688 0.686 0.687 0.686 0.687 0.682 0.684 0.687 0.696
23 0.694 0.694 0.693 0.691 0.692 0.690 0.690 0.690 0.689 0.691 0.689 0.690 0.690 0.690 0.688 0.688 0.684 0.686 0.676 0.682
24 0.693 0.693 0.692 0.692 0.690 0.691 0.690 0.691 0.690 0.690 0.689 0.691 0.689 0.688 0.688 0.689 0.686 0.686 0.684 0.704
25 0.697 0.697 0.695 0.694 0.694 0.691 0.694 0.693 0.693 0.694 0.691 0.694 0.693 0.691 0.691 0.691 0.687 0.688 0.685 0.700
26 0.702 0.701 0.700 0.699 0.697 0.696 0.697 0.695 0.696 0.696 0.695 0.697 0.696 0.696 0.695 0.694 0.692 0.689 0.687 0.690
27 0.699 0.701 0.698 0.697 0.700 0.696 0.697 0.696 0.696 0.697 0.697 0.697 0.698 0.697 0.695 0.696 0.692 0.689 0.688 0.703
28 0.702 0.699 0.700 0.699 0.700 0.697 0.697 0.699 0.697 0.699 0.697 0.698 0.699 0.696 0.695 0.696 0.692 0.690 0.691 0.697
29 0.694 0.694 0.694 0.693 0.693 0.694 0.690 0.693 0.692 0.692 0.693 0.694 0.691 0.691 0.692 0.690 0.689 0.688 0.687 0.692
30 0.697 0.696 0.694 0.694 0.695 0.696 0.693 0.694 0.693 0.694 0.693 0.694 0.692 0.691 0.693 0.692 0.690 0.688 0.684 0.701
31 0.697 0.698 0.696 0.696 0.697 0.695 0.695 0.696 0.695 0.694 0.694 0.696 0.694 0.694 0.694 0.693 0.692 0.691 0.687 0.690
32 0.710 0.711 0.708 0.708 0.708 0.706 0.706 0.704 0.704 0.704 0.706 0.707 0.706 0.705 0.703 0.703 0.698 0.699 0.702 0.708
33 0.712 0.710 0.708 0.711 0.708 0.709 0.707 0.706 0.706 0.706 0.706 0.707 0.706 0.708 0.704 0.704 0.700 0.698 0.705 0.713
34 0.714 0.714 0.710 0.712 0.709 0.710 0.708 0.707 0.708 0.708 0.709 0.707 0.708 0.709 0.707 0.706 0.701 0.703 0.696 0.714
35 0.714 0.712 0.711 0.714 0.710 0.710 0.710 0.708 0.709 0.708 0.709 0.710 0.711 0.711 0.707 0.707 0.702 0.701 0.704 0.713
36 0.712 0.713 0.711 0.710 0.710 0.711 0.710 0.709 0.710 0.707 0.709 0.707 0.710 0.709 0.707 0.704 0.703 0.703 0.705 0.727
37 0.715 0.714 0.713 0.715 0.711 0.712 0.709 0.709 0.710 0.709 0.710 0.710 0.712 0.711 0.709 0.709 0.703 0.705 0.705 0.718
38 0.713 0.712 0.709 0.712 0.711 0.710 0.710 0.708 0.707 0.708 0.708 0.708 0.709 0.709 0.708 0.706 0.703 0.705 0.701 0.715
39 0.715 0.713 0.712 0.713 0.711 0.711 0.711 0.709 0.709 0.708 0.709 0.710 0.713 0.711 0.709 0.709 0.703 0.707 0.700 0.715
40 0.715 0.712 0.711 0.713 0.711 0.711 0.710 0.709 0.711 0.709 0.710 0.710 0.711 0.710 0.709 0.708 0.702 0.706 0.709 0.711
41 0.716 0.715 0.715 0.716 0.713 0.713 0.713 0.711 0.712 0.711 0.711 0.712 0.714 0.713 0.711 0.709 0.703 0.707 0.705 0.715
42 0.715 0.714 0.712 0.715 0.712 0.713 0.713 0.710 0.711 0.710 0.712 0.711 0.713 0.712 0.711 0.710 0.704 0.709 0.707 0.717
43 0.718 0.716 0.714 0.717 0.714 0.714 0.713 0.712 0.713 0.713 0.713 0.714 0.715 0.714 0.713 0.711 0.706 0.711 0.703 0.723
44 0.717 0.715 0.717 0.718 0.713 0.715 0.713 0.713 0.713 0.712 0.715 0.713 0.714 0.714 0.712 0.711 0.706 0.710 0.704 0.715
45 0.718 0.716 0.716 0.719 0.713 0.716 0.715 0.714 0.714 0.713 0.714 0.714 0.716 0.714 0.713 0.712 0.707 0.711 0.707 0.715
46 0.719 0.719 0.716 0.719 0.717 0.716 0.716 0.716 0.717 0.715 0.715 0.715 0.717 0.715 0.713 0.714 0.709 0.711 0.711 0.724
47 0.720 0.720 0.718 0.721 0.717 0.717 0.715 0.717 0.717 0.716 0.717 0.717 0.719 0.717 0.715 0.715 0.711 0.713 0.707 0.724
48 0.722 0.720 0.721 0.721 0.718 0.718 0.717 0.718 0.719 0.717 0.717 0.717 0.719 0.718 0.716 0.718 0.711 0.713 0.710 0.732
49 0.722 0.722 0.720 0.722 0.718 0.718 0.719 0.719 0.719 0.719 0.719 0.719 0.721 0.719 0.717 0.719 0.713 0.714 0.711 0.734
50 0.723 0.721 0.721 0.723 0.717 0.718 0.718 0.718 0.719 0.717 0.720 0.719 0.720 0.719 0.717 0.718 0.713 0.715 0.715 0.728
51 0.723 0.723 0.722 0.723 0.717 0.718 0.720 0.719 0.720 0.718 0.720 0.719 0.720 0.720 0.718 0.718 0.713 0.717 0.720 0.739
52 0.725 0.723 0.721 0.723 0.718 0.719 0.720 0.720 0.721 0.720 0.721 0.720 0.721 0.721 0.718 0.718 0.714 0.714 0.716 0.732
53 0.724 0.722 0.721 0.723 0.718 0.719 0.720 0.721 0.721 0.720 0.721 0.719 0.721 0.721 0.718 0.719 0.715 0.715 0.714 0.734
54 0.724 0.723 0.723 0.723 0.719 0.720 0.720 0.722 0.721 0.721 0.723 0.721 0.723 0.722 0.719 0.719 0.716 0.717 0.715 0.745
55 0.723 0.723 0.723 0.723 0.719 0.719 0.721 0.723 0.722 0.722 0.723 0.722 0.723 0.723 0.720 0.721 0.717 0.718 0.717 0.738
56 0.723 0.724 0.723 0.724 0.719 0.720 0.721 0.722 0.721 0.722 0.722 0.721 0.723 0.722 0.721 0.720 0.716 0.719 0.716 0.732
57 0.723 0.724 0.724 0.723 0.719 0.720 0.721 0.722 0.721 0.722 0.723 0.723 0.724 0.723 0.720 0.721 0.718 0.719 0.712 0.739
58 0.723 0.724 0.724 0.724 0.719 0.721 0.721 0.723 0.722 0.722 0.724 0.723 0.726 0.724 0.721 0.720 0.718 0.719 0.715 0.737
59 0.724 0.724 0.723 0.725 0.720 0.721 0.722 0.724 0.724 0.723 0.725 0.723 0.725 0.723 0.722 0.723 0.719 0.720 0.718 0.738
60 0.724 0.724 0.725 0.725 0.720 0.722 0.721 0.724 0.723 0.723 0.725 0.723 0.725 0.724 0.722 0.722 0.719 0.719 0.717 0.738
61 0.724 0.724 0.724 0.724 0.720 0.721 0.722 0.723 0.723 0.721 0.723 0.724 0.724 0.723 0.722 0.721 0.716 0.720 0.720 0.728
62 0.725 0.726 0.725 0.725 0.721 0.721 0.722 0.724 0.722 0.724 0.724 0.724 0.725 0.724 0.723 0.722 0.719 0.722 0.718 0.730
63 0.725 0.725 0.726 0.726 0.721 0.721 0.723 0.725 0.723 0.724 0.725 0.725 0.726 0.725 0.723 0.723 0.719 0.721 0.723 0.734
64 0.725 0.726 0.726 0.725 0.722 0.721 0.723 0.725 0.724 0.723 0.725 0.725 0.725 0.724 0.723 0.723 0.719 0.722 0.722 0.738
65 0.724 0.726 0.727 0.726 0.723 0.723 0.723 0.727 0.723 0.726 0.727 0.727 0.729 0.727 0.724 0.725 0.723 0.724 0.722 0.749
66 0.725 0.726 0.727 0.726 0.723 0.724 0.723 0.727 0.723 0.726 0.727 0.726 0.727 0.727 0.725 0.725 0.722 0.724 0.716 0.745
67 0.725 0.726 0.726 0.726 0.725 0.726 0.726 0.728 0.724 0.726 0.727 0.727 0.728 0.728 0.725 0.726 0.723 0.724 0.717 0.749
68 0.725 0.727 0.728 0.727 0.725 0.724 0.724 0.727 0.723 0.726 0.728 0.727 0.728 0.728 0.725 0.726 0.723 0.724 0.714 0.751
69 0.725 0.727 0.727 0.727 0.725 0.724 0.726 0.727 0.723 0.725 0.728 0.727 0.728 0.728 0.725 0.727 0.725 0.726 0.715 0.752
70 0.726 0.726 0.727 0.726 0.724 0.725 0.726 0.728 0.723 0.725 0.730 0.727 0.729 0.729 0.725 0.727 0.723 0.725 0.719 0.751
71 0.728 0.727 0.728 0.727 0.724 0.723 0.725 0.728 0.724 0.725 0.730 0.727 0.729 0.730 0.726 0.726 0.724 0.724 0.714 0.756
72 0.728 0.726 0.728 0.726 0.724 0.725 0.727 0.727 0.723 0.725 0.729 0.727 0.729 0.728 0.726 0.728 0.725 0.727 0.718 0.755
73 0.729 0.727 0.728 0.727 0.725 0.724 0.726 0.727 0.724 0.725 0.729 0.727 0.730 0.729 0.726 0.727 0.726 0.727 0.718 0.755
74 0.728 0.726 0.730 0.728 0.724 0.725 0.726 0.727 0.724 0.725 0.730 0.727 0.729 0.729 0.727 0.727 0.726 0.727 0.718 0.751
75 0.728 0.726 0.727 0.726 0.723 0.724 0.726 0.726 0.724 0.723 0.729 0.727 0.729 0.728 0.725 0.727 0.723 0.726 0.719 0.741
76 0.728 0.727 0.726 0.727 0.724 0.725 0.725 0.726 0.723 0.724 0.730 0.727 0.730 0.727 0.726 0.727 0.723 0.726 0.717 0.741
77 0.728 0.726 0.727 0.728 0.723 0.724 0.724 0.727 0.724 0.723 0.729 0.727 0.730 0.727 0.725 0.727 0.724 0.725 0.716 0.739
78 0.727 0.727 0.728 0.727 0.722 0.724 0.725 0.726 0.724 0.723 0.729 0.728 0.729 0.728 0.725 0.727 0.723 0.727 0.717 0.739
79 0.725 0.725 0.726 0.727 0.723 0.723 0.724 0.725 0.723 0.723 0.728 0.725 0.728 0.726 0.725 0.726 0.723 0.724 0.716 0.744
80 0.733 0.725 0.727 0.727 0.723 0.723 0.725 0.727 0.724 0.723 0.730 0.727 0.730 0.728 0.726 0.727 0.725 0.727 0.718 0.738
81 0.735 0.733 0.728 0.726 0.723 0.724 0.724 0.727 0.724 0.723 0.731 0.727 0.730 0.729 0.728 0.728 0.725 0.726 0.716 0.742
82 0.737 0.734 0.735 0.726 0.726 0.726 0.726 0.729 0.727 0.726 0.732 0.727 0.732 0.732 0.729 0.730 0.730 0.729 0.722 0.763
83 0.737 0.733 0.735 0.735 0.726 0.726 0.726 0.728 0.728 0.728 0.733 0.728 0.732 0.731 0.731 0.730 0.730 0.730 0.720 0.759
84 0.738 0.735 0.736 0.736 0.736 0.726 0.726 0.728 0.728 0.727 0.732 0.729 0.731 0.731 0.729 0.730 0.731 0.731 0.716 0.766
85 0.737 0.736 0.737 0.736 0.736 0.734 0.726 0.729 0.728 0.727 0.732 0.728 0.731 0.730 0.730 0.730 0.731 0.731 0.719 0.763
86 0.738 0.735 0.736 0.736 0.735 0.734 0.733 0.727 0.726 0.726 0.732 0.729 0.732 0.730 0.731 0.730 0.730 0.732 0.719 0.762
87 0.738 0.734 0.737 0.736 0.735 0.734 0.733 0.735 0.726 0.726 0.732 0.729 0.732 0.730 0.731 0.731 0.730 0.731 0.722 0.768
88 0.739 0.736 0.737 0.737 0.736 0.736 0.734 0.736 0.734 0.726 0.732 0.729 0.732 0.731 0.731 0.731 0.731 0.732 0.723 0.755
89 0.738 0.735 0.737 0.737 0.736 0.736 0.735 0.735 0.734 0.735 0.731 0.728 0.732 0.731 0.731 0.731 0.731 0.733 0.722 0.759
90 0.739 0.737 0.737 0.737 0.736 0.736 0.735 0.736 0.735 0.736 0.740 0.729 0.731 0.731 0.730 0.732 0.731 0.733 0.724 0.746
91 0.740 0.737 0.738 0.738 0.736 0.737 0.736 0.736 0.736 0.736 0.741 0.738 0.731 0.731 0.731 0.731 0.731 0.734 0.724 0.744
92 0.740 0.738 0.738 0.738 0.736 0.736 0.736 0.736 0.735 0.736 0.740 0.739 0.738 0.731 0.731 0.732 0.731 0.734 0.726 0.749
93 0.740 0.738 0.738 0.738 0.737 0.738 0.737 0.736 0.736 0.737 0.742 0.739 0.740 0.738 0.731 0.732 0.731 0.734 0.723 0.756
94 0.740 0.738 0.738 0.738 0.737 0.738 0.736 0.737 0.735 0.735 0.741 0.739 0.739 0.738 0.738 0.731 0.731 0.734 0.724 0.758
95 0.741 0.739 0.738 0.740 0.737 0.738 0.738 0.736 0.737 0.737 0.743 0.740 0.740 0.739 0.739 0.738 0.732 0.735 0.723 0.765
96 0.740 0.737 0.738 0.737 0.736 0.738 0.736 0.736 0.736 0.736 0.741 0.739 0.738 0.738 0.738 0.736 0.738 0.733 0.722 0.748
97 0.740 0.737 0.739 0.738 0.737 0.738 0.736 0.737 0.736 0.736 0.741 0.739 0.738 0.737 0.738 0.736 0.737 0.740 0.719 0.748
98 0.739 0.738 0.739 0.737 0.736 0.737 0.737 0.737 0.736 0.736 0.741 0.738 0.738 0.737 0.739 0.736 0.737 0.738 0.737 0.745

