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Abstract
Many academic areas of the sciences, which might seem contrived at their outset,

often find relevance in practical fields like engineering. Prime examples include

quantum mechanics in semiconductor production, number theory’s importance in

cybersecurity, and adjustments for general relativity in global positioning systems.

This thesis looks up the abstraction hierarchy, focussing on the concepts of alge-

braic topology and, to a lesser degree, differential geometry, to address challenges

in structural health monitoring (SHM) and nonlinear dynamics.

The first component of this thesis explores obtaining series solutions to nonlinear dif-

ferential equations by considering generating series expansions, a framework rooted

in differential geometry. Here, novel optimisations are presented for computationally

determined series solutions, which output impulse responses of nonlinear systems.

The process is applied to a benchmark study, yielding unseen solution depths, pro-

viding greater insights into the behaviour of nonlinear systems.

Much of the data-based SHM literature is dedicated to machine learning methods;

overlooking informative shape features within data. The cornerstone of this the-

sis introduces and applies Topological Data Analysis (TDA), harnessing the data’s

shape, such as holes and voids, for SHM decision-making. Topological arguments are

shown to enhance SHM insights regarding damage detection and environmental and

operational variation removal, as well as augmenting established machine-learning

approaches. A multi-faceted understanding of data is crucial for SHM since infor-

mation is limited, and decisions carry dire safety and economic consequences.

A key challenge in SHM is discerning damage effects from benign environmental

fluctuations. This thesis addresses this problem by imbuing 1D time series with a

topology, where different trends give unique shapes, and inferences are made via

topological reasoning. A significant portion of this thesis evaluates the Z24 Bridge,

showcasing TDA’s capability to identify damage amidst dominant external factors.

This thesis shows that abstract mathematical concepts yield beneficial outcomes by

providing unique insights; underscoring the potential of TDA and generating series

in SHM and nonlinear dynamics. By leveraging such novel analyses, one might

identify data subtleties, indicative of structural issues, which might otherwise be

overlooked with machine learning and traditional SHM means.
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Chapter 1

Introduction

Mechanical Engineering tends to favour pragmatic and inherently geometric tech-

niques, be it through modelling or data analysis. This trend is evident in the subdis-

ciplines of nonlinear dynamics and structural health monitoring (SHM), which often

overlook abstract approaches like topology and differential geometry. However, in

the light of recent computational advancements and the emergence of new theories,

there is value in integrating these abstract notions; providing modern insights to age-

old engineering problems. This thesis aims to incorporate topology and differential

geometry concepts, thereby diversifying an engineer’s analytical toolbox.

1.1 Structural Health Monitoring

SHM is a multi-disciplinary engineering field concerning the continuous, real-time,

and online monitoring of engineering structures. To achieve SHM, sensors are placed

over a structure to observe its damage-sensitive features, inferring information re-

garding the structure’s past, present, and ideally future health and operational

states. Common applications of SHM are in assessing civil, aerospace, and me-

chanical infrastructure [1].

The information extracted from SHM systems is tiered via Rytter’s hierarchy. Each

successive level offers greater insight into the structure’s health state, but determin-

ing them becomes increasingly complex. Rytter’s hierarchy, first outlined in [2] and

later expanded [3] to a form in popular usage today, is characterised as follows:

1



Introduction 2

I Detection: is damage present within a system?

II Localisation: where is the damage?

III Type: how could the damage be classified?

IV Quantification: how severe is the damage?

V Prognosis: how long can the structure operate as intended?

Solving for each tier in Rytter’s hierarchy requires sophisticated data analysis or

modelling strategies, in conjunction with sensing technologies. While advanced

stages of damage might be visibly evident, e.g. a noticeable crack, at this point,

the structure is likely beyond cost-effective repair. Additionally, damage may occur

at a microscopic or subsurface level. For these reasons, in SHM, a reliance is placed

on measuring features that display indirect signs of damage. These effects indicative

of damage are often subtle, particularly in the early stages. Consequently, extract-

ing these damage subtleties requires mathematically-involved methodologies, where

the two main philosophies of SHM are model-based and data-based.

Model-based SHM centres around developing a high-fidelity physics-based model

of a structure, factoring in material properties, geometry, loading conditions,

among other factors. This model is validated against data gathered from the

structure. If there are statistically significant discrepancies between the model

and observed data, the structure is behaving abnormally, potentially indicating

the presence of damage.

Data-based SHM does not rely on predefined models. Instead, such approaches

aim to identify patterns within the data, commonly via statistical or machine-

learning techniques, which then guide monitoring decisions.

The work in this thesis leans towards a data-based approach, but it is important to

acknowledge the unique advantages and disadvantages of each method. Model-based

approaches are grounded in the mechanics of the structure, leading to interpretable

results and the ability to model in hypothesised contexts, such as earthquakes or

extreme storms. However, physics-based models are complex, bespoke, costly to de-

velop, and limited to current physical knowledge; hence, they will never truly capture

all real-world phenomena. On the other hand, data-based approaches are relatively

cheap, adaptable, generalisable and scalable. However, a data-based method’s ef-

ficacy is tied to the quality of the input data, and their inner workings are often
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opaque, aptly giving them the name black-box models. Lately, there has been an

interest in grey-box modelling [4], which aims to imbue data-based approaches with

some physical understanding of the structure.

If SHM is so challenging to implement well, and structures have withstood the test

of time long before the conception of the field, why is SHM now crucial for infras-

tructure? Several reasons underpin SHM’s usage, with some of the most important

benefits being [5]:

Safety: SHM systems, with their continuous and online monitoring, can detect

damage in its initial stages. This information informs asset managers about

the damage, enabling timely intervention. This action reduces the likelihood

of catastrophic failure, which often carries severe safety implications. Oper-

ating a structure in the presence of damage, unbeknownst of otherwise, only

exacerbates the damage. Hence, early detection increases safety.

Economic: As a corollary to the safety benefits, similar logic applies to economic

advantages. A catastrophic breakage could cause undue damage to adjacent

parts of the machinery. For example, addressing a faulty bearing early on

might prevent the need to repair a costlier gearbox later. Furthermore, catas-

trophic failures in large-scale structures can lead to prolonged downtimes.

Given that these structures have correspondingly large outputs, any period

of inactivity is an economic inefficiency.

Automation: Automated monitoring is preferential to manual monitoring in situ-

ations where accessing parts is problematic e.g. a centrally-located part within

a large machine with many surrounding parts, or hard-to-reach structures like

offshore wind turbines. SHM also can increase the period or even remove the

need for manual-routine maintenance, thereby reducing downtime and expen-

sive engineer assessment.

Operational Optimisation: SHM systems gather data regarding environmental

and operational variations (EOVs), which can be utilised to finetune a struc-

ture’s operation. For instance, adjusting a wind turbine’s blade pitch and

nacelle yaw according to wind speed and direction for maximal energy pro-

duction [6].
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1.1.1 SHM in Practice

Implementing SHM systems in real-world settings presents various deployment chal-

lenges. In controlled laboratory settings, structural excitation and boundary condi-

tions are precise and controllable. In contrast, real-world conditions present multiple

unpredictable excitations and constantly shifting circumstances which complicate

SHM. Structures face daily and seasonal temperature variations. Traffic loads in-

tensify during busy periods. Foundations degrade over time. These complexities

accumulate, giving an ever-increasingly complicated scenario that an SHM system

must consider to provide reliable assessments.

A major problem is that the effects from EOVs often provide more variation in the

damage-sensitive features than the early signs of damage. Distinguishing effects,

such as temperature, from genuine damage effects, is a classic SHM problem. The

primary EOVs of interest in this research are temperature and traffic loading.

SHM systems are frequently used for large-scale, high-value structures. Acquir-

ing data from a damaged state presents the ill-opposed financial burden of willingly

damaging such costly and often bespoke structures. Consequently, uncertainty often

arises in the influence of damage on damage-sensitive features. Even if some dam-

age information is known, damage can manifest in different forms and locations,

each possibly having unique effects on the structure. It becomes unfeasible, if not

impossible, to account for every possible damage type, location, and their combi-

nations. Therefore, SHM necessitates clever data analysis to maximise information

extraction.

1.2 Topological Data Analysis for SHM

Topological data analysis (TDA) is an advanced data analysis method not yet in

common usage in SHM. Since its inception in the early noughties [7], TDA has

experienced substantial growth, finding application across many mathematically-

centred academic disciplines.

TDA uses the shape of data as an analytical feature via theories adapted from the

more abstract side of mathematics, specifically, a subfield called algebraic topology.

This research aims to merge SHM and TDA, thereby assisting SHM decision-making

via novel topological reasoning. The objective is to expand the SHM data-driven

toolkit by incorporating topological methods both as a standalone process and in
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conjunction with well-established machine-learning methods.

The primary tool in the TDA arsenal is persistent homology, which offers multi-

scale descriptions of the shape of high-dimensional data by extending the traditional

mathematical concept of homology. In essence, homology determines the number

of k-dimensional holes in a continuous space. In TDA, homology is generalised to

consider discrete point clouds, like those from data sets. The term ‘persistent’ arises

because the homology is evaluated across various length scales, tracking when the

k-dimensional holes appear and subsequently disappear; gauging the persistence of

topological features in data. The persistent homology distinctively represents a data

set and can be compared to persistent homologies from other data sets, quantifying

the degree of similarity in shape between the two.

This thesis proposes that damage induces some unique and observable topological

change in SHM data, which can be identified and leveraged via TDA.

1.3 Nonlinear Dynamics

Besides SHM, another complementary theme of this thesis concerns nonlinear dy-

namics. These two studies often intersect, as SHM often requires modelling nonlin-

ear phenomena pervasive in nature, areas where linear models otherwise fall short.

Nonlinear dynamics, at its core, studies systems that do not follow a proportional

input-output relationship, giving rise to rich and descriptive theories.

Modelling nonlinearities in structures is key, as all real-world structures exhibit

nonlinearity to some degree; be it via friction in joints, loading beyond a material’s

linear-elastic region, or even a structure’s geometry [8]. Nonlinear systems also

exhibit such phenomena as chaos and bifurcations, which are not represented by

linear analysis. The effects of such complex behaviours could profoundly affect the

longevity of structures and machines. Hence, nonlinear dynamics is not just an

academic pursuit, but necessary to understand and predict real-world structural

happenings.

In this thesis, nonlinear dynamics is explored in two different contexts. One treat-

ment is under the lens of topological methods, delving into some chaotic properties

of systems of differential equations and the intriguing phase-space characteristics of

their solutions. The other context employs a method rooted in differential geometry,

using the generating series to provide solutions to nonlinear differential equations.
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1.4 Generating Series

Although the generating series have strong foundations in differential geometry via

Lie groups and Lie algebras [9], such depths are not covered in this thesis directly.

In lieu of deep mathematical abstraction, the novelty lies within application and

optimisation, given the engineering focus of this thesis.

The generating series serves as a tool in this work, specifically a determination mech-

anism for a series solution to nonlinear differential equations. The generating series

approach parallels the Laplace transform used for ordinary differential equations

but tailored for nonlinear differential equations. The general procedure transforms

a nonlinear differential equation into an alternative domain, enabling algebraic ma-

nipulation of what was a calculus problem – exactly like Laplace transforms in the

s-domain. In this generating series domain, polynomial nonlinearities are expanded

via the shuffle product1. Following this algebraic expansion, the result is inverse

transformed back to the time domain, yielding an analytical series solution to non-

linear differential equations.

The appeal of the generating series approach stems from its compatibility with

computer programs. The shuffle product is intuitively represented via a recursive

breakdown. While manually calculating this expansion is impractical, computers

manage it favourably; opening the door for computational optimisation to uncover

unforeseen series-solution depths.

This thesis applies the generating series method to a modified version of Duffing’s

equation [11], a common nonlinear differential equation in structural dynamics;

specifically, when excited by an impulse response.

1.5 Thesis Novelty

The overarching theme of this thesis is the application of topological data analysis

to structural health monitoring. In doing so, TDA – which is previously unseen

to the SHM community – is introduced and applied to problems on the softer end

of Rytter’s hierarchy. There are a few detours along the way where some pure

1Shuffle algebra, like topology, traces its origins from the more abstract side of mathematics
as first discovered by Eilenberg and Mac Lane [10]. Coincidentally, or perhaps a testament to
their genius, Samuel Eilenberg and Saunders Mac Lane were also pioneers of algebraic topology
via category theory and homological algebra.
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nonlinear dynamics problems are considered, both by topological data analysis and

the generating series. The specific contributions to the existing literature are as

follows:

• Two topology-based novelty detection mechanisms are presented. The SHM

decisions are formed solely on the relative shape of data partitions. The first

damage-detection procedure is native to persistent homology, using a common

metric over the space of persistent homologies. The second manipulates per-

sistent homology into features suitable for machine-learning classification. In

both, the damage influence on the data’s shape is uniquely recognisable, even

in the presence of a magnitude-dominant EOV.

• Furthering the understanding of the impact of cointegration – a data normal-

isation procedure – on the removal of EOVs from damage-sensitive features.

Embedded topologies are formed from time series, and assessed before and

after cointegration to measure the effectiveness of trend removal, especially

when multiple EOVs with distinct effects are present.

• The creation of a computer program that efficiently determines the shuffle

product, incorporating several novel computational and mathematical opti-

misations. The interest in determining an impulse response prompted its

derivation in the generating-series domain. Together, these findings provide a

highly-optimised, generalisable framework for the impulse response of nonlin-

ear differential equations. This framework is applied to a modified Duffing’s

equation, revealing unseen series-solutions depths.

1.6 Thesis Outline

A summary of each chapter is as follows:

Chapter 2: A standalone chapter that introduces the generating series method,

detailing its application for determining series solutions to nonlinear differen-

tial equations. This chapter provides a derivation of the impulse response in

the generating series domain and outlines novel optimisation strategies in the

shuffle product’s implementation. The chapter concludes with an application

to a variant of Duffing’s equation and showcases the results.

Chapter 3: Provides an overview of the background theory needed for topolog-
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ical data analysis. Assuming no prior knowledge of abstract mathematical

concepts, it begins with basic set theory and progressively builds up through

topics such as groups, metric spaces, topological space, simplicial complexes,

homology, persistent homology, and the Wasserstein distance. The chapter

concludes with some common TDA pitfalls and shortcomings.

Chapter 4: A topological approach to SHM is demonstrated using the classic Z24

Bridge case study. The bridge’s natural frequencies are partitioned into data

sets according to the temperature at the instance, or the presence of damage. A

topology-based metric is considered over the partitions to identify a significant

topological change in the presence of damage.

Chapter 5: Here, the previous chapter is extended to consider the persistent ho-

mologies as features in machine learning. Sliding windows are taken over the

Z24 bridge natural frequencies, and the persistent homologies are used to de-

cide a binary classification signalling the presence of damage.

Chapter 6: A nonlinear dynamics case study is presented, demonstrating the capa-

bility of topological data analysis to calculate the fractal dimension of strange

attractors. This detour from SHM shows information exists in short-lived topo-

logical features, which is not always considered to be the case. Concluding this

chapter is a novel method for determining the optimal delay for reconstructing

attractors.

Chapter 7: The beginning of analysing EOV normalisation via both linear and

nonlinear cointegration when applied to the Z24 natural frequencies. Each

natural frequency time series is embedded, giving them a topology quantifi-

able via persistent homology. The embedded time series are compared before

and after cointegration, evaluating the effectiveness of trend removal over coin-

tegration based on the extent of shape removal in the embeddings.

Chapter 8: This chapter topologically quantifies the relative removal of multiple

nonstationary trends present from distinct EOVs when passed through a coin-

tegration procedure. The Tamar Bridge is introduced as a benchmark because

of its pronounced effects from multiple EOVs. This exploration introduces a

novel method for determining the optimal delay, coupled with a pre-existing

method for the optimal embedding dimension. Embeddings are created for

each EOV and compared to embedded structural parameters before and after
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cointegration to evaluate the most significant topological changes.

Chapter 9: This thesis concludes with a discussion of the proposed techniques,

highlighting the advantages and disadvantages of applying more abstract anal-

yses to engineering problems, then noting some possible areas for future study.



Chapter 2

A Generating Series Approach

for Nonlinear Oscillators

This chapter explores the generating series approach for determining the Volterra

series of nonlinear systems. An analytical determination of the response for a non-

linear single-degree-of-freedom (SDOF) oscillator subject to an impulse excitation

will be provided. The theoretical aspects of this approach may, at times, appear ver-

bose and complex. However, this approach allows for an automatic computational

expansion of higher-order terms. A walkthrough of the required background theory

is provided, this is then supplemented with a classic nonlinear dynamics problem.

This chapter will also shed light on several optimisation strategies for implementing

this generating-series approach.

One of the attractive features of the Volterra series is that the generalised coeffi-

cients of the series have physical interpretations; the coefficients are actually linear

and nonlinear impulse responses, and their Fourier transforms can be regarded as

Higher-dimensional Frequency Response Functions (HFRFs) [8]. Unfortunately, cal-

culations with the Volterra series are very demanding in algebraic terms and rapidly

become intractable (at least by hand), as the order of the expansion increases. For-

tunately, such a reformulation exists in the form of the generating series. The

ground-breaking idea involved the representation of the Volterra series – a sequence

of high-dimensional integrals – as a purely algebraic expansion. The overriding ben-

efit of the generating-series approach was that the operations in the series expansion

are implementable in computer algebra.

10
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Analytical approximations, including the Volterra series, offer a greater level of in-

sight and comprehension for nonlinear systems when compared to numerical counter-

parts. Analytic expressions are succinctly embodied in formulae, enabling analysts

to appreciate the impact of individual parameters on the solution. Furthermore,

analytical expressions allow for further examination, including the application of

calculus to gain additional system insights. In contrast, numerically-determined

solutions often obscure this intuitive understanding. However, it is important to

note that when compared to numerical solutions, such as an initial-value problem

using a fourth-order Runge-Kutta [12], analytical solutions require a richer theory,

are harder to implement, and require more time-consuming calculations.

The generating-series approach to nonlinear differential equations bears a significant

resemblance to the Laplace transform approach to ordinary differential equations.

The general procedure for both is as follows: the differential equation undergoes a

transformation into a different domain, which is then algebraically manipulated, and

finally transformed back into the time domain, giving the solution to the differen-

tial equation. However, this generating-series theory extends the standard Laplace

transform to incorporate nonlinear terms, which massively complicate matters. For

the generating-series approach, one must convert the nonlinear differential equation

into integral form. Following this, previous work [9, 13] has outlined a method of

transforming the integral form into a different domain where the nonlinearities may

be expanded algebraically. The transformed equivalent of multiplication – known

as the shuffle product – plays a crucial role in computing the Volterra kernels. An

iterative process in the transformed domain centres around the shuffle-product ex-

pansion of the generating series. Once the necessary accuracy is obtained, the terms

are decomposed into a form applicable for inverse transformation back into the time

domain, thereby providing an analytical (albeit truncated), solution to the nonlinear

differential equation.

The generating-series approach is readily extensible to solve more complex systems

than the example given later in this chapter. Increased complexity could come from

higher-order derivatives or more nonlinearities. The excitation of the system is also

not limited to an impulse. Solutions are well-defined for other excitations, such as

step, sinusoidal, exponential, polynomial [14, 15, 16], and Gaussian White Noise

(GWN) [17, 18]. In the current literature, a definition is given for the generating

series response to a Dirac-delta excitation [19]. However, in this paper, no derivation
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or reference is given for this result1. Hence, this chapter will provide an original

derivation of the impulse response for generating series.

An example is provided, where an SDOF oscillator with quadratic and cubic stiffness

nonlinearities is subject to an impulse excitation with amplitude A. A walkthrough

of the procedure and calculations is presented, highlighting some key points that

might deter someone from attempting to implement this challenging analysis. The

results will then be presented. To cast light on the credibility of this approach, a

comparison to previously-determined Volterra kernels is given, and an error anal-

ysis compared to a fourth-order Runge-Kutta solution. Finally, the example will

conclude with a discussion regarding the performance and stability of the Volterra

series.

2.1 Background Theory

Rather than exploring the intricate details of algebraic systems, or offering proof

as to why this procedure is a valid method for determining the Volterra series, this

work will focus on practical applications of previous work by Fleiss et al. [9, 13, 19].

However, the reader should be made aware of the rich interplay between generating

series, differential geometry and Lie algebras [9, 10, 20, 21, 22]. In this section, only

the required nomenclature and concepts are introduced, to ensure that readers can

fully appreciate the following material.

2.1.1 Volterra Series

The Volterra series serves as a mapping for nonlinear input-output processes [23, 24].

For structural dynamicists, the Volterra series is a generalisation of Duhamel’s inte-

gral (equation (2.1)) to include nonlinear behaviour. For the more mathematically

inclined, the Volterra series can be thought of as a generalisation of the Taylor se-

ries from functions to functionals, incorporating a reliance on previous values in the

series – memory.

1The author has completed a comprehensive literature survey and suspects a derivation for the
impulse excitation may exist within Moustanir Lamnabhi’s 1986 PhD Thesis titled ‘Analyse des
systèmes non linéaires par les méthodes de développements fonctionnels’. However, the only records
of this work are at the University of Lille and Paris-Saclay University in paper and microfiche
formats. The author’s requests for Inter-Library Loans and scans of the documents were denied,
and attempts to contact Moustanir Lamnabhi proved fruitless.
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The input-output behaviour for a linear system is,

y(t) =

∫ +∞

−∞
h(τ)u(t− τ) dτ (2.1)

where h(τ) represents the system’s linear impulse response [8]. For nonlinear sys-

tems, Duhamel’s integral denotes the first term, y1(t), in the Volterra series

y(t) = y1(t) + y2(t) + y3(t) + · · ·+ yi(t) + · · · (2.2)

where in general

yi(t) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
hi (τ1, . . . , τi)u (t− τ1) · · ·u (t− τi) dτ1 · · · dτi (2.3)

The terms denoted by hi are referred to as the Volterra kernels, and are essen-

tially generalisations of the linear impulse-response function (IRF). Determining the

Volterra kernels often requires complex and manual (therefore error-prone) calcula-

tions; be it through contour integration [25], harmonic-probing [26], or exponential-

inputs [27]. Such methods of determining the Volterra kernels, the generating-series

approach included, become cumbersome even for some lower-order terms. However,

the generating-series method discussed in this chapter allows for a relatively simplis-

tic implementation on computers. Allowing for the calculation of much higher-order

terms when compared to hand calculations.

2.1.2 Noncommutative Algebra

Let X = {x0, x1}, this set is called the alphabet and the elements are called letters.

X generates the free monoid set X∗; whose elements are sequences of the form

xjv . . . xj0 , called words [13].

The length of a word, w ∈ X∗, denoted |w|, refers to its number of letters. For

instance, |x0x1x1x1x0| = 5, while the length of the empty word 1 is zero as it

contains no letters.

A product of words signifies their concatenation, expressed as:

(xjν · · ·xj0)
(
xkµ · · ·xk0

)
= xjν · · · xj0xkµ · · ·xk0 (2.4)

The operation of concatenating words is noncommutative, the reasons for this will
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be elaborated in Section 2.1.4.

In this context, it is necessary to define two letters and their corresponding time-

domain counterparts

x0 ↔
∫ t

0

dτ and x1 ↔
∫ t

0

u(τ) dτ (2.5)

where x0 represents an integration in the time domain and x1 is the integration

of the system excitation u(t) in the time domain i.e. y(t) = S [u(t)], where S

represents the system equation. The usage and understanding of these letters will

be expanded in Section 2.1.4, where the noncommutativity constraint will also be

further discussed. The definitions given in equation (2.5) will then form the basis

for the transformation into the generating-series domain.

A noncommutative series g, is called the generating series and represents a sys-

tem with input-output behaviour. It is possible to transform a differential equa-

tion in y into the generating-series domain, where g serves as the analogue of y.

This transformation is performed by following the letter definitions given in equa-

tion (2.5), and substituting yk with g

∃

k. More detail will be given on this in Sec-

tions 2.1.3, 2.1.4 and 2.1.5.

2.1.3 Basic Shuffle Product

A prominent operator inside the algebraic framework is the shuffle product, denoted

by

∃

; this is an essential operator in the expansion of generating series. As briefly

touched upon, the shuffle product is the transformed analogue of multiplication,

specific to the dependent variable in the differential equation. Once all the necessary

background theory has been introduced, the shuffle product will be revisited in

Section 2.1.6, specifically concerning its application to generating series. At this

stage, focusing on the shuffle product’s simpler application over letters and words

will suffice; this will help build intuition over the fundamental workings of the shuffle

product.

The shuffle product is best described as the sum of all the permutations formed from

a riffle shuffle of the letters of the two arguments. The following identities, given

x1, x2, y1, y2 ∈ X, may help support this definition:

1. 1

∃

1 ≡ 1, gives the terminating criterion for the shuffle expansion
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2. 1

∃

x1 ≡ x1

∃

1 = x1, shuffling with the identity element.

3. x1

∃

y1y2 ≡ x1y1y2 + y1x1y2 + y1y2x1, demonstration of the result for a non-

trivial case.

4. x1x2

∃

y1y2 ≡ x1(x2

∃

y1y2) + y1(x1x2

∃

y2), the shuffle product can be

recursively simplified into many reduced problems – a pivotal requirement for

this work.

To further clarify matters, the full expansion of identity 4 is given as:

x1x2

∃

y1y2 = x1(x2

∃

y1y2) + y1(x1x2

∃

y2)

= x1x2y1y2 + x1y1x2y2 + x1y1y2x2 + y1x1x2y2 + y1x1y2x2 + y1y2x1x2 (2.6)

As highlighted in equation (2.6), the letters constructing the words passed into the

shuffle product do not permute in any of the output terms. Specifically, x1 always

precedes x2, the same is true for y1 and y2. This statement holds true across all

shuffle-product expansions.

Most handily, the shuffle product can be recursively expressed along the length of

the two arguments, by splitting the arguments into a concatenation of a letter and

word. This fact will be used extensively when the shuffle product is described in more

detail over generating series of a certain form in Section 2.1.6. Given w1, w2 ∈ X∗

and x1, x2 ∈ X

x1w1

∃

x2w2 ≡ x1(w1

∃

x2w2) + x2(x1w1

∃

w2) (2.7)

2.1.4 Iterated Integrals

Iterated integrals serve as a key transformation mechanism when converting nonlin-

ear differential equations into the generating-series domain. The iterated integrals

arise when converting the nonlinear differential equations into integral form. For a

system with the highest-order derivative n, the kth derivative where k < n, requires

n− k iterations of integrals to eliminate that differential (this process is exemplified

in equation (2.14)).

Consider the product of two iterated integrals. For notational convenience, the

number of iterated integrals is determined by the number of bounds, and only a
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single integral is displayed:(∫ t

0

dξjv . . . dξj0

)(∫ t

0

dξkµ . . . dξk0

)
=∫ t

0

dξjv

[(∫ τ

0

dξjv−1 . . . dξj0

) (∫ τ

0

dξkµ . . . dξk0

)]
+∫ t

0

dξkµ

[(∫ τ

0

dξjv . . . dξj0

)(∫ τ

0

dξkµ−1 . . . dξkv

)] (2.8)

Interestingly, the expansion of the product using integration-by-parts shares a strik-

ing resemblance to equation (2.7), wherein terms are removed from the product, and

the problem is redefined on a smaller subset of the initial problem. This resemblance

forms the foundation for transforming between the two domains and is, in fact, a

theorem.

Theorem 2.1.1. The product of two analytic causal functionals is again an analytic

causal functional of the same kind, the generating power series of which is the shuffle

product of the two generating power series [9, 13, 20]

y · y ↔ g

∃

g (2.9)

This is further extended to higher-order terms too; for instance,

yk ↔ g

∃ · · · ∃ g︸ ︷︷ ︸
k-times

= g

∃

k (2.10)

The term ‘analytic causal functional’ may seem complex at first glance, but a step-

by-step breakdown can help uncover its meaning. Firstly, ‘analytic’ means a function

that can be locally expressed as a convergent power series. Such functions are notable

for their infinite differentiability. Secondly, ‘causal’ simply pertains to the reliance

or causality on another variable’s past and present values, such as x1 or the system

excitation (depending on the domain) in this context. Finally, a ‘functional’ is a

special kind of function that takes another function as an input and produces a

scalar as its output. Thence, combining these terms, an ‘analytic causal functional’

is a scalar-producing function that is infinitely differentiable, has a dependency on

another variable, and takes another function as its input.

By letting g denote the generating series associated with y, the letter x0 be the
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integral
∫ t

0
y(τ) dτ and x1 the integral with respect to the excitation

∫ t

0
u(τ) dτ [13]

this outlines all the requirements to transform the nonlinear differential equations

into the generating-series domain. For clarification, k iterated integrals in the time

domain will be transformed to xk
0. For k iterated integrals applied to the excitation,

this results in xk−1
0 x1. Since only the first application of the integral is applied to

the excitation, this results in the single x1 term. The noncommutativity constraint

is now transparent, as changing the sequence of letters within a word analogously

permutes the integration bounds.

Example 2.1.2. Consider the excitation u(t) = tk, and then consider the two

products x0x1 and x1x0. Expanding their time domain equivalent terms gives:

x0x1 ↔
∫ t

0

∫ τ2

0

τ k1 dτ1 dτ2 =
tk+2

(k + 1)(k + 2)
(2.11)

and

x1x0 ↔
∫ t

0

τ k2

∫ τ2

0

dτ1 dτ2 =
tk+2

k + 2
(2.12)

Hence, it is immediately evident that x0x1 ̸= x1x0 in this case; highlighting the

requirement to respect noncommutativity.

2.1.5 Generating Series

Generating series serve as a powerful tool for solving nonlinear differential equations.

The generating series, g, is the transformed equivalent of the dependent variable in

a differential equation (much like the relation between y(t) and Y (s) in standard

Laplace transforms). The generating series can be applied to nonlinear differential

equations, those encapsulated by the general form,

n∑
i=0

li
diy

dti
+

m∑
j=2

bjy
j = u(t), ln = 1 (2.13)

Where y represents the response variable which is dependent on t, u is the excitation,

li are the coefficients of the differential terms, and bj are the coefficients of the

polynomial nonlinearities. This formula describes a family of nonlinear differential

equations with polynomial nonlinearities, including Duffing’s equation [11].

Upon converting equation (2.13) into integral form, the following integral equation
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is obtained:

y + ln−1

∫ t

0

y dτ1 + · · ·+ l0

∫ t

0

dτn· · ·
∫ τ2

0

y dτ1 +
m∑
j=2

bj

∫ t

0

dτn· · ·
∫ τ2

0

yj dτ1

=

∫ t

0

dτn· · ·
∫ τ2

0

u dτ1

(2.14)

Given the transform to the generating-series domain described in Section 2.1.4,

each repetition of an integral of y can be substituted with the x0, and the integral of

the excitation replaced with x1. This substitution creates a direct analogue of the

nonlinear differential equation in the generating-series domain,(
1 +

n−1∑
i=0

lix
n−i
0

)
g + xn

0

m∑
j=2

bjg

∃

j = xn−1
0 x1 (2.15)

Naturally, there are very strong parallels between equations (2.13) and (2.15). How-

ever, a notable alteration involves a bound shift on the first summation to factorise

g out as ln = 1. The most intriguing part about the generating-series domain form is

that the differential equation has been reduced to a purely algebraic problem. The

coefficient of g represents a polynomial in x0, which can subsequently be factorised

into a product of its roots,

1 +
n−1∑
i=0

lix
n−i
0 =

p∏
i=0

(1− aix0)
αi (2.16)

where
∑p

i=0 αi = n. Substituting the result from equation (2.16) into equation (2.15)

and then rearranging for g gives,

g =
xn−1
0 x1

p∏
i=0

(1− aix0)
αi

−
xn
0

m∑
j=2

bjg

∃

j

p∏
i=0

(1− aix0)
αi

(2.17)

The division of this equation into two terms is purposeful. The first term represents

the linear approximation to the Volterra series, as it does not contain g. Whereas,

the second term contains repeated shuffles of g. Equation (2.17) provides the basis

for an inductive iterative scheme, where the first term is the initial term, and the

second term provides the method of deducing higher-order terms. This iterative
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method closely aligns with a perturbation expansion, a technique commonly used in

nonlinear dynamics [8]. A solution for g is simply the sum of all the generating-series

terms created over this iteration,

g = g0 + g1 + · · ·+ gk (2.18)

Here, k signifies the number of iterations computed of the iterative scheme. Natu-

rally, the greater the number of terms, the greater the accuracy for convergent series

approximations.

In order to begin the iterative scheme, the first term, g0 is taken to be the linear

term from equation (2.17) and the iterative expansion is defined by expanding the

shuffles of the second term in equation (2.17). This results in the first term of the

iterative scheme of the form,

g0 =
xn−1
0 x1

p∏
i=0

(1− aix0)
αi

(2.19)

and higher-order terms are determined by the following,

gi+1 = −
xn
0

m∑
j=2

bj
∑

ν1+···+νj=i

gν1

∃

. . .

∃

gνj

p∏
i=0

(1− aix0)
αi

(2.20)

The term
∑

ν1+···+νj=i gν1

∃

. . .

∃

gνj is the sum over all the permutations of the

previous generating-series expansions that sum to i, the current iteration depth. Fol-

lowing the expansion of the shuffle products and reverse transforming the generating

series to the time domain, this procedure allows for series expansions of nonlinear

differential equations being computed entirely algebraically.

Before proceeding, some subtleties need to be addressed that will aid further steps.

Equation (2.19) states that the first term g0 is of a particular form R0 · xi1 · R1 ·
xi2 · . . . · xip · Rp, where Rj is a rational fraction in x0 and {i1, i2, . . . , ip} ∈ {0, 1}.
Additionally, the iterative scheme is also of a similar form. Meaning that if the first

term is of this form, and the formula to create new terms preserves this form; all

the generating-series terms derived from this iterative scheme maintain the same
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structure. Consequently, all terms in the expansion will adopt the form:

xi1

(1− a1x0)
α1

· . . . · xiq

(1− aqx0)
αq

(2.21)

For simplicity further down the line, reducing the integer exponents α to unity will

allow for a more concise definition of the shuffle product of two generating series.

Fortunately, this issue is not too contentious, as repeated applications of the identity

shown in equation (2.22) will reduce any exponent,

1

(1− ax0)
α ≡ 1

(1− ax0)
α−1 +

ax0

(1− ax0)(1− ax0)
α−1 (2.22)

Repeated applications allow any integer exponent to be reduced to unity, thus paving

the way for an easier shuffle-product expansion of generating series. As observed

throughout this clarification, the application of the equation (2.22) preserves the

form within the terms. After a full decomposition, such that all exponents are

reduced to unity, each generating-series term is of the form,

λ

1− a0x0

· xi1

1− a1x0

· . . . · xin

1− anx0

(2.23)

where λ is the coefficient of the term. After this abstract work in the generating-

series domain, it is nice to relate back to the Volterra series and time domain. The

generating series form in equation (2.23) is equivalent to the following in the time

domain [13, 17].

λ

∫ t

0

∫ τn

0

· · ·
∫ τ2

0

ea0(t−τn)ui1(τn)e
a1(τn−τn−1) · · · ean−1(τ2−τ1)uin(τ1)e

anτ1dτ1 . . . dτn

(2.24)

2.1.6 Shuffle Product of Generating Series

To define the shuffle product of two generating series, it is best to assume the

generating series form of rational fractions and the letters x0 and x1, as described at

the end of Section 2.1.5. Consequently, the shuffle-product expansion of generating-

series terms is more involved than the ones shown in Section 2.1.3.

Given two generating series gp1 and gq2, with lengths p and q respectively. The forms
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of these generating series are given by:

gp1 =
λ1

1− b0x0

· xi1

1− b1x0

· . . . · xip

1− bpx0

= gp−1
1 · xip

1− bpx0

(2.25)

gq2 =
λ2

1− d0x0

· xj1

1− d1x0

· . . . · xjq

1− dqx0

= gq−1
2 · xjq

1− dqx0

(2.26)

Where λi denote the coefficients of the generating series. The earlier work ensuring

that all terms in the iterative expansion share this form allows for the shuffle product

to be well-defined for all iteration depths. The shuffle product of two generating

series is recursively defined along its length and terminates when both generating

have length 0, much like equation (2.7). For the shuffle product of the two generating

series in equations (2.25) and (2.26) would require p+ q reductions.

To examine the shuffle product, take the two generating series with the end letter

and fraction taken out from each [13].

gp1

∃

gq2 = gp−1
1 · xip

1− bpx0

∃

gq−1
2 · xjq

1− dqx0

=

[
gp−1
1 xip

(
1 +

bpx0

1− bpx0

)]

∃

[
gq−1
2 xjq

(
1 +

dqx0

1− dqx0

)]

=

[
xip

1− bpx0

gp−1
1

∃

gq−1
2

]
xjq +

[
gp−1
1

∃

gq−1
2

xjq

1− dqx0

]
xip

+

[
xip

1− bpx0

gp−1
1

∃

gq−1
2

xjq

1− dqx0

]
bpx0

+

[
xip

1− bpx0

gp−1
1

∃

gq−1
2

xjq

1− dqx0

]
dqx0

= (gp−1
1

∃

gq2)
xip

1− (bp + dq)x0︸ ︷︷ ︸
g1 reduction term

+(gp1

∃

gq−1
2 )

xjq

1− (bp + dq)x0︸ ︷︷ ︸
g2 reduction term

(2.27)

The denominators of the two reduction terms are the same and are formed by

applying the identity [13]:

1

1− bx0

∃ 1

1− dx0

≡ 1

1− (b+ d)x0

(2.28)

The numerator of the reduction term is simply the last letter of the term being

reduced.
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The shuffle product is now defined in a succinct recursive manner over the lengths

of the two generating series (much like equation (2.7)). From equation (2.27), the

shuffle product is shown to be commutative over generating series, as reversing the

order only impacts the order of addition. Commutativity will allow for optimisations

at a later stage.

Adopting an Array Form

To enable a more compact representation of the generating series, an array form

is adopted as a notational aid. This form is particularly useful for expanding the

shuffle products inside a computer program, where the shuffle product can then

be defined as a sequence of array manipulations. Given the generating series from

equations (2.25) and (2.26) their corresponding array forms are as follows:

gp1 =

[
λ1 xi1 xi2 · · · xip−1 xip

b0 b1 b2 · · · bp−1 bp

]
, gq2 =

[
λ2 xj1 xj2 · · · xjq−1 xjq

d0 d1 d2 · · · dq−1 dq

]
(2.29)

Example 2.1.3. It is useful to imagine the expansion of the shuffle product as a

binary tree, a very natural form arising from recursing in this way. In this repre-

sentation, the root node denotes the start point of the shuffle expansion, whilst the

left and right children imply reductions in g1 and g2, respectively. At each node,

a reduction term is placed, created from equation (2.27). In array form, the g1 re-

duction term is constructed by removing the final column of g1 and adding the last

denominator coefficient in g2; g2’s reduction term is calculated similarly. The result

of the shuffle expansion is the cumulative sum of these concatenated reduction terms

along all branches.

The bottom layer of the tree is slightly different from the rest, as no letters remain

in either generating series, therefore a reduction is not possible. In this case, equa-

tion (2.28) is applied to the fraction terms, and the coefficients are multiplied. Given

the two generating series,

g21 =
λ1

1− b0x0

· xi1

1− b1x0

· xi2

1− 0 · x0

, g12 =
λ2

1− d0x0

· xj1

1− 0 · x0

(2.30)

These are represented in their array forms as,



Generating Series 23

g21 =

[
λ1 xi1 xi2

b0 b1 0

]
, g12 =

[
λ2 xj1

d0 0

]
(2.31)

The shuffle product of g21 and g12, using the array and tree representations, is as

follows,

g1
∃

g2

[
xi2

0

]
[
xi1

b1

]
[
xj1

b0

]
[

λ1λ2

b0 + d0

]

[
xj1

b1

]
[

xi1

b1 + d0

]
[

λ1λ2

b0 + d0

]

[
xj1

0

]
[
xi2

d0

]
[

xi1

b0 + d0

]
[

λ1λ2

b0 + d0

]

Figure 2.1: A binary tree used to help demonstrate the shuffle product
of two generating series. Red, cyan, purple, and black indicate their
depths, where they reflect the first, second, third, and final-constant
reductions, respectively.

Figure 2.1 extends equation (2.27) to fully compute the shuffle product of two gen-

erating series. Performing the concatenation along the branches and summing the

terms gives,

g1

∃

g2 =

[
λ1λ2 xj1 xi1 xi2

b0 + d0 b0 b1 0

]
+

[
λ1λ2 xi1 xj1 xi2

b0 + d0 b1 + d0 b1 0

]

+

[
λ1λ2 xi1 xi2 xj1

b0 + d0 b1 + d0 d0 0

] (2.32)

Here, the three terms are formed by concatenating all the reduction terms along the

three branches of the tree.
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Further collecting of generating-series terms may be possible, depending on the

values in, jn, bn, dn. The generating-series terms can only be collected when all the

letters and denominator coefficients are identical; in this situation, the λ coefficients

of the like generating series are added.

It is interesting to note the strong overlaps between the shuffle-product expansion

and combinatorics, more specifically lattice paths. From this theory, the number of

branches in the tree formed from the shuffle-product expansion of the two generating

series can be succinctly expressed as the number of unique paths formed over a

lattice. This being, with generating series lengths p and q the number of terms

formed from the shuffle-product expansion is (p+q)!
p! q!

. The parallel between the shuffle-

product expansion and lattices is further explored in Section 2.2.1 and allows for

huge computational optimisations in the implementation of the shuffle product.

n Shuffles

All prior instances have been strictly concerned with the application of one shuffle

product. However, it is imperative to acknowledge the expansions for repeated

applications of the shuffle product. This step will be required when computing the

cubic nonlinearity shown in Section 2.3. The extension from a single to multiple

applications is trivial as the shuffle product is operating on the words inside of a

monoid algebraic structure, in which associativity is axiomatic [28]. Therefore, to

determine the higher-order shuffles, the result of one shuffle expansion is passed in

as an argument into the subsequent shuffle, and so on.

2.1.7 Laplace-Borel Transforms

The Laplace-Borel transform and its associated inverse transform are methods of

converting closed-form expressions from the time domain to the generating-series

domain, and vice versa. While the transformation into the generating-series domain

was largely been discussed in Section 2.1.4, the specifics of transforming the excita-

tion were not discussed. Additionally, the inverse transform out of the generating-

series domain, resulting in the Volterra series, has also not been discussed.

At this point, it should be noted that there is not always a one-to-one mapping

between gi and yi. To determine specific values for each Volterra term yi, the gen-

erating series must be grouped by their number of x1 terms. The generating-series

terms that contain p x1 letters relate to the Volterra term yp(t). This discrepancy
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arises from the fact the iterative scheme (equation (2.20)) may contain multiple

shuffle expansions. Such is the case in Section 2.3, where a cubic nonlinearity is

considered.

The generating series allows for the calculation concerning any excitation where a

Laplace-Borel transform can be determined. During the process of iterating the

generating series, the excitation is represented by the letter x1; corresponding to a

general excitation u(t). Once the generating series’ have been inductively expanded

using the shuffle product, the term gu(t)
∃ · is substituted in place of x1 [9, 13],

where gu(t) denotes the Laplace-Borel transform of u(t). Since the computationally-

expensive iterative expansion is done generally, different excitations can be substi-

tuted giving multiple solutions to different excitations at a relatively-low computa-

tional cost.

q(t) gq(t)

Unit step 1
tn

n!
xn
0(

n−1∑
i=0

(
i

n− 1

)
aiti

i!

)
eat (1− ax0)

−n

cos(ωt) (1 + ω2x2
0)

−1

Table 2.1: Standard Laplace-Borel Transforms.

