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Abstract

The last ten years have seen an explosion of research interest in the cross-over area between

computer vision and natural language processing, driven by interest in potential applications

such as automatic image description and captioning, image generation from text and auto-

matic text illustration. Such research integrating vision and language often tries to solve

image based tasks, by relying on images aligned with texts. However, such aligned data is

both noisy and limited in volume. The research reported here starts from the observation

that there is a vast amount of visually descriptive language in text not aligned with images

that could potentially be exploited in image-text related applications. To use such language

requires us to be able to identify it and to organise it, which leads us to the two exploratory

research questions pursed here. First, can we identify visually descriptive language in text?

And, second, given that human activity in the world takes places in various types of settings,

can we identify such settings in narrative descriptions and can we identify when these settings

change?

We pursue these questions through two specific studies which address novel language

processing tasks. In our first study, we focus on the task of automatically classifying text

into three classes (visually descriptive, partially descriptive and not visually descriptive)

based on the proposed definition of VDL given in Gaizauskas et al. (2015). We perform this

task on two levels: sentence level and segment level We use several linguistic and statistical

features both separately and in different combinations to observe which perform better in the

classification tasks. Our findings show that sentence level classification can be performed

at around 79% accuracy and segment level classification can be achieved at around 81%

accuracy.
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In our second study, we explore how scenes in narrative text can be automatically

identified. We contribute with a small corpus of scene annotated narrative text (ScANT) which

to the best of our knowledge, is the first publicly available corpus of English narrative text

annotated with scene boundaries. In this study, we develop guidelines to manually annotate

the dataset with scene boundary information following SceneML framework (Gaizauskas

and Alrashid, 2019). We also develop automatic scene segmentation models using both

feature engineering and deep learning approaches. In the feature engineering approach we

test the extent to which VDL helps in automatic scene segmentation. Our results show this is

a hard task, with our best performing model, a pre-trained language model, achieving just

58% balanced accuracy on the automatic scene segmentation task.
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Chapter 1

Introduction

1.1 Context and Motivation

In recent years, the fields of computer vision and natural language processing (NLP) have

undergone unprecedented growth, driven by advancements in artificial intelligence leading

to the integration of these two fields. The collaborative efforts between computer vision

and NLP communities have contributed to solving many visual language tasks. There has

been a considerable amount of work done on image captioning; the task of generating

natural language descriptions for a given image (Chen et al., 2015; Ghandi et al., 2023;

Ming et al., 2022). Figure 1.1 shows an example of captions that have been automatically

generated for the given photo by (Li et al., 2020). Other work has been done on text-to-

image generation in which images are generated from textual descriptions. Figure 1.3 shows

an example of an image generated for the text scene below it (Coyne and Sproat, 2001).

Recent advancements in text-to-image generation have led to groundbreaking platforms of

generative AI such as Stable Diffusion1, DALL-E (Ramesh et al., 2021) and Midjourney

(https://www.midjourney.com). Figure 1.4 shows an example of two images generated for

the text scene below them using Stable Diffusion tool. Visual question answering has also

been a trending topic in which systems are trained to understand and answer questions about

images (Antol et al., 2015; Goyal et al., 2017; Malinowski et al., 2015; Wu et al., 2017).

1https://stablediffusionweb.com
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Furthermore, automatic text illustration; the task of automatically finding a suitable image

for a given segment of text has attracted attention in the research field. Joshi et al. (2006)

built a system that automatically selects images from story texts.

Such research integrating vision and language generally tries to solve image based tasks,

by relying on images aligned with texts (Chen et al., 2015; Mogadala et al., 2021). The

problem is twofold: (1) Many captions associated with images do not just describe the image.

For example, a caption for an image could be “First photo Taken with my Canon AE-1” as

in Figure 1.2. (2) The volume of images with associated captions overall is not great. For

example, the most commonly used datasets are Flickr8K dataset which has 8092 images and

Flickr30k dataset which has 31783 images in which each image has a caption containing 5

sentences.

Our research focuses primarily on the second of these two questions. Is there some way

of exploiting text not directly associated with images? We can find such text in narratives

and drama, because we get descriptions of setting in fiction. We may get visual descriptions

in other genres also, for example in biography. So we propose to investigate ways of utilising

these other purely linguistic image-related resources to help in tasks relating to images. These

tasks could include:

• annotating images with captions — when describing objects or events in images,

understanding how these objects or events are typically described in non-illustrated

text can provide valuable insights to suggest what attributes to include in captions. For

instance, describing a car may involve attributes such as colour, size, make, and age,

while describing a wedding may include details like the number of guests, the bride’s

dress, and the cake;

• aligning images and movies with text — non-illustrated text, particularly in narrative

forms like novels, is often organised into scenes. Understanding how scenes are formed

and transitioned in text is essential for precise alignment with images/movie clips. It

helps systems identify suitable breakpoints where images or movies can be aligned;
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• selecting or generating images to include in illustrations in text — understanding

how text is divided into scenes helps in generating images that accurately reflect the

narrative structure. Each scene has distinct visual elements, settings, or characters.

Learning to extract them from text can be helpful to be captured in the generated

images.

Angle 1

The research reported in this thesis has explored two angles. One angle is building on

the notion of visually descriptive language to see whether there is a way of automatically

identifying language which is visually descriptive in text. The challenge is that there is a

lot of visually descriptive text in other forms of text besides image captions and we need

to see how to identify and extract that and utilise it for vision tasks. In order to do so, we

need a definition of “visual language”. Here we propose to use the definition provided by

(Gaizauskas et al., 2015): visually descriptive language (VDL) is language which asserts

propositions whose truth can be confirmed through visual sense alone.

Angle 2

The other angle is to explore the idea that narrative scenes are divisions found in all

narratives, which amongst other things have to do with physical setting. Usually there are

descriptions that enable the reader to note scenes have changed. We conjecture that as a first

step towards identifying portions of a narrative that describe the physical setting of a scene,

it would be useful to automatically detect scene boundaries in the narrative. Automatic scene

segmentation could be useful for purposes of illustration and alignment. It can aid in the

process of aligning images with story segments. It can also help in aligning movie clips with

their corresponding textual scene segments by segmenting scenes from running narrative

texts associated with the movies.

This thesis proposes the idea of automatic segmentation of narrative text (stories) into

scenes. In order to carry out this task, we first provide a definition of what a scene is. Then,

we define guidelines for scene annotation that help in identifying scene change and scene

boundaries. Automatic segmentation of text into scenes could help in building a text corpus

of scenes that could be used by systems converting scenes into images. In addition, scenes
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could be clustered and common visual elements identified for scenes of the same type, i.e.

scenes which are clustered together.

Fig. 1.1 An example of an image with captions that has been automatically generated - The
captions are generated by Li et al. (2020)

Fig. 1.2 An example of an image with caption that is not descriptive - taken from
https://www.baty.net/2013/canon-ae-1-program-as-nostalgia/

In our approach to automatic segmentation of narrative texts into scenes, we will inves-

tigate the use of visually descriptive language (VDL) as mentioned above. Using VDL is

motivated by the idea that one indicator of scene change could be the change of physical

setting, and description of setting is conveyed by VDL then the presence of VDL may suggest

that this is where a scene change is taking place.
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Fig. 1.3 An example of a scene generated from the following text (Coyne and Sproat, 2001)
“John uses the crossbow. He rides the horse by the store. The store is under the large willow.
The small allosaurus is in front of the horse. The dinosaur faces John. A gigantic teacup is
in front of the store. The dinosaur is in front of the horse. The gigantic mushroom is in the
teacup. The castle is to the right of the store".

1.2 Contributions

This thesis presents novel work in research related to visually descriptive language and

automatic scene segmentation. The contributions are as follows:

• Extends work done on sentence level classification according to whether or not they

contain visually descriptive language by adding additional features (see research paper

1) and presents the first attempt for the segment level classification task.

• Introduces guidelines based on sceneML to annotate scenes in narrative text.

• Introduces a publicly available dataset of annotated scenes (ScANT), the corpus and

annotation guidelines are available at https://doi.org/10.15131/shef.data.21517908 and

are made available under the CC By-NC 4.0 licence 2 (see research paper 4).

2https://creativecommons.org/licenses/by-nc/4.0/.

https://doi.org/10.15131/shef.data.21517908
https://creativecommons.org/licenses/by-nc/4.0/
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(a) “John uses the crossbow. He rides the horse
by the store. The store is under the large willow.
The small allosaurus is in front of the horse.
The dinosaur faces John. A gigantic teacup is in
front of the store. The dinosaur is in front of the
horse. The gigantic mushroom is in the teacup.
The castle is to the right of the store” – the text
scene is taken from Coyne and Sproat (2001).

(b) Sara is working on her PhD Thesis anxious
and worried till late at night on a cold rainy day.
She is at the department lab in her desk drinking
chamomile tea to calm her down.

Fig. 1.4 An example of two images generated by Stable Diffusion for the text below them.
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• Introduces the novel task of automatic segmentation of narrative text into scenes based

on ScANT dataset.

• Finally, it explores how useful VDL is in the task of automatic scene segmentation.

1.3 Overview of the Thesis

This thesis is structured as follows:

• Chapter 2 is a literature survey of background information relevant to the project.

In this chapter, section 2.1 covers the notion of visually descriptive language and

gives details, both of the work of Gaizauskas et al. (2015) and other works on visual

language. Section 2.3 discusses some definitions of scene in literature. Section 2.4

is about scene segmentation. Section 2.5 provides brief description of named entity

recognition. Section 2.6 is about text segmentation; its approaches and evaluation.

• Chapter 3 describes the research questions and research methodology and the data

that has been collected and used for this research.

• Chapter 4 presents the topic of Visually Descriptive Language. It describes the details

of experiments done for the tasks of sentence level classification and segment level

classification of VDL.

• Chapter 5 introduces the idea of scene annotation in narrative text. It describes the

framework established for annotating scenes in narrative text (sceneML). It also gives

results of a pilot study on the annotation task and then gives a detailed explanation of

the actual annotation task.

• Chapter 6 presents work on the automatic scene segmentation task. It presents the

automatic scene segmentation system that was built using three approaches (CRF

based approach, sentence pair classification approach, and BERT based approach). It

provides performance results of the three models and discusses these results.
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• Chapter 7 provides a comprehensive summary of the main ideas of this thesis, and

presents a conclusion and future work.

1.4 Published Work

This section lists papers published in peer-reviewed international conferences as part of the

research work carried out on this thesis.

1 The work described in Section 2.3.2 of chapter 2 has been published in the proceedings of

the 15th Joint ACL - ISO Workshop on Interoperable Semantic Annotation (ISA-15)

that was held in conjunction with The 13th International Conference on Computational

Semantics (IWCS 2019) (Gaizauskas and Alrashid, 2019).

2 The work described in section 4.1 of chapter 4 has been published in the proceedings of

the 15th Joint ACL - ISO Workshop on Interoperable Semantic Annotation (ISA-15)

that was held in conjunction with The 13th International Conference on Computational

Semantics (IWCS 2019) (Alrashid et al., 2019).

3 The work described in section 5.2 of chapter 5 has been published in the proceedings of the

Fourth International Workshop on Narrative Extraction from Texts (Text2Story) that

was held in conjunction with the 43rd European Conference on Information Retrieval

(ECIR 2021) (Alrashid and Gaizauskas, 2021).

4 The work described in section 5.3 of chapter 5 has been published in the proceedings of

the Sixth International Workshop on Narrative Extraction from Texts (Text2Story) held

in conjunction with the 45th European Conference on Information Retrieval (ECIR

2021) (Alrashid and Gaizauskas, 2023).



Chapter 2

Background

The overall aims of this thesis are to investigate how visually descriptive language may

be automatically extracted from text and how scenes may be automatically segmented in

narrative text. In this chapter we review previous work on these two topics and also describe

the principal natural language processing (NLP) techniques we use in the experimental work

carried out in a subsequent chapter. In section 2.1, a description of Visually Descriptive

Language (VDL) and examples of it are given. An overview of other approaches to visual

language is also presented. In section 2.3, work related to scene segmentation is reviewed, and

a brief summary of some definitions of scene in the literature are given. In section 2.4, a brief

description of supervised classification methods is given. As discussed in the introduction,

the task of segment level classification will use some of named entity recognition approaches,

so the description of it is given in section 2.5. In addition, in section 2.6 a discussion about

text segmentation, approaches and evaluation methods is provided. Finally, section 2.7

summarises the content discussed in this chapter.

2.1 Visually Descriptive Language

Gaizauskas et al. (2015) introduced the concept of visually descriptive language (VDL)

in their research “Defining Visually Descriptive Language”1. VDL is proposed to be of

1This section has been adapted from my MSc (Alrashid, 2017)
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potential benefit to research integrating vision and language (e.g. image captioning, story

illustration, text/image retrieval). The authors try to answer the questions: (i) “how much

text out there without associated images is ‘visually descriptive’ and thus potentially useful

for such image-based tasks” (ii) “can these ‘visually descriptive’ text segments be identified

automatically within documents which may consist of predominantly ‘non-visual’ text?”.

The goal of defining VDL is to be able to automatically mine VDL segments from a corpus

of text that can help computational models of image based tasks. They provide a definition of

VDL which relies on the notion of text segments whose truth can be confirmed by visual sense

and this type of VDL need not be associated or aligned with an image, unlike the definition

provided by (Dodge et al., 2012) (see below) identify noun phrases that are ‘visually concrete’

and often found in image captions. This distinction between the two definitions gives the

following implications:

1. Visually Descriptive Language (VDL) can be extracted from any text, not limited to

content linked with images. This broadens the scope of obtainable data for mining

purposes.

2. text segments larger than noun phrases can be extracted and collected.

3. and finally, text can be collected from any genre, it is not restricted to the language

commonly found in captions of images or news.

The Definition:

Gaizauskas et al. (2015) define visual descriptive language as follows:

“A text segment is visually descriptive if it asserts one or more propositions about

either (a) a specific scene or entity whose truth can be confirmed or disconfirmed

through direct visual perception (e.g. (1)), or (b) a class of scenes or entities

whose truth with respect to any instance of the class of scenes or entities can be

confirmed or disconfirmed through direct visual perception (e.g. (2)). ”

1. “John carried the bowl of pasta across the kitchen and placed it on the

counter”.
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2. “Tigers have a pattern of dark vertical stripes on reddish-orange fur with

a lighter underside”.

3. “Maria is thinking about what the future holds for her”. (Not VDL)

The authors go on to clarify that by “direct visual perception” they mean that (1) for

any given statement, it’s truth can be confirmed (visually) by only looking at the image

describing it without any intervention in the scene to gain more visual information. As an

example mentioned by the authors, the statement ‘John weighs 65kg’ can only be confirmed

if the scene contains john standing on a scale that shows 65kg reading on, otherwise this

sentence is not VDL. (2) any inference from the scene that needs to be made to confirm or

disconfirm the truth of the proposition in question would be made by any typical observer in

the position of the narrator; and (3) in assessing the truth of a candidate VDL text segment

the identity of any NE’s is known to any observer putting themselves in the position of the

narrator. Furthermore, in the context of the definition the statement “asserting a proposition”

implies that any text segment deemed VDL should express an assertion that can be true or

false.

A text segment here might consist of a phrase, a sentence, or a sequence of sentences. A

sub-sentential structure such as a noun phrase can still be VDL even though it is does not

assert a proposition directly because for any sentence in which it occurs, the truth of that

sentence may entail the truth of another proposition which is implicit for the noun phrase to

successfully refer. E.g, “The tall man standing by the bar is VP of Enron”. In this sentence

“The tall man standing by the bar” does not directly assert a proposition. But if the sentence

“The tall man standing by the bar is VP of Enron” is true then the sentence “There is a tall man

standing by the bar” must be true and this can be confirmed through direct visual perception.

Further notion of impure visually descriptive language (IVDL) is also defined, which

is a text segment that contains a mixture of both VDL segments and non VDL segments

(Gaizauskas et al., 2015). Here are examples of VDL sentences, sentences that are not VDL,

and sentences classified as IVDL:

• VDL — John carried the bowl of pasta across the kitchen and placed in on the counter
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• non VDL —Maria is thinking about what the future holds for her

• IVDL — {the tall} , well-educated {man}

Please note that this thesis does not involve the use of IVDL.

Based on the definition of VDL, a text may be annotated according to that definition in

various ways, two possible ways are: sentence level annotation and segment level annotation.

In sentence level annotation, each sentence is assigned 0 if it does contain any VDL, 1 if the

whole sentence is VDL, and 2 if it has one or more segments that are considered VDL but

the whole sentence is not a VDL. Guidelines for annotating challenging cases were provided

by the authors, including:

• Metaphors (e.g. he panted like {a big dog that has been running too long})

• Words with mixed visual and aural or visual and experiential meanings (e.g.,

shuffle, shudder)

• Temporal adverbials of frequency (e.g., always, usually, sometimes)

• Multiple visual perspectives (e.g., {Billy climbed the tree wearing his back- pack},

{which contained his slingshot, some pebbles and a magnifying glass})

• Intentional contexts (e.g., John believed that Mary was playing in the garden)

• Hypotheticals, modals, counterfactuals and subjunctives (e.g., If Jack sets the table

then Will serves dinner)

• Location information (e.g., VDL- The Episcopal Church stood across the street; not

VDL — The Episcopal Church was one block down Sussex Street)

• Statements of purpose (e.g., Billy climbed to the rooftop to shoot at crows)

• Imperative and interrogative sentences (e.g., imperative - Come out to the field and

call us, and interrogative - How did {you escape from the beast}?)
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• Participial phrases; (e.g., {Walking slowly across the ice, John} thought about his

mother.)

• Dialogues (e.g., Dorothy said, “{Toto is running away}”)

In the segment-level annotation task, the words constituting a VDL segment are annotated

using swipe and click annotation tools.

Other approaches to visual language

There has been little work on this topic and we are only aware of two other relevant studies,

Dodge et al. (2012) and Winn et al. (2016).

Dodge et al. (2012) who studied the topic of visual text, state, “A piece of text is visual

(with respect to a corresponding image) if you can cut out a part of that image, paste it into

any other image, and a third party could describe that cutout part in the same way”. They

believe that automatically mining visual text from corpora will be helpful in a number of

tasks: to automatically mine image caption data that is used in training object detection

systems, image retrieval systems, and in developing better language models to train models

for image captioning systems. Images and their corresponding descriptions taken from SBU

Captioned Photo Dataset (Ordonez et al., 2011) were used in Dodge et al.’s study as a dataset,

the original dataset consists of 1 million images (selected from Flickr platform) accompanied

by user-generated captions. Dodge et al.’s have two annotated datasets SMALL and LARGE,

the SMALL contain 803 images with 2339 instances (each instance is composed of an image,

an associated caption, and a highlighted noun phrase within that caption) where the LARGE

dataset has 84k images with 40 instances. Each instance in the SMALL dataset is annotated

by three annotators and annotated by one in the LARGE dataset. In this dataset, only noun

phrases were annotated as visual, not visual, or error (for the cases where the noun phrase

segmentation were incorrect). The difference between this work and Visually Descriptive

Language is that the definition proposed by Dodge et al. relies on identifying noun phrases

that are visually concrete, while VDL is not restricted to noun phrases; any segment of text

can be visually confirmed. In addition, Dodge et al.’s dataset relies on texts that are associated
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with images (i.e. image captions), which limits the amount of text that can be mined, whereas

VDL can be mined from any text.

Winn et al. (2016) were interested in detecting visually relevant language to use in the

task of fine-grained image classification. The question that they were trying to answer is

“Can we automatically identify visually descriptive sentences relevant to a particular object

from documents that may contain predominantly non-visual text?” Their work only focused

on data regarding birds because that topic is one of the most well-studied domains in the task

of fine-grained image classification. The researchers used the definition of VDL with some

modifications (Gaizauskas et al., 2015) for defining the visually relevant sentences. Both

definitions are similar in that they both detect visually confirmed segments of text rather

than visually concrete segments. This is because their descriptions concentrated on a given

class (birds) and not on an image. However, Winn et al. (2016) differs from Gaizauskas et al.

(2015) in that their definition only considered visually descriptive segments with respect to

the objects (birds); these sentences were defined to contain visually relevant sentences. A

total of 1,150 Wikipedia articles on the topic of bird species were examined; this dataset was

used to detect visually relevant sentences. The sentences were annotated as either 1 (VRL),

which was assigned when the entire sentence was visually relevant, or 0 (non VRL), which

was assigned when the sentence contained a bird object but was not visually descriptive.

2.2 Initial Work on Feature Extraction for Sentence Level

VDL Classification

The following three subsections briefly explain the work that was done on feature extraction

methods during my MSc dissertation (Alrashid, 2017). Three feature extraction methods

were developed and explored; VerbNet, WordNet and tf-idf. The three feature extraction

methods were tested using three different machine learning algorithms: Multinomial Bayes

classifier (mnb), K Nearest Neighbour classifier (knn) and Support Vector Machine classifier

(svm).
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2.2.1 Approach 1: Using VerbNet

“VerbNet is a hierarchical domain-independent, broad-coverage verb lexicon with mappings to

several widely used verb resources, including WordNet, Xtag, and FrameNet" (Schuler, 2005).

VerbNet groups English verbs into classes based on Levin’s classification (Levin, 1993),

offering syntactic information. Levin’s classification has been refined and new subclasses

have been introduced. VerbNet has 237 first-level classes and 4526 verb senses (VerbNet,

2006). The NLTK interface to the VerbNet extended version was used in the implementation

of this approach.

This approach utilises VerbNet to classify verbs. The Stanford Dependency Parser (Chen

and Manning, 2014) is used to parse the sentence to be classified. From the resulting parse

tree we first extract the main verb – it can be identified as the root of the sentence. Sometimes,

the are no verbs in some sentences, or the parser may fail to find a verb, so a binary feature

is added to the feature list (the input to the supervised learning algorithm) to identify the

existence of a verb, 1 if a verb found in the sentence and 0 otherwise (Alrashid, 2017). This

is an admittedly simply approach but we wanted to see how it would work.

Then, the algorithm searches VerbNet with the main verb to extract the verb class. Verb-

Net uses numbers to represents classes. The class numbers that have the potential to represent

visual verbs are manually recorded in a list. To create lists that store visual verbs and not

visual verbs, the VerbNet main classes were manually inspected and their ids were manually

assigned to either the visual verbs list or the not visual list. To do that, we tried to answer the

question can the verb be represented in an image? if yest then the verb id is stored in the

visual verb list and in the not visual verb list otherwise. For example, the word class eat-39

can be considered as a visual verb so its id 39 is saved in the visual verbs list. After the verb

class is searched in VerbNet, whether the class number exists in the manually created list is

then checked. If the class number is found, a binary visual verb feature is added with a value

of 1; otherwise 0 is assigned to this feature (Alrashid, 2017).
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2.2.2 Approach 2: Using WordNet

WordNet serves as a comprehensive lexical resource for English, categorising verbs, nouns,

adjectives, and adverbs into distinct sets of synonyms known as “synsets”. With 117,000

synsets, WordNet links between them through conceptual relations (University., 2010). A

gloss is added for every synset that defines the word. Noun synsets have three types of

relations between them: (1) hyperonomy (superclass), (2) hyponymy (subclass) and (3)

meronomy (is a part of). The hierarchical structure of WordNet is formed by linking those

synsets by these relations, and there is a root node (entity) for all synsets. This root node

is called ‘physical entity’ or ‘physical object’ in the case of physical entities. Verb synsets

also form a hierarchical structure but they do not share a root node. However, verbs in

WordNet are organised into fifteen files based on semantic classes, each file representing a

specific semantic domain, such as “verbs of bodily care and functions, change, cognition,

communication, competition, consumption, contact, creation, emotion, motion, perception,

possession, social interaction, and weather verbs” (Miller et al., 1990).

This approach is like Approach 1 but uses WordNet to extract verb classes, rather than

VerbNet. First, it uses the Stanford parser to parse each sentence to obtain the main verb. Then

it looks for the verb class in WordNet, and takes the first sysnet from the list of synsets that

WordNet returns as synsets for a word are meant to be ordered by frequency of occurrence

in a corpus. To do so, two strategies are explored. The first strategy searches the main verb

root’s hypernym and considers this the class name. Then, it assigns the class name as as

a feature value. If there is no verb in the sentence or the class name is not found, then the

feature is assigned a value of 0. So the feature takes as values either the string which is the

synset name of main verbs’ hypernym or 0. This approach was designed because there is no

single node that all verbs share when going up the verb hierarchy.