Table 5.4: ProNE Cumulative Forecasting Results



Publication V: SynthVQA: Towards
Flexible External Knowledge VQA
Dataset Creation

6.1 Introduction

Visual Question Answering (VQA) is the task of automatically answering questions
given corresponding images. It rose to prominence as a benchmark for vision-language
models with the publication of the first VQA dataset by Antol et al. (2015). Since then,
many similar datasets have been published. These can be categorized into three main
groups: traditional, external knowledge, and relational reasoning.

In traditional VQA, questions are sourced from human annotators, with variations
in images or annotator prompts accounting for their diversity (Goyal et al. 2019). In
External Knowledge VQA (EKVQA) datasets (Wang et al. 2016), questions require
knowledge from outside the question-image pair to answer. EKVQA datasets source
their external knowledge from either human annotators (Marino et al. 2019; Schwenk
et al. 2022) or Knowledge Graphs (KG) (Wang et al. 2017b; Shah et al. 2019). Relational
reasoning datasets probe a model’s ability to resolve spatial questions over an image.
Questions are generated with a ‘question engine’ which operates over an abstracted
representation of object locations and relations (Johnson et al. 2016; Hudson and
Manning 2019a). The engine picks a specific type of predefined question template, and
then grounds this template against an abstract graph representation of objects in the
image, the ‘scene graph’.

Most VQA datasets suffer from biases. Human annotators tend to ask similar
questions with highly skewed answer distributions, the ‘How many X? 2’ problem
(Goyal et al. 2019). Real-world distributions are biased, the ‘What is the table made of?
Wood’ problem (Hudson and Manning 2019a). Moreover, EKVQA datasets typically
consist of few samples (around 10k per dataset). The AOKVQA dataset is the largest
human annotated dataset at 25k samples (Schwenk et al. 2022). The cost of human
annotation required for such datasets constrains their size and the accessibility of
creating them. This is troubling due to the over-concentration of resources on small
static distributions in applied Machine Learning (Church and Kordoni 2022).
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(a) What in the im-
age is a type of flour-
based food? (i) place-
mat (ii) meat (ii) noo-
dles X (iv) rice

(b) What is part of the
Swedish cuisine? (i)
rose (ii) silverware (iii)
cinnamon roll X (iv)
meatball

(c) What was created
by André Cassagnes
and is found sitting on
top of a shelf? (i)
scrabble game (ii) etch-
a-sketch X (iii) bowl-
ing pin (iv) pictionary

(d) What is a product
of Musa × paradisi-
aca? (i) lime (ii) plan-
tains X (iii) bananas
(iv) oranges

Figure 6.1: SynthVQA samples generated automatically from our GRAVITY framework.

Synthetic data creation has been proposed as to mitigate these concerns (Qian et al.
2023). The text-only analogue of EKVQA is Knowledge Base Question Answering
(KBQA). KBQA research has focused on how to sample more expressive questions that
static templates allow (Su et al. 2016; Gu et al. 2021).

Whilst Large Language Models (LLMs) are capable of learning a great number of
facts, they fail to apply these facts to new linguistic contexts (Berglund et al. 2023). We
speculate that EKVQA with straightforward yet diverse facts provided by an expressive
graph sampling method will challenge state-of-the-art Vision-Language models such as
BLIP-2 (Li et al. 2023).

In this paper, we propose a new framework for generating EKVQA samples. Similar
to Relational Reasoning VQA, our system samples facts from graphs which represent
miages (scenegraphs). Our approach is novel in that (a) the graph is composed of
relations from an external Knowledge Graph (b) instead of using templates which are
bound to specific relations, sample from structures of edges and nodes. This approach is
used to generate expressive and diverse KBVQ datasets (Dutt et al. 2023). We provide
examples of our dataset in Figure 6.1. Our contributions are:

1. The Graph-based Reasoning for Automated Visual Intelligence Test Yield (GRAV-
ITY) framework which automates creation of diverse, flexible, grounded VQA
datasets.

2. A new dataset named SynthVQA, generated by applying GRAVITY over 10k
images from Visual Genome (Krishna et al. 2016) and facts from Wikidata.

3. Evaluation of state-of-the-art models on our dataset, finding that SynthVQA is
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challenging (50.2% accuracy for BLIP-2-AOKVQA).

This work aims to democratize the creation of EKVQA datasets by dramatically
reducing the costs of annotation.

6.2 Related Work

Visual Question Answering (VQA) rose to prominence as a benchmark for Vision-
Language models with the publication of the eponymous Visual Question Answering
dataset 2015 (Antol et al. 2015). Since then, many other tasks fitting the paradigm of
text questions over images have been published.