For the case of the impulse response, this task is not as trivial, since a Laplace-

Transform of the Dirac-delta function cannot be defined. However, the process of

determining an impulse response using generating series is still possible. In this case,

a certain form of the generating series results directly when setting u(t) = Aδ(t) in

the time domain. Using a Dirac-delta excitation results in a definition over the

length of the generating series; this result is derived from first principles and is

discussed in much greater detail in Section 2.1.8.

A selection of standard Laplace-Borel transforms is shown in Table 2.1. These

are used for transforming the excitation, u(t), and for the inverse transform of

generating series into the time domain. More intricate Laplace-Borel transforms may

be constructed as a composition of these [13], or derived from first principles [16,

17, 29].

After processing the excitation letter x1, the generating series consist solely of x0
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terms, yet remain in the form of a product of rational fractions in x0; which is not a

form displayed in Table 2.1. The generating-series terms must be decomposed into

partial fractions until all the generating-series terms conform to standard inverse

Laplace-Borel transforms. Following the partial fractions decomposition, the gener-

ating series can be readily inverse transformed into the time domain, yielding the

response of the system.

2.1.8 Impulse Response

In circumstances where the Laplace-Borel transform does not exist, such as the

impulse response, the usual approach of substituting the transformed excitation

and expanding the shuffle products no longer applies. This scenario is similar to

determining the statistics of the response for Gaussian White Noise [17, 21]. While

determining the response of nonlinear differential equations subject to an impulse

response is still possible, it requires a little more care and attention.

The general approach is to substitute the excitation u(t) = Aδ(t) into the time do-

main form of a general generating-series term (as shown in equation (2.34)). This

form is then manipulated primarily by making use of the sifting property of Dirac-

delta functions; whilst still considering the parallel generating-series terms. Conse-

quently establishing the structure of a typical term related to an impulse response

in the generating-series domain, without explicitly determining the Laplace-Borel

transform. This process enables the filtering of generating-series terms following this

dual time-generating-series-domain framework. To deduce the generating series rep-

resentation of the impulse response, the Dirac-delta function’s sifting property [30]

is extensively used, ∫ +∞

−∞
δ(x)f(x) dx = f(0) (2.33)

For this derivation, firstly consider the time domain analogue of the generating-series

term as depicted in equation (2.23); represented by the repeated integral [13],∫ t

0

· · ·
∫ τ2

0

ea0(t−τn)ui1(τn) · · ·uin−1(τ2)e
an−1(τ2−τ1)uin(τ1)e

anτ1 dτ1 . . . dτn (2.34)

Where for the case of an impulse excitation, u0(t) = 1 and u1(t) = Aδ(t). The

first case to consider is when i1 = 0. In this case, the result is the same as when

determining the GWN excitation [17, 18, 21], since x0 does not contribute towards
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the excitation. The integral may be separated from the others, giving∫ t

0

ea0(t−τn) dτn

∫ τn

0

· · · dτ1 . . . dτn−1 ↔
x0

1 + a0x0

· . . . (2.35)

The equivalent generating-series domain term is also shown. The process of removing

the first integral may be iteratively performed along the length of every instance of

the letter x0.

When i1 = 1, two potential scenarios may arise. The first involves the generating

series forming a sequence of x1 letters to the end; for instance i1 = i2 = · · · = in = 1.

In the time domain, Aδ(t) replaces all uj(t) as all letters correspond to the excitation

letter x1. The sifting property then simplifies the integration, with the corresponding

generating-series equivalent shown as,

An

n!
ea0t ↔ An

n!

1

(1 + a0x0)
(2.36)

The second case is when i1 = 1 and there exists a p where p > 1 and ip = 0. This

case is perhaps best summarised by considering the last integral where in = 0∫ t

0

eanτ dτ =
1

an

[
eant − 1

]
(2.37)

Now, there is a difference between the two terms, formed from evaluating the inte-

gral corresponding to x0. Therefore, if an x1 precedes this in the generating-series

domain, which relates to integration with a Dirac-delta function in the time domain,

they cancel to zero upon evaluating the sifting property,∫ t

0

(eanτ − 1)δ(τ) dτ = 0 (2.38)

Therefore reducing this case and all subsequent integrals to 0. In this context, an x1

term immediately precedes the x0. However, there is potential for any number of x0

letters before the x1. This condition doesn’t pose a problem to the logic as the f(τi)

in the sifting property definition will be some combination of ean−iτi and constant

terms and when evaluating at f(0), the terms will likewise cancel, resulting in 0 in

every case.

Taking into account the previous scenarios, these are sufficient to define the structure

of a generating-series term that contributes to the impulse response. By ensuring
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that all generating series are of this form, the impulse response of the system is

determined. Thus, performing this analysis bypasses the need for a direct Laplace-

Borel transform. This analysis then allows for the definition of the impulse response

of generating-series expansions:

Definition 2.1.4. Given a generating series of the form shown in equation (2.23) the

function, IRFA(), that determines the response of a generating series to a Dirac input

function u(t) = Aδ(t) with amplitude A is defined implicitly over its length [19]:

IRFA(g
p
1) =



x0

(1 + a0x0)
IRFA(g

p−1
1 ), i1 = 0

An

n!

1

(1 + a0x0)
, i1 = i2 = · · · = in = 1

0, i1 = 1 and ∃p, p > 1, ip ̸= 1

(2.39)

Following this, sufficient material has now been covered to determine the impulse

response of nonlinear differential equations.

2.2 Optimising the Shuffle Product

To extend this analysis into the higher-order Volterra terms, optimising the shuffle

product became a key requirement. Although the techniques discussed are not

exhaustive, only the most significant optimisations are discussed, which can be split

into two main categories: a more efficient restructuring of the original problem, and

eliminating terms during iteration. The bottleneck in the calculations currently lies

with the partial fraction decomposition of the generating series.

2.2.1 Tabulation

Given two generating series gp1 and gq2, with lengths p and q, programmatically re-

cursing over the shuffle-product expansion tree (Figure 2.1) becomes unwieldy, even

for small p and q. Furthermore, recursion involves extra computational overheads

associated with large function stacks. In addition, Python also implements a recur-

sion depth limit, which is fast-approached in this analysis. To bypass these issues a

tabulation approach was implemented.

By tabulation, the tree formed from expanding the shuffle product is remodelled as

a 2D grid. The coordinate (i, j) then relates to i reductions of gp1 and j reductions
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g21

∃

g32 R RR RRR

L RL
LR

RRL
RLR
LRR

RRRL
RRLR
RLRR
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RLL
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LLR

RRLL
RLRL
LRRL
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LLRRR
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L

R

L

R

R

L

R

L

R

R

L

R

L

R

L

L

Figure 2.2: For the case when p = 2 and q = 3, a diagram for tabulation
of shuffle product. L and R denote reductions in the left and right hand
generating series, respectively.

in gq2. Consequently, the grid used to expand the shuffle product contains p+1 rows

and q + 1 columns. This reformatting then changes the recursive problem into a

nested ‘for’ loop over the lengths of the two generating series. At each grid node,

the left and right reduction terms, as outlined in equation (2.27), are concatenated

with the terms currently at the node. The terms formed from the left-hand term

concatenation are pushed to the adjacent row beneath, and the result formed from

the right-hand term concatenation are pushed to the adjacent column, as demon-

strated in Figure 2.2. Therefore, repeating this process by iterating over the grid, all

possible unique paths are traversed. The notion of covering all the unique paths is

analogous to determining all possible shuffles of two generating series. As a demon-

strative aid, the grid nodes shown in Figure 2.2 display the paths to get to that

node; in actuality, the concatenations of terms are stored there. The final grid node

at coordinates (p, q), contains the concatenation of terms formed over all possible

reduction paths; identical to the tree shown in Figure 2.1.

The substantial efficiency gains of the tabulation approach stem from grouping the

concatenations and the reduction terms, in contrast to the tree approach where
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reduction terms are only concatenated with one term at each node. Therefore, the

computational complexity of the tree and grid cases is proportional to the number of

nodes in the two representations, as each node requires the calculation of a reduction

term. With the grid approach the number of nodes is ngrid(p, q) = (p+ 1) · (q + 1).

Whereas the number of nodes in the tree form is represented by

ntree(p, q) =

(
p+ q + 2

p+ 1

)
− 1 =

(p+ q + 2)!

(p+ 1)! (q + 1)!
− 1 (2.40)

Unsurprisingly, the tree approach contains a considerably greater number of nodes,

leading to many repetitions when calculating the reduction terms.

Reformulating the shuffle product using tabulation changes the shuffle product from

recursive to non-recursive, thereby skirting the recursion depth limit and additional

function stack overheads. Most importantly, tabulation reduces the computational

complexity from combinatorial to quadratic, significantly reducing the number of

required calculations.

2.2.2 Memoisation

When working with higher-order expansions of the generating series, identical ar-

guments are frequently passed into the shuffle product. For this reason, a lookup

table over the shuffle product provides a significant reduction in computation time.

A hash function defined over the generating series acts as a key for the lookup table.

Before determining the shuffle product, the key representing the shuffle-product ex-

pansion is checked against a lookup table. If no value is present at that key, the

shuffle product is expanded and its value is stored at this position. If a value is

present in the lookup table, this is returned and the calculation is bypassed. This

becomes especially important for larger generating series and/or a high number of

repeated shuffles.

As highlighted in Section 2.1.6, the shuffle product being commutative and associa-

tive allows for the arguments of repeated shuffles to be sorted without changing the

results. Therefore, before expanding the shuffle product, it is useful to sort the gen-

erating series passed in as arguments based on their hash values. The sorted hash

values are then used as a key in a lookup table. First sorting the generating series

before checking the lookup table will increase the number of lookups, consequently

decreasing the number of expensive shuffle-product expansions. For instance, when

expanding a shuffle product relating to a cubic nonlinearity for g2, the summation
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criteria will be: ν1+ ν2+ ν3 = 1. There are three permutations of this calculation of

(ν1, ν2, ν3) that satisfy this criterion, which are (0, 0, 1), (0, 1, 0), (1, 0, 0). By sorting

and caching the results, it means that only one of these permutations is expanded,

with the other two being retrieved via memoisation.

2.2.3 Remove Non-Impulse Form

Defintion 2.1.4 allows for a significant computational optimisation by leveraging the

preservation of letter order within the arguments of the shuffle product. As stated

in Defintion 2.1.4, if x0 ever succeeds x1, this term is reduced to zero. Consequently,

the words of the generating series corresponding with an impulse response must be

of the form,

x0 . . . x0︸ ︷︷ ︸
r-times

x1 . . . x1︸ ︷︷ ︸
s-times

(2.41)

where the term represented by this form will contribute to the Volterra term ys.

Since the shuffle product represents the riffle shuffle between two generating series,

as highlighted in Sections 2.1.3 and 2.1.5, the order of the letters within one shuffle

product argument does not permute. Therefore, it can be determined that any

generating-series terms where all the x0 letters do not precede all the x1 terms will

be reduced to zero, along with all its corresponding terms created in the shuffle-

product expansion, according to Definition 2.1.4.

By discarding terms that contradict the form in equation (2.41) during the itera-

tive process, a substantial proportion of terms are removed from the shuffle-product

expansion, significantly reducing the number of shuffle-product expansions, as de-

scribed in the case study in Section 2.3. However, a limitation of this optimised

approach restricts the calculations strictly to the impulse response. Despite this

limitation, this optimised iterative expansion is instrumental for determining higher-

order terms in the Volterra series.

2.2.4 Filter Large Generating Series

As mentioned in Section 2.1.7, when generating series are transformed back into

the time domain, the highest fully-complete Volterra term from i iterations is yi+1.

Since the iteration depth is known at the point of iteration, any shuffle-product

calculations where the x1 count of the two shuffle-product arguments is greater than

i + 1 are deemed unnecessary, as the Volterra term they contribute towards will

be incomplete. Not considering such expansions is especially important, as two
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generating series with a x1 count greater than the iteration depth will be among the

largest generating series in the expansion, and consequently, the most expensive to

compute.

2.3 Nonlinear Oscillator Impulse Response

To supplement the theoretical walkthrough presented in the previous section, a

nonlinear SDOF oscillator with both quadratic and cubic stiffness nonlinearities is

considered. This model is a more advanced extension of Duffing’s equation [11] to

also include an asymmetric quadratic term,

m
d2y

dt2
+ c

dy

dt
+ k1y + k2y

2 + k3y
3 = u(t) (2.42)

where m, c, k1, k2, and k3 are the mass, damping, linear stiffness, quadratic stiffness,

and cubic stiffness coefficients. The excitation u(t) = Aδ(t) is an impulse excitation

with amplitude AN. To simplify this problem, zero-initial conditions are assumed.

Firstly, equation (2.42) is converted into integral form,

my(t) + c

∫ t

0

y(τ) dτ + k1

∫ t

0

∫ τ

0

y(σ) dσ + k3

∫ t

0

∫ τ

0

y3(σ)dσ + k2

∫ t

0

∫ τ

0

y2(σ) dσ

=

∫ t

0

dτ

∫ τ

0

u(σ) dσ

(2.43)

This expression is then transformed into the generating-series domain by substitut-

ing the letters x0 and x1 in place of their respective integrals. Furthermore, the

variable g is also factored out, leading to a polynomial in the x0 coefficient,

g(m+ cx0 + k1x
2
0) = x0x1 − k2x

2
0 g

∃

g − k3x
2
0 g

∃

g

∃

g (2.44)

Readers acquainted with the structural dynamics literature might find the quadratic

in x0 peculiar because of the k1 leading coefficient; typically, m is expected. How-

ever, this discrepancy is not problematic when compared to traditional approaches.

Usually when factorising the polynomial, the desired form would be (x−r1)(x−r2),

whereas in this application the form (1− a1x)(1− a2x) is required. To illustrate the

equivalence between the two forms consider their expansions,
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(x− r1)(x− r2) (2.45)

x2 − (r1 + r2)x+ r1r2 (2.46)

(1− a1x)(1− a2x) (2.47)

a1a2x
2 − (a1 + a2) + 1 (2.48)

The coefficients in equations (2.46) and (2.48) are reversed. Therefore, to calculate

the values of a1 and a2 in equation (2.44), the quadratic formula is applied to the

coefficients in reverse order, giving the familiar form

a1, a2 =
−c±

√
c2 − 4mk1
2m

=
(
−ζ ±

√
ζ2 − 1

)
ωn (2.49)

For a more in-depth and generalised analysis of polynomials greater than degree

two, the theory regarding reciprocal polynomials should be consulted [31]. With

the polynomial factorised and the values a1 and a2 well-defined, equation (2.44) is

rearranged into its iterative-inductive scheme, adopting the form gi+1 = f(gi):

gi+1 = − x0

(1− a1x0)

x0

(1− a2x0)︸ ︷︷ ︸
Iterative Multiplier

k2 ·
∑

µ1+µ2=i

gµ1

∃

gµ2︸ ︷︷ ︸
Quadratic Nonlinearity

+ k3 ·
∑

ν1+ν2+ν3=i

gν1

∃

gν2

∃

gν3︸ ︷︷ ︸
Cubic Nonlinearity


(2.50)

with the linear base term defined as:

g0 =
x0

(1− a1x0)

x1

(1− a2x0)
(2.51)

For the first iteration, two shuffle expansions need to be addressed – one for each

nonlinearity. The expansion g0

∃

g0 relates to the quadratic nonlinearity, while

g0

∃

g0

∃

g0 applies to the cubic nonlinearity. After the expansions, all terms are

concatenated with the iterative multiplier and multiplied by the respective stiffness

coefficient; these terms then constitute g1.

Calculating g2 introduces additional complexity, arising from the multiple unique

combinations that satisfy the summation criteria µ1 + µ2 = 1 and ν1 + ν2 + ν3 = 1.

For the quadratic nonlinearity expansion the values (µ1, µ2) = (1, 0), (0, 1) satisfy

the condition. Similarly, (ν1, ν2, ν3) = (1, 0, 0), (0, 1, 0), (0, 0, 1) satisfy the cubic

nonlinearity criterion. For instance, with the quadratic nonlinearity expansion, both

g0

∃

g1 and g1

∃

g0 must be evaluated.
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The previous paragraph begins to highlight the additional computational expense

involved when determining higher-order nonlinear terms. This increased expense

stems from three main factors. Firstly, there are simply a greater number of shuffle

products to compute. Secondly, the expansions associated with higher-order nonlin-

earities generate more terms, an effect that is compounded over repeated iterations.

Finally, there are more possibilities to satisfy the summation criteria. Nonetheless,

the mathematical and computational optimisations discussed in Section 2.2 help

alleviate the computational expense for higher-order terms.

The base term g0 and the resultant term g1 formed from the inductive scheme are

shown in their array form,

g0 =

[
1 x0 x1

a1 a2 0

]
(2.52)

g1 =

[
−2k2 x0 x0 x0 x1 x0 x1

a2 a1 2a1 a1 + a2 a1 a2 0

]

+

[
−4k2 x0 x0 x0 x0 x1 x1

a2 a1 2a1 a1 + a2 2a2 a2 0

]

+

[
−6k3 x0 x0 x0 x1 x0 x1 x0 x1

a2 a1 3a1 2a1 + a2 2a1 a1 + a2 a1 a2 0

]

+

[
−12k3 x0 x0 x0 x0 x1 x1 x0 x1

a2 a1 3a1 2a1 + a2 a1 + 2a2 a1 + a2 a1 a2 0

]

+

[
−24k3 x0 x0 x0 x0 x1 x0 x1 x1

a2 a1 3a1 2a1 + a2 a1 + 2a2 a1 + a2 2a2 a2 0

]

+

[
−12k3 x0 x0 x0 x1 x0 x0 x1 x1

a2 a1 3a1 2a1 + a2 2a1 a1 + a2 2a2 a2 0

]

+

[
−36k3 x0 x0 x0 x0 x0 x1 x1 x1

a2 a1 3a1 2a1 + a2 a1 + 2a2 3a2 2a2 a2 0

]

(2.53)

In the shuffle-product expansion, the quantity and growth rate of the terms is strik-

ing, with term counts 1, 7, 636, 219954 inside g0, g1, g2, and g3 respectively. Despite

the significant number of terms, most are reduced to 0 after the application of the

impulse-response criterion per Definition 2.1.4. Only a small number are significant

and contribute to the impulse response, their counts being: 1, 2, 18, 456 for g0, g1,

g2, and g3 respectively. Highlighting the importance of the optimisation addressing

this problem, given in Section 2.2.3. The relevant terms inside g1 that contribute to
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the impulse response are,

g1 =

[
−4k2 x0 x0 x0 x0 x1 x1

a2 a1 2a1 a1 + a2 2a2 a2 0

]
[
−36k3 x0 x0 x0 x0 x0 x1 x1 x1

a2 a1 3a1 2a1 + a2 a1 + 2a2 3a2 2a2 a2 0

] (2.54)

In g1 there is a single contribution from each nonlinearity. Higher-order terms, such

as g2 will begin to include a mixing term where the generating-series terms will

include the coefficients k2
2, k2k3, and k2

3. However, these terms are already too long

to be displayed compactly. As a result, only lower-order terms will be displayed for

demonstrative purposes, but the full scope of the analysis when performed compu-

tationally includes all terms up to g5.

The count of x1 letters present in the generating-series term signifies its correspond-

ing Volterra term. Once the desired expansion is determined, it is then required to

sort the generating-series terms into their corresponding Volterra terms. To avoid

confusing notation, these sorted terms in the generating-series domain are repre-

sented by the Laplace-Borel transform of the Volterra term, where LB(yi) denotes
the transformed variant of the ith Volterra term. Only the Volterra terms up to one

more than the iteration depth may be considered (to account for the zero-offset used

throughout to represent the generating-series expansion). There will be terms in the

generating-series domain with more x1 letters than the iteration depth, as a con-

sequence of the cubic nonlinearity. However, the Volterra terms after the iteration

depth will lack all contributions and therefore, are unsuitable for consideration. For

instance, in equation (2.54), the first term contains two x1 letters and the second

term contains three x1 letters. Thus, the first term will contribute towards y2 and

the second to y3. However, the second term does not completely constitute y3 as

the other contributions will be formed in the next iteration, g2. Hence, highlighting

the importance of the optimisation given in Section 2.2.4.

Once organised according to the appropriate Volterra terms, one can then apply

Definition 2.1.4, giving the generating-series impulse response. Therein, converting

the generating series into a form only consisting of x0 letters. These terms are now
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compact enough to be represented in their fractional form:

LB(y1) =
Ax0

(1− a1x0)(1− a2x0)
(2.55)

LB(y2) =
−2k2Ax

4
0

(1− a2x0)(1− a1x0)(1− 2a1x0)(1− (a1 + a2)x0)(1− 2a2x0)
(2.56)

Subsequently, the terms are decomposed using partial fractions. The coefficients are

shown in the numerator to clarify the Laplace-Borel transform form:

LB(y1) =
A/(a1 − a2)

1− a2x0

− A/(a1 − a2)

1− a1x0

(2.57)

LB(y2) =
2A2k2/(a

3
1a2 − 2a21a

2
2 + a1a

3
2)

1− (a1 + a2)x0

− 2A2k2/(2a
3
1a2 − 3a21a

2
2 + a1a

3
2)

1− a2x0

+
A2k2/(a

3
1a2 − 4a21a

2
2 + 5a1a

3
2 − 2a42)

1− 2a2x0

− 2A2k2/(a
3
1a2 − 3a21a

2
2 + 2a1a

3
2)

1− a1x0

(2.58)

+
A2k2/(−2a41 + 5a31a2 − 4a21a

2
2 + a1a

3
2)

1− 2a1x0

Even for y2, which was constructed from a single generating-series term with length

four, these expansions become overwhelming, very quickly. With all terms now

decomposed using partial fractions, they are in a form suitable for transformation

back into the time domain. The terms shown in equations (2.57) and (2.58) are

in the exponential form shown in Table 2.1. Applying the inverse Laplace-Borel

transform over all these terms gives the Volterra terms:

y1 =
Ae−a2t

a1 − a2
− Ae−a1t

a1 − a2
(2.59)

y2 =
A2k2e

−2a1t

−2a41 + 5a31a2 − 4a21a
2
2 + a1a32

+
A2k2e

−2a2t

a31a2 − 4a21a
2
2 + 5a1a32 − 2a42

− 2A2k2e
−a1t

a31a2 − 3a21a
2
2 + 2a1a32

− 2A2k2e
−a2t

2a31a2 − 3a21a
2
2 + a1a32

+
2A2k2e

t(−a1−a2)

a31a2 − 2a21a
2
2 + a1a32

(2.60)

The term y3, derived using the generating series, is provided in Appendix A. The

first three terms of the Volterra series were previously calculated by hand, using a

contour integration approach [25], the result of which is shown in Appendix B. A

comparison between these two approaches is given in Section 2.3.1 and shows they

give identical results. However, the terms y4, y5, and y6 have never been determined

before. These terms are of special interest, as from y4 onwards the terms exhibit a
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mixing between the k2 and k3 nonlinearities.

2.3.1 Results

The results section is divided into two parts: initially, a comparison between the

Volterra series obtained using contour integration and the generating series is given.

Following this, the implications of including successive Volterra terms are discussed,

by considering their effect on the modelling precision at different impulse excita-

tions. An error analysis is provided when compared to the numerical simulation of

a 4th-order Runge-Kutta [12]. Here, the focus is on modelling accuracy and the

counterproductive effect of including higher-order terms for this example.

However, the treatment of a Runge-Kutta solution as an absolute truth should be

approached with caution. Previous work [32] comparing the generating series and

Runge-Kutta solutions for different systems demonstrates that the Runge-Kutta

method can yield suboptimal results because of excessive smoothing between data

points. To further explore the mathematical relationship between the generating

series and the Runge-Kutta solution, one might refer to [33].

The generating series method was chosen for this problem due to its flexible frame-

work, particularly its connection to bilinear approximations, as discussed in previous

works [34, 35]. This approach was preferred over techniques like Carleman lineari-

sation, which approximates a nonlinear system by representing state variables as

power series and then truncating the series to the desired length [36]. While Car-

leman linearisation involves approximating the system with an infinite-dimensional

linear model, the generating series method provides a more effective solution for this

context, by not introducing extra state variables.

The parameters defining the system behaviour are m = 1kg, c = 20N/(m/s), k1 =

10000N/m, k2 = 1 · 107N/m2, and k3 = 5 · 109N/m3 with initial conditions ẏ(0) = 0

and y(0) = 0. These are the same values as used in [25] and are specifically chosen

to result in an undamped natural frequency ωn = 100rad/s and a damping ratio

ζ = 0.1. These parameters, result in an underdamped system response, giving

complex a1 and a2. However, this isn’t an issue, as the theory of generating series

holds in the complex domain [13, 19]. In the time domain, the complex components

will accordingly cancel, resulting in real-valued responses; as expected for physical

systems.
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Comparison with Contour Integration
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Figure 2.3: Generating series and contour integration comparison for a
quadratic cubic nonlinear oscillator with A = 0.07N . Where ci relates
to the terms from contour integration and g refers to the terms formed
via the generating series.

Previous work [25] determined the Volterra series, including the terms y1, y2, and y3

for the same system outlined here; these findings can be found in Appendix B. To

validate the generating series and contour integration approaches for determining

the Volterra series, it is useful to compare their results. Given the contrasting

representations of the two forms, it might not be immediately clear that these two

forms are equivalent. Nevertheless, their equivalence is shown in Figure 2.3, where

there is an exact alignment over the Volterra series.

Validating the two result sets against one another highlights that two completely dif-

ferent approaches to determining the Volterra series give the same results. Whereas

the contour integration approach was determined using pen and paper and is im-

practical to be taken further, the generating series method was performed entirely

computationally, facilitating the determination of even higher-order terms.
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Inclusion of Successive Terms

The Runge-Kutta numerical method is used as a benchmark for the error analysis.

To determine the numerical solution with Runge-Kutta, equation (2.42) is required

to be broken down into an initial-value problem,

y1 = y

dy1
dt

= y2 (2.61)

dy2
dt

=
1

m

(
Aδ(t)− cy2 − k1y1 − k2y

2
2 − k3y

3
)

A time step dt = 10−4s was used. To ensure that the impulse excitation has area

A, a condition outlined by the Dirac-delta function, an excitation amplitude A/dt

is used. All calculations were executed over the time interval [0, 1]s. However, all

plots only display [0, 0.2]s, to highlight the more significant sections.

To better understand the effect of varying impulse amplitude over the Volterra se-

ries, systems were calculated at logarithmically-spaced intervals from 10−4 to 100.

Wherein the error from the first six truncations of the Volterra series is compared

against the respective Runge-Kutta solution. To make this comparison more objec-

tive, the root relative squared-error (RRSE) between the numerical approximation

and the Volterra series was computed.

RRSE = 100

√√√√√ ∑i=N
i=1 (yvi(t)− yrki(t))

2∑i=N
i=1

(
yrk(t)− yrki(t)

)2 (2.62)

Where yrki and yvi are the i
th sample points of the Runge-Kutta and Volterra series

solutions respectively and yrk is the average of the Runge-Kutta solution. The errors

associated with the first six expansions of the Volterra series are given in Figure 2.4.

Figure 2.4 shows that all the Volterra series give close to the same error until

A = 5 · 10−3N. Until this point, the Volterra series are dominated by the y1 term.

The individual Volterra terms at this amplitude are shown in Figure 2.5, and it

can be seen that the terms y2 to y6 are negligible compared to y1; hence, y1 dom-

inates. However, Figure 2.5 indicates y2 is becoming significant compared to y1,

hence the RRSE values diverging from the linear case. A similar situation arises at
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Figure 2.4: RRSE of successive Volterra series compared against a 4th
order Runge-Kutta approximation of the nonlinear system.
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Figure 2.5: Volterra terms with impulse amplitude A = 0.005N; showing
the Volterra series are dominated by y1, with y2 just becoming signifi-
cant.

A = 3 ·10−2N (Figure 2.6), where until then the Volterra series have been dominated

by y1 + y2. Approximately around this amplitude, all other terms become signif-

icant, therefore giving varying accuracies between the Volterra series. When the

higher-order terms become significant, the higher-order series become more accu-

rate. Owing to the Ai part of the coefficient in the Volterra series, the higher-order

terms become significant at higher and higher impulse amplitudes, before subse-

quently becoming unstable. When increasing the impulse amplitude, the general

trend of the nonlinear Volterra terms is to increase at an ever-increasing rate when

compared to y1.

At the other end of the spectrum, whilst the inclusion of additional Volterra terms

provides greater accuracy at lower amplitudes, it is observed that higher-order terms

become unstable at lower amplitudes. The instability arises as the higher-order

Volterra terms are increasing at a significantly greater rate as a function of the

impulse amplitude, and therefore reducing the interval to which all terms are stable.

Specifically, at A = 0.08N on Figure 2.4, the inclusion of the y5 and y6 terms makes

the Volterra series less accurate than when compared to the Volterra series capped

at y4. Additionally, the rapid increase in the error, or divergence, of the Volterra

series including y6 happens at a lower impulse amplitude than the Volterra series
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Figure 2.6: Volterra terms with impulse amplitude A = 0.03N; showing
the Volterra series are dominated by y1 + y2, with y3 just becoming
significant.

including y5.

Inevitably, the two propositions discussed in the preceding paragraphs must con-

verge, at a certain impulse amplitude. Therefore, the inclusion of extra Volterra

terms in the series beyond this point will no longer be as accurate when compared

to the lower-order Volterra series, as the higher-order terms will be unstable for such

a small region.
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Figure 2.7: Volterra series with impulse amplitude A = 0.05N.
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Figure 2.8: Volterra terms with impulse excitation A = 0.05N.
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To exemplify this point, consider where A = 0.05N, as shown in Figures 2.7 and 2.8.

At this impulse amplitude, the Volterra terms are well-behaved, where the maximum

amplitudes of the terms are in decreasing order. The order of the Volterra series,

being denoted by their maximum term, from most accurate to least accurate is y4,

y5, y6, y3, y2, y1. Therefore, at this amplitude, the terms y5 and y6 only degrade

the approximation. Figure 2.4 shows that the Volterra series including up to y4

is always better than the higher-order Volterra series. The interest then becomes

in identifying the optimal number of Volterra terms to include, as the addition of

extra terms is computationally expensive and narrows the valid range of the Volterra

series.

Increasing the impulse amplitude amplifies the nonlinear stiffness effects in the sys-

tem, meaning the linear approximation, y1 decreases in accuracy at greater impulse

amplitudes. This effect is objectively illustrated in Figure 2.4, where the linear ap-

proximation gradually increases in error. This effect is also visually present over Fig-

ures 2.5, 2.6, 2.8, and 2.10, where the difference between the y1 and the Runge-Kutta

approximation increases as impulse amplitude increases. However, the inclusion of

higher-order Volterra terms, with their ability to model nonlinear effects decreases

the error arising from nonlinearities in the system at low impulse amplitudes. Yet,

as these higher-order terms grow at an accelerating rate with respect to impulse

amplitude, the rate of divergence of successive series also increases; as shown in

Figure 2.4. This interplay between impulse amplitude, nonlinearity, stability, and

series order is key to understanding an optimal Volterra series approximation.
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Figure 2.9: Volterra series with impulse amplitude A = 0.15N.
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Figure 2.10: Volterra terms with impulse excitation A = 0.15N.
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To highlight the fact that higher-order terms are unstable at lower amplitudes, con-

sider Figure 2.10, where the order of the maximum amplitudes in descending order

is y6, y5, y3, y4, y2, y1. Since y6 is the last term to provide significant contributions

to the Volterra series, and at this amplitude, it now has the largest amplitude, it has

to be increasing at a greater rate than lower-order terms. This observation holds

true for lower-order terms when compared to their lower-order counterparts.

A more general understanding of this idea is shown in Figures 2.11 and 2.12, which

depict the relationship between the maximum amplitudes of the Volterra terms and

their excitation amplitudes. These figures demonstrate that each successive term

increases at a faster rate than the previous terms. By plotting data on a log-log

scale, the lines follow the form of a straight line, y = mx + c. The gradient, m,

approximates the exponent of A, as successive terms are strongly dependent on the

repeated multiplication of A. The y-intercept, c, is determined by the rest of the

term, which is a function of the system parameters.

If the Volterra terms are naively considered to be divergent at the impulse amplitude,

A, when the maximum value in that Volterra term is greater than that of the previous

term. Using this definition, regions of stability can be established for the generating

series. Figure 2.12 shows that the first intersection between two lines, therefore

the first instability arises from y5 surpassing y4. This finding aligns with earlier

observations highlighting why the Volterra series up to y4 was the most accurate in

Figure 2.4.
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Figure 2.11: Log-log plot showing the maximum values of the Volterra
terms over a range of impulse amplitudes.
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Figure 2.12: Log-log plot showing the maximum values of the Volterra
terms over a range of impulse amplitudes, zoomed in on the critical
region.
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2.4 Conclusion

This chapter has introduced and explored the use of generating series for nonlinear

differential equations, specifically with an interest in a nonlinear SDOF oscillator

with quadratic and cubic nonlinearities. This generating-series method of deter-

mining the Volterra kernels requires a more abstract take than processes usually

considered in the Mechanical Engineering literature; requiring the use of iterated

integrals, noncommutative algebra, and monoids. However, this approach provides

an elegant and computational method of reducing the nonlinear differential equation

into an algebraic/ combinatorial problem.

The novel derivation of the impulse response in the generating-series domain casts

light on its form. This derivation also extends on work done by Lamnabhi [19] to

include a varying impulse amplitude, A.

This work introduced a very natural recursive tree representation for the shuffle-

product expansion to help understand the concatenation of terms; which was then

significantly optimised using a tabulation method, from drawing on parallels with

combinatorics. All other optimisations discussed in this work were also novel, and

without these, the calculation of y5 and y6 would be infeasible.

The results section explored the effectiveness of including higher-order Volterra se-

ries, taking into account complications arising from stability and nonlinearity. An

error analysis against a 4th-order Runge-Kutta showed that counterintuitively in-

cluding extra Volterra terms doesn’t necessarily give the best accuracy in every case.

The generating series approach was also validated against previously determined re-

sults.

In conclusion, this chapter has shown that the generating-series approach is a valid

and effective method for handling complex nonlinear differential equations, specifi-

cally when perturbed by an impulse. The optimisation techniques have significantly

improved the computational efficiency of the shuffle product (where the code is

freely available on GitHub), making this approach more attainable for real-world

applications.

Moving forward, several avenues for future research and development in this area

include:

1. Determining a scheme that automatically outputs the Volterra stability region.
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2. Determining optimisations for expanding deterministic excitations and Gaus-

sian White Noise.

3. Apply this approach to other difficult nonlinear differential equations of the

required form. Such as expanding this analysis to include a quartic stiffness

term.

4. Derive the Laplace-Borel transform of other common excitations, such as

coloured noises.



Chapter 3

Topological Data

Analysis–Background Theory

The main theme of this thesis makes use of data sets’ shape, wherein quantitative

descriptors are used to form decisions based solely on the form of the data. The

central ideas required to perform this analysis are firmly rooted in algebraic topology,

an abstract mathematical field concerning the shape of mathematical objects. In

this work, algebraic-topological ideas are considered over discrete data sets, giving

rise to a computational field of study called Topological Data Analysis (TDA). In

order to motivate one of the main themes in TDA, called persistent homology, the

required background theory to understand this concept is presented in this chapter.

This topological-based data analysis technique introduces a fresh perspective for

SHM datasets, focussing on their inherent shapes. This research will unveil novelty

detection schemes centred on the voids within data, distinguishing damage from

other EOVs. These schemes will be executed both within the native TDA frame-

work and in tandem with machine-learning techniques. Beyond the evident SHM

applications aligned with Rytter’s hierarchy, there is also an exploratory topological

analysis of cointegrated residuals for data normalisation. In essence, this rich theory

reveals novel aspects of data to support SHM decision-making.

50
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Figure 3.1: Flowchart of required background knowledge for TDA, with
dependencies shown as arrows.

This background section is relatively expansive, given that the requirements for

TDA are fairly mathematically involved, and the foundational ideas are seldom

encountered in Engineering. Figure 3.1 lists the main topics required for persistent

homology, and attempts to outline rough connections and dependences between

them; helping navigate the seemingly complex web of theory.

The use of persistent homology in TDA has seen many sophisticated applications [37,

38, 39, 40]; despite this, many TDA analyses rely on the same general procedure:

1. A finite sample of n points from a d-dimensional data set are assumed to lay

on a continuous manifold, with some notion of distance between the points.

2. An ordered family of objects is built atop the data, where each object is a

snapshot of the shape at a given scale. These objects, referred to individually

as simplicial complexes, and collectively as a filtration, encapsulate informa-

tion about the connections formed between the data points over a range of

distances.

3. Consider a single simplicial complex, which is a geometric object defining

connections between data points. The same information can be represented

combinatorially, removing the need for a geometric representation and refor-

matting the problem more abstractly. Extending this concept to a filtration,

an abstract representation of the data is formed over a range of length scales.

As the data were assumed to be sampled from a manifold, the information
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now enclosed combinatorially, represents this underlying manifold.

4. After some analysis, the persistent homology can be derived from the abstract

simplicial complex. The persistent homology is indicative of the shape, or

topology, of the manifold; providing a quantitative description of the shape.

5. Metrics exist over the space of persistent homologies, which allow for the com-

parison of different data sets, entirely based on their shape; thereby providing

a topological inference of data.

This chapter will discuss this process in greater detail, whilst also thoroughly cov-

ering the mathematical concepts involved. By the end of this chapter, sufficient

material is covered to establish the fundamental analytical ideas discussed in the

succeeding chapters. In the following chapters, application-specific ideas are intro-

duced, which are then analysed alongside TDA. In this theory walkthrough, where

concepts require more attention and are pivotal in their definition of homology,

examples are provided to complement their description.

3.1 Sets

A set is a foundational concept, underpinning nearly all the ideas discussed within

TDA, and therefore demands a rigorous introduction. The definitions listed for sets

also have analogues for more complex algebraic structures. Discussing these topics

at the most fundamental level will assist in understanding later, more abstract,

ideas.

A set can be thought of as an unordered collection of unique elements. The el-

ements of a set need not share the same type; they might be algebraic, numeric,

or even other sets. Sets provide few restrictions, and hence, exhibit less structure

compared to more restrictive concepts like groups, topological spaces, and vector

spaces – topics covered at a later stage. Sets are depicted here with curly braces,

e.g, S = {a, c, b, 3, {}, d, 1, 2} represents the set S containing eight unordered unique

elements of varying types.

The empty set ∅, is the set containing no elements, represented as ∅ = {}. When

notating ∅, it is already considered a set and should not be wrapped in curly braces.

There is a subtle but important distinction between the two, as ∅ ≠ {∅}. Consider
the analogy that ∅ represents an empty bag, whereas {∅} represents an empty bag
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within a bag. Thus, the outer bag indeed contains something – the inner empty bag

– and therefore, it contains an element and is not empty.

There are two common ways of merging sets: the union and intersection. The

union of two sets, X and Y , denoted by X ∪ Y , returns the set where the elements

are found in X, Y , or both. It can be formally expressed as X ∪ Y = {x : x ∈
X or x ∈ Y }. Conversely, the intersection of two sets X and Y , X ∩ Y , gives the

set where the elements are common to both X and Y , being formally written as

X ∩ Y = {x : x ∈ X and x ∈ Y } [41]. Hence, the intersection of two disjoint sets

results in ∅. Given two sets, X = {a, b, c} and Y = {c, d, e}. The union of these

two sets, X ∪ Y = {a, b, c, d, e}, is the set of unique elements in either X or Y .

Meanwhile, their intersection is X ∩ Y = {c}, as only this element is common to

both X and Y . For definitions later in this chapter, it is useful to note that the

union may be iterated over multiple sets using the notation,
⋃n

i Si, akin to sigma

notation.

For topology, it will prove useful to construct new sets from preexisting ones. One

such method is by creating a subset Y of a set X, wherein every element y ∈ Y is

also contained in X. This relationship is denoted Y ⊆ X. Extending on this idea,

by taking the sets of all subsets, will naturally lead to defining a topology. Another

useful method to create new sets is by taking the Cartesian product. The Cartesian

product gives every combination of the two sets as an ordered pair, X × Y =

{(x, y) | x ∈ X and y ∈ Y }. It is worth noting that sets can be infinite, a classic

example of this is R, the set of all real numbers. Using only a few definitions that

have been provided, it is already possible to construct the set specifying Euclidean

space. By taking the Cartesian product of R with itself, it is possible to construct

the xy-plane with, R × R = R2, where an element is denoted by its ordered pair

(xi, yi), more commonly known as a coordinate. This idea can be extended to

repeated applications to construct k-dimensional Euclidean space by computing k

Cartesian products, Rk ∼=
∏k

i=1 R.

Within the context of algebraic topology, and by extension topological data analysis,

maps between algebraic structures underpin a considerable number of definitions and

theories. One such set mapping is defined as a function, f : X → Y , where X and

Y are commonly termed the domain and image, respectively. It is then useful to

classify f as either surjective, injective or bijective [42].

Surjection: Each element in Y is mapped to, or has a pre-image in X. Surjection
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Figure 3.2: Surjection, Injection, and Bijection.

is mathematically stated as ∀y ∈ Y, ∃x ∈ X such that f(x) = y.

Injection: Every element in X maps to a unique element in Y . Mathematically,

injection is expressed as ∀a, b ∈ X if f(a) = f(b) then a = b.

Bijection: A map that is both injective and surjective. Therefore, every element

in the domain is uniquely mapped into the image, where every element

in the image is covered.

For a visual representation, Figure 3.2 helps support these mapping classifications.

Following on, some advanced concepts can be built atop injection, surjection and

bijection. Specifically, a mapping f : X → Y is called invertible if it has an inverse

g : Y → X, where the composite map g ◦ f : X → Y → X is idX , the identity map

on X, and f ◦ g : Y → X → Y is the identity map, idY , on Y . From this premise,

only bijective functions can be invertible [38]. Furthermore, sets X and Y are said

to be isomorphic when a bijective map exists between them, written as X ∼= Y ,

and the bijective map is referred to as an isomorphism. Another integral concept is

the countability of sets. Specifically, a set X is countable when it can be bijectively

mapped to the set of natural numbers, represented as X → N. All of these concepts
are extended, forming elements of definitions at a later stage, where further concepts

find application in the definition of homology.

Finally, the abstract idea of an equivalence relation will be invaluable when classi-

fying spaces by specific attributes. In essence, an equivalence relation establishes

a relation among elements within a set. These equivalent elements form a subset,

where each element shares a similar property, that the equivalence relation is as-

sessing. The symbol ∼ represents the binary equivalence operator between two sets,

and for an equivalence relation to be valid, the arguments must satisfy the following

conditions
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Reflexivity: a ∼ a, a is the same as a.

Symmetry: a ∼ b if and only if b ∼ a. If a is the same as b, then b is the same as

a.

Transitivity: if a ∼ b and b ∼ c then a ∼ c.

Arising from the equivalence relation is the notion of an equivalence class. Where a

set is divided into distinct equivalence classes, with the elements of each equivalence

class sharing a common characteristic [43].

3.2 Groups

Beyond sets is the idea of a group, which has a richer structure resulting from an

accompanying binary operator that acts over the set elements. For the set-operator

pair to qualify as a group they must satisfy some important, albeit stringent axioms.

Via these restrictions, a more complete and robust algebraic structure emerges,

where information can be studied in one case and transferred via isomorphism to

another case. Many of the succeeding definitions for groups are built on the ones

found in Section 3.1. The intricacies of algebraic topology are fundamentally tied

to the machinery of group theory. Consequently, this section will discuss concepts

fundamental to group theory, setting the stage for an understanding of TDA.

Definition 3.2.1. Groups are an extension of sets, to include a binary operator.

The group, G, formed from this set-operator pair is written as G = (S, ◦). There

are also four necessary axioms associated with groups, these are [44]:

G1: If g1, g2 ∈ G then, g1 ◦ g2 ∈ G. In words, the result of applying the operator

over two elements of the group is also contained within the group. This

property, known as group closure is denoted G ◦G → G.