In the second strategy, the names of the 15 WordNet database files that store verbs are

treated as verb classes. Each class is then categorised manually into two groups: visual

verbs and non-visual verbs. The visual verbs include verb classes such as verb consumption,

verb creation, verb body, verb motion, verb change, verb communication, verb competition,

and verb contact. On the other hand, the non-visual verbs encompass verb classes like verb
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cognition, verb emotion, verb perception, verb possession, verb social, verb stative, and verb

weather. This categorisation serves as a key feature extraction step, providing insights into

the visual or non-visual nature of the verbs within the WordNet database files. The algorithm

then determines which verb class the main verb occurs in. If that verb class is one that has

been determined to be visual, a feature of value 1 is added to the feature list or 0, otherwise

(Alrashid, 2017).

Subsequently, the arguments of the main verb in the parsed sentence are extracted from the

parse – the subject and object of the sentence. These arguments are also checked to see if they

are visual. WordNet is searched for the head word of the object and subject. The algorithm

examines the hypernyms of these words, ascending the hypernym hierarchy. At each step, it

checks whether the hypernym contains the word ’physical’ until it either discovers the word

’physical’ or reaches the root hypernym. If the term ’physical’ is identified, indicating that

the argument is visual, a feature with a value of 1 is included in the feature set. Conversely, a

value of 0 is appended if no objects or subjects are detected in the sentence(Alrashid, 2017).

2.2.3 Approach 3 - Using Tf-idf

In this approach a document d j from a document collection D is represented as a term weight

vector,
−→
d j = (w1 j, .....,w|T | j), T represents the set of terms or words that appeared at least

once in the document D (Nigam et al., 2000). Term weights may be determined by treating a

document as a bag of words, so that the term weights in the document vector are the number

of occurrences of the term in the document. This is known as term frequency (tf ) term

weighting. " (Manning et al., 2008). Other methods to measure the term weight of a term t

are (Salton and Buckley, 1988) (Manning et al., 2008):

• Document frequency(df ): is the number of documents in the document collection D

that have term t.

• Inverse document frequency (idf ): is computed as id f = log N
d ft

, N represents the

number of documents in the document collection D and d ft is the document frequency

of t is the term.
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• Tf-idf: is computed by integrating the term frequency (tf ) with inverse document

frequency (idf ) as in t f -id ft,d = t ft,d × id ft .

In the tf-idf approach, the text is represented as a bag of words in which the order of the

words is not considered (Manning et al., 2008).

In this feature extraction approach, each sentence in the given data is tokenised into

words and processed using the term frequency-inverse document frequency (tf-idf) method.

The TfidfVectorizer from scikit-learn is employed to handle this process. In addition, the

inverse document frequency (IDF) values are calculated globally across the entire dataset,

ensuring consistency in term weighting throughout all sentences. The document collection

for calculating IDF includes both the training and test sets. Each sentence is transformed into

a sparse document vector of term weightings, and these vectors collectively form a new list

representing the features extracted from the text. This process, which includes the global

calculation of IDF, is consistently applied to both the training and test sets. The resulting

feature vectors, composed of term weightings, are then used to train a classifier.

2.3 Scene Recognition in Narrative Text

One of the aims of this thesis is to investigate how to automatically segment narrative text

into scenes. To achieve this objective, we need a clear definition of what constitutes a scene,

along with a set of guidelines and a framework for annotating data. This section provides

an overview of definitions of scenes from different perspectives in section 2.3.1. Section

2.3.2 provides a brief description of sceneML, which is a framework to annotate scenes in

narrative text. Furthermore, section 2.3.3 provides a brief review of previous work related to

the tasks of scene annotation and scene segmentation.

2.3.1 Scenes

The definition of scene varies a lot depending on the context in which it is being mentioned

and the area it is being used in. Some authors use the definition in models of computer
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generative narrative perspective while others use it from the perspective of literary analysis.

Here we give an overview of some definitions of a scene.

Scenes in Text

The first group of researchers used the definition of a scene in drama or narrative, both in

computational and literary studies. Callaway and Lester (2002) in their work on “Narrative

Prose Generation”, state that a segment of narrative text is considered to be a scene if it is

contiguous in time, character, and place. Changes in any of these three elements constitute a

scene change, i.e. when characters change their location or time, or when events change to

focus on other characters. The authors proposed a model for narrative generation system that

produces narratives. Kozima and Furugori (1994) in their paper “Segmenting Narrative Text

into Coherent Scenes” proposed an algorithm to automatically segment a text into scenes.

They defined the scene as a piece of text that has common characteristics as in a movie scene.

They both have characters and objects in a certain situation with a specific time, place and

background. From the point of view of drama, Polking (1990) defined scene as “a division

within an act of a play, indicated by a change of locale, abrupt shift in time, or the entrance

or exit of a major character".

In addition, Cutting (2014) stated that a scene is a chunk of narrative that is sometimes

synonymous with the concept of event and often found in narrative arts. A scene has three

parameters location, character, and time. He used that definition in a study of scene/event

segmentation in movies, that investigates the shifts in location, characters, and time. Changes

in these three elements create seven types of shifts. Dunne (2017) states that the physical

life of a setting gives the truth about the characters in the story or in the scene. The setting

is defined by the physical life, the time, and the physical objects of the setting, it is about

knowing where and when the scene is taking place. Actions happening at night differ from

these happening during the day, outdoor settings are different from indoor setting. Physical

life helps the reader to imagine the image, and brings visual power to the scene.
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Scenes in Images

On the other hand, the second group of researchers are interested in scene understating in the

computer vision field. For example, Xiao et al. (2010) define a scene as any place or location

a person can take actions in or a place a person can navigate in. Scenes are often related or

associated with specific actions, e.g. “sleeping in a bedroom or reading in a library” and

these actions are related to the space’s visual features. The environment is defined by its size

and shape, e.g. “a narrow corridor is for walking”, by its material e.g. “snow, grass, wood”,

by its objects e.g. “table and chairs”. Scenes in their project are categorised into a into a tree

whose first level has three divisions: indoor, outdoor, and outdoor man-made. They built

a database of 131,072 images called the SUN database, categorised into 908 scenes (Xiao

et al., 2016) using the WordNet database. They select 70,000 concrete nouns and manually

select any word completing the phrase “I am in a place” or “Let’s go to the place”. The

definition of a scene here is similar to the definition of a setting in research about narrative

that consists of only two elements: location and time.

2.3.2 SceneML

In the work presented below in Chapters 5 and 6 we make use of the SceneML framework

for annotating scenes in narrative text introduced in (Gaizauskas and Alrashid, 2019). In

this section we first give an overview of the overall SceneML annotation framework and

then briefly describe each of the elements in this framework. A few changes were made to

the annotation scheme when building the corpus. These changes are described in Chapter

5 and in Appendix A. Finally, we include an example of annotation scheme applied to a

specific text. Unless otherwise indicated all quotes and details in the following are taken

from (Gaizauskas and Alrashid, 2019).

The Annotation Framework

Taking into consideration the literature related to scene definition presented in section 2.3.1,

SceneML defines a scene as a unit of a story in which the elements: time, location, and main
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<scene id="s1" loc="pod" time="base">
<character>I</character>
<character>Skip</character>
<character>Pockets</character>

</scene>
<sds id = "sds1" scene = "s1">

As we approached our destination, Skip started to issue instructions to the pod about approach
vectors ... I was about to say something ... when Skip opened the door and
</sds>
<scene id="s2" loc="bubble shaped large room" time="base">

<character>I</character>
<character>Skip</character>
<character>Pockets</character>
<character>Trouble</character>
<character>Methusaleh</character>

</scene>
<sds id = "sds2" scene_id="s2">
I stumbled out into a blaze of light and noise ... I was in a large room ... It was bubble shaped ...
All around me in the bubble were bunnies ... " ... Right now, we have to take him to Methuselah.”
... I was just about to ask if Skip was coming in with me, but the door had already opened and
they were manoeuvring me through.
</sds>
<scene id="s3" loc="cylindrical room" time="base">

<character>I</character>
<character>Methusaleh</character>

</scene>
<sds id = "sds3" scene_id="s3">
I found myself in a room that was cylindrical, like the pod only bigger ... There, in front of, or
above, me (zero gravity is so confusing) was the oldest rabbit I had ever seen ... Methuselah then
told me about how the Bunnies from the Future first came into being.
</sds>
<scene id="s4" loc="planet earth" time="a long time ago">

<character>humans</character>
<character>bunnies</character>

</scene>
<sds id = "sds4" scene_id="s4">
It was after the plants had turned nasty – a long time ago, even for this old bunny – and the story
sounded more like a legend than real history ... The war was lost, but the bunnies never stopped
searching for a way to achieve victory and to reclaim the planet.
</sds>
<sds id = "sds5" scene_id="s3">
“What happened to people? Where are they now?” I interrupted, rather rudely ...
<istlink id = "isl1" type = "sequence" scene1 = "s1" scene2 = "s2"/>
<istlink id = "isl2" type = "sequence" scene1 = "s2" scene2 = "s3"/>
<istlink id = "isl3" type = "analepsis" scene1 = "s3" scene2 = "s4"/>

Fig. 2.1 Example SceneML Annotations for Chapter 2 of Corcoran (2016)
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characters are constant. Any change in these elements indicates a change of scene. A scene

is an abstract discourse element, not a specific span of text. It consists of a location or setting,

a time and characters who are involved in the events that take place in the scene. However,

these elements that constitute a scene exist in the real or fictive world (storyworld as per

narrative theory Schmid (2010)) that the narrative revolves around. “The scene itself is an

abstraction away from the potentially infinitely complex detail of that real or fictive world, a

cognitive construct that makes finite, focused narrative possible”.

According to SceneML a scene in a textual narrative is realised through one or more scene

description segments (SDS). An SDS is “a contiguous span of text that, possibly together

with other SDSs, expresses a scene” (Gaizauskas and Alrashid, 2019). Typically a scene

consists of one SDS, unless that scene involves other SDSs of other scenes such as scenes

about past (memories) or future events. Furthermore, SDSs can be in the form of “spatially

distinct locations that are topologically contained within or connected to the embedding SDS,

or if the author is employing the narrative device of rotating between multiple concurrent

scenes each of which is advancing a distinct storyline (a common technique in action movies)”

(Gaizauskas and Alrashid, 2019).

It is important to define what each element of a scene (characters, time, location) is to

facilitate the annotation process and to make it easier to detect scene changes if any of the

elements changed. As shown in Section 2.3.3, scene changes have been studied by researchers

such as (Cutting, 2014) and others. Studying which of the scene elements (characters, time,

location) changes in a scene can be considered a contribution to previous studies. Here we

propose to adopt the definitions, annotation standards, for the elements (time, location, and

spatial entities) from Iso-TimeML (Pustejovsky et al., 2010) and Iso-Space (Pustejovsky

et al., 2011). As for characters, the definition and annotation standards for named entities of

type person from the ACE program will be adopted which has been recently used in the TAC

2018 entity discovery and linking task2.

The previous standards will facilitate the annotation process for all mentions of times,

locations/spatial entities and persons represented in the text. However, we are particularly

2See http://nlp.cs.rpi.edu/kbp/2018/ and https://www.ldc.upenn.edu/sites/www.ldc.upenn.
edu/files/english-entities-guidelines-v5.6.6.pdf.

http://nlp.cs.rpi.edu/kbp/2018/
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v5.6.6.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-entities-guidelines-v5.6.6.pdf
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interested in the relations between the specific entities that construct a specific scene (i.e.,

the characters, time, location that construct a specific scene). For example, we want to

know which SDS’s are part of which scene and which characters, times and places are the

characters, times and places are part of the scene, as opposed to merely being mentioned by

characters in the course of a scene.

SceneML Elements

SceneML elements are categorised into two main categories:

1. Entities: entities consist of scenes, SDSs, characters, times, and locations.

2. Relations: “scene-scene narrative progression links”, other relational links, e.g. the

time of a scene, are represented as attributes of the scene, while character-scene links

that indicate which characters participate in a scene, are represented as sub-elements

of the scene entity to which they belong.

Scenes Scenes are the main element in SceneML. A scene has attributes: id, time and

location. The triple of these attributes is unique for each scene. Each scene also includes a

list of character sub-elements as there may be more than one character for each scene.

SDSs Scene description segments (SDSs) are the actual strings of text that compose the

scene. One SDS cannot belong to more than one scene, but a scene can be composed of

multiple SDSs. They include the following attributes: id and scene_id that is the id of the

scene that the SDS belongs to, these attributes are unique to each SDS.

Time Time elements used here are the ones developed by ISO-TimeML, they include an

id attribute and a text segment. Time could also include the time of the storyworld and it is

represented by the attribute base.

Location Like time, we use locations element developed from ISO-Space. They also

include an id attribute that is unique for each location and a text span.
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Character Here we use the named entity type person from the ACE English Annotation

Guidelines for Entities. The only difference here is that animals and non humans can be

considered as characters. Characters have an id attribute that is uniquely assigned for each

character and a text segment.

Narrative Progression Links Narrative progression links (nplinks) link between any

two adjacent scenes. These links have different types depending on the type of transition

between the two scenes .SceneML includes four types of nplinks:

• sequence links are assigned when one scene follows on from another, this could be

because a character moves to another location; new characters arrive or old characters

leave the setting; or just because time passes (e.g. two characters talk all afternoon and

now it is nighttime)

• analepsis occurs when there is a flashback in the scene e.g. memory of the past

• prolepsis (or flashforward) occurs when then we are taken forward in time

• concurrent links are assigned between two scenes when the transition happens

because there is another thread of the story happening at the same time so the transition

take us to different characters and different place but the same time.

Example Annotation and Analysis

Figure 2.1 shows an example of annotated text from the children story “Bunnies From the

Future” by Corcoran (2016). For readability reasons, the entities time, location and

character are not annotated by their id, instead their text span is used as their attribute

value (Gaizauskas and Alrashid, 2019).

The authors discuss two concerns that arise after annotating the story using XML: (1)

how relations are represented in XML, and (2) how transition signals can be represented.

For the first one, we have two choices; either the relations is represented a separate entity,

or it is embedded as an attribute to either of the entities. In the example provided here,

relations are represented as an attribute added to the entities e.g. sceneid is an attribute
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added to the sds. Second, there are some sentences that signal a transition from one scene to

another, such sentences could be considered to belong to the first scene, the second scene,

both scenes or neither scenes. On the other hand, it could be treated as a separate element

scene_transition_signal, just as ISO-TimeML and ISO-Space annotate signals (e.g. “in

front of"), we prefer to represent them as separate signals (Gaizauskas and Alrashid, 2019).

Additional details about SceneML and scene annotation can be found in Chapter 5 and

Appendix A.

2.3.3 Previous Work on Scene Annotation and Segmentation

The task of automatically segmenting narrative text into scenes has not been widely investi-

gated by researchers. To approach this task from a supervised learning perspective requires

one to first provide a clear definition of what a “scene” is as discussed in section 2.3.1, then

propose annotator guidelines to manually annotate scenes in narrative text to train models

that automatically segment narrative text into scenes. A few authors have addressed the

task of automatically segmenting text into scenes but that text is not narrative, others have

addressed the more general task of segmenting narrative text into topically coherent segments.

In this section we consider the work of four authors relevant to this topic and finish with a

summary of how we see their work relating to the work we report below in Chapter 6.

Kozima and Furugori (1994) introduce a method of segmenting narrative text into coher-

ent scenes, suggesting that it could be used to resolve anaphora and ellipsis inside a scene.

They define a scene as a set of continuous sentences that have coherence between them.

A scene in a text is like a movie scene in that it describes objects, such as characters or

properties, in a certain time, place and background. Scene segmentation is done using a

Lexical Cohesion Profile (LCP), which was first proposed by Kozima (1993), to indicate

boundaries of scenes in narrative text. It relies on the idea that coherent text is lexically

cohesive (Halliday and Hasan, 2014; Morris and Hirst, 1991), so that local cohesiveness

leads to local coherence. An LCP keeps a record of lexical cohesion between words inside a

window, moving a window of a certain size (i.e. 50 words) word by word and measuring the
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lexical cohesion between the words each time the window is moved. There is a relationship

between LCP and change of scene; when a window is inside a scene, the LCP value is

typically high and words tend to be lexically cohesive; however, when a window crosses a

scene boundary, the LCP value decreases and the words vary lexically. Figure 2.2 shows how

an LCP identifies the alternation of a scene by detecting the valleys that are the minimum

points.

Fig. 2.2 LCP graph shows alternation of scene (Kozima and Furugori, 1994)

In order to compute LCP, the lexical cohesiveness between words is computed first

by spreading activation across a semantic network paradigm (see Figure 2.4), which is an

interval of [0,1]. A paradigm is a semantic network constructed systematically from a subset

of an English dictionary called Glossem, that is used to analyse word meaning (Kozima

and Furugori, 1993). The paradigm consists of 2,851 nodes and 295,914 links between

them, nodes are constructed from the Glossem dictionary inputs. “Each node consists of a

head-word, a word-class, an activity-value, and two sets of links: a referent and a referee”.

Lexical cohesiveness between two words w and w′ is computed as follows:

σ(w,w′) = s(w′) ·a(P(w),w′)

where s(w′) = −log(count o f w′/size o f corpus)
−log(1/size o f corpus) , P(w) is the activated pattern that is produced in

the paradigm and a(P(w),w′) is the activity value of node w′ in P(w). Then, text cohesion is

estimated based on the cohesiveness c(S) of the text S by determining the mutual cohesiveness
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between the words in S , which is computed by:

c(S) = ∑
wi∈S

s(wi) ·a(P(S),wi)

where P(S) is the activated pattern produced after activating each word wi in text S. Thus,

LCP is computed by taking the record of cohesiveness c(Si) of a local text Si at every position

in the text. The Hamming window size for LCP that gives the best correlation with scene

boundaries is 51 words. This window size is chosen after experimenting with 18 window

sizes ranging from 11 to 121 words. However, this window size is only applicable to the

text under experiment, and that size may change according to the nature and structure of text

under experiment (e.g. average scene length). The authors stated that they have no effective

way to adapt the window width for any text. The technique is evaluated by comparing it to

human judgements (a simplified version of O.Henry’s “Springtime a la Carte” was manually

segmented by 16 annotator into scenes) by plotting a histogram of human judgement, the

original paragraph boundaries and LCP having a window width of 51 words(see Figure 2.3).

Unfortunately, there were no inter-annotator agreement results reported in this paper and no

results comparing LCP with human judgements other than this Figure and two very short

paragraphs.

Fig. 2.3 Graph shows correlation between human judgements and LCP - dotted lines represent
actual paragraph boundaries, and the solid bars represents human judgements histogram
(Kozima and Furugori, 1994)
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However, cohesiveness and cohesion of text do not always work well. Sometimes, the text

cohesiveness measure c(S) does not work well on incoherent text that is lexically cohesive.

In addition, in some cases some texts are coherent but are considered incohesive by c(S).

Fig. 2.4 Process of computing lexical cohesiveness (Kozima and Furugori, 1994)

Cutting (2014) addressed the problem of event segmentation. His study investigated the

problem of narrative shifts in location, character and time. These shifts may align with the

viewer’s segmentation of the event (scenes) or may not agree with them. As discussed in

section 2.3.1 “scene” is defined here as “a medium-size chunk found in all the narrative arts

and often synonymous with the concept of an event”. The dataset consists of 24 movies on

drama, action, comedy, released from 1940 to 2010 (Cutting et al., 2012). They recruited

eight viewers, to segment the movie shots into events, with each movie is segmented by

three viewers. Authors then analysed the shifts between the segments based on changes in

location, time frame. The study focused on the signals of new events in movies by indicating

the discontinuity across boundaries of visual narrative shots. A scene has three parameters:

location, character and time. Narrative shifts are divided into seven types, and depend on the

presence or absence of changes in any of the scene parameters (location, character and time).

The presence of a change is denoted by (1), and the absence of a change is denoted by (0);

the seven types then become 111, 110, 101, 100, 011, 010 and 001. These seven types of

narrative shifts are applied to movies; then, this approach is compared to other approaches

in text that include investigating the effects of shifts in location, characters, time and other

factors on readers. It was clear that the shifts in the three indices were uncorrelated with each

other in the text. Regarding shifts in text, authors only interested in the effect of these shifts
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on the speed of readers. There is no mention in the paper about methodology to segment the

text and any annotated corpus of text.

The study of Kauchak and Chen (2005) investigated the segmentation of narrative

documents. However, it did not tackle the problem of scene segmentation. Two narrative

books were used here: “Biohazard” by Ken Alibek and “The Demon in the Freezer” by

Richard Preston. The authors of these books segmented them into sections, and these sections

were used as the true segment boundary locations. However, there was no discussion of

what the criteria for segmentation were. “Biohazard” was split into three parts; two for

experimenting and the third for testing, while "The Demon in the Freezer" was dedicated to

testing only. “Biohazard” had 213 true and 5,858 possible boundaries, while “The Demon

in the Freezer” had 119 true and 4,466 possible boundaries. The segmentation here was

handled as a classification problem in which that segment boundaries could only fall on

sentence boundaries, so each sentence boundary had to be classified as segment boundary or

not using SVM classifier. The data is preprocessed first by tokenisation, stop word removal

and stemming. Features used here for the classification include:

• Word group: These are the words that belong to the same parent node in the WordNet

hierarchy. Thus, this feature is used to identify those word groups that are found at the

boundaries.

• Entity group: This binary feature indicates the existence of a named entity (e.g. a

person, city or disease) in a sentence.

• Entity chains: Entity chains are built in the same way as lexical chains; however, they

include named entities. Two entities are related if they refer to the same entity; i.e.

they belong to the same chain.

• Full name: By using a named entity extraction system, this feature indicates the

existence of a full name in a sentence.

• Pronoun: This feature indicates whether a sentence has a pronoun and whether that

pronoun is within the first five words of the beginning of the sentence.
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• Numbers: This feature indicates the number patterns that often occur at the boundaries.

It has been observed that numbers with four digits occur often, as they most commonly

refer to a year.

• Conversation: The feature detects whether the sentence contains any conversations by

detecting text enclosed within direct quotations.

• Paragraph: This feature specifies the start of a paragraph.

The authors used for evaluation, word error probability, sentence error probability (Beefer-

man et al., 1999) and windodiff (Pevzner and Hearst, 2002). Scoring 0.33 word error, 0.33

sent error, and 0.404 for window diff. Before testing the feature based approach, the authors

first tried the traditional similarity based text segmentation approaches such as texttiling and

PLSA. The authors state that the feature based approach outperforms the random classifier

and the similarity based segmentation approach.

Using classification as an approach to the segmentation problem leads to the data losing

its sequential nature. It might indicate segments with odd lengths (e.g. single sentences).

Thus, it should include features that address the sequential nature of data.

Zehe et al. (2021) have proposed their own definition of scene in narrative text, have

released a corpus of German language narrative texts annotated according to their scheme

and have reported results on an automatic scene segmentation task. They follow the definition

of a scene which they present in (Gius et al., 2019):

A scene is a segment of the discours (presentation) of a narrative which presents

a part of the histoire (connected events in the narrated world) such that (1) time

is equal in discours and histoire, (2) place stays the same, (3) it centers around a

particular action, and (4) the character constellation is equal

Following to this scheme, they annotated 15 dime novels written in German from various

genres such as love, horror, and adventure, resulting in a total of 36K sentences and 550K to-

kens, with 971 scene segments and 34 non-scene segments (Figure 2.5 shows the distribution
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Model (class) Prec. Rec. F1 γo
TextTiling 0.02 0.97 0.04 0.01
TopicTiling 0.03 0.22 0.05 0.02
BERT (binary) 0.49 0.15 0.24 0.15
BERT (S-S) 0.43 0.13 0.2
BERT (S-NS) 0.85 0.24 0.38

0.15
BERT (NS-S) 0.0 0.0 0.0

Table 2.1 Scene segmentation models performance results.

of scenes and non-scenes by sentence length). The annotation process was carried out by

two annotators (students specialised in computer science, digital humanities, and German

studies, with previous experience in annotating for comparable tasks).

The authors conducted experiments to build scene segmentation models using two differ-

ent approaches; (1) unsupervised approach, and (2) supervised approach. The unsupervised

approach uses the TextTiling (Hearst, 1997) method implemented in NLTK ( see also our

description of TextTiling below in Section 2.6). They also implemented a model using

TopicTiling (Riedl and Biemann, 2012) by training an LDA model. For the supervised

approach, the authors fine tuned a pre-trained BERT model using FARM3 (Fast Adapters for

Robust Metrics) which is an open source library for natural language processing tasks. The

model was fine tuned across ten epochs using a leave-one-out approach. Table 2.1 shows

results of these approaches. You can see that the unsupervised approached performance was

very poor (0.04, and 0.05 F1 score); the supervised approach was much better but it is still

considered as not very good performance (0.24 F1 score).