6.2.1 Visual Question Answering

We categorize Visual Question Answering datasets into three high-level groups:

Group 1 is ‘traditional’ VQA, where questions are elicited from human annotators,
with variations in images or annotator prompts accounting for their diversity (Goyal
et al. 2019). These include VQA (V1), VQA V2, Visual7W, FM-IQA, Visual Genome,
which use human annotators to generate questions over images Antol et al. (2015), Zhu
et al. (2016), Malinowski and Fritz (2014), Gao et al. (2015), and Krishna et al. (2016).
Notably, VQA V2 adjusted away from overly informative priors by incorporating images
with anti-prior answers Goyal et al. (2019). VQA-CP v1/2 focused on changing priors to
enhance model robustness Agrawal et al. (2018). R-VQA filters VG Questions, keeping
only those where the question-answer has a high semantic similarity with the underlying
fact Lu et al. (2018).

Group 2 is ‘Knowledge Base’ or ‘External Knowledge’ VQA Wang et al. (2016).
These datasets are designed to be more challenging than traditional VQA due to the
inclusion of Real-World or Commonsense Knowledge into questions. Whilst a typical
VQA question might be ‘What is the chrome object?’, an External Knowledge VQA
question might be ‘In which year was the chrome object invented?.’ This external
knowledge may come from either a Knowledge Graph or human annotators.
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6.2.2 External Knowledge VQA

Formally, EKVQA is defined as:

a∗ = argmax
a∈A

p(a|q, i,K) (6.1)

where a∗ is the predicted answer, A is the set of all possible answers and q, i,K are a
text question, an image, and a Knowledge Graph respectively. An additional constraint
is that all of q, i, and K are required to solve the dataset, i.e. the question cannot be
answered with only partial information.

Fact-based VQA (FVQA) Wang et al. (2016) contains 2190 images with 5826
questions and 4216 facts. Each question is paired with a supporting fact and an image.
Questions are generated by requiring human annotators to ask questions that both an
visual and external commonsense reasoning to answer. Through human annotation
they find that 97.6% of questions require common sense knowledge to answer, and 99%
of the supporting-facts provided represent this common sense knowledge. Samples are
annotated with a supporting fact and a visual concept. FVQA samples are annotated
with a required fact for answering and the location of the answer (‘image’ or ‘KG’).

Knowledge-Base VQA (KB-VQA) Wang et al. (2017a) contains 700 images
with 2402 questions which require external knowledge, and their system uses DBpedia
Auer et al. (2007). Questions are generated by asking human participants to instantiate
question templates with features present in an image and concepts present in the
DBPedia knowledge base. The authors partition their data into ‘Visual’, ‘Common-
sense’ and ‘KB-knowledge’. ‘Visual’ may be answered by visual concepts learned
from relations in the training data: ‘Is there a table in this image?’; ‘Common-sense’
questions should be hard to solve purely from relations in the training data, but easy for
adult humans for instance: ‘How many mammals are in this image?’; ‘KB-knowledge’
require the average adult to refer to an external data-source to answer. Samples are
annotated with a question structure category. KB-VQA samples are annotated with a
‘template-type’ which correspond to a question template.

Knowledge-aware Visual Question Answering (KVQA) Shah et al. (2019)
contains 24k images with 183k questions which require external knowledge, and a
‘closed-world’ subset of the Wikidata knowledge base. Questions are generated by
asking human annotators to create questions which require external knowledge from
pre-defined templates. Ground truth answers are then found through SPARQL queries
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of the Wikidata knowledge base. They place an explicit focus on ‘KB-knowledge’
(questions which would require the average adult to refer to an external data-source to
answer). They restrict query entities to famous people who feature in the Wikidata
knowledge base. Samples are annotated with reasoning type labels. KVQA samples
are annotated with multiple labels indicating the kind of KG retrieval and the kind of
reasoning required.

Outside Knowledge VQA (OK-VQA) Marino et al. (2019) contains 14k images
with 14k questions annotated by humans to be ‘hard for robots’. They do not supply or
recommend a specific knowledge base, although their best-performing system utilises
Wikipedia. They categorise questions into knowledge domains, such as ‘Transportation’
and ‘Cooking’. OKVQA samples have semantic question type annotations.

Augmented OK-VQA (A-OKVQA) Schwenk et al. (2022) is a follow-up work
to OK-VQA, expanding on its approach while addressing some of its limitations. A-
OKVQA contains approximately 25k questions paired with images from the COCO
image dataset. A-OKVQA required human annotators to provide rationales for the
underlying reasoning for each question. Additonally, they perform more rigorous
question filtering process, which removes 60% of initially questions. Finally, due to the
filtering to remove common questions, A-OKVQA exhibits a long-tail distribution of
answers, with many answers appearing infrequently, challenging models to handle rare
or unseen answers.

Group 3 is ‘Relational Reasoning.’ These datasets probe a models ability to resolve
spatial questions over an image. Questions are generated with a ‘question engine’ which
operates over an abstracted representation of object locations and relations Johnson
et al. (2016) and Hudson and Manning (2019a). The engine will pick a specific type
of predefined question template, and then find a valid realisation of this across the
image scene graph. CLEVR creates synthetic scenes and runs scene graph engines over
them Johnson et al. (2016). GQA implements a question engine over real paired images
and scenegraphs from Visual Genome to outputs compositional Relational Reasoning
questions Hudson and Manning (2019a). RAVEN uses Raven’s non verbal reasoning
‘Progressive Matrices’ to power a question engine Zhang et al. (2019a).
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Dataset Questions Question Gen Languages Images KG
VQA 614K Human English 205K No
VQA v2.0 1.1M Human English 205K No
VQA-CP v1 245K Human English 118K No
VQA-CP v2 658K Human English 219K No
Visual7W 328K Human English 47K No
FM-IQA 316K Human Chinese, English 158K No
CLEVR 1.0M Engine English 100K No
RAVEN 7.0M Engine English 1.1M No
R-VQA 335K Human English 123K No
GQA 2.2M Engine English 113K No
KBVQA 2.4K Human English 700 Yes
FVQA 5.8K Human English 2.1K Yes
KVQA 183K Engine* English 24K Yes
OK-VQA 13K Human English 14K No
A-OKVQA 25K Human English 24K No
Synth-VQA 7.7k Engine English 7.7K Yes

Table 6.1: Popular VQA datasets, their question count, and their creation method

Type Example Abstraction
Graph Isomorphism ©−−© 1
Logical Template <ENTITY><POWERED BY><ENTITY> 2
Logical Form <TRAIN><POWERED BY><ELECTRICITY> 3
Question What is powered by electricity? Train 4

Table 6.2: Levels of Abstraction in Knowledge Graph Representations

6.2.3 Knowledge Base Question Answering

Here we outline relevant prior work in KBQA. Note that KBQA is text-only. Gu et al.
(2021) create a Question Answering dataset from Knowledge Bases through human
annotated mappings. See Table 6.2 for examples of the levels of abstraction used in
KBQA. They first sample exemplar sets of connected entities ‘Logical Forms’ (level
3) which they then manually construct templates for mapping into Natural Language
questions (level 4). They then sample further sets of entities (level 3) with the same
template (level 2) and reground the template to generate questions (level 4). This work
is further generalised by Dutt et al. (2023) to graph isomorphisms (level 1). Graph
isomorphisms lose the specific attributes of the node or edges and retain only the
structure (Lan and Jiang 2020; Li and Ji 2022). These forms can then be used to
seek patterns in the graph to sample suitable questions. However when isomorphism
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are used to sample from a graph, they will generate multiple logical templates. Each
logical template requires a specific question template to map from its logical forms to
questions.

6.3 GRAVITY Framework

In this section, we define our Graph-based Reasoning for Automated Visual Intelligence
Test Yield (GRAVITY) framework for automatic generation of VQA datasets. Then,
in Section 6.4, we discuss how we implement this framework over Visual Genome and
Wikidata. A full overview of the framework is presented in Figure 6.2.

6.3.1 Knowledge Graph (KG)

A KG is defined by an ontology O ⊆ E ×R× (E ∪ L), where:

• E represents the set of entities,
• R is the set of relations (or properties) between entities,
• L is the set of literals, such as numbers, strings, or dates,
• E × R × (E ∪ L) signifies the possible triples formed by entities and relations,

resulting in either another entity (E) or a literal (L).

Examples of triples included in the KG:

• an entity-to-entity relation: <`Barack Obama'; `alma mater'; `Harvard Law School'>

• an entity-to-literal relation: <`Barack Obama'; `height'; `1.87m'>.

6.3.2 Question Sampling

We follow Dutt et al. (2023) in sampling questions from as graph isomorphisms. These
are simply distinct patterns of linked nodes and edges in the Knowledge Graph. Sampling
a graph with isomorphisms returns a wide variety of logical forms Lq. For instance, the
simplest identity isomorphism could generate logical forms as diverse as <‘Columbia
College’, ‘alma mater of’, ‘Barack Obama’> and <‘Stonehenge’, ‘age’, ‘4,000 years’>.
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Figure 6.2: The GRAVITY framework. The visual entities extracted from the image are
linked to the knowledge graph (Sec. 6.3.4), and then further processed by the question
engine (Sec. 6.3.5) to generate question candidates. Hard negative answers are then
created (Sec. 6.3.6). Those questions are then filtered according to several requirements
(Sec. 6.3.7).
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6.3.3 Image Collection and Entity Detection

A set of images, denoted as I = {i1, i2, ..., in}, forms the visual dataset for the VQA
tasks. As Equation 6.1 states, the image must be required for reasoning in EKVQA
tasks. The entity detection process involves identifying significant objects, concepts, or
regions within an image, denoted as ei ∈ D, where D represents the detected entities in
an image.

6.3.4 KG Linking

Unambiguous questions require a total function mapping M that associates each
detected entity ei in D with a corresponding entity Ek in the Knowledge Graph K.
This linking process is critical for integrating visual data with structured knowledge.