G2: Given any three distinct elements g1, g2, g3 ∈ G then (g1 ◦ g2) ◦ g3 is equiv-

alent to g1 ◦ (g2 ◦ g3). This axiom highlights that the evaluation order does

not affect the outcome, and is called the associative property.

G3: A group contains a unique identity element, e, such that when e is passed as an

argument into the group operation, the other element will remain unchanged

in the result. Specifically, g ◦ e = g = e ◦ g for all g ∈ G.

G4: Every element of the group must have an inverse, which is also an element of
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the group. The result of combining an element with its inverse is the identity

element. Formally, ∀g ∈ G, ∃ g−1 ∈ G such that g ◦ g−1 = e, where e is

the identity element of the group. Where ∀ and ∃ mean ‘for all’ and ‘there

exists’.

Since the concept of a group is vital in this work, three short examples are provided

to demonstrate how to verify the axioms. Firstly, consider the set R forming a group

under addition, G = {R,+}. The axioms listed in Definition 3.2.1 are satisfied by

G. G1: For any a, b ∈ R, then a+ b ∈ R, this statement is true for all a, b ∈ R. G2:

Addition is associative, meaning a + (b + c) = (a + b) + c, ∀a, b, c ∈ R. G3: The

addition identity element, 0 ∈ R: preserves other elements over addition: a + 0 =

0 + a = a, ∀a ∈ R. G4: For any a ∈ R, there exists an element −a which is also

in R such that their sum, a+ (−a) = 0, results in the group identity. On the other

hand, R does not form a group under multiplication as G4 is not satisfied, since

0 ∈ R and 1
0
/∈ R, thus 0 does not have a multiplicative inverse.

Example 3.2.2. Finite groups are often represented as Cayley tables. The table

is populated with the elements as if the elements in the rows and columns were

passed as arguments into the group operator. Table 3.1 shows the Cayley table for

the group formed under multiplication modulo 9, where only considering coprime

values, yielding U(9) = {1, 2, 4, 5, 7, 8}, as 3 and 6 share a factor with 9 [45].

×9 1 2 4 5 7 8

1 1 2 4 5 7 8

2 2 4 8 1 5 7

4 4 8 7 2 1 5

5 5 1 2 7 8 4

7 7 5 1 8 4 2

8 8 7 5 4 2 1

Table 3.1: The Cayley table for the group formed under multiplication
modulo 9.

The Cayley table allows for fast verification of the group axioms.

G1: The elements populating the table are all elements of U(9), therefore the group

is closed.

G2: Multiplication is an associative operator.
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G3: 1 is the multiplicative identity.

G4: This is visually proven as each row and column in the table contains a single

1, the identity element, therefore proving the existence of a unique inverse.

This example will be later revisited in Example 3.2.5 where the group’s structure is

preserved over a mapping.

3.2.1 Subgroups and Cosets

Just as sets can create subsets, groups can similarly create subgroups. However,

with subgroups, information is inherited from the parent group, such as the identity

in the most basic case. Subgroups then motivate the concepts of cosets, sets of

cosets, and normal subgroups. Normal groups hold significant importance since they

can be used to construct quotient groups, which provide the notion of group division.

All of these group types are directly involved with the definitions building up to,

and directly associated with the concept of homology.

Definition 3.2.3. A subgroup H of a group G is a subset such that H ⊆ G, which

adheres to the group axioms in Definition 3.2.1. Both the operation and the identity

element of the subgroup are directly inherited from the parent group [38].

Building on the notion of subgroups, a natural avenue for extension is the idea of

cosets. Given a group G and one of its subgroups H, then:

A left coset of H in G is defined as a subset of G expressed as gH = {gh : h ∈
H}, for some g ∈ G. The set of left cosets of H in G is written G/H.

A right coset of H in G is a subset of G of the form Hg = {hg : h ∈ H}, for
some g ∈ G, and the set of right cosets is written H\G [44].

A normal subgroup H of G occurs when the left and right cosets are equal,

gH = Hg, ∀g ∈ G, this is written H ◁ G.

Example 3.2.4 shows an example of calculating the cosets, and it is shown that

elements of cosets share some equivalence relation.

Furthermore, a common and useful type of group naturally arises when the result

is unaffected by the ordering of operands. Such a group is termed Abelian and is

characterised by its commutative operator: x ◦ y = y ◦ x, ∀x, y ∈ G. In the case

of Abelian groups, the left and right cosets are always identical, and inherently all
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subgroups are normal. However, the converse is not true, as not all normal subgroups

are formed from Abelian groups. If H ◁ G, then the set of cosets G/H becomes a

group itself, known as the quotient group [44]. The notation for the quotient group

closely aligns with forming numerical quotients, which is also reflected in its meaning.

However, it is perhaps more informative to motivate and explain this material with

an example,

Example 3.2.4. Consider the group, G = (Z,+), there then exists a subgroup H

of G, such that H = (2Z,+). Choosing an element from G, for instance, g = 1,

and adding it to every element in the subgroup to find a left coset, the result is

1 +H = 1 + 2Z; corresponding to the odd set of all odd numbers.

Continuing this process with the element g = 2, the result is 2+2Z = 2Z, represent-
ing the set of all even numbers. Since the subgroup H is infinite, adding g = 3 gives

the same results as adding g = 1. Applying this logic for subsequent odd and even

values of g concludes that the set of all left cosets is given by G/H = {2Z, 1 + 2Z}.
Where the first element G/H is formed from even values of g, and the second from

odd values of g, which represent the equivalence classes with the cosets. Because

addition is commutative, both H and G are Abelian. Consequently, the left and

right cosets are the same, thus H is a normal subgroup of G. Thus, the set of right

cosets is also given by H\G = {2Z, 2Z+ 1}.

Following this, since H is a normal subgroup, G/H = {2Z, 2Z + 1} represents the

quotient group. Quotient groups are conceptually similar to quotients of integers,

hence the naming. When performing an integer quotient, say a/b, one is essentially

asking how many times b fits into a. This is much the same in group theory, where

G/H can be thought of as measuring how many copies of H fit into G. Each coset

in G/H is like a copy of H that has been translated. Then G/H describes all the

ways H can be translated with respect to the elements of G, without changing their

internal structure. An understanding of quotient groups is especially important in

this work, as homology groups are quotient groups.

3.2.2 Maps

Group maps are a key focus of group theory since they facilitate the transfer of

information between groups. By mapping between groups with the same underlying

structure, a deep and abstract symmetry can be transferred across seemingly dis-

connected problems. For example, if a group G1 is well studied, with a large list of
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properties catalogued, and a homomorphism1 can be formed to another group G2,

then there can be a transfer of knowledge via the homomorphism from G1 → G2 as

the group structure is preserved over the homomorphism.

Consider two groups (G1, ∗) and (G2, ◦). A group homomorphism, h : G1 → G2,

maps from G1 to G2 and is defined if the following conditions are satisfied [38]:

1. The identity element in one group maps to the identity element of the other

group, h(eG1) = eG2 .

2. The group operation distributes over the homomorphism, h(u ∗ v) = h(u) ◦
h(v), ∀u, v ∈ G1.

Given a group homomorphism h : G1 → G2, the kernel of h, ker(h) ⊂ G1, is the set

of elements x such that h(x) = e, where e is the identity element. The image of h,

Im(h) ⊂ G2, is the set of elements y such that y = h(x) for some x [46]. Having a

solid understanding of the kernel and the image of a homomorphism is invaluable

in later sections. These ideas will form the backbone when deriving the homology

groups.

Example 3.2.5. Consider the set created by the sixth complex roots of unity,

z = {x : x6 = 1} = {1, ω, ω2, ω3, ω4, ω5} where ω = e2πi/6. This set satisfies the

group axioms under multiplication, and its Cayley table is shown below.

× 1 ω ω2 ω3 ω4 ω5

1 1 ω ω2 ω3 ω4 ω5

ω ω ω2 ω3 ω4 ω5 1

ω2 ω2 ω3 ω4 ω5 1 ω

ω3 ω3 ω4 ω5 1 ω ω2

ω4 ω4 ω5 1 ω ω2 ω3

ω5 ω5 1 ω ω2 ω3 ω4

Table 3.2: The Cayley table formed when multiplying the sixth roots of
unity.

Interestingly, there is a homomorphism between the set elements of the sixth roots

1The term homomorphism is used when mapping between algebraic structures but homeomor-
phism is used when mapping between topological spaces.
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of unity and U(9), given in Example 3.2.2, and is given by,

1

ω

ω2

ω3

ω4

ω5


7→



1

2

4

8

7

5


≡



20

21

22

23

24

25


mod 9 (3.1)

This mapping is a homomorphism, but it is actually bijective as well, so is an

isomorphism. Notice that the order of the elements over the mapping has been

permuted between the representations given in Tables 3.1 and 3.2. It is not a

requirement of an isomorphism that the ordering presented in the Cayley table is

preserved. Since sets are unordered collections, permuting the rows and columns is

a legitimate process. In essence, there is a structural symmetry between the sixth

roots of unity and multiplication of coprime factors mod 9.

3.2.3 Generators and Free Groups

The groups presented in Tables 3.1 and 3.2 can both be generated by a single element,

called the generator. A group generator is an element such that every element of

the group may be expressed as a combination of the generator and its inverse. For

these two groups, repeated multiplication by ω and 2 respectively, results in all the

elements of their groups. In general, a group may have multiple generators which

are a subset of the group, such that they can create the entire group.

Intriguingly, the generator structure is preserved under an isomorphism. From the

geometric perspective of complex roots of unity, the role of ω as the group generator

is intuitive. However, the repeated multiplication by 2 for multiplication mod 9

is not so straightforward. This reasoning is where group theory becomes a very

powerful tool, by transferring intuitive structure via isomorphism from one domain

where reasoning is intuitive to another where things aren’t so obvious.

Extending on the idea of group generators is the idea of a free group. A free group FS

on a set S is a group wherein every element can be written as a product of elements

of S and their inverses [45]. Less rigorously, this says that a group can be created

by applying some operator to any repeated number of elements of a set. Thus any

free group generated by a nonempty subset is infinite. The only requirement for a
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free group is that each element and its inverse cancel each other out. For example

consider the set {a, b}. Some elements of the free group generated by this set would

be a, a2, a3, . . . , b, ab, ba, a−1, b−1, a2b3a−5b2, . . .. The concepts of group generators

and free groups are extremely important in defining the homology groups.

3.3 Spaces

Three types of spaces are required for TDA, these being vector spaces, metric spaces,

and topological spaces ; all will be used in unique ways. Vector spaces represent the

form of homology, whilst metric spaces serve as a familiar prerequisite to topological

space, as well as being used as a similarity measure of the persistent homologies.

Finally, topological spaces are the most relaxed and abstract form considered, which

allows for the definition of homology.

3.3.1 Vector Spaces

Definition 3.3.1. Let F be a set, in which addition, subtraction, multiplication and

division are defined, this is called the scalar-field. Let V be a non-empty set where

the elements, v ∈ V , are vectors. The vectors have two closed operations assigned,

vector addition +: V ×V → V and scalar multiplication · : F ×V → V . V is called

an F-vector space if the following criteria are satisfied [47]:

V1: (V,+) is an Abelian group.

V2: Scalar multiplication is distributive over vector addition; mathematically stated

as a · (v1 + v2) = a · v1 + a · v2, ∀a ∈ F, ∀v1,v2 ∈ V .

V3: Vector addition is distributive over scalar multiplication; mathematically stated

as (a+ b) · v = a · v + b · v, ∀a, b ∈ F, ∀v ∈ V .

V4: Scalar multiplication is associative; mathematically stated as (ab) · v = a(b ·
v), ∀a, b ∈ F, ∀v ∈ V .

V5: ∀v ∈ V then 1 · v = v.

For an F-vector space, V . A finite subset of {e1, . . . , en} ⊆ V is the set of basis

vectors if every v ∈ V can be expressed as a unique linear combination of elements of

the basis vectors and V is said to be n-dimensional. The dimension of the homology

groups gives arguably the most important descriptor in the persistent homology,

called the Betti numbers.
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3.3.2 Metric Spaces

Before moving onto the more general theory of topological spaces, it is instructive

to first motivate with metric spaces. Approaching the topics in this order aids

comprehension of the more abstract topological definitions. Whilst the topological

definitions are more nuanced, they do still draw parallels to the metric equivalents.

Additionally, this detour in theory is not in vain, or indeed a detour, since metric

spaces are also useful when comparing persistent homologies. A specific metric,

known as the Wasserstein distance, is used extensively as a similarity measure,

allowing for inference between data sets based solely on their shape. Arguably the

most familiar metric is the Euclidean distance, ∂2(x, y) =
√∑n

i=1 (xi − yi)
2, which

allows a generalisation of Pythagoras’s theorem into n dimensions.

Definition 3.3.2. A metric space is defined by a set-metric pair (X, ∂X), that fulfils

the requirements outlined by some axioms. Here, X represents the set containing

all the elements of the metric space and ∂X is the associated metric, or distance

function, such that,

∂X : X ×X → R (3.2)

The metric takes two elements from the set and maps these elements to the real

numbers, giving the notion of distance between the two elements. To qualify as a

metric space, the distance function must satisfy three fundamental properties [38]:

d(x, y) ≥ 0: This simply states that the distance between any two points is always

positive. The sole exception occurs when x = y, wherein ∂X(x, y) = 0.

d(x, y) = d(y,x): This states that the distance is scalar, i.e. nondirectional. The

distance from x → y is the same as the distance from y → x.

d(x, z) ≤ d(x, y) + d(y, z): Known as the triangle inequality, which states that

the direct route between two points is never more than the distance between

the two points via an intermediary point. The triangle inequality is only ever

an equality when the three points are colinear.

Once a metric is established within a space, it paves the way for many familiar and

useful ideas, such as continuity and convergence. The procedure to define these is

done through open balls and sequences, which will be adapted and generalised for

topological spaces.

An open ball, defined as Bε(x) = {y ∈ X : ∂X(y, x) < ε}, is the region around
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a point x, encompassing all the space that is less than the distance ε from x. The

term ‘open’ in this context refers to the exclusion of the ball’s boundary from the

space, whereas a closed ball would include the boundary. This space is often referred

to as the ε-neighbourhood of x [43]; and this idea is instrumental in the formation

of topological objects from data, presented in Section 3.4.

3.3.3 Topological Spaces

Topological spaces are a relaxation of metric spaces, removing the need for a distance

function, and allowing for a more general theory. As a consequence, topological

spaces are a superset of metric spaces. Whilst metric spaces have a familiar geometric

interpretation of distance, topological spaces more abstractly approach an analogous

result through a notion of proximity, via a set of nested open sets. Topological spaces

offer a generalised idea of closeness, leading to a broader perspective on continuity

and convergence. The importance of studying topological spaces stems from the

need to understand the continuous properties of spaces without a precise notion of

distance. These ideas then give rise to ideas such as homology, allowing for the

quantification of the data’s shape, forming the main analytical tool used in this

thesis for SHM data analysis.

Definition 3.3.3. A topological space is represented by a pair, (X, T ), where X is a

set and T is a collection of subsets, called the topology. T contains open sets which

must satisfy the following axioms [43]:

• The space itself and the empty set are elements of the topology, X ∈ T and

∅ ∈ T .

• The union of any collection of sets in T is also an element of T .

• The intersection of a finite collection of elements of T is an element of T .

Similarly to metric spaces, topological spaces are a pair, where X captures the span

of the space. Whereas, T , the topology, is a set of open continuous subregions of X,

giving a vague notion of distance. Given that the subsets in T are continuous, they

inherently convey a sense of closeness. Larger subsets in T do not necessarily imply

the points contained within the set are proximate, whereas smaller subsets are more

restrictive. For an intuitive, discrete, and probabilistic (albeit not mathematically

rigorous) way of thinking, the subsets in T encapsulate closeness as their elements

will be arbitrarily close in the topological space. Then, the frequency that any two
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unique elements appear within these subsets offers an insight into their proximity:

a higher frequency suggests more proximate points, as smaller subsets naturally

house more proximate points resulting from the absence of discontinuities in the

space. However, this logic breaks down when considering continuous spaces, as all

distinct pairs of points will occur infinitely frequently.

While topological spaces provide a broad theory for understanding closeness, for the

case of real-world physical and engineering analysis, it is useful to apply additional

constraints to ensure the mathematics in the space are ‘well behaved’ by being

consistent and predictable. Most real-world systems enforce the requirement for a

space to be second-countable and Hausdorff.

Firstly, to motivate space countability, a base of a topological space (X, T ) is a col-

lection of sets {Tα}, such that any set in the topology, T , can be expressed as a union

of the base sets [38]. As a result, topological bases provide a foundation for building

all open sets within the space. Extending on this idea, the space is then termed

second countable if there are a countable number of base sets [48]. Countability, as

defined in Section 3.1, refers to a mapping to the natural numbers. Consequently,

second countability provides insight into the magnitude of a topological space, even

if infinite.

To then describe a Hausdorff space, it is best to first describe a topological neigh-

bourhood. In essence, a neighbourhood indicates which points are deemed close to

a point, which is more abstract in the absence of a traditional geometric metric. A
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Open Cover Finite Subcover

Figure 3.4: Open cover and finite subcover of a topological space, X.

neighbourhood of a point x ∈ X is a subset V ⊆ X, such that there is an open

set U ⊆ V where x ∈ U . Simply put, if there’s an open set containing x which

is entirely contained within V , then V is a neighbourhood. Essentially, a neigh-

bourhood is an immediate area around a point. This fundamental idea underpins

many other ideas in topology, such as continuity and convergence, effectively acting

as the topological equivalent of a metric open ball. Now, leading to the Hausdorff

property, a topological space is Hausdorff if ∀x, y ∈ X with x ̸= y, there exist two

non-overlapping neighbourhoods Vx and Vy, such that x ∈ Vx and y ∈ Vy; mathemat-

ically, Vx ∩Vy = ∅. That is, each point is distinct and can be uniquely distinguished

and isolated from all other points [48].

One final essential property of topological spaces to consider is compactness. Com-

pactness seeks to generalise the concept of boundedness of a region within a topo-

logical space. Given a topological space X, then an open cover of X is a collection

of open sets {Uα} such that the union of all these sets contains the entire space X,

which is formally expressed as X ⊆ ⋃
α Uα. The topological space is then called

compact if any open cover of X has a finite subcover, where a subcover is some

subset of the cover, {Uα}, which still covers X [46].

Transitioning from pure topological concepts, it is important to acknowledge how

these principles are pertinent to engineering and physical sciences. By imposing

that a space is second countable and Hausdorff, one asserts that limits are uniquely

defined, an essential requirement for calculus. Furthermore, the Hausdorff property

ensures continuous functions are well-defined, as the image of a compact set under

a continuous function remains compact. The preservation of compactness across
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Figure 3.5: Continuous map between two topological spaces, X and Y .
The dashed boundaries suggest that the region is open.

mappings is crucial for physical applications when the conservation of an attribute

is expected, such as energy and momentum. Without compactness, there is no

notion of finiteness, potentially giving mathematically-incoherent results with real-

world observations. Having such restrictions in place ensures that spaces behave

analogously to well-behaved counterparts, such as Rn. Further generalisation into

calculus on manifolds is discussed in Section 3.3.4. However, before discussing this,

continuity is still to be addressed.

The metric and topological ideas for continuous maps are analogous, where metric

spaces consider a more restrictive ε-neighbourhood (or open ball), and topologi-

cal spaces consider a topological neighbourhood. Consider two topological spaces:

(X, TX) and (Y, TY ). Suppose a map f : X → Y , and that there is a neighbourhood

U of x where f(U) ⊂ V . The map f : X → Y is continuous if, for every open set

V ⊆ Y , its pre-image f−1(V ) is open in X [48]. As the definition for topological

continuity is fairly verbose, Figure 3.5 has been provided to assist the definition.

Much like sets, continuous maps are extended to a homeomorphism when they are

bijective. In this scenario, the spaces X and Y are said to be homeomorphic.

Two topological spaces being homeomorphic essentially states that two spaces are

topologically congruent, meaning one can seamlessly morph into the other without

discontinuities, and vice versa. Two homeomorphic spaces are denoted X ∼= Y .

The attributes of countability, compactness, and the Hausdorff property are all pre-



Topological Data Analysis 67

served under a homeomorphism. These properties serve as the first taste of topolog-

ical invariants, so termed as they are invariant under homeomorphism. The useful

converse argument can be considered: if the two spaces exhibit different topological

invariants, then these space cannot be homeomorphic, as per the definition. The

homology of a space, and subsequently, the persistent homology are also topological

invariants, which precisely quantify differences between spaces.

3.3.4 Manifolds

θi

θ−1
i θ−1

j

θj

M

Ui Uj

Vi

Rn

Vj

Rn

Figure 3.6: A manifold with charts Ui and Uj , with their homeomor-
phisms to Rn.

Having introduced the concept of topological spaces, second countability, Hausdorff

spaces, and homeomorphisms, these all motivate the application to topological man-

ifolds. Within these manifolds, are well-defined regions of space where data analysis

may take place. At the heart of TDA, some point cloud data are assumed to lie on a

continuous manifold, allowing for its quantifiable analysis. The most fundamental,

and often quoted, definition of a manifold is as a topological space that is locally

homeomorphic to Rn. However, this obscures details regarding countability and the

Hausdorff property, which are assumed for Rn

Given a topological space, M , then an open subset U ⊆ M is a chart when U is

homeomorphic to some open subset, V , of Rn. The homeomorphism θ : U → V

then induces a local coordinate system onto U by the inverse map θ−1 : V →
U [48]. By extension, an atlas of a topological space, M , is a union of charts, such
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that the charts form a cover of M . That is, all of M is locally homeomorphic to

some subset of Rn [48]. It is worth noting that atlases are not typically unique, as

manifolds can be covered in various ways. For illustrative purposes, a partial cover

of a manifold is displayed in Figure 3.6. To qualify as a manifold, M should be

fully covered, though, this has been omitted for clarity. The interest in this work is

with topological manifolds, which are when a manifold M is second-countable and

satisfies the Hausdorff property. As a consequence, topological manifolds also have

an atlas where each chart is a subset of Rn.

When applying TDA in later chapters, there is an implicit assumption that the

point-cloud data originate from a manifold. Then, by understanding the shape of

the point cloud, it is assumed that this is a fair approximation to the underlying

manifold. A deeper understanding of manifold shape and structure can then begin

to offer insight into system mechanics, forming the analysis section of this thesis.

3.4 Simplicial Complexes

∆0 ∆1 ∆2 ∆3

Figure 3.7: The first four simplices.

After a deep dive into the abstraction of pure mathematics, it is refreshing to shift

towards more tangible engineering-esque, geometric-in-nature concepts. One could

call this the calm before the storm before coming head-on with homology. However,

before proceeding, a pressing question still looms: How is a notion of continuous

shape extracted from discrete data? Since topological spaces were discussed in

Section 3.3.3, sufficient material has been discussed to create mathematical objects

from data. The solution to this problem lies with simplicial complexes.

Simplicial complexes are geometric objects used to attribute a quantifiable shape to

data. Often described as higher-dimensional analogues of graphs, simplicial com-

plexes play a significant role in this thesis when analysing data sets. Specifically,

simplicial complexes will allow for the conversion of data to a discrete topological
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object. By doing this, simplicial complexes permit topological analysis of data,

allowing for the calculation of invariants, and comparison of data sets.

A simplicial complex is a structure made up of fundamental units called simplices,

denoted ∆k where k refers to the dimension that the simplex occupies. The first

four simplices are shown in Figure 3.7, where each vertex in a simplex connects to all

other vertices, and the enclosed space also forms part of the simplex. Throughout

this work, when displaying simplices and simplicial complexes, red is used to denote

edges, blue for areas, and green for volumes2. This colour choice closely aligns

when plotting persistent homology at a later stage. The first four simplices can be

intuitively visualised and described:

∆0 is a point.

∆1 is a line segment spanning two points.

∆2 consists of three vertices, the edges spanning the vertices and the area enclosed

by the edges.

∆3 includes the four faces and the volume bound by the faces, as well as the six

edges and four vertices.

A pattern may be spotted in forming successive simplices. For a given ∆k, it consists

of (k + 1) connected ∆k−1 simplices, which form the faces of the k-simplex. The

connection over the ∆k−1 simplices encloses a k dimensional region, and thus a k-

simplex is k-dimensional. When considering simplices where k > 3, they occupy

a space greater than three dimensions, requiring a grasp of visualising in higher

dimensional space. Alas, simplices and simplicial complexes of higher dimensions

are used during this thesis, and therefore a reliance on the theory (over intuition) is

unavoidable.

Definition 3.4.1. A k-simplex, ∆k, is the space spanned by the set of points

{x0, x1, . . . , xk} where each xi ∈ Rk+1, given by:

∆k = {(λ0x0, . . . , λkxk) ∈ Rk+1 | λi ≥ 0 ∀i,
k+1∑
i=1

λi = 1} (3.3)

2It is impossible to display both the green volume and the blue areas on a 2D plot. Where
green is present in simplicial complex plots, blue faces should also be there. For clarification, ∆3

does contain the 2D areas spanning the points but are not shown as they would mask the green
volume. In this case, the blue faces are assumed, which leads to a later idea of a maximal simplex.
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where x1, . . . , xk are all linearly independent, and these are termed the vertices of

the simplex [49].

The λi coefficients are called the barycentric coordinates of the simplex. For a point

xi ∈ ∆k corresponding to a given set of barycentric coordinates λ1, . . . , λk+1, this can

be thought of as the system with λ1, . . . , λk+1 attributed masses to the corresponding

vertices x1, . . . , xk+1. Subsequently, if all values of λi are nonzero, the corresponding

set of points x represents the interior of ∆k, while if any values of λi = 0, then the

set of points x represents a face of the simplex [42].

The set {∑k+1
i=1 λixi | λj = 0} is the jth- face of the simplex, ∆k. This face is opposite

the vertex xj. This, in words, says that the faces of a line segment are the vertices

at the end, the faces of a triangle are the lines connecting the points, and the faces

of a tetrahedron are the triangles. Following this logic, there exist (k+1) ∆k−1 faces

of ∆k, as arrived at previously in a more qualitative manner.

Definition 3.4.2. The boundary refers to the parts of the simplex, ∆k, that lie

outside its interior.

Where the interior of a simplex, ∆k, denoted int(∆k), is the space spanned by the

subset of points {x0, . . . , xk} given that ∀λi > 0. As a less formal follow-on definition,

the boundary is also the union of all the faces of a simplex. Definition 3.4.2 bridges

understanding until a more mathematically rigorous one, which holds for simplicial

complexes, is given in Section 3.5. Understanding the boundary operator is key in

defining homology groups.

However, a simplex can only capture limited information about space, arising from

the restriction that every vertex must connect to all others. Simplices alone cannot

represent shapes like the perimeter of a square. To extend the use of simplices and

allow the mathematical description of more complex spaces, the idea of a simplicial

complex must be introduced.
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Figure 3.8: A randomly generated simplicial complex containing three
disjoint regions, vertices, edges, areas, and a volume.

Definition 3.4.3. A simplicial complex, K, is a finite collection of simplices in some

space Rn, that satisfies the following rules [50]:

1. Every face of a simplex ∆k ∈ K is also a face of K.

2. For any two simplices ∆j, ∆k ∈ K then either ∆j ∩ ∆k = ∅ (suggesting the

simplices are disjoint) or ∆j ∩∆k is a common face of the two simplices.

These rules then impose that the maximal dimension of a simplicial complex can

never be greater than the largest dimension of the constituent simplices, i.e. forming

simplex connections does not create new dimensions, as the enclosed space is not

included [51].

A simplicial complex is a collection, or complex, of simplices, which are sometimes,

but not necessarily, connected along simplex faces. Consider a simplex of four

vertices {x0, x1, x2, x3}, by definition these encode a tetrahedron. Yet, if these four

points were part of a simplicial complex, this is not necessarily true. One example

of the combinatorially many is the connection of four ∆1- simplices, giving the

perimeter of a square. Therefore, the more general approach of simplicial complexes

allows for a richer spatial description.

Figure 3.9: A simplex, ∆3, containing four vertices, compared to a sim-
plicial complex, a square perimeter, also containing four vertices.
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There still remains a reliance on a geometric definition of a simplicial complex.

However, when determining the homology groups, simplicial complexes need to be

described abstractly. The conversion from a geometric object to an abstract setting

is done via abstract simplicial complexes, wherein the same information is repre-

sented combinatorially as a nested set structure.

Definition 3.4.4. An abstract simplicial complex, K̃, consists of a set of vertices,

vert(K) and a set of abstract simplices, simp(K), such that [52]:

1. Every simplex ∆k ∈ simp(K) is a non-empty subset of vert(K), or the sim-

plices are a union of the vertices.

2. For all vertices, v ∈ vert(K), there is also an abstract simplex {v} ∈ simp(K).

3. For every non-empty abstract simplex, ∆k, a non-empty subset of ∆k is also

an abstract simplex. This is referred to as a face of ∆k.

4. For an abstract simplex ∆k ∈ vert(K), the dimension of ∆k is dim(∆k) =

|∆k| − 1, where |.| denotes the number of elements in the set.

This notion of an abstract simplicial complex, K̃ allows for a combinatorial represen-

tation of a geometric simplicial complex K. The converse is also true; a topological

space K̃ can always be associated with a geometric realisation |K̃|. Whilst poten-

tially geometrically different, a homeomorphism will exist between K and |K̃| [53].

Abstract simplicial complexes allow for the mapping between categories, specifically

transitioning a geometric realisation of a simplicial complex embedded in Euclidean

space to its abstract form. The abstract simplicial complex form can be analysed

using group theory and maps to output information regarding the shape. By ex-

tension, abstract simplicial complexes can be formed from data and algorithmically

analysed with computer packages [54, 55], to output topological information.

Drawing a parallel with daily transactions, the idea of mapping between categories

can be likened to depositing money into an ATM. A paper £20 note and £20
represented digitally on a debit card fundamentally represent the same value but in

vastly different forms. Physical cash can be held, whilst the value on a debit card

is encoded as a sequence of ones-and-zeros inside a computer program. However,

the same monetary value is attributed to the two forms. Each form also offers

unique advantages: cash can be transferred hand-to-hand, without the need for

online banking, whereas money on a debit card can be transferred instantaneously
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Figure 3.10: Two distinct geometric simplicial complexes with the same
abstract simplicial complex.

to the other side of the planet. In this analogy, the paper cash and debit card

represent different categories, and a mapping between categories – depositing at an

ATM – is called a functor.

In the context of this thesis, geometric simplicial complexes are needed for creating

simplicial complexes from data. Meanwhile, the tools in an algebraic framework

called a chain group are required to define the homology groups, which is simply

not possible over geometric simplicial complexes. Chain groups represent yet another

mapping, transforming the combinatorial information of a simplicial complex into a

group theory representation. The key takeaway is that the same information can be

represented in various ways, each providing unique functionality and advantages.

Example 3.4.5. To help show the form of an abstract simplicial complex and its

derivation from a geometric simplicial complex, consider the following example. Fig-

ure 3.10 displays a 2D shape, where the blue shaded region represents the interior

of that simplex. Qualitatively analysing the depiction, there is a simplicial complex

consisting of six vertices {a, b, c, d, e, f}, an edge set that connects these vertices

{ab, ac, bc, cd, de, df, ef}, and an area spanned by the vertices {def}. This informa-

tion is referred to as the combinatorial information, which only describes the sim-

plicial complex’s connections and not how the connections are arranged. Notably,

these connections represent the topology and not necessarily the geometry, leading

to countless possibilities of geometric realisations of this combinatorial information,

a second realisation is shown in Figure 3.10.

From a given geometric simplicial complex, its combinatorial information forms the

basis of an abstract simplicial complex, removing the need for a pictorial represen-
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tation. By applying the rules outlined in Definition 3.4.4, its abstract simplicial

complex is formed as a set of sets.

vert(K) = {a, b, c, d, e, f} (3.4)

simp(K) = {{a}, {b}, {c}, {d}, {e}, {f}, {a, b}, {a, c},
{b, c}, {c, d}, {d, e}, {d, f}, {e, f}, {d, e, f}}

(3.5)

However, much of this information can be inferred from the biggest simplices. This

insight gives rise to a more efficient encoding method, called the maximal simplex.

For example, the face {def} implies the existence of three vertices {d, e, f} and the

edges connecting them {de, df, ef}. A maximal simplex contains all this information

and it need not be repeated. As a result, a maximal simplex is not the face of

another simplex in a simplicial complex. Consequently, the set of maximal simplices,

max(K), provides sufficient information to represent a simplicial complex. This

example can be adequately described with the abbreviated notation:

max(K) = {ab, ac, bc, cd, def} (3.6)

For simplicity, the braces are omitted. Throughout this thesis, this simplified nota-

tion using maximal simplices is used to represent simplicial complexes.

In the context of TDA, there is a requirement to analyse a spectrum of simplicial

complexes parameterised by a metric; motivating the need for a filtration. A filtra-

tion of a simplicial complex, K, is an ordered list of subsets beginning with, ∅, and
ending with K, such that:

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = K (3.7)

For any i = {0, . . . , m− 1} such that Ki+1 = Ki ∪∆ki
i+1 where ∆ki

i+1 is the (i+ 1)-

th simplex in the filtration [7]. Essentially, a filtration describes how the simplicial

complex grows, concerning some notion of distance, by sequentially adding simplices.

Given that much of the data analysed in this thesis is not embedded in easily-

visualised dimensions, it is especially important to have a dependable method of

constructing simplicial complexes. Doing this ensures that the topological infer-

ences drawn from higher-dimensional data are trustworthy, whilst also removing the

need to visualise in higher dimensions. While there are various methods of con-
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ε

Figure 3.11: The process of constructing a VR complex from 2D point
data.

structing simplicial complexes from data, this work focuses on the Vietoris-Rips

complex (or VR complex) [56]. This technique allows for topological information

to be extracted from data. Other mechanisms of constructing simplicial complexes

from data, such as Čech [57] and Alpha [58] complexes, will yield minimally-different

results given their distinct definitions. Nevertheless, with correct usage, all methods

of constructing simplicial complexes should yield nearly identical results.

The foundational idea behind constructing complexes from data centres around the

notion of placing k-dimensional open balls at each point; where each open ball has

a radius, ε. How these balls intersect defines how the simplices connect the data

points, representing the nodes in the complex. The rules determining the way these

balls connect give rise to the different types of construction methods. For an example

of forming a VR complex please refer to Figure 3.11, where a VR complex is created

on some randomly-generated data at some arbitrary distance, ε.

Definition 3.4.6. To form a Vietoris-Rips complex, V Rε(X, ∂X), let (X, ∂X) be a

finite metric space and ε > 0 be a fixed value. The abstract simplicial complex is

determined by the rules [59]:

1. The vertices, v ∈ X, form the vertices in V Rε(X, ∂X).

2. A k-simplex is formed when ∂X(vi, vj) ≤ 2ε, ∀i, j ≤ k.

Determining an optimal value for ε is not a trivial task, especially for data embedded

in higher dimensions. Setting this value too low might result in a simplicial complex

being disjoint, which would fail to capture the true underlying topology and shape
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of the data. Conversely, if the value is too large, features may be obscured. Such

is the case if a manifold that data are sampled from contains a hole of diameter,

d, then if ε > d, simplices will be formed spanning the hole. Complications further

escalate when considering a data set with varying feature scales. Imagine a data

set possessing two topologically-interesting features: one scaled around 10−3 and

the other at 103, where the data points at each feature are distributed according

to the scale. Identifying a single ε that aptly captures the characteristics of both

is particularly difficult, or even impossible. A solution to all these predicaments is

presented within Section 3.6, where persistent homology is discussed.

This simplicial complexes section has shown how to create abstract mathematical

objects from discrete data. Hopefully, readers can appreciate how simplicial com-

plexes act as the glue joining data and the toolboxes equipped within an algebraic

framework. The following chapter demonstrates how a topological invariant of the

simplicial complexes, called homology, is determined from the abstract simplicial

complexes. Following this, homology is then attributed to the data, giving an in-

sight into the shape of a data set at some arbitrary distance parameter.

3.5 Homology

Previously in this chapter, a framework for extracting mathematical objects from

data was introduced; however, there is still the requirement to deduce shapes from

these objects. Herein, homology provides a precise solution to this issue, by coalesc-

ing everything discussed up until now.

Homology provides a method of categorising seemingly qualitative topological fea-

tures into algebraic objects called homology groups. The homology group, Hk(X),

is a topological invariant associated with the kth dimension. A common interpreta-

tion of homology groups is that Hk(K) encodes information that counts the number

of k-dimensional holes in K. Under the rules of topology, discontinuities (or voids)

cannot be created or destroyed under homeomorphisms. Therefore, a simplicial com-

plex can be categorised by the properties underpinned by homology. The simplicial

homology is then used to categorise and compare between simplicial complexes, and

by extension, data sets.

However, the computational practicality of homology does not come for free. The

definition of homology groups is less transparent than ones typically found within en-



Topological Data Analysis 77

gineering, having to rely on abstract concepts within group theory. The involvement

of the task in defining homology is unavoidable, potentially acting as a gatekeeper to

topological data analysis. However, once this threshold is crossed, homology gives

life to a rich and unique theory, easily extensible to data.

Homology is not a new analysis, consequently, many great introductions and sum-

maries exist, both in the classical mathematical sense [48, 50, 51, 60], and the more

modern computational approach [38, 46, 61, 62], and it suffices to say that this

description of homology presented here cannot be singly attributed to any of them.

In addressing the definition of homology, a few subtleties need to be addressed

which were previously overlooked, and deemed nonessential in describing earlier

topics. One such requirement is having a mathematically-rigorous definition for

the boundary of a simplex, which was qualitatively presented in Definition 3.4.2.

Subsequently, these ideas lead to quantifiably defining the boundary of a simplicial

complex, which requires a few more nuances involving simplex orientation.

Definition 3.5.1. The boundary of the simplex, ∆k, with the vertices [v0, . . . , vk],

is:

∂∆k =
k⋃

i=1

[v0, . . . , v̂j, . . . , vk] (3.8)

where the element v̂j is omitted from that set [50].

At a glance, this definition is somewhat transparent, given that a simplex involves

all vertices being fully connected. Excluding a single vertex then gives a fully con-

nected simplex in a dimension reduced by one; this resultant structure is the face

corresponding to that vertex, as discussed when setting a barycentric coordinate, λi,

to zero. Then by performing this omission over the length of the simplex, all possible

faces are created. For the case of a tetrahedron, ∆3 = {v0v1v2v3}, the boundary

as per Definition 3.5.1, is ∂∆3 = {v1v2v3, v0v2v3, v0v1v3, v0v1v2}. This result is the
four triangles which are the tetrahedron faces, which collectively define its external

surface or boundary.

Example 3.5.2. The boundary operator given in Definition 3.5.1 is valid for the case

of individual simplices, but breaks down when applied to simplicial complexes. This

shortcoming is evident when applied to perhaps the most rudimentary nontrivial

simplicial complex, K = {v0v1, v1v2}. The geometric realisation of K is anything

homeomorphic to a straight line with a vertex somewhere along its length, as shown
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in Figure 3.12.

v0 v1 v2

Figure 3.12: A simplicial complex on which the simplex boundary oper-
ator fails.

From an intuitive (and correct) standpoint, the boundary of the simplicial complex

should be the two exterior points, ∂K = {v0, v2}. Despite this intuition, if the

boundary operator given in Definition 3.5.1 is distributed over the simplices in K,

the result is ∂K = {v0, v1, v1, v2} = {v0, v1, v2}. This outcome is incorrect, since

v1, the midpoint of the line, is erroneously being considered as a part of the sim-

plicial complex boundary; something that inherently represents the exterior. The

amendment for this problem is by modifying Definition 3.5.1 to include simplex ori-

entation. An orientation is assigned to each simplex according to how the vertices

are ordered, creating what is termed an oriented simplex.

For an oriented simplex ∆1
+ = [v0, v1], the orientation presented conveys a di-

rectionality from v0 to v1. Previously, this simplex could have also been written

∆1
− = [v1, v0]. However, now that orientation is being considered, these are differ-

ent, as [v1, v0] implies a simplex from v1 to v0, which implies opposing orientation.

Orientation is not limited to ∆1 and is extensible to any dimension. Consider,

∆2
+ = [v0, v1, v2] which is perceived as having a clockwise direction, implying that

∆2
+ = [v0, v1, v2], [v1, v2, v0], and [v2, v0, v1] all have the same orientation, as they

are even permutations of one another, this is a rotation of the indices. Whereas,

∆2
− = [v0, v2, v1] has changed the orientation. Imagine that the indices, of the sim-

plex form a unit of a repeating sequence, the sequences with positive orientation

increase left to right, whereas the negatively-oriented simplices decrease. This no-

tion of orientation and permuting can be generalised to higher dimensions, where

an even permutation is defined as a permutation of the vertices that results in a

simplex with the same orientation.

The orientation of the vertices of a simplex, ∆k, is an equivalence class of orderings

of the vertices under the equivalence relation that two orderings are the same if

they differ by an even permutation. An even permutation can be expressed as a

composition of even permutations [38]. There are only two possible equivalence

classes in all dimensions, which are positive and negative.
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However, a slight complication remains. Much like the requirement to convert geo-

metric simplicial complexes into abstract simplicial complexes, without any loss of

generality, the combinatorial form of an abstract simplicial complex can be converted

into an algebraic counterpart via group theory. For each dimension k, in a simplicial

complex, a group known as a chain group is used to represent the simplices.

Definition 3.5.3. To each standard simplex ∆k
i of a simplicial complex K, a free

Abelian group, Ck(K), called a chain group is associated with it. The kth chain

group is the set of all combinations of k-simplices in the simplicial complex K [61].

Now consider that K contains lk k-simplices for all possible values of k. The k-chain

group of K, Ck(K) is the free Abelian group generated by the oriented k-simplices

of K. Consequently, any element ck ∈ Ck(K) can be expressed as,

ck =

lk∑
i=1

fi∆
k
i , fi ∈ Z (3.9)

provided the following criteria are satisfied [50],

1. A negation of simplices. ∆k
i + (−∆k

i ) = 0, ∀i, k.

2. A linearity over the elements.

lk∑
i=1

fi∆
k
i +

lk∑
i=1

gi∆
k
i =

lk∑
i=1

(fi + gi)∆
k
i where

fi, gi ∈ Z.

There are numerous intricate details within Definition 3.5.3. To aid comprehension,

it is beneficial to elaborate on some more abstract points and revisit certain group

definitions. Chain groups serve as crucial links, transforming the combinatorial ab-

stract simplicial complexes into algebraic counterparts, thereby opening the door

for the analysis of simplicial complex analogues with group theory. It is impor-

tant to understand the meaning of how a free Abelian group generated by oriented

simplices represent simplicial complexes, and what the elements of the group intu-

itively describe. An apt analogy might be the construction of a wireframe, such

as a truss bridge, from toothpicks and marshmallows. In this case, each toothpick

and marshmallow is considered a generator of the truss bridge, and by combining

these elements in various ways, the entire wireframe structure, inclusive of its loops,

hollows, and boundaries can be described. The free Abelian group generated by

the simplices of a simplicial complex is almost exactly analogous to the truss bridge

created from toothpicks and marshmallows. The chain groups offer an algebraic



Topological Data Analysis 80

structure that captures the simplicial complex’s topological aspects. By imposing

that the simplices are generators of the free Abelian group, this means that every

individual k-simplex is treated as an elementary piece that can be combined with

the others to capture some aspect of the simplicial complex’s shape. An element of

the chain group C1 might look something like [ab] − 7[bc] + 2[cd], where [ab], [bc],

and [cd] are 1-simplices. Generally, the complete set of chain elements encompasses

all integer-linear combinations of the simplices. Expressing chain elements in this

form allows for the algebraic combinations of simplices, thereby providing a method

of describing subsets within a topological space. Chains are particularly important

in homology, as they enable the algebraic representation of boundaries and voids

within a simplicial complex.