Zehe et al. (2021) work differs from ours in several respects. First, their definition of

scene states that a scene is a segment in a narrative in which the time, place and characters

remain constant and which centres around one action. This contrasts with the definition in

SceneML that does not take into account the actions in a scene and allows multiple actions

to happen in one scene (see section 2.3.2 above and Gaizauskas and Alrashid (2019) for

discussion around our choice of definition). Secondly, their scheme is less comprehensive –

it does not define narrative progression links between scenes or scene transition segments,

3https://github.com/deepset-ai/FARM

https://github.com/deepset-ai/FARM
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and only distinguishes scene and non-scene segments. Thirdly, they follow a container

principle (small places make up larger places) to detect a change in place, e.g. if the action

of characters moves from a corridor to dining room that will not indicate a change in place

as they are both part of a hotel, where as our definition counts these as two different places.

Finally, they work on German texts while we are working on English texts. There are also

differences in the algorithmic approaches we take to automatic scene segmentation. These

are discussed further below in Chapter 6.

Fig. 2.5 Distribution of lengths (in sentences) in scene and non-scene segments of Zehe et
al.’s annotated corpus of German dime novels.

In summary, the previous section provided an overview of four research works that are

relevant to the topic of scene annotation and segmentation. The initial study introduced the

LCP method for segmenting narrative segments into scenes. However, their implementation

of scene segmentation had several limitations. Notably, the manually annotated dataset

was of a small scale, consisting of only one short story. Additionally, the absence of

detailed guidelines for the annotation process and the lack of inter-annotator agreement

results were notable shortcomings in their approach. This makes it not clear if the method

can be generalised to other narrative texts for the scene segmentation task (Kozima and

Furugori, 1994). The second study introduced the task of feature-based segmentation of

narrative text. The authors here treated the segmentation task as a classification task in which

sentence boundaries are classified according to whether they hold a segment boundary or

not. Similarity-based methods for segmentation were also carried out on the same dataset

and results were compared to results of feature-based methods. The authors state that the
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feature-based method outperform the similarity-based method and they also highlighted

some of the issues with the feature based approach (Kauchak and Chen, 2005). The third

study investigated the task of event segmentation (Cutting, 2014). Narrative shifts in location,

character, and time were studied. Although the definition of event (scene) somewhat aliened

with ours in that both definitions have three main elements: location, character, and time.

Cutting (2014)’s study was purely about manual segmentation of movie shots. The fourth

study tackled both the scene annotation and scene segmentation of narrative texts (Zehe

et al., 2021). They annotated novels of different genres into scenes using their developed

annotation guidelines. They tested both a supervised and unsupervised approach to scene

segmentation and observed that a supervised approach was better in segmenting

None of the preceding authors’ work has explicitly addressed the task of annotation of

scenes in narrative text, which is the key task we address below in Chapter 6. The only other

work on annotation of scenes in narrative texts of which we are aware is that of Zehe et al.

(2021). Drawing implications from these studies, we realise the need to develop annotation

guidelines to aid the process of annotating narrative scenes. We also find it advisable to

explore a supervised approach for scene segmentation.

2.4 Classification

The task known as classification involves categorising a set of inputs into predefined classes.

Classification is a supervised learning task in which models are trained using examples that

are manually categorised (Marsland, 2009). Classification is a key technology underlying the

work in Chapters 4 and 6. Section 2.4.1 discusses the general model whereby features are

identified manually and feature extraction methods are written to extract the defined features

which are then passed along with labels to a supervised learning algorithm. Section 2.4.2 gives

examples of classification algorithms that work with human engineered/selected features.

Section 2.4.3 explains neural networks and the deep learning approach to classification4.

4Some part of this section has been adapted from my MSc (Alrashid, 2017)
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2.4.1 Feature Engineering Approaches to Classification

Every input possesses distinct properties referred to as features including attributes such as

shape, size, etc. Models classify inputs based on these features, either individually (e.g., by

size or shape) or in combination (e.g., by both size and height). Additionally, the classification

models that are heavily dependent on the properties or features of the training data may

lead to weak generalization on unseen data (Bird et al., 2009). This challenge is commonly

known as overfitting that often occurs when a large number of features are applied to a

small training data. To overcome this problem, the most suitable features for classification

should be selected from the feature list, as the choice significantly impacts the performance

(Marsland, 2009).

Figure 2.6 represents the structure for a supervised learning process of feature extraction,

training the classifier on the extracted features with the true labels, and finally producing

predicted labels on the test data (unseen data).

Fig. 2.6 A supervised classification task using feature engineering. Reproduced from
http://www.nltk.org/book/ch06.html.

Another crucial step in developing a classifier model, is error analysis that is often

performed after the feature set has been determined and selected and after training to refine

the feature set and adjust hyper-parameters (see, e.g. NTLK). The dataset used to train the

classifier is usually divided into two sets: a development set and a test set. The development

set is in turn, further segmented into two subsets: a training set and a development-test set

(Figure 2.7).

The primary function of the training set lies in training the classifier model. On the

other hand, the development-test set serves a dual purpose – facilitating error analysis and
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optimising hyper-parameters crucial to the learning process, thus avoiding overfitting. The

test set is used then for the system evaluation.

Fig. 2.7 Training Dataset.

2.4.2 Supervised classification Algorithms with Feature Engineering

These are examples of classification algorithms that work with human engineered/selected

features.

Support Vector Machine – SVM

The support vector machine (SVM) is a non-probabilistic classifier, that according to Rogers

and Girolami (2016) is most useful in cases where the number of features is more than the

number of training instances. The SVM algorithm works by identifying a hyperplane (or a

decision boundary) within an N dimensional space (where N refers to the number of features)

that in turn can classify data points into distinct classes. There could be a lot of decision

boundaries to choose from, and the goal relies on finding the boundary that has the maximum

distance between the data points and the boundary (margins of the boundary). A linear

decision boundary is defined by the following equation:

tnew = sign
(

w⊤xnew +b
)
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Data points which lie on one side of the boundary are put in the class tnew = 1 and data

points on the other side are classified as tnew = −1. The labels of the classes are 1, and

−1. The learning process is achieved by finding the values of w and b. In order to do that,

parameters that identify the maximum margin need to be found.

“The margin is defined as the perpendicular distance from the decision boundary to the

closest points on either side” (Rogers and Girolami, 2016). Figure 2.8 illustrates how the

margin is calculated (the margin is represented by 2γ).

Fig. 2.8 Calculating the margin (γ). 2γ is equal to the vector X1 − X2 in the direction
perpendicular to the boundary (Rogers and Girolami, 2016).

Fig. 2.9 Linear decision boundary with highlighted points that represent support vectors
(Rogers and Girolami, 2016).

Support vectors are the data points closest to the maximum margins of the decision

boundary (Figure 2.9). They are named support vectors because they help in determining the
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decision boundary, as the goal for the decision boundary is to have the maximum margins,

and in order to do that we need to find the closest points that determine the size of the

margins.

What happens if the data cannot be separated by a linear decision boundary? Instead

of changing the algorithm, the data can be transformed to a new space that makes them

separable by the linear boundary. Kernel functions are used to transform the data. These are

the most commonly used kernel functions:

linear k (xn,xm) = x⊤n xm

Gaussian k (xn,xm) = exp
{
−γ (xnxm)

⊤ (xn −xm)
}

polynomial k (xn,xm) =
(

1+x⊤n xm

)γ

k-Nearest Neighbours – kNN

k-Nearest Neighbours (kNN) is another non-parametric learning algorithm (Vemuri, 2020).

Unlike other machine learning algorithms that don’t make use of the training data after

building the models, KNN keeps a memory of all the training data. So, whenever the model

is given a data point to classify, it first searches the previously saved data and finds the k

training examples closest to the given data point. Then the model returns the majority class

(the most frequent label of the k closest training examples). In order to find the closest

examples from the training data we need to find the distance from them to the data point that

needs to be classified, there are multiple functions to measure the distance that can be used:

• cosine similarity

• Euclidean distance

• Hamming distance

• Mahalanobis distance

• Chebychev distance
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(a) k = 5. (b) k = 39.

Fig. 2.10 Decision boundary comparison with different k values (Rogers and Girolami, 2016).

One problem that arises with KNN is that tie may result when we try to find the majority

label of the k nearest points. To solve this problem a label can be chosen. Another more

effective solution is to give a weight for each label based on the distance of the data point

and according to the distance function chosen (Rogers and Girolami, 2016).

To chose k, a number needs to be chosen that is not big nor too small. This is because with

a small k, a lot of noise can appear with the data and with too big a k this can lead to always

assigning instances with one class if the number of instances in one class is significantly less

the chosen number of k. Figure 2.10 shows the decision boundary with different values of k ,

one reasonable value with k=5 and the other too big value k=39. The dataset here has 50

data pointw with class 0 and 20 with class 1, you can see the decision boundary with k=5 is

more reasonable.

Another way to choose k is by using cross validation. k can be chosen by picking the

value that maximises classification accuracy on the training data.

Multinomial Naive Bayes – MNB

Multinomial naive Bayes (MNB) is a probabilistic classifier. The word Bayes is in its name

as it is a Bayesian classifier. It is also referred to as naive it simplifies the assumptions about

feature interactions. Our account of MNB in the following is based on that in (Jurafsky and

Martin, 2014).
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Figure 2.11 shows the idea behind the classifier. It represents a document as a bag of

words where the order of the words is not important nor what sentence it appeared in. It just

keeps score of how many times a word appeared in the whole document. So, in the example

in Figure 2.11, we do not represent the word order in the phrases “I love this movie” and “I

would recommend it”, we just say that the word I appeared 5 times and the word it 6 times

and so on.

Since Naive Bayes is a probabilistic classifier, so the classifier needs to return the class ĉ

that has the maximum posterior probability of all classes c ∈C in a given document d.

ĉ = argmax
c∈C

P(c | d)

The work of Bayes (1763) introduces the idea of Bayesian inference, and Mosteller et al.

(1964) were the first to apply it to text. Bayes rule can help in breaking down a probability

into three probabilities to make it simpler, it is given in the following equation:

P(x | y) =
P(y | x)P(x)

P(y)

Bayes rule can be applied to the previous equation to transform it into the following:

ĉ = argmax
c∈C

P(c | d) = argmax
c∈C

P(d | c)P(c)
P(d)

And by further simplifying this equation we get:

ĉ = argmax
c∈C

P(c | d) = argmax
c∈C

P(d | c)P(c)

where P(d|c) is the likelihood and P(d | c)P(c) is the prior probability. We can represent

a document d as a set of features f1, f2, ..., fn. Naive Bayes assumes that the probabilities

P( fi | c) are independent and hence can be multiplied. This gives us the final equation:

cNB = argmax
c∈C

P(c) ∏
f∈F

P( f | c)
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In the case of text classification we can take as features the set of words that occur in the

document to be classified. And to estimate the probability of particular text belonging to a

specific class we can consider the words that occur at each position in the text. And in order

to do that, the previous equation will be as the following:

cNB = argmax
c∈C

P(c) ∏
i∈position

P(wi | c)

Fig. 2.11 Applying the idea of MNB classifier to a movie review (Jurafsky and Martin, 2014).

Conditional Random Field – CRF

The conditional random field (CRF) is a discriminative sequence labelling model that is

based on log linear models. Here we describe the linear chain CRF widely used in language

processing. Our account closely follows that of Jurafsky and Martin (2023)

Assume we have a sequence of words X = x1,x2, ...,xn, the goal is to get the sequence of

labels Y = y1,y2, ...,yn corresponding to these words. To do that, a CRF model calculates

the posterior probability P(Y | X), by training the model to be able to discriminate among

various label sequences:

Ŷ = argmax
Y∈y

P(Y | X)
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CRF computes a probability for every possible label sequence Y , given the word sequence

X . To do that, it calculates log-linear functions at each time step based on a set of features.

These features are then combined and normalised to generate a single overall probability for

the entire label sequence. Each feature function F maps the input sequence X and the output

sequence (labels) Y , to a feature vector. If we assume there are K features where feature Fk

has weight wk, then the posterior probability of label sequence Y given input X is computed

by:

p(Y | X) =
1

Z(X)
exp

(
K

∑
k=1

wkFk(X ,Y )

)

Z(X) = ∑
Y ′∈Y

exp

(
K

∑
k=1

wkFk
(
X ,Y ′))

where Fk(X ,Y ) is referred to as a global feature function. This is because they represent

characteristics of the entire input sequence X and the output sequence Y . In a linear chain

CRF these global features are calculated by breaking them down into a sum of local features

for each position i in the output sequence Y according to the following equation:

Fk(X ,Y ) =
n

∑
i=1

fk (yi−1,yi,X , i)

Like the other supervised algorithms described above defining what the features are remains

a task for the human language engineer. In work below in Chapter 4 and Chapter 6 the scikit

learn implementation of CRF is used.

2.4.3 Representation Learning: NNs and Deep Learning

The first neural network architecture was invented by McCulloch and Pitts in 1943 in their

paper “A logical calculus of the ideas immanent in nervous activity” (McCulloch and Pitts,

1943). They proposed a model called artificial neurons that has multiple binary inputs

(on/off) and one output.The output neuron becomes active if one or or more of the inputs are

active. They established that a network built of these artificial neurons could compute logical

propositions.
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The perceptron is an example of a simple network architecture that can deal with numbers

as inputs and outputs, first proposed by by Frnak Rosenblaatt (Rosenblatt, 1958). The

artificial neurons here are a bit different and are called threshold logic units (TLU). TLUs

associate a weight wi with each input xi and then sum these weighed inputs to get an output

value z: z = w1x1 +w2x2 + ...+wnxn = xT w. After that a step function is applied to this sum

hw(x) = step(z). The Heaviside step function is mostly used in perceptrons. The perceptron

consists of a single fully connected layer (dense layer) of TLUs; fully connected layer means

that each TLS is connected to all inputs in the previous layer. The input layer consists of

input neurons and its main task is just passing the input to the next layer (no computations

are made here). And finally, a bias neuron is added to the input ( x0 = 1 ) that always outputs

1. So, the output of a fully connected layer is computed by:

hW,b(X) = φ(XW +b)

where, X is the input matrix, W is the weight matrix (the weight of bias neuron is computed

here), b is the bias vector, and φ is the activation function, in our case here the step function.

A diagram of the architecture is given in Figure 2.12) (Géron, 2022).

The perceptron training algorithm is inspired by Hebb’s rule, “cells that fire together wire

together”, that is a connection between two neurons gets stronger when they fire at the same

time. The learning or perceptron is then given by the following equation:

w(next step )
i, j = wi, j +η

(
y j − ŷ j

)
xi

Where wi, j is the weight of the connection between the input neuron i and the output

neuron j, xi is the ith input of the current instance being trained, ŷ j is the jth output of the

current instance being trained, and η is the learning rate.

Combining multiple Perceptrons yields in a multilayer perceptron (MLP). MLP consists

of one input layer, one or more layers of TLUs (hidden layers), and an output layer (the final

layer of TLUs). All layers have a bias neuron, except of the output layer (Figure 2.13). When

a network has multiple layers (more than two) then it is called deep neural network.
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Fig. 2.12 Architecture of a perceptron with two input neurons, one bias neuron and an output
layer of three output neurons (Géron, 2022).

Backpropagation algorithm made training MLP easier, it is a Gradient descent that is

computed automatically in two passes over the network (a forward and a backward pass). For

every training instance, the backpropagation algorithm first begins by making a prediction

(forward pass) and assessing the error. Then, it traverses each layer in reverse, gauging

the contribution to the error from each connection (reverse pass). Finally, it adjusts the

connection weights to minimise the error through a Gradient Descent step.

Fig. 2.13 Architecture of a multilayer perceptron (Géron, 2022).
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Transformers

To understand the idea behind transformers, we first need to understand the attention

mechanism as it plays a major role in the transformer architecture. The attention mechanism

lets the encoder focus on a specific word (e.g. the word being translated in a given sentence).

For example, for a translation task, when the decoder wants to output the word lait, it will

only focus on the word milk sent from the encoder. This idea was introduced by Bahdanau

et al. (2014). In this mechanism, all the encoder output is sent to the decoder (not just the last

hidden state, which is the case in simpler RNN-based encoder-decoder models). At each time

step, a weighted sum is computed and the decoder decides which word to focus the attention

on this time step based on this computed weight. The weights are computed by an alignment

model (or attention layer). This attention layer consists of a time distributed layer (dense

layer) and a softmax layer. The dense layer takes the output from encoder and the hidden

state and foe each input it measures how well it is aligned with the decoder’s previous hidden

state (this is considered as the weight for the input). The softmax layer then ensures that all

weights add up to 1. This is the first attention mechanism used and it is called concatenative

attention, after that several attention mechanisms appeared such as multiplicative attention.

The Transformer is an architecture created by a team of Google (Vaswani et al., 2017),

they introduces the architecture in their paper ”Attention Is All You Need". Figure 2.14

shows the model architecture. As you can see the architecture consists of encoder (on the

left), and a decoder (on the right).

The encoder has a stack of N identical layers (in the paper N = 6), each layer consist of two

sub layers; a multi-head attention layer and a position-wise feed forward layer. The input to

the encoder is a collection of sentences, with each sentence being presented as a sequence

of word IDs. Each word is encoded into a 512 dimensional representation. The purpose of

the encoder is to systematically convert the input, which is the word representations of an

English sentence, in such a way that each word’s representation accurately reflects the word’s

meaning within the context of the sentence.

The decoder also has a stack of N identical layers (also 6), and apart from the two sub layers

in the encoder, it also has a third sub layer. This additional sub layer applies multi-head
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attention on the output taken from the encoder. The self attention sub layer here is modified

so that it prevents positions from attending positions after them. The decoder takes as input

the target sentence presented as a sequence of IDs of the its words. These sequences are

shifted by one to the right (a start token is inserted at the beginning of the sequence). The

decoder’s task is to systematically convert the word representations within the translated

sentence into word representations for the next word in the translation.

Fig. 2.14 Transformer Architecture (Vaswani et al., 2017).

The multi-head attention layer in the encoder enhances each word representation by

focusing (paying attention to) on all the other words in the same sentence. This process

is capturing its exact meaning within the context of the sentence. The masked multi-head

attention layer in the decoder, has a similar task but when processing a word it does not

look at the words after the current word being processed in the sentence, it only look (pay
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attention to) at the words before. The upper multi-head attention layer in the decoder is part

responsible in paying attention to the words in the original sentence being translated. The

positional encodings in the figure 2.14 are dense vectors similar to word embeddings that

have positional information about the position of each word. As all layers in the architecture

do not consider word positions, and the order of words is important to language understanding,

positional encodings are used to provide this information to the transformer. An attention

function is a process that takes a query and a collection of key-value pairs and produces a

result. All of these elements, the query, keys, values, and result, are represented as vectors.

The result is determined by calculating a weighted sum of the values, with each value’s

weight determined by how well the query matches the corresponding key.

2.5 Named Entity Recognition

Named entity (NE) recognition is the task of recognising mentions of a set of predetermined

named entity types in a given source text. The task involves determining the extent, i.e. the

textual span, of each named entity mention and identifying the type of the mention. Entities

to be extracted belong to different types (Jurafsky and Martin, 2014):

• Individuals: e.g. persons, organisations, places, books, films.

• Kinds: e.g. chemical compounds, disease, proteins.

• Times: e.g. dates, times of day.

• Measures: e.g. prices, sizes, quantities.

When a named entity in a text is mentioned multiple times, it is often referred to using different

strings. These strings are said to corefer and this phenomenon is known as coreference. The

coreference task is to link all the strings that refer to the same named entity. This may be

treated as a separate task to recognising named entities or may be treated as part of the same

task (Gaizauskas, 2017).

Named entity recognition is used as a preprocessing step in information extraction,

information retrieval and other text processing tasks. (Jurafsky and Martin, 2014; Mikheev
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et al., 1999; Tjong Kim Sang and De Meulder, 2003). Named entity recognition is a useful

initial step for more complex information extraction processes such as event extraction and

relation extraction.

NER is used later in the thesis as feature for supervised classification models.

2.5.1 Named Entity Recognition Approaches

Rule Based Approaches Rule based systems depend on the use of lexicons such as

gazetteers which contain lists of proper names for each of the named entity types (person,

organisation, company designators, person titles, locations, etc.) (Wakao et al., 1996). For

example, the approach of (Wakao et al., 1996) has three steps: lexical preprocessing, NE

parsing, and discourse interpretation. The lexical processing step starts by splitting sentences

and tokenizing text, and then part of speech tagging each token of the tokenized text. After

that, the system searches for a matching name in the gazetteers to get the named entity either

for a phrase or a word. Then, trigger words are identified to help to recognise named entities.

Trigger words are words that appear with named entity phrases that indicate their named

entity type (e.g. in Wing and Prayer Airlines the word Airlines indicates that Wing and

Prayer is an organisation). After that, NE parsing applies a set of hand-produced rules to

classify unclassified proper names, e.g. "a sequence of upper case initial words followed by a

company designator is an organisation" (e.g. Delta Electronics Ltd). The last step, discourse

interpretation, consists of two tasks: the first is to do coreference resolution which looks for

unclassified proper names that refer to already known named entities, then it assigns the class

of the known entities to the unclassified ones. The second task involves inferring NE types

from the argument types of some relations.

Sequence Labelling Approaches Sequence labelling is also used to get the labels for the

named entities. Each word is tagged by considering the types and boundaries of named

entities, a sequence classifier is trained to predict the label of words that indicates presence

of named entity type (Jurafsky and Martin, 2014). IOB tagging - which stands for (Inside,



48 Background

Outside, Beginning) - is used to tag the beginning of a named entity, inside the named entity,

and tokens outside the named entity. Figure 2.15 shows an example of IOB tagging output.

Fig. 2.15 IOB tagging example - (Jurafsky and Martin, 2014)

Feature based approach: In order to train IOB sequence labelling to predict tokens types,

tokens must be represented as features that could be about the token itself or could include

features about the words around it. Figure 2.16 shows possible features that are used to train

sequence labelling classifier.

Deep learning based approach: Named entity recognition using IOB tagging can be

implemented by fine tuning transformer based models (e.g. BERT). After the sentence is

tokenised, each token is given a tag by passing the output vector of the token to the classifier.

The classifier is a feedforward layer followed by a softmax, and it learns the weights for the

possible tags of tokens. This gives a probability for each possible tag for the given token.

Argmax tag of the token is then chosen, and this is used to produce the output tag sequence.

Alternatively, a CRF layer could be added to produce the output tag sequence.

2.6 Text Segmentation

Text segmentation is the process of breaking down text into meaningful units. Many re-

searchers have tried to automate this process in the field of Natural Language Processing.
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Fig. 2.16 Features for NER System - (Jurafsky and Martin, 2014)

Approaches to automatic text segmentation and evaluation are discussed in detail in the

following sections.

Approaches

Lexical Cohesion Based Approaches

TextTiling, which is an algorithm that is used for automatic text segmentation, was proposed

by Hearst (1997). Its basic idea lies in scoring sentences and plotting those scores. Segment

boundaries are then considered to lie at the largest valleys on the graph. The algorithm has

three steps: (1) tokenisation, (2) scoring adjacent sentence pairs and (3) locating the topic

boundaries, depending on the scores that are obtained during the second step.

The first step tokenises the text into words and pseudo-sentences of a predefined size m

so that all sentences will have the same size.

For the second step, Hearst uses three methods for scoring sentences: blocks, vocabulary

introduction and chains. These methods use the “lexical co-occurrence and distribution of

text” (Hearst, 1997).

The block method assigns a score by comparing adjacent blocks (all blocks have the

same size k) and measuring how many words occur in both blocks; these similarity scores

are computed for every gap between the blocks. The similarity between block b1 and block

b2 at the gap i can be computed as follows:
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score(i) =
∑t wt,b1wt,b2√
∑t w2

t,b1
w2

t,b2

where wt,b is the weight assigned to the term that is the frequency of the word, and t is the

collection of terms.

The vocabulary introduction method assigns the score to the gaps, depending on the

number of new words seen, so that the score between two blocks can be computed as follows:

score(i) =
NumNewTerms(b1)+NumNewTerms(b2)

w∗2

The third step is to identify the boundaries, which will allow the algorithm to compute a

depth score that measures the distance from the peaks that lie on the sides of the valley to

the valley itself. The gaps with the largest depth are selected as the boundaries. In addition,

as mentioned previously in section 2.3.3, Kozima (1993) handled the task of automatic text

segmentation by LCP, which keeps a record of the text’s lexical cohesiveness. The algorithm

slides a window through the text and plots the cohesiveness scores. It then chooses the

valleys that will be the boundaries’ positions. The Kozima (1993) algorithm is explained in

detail in section 2.3.3.