We consider each image Ij linked to a KG as new KG, which we call a ‘Scene
Knowledge Graph’ (SKG), Ij ◦K = Sj. This is because in VQA, questions are only
over single images. The formal definition is given by:

• A detected entity set D = {e1, e2, . . . , em} within an image,

• A mapping M : D → E, associating each detected entity ei with an entity Ek in
the KG,

• The original Knowledge Graph K modeled as O ⊆ E ×R× (E ∪ L),

The Scene Knowledge Graph SKG is constructed as the image and the one-hop
KG locality as follows:

Initial Node Set: Start with NSKG = {Ek|ei ∈ D,M}, the set of entities in K

obtained by mapping the detected entities ei with M .

Expansion Process: For each entity Ek ∈ NSKG, we augment NSKG with all entities
E ′ and literals L that are directly connected to Ek in K, along with the relations R that
connect them. The SKG is then the sub-graph of K induced by NSKG, containing all
logical forms, i.e. triplets of entities, literals and their relation, relevant to the detected
entities D in the image.
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6.3.5 Question Engine

Given graph isomorphisms and one or more SKG, we generate logical forms by
sampling from each. We represent logical forms as graph triples <`pizza';`made
with';`pineapple'>. In order to function as EKVQA questions, these representations
need to be converted to a natural language form such as ‘What is made with pineapple?’.
With a restricted set of logical templates, human authoring of manual mappings is a
practical, but not scalable, solution.

We want to allow (a) drop-in use of any KG and (b) diversity of logical templates
which fit graph isomorphisms. As previously stated, each logical template requires
a custom question template to map its grounded logical form to a natural language
question. <`pizza';`made with';`pineapple'> → ‘What is made with pineapple?’.
We propose the use of a Large Language Models (LLM) for generating templates to
natural language questions.

6.3.6 Hard Negative Samples

VQA is a multiple choice task. To be challenging we must find three convincing (but
not correct) hard negative answers for each question. For the first two distractors the
answers with the highest Pointwise Mutual Information (PMI) between the relation
plus the grounding entity and and all answers across all Scene Knowledge Graphs.

Given a logical form L and a candidate answer A, the Pointwise Mutual Information
(PMI) is defined as PMI(L,A) = log

(
P (L,A)

P (L)P (A)

)
, where P (L,A) is the joint probability

of observing both L and A together, P (L) is the probability of observing L, and P (A)

is the probability of observing A.
For the third distractor we call an LLM with the question and a prompt requesting

a plausible answer that is distinct from the answer and PMI distractors.

6.3.7 Question Filtering.

The previous steps generate questions with variable quality. We filter out samples
failing the following requirements:

1. Require reasoning over the image.
2. Require reasoning over the text.
3. Is not ambiguous.



6.4. SYNTHVQA DATASET 105

4. Is well formed.
5. Derive from valid image-KG linking.

Point 1 is fulfilled by design. Entities from the images are used to query the KG. Human
(inter)annotation is typically used to evaluate samples against these criteria. We use
an LLM to detect issues [2-5]. As LLM cannot ‘see’ images, we use the twenty most
popular entities in the image as a semantic signal for the filtering operation. We provide
the prompt in Appendix 6.9.2.

6.4 SynthVQA Dataset

This section presents the setup we used to create the SynthVQA dataset following the
methodology presented in the previous section.

For our KG, we use the Wikidata world knowledge graph (Vrandečić and Krötzsch
2014). Wikidata is licensed under Creative Commons Zero license, allowing data reuse
for any purpose. Wikidata satisfies ontology O we defined in Section 6.3.1. It has
<E ×R×E> relations of the form <`Earth';`diameter';`12,742 km'>. We denote
the Wikidata KG as Kw.

For our Image set I we use Visual Genome (VG) (Krishna et al. 2016). Visual
Genome is licensed under Creative Commons BY license, allowing data reuse given
attribution. These images are human annotated with entities and also provide scene
graphs. VG contains 113K images along with human-annotated objects, relations, and
attributes. These annotations constitute a scene graph which fulfills our definition of
a KG. However, these ‘KG’ are unlike large scale World or Commonsense KG in that
they do not make the universality assumption: the grounding of ‘largest mammal’ in
Wikidata is ‘Blue Whale’, whilst in an image it may be a person, or a dog, or have
no answer. We denote this locality with K l. We term VG specific scene graphs as
K l

vi
, where i is the image index within VG. We enforce that the question must include

knowledge from the KG . E.g. ‘What is red and on a sidewalk in this image?’ is rejected
because is entirely relational reasoning, whilst ‘What is red in this image and invented
in 19C?’ is included because it contains Kw knowledge.
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6.4.1 KG Linking

In order to use the question engine over Wikidata for VQA, we need to link entities in
K l

v to Kw. The Commonsense Knowledge Graph (CSKG) project provides mappings
from WordNet synsets used in VG to Wikidata IDs (Ilievski et al. 2021). Table 6.4
shows that CSKG covers 53% of all entities and 39% of all unique entities. We link the
remaining unmapped entities through a two stage process:

1. We query Wikidata with the English language name of the entity. If this returns
multiple results, we disambiguate by picking the entity with the most site links
(Wikipedia pages in different languages).

2. If (1) returns no results, we search Wikipedia for the entity and return the
Wikidata ID associated with the first result page.

Coverage statistics are given in Table 6.4. We end up with 68.6K linked unique
entities.

As discussed previously, each set of entities Ej ∈ K l
vi

will have different logical
forms. Therefore, we need to sample questions at the image level rather that at the
Wikidata level. Practically we achieve this by expanding K l

vi
with localities from Kw

around linked entities:

OneHop(ek) = {(ek, r, x) ∈ Kw

| ek ∈ Ej, r ∈ R, x ∈ Ej ∪ L}

K l
wvi

= K l
vi
∪

⋃
ek∈Ej

OneHop(ek)

where Ej is the set of all entities in K l
vi
.

We gather these one-hop relations through the Wikidata SPARQL API. As most
entities are seen repeatedly across images in VG, we cache all OneHop(ek) relations
locally to save time and API usage. Note that as we only expand one-hop localities
around linked entities, we restrict graph isomorphisms to depths of one. We term these
unions of KG and Image Scenegraphs K l

wv ‘Scene Knowledge Graphs’.
We implement Scene Knowledge Graphs with the Python NetworkX package (Hag-

berg et al. 2008), with entities as nodes and literals relations as edges. Both the



6.4. SYNTHVQA DATASET 107

Logical Forms (Triples) Question Template

<canvas, fabrication method, plain weave>
<donuts, fabrication method, deep frying> What in the image was made using {fact[2]} as its {fact[1]}?

<bottle, in front of, computer>, <bottle, subclass of, container>
<stool, in front of, couch>, <stool, subclass of, seat> What is located in front of a {fact[0][2]} and is a type of {fact[1][2]}?

Table 6.3: LLM generated f-string Question Templates. The first row is a ‘Unique
Relation’ graph isomorphism and the second is a ‘Unique Intersection’.

values <`Earth';`made of';`42'> and the source <`Wikidata';`VG relation';`VG
attribute'> are stored as feature attributes.

6.4.2 Question Engine

Our question engine uses two graph isomorphisms to sample logical forms for questions:
One Hop Unique and One Hop Intersection.

One Hop Unique. This is a tuple which uniquely identifies one entity within the
Scene Knowledge Graph. If a Scene Knowledge Graph has the <E, R, E> triple <car;
has_part; combustion_engine> and no other entityEo fulfills <Eo;`has_part';`combustion_engine'>
then this is a valid question.

This is the simplest form of graph isomorphism found in reasoning datasets and is
often the most popular (77.9% of GrailQA (Gu et al. 2021; Dutt et al. 2023), 60.2% of
KVQA). We only include Wikidata logical forms for this setting.

One Hop Intersection. Questions pair two 3-tuples which together uniquely identify
one entity within the Scene Knowledge Graph. If a Scene Knowledge Graph has the
<E, R, E> triple <`train';`powered by';`electricity'> and <`train';`invented
in';`19th century'> and no other entityEo fulfills <Eo;`has powered by';`electricity'>
AND <Eo, ‘invented in’, ‘19th century’>, but at least one other entity fulfils each
individually, this is a valid logical form. These questions are comparatively rarer (3.8%
of GrailQA, 44.2% of KVQA (Gu et al. 2021; Dutt et al. 2023)).

6.4.3 Image and Question Sampling

Diversity is crucial for a VQA dataset to be challenging. Image diversity ensures that
models are evaluated on a range of different objects and scenes. Fact diversity ensures
models are challenged to reason across a range of image types.
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We set a desired number of questions Q equal to 10,000. We then sample one logical
form from each image. For each isomorphism, we pick the form which contains the least
recently seen relation. We fall back to a random pick if multiple relations are unseen.

6.4.4 Question Forming

As explained in Section 6.3.5, each logical template requires its own question template
to map to a natural language question. As a scalable alternative to human template
annotation, we experiment with LLMs.

Our task is of the form: Given triple(s) t, return a f-string into which we can insert
the relation and grounding (final) entity to make a question for which the answer is the
first entity.

We experiment with the LLama 2 70B (Touvron et al. 2023) and Phi 2 (Javaheripi
and Bubeck 2023) LLMs for this task. We find that they are unable to map forms to
templates: they often incorporate the answer into the question and lose the semantics of
the logical form. We find it interesting that such a relatively simple task is not possible
for Open LLM and leave this as a future research area.

We use GPT-4 to form questions. We find that prompting the model to first copy
the answer entity Ea before forming the question from <R,Er/L> reduces the rate of
questions containing the answer. Examples of model output is given in Table 6.3. The
prompt is provided in Appendix 6.9.2.

6.4.5 Question Filtering

Quality filtering has been explored in previous work in synthetic corpus generation.
Gardent et al. (2017) use human annotation to check against the following three criteria:
Does the text sound fluent and natural?, Does the text contain all and only the information
from the data?, Is the text good English (no spelling or grammatical mistakes)? Agarwal
et al. (2021) explore automatic filtering through fine-tuning BERT (Devlin et al. 2019a)
on the WebNLG 2017 human assessment task of semantics and fluency (Gardent et al.
2017).