After presenting all the preliminary definitions for homology, following with a prac-

tical example calculation of homology groups for a simplicial complex will prove

insightful. Such an illustration showcasing the process, presented in Example 3.5.1,

helps give a deeper understanding than by theory alone.

After transitioning into an algebraic domain, a more robust definition for the bound-

ary operator can now be established. With simplicial complexes now represented by

chain groups, the problem has become entirely algebraic.

Definition 3.5.4. The boundary operator, ∂k, maps between chain groups,

∂k : Ck(K) → Ck−1(K) (3.10)

Given an oriented simplex ∆k = [v0, . . . , vk], a positive sign is assigned to every

member of the even permutation class of ∆k and a negative sign to every member

of the odd permutation class. The boundary operator must now obey the rules [50]:

1. For an oriented simplex,

∂∆k =
k∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk] (3.11)

where [v0, . . . , v̂i, . . . , vk] represents the face of the simplex with the ith vertex

omitted. Note that every successive omission changes the orientation of the

face.
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2. Thinking of a simplicial complex, K, as the sum3 of all the standard simplices

required to construct it, K =
∑

i,k ∆
k
i for ∆k

i ⊂ K. The boundary operator is

a linear function over all the simplices in the simplicial complex,

∂(K) = ∂
(∑

i,k

∆k
i

)
=
∑
i,k

∂(∆k
i ), ∆k

i ⊆ K (3.12)

Despite the notion of chain groups, the mathematical definitions for the boundary

of simplices and simplicial complexes are strikingly similar. However, given that

chain groups fundamentally portray the simplicial complexes algebraically, this is

merely a formality when developing intuition. Definition 3.5.4 is an ideological

extension of Definition 3.5.1, much like simplicial complexes being an extension to

simplices. The primary distinction between the two boundary definitions is that the

simplicial complex boundary considers orientation, as detailed in the first item in

Defintion 3.5.4. The second item emphasises that this process is distributed over all

simplices in the simplicial complex.

Given the boundary map defined by ∂k : Ck(K) → Ck−1(K), it is vital to comprehend

the map’s injective nature, wherein it is a mapping to a subspace rather than the

entire space. While ∂k does indeed map k-simplices to their (k− 1)-simplex faces, it

does not fully cover the entirety of Ck−1(K). This is because some simplices within

Ck−1(K) are not faces of higher-dimensional simplices. Consequently, the boundary

map’s image is confined to a subset of the Ck−1(K). Grasping this nuance is pivotal

for a clear understanding of homology groups.

Example 3.5.5. Revisiting the simplicial complex in Figure 3.12 with this new

definition for the boundary of K = {v0v1, v1v2}. The result ∂K = (v1 − v0) + (v2 −
v1) = v2 − v0 is obtained. This now gives the correct, and intuitive answer for the

boundary of K.

As stated in Definition 3.5.4, the boundary is a mapping between chain groups

∂k : Ck(K) → Ck−1(K), and thus repeated applications between successive chain

groups gives a chain complex [61],

. . . → Ck
∂k−→ Ck−1

∂k−1−−→ . . .
∂2−→ C1

∂1−→ C0
∂0−→ 0 (3.13)

3The summation is now being used in place of the union, as it is required that two simplices
with opposing orientations cancel each other out, as given in Definition 3.5.3 and set-theoretic
notation does not easily allow for the cancelling of elements.
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For a k-dimensional simplicial complex, this process is repeated k times, leading

to the final result of 0, and with the initial condition Ci(K) = 0 for i > dim(K).

Intuitively, Ci(K) = 0 for i < 0 as there are no simplices present in these dimensions.

In all of these cases, 0 represents the zero (trivial) group.

There is a sense of nestedness associated with chain complexes, as shown in Fig-

ure 3.14, which arises by applying successive boundary operators. A particularly

intriguing subgroup of the chain group is the kernel, which is the subgroup consist-

ing of all the elements mapped to 0 over a single application of a boundary map.

Definition 3.5.6. For a simplicial complex K, elements of the chain group, zk ∈
Ck(K), are called k-cycles if ∂zk = 0. The group of k-cycles, Zk(K), is given by the

kernel of the boundary map,

Zk(K) = ker(∂k : Ck(K) → Ck−1(K)) = {zk ∈ Ck : ∂kzk = 0} (3.14)

and Zk(K) is a subgroup of Ck(K) [46].

The term k-cycle arises since these elements encapsulate the cyclic-looping structure

of a simplicial complex in the kth dimension. The group of k-cycles Zk(K), is defined

as the group of all chains of k-simplices that have an empty boundary. This means

that k-cycles represent holes, or regions without an exterior in dimension k, since, by

definition they have no boundary. The most intuitive group to picture is Z1(K): this

group denotes the collection of all linear combinations of edges (1-simplices), forming

closed paths (cycles), without any interior; with the same reasoning extensible to

higher dimensions.

Furthermore, it is worth considering which elements of the kth chain group are

boundaries of the (k + 1)th chain group, that is the image of the (k + 1)th chain

group under the boundary map.

Definition 3.5.7. For a simplicial complex K, elements of the chain group bk ∈
Ck(K), are called k-boundaries if there exists a chain group Ck+1(K), such that

∂Ck+1(K) = bk. The group of k-boundaries Bk(K), is given by,

Bk(K) = Im(∂k+1 : Ck+1(K) → Ck(K)) = {bk ∈ Ck : ∃b′k ∈ Ck+1, bk = ∂b′k} (3.15)

and Bk(K) is a subgroup of Ck(K) [46].

Finally, there is one last concept to understand before defining homology. When
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σ

∂2

∂2(σ)

∂1

∂1(∂2(σ))

Figure 3.13: Visualisation of two successive boundary maps applied to
the tetrahedron, where it can be seen that all matching edges have op-
posing orientations after two applications of the boundary map.

performing the composition of two successive boundary operations, the boundary

operator exhibits a special characteristic: two successive applications give the zero

group. In other words, the boundary of a boundary is empty,

∂k−1 ◦ ∂k = 0, ∀k (3.16)

This is a highly significant result, and its proof is supplied in Appendix C. Here,

the general idea is demonstrated that a singular case of equation (3.16) holds true.

To illustrate this result, the tetrahedron ∆3 = {v0v1v2v3} is analysed. To aid un-

derstanding, Figure 3.13 is supplied to assist in visualising the concepts. The first

application of the boundary gives the result,

∂3({v0v1v2v3}) = {v1v2v3} − {v0v2v3}+ {v0v1v3} − {v0v1v2} (3.17)

The four faces of the tetrahedron are obtained, as expected. However, when com-

pared to the previous boundary map of the tetrahedron, the orientation is now being

captured in the signs of the vertex sets. Consequently, these faces no longer all be-

long to the same equivalence class. The second application of the boundary map

gives,

∂2({v1v2v3})− ∂2({v0v2v3}) + ∂2({v0v1v3})− ∂2({v0v1v2}) =
[{v2v3} − {v1v3}+ {v1v2}]− [{v2v3} − {v0v3}+ {v0v2}]+

[{v1v3} − {v0v3}+ {v0v1}]− [{v1v2} − {v0v2}+ {v0v1}] = 0

(3.18)

Over the two applications of boundary map, the orientation changes once for each

simplex, resulting in the cancellation of all terms. This example verifies the result
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Bk+1

Zk+1

Ck+1

Bk

Zk

Ck

Bk−1

Zk−1

Ck−1

∂k+2 ∂k+1 ∂k ∂k−1

0 0 0

Figure 3.14: A chain complex with boundary maps between the chain
groups, showcasing the nested relationship between Ck, Zk, and Bk.

∂2 ◦ ∂3(∆3) = 0. The general idea for higher-dimensional simplices follows a similar

pattern where the orientation of each simplex changes once over the composition,

leading to the cancellation of terms when summed. Whilst the example shown

here is applied to a simplex, the theory and proof presented in Appendix C are

valid for simplicial complexes. This is because the boundary is injective to the

faces of simplices inside the lower chain group. Essentially, the extension to prove

equation (3.16) for simplicial complexes is distributing (or repeating) the logic over

all the simplices represented in the chain group.

Corollary 3.5.8. A very important result follows from equation (3.16). For a

simplicial complex K, any element of the boundary group bk ∈ Bk(K) has the

property ∂kbk = 0. Therefore, Bk(K) ⊆ Zk(K) where Zk(K) is the group of k-

cycles, the group of all the elements mapped to 0. Since both Zk(K) and Bk(K)

are Abelian, a property inherited by being subgroups of Ck(K). Bk(K) is a normal

subgroup of Zk(K). Consequently, the set of cosets Zk(K)/Bk(K), form a quotient

group [50].

Corollary 3.5.8 brings together much of the background theory discussed in previous

sections, albeit in a rather implicit manner. To better grasp Corollary 3.5.8, it is

beneficial to dissect this information into logical steps.

1. The first stage is understanding why ∂kbk = 0. This is because ∂kbk is

essentially the application of two boundary operators since the element bk

arises from the boundary operation of a prior chain element. Hence, ∂kbk =

(∂k ◦ ∂k+1)ck+1, and by equation (3.16), the result is zero.

2. Secondly, if all the elements in Bk(K) are mapped to zero after the application

of ∂k then Bk(K) must be a subset of all the elements that are mapped to zero.
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According to Definition 3.5.6, this is the kernel Zk(K).

3. Thirdly, from Definitions 3.5.6 and 3.5.7, it is known that Zk(K) ⊂ Ck(K) and

Bk(K) ⊂ Ck(K). Given that chain groups Ck(K), are defined as Abelian, then

so are their respective subgroups Bk(K) and Zk(K), since subgroups inherit

the operator from the parent group, by Definition 3.2.3.

4. Finally, it has also been shown that Bk(K) ⊂ Zk(K), and since Bk(K) is also

Abelian, then Bk(K) is a normal subgroup Bk(K) ◁Zk(K). Therefore, the set

of cosets Zk(K)/Bk(K) is a quotient group.

Definition 3.5.9. The homology groups, Hk(K), are the quotient groups,

Hk = Zk(K)/Bk(K) (3.19)

Subsiding all this mathematical abstraction, the kth homology group Hk(K) can be

perceived as the cycles in Ck(K) that are not boundaries of the elements within

Ck+1(K). An element of Ck represents a cycle, implying it encloses a k-dimensional

region. The fact that it isn’t a boundary means the interior bound by the k-cycle is

not included in the space; from here emerges the idea of counting the k-dimensional

holes. A generalisation of the rule is that Hk(K) pertains information to count the

k-dimensional holes in the simplicial complex, K. For example, H1(K) precisely

describes the inability of 1-cycles in K to bound 2-simplices in K; epitomising the

exact idea of a 1-dimensional hole. Considering other visualisable homology groups,

H0(K) is the only exception to the rule, as this encodes information about the

number of connected regions in K, i.e. the number of disjoint subsets of K.

H1(K) encodes information about 1D holes, these can be visualised as circular holes.

H2(K) encodes information about 2D holes, these can be visualised as cavities.

Hk(K) encodes information about kD holes.

Before proceeding onto an example calculation for homology, there are a few extra,

but very important definitions built atop homology. If Hk(K) is a vector space, the

elements are the homology classes of K. For a cycle zk ∈ Zk(K), its homology class

is the coset ck +Bk(K) = {ck + bk : bk ∈ Bk(K)}. Cycles are said to be homologous

if they are in the same homology class [46]. In essence, a k-cycle that wraps around

a hole once is homologous to a k-cycle that wraps around the same hole twice.
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From the homology groups, the dimension of these spaces give topological invariants

called the Betti numbers,

βk = dim(Hk(K)) (3.20)

The kth Betti number quantifies the k-dimensional holes present within a simplicial

complex [62]. Throughout this thesis, Betti numbers serve as topological invari-

ants to quantify the number of holes in a simplicial complex constructed from some

data. Since Betti numbers are topological invariants, they can be used similarly

to the other topological invariants listed in Section 3.3.3, in checking if two spaces

are homeomorphic. A mismatch in the Betti numbers of two spaces signifies that

the two spaces are not topologically identical. Unlike the previously listed topolog-

ical invariants, Betti numbers can be determined computationally. However, when

applying a homological perspective on data, the topological invariants are less clear-

cut because of factors such as data sampling and noise from real-world observations.

Hence, a probabilistic approach via the Wasserstein-distance is considered.

3.5.1 Calculating Homology

τ1
ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

ρ7

P1

P2

P3 P4

P5

P6

Figure 3.15: An oriented simplicial complex, K.

At last, the final stage in describing homology is to motivate with an example,

tracing all the steps outlined along the way; all the way back from a geometric

simplicial complex to the Betti numbers. Consider the simplicial complex presented

in Figure 3.10, but imposing the notion of oriented simplices, this result is presented

in Figure 3.15. This case is shown in its entirety to back up the inner workings of

the definitions and showcase what truly is going on at the lowest level.

Given the geometric simplicial complex, K in Figure 3.10, the abstract simplicial
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complex is,

K̃ = {a, b, c, d, e, f, ab, bc, ca, cd, de, ef, fd, def} (3.21)

For ease of notation at a later stage, a new naming convention is used over all the

simplices in K,

P1 = a, P2 = b, P3 = c, P4 = d, P5 = e, P6 = f

ρ1 = ab, ρ2 = bc, ρ3 = ca, ρ4 = cd, ρ5 = de, ρ6 = ef, ρ7 = fd

τ1 = def

(3.22)

The newly attributed names and the orientation associated with each simplex are

shown in a geometric realisation in Figure 3.15. Using this new naming convention,

the chain groups may be formed using summation notation4,

C0(K) =

{
6∑

i=1

riPi : ∀ri ∈ Z

}
(3.23)

C1(K) =

{
7∑

j=1

mjρj : ∀mj ∈ Z

}
(3.24)

C2(K) = {n1τ1 : n1 ∈ Z} (3.25)

Now the chain groups have been defined, each homology class can be calculated. For

intuition, as mentioned in the theory, C0(K) represents the set of all integer sums

over Pi, that is the group is generated by the vertices of the simplicial complex.

Similarly, C1(K) represents the integer sum over all the edges in the simplicial

complex. However, since there is only a single 2-simplex, C2(K) is simply all integer

scales of the generator simplex.

Calculating H2(K)

Starting with H2(K), this case is trivial, since there is only a single 2-simplex, and

it, therefore, cannot enclose k-dimensional space, therefore the answer is intuitively

0. However, in search of completeness and rigour, the second homology group is

ker(∂2 : C2 → C1) modulo Im(∂3 : C3 → C2), and since there are no 3-simplices in

K, the image is trivially the zero group; meaning H2(K) is just ker(∂2 : C2 → C1).

To determine the kernel, consider the action of the boundary map over the simplex

4For completeness, a more compact way of representing the chain groups makes use of the
direct-sum notation. However, this has not been introduced. The direct sum equivalents would be
C1(K) =

⊕6
i=1 ZiPi, and C2(K) =

⊕7
i=1 Ziρi.
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τ1 via the application of Definition 3.5.4,

∂2τ1 = ∂2(P4P5P6)

= P5P6 − P4P6 + P4P5

= ρ6 + ρ7 + ρ5 (3.26)

When calculating the boundary of a chain element, the coefficient is distributed over

all the edges, thus giving, ∂2c2 = n1ρ6 + n1ρ7 + n1ρ5, where c2 represents a chain

element in C2, where n1 ∈ Z. Therefore, since the application of ∂2 results in a

combination of simplices and does not map τ1 to zero, then τ1 is not in ker(∂2).

Given that this is the only generator of C2(K), this means ker(∂2) = 0, and thus

H2(K) = 0, giving the Betti number β2 = 0, indicating that there are no 3D cavities

in K, which is clear from Figure 3.15.

Calculating H1(K)

Moving onto H1(K), recalling that H1(K) = ker(∂1)/Im(∂2), therefore, the two

elements that need to be determined: the 1-cycles, which are the elements of

ker(∂1 : C1(K) → C0(K)), and the 1-boundaries, the elements of Im(∂2 : C2 → C1).

A general element in the chain group is given as c1i =
∑7

j=1mjρj, for the homology,

its boundary is required; to perform this, consider each 1-simplex individually,

∂1ρ1 = P2 − P1

∂1ρ2 = P3 − P2

∂1ρ3 = P1 − P3

∂1ρ4 = P4 − P3

∂1ρ5 = P5 − P4

∂1ρ6 = P6 − P5

∂1ρ7 = P4 − P6

(3.27)

Therefore, distributing the coefficients over the application of the boundary operator

to the chain element gives,

∂1c1 = m1(P2 − P1) +m2(P3 − P2) +m3(P1 − P3) +m4(P4 − P3)

+m5(P5 − P4) +m6(P6 − P5) +m7(P4 − P6)

= P1(m3 −m1) + P2(m1 −m2) + P3(m2 −m3 −m4)

+ P4(m4 −m5 +m7) + P5(m5 −m6) + P6(m6 −m7)
(3.28)
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Grouping the coefficients is very informative for determining cycles, since it is desired

to find the unique sets of coefficients that result in 0, thus giving the cycles described

by the kernel of the map. There are two cyclic behaviours arising here, one emerging

from the set of points {P1, P2, P3}, and the second from {P4, P5, P6}. Both of these

form cycles that will be in the kernel, however only {P1, P2, P3}, will contribute to

the homology group as {P4, P5, P6} is part of the image from the higher order chain

group. For completeness, both cycles will be considered to showcase the quotient

group in action removing the cycles which are faces of simplices. Therefore, when

considering the kernel, ∂1c1 = 0, two distinct criteria satisfy this condition, which

are,

1. l1 = m1 = m2 = m3 defining the interiorless loop.

2. l2 = m5 = m6 = m7, defining the boundary loop.

Therefore, these two conditions outline the requirements for the equivalence classes

forming the kernel.

Z1(K) = {l1ρ1 + l1ρ2 + l1ρ3, l2ρ5 + l2ρ6 + l2ρ7 : ∀li ∈ Z} (3.29)

Since there are two families of cycles described in Z1(K), this means that Z1(K) ∼=
Z2. Now to determine the image in C1(K), the boundary group is required. This

result has already been calculated in H2(K).

B1(K) = ∂2C2(K) = {n1ρ6 + n1ρ7 + n1ρ5 : n1 ∈ Z} (3.30)

Where there is a single element contained in B1(K), and thus B1(K) ∼= Z. Now,

the interesting part arises, when forming the quotient group. From equation (3.29)

and (3.30), it can be seen that when l2 = n1, these two cycles are the same, and

this family of cycles was formed as a boundary from the previous chain group in the

chain complex. Therefore, when calculating the quotient group this cycle is purged.

H1(K) = Z1(K)/B1(K) = {l1ρ1 + l1ρ2 + l1ρ3 : l1 ∈ Z} (3.31)

Meaning that the cycle l1ρ1+l1ρ2+l1ρ3 generates a nontrivial homology class, leading

to the fact that H1(K) is generated by this cycle, giving H1(K) ∼= Z. Therefore,

the Betti number, β1 = dim(H1(K)) = 1, stating that there is a single hole in the

simplicial complex which is bounded by edge set {ρ1, ρ2, ρ3}.
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Calculating H0(K)

For transparency, this calculation will go in full depth by considering general ele-

ments and the cosets, rather than ‘hand-wavey’ notions of dividing by the quotient

group.

Since 0-simplices by definition have no boundaries, as they are the most fundamental

bounding element, then Z0(K) = C0(K),

Z0(K) =

{
6∑

i=1

riPi : ∀ri ∈ Z

}
(3.32)

This means that a general 0-cycle z0 = r1P1 + r2P2 + r3P3 + r4P4 + r5P5 + r6P6 is

valid for all ri ∈ Z. This means there are six independent generators of Z0(K), and

thus Z0(K) = Z6.

The image was previously calculated in equation (3.28),

B0(K) = {P1(m3 −m1) + P2(m1 −m2) + P3(m2 −m3 −m4)

+P4(m4 −m5 +m7) + P5(m5 −m6) + P6(m6 −m7) : ∀mi ∈ Z}
(3.33)

But since the sum of all the coefficients in equation 3.33 equals zero, this means there

are only five generators and thus B0(K) = Z5, hence H0 = Z6/Z5 = Z. However,

for full completeness consider a single coset and group the coefficients,

h0 = z0 +B0(K)

= P1(r1 +m3 −m1) + P2(r2 +m1 −m2) + P3(r3 +m2 −m3 −m4)

+ P4(r4 +m4 −m5 +m7) + P5(r5 +m5 −m6) + P6(r6 +m6 −m7)
(3.34)

Here, h0 represents a general form of a coset in H0(K). The 0th homology group,

H0(K) is the set of all such cosets. Now consider another coset h′
0, which is formed

by another 0-cycle, z′0. However, the difference z0 − z′0 only differs by a 0-boundary,

i.e, h0 = h′
0 if and only if z0 − z′0 ∈ B0(K). Since every combination of points Pi

can be obtained as a 0-boundary, this means that any two 0-cycles z0 and z′0, and

therefore any two cosets h0 and h′
0 in H0(K) are homologous, therefore H0(K) ∼= Z

This approach may appear on the surface very verbose, especially when compared

to looking at the shape and stating these exact results via intuition. However, this

conclusion was arrived at using a generalisable algebraic framework. It is also not
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too difficult to envisage how this could be implemented on computers, opening the

door to truly unique analytical techniques – giving a fresh perspective on decades-

old problems. However, there are still a few caveats when calculating the homology

of a single simplicial complex, and this is where persistent homology rectifies such

issues.

3.6 Persistent Homology

After all this meticulous outlining of an abstract method for quantifying the shape

of data, when a homology approach is applied to real-world data, the process is

not without flaws. There is also a very fundamental question overhanging: which

length scale ε is most suitable for creating VR complexes that best represent the

topology of a data set? Addressing this concern is crucial, as even minor variations in

ε can yield drastically different simplicial complexes, leading to varying topological

invariants, and data sets do not come with some implicit representative length scale.

Figure 3.16 illustrates the difference between two simplicial complexes, even with

just a 20% increase in ε. A quick qualitative assessment shows that Figure 3.16 (a) at

ε1 has six connected components, a single hole and a maximal dimension of two. In

contrast, Figure 3.16 (b) has three connected components, two holes, and a maximal

dimension of three. Determining the homology of these simplicial complexes gives

discrepancies between the like Betti numbers, suggesting that these data sets are

topologically different. Potentially, leading to the inference that these simplicial

complexes represent different data, despite being formed atop the same set.

ε1

(a) ε1

ε2

(b) ε2 = 1.2ε1

Figure 3.16: Two VR complexes, at different ε, built atop the same
randomly-generated data.
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Furthermore, manifolds may display characteristics across a variety of length scales.

Figure 3.17 illustrates a noisy, artificially-created, continuous point cloud, containing

three circular holes (shown as the hatched-green regions) with varying radii; implying

β1 = 3. Notably, the distribution of points along these holes’ circumferences is

roughly inversely proportional to their sizes. Open balls representing the formation

of a VR-complex, are presented at three different ε, each revealing different aspects

of the data manifold. While this data set was fabricated with 1D holes in mind

and the discussion is limited to this dimension, the logic is extensible to higher-

dimensional holes. Upon qualitatively examining each subfigure within Figure 3.17,

the following observations are made,

(a) Only the small central hole is being captured, resulting in a simplicial complex

with β1 = 1. This means there are no topological insights into the medium

and large holes since their perimeters are not encircled by connected paths.

(b) At this ε, the small and medium holes are detected as intended. However, the

large hole’s perimeter remains as disjoint clusters. It is concerning that holes

are emerging which are artefacts of noise and discrete sampling. Highlighted

in red, these areas of topological noise have little purpose in describing the true

topology of manifolds. Topological noise is an unavoidable consequence when

creating simplicial complexes from discrete and noisy data. Additionally, the

small hole has been partitioned into two sub-holes, as a result of the noise

in the data. These artefacts introduced at this ε result in β1 = 8, where the

largest hole is still being neglected.

(c) Interestingly at this ε, only the medium and big holes are being captured. ε

is now approximately equal to the radius of the small hole, and therefore data

points on either side of the small hole are spanning its diameter. There are

also four holes arising from topological noise, one of which is barely visible,

giving β1 = 6. The fact that one hole is barely visible and still counts towards

β1 highlights the topological philosophy, as the geometric notion of size has

been stripped but the size-insignificant hole is still counted. A further intrigu-

ing observation is the different positions of topological noise in (b) and (c).

This observation results in topological noise being less troubling than initially

perceived.

Each hole stands out as a prominent manifold feature, yet no single ε can adequately

capture all three since the small hole is spanned before the large hole’s perimeter is
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closed. If one tries to emphasise one hole at the expense of the other, determining

which is the most prominent feature is debatable: while the leftmost hole is certainly

the largest, it is also the most sparse. Thus, selecting an ε that highlights this

feature may be considered a naive solution since this would overshadow information

regarding the most densely-populated hole. Therefore, there may not always be a

single ε that adequately describes the global topology of a point cloud. Moreover,

the emergence of artefacts from topological noise only complicates matters. While

only three circles were generated for illustration, the indiscriminate nature when

forming the VR complexes5, holes are unexpectedly forming as a result of the noisy

discrete data. Real-world data will invariably be discrete and contain noise, therefore

topological noise is an inevitable reality of topological data analysis. The prudent

point to takeaway here is the potential inability of one length scale to accurately

depict a data set within a traditional topological framework.

5Leopold Vietoris, fittingly linked with the concept of persistence, was also renowned as a
supercentenarian. He lived for an impressive 110 years and 309 days, making him the oldest
verified Austrian man on record.
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(a) Small hole captured

(b) Small and Medium holes captured

(c) Medium and Large holes captured

Figure 3.17: Data sampled from a manifold with features of varying
length scales. This discrete sampling shows the inability to capture all
of the homological features with a single ε. Correctly identified holes
are shown in green and topological noise in red.
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The solution to an appropriate topologically representative length scale is elegantly

straightforward: simply consider all length scales. This idea is the philosophy un-

derpinning persistent homology, where ε is considered over a range of values and

determines how the topological features persist. This approach results in a filtra-

tion, a sequence formed by appending simplices, ordered by their creation with an

association to the varying ε parameter. This process results in n disconnected points

at the start of the filtration, where ε = 0, and a fully connected (n− 1)-simplex at

the end. The homology at each instance along the filtration is calculated, giving the

Betti numbers associated with every ε. The necessity of analysing multiple length

scales stems from the limited and potentially misleading inference when consider-

ing a single value. Varying ε does not bias any length scale, therefore offering a

multi-scale descriptor of the data manifold’s shape.

Persistent homology extends traditional homology to uncover the duration for which

holes are present within a manifold, implying that these features eventually termi-

nate. This phenomenon was shown in Figure 3.17 (c), wherein the small hole was

spanned. The main interest from persistent homology isn’t just in the number of

holes, but the number of holes that remain over nontrivial ε ranges. When features

persist over larger ranges of ε, the feature is considered more prominent, and it is

likely to truly represent the manifold. Each homological feature is said to be birthed

upon its creation at εbirth and die when enclosed at εdeath. The range [εbirth, εdeath],

is called the persistent interval and is representative of a single homological feature.

Since each persistent interval is associated with a specific feature in a specific di-

mension k, they are commonly depicted as pairs (k, [εbirth, εdeath]). Hence, the set of

all persistent intervals acts as a multi-scale multi-dimension descriptor representing

the topology of a data set.

Persistent homologies exhibit stability [63], thus a small change in a point cloud aptly

reflects a small variation in the persistent homology. Therefore, two spaces that

exhibit similar topological features in their point clouds, will have similar persistent

homologies. Thus, persistent homology can be used as a signature for a data set,

by characterising the topological properties, much like other topological invariants

discussed in earlier sections. Consequently, by defining suitable metrics over the

space of persistent homologies [64], it becomes feasible to identify whether two point

clouds share topological similarities. One such metric is the Wasserstein distance,

which is introduced in Section 3.6.2. Such metrics allow for inference between data

sets based entirely on their shape.



Topological Data Analysis 96

When Betti numbers are considered over their persistent intervals, a notion of size is

bestowed on the topology. Hence, persistent homology, as an analytical technique,

falls somewhere between geometry and topology. The inherent metric nature of

persistence intervals introduces an ability to quantify the size of the holes present

within a simplicial complex, a technique not possible when using traditional homol-

ogy. For the case when constructing simplicial complexes from a VR complex, the

radius of the hole will be approximately εdeath, where slight inaccuracies may arise

from noise within the data, and holes not being perfect analogues of circles. Then

the length of the persistent interval, εdeath − εbirth, is akin to a weighting, or prob-

ability that this feature truly represents the manifold. Armed with this newfound

knowledge, topological noise may be addressed, since it is not truly representative

of the manifold structure. Therefore, topological noise typically appears over brief

intervals. This phenomenon was demonstrated between Figures 3.17 (b) and (c),

as there were no common regions of topological noise. Whereas the medium hole,

which is a true feature, persisted over both ε values.

3.6.1 Visualising Persistent Homology

0.0 0.2 0.4 0.6 0.8 1.0

x
0.0

0.2

0.4

0.6

0.8

1.0

y

(a)

0.0 0.1 0.2 0.3 0.4

ε

0

5

10

15

20

25

30

In
d

ex

0

1

(b)

0.0 0.1 0.2 0.3 0.4

Birth

0.000

0.100

0.200

0.300

0.400

+

De
at

h

0

1

(c)

Figure 3.18: (a) 20 randomly-generated 2D points. The data’s (b) per-
sistence barcode and (c) persistent diagram.

There are two common ways to present the persistent intervals: persistent barcodes

and persistent diagrams. Each format comes with merits and limitations. The

persistent barcodes primarily provide qualitative insights, whereas the persistent

diagrams are more geared towards quantitative analysis. Figure 3.18 (a) shows

some point-cloud data, (b) showcases the persistent barcode, and (c) illustrates

the persistent diagram. When plotting persistent intervals, there are some shared
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characteristics between the two plots,

1. Both are plotted in R2.

2. The colouring schemes in these diagrams convey the dimension of the persistent

interval [65]. As a reference, this thesis consistently uses red, blue, and green

to denote β0, β1, and β2, respectively. This rationale influenced the colour

scheme in previous simplicial complex plots.

3. In both diagrams, a single feature persists to infinity. This interval arises

because at some distance parameter εfc, a point cloud will become a simplex

rather than a simplicial complex. Then for ε > εfc, the simplex will only

remain fully connected, and therefore this interval will continue to infinity.

When performing calculations over persistent homologies, it is often required

to remove this infinite interval, resulting in the reduced persistent homology.

Persistent Barcodes

Persistent barcodes offer a more intuitive visualisation of persistent intervals. In

these persistent barcodes, the x-axis is represented by ε, while the persistent intervals

are stacked in the y-axis, without significant structure. As a homological feature

emerges, its barcode interval begins at εbirth and extends until the feature is spanned

or merged into a like feature at εdeath. This process is repeated over the entire set

of persistent intervals.

By arranging the persistent intervals in this manner, one can intuitively determine

the Betti numbers at any instance, ε, along the filtration by drawing a line at x = ε.

The number of intersections with red intervals is β0 and the number of intersec-

tions with blue intervals is β1, therefore mentally drawing vertical lines provides an

intuition to the number of holes present within a simplicial complex at any given ε.

An example of a barcode depicting this process is shown in Figure 3.19, with vertical

dashed lines showing the intersections with the intervals and the corresponding

simplicial complex shown at its end. For instance, for ε = 0.3, the simplicial complex

comprises one connected component, indicated by the single red intersection, and

there are two holes, inferred by the two blue intersections. However, at ε = 0.45, all

holes have been spanned and any simplicial complexes formed after this point will

only exhibit increased connectivity, as shown in ε = 0.50, 1.00. Hence, there is no

topological insight concerning holes after this point.
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Figure 3.19: Simplcial-complex realisations formed over different ε,
showing their topological features on the persistent barcode.
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The barcode representation also better shows repeated intervals, as each persistent

interval is a separate entity on the y-axis. In Figure 3.19 there are three near-

identical persistent intervals over the range [0, 0.22], and are easily distinguishable.

Conversely, on the persistent diagram, these intervals will be displayed at the same

point overlapping one another, potentially masking information in such situations.

Although persistent barcodes excel at aiding understanding of the space, they lack

the structure to be used quantitatively. Consequently, for practical-quantitative

applications persistent diagrams are almost always used.

Persistent Diagrams
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Figure 3.20: Enlarged persistent diagram of Figure 3.18 (c).

On the other hand, persistent diagrams, or birth-death diagrams, provide a more

structured representation of persistent intervals. To plot persistent diagrams, the

persistent intervals are shown as points in the xy-plane, where εbirth is plotted on the

x-axis and εdeath is plotted on the y-axis. An example of a persistent diagram can

be seen in Figure 3.18 (c), with an enlarged version in Figure 3.20. Each persistent

interval is represented by the coordinates (εmin, εmin), with the colour denoting the

corresponding dimension. Persistent diagrams show a boundary line, defined by

y = x, below which points will never be plotted. This line specifies the principle that

a feature must first exist before it can die. Subsequently, the difference between the

line y = x and the y-coordinate of a point is analogous to the length of the persistent

interval. The further a point is from the line y = x, the longer the feature persists,

implying that features close to y = x are likely to originate from topological noise.
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At the expense of intuition, persistent diagrams exhibit an easily analysed structure.

From persistent diagrams, understanding individual simplicial-complex states along

the filtration is much more challenging. To obtain the Betti numbers for a simplicial

complex, one would have to visualise a line moving perpendicularly to y = x, then

the y intersect of this moving line denotes ε, and the count of points above this line

would be the Betti numbers. Needless to say, this approach is much less intuitive

than the barcode representation. Nonetheless, as previously described, this form

exhibits a superior structure, making it the preferred choice for quantitative analysis.

The more natural geometric structure of persistent diagrams naturally facilitates the

matching of features between persistent homologies.

Other representations of persistent homology are used in this thesis, specifically

vector-stable forms, which allow for persistent homologies to be passed as features

into a machine-learning pipeline. While these representations are not covered in this

section, they are introduced in Chapter 5, where their application to the Z24 bridge

forms a standalone chapter.

3.6.2 Wasserstein Distance

This chapter has emphasised that the persistent homology space allows for the defi-

nition of metrics [66], with the implication that proximity in the persistent homology

space arises from the topological similarity between data sets. Using persistent ho-

mologies as topological invariants in this way is less clear-cut than when compared

to purely abstract mathematical topological invariants. Therefore, to define the

similarity between point clouds’ shapes, a more complicated measure is required, in

the form of the Wasserstein distance [67].

Rather than acting over the multi-set persistent interval form of persistent homolo-

gies, the Wasserstein distance acts over the structured space of persistent diagrams.

Thereby, equipping the space of persistent homologies with a metric. Numerous

works [7, 63, 68, 69] have proven the stability of metrics over the space of persistent

homologies, indicating that for small perturbations between point clouds, there are

proportionally small changes in the persistent homologies. Using this insight, the

Wasserstein distance can quantify the topological similarity between point clouds.

The Wasserstein distance aims to find the set of optimal matchings6 between the

6When determining the optimal matching between the points, the concept of optimal trans-
port [70, 71, 72] is heavily relied upon.
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Figure 3.21: A matching between two persistent homologies, with colour
denoting homology dimension, and circles and crosses denoting different
persistent homology sets.

points of two overlayed persistent diagrams, which minimises the cost associated

with the calculation. An example of some optimal matchings between two persistent

diagrams is shown in Figure 3.21. Consequently, the Wasserstein distance is defined

as the weighted sum of all the matching lengths.

Definition 3.6.1. Given two persistent diagrams D1 and D2. For a positive real

number p representing the weighting given to the matching between persistent in-

tervals, the p-Wasserstein distance, Wp, is given by,

Wp(D1, D2) = inf
ϕ

(∑
u∈D1

d(u, ϕ(u))p
) 1

p

(3.35)

Here, u is a persistent interval from D1, while ϕ(u) is its optimally-matched counter-

part, such that ϕ(u) ∈ D2. The function d is the Euclidean distance. When p = 1,

this is the sum of all the matching distances [38].

For an analogy of the Wasserstein distance, consider two piles of soil at different

locations. The Wasserstein distance then provides a way to measure how much

effort is required to move one pile to the other. This analogy gives rise to the name

Earth mover’s distance, which is the 1-Wasserstein distance. Here, the piles of soil

are equivalent to the optimally-matched points, and the effort mirrors the matching

length. Essentially, what the Wasserstein distance quantifies is the required ‘effort’
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to morph one persistence diagram into another.

Before calculating the Wasserstein distance between persistent homologies, a small

but important modification is required. The persistent homologies are densely pop-

ulated with points along diagonal y = x, with infinite multiplicity [73]. This ad-

justment arises from the need to ensure that every point finds a match, as there is

an infinite cost associated with unmatched pairs. By including the diagonal line, it

guarantees that every point is matched. This is especially important when match-

ing persistent diagrams with varying persistent interval counts. Consequently, the

inclusion of the diagonal also ensures that topological noise, which is typically con-

centrated around y = x, is matched at a small cost. Therefore, the influence of

topological noise is minimal when comparing persistent homologies.

3.6.3 Flaws of Persistent Homology

Persistent homology offers a rich and unique analysis, distinguishing itself far from

other techniques within data science by utilising an abstract notion of shape. This

process is motivated by some very elegant and abstract mathematics. Neverthe-

less, no matter the level of abstraction and innovation, topological data analysis

is a relatively-young field and is still exhibiting some teething problems, some un-

avoidable and others awaiting solutions. This section will discuss some of the more

pressing, noteworthy, and subtle pitfalls of persistent homology.

Arguably, the most restrictive challenge that persistent homology faces is the compu-

tational expense required for calculations. Whilst the theoretical framework is fully

generalisable to many points and dimensions, the reality is that practical applica-

tions often fall short. Scalability is a monumental challenge for persistent homology,

resulting from the need to check k− 1 distances over k points, and then repeat this

over ranges of ε when forming filtrations from data. Given the current state of the

algorithms and computational power, the practical limits of persistent homology of-

ten restrict calculations to a subset of the homology groups, usually H0 and H1, only

considering a few thousand data points embedded in single-digit dimensions. Sev-

eral packages exist for calculating persistent homology, across various programming

languages, including Ripser [55], GUDHI [54], PHAT [74], DIPHA, and Dionysus.

The current general consensus [55, 75] suggests the C++-based Ripser is the most

efficient, often being orders of magnitude faster than other packages. However, while

Ripser is very efficient, it only focuses on VR complexes; it only does one thing, but

it does it very well. Whereas, other packages offer more versatility and a wider
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Figure 3.22: Data scaled in different axes showing different simplicial
complexes at the same ε. Note the difference in scale along the axes.

range of analytical features. Despite this, new faster algorithms will inevitably be

developed in the future allowing for calculations over larger and higher-dimensional

point clouds. Notably, some researchers are already developing algorithms for use

on quantum computers [76].

Another unavoidable consequence of this analysis is that constructing simplicial

complexes from data is a metric process, which induces a scalar functional depen-

dency on the persistent homology. When considering a VR complex, an open ball

is centred at each vertex, the open balls are defined by the metric distance ε. Given

some data where all the axes are on different scales, there will be a bias for forming

simplices along the axes with smaller scales. This phenomenon is shown in Fig-

ure 3.22, where the second and third plots show a preference for forming simplices

in the x and y axes, respectively. Fortunately, this isn’t too problematic, as it

proves good practice to normalise the data in each dimension prior to calculating

the persistent homology. This normalisation procedure is performed throughout the

remainder of this thesis. It is essential to highlight this subtle point, as topology

is a scale-invariant study, but topological data analysis is fundamentally limited by

the need for a metric when defining complexes on data.

While persistent homology is independent of length scales, this might falsely give

the impression of parameter independence. However, the persistent homology calcu-

lations are influenced by various hyperparameters. Some hyperparameters include

the filtration type, homology coefficient field, minimum persistent interval length,

maximal embedding dimension, and maximal value of ε (set to infinity in all of this

work). The choice used for these hyperparameters affects the results, and there is no
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(a) (b)

Figure 3.23: Noisy data spanning the hole earlier than expected.

universally-accepted protocol for choosing their values. While most of these hyper-

parameters are finding a balance between information and computational expense,

others can give entirely different results.

How persistent is persistent enough? There is no universal threshold or formula for

determining when homological features represented by persistent intervals are true

to the topology of the manifold, or are artefacts of topological noise. It might be

the case that there is no firm boundary between the two distinctions, but rather

a probabilistic-fuzzy boundary. This ambiguity is only an issue when wanting to

understand a point cloud’s absolute topology. In contrast, the bulk of this research

and applications within the literature concern the relative comparison of persistent

homologies, primarily via the Wasserstein distance.

While calculating persistent homology is resilient to small noise levels, greater noise

levels can introduce scenarios which significantly alter the persistent diagrams. As an

example, consider two circles with the same radii, with one of the circles containing a

data point at its centre arising from noise, as illustrated in Figure 3.23. The inclusion

of this central ‘noise’ point reduces the ε required to span the hole. Consequently,

the persistent interval for this hole is significantly shortened, thereby implying that

this feature isn’t as prominent. Admittedly, this is an exaggerated example, but

the principle applies to toned-down cases. Such an occurrence was observed in

Figure 3.17, where the small hole was prematurely spanned, which can be primarily

attributed to a single noisy data point inside the hole. While it is clear in 2D, with

the aid of plots, recognising this case in higher dimensions is much more challenging.

Data preprocessing can help mitigate such issues; however, this introduces a trade-off

between preserving genuine topological features and smoothing the data.
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Integrating persistent homologies into broader analytical frameworks is tough, be-

cause of the lack of a canonical form. Two representations of persistent homology

have already been shown in this chapter, and more vector-stable representations are

discussed at a later stage. The fundamental issue lies in the unstructured persistent

intervals, which cannot be readily passed as a feature into other data analytical

toolboxes, such as machine learning. The current solution is to manipulate the

persistent intervals in some way to ensure they are in the form required for the

succeeding analysis. In doing so, one increases complexity, data processing time and

cost. Additionally, multiple vectorised representations of persistent homology exist,

all of which emphasise different features and give incoherent results with each other.

Finally, to end on a slightly more philosophical note, there is an ambiguity con-

cerning what the homological features of data represent. Establishing a correlation

between the holes present in some data to real-world phenomena remains an open

challenge. This ambiguity intensifies when considering already complex data sets,

such as those found in SHM. Does a void form from a temperature change, the in-

clusion of damage, traffic going over a bridge, a combination of these, or a variable

that is not being monitored? Additionally, there is also an ambiguity regarding fea-

ture importance. It is not necessarily the case that the most dominant homological

feature relates to the most influential in the real world. It is conceivable that the

most influential variables in SHM do not permit a topologically-interesting feature.

An argument of this nature was supplied when analysing Figure 3.17, where one

hole was larger and one was more densely populated, there is no obvious way to

attribute an order of importance between these features.

Despite all these flaws and its infancy, persistent homology has seen applications

spanning a wide range of fields and has opened the doors to analytical techniques

to consider aspects of data that were previously overlooked. In fields such as SHM,

when working with expensive, unique, often safety-critical problems, there is no

good excuse for overlooking potentially informative aspects of data.
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3.7 Time-Delay Embedding

In the analytical chapters of this thesis, there is a requirement to represent and

calculate the topology of 1D time series. There is not much that can be described as

‘holey’ about a 1D time series, other than perhaps discontinuities along the series.

A solution to describing the topology of 1D time series is proposed via time-delay

embeddings, where higher-dimensional manifolds are constructed from time series.

By this approach, trends in the time series present themselves very naturally as

homological features, making them capturable with TDA. This method thereby

facilitates topological inference over 1D time series.

Often, data are collected as a 1D time series, rather than as a set of variables, which

can represent points of a manifold. Additionally, in some cases, a single time series

might be output from an analytical process, such as the most stationary residual

series in cointegration. Time-delay embeddings broaden the scope of applying persis-

tent homology to 1D data sets, without the need for having k data series embedded

in Rk.