Feature Based Approaches

Beeferman et al. (1999) investigated the problem of automatic text segmentation using trained

statistical models. Their work depends on the approach to feature selection of Berger et al.

(1996); Della Pietra et al. (1997), which assigns a probability after each sentence that predicts

a boundary existence. The statistical model is q(b|X), where b could be either a YES or NO,

and X denotes the context at some position i in the text corpus with K words on the left and

the right of the position i. Therefore, bi is equal to YES if there is a boundary in that position

i, and it is equal to NO otherwise. They use an exponential model that is incrementally built

for feature extraction and uses two types of features: (1) topical features that use a language

model for the detection of topics and (2) cue word features that depend on finding cue words

that often occur around a segment boundary.
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Other Approaches

Choi (2000) proposed an algorithm for automatic text segmentation called c99. The algorithm

idea was inspired by image segmentation algorithms. The algorithm firstly computes a cosine

similarity score between each pair of adjacent sentences x and y using the following equation:

sim(x,y) =
∑ j fx, j × fy, j√
∑ j f 2

x, j ×∑ j f 2
y, j

where fi, j refers to the frequency of word j in sentence i. The algorithm then plots these

similarity scores into n×n image, where each similarity score is represented by a pixel at

the sentence’s location (i,j). n indicates how many sentences in the text are being segmented.

The algorithm then applies a 11×11 mask to filter the image, followed by applying a divisive

clustering method to increase the density of the coherent squares around the diagonal to

extract them. These are considered the boundaries’ locations.

Utiyama and Isahara (2001) proposed a statistical method that is domain independent

for text segmentation. Because they used a Bayesian model, the algorithm does not require

training data. It selects the segment Ŝ with the highest probability by the following equation:

Ŝ = argmax
S

Pr(W |S)Pr(S)

, where Pr(W |S) =
m

∏
i=1

ni

∏
j=1

Pr(wi
j|Si), and Pr(wi

j|Si) =
fi(wi

j)+1
ni+K where ni is the word count in

segment Si, m is the number of segments in the document, K is the size of “different words of

the document" and fi(wi
j) is the word count of the word w j in segments S j and Pr(S) = n−m.

Evaluation

Pk, is a text segmentation evaluation metric that was proposed by (Beeferman et al., 1999). It

works by sliding a window of size k across the text, where k is set to half the average of the

true segment size. The metric gives a penalty of 1 whenever the two windows (one on the

true segmented text and the other on the automatically produced segmented text) disagree on
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a boundary. These penalties are summed and then normalised between 0 and 1 by dividing

the sum by the number of windows.

Pevzner and Hearst (2002) identified four problems of the Pk metric: (1) it penalises

false positives more than false negatives, (2) it heavily penalises near misses, (3) it does

not penalise some errors in some situations when they fall within k sentences from a true

boundary and (4) it is affected by segment size variations. To solve these problems with

the Pk metric, Pevner and Hearst proposed a new metric called WindowDiff, which is a

modification of the evaluation metric Pk. It works by moving a window of a fixed size N

over the segmented text. It is a penalty metric; therefore, it compares each time the number

of boundaries in the reference includes segmented text within the window with the number

of boundaries in the automatically segmented text and gives a penalty when the number of

boundaries in the window does not match the number of boundaries in the true window of

the text. It is computed by the following equation:

WindowDiff (re f ,hyp) =
1

N − k

N−k

∑
i=1

(|b(re fi,re fi+k)−b(hypi,hypi+k)|> 0)

where N is the number of sentences in the text, and b(i,j) is the number of boundaries between

positions i and j.

By contrast, Lamprier et al. (2007) identified that the windowDiff metric gives fewer

penalties to the errors that are located at the beginning and end of a text. Niekrasz and

Moore (2010) stated that both metrics are biased towards the number of boundaries of the

hypothesised segmentation. Fournier (2013) proposed a new segmentation evaluation metric

called BoundarySimilarity (B) to solve the previously mentioned metrics’ problems. It works

by finding the similarity between boundaries; instead of using a sliding window, it relies on

boundary edit distance (BED), which differentiates between full and near misses. BED uses

the following main edit operations to measure full and near misses: (1) addition/deletion

(AD) to represent full misses, (2) “substitution (S) for confusing one boundary type with

another" and (3) n-wise transposition (T), which represents near misses. Figure 2.17 shows
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an example of BED operations on two segmented texts s1 and s2. We can see that there is a

near miss represented by (T), and (M) indicates that we have matching boundaries in the two

segmented texts. We also have two AD operations that refer to full misses. These full misses

occurred because we set the maximum distance between boundaries nt to be 2 sentences (the

vertical white bars in the figure are sentence boundaries).

Fig. 2.17 Boundary Edit Operations - (Fournier, 2013)

BoundarySimilarity (B) is then represented by the following equation:

B(s1,s2,nt) = 1− |Ae|+wt_span(Te,nt)+ws_ord(Se,Tb)

|Ae|+ |Te|+ |Se|+ |BM|

where Ae is the set of ADs, Te is the set of n-wise transpositions, Se is the set of substitutions

and MM is the set of matching boundary pairs (Fournier, 2013). nt is the maximum trans-

position spanning distance, which sets the distance in sentences that indicates a near miss

between two boundaries. wt_span(Te,nt) is a scaling function that is used to represent the

severity of near misses using a constant wt , which is set to 0 by default. ws_ord(Se,Tb) is a

function that is used to calculate the weight of the substitution operations using a constant

ws.

2.7 Summary

In this chapter we have reviewed prior work relevant to the research we will present below.

The focus of our research work is on recognising visually descriptive language in text and on

scene recognition in narrative text. Therefore, we began the chapter by presenting previous

work on visually descriptive language in Section 2.1 and previous work on scene recognition

in Section 2.3.
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The rest of the chapter addresses prior work on computational methods relevant to the

tasks of recognising visually descriptive language in text and automatic segmentation of

narrative text into scenes. Section 2.4 described techniques for supervised text classification,

both feature engineering and representation learning techniques. These underlie all of our

experimental work below, where we will use them both for recognising visually descriptive

language and for scene segmentation. They also underlie modern approaches to named entity

recognition, which we discussed in Section 2.5 and text segmentation presented in Section

2.6. Modern approaches to NER use BIO tagging, which we will adapt for identifying

segments of visually descriptive language within sentences. Scene segmentation is a type of

text segmentation and we will adapt techniques both for computing and for evaluating the

latter for the former.



Chapter 3

Research Questions and Methods

This chapter discusses the research questions that are addressed by this project. As discussed

in chapter 1, our research addresses two broad areas. The first is the automatic recognition

of visually descriptive language (VDL) in text, both at the sentence and sub-sentence level.

The second is the automatic segmentation of narrative text into scenes. In this chapter, we

refine these broad areas of interest into specific research questions and discuss at a high level

the methods we use to attempt to answer these specific questions. Section 3.1 introduces

the research questions addressed by this thesis, section 3.2 gives a brief description of the

research methods used to address each of the research questions.

3.1 Research Questions

Identifying VDL in Text

1. How well can we automatically classify sentences into three classes, VDL, not VDL,

and partially VDL?

Using the definition of VDL supplied in Section 2.1, this question targets sentence-level

classification, in which sentences need to be tagged either as visually descriptive, not visually

descriptive or partially visually descriptive.
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2. Can we detect segments of sentences that are visually descriptive?

This question targets segment-level classification in which segments of sentences (e.g. words

or phrases) need to be identified either as visually descriptive, not visually descriptive or

impure visually descriptive (see Section 2.1 for precise definitions of these terms).

Scene Definition and Segmentation

3. Can we automatically segment a story into scenes?

This question studies the task of automatic segmentation of narrative text into scenes. We

start with the definition of scene provided in SceneML (Section 2.3.2). However, in the

course of our work we found that this definition needed to be refined and extended in various

ways (see Chapter 5 below). In order to do this, first, a clear definition of what a scene means

should be formulated. Next, narrative text (e.g. a novel) is selected from an open source

website, and then annotated into scenes. Finally, features are extracted and an automatic

segmentation of the story is conducted. The next section explains in detail the methodology

to achieve this.

4. Can VDL be used to help in scene segmentation?

Our final research question targets the use of VDL for the task of scene segmentation, and

whether it could be a good indicator of scene segments. Since automatic scene segmentation

is developed by using a feature-engineering supervised learning approach, VDL can be

treated as one of the features of the model.

3.2 Research Methodology

In this section we discuss the methodologies used to address each of the research questions

identified in the section above.
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Identifying VDL in Text

To address questions 1 and 2, the following methodology is followed:

• Data selection and annotation: The data that are used in this part of the research

comprise a corpus of text from a children’s story and from a number of samples of

different genres in the Brown Corpus. Certain chapters of these books were randomly

selected and annotated as either VDL, not VDL or partially VDL. The annotation was

done at the segment level and then sentence level annotation annotation was inferred

from this. We followed the definition presented by Gaizauskas et al. (2015) that state:

"by text segment here we mean a phrase, clause, sentence or sequence of sentences, i.e.

a sequence of contiguous words”. Details of the data are provided in chapter 4, section

4.1.

• Data pre-processing: Data are pre-processed first: tokenisation (i.e. where a sentence

is divided into smaller parts (words)) and stop word removal (i.e. where a list of

English common words are removed from the text) are applied to the data.

• Feature extraction: The features are then extracted from the pre-processed text via

different methods, such as tf-idf term weightings, word embeddings and methods that

use other resources, such as VerbNet, WordNet and combinations of such. Feature

extraction methods are discussed in details in section 4.2.

• Training: The features are then fed into a supervised learning classifier, along with the

necessary labels, to train the classifier. As research questions one and two represent

two different classification tasks, they are managed using separate methodologies:

1. The classification task for research question one is treated as normal sentence

level classification where each sentence is to be given a tag as VDL, not VDL, or

partially VDL.

2. The classification task for research question two is a segment level classification

task. That is, segments possibly smaller than a full sentence (e.g. words or

phrases or even the whole sentence) are to be tagged as VDL, not VDL, or impure
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VDL. To achieve this, the task here is treated as a Named Entity Recognition

(NER) task, where the the approach of IOB is employed. Under this approach,

each word is assigned a tag indicating whether it falls inside (I), outside (O), or

(B) beginning of the designated segment.

Both tasks listed above have been experimented with different classifiers, SVM, kNN,

and MNB classifiers. Further discussion on the experimentation is given in Chapter 4.

• Evaluation: accuracy is a widely used evaluation metric in classification tasks, how-

ever, since the data used here is imbalanced, using accuracy can be misleading. Bal-

anced accuracy (Brodersen et al., 2010) is used as an evaluation metric as it gives equal

importance to all classes (minor and major classes) as it computes the average accuracy

achieved across both the minority and majority classes. This is given by:

Accbalanced =
1
N

N

∑
i=1

Pi

Mi
(3.1)

where N is the number of classes, Pi is the number of correct predictions of class i, and

Mi is the number of instances of class i.

Details of the above methods are explained in detail in chapter 4, which includes experi-

ments that are related to the first and second research questions.

Scene Segmentation

The second set of questions address the task of automatic segmentation of narrative text into

scenes. Including the use of VDL in the task of automatic scene segmentation. The following

discusses the methodology that is used to address these questions:

• Data collection and annotation: Until now, no annotated data in English have been

used for the automatic segmentation of narrative text into scenes. Therefore, a corpus

of text that is dedicated to this task needs to be assembled and annotated. The data

collection/selection and annotation comprises two stages, as explained below:
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– Data Collection: includes the identification and acquisition of the raw text that is

going to be annotated. Several chapters need to be selected from narrative books

(different novels from project Gutenberg).

– Data Annotation:

* guideline specification: Before annotation can occur, guidelines must be

formulated, and a clear definition of a scene needs to specified. While

the definition of scene provided by SceneML as described in Section 2.3.2

provides a good starting point, further refinement was required to turn this

into a set of guidelines that covered the cases we found in dealing with

real data. Section 2.3.2 details the definition that was chosen for scene

and section 5.1 presents the guidelines that were formulated based on the

SceneML.

* Data annotation: This process includes recruitment of annotators, training

them and assessing their understanding of the task and the guidelines. It

also includes application of the annotation specification to the collected

text. In which annotators were asked to annotate scenes segments in the text

provided, a segment here can be a sentence, a paragraph, or a whole chapter.

Details of the annotation process is given in Chapter 5.

• Data Pre-processing: After the data collection and annotation phase is complete, the

data are pre-processed to create a suitable format for being fed into supervised machine

learning classifiers. The pre-processing phase includes sentence splitting (splitting text

into sentences) and tokenisation (splitting sentences into words).

• Scene Segmentation: The scene segmentation task is addressed using three different

approaches. As scene segmentation is a complex task, thus results of these distinct

approaches are then compared with a view to understanding the strengths and weak-

nesses of these different approaches. All the three approaches are developed using

supervised learning methods.
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– Approach 1: The task here is treated as a sequence labelling problem as the

order of sentences is important for this particular task, as is knowing whether

the previous sentence was deemed to be on a scene boundary or not. It is very

similar to Named Entity Recognition (NER) task, but instead we are dealing with

sentences instead of words. The sequence here is the sequence of sentences that

belong to the same narrative text that is being segmented. Each sentence is then

given a tag (1 for sentences on the boundary of a scene and 0 otherwise). To train

the classifier, the following steps are followed:

* Feature extraction: After data are pre-processed, features are extracted via

widely-used methods, such as computing tf-idf term weightings and word

embeddings. VDL could be identified as it might be a useful feature to

help detect segment boundaries, on the hypothesis that there might be more

VDL segments at the beginning of a scene segment to describe a change in

location than occur at other positions in a scene. In addition, named entity

recognition is used to extract named entities such as time that could be used

as a feature. Other features and feature extraction methods are described in

detail in Chapter 6.

* Training and testing: After features are extracted, they are designated as

part of either the training set or the test set. The training data are then used to

train supervised learning models. For this task the CRF is chosen. The test

data are used to test the learning model that predicts segment boundaries.

– Approach 2: The second approach treats the task not as a sequence labelling task

but as an isolated sentence classification task using a pre-trained language model.

The model is implemented with Ktrain library (Maiya, 2020) and with the use

of BERT (Bidirectional Encoder Representations from Transformers) (Devlin

et al., 2018). The model is trained and tested using two different settings: one

with BERT-cased, and the other with BERT-uncased. The models with the two

different variations were evaluated using the metrics given above.
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– Approach 3: The scene segmentation task here is treated as a sentence pair

classification using a pre-trained language model. As the task name suggests,

a pair of two sentences is given a tag. For our particular task and to capture

as much contexts as possible, each sentence is paired with a context that is the

sentence concatenated with the two preceding sentences and the following two

sentences. In addition, two settings have been implemented and tested one with

BERT-cased and the other with BERT-Uncased. The model is then evaluated

using the evaluation metrics above.

– Evaluation: Since the task is treated as a classification task, classification evalua-

tion metrics are used. However, the data used here is also imbalanced, so balanced

accuracy (as explained above) is going to be used instead of the accuracy score.

In addition, the F1 score is also used here as an evaluation metric as it is also

suitable for imbalanced data (as it considers both precision and recall) and to be

able to compare our work with others who used the F1 score to evaluate their

models. The F1 score is computed by:

F1 Score = 2 · Precision ·Recall
Precision+Recall

While precision is given by:

Precision =
T P

T P+FP

and recall is:

Recall =
T P

T P+FN

Details of all three approaches to scene segmentation together with results from training

and testing them on the annotated corpus described above are presented in Chapter 6.
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3.3 Conclusion

This chapter has outlined the research questions addressed in this thesis, specifying each in

some detail. In addition, it gave a brief explanation of the methodologies we followed to

address each of the research questions.



Chapter 4

Recognising Visually Descriptive

Language

Adopting the definition of VDL proposed by Gaizauskas et al. (2015) and discussed above

in section 2.1, that VDL is language that asserts propositions whose truth can be confirmed

through visual sense alone, in this chapter we address the first two of the research questions

introduced in the last chapter. First, in section 4.1 we give a brief description of the data used

in this chapter. Then, in section 4.2, we investigate the specific task of classifying sentences

as wholly, partially or not at all visually descriptive. We discuss different approaches to the

task, and report results on automatic classifiers trained on the annotated dataset. Then, in

section 4.3, we investigate the task of segment level classification of VDL and report results

on this task too.

4.1 Data

The corpus compiled by (Gaizauskas et al., 2015) (VDL-C1) is the initial annotated corpus.

The data that was selected for the annotation task in Gaizauskas et al. (2015) included two

chapters from The Wonderful Wizard of Oz (173 sentences)and six samples from the Brown

chosen (779 sentences) that were extracted from various pre-selected categories (two news

articles, one biography and three novels). All annotations were done on segment level; 3
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annotators annotated the WOZ texts and 2 annotators annotated Brown texts using brat rapid

annotation tool. The sentence level annotations were inferred from the segment level ones.

The corpus used in this work (VDL-C2) is an extended version of (VDL-C1) that contains

six additional chapters from WOZ that were annotated by 5 annotators1. The extended WOZ

has a total of 916 sentences. As the sentences are multiply annotated, we further filtered the

annotations of the extended corpus by choosing only the sentences where both annotators

agreed, in the case of two annotators, and where three or more agreed in the case of five

annotators. This gave a total of 1,337 sentences. Table 4.1 presents the statistics of the

extended Corpus including the inter-annotator agreement at sentence level.

The third annotated corpus used in this study is (VDL-C3) which a corpus that extends

(VDL-C2) with Flickr data. We used a proportion of Flickr8k, comprising 400 captions, and

labelled them all as ‘VDL’. Choosing a small subset of Flickr8k helps to prevent the dataset

from becoming highly imbalanced as all captions are considered ‘VDL’.

4.2 Sentence Level Classification

Supervised machine learning was used to automatically classify sentences as either 0 (NOT

VDL), 1 (VDL), or 2 (partially VDL). Subsection 2.2 summarises initial work on feature

extraction and feature-based classification done during MSc. Subsection 4.2.1 covers addi-

tional work on feature extraction during PhD. Subsection 4.2.2 reports results from all the

feature based classification approaches and Subsection 4.2.3 explores an application of these

approaches to sentence-based VDL classification of entire novels from Project Gutenberg.

In order to carry out the task of classifying sentences into three classes (NOT VDL, VDL,

or partially VDL), several feature extraction approaches were explored as discussed in the

following subsections.

1Annotators were UK based former PhD students, they were paid base GTA rate.
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Text Type |S| S=1 S=2 VDL IVDL %Agree κ IoU

Oz

Ch1 Children’s Story 59 0.19 0.54 40 14 0.68 0.47 0.72
Ch3 Children’s Story 124 0.12 0.40 57 18 0.78 0.64 0.73
Ch5 Children’s Story 112 0.07 0.43 48 21 0.72 0.52 0.56
Ch7 Children’s Story 95 0.13 0.51 51 47 0.76 0.73 0.65
Ch9 Children’s Story 78 0.12 0.42 38 23 0.72 0.69 0.62
Ch11 Children’s Story 203 0.15 0.40 99 33 0.73 0.56 0.70
Ch13 Children’s Story 52 0.06 0.67 41 15 0.77 0.51 0.73
Ch15 Children’s Story 193 0.03 0.30 52 26 0.72 0.41 0.40

Brown

A13 Sports Reportage 111 0.11 0.27 25 20 0.78 0.60 0.51
A30 Culture Reportage 128 0.04 0.34 31 21 0.78 0.56 0.57
G32 Biography 101 0.02 0.47 32 29 0.74 0.50 0.43
L05 Mystery Fiction 151 0.21 0.31 65 20 0.87 0.79 0.63
N13 Western Fiction 122 0.12 0.46 58 38 0.70 0.49 0.57
P15 Romance Fiction 179 0.08 0.24 40 21 0.82 0.62 0.73

Table 4.1 Descriptive Statistics and Sentence Level Inter-annotator Agreement Scores of
VDL-C2 Corpus. Column |S| is the total number of sentences in each chapter. Column S=1
is the proportion of VDL sentences in each chapter. S=2 is the proportions of sentences of
partially VDL sentences in each chapter. VDL, is the number of VDL segments. IVDL is the
number of IVDL segments in each chapter. Column %Agree is the percentage agreement
and column κ is the kappa score. %Agree and κ are both used to assess inter-annotator
agreement at the sentence level. Finally, column IoU is the intersection over union and it is
computed at segment level.
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4.2.1 Further Work on Feature Extraction for Sentence Level VDL

classification

To extend our early work on feature extraction, as detailed in section 2.2, we explored various

enhancements, introducing several additional features and experimenting with variations and

modifications to existing features.

Word Embeddings

Word embeddings are vector representations that capture the semantic similarities between

words. They result from a process designed to capture the distributional properties of words.

Since semantically similar words tend to have similar distributional properties, i.e. occur in

similar contexts, closeness between word embeddings in vector space gives a measure of

semantic similarity between words. Approaches based on neural networks embed words into

a low dimensional space.They represent words as vectors of real numbers, so that words with

similar meanings would have similar vectors (Jurafsky and Martin, 2023; Levy et al., 2015;

Mikolov et al., 2013). Word embeddings are used here to extract features from text. Word

vectors are obtained for each word in the sentence using spaCy. Then, the average of the

word vectors is taken to produce a vector for the sentence.

SpaCy uses a word vector model that provides 300-dimensional GloVe vectors for over

1 million English terms (spa). GLoVe is a global unsupervised learning model that obtains

vector representations of words (Pennington et al., 2014). It is trained on aggregated global

word-word co-occurrences. It is also trained on “five corpora of varying sizes: a 2010

Wikipedia dump with 1 billion tokens; a 2014 Wikipedia dump with 1.6 billion tokens;

Gigaword 5 which has 4.3 billion tokens; the combination Gigaword5 + Wikipedia2014,

which has 6 billion tokens; and on 42 billion tokens of web data, from Common Crawl”

(Pennington et al., 2014, p.1538) .

WordNet - Variations

We considered several ways to attempt to make more effective use of WordNet:
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• Obtaining an overall visual score by summing the visual score of each verb, object and

subject. This approach works by extracting the main verb of the sentence and then

looking for its type in WordNet to determine whether it is a visual verb or not. If it

is visual, the visual score is incremented by one. After this, we extract the object and

subject of the sentence and look "for them in the WordNet hypernym hierarchy (taking

the first synset). If they are visual, the visual score is incremented for each one of them.

The feature representation here is different from the ones in section 2.2 in that instead

of having binary values, here we have an integer value that record the overall visual

score.

• Including all objects and subjects of the sentences rather than only the object and

subject of the main verb. The original WordNet approach –described in section 2.2 –

only includes the subject and object of the main verb; however, here we look for all

the objects and subjects in the sentence and their hierarchies in WordNet to determine

whether they are visual or not. We then include this information in the feature vector.

• Having six features instead of three; three features indicating the visual information

and three features indicating whether the word was found in WordNet. Thus, a feature

is added that indicates that the main verb, the object and the subject of the main verb

are all visual. In addition, a feature that indicates that they are found in WordNet is

added for each of them. This is meant to distinguish between words that are not visual

and words that are not found in WordNet, since the classifier might consider words not

found in WordNet as not visual.

• Using Named Entity Recognition for person, organisation and location to indicate the

visualness of a word. One of the reasons that a word may not be found in WordNet is

that it might refer to a person’s name or a place’s name. Thus, in the WordNet approach,

a condition is added to test whether the subject or object is found in WordNet. If it is

not found, then we use the named entity recognition from NLTK to indicate which

type of word it is. If the named entity recognition indicates that the word refers to a

PERSON, PLACE or ORGANISATION, a feature that indicates it is visual is added.



68 Recognising Visually Descriptive Language

After testing all of the above methods of improving WordNet’s feature extraction approach,

unfortunately, it appears that they did not help to improve the accuracy score.

Combining Features

We tried to merge the features of the WordNet approach with those of the tf-idf approach by

combining their vectors. This combination is denoted by (WordNet+tf-idf) in Table ??. Then,

the word embedding features matrix was merged with the tf-idf matrix, which is denoted by

(Embedding+tf-idf) in Table ??. The merging of features is done by horizontally stacking

(concatenating) matrices of the features by using the function scipy.sparse.hstack.