In a similar fashion, we design an LLM filtering step to remove bad questions. We
instruct the model to remove questions which are ambiguous or nonsensical. We use
the twenty most popular entities in the image as a semantic signal for the filtering
operation. We provide the prompt and example input and output in Appendix 6.9.2.



6.5. DATASET STATISTICS 109

1 2 3 4 5 6 7 8 9 10 11+
Number of Appearances

0

500

1000

1500

2000

2500

Nu
m

be
r o

f A
ns

we
rs

Unique Answer Occurrences
Relation Answer Occurrence
Intersection Answer Occurrence

Figure 6.3: Answer Distribution.

Again, we find that GPT-4 is more accurate than other open LLMs.
We run this prompt over the generated questions, finding that 30.8% of Unique

Relation questions and 47.0% of Unique Intersection questions are suitable. We give
statistics on pre- and post-filtering SynthVQA in Table 6.5.

6.4.6 Negatives for Multiple Choices Setting

For unique relation questions, we pick the two negatives from the image sorted by PMI
with the logical form. For unique intersection questions, we pick one other entity which
fulfils the relation and one LLM negative. In both cases we call an LLM to sample the
third negative. The LLM prompt is included in Appendix 6.10.

6.5 Dataset Statistics

There are 3.8M total and 68.8K unique entities in Visual Genome. We link 68.6K
of these unique entities, which is 99.3%. At the Logical Form stage, we find 1.6M
candidate triples for Unique Relations. This includes 78K unique answers and 491K



6.5. DATASET STATISTICS 110

Linking Method Total Unique

CSKG 52.30% 39.13%
Wikidata 41.16% 39.38%
Wikipedia 6.48% 21.24%
None 0.05% 0.25%

Table 6.4: Linking statistics for SynthVQA. Linking is attempted in the order rows are
shown.

unique relations when considered as (relation, entity/qualifier) 2-tuples. We provide
statistics in Table 6.5. Full logical forms are <R, E/L> for Unique Relation and
<R1,E/L1, R2,E/L2 > for Unique Intersection.

Filtering Dataset Element Unique Relation Unique Intersection

Pre

Images 10,000 10,000
LF/Questions 6,927 9,999
Answers 9,238 2,899
Logical Relations 585 683
Logical Entities/Literals 6,231 3,955

Post

Images 3,089 4,703
LF/Questions 2,171 1,581
Answers 2,958 4,703
Logical Relations 169 397
Logical Entities/Literals 1971 2,326

Table 6.5: Dataset statistics pre- and post-filtering with an LLM. Filtering removes
∼70% of samples and ∼50% of logical relations, although Entities/Literals remain
diverse.

Our sampling approach naturally samples from all types of relations in the source KG
which match the structural pattern. This is made possible by the graph isomorphism
sampler. Furthermore Table 6.5 shows that we have 196 relation types in Unique
Relation and 397 in Unique Intersection.

We plot all relations in Figure 6.4. The figure visually represents the high degree of
diversity in our dataset. A high diversity of relations is good because it increases the
range of knowledge which models are evaluated and trained on. This compares favourably
to other EKVQA datasets where the variety is restricted by fixed question templates.
In the case of datasets with hand-crafted KG templates, the relations vocabulary is
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restricted to the number of hand-authored templates. For human-generated questions,
the reasoning type annotation is restricted by the difficulty of identifying the underlying
facts.

6.5.1 Creation Cost

The cost of creating datasets determines how much data is going to be available for the
community, and who is able to create it. Both traditional and EKVQA datasets use

Figure 6.4: Top: Relation Distribution (Unique Rel). Bottom: Relation Distribution
(Intersection). We give the source of the relation first. WD=Wikidata, VGR=Visual
Genome Relation, VGA=Visual Genome Attribute.



6.6. RESULTS 112

Method Relation Intersection All
Guess

Random 0.246 0.255 0.251
Random Weighted 0.177 0.282 0.240
Most Common 0.180 0.325 0.267

Text
T5 0.584 0.343 0.439
GPT-4 0.493 0.432 0.456

Image
CLIP B-32 0.291 0.290 0.290

Text & Image
BLIP-2-AOKVQA 0.522 0.489 0.502

Table 6.6: Results of text, image and multimodal models in SynthQA.

human annotations. Authors do not often release the pay or duration of annotation
contracts. All of the experiments in this paper cost less that $100 in GPT API costs.
Our work enables researchers without large financial or annotation resources to create
diverse VQA datasets. Through modifying the KG Linking and Querying code, any
KG may be used to source facts. This work democratises VQA dataset creation.

6.6 Results

We benchmark SynthVQA across different models and show the results in Table 6.6.
We perform the evaluation with a similar set of models to AOKVQA (Schwenk et al.
2022).

We provide the results obtained with three random baselines (top-part Guess).
First, we randomly sample one of the four answers with equal chance (“Random”).
Second, we randomly sample one of the four answers with weighting proportional to the
overall probability of appearance of that answer in the corpus (“Random Weighted”).
Finally, we pick the answer candidate which appears the most frequently across the
whole corpus (“Most Common”).

We also report the results obtained with text only QA systems. We use the T5
model Khashabi et al. (2020) and the GPT-4 Model. We provide the prompts in
Appendix 6.11. For the image only setting, we use the CLIP B-32 model (Radford et al.
2021). We take the answer whose text encoding has the highest cosine similarity with
the image encoding.
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For the multimodal Question & Image setting, we use the BLIP-2 VQA model
(Li et al. 2023). We test the AOKVQA fine-tuned variant. First, we observe that
even a well performing model such as BLIP-2 struggles in providing high performance
in this test dataset. Next, we note that the text only models remain very strong,
in particular the T5 model marginally outperforms (+6.2%) BLIP-2-AOKVQA for
‘Relation’ questions. We speculate that the reason for this is that first, real-world priors
which negate the importance of reasoning over the image (Goyal et al. 2019). This
indicates that there is still some room to improve the question generation so that they
heavily rely on the visual input. Second, VQA models may have insufficient factual
knowledge to discriminate the correct answer from the two image distractors.

Next we analyse the kinds of questions that models are successful or unsuccessful on.
BLIP2-model, and OpenCLIP H-14. Because we have access to the diverse underlying
logical forms, we stratify results by accuracy for the most common relation types. These
are presented in Table 6.7.

6.7 Results By Relation

Relation Question Count BLIP-2-AOKVQA (%) CLIP B-32 (%) T5 (%)
subclass of 2406 40.40 24.65 71.99
instance of 578 43.25 32.87 66.61
has part(s) 356 39.33 30.34 57.58
has use 343 39.94 27.41 68.22
part of 333 34.53 29.73 75.68
may be made from material 246 27.24 18.29 62.20
has quality 98 30.61 25.51 44.90
uses 92 40.22 31.52 61.96
used by 72 50.00 22.22 66.67
facet of 59 30.51 47.46 71.19

Table 6.7: Stratified Success Rate and Question Count by Relation

Intersection Relation Sources Count Accuracy

VG Relationship 2812 0.504
VG Attribute 1703 0.324
Wikidata 188 0.490

Table 6.8: Breakdown of relation sources (Visual Genome and Wikidata) and BLIP2-
VQA accuracy on intersection questions.
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Finally, we consider the effect of sampling Intersection questions from both Kw

(Wikidata) and K l
v (Visual Genome). To keep our dataset as EKVQA, we enforce that

at least one relation always comes from Kw. In Table 6.8 we show the rates at which
the second relation comes from either Wikidata, Visual Genome relations, or Visual
Genome attributes. We find that BLIP-2-AOKVQA is worst (32.4% accuracy) over
questions which require reasoning over both Visual Attributes and Wikidata Facts.

Error Analysis

A key advantage of SynthVQA is access to the underlying facts. We use this to perform
an error analysis. For each model, we report the highest rate of incorrectly answered
questions for every relation and every tail entity. We define error rate as (times seen
and answer wrong/times seen). In the case of a tie, we break the tie by the overall times
seen and answer wrong. We report the top errors for Relation Questions in Table 6.9
and for Intersection Questions in 6.10.

Model Relation Tail Entity
Value Error Rate Error Count Total Count Value Error Rate Error Count Total Count

T5

has characteristic 1.0 12 12 text 1.0 12 12
has effect 1.0 12 12 food ingredient 1.0 8 8
original combination 1.0 8 8 steel 1.0 8 8
name in kana 1.0 8 8 biomaterial 1.0 8 8
significant event 1.0 8 8 vexillology 1.0 8 8

GPT-4

field of work 1.0 8 8 paper 1.0 20 20
sex or gender 1.0 12 12 advertising 1.0 20 20
course 1.0 8 8 shore 1.0 20 20
contributing factor of 1.0 12 12 costume accessory 1.0 32 32
followed by 1.0 12 12 trousers 1.0 24 24

CLIP B-32

part of 1.0 656 656 container 1.0 92 92
has use 1.0 592 592 architectural element 1.0 84 84
may be made from material 1.0 516 516 particular anatomical entity 1.0 72 72
uses 1.0 152 152 product category 1.0 68 68
parent taxon 1.0 108 108 class of anatomical entity 1.0 60 60

BLIP-2-AOKVQA

found in taxon 1.0 12 12 ungulate 1.0 16 16
female form of label 1.0 24 24 infrastructure 1.0 20 20
follows 1.0 20 20 human 1.0 20 20
has characteristic 1.0 12 12 protection 1.0 20 20
name 1.0 12 12 synthetic fiber 1.0 16 16

Table 6.9: The Relation and Tail Values with highest error rates for the Unique Relation
SynthVQA Subsection

Interestingly, these results show that models fails completely for certain less frequent
relations and tail entities. Crucially, these vary by model. This suggests that lack of
access to all modalities makes answering certain question types impossible. Unsurpris-
ingly, the Image only CLIP model has errors with much more common relations such
at the relation part of (656 questions) or the tail entity container (92 questions).