Time-delay embeddings trace their origins to work by Packard in [77] as a method of

inducing geometry from a one-dimensional time series. Takens later showed that a

manifold representing the full state space of an attractor can be derived from one of

its time series [78]. The important part of this result – relating to this thesis – is the

fact that the topologies of the reconstructed and complete attractors are equivalent

when using a time-delay embedding [78]. Essentially, time-delay embeddings enable

a 1D time series to assume an nD topology that is identical to the topology of the

attractor’s full-scale state space. Although Taken’s embedding theorem was proven

strictly for topological reconstructions of attractors, the adaptability of time-delay

embeddings has been extended beyond this scope. Time-delay embeddings act as

a consistent and reliable technique to represent the topology of 1D time series and

consequently have seen applications in topological-time series analysis [79, 80, 81].

To determine the time-delay embedding for a given time-varying series f : t → R,
the series are stacked d times to form a d-dimensional point cloud. Every successive

instance is shifted by integer multiples of the delay α. Formally, the embedding

Φ(f, α, d) : R → Rd is represented by,

Φ(f, α, d) = [f(t), f(t+ α), . . . , f(t+ (d− 1)α)] . (3.36)
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Figure 3.24: A 2D time-delay embedding of a cyclic trend.

The interest in using time-delay embeddings in TDA is that they can represent

time series’ features as homological features. For example, a cyclic trend in the time

series manifests as a loop in the embedding space. When multiple independent cyclic

trends are present within a time series, which is very often the case in SHM, these

will begin to trace out a complex higher-dimensional manifold. Then the shapes of

these manifolds are quantified with TDA and used to form decisions over 1D time

series, based on their shape.

Time-delay embeddings are interesting as they encapsulate the local history of a

time series in higher dimensions. By locally shifting the time series by α, and then

representing this as a point in d-dimensional space, both the current state and the

history at integer multiples of α are captured. Hence, given appropriate values for

the embedding delay and dimension, the reconstructed manifold approximates the

full state of a dynamical system. It is vital to note that the shape of the recon-

structed manifold is heavily influenced by the choice of α and d. Consequently, later

in this thesis, a consistent method for determining optimal time-delay embedding

parameters considering persistent homology is presented.



Chapter 4

Detecting Novelty with TDA

When considering Rytter’s hierarchy [2], the foundational task is the detection of

novelty. Novelty detection is undoubtedly the easiest task to consider in Rytter’s

hierarchy, which is further simplified by knowing the exact point when a structure

becomes damaged, i.e. having labelled damage data. However, since TDA has never

been applied in an SHM context, novelty detection with labelled data is a promising

starting point. The perfect candidate for this case study is the heavily-researched

Z24 bridge [82], as the damage was artificially induced, therefore the exact instance

is known when damage became present in the structure. Additionally, the data

set contains a collection of monitored environmental variables; the most interesting

relating to this work is temperature.

Although novelty detection is situated at Level One – the most rudimentary tier of

Rytter’s hierarchy – it should not be misconstrued as straightforward. In real-world

scenarios, including this one, detecting damage within structures is not easy, because

of the external influence of Environmental and Operational Variations (EOVs) on

damage-sensitive features, such as natural frequencies. Although EOVs are ex-

pected, and typically harmless to the structure, they often have a more pronounced

effect on damage-sensitive features than damage, presenting significant challenges

when analysing SHM data. This happening is exactly the situation with the Z24

bridge, where temperature fluctuations alter the natural frequencies by up to 30%,

in contrast to a maximum change of 7% caused by damage.

As mentioned in the previous section, the analysis here will be conducted solely

108
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within the confines of persistent homology, where the Wasserstein distance is used

as a metric to differentiate between data. Hereby, using only the data’s shape

to form decisions regarding the health state of the bridge. The general approach

involves partitioning the data based on temperature – the most dominant EOV

– and then calculating the persistent homologies and Wasserstein distances over

these embedded manifolds. This analysis seeks to exploit the idea that detectable

topological alterations occur in the data when damage is present, setting them apart

from temperature-induced effects. The aim is for TDA to identify these topological

changes in the damage manifold, and distinguish them from the norm, even with

changes brought about by the more impactful temperature variations.

In this analysis, the Z24 data are presented in their most natural form, a manifold

embedded in R4, based on the first four natural frequencies. Some supplementary

cases are also provided, showcasing the stability of TDA against sampling mecha-

nisms, reconstruction procedures, and dimension reduction. These additional cases

underscore the preservation of topologically interesting features over data prepro-

cessing techniques. To emphasise the robustness of TDA, the three case studies

are:

1. Manifolds embedded in four-dimensional space, where each of the axes corre-

sponds to a natural frequency: ω1, ω2, ω3 and ω4.

2. Manifolds embedded in three-dimensional space, where the nonlinear ω2 fea-

ture has been omitted. Showing the resilience of shape, even when features

with dominating effects are omitted.

3. The third case shows the robustness of the manifolds to a linear dimension-

reduction algorithm. In this case, the four-dimensional embedding of the data

will be compressed down to two and three dimensions [83]. The reduced-

dimension manifolds are then analysed with TDA.

However, before heading into the analysis section, a greater background in under-

standing the Z24 bridge data is provided, by giving a very brief history of the bridge

and listing some quirks of the data.
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4.1 Z24 Bridge

The Z24 was a prestressed, three-span bridge with two lanes and a main span of 30m

between the two regions, Koppigen and Utzenstorf, in Switzerland. The bridge was

built in 1963 and eventually demolished in 1998, as a new railway was being built

which required a bridge with a larger span [84]. Knowing that the bridge needed

to be demolished, data were collected leading up to the bridge’s dismantlement. A

sensor network was placed over the bridge to collect modal parameters, as well as

sensors for measuring air temperature, soil temperature and humidity local to the

bridge [84]. Modal analysis [82, 85] was then used to extract the natural frequencies

from the accelerometer data, the first four of which are analysed in this work.

Since the data were captured over a whole year, the extreme Swiss seasonality was

captured, with the air temperature recorded as low as −9 ◦C and as high as 36 ◦C.

These temperature effects caused significant changes to the calculated natural fre-

quencies [86]. Towards the end of the year-long monitoring campaign, but shortly

before the bridge’s destruction, controlled damage was introduced to the system [84],

the effects of which present themselves in the set of natural frequencies.

As previously mentioned, the temperature change is the biggest contributing factor

to the natural frequency variations, with a magnitude of around 30%, whilst the

damage effects result in only a 7% change. For this reason, the change in the

magnitude of the natural frequencies offers little insight into the presence of damage,

and more elaborate data analysis techniques are required to distinguish damage and

temperature variations. The main problem here is to isolate the less prominent

effects of damage, from the sets containing the more prominent temperature effects.

In order to aid the novelty detection, the natural frequencies were partitioned into

four categories based on the air temperature at the instance the data were cap-

tured. The data set is broken down into four classes based on the air temperatures

at the time of the measurements, or whether damage was present (irrespective of

temperature), more information regarding these partitions is presented in Table 4.1.

Figure 4.1 shows the temperature readings and the first four calculated natural fre-

quencies plotted against the measurement index, where the corresponding colours

refer to the data partition class.
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Figure 4.1: Air temperature and the first four natural frequencies, where
the colour of the points refer to the class associated with the data point.

Region Colour Temperature Range Data Count

Freezing, F Light Blue T < 0 ◦C 720

Cold, C Dark Blue 0 ◦C ≤ T < 4 ◦C 666

Warm, W Red 4 ◦C ≤ T 2089

Damage, D Black N/A 457

Table 4.1: Information regarding the four Z24 data partition classes.

Qualitatively analysing Figure 4.1 shows that there is a significant increase in all

the natural frequencies over the region of sustained freezing, approximately over the

indices 1200 to 1500. Over this region, it is speculated that the water trapped within

the bridge deck and soil froze, resulting in the bridge displaying heightened rigidity,

thus increasing the natural frequency [86].

Intriguingly, the natural frequencies are affected differently, where ω1, ω3, ω4 show a

linear relationship with temperature, but ω2 displays a nonlinear relationship. This

nonlinear relationship will be explored in more detail in Chapter 7, when considering

cointegration. Also, it can be seen visually that after the onset of damage, ω1, ω3,
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and ω4 appear to be relatively stable, whereas ω2 is decreasing over the same interval.

For the succeeding analysis sections of this chapter, the first case will demonstrate a

full walk-through of the calculation procedure and motivate a normalisation scheme.

For the following cases, only the results are presented to limit repetition; however,

where elements are essential to the new cases, these points will be explicitly stated.

4.2 Embedding in R4

The first four natural frequencies of the Z24 bridge can be represented as a mani-

fold MZ24 embedded in R4. In this four-dimensional space, each set of four natural

frequencies from a measurement instance forms a point, with the natural frequen-

cies defining the coordinates. By plotting all the data points in the partitions of

Table 4.1, the partitions become distinct manifolds embedded in R4.

Both temperature and damage impact the natural frequencies, implying that the

manifolds are also influenced by these factors. Consequently, shifts in temperature

or the bridge’s health state will alter the manifolds’ shapes. TDA allows for the

quantification of these shape variations, even if minor. It is conjectured that tem-

perature variations will result in a smooth yet nonlinear shape change, especially

when T < 0. On the other hand, damage will cause an abrupt change, resulting

in a distinct shape when compared to nondamaged counterparts. This difference in

shape is used to indicate some novelty in the data, different from the smooth effects

arising from temperature. The dramatic shape change introduced by damage serves

as an indicator of novelty in the data, distinguishing it from smooth effects aris-

ing from temperature; thus acting as a topological-based novelty detection method,

albeit on labelled data.

Several factors influence the manifold shape, with some being temperature-related

and others not. For those factors correlated with temperature, their effects on the

manifold’s shape will be specific to each manifold. For uncorrelated factors, their

effects will be consistent across all manifolds, ensuring that there is no shape biasing

between partitions. The Z24 natural frequency manifolds data will include effects

from all EOVs, with each imparting a unique effect on the natural frequencies.

Given that the data span an entire year, seeing the full seasonal range, various EOV

interactions will be observed, collectively contributing to the manifold’s shape.
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4.2.1 Data Nomalisation

As highlighted in Section 3.6.3, because of the metric characteristics of constructing

VR complexes, it is beneficial to normalise along each axis. In this context, the ω1

axis would inherently receive preferential treatment when forming simplices because

it is by definition the smallest natural frequency. Normalising the data by the

maximum value in each time series ensures that the simplex formation is fair along

each axis. Subsequently, changes in the persistent homologies of the manifolds arise

from the relative positioning of points rather than their absolute distribution.

However, there is another normalisation procedure required that is even more in-

fluential than the relative axis scales. When partitioning the data into classes, the

relative sizes of the partitions were not considered, resulting in W having many

more points than the others. Yet, the partition size plays a significant role in this

context. For well-sampled manifolds, their persistent homologies will show little

variation based on the number of points. However, the persistent homologies will

be more densely populated with persistent intervals. Directly as a result of the

persistent-interval count, there are more points to match within the Wasserstein

distance calculations, contributing to increases in their value. Consequently, the

Wasserstein distances associated with the warm partition are likely to be larger

than those from other manifolds with fewer points. Addressing this issue is some-

what tricky, as more data points also provide a better depiction of a manifold’s

shape.

To investigate the relationship between the Wasserstein distance and the number of

points in a manifold, W is divided into two randomly-allocated-equal subsets, W1

and W2. Both subsets should exhibit a very similar topological structure since they

are sampled from the same manifold. Whilst there might be minor variations from

topological noise from their distinct samplings, these discrepancies are considered

inconsequential regarding their true topology. These new subsets are then included

in the analysis. By incorporating these subsets, into this analysis, the aim is to

highlight the proportionality between the number of points and the Wasserstein

distance.

The persistent homologies are computed for all the manifolds, focussing solely on

the first two Betti numbers, β0, β1
1. Subsequently, the Wasserstein distances are

1This approach was taken entirely for computational reasons, as calculations of β2 for W would
crash because of its large number of points.
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F C W W1 W2 D SM

F 0.00 1.08 2.91 1.47 1.45 1.21 8.10
C 1.08 0.00 2.89 1.11 1.08 0.64 6.79
W 2.91 2.88 0.00 1.92 1.98 3.17 12.86
W1 1.47 1.11 1.92 0.00 0.21 1.34 6.05
W2 1.45 1.08 1.98 0.21 0.00 1.28 6.00
D 1.21 0.64 3.17 1.34 1.28 0.00 7.63

Table 4.2: Wasserstein distances over each partition, the row sums in
the final column.

calculated over all the persistent homologies, giving a result akin to an outer prod-

uct. The Wasserstein distances are presented in Table 4.2. However, these values are

relatively uninformative in their raw form, because of their dependence on the num-

ber of points within the manifolds. Nonetheless, Table 4.2 effectively showcases the

relationship between Wasserstein distance and the count of data points. This is evi-

dent as the Wasserstein distances associated with W1 and W2 are consistently about

half (with minor fluctuations owing to topological noise induced from sampling) of

those associated with W .

To better quantify the topological uniqueness of a manifold, the Wasserstein dis-

tances are summed along the rows, which is denoted SM for a manifold M . This

sum is shown in the final column of Table 4.2. A larger value indicates that the par-

tition is less topologically similar to the others. However, this calculation still has

a dependency on the number of points, exemplified by the fact the sum associated

with W is still approximately double W1 and W2. To counteract this dependency,

one can normalise by the number of points in the manifold,

ŜM =
SM

nM

=
1

nM

∑
i∈Q

Wp(M, i) (4.1)

Where ŜM is the normalised Wasserstein-distance sum of the manifold M , nM is

the number of points in M , and Q is the set of all manifolds. The results of the

normalised Wasserstein-distance sums are present in Table 4.3, where it is evident

that when normalising by the number of points, the Wasserstein distance sums

for W , W1, W2 converge. This is the desired behaviour, by suggesting that these

partitions, which were sampled from the same manifold, exhibit minimally-different

levels of uniqueness when compared to others, despite their varying sample sizes.

Consequently, this normalisation process produces a measure which describes the
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M SM n ŜM

F 8.10 720 0.0113
C 6.79 666 0.0102
W 12.86 2089 0.0062
W1 6.05 1044 0.0058
W2 6.00 1045 0.0057
D 7.63 457 0.0168

Table 4.3: Summed and scaled Wasserstein distances for each manifold
partition.

distinctiveness of a manifold’s shape, without being biased by the number of points.

It is crucial to acknowledge that this approach is only valid when there are enough

points to adequately represent the manifold’s true topology. If there is an insuffi-

cient number of points, significant artefacts will be introduced into the persistent

homologies because of the undersampling, resulting in unexpectedly-large Wasser-

stein distances. Furthermore, the already large Wasserstein distance values are then

divided by a small number, which will result in asymptotic limiting behaviour be-

cause of the reciprocal relation with nM in equation (4.1).

Whilst this analysis provides insights, basing conclusions on a single equal split is not

comprehensive enough. A more holistic approach involves examining this analysis

across a range of split ratios, denoted as r. Given 0 < r < 1, the two disjoint subsets

are formed W1 = rW and W2 = (1 − r)W , such that W = W1 ∪ W2. To validate

this normalisation technique, r is varied and the Wasserstein distance sums along

the rows of the outer product are calculated. Essentially extending the previous

analysis over multiple r values.

To demonstrate the effects of varying r, two scenarios are examined. The first

scenario considers F , C, W1, and D, highlighting the threshold at which a manifold

contains a sufficient number of points. The subsequent scenario includes F , C,

W , W1, and D, showing that W1 converges to W after normalising. Symmetric

equivalents of these cases, where W2 is also included, are provided as supplementary

material in Appendix D.

F , C, W1, and D

In this case, only the subsetW1 is considered, ensuring only one variable with respect

to r and no biasing from the inclusion of multiple warm manifolds. This approach
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(a) Raw (b) Scaled

Figure 4.2: Size of the Wasserstein distances depending on the warm
partition size.

reveals the number of points necessary to adequately represent the W manifold.

Figure 4.2 (a) shows an inflection point at r = 0.25 for W1. In the interval 0 <

r ≤ 0.25, the manifold is so under-sampled that its true topological features cannot

be identified, and the topological noise is dominating. This undersampling results

in artefacts within the persistent homology and a likeness between the manifolds

cannot be established, resulting in large Wasserstein distances. On the other side

of the inflection point, in the range 0.25 < r < 1, the true topology is adequately

represented. As r increases, more points are included in W1, resulting in a linear

increase in the persistent intervals, and finally a linear increase in the Wasserstein

distance sum.

Figure 4.2 (b) shows the Wasserstein distance sums post-normalisation. As antic-

ipated, within the under-sampled interval 0 < r ≤ 0.25, the result for ŜW1 shows

asymptotic limiting behaviour approaching small r. This region, however, is not

insightful since the topological features primarily arise from noise. The region be-

yond the inflection point is more informative, where the manifold’s true topology is

adequately depicted. In this range, ŜW1 remains more stationary over r, especially

when compared to its unnnormalised counterpart.

A notable observation in Figure 4.2 (b) is the linear increase for other Ŝ values.

This trend emerges because they are not being normalised by the changing num-

ber of points, thus still exhibiting a dependency. This artefact doesn’t exist when
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considering the complement subset W2 in Appendix D, as nW1 + nW2 = 2089 for all

r.

F , C, W , W1, and D

Having established that normalising by the number of points gives a descriptor of

topological uniqueness that is invariant over r, it is important to demonstrate that

this normalisation procedure yields consistent results given different samplings from

the same manifold, given an adequate number of samples. To demonstrate this

desired quality, both W and W1 are now considered.

This methodology is the same as the previous section but with the inclusion of

W . The results for the unnormalised Wasserstein distance sums are presented in

Figure 4.3 (a). The observed linear decrease in W as r increases is expected, since

the only variable in the system isW1, and as r increases, W1 is becoming increasingly

similar to W , hence their Wasserstein distance decreases.

(a) Raw (b) Scaled

Figure 4.3: Size of the Wasserstein distances depending on the warm
partition size.

Figure 4.3 (b) shows the normalised equivalents of Figure 4.3 (a). The important

takeaway from this analysis is the evident convergence between ŜW and ŜW1 after

being normalised. This convergence underscores the validity of the normalisation

procedure in providing a more consistent, point-count invariant descriptor of mani-

fold topological uniqueness.
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The rationale behind this normalisation procedure is that the number of persistent

intervals is proportional to the number of points within a manifold. Furthermore, the

number of persistent intervals is proportional to SM . Thus establishing a transitive

proportionality, SM ∝ nM . Dividing by nM then gives the constant of proportional-

ity, ŜM , which in this case is dependent on the relative persistent homologies of the

manifolds.

4.2.2 Results

Having established a normalisation procedure that accounts for the varying number

of points between manifolds, a more refined descriptor of topological dissimilarity is

available, thus allowing for quantitative novelty detection. It is also logical to exclude

W1 and W2 from further analysis, as after normalising they yield the same results

as W . Additionally, the inclusion of W1 and W2 also biases the warm partition by

double-counting the warm data points.

For a qualitative understanding of the R4 manifolds, the persistent diagrams for each

partition are depicted in Figure 4.4. These diagrams offer a visual representation

of the aforementioned smooth transition between the temperature-based partitions.

There is a gradual evolution: as temperature increases, the persistent diagrams

become more compact, indicating the features persist less. Specifically, the freezing

persistent diagram shows several β1 features persisting in the range 0.015 < εbirth <

0.04. This effect is less noticeable in the cold partition and is arguably nonexistent

in the warm.

However, the crux of this analysis lies in distinguishing the damage manifold from the

others. The fairest comparison for the damage persistent homology is with the warm

manifold, given that the damage data were all collected in warm conditions, as shown

in Figure 4.1. When comparing these two, the damage β1 features are much more

dispersed, therefore suggesting a topological change resulting from the inclusion of

damage. Another distinguishing characteristic of the damage persistent homology is

that all the features are on a smaller scale. The β1 features predominately appear in

the interval 0.004 < εbirth < 0.015, whereas the same features in the other manifolds

span broader ranges. Therefore, when matching within the Wasserstein distance,

longer matchings are required, resulting in a greater value.
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(a) Freezing (b) Cold

(c) Warm (d) Damage

Figure 4.4: Persistent diagrams for data partitions of manifolds embed-
ded in R4.

F C W D SM ŜM

F 0.00 1.08 2.91 1.21 5.19 0.0072

C 1.08 0.00 2.89 0.64 4.60 0.0069

W 2.91 2.88 0.00 3.17 8.96 0.0043

D 1.21 0.64 3.17 0.00 5.02 0.0110

Table 4.4: Wasserstein distances and scaled sums with the warm subsets
not included.

Shifting to a more quantitative perspective, the Wasserstein distances over these per-

sistent diagrams are considered, following the same procedure as in Section 4.2.1, the
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results of which are shown in Table 4.4. The normalised Wasserstein distance sum,

ŜM , has been described to quantify the topological uniqueness of the manifold M .

Consequently, distinct increases in ŜM imply some substantive change in topology

when compared to other manifolds. The manifold with the largest ŜM stands out as

the most topologically distinct. As Table 4.4 shows, ŜD is significantly larger than

the others, hinting at potential novelty in the damage manifold; a known fact from

the labelled data. Following far after is ŜF , which is consistent with the freezing

effects observed in the natural frequencies; this is closely followed by ŜC .

4.3 3D Shadow: ω1, ω3, and ω4

In this scenario, the focus shifts to a lower-dimensional representation, specifically

a shadow embedded in R3. To form this shadow, ω2, the temperature-nonlinear

natural frequency is omitted. Since the data are now in three dimensions a direct

visualisation is possible, as shown in Figure 4.5. The topological information is

shown to give consistent results over reduced dimensional representations. While

this statement is not a universal characteristic of TDA, this does underscore its

robustness and adaptability via this type of projection.
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Figure 4.5: Manifold partitions in ω1, ω3, ω4, before normalising.

The decision to omit ω2 acts as a double-edged sword. On one hand, it removes

the nonlinear freezing-temperature relation, but on the other hand, ω2 is partic-

ularly sensitive to damage. Therefore, removing ω2 indiscriminately removes the

undesirable nonlinear EOV relation at the cost of a diminished damage response.

Counterintuitively, the exclusion of an axis actually may aid matters. This phe-

nomenon can be attributed to the ‘curse of dimensionality’. For example, consider a
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F C W D SM ŜM

F 0.00 0.64 1.52 0.91 3.08 0.0043
C 0.64 0.00 1.46 0.47 2.57 0.0039
W 1.52 1.46 0.00 1.74 4.72 0.0023
D 0.91 0.47 1.74 0.00 3.13 0.0068

Table 4.5: Wasserstein distances with the highly nonlinear ω2 removed.

densely-populated 1D line with n points along its length. For an equivalently-dense

2D square n2 data points are required, and for a 3D cube, n3 points are required,

and so forth. As a greater number of dimensions are considered, exponentially-many

points are required to maintain the same descriptive power.

Given that the number of data points remains constant across different dimensional

representations, the exclusion of a dimension will lead to a more densely-sampled

and better-described manifold. However, this benefit comes at the expense of po-

tentially informative degrees of freedom from omitted dimensions. The trade-off

between clarity and information richness is common across all data-science disci-

plines, highlighting the need for thoughtful dimensionality-reduction processes. As

an extension to this case, the subsequent section presents a less naive approach for

reducing the dimension of the manifolds.

The results from the lower-dimensional shadow, as tabulated in Table 4.5, again

show that the damage manifold is the most distinct, as ŜD remains the largest

value, even after omitting all information regarding ω2. However, in this case, ŜF ,

ŜC , and ŜW are closer in magnitude suggesting the structures of these manifolds are

more similar in this space. This is likely arising from the removal of the nonlinear

temperature effects present in ω2. F , C, and W being similar topologically in this

space further emphasise the damage manifold as being the most distinct, resulting

in a relatively larger jump from ŜF to ŜD than when compared to the R4 embedding.

This alignment between F , C, and W is also visible in their persistent diagrams,

shown in Figure 4.6, as they visually vary less than when compared to the equivalents

in Figure 4.4.

This example shows that TDA can still discern the damage partition as the most

distinct, even in the presence of arguably the most significant feature being omitted.

However, this approach to dimensionality reduction was based on prior engineering

knowledge about the Z24 bridge. A more objective approach to dimension reduction

is now to be considered via principal component analysis.
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(a) Freezing (b) Cold

(c) Warm (d) Damage

Figure 4.6: Persistent diagrams for data without ω2.
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4.4 Principal Component Analysis

In this section, a linear dimension-reduction algorithm called principal component

analysis (PCA) [83] is applied to the R4 embeddings of the Z24 bridge. While

dimension reduction will inevitably result in information loss, PCA is a more refined

approach than the previous example. PCA identifies orthogonal projections that

retain as much data variance as possible. The first principal axis denoted PC1,

captures the most variance, with each subsequent axis capturing progressively less.

This case study examines the effects of taking the first three, and then the first two,

principal components of the manifolds embedded in R4, and investigating changes

in the topological structure along the way. The goal is to further understand the

trade-off between preserving information and simplifying the data representation, a

concept touched upon in the prior section. This demonstration will show how the

data’s topological structure is preserved over linear transformations, and how the

accuracy degrades as the dimension reduction becomes more distant from the true

embedding dimension.

(a) 3D (b) 2D (c) 1D

Figure 4.7: A torus (a) decomposed into 2D (b) and 1D (c).

To illustrate the effect of PCA on topology, consider a torus shell example, shown

in Figure 4.7 (a). The original torus has Betti numbers of 1, 2, 1 for β0, β1, and

β2, respectively. Now consider the first two principal components, as shown in Fig-

ure 4.7 (b), the enclosed volume is lost. However, the central hole that characterises

the torus remains. The first two principal axes then result in Betti numbers of 1,

1, 0 for β0, β1, and β2, respectively. Finally, when considering only one principal

component, as depicted in Figure 4.7 (c), the embedding is simply a straight line.

Consequently, no interesting homological features are retained from the original
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manifold.

To clarify the procedure used on the Z24 data set: the data were partitioned into the

appropriate classes. Each class was then normalised along each axis, by the largest

value. Finally, the principal components of each class were determined individually.

First Three Principal Axes

This initial example maps the manifolds from four-dimensional to three-dimensional

embeddings, aiming to retain as much information as possible. The exact amounts

of explained variance for the principal component axes for each manifold are shown

in Table 4.6. The persistent diagrams for the partitions are presented in Figure 4.8.

When analysing these diagrams, the dependency of the β1 features on temperature is

more evident, mirroring observations from Section 4.2.2. This observation suggests

that these patterns stem from the nonlinear temperature effects within ω2, which

were absent in Section 4.3 because of ω2’s omission. Hence, the consideration of ω2

leads to notable alterations in the manifold’s structure as temperatures vary.

M 1 2 3

F 90.3% 95.6% 98.9%

C 77.7% 89.5% 97.2%

W 61.3% 79.3% 93.9%

D 76.6% 90.0% 96.0%

Table 4.6: Cumulative percentage explained variance for successive prin-
cipal components.

Furthermore, there has been a noticeable shift concerning the damage persistent

diagram. While Figure 4.6 (d) showed the β1 cluster beginning at εbirth = 0.02,

when considering effects from ω2 in Figures 4.8 (d) and 4.4 (d), the β1 cluster

begins at around β1 = 0.05. This shift suggests that the inclusion of ω2 impacts

the manifold’s scale, observable in both 3D and 4D. Additionally, the β1 features

exhibit greater persistence with the inclusion of information from ω2.

Assessing the Wasserstein distance sums for the first three principal components,

as depicted in Table 4.7, it is evident that the damage remains the most distinctive

aspect. However, its prominence has decreased compared to earlier observations. In

this PCA case, the percentage difference between ŜF and ŜD is 37%, whereas in the



Z24 Bridge 125

R4 embedding case, the equivalent percentage difference was 53%; indicating that

damage sensitivity is being lost over dimensionality reduction.

(a) Freezing (b) Cold

(c) Warm (d) Damage

Figure 4.8: Persistent diagrams of the first three principal components,
for the Z24 data partitions.

F C W D SM ŜM

F 0.00 0.90 2.05 0.93 3.87 0.0054

C 0.90 0.00 1.87 0.55 3.32 0.0050

W 2.05 1.87 0.00 1.92 5.83 0.0028

D 0.93 0.55 1.92 0.00 3.40 0.0074

Table 4.7: Wasserstein distances of the first three principal components.
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First Two Principal Axes

Now for a larger dimension reduction, specifically from 4D to 2D embeddings. This

case still preserves the topology, although damage sensitivity is being lessened and

temperature effects are becoming more dominant when compared to the R4 and R3

cases. Hence the nuances of the topology are being lost, much like in the Torus

example, which in turn is affecting the ability to discern unique attributes between

the manifolds. The loss of topological information can be explained by the reduction

in the explained variance in two principal component axes, as indicated by Table 4.6.

Reducing the manifolds to such a degree overlooks intricate topological details, as

the data are compressed down to only the first two principal components. There-

fore, the persistent homology is not capturing intricacies, as it was in previous cases.

Consequently, the gap in the Wasserstein distance sum between freezing and damage

has narrowed, as shown in Table 4.8. Yet, despite this information loss and distinc-

tiveness, the ordering between ŜM remains unchanged, with the damage manifold

being quantified as the most unique.

F C W D SM ŜM

F 0.00 0.51 0.91 0.47 1.89 0.0026

C 0.51 0.00 0.73 0.39 1.63 0.0024

W 0.91 0.73 0.00 0.68 2.32 0.0011

D 0.47 0.39 0.68 0.00 1.53 0.0033

Table 4.8: Wasserstein distances of the first two principal components.

This case emphasises that dimensionality reduction invariably leads to information

loss, and when embedding the Z24 manifolds in two dimensions via PCA, the result

proves too much of a compromise to give results for viably detecting novelty.
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(a) Freezing (b) Cold

(c) Warm (d) Damage

Figure 4.9: Persistent diagrams for the first two principal components.

4.5 Conclusion

This chapter introduced some aspects of the Z24 Bridge data set, which will be

used throughout this work. However, the primary objective of this research was

to propose a topological approach to detect damage or novelty within data. This

objective is especially challenging as the EOVs present in the Z24 bridge exert

a more pronounced effect on the raw data than the damage itself. Despite this,

TDA was able to identify topological nuances between different data partitions and

identified the damage case as the most distinct. These findings were grounded solely

on topological reasoning, introducing novel concepts to the field of SHM.
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To ensure unbiased comparisons of manifolds, a normalisation scheme was presented,

to aid novelty detection. This normalisation procedure was designed to account for

manifolds with varying numbers of data points, which was motivated by a case study

where the natural frequencies were embedded in R4. Subsequent case studies further

validated this approach.

Upon defining the normalisation scheme, some additional cases were presented,

which demonstrated the effectiveness of TDA to preserve data integrity when con-

sidering lower-dimensional embeddings. An argument was presented showing that

topological information is lost when compressing data into successively fewer dimen-

sions.

Despite these inherent complexities, all cases using this normalisation scheme for

evaluating manifold uniqueness consistently identified damage as the most distinc-

tive feature. This is noteworthy, especially considering that temperature-induced

effects have a more pronounced impact on the natural frequencies than the damage.



Chapter 5

Vector Representations

The form of the persistence intervals makes them problematic for analysis with

common data science techniques, notably machine learning (ML). Consequently,

this chapter focuses on techniques to bridge the TDA-ML gap by interfacing persis-

tent homology with ML. There is a growing interest in such procedures where the

persistence intervals are transformed into a stable vector form, thereby streamlining

the integration of topological feature extraction into ML pipelines. This ML prepro-

cessing approach paves the way for directly incorporating data shape as a distinct

feature in ML. Although this study exclusively uses vectorised forms of the persis-

tent homology to classify data, indicating that shape is enough to distinguish data,

this is not a strict necessity. The vectorised persistent homology features can be used

in conjunction with more traditional features to supplement ML decision-making.

The inherent structure of persistent intervals is awkward to interface with ML be-

cause they are not represented as fixed-length vectors. Whilst the count of persistent

intervals is somewhat influenced by the number of points and embedding dimension,

there is no clear formula for the output number of persistent intervals. In contrast,

ML requires inputs of known-fixed length. Moreover, persistent intervals are repre-

sented as unordered sets of intervals of the form (βn, (εbirth, εdeath)). This format

deviates from the consistent-ordered vector pattern that ML demands.

Central to this work are two vector representations: Betti curves [87] and persis-

tence images [88]. These vector representations are applied to persistent homologies

derived from the Z24 bridge’s natural frequencies. Via these representations, a clas-

129
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sifier is developed to distinguish samples exclusively by their persistent homologies.

The methodology for this analysis deviates slightly from more conventional clas-

sification strategies associated with the Z24, as to derive a meaningful topology,

multiple data points are required, whereas a single instance usually represents a

sample. Consequently, this analysis considers a sliding window of points and com-

putes the persistent homology over this window, which represents a sample. As this

work serves as the first application of a TDA classifier in the SHM literature, this

study adopts a slightly simplified problem as compared to Chapter 4, where only

two classes are considered, these being normal condition and damage.

In order to classify the vector representations, logistic regression is used in a su-

pervised setting. The simplicity of logistic regression makes it an ideal choice for

illustrating the connection between TDA and ML, by keeping the focus on the vector

representations by not imposing complex ML algorithms. However, the extracted

features from TDA are in no way exclusive to logistic regression.

5.1 Logistic Regression

Before jumping into the details of the vector representations, a brief introduction to

logistic regression is provided, as this is used to distinguish between the persistent

homology vector representations being discussed. Nonetheless, this is a passing

overview in order to shed light on the classification procedure but keep the focus on

the persistent-homology representations. For a thorough understanding of logistic

regression, especially when motivated by Bayesian statistics and a detailed look at

the training process, readers are directed to works such as [89, 90, 91].

Logistic regression estimates the probability of a binary outcome, determining whether

a sample does or does not belong to a specific class, based on some features x. In

this work, the features are encapsulated in the vector representations of persistent

homology.

Suppose there are two classes A and B, a set of p features x =
[
x1 x2 · · · xp

]
,

and a corresponding set of weights w =
[
w1 w2 · · · wp

]
, where the weights are

derived from some training data. The general idea of logistic regression is to fit

a linear model to the training data, dictated by w and then apply a function to

squeeze the output of the model between 0 and 1. The function used to squash the
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Figure 5.1: Logistic Function, with some arbitrary threshold t.

linear model is called the logistic function, and is defined by,

σ(wTx) =
1

1 + e−wTx
(5.1)

Since σ(wTx) has two horizontal asymptotes at y = 0 and y = 1, its value is

bounded in this interval for all wTx, thus the results from the logistic function may

be interpreted as probabilities of belonging to a class. Consequently, if σ(wTx) is less

than some threshold t, x is assigned the predicted label A; otherwise, if σ(wTx) ≥ t,

it is labelled B. Figure 5.1 demonstrates this idea, where any points on the logistic

function below t are predicted to belong to A, and any points above are predicted

to belong to B.

5.1.1 Classification Metrics

To assess how well the classification has performed, four metrics are considered,

called: accuracy, precision, recall, and F1 score. These classification metrics are all

built on top of a confusion matrix, shown in Table 5.1. The confusion matrix shows

all possible classification outcomes, by comparing the actual versus the predicted

classifications. In binary classification, there are four types of classification in the

confusion matrix,
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Table 5.1: Example Confusion matrix.

1. True Negative (TN): Correctly predicted negative cases.

2. False Positive (FP): Incorrectly predicted positive cases.

3. False Negative (FN): Incorrectly predicted negative cases.

4. True Positive (TP): Correctly predicted positive cases.

From the confusion matrix, metrics can be defined that quantify a classifier’s per-

formance [92].

Accuracy is the fraction of correctly-predicted instances. From the confusion ma-

trix, accuracy is determined by,

Accuracy =
TP + TN

TP + TN+ FP + FN
(5.2)

Accuracy is intuitive, assessing overall correctness, but can be misleading,

especially with imbalanced classes like these for the Z24. A high accuracy

could arise by correctly predicting the size-dominant class. The accuracy also

does not give any insight into the types of misclassifications, therefore other

measures are used to complement it.

Precision is the ratio of correctly predicted positive observations to the total pre-

dicted positives, determined by,

Precision =
TP

TP + FP
(5.3)

Precision assesses how well the classifier is predicting the positive class. How-

ever, this does not consider true negatives, so is used in conjunction with
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recall.

Recall is the ratio of correctly-predicted positive observations to all actual positive

occurrences, determined by,

Recall =
TP

TP + FN
(5.4)

In SHM, high recall is essential because a classifier with low recall indicates an

inability to detect damage, potentially leading to severe consequences. How-

ever, there exists a trade-off between precision and recall, making it crucial to

find a balance between them.

F1-score represents the harmonic mean of precision and recall, providing a com-

bined measure of the two, mathematically stated as,

F1 =
2

1

precision
+

1

recall

= 2× precision× recall

precision + recall
=

TP

TP +
FN + FP

2

(5.5)

The F1-score offers a more reliable measure than accuracy, especially in im-

balanced data sets like the Z24.

The confusion matrix is also used for determining an optimal classification threshold,

t. By adjusting the threshold, the optimal value for this analysis is established by,

max
t

(
TP

TP + FN
− FP

FP + TN

)
(5.6)

5.2 Betti Curve

Arguably the simplest vectorisation of persistent homology is the Betti curve. The

first application [87] of the kth-Betti curve counted the number of k dimensional

persistent intervals present at any ε in the filtration1. Over time, there has been

progress in associating a weight function w to each persistent interval, parame-

terised by the interval’s birth and death values [53]. The Betti curve relating to the

homology dimension k is given by,

βk(ε) =
∑

[εbirth, εdeath]∈PHk

w(εbirth, εdeath) · [H(ε− εbirth)−H(ε− εdeath)] (5.7)

1This application essentially has a weight function w(εbirth, εdeath) = 1.
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Figure 5.2: Two Betti curves shown on top of their barcode: one with a
weight function and one without.

where H is the Heaviside step function,

H(ε) =

0, if ε < 0

1, if ε ≥ 0
(5.8)

Betti curves serve as a one-dimensional vector representation of persistent homology,

capturing the persistent homology information across the span of ε. This span is

divided linearly into p segments, with the curve being evaluated at each segment.

The values at each of the p segments then define the p features input into the

logistic regression classifier. By keeping a consistent p value for all sliding windows,

persistent homologies are represented by vectors of uniform length, irrespective of

the number of persistent intervals.

Two example Betti curves are displayed in Figure 5.2, both derived from the same

persistent homology. The first Betti curve, represented by the solid line, counts

the number of persistent intervals at ε. The second, depicted with a dashed line,

incorporates a weight function2 w(εbirth, εdeath) = 10(εdeath − εbirth). The factor of

10 is used for illustrative purposes, ensuring the two Betti curves in Figure 5.2 are

2Providing a greater weight to longer persistence intervals may seem intuitive, but it should be
noted that one work [40] found that medium-length persistences were most descriptive for their
application. Therefore, a monotonically-increasing function might provide suboptimal results in
such cases.
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displayed on a comparable scale.

Incorporating such a weight function ensures a greater influence from the longstand-

ing persistent intervals, which are more likely to represent true topological features

of the manifold, while simultaneously limiting the effects of shorter persistent inter-

vals, likely arising from topological noise. Mitigating effects from topological noise

is essential in this work, given the subsampling into sliding windows.

In this classification procedure, only the β1(ε) Betti curves are considered. Con-

sequently, the Z24 natural frequency sliding windows are classified entirely by the

quantity and size of their 2D holes. Additionally, this study uses the persistent

interval length as the weight function, i.e. w(εbirth, εdeath) = εdeath − εbirth.

5.3 Persistence Image

Persistence images, much like Betti curves, imbue a stronger structure to persis-

tent homology, than when compared to its standard multi-set representation. This

added structure ensures the persistent images are passable as features in a logistic

regression classifier. Persistent images represent the persistent homology in a 2D

plane, allowing for an intuitive pictorial representation. Furthermore, persistence

images are provably stable to small perturbations in the persistent homology [88].

This stability is essential in their application to real-world data, where the presence

of noise is inevitable.

To convert the persistence homology into a persistence image, it is standard practice

to omit the connectedness features, β0, focussing instead on higher-dimensional ho-

mology features. However, in this study, similar to the approach with Betti curves,

only β1 persistent images are considered.

Given a persistence (also known as birth-death) diagram D, each persistent interval

is represented as a point (εbirth, εdeath). To prepare the birth-death diagram for a

persistence image, the linear map T : R2 → R2 is used to convert it into a birth-

persistence format, as described by

D′ = T (D) = {(εbirth, φ) : ∀(εbirth, εdeath) ∈ D} (5.9)

where D′ is the birth-persistence diagram equivalent of D, and the persistence is

denoted φ = εdeath − εbirth. In D′, the x-axis still indicates the length scale of
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Figure 5.3: The development of the persistence image: (a) The birth-
death diagram of H1 for some data. (b) The birth-persistence diagram,
T (H1). (c) The persistence surface with a linear weight function over
the persistence interval length. (d) The persistence image with 10 × 10
resolution sampled from the persistence surface.

homology feature formation, but the y-axis is now its persistence.

Now, let ϕ : R2 → R be a differentiable probability distribution, typically a 2D

Gaussian gp′ . The probability distribution is centred at each point p′ in the birth-

persistence diagram, serving as a smoothing function. This work uses a Gaussian,

which is defined as,

ϕp′(x, y) = gp′(x, y) =
1

2πσ2
exp

{
− 1

2σ2
(x− εbirth)

2 + (y − φ)2
}

(5.10)

where εbirth and φ are the coordinates of p′ [53, 88].

Similarly to the Betti curve, a weight function w modifies the magnitude of each

point according to its birth and death length scales. This weight is applied to each p′,

scaling the probability distribution centred at that point, resulting in a continuous

persistence surface ρ [88],

ρ(x, y) =
∑

p′∈T (D)

w(p′) · ϕp′(x, y) (5.11)

The persistence surface provides a continuous 2D scalar field representation of the

persistent homology. To make the persistence surface suitable for machine learning

applications, it must be discretised. The surface is divided into a grid with m

segments in the x-axis and n in the y-axis, the scalar field is then integrated over
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each grid cell to produce an m×n persistence image I(ρ), mathematically given as,

I(ρ) =

∫∫
m,n

ρ dxdy (5.12)

Figure 5.3 shows each stage in forming a persistent image from a persistence diagram.

Persistence images, though insightful in their 2D form, are transformed into a vector

format for computational applications. The m×n matrices are flattened into a p×1

feature vector which is representative of the image and persistent homology, where

p = m ·n. In machine learning contexts, this vectorised matrix serves as a consistent

feature, given fixed values of m and n. Much like the Betti-curve representation,

this vectorised persistent image structure format provides a greater structure and

consistency than the traditional multi-set form of persistent homology.

In the creation of persistence images from birth-death diagrams, there are three

primary hyperparameters,

Resolution refers to the granularity of the discretised persistence surface. Deter-

mined by the product of the m columns and n rows, giving the number of

features of this representation.

Distribution dictates the type of probability distribution used as a smoothing ker-

nel over the birth-persistence diagram points. Commonly, as in this work, a

Gaussian distribution is chosen. This selection introduces a secondary hyper-

parameter, the bandwidth σ, which governs the spread of the Gaussian. A

smaller σ yields a distribution more focused on the point.

Weight Function assigns a magnitude to each persistence interval, giving varying

emphasis based on εbirth and εdeath.

5.4 Application to the Z24 Bridge

Topological data analysis offers a fresh perspective on classification within machine

learning, with a focus on shape-based classification. In contrast to conventional

classification methods, which usually take a single point as a sample, topological

approaches require a collection of points to determine a shape via their relative

positioning.
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In this application, a sliding window of points examines the Z24 Bridge’s natural

frequencies. Each sliding window serves as the foundation of a sample in this clas-

sification task. To attribute shape to each window, the four natural frequencies are

embedded as points in R4. Then the shape of each sliding window in this embedding

space is quantified via persistent homology, similar to the analysis in Section 4.2.