4.2.2 Experiments, Results and Analysis

In this section, we report and discuss the results of our experiments on the VDL sentence-level

classification task, comparing three supervised classifiers with the different representations

explained above. The three classifiers that were explored and tested are: (i) a weighted

k-nearest neighbours (kNN) classifier with a Euclidean distance measure (we use k = 5 in our

experiments); (ii) support vector machine (SVM) with a linear kernel; and (iii) multinomial

Bayes (MNB). We used the implementations in scikit-learn2.

We tested our proposed classifiers on two corpora VDL-C2 (presented in the following

lines), and VDL-C3 (presented at the end of this subsection). For (VDL-C2) we annotated

the corpus via 10-fold cross-validation. We report the average accuracy across the different

folds.

We tokenised all sentences in the dataset as a preprocessing step. Stop words were only

removed for the word embedding representation. We did not remove stop words for tf-idf

because the approach worked better without stop word removal. We also did not remove stop

words for the explicit representations, as they require complete sentences for parsing to be

performed.

2http://www.scikit-learn.org/

http://www.scikit-learn.org/
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We found the filtered dataset to be skewed towards class 0 (non-VDL, 53.70%), compared

to classes 1 (fully VDL, 9.65%) and 2 (partially VDL, 36.65%). Thus, besides the accuracy

metric, we also evaluated our classifiers using a balanced accuracy metric to account for the

class imbalance. Formally:

Accbalanced =
1
N

N

∑
i=1

Pi

Mi
(4.1)

where N is the number of classes, Pi is the number of correct predictions of class i, and Mi is

the number of instances of class i.

Model VerbNet WordNet tf-idf Embedding WordNet+tf-idf Embedding+tf-idf

kNN 0.2901 0.4543 0.5124 0.6804 0.5624 0.6941
SVM 0.1786 0.5108 0.7380 0.7434 0.7324 0.7378
MNB 0.1790 0.4928 0.4647 – 0.4536 –

Table 4.2 Balanced Accuracy Results. Note that the MNB classifier does not support the
negative values of the Embedding-based representation.

Results

Table 4.2 shows the results using our balanced accuracy metric, results were obtained using

three classifiers with 10-fold cross-validation. Note that we did not test the MNB classifier

on Embedding-based representations as MNB does not allow negative feature values (word

embeddings can have negative values). It is clear that the VerbNet approach with the KNN

classifier scored the lowest, whereas the WordNet approach was slightly better. Balanced

accuracy scores increased with tf-idf to 0.738, with the SVM and Embedding feature scoring

to 0.743. In addition, combining tf-idf with Embedding features (Embedding+tf-idf) and

WordNet features with tf-idf ( WordNet features with tf-idf (WordNet+tf-idf)) did not have

significant improvement.

Results for tf-idf, Embedding, WordNet+tf-idf and Embedding+tf-idf with the SVM

classifier are comparable, with Embedding having a slight edge, giving the highest balanced

accuracy score of 0.7434. As a baseline, we also evaluated a simple majority class prediction,

which resulted in a balanced accuracy of 0.3333.
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Analysis

Multiple factors affect the accuracy of the classifiers based on WordNet and VerbNet

representations. One is parser inaccuracy, which may lead to incorrect identification of the

main verb and/or the subject and object associated with the verb. The VerbNet database may

also not cover all English verbs, so some verbs may be unclassified. In addition, VerbNet

has many classes of verbs (237 classes) compared to WordNet (15 classes). This is likely

to reduce the accuracy of prediction in the case of Verbnet and may well be the reason why

WordNet’s accuracy results are higher than those of VerbNet. The following section provides

more in-depth analysis of errors caused by either the parser or the WordNet database.

As we previously reported, class 1 represents only a small part of the data. This class

imbalance may also be an issue with learning to classify VDL.

Fig. 4.1 Tf-idf Confusion Matrix Fig. 4.2 WordNet Confusion Matrix

Figure 4.1 shows the confusion matrix for the tf-idf representation with the SVM classifier.

For class 0 (non-VDL), 112 of 718 were misclassified (5 were misclassified as class 1, and

107 were misclassified as class 2). For class 1 (fully VDL), only 45 of the 129 total were

classified correctly, whereas 61 were misclassified as class 2 and 23 were misclassified as

class 0. For class 2 (partially VDL), 355 out of 490 were correctly classified, whereas 15

were misclassified as class 1 and 120 were misclassified as class 0. This classifier frequently

misclassified text that contains VDL. Figure 4.2 shows another confusion matrix, in this

case for the WordNet representation with the MNB classifier. Comparing it with the tf-

idf confusion matrix. What is striking in the WordNet matrix is that (1) only 1 VDL is
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Fig. 4.3 Word embeddins Confusion
Matrix

Fig. 4.4 Word embeddings+tf-idf Confusion
Matrix

recognised as such with many more true VDLs being incorrectly classified as non-VDLs

(2) fewer partially VDLs were correctly classified with many more incorrectly classified as

non-VDL. Overall WN leans to classifying things as non-VDL.

In addition, Figure 4.3 and Figure 4.4 show the confusion matrices for the top two features:

Embedding and word embedding combined with tf-idf (Embedding+tf-idf), respectively.

The confusion matrices of the two features share similarities in their tendencies to lean

towards classifying instances as non-VDL. In the confusion matrix of Embedding, a total of

547 non-VDL instances were correctly identified, while Embedding+tf-idf improved this

count slightly to 549. Both matrices displayed comparable correctness in identifying VDL

instances, with Embedding+tf-idf showing a slightly higher count for class 1 (fully VDL).

However, both approaches encountered challenges in correctly identifying partially VDL

instances, with misclassifications observed in both directions (as non-VDL and fully VDL).

Notably, the confusion matrices for both features exhibit a common trend of effectively

distinguishing non-VDL instances. However, they differ in their handling of partially VDL

instances, where both approaches face challenges with misclassifications in both directions

(as non-VDL and fully VDL). This suggests a complexity in accurately identifying instances

with partial VDL characteristics.
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Error Analysis

In order to improve the feature extraction methods that are already applied, we needed to

know what kinds of errors or mistakes are happening in them during the feature extraction.

Thus, starting with an attempt to improve the WordNet feature extraction method, we tried to

identify the number of missed words either by the parser or by the WordNet database. By

looking deep into the data, the following errors were found:

1. Missed objects: A total of 935 (69.9%) objects were missed from the parser; this

meant that no object was found for the main verb that was extracted by the parser in

the sentence.

2. Missed Subjects: A total of 274 (20.5%) subjects were missed from the parser; this

meant that no subject was found for the main verb that was extracted by the parser in

the sentence.

3. Wrong Verbs There were 332 (24.8%) wrong verbs; by ‘wrong verb’ we mean that

the main verb that was extracted by the parser from the sentence was not actually a

verb.

4. WordNet Object Errors: There were 97 (7.3%) objects extracted by the Stanford

parser that were not found in the WordNet database. Thus, the feature list was expanded

to include six features instead of three, as explained earlier.

5. WordNet Subject Errors: There were 425 (31.8%) subjects extracted by the Stanford

parser that were not found in the WordNet database. This may have occurred because

the subject might have referred to a person’s name, street name or place, for example. A

named entity recognition section was added to the WordNet feature extraction method

to tackle this problem.

Experiment of Adding Flickr Data (VDL-C3) We tried to train and test with and without

the Flickr data to determine the effect this data could have on the original ones. The following
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outlines the proportions of the training and testing data on WZ, Brown and Flickr, along with

the accuracy results.

• Training data: 90% on Brown and WZ; Testing data: 10% on Brown and WZ. Gave an

accuracy score of 0.7611.

• Training data: 90% on Brown, WZ and Flickr; Testing data: 10% on Brown and WZ.

Gave an accuracy score of 0.753.

• Training data: 90% on Flickr and only the not VDL and partially VDL portions of

Brown and WZ; Testing data: 10% on Brown and WOZ. Gave an accuracy score of

0.4.

The above results show that the addition of the Flickr data to the training corpus worsened

the accuracy results. This is due to the nature of the original corpus (Brown and WZ), which

is completely different from those of Flickr8k.

4.2.3 An Application of VDL Sentence Classification to Novels in Project

Gutenberg

To demonstrate that our sentence-level VDL classifier can be applied to gain insight into

different authors’ use of visually descriptive language, we also performed an experiment

where we attempt to classify sentences from books from Project Gutenberg3. We selected

three books for each of the five top authors in Project Gutenberg: Charles Dickens, Arthur

Conan Doyle, Mark Twain, William Shakespeare, and Lewis Carroll. We segmented the texts

into sentences, and classified all sentences using the SVM sentence-level classifier with the

Embedding+tf-idf representation as it is the most accurate classifier in our experiments.

Figure 4.5 shows the distribution of our classifer’s predictions of non-VDL (0), fully

VDL (1), and partially VDL (2). Conan Doyle and Twain have the highest proportion of pure

VDL sentences, while Twain and Dickens have the largest proportion of sentences classified

as partially VDL. On the other hand, most of Carroll’s and Shakespeare’s sentences are not
3http://www.gutenberg.org/

http://www.gutenberg.org/


74 Recognising Visually Descriptive Language

classified as visually descriptive. Overall, the proportion of sentences classified as fully VDL

was small, mirroring the class imbalance in the training set.

Fig. 4.5 Classification of The Top Five Authors’ Books from Project Gutenberg

4.3 Segment Level Classification

This section addresses the second research question explained in section 3.1, this question

focuses on segment-level classification of VDL, where words or phrases inside sentences

need to be classified as either visually descriptive, not visually descriptive, or impure visually

descriptive.

4.3.1 Supervised Learning Approach

Using the data explained in section 4.1, we used supervised machine learning to train classi-

fiers to predict segment boundaries. The problem is treated as a Named Entity Recognition

(NER) problem adapting the idea of IOB in which each word is given a tag; inside (I) or

outside (O). The Begin (B) tag is not used here as we only have one type of a segment (VDL),

there is no need to distinguish between segments as we do not have overlapping text spans

in our VDL segments (any two adjacent chunks of VDL are just one long chunk of VDL).

Named Entity Recognition is explained in detail in section 2.5.1. We used four classifiers:

conditional random fields (CRF) – as CRF models capture the interdependencies between
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nearby words and contextual data. CRF models may manage complicated entity boundaries

and increase the overall precision and recall segments tags by taking the surrounding context

into account (CRF is explained in detail in section 2.4.2). We also wanted to see how the

model performs using other classifiers that are frequently used for text classification tasks.

Therefore, we conducted further experiments with the Multinomial Bayes classifier (MNB),

Perceptron and Support Vector Machine classifier (SVM). Feature extraction was used to

extract features, they are: the word itself, the word before and the word after, POS of the

word and the words before and after. Additionally, suffix features including the last three and

last two characters of the word were added to capture potential morphological information.

Binary flags for the beginning (BOS) and end (EOS) of the sentence were added to the feature

list to capture the position of each word in the sequence. In addition, we included a feature

that indicates if the word is visual or not, for the word itself and the words before and after.

To know if a word is visual or not, first we get the concreteness value of the word

by looking in the list of words in the concreteness file. Brysbaert et al. (2014) presented

concreteness levels for 40,000 generally known English word lemmas, 37,058 English words

and 2,896 two-word expressions (e.g. zoom in). They used crowdsourcing to collect data,

having 4000 participants. So, if the word is found in the concreteness file, then its visualness

is given based on the concreteness values, if it is above or below 2.5 as concreteness values

ranges from 0 to 5.

If the word is not found, then we check the part of speech of the word, and if it is a verb

then we search WordNet to get the visualness of the verb. As described above in Section 2.2,

WordNet stores verbs in 15 files, the names of the 15 WordNet database files that store verbs

are treated as verb classes and each class is manually determined to be either visual or not.

The algorithm determines which verb class the verb occurs in. If that verb class is visual, a

feature of value 1 is added or 0, otherwise.

If the word is not a verb, then WordNet hierarchy is searched for the word. The algorithm

looks for the hypernyms of the word, going up the hypernym hierarchy and checking each

time if the hypernym contains the word ‘physical’ until it either finds the word ‘physical’ or

it reaches the root hypernym. If the word ’physical’ is found, this indicates that the argument
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Word Visualness Tag Concreteness

House 1 I 5.0
Table 1 I 4.9
Ran 1 I 3.82
Road 1 I 4.75
Bite 1 I 4.44
Little 1 O 3.67
Protect 1 O 2.86
Green 1 I 4.07
Burned 1 I 3.72
Sun 1 I 4.83
Carefully 0 I 2.15
Great 0 I 1.81
Impression 0 I 2.23
Good 0 I 1.64
Quite 0 I 1.72
Strange 0 I 1.86
Love 0 O 2.07
Wicked 0 O 2.11
Moment 0 O 1.61
Possible 0 O 1.56
Think 0 O 2.41

Table 4.3 Examples of words with their corresponding concreteness scores, visualness feature
values, and the tag of the word.

is visual and a feature with a value 1 is added to the feature set. Otherwise, a value of 0 is

added.

Finally, if the word is not found in WordNet, NER is run on the sentence to get the type

of each word. Then we determine if it is visual or not based on its type (i.g. if it is of type

Person or Organisation). Table 4.3 shows an example of a few words with their concreteness

values and the obtained visualness feature.

Results and Analysis

Table 4.4 shows accuracy, precision, recall and F1 scores for each one of the classifiers. The

CRF classifier is experimented with three variations of the features:

• CRF-All with all the features described above.
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Classifier Precision Recall F1

CRF-all 0.81 0.81 0.81
CRF-NoVisual 0.80 0.80 0.80
CRF-ExtContext 0.80 0.80 0.80
SVM 0.78 0.76 0.76
MNB 0.75 0.74 0.74
PER 0.75 0.70 0.70

Table 4.4 Classification results using four classifiers: conditional random fields (CRF),
Support Vector Machine classifier (SVM), Multinomial Bayes classifier (MNB), and Per-
ceptron (PER). CRF is tested for three variations of features, CRF-All with all the features,
CRF-NoVisual without the visualness feature, and CRF-EXtContext with extended context.

• CRF-NoVisual is the CRF classifier with all features except the visuallness features.

• CRF-ExtContext is the CRF classifier with all features but with extended context that

include two words before and two words after the test word.

The results from the classification table reveal that the Conditional Random Fields

classifier, with all features (CRF-All), demonstrates superior performance with an accuracy,

precision, recall, and F1-score all at 0.81. It appears that the visualness feature has a

positive impact on the classification results, as the exclusion of the visualness feature in

CRF-NoVisual model reduces the performance to (0.80). In addition, extending the context

of the feature list does not enhance the performance, in fact it lowers the accuracy from 0.81

to 0.80. The SVM classifier achieved lower results (F1 of 0.77), but falls short compared

to CRF. Multinomial Bayes (MNB) and Perceptron (PER) classifiers show lower overall

performance, with MNB performing marginally better than PER. Overall, CRF classifier

with its variations outperform all other classifiers, and that because CRF can capture the

sequential dependencies between elements in the segment level classification of VDL.

As a baseline, we also used the majority class classifier that always predicts the majority

class. The majority class baseline achieved a precision of 0.30, recall of 0.54, and F1-

score of 0.38. Comparing this baseline to the other classifiers, it serves as a benchmark for

performance evaluation. While all other classifiers outperform the baseline, it is clear that
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the CRF classifier, especially the CRF-All model emerged as the most effective model in this

context.

Fig. 4.6 CRF-All Confusion
Matrix

Fig. 4.7 SVM Confusion Matrix

Fig. 4.8 MNB Confusion
Matrix

Fig. 4.9 Perceptron Confusion Matrix

Figures 4.6, 4.7, 4.8, and 4.9 show confusion matrices for CRF-All, Svm, MNB, and

PER models respectively. The model CRF-All achieved a balance with 4609 true negatives

and 1479 false positives for class ’O’, while for class ’I’ it achieved 6133 true positives and

1127 false negatives. Despite having a larger false negative count of 2032, the Support Vector

Machine (SVM) classifier demonstrated decent performance in recognising ’I’ instances,

with 4056 true positives. MNB classifier shows similar performance to SVM, however, for
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class ’I’, SVM achieves a higher true positive count (4056) compared to MNB (3901). On

the other hand, MNB displays fewer false positives (1186) for ’I’ compared to SVM (1037).

The Perceptron (PER) classifier, despite capturing a considerable number of ’I’ instances

(3098 true positives), also displayed a substantial number of false negatives (2990).

In our attempt to delve deeper into the analysis, an error analysis was conducted to

examine cases where the classifier predicts the wrong label. We investigated the ’Visualness’

feature values and part-of-speech (POS) tags for these misclassified cases for each class. The

breakdown is as follows:

• Class ’I’ (true label):

– Total error count: 1051;

– 58.29% of misclassified cases (612 instances) occurred with visualness value of

0;

– And 40.50% of total errors (439 instances), occurred with visualness value of 1;

– POS counts: ’VERB’: 179, ’NOUN’: 159, ’ADP’: 138, ’PRON’: 123, ’DET’: 99,

’ADJ’: 98, ’PUNCT’: 92, ’ADV’: 80, ’CCONJ’: 38, ’PROPN’: 24, ’INTJ’: 12,

’PART’: 4, ’NUM’: 4, ’X’: 1.

• Class ’O’ (true label):

– Total error count: 1462;

– Among the total errors, 59.50% (869 instances) were associated with a visualness

value of 0;

– And 40.50% (593 instances) were linked to a visualness value of 1;

– POS counts: ’VERB’: 248, ’NOUN’: 239, ’ADP’: 233, ’DET’: 168, ’ADJ’: 144,

’PUNCT’: 106, ’PRON’: 96, ’CCONJ’: 93, ’ADV’: 82, ’PROPN’: 27, ’NUM’:

13, ’INTJ’: 10, ’PART’: 3.

This breakdown provides insights into the patterns of misclassifications based on the vi-

sualness feature for each class. It appears that, for both classes, misclassifications occur more
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frequently when the visualness feature is 0. This information can guide further investigation

into why instances with visualness = 0 are challenging for the classifier.

For both classes, the most common POS tags among misclassified words are verbs

(VERB) and nouns (NOUN). In Class ’I’, adpositions (ADP) and pronouns (PRON) also

stand out, while adpositions (ADP), determiners (DET), and adjectives (ADJ) are more

common in Class ’O’. In addition, among the total number of misclassified words for

both classes, there are 428 words not found in the concreteness file. While examining the

misclassified words with a concreteness value of < 2.5, an effort was made to identify words

that potentially should have been assigned a visualness value of 1 instead of 0. Among these

misclassified words, a few proper nouns and animal names were identified. However, their

occurrence was relatively minimal compared to the overall size of the dataset.

These cases were analysed using the CRF-All model. In an attempt to enhance perfor-

mance, we experimented with the removal of stop words and punctuations, considering their

presence in the examined faulty cases. Unfortunately, that decreased the accuracy to 0.79

4.4 Summary

In this chapter we have proposed the task of recognising visual language as a potentially

interesting and useful challenge for vision and language research. It addresses the first two

research questions described in section 3.1.

We have recapitulated the definition of VDL as presented in Gaizauskas et al. (2015) and

reported the extension of our corpus of VDL-annotated text.

Section 4.1 describes the data used in this chapter, the original VDL data (VDL-C1), the

extension of VDL data (VDL-C2), and the Flickr 8k dataset (VDL-C3) used by one of the

experiments.

Section 4.2 addresses the first research question of how well can we automatically classify

sentences into three classes, VDL, not VDL, and partially VDL? We start by summarising

initial work in the task carried out during my MSc. We then present initial, promising results

of developing classifiers for carrying out the sentence level task of distinguishing sentences
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that are wholly VDL, partially VDL or not VDL at all. We present several approaches taken

to address this task such as VerbNet, WordNet variations, TF-Idf and word embeddings

using 3 different machine learning classifiers. Our experiments showed that using word

embeddings and an SVM classifier achieved the highest results in classifying text as VDL,

partially VDL and not VDL with (0.74 balanced accuracy).

Section 4.3 addresses the second research question of can we detect segments of sentences

that are visually descriptive? We treated this task as a sequence labelling task in which each

word is given an inside (I) or outside (O) tag. We experiment with different lexical and

morphological features and features pertaining to the position of the word in the sentence.

This is used along with different context sizes. Results showed that that combining all former

features with a context size of one word before and one word after the test word using a CRF

classifier achieves the highest F1 score of 0.81.

The work done in this chapter provides resources that help us in our automatic scene

segmentation task presented in Chapter 6 in which we investigate the impact of applying the

results of automatic VDL to the task of automatic scene segmentation.





Chapter 5

Scene Annotation

This chapter addresses research questions (3) Can we automatically segment a story into

scenes? and (4) Can VDL be used to help in scene segmentation? that are described in

section 3.1. As described in the methodology section 3.2, in order to develop a system to

automatically segment narrative text into scenes, we need to gather a manually annotated

corpus to train and evaluate the automatic system. To gather the manually annotated corpus,

a set of guidelines was established based on sceneML that is described in detail in section

2.3.2. This chapter describes the details of this process and provides a detailed description of

the resulting annotated corpus. This chapter is structured as follows: section 5.1 describes

the annotation guidelines and the process of how it was developed. Section 5.2 describes the

process of annotation that was carried out. Section 5.3 introduces the resulting annotated

corpus and all the information about it.

5.1 Developing Scene Annotation Guidelines

Initial guidelines were derived directly from the specification of SceneML as given in that

paper. The next step was then to run a pilot annotation exercise to test how well annotators

could manage with these guidelines. This is described in 5.1.1. The final guidelines emerged

from analysis of the pilot results together with some further work on annotating Project

Gutenberg texts by my supervisor and me. These final guidelines are discussed in 5.1.2.
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SceneML framework has been explained in detail in the guidelines document (see

appendix A). It contains instructions on how begin the annotation task, and how to annotate

each entity along with examples annotation.

The guidelines document introduced a new relation type between SDSs called is in

the same scene as. This new relation was added to link between SDSs that belong to the

same scene, as the annotation tool used to annotate the text does not support abstract entity

annotation.

In addition, nonscene segments were also introduced in the guidelines document. This

section of the document explains parts of text that should not be annotated as scenes. So far

three types of a non-scene segment have been identified; general philosophising or opinion

segments, background information segments, and narrative summary or narrative catchup.

A new element has also been added to the scheme Scene Transitioning Element, typically

short phrases or a sentence or two that indicate a character is moving from one scene to

another. For example: “and soon I emerged back into the corridor looking like a new man”.

to tackle this issue.

5.1.1 Pilot Study

A small-scale pilot study was carried out to investigate how well-defined our definitions and

annotation framework are with respect to scene boundary identification 1.

Methods

Two chapters (chapters 3 and 4) of “Bunnies from the Future” (Corcoran, 2016), a children’s

story for reading ages 10-13, were selected to be annotated. Three annotators, distinct

from the author, were identified (postgraduate students, non-native speakers of English) in

addition to one of the author. They were given annotation guidelines based on the framework

explained in section 2.3.2 and were instructed to use the Brat2 annotation tool to annotate

the two chapters following the guidelines, with two simplifying exceptions: (1) annotators

1Much of the material in this section was published in Text2Story 2021.
2http://brat.nlplab.org/
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were asked not to annotate the scene abstract discourse element; (2) they were asked not

to annotate explicitly any of the 4 relation types mentioned in the original SceneML paper

which are:

• sequence links are assigned when one scene follows on from another.

• analepsis occurs when there is a flashback in the scene e.g. memory of the past

• prolepsis (or flashforward) occurs when then we are taken forward in time

• concurrent links are assigned between two scenes when the transition happens

because there is another thread of the story happening at the same time so the transition

take us to different characters and different place but the same time.

The first of these simplifications was imposed because the Brat annotation tool, which is

a very easy-to-use tool for annotation text spans, does not support the creation of zero-span

annotations. That functionality is necessary for creating abstract discourse elements, which

can then be linked to spans in the text. We could not find any tool that would allow this and

was equally easy-to-use, and did not have the resources to create our own. The problem can

be circumvented by linking all SDSs in one scene together with a “same-scene-as” relational

link, thus extensionally specifying a scene as the set of its SDSs.

The second simplification was imposed for several reasons.

1. First, regarding narrative progression links, for this first annotation exercise we were

primarily concerned with determining whether or not annotators could accurately iden-

tify and agree on SDS boundaries. The problem of determining what the progression

narrative links between scenes are is very much a secondary problem compared to this.

As it turns out, all but one of the scenes in the chosen texts consist of a single SDS and

follow each other in temporal sequence. Single-SDS scenes are likely a characteristic

of this level of children’s stories and one reason why we chose such stories for this

pilot, though we did not deliberately chose chapters because they had few scenes with

multiple SDSs.
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Table 5.1 Statistics about the annotations. SDS, Character, Time and Location columns
refer to the number of segments marked as each entity type per chapter for each annotator.
Averages of these numbers by chapter/by SDS are also shown.