This leads us to model the correlation of error rates across models. We record the
error rate for all relations and all tail entities across both Relation and Intersection
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Model Model Tail

Type Error Rate Error Count Total Count Type Error Rate Error Count Total Count
T5 has characteristic 1.0 12 12 text 1.0 12 12
T5 has effect 1.0 12 12 food ingredient 1.0 8 8
T5 original combination 1.0 8 8 steel 1.0 8 8
T5 name in kana 1.0 8 8 biomaterial 1.0 8 8
T5 significant event 1.0 8 8 vexillology 1.0 8 8
GPT-4 field of work 1.0 8 8 paper 1.0 20 20
GPT-4 sex or gender 1.0 12 12 advertising 1.0 20 20
GPT-4 course 1.0 8 8 shore 1.0 20 20
GPT-4 contributing factor of 1.0 12 12 costume accessory 1.0 32 32
GPT-4 followed by 1.0 12 12 trousers 1.0 24 24
CLIP B-32 part of 1.0 656 656 container 1.0 92 92
CLIP B-32 has use 1.0 592 592 architectural element 1.0 84 84
CLIP B-32 may be made from material 1.0 516 516 particular anatomical entity 1.0 72 72
CLIP B-32 uses 1.0 152 152 product category 1.0 68 68
CLIP B-32 parent taxon 1.0 108 108 class of anatomical entity 1.0 60 60
BLIP-2-AOKVQA found in taxon 1.0 12 12 ungulate 1.0 16 16
BLIP-2-AOKVQA female form of label 1.0 24 24 infrastructure 1.0 20 20
BLIP-2-AOKVQA follows 1.0 20 20 human 1.0 20 20
BLIP-2-AOKVQA has characteristic 1.0 12 12 protection 1.0 20 20
BLIP-2-AOKVQA name 1.0 12 12 synthetic fiber 1.0 16 16

Table 6.10: The Relation and Tail Values with highest error rates for the Unique
Intersection SynthVQA Subsection

datasets and plot the correlation of error rates in Fig 6.5. These plots confirm that
the modality is very important in determining what is answered correctly. The highest
correlation (0.32) is between T5 and GPT-4, which are both text-only in our system.
Meanwhile, the correlation between text-only and image-only models is 0.02 for both
T5/CLIP and GPT-4/CLIP, suggesting that the difference in modalities contributes to
the systematic differences in the errors of the systems. At the same time, the very low
correlation in error rates between all of the systems suggests the potential performance
gains of a ensemble model.

6.8 Conclusion

This paper presented a new methodology for creating EKVQA datasets with an auto-
mated framework we term GRAVITY. Our method is cheap and does not require human
annotations for generating challenging datasets. We also release SynthVQA, a dataset
created through GRAVITY applied on 10k images from Visual Genome obtained with
a very limited budget. Our SynthVQA dataset is challenging, as demonstrated by
the results obtained with several state-of-the-art systems showing that they struggle
to reach high accuracy. Furthermore, questions retain their underlying logical forms,
allowing for diagnostic analysis of VQA models.
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Figure 6.5: Correlation of error rates across models for relations and tail entities in
SynthVQA. Each scatter plot compares the error rates of two models, with each point
representing a relation or tail entity. The diagonal shows model names. R-values
indicate the strength of correlation between model errors.

Limitations

Our framework relies on existing knowledge graphs (KGs) and scene graph annotations
from Visual Genome. This reliance may limit the diversity and depth of knowledge
represented in the SynthVQA dataset, as the Wikidata KG does not cover all knowledge
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domains. Furthermore, the accuracy and completeness of scene graph annotations will
impact the quality of generated questions and answers.

Our automated generation pipeline significantly reduces the need for human an-
notation, which is a major advantage in terms of scalability and cost. However, this
approach may miss subtle nuances and complexities in visual scenes and questions that
human annotators could capture. The absence of human validation in the question
and answer generation process could lead to inaccuracies or unrealistic question-answer
pairs.

Whilst we manually review all samples in SynthVQA, we cannot guarantee that all
samples are bias free or unoffensive for all.

Ethics

Generation of questions from on KGs and Scenegraphs raises ethical considerations
regarding the potential inclusion of harmful or sensitive topics within the data. Ad-
ditionally, the automated nature of the process may inadvertently propagate biases
present in the underlying data sources.
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6.9 LLM Prompts

6.9.1 Question Phrasing

One Hop Unique

You are tasked with creating natural language templates from logical forms

for a Visual

Question Answering (VQA) task. The forms are given as:

'ANSWER'=fact[0], 'RELATION'=fact[1], 'QUALIFIER'=fact[2].

Your role involves translating examples of logical forms into f-string

templates that generate

English questions. These questions should:

Be fluent and natural-sounding.

Include all necessary information from the input without adding extraneous

details.

Be grammatically correct and free of spelling errors.

It's permissible to substitute original relations with better words or

phrases that preserve

the original meaning but enhance naturalness and clarity.

Must include the 'QUALIFIER'=fact[2], may include the 'RELATION'=fact[1] or

rephrase it,

but NEVER include the 'ANSWER'=fact[0].

EXAMPLES:

INPUT:

'loose straw', 'by-product of', 'grain production'

'dung', 'by-product of', 'animal husbandry'

OUTPUT:

What here is a {fact[1]} of {fact[2]}?

INPUT:

'redshirt', 'inspired by', 'Star Trek: The Original Series'

'uncle sam', 'inspired by', 'Samuel Wilson'

OUTPUT:

What here was {fact[1]} {fact[2]}?

INPUT:
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'redshirt', 'inspired by', 'Star Trek: The Original Series'

'uncle sam', 'inspired by', 'Samuel Wilson'

OUTPUT:

What here was {fact[1]} {fact[2]}?

INPUT:

'overcast', 'does not have quality', 'precipitation'

'pirate', 'does not have quality', 'credit'

'go cart', 'does not have quality', 'street legality'

OUTPUT:

What here can't be said to have {fact[2]}?

INPUT:

'newspaper' 'time of discovery or invention' '1605-01-01T00:00:00Z'

'jacket zipper' 'time of discovery or invention' '1893-01-01T00:00:00Z'

'bulb' 'time of discovery or invention' '1834-01-01T00:00:00Z'

'tubing' 'time of discovery or invention' '1904-01-01T00:00:00Z'

'tarmac' 'time of discovery or invention' '1902-01-01T00:00:00Z'

OUTPUT:

What in the image had a {fact[1]} of {fact[2]}?

END OF EXAMPLES

One Hop Intersection

You are tasked with creating natural language templates from logical forms

for a Visual Question Answering (VQA) task. You will be given a bumber of

examples which share relations.

The forms are given as:

'ANSWER'=fact[0][0], 'RELATION'=fact[0][1], 'QUALIFIER'=fact[0][2]. 'ANSWER

'=fact[1][0], 'RELATION'=fact[1][1], 'QUALIFIER'=fact[1][2].

Both of these facts are needed to uniquely indentify the ANSWER.

Your role involves translating examples of logical forms into a single f-

string template that generate English questions when applied to all the

examples. These English questions should:

Be fluent and natural-sounding.

Include all necessary information from the input without adding extraneous

details.

Be grammatically correct and free of spelling errors.
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It's permissible to substitute original relations with better words or

phrases that preserve the original meaning but enhance naturalness and

clarity.

Must include the 'QUALIFIERS'=fact[0][2] and fact[1][2], may include the '

RELATIONS'=fact[0][1] and fact[1][1] or rephrase them, but NEVER include

the 'ANSWER'=fact[0][0],fact[1][0].

EXAMPLES:

INPUT:

(('air', 'has use', 'lifting gas'), ('air', 'subclass of', 'mixture'))'

'(('stairs', 'has use', 'transport'), ('stairs', 'subclass of', '

thoroughfare'))'

'(('food', 'has use', 'eating'), ('food', 'subclass of', 'disposable product

'))'

'(('cardboard', 'has use', 'mulch'), ('cardboard', 'subclass of', 'material

'))'

'(('hair brush', 'has use', 'hairdressing'),

('hair brush', 'subclass of', 'personal hygiene item'))'

OUTPUT:

What has both a use for {fact[0][2]} and is a type of {fact[0][2]}?

INPUT:

('pointer finger', 'anatomical location', 'hand'),

('pointer finger', 'venous drainage', 'palmar digital veins'))

(('thumb', 'anatomical location', 'hand'),

('thumb', 'venous drainage', 'Dorsal venous network of hand')

OUTPUT:

What has the {fact[0][1]} of the {fact[0][2]} and exhibits {fact[0][1]} into

the {fact[0][2]}?

INPUT:

('apples', 'color', 'yellow'), ('apples', 'color', 'red'))

(('rainbow', 'color', 'green'), ('rainbow', 'color', 'blue'))

(('apples', 'color', 'yellow'), ('apples', 'color', 'green'))

(('bananas', 'color', 'yellow'), ('bananas', 'color', 'brown'))

(('apple', 'color', 'pink'), ('apple', 'color', 'green')

OUTPUT:

What has both a {fact[0][2]} and {fact[1][2]} {fact[0][1]}?

INPUT:
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('ball', 'shape', 'sphere'), ('ball', 'subclass of', 'toy'))

(('sheet cake', 'shape', 'rectangular cuboid'), ('sheet cake', 'subclass of',

'cake'))

(('napkin', 'shape', 'rectangle'), ('napkin', 'subclass of', 'linens'))

(('mug', 'shape', 'cylinder'), ('mug', 'subclass of', 'cup'))

(('globe', 'shape', 'sphere'), ('globe', 'subclass of', 'physical model')

OUTPUT:

What has a {fact[0][2]} {fact[0][1]} and is a type of {fact[0][2]}?

END OF EXAMPLES

6.9.2 Question Filtering

You are an annotator of a Visual Question Answering dataset.

Your task is to review a single sample and review if the question is valid.

Reasons to reject:

- Entity is incorrectly linked

- Question is nonsensical

- Question is badly formatted

- Question is ambiguous

To assist you, we provide 20 ground truth entities that are in the image:

Note: The explanations are only for illustrative purposes.