However, in this case, there is an additional preprocessing step, of extracting the

vectorised form from the persistent homology, which is subsequently integrated into

a machine-learning framework.

Introducing a sliding window of points complicates the labelling process. With the

labelling criteria in Section 4.1, centred around the temperature of each data point,

sliding windows are likely to contain a mixture of labels, making window labelling

nontrivial. Consequently, this classification problem is reduced to a binary one, by

separating instances into normal condition or damage data classes. However, some

overlaps still exist. For instance, windows containing the damage index 3475 will

have both normal condition and damage data. In such cases, a conservative labelling

methodology is applied: if any instance within a window has a damage label, the

whole window is subsequently labelled as damaged. Such a conservative strategy

is essential when concerning safety-critical applications, even if at the expense of

classification precision.

The structured outline of this classification procedure is as follows,

1. Standardise: The Z24 natural frequencies are standardised to ensure simplex

formation is fair along each axis.

2. Window: Segment the data using a sliding window of predetermined and

consistent length wl, creating a wl × 4 array of points.

3. Label Window: Assign a label to each sliding window, determined by:

(a) Normal Condition: If all instances within the window do not belong

to the damage class.

(b) Damage: If any instance in the window is labelled damage, the entire

window is designated as damage.

4. Persistent Homology: Embed the sliding window in R4, and compute its

persistent homology.
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5. Representation: Extract a consistent, structured vectorised representation

from the persistent homology, forming a single sample permissible for machine

learning, with all information based solely on the persistent homology.

6. Form All Samples: Repeat steps 2 to 5, considering the next sliding window

from the Z24 natural frequencies. This iteration continues over the length of

the data set, forming a set of vectorised persistent homology samples, with

corresponding labels.

7. Train-Test Split: Partition the sample set into training and test subsets.

8. Train Classifier: Train the classifier in a supervised manner using the sam-

ples from the training dataset. The outcome is a classifier with the ability to

classify unseen samples of the vector representations.

9. Assess Classifier: Evaluate the classifier using the test samples to gauge the

model’s performance.

The choice of the sliding window size wl is a vital consideration. A smaller wl is

likely to lead to a persistent homology dominated by noise, and lacking sufficient

topological information indicative of normal condition and damage. Conversely,

larger wl provide a better-described topology, at the expense of fewer samples, re-

duced sensitivity to the onset of damage, and an increase in computation time. In

addition, when segmenting the data into windows, reducing overlaps can be advan-

tageous. If windows were formed by sliding down just one position, consecutive

windows would only differ by a single point, meaning their persistent homologies

would be near-identical. Hence, a sliding window step s is introduced to decrease

the overlap between the adjacent windows. In essence, s determines the number of

distinct points between neighbouring sliding windows. The implications of wl and

s are discussed more comprehensively in Section 5.4.3. Taking into account these

factors, wl = 300 and s = 5 were selected for this study, leading to 635 samples

under normal circumstances and 92 samples indicating damage.

This study examines two persistent homology vector representations: the Betti curve

and the persistence image, assessing their capability to distinguish data between nor-

mal and damaged conditions. The results are detailed in Sections 5.4.1 and 5.4.2. To

ensure fairness and consistency, the same hyperparameters were maintained across

both vectorisations, including window size, weight function, and the number of fea-

tures. The number of features for both was set to p = 16, leading to an 8 × 2
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discretisation of the persistence surface. Furthermore, the weight function used for

both representations is w(εbirth, εdeath) = εdeath − εbirth, representing the persistence

of the feature.

As alluded to in Sections 5.2 and 5.3, only the β1 features are considered for sim-

plicity and reduced computational time. Therefore, the vector representations en-

code information related to the number and size of the 2D holes within each win-

dow, making these topological characteristics the sole determinants for classification.

Nonetheless, both representations are readily extensible to include higher-dimension

homology features. Moreover, via the use of sliding-window subsampling, calculating

these advanced features becomes more manageable and efficient.

Maintaining consistent hyperparameters across the two representations ensures no

undue preference for one over the other, permitting an objective comparison of their

effectiveness to classify damage in the Z24 bridge’s natural frequencies. The only

difference is how the two representations encode the persistent homology informa-

tion.

For more robust classification metrics, the procedure was executed 200 times, with

averages subsequently calculated. Furthermore, windows were assigned randomly,

adhering to a 60%–40% training-test split.

5.4.1 Betti Curve

To classify the sliding windows based on their persistent homologies, the Betti curve

vectorisation serves as the initial application. Figures 5.4 (a) and (b) display the

averaged Betti curves for the normal and damage conditions, respectively. Notably,

the averaged Betti curve for the normal condition shows a much greater variance

than the damage condition equivalent. This finding is consistent with expectations,

given that there is no consideration of temperature in this binary classification. The

normal condition spans sliding windows inclusive of freezing, cold, and warm regions,

capturing the full spectrum of natural frequency variations because of temperature.

As a case in point, Figure 5.5 offers additional insights by averaging the Betti curves

within specific areas of interest. Figure 5.5 (a) shows the average Betti curve for

sliding windows including the sustained freezing region. Within this figure, there

is a significant peak at ε = 0.58, a feature also evident within the variance of Fig-

ure 5.4 (a). This like-for-like peak surge suggests that the variance in Figure 5.4(a)
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Figure 5.4: Average Betti curves of the two classes.

results from the manifold shape alterations influenced by temperature.

For the damage condition, the temperature has a muted effect on the natural fre-

quencies because all data points in the sliding windows are sampled from relatively-

high temperatures. Nonetheless, there is still significant variance visible in Fig-

ure 5.4 (b). This variance arises from the gradual transition from the warm-

undamaged-state Betti curve to the purely damaged Betti curve. At the onset

of damage, there are very few damage points in the sliding window, but each suc-

cessive sliding window includes an increasing number of damage instances until the

window is fully comprised of damage data points. This evolution is demonstrated

in Figures 5.5 (b)-(d): Figure 5.5 (b) shows the average warm undamaged curve,

just before damage onset. Figure 5.5 (c) shows a mix of warm and damage data

points, and finally Figure 5.5 (d) is the average of the Betti curves created from

sliding windows fully comprised of damage data points. Over these figures, there

is an evolution from the undamaged to the damaged state. When more damage

points are included in the sliding window, the Betti curve more closely represents

the exclusively damaged case.
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Figure 5.5: Average Betti curves over the large freezing region.
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Table 5.2: Averaged confusion matrix for Betti curve classification.
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The averaged results for the confusion matrix are shown in Table 5.2. Derived from

this confusion matrix, the classifications metrics are: accuracy = 92.4%, precision =

63.3%, recall = 97.3%, F1 score = 76.3%.

For SHM systems, it is informative to understand which regions are being misclas-

sified. Considering the temperature labels as discussed in Section 4.1, these can

help identify regions where classification is failing. The most significant region of

misclassification occurs with false positives, where undamaged windows are being

wrongly predicted as damaged. Out of the average 21.0 misclassifications, 20.3 arise

from sliding windows containing a mix of freezing, cold, and warm data. Including

data over such a broad temperature range will inevitably result in a correspondingly

large natural frequency range within the window. The classifier might be misinter-

preting this large natural frequency variation as the large variation stemming from

the onset of damage.

For false negatives, which are of greater concern for an SHM classifier, all but one

of these false negatives arose from sliding windows consisting of warm and damage

instances over the 200 repetitions. These errors predominately occur at the damage

onset when there are insufficient data points to depict the topological features as-

sociated with damage. This outcome is anticipated given the conservative labelling

strategy, where just one damage instance within the 300-point window assigns it a

damage label. Notably, there was an exceptional case of a window entirely composed

of damage data that was mistakenly labelled as undamaged. However, this rarity

only contributes 0.005 to the overall average.

5.4.2 Persistence Images

Persistence images offer an alternative means to vectorise persistent homology, by

more freely being described in 2D, though they come with complexities, primarily

from the additional hyperparameters of discretisation and probability distribution.

An inappropriate selection of hyperparameters can render many of the features

unhelpful for classification. If σ is too large, the persistent images can merge into

an uninformative continuous image. Conversely, small σ require more features to

capture the finer details in discretisation.

In this work, as detailed in Section 5.3, a 2D Gaussian is selected, with its bandwidth

set to σ = 0.1. For the discretisation, the number of rows and columns was chosen

to match the aspect ratio of the birth-persistence diagrams, ensuring that
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Figure 5.6: Average persistence surfaces over both classes.
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Figure 5.7: Average persistence images for both classes.
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Table 5.3: Confusion matrix for persistence image classification.
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Figure 5.8: Persistence image classification weights.

the persistence images were not biased towards one axis. This approach determined

that the εbirth range is roughly four times greater than the persistence range, resulting

in an 8×2 discretisation; thus, preserving the number of features over the two vector

representations.

Had this method not been employed, a compromise would be needed between ei-

ther skewing the data or increasing the feature count. For comparison, a square

persistence image with the same column resolution, and uniform axis scales would

require an 8×8 discretisation, leading to 64 features, where 48 features (represented

by the top 6 rows) would be largely redundant, offering little to no information for

classification.

The mean persistence surfaces for both classes are shown in Figures 5.6 (a) and (b).

Directly below, their respective standard deviations are depicted in Figures 5.6 (c)

and (d). The corresponding discretisations of these surfaces are provided in Fig-

ure 5.7. From these persistent images, classification was performed, resulting in

the averaged confusion matrix presented in Table 5.3. From this confusion ma-

trix, the classification metrics are as follows: accuracy = 95.2%, precision = 75.3%,

recall = 94.1% and an F1 score = 83.2%.

Similar to the Betti-curve classification, a significant contribution of 10.2 of the

false positives stems from the combination of the freezing, cold and warm regions.

The remaining 1.7 originates from purely-warm sliding windows. Most importantly,

the persistence image results in fewer than half the false positives compared to the

Betti curve. However, this significant improvement in precision does compromise the

recall, illustrating the precision-recall trade-off. An average of 2.2 damage sliding

windows are now misclassified as undamaged. All of these false negatives arise at

the damage onset, where there is a window mixing of warm and damage data points.

When conducting the persistence image classification procedure at a high resolution,

the weights used for classification can be visualised, akin to the persistence surface,
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offering insight into damage-sensitive topological features. Given that the points in a

persistence diagram, the Gaussian distribution, and the weight function are always

positive, the classification weight’s sign indicates which areas of the persistence

surface signify damage. Figure 5.8 shows the weight surface, where negative values

suggest regions of topological features relating to normal conditions, whereas positive

values hint at damage. The magnitude of these values indicates the confidence level

of the region corresponding to a particular class. Thus, a more pronounced yellow

hue in Figure 5.8 signifies areas of topological features with a stronger association

with damage.

5.4.3 Discussion

Both the Betti curve and persistence image provide encouraging outcomes for dam-

age classification based on topological features. As the hyperparameters were consis-

tent for both methods and thresholds were systematically determined, the difference

in classification performance is intrinsic to their respective representation styles.

The key difference between the two vector representations is that Betti curves are

inherently one-dimensional, whereas persistent images are two-dimensional. This

dimensional discrepancy comes with trade-offs. Betti curves offer a more compact

representation, but risk masking features because of the compression of information

into a single dimension. Even with a weight function, a similar rise in a Betti curve

could occur from a highly persistent feature or many localised smaller features. In

contrast, the added spatial dimension in persistent images can differentiate between

these scenarios by shifting the highly persistent feature along the y-axis. However,

the extra dimension does not come for free and requires more features to maintain the

granularity available from the Betti curve. In this application, which is dominated

by minimally persistent features, this shifting in the y-axis is subtle. Nevertheless,

other applications, with more dominant homological features might harbour better

results with persistent images than Betti curves.

In this Z24 study, a typical persistent image often has vast areas of empty informa-

tion, resulting in many nondescript features. However, different regions of the data

tend to activate different areas of the persistent image, which aids the classification

process. Therefore the added dimension offers a more intuitive mapping from fea-

tures to classification than the Betti curves, as shown in Figure 5.8. To highlight

this, the average persistence surfaces for the various regions of interest are shown in

Figure 5.9, and the associated standard deviations are shown in Figure 5.10. The
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Figure 5.9: Average persistence surfaces for supplementary conditions.

(a) Freezing (b) Warm

(c) Warm-Damage (d) Damage

Figure 5.10: Standard deviation of the persistence surfaces for supple-
mentary conditions.

persistence images associated with the freezing region most noticeably make use of

the added dimension, with the effects most clear in Figure 5.10 (a). The persistence

image’s ability to model the freezing topological features into an extra dimension

might account for its superior precision over Betti curves.

There are however some challenges with this application of vector representations,

that cannot go unstated. In order to form a descriptive topology of the sliding

windows, a considerable number of data points are required. For this work, a sliding

window length wl = 300 was used, meaning 300 data points are required for a

single classification sample. Notably, other studies within the SHM literature, which

consider more traditional feature representations, have achieved better results, when

considering only a single data instance [93, 94, 95].

To gauge the effect of sliding window size on the classification metrics, sliding win-

dows of various sizes were considered while maintaining a consistent step size of 5

between each window. Figure 5.11 showcases the outcome of this analysis for the

Betti-curve representation and suggests that distinguishable topological features are
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Figure 5.11: Effect of varying window size over classification measures
for Betti curve, 100 repeats taken at each wl.

not present until wl = 120, where before this point the windows are dominated by

uninformative topological noise. After wl = 120 there is a gradual increase in the

classification metrics. As the topologies within the sliding windows become more

accurately depicted, the Betti curves can better capture the topological nuances

between normal and damaged conditions, leading to enhanced classification.

The enhanced topological descriptive power of larger wl comes at the expense of

damage sensitivity. Specifically, let ndam denote the number of damage points within

a mixed window of length wl. The proportion of damage points in the window

is ndam/wl. Consequently, with a fixed ndam, as wl increases, the proportion of

damage points decreases. As a result, at damage onset, the window’s topological

characteristics lean more toward the warm data points. With a larger wl, this

classification scheme is more sluggish to identify damage at its onset, hence possibly

reducing the classification’s precision.

Arguably, the most significant cause for concern is the significant overlap between

sliding windows in this analysis. Given a step size of 5 and a window length of

300, which this study employs, adjacent sliding windows differ by merely 5 points.

Consequently, adjacent windows’ persistent homologies are likely to resemble each

other. A situation then arises where one sliding window could be included in the

training set while the following window is in the test set, or vice versa. Although

their persistent homologies are not identical, they are likely to bear strong simi-

larities, and consequently, their vector representations are very similar. Therefore,

this substantial 98% overlap between successive windows may be inflating the clas-

sification performance. Increasing the step size between windows might appear to

be a logical solution, however, this quickly decreases the number of samples, re-
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sulting in insufficient data to adequately train the classifier. An alternative solution

might be to apply this classification approach to a more extended monitoring scheme

than the Z24. Nevertheless, this vector representation method for topological-based

classification showcases the potential of topological features in SHM classification.

5.5 Conclusion

This chapter marked an initial attempt at classifying the Z24 Bridge using persistent

homology. This chapter presented a novel method that uses β1 persistent homology

features for detecting damage in sliding windows of data. This approach enabled

classification based entirely on the quantity and size of 2D holes present in the sliding

windows. The results demonstrated a fair classification of the sliding windows based

on their persistent homologies, but this achievement required a considerable number

of data points to establish a discernible topology.

However, more foundationally, a method of converting persistence homology into

a format permissible for machine learning was introduced to the SHM community.

These vector representations are versatile and can be adapted beyond just classifi-

cation, logistic regression, Betti curves, or persistence images. These vector repre-

sentations not only open doors from topological data analysis to machine learning

but also offer insightful pictorial representations of persistent homology. Notably,

both the Betti curves and persistence images exhibited marked differences across the

freezing, warm, and damage regions, indicating these effects reflect uniquely into the

persistent homology.

While the objective of this work was not to revolutionise damage detection within

SHM, the intention was to spark a discussion on the application of topological fea-

tures and their capability to discern between datasets.

Following on from this work, several potential directions for future research have

been identified, including:

1. Consider a multiclass setting by reintroducing the temperature-based classes

in Chapter 4.

2. Implementing a regression-based approach, to predict the proportions of points

from freezing, cold, warm, and damage instances within the sliding window

based on the window’s persistent homology vector representation.
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3. Investigate other persistent homology vector representations, such as complex

polynomials, entropy, landscapes, and silhouettes.

4. Further assess the impacts of wl, step size, number of features, and the inclu-

sion of higher-dimensional homological features via cross-validation.

5. Transitioning from the supervised model to an unsupervised one, aiming to

predict the onset of damage without labels.

6. Rather than including the mixing windows in the training set, exclusively train

the classifier on homogeneously-labelled sliding windows, but then test over

sliding windows with label mixing.

7. Investigate the impact of window size on early damage detection. This ex-

ploration might involve introducing a parameter that denotes the proportion

of damage data points within the sliding window. Subsequently, evaluate

how consistent this proportion is in identifying damage across varying window

lengths.

8. A hybrid classification scheme, that makes use of topological and more tradi-

tional machine learning features. Showing if heightened results can be obtained

from the inclusion of topological features.



Chapter 6

Attractors

Throughout this thesis, topological noise has often been regarded as uninformative

and, to some degree, problematic. However, this perception is not entirely accurate;

as this chapter presents, there exists meaning in the seemingly inconsequential.

This chapter explores deeper into extracting information from topological noise by

using it to calculate the fractal dimension of strange attractors. Doing so reveals

that topological noise carries information that describes the inherent properties of

embedded manifolds. Although topological noise might not be as enlightening as

large-scale persistent features, this approach does convey that valuable information

can be extracted from within. This approach of extracting insights from noisy

regions of data is mirrored in the topological analysis of cointegrated residuals in

Chapters 7 and 8.

Following the fractal-dimension calculations, certain reconstructed attractors de-

rived from time-delay embeddings of data along a single axis, are evaluated using

persistent homology. This process introduces a novel method to identify the most

topologically similar time-delay embeddings for attractors when restoring them to

their original dimensionality. This work serves as a nod to the pioneering use of

time-delay embeddings in work by Takens [78]. In Takens’ work, it was proven that

the topology of a continuous attractor could be perfectly replicated by one of its

axes via time-delay embedding. Unlike Takens’ method, which requires large num-

bers of dimensions and continuous time series, this computational approach handles

discrete data and embeds only into the attractor’s original dimension. In this con-

text, the Wasserstein distance between the persistent homologies of the original

151
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and reconstructed attractors is calculated over various α, determining a delay for a

most-topologically-alike reconstruction.

6.1 Fractal Dimension

(a) 4 (b) 5 (c) 6

Figure 6.1: Different iteration depths of the Hilbert curve.

Fractal dimension is a measure of how much space a set occupies. For an intuitive

grasp of fractal dimension, consider the following: a single point is zero-dimensional,

a line connecting two points is one-dimensional, and the area spanning three points

is two-dimensional, and so forth. However, these whole-number dimensions lack

granularity, especially in edge cases where the dimensionality of curves blurs the

lines of integer dimensions. Now, picture a curve of infinite length made of one-

dimensional elements, yet confined to a limited region. This infinite-length curve

inherently occupies more space than a straight line, but also does not completely

fill this finite region. Hence, it is reasonable to suggest that this curve’s dimension

is somewhere between one and two; curves closer to one occupy less space, and the

opposite is true for curves closer to two. This non-integer measure of dimension

termed the fractal dimension, indicates the efficiency with which a curve fills space.

This concept is demonstrated in Figure 6.1, where three examples of the Hilbert

curve are shown at 4, 5, and 6 iterations. As the iterations of the Hilbert curve

approach infinity, it tends to densely cover the 2D space, such that any small region

of the space will contain a portion of the 1D curve.

The box-counting method is a widely recognised computational method to determine

fractal dimension. This technique exploits the dimensional relationship between

scalability and space occupied at varying scales. To calculate the fractal dimension
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through this approach, consider a space X. The smallest number sets with a diam-

eter ϵ needed to cover X is denoted as N(ϵ). The choice of scale ϵ influences N(ϵ),

while the dimension of X dictates the rate of change of N(ϵ). As the scale is altered,

it is expected that the number of boxes scales with the dimension of the X [96],

N(ϵ) ≃ cϵ−dB (6.1)

for positive constants dB and c. Here, X is said to have a fractal dimension of dB.

To deduce the dimension of X, rearrange the relation in equation (6.1) and take its

limit, yielding,

dB = lim
ϵ→0

log(N(ϵ))

− log(ϵ)
, (6.2)

with the constant term, c, disappearing in the limit [97].

Fractals, such as strange attractors, are intrinsically complex objects that exhibit

self-similarity, often over an infinite scale. However, there is a challenge when dealing

with finite point-data sets, as they can only capture a limited amount of information.

Upon excessive magnification, the distribution of points becomes sparser, leading to

less-precise approximations. In computational reality, when working with finite sets,

self-similarity is only visible over a few scales. This phenomenon is illustrated later

in Figure 6.6, where the self-similarity is clear across two distinct scales, but beyond

that, the distribution of points begins to thin out.

6.1.1 A Persistent Homology Approach

The box-counting method and persistent homology share a commonality in consid-

ering multiple length scales. Consequently, persistent homology offers a method to

compute the fractal dimension of data sampled from a fractal. The roots of this

method lie in the minimal spanning tree (MST) concept [98, 99]. An MST is a

structure that connects all data points with edges such that the combined length of

these edges is minimal. The MST approach was validated as an effective means to

determine the fractal dimension of a set [100]. Subsequent studies have highlighted

the equivalence of the MST method and the use of the zeroth homology group in

calculating fractal dimensions [100, 101, 102, 103]. However, an advantage of per-

sistent homology over the MST method is its ability to generalise to higher-order

homology groups, providing a more abstract formulation of the fractal dimension.

Often when analysing the persistent homology, the smaller intervals are discarded
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as noise, as this means that this specific feature only persists for a short while.

However, in determining the fractal dimension, every persistent interval contains

valuable information. The goal is to deduce the fractal dimension of a sample space

Xn from X, where the number of points n → ∞ and observe how the persistence

interval lengths fluctuate across each homology group. Notably, the shorter intervals

provide a good measure for the localised geometry present in the sample.

To calculate the fractal dimension from the persistent homology, compute the sum

of the persistence interval lengths for a specific homology dimension i, each with an

exponential weighting α > 0, defined as,

Ei
α(Xn) =

∑
(εbirth, εdeath)∈PHi(Xn)

(εdeath − εbirth)
α (6.3)

where Xn represents the space of n points sampled from X, most interestingly, one

that exhibits fractal behaviour. The term PHi(Xn) represents the ith dimension

persistent homology group of Xn. The difference εdeath − εbirth is the length of an

interval from PHi(Xn). The alpha-weighted sum Ei
α(Xn) models the decay rate

of topological noise. Analogous to the box-counting method, this relationship can

determine the fractal dimension [104].

Definition 6.1.1. Let Xn be a bounded subset of a metric space X, a homology

dimension i ∈ N, and a persistent interval weight α > 0. The fractal dimension

deduced via persistent homology is given by,

dimPHα
i
(Xn) =

α

1− β
, (6.4)

where,

β = lim
n→∞

sup
log(E(Ei

α(Xn)))

log(n)
(6.5)

In this context, sup is the supremum, denoting the largest value in the set. The

operator E represents the expected value of a random variable. Finally, Ei
α(Xn) is

the alpha-weighted cumulative sum of persistence intervals. The manifold’s fractal

dimension is calculable if Ei
α(Xn) scales with n

d−α
d [102, 104].

When i = 0, which refers to the calculation over the connectedness homology group,

the persistence intervals are equivalent to the lengths of the edges in the MST. The

MST approach formulates an analogous solution in terms of graph theory. In this
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(a) VR Complex (b) MST

Figure 6.2: Hénon attractor constructed with the two methods of calcu-
lating fractal dimension.

setting, V represents the set of vertices, while E denotes the set of edges linking these

vertices. Two vertices are called connected if a path connects them. A path describes

the continuous linkage of adjacent edges from one vertex to another, allowing for

unimpeded traversal between vertices that lie on a path. When edges form a closed

loop, the structure is called a circuit. A graph without a circuit is called a tree.

The minimal spanning tree connects all vertices whilst ensuring the total edge

lengths are minimal. Thanks to highly-optimised algorithms for MST computation,

it is feasible to achieve efficient outcomes when calculating fractal dimensions [104],

which are mathematically identical to ones from the 0th-dimension homology group.

By examining the edge lengths within an MST, it is possible to estimate the dimen-

sion of the manifold from which these vertices originate. However, the MST corre-

sponds solely to the zeroth homology group. For insights using higher-dimensional

homological features, slower, but more informative persistence algorithms are nec-

essary. Figure 6.2 displays the VR complex at the smallest ε for which β0 = 1,

along with the MST for an attractor. This figure shows that the MST is a sub-

set of the simplicial complex, focusing solely on the edges that first appear as the

ε-neighbourhoods expand.

6.2 Attractors

Attractors often naturally arise in the phase space of many nonlinear dynamical

systems. Attractors represent the state to which a dissipative dynamical system

converges over time, regardless of the initial conditions. If an attractor exhibits a
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fractal structure it is termed strange and can be derived from chaotic nonlinear de-

terministic systems. Being geometric entities in Euclidean space, strange attractors

allow for analyses using a Euclidean metric and, consequently, topological data anal-

ysis. Given the strange attractors’ fractal nature, the fractal dimensions of strange

attractors can be determined via topological approaches.

The three strange attractors examined in this study are frequently encountered

in engineering, with each offering unique insights. The Hénon attractor is two-

dimensional and known for its computational efficiency because of its iterative na-

ture. In contrast, the Lorenz and Rössler attractors are three-dimensional and

require computational solutions of ordinary differential equations.

Dynamical systems that display strange attractors, stemming from chaotic systems,

inherently demonstrate a high sensitivity to initial conditions. Even minuscule

changes can lead to dramatically different outcomes, a phenomenon known as the

butterfly effect. For this reason, the attractors discussed in this section consider

constant parameters. The specific values are the ones most prevalent within the

literature, because of the intriguing properties these values display.

In all the provided examples, the exponential weighting is set to α = 1. However,

this is a hyperparameter in the analysis, where varying α can give better results for

a fewer number of samples [104]. Additionally, only the zeroth dimension persistent

homology features are used, to make use of the MST approach. The code for these

calculations originates from Schweinhart’s research [104, 105, 106].

6.2.1 Lorenz Attractor

The Lorenz attractor was first discovered by Lorenz when studying non-periodic

turbulent flows [107], and is defined by the differential equations,
ẋ = −σ

ẏ = ρu− v − uw

ż = −βw + uv

(6.6)

where the parameters used in this work are ρ = 28, σ = 10, and β = 8
3
. This

specific configuration for the Lorenz attractor shows two attracting points, each

shown as a hole in the attractor. The presence of these holes intrinsically suggests

an interesting topology, therefore further prompting some traditional topological
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(a) Dense sampling (b) log-log plot

Figure 6.3: Dense Lorenz attractor, sed for embedding dimension calcu-
lations

.

analysis. Furthermore, the Lorenz attractor is strange, displaying a Cantor-set-like

behaviour over its cross sections [108].

To determine the fractal dimension of the Lorenz attractor, a large number of points

must be sampled from the attractor, resulting in a dense embedding that reveals

finer details, including the Cantor-like fractal cross sections. For this dense embed-

ding, 10,000 points were used. The equivalence between the MST and β0 persistent

homology allows for the use of a significantly larger number of points in calculating

the fractal dimension [104, 105, 106].

Since the Lorenz attractor is the first practical application of calculating the fractal

dimension via persistent homology in this work, a full walkthrough is undertaken

for clarity.

1. Obtain a dense point embedding of the attractor, in this case with 10000

points.

2. Randomly subsample this densely sampled attractor at logarithmically-spaced

steps, where the number of points n in each subsample corresponds to the x-

axis of Figure 6.3 (b).

3. For each subsample, compute the alpha-weighted sum Ei
α(Xn). The alpha-

weighted sum then corresponds to the y-axis of Figure 6.3 (b).
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(a) Sparse sampling (b) Persistence
homology

Figure 6.4: Sparse Lorenz attractor, used for persistence homology cal-
culations.

4. Take logarithms of the values obtained in (2) and (3), giving a log-log plot of

log(n) vs log(Ei
α(Xn)). When plotted in this manner, the data points can be

adequately modelled by a linear approximation of the form y = mx+ c.

5. In this log-log plot, the gradient m of the straight line is equivalent to β in

equation (6.5).

6. Using this information, the persistent homology fractal dimension is estimated

via equation (6.4).

7. Repeat this process for different random subsamples to obtain statistics re-

garding the fractal dimension estimation.

The fractal dimension of the Lorenz attractor for this specific parameter set, as

determined by an alternative method, was 2.063 [108]. Employing the topological

approach on the dense sampling of the Lorenz attractor gave an approximation

to the fractal dimension of 2.0826 ± 0.03603. This dimension is derived from the

gradient of the log-log plot comparing the scaling behaviour of the MST edge-length

sum with the number of points sampled.

To capture the global topology of the Lorenz attractor using a limited number of

points suitable for persistent homology calculations, a sparser Lorenz attractor is

sampled with 1000 points, as shown in Figure 6.4. With the point count fixed at

1000, samples were obtained over the time interval t = [0, 2500] s, resulting in large

time gaps between samples. This wide gap ensures a uniform and distributed rep-
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resentation over the long-scale dynamics of the attractor. In essence, this approach

models the attractor’s overall form with fewer points, focussing on capturing its

overarching shape. This sparse form over the long-lasting dynamics of the attractor

is ideal for calculating the global topology of the attractor.

The persistence diagram of the sparse Lorenz attractor is displayed in Figure 6.4 (b).

The red points, denoting the β0 persistence, show no large differences, implying that

the Lorenz attractor comprises a single connected component. This finding aligns

with expectations for a structure emerging from a continuous-time sampling process.

Regarding the first homology group, the diagram shows a concentration of topo-

logical noise around y = x. Nevertheless, two distinct features stand out, with the

coordinates (1.97, 9.17) and (2.59, 7.29). These two persistent β1 features represent

the holes present at the two attracting points within the manifold, and are evident

in Figure 6.4 (a).

6.2.2 Hénon Attractor

(a) Dense sampling (b) log-log plot

Figure 6.5: Dense Hénon attractor, used for embedding dimension cal-
culations.

The Hénon attractor, a two-dimensional quadratic map with a constant Jacobian,

was originally introduced as a simplified discrete representation of the Lorenz system.

Calculated via iteration rather than solving ODEs, the Hénon attractor computa-

tions are fast compared to other attractors. Consequently, this attractor has become
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Figure 6.6: Points from the Hénon attractor sampled at three dis-
tinct scales, revealing the Cantor cross-section. (a) x ∈ [0.50, 0.75],
y ∈ [0.15, 0.21], (b) x ∈ [0.620, 0.640], y ∈ [0.185, 0.191], (c) x ∈
[0.6300, 0.6325], y ∈ [0.1889, 0.1895].

a common object for study in dynamical systems when wanting to generate large

numbers of points [109]. The Hénon attractor used in this work is defined by,

xn+1 = 1− ax2
n + yn (6.7)

yn+1 = bxn (6.8)

In this case, the well-studied parameters a = 1.4, b = 0.3, and an initial point of

(0.1, 0.3) were chosen, which result in a convergent solution.

After sampling 10000 points from the Hénon attractor, the fractal dimension was

determined using the persistent homology approach, yielding a value of 1.2558 ±
0.04476, with the log-log plot present in Figure 6.5 (b). For comparison, a previously-

calculated value using a different fractal dimension calculation procedure, deter-

mined the attractor’s dimension to be 1.26 [110].

To visually uncover the fractal structure present within strange attractors, the Hénon

attractor’s rapid computation allows it to generate a sufficient number of points, re-

vealing its multiscale fractal features [109]. To demonstrate the Cantor-like traversal

structure, 10,000,000 samples were taken from the attractor. Figure 6.6 shows the

self-similarity over progressive zooms into sections of the attractor, maintaining a

consistent structure across scales. The dimensions of (a), (b), and (c) in Figure 6.6

are 1.233, 1.245, and 1.526 respectively; indicating that, as the data become more

sparse, this method of estimating fractal dimension becomes less precise at reduced

length scales.
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6.2.3 Rössler Attractor

(a) Dense

sampling

(b) log-log plot

Figure 6.7: Rössler attractor with 10000 points, used to calculate the
embedding dimension.

The final strange attractor explored in this work is the Rössler attractor, which was

first formulated in [111, 112]. The Rössler attractor, much like the Lorenz attractor,

is present in the phase space of the solutions of the system of differential equations,
ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c)

(6.9)

For this study, the system parameters were set at a = 0.2, b = 0.2, c = 5.7,

starting from the initial point p0 = (0, 0, 0). With 10000 points sampled from the

Rössler attractor, the dimension estimate was found to be 2.025± 0.0246, with the

log-log plot shown in Figure 6.7 (b). This persistent homology fractal dimension

aligns closely with a previously-determined fractal dimension of 2.0160 with these

parameters [113].

In order to study the persistent homology, of the Rössler attractor, a sparse em-

bedding of 1000 samples is used. From the persistence diagram in Figure 6.8 (a),

it can be determined that the Rössler attractor forms a connected manifold, as all

the β0 features show minimal variation. The small range in the β0 features arises
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(a) Rössler at-
tractor

(b) Persistence
homology

Figure 6.8: Rössler attractor, with 1000 points, used to analyse the
topology.

from points along the attractor’s ‘flick’. Given the brief time interval during which

the ‘flick’ occurs, a constant time-step between points results in a sparser sampling

in this discrete solution of the differential equations; these features would not be

present in a continuous solution.

The characteristic ‘flick’ in the Rössler attractor is essentially a loop, giving rise to

interesting H1 information, shown in Figure 6.8. In this case, the topological noise

is squashed relatively close to y = x, being overshadowed by the very persistent β1

feature which represents the attractor’s ‘flick’. With coordinates (4.7, 10.4) and a

persistence length of 5.7, this feature is unmistakably a prominent feature of the

attractor.

6.3 Best Topological Reconstruction

This study compares the topologies of reconstructed phase spaces – derived from a

1D time series of the attractor – with the original point cloud. Persistent homology

is used to evaluate the best embedding delay, resulting in the most topologically-

similar reconstruction via time-delay embedding. The goal is to achieve a persistent

homology from the reconstructed attractor that gives the smallest Wasserstein dis-

tance, hence the most topologically similar.

Takens’ theorem shows that under certain circumstances, reconstructed attractors
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Figure 6.9: Individual Rössler axes as time series.

from the time-delay embedding can be homeomorphic to the original attractor [78].

Skraba et al [80], then showed that persistent homology could be used with the time-

delay embedding to yield useful topological results. In usual applications, for the

reconstructed attractor to be topologically identical to the original, Takens proved

that the embedding dimension needs to be sufficiently large. More recent empirical

studies have shown that the embedding dimension should typically be at least double

that of the original attractor [114].

For this work, the Rössler attractor is reconstructed from its y-coordinates. The

individual series relating to each axis are plotted against time in Figure 6.9. The

x and y time series share notable similarities, with their main distinction being a

constant offset. Both the x and y series show a constant increase until the sudden

rise in the z-axis, which produces the ‘flick’ in the phase space, at this point the

magnitudes of x and y coordinates are reduced, illustrating the attracting nature of

this dynamic. This process occurs periodically in both the x and y series. However,

when isolating the z-time series, it becomes clear that it does not contain enough

information to reconstruct the original attractor, as shown in Figure 6.9.

Reconstructing attractors requires careful consideration of the delay. If the delay is

too small, the embedded outcome will closely resemble a straight line. For exam-

ple, when α = 0, the time-delay embedding would plot the data points along the

straight-diagonal line as x = y = z. Therefore, relatively-small α values will show

topologies minimally evolved from a straight line. Hence, by increasing the delay,

the prominence of the homological features in the reconstruction is also increased.

On the other hand, using too-large α values will give incoherent results, as the lag

is not considered local. Using persistence homology and the Wasserstein distance to

topologically measure the reconstructed attractors identifies the most appropriate

α, giving the most topological likeness to the original attractor.

Computing multiple reconstructions over a range of delays, along with their corre-
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Figure 6.10: The Wasserstein distance between the complete Rössler
attractor and its time-delay embedding reconstruction over a range of
delays, α.

sponding persistent homologies, offers a method to identify the optimal topological

reconstruction. The reconstruction that gives the smallest Wasserstein distance to

the original attractor is by definition the most topologically alike. Figure 6.10 shows

the Wasserstein distances between the original Rössler attractor and reconstructed

attractors as α varies. The delay that yields the smallest Wasserstein distance in-

dicates that the topologies of the original and the reconstructed attractors closely

align. Consequently, such an α is deemed optimal in this case.

Figure 6.10 shows a clear periodic pattern emerging between the Wasserstein dis-

tances and α, suggesting that the time-delay embedding topologies periodically align

with the original attractor. Additionally, as the delay increases, a linear increase

in the Wasserstein distance is also evident. This linear-increasing trend arises as a

larger α reduces the locality of the lag, introducing artefacts in the reconstruction.

(a) α = 1 (b) α = 57

Figure 6.11: Examples of bad Rössler attractor reconstructions.
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(a) α = 20 (b) Persistence
homology

Figure 6.12: The optimally reconstructed Rössler attractor, based on
the Wasserstein distance.

The topology of the reconstructed attractor periodically aligns with the original, as

shown by the troughs in Figure 6.10. However, subsequent troughs after the first

indicate a phase offset by an integer number of periods.

In actuality, the smallest Wasserstein distance in Figure 6.10 is when α = 1. This

low Wasserstein distance stems from the lack of homological features in the recon-

struction, as the topology is too similar to the diagonal line, and the Wasserstein

distance is dominated by the cost of matching the persistent homologies to the di-

agonal in the persistence diagram. The plot of the reconstructed phase space at

α = 1 is shown in Figure 6.11 (a). Therefore, only α values beyond the first peak

at α = 13 are considered, to ensure the formation of a nontrivial topology. On

the other hand, using a too-large value for the delay gives a deformed manifold as

the delayed coordinates are no longer local, revealing artefacts in the embedding as

shown in Figure 6.11 (b).

From this reasoning, the best topological reconstruction using persistent homology

and the Wasserstein distance corresponds to α = 19, evident from the lowest point in

the first trough. When using topological data analysis, there is an inherent metric

flavour because of the Vietoris-Rips complex formation. Consequently, the time-

delay embedding into 3D with α = 19 shares a geometric resemblance to the original

attractor as shown in Figure 6.12 (a). Regarding geometry, a reconstruction from

the y-coordinates cannot capture a ‘flick’ as pronounced as the original attractor, as
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the maximum value in the y-axis is 7.78, whereas the maximum value in the z-axis

is 21.80. Consequently, the persistent homology feature associated with the flick will

always be less defined than in the original attractor, as illustrated in Figure 6.12 (b).

6.4 Conclusion

The work in this chapter, though perhaps less impactful or novel than others, plays

a vital role in framing and constructing the overarching narrative of the thesis.

Firstly, this chapter presented an established method, demonstrating the utility

of persistent homology in determining an attractor’s fractal dimension. By this

procedure, the chapter shows that even the small-scale persistent homology features,

often labelled as topological noise, contain valuable information. Such insights set

the stage for later sections of the thesis, where analyses focus on the persistent

homology of time series associated with Gaussian white noise, inherently producing

significant amounts of topological noise in their persistent homologies.

Secondly, but most importantly, this chapter emphasises the power of time-delay

embeddings and Takens’ theorem for creating reconstructed spaces that embody

the dynamics of the original system. A new persistent-homology-oriented method

for determining the delay that best represents an attractor for reconstruction was

presented. Central to the overarching theme of this thesis, the reconstructed topol-

ogy via time-delay embedding is reminiscent of the original, even when derived from

a single 1D time series. This application of time-delay embeddings for space re-

constructions from a 1D time series is a recurrent theme in later sections of this

thesis.



Chapter 7

Assessing Cointegration Using

TDA

This chapter further explores the Z24 bridge dataset, focussing on the application of

cointegration to its natural frequencies. Cointegration is used to eliminate correlated

variations between nonstationary time series, yielding a stationary residual. At

its core, in an SHM context, cointegration aims to account for nonstationarities

originating from EOVs without factoring in damage effects. The idea is to devise a

scheme that addresses these EOV nonstationarities, resulting in a stationary residual

under such conditions. Since this cointegration scheme is only trained to remove

EOV nonstationarities, any anomaly – like damage – that deviates from this setup

would make the expected stationary residual nonstationary, implying novelty within

the data.

For datasets where nonstationary time series are linearly correlated, this problem is

well-defined, thanks in part to ideas adapted from the economics literature. How-

ever, a notable challenge arises in the context of the Z24: while ω1, ω3 and ω4 show

a linear relationship with each other, ω2 exhibits nonlinear behaviour; as shown

in Figure 7.1. Consequently, not all natural frequencies correlate linearly, making

traditional linear cointegration unsuitable.

The Z24 introduces the need for a nonlinear cointegration approach. To do so, one

can detrend via a Gaussian Process’s (GP) mean function, where the GP has been

trained on the Z24’s data, removing the baseline nonstationarity [115]. But even

167
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Figure 7.1: Correlations of all the Z24 natural frequencies, showing pro-
nounced nonlinearity for ω2

.

here, challenges arise because of the various behaviours exhibited in different regions

over the year timeframe that the data were collected. The nonlinear relation occurs

in the freezing region, if GPs are not tailored to this region, they inadequately model

the nonlinear temperature effects, causing them to break through into the residual

series.

The residual series can be embedded into higher dimensions using a time-delay

embedding, and since residual series are assumed to be sampled from a white noise

process, their n-dimensional embeddings are likewise expected to be n-dimensional

Gaussian clusters. The time-delay embedding emphasises the breakthrough features

in the residual series after applying nonlinear cointegration, as shapes in the higher-

dimensional embedding. These shapes can then be quantitatively described using

TDA. Consequently, if a particular feature or anomaly emerges in the residual

series, it manifests as a specific shape in the embedding space. TDA can then be
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used to assess which shapes are present in the embedded residual, assessing the

efficacy of the cointegration. In a nutshell, this process acts as a method to quantify

and discern between features that remain in the residual after using a cointegration

scheme.

Before getting into the topological data analysis, a quick introduction to cointegra-

tion theory, both linear and nonlinear, is supplied. The inability of linear cointegra-

tion to handle problems such as the Z24 is then highlighted. Thereafter, moving on

to topological-based reasoning when applied to the embedded residual series from

cointegration.

7.1 Primer on Linear Cointegration

This section provides a brief overview of the linear cointegration procedure and

its key aspects. Cointegration seeks to remove latent trends present in multiple

nonstationary time series by considering their weighted sum. In SHM, cointegration

is used to mitigate benign effects in data arising from EOVs, such as temperature

and humidity, that may alter damage-sensitive variables.

Over the past decade, cointegration has been applied in SHM to remove the effects

of EOVs shared over multiple similar time series, where the first application was in

removing EOVs from the DAMASCOS data set [116], proving its use in novelty de-

tection. For greater detail on cointegration theory, readers are redirected to further

references [117, 118, 119].

In this research, the stationarity of time series is assessed using the Augmented

Dickey-Fuller (ADF) test. If the time series exhibit the same degree of nonsta-

tionarity via the ADF test, they are then passed into the Johansen procedure. The

Johansen procedure outputs the cointegrating vectors, which encode the coefficients

for the linear combination of the nonstationary time series, resulting in the best

approximation of a stationary residual.