Chapter 3 Chapter 4

SDS Char Time Loc SDS Char Time Loc

Ann1 4 19 2 5 5 14 4 6
Ann2 5 21 3 3 6 28 4 6
Ann3 13 30 8 12 10 28 4 10
Ann4 8 21 0 5 9 19 1 6

Av/Chapter 7.5 22.75 3.25 6.25 7.5 22.25 3.25 7.25
Av/SDS – 3.67 0.4 0.78 – 3.33 0.55 1.11

2. Second, regarding relational links between SDSs and the scenes they comprise, given

that virtually all scenes consist of a single SDS, the need to link same-scene SDSs is

low. This led us to ignore it altogether for this exercise, though clearly it will need to

be addressed when dealing with more complex narrative structure.

3. Finally, regarding relational links connecting times, characters, locations to the scenes

in which they participate, given the absence of explicit scene elements in the annotation,

the times, characters and locations needed to be annotated in each SDS participating in

a scene. This has the disadvantage of forcing the annotator to annotate these things

multiple times per scene, when there are multiple SDSs per scene, but means that (1)

the relations linking the scene elements time, character and location to the scene can

be inferred from simple presence of annotated strings of these types within an SDS.

Figure 5.1 shows an example annotation from chapter 4 of Bunnies from the Future;

entity segments are highlighted.

Results

Tables 5.1, 5.2 and 5.3 show the results of the annotation exercise. Table 5.1 shows infor-

mation on the numbers of entity mentions annotated by each annotator and the averages of

these numbers. Note that the chapters differ in size: chapter 3 is 124 sentences long (2756
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Fig. 5.1 Screenshot showing an example of the pilot annotation using Brat.

words) and chapter 4 is only 65 (1775 words). The columns SDS, Character, Location and

Time indicate the number of entity mentions annotated for each category by each annotator.

Two averages are computed: (1) entity mentions per chapter averaged over annotators (2)

average entity mentions per SDS for each annotator averaged across all annotators.

Table 5.2 shows inter-annotator agreement results. Pair-wise inter-annotator agreement

results are computed using Cohen’s kappa (Cohen, 1960). Averaged inter-annotator agree-

ment results between all annotators are computed using Fleiss’s kappa (Fleiss, 1971). κ1

refers to the kappa score for segments of type SDS. For SDSs the kappa score is computed

by considering each sentence as a potential candidate for a scene segment boundary. So,
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Table 5.2 Inter-annotator agreement results. κ1 refers to the kappa score for SDS, κ2 refers
to kappa score for all other entities together.

Ann2 Ann3 Ann4

Ch3 Ch4 Ch3 Ch4 Ch3 Ch4Ann1
κ1 κ2 κ1 κ2 κ1 κ2 κ1 κ2 κ1 κ2 κ1 κ2

Ann1 0.60 0.54 0.33 0.27 0.15 0.27 0.20 0.30 0.23 0.19 0.10 0.21
Ann2 0.27 0.20 0.42 0.39 0.19 0.24 0.35 0.30
Ann3 0.72 0.33 0.95 0.52
Average κ1 Ch3: 0.36 Average κ2 Ch3: 0.29
Average κ1 Ch4: 0.41 Average κ2 Ch4: 0.34

Table 5.3 Percentage agreement results between annotator pairs for each entity type by token.
Here O refers to the Outside tag.

Ann2 Ann3 Ann4

Character Location O Time Character Location O Time Character Location O Time

Ann1 0.24 0.15 0.99 0.8 0.28 0.15 0.99 0.26 0.33 0.05 0.99 0
Ann2 0.36 0.09 0.99 0.33 0.48 0.05 0.98 1
Ann3 0.73 0.88 0.98 1

each sentence is represented by either a 1 or 0, 1 if the sentence either contains a scene

segment boundary or is preceded or followed by one, 0 otherwise. κ2 refers to the kappa

score computed for all other entity types (Time, Character and Location). Here we treat the

problem of recognising these three entity types as a token classification problem, following

the widely used named entity recognition approach of IOB tagging (see section 2.5.1). Each

word is tagged as either Time, Character, Location or Outside, where the Outside tag is given

to words that are not part of any entity mention. For simplicity we do not include a ‘B’ tag,

as instances of contiguous distinct entity mentions of the same type are extremely rare.

Table 5.3 shows percentage agreement results between each annotator pair for each

entity type. These are computed by creating a confusion matrix of token entity type labels

(including type Outside) for each annotator pair and dividing each value on the diagonal in

this confusion matrix by the corresponding row total.
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Discussion

Here we discuss disagreement between the annotators with a view to determining how our

annotation guidelines and/or processes should be improved and whether or not there are any

underlying conceptual problems with our approach.

In general, the Cohen’s kappa scores show what is commonly interpreted as fair (0.21–0.40)

to moderate (0.41–0.60) agreement with a few cases of slight and substantial agreement

around the edges. However, as the qualitative interpretation of kappa scores is contentious,

we use these scores primarily as a diagnostic tool, highlighting areas of relative agreement

and disagreement. Looking the scores overall, several observations can be made. First,

the annotator pair (Ann3,Ann4) agree much more than any other annotator pair. Second,

generally and on average, κ1 scores are higher than κ2 scores, i.e. agreement on SDSs is

higher than agreement on entities.

Regarding the percentage agreement results on entity annotation in Table 5.3, it can be

seen that for most cases, Character and Time entities have higher agreement results than

Location entities (agreement for Outside tags will always be high given the unbalanced nature

of the data, i.e. most tokens are outside of any entity mention). Note that these figures are

heavily dependent on agreement in SDS annotation. If one annotator annotates two SDSs

where another annotates just one, the first annotator will have twice the number of time,

location and character annotations, since these entity types are to be annotated for each SDS.

Hence low scores are to expected where agreement in the number of SDSs is not high. Indeed

we can see that for annotators 3 and 4, where SDS agreement is higher than for any other

annotator pair, agreement on entities is also very much higher than for any other annotator

pairing.

Analysis of the annotations reveals two underlying causes of the observed disagreement:

(1) lack of understanding of the guidelines and task and (2) lack of clarity or specificity in

the guidelines. These are often not easy to distinguish.
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Lack of understanding

It emerged in questioning following the annotation exercise that some annotators (Ann1 and

Ann2) relied only on the author’s verbal explanation of the guidelines and task and had either

not read the guidelines at all or had not read them carefully. E.g., in some places we find

two distinct location entities tagged in the same SDS, in clear contradiction of the guidelines,

suggesting either the annotator did not pay enough attention or simply did not understand.

Although the annotators were all good speakers of English and studying at the postgraduate

level in well-respected English-speaking universities, being a non-native speaker of English

led to misinterpretations of some sentences or expressions in the text that obviously caused

mistakes in annotation. For example, one annotator labelled earth as a scene location in the

idiomatic expression how on earth had he ... where clearly it is not. In another case, in the

sentence Sorry, old chap, had an attack of the wobbles. Dashed embarrassing, the word

Dashed was annotated as a character.

Lack of clarity and detail in the guidelines

Some annotators included definite articles in the annotated entity mention, e.g. the stone ages

was annotated as a time by one annotator and stone ages by another (to assess the effect of

such minor variation in annotation we re-measured inter-annotator agreement after removing

all stop words and found that results slightly improved). Some time entities were annotated

as the time of a scene while in fact they just reference other times. E.g., in Do you not have

good fabrics in the future? the word future was annotated as the time of the scene. Regarding

tagging characters, confusion arose as to whether to annotate the fullest form of the character

mention, the first mention, or every mention. These small divergences pointed to the need to

more fully and explicitly address them in the guidelines.

Two deeper issues were detected with respect to scene boundary determination and

account for most of the variation between annotators with respect to SDS boundary placement.

One is to do with “scene transition segments”, typically short phrases or a sentence or two

that indicate a character is moving from one scene to another. For example: and soon I

emerged back into the corridor looking like a new man. Should this text be annotated as
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belonging to the preceding or succeeding scene? Or is it a scene in its own right? Or part

of no scene, but a new “scene transition” element that should be added to the annotation

scheme? The other issue is to do with granularity of scene segmentation. E.g. if one minor

character leaves a scene does this imply a new scene, given our definition of scene as “a unit

of a story in which the elements of time, location, and main characters are constant”? Or

should this be viewed as too minor a change to count as a scene change?

Again, if, for example, a character goes into a dressing room off another space and his

changing clothes in the dressing room is described while he continues talking to another

character outside the dressing room (Corcoran (2016), Chp. 4), is this a significant enough

change of location to constitute a scene change? These edge cases highlighted the need to

refine and extend the guidelines to take them into account.

5.1.2 Revised Scene Annotation Guidelines

The first pilot study was carried out to investigate how well-defined our definitions and

annotation framework are with respect to scene boundary identification. Analysis of the

annotations in that study revealed several causes of observed disagreement: (1) lack of

understanding of the guidelines and task, (2) lack of clarity or specificity in the guidelines,

(3) failure of non-native English speakers to fully grasp the meaning of certain expressions

(e.g. idioms). Before proceeding with another exercise, problem (2) "lack of clarity and

specificity in the guidelines" needs to be addressed to cover the issues identified by the pilot

study, so we produced a new version of the guidelines. Because the pilot highlighted the fact

that agreement on time/place/character annotation is dependent on prior agreement on SDS

boundaries we decided to focus on that part of the task only for now. Since we wanted to

move to more complex forms of narrative than children’s stories we decided to trial some

annotation on novels from Project Gutenberg. My supervisor and I then did just SDS and

scene annotation on several novels of different periods and styles. As a result, several changes

has been made to the annotation guideline, these changes include:
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• Introducing a new relation type named is in the same scene as to connect SDSs

within the same scene due to limitations in the annotation tool for abstract entity

annotation.

• Adding non-scene segments, categorizing them into three types: general philosophiz-

ing or opinion segments, background information segments, and narrative summary or

catchup segments. These segments are identified as portions of text that should not be

annotated as scenes. The following is an example of a non-scene segment.

It is a truth universally acknowledged, that a single man in possession of a
good fortune, must be in want of a wife. However little known the feelings
or views of such a man may be on his first entering a neighbourhood, this
truth is so well fixed in the minds of the surrounding families, that he is
considered the rightful property of some one or other of their daughters.
(Pride and Prejudice. p. 1)

• A notable addition to the scheme is the Scene Transitioning Element (ST) which

encompasses short phrases or sentences indicating a character’s movement from one

scene to another. The following is an example of ST.

And so in ten minutes I had left my armchair and cheery sitting-room
behind me, and was speeding eastward in a hansom on a strange errand, as
it seemed to me at the time, though the future only could show how strange
it was to be.
(Sherlock Holmes. p. 1)

• Instructing annotators to focus on annotating Scene Description Segments (SDSs) and

Scene Transitioning Elements (STs), while omitting the annotation of other entities

such as time, place, and character.

The updated guideline document can be found in Appendix A.

5.2 The Annotation Process

Having arrived at a revised set of guidelines and a slightly revised annotation task, we were

then in a position to carry out another round of annotation. In this section we describe



5.2 The Annotation Process 93

the process of annotation we carried out and in the following section the results of that

annotation.

In addition to the problems with clarity and specificity of the guidelines, as discussed

above, the pilot revealed problems with lack of understanding of the guidelines and task,

and failures of non-native speakers to grasp the meaning of certain expressions. In order

to overcome these difficulties, (1) we recruited of native English-speaking annotators with

sensitivity to text analysis, (2) we carried out various training sessions to ensure that the

annotators fully understand the task and to clear up as many misunderstandings as we can.

5.2.1 Recruiting annotators

For the first pilot study, three annotators, distinct from the authors, were identified (postgrad-

uate students, non-native speakers of English) in addition to one of the authors. They were

given annotation guidelines based on sceneML and were instructed to use the Brat annotation

tool to annotate the selected text following the guidelines. Various disagreements arose due

to some misunderstanding of English (e.g. idioms) as discussed above in 5.1.1. To overcome

this problem, we decided to recruit only annotators who were native speakers of English.

After a long process of trying to assemble a team of four annotators from amongst the PhD

students in the School of English at the University of Sheffield3, we ended up with two

annotators, one a PhD student from the School of English and the other a PhD student from

the Centre for Doctoral Training in Speech and Language Technology in the Department of

Computer Science.

5.2.2 Annotator Training

A PowerPoint presentation was prepared to explain the task in detail, the guidelines in

brief and to give some annotation examples. A small annotation task on part of chapter 2

of “Bunnies from the Future” , was demonstrated by me. Then, annotators were asked to

3This process was seriously disrupted by the Covid-pandemic.
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annotate the other part of the chapter. After that, I analysed their annotations and discussed

any disagreement with the annotators.

When the training session was over, the annotators were asked to annotate two chapters

(chapters 3 and 4) of “Bunnies from the Future” that had already been annotated by me, as an

assessment of their understanding of the task and the guidelines. Inter-annotator agreement

results were obtained, and the annotations were manually analysed to look for disagreements.

Then the disagreements were discussed with the annotators to clear up any misunderstanding,

or to gain more insights on improving the guidelines.

5.2.3 The Annotation Task

The annotation process was carried out through a web-based interface to a local instance

of Brat Annotation Tool 4. Annotators used swipe and click operations to annotate SDSs

and STs, nonscene segments are implicit that anything not annotated is non-scene. Multiple

SDSs that are part of the same scene were linked using the Brat relation annotation tool to

signal that a same-scene-as relation holds between them. The annotated data is stored and

made available in BRAT standoff annotation format.

The text were annotated by two annotators and saved in a separate text file. Both

annotators’ annotations are supplied with the corpus. Further annotations together with a

consensus annotation may be made available in the future.

5.3 The ScANT Corpus

This section introduces the ScANT corpus, subsection 5.3.1 describes the sources of the

corpus and how and why they were chosen. Subsection 5.3.2 provides statistical information

about the corpus. Subsection 5.3.3 provides the inter-annotator agreement on each chapter

of the ScANT corpus. Finally, subsection 5.3.4 discusses results of the inter-annotator

agreement.

4https://brat.nlplab.org

https://brat.nlplab.org
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5.3.1 Corpus Sources

The corpus consists of fourteen chapters from six different narrative sources (as one of the

chapters is quite long it has been divided into three parts for analysis) , from children’s stories

and from out-of-copyright adult novels. The former were hypothesised as likely to have a

simpler narrative structure and hence to be a good place to trial our approach; the latter as

likely to possess more complex narrative structure and hence pose a more challenging test to

our approach. The sources are:

1. Bunnies from the Future, a middle grade children’s story by Joe Corcoran5.The author

has personally granted permission for us to release annotated chapters of this work.

2. The Wonderful Wizard of Oz, originally released as part of the Brown Corpus6 and free

for non-commercial purposes.

3. Pride and Prejudice, A Tale of Two Cities, The Adventures of Sherlock Holmes and

The Great Gatsby from Project Gutenberg7. These are out of copyright in the US and

UK and freely re-distributable subject to Project Gutenberg’s terms and conditions.

The selection of novels was based on several criteria: (1) being popular in terms of

number of downloads on Project Gutenberg, (2) covering a range of periods (1813 - 1925)

and styles (full novels/short stories) and language (British and American English).

5.3.2 Corpus Statistics

Table 5.4 shows summary statistics for the ScANT corpus and associated annotations. Note

that the relation between scenes and SDSs is largely one-to-one. With one exception this is

always true for the children’s stories, while there is somewhat more variation, suggesting

more complex narrative form, in the adult novels.

The variation between annotators A1 and A2 is relatively small in terms of SDSs and

Scenes. However, they are far apart regarding both scene transition segments and non-scene
5https://freekidsbooks.org/author/joe-corcoran/
6https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/brown.zip
7https://www.gutenberg.org

https://freekidsbooks.org/author/joe-corcoran/
https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/packages/corpora/brown.zip
https://www.gutenberg.org
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Text Sents Words
SDSs STs Scenes NSSs

A1 A2 A1 A2 A1 A2 A1 A2

Bunnies Ch3 124 2756 8 10 1 0 8 9 0 0
Bunnies Ch4 65 1775 10 8 0 0 9 7 0 0
Bunnies Ch5 173 3514 10 7 0 3 10 7 0 0
Bunnies Ch6 117 2911 10 10 0 6 10 10 0 0
WOZ CH2 132 2449 4 8 0 2 4 8 0 1
WOZ CH3 123 2361 9 8 1 7 9 8 1 1
Sherlock Holmes Ch1 P1 268 4200 11 10 0 4 11 10 17 0
Sherlock Holmes Ch1 P2 277 4784 23 11 1 6 20 11 0 0
Sherlock Holmes Ch1 P3 93 1333 8 6 0 5 8 6 2 0
Sherlock Holmes Ch6 561 10974 31 34 2 15 26 34 8 0
Pride and Prejudice Ch1 60 1018 1 3 0 2 1 3 6 0
Pride and Prejudice Ch3 86 1984 12 10 0 5 12 10 0 0
A Tale of Two Cities Ch1 19 1140 0 5 0 4 0 5 19 0
A Tale of Two Cities Ch3 73 1920 4 13 0 4 4 13 11 0
The Great Gatsby Ch1 337 7209 19 43 1 12 19 43 52 0
The Great Gatsby Ch3 288 5307 31 24 0 10 29 24 13 0
Total 2796 55635 191 210 6 85 180 208 129 2

Table 5.4 Summary Statistics for the ScANT corpus, showing for each annotated text the
count of sentences and words and of SDSs, STs, Scenes and Non-scene sentences (NSSs) for
each annotator (A1 and A2).
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Chapter SDS N = 30% N = 0 N = 1 N = 3 N = 5
Median

Bunnies Chapter 3 7 0.79 0.74 0.74 0.79 0.79
Bunnies Chapter 4 5.5 0.60 0.60 0.60 0.60 0.60
Bunnies Chapter 5 14.5 0.45 0.29 0.29 0.45 0.45
Bunnies Chapter 6 5.75 0.68 0.47 0.47 0.72 0.76
WOZ Chapter 2 19.75 0.47 0.11 0.11 0.27 0.41
WOZ Chapter 3 11 0.77 0.57 0.57 0.72 0.77
Sherlock Holmes Chapter1 P1 10.5 0.16 0.07 0.07 0.16 0.16
Sherlock Holmes Chapter1 P2 8 0.53 0.42 0.42 0.53 0.53
Sherlock Holmes Chapter1 P3 8.75 0.75 0.75 0.75 0.75 0.75
Sherlock Holmes Chapter 6 8.5 0.37 0.25 0.25 0.37 0.40
Pride and Prejudice Chapter 1 16 0.65 0.65 0.65 0.65 0.65
Pride and Prejudice Chapter 3 6.25 0.65 0.43 0.43 0.65 0.65
Tale of Two Cities Chapter 3 6.5 0.21 0.01 0.01 0.30 0.39
The Great Gatsby Chapter 1 7.5 0.34 0.22 0.22 0.34 0.39
The Great Gatsby Chapter 3 6 0.49 0.38 0.38 0.58 0.66
Average 8.94 0.53 0.40 0.40 0.53 0.56

Table 5.5 IAA Results, showing Cohen’s kappa under varying degrees of leniency, where
N indicates the number of sentences apart SDS boundaries may be to count as a match or,
where N = 30%, the number of sentences expressed as a percentage of the median SDS
sentence length for that text.

segments. We discuss this further below in Section 5.3.4. First, however, we examine

inter-annotator agreement regarding SDSs in more detail.

5.3.3 Inter-annotator Agreement

Table 5.5 shows inter-annotator agreement results for SDSs using Cohen’s Kappa Cohen

(1960). Kappa is computed as was discussed above in relation to the pilot study in section

5.1.1, each sentence is given a tag, 1 for sentences on the boundary of an SDS (either

beginning or end) and 0 otherwise. Boundaries of STs are ignored as it is clear the two

annotators’ understanding of the task is so different that precise quantitative analysis is not

merited.

Aside from calculating only exact matches as agreement (N = 0 in Table 5.5 ) we also

investigated a more lenient approach to calculate the agreement in which annotators are
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deemed to agree if they place a sentence boundary within N sentences. This was prompted by

the observation that in many cases annotators seemed to be placing SDS boundaries relatively

close to each other, but not exactly in the same place. Kappa scores have been calculated

for various N sizes: N = 30% of the median SDS length in sentences in each chapter, N=1,

N=3 and N=5. By the median SDS length, what we mean is that we combined the length of

SDSs for both annotators in a single list and then we took the median of this. Then , 30%

of the given median is calculated. We have omitted one chapter from Table 5.5 – A Tale of

Two Cities, chapter 1, because one annotator believed it contained nothing but non-scene

segments, while the other thought it contained 5 scenes. This gave a kappa score of 0, which

skewed the rest of the results.

5.3.4 Discussion

Regarding differences between our annotators, it is clear that the two annotators have a

different conception of what STs and NSSs are. This is probably due to the fact that the

children’s stories which we used as training materials contain very few of either of these,

particulary of NSSs (in fact this appears to be an interesting difference between children’s

and adult narrative). For example, you can see that Sherlock Holmes Ch1 P1 and The Great

Gatsby Ch3 scored the lowest agreement between the annotators. This may be due to the

fact that Sherlock Holmes Ch1 P1 was the first text provided to the annotators after the

children’s story Bunnies From The Future. As a result, the annotators might have found it

difficult to apply the annotation guidelines to a more complex text without sufficient training.

Additionally, the early chapters of novels often contain more non-scene segments than later

chapters. As mentioned earlier, the two annotators may have different interpretations of these

segments.

Any future annotation effort should ensure that these concepts are more clearly understood

by annotators. On examination our view is that A1 has followed the guidelines much more

closely regarding STs and NSSs and therefore, if one is to train or test a classifier on these

materials, our recommendation would be to use the A1 annotations only. However recent
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work such as that reported in Uma et al. (2022) highlights the potential value of learning

from disagreement, so we have included both sets of annotations in the corpus.

Concerning the kappa scores for SDS agreement, they fall in the range that has been

interpreted as “fair” or “fair to good”. However, kappa scores are known to be lower when

there are fewer labels (just two in our case) and where the labels are not equiprobably

occurring (also true in our case, since 0 labels are much more frequent than 1’s) so results

should be viewed in this light (Wikipedia, 2023). Percentage agreement scores for SDS

annotations are around 90%. Note that kappa scores rise significantly if we are prepared to

allow some leniency in terms of non-exact matching. How legitimate this is needs further

examination to determine whether the improvement is a reflection of genuine uncertainty

about the precise boundary between what the annotators clearly agree are distinct scenes or

whether it is the result of conflating separate scenes, according to the different annotators’

perceptions.

While the corpus is too small to start making generalisations about stylistic differences

between different authors, it is worth noting that the amount of non-scene content in the adult

novels (6.21% of the total sentences if we accept A1’s NSS annotations, which we believe

are more accurate) is vastly greater than that in the children’s stories (0.14%), suggesting

that much beyond simple event narration goes on in adult fiction.

5.4 Summary

In this chapter we partly addressed RQ3. In order to build a system that can automatically

segment a story into scenes, first we need a dataset annotated into scenes. This chapter

introduced a set of guidelines based on sceneML. First, a pilot study was carried out to

asses the viability of our guidelines, and to investigate how good the guidelines were. Inter-

annotator agreement of the pilot study was analysed, and the guidelines were updated

according to that. After the guidelines were updated, the annotation process started with

recruiting two PhD students at the University of Sheffield whom are native speakers of

English. They were given a training session and a small annotation exercise to clarify any
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misunderstanding of the task or the guidelines. Then, the annotation task was carried out.

The outcome of this annotation task is the first dataset of English narrative texts annotated for

scene boundaries in compliance with SceneML and a set of annotation guidelines to be used

in future annotation tasks. The dataset consists of fourteen chapters of novels and children’s

stories annotated for scene description segments and scene transitions segments as defined in

SceneML. The sources are: Bunnies from the Future, The Wonderful Wizard of Oz, Pride and

Prejudice, A Tale of Two Cities, The Adventures of Sherlock Holmes, and The Great Gatsby .

A total of almost 200 scenes have been annotated, with a total of 2796 sentences and 55635

words. Inter-annotator agreement results were computed using Cohen’s Kappa score. Our

obtained Kappa scores fall in the range that has been interpreted as “fair” or “fair to good”.

The following chapter investigates automating the task of scene boundary detection and

to ascertain the sufficiency of ScANT for this task through training a model on the corpus to.