Respond only 'Valid' or 'Invalid' responses for the actual input samples.

EXAMPLES:

Image Objects: window, tree, car, building, street light, walk sign,

backpack, man, road,

crosswalk, sidewalk, sign, sneakers, bike, walk, trees, pole, lights

Fact: (has use, track cycling), A: bike, Q: What is used in track cycling?

Response: Valid

Explanation: bikes are used for track cycling.

Image Objects: inbox tray, computer keyboard, paper, composition book, water

bottle,

surge protector, desk, computer speaker, computer monitor, sticky note,

office chair,
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armrest, spots, cpu, telephone, wall, pen, mouse, cup

Fact: (related to but distinct from, scale degree), A: sticky note,

Q: What in the image is related to but distinct from a scale degree?

Response: Invalid

Explanation: Bad linking: 'sticky note' is not related to 'scale degree'

Image Objects: desk, picture, photo, pen, telephone, baby, wall, scissors,

book, keyboard, orange cloth, chair, pens, cup, monitor, mouse, pad,

computer, calendar, floor

Fact: (subclass of, container), A: tray, Q: What in the image is a subclass

of a container?

Response: Valid

Explanation: Trays are containers

Image Objects: ['flower' 'building' 'driveway' 'window' 'lamp post' 'roof' '

tree']

Fact: (located in the administrative territorial entity, Springfield), A:

entrance way,

Q: Where in the administrative territorial entity of Springfield is located

?\nResponse"}]

Response: Invalid

Explanation: bad linking: 'entrance way' is not specifically in Springfield

Image Objects: ['book' 'cord' 'shelf' 'stapler' 'top' 'base' 'ground' '

monitor']

Fact: (has part(s) of the class, element), A: support,

Q: What part(s) of the class element is present?\nResponse"}]

Response: Invalid

Explanation: bad question: nonsense

Image Objects: ['tree' 'leaves' 'car' 'bridge' 'sign' 'greenleaves' 'mirror'

'highway']

Fact: (subclass of, road traffic control device), A: streetsign,

Q: What in the image is a subclass of road traffic control device?

Response: Valid

Explanation: streetsign the only road traffic control here

END OF EXAMPLES
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6.10 LLM Negative Sampling

You are assisting in the creation of a VQA dataset.

You are to help provide a convincing distractor answer.

Please give a likely one or two word answer without a definite article.

INPUT:

True Answer: <CORRECT_ANSWER>

Distractors: <PMI_DISTRACTOR_1><PMI_DISTRACTOR_2>

Question: <LLM_TEMPLATED_QUESTION>

Other Distractors:

6.11 LLM Guess

This the template prompt used to query GPT4.0.

You are answering questions in a VQA dataset.

You are not provided the image.

Please pick the most likely answer given the question and the options.

Give the string of the answer, not its ordinal letter. E.g., Output 'Dog'

not '(b)'.

INPUT:

Question: <LLM_TEMPLATED_QUESTION>

Options: <CORRECT_ANSWER><PMI_DISTRACTOR_1><PMI_DISTRACTOR_2><LLM_DISTRACTOR

>

OUTPUT:



Chapter 7

Conclusions

This thesis presented work on improving and understanding the use of multiple Modali-
ties for AI systems across three real-world tasks. To categorise Multimodal data we
introduced the concept of Knowledge Density, the ratio of a modality’s entropy to
useful information, in Section 1.3, where we claim that Images are knowledge-sparse,
text is knowledge-rich, and KG, citations, and expert features are knowledge-dense.
We then designed systems for three Multimodal Tasks: External Knowledge Visual
Question Answering (images, text, KG), Eye Tracking Prediction (linguistic features,
text), and Citation Prediction (citation graphs, text). In the case of EKVQA and
Citation Prediction, our models outperformed prior baselines in the task-specific metrics.
Feature analyses across all tasks were critical in evaluating the contribution of each
modality. Faced with the limitations of existing datasets, we designed new datasets
with a focus on underlying knowledge facts and reasoning types for EKVQA and for
graph scale and forecasting for Citation Prediction. These datasets address significant
challenges and diagnostic gaps in the field.

Furthermore, we have introduced, evaluated, and applied the Informedness metric
for a more rigorous comparison of models on Classification tasks, notably EKVQA and
Citation Prediction. This metric permits a fairer assessment of model performance
across and within datasets and advances the evaluation of Multimodal AI models.

7.1 Summary

Publication I: In Factuality: Efficient Integration of Relevant Facts for Visual
Question Answering introduced a new method to enhance the reasoning capabilities
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of a Vision-Language model for External Knowledge Visual Question Answering by
integrating knowledge-dense facts extracted from a Knowledge Graph. When evaluated
on the KVQA dataset, our method outperformed the previous baseline by 19%. We
also performed an extensive analysis highlighting the limitations of our best-performing
model through an ablation study.

Our REUNITER model demonstrated an overall absolute improvement of 19% over
the previous State-of-the-Art model, with considerable gains in question types involving
reasoning over multiple entities, and KG triples in the ‘Boolean’, ‘Comparison’, and
‘Multi-Hop’ categories, achieving accuracy of over 85% in all. However, it struggled
with ‘Subtraction’ and ‘Spatial’ questions, which we attributed to BERT-like models’
limitations in numerical reasoning and spatial reasoning tasks, respectively. Further, we
noted that whilst certain question types are inherently more complex, the unbalanced
nature of the target answer classes complicated performance measuring.

The KVQA dataset aimed to minimize bias by using strict templates for question
generation, yet it introduces an answer distribution bias due to the real-world priors
associated with each template. This design makes it relatively easy for models to
predict answers based on the question type, setting a baseline accuracy that models
must exceed to demonstrate genuine understanding. We quantified this bias by reporting
the random guess performance and answer distribution entropy per subtask. However,
its unbalanced distribution of reasoning and answer types complicates the assessment
of model weaknesses. We theorized that addressing these imbalances in future datasets
and metrics could provide clearer insights into models’ true reasoning strengths and
limitations.

Publication II: Blending Cognitively Inspired Features with Transformer-
based Language Models for Predicting Eye Tracking Patterns evaluated
the value of a variety of Knowledge-Dense cognitively- and linguistically-motivated
features for predicting eye-tracking patterns over text. We considered these features as
both standalone model inputs and supplements to contextual word embeddings from a
finetuned version of the Auto-Regressive Masked-Denoising Language XLNET model.
Contrary to Paper I, where the KG features were helpful, we found that only a limited
subset of the most simple Linguistic features contributed to our best-performing model.

Publication III: We Need to Talk About Classification Evaluation Metrics
in NLP addressed the downsides of applying simplistic classification metrics to our
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prior research in Paper I. We started by outlining the issues with Accuracy, F-1 Macro,
and Balanced Accuracy. We showed that the random-guess-normalised ‘Informedness’
metric describes useful model properties in its scoring. Informedness makes the scoring
of datasets with very low answer-distribution entropy more intuitive to understand.
Moreover, it enables comparison between question types with very different entropy in
their answer distributions.

We re-assessed the results of REUNITER on KVQA from Paper I and found more
convincing evidence that the model is strong due to above-zero Informedness scores
across the board. We also make sub-task level reevaluations, such as the model having
a moderate performance at ‘subtraction’ which accuracy reports that the model is poor
at (39.8), due to Informedness being much higher (45.9). Meanwhile the Informedness
score (56.3) for reasoning over ‘intersectional’ KG facts is much poorer than accuracy
(79.5) reports. This suggests areas to focus on for model development in the future.

Publication IV: Comparing Edge-based and Node-based Methods on a
Citation Prediction Task considered the third multimodal task of this thesis:
Citation Prediction. We were motivated by the fact that Paper I found that knowledge-
dense features are helpful for EKVQA, whilst Paper II found them unhelpful for
Eye-tracking Prediction. We speculated that there exists a cross-over point where a
sufficient scale of knowledge-rich features can outperform text. To test this hypothesis,
we designed a new benchmark for Citation Prediction with a focus on graph scale. By
training and evaluating a series of graph-embedding models on successively increasing
time-segmented sub-graphs, we found a point at which citation graph-based features
outperform text-based features for Citation Prediction at 82 million papers. Our largest
model outperforms the text model by a considerable margin: 4.9%. Furthermore, the
time-based stratification of our dataset allowed us to empirically demonstrate that
long-term citation prediction is harder than short-term predictions. Finally, we found
that the best policy for combining text and citation-based models depends on both the
size of the train citation graph and the forecast horizon of interest. This means that
the optimal ensemble of multimodal features depends on the characteristics of both the
train and test sets.

Publication V: SynthVQA: Towards Flexible External Knowledge VQA
Dataset Creation implemented an automated pipeline for generating VQA samples
from ‘graph isomorphisms’. This pipeline is highly expressive due to being agnostic



7.2. RESEARCH QUESTIONS 127

to the underlying logical forms. Our approach therefore overcomes the limited topic
diversity of previous methods. We create a diverse, difficult, and diagnostic dataset,
SynthVQA, allowing us to analyse which facts, relations, and isomorphisms are hard for
any VQA model. Our dataset shows that state-of-the-art VQA lack factual knowledge
from Wikidata compared to text-only Question Answering models.

7.2 Research Questions

Here we discuss the research findings for our Research Questions outlined in Section 1.6.
RQ1: How can we incorporate modalities with Knowledge-rich (KG,

Linguistic Annotations, Citations) and Knowledge-sparse (Images) to text
models?

We investigated the integration of modalities with varying knowledge densities—im-
ages (knowledge-sparse), text (knowledge-rich), Knowledge Graphs (KG), citations, and
expert features (knowledge-dense)—across three distinct tasks. Our findings suggest
that the usefulness of adding knowledge-rich modalities to text models is dependent
upon three factors: the presence of a knowledge gap, the detail provided by the new
modality, and the model’s ability to utilize this information effectively.