In search of brevity, some of the more foundational time-series analysis techniques

are omitted in the main matter. For ideas regarding stationarity, differencing, and

Autoregressive Moving Average (ARMA) models, clarification is presented in Ap-

pendix E.
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7.1.1 Order of Integration

Traditional cointegration requires that all nonstationary variables under analysis be

nonstationary to the same degree; that is, they are cointegrated. This characteristic

is assessed by ensuring the order of integration for all the nonstationary time series

is consistent. The order of integration is determined by the number of differences

required to transform a time series from nonstationary to stationary. For instance,

if four differences are required to reduce the time series to stationary, it is integrated

of order four, denoted y ∼ I(4). The order of integration here mirrors that of the

iterated integrals in Chapter 2, where the order of integration of a time series can

be visualised as a number of integrals on a stationary time series.

Time series are said to be cointegrated when they share the same order of integration.

For a collection of time series with this trait, there exists at least one linear combi-

nation that yields a stationary series, known as the residual series. The combination

of time series that results in a stationary time series is encoded in the cointegrating

vectors. For a matrix of nonstationary time series Y (t), these are cointegrated if,

ϵ(t) = βTY (t) (7.1)

where β is the matrix of cointegrating vectors and ϵ(t) are the stationary residual

time series.

7.1.2 Augmented Dickey-Fuller Test

The first step in cointegration is ensuring that all time series are integrated to

the same order. In doing so, the time series must be tested for stationarity after

each differencing. If a time series is deemed statistically stationary, the number of

differences required to reach this state is its order of integration. The Augmented

Dickey-Fuller test [118, 120] is one such test statistic.

To perform the ADF test, time series are modelled with error-correction models,

using a least-squares approach, shown below [116],

∇yi = ρyi−1 +
∑

bj∇yi−j + ϵi (7.2)

where ∇ is the difference operator, and ϵi is the time-series residual, assumed to be

sampled from a white-noise process. After differencing a nonstationary time series,

the ADF test is employed to confirm stationarity. This test revolves around the
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values of ρ in the model depicted in equation (7.2), forming a test statistic,

tp =
ρ̂

σρ

(7.3)

where ρ̂ is the least squares estimate of ρ, and σρ being the variance of the estimate.

The ratio of ρ̂ and σp give the test statistic tp, which is compared against reference

values [118, 120].

The ADF test essentially checks for the proximity of ρ to 0. If ρ = 0, the time

series has a unit root and is inherently nonstationary [116]. Furthermore, if the test

statistic determines that ρ is statistically close enough to 0, the null hypothesis is

rejected, suggesting that the time series is nonstationary. This procedure is repeated

until the null hypothesis is accepted. The number of differences required for the time

series to become stationary is its order of integration.

7.1.3 Johansen Procedure

In the context of SHM, there is an emphasis on determining the cointegrating vec-

tors [121]. These vectors are derived via the Johansen procedure, and encode the

coefficients of the sum to determine the residuals; which are subsequently analysed

with TDA in this study. The Johansen procedure provides a method of determining

multiple cointegrating vectors form nonstationary time series which are cointegrated

with yi ∼ I(1) [122]. Essentially, the Johansen procedure is an eigenvalue problem,

with the most stationary residual linked to the cointegrating vector associated with

the largest eigenvalue.

The set of input time series is modelled by a vector auto-regressive (VAR) model of

the form [123],

Yt = µt + Φ1Yt−1 + · · ·+ ΦpYt−p + ϵt

= µt + ϵt +

p∑
i=1

ΦiYt−i (7.4)

where Yt is an m-dimensional vector representing the m input time series, and Φi

are m×m coefficient matrices for each lag i; µt is an m-dimensional constant vector,

and ϵt is an m-dimensional vector Gaussian noise series, ϵt ∼ N (0,Ω), representing

the errors of fitting the VAR to data. The quality of the VAR model is assessed by

considering the Akaike information criterion [124]. From this VAR, a corresponding
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vector error correction model (VECM) can be formed by making the substitutions,

such that,

Yt−i = ∇Yt−i + Yt−i−1, ∀i ∈ 0, 1, . . . , p (7.5)

and then further rearranging into,

∇Yt = µt + ϵt +ΠYt−1 +

p−1∑
i=1

Ψi∇Yt−i (7.6)

where Π = Φ1 + · · · + Φp − I is the adjustment regarding long-run information.

On the other hand, the local information is captured by Ψj = −(Φj+1 + · · · + Φp).

Notably, the matrix Π is of significant importance as it holds information related to

the cointegrating vectors.

Π = αβT (7.7)

Importantly, α is the (m × r) adjustment matrix. However, of greater significance

is β, which is an (m× r) matrix of cointegrating vectors, where r is the rank of the

matrix Π, and is also the number of attainable cointegrating vectors.

To determine the optimal cointegrating vectors, which yield the most stationary

residuals, a log-likelihood regression scheme is implemented. The aim is to then de-

termine the parameters which maximise the log-likelihood relation, consequently, the

most stationary residuals are obtained [121]. The details of this process are omitted

for brevity; however, readers can refer to [121, 122, 123] for a more comprehensive

understanding. Fundamentally, the likelihood-optimisation process simplifies down

to solving an eigenvalue problem of the form,

|ΛS11 − S10S
−1
00 S01| = 0 (7.8)

where S01 is the covariance matrix between ∆Yt and Yt−1, S11 is the covariance

matrix of Yt−1, and Λ is the diagonal matrix of eigenvalues, λi. The matrix of

cointegrating vectors β, is composed of the eigenvectors from equation (7.8), such

that,

β =
[
β1 β2 · · · βr

]
(7.9)

where each column of the matrix represents a cointegrating vector. It is known

that β1, which is associated with the largest eigenvector, gives the most stationary
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residual [123]. In this thesis, all the residual series are analysed, which are obtained

by projecting the m input nonstationary time series with β,

ϵ = Yt · β (7.10)

Herein, the residual ϵ forms the basis of capturing all the information that has

‘slipped through’ when performing cointegration. If information finds its way into

ϵ, it highlights the limitations of cointegration in filtering out these features. Such

information seeping through into the residual is then analysed using TDA.

7.2 Nonlinear Cointegration

For the Z24 data, previous research [121] has shown that the four natural frequencies

are all nonstationary, and all exhibit stationarity after one difference with 95% con-

fidence. This means that the Z24 natural frequencies are suitable for the Johansen

procedure. However, the natural frequencies are not linearly correlated, as shown

in Figure 7.1. As a result, a linear sum cannot remove their nonlinear relationship.

Consequently, an alternative cointegration approach is necessary in such cases – one

capable of nonlinear relations between nonstationary time series; as observed with

the Z24.

While numerous nonlinear cointegration schemes have been suggested in the liter-

ature [115, 125], this study focusses solely on detrending with Gaussian Process

(GP) regressions [115]. In this application, GPs are used to estimate the cointegrat-

ing function, which captures details regarding the perturbations in the system from

EOVs.

7.2.1 Gaussian Processes

In this work, a succinct introduction to Gaussian Processes (GPs) is provided, as

they serve as the method of encapsulating the cointegrating functions. However, the

primary interest in this work lies with analysing the residuals, rather than digging

deeply into this well-established methodology [115, 125, 126].

GPs are employed as a Bayesian curve-fitting technique. The process begins by

establishing an initial curve or function, termed a prior. This prior is then updated

based on some training data introduced into the GP regression framework [89].

Unlike curve-fitting techniques which produce deterministic solutions, GPs offer un-
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certainty bounds.

Conceptually, GP regression can be viewed as generalisations of Gaussian distribu-

tions, but applied to functions. Just as a Gaussian distribution is characterised by

its mean, µ, and variance, σ2, a GP regression is characterised by a mean func-

tion, µ(x), and a covariance (or kernel) function, k(x, x′). Here, the mean function,

µ(x), offers the best prediction for an input x. Meanwhile, the kernel, k(x, x′),

quantifies the uncertainty or correlation between two points, x and x′, in the input

domain [127].

Whilst in previous work [121], there was a greater emphasis on the Bayesian aspect of

cointegration, by propagating confidence bounds from the covariance function; this

work is primarily concerned with the mean function from GPRs, and its inability to

remove all EOV trends from data.

7.2.2 Detrending with GPs

Within this work, GPs are employed to estimate a nonlinear cointegrating function,

f(xt), which models the nonstationary behaviour of a time series yt regarding EOVs,

such that,

yt = f(xt) + ϵt (7.11)

where ϵt is the residual, capturing any behaviour not described by the cointegrating

function.

In the case of the Z24, ω2 is nonlinear relative to the other natural frequencies.

Hence, a GP is used to model the nonlinear relationship of ω2. This GP is trained on

the linearly correlated natural frequencies: ω1, ω3, and ω4. Where this relationship

is denoted,

ω∗
2 | ω1, ω3, ω4 ∼ GP(µω2 , kω2) (7.12)

where ω∗
2 is the GP’s prediction of ω2. The mean function µω2 , gives the best approx-

imation to ω2 given the other natural frequencies, thereby acting as the nonlinear

cointegrating function. Now, incorporating these ideas into equation (7.11), the

residual series is given by,

ϵt = ω2 − µω2 (7.13)

Where the mean function removes nonstationary effects from EOVs in the nonlinear

ω2, resulting in a detrended stationary residual series.
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A framework for conducting a GP approach to nonlinear cointegration is then for-

malised via a series of steps, as outlined in [121].

Selection of Relevant Variables: Much like linear cointegration, an appropriate

set of monitored variables must be selected. Ideally, these variables should

share the same latent influence and be of a similar type, e.g. a set of natural

frequencies or a set of cable tensions. Subsequently, the ADF test is applied

to these time series, ensuring they have consistent integration order.

Training-Test Split: The time series are partitioned into training and test data

sets. The training set is used to train the GPs, whereas the test set is for

SHM purposes. As cointegration aims to remove nonstationary effects, the

training set must contain no damage-labelled instances. The goal of nonlinear

cointegration is to detrend every attribute apart from damage.

Residual Calculation: The GP is trained using the damage-free training data.

The mean function from the resulting GP is subtracted from the test set,

the difference being the residual. Subsequently, the ADF test is applied to

the residual series to examine if the integration order has reduced. If the

integration order has decreased, the common trends have been purged from

the residual series.

Specific features in the data, such as the region of sustained freezing, need to

be adequately represented within the training set. If not, the GP’s mean func-

tion, which determines the cointegrating function, might fall short when describing

these nuances. Consequently, an inadequate representation of the EOVs in extreme

cases may lead to these features inadvertently remaining in the residual series post-

cointegration.

To accentuate the bleed-through features, the residual series undergoes time-delay

embedding, attributing the time series with nontrivial topology. The persistent

homology is then used to quantify the shapes formed by the breakthrough features

in the embedded manifolds.

7.3 Validity of Cointegration in Engineering

When considering the use of cointegration, particularly in the nonlinear setting, the

question arises that nonlinear observables may share some states that are cointe-
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grated, while others might not. Without complex nonlinear system identification,

only the monitored variables may be tested against. For this work, ensuring that

the monitored data are cointegrated is sufficient. This problem is best discussed in

previous research [128] where the authors argue that if the monitored variables are

adequately represented by their error corrections models, regardless of philosophi-

cal quandaries regarding the data being sampled from a true unit root process, the

shared nonstationarities are eliminated over the cointegration process.

Another argument arrived at in the paper [128] is one that with a sufficiently long

observation window, the observations will tend towards a stationary process, as

the yearly cyclic trends will centre around a mean value. However, to understand

the structural dynamics on shorter time scales, the use of nonstationary theory is

required. Hence, cointegration and nonlinear cointegration are required to detrend

nonstationary time series. This requirement is for the application of a swift-acting

novelty detector for infrastructure, rather than relying on multiple cycles (years) of

data.

7.4 Natural Frequency Time-Delay Embeddings

Before embedding the residuals, it is useful to first understand the shape of the

unprocessed natural frequencies after time-delay embedding. Understanding the

form of the unprocessed embeddings facilitates a better understanding of which

information permeates into the residual series.

While both the raw and residual time series are depicted as 3D manifolds for visual

clarity, this is not mandatory. Using higher dimensions could offer more freedom in

representing the embedded manifolds. Additionally, a delay of α = 75 is consistently

used for all embeddings. Keeping a consistent α across all embeddings is key, as

varying α would accentuate different features. This particular value was selected as

it effectively provides pronounced features across all embeddings, thereby enhancing

topological features for analysis with persistent homology.

The time-delay embeddings of the Z24 natural frequencies, depicted in Figure 7.2,

are coloured based on the class of the unlagged state1. As explored in Chapter 6, the

time-delay embedding causes a local shift in the data. Since this shift is a localised

change and temperature variations are typically gradual over seasons, using the label

1The colouring scheme is the same as in Chapter 4, where light blue denotes freezing, dark blue
represents cold, red indicates warm, and black signifies damage.
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(a) ω1 (b) ω2

(c) ω3 (d) ω4

Figure 7.2: 3D time-delay embeddings for each natural frequency at
α = 75.

of the unlagged state to represent a point offers a fairly accurate class representation.

Although not every delayed axis may portray the same class, the delay value of

α = 75 is relatively small considering the dataset’s size of 3792 data points. As a

result, even if the colour representation is not exact across every axis, it generally

provides a near-accurate depiction of the class.

With this in mind, it is evident that certain topological features within the embed-

ding manifolds are influenced by the conditions under which the data were sampled.

There is a pronounced dependence of the topological features on the freezing data.

For the freezing instance, the linearly-related natural frequencies, ω1, ω3, and ω4,



Assessing Cointegration 178

(a) ω1 (b) ω2

(c) ω3 (d) ω4

Figure 7.3: Persistent homologies of each natural frequency, at a delay
α = 75, all in 3D.

exhibit cavities2, whereas a loop is formed in the ω2 time-delay embedding at this

α. The freezing data present the most pronounced topological feature within the

embedding. The data points linked to the warm condition give a trivial topology in

the embedding; a line. Meanwhile, the cold data serve as a topological-transitional

phase, leading from the uninformative line into the topologically-interesting features.

These topological features shown in Figure 7.2 are more quantitatively expressed in

their persistence diagrams in Figure 7.3. From these diagrams, the distinction of ω2

from the others is clear, being primarily characterised by a single β1 feature that

persists over the interval [0.76, 2.45]. This feature is significantly more prominent

2Although cavities are present, the β2 features cannot be determined because of the dataset
sizes. Therefore, all Wasserstein distances will only account for up to β1. Whilst not as informative
as β2, the persistence of β1 is different for ω2 when compared to the others.
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than those in the other time-delay embeddings. The topological distinction of ω2 in

the freezing regions suggests that it behaves differently from the others under this

condition, a distinction now quantitatively captured in the persistence diagram. On

the other hand, the linearly-correlated natural frequencies show many β1 features,

though they do not persist as extensively. These features arise from holes forming

over cavities’ surfaces.

7.5 Results

The natural frequencies of the Z24 are not all linearly related, as illustrated in

Figure 7.1. Consequently, a nonlinear cointegration scheme is necessary for these

time series. Although the Z24 natural frequencies do not satisfy this criterion for

linear cointegration, it remains possible to calculate the residuals via the Johansen

procedure. Yet, one should not anticipate optimal outcomes; as the age-old maxim

cautions, “garbage in – garbage out”. The linear case study serves to demonstrate

the emergence of topological features breaking through into the cointegrated-residual

series embeddings and also acts as a benchmark for the nonlinear cointegration

scheme.

In the context of nonlinear cointegration, this is only performed on ω2 because

of its challenging nature. Two different GPs are trained to model ω2: the first

without training data over the sustained freezing region, while the second includes

it. This approach aims to demonstrate, via topological reasoning, the importance

of appropriate training data selection.
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7.5.1 Linear Cointegration

Figure 7.4: The linear residual series calculated from the first four nat-
ural frequencies.

The motivation behind this case stems from the assumption that the residual series

are derived from Gaussian white noise. Consequently, when constructing time-

delay embeddings for the residuals, a Gaussian cluster is expected. In essence,

the expectation is that cointegration will destroy the topology of the manifolds.

However, when complications arise, as with the Z24 natural frequencies, the residual

series act as a safety net, catching any information that the cointegrating vector fails

to remove. When examining the time-delay embedding, any information caught by

the residual series manifests as a topological feature in n dimensions.

The standard procedure for performing cointegration over the four natural frequen-

cies is followed, which then determines the cointegrating vectors to be,

β =
[
β1 β2 β3 β4

]
=


3.05 1.81 0.66 0.81

−0.02 −0.80 −1.70 −0.05

−3.12 0.47 −0.05 0.11

−0.31 −2.07 0.72 0.20

 (7.14)

Subsequently, the first four ‘stationary’ residual series are ascertained by projecting

the natural frequencies via the cointegrating vectors, the result of which is shown in

Figure 7.4.

From a topological perspective, the failure of linear cointegration over the set of

Z24 natural frequencies becomes intuitive. In the context of topology and time-

delay embeddings, cointegration is analogous to determining a linear sum of the
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(a) ϵ1 (b) ϵ2

(c) ϵ3 (d) ϵ4

Figure 7.5: 3D time-delay embeddings for the four linearly cointegrated
residuals, at α = 75.

time-delay embeddings, aiming to produce a Gaussian cluster. The challenge arises

because ω1, ω3, and ω4 cannot adequately reduce the loop formed in ω2 to a Gaussian

cluster with the cavities present in their embeddings. As a result, there is an inherent

limitation in eliminating the loop found in ω2.

A simplistic solution might be to downplay the topology of ω2, by minimising its co-

efficient in the cointegrating vector, effectively removing the troublesome ω2 from the

problem. This approach would essentially focus on cointegration over the linearly-

correlated natural frequencies. This is exactly the case for the most stationary

residual series ϵ1, where the contribution of ω2 in β1 is significantly less than the

others. As observed in Figure 7.5 (a), the outcome does very closely resemble a
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(a) ϵ1 (b) ϵ2

(c) ϵ3 (d) ϵ4

Figure 7.6: Persistent homologies of each linearly cointegrated residual,
at a delay α = 75, all in 3D.

Gaussian cluster. However, it is challenging to view ϵ1 as fair since it is essentially a

cointegration, with the omission of ω2. Additionally, it is vital to retain ω2 because

of its heightened damage sensitivity.

The following Figures 7.5 (b), (c), and (d) highlight that the fluctuations from the

freezing region become increasingly difficult to quash. Specifically, the time-delay

embedding for ϵ4 almost exactly resembles ω1 in Figure 7.2. This similarity is re-

flected in the cointegrating vector, where β4 is heavily influenced by ω1. Following

a similar logic, Figure 7.5 (c) shows the emergence of a loop from the central Gaus-

sian cluster, as the most significant value in β3 corresponds to ω2. The persistent

homologies of all the residuals appear in Figure 7.6. Figures 7.6 (a) and (b), which

present the persistent homologies for the time-delay embeddings of ϵ1 and ϵ2, display

persistent homologies representative of a Gaussian cluster. This outcome aligns with
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ω1 ω2 ω3 ω4 ϵ1 ϵ2 ϵ3 ϵ4
ω1 0.00 72.28 93.98 143.70 266.11 257.60 185.26 16.35
ω2 72.28 0.00 41.40 82.12 208.42 200.29 125.65 65.34
ω3 93.98 41.40 0.00 57.23 183.92 175.31 102.74 87.01
ω4 143.70 82.12 57.23 0.00 137.62 128.55 56.07 137.11
ϵ1 266.11 208.42 183.92 137.62 0.00 31.22 96.32 260.18
ϵ2 257.60 200.29 175.31 128.55 31.22 0.00 88.69 251.89
ϵ3 185.26 125.65 102.74 56.07 96.32 88.69 0.00 178.98
ϵ4 16.35 65.34 87.01 137.11 260.18 251.89 178.98 0.00

Table 7.1: Wasserstein distances for the embedded time series before
and after cointegration, for a delay of 75 and an embedding dimension
of 3.

expectations for the cointegrated residuals, where no discernible-persisting features

are present, since they have been removed via cointegration. Subsequent persistent

diagrams then begin to show persistent topological features, indicating that they do

not represent Gaussian clusters.

To gauge the efficiency in removing the inherent topologies of the time series using

cointegration, Table 7.1 provides the Wasserstein distance between the time-delay

embeddings in every instance. Within Table 7.1, there is a discernible pattern in

the magnitudes, shown by the varying coloured regions.

In this context, the Wasserstein distance serves as a measure to evaluate the effec-

tiveness of cointegration by examining their topologies. Ideally, when a distinctive

topology exists within an embedding of the pre-cointegrated data, cointegration

should eliminate this, leading to a Gaussian cluster; leading to a large Wasserstein

distance between the two. Conversely, when cointegration fails to remove these

effects, a topology akin to the pre-cointegrated data emerges. The Wasserstein dis-

tance then identifies this topology in the residual, essentially gauging the success of

the cointegration process.

Table 7.1 can be considered as a 2× 2 block matrix, each comprising 4× 4 matrices.

The blocks vaguely divide the table into the comparisons of different topologies. In

an idealised setting, Table 7.1 would display the following,

Green the comparisons between interesting topologies, i.e. the loop and cavities.

Blue the comparisons of interesting topologies to Gaussian clusters.

Yellow the comparisons exclusively between Gaussian clusters.
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Essentially, the blue off-main-diagonal blocks show comparisons between differ-

ent topologies, and thus their Wasserstein distances are expected to be greater.

Whereas, the green and yellow on-main-diagonal blocks show comparisons of like

topologies and thus their magnitudes are expected to be smaller.

However, because of the shortcomings of linear cointegration on the Z24 natural

frequencies, Table 7.1 does not always match this ideal. Notably, ϵ3 and ϵ4 show

topology breaking through into the residual embeddings, and their Wasserstein dis-

tances are affected accordingly.

Expectedly, as the residual becomes less stationary – traversing from ϵ1 to ϵ4 –

there is a quantifiably greater likeness to the topology of raw natural frequency

embeddings. Within the green block, the expected behaviour of cointegration is

shown in ϵ1 and ϵ2, with their Wasserstein distances ranking among the largest

in the table, suggesting that cointegration is reducing the time series to a Gaussian

cluster in these cases. However, with ϵ3 and ϵ4 there is marked evidence of topological

leakage, with the smallest Wasserstein distance in the table occurring between ϵ4

and ω1.

An inverse logic appears in the yellow block when compared to the blue block. The

comparison between ϵ1 and ϵ2 is small as it compares the topologies of two Gaus-

sian clusters. However, when considering ϵ3 and ϵ4, there is successively increasing

topological intrusion from the natural frequencies. As a result, the topology of the

residuals is aligning with the raw data embedding, leading to greater Wasserstein

distances.

From a topological perspective, ϵ2 emerges as the most suitable residual for the

Z24. Both ϵ3 and ϵ4 display excessive topological bleed-through from the natural

frequencies, indicating cointegration is not adequately detrending in these scenarios.

Whereas, the most-Gaussian-cluster-like ϵ1 practically excludes the highly damage-

sensitive ω2 from the analysis. Therefore, ϵ2 offers a reasonable balance. Even with

slight topological intrusion from the freezing data, the increased damage sensitivity

makes it a worthwhile trade-off.

7.5.2 Nonlinear Cointegration of ω2

Continuing with a nonlinear cointegration approach, this case study emphasises

the importance of training-data selection for a GP during nonlinear cointegration.
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(a) Non-cointegrated data

(b) Cointegrated data

Figure 7.7: Univariate plots of all the time series representing ω2.

Topological arguments are leveraged to provide insight into the remaining topology

in the residual series, comparing two GPs trained on different regions of the Z24

data. The analysis undertaken in this section parallels that in Section 7.5.1, thus

some details are omitted. However, the emphasis here is solely on detrending ω2,

focusing on GPs trained using linearly-related natural frequencies. Consequently,

there are five distinct time series under analysis, which are,

ω2: represents the second natural frequency of the Z24 bridge [86].

GP1: serves as a cointegrating function for ω2. It uses training data comprising ω1,

ω3, and ω4, specifically considering the initial 1000 data points where sustained

freezing events are not taken into account.

GP2: acts as another a cointegrating function for ω2. Again, its training data in-

cludes ω1, ω3, ω4, but focuses on data points 1100 - 2100, encapsulating the

entire duration of sustained freezing. Both GPs can be seen in Figure 7.7 (a).

ϵGP1
: denotes the residual series derived from GP1.

ϵGP2
: is the residual series formed from GP2, both residual series can be seen in

Figure 7.7 (b).
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(a) GP1 (b) GP2

(c) ϵGP1
(d) ϵGP2

Figure 7.8: Time delay embeddings for the GPs and their residual series,
all embedded into 3D at α = 75.

As evident from Figure 7.7 (b), both residuals exhibit minor disturbances around

the freezing region, suggesting that the GPs are failing to detrend in this region.

As anticipated, ϵGP2
shows smaller perturbations because of GP2’s training over

the domain. A richer perspective can be obtained by embedding these time series,

allowing a more comprehensive qualitative and quantitative topological examination.

From Figures 7.8 (a) and (b), which display the time-delay embeddings for the

two GPs, it is evident that these depict cavities rather than loops. The failure to

form a loop indicates that they do not offer precise approximations to ω2 as their

embedded topologies differ. Consequently, the introduction of topological artefacts

after detrending is inevitable.
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(a) GP1 (b) GP2

(c) ϵGP1
(d) ϵGP2

Figure 7.9: The persistence diagrams for the nonlinear cointegration
time series, embedded into 3D at a delay α = 75.

After embedding the residuals, Figure 7.8 (c) shows the emergence of the loop from

the Gaussian cluster. This feature suggests that GP1 is not sufficiently detrending

the residual. On the other hand, Figure 7.8 (d) appears to resemble a Gaussian

cluster, indicating a more successful detrending. This result is anticipated, given

that GP2 is familiar with the nonlinear behaviour of ω2 in the freezing region.

However, the inability of GP2 to form a loop in the embedding space does not come

without consequences. A noticeable skewness can be discerned within Figure 7.9 (d),

as highlighted quantitatively in its persistence diagram in Figure 7.9 (d). Here, sev-

eral β0 features persist beyond 1.5, which are absent in other persistence diagrams.

Therefore, indicating that GP1 has eliminated the defining toroidal topology, at the

expense of a small topological artefact of elongating the cluster. With this under-

standing, there is potential to reverse-engineer this topological information into the
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ω2 GP1 GP2 ϵGP1
ϵGP2

ω2 0.00 130.80 81.40 120.32 205.71
GP1 130.80 0.00 62.00 209.81 279.94
GP2 81.40 62.00 0.00 162.23 239.59
ϵGP1

120.32 209.81 162.23 0.00 98.33
ϵGP2

205.71 279.94 239.59 98.33 0.00
N3(0, 1) 217.74 287.48 251.35 138.50 76.05

Table 7.2: The Wasserstein distances when two data sets are compared,
at a delay α = 75 in an embedding dimension of 3.

1D time series. This topological approach could be used as a tool to tune GPs, by

evaluating their capability to produce a Gaussian cluster when embedding residuals;

facilitating a method to optimise nonlinear cointegration schemes.

Table 7.2 presents the Wasserstein distances between all the embedded time se-

ries. For clarity in subsequent discussions, an additional row representing a true 3D

Gaussian cluster, the idealised result of cointegration denoted as N3(0, 1)
3, has been

added. Similar to Section 7.5.1, block matrices emerge in Table 7.2, categorised by

the comparison of distinct topological features.

Table 7.2 actually allows for the direct comparison of the embeddings for GPs with

ω2, directly quantifying their topological similarities. The Wasserstein distances

reveal that GP2 is much more topologically similar to ω2 than GP1, with persistent

homology dissimilarity scores of 81.40 and 130.8, respectively.

The crucial aspect of this analysis is to determine the extent of topology removal

during cointegration. Ideally, all the topology would be eradicated, resulting in a

perfect Gaussian cluster. If this is achieved, the manifolds before and after cointe-

gration should be highly dissimilar, hence a greater Wasserstein distance is desirable.

From this perspective, it is evident that ϵGP2
has been more successfully detrended

than ϵGP1
, with Wasserstein distance of 205.71 and 120.32, respectively. Impres-

sively, ϵGP2
is approaching the idealised scenario, which has a Wasserstein distance

of 217.74 from ω2. When comparing ϵGP2 directly to the idealised N 3(0, 1), the

result is the second smallest value in the table at 76.05, highlighting their similar-

ity. Conversely, ϵGP2
is much more distinct from the idealised case. Consequently,

topological evaluations make it clear that ϵGP2 achieves superior data normalisation

3At a slight abuse of notation, this indicates a 3D Gaussian cluster centred at (0, 0, 0) with
unit variance in each axis.
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compared to ϵGP1
.

Making use of the idea that a higher Wasserstein distance signifies a more effective

cointegration, the linearly and nonlinearly cointegrated residuals can be compared

relative to ω2. As the data from this section and Section 7.5.1 were preprocessed

identically, comparisons can be drawn between Tables 7.1 and 7.2.

The best-cointegrated residuals, ranked by their proximity (or lack thereof) to the

embedding of ω2, are: ϵ1, ϵGP2
, ϵ2, ϵ3, ϵGP1

, and ϵ4, with corresponding values of

208.42, 205.71, 200.24, 125.65, 120.32, and 65.34. After discounting ϵ1 as a non-

authentic solution as it dismisses the nonlinear natural frequency, this ranks ϵGP2
as

the most detrended residual.

7.6 Conclusion

This chapter presented cointegration in a new light, by providing an analogous, but

unique topological perspective, reconceptualising the challenge as transforming the

time series’ embedded topology into a Gaussian cluster. This approach, rooted in

the visualisation of shape, allows for an intuitive comprehension of the cointegration

process when dealing with intricate and complex data.

What underscores the power of a topological view is its ability to yield unique

topological signatures for representing time series within a cointegration framework.

These signatures serve a dual purpose: they highlight when cointegration fails to

detrend time series, and also provide insight into how cointegration is struggling to

remove features. For example, while ω2 creates a loop after embedding, other time

series manifest cavities. Such distinct patterns facilitate pinpointing the origins of

information leakage. If a loop is present in the residual series embedding, its presence

indicates information from ω2 is breaking through into the residual series.

Concluding the results section of this chapter, it was demonstrated that the topo-

logical approach offers a criterion for gauging the efficacy of various cointegration

approaches. By evaluating the topological dissimilarity between the residual series

embedding and their pre-cointegrated counterparts, it was deduced that the optimal

cointegration scenario is achieved via nonlinear cointegration with knowledge of the

freezing domain.



Chapter 8

Quantifying Trend Removal via

Cointegration with TDA

This chapter builds on the concepts introduced in Chapter 7, exploring the quan-

tification of cointegration trend removal using TDA. Within an SHM framework,

cointegrated residuals are computed to eliminate the long-term correlations caused

by benign EOVs from a set of similar monitored structural parameters. However,

when performing cointegration, there is little detailed understanding of the trends

being purged in the time series. Fundamentally, cointegration aims to produce the

most stationary residual as a weighted sum of the input time series, without con-

sidering the specific trends. A subtle problem arises when the structural variables

being cointegrated show linearly-proportional changes in the presence of damage. In

such instances, cointegration might inadvertently eliminate damage indicators from

the residual series; compromising its ability for novelty detection.

In reality, the purpose of cointegration is to train using data from times where the

structure is believed to be flawless. Therefore, this hypothesised situation is SHM

malpractice. Nonetheless, gaining insight into the specific trends being removed

and the degree to which they are eliminated is valuable. This knowledge can guide

potential adjustments to cointegration to prevent such occurrences.

The approach developed in this thesis to quantify specific EOV trend removal over

cointegration involves evaluating the extent of topological change in embeddings

of pre and post-cointegrated structural parameters concerning a specific EOV. The

190
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persistent homologies of the embeddings before and after cointegration are compared

to a specific EOV’s persistent homology via the Wasserstein distance, gauging how

much of the EOV’s topology has been removed over the cointegration process. If

any topology remains in the embedded residual which is reminiscent of the EOV’s

topology, the Wasserstein distance will detect this, highlighting the inefficiency in

removing that particular trend.

To undertake this analysis, a set of linearly-cointegrated structural variables is

needed, showing pronounced effects from at least two distinct EOVs; enabling the

relative comparison of their removal. The Z24 Bridge dataset does not meet these

prerequisites; hence, the Tamar Bridge dataset is introduced and examined in this

chapter. The effects of air temperature and traffic loading EOVs on the sets of ca-

ble tensions and deck frequencies are then topologically explored. A more in-depth

discussion regarding the effects of these EOVs on the structural parameters is found

in Section 8.1.

To strengthen the reliability of this procedure, the time-delay embedding parameters

are logically determined to maximise and freely express the homological features.

The Tamar Bridge exhibits more pronounced periodic patterns compared to the Z24

Bridge. Therefore, the cyclicality is leveraged to determine an optimal delay via fast

Fourier transform (FFT) which amplifies loops in the embedding space, producing

the most persistent homological features. Subsequently, an established method for

determining an optimal dimension is examined using the False-Nearest Neighbours

algorithm [129]. All signals undergo evaluation using their optimal embedding pa-

rameters.

8.1 Tamar Bridge Overview

The Tamar Bridge, a suspension bridge, spans 335 metres across the River Tamar,

connecting Plymouth and Saltash in the UK. After four decades of service, the

bridge underwent strengthening in the late 1990s to comply with EU legislation,

ensuring it could safely accommodate heavy-goods vehicles weighing up to 40 tonnes.

To fortify the bridge, extra cable stays were added. To widen the bridge, cantilever

decks were added on both sides. The original deck was also replaced with lighter

and stronger materials. During the reinforcement process, multiple sensors were

installed to monitor the bridge’s structural and environmental variables [123, 130].
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In 2006, the Vibration Engineering Section of the Department of Civil Engineering

at the University of Sheffield installed a vibration-based monitoring system [130].

This monitoring system records 64Hz samples over 30 minute intervals [131]. For

each interval, an on-site automatic modal analysis is performed, outputting valuable

damage-sensitive features for the bridge. The monitoring system calculates the deck

frequencies, while the cable tensions are directly observed. These elements form the

key structural parameters of interest in this analysis. However, both temperature

and traffic loading influence these structural parameters to varying extents. For

effective SHM, it is beneficial to mitigate the effects from these EOVs.

8.1.1 Traffic Loading

A one-way traffic count is obtained from the bridge’s eastbound toll gates. Every

vehicle is categorised into one of ten weight classes, as detailed in Table 8.1. For each

interval, the traffic load is determined by multiplying the count of each category

by its average weight [123]. Since this information is unidirectional, it is further

multiplied by two, based on the assumption that traffic loading is symmetrical on

both sides during each interval. Finally, to obtain the instantaneous load L, on the

bridge, the accumulated load is divided by the estimated time taken to cross the

bridge, which is set at 45 seconds in this instance [123].

Vehicle Category Estimated Mass (kg)

Unregistered by Automatic Vehicle Classification 0

Motorcycles 150

Cars, Trikes and PLG under 3.5 tonnes 1500

2 Axle HGV 18000

3 Axle HGV 26000

4+ Axle HGV 32000

Cars with Trailers 8250

2 Axle HGV with Trailer 21000

3 Axle HGV with Trailer 30000

4+ Axle HGVs with Trailer 36000

Table 8.1: Estimated vehicle masses for each weight category [123].
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Figure 8.1: The Tamar Bridge traffic loading L.

The traffic loading reveals a recurring pattern: five days of high traffic during the

workweek, followed by two days of lighter traffic over the weekend. This trend is the

most dominant feature in the signal and remains consistent, even amidst seasonal

variations. Additionally, two daily spikes are evident, corresponding to the morning

and evening rush hours. Intriguingly, the morning influx, representing the commute

to work, is more pronounced than the evening return. This artefact likely stems

from the unidirectional flow being sourced from the eastbound toll gates and people

are likely to commute to Plymouth for work, which is the nearest major city and is

located east of the Tamar bridge. Therefore, the morning traffic count is inflated

when assuming equal traffic flow in both directions. Conversely, the evening return

traffic is likely underrepresented.

8.1.2 Temperature

Figure 8.2: The Tamar Bridge temperature θ.

The air temperature recording θ, is more straightforward, as it is directly measured

using thermometers. Within the temperature data, two main trends stand out.

Firstly, there is a large-scale, low-frequency fluctuation linked to seasonal changes,

accounting for the majority of the data’s variance. The second trend consists of

daily fluctuations, with temperatures dropping at night and rising during the day.
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8.1.3 Cable Tensions

Figure 8.3: The Tamar Bridge cable tensions, Ti.

The cable tensions Ti are most correlated to the air temperature, as shown in Ta-

ble 8.2. This strong association largely stems from thermal expansion, causing

changes in cable length as temperatures fluctuate. Under the relatively constrained

geometry of the bridge, and only one expansion joint on its east side [123], a tem-

perature drop leads to cable contraction, resulting in heightened cable tensions.

Although correlations are consistently strong, they show both negative and positive

directions. This divergence is likely because, when the cable tensions increase, the

bridge deck bows slightly, causing cables negatively correlated to pick up the slack,

whilst the positively-correlated cables were relieved under the bowing action [131].

Because of the strong linear correlation between the temperature and cable tensions,

the daily and seasonal temperature variations are almost directly translated into the

cable tensions, with only small variations from other EOVs. The traffic loading is

one such variation, which increases the weight supported by the cables. However,

compared to the mass of the bridge deck, the weight of the traffic is relatively minor.

Therefore, the traffic loading’s impact is overshadowed by thermal expansion effects.

The second cable tension T2, seems to be malfunctioning and producing inaccurate

results; hence, it has been excluded from all calculations in this chapter. Addition-

ally, for future time-delay embeddings, T3 is chosen for embedding as it shows the

strongest correlation with temperature.
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8.1.4 Deck Frequencies

Figure 8.4: The Tamar Bridge deck natural frequencies, ωi.

The deck frequencies ωi, were calculated from the acceleration data using a stochas-

tic subspace identification technique [132]. In this study, only the first five deck

frequencies are used in cointegration calculations. As a result of shortcomings of the

data acquisition system, data were required to be linearly interpolated over certain

regions; visible as the short straight lines in Figure 8.4.

The variation in deck frequency from the EOVs can be largely explained by the

analogy,

ωn =

√
k

m
(8.1)

where k and m represent the stiffness and mass of the deck. With an increase

in traffic loading, the mass of the deck rises. Consequently, the modal properties

adjust in line with equation (8.1), leading to a decrease in the natural frequency.

This relationship is evident from the consistent negative correlation between deck

frequency and traffic loading in Table 8.2. The impact of temperature can be sim-

ilarly understood. As the temperature rises, materials generally become less rigid.

Consequently, according to equation (8.1), the natural frequency will decrease – a

trend consistent with Table 8.2.

For embedding purposes, ω3 is selected, as it shows the strongest relation with traffic

count.
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8.2 Optimal Embedding Parameters

When exploring time-delay embeddings for persistent homology, it is desirable to

enhance persistent homology features and to ensure the required dimensional free-

dom to fully express the topology within a time series. This subsection outlines a

methodical approach to maximise the topological information derived from a time

series, pinpointing parameters labelled as optimal for a given time series. By under-

standing the nuances of time-delay embeddings and persistent homology, a logical

approach is presented to identify an optimal delay α∗ and an optimal dimension d∗

for embedding, tailored for persistent homology applications.

Time-delay embeddings depict cyclic trends as loops in higher dimensions. There-

fore, maximising the radii of these loops results in the longest persistent intervals,

giving the most pronounced representations of embedding manifolds. To enhance

the effects of a time series’ topology, the focus is the frequency relating to the cyclic

trend with the greatest amplitude within the signal. By doing so, the embedding

loop and thus its persistent homology are maximised, offering a clear representation

for calculations. A crucial aspect to consider is maintaining a reasonably small α∗

to ensure local lags between dimensions.

When identifying optimal parameters, it is crucial to maintain both α∗ and d∗ at

relatively-low values to reduce the loss of points during embedding. For higher values

of α and d, more points are lost because of instances requiring information outside

the range of the time series. As a result, these incomplete instances at the start

and the end of the time series are not considered, leading to information loss. The

number of excluded points is determined by,

nlost = (d− 1)(α + 1) (8.2)

Consequently, the method for determining an optimal embedding dimension d∗ needs

to factor in the curse of dimensionality and the loss of points. A larger d comes with

two drawbacks: increasing the sparsity of points over more dimensions, but then

also reducing the number of points present within the manifold, prompting an even

more sparse embedding. This method should consider the potential emergence of

topological artefacts because of sparsity and topological noise, while still offering

the necessary dimensionality to accurately represent the topology of a time series.
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(a) ω1 (b) ω2

Figure 8.5: Z24 embeddings at α = 75 and d = 2, showing loss of
topological information in ω1 when compared to its 3D embedding.

To illustrate how a lower-dimensional embedding may limit the comprehension of a

time series’ topology, consider again the Z24 time-delay embeddings from Chapter 7

of ω1 and ω2, set again at α = 75, but in this case with an embedding dimension of

2. As depicted in Figure 8.5 (a), the cavity observable in the 3D embedding for ω1 is

projected down into two dimensions; losing this topological information. In contrast,

the 2D loop remains as prominent in Figure 8.5 (b) as it was in 3D. These obser-

vations suggest that ω1 requires more than two dimensions in the embedding space,

but two dimensions appear sufficient for ω2. Intriguingly, the time-delay embed-

ding behaves somewhat like a topological analogue to principal component analysis,

except in reverse. Therefore, the established false nearest neighbours method is

explored [129]. This method aims to minimise the number of incorrectly identified

neighbours in embeddings, as illustrated by those projected into 2D in Figure 8.5 (a),

ensuring that topological features are accurately represented based on the trends in

the 1D time series.

8.2.1 Optimal Delay, α∗

To determine the optimal delay, the focus is directed on a specific cyclic trend

within a time series. This trend is determined by decomposing a time series into its

frequency components via the fast-Fourier transform (FFT). Within the frequency

domain, the frequency with the greatest amplitude is the cyclic trend of interest.

The aim is to maximise the persistent interval relating to this cyclic trend, and the

α that accomplishes this is deemed optimal.
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For derivation purposes, consider the time-delay embedding of a sine wave into 2D.

The task of maximising the persistent interval can be reinterpreted as maximising

the area enclosed by the loop. The sine wave’s time-delay embedding into two

dimensions is characterised by x = sin(t) and y = sin(t − α)1. To determine the

area of the loop at an α, it is beneficial to form a polar integral, thus requiring a

coordinate transform, defined by,

r =
√
sin2(t) + sin2(t− α) (8.3)

θ = arctan

(
sin(t− α)

sin(t)

)
(8.4)

before defining the polar integral for the area bound by the embedded loop, it is

necessary to transform the integration variable,

dθ

dt
=

d

dt

(
sin(t− α)

sin(t)

)
· 1

1 +

(
sin(t− α)

sin(t)

) =
1

r2
sin(α) (8.5)

This transformation facilitates the polar-integral,

A =
1

2

∫ θ2

θ1

r2 dθ =
1

2

∫ 2π

0

r2
1

r2
sin(α) dt = π sin(α) (8.6)

Having established the area A enclosed by this time-delay embedding, the next

logical step is to identify its maximum in relation to α. The maximum of A is

determined by differentiating with respect to α,

dA

dα
= π cos(α) (8.7)

This equation allows the derivation of all occurrences when α gives maximum or

zero area, given by the condition cos(α∗) = 0. To filter out the α relating to the

minima, consider when equation (8.6) is non-zero. Consequently, the maximum area

is obtained at,

α∗ =
π

2
+ 2kπ, ∀k ∈ {0, 1, . . .} (8.8)

While this result is derived for a continuous case, indicating a magnitude of α, data

analysis demands this result as an integer, denoting discrete offsets. The result in

1In this derivation, α is assumed continuous to permit the use of calculus.
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equation (8.8) is divided by 2π, giving the cycle fraction to offset resulting in the

greatest A. This cycle fraction is then multiplied by the number of data points in a

full cycle of a wave, giving the optimal delay α∗. The number of data points present

within one cycle of a sine wave with frequency f , is determined by,

n =
fs
f

(8.9)

then merging with the proportionality relation, the optimal delay α∗ in the context

of discrete data becomes,

α∗ =
(1 + 4k)fs

4f
(8.10)

For this work, k = 0 is consistently employed to ensure local lags between dimensions

and to minimise the loss of data points.