Chapter 6

Automatic Scene Segmentation

The previous chapter described how we gathered a corpus of narrative texts and segmented

them into scenes according to our SceneML-inspired guidelines. Given this resource we

can now turn to training and evaluating models to automatically segment narrative texts into

scenes in order to answer research questions (3) Can we automatically segment a story into

scenes? and (4) Can VDL be used to help in scene segmentation? as posed in Chapter 3.

This Chapter is structured as follows: section 6.1 describes the details of the dataset used in

this chapter. Section 6.2 describes the experimental setup to train and test models for the task

of automatic segmentation of narrative text into scenes. Section 6.3 provides results of the

experiments and discussion about them.

6.1 Data

As explained in the previous chapter, the dataset is composed of chosen chapters from

children’s stories and adult novels that are no longer protected by copyright. We specifically

selected children’s stories with the expectation that they would exhibit a simpler narrative

structure, providing an ideal testing ground for our approach. Conversely, we included adult

novels to incorporate more complex narratives, posing a greater challenge for our approach.

There were three dataset sources. The first was ‘Bunnies from the Future’, a middle-grade

children’s story authored by Joe Corcoran. The second source was ‘The Wonderful Wizard
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of Oz’, originally part of the Brown Corpus. Finally, the third source comprised ‘Pride and

Prejudice’, ‘A Tale of Two Cities’, ‘The Adventures of Sherlock Holmes’ and ‘The Great

Gatsby’ obtained from Project Gutenberg. The dataset has 2,796 sentences, 55,635 words

and 191 SDSs according to A1, as on inspection we believe that A1 better understood the

guidelines.

6.2 Experimental Setup

To build a model that can automatically segment narrative text into scenes (SDSs) using

machine learning, first, we need to train the model using training data. To make the problem

easier for automatic scene segmentation, we treated the task as a sentence classification

problem instead of text segmentation, where each sentence is given a tag (i.e. 1 is designated

for sentences on the boundary of an SDS, either at the beginning or the end, and 0 otherwise).

Scene Transition Segments are not considered here as their numbers in the annotated data

were very small compared to the number of annotated SDSs.

The machine-learning models were trained using the training data and evaluated with the

testing data. To ensure robust evaluation, stratified 10-fold cross-validation was implemented

using the scikit-learn library. This technique splits the data into 10 equally sized folds while

preserving the class distribution, allowing the models to be trained and tested on each fold

independently. This approach helps in obtaining reliable performance estimates for the

models. Notably, the data were not shuffled to preserve sentence order. The following section

presents and explains the machine-learning models used for the task.

Three machine-learning models were trained and tested on the annotated data. Then, we

compared the models’ performances to determine which model is optimal for our task. The

following subsections provide a brief description of each of the models.

6.2.1 Model 1 - The Conditional Random Field (CRF) Model

In the first model, we treated the problem as a sequence-labelling problem, where the order

of sentences is significant and the wider textual context of the sentence being labelled is
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important. Herein, the sequence refers to the ordered sentences of each chapter and their

corresponding tags. A CRF model (see section 2.4.2) was trained on the training data. For

this endeavour, we first extracted the following features:

• Transitioning phrases: This is a binary feature, where if the sentence contains a

transitioning phrase, the feature is given a tag of 1 and 0 otherwise. This feature

aims to identify transitions between different segments within the text. Transitioning

words/phrases (e.g. later on, after, etc.) are hypothesised to appear more in sentences

on the boundaries of a scene. The list of transitioning phrases is presented in Table.

6.1.

• Beginning or end of a paragraph: This is also a binary feature, where if the sentence

occurs at the beginning or end of a paragraph, the feature is given a tag of 1 and 0

otherwise. This feature aims to capture paragraph-level patterns that might influence

the classification of the current sentence.

• End of a chapter (true/false): This binary feature denotes whether the current sentence

occurs at the end of a chapter, as the end of a chapter usually indicates the end of a

scene.

• Part-of-speech (POS) tags: Incorporating the part-of-speech tags of each word in the

current sentence being classified was carried out using spaCy. In addition, POS tags

were extracted for the two preceding sentences and the two following sentences.

• Named entity: Each word in the sentence being classified was given a BIO tag. The

Named Entity Recognition (NER) function used was implemented by spaCy, using

the NER model en_core_web_md. Named entities can include names of people,

organisations, locations or other specific entities. In addition, the words of the two

preceding sentences and the two following sentences were also given named entity

tags.

• Contextual information (2 sentences before and after): This feature considers the

two sentences preceding and the two sentences following the current sentence. By
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incorporating neighbouring sentences, the model can capture contextual dependencies

and the influence of surrounding information on the classification of the current

sentence. This information presented to the model as a set of features. The same set

of features extracted from the test sentence is also extracted from the two preceding

sentences and the two following.

• Visually descriptive language (VDL): Visually descriptive information from Chapter 4

is used here as a feature. The classifier developed in Chapter 4 was used to classify

sentences as (0, 1, or 2), where:

– 0 tag: not visually descriptive

– 1 tag: visually descriptive

– 2 tag: partially visually descriptive

To assess the effectiveness of the VDL feature on the performance of the CRF classifier,

the model was tested twice—once with the VDL feature added to the list of features

and once without.

Table 6.2 presents the results of the two versions of the CRF model. Section 6.3 summarises

and compares the performance results of all models.

Next Afterward Finally Later
Last Lastly At last Now
Subsequently Then When Soon
Thereafter After a short time The next week A minute later
In the meantime Meanwhile On the following day At length
Ultimately Presently Above Behind
Below Beyond Here There
To the right (left) Nearby Opposite On the other side
In the background Directly ahead Along the wall As you turn right
At the tip Across the hall At this point Adjacent to

Table 6.1 Transitioning Phrases (Miami Dade College, n.d.)
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6.2.2 Model 2 - Bidirectional Encoder Representations from Transform-

ers (BERT)

The second model developed is a deep-learning model that uses a pre-trained language

model. The ktrain library (Maiya, 2020) was utilised to implement the model, with the

use of BERT (Devlin et al., 2018) from Hugging Face transformers. Ktrain is a Python

library that serves as a wrapper for the deep-learning library (TensorFlow Keras) and other

libraries to help in building, training, evaluating and deploying deep-learning models. It

offers an easy-to-use API that enables researchers to easily build and experiment with ML

models without requiring extensive deep-learning expertise. In addition, Hugging Face is an

open-source library that consists of pre-trained transformer models available to the research

community (Wolf et al., 2019).

Two experiments were conducted on the model to explore the most effective implementa-

tion: one with BERT cased and one with BERT uncased. BERT can read input up to 512

tokens at a time – this size can be adjusted during fine tuning. Any sentence less than the

maximum length specified is padded, and any sentence larger than the maximum length is

truncated. BERT is pre-trained on a large amount of text. It learns its model through two

unsupervised tasks: masked language model and next-sentence prediction. Then, it only

needs to be fine-tuned for our specific task.

In order to use BERT for our task, it has to be fine-tuned – by exposing the model to

our labelled data to learn the relevant parameters. The entire input sequence is represented

as a sentence embedding, where a special token [CLS] is inserted at the beginning of the

input sequence of sentences. The input to BERT is tokenised into subwords and the special

tokens [CLS] and [SEP] are added; this is shown in figure 6.1. The output vector of the final

layer for the [CLS] is then passed to the classifier head (a dense layer followed by a softmax

activation function in our case) that provides the predictions (0s or 1s). To map yCLS, that is,

the output vector of [CLS], to a set of scores to the possible output class, a set of weights WC

needs to be learned. Learning the weights (fine-tuning) is done by training the model on the

training labelled data. During training, cross-entropy loss between the true label and the
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output of the softmax function that is the predicted label and the true label is used to learn

the weights WC. So, the classification is done by multiplying the weights WC, by the vector

yCLS, and providing this to the softmax function (Jurafsky and Martin, 2023).

y = so f tmax(yCLSWC)

The model was fine tuned using a learning rate of 1.44E-05, with 3 epochs, and max-

imum length of 128 for Bert-Cased. And 5 epochs, and maximum length of 256 for

Bert-Uncased.

[s1,s2, . . . ,sn]

↓
[CLS] ws11, . . . ,ws1 n [SEP] . . .

Fig. 6.1 Representation of a sequence input to BERT.

6.2.3 Model 3 - Sentence Pair Classification with BERT

In an attempt to capture as much context as possible, the task of scene segmentation was

treated as a sentence pair classification task, where the relationship between a current sentence

and its surrounding context is assessed. The input consists of a pair: the first-pair part is the

current sentence and the second-pair part is the concatenated form of the two preceding and

two following sentences. This allows the broader context surrounding the current sentence to

be considered during classification (see figure 6.2).

Fine tuning BERT for sentence pair classification is fairly similar to the task of pre

training BERT on next sentence prediction. To capture the information that the two inputs

are actually a pair, the special token [CLS] is added to the beginning of the pair, and the

token [SEP] is added between the two pair-parts and at the end of the last token of the pair.

The input to BERT in this case is tokenised into subwords and the special tokens [CLS] and

[SEP] are added, as illustrated in figure 6.3.
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And, as explained in the previous subsection, during fine0tuning (training the pre-trained

model on our labelled data and inferring the model’s weights WC), the output of the final

layer of the [CLS] is then used to predict the label of the pairs (1 for SDS boundary, and 0

for a non-boundary sentence).

As with model 2, this model was implemented using the ktrain library. To explore

different variations, two experiments were conducted using pre-trained BERT models from

the Hugging Face model repository: BERT cased and BERT uncased. In leveraging these

powerful language models and the ktrain library, the aim was to enhance the model’s ability

to capture and comprehend complex sentence relationships, thereby improving sentence pair

classification performance.

[s1,s2, . . . ,sN ]

↓
[(s1,c1),(s2,c2), . . . ,(sN ,cN)]

where ci = si−2 + si−1 + si + si+1 + si+2

Fig. 6.2 Sentence pair input, where c refers to the concatenated form. Input to the classifier is
formed by pairing each sentence in the original text with a context, which is the concatenation
of the two preceding and two following sentences.

(si,ci)

↓
[CLS] wsi11, . . . ,wsin [SEP] wci1, . . . ,wcin [SEP]

Fig. 6.3 Representation of a tokenised pair of inputs to BERT.

The model was fine tuned using a learning rate of 1.44E-05, with 10 epochs, and

maximum length of 512 for Bert-Cased and Bert-Uncased.
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6.3 Results and Analysis

Model Acc
Balanced
Acc P(W) R(W) F1(W) P(M) R(M) F1(M)

F1
class 0

F1
class 1

Bert Cased 0.92 0.58 0.88 0.89 0.87 0.64 0.58 0.59 0.94 0.24
Bert Uncased 0.92 0.56 0.87 0.89 0.88 0.61 0.56 0.57 0.94 0.20
Sent-Pair Cased 0.90 0.51 0.86 0.85 0.84 0.56 0.55 0.54 0.91 0.17
Sent-Pair Uncased 0.90 0.55 0.87 0.85 0.84 0.55 0.53 0.51 0.92 0.18
CRF(VDL) 0.90 0.52 0.85 0.88 0.85 0.59 0.52 0.52 0.93 0.12
CRF 0.87 0.52 0.86 0.89 0.86 0.64 0.52 0.53 0.91 0.12
MCC 0.92 0.50 0.84 0.92 0.88 0.46 0.50 0.48 0.96 0.00

Table 6.2 SDS boundary classification results, (W) refers to weighted average and (M)
refers to macro averaging. P refers to Precision, R refers to Recall and Acc means accuracy.
Tenfold-cross-validation was carried out on each of the models. The average of the results of
the 10 folds is reported here. MCC refers to the most common class classifier (as a base line).

Table 6.2 presents the performance results of the six machine-learning models, namely,

CRF, CRF(VDL), which refers to CRF models with the VDL feature added, BERT cased,

BERT uncased, Sent-Pair Cased, which is a sentence pair classification with a BERT cased

model, and Sent-Pair Uncased (with BERT base uncased). The models are evaluated using

different metrics, including accuracy, balanced accuracy, precision (with both macro and

weighted average), recall (with both macro and weighted average) and F1 (with both macro

and weighted average and F1 score for each class 0 and 1 independently). Tenfold-cross-

validation was used to test each of the six models.

The findings indicate that accuracy alone showed relatively high values across the models

(ranging from 0.87 to 0.92). However, since the dataset is imbalanced (there are more 0

tags than 1 tags), accuracy alone is not sufficient to compare between models. We added

other metrics that can give a better insight into the performance of models, such as balanced

accuracy and F1 for each individual class.

As can be seen, most of the metrics used in testing the models yielded highly similar

results, which made it difficult to determine which model performed best. However, if we

focus on the two metrics that can be used to reflect the performance of models on imbalanced

datasets, the balanced accuracy metric is often considered when one of the classes is a lot
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larger than the other. The BERT cased model achieved the highest balanced accuracy of 0.58,

indicating its ability to handle imbalanced data more than the other models.

In addition, we obtained the F1 score for each class and focused on the results for a

minority class (class 1) that could help elicit an insight on which of the models would perform

better in predicting class 1. Similarly, the BERT cased model scored the highest, with a 0.24

F1 score.

Notably, although the BERT cased model achieved the highest scores among all models

in terms of balanced accuracy and F1 (for class 1), it is difficult to derive a conclusion as the

results for the majority of the models are highly similar. To see whether the differences in

our models’ performances are significant, we conducted a statistical test on the results, as

reported in the following section.

Statistical Analysis

Model Comparison Sent Pair-BERT Uncased Normal-BERT Cased NormL-BERT Uncased CRF-VDL CRF

Sent Pair-Bert Cased 0.3847 | 0.4048 0.1859 | 0.1402 0.3640 | 0.4043 0.7337 | 0.6488 0.8501 | 0.6770
Sent Pair-Bert Uncased - 0.2123 | 0.2890 0.7336 | 0.8203 0.1212 | 0.1035 0.1859 | 0.1402
Normal-Bert Cased - 0.6230 | 0.5449 0.0211 | 0.0309 0.0257 | 0.0341
NormL-Bert Uncased - 0.1211 | 0.1397 0.2729 | 0.1617
CRF-VDL - 1.0 | 0.7896

Table 6.3 Pairwise Mann–Whitney p-value results on the models’ performance. For each
pair, the p-value was calculated on the balanced accuracy results and on F1 for the minority
class. The results were reported as BA | F1 in each case.

Comparison Sent Pair-Bert Cased Sent Pair-Bert Uncased Normal-Bert Cased Normal-Bert Uncased CRF-VDL CRF

MCC 0.1153 0.0014 6.39e-05 0.0014 0.0426 0.1153

Table 6.4 Mann-Whitney Test Results for Balanced Accuracy

A statistical analysis was conducted to analyse whether there is a significant difference

in the performance of the six models. Our null hypothesis is that there is no significant

difference in the performance of the six models that were used for scene boundary detection.

Of the 10 metrics presented in Table 6.2, balanced accuracy and F1 for class 1 are the

two metrics chosen to do the statistical analysis on. The metric values for each of the 10

folds were used as the data samples for the significance test. The Mann–Whitney U test
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(MacFarland et al., 2016) was then conducted on these performance metrics of the six models.

Mann–Whitney test is non-parametric text that does not require normally distributed data

and works well with small data sizes which is the case in our task (10 BA and 10 F1 scores

for each classifier) and size 10 could be considered relatively small. In general, as shown in

Table 6.3, the results showed no significant difference (p-value> 0.05) in the performance of

the models. In terms of balanced accuracy metric, the p-values ranged from 0.1859 to 0.7336,

suggesting no significant difference in the performances of BERT cased, BERT uncased,

sentence pair with BERT cased and sentence pair with BERT uncased. This is also the case

for the results in terms of F1 for class 1. The p-values for the model comparisons ranged from

0.1402 to 0.8203, suggesting no significant difference in the performances of BERT cased,

BERT uncased, sentence pair with BERT cased and sentence pair with BERT uncased. On

the other hand, the p-values for both metrics (balanced accuracy and F1 for class 1) showed

a significant difference (p-value < 0.05) in the performance of BERT cased compared with

CRF and CRF with the VDL feature.

In addition, another statistical analysis was also conducted to analyse whether there is a

significant difference in the performance of the six models compared to the MCC baseline.

Table 6.4 shows Mann-Whitney p-value results between the most common class (MCC)

classifier and each of the six models. These p-values were obtained for 10 folds BA, as the F1

for the minority class will be all 0s for the MCC. The results show that, there is a significant

difference in the performance between the MCC and sentence pair with Bert Uncased, Bert

Cased, and Bert Uncased. There is marginally significant evidence of a difference with

CRF-VDL. And finally, there is no strong evidence of a difference with sentence pair with

Bert Cased and CRF.

Discussion

The stronger performance of BERT could be attributed to the fact that BERT is pre-trained on

the BookCorpus collected by (Zhu et al., 2015). The BookCorpus is made of 11,038 novels

from 16 different genres (e.g. romance, science fiction, fantasy, etc.). Therefore, BERT has

seen narrative text previously.
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Overall, the findings suggest that the choice of model (BERT cased, BERT uncased,

sentence pair with BERT cased and sentence pair with BERT uncased) may not significantly

impact performance in our tasks. Users can select the model that best aligns with their

specific requirements or preferences without compromising performance.

However, there is no significant difference both between the CRF models and the some

of BERT models and between the two CRF models. This could suggest (1) the power

of language models pretrained on large amounts of text and then fine-tuned for the task

outweighs the use of features engineered for this specific task but then trained on a small

amount of labelled data (2) VDL either offers no help for this task or the accuracy level of

the VDL classification is too low to be useful here.

Finally, comparing the performance of our models to those of Zehe et al. (2021) on the

binary scene segmentation task they define, we see that our results are broadly similar (.24 F1

measure). Given differences in task definition and dataset not to much should be made of this

without further investigation. However, both their efforts and ours suggest this is a hard task.

6.4 Summary

This chapter introduced the automatic scene segmentation task that segments narrative text

into scenes. We described the data used to train the models. We also experimented with three

different machine-learning models using textual features and a deep learning approach. Then,

we evaluated the performance of these models and conducted a statistical analysis using the

Mann–Whitney test to determine if there are significant differences among these models in

terms of performance. The results obtained showed no significant differences among the

majority of the models. Notably, a significant difference was found between BERT cased

and CRF.





Chapter 7

Conclusion and Future Work

In this chapter, we summarise the work conducted in this thesis. Section 7.1 gives a sum-

mary of the work conducted to address each of the research questions and draws tentative

conclusions in relation to these questions. In section 7.2, we discuss the unaddressed issues

that should be explored in future studies.

7.1 Summary of Contributions

To date, there has been great interest in the interdisciplinary area of vision and language.

Significant research on vision and language tasks, such as image captioning, aligning books

with movies, automatic text illustration and story picturing and automatic narrative generation,

is being carried out. There is also a lot of research on computational understanding of

narrative and narrative extraction from textual data.

The focus of the work in this thesis has been three-fold. First, we studied visually

descriptive language and carried out experiments on this topic, conducted an analysis, and

formulated conclusions. Second, we investigated the automatic segmentation of narrative text

into scenes by choosing the most suitable definition of a scene, constructing a scene-annotated

corpus of narrative texts and building scene segmentation models. Third, we investigated

how useful visually descriptive language (VDL) is for scene segmentation, though in a very

limited way.
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We started by reviewing the definition of VDL in Chapter 2, looking into several possible

definitions of scenes found in the literature and choosing the most suitable one. Next, we

explained in detail relevant information about SceneML, the framework we used to develop

our scene annotation guidelines. This was followed by a review of related work on scene

annotation and scene segmentation. The work by Zehe et al. (2021) is the most relevant to

ours. However, it differs in several respects, which are discussed in the chapter. To the best

of our knowledge, there is no work on automatic scene annotation and segmentation based

on SceneML.

In Chapter 3 we laid out the research questions we intended to address in the rest of the

thesis. These are repeated below in our summary of work carried out in subsequent chapters

of the thesis.

In chapter 4, we conducted experiments on the first half of the thesis on VDL. This

chapter addressed two of our research questions. Section 4.1 addressed the research question:

RQ1: How well can we automatically classify sentences into three classes, VDL, not

VDL and partially VDL?

We started by briefly describing the annotated dataset used to train the models. We then

explained in detail the experiments carried out to determine the best model for the task

of classifying sentences into the three classes, VDL, not VDL and partially VDL. We

investigated three groups of features for this task: (1) explicit visualness representation that

encodes whether the sentence has visual components – VerbNet and WordNet features were

explored in this group (2) representations using word tokens – in this group of features two

features were explored and tested, Tf-idf and word embedding (3) combinations of (1) and

(2). The experiments were carried out using three different machine learning classifiers,

kNN, SVM, and MNB. Our experiments showed that using word embeddings and an SVM

classifier achieved the highest results with a balanced accuracy of 0.74.

Section 4.2 addressed the second research question:

RQ2: Can we detect segments of sentences that are visually descriptive?

In this section, we explained the experimental work for the task of segment-level classification

of sentences into the three classes, VDL, not VDL and impure VDL.
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We approached this task as a sequence labelling problem, where each word is assigned

either an inside (I) or outside (O) tag. Our experimentation involved various lexical and mor-

phological features, as well as features related to the word’s position in the sentence. These

features were combined with different context sizes. The results indicated that combining all

the aforementioned features with a context size of one word before and one word after the

target word, using a Conditional Random Field (CRF) classifier, yielded the highest F1 score

of 0.81.

Chapter 5 and chapter 6 form the second half of this thesis on the automatic segmentation

of narrative text into scenes. Chapter 5 partly addressed the third research question:

RQ3: Can we automatically segment a story into scenes?

One way to answer this question is to create a corpus of scene-annotated narrative texts for

use in training and evaluating models of automatic scene segmentation. Chapter 5 addresses

this challenge. We began by introducing our annotation guidelines that were developed based

on SceneML, the framework for scene annotation introduced in Chapter 2. A pilot study

on annotating scenes in narrative text based on the guidelines was carried out to assess the

viability of the task and to test how good the guidelines were. A thorough analysis of the pilot

annotation guidelines was performed, and changes were made accordingly. After improving

the guidelines, we started the annotation process. We described in detail the process we

followed and the inter-annotator agreement results. The outcome of this chapter was a set of

annotation guidelines to be used in future annotation tasks and a dataset of annotated scenes

in text1. To the best of our knowledge this is the first publicly available corpus of English

narrative texts annotated with scene boundaries.

Chapter 6 addressed the technical aspect of the third research question. In this chapter,

several experimental methods were carried out to build a model that can automatically

segment a story into scenes. Several models were investigated and their performance assessed

and compared to find the best model for the task. Three models were implemented and

explored. The first model is feature-based model that treated the task as a sequence-labelling

task, in which a CRF classifier is used with a set of handcrafted features. The second model
1The corpus and annotation guidelines are available at https://doi.org/10.15131/shef.data.21517908
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treated the task as a sequence classification task. We addressed it using a pre-trained language

model (BERT), and this was explored with two versions BERT cased and BERT uncased.

The third model treated the task as a sentence pair classification task, in which the input was

represented as a sequence of pairs. The fist item in the pair is the sentence to be classified

and the second pair item is the concatenated form of the two preceding sentences and the

two following ones.

This chapter also addressed the fourth research question:

RQ4: Can VDL be used to help in scene segmentation?

We tried to answer this research question by using our CRF feature-based model for scene

segmentation and adding to it a feature dervied from the VDL model developed in chapter 4.

Looking into the balanced accuracy and F1 for the minority class, model 2 with BERT

cased was the best performing model for the scene segmentation task with 0.58 balanced

accuracy and 0.24 for F1. However, a statistical test using Mann-Whitney was carried out

to compare models looking for any significant differences between the models. Comparing

BERT based models (model 2 and 3), including their cased and uncased versions, revealed

no significant differences. In addition, examining the two CRF models (with and without the

VDL feature), showed that there was a significant difference between them and the BERT

cased version of model 2. Finally, Mann-Whitney was also used to test for any significant

difference between the performance of all models and the performance of the MCC baseline.

The p-values showed that there was significant difference between the MCC and sentence

pair with BERT Uncased, normal BERT Cased, and normal BERT Uncased models. There

is no significant difference with sentence pair with BERT Cased. Interestingly, there was a

significant difference (although marginal) between MCC and CRF-VDL while there was no

significant difference between MCC and CRF.

While incorporating VDL into the task of scene segmentation in the manner we did so,

did have a minor positive impact on raw accuracy scores, overall all it did not offer any

significant improvement over the same model without the VDL feature. Whether this was

due to inaccuracy in the identification of VDL or lack of utility of this information for this

task remains unclear.
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7.2 Future Work

This thesis contributes to knowledge about two main natural language processing (NLP)

topics: (1) defining and identifying VDL in text and (2) scene definition and segmentation,

both considered new tasks in the NLP field. Although we made progress in both tasks, there

are still many areas that are open for future research opportunities.