Publication I: In Factuality demonstrated the effectiveness of KG features and our
integration strategy for enhancing a Vision-Language model’s reasoning capabilities for
External Knowledge Visual Question Answering, achieving a considerable improvement
over the baseline. In this case, there was a knowledge gap due to questions being
designed around external data, and we were able to locate the relevant information
straightforwardly. However, our model’s performance varied across question types,
indicating that the specific sub-task (reasoning over multiple facts, numerical operations,
spatial reasoning) the impact varied across question types, indicating the specific nature
of the information gap and its ability to interpret KG data.

Publication II: Blending Cognitively Inspired Features revealed that in the context
of eye-tracking prediction, the integration of expert linguistic features did not provide
improvement over a fine-tuned language model, suggesting that the added knowledge-
rich features were not sufficient to fill a relevant knowledge gap or were redundant given
the information already captured by the language model.

Publication IV: Comparing Edge-based and Node-based Methods found that for
Citation Prediction, the efficacy of knowledge-rich citation features surpassed that of
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text-based features once the citation graph used for training reached a certain scale.
This highlighted the importance of the availability of lots of multimodal data for models
to train on in determining the value of integrating additional modalities.

Ultimately, we found that adding knowledge-rich modalities is useful only when
there is (a) a knowledge gap to be filled (b) sufficient detail in the new modality to
assist the system, and (c) capability within the model to make use of this information.

RQ2: How can we create multimodal datasets which are diverse, difficult,
and diagnostic?

In Paper V we release SynthVQA. Existing EKVQA datasets which challenge models
to do multimodal reasoning with external support are not large. The largest in KVQA
at 183K, but this relies on a restricted set of logical templates to produce formulaic
questions with similar reasoning types. The second largest is A-OKVQA at 25K samples,
which has higher diversity due to questions coming from human annotators without the
restriction of logical templates to align to. We used the method of Graph Isomorphism
sampling from Knowledge-Based Question Answering to generate maximally diverse
EKVQA questions from a Knowledge Graph. This method ensures a broad range
of reasoning types are represented, moving beyond the limitations of fixed templates
and mimicking the variety of real-world questions. We defined graph patterns and
then searched across linked Image/Knowledge Graphs for patterns which fitted these
isomorphisms. We created a new approach for mapping sampled facts to Natural
Language Questions with LLMs and used these to create diverse questions. Using LLMs
allows for natural phrasing of the vast variety of questions we sample, removing the
restriction on question types seen in prior EKVQA work. SynthVQA, with its emphasis
on linked Image/Knowledge Graphs, presents unique challenges that test models’ ability
to integrate and reason with external knowledge, providing clear diagnostics on where
models need improvement. Text-only Question Answering models perform extremely
well on our system, even when adversarial distractors are introduced. This indicates that
the state-of-the-art Visual Question Answering models are lacking in world knowledge.

In Paper IV we release the Citation Forecasting dataset . Citation Forecasting
allows for the comparison of text and citation-based document representation models, as
well as hybrid versions of them. Our work demonstrated that citation-based approaches
outperform text-based when the knowledge-rich citation graph has enough scale.

RQ3: How can we improve the evaluation of classification models on
datasets with diverse and imbalanced class distributions? Paper I presented
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a per-question type breakdown based on the question annotations provided in Shah
et al. (2019). However, these were hard to interpret as the answer-class distribution
was not constant across question types. In Paper III, we underscored the limitations
of conventional metrics like Accuracy, F-Measure, and AUC-ROC, particularly in
the presence of class imbalance and varied class distributions. Through extensive
experiments across a spectrum of NLP tasks, we made the case for the adoption of
Informedness, a metric that evaluates the ability of models to make decisions better
than random guessing, adjusting for class prevalence.

Our investigation spans several NLP domains, including EKVQA, Natural Language
Understanding, and Machine Translation, revealing the impact of metric choice on
reported model performance. In the GLUE benchmark, for instance, we demonstrate
that while models may achieve high Accuracy, their Informedness scores reveal a
more modest capability, particularly in tasks with considerable class imbalance. This
discrepancy emphasizes the advantages Informedness offers in capturing a model’s
genuine performance by discounting the advantage gained from label bias.

For VQA tasks, our exploration of GQA and KVQA again highlighted the pitfalls of
relying on Accuracy and F-Measure in environments with inherent biases and real-world
class distributions. Through controlled experiments, we show that Informedness provides
a more stable and accurate reflection of a model’s capability across different question
types and datasets, permitting a more nuanced understanding of model strengths and
weaknesses.

Furthermore, our analysis extended to the formality control in Machine Translation,
where we contrasted the performance of formality-aware and unaware MT systems.
Again, Informedness eliminated the baseline credit granted by Accuracy and F1, offering
a more straightforward view of a system’s true capacity to handle formality nuances in
translation (0 for unaware systems).

In our rerun of the Citation Prediction experiments, we used Informedness to address
the potential biases introduced by the Accuracy Paradox, particularly in light of a
variable ratio of non-citing to citing pairs across our dataset. We removed the consistent
ratio of non-citing to citing pairs in our time-segmented evaluation bins, and then
adopted Informedness as our primary evaluation metric to gain clearer insights into our
model’s performance.

The results reveal insights that were not apparent through the original accuracy-
based results. For instance, in the early bins where citation occurrences are less frequent,
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models appeared to perform better in terms of Accuracy due to the predominant class
being non-citations. Specifically, a model trained solely on the earliest bin (0-0) achieved
an Accuracy of 0.782 on its training bin but only an Informedness of 0.328, due to the
inflated sense of performance that Accuracy can portray in such skewed datasets.

Informedness also played a diagnostic role for our model training when we discovered
that a model trained on bins 0-30, which should theoretically perform well across time
bins, showed minimal Informedness across all time-horizons, hovering around 0.000 to
0.016. This contrasted with its high Accuracy scores. This results highlighted how
Informedness can unmask models that effectively predict no better than random chance.

Finally, our analysis indicates that the highest Informedness scores achieved across all
models and bins was approximately 0.27, suggesting considerable room for improvement
in Citation Prediction Forecasting, whilst the Accuracy scores of 0.70 might otherwise
suggest nearing a performance ceiling.

Our findings advocate for the broader adoption of Informedness in evaluating
citation prediction models, especially in the context of time-segmented data. By
providing a more accurate reflection of a model’s predictive power and its ability to
make informed decisions beyond mere prevalence bias, Informedness enables a more
nuanced understanding of model performance and potential areas for enhancement.

7.3 Impact of this Thesis

The contributions of this thesis may be placed into two categories, (1) incremental work
that contributes to the direction of the field, and (2) work which opens new research
directions.

In class (1) are Papers I, II, and the dataset part of V. Paper I released the
ReUNITER architecture for adding Knowledge Graph facts to the Vision-Language
BERT architecture. This sits within both the research direction of expanding the modal
input field of Transformer models and of Retrieval-Augmented Generation. Paper II
explored the use of expert linguistic features along with fine-tuned Masked Denoising
Language models. This is a type of Linguistic feature analysis which is useful for
low-resource languages. Paper V released a Visual Question Answering dataset with
External Knowledge which is challenging, cheap, and clearly annotated.

In class (2) are papers III, IV, and the pipeline part of V. The metric from Paper
III can be used to draw greater insights into model performance on classification tasks
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with low question-distribution entropy. The forecasting approach from paper IV opens
a new direction in the Citation-prediction literature, and our dataset allows researchers
to benchmark their systems against this criterion easily and fairly. Paper V’s GRAVITY
pipeline opens a new approach for rapidly generating fact-grounded Visual Question
Answering samples from Knowledge-Intensive groundings.

7.4 Future Directions

Enhancing Model Capabilities Paper I explored models that retrieve facts from
Knowledge Graphs for use in Vision-Language tasks. Given advancements in such
methods, such as Retrieval Augmented Generation in Lin and Byrne (2022), reconsider-
ation with the latest Vision-Language models and Retrieval techniques is warranted.
Additionally, refining question tagging by reasoning type and underlying fact in more
datasets, as we developed in our SynthVQA dataset in Publication V, could further
improve model diagnostics.

Paper II highlighted the potential of incorporating linguistic features into eye-
tracking prediction. A pretreined English-language model outperformed expert features,
but this may not be the case for low-resource languages. Future research could identify
the threshold at which Knowledge-Rich features surpass Language Models across
languages, as we did for Citation Prediction in Paper IV.

Expanding Dataset Utility Papers IV and V reported novel dataset creation, with
IV introducing a citation-prediction dataset and V releasing the SynthVQA dataset for
Knowledge-Enhanced Visual Question Answering. The next steps involve scaling these
datasets in scale, diversity, and complexity. For SynthVQA, expanding to include the
full range of facts within the Visual Genome/Wikidata linked collection could enrich
the dataset’s complexity. Additionally, employing more intricate fact patterns, such
as ‘two-hop unique’ fact chains, and integrating alternative or multiple Knowledge
Graphs, like Commonsense ConceptNet, could diversify question types and enhance the
dataset’s utility for testing AI models’ reasoning capabilities. For Citation Prediction,
we seek to expand our approach to Local Citation Recommendation, where the task
is to predict a cited paper given a citing sentence. The task will have an increased
reliance on text due to the citing sentence being required to identify the cited paper, so
this offers an intriguing opportunity to study the interactions of Citation Graphs and
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Citing Language modalities across time.

Advancing Evaluation Metrics Paper III introduced the Informedness metric
to provide a fairer analysis of classification performance, especially in tasks with low
question-distribution entropy. Future research should delve into metrics like Normalised
Information Transfer and explore methodologies for fair comparisons across diverse
class distributions. Addressing the sensitivity of Informedness to uncommon classes and
calibrating this metric to accommodate non-equal train-test distributions are critical
areas for development. Furthermore, community acceptance of novel metrics is crucial
to their adaptation. Future should present researchers with applications of different
metrics and record their ability to understand the relative performance of models given
a set of metrics under study.

Moreover, examining how to effectively average across tasks in multi-task benchmarks
to accurately reflect a model’s overall performance remains an open question. This
exploration could lead to more nuanced evaluation frameworks that better capture the
complexities of model performance across tasks.
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