Simple Applications

Figure 8.6: (a) A sine wave with f = 10Hz at fs = 500Hz, (b) its
frequency decomposition, and (c) the resulting optimal delay embedding.

To validate these findings, a sine wave is used to demonstrate and discuss the process

of extracting the maximal topology via frequency analysis. Subsequently, a signal

composed of the sum of sine waves will be introduced. While the procedure is

straightforward with these examples in visualisable dimensions, having a systematic

approach for determining time-delay embeddings becomes invaluable when dealing

with the complexities of real-world data, embedded in higher-dimension.

A sine wave is recorded at a sampling frequency of 500Hz. Upon converting into

the frequency domain with the FFT, the wave is determined to have a frequency
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(a) α = 1 (b) α = 6 (c) α = 12

Figure 8.7: Varying α, with their birth-death diagrams beneath.

of 10Hz. To then determine the embedding delay that maximises the area – in this

case, a circle – the time series must be delayed in accordance with equation (8.10),

giving,

α∗ =
500

4 · 10 = 12.5 = 12 (8.11)

since an integer is required for α, this result is rounded2. The result from embedding

this sine wave with α = 12 is presented in Figure 8.6, where a slight skew is evident,

which is directly resultant of the rounding.

To more deeply explore the influence of α on persistent homology, Figure 8.7 show-

cases three embeddings at delays of 1, 6, and 12, accompanied by their respective

persistent homologies. Evidently, as the area bound by the time-delay embedding

increases, so does the persistent interval, leading to more pronounced topological

features in the persistent diagrams. For α = 1, the β1 features are mainly arising

from topological noise. However, for delays of 6 and 12, there is clear persistence of

a β1 feature. Notably, the feature at the optimal delay is nearly twice as persistent

as α = 6.

In a more complex setting, a signal is observed at fs = 500Hz, and is formed

2This rounding behaviour, called Banker’s rounding, is the default in Python, where halfway
numbers are rounded to even.
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Figure 8.8: (a) A composite sine wave, (b) its FFT, and (c) - (e) optimal
2D time-delay embeddings at each identified frequency.

by combining multiple sine waves, with varying amplitudes and frequencies. This

signal, its frequency domain representation, and three embeddings, each maximising

the topology of a constituent wave of the signal, are depicted in Figure 8.8.

The frequencies and amplitudes for the three constituent waves are found to be

2Hz, 5Hz, and 7Hz and the amplitudes are 2, 1, and 5 respectively. The optimal

delays are determined to be 62, 25, and 18, respectively. From taking a quick look

at the delay embeddings in Figure 8.8, it appears that the loops are being squashed

down into 2D, causing self-intersections in the embedding. It is very difficult, if not

impossible to understand which is the true embedding dimension to represent the

topology of a time series.
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8.2.2 Optimal Dimension, d∗

Figure 8.9: Embeddings of sine wave in 2D and 3D.

When determining time-delay embeddings, selecting a dimension that is too low

can cause the manifold to be projected down, potentially introducing topological

artefacts and misrepresenting the true topology of the time series. The optimal

embedding dimension, denoted as d∗ is the smallest dimension that freely expresses

the topological features of a time series. Dimensions beyond d∗ are superfluous,

introducing unnecessary computation overheads without yielding significant new

topological insights. For instance, the 2D time-delay embedding of the sine wave

shown in Figure 8.6 forms a circle. When embedding the sine wave in 3D, as depicted

in Figure 8.9, no additional topological information emerges; it still shows a circle,

just oriented and skewed in a higher-dimensional space.

The embeddings for the composite signal, as depicted in Figure 8.10, present the

other side of the argument. In the composite signal’s 2D embeddings, topological

artefacts appear as self-intersections. These artefacts arise because the embedding

manifold is forced into a lower dimension, causing points to be falsely embedded close

to each other, and in some cases, to intersect. Figure 8.10 displays the amplitude-

dominant optimal delay embedding in both 2D and 3D, with a longitudinal and

transversal view of the loops. These perspectives reveal that the holes are more

pronounced, and the self-intersections are absent as the manifold is offset into the

third dimension. It is plausible that the 3D embedding might still be introducing

artefacts if the true manifold exists in 4D or higher. Perhaps these loops unravel in

the fourth dimension? However, without understanding how 4D manifolds project

into 3D, this point becomes harder to convey3. Therefore, to extend this qualitative

3A classic example of topological artefacts resulting from a 4D to 3D projection is the Klein
bottle. In 4D, the Klein bottle does not intersect itself, but in 3D, it famously does.
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Figure 8.10: Embeddings of the composite sine wave in 2D and 3D.

reasoning of falsely neighboured points in a projection, this is quantified using the

false-nearest neighbours (FNN) algorithm [129].

The FNN algorithm is a standard method in topological time series analysis [114,

133, 134]. Given its widespread use, this section provides an abridged overview:

1. For a time series y and delay α, form the time-delay embedding at an embed-

ding dimension p, represented as Φ(y, α, p).

2. In the embedding at dimension p, the distance from a point i to its nearest

neighbour is ∂p
i .

3. Determine Φ(y, α, p+ 1).

4. In the embedding at dimension p+1, the distance from a point i to its nearest

neighbour is ∂p+1
i .

5. If the difference |∂p+1
i − ∂p

i | exceeds some arbitrary threshold t1, the nearest

neighbour for i in dimension p was a false neighbour.

6. Repeat this calculation for all i in the embeddings and calculate the percentage

of false nearest neighbours in the dimension p.

7. The optimal dimension d∗ is the smallest p, such that the percentage of false

nearest neighbours is below an acceptable threshold t2.

A high proportion of false neighbours indicates that the embedding dimension is

insufficient, caused by the forced proximity of points in the lower-dimensional pro-

jection. As mentioned qualitatively earlier, this leads to situations like the self-

intersections seen in Figure 8.8, and the introduction of topological artefacts. As
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the embedding dimension p increases, the phase space reconstruction should yield

fewer false nearest neighbours as its topology is freely expressed. Interestingly, the

FNN algorithm bears an inverse resemblance to when taking principal components

of a space [83]. The percentage of false neighbours can be likened to the complement

of the explained variance in PCA.

The FNN algorithm, while useful, is not without its limitations. One notable draw-

back is the subjectivity in selecting t1 and t2. However, the embedding dimension

was already a hyperparameter, so employing the FNN algorithm shifts the hyperpa-

rameters down the line in exchange for a systematic and consistent determination

mechanism. Additionally, the shape of the embedding manifold is parameterised by

α, and therefore the d∗ determined via FNN is specific to that α. In this study, the

d∗ determined using FNN is evaluated at the previously-discussed optimal delay α∗.

8.2.3 Tamar Optimal Embedding Parameters

To unambiguously determine the optimal time-delay embeddings of the Tamar

Bridge signals, α∗ and d∗ are calculated for each instance. Therefore, the topo-

logical features should be both maximised and freely expressed, paving the way for

more robust results in subsequent analyses.

As mentioned in Section 8.2.1, α∗ is determined by taking the FFT and identifying

the frequency of the sine wave with the maximum amplitude. This frequency is

then used to derive α∗ via equation (8.10), which amplifies the persistent homology

features pertinent to that frequency. Following this, d∗ is determined for each signal’s

α∗; where the results for both are presented in Table 8.3.

For the FNN algorithm, the consistent hyperparameters were set to t1 = 0.1 and

t2 = 0.05 for all signals. While the time-delay embeddings are presented in their

unnormalised forms, it is worth noting that for the FNN algorithm and persistent

homology, all signals were standardised before embedding. With the Tamar Bridge’s

Signal Frequency (Hz) Peak Amplitude Period (h) α∗ d∗

L 1.16× 10−5 1.49× 106 23.9 12 3
θ 1.16× 10−5 0.811 23.9 12 3
ω3 1.16× 10−5 0.00225 23.9 12 3
T3 1.15× 10−5 10.2 24.1 12 3

Table 8.3: Optimal embedding parameters for each signal.
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data recorded at 30-minute intervals, the sampling frequency is fs = 5.56×10−4Hz.

The frequency with the most pronounced amplitude, which is the cyclic trend em-

phasised in the time-delay embedding, unsurprisingly aligns with a daily cycle for

each signal, as detailed in Table 8.3. This outcome is expected for the traffic count,

but less so for the temperature. Given that the data only spans 15 weeks, the full

yearly cyclic trends are undetectable in the frequency domain; only being present

as spectral leakage. Consequently, the FFT detects the next-most dominant cyclic

trend the daily fluctuations.
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(a) Φ(θ, 12, 3) (b) Φ(θ, 12, 3) PH

(c) Φ(L, 12, 3) (d) Φ(L, 12, 3) PH

Figure 8.11: Optimal EOV time-delay embeddings and their persistent
homologies.

Figure 8.11 shows the optimal embeddings for the EOVs alongside their persistent

homologies. The temperature embedding largely appears as a straight line, with this

variance attributable to the large yearly cyclic trends which are not fully accounted

for. Nonetheless, some features do persist in Figure 8.11 (b). On the other hand, the

traffic-loading embedding shows a very interesting topology, with several connected

clusters surrounding a central pronounced loop. However, the presence of noisy data

points within the loop’s centre is likely diminishing the loop’s β1 feature.
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(a) Φ(T3, 12, 3) (b) Φ(T3, 12, 3) PH

(c) Φ(ω3, 12, 3) (d) Φ(ω3, 12, 3) PH

Figure 8.12: Optimal structural parameter time-delay embeddings and
their persistent homologies.

Figure 8.12 displays the optimal embeddings for the structural parameters. Given

the strong correlation of T3 with temperature, their embeddings look alike but ro-

tated in space because of the negative correlation; this resemblance is reflected in

their persistent homologies. The ω3 embedding, on the other hand, resembles a

uniformly-distributed random cluster, with some artefacts emerging from linearly-

interpolated regions.
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(a) Φ(ϵT , 12, 3) (b) Φ(ϵT , 12, 3) PH

(c) Φ(ϵω, 12, 3) (d) Φ(ϵω, 12, 3) PH

Figure 8.13: Optimal residual time-delay embeddings alongside their
persistent homologies.

However, the most interesting embeddings are the cointegrated residuals. While

the detailed cointegration calculation procedure is not reiterated here, having been

covered in Chapter 7, it is worth noting that only the most stationary residuals

are examined. Specifically, ϵT and ϵω represent the residuals from the set of cable

tensions and the set of deck frequencies, respectively.

The primary goal of this analysis is to identify any remaining topological features

of a specific EOV in the embedded residual series. To ensure a consistent portrayal
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of topological features, the same embedding parameters are used for both the EOV

and the residual series. This consistency aids in detecting any bleed-through EOV

information into the residual series, allowing for a comparison of like topologies

before and after cointegration. Conveniently, as indicated in Table 8.3, the consistent

optimal embedding values are α∗ = 12 and d∗ = 3.

The optimal residual embeddings depicted in Figure 8.13 are quite revealing. At first

glance, the impact of cointegration is evident, with the residual series embeddings

largely resembling Gaussian clusters. However, upon closer inspection, deviations

from the anticipated Gaussian cluster emerge. Specifically, ϵT displays outliers and

a slightly conic shape.

8.3 Cointegration Trend Removal

Linear cointegration is fundamentally a weighted sum of the input time series. Con-

sidering the subtle variations inherent in each time series, it is implausible that such

a sum could eradicate all nonstationary features. Consequently, it is conjectured

that some information will bleed through into the residual series, even when satis-

fying all cointegration requirements. This section aims to pronounce these residual

features using topological techniques. If the topological signatures in the residual

embedding align with those of an EOV embedding, it suggests that the nonstation-

arity associated with that EOV has not been removed.

In this context, a Gaussian cluster represents the ideal residual embedding, signifying

the complete removal of all EOV nonstationarities. Therefore, a Gaussian cluster in

3D with unit variance and zero mean along every axis serves as the benchmark for

a perfect cointegration outcome. However, a visual inspection of Figures 8.13 (a)

and (c) reveals that these embeddings deviate ever so slightly from Gaussian clusters,

indicating that some nonstationary information persists into the residual series.

To evaluate the effectiveness of cointegration in eliminating an EOV’s topological

features, the Wasserstein distances ∂(EOV, ϵ) and ∂(EOV,GC) are compared. The

comparison of these Wasserstein distances offers insight into the residual embed-

ding’s retention of EOV topological features. Given that the residual embedding

is believed to retain minor topological influences from the EOVs, it follows that

∂(EOV,GC) > ∂(EOV, ϵ). Therefore, by comparing the actual cointegration sce-

nario to the idealised one, a ratio emerges that resembles an efficiency metric for
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EOV removal, constrained between 0 and 1, stated as,

ηr(EOV, σ) =
∂W (EOV, ϵσ)

∂W (EOV,GC)
(8.12)

Where σ represents a structural parameter and ϵσ is the cointegrated residual from

the set of like structural parameters. By taking the complement of this ratio4,

ηs = 1 − ηr, the proportion of EOV information remaining in the actual scenario

relative to the idealised is calculated.

However, equation (8.12) does not account for the initial influence of the EOV on

the structural parameter. In order to gauge how much has been removed, there

must first be an understanding of the initial state. As seen in Table 8.2, the effects

of traffic loading and temperature vary on the structural parameters. Therefore, the

dependency between the structural parameter and EOV should be incorporated.

Consequently, the topological similarity ∂W (EOV, σ), is used to normalise the effi-

ciency calculation in equation (8.12), mathematically given as,

η̂s(EOV, σ) = 1− ∂W (EOV, ϵσ) + ∂W (EOV, σ)

∂W (EOV, GC) + ∂W (EOV, σ)
(8.13)

In this formula, the normalisation term adopts a positive sign because smaller dis-

tances indicate greater similarity. However, for this analysis, the inverse relationship

is sought, where greater topological dissimilarity receives a higher normalisation.

Repeating these calculations as described by equations (8.12) and (8.13) for mul-

tiple EOVs provides insights into the relative removal of EOVs from a structural

parameter via topological means.

8.3.1 Results

Before addressing the quantification of EOV removal via cointegration, Table 8.4

presents the Wasserstein distances between the variables embedded at their optimal

values.

From Table 8.4, it is evident that traffic loading possesses the most distinct topol-

ogy, as indicated by its consistently larger Wasserstein distances relative to other

entries; a distinction also apparent qualitatively. Additionally, the temperature and

cable tension embeddings show a close alignment, with their persistent homologies

4The subscripts r and s are abbreviations for ‘removed’ and ‘stays’, respectively.
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θ L T3 ω3 ϵT ϵω GC
θ 0.00 125.43 100.14 275.35 248.36 329.05 350.51
L 125.43 0.00 223.56 360.57 367.51 412.93 465.35
T3 100.14 223.56 0.00 219.54 155.85 271.19 260.10
ω3 275.35 360.57 219.54 0.00 158.20 114.68 166.63
ϵT 248.36 367.51 155.85 158.20 0.00 173.95 124.29
ϵω 329.05 412.93 271.19 114.68 173.95 0.00 165.57

GC 350.51 465.35 260.10 166.63 124.29 165.57 0.00

Table 8.4: Wasserstein distance between each signal at their optimal
embedding parameters.

having the smallest Wasserstein distance in the table. This close relationship can

be attributed to their strong correlation, as detailed in Table 8.2.

Cable Tensions

From Table 8.4, the remaining topological features of θ and L in ϵT can be deter-

mined, by comparing against the idealised scenario, as calculated by,

ηs(θ, T3) = 1− ∂W (θ, ϵT )

∂W (θ, GC)
= 1− 248.36

350.51
= 0.2914 (8.14)

ηs(L, T3) = 1− ∂W (L, ϵT )

∂W (L, GC)
= 1− 367.51

465.35
= 0.2103 (8.15)

These results suggest that temperature effects are more present in the ϵT embedding

than traffic loading, since ηs(θ, T3) > ηs(L, T3). This observation suggests that the

temperature effects are more challenging to remove than the traffic loading effects.

One possible explanation is that the strong correlation between θ and the cable

tensions causes these effects to be more ingrained in the cable tensions than L,

and thus harder to remove. When qualitatively analysing Figure 8.13 (a), a subtle

conical shape in the ϵT time-delay embedding was highlighted. This conical shape

is likely to be a muted reflection of the elongated form present in the T3 (and all

other cable tensions) time-delay embedding. These topological remnants contribute

to the relatively-small Wasserstein distance between the ϵT and θ embeddings.

Upon analysing the normalised versions of the calculations, the results are as follows,

η̂s(θ, T3) = 1− ∂W (θ, ϵT ) + ∂W (θ, T3)

∂W (θ, GC) + ∂W (θ, T3)
= 1− 248.36 + 100.14

350.51 + 100.14
= 0.2267 (8.16)

η̂s(L, T3) = 1− ∂W (L, ϵT ) + ∂W (L, T3)

∂W (L, GC) + ∂W (L, T3)
= 1− 367.51 + 223.56

465.35 + 223.56
= 0.1420 (8.17)
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The normalised results, like their unnormalised counterparts, indicate that η̂s(θ, T3) >

η̂s(L, T3). However, the normalisation process, which accounts for the initial influ-

ence of the EOV on the structural parameter, accentuates the relative difference

in the removal of θ and L via cointegration. This difference is because of the high

topological similarity between T3 and θ, thereby amplifying the relative difference

between η̂s(θ, T3) and η̂s(L, T3).

Deck Frequencies

For the deck frequencies, correlations to the EOVs are weaker. The weaker corre-

lation implies that the topological influences of the EOVs in ω3 are likewise subtle,

making any topological remnants in the residual more challenging to identify. The

ω3 was selected for embedding as it shows the strongest correlation to traffic loading,

with a value of -0.51. However, the average correlation of the other deck frequen-

cies is -0.33, indicating a generally weak association between the deck frequencies

and traffic loading. The temperature also bears a weak correlation to the deck

frequencies.

Given the limited EOV contributions to the ω3 embedded topology and the fact that

cointegration further diminishes these effects, it is anticipated that the topological

remnants of the EOVs in the residual series will be less pronounced than in the

cable-tension embedding scenario. The extent of remaining traffic loading topology

in the residual series is determined by,

ηs(θ, ω3) = 1− ∂W (θ, ϵω)

∂W (θ, GC)
= 1− 329.05

350.51
= 0.0612 (8.18)

ηs(L, ω3) = 1− ∂W (L, ϵω)

∂W (L, GC)
= 1− 412.93

465.35
= 0.1127 (8.19)

These results suggest that the traffic loading effects are more pronounced in the ϵω

embedding, as indicated by ηs(θ, ω3) < ηs(L, ω3). When applying the normalisation

term, the following results are obtained,

η̂s(θ, ω3) = 1− ∂W (θ, ϵω) + ∂W (θ, ω3)

∂W (θ, GC) + ∂W (θ, ω3)
= 1− 329.05 + 275.35

350.51 + 275.35
= 0.0343 (8.20)

η̂s(L, ω3) = 1− ∂W (L, ϵω) + ∂W (L, ω3)

∂W (L, GC) + ∂W (L, ω3)
= 1− 412.93 + 360.57

465.35 + 360.57
= 0.0635 (8.21)

The normalisation mainly decreased the overall magnitudes of the values without
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significantly altering their relative values. These now-decreased values indicate that

only a small amount of topology associated with θ and L was removed by cointegra-

tion, as there was so little present initially. However, the important point of includ-

ing the deck frequency analysis is to highlight that the remaining EOV topological

features in ϵω are consistently lesser than the equivalent features in ϵT . Essentially,

cointegration has to remove fewer nonstationarities in the deck frequencies than the

cable tensions.

8.4 Conclusion

This chapter introduced a novel method for quantifying residual topological features

of EOVs after cointegration, thereby assessing the performance of cointegration

regarding specific EOVs. The approach hinged on the concept of an optimal time-

delay embedding, designed to maximise and accurately represent the topologies of

the signals. The presence of topological features associated with an EOV in the

embedded residual indicated an incomplete removal of that trend via cointegration.

The novel approach for determining the optimal embedding delay focussed on max-

imising the loop size in the embedding by considering the signal’s frequency com-

ponents. Consequently, this procedure allows for a consistent method of maximis-

ing persistent intervals relating to the cyclic feature with the largest amplitude.

Additionally, a pre-existing method was employed to determine the optimal em-

bedding dimension by minimising the proportion of false-nearest neighbours in the

embedding space. These systematic methods eliminate ambiguity in the selection

of embedding parameters.

The optimal time-delay embeddings were then applied to four signals from the Tamar

Bridge: temperature, traffic loading, cable tension, and deck frequency. The cointe-

grated residual series for the cable tensions and deck frequencies were subsequently

determined and embedded. The time-delay embeddings for each signal showcased

unique topologies, with varying degrees of similarity. When topological similarities

between the EOV embedding and the residual series were present, this suggested

the failure to purge this EOV from the residual series. These similarities were then

compared to an idealised cointegration scenario.

In addition to comparing embedded residuals to an idealised cointegration scenario,

this idea was extended to account for an EOV’s topology present before cointegra-
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tion. This second metric takes into account the initial contributions of the EOV to

the structural parameter and normalises by this value. Therefore, allowing for an

assessment of topological changes before and after cointegration, specific to an EOV,

one quantifies the extent to which an EOV has been removed via cointegration.



Chapter 9

Conclusion

As structures grow in complexity and size, their safety and economic implications

escalate accordingly. Even with the most meticulous design, aberrations are an

inescapable reality over a structure’s lifespan. Thus, implementing procedures to

detect anomalies becomes a safety and economic necessity in mitigating disaster.

In situations where critical decisions must be made with limited information, a

panacea simply does not exist. Therefore, SHM choices – analogous to everyday

decision-making – should draw from multiple information sources, weighing diverse

viewpoints to reach the most informed conclusion.

While the methods employed in this thesis are esoteric, their applications are not un-

like other contemporary engineering analyses. Much like software tools such as FEA,

CFD, or TensorFlow, the abstruse theory is nestled away behind a computational

interface. The topological and differential geometric methods used and created for

this thesis are also encapsulated within computer programs, masking their abstract

inner workings. Yet, the information elicited from these abstract methods is indeter-

minable via other means. So now such methods have been introduced and created,

the focus transitions from the mathematical query of “How is this information ob-

tained?” to an engineering mindset of “How can this information be leveraged for

the greater good?”.

The central theme of this thesis was the proposition of topological arguments as

innovative and unique viewpoints to support SHM decisions. Rather than analysing

data points in isolation or relying on conventional statistics, TDA distinguishes

216
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by focussing on the shape and connectivity of data. By interpreting structural

mechanics as shapes, TDA provides unique insights into damage detection and other

challenges in SHM. This thesis, while specific in its scope, highlighted the vast

potential of TDA in SHM, and the broader realm of engineering. To adapt words by

Darwin [135]: “There is grandeur in this view of data, with its topological features,

having been originally breathed into a few dimensions or into one; and that, whilst

the topology has gone cycling on according to the persistent laws of homology, from

so simple a beginning endless forms most beautiful and most wonderful have been,

and are being, uncovered.”

Complementing the SHM aspects were nonlinear dynamical analyses. These con-

cepts are crucial for deepening understanding of system modelling; ideas paramount

in structural design and dynamics. Recognising the dire implications of structural

failures, there is an impetus to develop high-fidelity models that can aptly capture

complex nonlinear input-output behaviours. This research revitalised the generat-

ing series, enabling deep-series solutions to nonlinear differential equations via the

abstract approach of shuffling words. This theoretical framework not only offers a

greater understanding of nonlinear systems compared to numerical methods but also

reformulates the problem for efficient and optimisable array manipulations. With

the introduction of novel optimisations and the derivation for the impulse response,

this malleable theory can be applied to much more complex systems within the

literature, potentially casting light on longstanding challenges.

9.1 Chapter Summary

Chapter 1 laid the foundation for the thesis by introducing the two focal topics:

structural health monitoring (SHM) and nonlinear dynamics. Subsequently, two

theoretical approaches used in the thesis were discussed: topological data analysis

(TDA) and the generating series. The chapter underscored the distinct insights

provided by TDA and its potential to enhance SHM; specifically, the emphasis

on TDA’s capability to reveal concealed aspects of data to aid in SHM decision-

making. The chapter wrapped up by outlining the key novel contributions of this

study.

Chapter 2 presented the generating series approach for solving nonlinear differen-

tial equations. The chapter set the stage by discussing some abstract concepts

such as noncommutative algebras and iterated integrals; followed by introducing
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the generating series framework. This framework primarily involves transforming

a nonlinear differential equation into the generating series domain, conducting

manipulations within this domain, and then inverse transforming back into the

time domain to produce Volterra series solutions. To determine the impulse re-

sponse solution within the framework, the process garnered a little more attention,

and thus a novel derivation for the impulse response was established. Addition-

ally, some novel optimisation strategies for computing higher-order terms in the

Volterra series were unveiled. While some of these strategies applied to the gen-

erating series in general, the most impactful were specific to impulse excitation.

These optimisations were pivotal in attaining such deep series solutions. The gen-

erating series approach was applied to a variant of Duffing’s equation, revealing

never-before-seen depth in the Volterra series for this system equation excited

by an impulse. The results were discussed in detail and validated against an

alternative method using contour integration.

Chapter 3 served as a comprehensive introduction to TDA, with a spotlight on

persistent homology. Recognising persistent homology’s distinctiveness from cur-

rent SHM analyses, the theory was introduced ab initio; from rudiments like sets

and groups to the homology of topological spaces. The chapter introduced rea-

soning through a rubber-sheet philosophy, emphasising topological understanding

over traditional geometric rigidity. Central to topology are topological invari-

ants, properties preserved under homeomorphisms, with homology emerging as

the most important invariant of interest for this work. An illustrative example

of the homology groups of a basic simplicial complex was provided to bridge be-

tween the mathematical and computational theory. These ideas then paved the

way to introduce persistent homology built atop data, enabling the construction

of topological invariants directly from data. Extending the concept of persistent

homology was the introduction of the Wasserstein distance, a measure enabling

the comparison of different datasets via a notion of topological similarity. This

chapter concluded with some common pitfalls and flaws of TDA.

Chapter 4 showcased the first application of a purely topological approach to

SHM. In this application, the Z24 dataset was partitioned based on categories

defined by the temperature at each data point and the presence of damage. The

chapter introduced a novel method to determine the topological uniqueness of

a manifold in comparison to its counterparts. This method successfully identi-

fied the manifold of damage-state samples as the most distinct among the others,
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thereby demonstrating the feasibility of conducting SHM under the guise of topol-

ogy. The chapter concluded by examining some additional cases, highlighting the

methodology’s resilience to data down-sampling and linear transformations.

Chapter 5 focussed on interfacing persistent homology with machine learning. In

doing so, the standard unstructured form of the persistent homology was trans-

formed into vector representations. These vectors enabled the inclusion of persis-

tent homology features in a machine-learning classification scheme, demonstrating

that the β1 features can effectively classify sliding windows of data. This chapter

was arguably the most important aspect of this thesis, highlighting the capability

to integrate persistent homology features into machine-learning workflows.

Chapter 6 centred on strange attractors and their fractal dimensions, approached

from a TDA angle. This chapter showed that even within the topological noise,

valuable insights can be derived from the persistent homology features, specifically

by determining the fractal dimensions of the attractors. To conclude, the chapter

compared the topology of a complete attractor to its reconstruction, aiming to

identify the delay that results in the most-topologically-accurate reconstruction

into its original dimension.

Chapter 7 provided insight into analysing both linear and nonlinear cointegration

schemes when applied to the Z24 Bridge. Via embedding the residual series, topo-

logical signatures were formed for specific features, revealing that distinct shapes

appear in the residual series. These shapes are indicative of the information that

remains in the residual series after cointegration, most notably the freezing region.

The chapter also presented cointegration from a topological viewpoint, where the

objective is to transform the embedded manifolds with topological features into

a Gaussian cluster.

Chapter 8 built upon the previous chapter, aiming to quantify the removal of spe-

cific nonstationary trends from cointegrated time series using topological reason-

ing. In order to achieve this analysis, the Tamar bridge data set was introduced as

multiple EOVs show significant effects on the structural parameters, particularly

the temperature and traffic loading. The embedded residuals were compared to

an idealised version of cointegration, indicating the presence of a topology specific

to an EOV, thereby quantifying normalisation success regarding that EOV.
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9.2 Limitations

It is important to recognise that the analyses presented in this thesis come with

inherent limitations. Both the practical applications and the theoretical methodolo-

gies used face specific challenges. This section briefly provides an overview of some

of the limitations encountered during this research.

One significant challenge with the concepts presented in this thesis is the unfamiliar-

ity of abstract ideas and their foundations within engineering courses and literature.

As a result, the very abstraction intended to cast new light on engineering prob-

lems might act as the gatekeeper to the broader application of these ideas. This

point is especially important when alternative methods with a greater theory over-

lap with the norm are more convenient, faster and often more accurate. For TDA

and generating series to become staples in engineering, there would need to be a

shift towards embracing more abstract concepts. This action would demand time

and effort that might be better spent addressing problems to a satisfactory standard

using established methods, rather than extracting the marginal additional insights

these abstract methods might offer. However, in scenarios like SHM, where avail-

able information is limited and stakes are high, these abstract methods become more

topical. The question then becomes, “How much information is needed for SHM de-

cisions?” as introducing new analytical methods increases both complexity and cost,

so it is essential to strike a balance between the depth of analysis and practicality.

As hinted at in Chapter 3, there are philosophical quandaries associated with this

analysis. TDA was shown as powerful in scenarios where point cloud data forms

an interesting topology, however, it is not a given that such features will emerge

under the incursion of damage or the influence of EOVs. Furthermore, interpreting

what a hole or cavity in the data signifies is not straightforward, and is likely to

be different for all structures. There is no direct method to link specific topological

shapes to structural dynamics or particular damage cases. Factors such as temper-

ature and traffic loading influence modal parameters differently for different bridge

types, materials, and geometries. All of these effects will influence the topology to

some degree, but how is unclear. The Z24 Bridge example even showed different

topologies forming within the time-delay embeddings of different natural frequencies

under the influence of temperature. Establishing a connection between topology and

structural happenings would likely be unique to each structure and would require an

extensive catalogue of shapes corresponding to various features. Additionally, un-



Conclusion 221

derstanding the interaction of these topologies when they coexist presents another

layer of complexity.

Another major limitation of TDA is all the challenges stemming from the require-

ment of many points to form a topology of a point cloud. Inherently, a single point

is 0-dimensional, two points are limited to forming a straight line, and so forth. It is

only when an ambiguous and arbitrary number of points are present that a mean-

ingful and characteristic topology of data emerges. The inability to analyse a single

point via TDA comes with a myriad of problems. Labelling becomes nontrivial as

mixed labels are almost inevitable, necessitating coarser labelling strategies such as

‘undamaged’ or ‘damaged’; sacrificing the depth of information from other varying

parameters over multiple points, like temperature and traffic count. Additionally,

using multiple points can delay the detection of topological effects in analyses, like

those using sliding windows. This delay might result in a slower identification of

damage compared to traditional methods.

However, the most significant detriment of having numerous points and determining

their connections lies in the combinatorial complexity. A significant issue in this work

was that calculating the persistent homologies of point clouds with more than 2000

points proved to be challenging, restricting the possible shapes to such few points

castrates the theoretical limits of TDA. The computation expense was evident

even when considering only the β1 features, consequently, all the analysis in this

thesis was restricted to β0 and β1 homological features, despite manifolds being

embedded in R3 and R4. As mentioned in the footnotes of Chapter 4, for the warm

partition with 2089 points it was infeasible to determine the β2 features, whereas

the others were attainable. Consequently, the inability to form information for

the single large partition, all the β2 features had to be excluded for consistency.

Several analyses were truncated because of the time-consuming nature of persistent

homology calculations. This situation presents a dichotomy between the desire for

a well-defined topology and the feasibility of calculating persistent homology.
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9.3 Future Work

The topological methods discussed in this thesis are by no means exhaustive. The

field is rapidly evolving, with new and unique applications and methodologies emerg-

ing across various disciplines. Given the size and time constraints of this thesis, it

was not feasible to address every research topic. Hence, this section highlights some

potential areas for future research. While specific recommendations for subsequent

research based on the findings of this thesis were often discussed in situ, the topics

listed here provide a broader extension of TDA and its application to SHM.

• Fundamental to all persistent homology calculations is the extraction method

of simplicial complexes from data. An interesting avenue to explore is the

adoption of a less metric-centred approach to forming simplicial complexes.

Instead of using the Vietoris-Rips complex, one could consider extracting sim-

plicial complexes from data by using a reciprocal nearest-neighbours approach;

where two points are called k-reciprocal nearest neighbours of each other if

they are among each other’s k-nearest neighbours [89].

Such an approach would shift the emphasis from a strict reliance on dis-

tance to a more topological concept of closeness; essentially making topological

data analysis more topological. The persistent homology derived from such

a method, instead of being parameterised by a continuous ε would be pa-

rameterised by k, the number of neighbours. Therefore, removing the strong

reliance of Vietoris-Rips complexes on the Euclidean distance, favouring a

more flexible, rubber-sheet-like topological interpretation.

This approach would also respond better to outliers. An outlier is unlikely to

be the nearest neighbour of a nonoutlier, meaning they would not be reciprocal

nearest neighbours; thus simplex formation would be limited for outliers. Since

a nonoutlier is often surrounded by other nonoutliers, the likelihood of forming

a connection to an outlier is reduced. Consequently, a simplex to the outlier

is less likely to form, making this method more resilient to such anomalies.

• One slight twist on persistent homology involves not directly computing the

persistent homology over the point cloud, but instead focussing on the persis-

tent homology of correlation values. This method could be particularly useful

when applied to a set of damage-sensitive structural parameters that show

EOV effects, such as natural frequencies. By considering the correlations of
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sliding windows the common-correlated nonstationarities such as temperature

and traffic loading would be removed. These correlation values are then used

as a distance matrix to compute persistent homology, offering topological in-

sights based on the extracted information, diverging from the direct manifold

embedding approach used in this thesis.

The inspiration for these ideas comes from work by Gidea [136], which em-

ployed a similar approach to detect early indicators of critical transitions of

the 2008 stock market crash.

• Using product topologies via the Künneth formula might be informative in un-

derstanding topologies where structural parameters are influenced by multiple

EOVs. For instance, considering the Tamar Bridge’s cable tensions, forming a

product topology that combines the effects of traffic count and temperature,

weighted according to their respective contributions to the structural param-

eter, could provide valuable insights. By adopting this approach, it might

become possible to predict the topology of the structural parameter based on

the EOVs, possibly with the assistance of generative machine learning tech-

niques. Any deviation between the observed topology and the predicted one

would suggest an unaccounted factor or event, possibly indicating damage.

• While topological methods may never supplant machine learning, the fusion of

incorporating persistent homology vector representations alongside traditional

features warrants further consideration. This combined approach could offer

invaluable insights enhancing damage detection, localisation, and classification

capabilities.

• For the generating series method, an extension could explore matrix methods

over generating series for a multi-degree-of-freedom system. By employing

caching optimisations, the expansion might not substantially increase compu-

tational complexity, especially since many shuffle expansions would likely be

identical. This approach offers the advantage of modelling extra dimensional-

ity without a significant computational burden.
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y3 in the Volterra Series

Section 2.3 lists the terms y1 and y2 determined via the generating series method.

Meanwhile, Appendix B shows terms y1, y2, and y3 determined via contour in-

tegration. To facilitate a direct comparison between the first three terms of the

generating series and contour integration approaches to the same problem, y3 from

the generating series is listed as,
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y3 = − A3k2
2e

−3a2t

2a61a2 − 19a51a
2
2 + 72a41a

3
2 − 140a31a

4
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5
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− A3k2
2e

−3a2t
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2
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3
2 − 195a31a
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2e
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t(−a1−2a2)

a51a
2
2 − 4a41a

3
2 + 4a31a

4
2 + 2a21a

5
2 − 5a1a62 + 2a72

+
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+
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(A.1)
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Contour Integration Approach

for the Volterra Kernels

For the same system described in Section 2.3, the Volterra terms are derived using

a contour integration method [25]. These terms are expressed in relation to the

damping ratio ζ = c
2
√
k1m

, the natural frequency ωn =
√

k
m
, and the damped natural

frequency ωd = ωn

√
1− ζ2. The terms derived using this method are listed as,

y1(t) =
A

mωd

exp−ζωnt sin (ωdt) (B.1)

y2(t) =
A2k2

2m3ω2
dω

2
n

{
e−ζωnt cos (ωdt)− e−2ζωnt

}
+

A2k2
2m3ω2

dω
2
n (8ω

2
d + ω2

n)
×{

|C|e−ζωnt cos (ωdt+ ∠C)− |B|e−2ζωnt cos (2ωdt+ ∠B)
} (B.2)

where,

B = (−3ωd + iζωn) (−ωd + iζωn) and C = (3ωd + iζωn) (ωd + iζωn) (B.3)
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and finally,

yk23 (t) =
A3k2

2|G|e−3ζωnt
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d) (ω
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n) (3ω

2
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2
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2|H|e−2ζωnt
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4
n) (8ω
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3
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2
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+
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5
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2
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2e
−ζωnt
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d) (ω

5
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8m5ζ (ω3
d) (ω

5
n) (3ω

2
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2
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(B.4)

where,

G = 17ω3
dζωn − 7ωdζ

3ω3
n + i6ω4

d − i17ω2
dζ

2ω2
n + iζ4ω4

n (B.5)

H = −4ωdζωn − i3ω2
d + iζ2ω2

n − iω2
n (B.6)

J = 13ω3
d + 2ωdω

2
n + 5ωdζ

2ω2
n − i9ω2

dζωn − i2ζω3
n − iζ3ω3

n (B.7)

K = 9ω5
d − 32ω3

dζ
2ω2

n + 3ω3
dω

2
n + 7ωdζ

4ω4
n − 5ωdζ

2ω4
n + i27ω4

dζωn

−i20ω2
dζ

3ω3
n − iζ3ω5

n + iζ5ω5
n+i7ω2

dζω
3
n

(B.8)

Corrections are made to certain terms, highlighted in red, which deviate from the

presented form in the paper because of typographical errors. In the referenced

paper [25], the exponent in red is given as 2, and the final term of K is absent. The

amended form originates from Dr G Manson’s MATLAB code, supplied by Dr T

Rogers. This amended form is consistently used in all Volterra series calculations in

this thesis.
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Successive Boundary Map Proof

To show that two successive boundary maps give the result that the chain complex

is equal to zero, it is sufficient to start with a standard simplex, as the linearity

relations are shown in Definition 3.5.4 and a simplicial complex is the sum of multiple

standard simplices.

∂k∂k+1∆
k = 0 (C.1)

Since the simplex is characteristic of the set of vertices ∆k = [v0, . . . , vk], this can

be substituted in place, then with manipulation, the following result is obtained.

Proof.

∂k∂k+1∆
k = ∂k∂k+1[v0, . . . , vk]

= ∂k

{
k∑

j=0

(−1)j[v0, . . . , v̂j, . . . , vk]

}

=
k∑

j=0

(−1)j∂k[v0, . . . , v̂j, . . . , vk]

=
k∑

j=0

(−1)j
[ j−1∑
i=0

(−1)i[v0, . . . , v̂i, . . . , v̂j, . . . , vk]

+
k∑

i=j+1

(−1)i−1[v0, . . . , v̂j, . . . , v̂i, . . . , vk]
]
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=
∑
i<j

(−1)i+j[v0, . . . , v̂i, . . . , v̂j, . . . , vk]

+
∑
i>j

(−1)i+j−1[v0, . . . , v̂j, . . . , v̂i, . . . , vk]

=
∑
i<j

{
(−1)i+j + (−1)i+j−1

}
[v0, . . . , v̂i, . . . , v̂j, . . . , vk]

= 0

This result is reliant on (−1)i+j + (−1)i+j−1 = (−1)i+j(1 + (−1)1) = 0, therefore

each term is out of phase, meaning ∀i, j this result is equal to zero.



Appendix D

Wasserstein Partition Size

Dependency

To supplement the Wasserstein partitions varying size plots given in Section 4, the

symmetric versions, where the complement set W2 are listed here.
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Figure D.1: Size of the WD values depending on the size of the warm
partition size.
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Figure D.2: Size of the WD values depending on the size of the warm
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General Time Series

E.1 Foundational Time Series Concepts

To provide context for time series theory, this section outlines fundamental concepts

and definitions. These serve as supplementary material to the primary content in

Chapters 7 and 8.

Definition E.1.1. A stationary time-series stays in statistical equilibrium, in which

the mean and variance do not change [137].

Cointegration aims to convert a set of multiple nonstationary time-series, those

being time series that do not obey the criteria outlined in Definition E.1.1. For

cointegration, it is required to confirm that all the time series are nonstationary to

the same degree. In other words, the time series are integrated of the same order.

To verify this assertion, the idea of differencing is required.

Definition E.1.2. Differencing is a method to remove trends from a time series.

∇yt = yt − yt−1 = (1−B)yt, (E.1)

where B is the backward shift operator. The kth difference is determined by,

∇kyt = (1−B)kyt. (E.2)

The kth difference removes kth degree polynomial trends.
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Finally, the last required foundational concept for cointegration is a Vector Autore-

gressive model, used to model time series in the Johansen procedure, detailed in

Section 7.1.3.

Definition E.1.3. Autoregressive (AR) models are models that are influenced by

the previous values within the time series.

yt = α1yt−1 + α2yt−2 + · · ·+ αpyt−p + ϵt = ϵt +

p∑
i

αiyt−i, (E.3)

where αi is a weight, and ϵ is sampled from a white noise process. A time series

that satisfies equation E.3 is said to be an autoregressive process of order p, denoted

AR(p). For example, AR(1) refers to an autoregressive process where the regression

is solely on the preceding value.

Definition E.1.4. A vector autoregressive (VAR) model is an extension of an AR

model for m time series. A VAR model pertains to the form,

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + µt = µt +

p∑
i=1

ΦiYt−i (E.4)

Where Yt is a m×1 vector representing the states at time t, Φi represent the m×m

matrices of coefficients, and µt represents an m× 1 vector of white noise processes.

VAR models generalise univariate AR models by considering more than one evolving

variable. Each variable within a VAR is explained by its own lags and the lags of

all other variables in the model [137]; therefore capturing multivariate processes.
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Journal Papers

• T. Gowdridge, N. Dervilis, K. Worden. On Topological Data Analysis for

Structural Dynamics: An Introduction to Persistent Homology (2022) ASME

Open Journal of Engineering.

Conference Papers

• T. Gowdridge, G. Manson, N. Dervilis, K. Worden. On the use of Generating

Series for the Impulse Response of Duffing’s Equation (2024) Proceedings of

the 42nd IMAC.

• T. Gowdridge, E.J. Cross, N. Dervilis, K. Worden. On Quantifying Data

Normalisation via Cointegration with Topological Methods (2023) Proceedings

of the 41st IMAC.

• T. Gowdridge, E.J. Cross, N. Dervilis, K. Worden. A Topological Analysis of

Cointegrated Data: A Z24 Bridge Case Study (2022) European Workshop on

Structural Health Monitoring, Volume 2.

• T. Gowdridge, N. Dervilis, K. Worden. On the application of topological data

analysis: a Z24 Bridge case study (2021) International Workshop on Structural

Health Monitoring
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• T. Gowdridge, N. Dervilis, K. Worden. On Topological Data Analysis for

SHM: An Introduction to Persistent Homology (2020) Proceedings of the 39th

IMAC.

• T. Gowdridge, N. Dervilis, K. Worden. On the Application of the Generating

Series for Nonlinear Systems with Polynomial Stiffness (2020) Proceedings of

the 39th IMAC.
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