Defining and identifying VDL in Text

While the work in this thesis provided a solution to the VDL sentence-level and segment-

level classification tasks, there is room for improvement.

• Improving VDL classification

Regarding the classification results, pre-trained language models (e.g. Bert) could be

investigated to see if they could improve the classification results. In addition, more

annotated data can also be gathered to give more accurate results for the classification

task.

In addition, the use of Large Language Models (LLMs) like GPT-3 (Brown et al.,

2020) or GPT-4 (Achiam et al., 2023) could be considered to further enhance VDL

identification task. This approach can be applied through zero-shot learning, which

does not require specific training data, or few-shot learning, which only needs a few

examples of the training data. Using LLMs could be effective since it only needs a few

examples of the training data, and our dataset size is small.

Furthermore, since the data is imbalanced other metrics, like GMR, ROC could be

used to evaluate the model.

• Using VDL for other tasks

VDL could be investigated for use in other NLP applications, e.g. in text/story illustra-

tion. Since illustrations are typically associated with elements of a text or story that

can be visualized, a VDL-detector could be used to help suggest where illustrations

should be placed in text.
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Scene definition and segmentation

Automatic segmentation of narrative text into scenes is considered a new task in NLP, and

there has to date only been limited research in this area. Following are some future directions

that could be taken in this area:

• Annotation guidelines

Although the annotation guidelines were refined many times in multiple cycles of pilot

studies, they still require further refinement to cover instructions for a wider variety of

narrative text types (e.g. biographies, historical and contemporary fiction for adults).

In addition, it would be interesting to explore the application of our guidelines to the

annotation of narrative text in languages other than English.

• Scene annotated data

We tried to annotate as much data as possible, but as this is a PhD project with limited

time and limited resources, the annotation process had to be stopped at a certain point.

To build a supervised learning model that can more accurately automatically segment

narrative text into scenes, more data is needed. The annotation process can be extended

to cover historical and contemporary fiction for adults and biography. Non-textual

narrative genres, such as film, can also be considered. In addition, other aspects of

SceneML could be considered in the extended annotation process so as to include

all SceneML elements, including narrative progression links, time, locations, and

characters. The annotation process also can be extended to cover text from other

languages once the guidelines have been validated in that regard. In addition, more

scene annotated data can help in training models for other narrative-generating tasks

such as Jin et al. (2022) and Mirowski et al. (2023) that would benefit from such a

dataset.

• Improvements to the segmentation model

While we have made progress in building a supervised model that can automatically

segment narrative text into scenes, there is more that can be done to improve the

accuracy of such models (scores for this, while comparable to Zehe et al. (2021) are
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disappointingly low). One suggestion is to use a geographical and temporal references

extraction model such as Ezeani et al. (2023) that can help to identify entities related

to scenes and to identify scene changes. Another suggestion here is to develop another

model that like the CRF approach treats the task as a sequence labelling task, but uses

transformers. So instead of treating the task as a sentence classification or sentence

pair classification task, treat the problem as sequence labelling over a sequence of

sentences (so, one label per sentence). In addition, one necessary refinement to he

segmentation model is adding the detection of non-scene segments and scene transition

segments (STs) as further tasks. Furthermore, the use of large language models (LLMs)

like GPT-3 (Brown et al., 2020) or GPT-4 (Achiam et al., 2023) could be explored

to see if it can enhance the scene segmentation task. This can be applied through

zero-shot learning, where no task-specific training data is required, or through few-shot

training where only a few examples of the training data is required to be provided.

This approach is ideal for our task given the limited size of the available training data

and LLMs with their billions parameters could handle and understand the complex

task of automatic segmentation of narrative text into scenes.

• Scene clustering

One of the interesting questions this project raises is: Can we cluster scenes into

meaningful scene types? After multiple stories have been segmented into scenes, we

could, for example, cluster scenes of the same location type together (e.g. all café

scenes would be grouped together). This question addresses the task of text clustering,

with a focus on clustering scenes, depending on their type. Different clustering methods

can be applied (e.g. k-means, hierarchical clustering, unsupervised neural networks,

LDA, Markov clustering) and compared to rate their performance.

There is also a potential opportunity to study the effectiveness of using VDL for the

task of scene clustering.

• Shared task on scene segmentation

Because there is only limited research on the task of automatic segmentation of
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narrative text into scenes, a workshop on the topic and a shared task could be proposed

to encourage collaboration by researchers in the NLP research community who are

interested in narrative studies. This would provide an opportunity for interested

researchers to meet, exchange ideas, come up with new suggestions and solutions and

develop novel algorithms for this new NLP task.
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1 Introduction

To date, there has been a lot of research interest in integrating vision and language for

different tasks. Image captioning for instance, is the task of generating natural language

descriptions for a given image. Models are trained using datasets having texts aligned with

images that are manually annotated. Another example of an image-based task is automatic

text illustration, which is the task of automatically finding a suitable image for a given

segment of text.

Such research integrating vision and language generally tries to solve image-based tasks,

by relying on images aligned with texts. The problem is twofold: (1) many captions

associated with images do not just describe the image; (2) the volume of captions overall is

not great.

Therefore, we propose exploring how text not associated with images can be used to help

in this type of research. We can find such text in narratives and drama, because we get

descriptions of setting in fiction. We may get visual descriptions of things in other writing

also, for example biography. So we propose to investigate ways of utilising these other purely

linguistic image-based resources to help in tasks relating to images.

Our research aims to explore the idea that scenes are divisions found in all narratives

which, amongst other things, have to do with physical setting. Usually there are descrip- tions

that enable the reader to note scenes have changed. Automatic scene segmentation could be

useful for purposes of illustration and alignment. This project proposes the idea of automatic

segmentation of narrative text (stories) into scenes. In order to carry out this task, we first

provide a definition of what a scene is. Then, we define guidelines for scene annotation that

help in identifying scene change and scene boundaries. Automatic segmen- tation of text into

scenes could help in building a text corpus of scenes that could be used by systems

converting scenes into images. In addition, scenes could be clustered and common visual

elements identified for scenes clustered together. If scene type labels can be given to these

clusters, then these labels could be attached to images whose visual elements model these

clusters.

1.1 Overview of the Report

The report is structured as follows:

• Section 2 gives a brief introduction to SceneML.

• Section 3 explains the annotation process.

• Section 4 explains how to use the annotation tool.
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2 SceneML

2.1 The Annotation Framework

Taking into consideration the literature related to scene definition, we treat a scene as a unit

of a story in which the elements: time, location, and main characters are constant. Any

change in these elements indicates a change of scene. A scene is an abstract discourse

element. It consists of a location or setting, a time and characters who are involved in the

events that take place in the scene. These elements that constitute a scene exist in the real or

fictive world (storyworld, as per narrative theory) that the narrative revolves around. “The

scene itself is an abstraction away from the potentially infinitely complex detail of that real or

fictive world, a cognitive construct that makes finite, focussed narrative possible" [2].

A scene in a textual narrative may consist of one or more scene description segments (SDS).

An SDS is “a contiguous span of text that, possibly together with other SDSs, ex- presses a

scene" [2]. Typically a scene consists of one SDS, unless the scene introduces other scenes

such as scenes about past (memories) or future events, in which case the textual realisation

of one scene may be split with text from another scene embedded within it, resulting in

non-contiguous SDSs for the embedding scene. Furthermore, SDSs can be in the form of

“spatially distinct locations that are topologically contained within or connected to the

embedding SDS, or if the author is employing the narrative device of rotating between

multiple concurrent scenes each of which is advancing a distinct storyline (a common

technique in action movies)"[2].

It is important to define what each element of a scene (characters, time, location) is to

facilitate the annotation process and to make it easier to detect scene changes if any of the

elements changed. Scene changes have been studied by researchers such as [1] and others.

Studying which of the scene elements (characters, time, location) changes in a scene can be

considered a contribution to previous studies. Here we propose to adopt the definitions, and

annotation standards, for the elements (time, location, and spatial entities) from Iso-TimeML

and Iso-Space. As for characters, we will adopt the definition and annotation standards for

named entities of type person from the ACE program which has been recently used in in the

TAC 2018 entity discovery and linking task [2].

The previous standards will facilitate the annotation process for all mentions of times,

locations/spatial entities and persons represented in the text. Nonetheless, we are inter-

ested in the relations between the specific entities that construct a specific scene (i.e., the

characters, time, location that construct a specific scene) [2].

2.2 SceneML Elements

SceneML elements are categorised into two main categories:

1. Entities: entities consists of scenes, SDSs, character, time, and locations

2. Relations: “scene-scene narrative progression links".
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Scenes

Scenes are the main element in SceneML. A scene has attributes: id, time and location, these

attributes are unique for each scene. They also include a list of character sub- elements as

there may be more than one character for each scene [2].

SDSs

Scene description segments (SDSs) are the actual strings of text that compose the scene. SDSs

cannot belong to more than a scene, but a scene can be composed of multiple SDSs. They

include the following attributes: id and scene_id that is the id of the scene that the SDS

belongs to, these attributes are unique to each SDS [2].

Time

Time elements used here are the ones developed by ISO-TimeML, they include an id attribute

and a text segment. Time could also include the time of the storyworld and it is represented

by the attribute base [2].

Location

Like time, we use the location element developed in ISO-Space; this also includes an id at-

tribute that is unique for each location and a text span [2].

Character

Here we use the named entity or type person from the ACE English Annotation Guidelines for

Entities, the only difference here is that animals and non-humans can be considered as

characters. They have an id attribute that is uniquely assigned for each character and a text

segment. Character might include  the type attribute of the ACE specification [2].

Narrative Progression Links

Narrative progression links (nplinks) link between any two textually adjacent scenes, these

links have different types depending on the type of temporal transition between the two

scenes. So far we have four types of links [2]:

• sequence links are assigned when the scene change happen because of a change in

location e.g. a character moves to another place

• analepsis when there is a flashback in the scene e.g. memory of the past

• prolepsis (or flashforward) when then we are taken forward in time

• concurrent links are assigned between two scenes when the transition happen

because there is another thread of the story happening at the same time so the

transition take us to different charters and different place but the same time
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3 The Annotation Process

Novels and stories usually consist of a set of scenes. A scene as defined in literature is a unit

of a story in which the elements: time, location, and the main characters are constant. Any

change in these elements indicates a change of scene. A scene is an abstract discourse

element, i.e. it is not explicitly indicated in the text. It consists of a location or setting, a time

and characters who are involved in the events that take place in the scene. A scene in a story

may be realised by one or more scene description segments (SDS). An SDS is “a contiguous

span of text that, possibly together with other SDSs, expresses a scene”[1]. Typically a scene

consists of one SDS, unless that scene involves other SDSs of other scenes such as scenes

about past (memories) or future events. Furthermore, SDSs can be in the form of “spatially

distinct locations that are topologically contained within or connected to the embedding SDS,

or if the author is employing the narrative device of rotating between multiple concurrent

scenes each of which is advancing a distinct storyline (a common technique in action

movies)”[1].

Example: Figure 1 shows an illustration of how scenes should be connected through

relations. Scene1 consists of two non-adjacent SDSs, SDS1 and SDS3. While Scene2 consists of

only one SDS, SDS2. Scene1 and Scene2 are connected by a flashback relation.

Figure 1: Two scenes, Scene1 and Scene2 connected with a flashback relation.

Textually adjacent scenes, i.e. scenes with textually adjacent SDS’s, should be linked

together through progression links. Note that these links are links between scenes not SDSs.

We identify four types of progression:

• sequence, when one scene follows on from another, e.g. when characters move from
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one location to another;

• analepsis (or flashback), when we are taken to another, earlier time and possibly other

details such as location and characters change as well;

• prolepsis (or flashforward), when we are taken forward in time;

• concurrent, when we are taken to another location with different characters, where

another thread of the story is developing at the same time as the textually preceding

scene.

The annotation tool does not support the creation of abstract entities such as scenes.

Therefore to capture the information that multiple SDSs belong to the same scene, we will

annotate a relation between SDSs that are in the same scene (“is_in_the_same_scene_as”).

Furthermore to capture progression relations between scenes, we will annotate these

relations between the initial SDSs of related scenes, with the understanding that really the

relation holds between scenes and not SDSs. Figure 2 shows how to annotate the example in

Figure 1 with the BRAT annotation tool. The flashback relation is connecting SDS1 from

Scene1 with SDS2 from Scene2. SDS1 is connected to SDS3 with a “is_in_the_same_scene_as”

relation to indicate that they are in the same scene. It is im- portant to define what each

element of a scene (characters, time, location) is to facilitate the annotation process and to

make it easier to detect scene changes if any of the elements changed.

Figure 2: How scenes and SDSs are annotated with the annotation tool.
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You are required to annotate SDSs in the text provided, then link these SDSs together if

you see that multiple SDSs compose a scene. Note that each SDS must belong to only one

scene, but every scene can contain one or more SDSs. In addition, you are required to

annotate the elements: time, location, and characters. Please note that the change of these

elements indicates a change in the whole scene not a change in the SDSs. Please also annotate

the relations between scenes as explained above.

3.1 Detailed Annotation Guidelines

Below you will find more detailed explanations of each of these elements and instructions for

the annotation process.

Entities to be Annotated:

Scenes

Scenes are the main element in SceneML. A scene has elements time and location, which are

unique for each scene. A scene also includes a list of character sub-elements as there may be

more than one character for each scene. Please note that this is an abstract element, which

means that this element is not annotated explicitly in the text.

Then how can one annotate a scene if it is an abstract element? you can annotate a scene

by: (1) if the scene has only one segment (SDS) then all you have to do is to annotate the

segment as (SDS), (2) if the scene has multiple segments (SDSs), then annotate each one of

these segments as (SDS) separately and then link them together with is_in_the_same_scene_as

relation. By linking these segments together we indicate that they all belong to the same

scene.

So all you have to do here is to build a conceptual understanding of where the scenes are in

the text and annotate the SDSs that constitute these scenes. While you do that, you also need

to pay attention to the three main elements that compose the scene, and once you notice a

change in any of these elements you need to end annotating the current SDS that compose

the current scene and start a new one by following points one and two above.

SDSs

Scene description segments (SDSs) are the actual strings of text that compose the scene. An

identified SDS cannot belong to more than one scene, but a scene can be composed of

multiple SDSs. In order to identify an SDS, you need to make sure that the 3 elements of a

scene (time, location, characters) persist across that continuous span of text. The moment

you notice a change in any of the elements, you need to consider a new scene and the end of

the current SDS. Sometimes, the time entity might not be stated literally in the text; it can be

inferred from the tense used, or it might be only mentioned at the beginning of the story. It is

OK for an SDS to not have a time entity explicitly mentioned as long as the time persists from

a previous scene; similarly for location. Please note that each SDS should be at least one

sentence long.

Scene Boundaries and scene shifts:

Here you will find more information on how to end the current scene (SDS), and begin a new

one. And what could be considered a sufficient change for a scene shift.
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● If there is a location change that results in a scene shift, where exactly should

we stop the current SDS, and start the following one?

Transitioning sentences stating that a person is arriving at a new location or

leaving the current location should be handled one of two ways: (1) if the location

is preceded by a verb like arrived, got to, … etc. then we can consider the sentence

to belong to the following, new SDS (2) if the location is preceded by a verb like

left, got out of, …, etc.) then we can consider the sentence to belong to the current

SDS.

● Changing locations: when to consider a change in a location, if you are unsure

about changing the scene? This means if the location is changed but you are not

sure if that change in the location (e.g. very minor change) will lead to a scene

change.

○ If there is a very minor location change that you feel does not lead to a

change in the scene, e.g. if the characters of the current scene only move

from one side of the room to the other without exiting the current room,

then this minor location change should be ignored, and there is not a shift

in scenes.

○ Try to ask yourself, if you were to design sets for a play version, would you

need a different backdrop for it?.

● Changing characters: when reading the whole text first, you’ll be able to build a

general idea about who are the characters that contribute more to the story and

who are the characters that do not have a major impact on the scenes of the story.

When major characters enter the current scene or leave the scene, you should end

the scene at the current SDS and start a new one. Nevertheless, if minor characters

that do not have a major role in the scene, have any change in their situation

(entering, or leaving), it should not affect the current SDS of the scene, and thus the

scene should continue.

Non-scene segments: please note that not all segments (i.e. paragraphs/ sentences/ phrases

... etc) need to be annotated as belonging to an entity. Some segments can be left without

annotation if you see that they do not belong to a scene or do not create a scene. Some of

these non-scene segments may reflect the author's general view of something, or may be a

description of a character or a place or some period of time prior to setting that the rest of

the story takes place in. So far we have identified three types of a non-scene segment; there

may be more:

1. general philosophising or opinion segments -- these do not mention specific

characters or events but rather offer the author’s view on some topic or another;

2. background information segments -- they may lack precise details of time or

location, are clearly set before the current narrative begins, and provide insight

into characters or past events of relevance for understanding the story that is

about to begin;

3. narrative summary or narrative catchup -- where various events, usually

non-pivotal, are summed up in a relatively compressed passage that lets the reader

know how events have moved on in between two scenes that are presented in

greater detail, without precisely indicating all the details of character, location and

time. Events themselves in these passages may not be distinguished from each
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other, if the intention is to indicate a trend or only the outcome.

For example, the first two paragraphs of chapter 1 of the novel Adventures of Sherlock

Holmes are non-scene segments because they contain background information. They

describe the characteristics of the character Sherlock Holmes and the relationship between

him and his friend Watson. There is nothing actually happening at these segments, so they

should not be annotated as scenes. You can find the novel here:

https://www.gutenberg.org/files/1661/1661-h/1661-h.htm#chap01. In addition, the first

two paragraphs of the chapter 1 of the novel A Tale of Two Cities are non-scene segments

(background information) as they describe the era and the character of that era, but no

specific events are related. You can find the novel here:

https://www.gutenberg.org/files/98/98-h/98-h.htm. In another example, the first two

paragraphs of chapter 1 of Pride and Prejudice - It is a truth universally acknowledged, that a

single man in possession of a good fortune, must be in want of a wife… etc. And the first two

paragraphs of chapter 1 of A Tale of Two Cities are non-scene general philosophising

segments. You can find Pride and Prejudice here:

https://www.gutenberg.org/files/1342/1342-h/1342-h.htm#link2HCH0001. The first

paragraph of chapter 3 of Pride and Prejudice is a nice example of a narrative summary

non-scene segment.

As you can see from the examples above most of the non-scene segments occurred at the

beginning of a story or the beginning of a chapter, this is what we have encountered so far

but non-scene segments can be embedded in text. If you find a non-scene segment

embedded in text that is less than a full sentence, ignore the segments and consider it to be

part of the current SDS segment.

Scene Transitioning Segments (ST)

These are text segments that indicate a character or characters are moving from one location

to another, where this transition is neither clearly related to the previous scene location nor

the following scene. In addition, there is not any event of narrative significance happening

during the transitioning segment other than the transition. These segments should not

contribute to the narrative of the story (e.g. if there is a conversation happening between

characters of the story, they should not speak important information related to the story) .

For example,

And so in ten minutes I had left my armchair and cheery sitting-room
behind me, and was speeding eastward in a hansom on a strange errand,
as it seemed to me at the time, though the future only could show how
strange it was to be.

The above segment (Adventures of Sherlock Holmes chapter 6) is annotated as a transitioning
segment (ST), it shows that the character Watson has left the previous scene location (his
house) and is en route to the next scene location.

Time

Here you need to annotate the text span that refers to the time of the scene (i.e. the time the

events of the scene are happening). Below you will find more examples of what could be

considered a time of a scene and more instructions on the annotation process.

Time spans could be:

1. Noun (including Proper Nouns): e.g. today, Thursday
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2. Noun Phrase (NP): e.g. the morning, Friday night, the last two years

3. Adjective: e.g. current

4. Adverb: e.g. recently

5. Adjective or Adverb Phrase: e.g. half an hour long, two weeks ago, nearly a half- hour

Please be aware to annotate the time entity that the scene events are happening in. Some
scenes might have multiple mentions of time entities (they could be mentioned in a question
or in a description of something else) although only one will be considered as the time of the
scene. For example, consider this question that was asked by a character in a children's story:
“Do you not have good fabrics in the future?” I asked, eyeing a box that seemed to be stuck to
the wall" here the word future should not be annotated as the time of the scene in as it does
not refer to the time the scene events are happening.

Examples of a time entity:

• ONE TIMEX tag will be used when there is no intervening token between tem-
poral terms:

– twelve o’clock midnight

– Friday evening

– 8:00 p.m. Friday

– Tuesday the 18th

– November 1943

– Fall 1998

– this year’s summer

• ONE TIMEX tag will be used when certain prepositions appear within temporal
expressions:

– the second of December

– summer of 1965

– ten of two ten minutes to three

– half past noon

– eleven in the morning

• TWO TIMEX tags will be used when sequences of two temporal expressions that
are ordered one relative to the other. They generally involve the use of temporal
prepositions and conjunctions like from, before, after, following, prior to, etc. :

– I’m leaving on vacation [two weeks] from [next Tuesday]. John left [2 days] before
[yesterday]

• TWO TIMEX tags will be used when sequences of two temporal expressions that
can be related by a temporal link:

– I tutored an English student [some Thursdays] in [1998]. The concert is at [8:00
p.m.] on [Friday]. The concert is [Friday] at [8:00 p.m.]

Location

Like time, you need to annotate the text span that refers to the location of the scene (i.e. the

location the events of the scene are taking place in). Below you will find some examples of
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locations, and some annotation cases you need to be aware of.

Some examples of possible locations of scenes:

• Building

• United States

• West Tikrit

Some notes in annotating locations:

• Please make sure when annotating a location that the location is the location of the

current scene, as some scenes may have mentions of more than one location, though

only one of them is the location where the scene events happen. For example, “ “You

just wait here until we’re ready to take you home,” he said, as he floated towards one of

the exit tunnels". If the word “home” were to be tagged as the location of the scene that

would not be correct as events of the scene do not take place at “home” — it is only

mentioned in the conversation.

• Phrases like “centre of the room" was tagged as being the location of the scene, it is not

completely wrong but “room" is supposed to be tagged alone as the (Location) of the

scene instead of tagging the words (centre, of, and the) as it does not matter where in

the room the scene is happening as long as it is in the room the scene would not

change.

• Similarly, all the words in the sub sentence “back into the corridor" were annotated as a

location and that is not correct, only the corridor should have been tagged as a location.

Character

Text spans that refer to characters need to be annotated, characters could be humans, non

humans (e.g. animals), and subjects. Below some specific cases in annotating characters:

• Only the first mention of each character should be annotated in each scene. Char-

acters, could be mentioned several times in every scene or sds, but only the first

mention should be annotated.

• Sometimes subjects (e.g. he, she) could be used to a character that is already annotated

within the same scene, then this subject need not to be annotated. For example: John is

playing football with his friend. He is a good football player. If the two sentences belong

to one scene, then we only annotate John. But if the two sentences belong to two

different scenes, then we annotated John as an actor of the first scene and He as an

actor of the second scene.

• If the subject of a certain character is mentioned before its character in the same scene,

then we do not annotate the subject, we annotate the name of the character instead.

The subject is mentioned before its name, when the name is mentioned in a previous

scene, so in this case we annotated the first mention of the name in the scene. If the

name is not mentioned in the scene at all, then we annotate its first mention of its

subject.

• When multiple characters appear next to each other (e.g. Biff, Boff and Skip) each one

of them should be tagged alone as a character, do not annotate all of them as one

segment. Because then the word and will be also tagged as a character and that is not
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true.

3.2 How to annotate

Start by reading the whole text first without annotating to gain a whole understanding of the

story and events. Then, read it again and annotate all SDSs and within each SDS annotate the

three entities if they exist as explained in the previous section.

If no time is given in the current scene, add a note to the scene with the time being as the

previous scene.
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4 BRAT (Annotation tool)

• Go to the page: http://sceneml.shef.ac.uk/brat/#/your name/

Figure 3

• A popup window will appear that contain all the files in you page, select the file you

want to annotate and click OK.

Figure 4

• In order to annotate, you’ll need to login first. Username and password has been sent to

your email. Hover the mouse on the login icon in the top bar and log in (see Figure 5).
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Figure 5

• Select the text span you want to annotate as in Figure 6

Figure 6

• A pop up menu will appear with the all entity types, select the entity type you want and

click OK (see Figure 7)

• To connect two SDSs together;
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Figure
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